
Problem Decomposition and
Adaptation in Cooperative

Neuro-evolution

by

Rohitash Chandra

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2012





Abstract

One way to train neural networks is to use evolutionary algorithms
such as cooperative coevolution - a method that decomposes the network’s
learnable parameters into subsets, called subcomponents. Cooperative
coevolution gains advantage over other methods by evolving particular
subcomponents independently from the rest of the network. Its success
depends strongly on how the problem decomposition is carried out.

This thesis suggests new forms of problem decomposition, based on a
novel and intuitive choice of modularity, and examines in detail at what
stage and to what extent the different decomposition methods should be
used. The new methods are evaluated by training feedforward networks
to solve pattern classification tasks, and by training recurrent networks to
solve grammatical inference problems.

Efficient problem decomposition methods group interacting variables
into the same subcomponents. We examine the methods from the liter-
ature and provide an analysis of the nature of the neural network opti-
mization problem in terms of interacting variables. We then present a
novel problem decomposition method that groups interacting variables
and that can be generalized to neural networks with more than a single
hidden layer.

We then incorporate local search into cooperative neuro-evolution. We
present a memetic cooperative coevolution method that takes into account
the cost of employing local search across several sub-populations.

The optimisation process changes during evolution in terms of diver-
sity and interacting variables. To address this, we examine the adaptation
of the problem decomposition method during the evolutionary process.



The results in this thesis show that the proposed methods improve per-
formance in terms of optimization time, scalability and robustness.

As a further test, we apply the problem decomposition and adaptive
cooperative coevolution methods for training recurrent neural networks
on chaotic time series problems. The proposed methods show better per-
formance in terms of accuracy and robustness.



Dedication

I dedicate this thesis to my mom, Prakash Wati. She has been the main
inspiration behind this thesis.

iii



iv



Acknowledgements

I wish to acknowledge my supervisors, Dr. Marcus Frean and Prof. Mengjie
Zhang for their guidance during the course of the PhD program.

I would like to thank Prof. Christian Omlin of Middle East Techni-
cal University and Mohammad Nabi Omidvar of RMIT University. I ac-
knowledge the comments from the anonymous reviewers on the papers
published from this thesis. I also acknowledge the examination commit-
tee.

My sincere gratitude to Siva Kumar Dorairaj and Rajeswari Nadara-
jan for their support and motivation. I also thank Prema Ram and Mani
Nambayah for their support.

I also thank my sisters, Kumari Ranjeeni and Ranjita Kumari for their
support and my wife Ronika Kumar for the inspiration. My sincere grati-
tude to all my family members and friends for their support.

v



vi



Publications

Journal Articles

1. R. Chandra, M. Frean, M. Zhang, Crossover-based Local Search in
Cooperative Co-evolutionary Feedforward Networks, Applied Soft
Computing, Elsevier, Conditionally Accepted, March 2012 .

2. R. Chandra, M. Frean , M. Zhang, On the Issue of Separability in
Cooperative Co-evolutionary Feedforward Networks , Neurocom-
puting, Elsevier, In press, 2012.
(http://dx.doi.org/10.1016/j.neucom.2012.02.005)

3. R. Chandra, M. Zhang, Cooperative Coevolution of Elman Recurrent
Neural Networks for Chaotic Time Series Prediction, Neurocomput-
ing, Elsevier, In Press, 2012.
(http://dx.doi.org/10.1016/j.neucom.2012.01.014)

4. R. Chandra , M. Frean, M. Zhang, Adapting Modularity During Learn-
ing in Cooperative Co-evolutionary Recurrent Neural Networks, Soft
Computing, In Press, 2012 (DOI: 10.1007/s00500-011-0798-9).

5. R. Chandra M. Frean, M. Zhang and Christian Omlin, Encoding Sub-
components in Cooperative Coevolutionary Recurrent Neural Net-
works , Neurocomputing, Elsevier, Vol. 74, 2011, pp. 3223-3234.

vii



Refereed Conference Proceedings

1. R. Chandra, M. Frean, M. Zhang, Modularity Adaptation in Cooper-
ative Co-evolutionary Feedforward Neural Networks , Proceedings
of the International Joint Conference on Neural Networks, San Jose,
USA, 2011, pp. 681-688. .

2. R. Chandra, M. Frean, M. Zhang, A Memetic Framework for Co-
operative Coevolution of Recurrent Neural Networks , Proceedings
of the International Joint Conference on Neural Networks, San Jose,
USA, 2011, pp. 673-680.

3. R. Chandra, M. Frean, M. Zhang, An Encoding Scheme for Coop-
erative Co-evolutionary Neural Networks. Proceedings of the 23rd
Australasian Joint Conference on Artificial Intelligence. AI 2010: Ad-
vances in Artificial Intelligence. Lecture Notes in Artificial Intelli-
gence. Vol. 6464. Springer. Adelaide, Australia, 2010. pp. 253-262.

4. R. Chandra, M. Frean, L. Rolland, A Hybrid Meta-Heuristic Paradigm
for Solving the Forward Kinematics of 6-6 General Parallel Manipu-
lator , Proceedings of 8th IEEE International Symposium on Compu-
tational Intelligence in Robotics and Automation (CIRA 2009), Dae-
jeon, Korea, 2009, pp. 171-176.

5. R. Chandra, M. Zhang, L. Rolland, Solving the Forward Kinemat-
ics of the 3RPR Planar Parallel Manipulator using a Hybrid Meta-
Heuristic Paradigm , Proceedings of 8th IEEE International Sym-
posium on Computational Intelligence in Robotics and Automation
(CIRA 2009), Daejeon, Korea, 2009, pp. 177-182.

Other Related Publications

1. R. Chandra and L. Rolland, ”On Solving the Forward Kinematics
of 3RPR Planar Parallel Manipulator using Hybrid Metaheuristics”,

viii



Applied Mathematics and Computation, Elsevier, Vol 217, No. 22,
2011 pp. 8997-9008 , (doi: 10.1016/j.amc.2011.03.106)

2. L. Rolland and R. Chandra, ” On Solving the Forward Kinematics of
the 6-6 General Parallel Manipulator with an Efficient Evolutionary
Algorithm”, In ROMANSY 18 - Robot Design, Dynamics and Con-
trol, Series: CISM International Centre for Mechanical Sciences, Vol.
524 Springer, Berlin, 2010, pp. 117-124.

ix



x



Contents

1 Introduction 1

1.1 Premises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Literature Review 11

2.1 Machine Learning and Optimisation . . . . . . . . . . . . . . 11

2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Feedforward Neural Networks . . . . . . . . . . . . . 13

2.2.2 Learning in Feedforward Networks . . . . . . . . . . 14

2.2.3 Overview of Recurrent Neural Networks . . . . . . . 16

2.2.4 First-Order Recurrent Networks . . . . . . . . . . . . 19

2.2.5 Learning in Recurrent Neural Networks . . . . . . . . 20

2.2.6 Learning Finite-State Machines with RNNs . . . . . 21

2.3 Evolutionary Computation . . . . . . . . . . . . . . . . . . . 26

2.3.1 Real Coded Genetic Algorithms . . . . . . . . . . . . 27

2.3.2 G3-PCX: Generalised Generation Gap with PCX . . . 31

2.4 Hybrid Meta-heuristics and Memetic Algorithms . . . . . . 33

2.4.1 Collaborative Hybrid MHs . . . . . . . . . . . . . . . 34

2.4.2 Integrative Hybrid MHs: Memetic Algorithms . . . . 36

xi



2.4.3 MHs with evolutionary intensification and diversi-
fication . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Cooperative Coevolution . . . . . . . . . . . . . . . . . . . . 41
2.5.1 Diversity in Cooperative Coevolution . . . . . . . . . 44
2.5.2 Cooperative Coevolution for Non-Separable Problems 45

2.6 Neuro-Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6.1 Direct Encoding in Neuro-evolution . . . . . . . . . . 51
2.6.2 Indirect Encoding in Neuro-evolution . . . . . . . . . 54
2.6.3 Hybrid HMs for Neuro-Evolution . . . . . . . . . . . 54
2.6.4 Modularity and Problem Decomposition . . . . . . . 55
2.6.5 Fitness Evaluation of the Sub-populations . . . . . . . 59
2.6.6 Evaluation of Cooperative Neuro-evolution . . . . . 60
2.6.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . 62

3 Problem Decomposition in Cooperative Neuro-evolution 65
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Preliminaries and Motivation . . . . . . . . . . . . . . 67
3.2 Neuron Based Sub-population (NSP) . . . . . . . . . . . . . 77

3.2.1 Feedforward Neural Networks . . . . . . . . . . . . . 77
3.2.2 Recurrent Neural Networks . . . . . . . . . . . . . . . 80

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.1 Feedforward Neural Networks . . . . . . . . . . . . . 82
3.3.2 Recurrent Neural Networks . . . . . . . . . . . . . . . 102
3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 118

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 121

4 Memetic Cooperative Neuro-evolution 123
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.1.1 Global and Local Search in Evolutionary Algorithms 124
4.2 Memetic Cooperative Neuro-evolution . . . . . . . . . . . . 126

4.2.1 G3-PCX for Crossover-based Local Search . . . . . . . 131
4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xii



4.3.1 Feedforward Neural Networks . . . . . . . . . . . . . 133
4.3.2 Recurrent Neural Networks . . . . . . . . . . . . . . . 143
4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 144

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 153

5 Adaptive Modularity in Cooperative Neuro-evolution 155
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.2 Adaptive Modularity in Cooperative Neuro-evolution . . . 158

5.2.1 Function Evaluation During Initialisation . . . . . . . 162
5.2.2 Transfer of Valuable Information . . . . . . . . . . . . 164
5.2.3 The Heuristic to Change Modularity . . . . . . . . . . 165

5.3 Simulation and Analysis . . . . . . . . . . . . . . . . . . . . . 166
5.3.1 Feedforward Neural Networks . . . . . . . . . . . . . 167
5.3.2 Recurrent Neural Networks . . . . . . . . . . . . . . . 171

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 177

6 Application to Chaotic Time Series Prediction 191
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.1.1 Embedding Theorem and Time Series Prediction . . 193
6.2 Adaptation of Modularity . . . . . . . . . . . . . . . . . . . 194
6.3 Simulation and Analysis . . . . . . . . . . . . . . . . . . . . . 199

6.3.1 Problem description . . . . . . . . . . . . . . . . . . . 199
6.3.2 Experimental set-up . . . . . . . . . . . . . . . . . . . 201
6.3.3 Results and discussion . . . . . . . . . . . . . . . . . . 202

6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 214

7 Conclusions and Future Work 215
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.1.1 Problem decomposition . . . . . . . . . . . . . . . . . 215
7.1.2 Memetic cooperative neuro-evolution . . . . . . . . . 217
7.1.3 Adaptation of Modularity . . . . . . . . . . . . . . . 218
7.1.4 Application to Chaotic Time Series Prediction . . . . 219

xiii



7.2 Further Findings and Discussion . . . . . . . . . . . . . . . . 220
7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.4 Future Research Directions . . . . . . . . . . . . . . . . . . . . 222

A 253

xiv



List of Tables

2.1 The Tomita Grammar. * indicates any number of repeti-
tions. For instance, (10)* means any sequence of ’10’, such
as ’10’, ’1010’ and ’101010’ etc. . . . . . . . . . . . . . . . . . 25

3.1 The generalisation performance given by the different prob-
lem decomposition methods for the Iris and Wine classifica-
tion problems. The 95 % confidence interval is given in the
subscript with the number of successful runs (Success) out
of 30 experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 The generalisation performance given by the different prob-
lem decomposition methods for the Heart-Disease and Breast-
Cancer classification problems. The 95 % confidence inter-
val is given in the subscript with the number of successful
runs (Success) out of 30 experiments. . . . . . . . . . . . . . 91

3.3 The generalisation performance of the problem decompo-
sition methods given different number of hidden neurons
for the Iris and Wine classification problem. The 95 % confi-
dence interval is given in the subscript with the number of
successful runs (Success) out of 30 experiments. . . . . . . . 97

xv



3.4 The performance of different problem decomposition meth-
ods given different number of hidden neurons for the Heart-
Disease and Breast-Cancer classification problem. The 95 %
confidence interval is given in the subscript with the num-
ber of successful runs (Success) out of 30 experiments. . . . 98

3.5 Comparison of Random-NSP with NSP . . . . . . . . . . . . 101

3.6 The generalisation performance in percentage is given by
the different problem decomposition methods for the depth
of search of 1 generation. Note that the generalisation per-
formance does not include the performance of the unsuc-
cessful runs in the mean. The success rate (Success) out of
100 experiments is also given. . . . . . . . . . . . . . . . . . 105

3.7 A comparison of NSP and CoSyNE based on the number
of function evaluation required during initialisation. This is
for a RNN with one input neuron and two output neurons
which is used in all our experiments. The comparison is
done in terms of P which is the size of the population. . . . 111

4.1 Generalisation Performance . . . . . . . . . . . . . . . . . . . 137

5.1 Generalisation Performance of 3-Stage AMCC and NL . . . 170

5.2 A comparison of the Heuristic and Iterative method in-order
to determine when to change modularity . . . . . . . . . . . 173

6.1 The prediction performance (RMSE) on the test dataset of
the Lorenz time series . . . . . . . . . . . . . . . . . . . . . . 203

6.2 The performance (RMSE) on the test dataset of the Mackey
Glass time series . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.3 The performance (RMSE) on the test dataset of the Sunspot
time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

xvi



6.4 The performance (RMSE and NMSE) of AMCC, NL, SL, and
NetL on the test dataset of the three problems. The mean
and 95 % confidence interval (CI) is given with the best per-
formance out of 30 independent experimental runs. . . . . . 205

6.5 A comparison with the results from the literature [67, 144, 3]
on the Lorenz time series . . . . . . . . . . . . . . . . . . . . 210

6.6 A comparison with the results from the literature [5, 3, 4] on
the Mackey Glass time series . . . . . . . . . . . . . . . . . . 211

6.7 A comparison with the results from the literature [67, 3] on
the Sunspot time series . . . . . . . . . . . . . . . . . . . . . 212

A.1 The dataset information and neural network configuration
for the given problems. Note that the Breast-Cancer dataset
contains 16 missing values and is class imbalanced (65.5 %
Benign and 34.5 % Malignant). In the 4-Bit problem, the
network is trained until the mean-squared-error goes be-
low 1E-3. 70 % of the data is used for training while the
remaining 30 % is used for testing in all the other problems.
The classification targets given by “Min. Train (%)” were
determined in trial experiments. The number of input and
output neurons in the network depends on the number of
features and classes in the dataset. . . . . . . . . . . . . . . . 253

xvii



xviii



List of Figures

2.1 An outline of the architectural difference between (a) feed-
forward and (b) recurrent neural networks . . . . . . . . . . 13

2.2 Elman RNN architecture [48] . . . . . . . . . . . . . . . . . . 20
2.3 Deterministic Finite-State Automata from the Tomita gram-

mar. Double circles in the figure show accepting states while
rejecting states are shown by single circles. State 1 is the au-
tomaton’s start state. . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 The fuzzy finite-state automata (a) and its equivalent deter-
ministic acceptor (b). The accepting states are labelled with
a degree of membership. State 1 is the automaton’s start
state. Accepting states are drawn with double circles. . . . . 24

2.5 The CME encoding scheme summarised from [78, 62, 61] is
used for comparison in the experiments. . . . . . . . . . . . . 57

2.6 The ESP encoding scheme taken from [78]. . . . . . . . . . . 58
2.7 The current individual whose fitness has to be evaluated

is joined with arbitrary individuals from the rest of the sub-
populations in the initialization phase. In the evolution phase,
the best individuals from the rest of the sub-populations are
chosen. The current individual is then concatenated with
the chosen individuals. The concatenated individual is en-
coded into the neural network by the given cooperative co-
evolution encoding scheme. The fitness is then evaluated
and assigned to the current individual. . . . . . . . . . . . . 59

xix



3.1 The simple feedforward neural network used for analysis. . 68

3.2 The level of interaction between the synapses at the begin-
ning of the evolutionary process . . . . . . . . . . . . . . . . 72

3.3 The level of interaction between the synapses towards the
end of the evolutionary process . . . . . . . . . . . . . . . . . 73

3.4 The level of interaction between the synapses at the begin-
ning of the evolutionary process on a 6 dimension problem.
There are 6 inputs (plus a bias) on a neural network with 5
hidden units and one output. . . . . . . . . . . . . . . . . . . 74

3.5 The NSP encoding scheme for feedforward networks [27].
Each neuron in the hidden and output layer acts as a ref-
erence point to its subcomponents. The same encoding is
used in the rest of the neurons in the hidden and output
layer. Note that only one hidden layer is used. NSP can
also be used for more than one hidden layer. . . . . . . . . . 79

3.6 The NSP encoding scheme for recurrent networks. Each
neuron in the hidden and output layer acts as a reference
point to its subcomponents. The subcomponents for the
state neurons are also shown. The same method is used in
the rest of the neurons in the hidden and output layer. Note
that only one hidden layer is used in this case; however, ad-
ditional hidden layers can also be used. . . . . . . . . . . . . 81

3.7 The evaluation of the depth of search in the different prob-
lem decomposition methods for the Iris classification prob-
lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.8 The evaluation of the depth of search in the different prob-
lem decomposition methods for the Wine classification prob-
lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.9 The evaluation of the depth of search in the different prob-
lem decomposition methods for the Heart-Disease classifi-
cation problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xx



3.10 The evaluation of the depth of search in the different prob-
lem decomposition methods for the Breast-Cancer classifi-
cation problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.11 The performance of the different problem decomposition
methods for different number hidden neurons for the Iris
classification problem. . . . . . . . . . . . . . . . . . . . . . . 93

3.12 The performance of the different problem decomposition
methods for different number hidden neurons for the Wine
classification problem. . . . . . . . . . . . . . . . . . . . . . . 94

3.13 The performance of the different problem decomposition
methods for different number hidden neurons for the Heart-
Disease classification problem. . . . . . . . . . . . . . . . . . 95

3.14 The performance of the different problem decomposition
methods for different number hidden neurons for the Breast-
Cancer classification problem. . . . . . . . . . . . . . . . . . 96

3.15 The performance of NSP and CoSyNE for the T1 problem.
The optimization time in terms of the average number of
function evaluations is shown in (a) and the number of suc-
cess rate is shown in (b). A total of 100 independent experi-
mental runs have been done. . . . . . . . . . . . . . . . . . . 106

3.16 The performance of NSP and CoSyNE for the T2 problem.
The optimization time in terms of the average number of
function evaluations is shown in (a) and the number of suc-
cess rate is shown in (b). A total of 100 independent experi-
mental runs have been done. . . . . . . . . . . . . . . . . . . 107

3.17 The performance of NSP and CoSyNE for the T3 problem.
The optimization time in terms of the average number of
function evaluations is shown in (a) and the number of suc-
cess rate is shown in (b). A total of 100 independent experi-
mental runs have been done. . . . . . . . . . . . . . . . . . . 108

xxi



3.18 The performance of NSP and CoSyNE for the T4 problem.
The optimization time in terms of the average number of
function evaluations is shown in (a) and the number of suc-
cess rate is shown in (b). A total of 100 independent experi-
mental runs have been done. . . . . . . . . . . . . . . . . . . 109

3.19 The performance of NSP and CoSyNE for the FFA problem.
The optimization time in terms of the average number of
function evaluations is shown in (a) and the number of suc-
cess rate is shown in (b). A total of 100 independent experi-
mental runs have been done. . . . . . . . . . . . . . . . . . . 110

3.20 The performance of NSP and CoSyNE on different number
of hidden neurons for the T1 problem. The optimization
time in terms of the average number of function evaluations
(Evolution Phase) is shown in (a), the total optimization
time which include the initialisation and Evolution Phase
is shown in (b) and the number of successful runs is shown
in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.21 The performance of NSP and CoSyNE on different number
of hidden neurons for the T2 problem. The optimization
time in terms of the average number of function evaluations
(Evolution Phase) is shown in (a), the total optimization
time which include the initialisation and Evolution Phase
is shown in (b) and the number of successful runs is shown
in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.22 The performance of NSP and CoSyNE on different number
of hidden neurons for the T3 problem. The optimization
time in terms of the average number of function evaluations
(Evolution Phase) is shown in (a), the total optimization
time which include the initialisation and Evolution Phase
is shown in (b) and the number of successful runs is shown
in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xxii



3.23 The performance of NSP and CoSyNE on different number
of hidden neurons for the T4 problem. The optimization
time in terms of the average number of function evaluations
(Evolution Phase) is shown in (a), the total optimization
time which include the initialisation and Evolution Phase
is shown in (b) and the number of successful runs is shown
in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.24 The performance of NSP and CoSyNE on different number
of hidden neurons for the FFA problem. The optimization
time in terms of the average number of function evaluations
(Evolution Phase) is shown in (a), the total optimization
time which include the initialisation and Evolution Phase
is shown in (b) and the number of successful runs is shown
in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1 Problem faced by cooperative coevolution in employing n

local searches (LS) to each sub-population (SP) . . . . . . . . 127

4.2 The memetic cooperative neuro-evolution framework em-
ploys LOCAL SEARCH after concatenating the best indi-
viduals from each sub-population (SP) at the end of each
cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3 The evaluation of the LS-Interval using the 4-bit-parity, Iris
and Wine classification problems. The LS-Interval of 1 shows
the highest success rate and least number of function eval-
uations for all three problems. . . . . . . . . . . . . . . . . . . 135

4.4 The 4-Bit parity problem. . . . . . . . . . . . . . . . . . . . . 138

4.5 The Iris classification problem. . . . . . . . . . . . . . . . . . 139

4.6 The Wine classification problem. . . . . . . . . . . . . . . . . 140

4.7 The Breast Cancer classification problem. . . . . . . . . . . . 141

4.8 The Heart Disease classification problem. . . . . . . . . . . . 142

xxiii



4.9 The evaluation of the LS-Interval for the T2 and T3 gram-
matical inference problems. The LSI of 8 generations is used
as a fixed parameter in all problems. The interval of 1 shows
the highest success rate and least number of function eval-
uations for all problems. . . . . . . . . . . . . . . . . . . . . . 145

4.10 The evaluation of the LS-Interval for the FFA and T4 gram-
matical inference problems. The LSI of 8 generations is used
as a fixed parameter in all problems. The interval of 1 shows
the highest success rate and least number of function eval-
uations for all problems. . . . . . . . . . . . . . . . . . . . . . 146

4.11 The T1 problem. . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.12 The T2 problem. . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.13 The T3 problem. . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.14 The T4 problem. . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.15 The FFA problem. . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1 The 3 Stage AMCC method. The figure shows how the
method transforms the evolutionary process with different
levels of encoding. The sub-populations SP (n) at Synapse
level and Neuron level are shown. Note that in Stage 3, if
the problem is not solved before reaching the global mini-
mum time, then the modularity is changed from Network
to Neuron level. . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2 The performance the 2 Stage and 3 Stage AMCC-FNN method
on different number of hidden neurons for the Wine classi-
fication problem. The performance of NL and SL is also
given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.3 The performance of 2 Stage and 3 Stage AMCC-FNN on dif-
ferent number of hidden neurons for the 4-Bit problem. The
performance of NL and SL is also given. . . . . . . . . . . . 180

xxiv



5.4 The performance of the 2 Stage and 3 Stage AMCC-FNN
method on different number of hidden neurons for the Iris
classification problem. The performance of NL and SL is
also given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.5 The performance the 2 Stage and 3 Stage AMCC-FNN method
for the Zoo classification problem. The performance of NL
and SL is also given. . . . . . . . . . . . . . . . . . . . . . . . 182

5.6 The heat-map shows the performance of the AMCC-RNN
method on different values for Error (mean-squared-error)
for Synapse–Neuron level and Neuron–Network level changes
in modularity for the FFA problem. The number of success-
ful runs out of 100 experiments is shown in (a) while the
optimisation time is shown in (b). The goal of AMCC-RNN
is to obtain maximum success with the least optimization
time. The Error of 0.1 in Synapse–Neuron level and 0.05
in Neuron–Network level shows the best success rate in (a)
with corresponding least number of function evaluations in
(b). Note that the optimisation time consists of both suc-
cessful and unsuccessful runs. . . . . . . . . . . . . . . . . . 183

5.7 The heat-map shows the performance of the AMCC-RNN
method on the T3 problem. The number of successful runs
out of 100 experiments is shown in (a) while the optimiza-
tion time is shown in (b). The Error of 0.2 in Synapse–
Neuron level and 0.05 in Neuron–Network level shows the
best success rate in (a) with corresponding least optimiza-
tion time in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.8 The performance of AMCC, NL and SL on different number
of hidden neurons for the T1 problem. The optimization
time in terms of function evaluations is shown in (a) while
the success rate is shown in (b). . . . . . . . . . . . . . . . . . 185

xxv



5.9 The performance of AMCC, NL and SL on different number
of hidden neurons for the T2 problem. The optimization
time in terms of function evaluations is shown in (a) while
the success rate is shown in (b). . . . . . . . . . . . . . . . . . 186

5.10 The performance of AMCC, NL and SL on different number
of hidden neurons for the T3 problem. The optimization
time in terms of function evaluations is shown in (a) while
the success rate is shown in (b). . . . . . . . . . . . . . . . . . 187

5.11 The performance of AMCC, NL and SL on different number
of hidden neurons for the T4 problem. The optimization
time in terms of function evaluations is shown in (a) while
the success rate is shown in (b). . . . . . . . . . . . . . . . . . 188

5.12 The performance of AMCC, NL and SL on different number
of hidden neurons for the FFA problem. The optimization
time in terms of function evaluations is shown in (a) while
the success rate is shown in (b). . . . . . . . . . . . . . . . . . 189

6.1 The AMCC method used for training RNN on chaotic time
series. The sub-populations (SP) at synapse level and neu-
ron level are shown. . . . . . . . . . . . . . . . . . . . . . . . 199

6.2 Typical prediction given by AMCC for Lorenz time series . 207
6.3 Typical prediction given by AMCC for Mackey Glass time

series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.4 Typical prediction given by AMCC for Sunspot time series . 209

xxvi



Chapter 1

Introduction

1.1 Premises

Neural networks are nature-inspired computational methods that are loosely
modelled after biological neural systems [140]. Neural networks are char-
acterized into feedforward and recurrent architectures. In contrast to feedfor-
ward networks, recurrent neural networks are dynamical systems whose
next state and output(s) depend on the present network state and input(s).
This feature has made them successful in applications to speech recogni-
tion, time series prediction, language learning and control [178, 191]. Gra-
dient descent has been used for training neural networks with variation in
the form of backpropagation for feedforward networks and backpropagation-
through-time [226] for recurrent networks.

Evolutionary algorithms are a family of optimisation methods that have
shown promising results for NP 1 and other optimisation problems [142,
18]. A major contribution of evolutionary algorithms has been in the train-
ing and design of neural networks in order to achieve better performance
when compared to traditional approaches [2]. Evolutionary algorithms
address the convergence problems associated with algorithms such as gra-
dient descent. The field of using evolutionary computation for evolving

1Nondeterministic polynomial time

1



neural networks is known as neuro-evolution.

Cooperative coevolution [169] is a nature-inspired evolutionary com-
putation framework that divides a problem into subcomponents, where
each subcomponent employs a separate evolutionary algorithm. The evo-
lutionary algorithms that optimise the subcomponents are genetically iso-
lated and cooperation takes place during fitness evaluation. The use of
cooperative coevolution in training neural networks is referred to as co-
operative neuro-evolution in this thesis. The major advantage of cooper-
ative neuro-evolution is the diversity that it promotes through the sub-
populations [168]. It also provides a mechanism for breaking down the
neural network architecture and encoding it into different subcomponents.
In this way, information associated with the respective groups of weights
in the network can be preserved during learning. This information is often
lost in neuro-evolution with conventional evolutionary algorithms due to
the reproduction operators such as crossover. Problem decomposition has
been a major issue in cooperative neuro-evolution of both feedforward
[62, 77, 27] and recurrent networks [75, 77]. A problem decomposition is
also referred as an encoding scheme, as it determines how the neural net-
work is broken down and encoded into sub-populations.

In cooperative neuro-evolution of recurrent neural networks, synapse
and neuron level problem decomposition have been used. In the method
of enforced sub-populations (ESP) [76, 78] a subcomponent consists of the
input, output and recurrent connections to a hidden neuron. By contrast,
the synapse level decomposes the neural network into the lowest level
where a subcomponent is a synapse (weight connection). Synapse level
decomposition has shown better performance than ESP and other neuro-
evolutionary methods for pole balancing problems [77].

In the original cooperative coevolution approach, the problem is de-
composed by having a separate subcomponent for each variable [169]. It
was later found that the strategy was only effective for problems that are
termed separable [127]. In separable problems, there is no interdependency

2



between the variables whereas in non-separable problems, interdependen-
cies exist. A more precise definition of separability will be given in Chap-
ter 2. Cooperative coevolution naturally appeals to separable problems
as there is no interaction among the subcomponents during evolution in
its orginal framework [169]. The decomposition of the problem influences
the performance of the optimisation algorithm being employed to solve it.
In most problems, groups of interacting variables exist. In this thesis, the
degree of non-separability is a term used to determine the level of interde-
pendencies among variables.

Memetic algorithms [149] typically combine population-based evolu-
tionary algorithms with local search in order to improve the search pro-
cess. The search for more efficient local search techniques has been a major
focus of research in memetic algorithms. It has been shown that evolution-
ary algorithms can be used as effective local search techniques [109, 131].
In crossover-based local search [131, 147], efficient crossover operators that
have local search properties are used for local refinement with a popula-
tion of a few individuals. They have shown promising results in compar-
ison with other evolutionary approaches for function optimization prob-
lems with high dimensions [147].

Feedforward neural networks have been classically trained using back-
propogation [181], which has limitations due to convergence problems
[36]. In recent years, neuro-evolutionary methods have gained attention
for training feedforward and recurrent network architectures on pattern
classification, time series and control problems [2, 190, 53, 204] . Back-
propagation also falls short in training feedforward networks for control
problems such as the pole balancing problem where neuro-evolution has
been successfully deployed [204]. Backpropagation through-time [226]
has problems in training recurrent neural networks due to the vanishing
gradient problem [92], and evolutionary methods can play a significant
role in training them in practice [76, 77].

Time series prediction involves the study of the present and past be-

3



haviour of the system for a prediction of the future. In chaotic systems
[128, 205], the initial conditions can make large differences in the behaviour
of the system. This is known as the butterfly effect and not surprisingly, it
makes long-term prediction difficult. The prediction of chaotic time series
has a wide range of applications such as in finance [38], signal process-
ing [110], power load [108], weather forecast [129], and sunspot prediction
[117, 182, 67]. Neural networks and related computational intelligence
methods have been successfully used to solve chaotic time series prob-
lems [4, 67, 25, 67, 179, 67, 144, 3]. Chaotic time series will be used as a
practical example to examine the proposed methods in this thesis.

1.2 Motivations

1. Neuro-evolution: It has been noted that backpropagation has limi-
tations in training feedforward and recurrent networks. Backpropa-
gation has problems in convergence and learning long-term depen-
dencies using recurrent networks. This forms the main motivation
for using neuro-evolutionary methods, in particular, cooperative co-
evolution, which has the feature of decomposing the given neural
network architecture into smaller problems and coevolving them.
Neuro-evolution provides a learning mechanism that is independent
of the network architecture, i.e. an evolutionary algorithm can be
deployed easily when given any network topology as no gradient
information is required in the optimisation process. This is of ad-
vantage for training neural networks in control problems and re-
current networks in learning long-term dependencies. The devel-
opment of efficient cooperative coevolution methods can enhance
neuro-evolution in general.

2. Efficient algorithms in the sub-populations: Cooperative coevo-
lution frameworks have used fairly old evolutionary algorithms in

4



their sub-populations in the past. It has been argued by Yang et.
al [233], that there is a need to use more recent and efficient evolu-
tionary algorithms in the sub-populations. The evolutionary algo-
rithm in sub-populations for neuro-evolution needs adaptive prop-
erties and has to be applicable in training neural networks. The G3-
PCX evolutionary algorithm [42] has shown good performance for
real parameter optimization and for training feedforward networks
[23]. Therefore, the G3-PCX evolutionary algorithm is used in the
sub-populations of cooperative coevolution in this thesis.

3. Problem decomposition: Encodings at the synapse [77] and neuron
level [76, 78] are the major problem decomposition methods in coop-
erative neuro-evolution of recurrent networks. The use of synapse
level problem decomposition for training neural networks for pat-
tern classification has not been explored. It is important to under-
stand the nature of the neural network training problem in terms
of the interacting variables in order to implement efficient problem
decomposition methods. The problem decomposition method must
take into account the architecture of the neural network in order to
group interacting variables into separate subcomponents that can al-
low better performance in cooperative neuro-evolution.

4. Local refinement in cooperative neuro-evolution: Local search in
memetic algorithms has shown good performance in function opti-
mization [149, 147], however, local search has not been well studied
and used for cooperative coevolution. Local search can be benefi-
cial during learning. A study on the balance of diversification us-
ing cooperative coevolution and intensification using local search is
needed for cooperative neuro-evolution. The success of local search
in memetic algorithms gives the motivation for incorporating local
search in cooperative coevolution. The main concerns in memetic
algorithms are in employing efficient local search methods and in

5



balancing diversification and intensification during evolution. It is
important to investigate how often to apply local search (local search
frequency) and for how long to apply them (local search intensity).

5. Modularity adaptation in cooperative neuro-evolution: Much work
has been done in the use of cooperative coevolution in large scale
function optimization and the concentration has been on non-separable
problems for large-scale parameter optimization [221, 233]. In or-
der to take advantage of cooperative coevolution, it is important to
group interacting variables into separate subcomponents [221]. Al-
though cooperative coevolution has been used for training feedfor-
ward [168, 64] and recurrent neural networks [76, 187], the attention
has not been on the issue of separability and interacting variables.
Each problem decomposition method groups interacting variables
and in effect makes assumptions about the degree of non-separability
regardless of the problem. Instead, it is reasonable to adapt the problem
decomposition method (modularity) to different levels as needed at
different stages of evolution. There has not been any previous study
on the adaptation of modularity in cooperative neuro-evolution.

6. Applications: In the literature, there has not been any study on the
evaluation of the different problems decomposition methods for train-
ing feedforward networks on pattern classification and recurrent net-
works grammatical inference problems. This gives the motivation
of using the existing problem deposition methods in the literature to
evaluate their strengths and weaknesses. Cooperative neuro-evolution
of recurrent networks has not been tested for grammatical inference
problems. The application of cooperative neuro-evolution in learn-
ing grammars generated by finite state machines can establish a foun-
dation for their applicability in training recurrent networks to a wider
range of real-world application problems. Chaotic time series predic-
tion is a challenging field and the use of neural networks for mod-

6



elling them has shown promising results in the past.

1.3 Research Goals

The major goal of this thesis is to explore and improve problem decompo-
sition and adaptation in cooperative neuro-evolution of feedforward and
recurrent neural networks. The contribution is explored through the vali-
dation of the following research objectives.

1. Evaluate the performance of the existing problem decomposition meth-
ods and develop a new method based on the architectural properties
of the neural network.

• Apply new and existing problem decomposition methods for
training feedforward networks for pattern classification prob-
lems, and recurrent neural networks on grammatical inference
problems.

• Evaluate the performance of the new method on different neu-
ral network topologies, this reflect on scalability and robust-
ness.

2. Develop a memetic cooperative coevolution framework that incor-
porates local search for the neuro-evolution of feedforward and re-
current networks.

• Employ crossover-based local search in the memetic coopera-
tive coevolution framework, for both feedforward and recur-
rent neural networks.

• Study the effect of diversification (from cooperation coevolu-
tion) and intensification (from local search) in the memetic co-
operative coevolution framework.

3. Develop an algorithm for adapting the modularity (problem decom-
position) during evolution. Compare the performance of the adap-

7



tive modularity problem decomposition method against standard
decomposition methods:

• Apply the adaptive modularity method to learning classifica-
tion problems using feedforward networks.

• Apply the adaptive modularity method to training recurrent
networks on grammatical inference problems.

4. Apply adaptive modularity cooperative coevolution and other prob-
lem decomposition methods to training recurrent neural networks
on chaotic time series problems.

• Train recurrent neural networks on Lorenz, Mackey Glass and
Sunspot time series.

• Compare the performance of the proposed cooperative coevo-
lution methods with computational intelligence methods from
the literature.

1.4 Major Contributions

The major contributions of the thesis can be summarised as follows.

1. The development of a new problem decomposition method that effi-
ciently groups interacting variables into separate subcomponents for
training feedforward and recurrent networks. The new method per-
forms better than existing problem decomposition methods on feed-
forward networks for pattern classification problems and recurrent
networks for grammatical inference problems.

2. The understanding of the nature of the neural network training prob-
lem in terms of the degree of non-separability. This thesis has em-
pirically shown that neural network training is a partially separa-
ble problem and the degree of non-separability (interaction between
synapses) changes as the problem is being learnt.

8



3. The development of a new memetic cooperative coevolution method
that efficiently incorporates local search during evolution. The rela-
tionship between diversification and intensification has been eval-
uated, and better performance has been achieved by incorporating
local search into cooperative coevolution.

4. The development of the cooperative coevolution method that adapts
modularity during evolution. The adaptation of modularity also
helps in understanding the nature of the neural network problem
in terms of the degree of non-separability. The proposed method
achieves better performance than existing methods in terms of train-
ing time, scalability and robustness.

5. The application of cooperative neuro-evolution methods for train-
ing recurrent neural networks on chaotic time series is a new devel-
opment in this field. The results show improved performance over
several existing computational intelligence techniques.

1.5 Thesis Outline

The thesis is presented as follows.

• Chapter 1 outlines the motivations, research questions, research
goals, contribution and organisation of the thesis.

• Chapter 2 introduces the fundamentals of feedforward and recur-
rent neural networks, training algorithms such as backpropagation,
backpropagation-through-time and neuro-evolution. Evolutionary
computation methods such as genetic algorithms, evolutionary op-
erators, memetic algorithms and cooperative coevolution are also
discussed with an emphasis on optimization for non-separable prob-
lems. The application of cooperative coevolution to neuro-evolution
and existing problem decomposition methods are given in detail.

9



• Chapter 3 investigates on the performance of the existing problem
decomposition methods. A new problem decomposition method is
proposed for feedforward and recurrent networks. The method is
tested on pattern classification and grammatical inference problems
and compared with existing approaches.

• Chapter 4 presents the incorporation of local search in coopera-
tive coevolution. The relationship between the diversification pro-
vided by cooperative coevolution and intensification provided by lo-
cal search is explored with applications in training feedforward and
recurrent networks.

• Chapter 5 presents the details of the modularity adaptation method
with applications for training feedforward and recurrent networks.

• Chapter 6 presents an application of cooperative coevolution meth-
ods to chaotic time series prediction. The proposed problem de-
composition with adaptive modularity in cooperative coevolution is
used for training recurrent neural networks on chaotic time series
problems. The comparison with the performance of computational
intelligence methods from literature is also done.

• Chapter 7 presents the conclusions from the results and analyses in
Chapters 3 - 6 with discussion of future work.

10



Chapter 2

Background and Literature
Review

The chapter begins with a background of feedforward and recurrent neu-
ral networks, learning algorithms and grammatical inference problems.
The background on major evolutionary computation methods with a re-
view of literature is then given with emphasis on memetic algorithms, co-
operative coevolution and neuro-evolution.

2.1 Machine Learning and Optimisation

Machine learning is the processes of learning from a data set using a com-
puter program [145]. Machine learning methods employ models such as
neural networks. The process of learning involves adjusting some vari-
ables so that the data can be explained by the model. The process of learn-
ing can also be seen an optimisation problem [14].

The data set consists of a collection of examples or instances. The data
set is usually divided into a training set and a test set. The training data is
used for the learning process and the test data is used to evaluate how well
the algorithm has learned. In some cases, the data set is split into a third
set called the validation set. This is used to monitor the training process in

11



order to avoid over-fitting which affects the generalisation performance of
the model [122].

Machine learning algorithms are used to learn from the data for prob-
lem which involve classification, prediction, clustering and control. Supervised
learning, unsupervised learning and hybrid learning are the three main learn-
ing paradigms [102]. Learning is the ability to recognise complex patterns
in data to make intellient decisions when presented with unseen data that
is not present in the learning process. In supervised learning, the training
data consists of input vectors and corresponding outputs. In unsupervised
learning, there is no output in the training data for the corresponding in-
put vector. The goal of unspervised learning is to find hidden structures in
unlabelled data. Unsupervised learning mostly deals with problems such
as clustering. Hybrid learning combines elements of both supervised and
unsupervised learning.

This thesis deals with supervised learning where neural networks are
used as the model and evolutionary computation methods, such as coop-
erative coevolution are used for learning. The problems used in this thesis
are drawn from classification and prediction domains.

2.2 Neural Networks

Neural networks (NN) are nature inspired computational methods that
are loosely modelled after biological neural systems [140]. A neural net-
work consists of a group of interconnected units called neurons that have
adaptive properties that provide learning. Neural networks are used to
model the relationship between input and output values in data and also
to find patterns in data [91]. They are capable of performing tasks that
include pattern classification, function approximation, prediction or fore-
casting, clustering or categorization, optimisation, and control [166].

A neuron is a single processing unit that computes the weighted sum
of its inputs. The interconnections between neurons are called synapses or

12



weights. Neural networks learn by training on data using an algorithm that
modifies the interconnection weights as directed by a learning objective
for a particular application. The knowledge learnt is distributed over a
set of trained networks weights. Neural networks are characterized into
feedforward and recurrent architectures and others [86].

Neural networks are typically arranged into an input, an output and a
number of hidden layers. Feedforward networks are also known as mul-
tilayer perceptrons. Figure 2.1 shows examples of (a) a feedforward neural
network and a (b) recurrent neural network that contains feedback con-
nections.

Figure 2.1: An outline of the architectural difference between (a) feedfor-
ward and (b) recurrent neural networks

2.2.1 Feedforward Neural Networks

Feedforward networks contain an input layer, one or more hidden layers
and an output layer [181]. Each layer contains one or more neurons which
propagate activation from one layer to the next by computing a transfer
function of their weighted sum of inputs. Figure 2.1 (a) shows the archi-

13



tecture of a feedforward network.

The standard model of the neuron comprises a set of input connections,
a linear combiner and a transfer or activation function. The weight wij is
defined from the input signal xj to neuron i. The linear combiner com-
putes the weighted sum of input signals and adds a bias. The dynamics of
a feedforward network is described by Equation (2.1), where the total net
input activation value yi of neuron i is given for N input connections.

yi =
N∑
j=1

(wijxj) + θi (2.1)

where θi represents the bias. The transfer function f(yi) computes the out-
put oi of the unit. Some common transfer functions are threshold, sigmoid,
hyperbolic tangent and piece-wise linear functions [91]. The sigmoid and
hyperbolic tangent transfer function are given in Equation (2.2) and Equa-
tion (2.3), which will be used in this thesis.

f(yi) =
1

1 + e−yi
(2.2)

f(yi) =
e2yi − 1

e2yi + 1
(2.3)

The inputs xj and weights wij with j = 1, . . . , N can be represented as
the vectors x = [x0, x1, . . . , xN ]

t and wi = [wi0, wi1, . . . , wiN ]
t, respectively1.

The activation value for the ith neuron can be written as yi = wi · x and
thus its output is oi = f(wi · x).

2.2.2 Learning in Feedforward Networks

The goal of learning is to find the set of weights of the neural network on
the given training data in order to achieve maximum performance on un-
seen data. This is done by adjusting the weights in the network according

1Vectors and matrices will be indicated in bold script.

14



to a learning rule until a certain criterion is met which is usually expressed
in terms of the network output error or cost function.

Rumulhart et al. [181] introduced the backpropagation algorithm which
employs gradient descent for training feedforward networks. Gradient
descent in its purest form is a technique for function optimisation, neural
network training can be seen as an optimisation problem. Backpropaga-
tion requires the transfer function that governs the neurons to be differen-
tiable. The backpropagation algorithm adjusts the connection weights in
the neural network in a two-phase process which consists of a forward and
a backward pass. In the forward pass, information is propagated from the
input to the hidden and output layer, and the error of the network is cal-
culated using a cost function. The cost function is usually the sum-squared-
error which is calculated with the actual yk and desired or target output tk
of the respective neurons in the output layer as given in Equation 2.4.

E =
1

2

N∑
k=1

(yk − tk)
2 (2.4)

where N is the number of neurons in the output layer and E is the sum-
squared-error. The gradient δE

δw
of each weight w can be computed by prop-

agating an error backwards through the network in a manner analogues to
the way activations are propagated forward. This is known as the gener-
alised delta rule [181]. This is done for all instances in the training data and
an epoch of training is completed. The process is repeated until a specified
number of epochs is reached or the error E reaches some desired value.

Computational Capabilities

The computational capabilities of neural networks are determined by their
topology and the number of parameters. Hornik et al. [96] have shown
that all bounded continuous functions can be approximated to a desired
error by a network with one hidden layer using neurons with continu-
ously differentiable activation functions.

15



The learning complexity is the rate the network takes in converging to
a solution. Blum and Rivest [17] have shown that the learning problem in
neural networks is NP-complete using a neural network with n input neu-
rons, 2 hidden neurons and 1 output neuron. Sima [197] demonstrated the
inefficiency of the backpropagation algorithm for training neural network
using the sigmoid transfer function, and used the approach by Blum and
Rivest [17] to show how the problem is NP hard. Sima concluded that the
backpropagation algorithm is inefficient for large problems given a fixed
network architecture. Engel [50] presented a discussion on the complexity
of learning in neural networks and concluded that heuristic methods for
hard optimisation methods should be used in training neural networks.

The generalization ability of neural networks is an important measure
as it demonstrates the performance of a trained network when presented
with data not present in the training set. A poor choice of the network
architecture can result in poor generalization even with optimal weight
selection [10]. The number of neurons in the hidden layer affects the gener-
alization performance as too many neurons may result in overfitting while
few neurons will result in underfitting. The generalization performance
in the case of overfitting may be improved by increasing the number of
instances in the training set. Another technique is by using weight decay
during training [1]. A successful method in improving generalisation is
to provide a validation data set in addition to the training data. In this
method the training algorithm monitors the generalization error on the
validation set and terminates the training before this increases.

2.2.3 Overview of Recurrent Neural Networks

In contrast to feed forward networks, recurrent neural networks are dy-
namical systems whose next state and output depend on the present net-
work state and input; this makes them capable of modelling dynamical
systems. This feature has made them successful in problems that include

16



time series prediction, classification, language learning and control.

Recurrent Neural Network Architectures

A survey on recurrent neural network architectures is given in [214, 215]
and some popular architectures are as follows.

1. First-Order Recurrent Networks: The first-order recurrent network
was proposed by Elman and Zipser [49, 48] and has since been known
as the Elman recurrent network. Variants in the first-order recurrent
network architecture were also proposed by Williams and Zipser,
Robinson and Fallside, and Jordan [177, 230, 104]. The thesis will use
the Elman recurrent network architecture and further details will be
provided in Section 2.2.4.

2. Second-Order Recurrent Networks: Second order recurrent neural
networks are more suited for modelling finite-state behaviour than
first-order context layer networks [69]. It has been shown that deter-
ministic finite-state automata can be directly encoded in them [69].
Due to their architecture, second-order networks have more weight
connections than first-order recurrent networks with the same num-
ber of hidden neurons [80]. Second order recurrent networks take
more computational resources for training [80].

3. NARX Networks: NARX recurrent networks [126] are based upon
non-linear autoregressive models with exogenous inputs [196] which
have limited feedback that comes only from the output neuron rather
than from hidden states. It has been shown that NARX networks are
as computationally powerful as fully connected recurrent networks
although they contain limited feedback [196]. They can retain infor-
mation up to two or three times longer than conventional recurrent
neural network architectures and hence can alleviate the problem of

17



long-term dependencies 2.

4. Long Short Term Memory Networks: Long Short Term Memory
Networks (LSTM) networks [93] have been proposed to overcome
the problem of learning long-term dependencies. LTSM networks
can be trained using multi-grid random search, time-weighted pseudo
Newton, discrete error backpropagation, and expectation maximiza-
tion. LTSM solves complex long time lag tasks that have never been
solved by previous recurrent network algorithms of that time. It also
works with local, distributed, real-valued, and noisy pattern repre-
sentations. Evolutionary computation methods have also been used
for training LSTM networks [187].

5. Reservoir Computing: Liquid State Machines (LSM) introduced by
Wolfgang Maass [137] and Echo State Networks (ESN) by Herbet Jae-
gar [101] are the main approaches in reservoir computing [134]. In
reservoir computing, a recurrent neural network called a reservoir
is randomly created and remains unchanged during training. Only
the weights from the reservoir to the output are adapted, which are
linear and do not have any recurrent connections. ESNs use sim-
ple sigmoid transfer functions in the untrained recurrent network
part (which is called a dynamical reservoir) and the resulting states
are called echos of its input history [101]. LSMs use more sophisti-
cated and biologically realistic models of spiking integrate-and-fire
neurons, and employ dynamic synaptic connections in the reservoir
[137]. The reservoir is referred to as the liquid which follows an in-
tuitive metaphor of the excited states as ripples in a pool of water.
LSMs are more difficult to implement and tune, and are more ex-

2Long term dependency problem arises when there are long time lags between two
points in a sequence of a time series [37]. In the cases of recurrent networks, the desired
output depends on inputs presented at times far in the past. It has been identified that
recurrent neural networks trained with backpropagation-through-time have difficulty in
learning sequences with long time lags [13].

18



pensive to simulate when compared to ESNs. In some instances of
ESNs, evolutionary algorithms have been used to optimize the reser-
voirs [100] rather than randomly generating reservoirs. Reservoir
computing approaches have been used in many engineering appli-
cations [134].

2.2.4 First-Order Recurrent Networks

First-order recurrent neural networks use context units to store the out-
put of the state neurons from computation of the previous time steps. The
context layer is used for computation of present states as they contain in-
formation about the previous states. Manolios and Fanelli have shown
that first-order recurrent networks can learn and represent deterministic
finite-state automata [139]. The Elman and Jordan network architecture
have been trained using evolutionary algorithms [167]. The computa-
tional power of Elman recurrent networks has been studied and it has
been shown that their dynamical properties can represent any finite-state
machine [120].

The Elman architecture [48] uses the context layer which makes a copy
of the hidden layer outputs in the previous time steps as shown in Figure
2.2. The dynamics of the change of hidden state neuron activations in
Elman style recurrent networks is given by Equation (2.5).

yi(t) = f

(
K∑
k=1

vik yk(t− 1) +
J∑

j=1

wij xj(t− 1)

)
(2.5)

where yk(t) and xj(t) represent the output of the context state neuron
and input neurons respectively. vik and wij represent their correspond-
ing weights. f(.) is a sigmoid transfer function. This architecture can be
expanded to include additional hidden layers [49].

19



Figure 2.2: Elman RNN architecture [48]

2.2.5 Learning in Recurrent Neural Networks

Gradient descent is most widely used for recurrent network training in
two variations: backpropagation-through-time [226], and real-time-recurrent
learning [229]. Evolutionary computation methods have also been used
for training recurrent networks [2, 75, 77].

Recurrent neural networks can be trained with the principle of the
delta learning rule as discussed earlier. The general idea behind the delta
learning rule is to use gradient descent to search the hypothesis space of
the weight vectors and find the weights that best fit the set of training
examples.

Initially, backpropagation-through-time (BPTT) was used as the stan-
dard algorithm for training recurrent neural networks [226]. Although the
BPTT algorithm has been successful in training recurrent neural networks
for a number of real world problems, there are limitations in learning se-
quences with long-term dependencies. The error gradient approaches zero

20



for longer term dependencies, which in turn reduces the weight update
[13, 92]. To overcome this shortcoming, the long short-term memory net-
works were developed [93]. The long-term dependency problem have also
been partially solved by formulating RNN as state space models which
have shown to learn time lags of at least 100 time steps as discussed in
[185].

BPTT is the extension of backpropagation algorithm. The BPTT algo-
rithm unfolds a recurrent neural network in time into a deep multilayer
feedforward network and employs the error backpropagation for weight
update. This can be done by adding a layer for each time step. When un-
folded in time, the network has the same behaviour as a recurrent neural
network for a finite number of time steps. BPTT has time complexity of
O(n3) .

BPTT uses the backward propagation of error information to compute
the error gradient used in the weight update. An alternative approach
for computing the gradient is to propagate the error gradient information
forward. Real-time recurrent learning is a real time learning algorithm
which updates the weights at the end of each sample string presentation
with the delta rule. The algorithm computes the derivatives of states and
outputs with respect to all weights as the network processes the sequence
during the forward step [229].

2.2.6 Learning Finite-State Machines with RNNs

Finite-state machines have been used to demonstrate knowledge represen-
tation and learning in recurrent networks [139, 68]. Symbolic knowledge
in the form of a finite automaton can be encoded into recurrent neural
networks to enhance training [158]. Knowledge extraction from recurrent
neural networks aims at extracting the underlying models of the learnt
knowledge in the form of finite state machines [224, 159, 30, 115]. This the-
sis will use finite state machines as test beds for training recurrent neural

21



networks.

Finite-state automata and their corresponding languages can be viewed
in terms of a general paradigm of temporal and symbolic language. There
is no feature extraction necessary for recurrent neural networks to learn
these languages. The knowledge acquired in recurrent neural networks
through learning corresponds with the dynamics of finite-state automata
[68]. The representation of automata is a prerequisite for learning its cor-
responding languages; i.e. if the architecture cannot represent a particular
automaton then it would not be able to learn it either. It has been shown
that recurrent networks can represent certain finite-state machines that can
be mapped directly into them [158, 160].

In particular, the dynamics of recurrent neural networks corresponds
well with some instances of finite-state machines (FSM), such and deter-
ministic finite-state automata (DFA) and fuzzy finite-state automata (FFA)
[20]. A deterministic finite automaton is a finite automaton where for each
pair of state and input signal, there is one successor state. The output of a
deterministic finite automaton is either an accepting or rejecting state. A
fuzzy finite automaton is a finite-state automaton where for each pair of
state and input signal, there is a set of possible successor states.

Grammatical inference refers to the process of learning formal languages
form a set of observations. The observations can be a set of data which
are sequential or structured in specific ways such as strings, words, trees,
terms or limited forms of graphs [40]. The task of an algorithm for gram-
matical inference is to return a grammar that should in some way explain
these data. The rest of this discussion will restrict to the use of strings
for data as grammatical inference and recurrent neural networks as algo-
rithms for learning them. The data consists of a set of examples which are
positive, negative or with some fuzzy value.

A formal language is a set of strings of symbols over some alphabet.
An alphabet Σ is a finite set of symbols. Simple alphabets, e.g. Σ = 0, 1,
are typically considered in the study of formal languages since results can

22



easily be extended to larger alphabets. The set of all strings of odd par-
ity L = ε, 1, 01, 001, 111, 0101, ... is an example of a simple language. The
symbol ε is used to denote a null string. The language contains an infi-
nite number of strings. A formal definition on deterministic and fuzzy
finite-state automata is given in Definition 1 and 2, respectively.

Definition 1. A deterministic finite-state automata is defined as a 5-tuple M =

(Q,Σ, δ, q1, F ), where Q is a finite number of states, Σ is the input alphabet, δ is
the next state function δ : Q × Σ → Q which defines which state q′ = δ(q, σ) is
reached by an automaton after reading symbol σ when in state q, q1 ∈ Q is the
initial state of the automaton (before reading any string) and F ⊆ Q is the set of
accepting states of the automaton [20].

The language L(M) accepted by the automaton contains all the strings
that bring the automaton to an accepting state. The languages accepted
by DFAs are called regular languages. Figure 2.3 shows the DFAs selected
from the Tomita grammar which will be used for training the recurrent
network in this thesis.

Definition 2. A fuzzy finite-state automaton (FFA) M is a 6-tuple,
M = (Σ, Q,R, Z, δ, ω), where Σ and Q are the input alphabet and the set of finite
states, respectively, R ∈ Q is the automaton’s fuzzy start state, Z is a finite output
alphabet, δ : Σ×Q× [0, 1] → Q is the fuzzy transition map, and ω : Q → Z is
the output map [20].

A restricted type of fuzzy automaton is considered whose initial state
is not fuzzy, and ω is a function from F to Z, where F is a non-fuzzy set
of states, called finite states. The transformation of a fuzzy automaton to
its corresponding deterministic acceptor is discussed in [70]. Figure 2.4
shows an example of a FFA with its corresponding deterministic acceptor,
which is used for training recurrent neural networks. This FFA has been
used to show that RNNs can be trained by evolutionary algorithms [15].

23



Figure 2.3: Deterministic Finite-State Automata from the Tomita grammar.
Double circles in the figure show accepting states while rejecting states are
shown by single circles. State 1 is the automaton’s start state.

Figure 2.4: The fuzzy finite-state automata (a) and its equivalent deter-
ministic acceptor (b). The accepting states are labelled with a degree of
membership. State 1 is the automaton’s start state. Accepting states are
drawn with double circles.

24



The Tomita Grammar [213] has been used as a benchmark in order to
evaluate RNN training algorithms and architecture [26]. They have been
used to show the performance of the real-time recurrent-learning algo-
rithm (RTRL) in training a generalised recurrent network architecture [58]
and for the optimisation of the RNN architecture during training by an
evolutionary algorithm [45, 2]. There are seven languages in the Tomita
grammar as summarised in Table 2.1 and two of them (Tomita 3 and 4) are
shown in Figure 2.3.

Language Description
1 1*
2 (1 0)*
3 Accepts any binary string without

an odd number of consecutive 0’s after
an odd number of consecutive 1’s

4 Accept any binary string without
more than two consecutive 0’s

5 Accepts any binary string of even
length which has an odd number of
(01)’s or (10)’s while making pairs

6 Accepts any binary string such that
the absolute difference between the numbers
of 1’s and 0’s is a multiple of 3, i.e
( Number of 1’s - Number of 0’s) mod 3 = 0

7 0 * 1* 0 * 1 *

Table 2.1: The Tomita Grammar. * indicates any number of repetitions. For
instance, (10)* means any sequence of ’10’, such as ’10’, ’1010’ and ’101010’
etc.

The training and test datasets are generated by presenting strings of
different lengths to a finite-state automata and labelling them with the
output given by the automata. For instance, the training data set can be
generated by presenting 500 different random strings of length 10 to 25 to
a DFA as shown in Figure 2.3. The DFA labels the output on each string as

25



it takes input depending on the state where the final symbol of the string
was presented. Similarly, the testing data set can be generated for different
string lengths. Figure 2.3 (Tomita 3) shows the 4 state DFA where double
circles show accepting states. Rejecting states are shown by single circles;
state 1 is the automaton’s start state. The training and testing sets are ob-
tained upon the presentation of strings to this automaton which gives an
output i.e. a rejecting or accepting state depending on the state where the
last sequence of the string was presented. For example, the output of a
string of length 6, i.e. 010010 is state 2. It is an accepting state; therefore
the output label is 1.

2.3 Evolutionary Computation

Evolutionary computation aims to solve difficult optimisation problems
that are unsolvable by conventional mathematical approaches. These prob-
lems are usually non-deterministic polynomial-time hard (NP hard). Evo-
lutionary computation is loosely inspired from biological evolution and
employs a population of candidate solutions which are evolved over time
for a specific goal. The goal is usually minimization of maximization of a
single or several objective functions.

Simulation of evolutionary algorithms began with the work of Nils
Aall Barricelli in the 1950’s at the Institute for Advanced Study in Prince-
ton, New Jersey [9]. Following this, Alex Frazer published papers on ar-
tificial selection and evolution [56]. Fogel et al. introduced evolutionary
programming in 1960’s [54]. In the 1970’s, Ingo Rachenberg used evolu-
tion strategies to solve complex engineering problems [172]. Genetic algo-
rithms became popular as introduced by John Holland [95].

The common ground between most evolutionary algorithms is that
they use a population of solutions, and the differences lie in the way they
represent the problem and the way they form new solutions. The main
strengths of evolutionary algorithms are that they are considered to be

26



global search methods and can be used for problems that are noisy and
change over time. Evolutionary algorithms are problem independent, they
can be applied to problems irrespective of their nature and hence they can
be used for problems that are non-differentiable. The term generation is
mainly used for an iteration in which new individuals for a population
is created in the evolutionary process. The major areas of evolutionary
computation are evolutionary algorithms, swarm intelligence and other tech-
niques given as follows.

2.3.1 Real Coded Genetic Algorithms

The original genetic algorithm (GA) introduced by Holland [95] has evolved
significantly in order to suit the real-world optimisation challenges faced
by engineers and scientists. Traditionally, candidate solutions used bi-
nary encoding with 1’s and 0’s. The development of real coded genetic
algorithms (RCGA) use real numbers in their candidate solutions rather
than binary encoding. Real-valued encoding is also a more natural pre-
sentation to use for many real world applications. The computational and
optimisation power of genetic algorithms has been demonstrated in sev-
eral theoretical studies [73, 173]. They have been successfully deployed in
several real-world problems [232, 142]. This thesis will use RCGA in the
sub-populations of cooperative coevolution for evolving neural networks.

In RCGA, the population of candidate solutions are called individuals.
New solutions are called offspring which are built by combining candidate
solutions which are known as parents. RCGA optimisation is the same as in
Holland’s original scheme where a number of individuals make up a pop-
ulation. Each individual is evaluated according to its fitness and employs
genetic operators such as selection, crossover and mutation for producing off-
spring. The offspring are added into the population while sometimes, less
fit individuals are removed and the process is repeated. In the standard
procedure, two or more parents are selected using the selection operator

27



from a population to make a predefined number of offspring.

The fitness function measures the quality of the solution which is prob-
lem dependent. The choice of the appropriate genetic operator is impor-
tant as it directly influences the convergence of the genetic algorithm. Dif-
ferent forms of the main genetic operators are needed according to the
type of the genetic algorithm and the nature of the optimisation problem.
An overview of the main components of a genetic algorithm is discussed
below.

1. Initialisation: In the initialisation stage, candidate solutions or indi-
viduals are typically randomly generated. The number of individ-
uals in the population is determined according to the problem, and
in many cases, empirically evaluated in trial experiments. In some
cases, the individuals are seeded in the area of search space where
the desired solution is likely to be found.

2. Selection: The selection operator plays an important role as it en-
courages qualities from fitter individuals to survive into future gen-
erations. Some common selection strategies are rank selection [227],
fitness proportionate or roulette wheel selection [8], tournament se-
lection [8] and the elitist strategy [44]. In rank selection, the selection
is done according to the fitness rank of the individual; the most-fit
individuals have priority over lesser ones. In roulette wheel selec-
tion, the selection gives priority to those individuals with greater fit-
ness; however, less fit chromosomes are chosen occasionally as they
may contain useful genetic material for the future. In the elitist strat-
egy, some of the fittest individuals are always retained in the new
population to make sure that the best performing chromosomes al-
ways survive. Tournament selection involves running several tour-
naments with few individuals chosen randomly from the population.
The winner from the tournament is chosen for crossover or mutation.
The selection pressure is easily adjusted by changing the tournament

28



size as with a larger tournament size, weaker individuals will have
a lower chance of selection.

3. Reproduction using Crossover: The main reproduction operators
are crossover and mutation. The crossover operator exchanges genetic
material from selected parents and forms either a single or multiple
offspring. Some common crossover operators for real-coded genetic
algorithms are flat crossover [173], simple crossover [73, 143], arith-
metic crossover [143], linear breeder crossover [186], and Wright’s
heuristic crossover which has also shown superior performance com-
pared to binary GA for a set of optimisation problems [232]. Eshel-
man and Schaffer introduced the blend crossover for two parents
[51]. Muhlebein and Voosen introduced extended line crossover and
extended intermediate crossover which is a special case of the blend
crossover [152]. Deb and Agarwal introduced the simulated binary
crossover (SBX) [41], which simulates the principle of the single-
point crossover operator on binary strings for continuous domain.
SBX works on a pair of parents and produces a pair of offspring.
Simplex crossover showed good performance in multi-modal opti-
misation problems [218]. Deb et al. [42] introduced the parent-centric
crossover (PCX) operator which reported the best performance than
any other optimisation technique in literature for the given test func-
tions. However, the PCX operator was used for only three test func-
tions which were unimodal. The modified version proposed by Sinha
et. al [198] showed significant improvement but was heavily depen-
dent on prior knowledge of the problem. Laplace crossover which
is a self adaptive parent centric operator showed good performance
when compared to the genetic algorithms studied in [43]. Section
2.3.2 will give further details on the PCX as it will be used in this
thesis.

4. Reproduction using Mutation: The mutation operator provides ran-

29



dom diversity in the population. This is important when the algo-
rithm gets trapped in a local minimum [142]. Some common muta-
tion operators include random uniform mutation and Michalewicz
non-uniform mutation [142]. In uniform mutation, a random num-
ber in the range of [a, b] is added to a selected gene where a and b are
the highest and lowest values in the chromosome, respectively. In
non-uniform mutation, the strength of mutation is decreased as the
number of generation increases. The effect of the mutation rate, the
strength of mutation and its impact in building better solutions have
been studied in [199].

5. Termination: The evolutionary process in the genetic algorithm con-
tinues until the termination condition is satisfied. The search is ter-
minated when typically one of the following is true. 1) Fixed number
of generations or function evaluations is reached, 2) a solution with a
desired fitness is found, or 3) the highest ranking solutions come to a
point where there is no change of fitness indicating no improvement
in candidate solutions.

In addition, several techniques have been proposed to improve the per-
formance of genetic algorithms. Fan and Xu introduced three improved
genetic algorithms which implement: 1) a dual fitness function to adapt
the mutation probability, 2) a new evolutionary directional operator, 3)
and a probabilistic binary search respectively to reveal a new offspring
[52]. Other modifications include a stopping rule based on asymptotic
considerations and mutation scheme based on particle swarm optimisa-
tion [216]. Further improvements are by incorporating local refinement
using memetic approaches [149, 163] and hybrid evolutionary methods
[130]. These will be discussed in detail later in Section 2.4.

30



2.3.2 G3-PCX: Generalised Generation Gap with PCX

The generalised generation gap differs from a standard genetic algorithm
in terms of selection. In G3-PCX, the whole population is randomly ini-
tialised and evaluated as done in the canonical genetic algorithm. The
difference lies in the selection method where a small sub-population is
made of few chosen parents and children. At each generation, only the
sub-population is evaluated rather than evaluating the whole population
as in a standard genetic algorithm. The children with their new fitness be-
come part of the bigger population. The best individual of the population
is retained at each generation.

The parent centric crossover operator is used in creating an offspring
based on orthogonal distance between the parents. The parents are made
of female and male component. The female parent points to search areas
and the male parent is used to determine the extent of search of the areas
pointed by the female. The genes of the offspring extract values from inter-
vals associated in the neighbourhood of the female and male using prob-
ability distribution. The range of this probability distribution depends on
the distance among the genes of the male and the female parent. The
parent-centric crossover operator assigns more probability to create and
offspring near the female than anywhere else in the space. The general
procedure used in the G3-PCX is given in Algorithm 1.

Algorithm 1 begins by initialising and evaluating all the individuals in
the population. The sub-population is then created which has the size of
number of parents and the children. The number of parents and children
must be defined beforehand. The best parent is selected from the popu-
lation and the rest of the parents are selected randomly. The selection of
the best parent ensures elitism in the procedure. The children are created
from the parents using the PCX crossover operator given in [42]. The par-
ents and the children are combined in the sub-population. Afterwards, n
strong individuals are chosen from the combined sub-population which
are further replaced in the population.

31



Alg. 1 G3-PCX Evolutionary Algorithm [42]
Set the number of parents (α) and children (β)
initialise and evaluate all individuals in the population
Setup the sub-population which would contain parents and children
while not optimal solution do

1) Select the best parent and α - 1 parents randomly from population
2) Create β children from α parents using PCX
3) Choose two parents at random from the population
4) From the combined sub-population of two chosen parents and β cre-
ated children, choose the two best individuals and replace the chosen
two parents (in Step 3) with these solutions..

end while

The parent-centric crossover operator was compared with simplex crossover
and simulated-binary crossover using the generalized generation gap model.
The results showed that the parent-centric crossover operator achieved
improved performance in terms of lower optimisation time and also scaled
up better as the problem size was increased. These simulations were lim-
ited to 3 unimodal functions and further comparisons of G3-PCX with Dif-
ferential Evolution [206] and Evolution Strategies [84] showed improved
performance in terms of optimisation time and scalability [42].

The advantage of the parent-centric crossover operator is that it be-
haves like a mutation operator and at the same time retains diversity and
is self-adaptive. It has been used as a hill-climbing local search procedure
in a memetic algorithm [132]. There is no mutation operator in the origi-
nal G3-PCX algorithm. Amendments to the original algorithm have been
done by proposing a mutation operator [209] which has shown good per-
formance in multi-modal problems. Further amendments have been done
in the parent-centric crossover operator by introducing a female and male
differentiation process which determines the male and female individuals
chosen from the population and by further using parent selection mech-
anisms shown in [66]. A roulette wheel based parent selection scheme
has also shown to perform better than the original G3-PCX on highly non-

32



linear multi-dimensional problems [176].

The G3-PCX needs fairly large population for small problems [171]. In
a study, several short experiments revealed that even for 2-dimensional
problems, a population size of 90 was needed to find the solution reliably.
The population size of 300 was needed in order to solve a 40-dimensional
sphere function [171].

A major limitation of G3-PCX is in multi-modal optimisation problems
as shown in [171] where a restart schemes also showed to be inappropri-
ate. This problem can be handled if more diversity is given to G3-PCX as
parent-centric crossover has more emphasis for local search.

2.4 Hybrid Meta-heuristics and Memetic Algo-

rithms

Meta-heuristics (MH) refer to the family of search algorithms that have ex-
tended basic heuristic methods by extending exploration capabilities [72].
The term metaheuristic was first introduced by Glover in 1986 [71] which is
derived from the composition of two Greek words. The word heuristic is
derived from the verb heuriskein which means “to find” while meta means
“beyond, in an upper level”. Metaheuristic methods have been useful for
approximately solving difficult optimisation problems. They do not guar-
antee a global optimal solution, however, near global optimal solutions
can be found faster in comparison to conventional approaches for com-
binatorial optimisation problems [19]. Examples of classic meta-heuristic
approaches include simulated annealing, scatter search, Tabu search, evo-
lutionary algorithms, ant colony optimisation, path re-linking, multi-start
and iterated local search, greedy randomised adaptive search procedures
and artificial immune systems [72, 19].

Hybrid metaheuristics (Hybrid MHs) [130] refer to the group of hybrid
algorithms where two or more metaheuristic search techniques are com-

33



bined to solve difficult problems. They provide diversification and intensi-
fication during the search process for obtaining a stronger solution. Diver-
sification refers to the ability to visit many different regions in the search
space while intensification refers to the ability to obtain high quality solu-
tions in a particular search space [130] . Diversification is often referred as
global search or exploration. Intensification is also referred to as local search,
local refinement or exploitation. A major goal of hybrid meta-heuristic is to
balance diversification and intensification in the search process. The goal
is to obtain global optimum and quality solution through proper diversifi-
cation and intensification. Examples of intensification and diversification
components in meta-heuristics are genetic or evolutionary operators such
as selection, crossover and mutation, local search and collaboration with
other metaheuristic methods [19].

Gunther [174] grouped hybrid MHs into two major categories that are
collaborative hybrid MHs and Integrative hybrid MHs. Lozano and Garcia-
Marninez [130] have grouped hybrid MHs into a third category that is
MHs with evolutionary intensification and diversification components.

2.4.1 Collaborative Hybrid MHs

Collaborative hybrid HMs are based on the exchange of information be-
tween different metaheuristics that run sequentially or in parallel [174].
Collaborative hybrid MHs are further devided into subcategories that in-
clude teamwork and relay collaborative MHs.

Teamwork collaborative MHs

Teamwork collaborative MHs use several metaheuristics that include evo-
lutionary algorithms that work in parallel [212, 88]. They partition the
population into several sub-populations where each sub-population is in-
dependently processed by the evolutionary algorithm. There is informa-
tion exchange between sub-populations, and intensification and diversi-

34



fication are carried out by means of different parameter values, popula-
tion sizes and genetic operators. Teamwork collaborative MHs were ini-
tially known as distributed genetic algorithms [88]. Potts et. al [170] pre-
sented distributed binary-coded genetic algorithms that used four sub-
populations with different mutation probabilities. After certain genera-
tions, the best individuals from three sub-populations are added into one
sub-population. Tsutsui et. al [217] used an explorer population with an
exploiting population that used different mutation schemes and popula-
tion sizes for diversification and intensification.

Herrera et. al [89] presented gradual distributed real-coded genetic
algorithms that used several different sub-populations for diversification
and intensification and evolved in parallel with the migration of informa-
tion. Schlierkamp-Voosen et. al [186] presented heterogeneous distributed
genetic algorithms that integrates different EAs whose population sizes
were dynamically adjusted during evolution. The COSEARCH method
proposed by Talbi and Bachelet [208] uses in parallel, the combination of
an EA, Tabu search and a local search procedure that communicates via
an adaptive memory that contains the history of the search already done.
The method was tested on the quadratic assignment problem and has shown
to give the best known solutions.

Relay collaborative MHs

Relay collaborative MHs use a pipelined fashion to execute meta-heuristic
search methods where the output of each method is used as the input of
the other. They follow the heuristic where exploration is done in the ini-
tial stages and exploitation in later stages. Chelouah et. al [32] presented
a hybrid MH that used two main stages where a specified genetic algo-
rithm is used for diversification and intensification is followed by a local
search procedure from the best solution found in the first stage. Chan-
dra and Omlin [31] trained recurrent neural networks using genetic algo-
rithms in the first stage and used the best solution for refinement using

35



back-propagation-through time in the second stage. Garcia-Martinez et.
al [66] proposed a procedure that determines the male and female compo-
nents in the population of real-coded genetic algorithms, which then apply
parent-centric crossover operator [42]. They proposed a male and a female
differentiation process through which they designed global real-coded GAs
and local real-coded GAs. These methods were combined where the global
real-coded GA was initially used for a predefined number of generations
and then the best individuals were passed to the local real-coded GA. This
approach gave better performance than its counterparts.

2.4.2 Integrative Hybrid MHs: Memetic Algorithms

Integrative hybrid MHs use embedded methods such as local improve-
ment of candidate solutions by an inner optimisation algorithm and exact
techniques for searching very large neighbourhoods [174]. Memetic algo-
rithms are well known methods for this category where a master MH is
used for diversification and a subordinate MH is used for intensification.
Memetic algorithms address the shortcomings of EAs in balancing diver-
sification and intensification.

Memetic algorithms (MAs) [149] typically combine population-based
evolutionary algorithms with individual learning, local refinement or lo-
cal search (LS) in order to provide an improved global solution. Memetic
algorithms also include the combination of EAs with problem dependent
heuristics and approximate methods and special recombination operators
[151]. Applications of memetic algorithms include NP hard combinato-
rial optimisation problems, machine learning and robotics such as pattern
classification and training neural networks, molecular optimisation prob-
lems, electronics and engineering and other optimisation problems as dis-
cussed in [151]. In literature, MAs are often referred to as Baldwinian EAs,
Lamarckian EAs, cultural algorithms or genetic local search.

The term meme was introduced by Dawkins [39] in evolutionary biol-

36



ogy which denotes the basic unit of cultural transmission that undergo so-
cial evolution and learning. Examples in nature include learning tunes,
ideas, skills such as making pottery, art, and fashion. The term memetic
algorithm (MA) was introduced by Moscato in his report [150] where he
viewed memetic algorithms as a population based hybrid genetic algo-
rithm with local search. A review on memetic algorithms appears in [164]
and a progress report indicates that they are an emerging field in evolu-
tionary computation [162].

Evolutionary algorithms have been used as master MH in memetic al-
gorithms for diversification and also as subordinate MH for intensifica-
tion. These will be discussed in the subsections to follow.

Memetic Algorithms with EAs for Diversification

Initially, memetic algorithms have used EAs for diversification combined
and local search methods such as hill-climbing for intensification. Initial
work was done by Moscato who used a genetic algorithm for diversifi-
cation with local search for intensification [150]. Lozano et. al [133] pre-
sented memetic algorithm with crossover hill-climbing as a local search.
The crossover operator repeatedly produces a fixed number of offspring
from which the best is selected. The method showed better performance
than G3-PCX and other memetic algorithms.

Seront et. al [188] presented a memetic algorithm that used clustering
methods which allows the local search to avoid multiple rediscoveries of
local optima. In this way, the computational cost of the local search is
saved. The clustering method also supplies information that can be used
to maintain population diversity. Kemenade [222] presented a memetic
algorithm based on evolution strategies that uses a similar idea of using
clustering to avoid premature convergence.

Krasnogor and Smith [119] presented a memetic algorithm where a ge-
netic algorithm is used with the Monte Carlo method. The Monte Carlo
method is used for as a local search when the population is diverse and

37



later the goal of the Monte Carlo method is to provide diversification when
the population converges. The experiments were performed on the travel-
ling salesman and protein folding problems. The method performed bet-
ter than standard GA and two other MAs.

Ong and Keane [161] presented a meta-Larmarckian memetic frame-
work where several different types of local searches are employed during
evolution. Initially, all local searches are given a chance and hence their
fitness is measured which is kept in future so that roulette wheel selection
can be used to select the local search. The method showed high quality
and efficient performance on classic benchmark functions for continuous
optimisation and a real world aerodynamic design problem. Krasnoger
and Gustafson [118] presented self generating memetic algorithms that
create local searches and co-evolve the behaviours it needs to success-
fully solve the problem. Smith [200] presented a review on co-evolving
memetic algorithms in which a rule-based representation of local search
is coadapted alongside candidate solutions within a hybrid evolutionary
algorithm. Nguyen et. al [154] presented a probabilistic memetic frame-
work that analyses the probability of the process of individual learning in
locating global optimum.

Memetic Algorithms with EAs for Intensification

EAs have also been used for local search in memetic algorithms. The
EA employed for local search has a small population size, which is then
evolved over a short duration [109, 133, 201, 146].

Kazarlis et. al [109] introduced the concept of micro genetic algorithm
for local search where a population of few individuals was employed as
a generalised hill-climber intended for intensification and a genetic algo-
rithm with a larger population was used for diversification. The major ad-
vantage of micro genetic algorithm over other local search methods was
to identify and follow narrow ridges of arbitrary directions that lead to
the global optimum. The proposed method was tested with 13 different

38



methods which include a simple GA with different hill-climbers. The mi-
cro genetic algorithm based local search performed better than all other
methods in terms of accuracy, feasibility rate and robustness for the same
number of fitness evaluations.

Lozano et. al [133] presented a real-coded memetic algorithm with
crossover hill-climbing (XHC). XHC maintains a pair of parents which
consists of the solution being refined and the best solution obtained so far.
XHC performs crossover on the pair until some number of offspring has
been reached. The best offspring is selected and replaces the worst par-
ent only if the best solution is better. The method performed better than
the memetic algorithms presented in literature. Noman and Iba [155] in-
corporated an adaptive XHC for differential evolution where the depth or
intensity of local search is adjusted adaptively. They proposed fixed length
and an adaptive method for the intensity of local search. In the adaptive
method, the XHC is evolved while the offspring performs better than the
first parent. If the performance of the offspring is worse, then the search
returns to the differential evolution algorithm. The method showed better
performance than other memetic based differential evolution algorithms
from literature.

Soak et. al [201] presented a memetic algorithm that used ideas from
particle swarm optimisation used for diversification and recombination
operators from a genetic algorithm was used for intensification. The method
obtained promising results to several instances of the degree constrained
minimum spanning tree problem. Mutoh et. al [153] presented the flexible-
step crossover operator that performed local search and results showed
improved performance for continuous optimisation problems. Gang et.
al [59] used a global genetic algorithm as the master and a local genetic
algorithm as the subordinate for the travelling salesman problem.

Molina et. al [146] used the CMA-ES (covariant matrix adaptation evo-
lution strategies) [84] with a small population as a subordinate EA for lo-
cal search. They used a steady-state genetic algorithm [90] as master EA

39



which has the property of high population diversity by means of BLX- α
crossover operator and negative assorted mating strategy. The BGA mu-
tation [152] operator was also used to favour the diversity of the main
population. The method showed good results for continuous problems
with high dimensions when compared to its counterparts from literature.

2.4.3 MHs with evolutionary intensification and diversifi-

cation

Lozano and Garcia-Marninez [130] have identified a third group of hy-
brid MHs that incorporate evolutionary intensification and diversification
components as evolutionary operators in a customised EA. They identified
two examples in literature that incorporate recent EAs for intensification
as local search procedures, which include binary local GA (BLGA) [60] and
the covariance matrix adaptation evolution strategy (CMA-ES) [84, 83].

CMA-ES was introduced to improve the local search performance of
evolution strategies. It has global search features and is very good in
exploiting local structures in search spaced for continuous optimisation
problems. In CMA-ES, the step size and direction are adjusted at each gen-
eration in a multidimensional problem. There is a mutation strength per
dimension and their combined update is controlled by a covariance ma-
trix whose elements are updated with the evolutionary process. CMA-ES
is an instance of multi-start L-CMA-ES [7] which was one of the winners of
real parameter optimisation competition at 2005 congress on evolutionary
computation.

BLGA uses a steady state binary-coded genetic algorithm that uses
crowding replacement method for preservation or diversity. The individ-
uals from the population are selected by positive assorted mating which
ensures that they are very similar to the leader chromosome. This ori-
entates the search in the nearest regions to the leader chromosome. The
method outperformed its counterparts from literature which used other

40



local search approaches.

2.5 Cooperative Coevolution

In the evolutionary process of nature, different species compete in order
to survive with the given resources. The individuals of a particular group
of species mate among themselves in order to produce stronger individu-
als. Cooperative coevolution (CC) is an evolutionary computation method
inspired from nature which divides a large problem into subcomponents
and solves them collectively in-order to solve the large problem [169]. The
subcomponents are implemented as sub-populations that are evolved in
isolation. Diversity is an important feature of cooperative coevolution.
The combination of the individuals in the sub-populations will lead to
more diverse solutions when compared to a single population evolution-
ary algorithm [168]. Cooperative coevolution has mainly been used for
tackling large-scale optimisation problems [127, 233] and neuro-evolution
of feedforward [168, 61] and recurrent networks [76, 77].
The original cooperative coevolution [169] can be summarised as follows.

1. Problem decomposition: Decompose a high dimensional problem
into subcomponents that can be solved by conventional evolution-
ary algorithms. The subcomponents can vary in sizes and are often
expressed as sub-populations.

2. Subcomponent optimisation: Evolve each subcomponent separately
by an evolutionary algorithm where evolutionary operators such as
crossover and mutation are restricted to a subcomponent and do not
affect other subcomponents.

3. Fitness evaluation: Fitness of individuals in each of the subcom-
ponents are evaluated cooperatively with representative examples
from the other subcomponents.

41



Problem decomposition is considered to be an important step in co-
operative coevolution. The problem decomposition method solely relies
on the nature of the optimisation problem. The original cooperative co-
evolution framework (CCEA) decomposed the problem in a way where a
single sub-population is used for each variable [169]. The sub-populations
in the cooperative coevolution framework are evolved separately and the
cooperation only takes place for fitness evaluation for the respective indi-
viduals in each sub-population. The general framework for function op-
timisation is given in Algorithm 2 which outlines how the large problem
is decomposed. The algorithm begins by initialising and cooperatively
evaluating each of individuals of the respective sub-populations. After
the initialisation and evaluation phase, the evolution proceeds. All the
sub-populations are evolved in a round-robin fashion for the depth of n

generations . A cycle is complete when all the sub-populations have been
evolved for n generations. The algorithm terminates until the maximum
number of cycles are reached or the minimum error is satisfied. The size
of a subcomponent and the way a subcomponent is encoded is dependent
on the problem. The way the algorithm cooperatively evaluates each sub-
component and the way the problem is decomposed have been a major
focus in the study of cooperative coevolution.

Existing cooperative coevolutionary algorithms employ different meth-
ods for problem decomposition as follows.

• One-dimensional decomposition: A separate subcomponent is used
for each dimension or decision variable and is very effective for sep-
arable problems [169].

• Decomposition by splitting in halves: The splitting in half prob-
lem decomposition method begins the evolution by dividing the n-
dimensional vector into 2 m-dimensional vectors [193]. The division
can be repeated further after certain stages in the evolutionary pro-
cess.

42



Alg. 2 The General Cooperative Coevolution Framework
1) Decompose the problem into k subcomponents
2) Initialise and cooperatively evaluate each subcomponent represented
as a sub-population
while until termination do

for each Subpopulation do
for n Generations do

i) Select and build new individuals
ii) Cooperatively evaluate the new individuals
iii) Update sub-population

end for
end for

end while

• Adaptive and heuristic subcomponents: Adaptive and heuristic meth-
ods build subcomponents according to the nature of the problem in
terms of non-separability [233, 156]. In multi-level cooperative co-
evolution, the size of a set of subcomponents are predefined. The
set is used to adapt the size of subcomponents in the evolutionary
process [234]. Some techniques use statistical methods such as cor-
relation to determine the subcomponent sizes in the initial stages of
the evolutionary process [175].

• Problem-based subcomponents In using cooperative coevolution
for neural network training, the subcomponent sizes are determined
by the network architecture and connectivity of the neurons [168, 61,
77].

Potter and Jong [168] proposed a collaborative method for fitness evalu-
ation. The method obtains the fitness of each individual in a sub-population
by combining it with the best individuals from the rest of the sub-populations.
This method has been used to train cascade networks on the two-spirals
problem and has shown to learn the task with smaller networks when
compared to the cascade correlation learning architecture [168]. The fit-
ness assignment problem in cooperative coevolution has also been viewed

43



as a multi-objective optimisation problem for training neural networks
(MOBNET) [61]. roulette wheel section and mutation is done using simu-
lated annealing in each sub-population [61].

2.5.1 Diversity in Cooperative Coevolution

Population diversity is a key issue in the performance of evolutionary al-
gorithms. The diversity of a population affects the convergence of a evo-
lutionary algorithm. A population which consists of similar candidate so-
lutions in the initial stages of the search is prone to convergence in a local
minimum. The selection pressure and recombination operations mainly
affect the diversity of the population. Evolutionary operators such as
crossover and mutation must ensure that the population is diverse enough
in order to avoid local convergence. Diverse candidate solutions can en-
sure the algorithm to escape a local minimum. In evolutionary algorithms,
diversity has been improved by using techniques such as 1) complex pop-
ulation structures [219, 211], 2) the use of specialized operators to control
and assist the selection pressure [74] , 3) reintroduction of genetic materials
in the population [34, 81] and 4) diversity measures such as the hamming
distance [194], gene frequencies [105] and diversity measures to explore
and exploit search [220].

Cooperative coevolution naturally retains diversity through the use of
sub-populations, where mating is restricted to the sub-populations and
cooperation is mainly by collaborative fitness evaluation [169, 168]. Since
selection and recombination is restricted to a sub-population, the new so-
lution will not have features from the rest of the subpopulations; therefore
cooperative coevolution produces more diverse population when com-
pared to a standard evolutionary algorithm with a single population.

44



2.5.2 Cooperative Coevolution for Non-Separable Problems

This thesis explores the issue of separability in terms of the interaction
among the synapses in neural networks. Much work has been done in us-
ing cooperative coevolution for non-separable global optimisation prob-
lems; hence, they are reviewed here.

Typically, large-scale complex problems require complex algorithms
for their solutions. Cooperative coevolution employs divide and conquer
strategy to decompose complex problems into several simpler sub-problems
and employs greedy approaches on the sub-problems. Cooperative co-
evolution naturally appeals to problems that can be broken down and
those that do not have any interdependencies within the decision vari-
ables. These types of problems are often expressed as separable problems, as
given in Definition 3.

Definition 3. A function of n variables is separable if it can be written as a sum
of n functions with just one variable as given in Equation 2.6. The parameters of
a separable function are called independent variables [165].

argmin
(x1,x2,...,xn)

f(x1, x2, ..., xn) =

(
argmin

x1

f(x1, ...), ... argmin
xn

f(...xn)

)
(2.6)

An example of a separable problem is the Sphere function as given in
Equation 2.7.

min
x

f(x) =
n∑

i=1

xi
2 (2.7)

−5.12 ≤ x ≤ 5.12, x∗ = (0, 0, .., 0) and f(x∗) = 0

In real world problems, interdependencies exist among decision vari-
ables. Non-separable problems have interdependencies between decision
variables. Tang et. al [106] have further divided the level of non-separability

45



into two classes as given in Definition 4. These are m-non-separable and
fully-non-separable.

Definition 4. A non-separable function f(x) is called m-non-separable function
if at most m of its parameters xi are not independent. A non-separable function
f(x) is called fully-non-separable function if any two of its parameters xi are not
independent [106] .

An example of a non-separable problem is the extended Rosenbrock func-
tion as given in Equation 2.8. Examples of separable and non-separable
functions with up to 1000 dimensions for testing large-scale function opti-
misation can be found in [106].

min
x

f(x) =
n−1∑
i=1

[(1− xi
2) + 100(xi+1 − x2

i )] (2.8)

The extended Rosenbrock function has been shown to have exactly 1 min-
imum for n=3 at (1,1,1) and exactly 2 minima for 4 ≤ n ≤ 7. This result has
been obtained by setting the gradient of the function equal to zero [114].

In summary, separable functions are those where the minimization of
a variable independently contributes to the global minimization of the
whole function. This is not applicable to non-separable problems as the
minimization of a variable independently may hinder the global minimi-
sation due to interdependencies between variables. In general, totally sep-
arable problems are the easiest to solve and the fully non-separable are the
most difficult to solve. Most problems fall between the two extremes and
are also known as partially separable [82, 35].

The curse of dimensionality is a term introduced by Richard Bellman
[12] that signifies that the performance of an optimisation algorithm will
typically deteriorate significantly as the dimensionality of the problem in-
creases. A reason for the curse of dimensionality is due to the character-
istics of the problem which may change due to the increase in dimension.
For instance, the Rosenbrock function which is uni-modal for two dimen-
sions becomes multi-modal when the dimension increases [192]. For this

46



reason, the search algorithm that has been successful for smaller dimen-
sions may not be able to scale to higher dimension instances of the same
problem.

In order to solve large-scale optimisation problems that fall between
total separable and fully non-separable, it is important to group interact-
ing variables within a subcomponent. Fast evolutionary programming in
the cooperative coevolutionary framework (FEPCC) has been the first at-
tempt to tackle large-scale function optimisation of up to 1000 dimensions
[127]. FEPCC used the original CCEA framework by Potter and Jong
[169]. The major drawback of CCEA is that it does not have the mecha-
nism to provide interaction between subcomponents which is needed for
non-separable problems. Due to this, FEPCC performed poorly on non-
separable problems.

Cooperative Coevolution based Particle Swarm optimisation (CPSO)
[221], unlike the original cooperative coevolution framework [169], de-
composes the problem into m s-dimensional subcomponents where s is
the number of variables in a subcomponent. CPSO used static grouping
where the arrangement of the variables do not change during evolution.
The variables of each individual in a particular sub-population are con-
catenated with the best individuals from the rest of the subcomponents
and a context vector is formed in order to evaluate the individuals in each
subcomponent. Shi et. al presented a Differential Evolution based cooper-
ative coevolution framework which divides the problem into halves and
each half is optimized using Differential Evolution [193]. The method was
applied for large-scale problems of only 100 dimensions. This strategy
does not work for problems of high dimension as the halved subcompo-
nents cannot cope with higher dimensions.

Yang et. al [233] have presented the cooperative coevolution frame-
work that uses a random grouping and adaptive weighting strategy with dif-
ferential evolution (DECC-G) for its subcomponents. The method groups
interacting and non-interacting variables into separate subcomponents heuris-

47



tically. During each cycle of the cooperative coevolution framework, dif-
ferent variables are arbitrarily assigned to each subcomponent and a sep-
arate adaptive weight vector is used to assess the subcomponents. The
adaptive weight vector is also optimized using a separate optimisation
process. Note that the size of the adaptive weight vector equals the num-
ber of subcomponents which is significantly small in comparison to the
problem size. The adaptive weight vector is used to further fine tune the
solutions obtained using cooperative coevolution. The framework was
used for non-separable problems of up to 1000 dimensions. Omidvar et.
al. [156] made amendments to the adapting weighting approach in DECC-
G. They argued that the random grouping approach in DECC-G proved to
capture two interacting variables in a subcomponent with a probability of
0.9662 which gets significantly lower when more than two interacting vari-
ables are present in the problem. They presented a more frequent random
grouping approach which turned to outperform its counterpart in several
non-separable problems of up to 1000 dimensions.

Yang et. al presented a multi-level cooperative coevolution framework
(MLCC) [234] which adapts the size of the subcomponents in DECC-G in
order to group interacting and non-interacting variables. The framework
starts with small sized subcomponents and adapts to bigger subcompo-
nents sizes from a predefined set. MLCC showed better performance than
DECC-G for non-separable problems of up to 1000 dimensions.

An recent extension to the CPSO has been the cooperative coevolu-
tion framework for particle swarm optimisation (CCPSO) [124] which has
been applied to large-scale non-separable problems using random group-
ing and adapting weighting present in DECC-G [233]. CCPSO showed to
perform significantly better for large scale problems of up to 1000 dimen-
sions than its differential evolution counterpart in DECC-G. The authors
concluded that cooperative coevolution can be a good method for tack-
ling the limitations of particle swarm optimisation in handling problems
of high dimensions.

48



Ray and Yao presented a cooperative coevolution framework using
correlation based adaptive partitioning technique (CCEA-AVP) [175]. In
this method, the problem is evolved for a few generations using a single
population and then the correlation coefficients of the top 50 % of the in-
dividuals of the population are calculated. The variables with correlation
coefficients greater than a predefined threshold are grouped into one sub-
component and the rest into another subcomponent. The correlation based
partitioning is then repeated after every generation. It has been shown that
this technique performs better than the original cooperative coevolution
framework on non-separable problems of up to 100 dimensions.

Chen et. al presented the cooperative coevolution with variable inter-
action learning (CCVIL) [33] which divides the optimisation problem into
two stages. These are the learning stage and the optimisation stage that
execute once in sequence. In the learning stage, all decision variables are
treated independently and cooperatively evolved from which the interact-
ing variables are identified using variable interaction learning and vari-
ables are merged into groups. In the optimisation stage, optimisation is
done using conventional cooperative coevolution. The results showed that
the method performs better than MLCC and DECC-G for non-separable
problems of up to 1000 dimensions.

Omidvar et. al presented another approach to large scale non-separable
problems using Delta Grouping [157]. This method computes the aver-
aged difference of a certain variable across the entire population which
is used for identifying interacting variables. The method is based on the
idea presented by Salomon [183] who showed that coordination rotation
is one way of turning a separable problem into an non-separable one. A
vector is used which calculates the amount of change or delta values in
each of the dimensions between two consecutive cycles for all the indi-
viduals of the population. The size of this vector equals the number of
dimensions which gives a rough estimation of the improvement interval
in every dimension which is used for capturing the interacting variables.

49



The magnitude of the delta values of with the corresponding variables
are then sorted in descending order and grouped according to predeter-
mined equally sized subcomponents. In this way, interacting variables
are grouped in the same subcomponent. This algorithm is called Differ-
ential Evolution Cooperative Co-evolution using Delta-Grouping (DECC-
D). A variant is also presented using the MLCC approach [234] which is
called DECC-DML. Both methods showed better performance in compar-
ison with MLCC and DECC-G for large scale non-separable problems of
up to 1000 dimensions.

2.6 Neuro-Evolution

The ability of neural networks to approximate complex functions and model
any open dynamical system has well been praised [184, 97, 70]. However,
the search for its optimal training algorithm is still an open problem. Gra-
dient descent based training methods are unable to guarantee acceptable
solutions in difficult problems and those involving long-term dependen-
cies [13, 55]. Therefore, evolutionary algorithms (EAs) have been used
in neural network training and design in order to achieve a better solu-
tion when compared to traditional gradient descent based approaches [2].
The paradigm of using evolutionary computation for evolving neural net-
works is known as neuro-evolution .

Neuro-evolution uses evolutionary algorithms to search for the opti-
mal weights, parameters, suitable topology and possible transfer func-
tions in training neural networks [235]. Unlike gradient based approaches
such as backpropagation, neuro-evolution uses a population of solutions
in building stronger solutions for future generations. One of the main
strengths of neuro-evolution is that they are not dependent upon any par-
ticular neural network architecture and can work with a set of different
activation functions without being limited to differentiability. They are
easily applicable without major alteration in different network architec-

50



tures as they search the solution space only using feedback from the over-
all fitness of the neural network. Another reason for its popularity is due
to the use of evolutionary algorithms, which are known as global search
methods.

Neuro-evolution has been praised for solving control problems that
were difficult to solve by conventional reinforcement learning and other
machine learning approaches [204, 77]. They have been seen to be a re-
inforcement learning technique as they adjust their solutions according to
the overall fitness or reward of the system [228]. The optimisation strategy
in neuro-evolution does not depend on the back-propagation of gradient
information. This is useful in the case of learning long-term dependencies
in recurrent neural networks since BPTT has problems as outlined in [13].

Neuro-evolution is divided into two different streams which are direct
and indirect encodings. In direct encoding, every connection and neuron is
specified directly and explicitly in the genotype whereas in indirect encod-
ing, the genotype specifies rules or some other structure for evolving the
network. The major streams are discussed in the following subsections.

2.6.1 Direct Encoding in Neuro-evolution

In direct encoding, the genotype is the same as the phenotype, every con-
nection and neuron is specified directly and explicitly in the genotype. An-
geline et. al proposed Generalised Acquisition of Recurrent Links (GNARL)
which uses evolutionary programming and genetic algorithms to simulta-
neously search for the structure and weights in a recurrent neural network
[2]. GNARL adds or deletes several nodes and links through structural
mutation. The authors argued that conventional binary encoded genetic
algorithms are inappropriate for neuro-evolution due to the crossover op-
erator. The crossover operator can be harmful in training neural network
weights as they do not have the feature to retain the weights for particular
neurons or layers. The weights can be exchanged between layers which

51



can cause loss of infomation associated with different neurons. GNARL
was mainly used for learning languages from grammatical inference prob-
lems. In Symbiotic Adaptation Neuroevolution (SANE), a population of
neurons and a population of networks are coevolved separately. The neu-
ral network is randomly constructed from the population neurons and
evolved [148].

Direct encoding has also been used in the evolution of feedforward net-
works for pattern recognition problems using conventional evolutionary
algorithms [189], memetic based approaches [23] and cooperative coevolu-
tion [62]. Blanco et. al, [16] used Wright’s heuristic crossover operator in an
evolutionary algorithm and compared its performance with the real-time-
recurrent learning algorithm for training recurrent networks for grammat-
ical inference problems. The experiments in their work were done using
second-order recurrent neural networks. Their work showed that the evo-
lutionary algorithm was better than gradient based methods in terms of
training time and guarantee of convergence. Similar work was done in
[46] which used multi-objective evolutionary algorithms for evolving the
structure and weights of a recurrent network for grammatical inference
problems.

In enforced sub-populations (ESP), each neuron in the hidden layer cor-
responds to a separate sub-population that is cooperatively evaluated and
coevolved [75]. ESP showed promising results when compared to pre-
vious techniques for inverted pole balancing problems with and without
velocity information. Hierarchical ESP simultaneously evolves a separate
population of entire network with the sub-populations of neurons and
keeps a cache of the best combinations [79]. They showed better perfor-
mance than conventional ESP. Cooperative synapse neuro-evolution (CoSyNE)
used cooperative coevolution on synapse level encoding where every con-
nection in the network is encoded into a separate sub-population [77].
CoSyNE was shown to outperform neuro-evolution techniques such as
ESP, SANE and NEAT [204] for pole balancing problems. However, co-

52



variant matrix adaptation evolution strategies (CMA-ES) [85] for neuro-
evolution [99] outperformed CoSyNE only for the Markovian double-pole
balancing problem. Covariance matrix adaptation neuro-evolution strategy
(CMA-NeuroES) [87] with improved parameter setting has shown to out-
perform CoSyNE for both Markovian and non-Markovian double pole
balancing problems. In summary, CMA-NeuroES has performed fairly
well in comparison to CoSyNE for pole balancing problems. These meth-
ods were only applied to pole balancing problems, therefore, their per-
formance in other problems such as pattern recognition is still and open
issue. A sophisticated version of ESP known as Evolino has been used to
evolve the long short-term memory networks (LSTM) where it was shown
that the framework outperformed gradient based LSTM and learned tasks
that were unlearn-able by Echo State Networks [187].

In feedforward networks, cooperative coevolutionary neural networks (COV-
NET ) has been proposed for pattern recognition problems [62]. MOBNET
uses multi-objective cooperative coevolution for assigning fitness for subcom-
ponents in evolving feedforward networks. The roulette wheel section is
used and mutation is done using simulated annealing in each of the sub
populations. Structural mutation is done by adding and deleting a node or
its connections. In this way, the network architecture is also adapted dur-
ing evolution [61]. The COVNET [62] differs from MOBNET as it does not
use multi-objective optimisation for assigning fitness to subcomponents.
COVNET and MOBNET have shown promising results in terms of accu-
racy in classification problems and have shown to learn the problem in
simpler or smaller network structures. Cooperative coevolution has also
been used in the construction of Bayesian networks for data mining [231],
designing neural networks ensembles [63] and cooperative constructive
method for designing neural network for pattern classification [65].

53



2.6.2 Indirect Encoding in Neuro-evolution

In indirect encoding, the genotype specifies rules or some other structure
for generating the network. This approach allows large networks to be
efficiently represented without using large chromosomes as it grows the
network nodes and connections.

Neuro-Evolution of Augmenting Topologies (NEAT) begins evolution
with the simplest network topology and adapts nodes and weights to-
gether during evolution [204]. Compositional Pattern Producing Networks
(CPPN) [202] use several activation functions in the network to build dif-
ferent level of abstraction than conventional methods. CPPN used NEAT
in their implementation. Hypercube-based Neuro-Evolution of Augment-
ing Topologies (HyperNEAT) [203] employed CPPN to learn the lower
dimensional space of a substrate or hypercube connection. CPPN deter-
mined the weights in the substrate which can further be generalised into
very large networks. In [203], CPPN learnt the spatial pattern of a smaller
substrate which later generalised and formed a hypercube network of 8
million connections. HyperNEAT is the state-of-art in neuro-evolution
and well resembles the structure of biological neural systems. Buk et.
al substituted the NEAT in CPPN with genetic programming which has
shown to achieve faster convergence [21]. Group Adaptive Models Evolu-
tion (GAME) also use several optimisation methods in evolving weights,
topology and transfer functions [116].

2.6.3 Hybrid HMs for Neuro-Evolution

Hybrid evolutionary approaches have been proposed to simultaneously
exploit the strengths and alleviate the weaknesses of evolutionary algo-
rithms with respective gradient descent methods. The most common paradigm
is a two-phase combination of evolution with gradient descent optimisa-
tion where the evolutionary search algorithm is used in the initial training
phase and gradient descent training performs refinement to arrive at the

54



final solution. Therefore, the evolutionary algorithm performs a global
search in hypothesis space and delivers promising regions (solutions) and
the gradient descent algorithm in turn performs a local search which im-
proves upon these promising regions. This approach has been shown to
reduce the training time and improve the classification performance in a
number of applications in feedforward networks [112, 98].

Memetic algorithms have been used for training feedforward networks
and a survey of their contribution has been presented in [23].

Hybrid evolutionary methods have been used for training recurrent
neural networks. One example is the combination of particle swarm op-
timisation (PSO) with evolutionary algorithms [22] for training recurrent
neural networks on time series problems, where the hybrid method per-
formed better than PSO and EA alone. The hybrid parallel Tabu search
with the crossover operation from genetic algorithm was proposed for
training recurrent neural networks for the non-linear plant problem and
showed better performance than standard Tabu search and genetic algo-
rithm as discussed in [107]. The cellular genetic algorithm (CGA) has been
combined with local search in order to train RNN for long-term depen-
dency and the inverted pendulum problem [121]. The combination was
efficient only when the local search was implemented using the delta-
rule that only adjusted the output layer weights. The CGA and real-time-
recurrent learning (RTRL) was combined as CGA-RTRL which took more
computational time to converge when compared to CGA alone.

2.6.4 Modularity and Problem Decomposition

The major advantage of the cooperative coevolution in neuro-evolution is
that it provides a mechanism for dividing the neural network problem in
smaller problems using subcomponents. This gives the flexibility to as-
sign or encode different network weights into different subcomponents or
modules according to the network architecture and the type of the learn-

55



ing problem. In this way, information in the subcomponents are preserved
during evolution which is lost in neuro-evolution with conventional evo-
lutionary algorithms due to harmful effects of some reproduction opera-
tors such as the crossover. The crossover operator in conventional evo-
lutionary algorithms is designed to make adjustments to all the variables
in the individual. In the case of neural networks, the crossover operator
will make changes to all or most network weights. The weights associ-
ated with neurons in the first layer can be easily interchanged with that
of the second layer. Cooperative coevolution ensures that operators such
as crossover do not harm the weights of the entire network, and provides
the ability to restrict evolution to certain group of weights using the sub-
components. Note that the level of modularity is given by the problem
decomposition method in cooperative coevolution.

Problem decomposition is a major concern in neuro-evolution using
cooperative coevolution. Some efficient problem decomposition strategies
or encoding schemes are discussed as follows. In training radial-basis net-
works, k-means clustering has been used to group hidden neurons with sim-
ilar properties into subcomponents in order to obtain a compact network
structure. The method has shown to outperform conventional methods
in terms of accuracy [123]. COVNET [62] and MOBNET [61] build sub-
components by encoding input and output connections to the respective
hidden neuron. These have been used for training feedforward network
architectures. This encoding scheme is similar to that used in ESP which
is used for training recurrent networks. In the ESP, recurrent connections
also form part of the subcomponent, which is not the case in either of
COVNET or MOBNET.

Problem Decomposition in Feedforward Neural Networks

COVNET and MOBNET have been used for training feedforward neworks.
These cooperative co-evolutionary methods have used neural level encod-
ing scheme where the neurons in the hidden layer act as the main reference

56



point for a subcomponent. ESP [76, 78] uses a similar encoding scheme;
however, recurrent connections are also present as it has been used mainly
for training recurrent networks.

Henceforth, the encoding scheme used in COVNET, MOBNET and ESP
are referred to as “CME” due to their similarities. This is done by taking
the first letters from each abbreviation. Figure 2.5 shows the schematic of
the interconnected input and output links to a hidden neuron. It is as-
sumed that the network has one hidden layer only. The number of hidden
neurons is equal to the number of subcomponents. In this mapping, all
sub-populations have the same size for the entire framework.

Figure 2.5: The CME encoding scheme summarised from [78, 62, 61] is
used for comparison in the experiments.

Problem Decomposition in Recurrent Neural Networks

Problem decomposition in cooperation coevolution for recurrent networks
is as follows. There have been two major problem decomposition methods
for training recurrent neural networks. The first method proposes a neuron
level encoding where each neuron in the hidden layer is used as a major
reference point for each sub-population. Therefore, the number of hidden
neurons is equal to the number of sub-populations [78]. This encoding
is used in ESP where a particular neuron hi in the hidden layer would

57



encode the following weight links in its sub-population:

1. The weights links connecting from the input layer to hi

2. The weight links connecting from hi to each context neurons

3. The weight links connected from hi to each output layer

4. The bias associated with hi

In this method, all individual sub-populations have the same size for the
entire framework. This encoding is shown in Figure 2.6.

Figure 2.6: The ESP encoding scheme taken from [78].

The second problem decomposition method is based on synapse level en-
coding as given in CoSyNE [77]. This encoding scheme decomposes the
network into its lowest level; where each weight link (synapse) in the net-
work is part of a single sub-population. CoSyNE has shown to outper-
form ESP for training recurrent networks. The difference in performance
in the ESP and CoSyNE for the same problem shows that problem decom-
position is an important feature of cooperative co-evolutionary recurrent
networks.

58



2.6.5 Fitness Evaluation of the Sub-populations

A major concern in cooperative coevolution is the cooperative evaluation
of each individual in every sub-population. There are two main phases
of evolution in the cooperative coevolution framework. The first is the
initialisation phase and second is the evolution phase. In the initialisation
phase, the subcomponents are seeded with random values and evaluated.
In the evolution phase, the subcomponents are evolved in a round-robin
fashion until a cycle is completed. The initialisation phase is shown in Step
2 of Algorithm 2.

Figure 2.7: The current individual whose fitness has to be evaluated is
joined with arbitrary individuals from the rest of the sub-populations in
the initialization phase. In the evolution phase, the best individuals from
the rest of the sub-populations are chosen. The current individual is then
concatenated with the chosen individuals. The concatenated individual
is encoded into the neural network by the given cooperative coevolution
encoding scheme. The fitness is then evaluated and assigned to the current
individual.

In order to evaluate the ith individual of the kth sub-population, ar-
bitrary individuals from the rest of the sub-populations are selected and

59



combined with the chosen individual and cooperatively evaluated. Arbi-
trary individuals are selected because in the initialization stage the indi-
viduals from the rest of the sub-populations do not have a known fitness.

In the evolution phase, cooperative evaluation shown in Step 2 (ii),
is done by concatenating the chosen individual from a sub-population k

with the fittest individuals from the remaining sub-populations. After the
initialization phase, an estimate of the best individuals from the rest of
sub-populations can easily be found through ranking according to fitness.
The concatenated individual is encoded into the neural network and the
fitness is calculated through the training error. The fitness evaluation of
individuals in each sub-population is further shown in Figure 2.7. In this
way, the fitness of each subcomponent in the network is evaluated. Note
that the fitness of the whole network is assigned to each individual, even
though it represents a part of the solution. The contribution of the individ-
ual will affect the functionality of the entire neural network as all weights
and neurons contribute to its output. A similar approach is taken in [168].

Other problem decomposition methods such as CME, ESP and CoSyNE
evaluate the fitness of each individual differently. For instance, CoSyNE
uses n trial runs and takes the average fitness over trials only in the initial-
isation phase. In this thesis, the same method for sub-population initiali-
sation and evaluation during evolution will be used in different encoding
schemes order to show a fair comparison.

2.6.6 Evaluation of Cooperative Neuro-evolution

Training neural networks through any evolution computation method is
computationally expensive in terms of the optimisation time given by num-
ber of function evaluations. The computational cost of a single function
evaluation depends on the type and size of the network architecture and
the size of the training data. Moreover, the number of features in the train-
ing data also adds to the computational cost. In any optimisation problem,

60



there are two main attributes, which are the accuracy of the solution and
the elapsed time. In neural network training, the accuracy of the solution
is either the overall error of the neural network or the performance of a
validation set. The overall error of the network is usually given by mean-
squared-error or sum-squared-error.

A good measure of time is the number of functions evaluation it takes
for the learning algorithm to converge to a desired solution. It is easy to
compare the performance in terms of number of function evaluations with
other algorithms, which have been executed on different machines.

The ability of an algorithm to give a solution within a given time is
also an important measure. The guarantee for a solution can be measured
with a success rate over a specified number of experimental runs. A suc-
cessful run is when the algorithm converges to the desired solution before
reaching the maximum time in terms of function evaluations. The aver-
age function evaluations with the number of successful run can be used
in comparison to other methods. The least number of mean function eval-
uation with maximum success is desired. Therefore, this thesis will use
function evaluation and success rate as the main measure to evaluate the
performance of the proposed algorithms. The success rate reflects on ro-
bustness of evolutionary algorithms.

Evolutionary algorithms like other methods tend to deteriorate in per-
formance when the size of the problem increases. Scalability is one of the
current challenges for evolutionary algorithms. Scalability ensures that
the algorithm can perform when the problem size is sufficiently increased;
this is usually when the training data or the number of neurons of the neu-
ral network increases. In this thesis, we will also check the performance
of the algorithm when the problem becomes larger. The number of vari-
ables significantly increases when the size of the hidden neuron increases.
The connections associated with recurrent state neurons also increases the
overall problem size. Therefore, scalability will be tested by evaluating the
proposed methods on different number of hidden neurons on feedforward

61



and recurrent neural networks.

2.6.7 Chapter Summary

This chapter has given the background on feedforward and recurrent neu-
ral networks, evolutionary algorithms, Memetic algorithms and neuro-
evolution. It has also given background of cooperative coevolution, non-
separability, modularity and cooperative neuro-evolution. It has provided
a review of the recent developments in these areas and outlined their
strengths and limitations. These lead to motivations for the work carried
out in the rest of the thesis.

The G3-PCX evolutionary algorithm has limitations in multi-modal op-
timisation problems and this limitation is mainly due to the intensive lo-
cal search feature of the parent-centric crossover operator. The G3-PCX
needs a fairly large population even on for small problems. This shows
a high level of diversity is needed for parent-centric crossover. This can
become a problem for training neural networks as they can be seen as
multi-modal optimisation problems. Cooperative coevolution maintains
high diversity through the use of sub-populations where recombination is
restricted within a sub-population. Cooperative coevolution can help the
G3-PCX evolutionary algorithm by providing more diversity and this can
be beneficial in neural network training.

The issue of separability has been explored in the literature for global
optimisation problems; however, there has not been any work about in
issue of separability in the case of training neural networks. Problem de-
composition is central to cooperative coevolution and problem decompo-
sition should consider the nature of the problem in terms of separability
and interacting variables. It is important to analysis how the variables in-
teract with each other in a neural network training process and this can
help is building efficient problem decomposition methods for cooperative
coevolution.

62



Furthermore, the established synapse level problem decomposition (CoSyNE)
and neuron level problem decomposition (ESP) have not considered the
interacting variables in the neural network. CoSyNE views the neural net-
work as a separable problem while ESP groups the variables with refer-
ence to a hidden neuron. The ESP approach makes it difficult to be gen-
eralized to a neural network with more than one hidden layer. A good
problem decomposition method has to consider the interacting variables
in the neural network and at the same time its architectural properties so
that it can be generalized to neural network with several hidden layers.

In the cooperative coevolution literature, the use of local search has not
been fully explored. There are several sub-populations involved in coop-
erative coevolution and local search can further add to the computational
costs, however, local search can also improve the quality of the solution.
Therefore, the incorporation of local search in cooperative coevolution can
further improve its performance.

In global optimization methods, several techniques for non-separable
problems have been used that mainly include 1) DECC-G that employs
random grouping of interacting variable and its variant that used delta
grouping, 2) MLCC that adapts the size of the subpopulation at differ-
ent levels of evolution and 3) DECC-DML that employs delta grouping
with MLCC. These methods improved performance for global optimiza-
tion problems; however, the application of these ideas has not been ex-
plored for cooperative coevolution of neural networks. A major problem
of the MLCC approach is that it merges the sub-populations based on a
predefined set which does not cater for the interacting variables between
the sub-populations. In order to make adaption of problem decomposition
in neural networks, the interacting variables must be considered and the
sub-populations should be merged using some of the established problem
decomposition methods.

Based on the above motivations, new techniques in cooperative coevo-
lution can be developed for training feedforward and recurrent networks

63



to solve interesting problems that include pattern classification, grammat-
ical inference and time series prediction.

Training neural networks which large datasets is a computational ex-
pensive task, therefore, it is important to measure the optimisation time
in terms of the number of function evaluations. The optimisation time,
scalability and robustness are the important attributes of a neural network
training algorithm. Scalability will be tested by evaluating the algorithms
performance with different number of hidden neurons in the network.
A robust algorithm will ensure that it delivers a solution within a spec-
ified time-frame given different initial positions in weight space. These
attributes will be tested in the rest of the thesis in order to demonstrate the
efficiency of the training algorithms.

The remaining chapters deal with problem decomposition, local search
and adaptation of problem decomposition methods in cooperative neuro-
evolution. These methods are then applied for solving difficult chaotic
time series problems.

64



Chapter 3

Problem Decomposition in
Cooperative Neuro-evolution

The literature in the previous chapter has presented cooperative neuro-
evolution and how it decomposes a neural network problem into subcom-
ponents and evolves them. This chapter proposes a problem decomposi-
tion method based on the functional properties of a neuron. The proposed
encoding scheme is used for training feedforward networks on pattern
classification problems, and recurrent neural networks on grammatical in-
ference problems. The chapter begins with a summary of the problem
decomposition methods presented in the literature. Then it presents the
motivations for the new method. The details of the proposed method are
then given for feedforward and recurrent networks and the simulation is
presented with an analysis of the results and discussion.

3.1 Introduction

Problem decomposition has been a major area of study in using coopera-
tive coevolution for neuro-evolution. The major problem decomposition
methodologies are those based on the neuron level and synapse level. The
neuron level encoding scheme uses each neuron in the hidden layer as

65



the main reference point for the respective subcomponents [62, 61, 76, 78].
In synapse level problem decomposition, each weight or synapse in the
network forms a subcomponent [77]. Therefore, the number of subcompo-
nents depends on the number of weights and biases. The use of CoSyNE in
training neural networks for pattern classification has not been explored.

In the literature, there has not been much study on how to encode in-
teracting variables into separable subcomponents for the specific case of
neuro-evolution. Most of the study has been on large-scale function op-
timization problems, which is not directly applicable to neuro-evolution.
In the case of neuro-evolution, the problem decomposition method must
take into account the architecture of the neural network in order to group
interacting variables into the same subcomponents. It is important to anal-
yse how the different weight links interact with each other. This forms the
basis of the proposed problem decomposition method in this chapter.

In this chapter, the problem decomposition methods from the litera-
ture are used for training feedforward and recurrent neural networks for
solving pattern classification and grammatical inference problems, respec-
tively. Their performance is compared on benchmark datasets, and an en-
coding scheme is proposed that falls in the group of neuron-level encod-
ings. The new encoding scheme is motivated by the analysis of the degree
of non-separability, which reflects on the interacting variables in the neu-
ral network. The proposed scheme is called neuron-based sub-population
(NSP). The goal of NSP is to reduce the optimization time and achieve
better guarantee for convergence. The investigation proceeds with the
optimal depth of search required for the respective problem decomposi-
tion methods. The depth of search can determine whether the encoding
schemes have been able to group the interacting variables into the same
subcomponents. If the interacting variables have been grouped efficiently,
a deep greedy search for the sub-populations would be possible, implying
that the problem has been efficiently broken down into subcomponents.
The optimal depth of search is used to further evaluate the performance

66



of the respective methods with different numbers of hidden neurons. The
difference in the number of hidden neurons affects the total number of
variables (the problem dimensionality). The problem dimensionality is an
important measure that reflects on the issue of scalability in evolutionary
algorithms.

In order to demonstrate the effectiveness of NSP in training feedfor-
ward networks, benchmark problems from the UCI machine learning repos-
itory [6] are used and a comparison is done with the methods from the
literature. In the case of recurrent neural networks, a specific grammatical
inference problem from [15] is used with the Tomita grammar [213, 26].

The neural network optimization time in terms of number of function
evaluations, and the success rate, are considered to be the main perfor-
mance measures for the method presented in this study. The success rate
determines how well the particular algorithm can guarantee a solution
within a specified time. It reflects on robustness of the evolutionary algo-
rithm. A run is considered successful if a desired solution is found before
the maximum time is reached in n independent experimental runs with
different random initialisations. The desired solution for neural network
training is specified by a predefined maximum network error or minimum
classification performance, depending on the type of the problem.

3.1.1 Preliminaries and Motivation

Degree of Non-Separability

This section examines the interaction between the variables (synapses) in a
feedforward neural network. We revisit the definition of separability from
Definition 3 in Section 2.5.2 of the literature review. Separable functions
are those where the minimization of a variable independently contribute
to the global minimization of the whole function. This does not hold for
non-separable function where the variables interact with each other and
the independent minimisation of a variable may hinder the optimisation

67



process. In cooperative coevolution, it is important to group interacting
variables within a subcomponent.

A measure for the degree of non-separability is established by monitoring
the gradient of the rest of the variables when a single variable is perturbed
several times. In a fully separable problem, there will be no change in the
sign of the gradient of the rest of the variables when a single variable is
perturbed.

The degree of non-separability is used to understand the interactions
among variables in the case of neural networks. The neural network in
Figure 3.1 contains two sigmoid neurons in the hidden layer (h1 and h2)
and output layer (y). The set of synapses W , is given by W = [a, b, c, d, e, g].
i and j are the bias of h1 and h2, respectively. x1 and x2 are inputs and E is
the error given for a single instance. y is the actual output of the network.
t will be used as the target output. Equation 3.1 gives further details of
Figure 3.1.

Figure 3.1: The simple feedforward neural network used for analysis.

68



φ1 = x1a+ x2c+ i

φ2 = x1b+ x2d+ j

h1 = F (φ1)

h2 = F (φ2)

y = F (F (φ1)e+ F (φ2)g)

E =
1

2
(t− y)2

where F (x) =
1

1 + e−x

(3.1)

∂E

∂a
= e x1 (t− y) F ′(φ1) F

′[F (e F (φ1) + g F (φ2))]

∂E

∂b
= g x1 (t− y) F ′(φ2) F

′[F (e F (φ1) + g F (φ2))]

∂E

∂c
= e x2 (t− y) F ′(φ1) F

′[F (e F (φ1) + g F (φ2))]

∂E

∂d
= g x2 (t− y) F ′(φ2) F

′[F (e F (φ1) + g − k F (φ2))]

∂E

∂e
= F (φ1) (t− y) F ′[F (e F (φ1) + g F (φ2))]

∂E

∂g
= F (φ2) F

′(t− y) [F (e F (φ1) + g F (φ2))]

(3.2)

Algorithm 3 shows how the degree of non-separability is computed for
a feedforward neural network. A total of m Monte Carlo trials are done
where vector W is intialised in the range of [-5,5]. In each trial, a single
synapse in the neural network is perturbed by multiplying the variable
by -1 and the rest of the synapses are frozen. The gradient ∂E

∂W
, as shown

in Equation 3.2, for the frozen weights are computed. For instance, when
synapse a is perturbed, the behaviour on the rest of the synapses, which
include weights and biases W = [i, j, b, c, d, e, g], are observed. The change
in the sign of the gradient for a particular frozen weight indicates that
there is interaction. Therefore, whenever there is a sign change in the gra-
dient, the count of the number of interactions of the particular synapse is

69



Alg. 3 The Degree of Non-Separability in Feedforward Neural Networks
1. Create vector W of size n where n is total number of weights and
biases
2. Create vector of gradients P and Q of size n
3. Create a matrix C of size n× n.
for each Monte-Carlo trial do

Initialise the vector W with random values in a range
for each i until n is reached do

i. Compute all the previous gradients ( P = ∂E
∂W

), as shown in Equa-
tion 3.2
ii. Perturb W [i], flip the sign ( W [i] = −1 ∗W [i])
iii. Compute all the current gradients ( Q = ∂E

∂W
), as shown in Equa-

tion 3.2
iv. Compare the previous and current gradients
for each j until n is reached do

Compare P [j] and Q[j] and increment C[i][j] if the sign of the two
gradients change

end for
end for

end for

70



incremented. This is the measure for the degree of non-separability.

A total of 10000 experiments with different values of weights and bi-
ases are done and results are averaged and shown as heat-maps in Figures
3.2 - 3.3.

The results in Figures 3.2 and 3.3 show independent Monte-Carlo trials
of 4 different combinations of input x1 and x2 ([0,0], [0,1], [1,0] and [1,1]).
They show how the rest of the synapses in the neural network interact
with each other when a synapse is perturbed independently in the Monte-
Carlo trials.

The target output for each input instance is heuristically generated to
depict different stages in learning. In the beginning stages of learning, this
is done by generating a target output which has a higher difference when
compared to the actual output given by the neural network. Towards the
ending stages of the learning process, the target is generated such that
the difference with the actual network output is small and will produce a
low root-mean-squared-error (RMSE), depicting that the neural network
weights have learnt the problem. The RMSE will indicate the learning
process of the 4 different stages of evolution. Figure 3.2 shows that in the
beginning of the learning process, there is little interaction between the
weights e and g (Stage 1). The weights in the input-hidden layer interact
with the weights in the hidden-output layer. In Stage 2, the interaction
between weights e and g become higher. Figure 3.3 shows that the inter-
action between e and g remain high during the later stages of learning. In
Stage 3, the interactions between W = a, b, c, d grow and more interaction
is seen among weights e and g. Stage 4 shows the end of the learning pro-
cess and there is more interaction with e and g and the rest of the weights.

In most of the learning process, the interaction between e and g grows
and hence it is reasonable to group these weights together into a separate
subcomponent.

Note that the heat-maps in both of these figures do not have symmetry.
This is due to the way the gradients are calculated and the sigmoid neuron

71



(a) Stage 1: RMSE is 0.381

(b) Stage 2: RMSE is 0.095

Figure 3.2: The level of interaction between the synapses at the beginning
of the evolutionary process

72



(a) Stage 3: RMSE is 0.047

(b) Stage 4: RMSE is 0.009

Figure 3.3: The level of interaction between the synapses towards the end
of the evolutionary process

73



Figure 3.4: The level of interaction between the synapses at the beginning
of the evolutionary process on a 6 dimension problem. There are 6 inputs
(plus a bias) on a neural network with 5 hidden units and one output.

74



in the hidden layer makes a difference in the gradients. We can see that a
interacts with e, but it is not the other way around i.e e does not interact
with a; therefore, they are not required to be grouped. Due to this asym-
metry, it is reasonable to separate the groups of the hidden-output layer
weights from the input-hidden layer weights.

Note that Figures 3.2 - 3.3 actually indicates that the degree of non-
separability for a variable/weight can be measured with respect to itself.
This does not have any meaning in real context; however, these values
were obtained by the way experiments have been set up. The diagonal
values vary in the different layers as indicated by the colour of the heat-
maps in the input-hidden and hidden-output layers. This is due to the
level of interactions involved between the weights among these layers.

We observe that there are two options for grouping the weights. Option
1 groups the weights as follows; [a, c, i] are grouped together, [b, d, j] are
grouped together, and finally [e, g] are grouped together.

Another possibility is Option 2 where the weights are grouped as fol-
lows; [e, g] are be grouped together as in Option 1. In the input-hidden
layer weights, [a, b, i] are grouped together and [c, d, j] are grouped to-
gether. This option seems to be more suitable according to the interac-
tion in the input-hidden layer weights during the later stages of learning
(Stages 2-4).

Both of the options will have more subcomponents than CME and can
be generalised to a neural network with more than one hidden layer.

However, Option 1 will be used in this thesis. With Option 1, the num-
ber of subcomponents depends mainly on the number of hidden neurons
while in Option 2, it depends on the number of input units. In the experi-
ments, different number of hidden neurons will be used and the effect of
diversity can be better evaluated with Option 1. This will be done using
different number of hidden neurons in the neural network in Section 3.2.
All the problems in this thesis will have a fixed number of input units and
different number of hidden units will be used to measure the performance

75



of the proposed methods.
Figure 3.4 shows the degree of non-separability on a 6 dimensional

problem in the early stage of evolution. There are 6 inputs (plus a bias)
on a neural network with 5 hidden units and one output. Indices 0 to 35
show the interaction among the input-hidden later weights. The results in
this heat-map indicates that the degree of non-separability is similar for a
larger network architecture.

The heat-maps in general have shown that the degree of non-separability
increases during the later stages in evolution as the problem is being learnt.
It is also reasonable to merge or group the subcomponents together dur-
ing the later stages of evolution. Synapse level problem decomposition
can be used in the beginning of evolution as lesser interactions are present
in Stage 1 and 2. The subcomponents can be merged in the later stages of
evolution as shown in Stage 3 and 4.

Diversity in Cooperative Coevolution

An important feature of cooperative coevolution is that it provides higher
level of diversity when compared to an evolutionary algorithm with the
same number of individuals. Potter et. al [168] have shown that a large
number subcomponents impact the performance of cooperative coevolu-
tion as more diversity is achieved when more sub-populations are used.
Diversity directly relates to global search and local convergence; if the in-
dividuals in a population are not sufficiently diverse, local convergence is
possible. The sub-populations of cooperative coevolution are evolved in
isolation and are more diverse than a single population based evolution-
ary algorithm. Consider that there are P sub-populations of N individuals
each, there will be total

(
P
N

)
diverse solutions when compared to only N

diverse solutions in a conventional evolutionary algorithm.
It is important to balance diversity and interacting variables during

problem decomposition. More diversity is needed during the initial search
where global search is needed and local search in needed during the final

76



stages of the search. The degree of interaction as shown in Section 3.1.1
changes during the later stages of learning and efficient problem decom-
position has to take these into consideration. These will be further dis-
cussed in Chapter 5.

3.2 Neuron Based Sub-population (NSP)

A major limitation of the encoding scheme given in CME given in Section
2.6.4 is that it cannot be extended to a neural network with more than one
hidden layer. The same problem also exists for ESP shown in Section 2.6.4
for training RNNs. This is because the hidden neuron of a single layer acts
as a major reference point and contains outgoing neurons in the subcom-
ponents. We need a problem decomposition method that can be easily
extended to a network with more hidden layers and at the same time it
should efficiently group the interacting variables in a separate subcompo-
nent.

3.2.1 Feedforward Neural Networks

Synapse level encoding in neural networks provides the most diversity
and ensures global search. However, it will work well if there are less
interacting variables in the neural network. CME encoding has less di-
versity and gives more emphasis on interacting variables. The problem in
cooperative neuro-evolution is to balance diversity and interacting vari-
ables. A problem of CME encoding is that it cannot be generalised to a
neural network with more than one hidden layer. If the CME encoding
is broken down, it can be generalised to more than one hidden layer and
also achieve more diversity. The new encoding scheme should also group
interacting variables better than Synapse level encoding which does not
have any grouping but works only with diversity. The results in Section
3.1.1 have shown that it is reasonable to break the CME encoding.

77



The new problem decomposition method is called neuron based sub-
population (NSP). NSP breaks down the CME encoding scheme into a
lower level. Each subcomponent in NSP consists of incoming connections
associated with neurons in the hidden and output layers. NSP employs
a single subcomponent for each neuron that groups interacting variables
(synapses) that are connected to the neuron. Therefore, each subcompo-
nent for a layer is composed as follows:

1. For a given neuron i in the hidden layer, the hidden layer subcompo-
nents consists of all synapses connected from input layer to neuron i.
The bias of i is also included.

2. For a given neuron j in the output layer, the output layer subcompo-
nents consists of all synapses connected from hidden layer to neuron
j. The bias of j is also included.

Figure 3.5 shows a detailed diagram of the NSP encoding. Note that
this encoding schemes can be easily extended for a network with more
than a single hidden layer. The NSP encoding used for training feedfor-
ward networks is summarised in Algorithm 4. In effect, each neuron in
the hidden and output layer acts as a reference point to its subcomponents
given as sub-populations.

In Algorithm 4, the problem is decomposed into k subcomponents,
where k is equal to the number of hidden neurons, plus the number of
output neurons. Each sub-population contains all the weight links from
the previous layer connecting to a particular neuron. A cycle is completed
when all the sub-populations are evolved in a round-robin fashion for a
fixed number of generations. The algorithm halts if the termination condi-
tion is satisfied. The termination condition is when the network correctly
classifies a given percentage of the training data or when the maximum
training time has been reached.

78



Figure 3.5: The NSP encoding scheme for feedforward networks [27]. Each
neuron in the hidden and output layer acts as a reference point to its sub-
components. The same encoding is used in the rest of the neurons in the
hidden and output layer. Note that only one hidden layer is used. NSP
can also be used for more than one hidden layer.

Alg. 4 The NSP for Training Feedforward Networks
Step 1. Decompose the problem into subcomponents according to the
number of Hidden and Output neurons. The total number of subcom-
ponents is the number of hidden plus output neurons.
Step 2. Encode each subcomponent in a sub-population
Step 3. Initialise and cooperatively evaluate each sub-population
for each Cycle until termination do

for each Subpopulation do
for n Generations do

i) Select and create new offspring
ii) Cooperatively evaluate the new offspring
iii) Add new offspring’s to the sub-population

end for
end for

end for

79



3.2.2 Recurrent Neural Networks

In this section, the NSP given in Section 3.2.1 for feeedforward networks
is adapted for recurrent neural networks. Each subcomponent in the NSP
consists of incoming weight links associated with a neuron in the hidden,
state (recurrent), and output layer.

In the NSP problem decomposition method for recurrent networks,
each neuron in the hidden and output layer is a reference point for a sub-
component. Each hidden neuron also acts as a reference point for the con-
text weight links connected to it. Therefore, each subcomponent for a layer
is composed as follows:

1. For a given neuron i in the hidden(t) layer, the hidden layer subcompo-
nents consists of all synapses connected from input(t) layer to neuron
i. The bias of i is also included.

2. For a given neuron j in the hidden(t) layer, the state (recurrent) layer
subcomponents consists of all synapses connected from the hidden(t−
1) layer to neuron j.

3. For a given neuron k in the output(t) layer, the output layer subcom-
ponents consists of all synapses connected from the hidden(t) layer to
neuron k. The bias of k is also included.

where t is time and hidden(t − 1) is the layer representing the state or
recurrent neurons.

The NSP encoding for training RNN is summarised in Algorithm 5.
Figure 3.6 shows a detailed diagram of the NSP encoding.

In Algorithm 5, the recurrent network is decomposed in k subcompo-
nents where k consists of the number of hidden neurons, the number of
state neurons, and the number of output neurons. Each subcomponent
contains all the weight links from the previous layer connecting to a par-
ticular neuron. The algorithm is identical to Algorithm 4, with the addition
of subcomponents for the state neurons.

80



Figure 3.6: The NSP encoding scheme for recurrent networks. Each neu-
ron in the hidden and output layer acts as a reference point to its subcom-
ponents. The subcomponents for the state neurons are also shown. The
same method is used in the rest of the neurons in the hidden and output
layer. Note that only one hidden layer is used in this case; however, addi-
tional hidden layers can also be used.

Alg. 5 The NSP for Training Recurrent Neural Networks
Step 1. Decompose the problem into subcomponents according to the
number of Hidden, State, and Output neurons
Step 2. Encode each subcomponent into its corresponding sub-
populations
Step 3. Initialise and cooperatively evaluate each sub-population
for each Cycle until termination do

for each Subpopulation do
for n Generations do

i) Select and create new offspring
ii) Cooperatively evaluate the new offspring
iii) Add new offspring to the sub-population

end for
end for

end for

81



3.3 Simulations

This section presents an experimental study of NSP and compares it with
CoSyNE and CME as discussed in the previous sections. In this study,
the G3-PCX [42] evolutionary algorithm was used in each method. This
evolutionary algorithm has also been used for training feedforward neu-
ral networks in the past [23]. NSP is used for training feedforward and
recurrent neural networks.

The G3-PCX algorithm uses a population size of 100, a pool size of 2
offspring and a family size of 2 parents in all cases. This set-up has been
used in [42] and has shown good results for general optimisation prob-
lems. The synaptic weights within the sub-populations were initialised
with random real numbers in the range of [-5, 5] in all the experiments.

3.3.1 Feedforward Neural Networks

Real-World Problems and Neural Network Configuration

This section gives an overview of the datasets obtained from the UCI ma-
chine learning repository which include Iris, Wine, Breast-Cancer and Heart-
Disease [6]. Table A.1 of the Appendix shows the data information which
leads to the neural network configuration for all the experiments. The
maximum training time given by the number of function evaluations in
all the problems is fixed 100000. The number of hidden neurons is fixed
for evaluating the depth of search. 4 neurons are used in the Iris and Wine
problems, Breast-Cancer and Heart-Disease problems use 5 and 7 neurons,
respectively.

Evaluation During Initialisation

Note that the results in this section do not include the number of function
evaluations done in the initialisation stage for each method. The relation-
ship between the number of subcomponents and function evaluations for

82



each method can be evaluated as follows.
1) CME = hidden × P

2) NSP = (hidden + output) × P

3) CoSyNE = ((input × hidden) + (hidden × output) + hidden
+ output)× P

where P is the size of the population, hidden = number of hidden neurons,
and output = number of output neurons. The number of function evalua-
tions in the initialisation stage for each problem decomposition method is
given by:

FuncEval = Number of Subcomponents ×P

The number of hidden neurons in each method directly influences the
number of subcomponents. This further influences the number of func-
tion evaluations. Therefore, the number of function evaluations used in
the initialisation stage differs for each method and is an important mea-
sure for their evaluation. The NSP uses fewer function evaluations during
initialisation when compared to CoSyNE, but greater than CME. In the
following subsections, the performance of NSP during evolution is evalu-
ated.

Depth of Search in the Sub-populations

Each sub-population is evolved in a round-robin fashion for a fixed num-
ber of generations in NSP as shown in Algorithm 4. The study begins
by determining the optimal number of generations needed for the sub-
population in each method. Note that all the sub-populations are meant
to evolve for the same depth of search.

The results shown in Figures 3.7 to 3.10 report the performance of the

83



respective methods in terms of number of function evaluations and the
success rate out of 30 independent runs. The depth of search ’Depth’ given
by number of generations for all sub-populations is shown. The mean of
the number of function evaluations is shown with 95 % confidence interval
as error bars in the histograms.

The results for the Iris classification problem shown in Figure 3.7 shows
that NSP outperforms the other methods in terms of the number of func-
tion evaluations and the success rate. CoSyNE takes the most training time
and gives a poor success rate. CME performs slightly better than CoSyNE
but tends to be weaker than NSP. NSP is the best choice for this problem
under the given conditions. The depth of search in NSP does not make a
major difference in its performance.

In the results for the Wine classification problem shown in Figure 3.8,
NSP gives the best performance. The depth of search in NSP does not
play a major role. The depth of search impacts the performance of CME
and mostly, CoSyNE. CoSyNE shows good performance for the depth of 1
generation only. The best results are given by NSP in terms of least training
time and the best success rate.

The results from the Heart-Disease classification problem shown in
Figure 3.9 shows that NSP outperforms CME and CoSyNE. The CoSyNE
method delivered a solution only with the depth of 1 generation. It per-
forms poorly in comparison to CME and NSP. The depth of search in NSP
does not make a significant difference. Similar performance is shown for
the Breast-Cancer classification problem as shown in Figure 3.10, where
NSP outperforms other methods. The depth of search for NSP and CME
does not play a significant role in their performance. This suggests that
NSP has been able to group the interacting variables successfully in the
different sub-populations.

The results in general show that a lower depth of search used for a
subcomponent is efficient, especially for CoSyNE. The depth of search for
NSP does not show a significant difference for the interval of [1, 26]. This

84



 0

 20000

 40000

 60000

 80000

 100000

1 6 11 16 21 26

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Depth of Search (Generations)

Iris Depth of Search 

NSP
CME

CoSyNE

(a) Optimization time in the Iris classification

 0

 20

 40

 60

 80

 100

1 6 11 16 21 26

S
u

c
c
e

s
s
 R

a
te

Depth of Search (Generations)

Iris Success Rate 

NSP
CME

CoSyNE

(b) Success rate in the Iris classification

Figure 3.7: The evaluation of the depth of search in the different problem
decomposition methods for the Iris classification problem.

85



 0

 20000

 40000

 60000

 80000

 100000

1 6 11 16 21 26

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Depth of Search (Generations)

Wine Depth of Search 

NSP
CME

CoSyNE

(a) Optimization time in the Wine classification

 0

 20

 40

 60

 80

 100

1 6 11 16 21 26

S
u

c
c
e

s
s
 R

a
te

Depth of Search (Generations)

Wine Success Rate 

NSP
CME

CoSyNE

(b) Success rate in the Wine classification

Figure 3.8: The evaluation of the depth of search in the different problem
decomposition methods for the Wine classification problem.

86



 0

 20000

 40000

 60000

 80000

 100000

1 6 11 16 21 26

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Depth of Search (Generations)

Heart-Disease Depth of Search 

NSP
CME

CoSyNE

(a) Optimization time in the Heart-Disease classification

 0

 20

 40

 60

 80

 100

1 6 11 16 21 26

S
u

c
c
e

s
s
 R

a
te

Depth of Search (Generations)

Heart-Disease Success Rate 

NSP
CME

CoSyNE

(b) Success rate in the Heart-Disease classification

Figure 3.9: The evaluation of the depth of search in the different problem
decomposition methods for the Heart-Disease classification problem.

87



 0

 20000

 40000

 60000

 80000

 100000

1 6 11 16 21 26

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Depth of Search (Generations)

Breast-Cancer Depth of Search 

NSP
CME

CoSyNE

(a) Optimization time in the Breast-Cancer problem

 0

 20

 40

 60

 80

 100

1 6 11 16 21 26

S
u

c
c
e

s
s
 R

a
te

Depth of Search (Generations)

Breast-Cancer Success Rate 

NSP
CME

CoSyNE

(b) Success rate in the Breast-Cancer problem

Figure 3.10: The evaluation of the depth of search in the different problem
decomposition methods for the Breast-Cancer classification problem.

88



is due to the difference in the encoding schemes for the respective problem
decomposition methods which use different number of subcomponents in
the three methods.

In summary, the grouping used in the problem decomposition meth-
ods directly influences the training problem. NSP performs well regard-
less of the depth of search used, while CoSyNE shows good performance
for the depth of 1 generation only. In general, CoSyNE is unreliable due
to its low success rate in converging to a solution. This shows that the
NSP encoding has been successful in grouping the interacting variables in
the sub-populations. There is less interaction between sub-populations in
NSP which makes a deep greedy search possible. In CoSyNE and CME,
the depth of search is significant for almost all the problems which implies
that the variables interact within different sub-populations. Moreover, the
large depths fail to deliver good solutions in terms of training time and
success rate. CoSyNE uses a higher number of subcomponents and it does
not group interacting variables as the number of variables in a subcompo-
nent is restricted to 1.

The results for the generalisation performance are given in Tables 3.1
and 3.2. The ”Success” column in the tables indicates the number of suc-
cessful runs out of 30 experimental runs.

Note that the mean and the 95 % confidential interval of the general-
isation performance only includes the successful runs. The results show
that NSP has delivered similar generalisation performance in comparison
to CME and CoSyNE while achieving a faster training performance with
a much better success rate.

The Scalability of NSP for Feedforward Networks

The goal of this experiment is to observe the performance of the respec-
tive encoding schemes in relation to the particular network topology; i.e.
fixed number of hidden neurons. Note that the number of hidden neu-
rons directly influences the difficulty of the learning problem. It is more

89



Method Depth Iris Success/30 Wine Success/30
NSP 1 95.08 1.08 30 94.58 1.28 30

6 94.47 1.34 30 94.67 0.97 30
11 94.91 1.24 30 92.41 1.70 30
16 93.51 1.28 30 93.67 1.47 30
21 94.55 0.97 29 93.41 1.43 30
26 94.74 1.06 30 94.41 1.38 30

CME 1 95.17 1.19 12 94.64 1.12 28
6 94.73 1.98 11 95.00 1.30 26

11 95.48 1.36 7 92.77 1.65 27
16 94.33 1.84 13 94.22 1.74 29
21 95.11 1.62 7 93.83 0.94 28
26 94.44 1.70 9 94.47 1.38 24

CoSyNE 1 95.26 0.65 10 92.58 0.97 29
6 92.98 2.14 9 90.00 2.07 18

11 92.76 1.11 4 88.00 1.63 5
16 94.73 0 1 92.50 0 1
21 94.73 0 1 – 0
26 92.10 3.64 2 – 0

Table 3.1: The generalisation performance given by the different problem
decomposition methods for the Iris and Wine classification problems. The
95 % confidence interval is given in the subscript with the number of suc-
cessful runs (Success) out of 30 experiments.

90



Method Depth Heart-Disease Success/30 Breast-Cancer Success/30
NSP 1 78.10 1.04 28 97.35 0.35 30

6 76.89 1.03 28 97.05 0.45 30
11 78.00 0.99 28 97.24 0.50 30
16 78.75 1.03 29 97.16 0.29 30
21 77.82 0.82 28 97.20 0.45 30
26 77.78 1.12 28 97.23 0.47 30

CME 1 79.14 1.15 14 97.83 0.45 16
6 78.84 0.82 13 97.41 0.38 13

11 78.90 0.92 20 97.33 0.44 14
16 80.29 0.85 17 97.63 0.38 15
21 79.34 0.81 12 97.67 0.51 17
26 79.29 0.80 14 97.81 0.45 12

CoSyNE 1 77.14 1.55 2
6 – 0 – 0

11 – 0 – 0
21 – 0 – 0
26 – 0 – 0

Table 3.2: The generalisation performance given by the different problem
decomposition methods for the Heart-Disease and Breast-Cancer classifi-
cation problems. The 95 % confidence interval is given in the subscript
with the number of successful runs (Success) out of 30 experiments.

91



difficult to learn the problem if not enough neurons are present in the hid-
den layer. Moreover, increasing the number of hidden neurons also in-
creases the number of subcomponents for the respective methods, as de-
scribed earlier. It is important to observe the performance of each method
when the same problem is represented with different numbers of subcom-
ponents. The difficulty in evolutionary algorithms increases with an in-
crease in the size of the number of variables. It would be interesting to
see the behaviour of each cooperative coevolution method with the in-
crease in the number and the size of each individual subcomponent. This
reflects on scalability and robustness. The results are further compared
to neuro-evolution which employs a standard evolutionary algorithm as
a benchmark comparison for this behaviour. The experiments involve a
fixed network architecture.

As summarised from the results in the previous section, the lowest
depth of search of 1 generation is used which showed optimal or near-
optimal performance for NSP, CME and CoSYNE.

The results in Figures 3.11 to 3.14 show the comparison of the three
problem decomposition methods (NSP, CME, CoSyNE) with evolutionary
algorithms (EA) for different numbers of hidden neurons. The G3-PCX
is used as the designated evolutionary algorithm in all cases. We evalu-
ate the methods by measuring the number of function evaluations and the
success rate in 30 independent experimental runs. The mean of the num-
ber of function evaluations is shown with 95 % confidence interval as error
bars in the histograms.

Tables 3.3 and 3.4 show the generalisation performance of the four dif-
ferent problems with different number of hidden neurons. As before, the
results from the unsuccessful runs are not included in the mean and 95 %
confidence interval.

Note that the generalisation performance does not only depend on the
optimisation algorithm, but also on the neural network architecture. The
success rate reflects on robustness of the algorithm. The unsuccessful runs

92



 0

 20000

 40000

 60000

 80000

 100000

3 4 5 6

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

Iris Optimization Time 

NSP
CME

CoSyNE
EA

(a) Optimization time in the Iris classification

 0

 20

 40

 60

 80

 100

3 4 5 6

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

Iris Success Rate 

NSP
CME

CoSyNE
EA

(b) Success rate in the Iris classification

Figure 3.11: The performance of the different problem decomposition
methods for different number hidden neurons for the Iris classification
problem.

93



 0

 20000

 40000

 60000

 80000

 100000

3 4 5 6

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

Wine Optimization Time 

NSP
CME

CoSyNE
EA

(a) Optimization time in the Wine classification

 0

 20

 40

 60

 80

 100

3 4 5 6

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

Wine Success Rate 

NSP
CME

CoSyNE
EA

(b) Success rate in the Wine classification

Figure 3.12: The performance of the different problem decomposition
methods for different number hidden neurons for the Wine classification
problem.

94



 0

 20000

 40000

 60000

 80000

 100000

7 8 9 10

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

Heart-Disease Optimization Time 

NSP
CME

CoSyNE
EA

(a) Optimization time in the Heart-Disease classification

 0

 20

 40

 60

 80

 100

7 8 9 10

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

Heart-Disease Success Rate 

NSP
CME

CoSyNE
EA

(b) Success rate in the Heart-Disease classification

Figure 3.13: The performance of the different problem decomposition
methods for different number hidden neurons for the Heart-Disease clas-
sification problem.

95



 0

 20000

 40000

 60000

 80000

 100000

5 6 7 8

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

Breast-Cancer Optimization Time 

NSP
CME

CoSyNE
EA

(a) Optimization time in the Breast-Cancer problem

 0

 20

 40

 60

 80

 100

5 6 7 8

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

Breast-Cancer Success Rate 

NSP
CME

CoSyNE
EA

(b) Success rate in the Breast-Cancer problem

Figure 3.14: The performance of the different problem decomposition
methods for different number hidden neurons for the Breast-Cancer clas-
sification problem.

96



have already been included in the mean and the confidence interval for the
optimisation time given by number of function evaluations. Therefore, the
results from the unsuccessful runs were not included in determining the
generalisation performance. Moreover, success rate and function evalua-
tions are inter-dependent on each other as they measure optimisation time
and robustness. Generalisation is calculated after the training stage that is
not dependent on the success rate.

The results in general show that the generalisation performance for
NSP is similar or better than the other methods. This implies that NSP
can achieve similar generalisation performance with lower optimization
time (and higher success rates).

Method Hidden Iris Success/30 Wine Success/30
NSP 3 95.08 1.02 30 93.25 1.51 30

4 94.12 1.51 30 94.58 1.22 30
5 95.00 1.01 30 93.91 1.23 30
6 94.82 1.07 30 94.00 1.25 30

CME 3 91.57 2.69 5 93.55 1.56 19
4 94.15 1.77 9 92.82 1.54 23
5 93.52 1.32 13 95.26 1.11 28
6 94.58 1.63 17 93.75 1.34 30

CoSyNE 3 92.95 2.14 9 92.50 2.12 8
4 94.91 1.02 15 91.48 1.09 27
5 94.45 1.00 19 92.41 0.90 29
6 94.89 1.09 17 91.10 1.11 25

EA 3 91.95 1.69 18 96.67 0.77 9
4 93.15 1.01 25 93.28 2.10 16
5 93.23 1.41 21 92.50 3.28 7
6 91.78 1.28 25 92.79 2.28 14

Table 3.3: The generalisation performance of the problem decomposition
methods given different number of hidden neurons for the Iris and Wine
classification problem. The 95 % confidence interval is given in the sub-
script with the number of successful runs (Success) out of 30 experiments.

97



Method Hidden Heart-Disease Success/30 Breast-Cancer Success/30
NSP 7 78.10 1.04 28 97.35 0.35 30

8 78.16 1.20 30 97.17 0.33 30
9 77.06 0.75 30 97.27 0.36 30

10 77.56 1.08 30 97.22 0.32 30
CME 7 79.14 1.15 14 97.65 0.65 15

8 79.63 0.94 19 97.55 0.67 20
9 79.45 0.87 20 97.47 0.72 21

10 79.65 0.84 23 97.63 0.77 23
CoSyNE 7 77.00 1.38 2 – 0

8 81.00 1.84 3 – 0
9 – 0 – 0

10 – 0 – 0
EA 7 80.20 0.52 20 97.44 0 1

8 79.83 1.25 6 97.46 0 1
9 80.68 0.59 16 97.25 0.25 2

10 79.60 1.05 15 97.44 0.34 2

Table 3.4: The performance of different problem decomposition meth-
ods given different number of hidden neurons for the Heart-Disease and
Breast-Cancer classification problem. The 95 % confidence interval is
given in the subscript with the number of successful runs (Success) out
of 30 experiments.

98



In the Iris classification problem given in Figure 3.11, NSP outperforms
other methods by achieving a higher success rate with lower optimization
time. It achieves the best results in the different network topologies given
in terms of different numbers of hidden neurons. The EA method gives
better results than CME and CoSyNE. In the Wine classification problem
shown in Figure 3.12, NSP further outperforms the rest of the methods for
the different number of hidden neurons. In this case, CME performs better
than EA, CoSyNE fails to compete with EA.

In the Heart-Disease classification problem shown in Figure 3.13, NSP
gives the best performance when compared to CME, CoSyNE and EA
given the different number of hidden neurons. In the Breast-Cancer clas-
sification problem shown in Figure 3.14, NSP outperforms all the other
methods as well.

In summary, the NSP encoding gave the best performance in all the
problems given different number of hidden neurons. This shows that
NSP scales up better than other methods. The comparison of the per-
formance of the different cooperative neuro-evolution methods with EA
further justifies the need for using cooperative coevolution in evolving
feedforward networks for pattern classification problems. NSP has been
shown to achieve similar or better generalisation performance than the
other methods with a better success rate.

Evaluation of Diversity and Interdependencies in NSP

There is some evidence given in terms of the depth of search that NSP
is a better problem decomposition method in terms of the degree of non-
separability. An alternative interpretation of the results could be that NSP
performs better due to the size of its subcomponent, rather than the actual
problem decomposition which groups interacting variables.

In this section, the behavior of NSP in terms of diversity and interde-
pendencies is tested by having the elements of its subcomponents selected
from other subcomponents; however, the size of all the subcomponents re-

99



main the same. This is done by interchanging the positions of some chosen
synapses from the input-hidden layer subcomponents with the hidden-
output layer subcomponents. This approach is called Random-NSP sub-
components in this section which is compared to NSP.

Note that the problems are made more difficult by reducing the max-
imum optimisation time. The Iris and Wine classification problem used
15,000 function evaluations for the maximum time with 5 hidden neurons
and the Heart-Disease problem used 50, 000 function evaluations with 7
hidden neurons. The Cancer classification problem used maximum of 15,
000 function evaluations with 6 hidden neurons.

In the setup for the Random-NSP for the Iris and Wine problems, 2
synapses in the first 2 subcomponents in the input-hidden layer is inter-
changed by 2 synapses of the 2 subcomponents from the hidden-output
layer. In Random-NSP for the Cancer and Heart-Disease problems, 2 synapses
in the first subcomponent in the input-hidden layer is interchanged by 2
synapses of the first subcomponent from the hidden-output layer. In this
way, NSP and Random-NSP methods use same subcomponent sizes but
different grouping of synapses.

The results are shown in Table 3.5. The results indicate that NSP has
performed better than Random-NSP mostly in terms of function evalua-
tions for Wine, Cancer and Heart-Disease problems. In the Iris problem,
there is some difference in the performance of both methods that vary ac-
cording to the depth of search.

The difference in the results given by the two methods shows that the
performance of NSP is not entirely due to the size of the subcomponents
it has but also due to the way the synapses are grouped in the respective
subcomponents.

100



Problem Depth Random-NSP NSP
FuncEval Success (%) FuncEval Success (%)

Wine 1 8060 96 6326 100
4 7395 100 5506 100
7 7136 96 5187 100

10 7939 96 5318 100
13 6801 100 5378 100

Iris 1 7402 86 8581 92
4 9159 76 7875 92
7 9190 88 9349 80

10 9601 84 8576 92
13 9074 82 10253 76

Heart 1 41001 56 29950 74
4 44040 60 26860 82
7 46980 38 23022 80

10 43210 62 23404 80
13 39010 58 24635 78
1 13187 36 12355 26
4 12182 48 11164 38
7 13833 32 10885 36

10 13107 30 11262 38
13 13107 34 10964 42

Table 3.5: Comparison of Random-NSP with NSP

101



3.3.2 Recurrent Neural Networks

This section presents an experimental study of NSP for recurrent neural
networks and compares it with CoSyNE. CoSyNE [77] has shown better
performance than ESP and standard neuro-evolution. Therefore, it is rea-
sonable to compare the performance of NSP with CoSyNE. The G3-PCX
[42] evolutionary algorithm is used in both methods. The Elman recurrent
network [48] with one hidden layer is used in all the experiments. The
sub-populations are seeded with random real numbers in the range of [-5,
5] in all experiments.

Grammatical inference is used as a means to study the performance of
the proposed NSP encoding in recurrent neural networks. The FFA shown
in Figure 2.4 from the literature Section 2.2.6 is used as a benchmark prob-
lem. The training dataset is generated by presenting strings of increasing
lengths of 1 to 7 to the FFA and the corresponding output for each sam-
ple is noted. Note that for every string length, all the possible bits are
generated. The training set consists of 255 samples. Similarly, the testing
dataset with string lengths of 8 to 14 using the same FFA is generated.
The recurrent network topology for the FFA is as follows: 1) one neuron
in the input layer, 2) two output neurons in the output layer representing
the 4 fuzzy output states of the FFA. The RNN is trained until 100 percent
of the training sample is correctly classified or when the maximum num-
ber of function evaluation is reached. This value has been determined in
trial experiments. For the FFA problem, the maximum number of function
evaluations is pre-set to 20000.

Similarly, we generated the training and test datasets from the Tomita
language shown in Figure 2.3 of Chapter 2. We used Tomita 3 (T3) and
Tomita 4 (T4) for comparison. In this case, the training and testing data is
generated by presenting random strings of length 15 to 25 for each Tomita
language. The training and test datasets each contain 250 (125 positive and
125 negative) string samples. The maximum number of function evalua-
tions in T3 and T4 is 20000. Note that the string lengths considered here

102



(15-25) cannot be trained using backpropagation-through-time as outlined
in [226].

Depth of Search for NSP in Recurrent Networks

In the NSP encoding for recurrent networks shown in Algorithm 5 , each
sub-population is evolved for a fixed number of generations in a round-
robin fashion. The study begins by determining the optimal number of
generations needed for the sub-population which is considered as the depth
of search. Note that all sub-populations are meant to evolve for the same
number of n generations which must be fixed beforehand as done in the
case of evolving feedforward networks in Section 3.3.1 for a fair compari-
son.

The FFA used in this experiment has 7 states and in order to make the
problem more difficult, only 4 neurons in the hidden layer of the RNN are
used to represent 7 states. In the T1 and T2 problems, 2 neurons in the
hidden layer are used. In the T3 and T4 problems, 3 neurons in the hidden
layer are used.

The results given in Figures 3.15 to 3.19 report the optimization time
with respect to the depth of search needed in the respective cooperative
coevolution method (NSP and CoSyNE). These results are for the evolu-
tion phase only. The results do not include the time taken for the initial-
isation phase as the goal is to observe the convergence of the respective
methods during evolution.

In the T1 problem shown in Figure 3.15, the depth of 1 to 5 genera-
tions in NSP gives similar performance, while in CoSyNE, the depth of 1
generation gives the best result. The performance of CoSyNE significantly
deteriorates with depth larger than 1 generation. Similar trend is given in
the T2 problem shown in Figure 3.16, the depth of 1 to 7 generations in
NSP gives similar performance, while in CoSyNE, the depth of 1 genera-
tion gives the best result.

In the T3 problem shown in Figure 3.17, the depth of 1 to 5 generations

103



in NSP achieves similar performance, while in CoSyNE, the depth of 1
generation only gives the best result. In the T4 problem shown in Figure
3.18, the depth of 1 to 5 generations in NSP achieves similar performance
considering the optimization time and the success rates. In CoSyNE, the
depth of 1 generation only gives the best result. In the FFA problem shown
in Figure 3.19, the depth of 1 generation in NSP and CoSyNE gives the best
results. The performance of CoSyNE significantly deteriorates with depth
larger than 1 generation for T3, T4 and the FFA problem. Note that the
least optimization time and high success rate determines the performance
evaluation. In all the problems, both methods report that the performance
deteriorates at some stage as the depth increases.

In general, with NSP, the depth of 1 generation gives the best perfor-
mance. The depth from 1-5 generations gives similar or acceptance per-
formance. The performance deteriorates with a larger depth. In CoSyNE,
the depth of 1 generation gives the best performance and the performance
deteriorates otherwise. The comparison of the best results from NSP and
CoSyNE shows that NSP has been able to solve the problem in less opti-
mization time with a high success rate when compared to CoSyNE. This
is due to the difference in the problem decomposition methods. In NSP,
the interacting variables have been grouped efficiently into separate sub-
components. In CoSyNE, there is no grouping of interacting variables at
the size of each subcomponent is restricted to 1, therefore, only a shallow
depth of search has been able to yield acceptable performance. In NSP,
the interacting variables have been grouped according to the way they in-
teract with the respective neurons. Therefore, a deeper depth of search in
the subcomponents has been possible (1 to 5 generations) in most of the
problems.

The generalisation performance is given in Table 3.6 show that in all
the problems, both methods have been able to achieve 100 % generalisa-
tion performance on unseen data. The results for the depth of 1 generation
is shown only as both methods have been able to achieve the best perfor-

104



mance for this value, i.e a shallow depth with much better success rate.

Problem NSP Success CoSyNE Success
T1 100 100 100 95
T2 100 83 100 67
T3 100 45 100 37
T4 100 100 100 77

FFA 100 29 100 10

Table 3.6: The generalisation performance in percentage is given by the
different problem decomposition methods for the depth of search of 1 gen-
eration. Note that the generalisation performance does not include the
performance of the unsuccessful runs in the mean. The success rate (Suc-
cess) out of 100 experiments is also given.

The Scalability of NSP for Recurrent Networks

In this section, the performance of NSP is compared with CoSyNE. Note
that the original CoSyNE employed a different evolutionary algorithm in
their sub-population. The G3-PCX is used in both encoding schemes. The
depth of 1 generation is used in NSP and CoSyNE.

Table 3.7 shows the relationship between the number of function eval-
uations and the number of hidden neurons used in the initialisation phase
of NSP and CoSyNE. The RNN topology has 1 input neuron and 2 out-
put neurons. The results show that the number of function evaluations
given in terms of the population size P increases as the size of the net-
works increases in terms of “Hidden” neurons. This directly relates to
the number of subcomponents represented by the sub-populations. Note
that NSP uses fewer number of function evaluations shown in Table 3.7 as
it requires lesser number of subcomponents when compared to CoSyNE.
Therefore, the initialisation phase of evaluating different subcomponent
encoding schemes for cooperative coevolution is an important measure.

In all problems, the RNN is trained until the mean-squared-error (MSE)

105



 0

 1000

 2000

 3000

 4000

 5000

 6000

1 3 5 7 9 11 13 15

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Depth of Search (Generations)

T1 Optimization Time   

NSP
CoSyNE

(a) Optimization time for the T1 problem

 0

 20

 40

 60

 80

 100

1 3 5 7 9 11 13 15

S
u

c
c
e

s
s
 R

a
te

Depth of Search (Generations)

T1 Success Rate 

NSP
CoSyNE

(b) Success rate in the T1 Problem

Figure 3.15: The performance of NSP and CoSyNE for the T1 problem. The
optimization time in terms of the average number of function evaluations
is shown in (a) and the number of success rate is shown in (b). A total of
100 independent experimental runs have been done.

106



 0

 1000

 2000

 3000

 4000

 5000

 6000

1 3 5 7 9 11 13 15

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Depth of Search (Generations)

T2 Optimization Time   

NSP
CoSyNE

(a) Optimization time for the T2 problem

 0

 20

 40

 60

 80

 100

1 3 5 7 9 11 13 15

S
u

c
c
e

s
s
 R

a
te

Depth of Search (Generations)

T2 Success Rate 

NSP
CoSyNE

(b) Success rate in the T2 Problem

Figure 3.16: The performance of NSP and CoSyNE for the T2 problem. The
optimization time in terms of the average number of function evaluations
is shown in (a) and the number of success rate is shown in (b). A total of
100 independent experimental runs have been done.

107



 0

 2000

 4000

 6000

 8000

 10000

 12000

1 3 5 7 9 11 13 15

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Depth of Search (Generations)

T3 Optimization Time   

NSP
CoSyNE

(a) Optimization time for the T3 problem

 0

 10

 20

 30

 40

 50

 60

1 3 5 7 9 11 13 15

S
u

c
c
e

s
s
 R

a
te

Depth of Search (Generations)

T3 Success Rate 

NSP
CoSyNE

(b) Success rate in the T3 Problem

Figure 3.17: The performance of NSP and CoSyNE for the T3 problem. The
optimization time in terms of the average number of function evaluations
is shown in (a) and the number of success rate is shown in (b). A total of
100 independent experimental runs have been done.

108



 0

 2000

 4000

 6000

 8000

 10000

 12000

1 3 5 7 9 11 13 15

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Depth of Search (Generations)

T4 Optimization Time   

NSP
CoSyNE

(a) Optimization time for the T4 problem

 0

 20

 40

 60

 80

 100

1 3 5 7 9 11 13 15

S
u

c
c
e

s
s
 R

a
te

Depth of Search (Generations)

T4 Success Rate 

NSP
CoSyNE

(b) Success rate in the T4 Problem

Figure 3.18: The performance of NSP and CoSyNE for the T4 problem. The
optimization time in terms of the average number of function evaluations
is shown in (a) and the number of success rate is shown in (b). A total of
100 independent experimental runs have been done.

109



 0

 2000

 4000

 6000

 8000

 10000

 12000

1 3 5 7 9 11 13 15

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Depth of Search (Generations)

FFA Optimization Time   

NSP
CoSyNE

(a) Optimization time for the FFA problem

 0

 10

 20

 30

 40

 50

1 3 5 7 9 11 13 15

S
u

c
c
e

s
s
 R

a
te

Depth of Search (Generations)

FFA Success Rate 

NSP
CoSyNE

(b) Success rate in the FFA Problem

Figure 3.19: The performance of NSP and CoSyNE for the FFA problem.
The optimization time in terms of the average number of function evalu-
ations is shown in (a) and the number of success rate is shown in (b). A
total of 100 independent experimental runs have been done.

110



reaches below 0.0005 or when the number of function evaluation exceeds
the maximum. The maximum number of function evaluations for T1 and
T2 is 5000. T3, T4 and FFA problem use the maximum of 10000 function
evaluations. These values are different from the previous section and have
been made lower in order to make the problem more difficult; i.e the evo-
lutionary methods need to converge before these limits.

Hidden NSP CoSyNE
3 8 23
4 10 34
5 12 47
6 14 62
7 16 79

Table 3.7: A comparison of NSP and CoSyNE based on the number of
function evaluation required during initialisation. This is for a RNN with
one input neuron and two output neurons which is used in all our exper-
iments. The comparison is done in terms of P which is the size of the
population.

The comparative results during evolution are given in Figures 3.20 to
3.24 where the attribute “Hidden” represents the number of hidden neu-
rons. The respective figures first show the results for the evolution phase
only and then for the total optimization time with the respective success
rates. The two methods are evaluated using different number of hidden
neurons. A total of 100 experiments is done for each case and the mean
function evaluation is given for the respective problems. The total opti-
mization time includes the initialisation phase and the evolution phase.
The results include the 95 % confidence interval given as error bars in the
histograms which evaluate the optimization time.

Note that the T1 and T2 problem are easier problems than the rest of the
problems as they can be learned in a relatively shorter time. In Figure 3.20,
NSP shows better performance than CoSyNE in (a) the evolution phase
and (b) the initialisation plus the evolution phase with higher success rate

111



 0

 1000

 2000

 3000

 4000

 5000

 6000

2 3 4 5 6

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T1 Optimization Time (Evolution Phase) 

NSP
CoSyNE

(a) Optimization time in the Evolution Phase

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 3 4 5 6

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T1 Optimization Time (Initialization + Evolution Phase)

NSP
CoSyNE

(b) Total optimization time = Initialisation + Evolution
Phase

 0

 20

 40

 60

 80

 100

2 3 4 5 6

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T1 Success Rate 

NSP
CoSyNE

(c) Success rate in the T1 Problem

Figure 3.20: The performance of NSP and CoSyNE on different number of
hidden neurons for the T1 problem. The optimization time in terms of the
average number of function evaluations (Evolution Phase) is shown in (a),
the total optimization time which include the initialisation and Evolution
Phase is shown in (b) and the number of successful runs is shown in (c).

112



 0

 1000

 2000

 3000

 4000

 5000

 6000

2 3 4 5 6

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T2 Optimization Time (Evolution Phase) 

NSP
CoSyNE

(a) Optimization time in the Evolution Phase

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 3 4 5 6

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T2 Optimization Time (Initialization + Evolution Phase)

NSP
CoSyNE

(b) Total optimization time = Initialisation + Evolution
Phase

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 3 4 5 6

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T2 Success Rate 

NSP
CoSyNE

(c) Success rate in the T2 Problem

Figure 3.21: The performance of NSP and CoSyNE on different number of
hidden neurons for the T2 problem. The optimization time in terms of the
average number of function evaluations (Evolution Phase) is shown in (a),
the total optimization time which include the initialisation and Evolution
Phase is shown in (b) and the number of successful runs is shown in (c).

113



 0

 2000

 4000

 6000

 8000

 10000

3 4 5 6 7

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T3 Optimization Time (Evolution Phase) 

NSP
CoSyNE

(a) Optimization time in the Evolution Phase

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

3 4 5 6 7

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T3 Optimization Time (Initialization + Evolution Phase)

NSP
CoSyNE

(b) Total optimization time = Initialisation + Evolution
Phase

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

3 4 5 6 7

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T3 Success Rate 

NSP
CoSyNE

(c) Success rate in the T3 Problem

Figure 3.22: The performance of NSP and CoSyNE on different number of
hidden neurons for the T3 problem. The optimization time in terms of the
average number of function evaluations (Evolution Phase) is shown in (a),
the total optimization time which include the initialisation and Evolution
Phase is shown in (b) and the number of successful runs is shown in (c).

114



 0

 2000

 4000

 6000

 8000

 10000

 12000

3 4 5 6 7

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T4 Optimization Time (Evolution Phase) 

NSP
CoSyNE

(a) Optimization time in the Evolution Phase

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

3 4 5 6 7

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T4 Optimization Time (Initialization + Evolution Phase)

NSP
CoSyNE

(b) Total optimization time = Initialisation + Evolution
Phase

 0

 20

 40

 60

 80

 100

3 4 5 6 7

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T4 Success Rate 

NSP
CoSyNE

(c) Success rate in the T4 Problem

Figure 3.23: The performance of NSP and CoSyNE on different number of
hidden neurons for the T4 problem. The optimization time in terms of the
average number of function evaluations (Evolution Phase) is shown in (a),
the total optimization time which include the initialisation and Evolution
Phase is shown in (b) and the number of successful runs is shown in (c).

115



 0

 2000

 4000

 6000

 8000

 10000

 12000

4 5 6 7 8

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

FFA Optimization Time (Evolution Phase) 

NSP
CoSyNE

(a) Optimization time in the Evolution Phase

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

4 5 6 7 8

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

FFA Optimization Time (Initialization + Evolution Phase)

NSP
CoSyNE

(b) Total optimization time = Initialisation + Evolution
Phase

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

4 5 6 7 8

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

FFA Success Rate 

NSP
CoSyNE

(c) Success rate in the FFA Problem

Figure 3.24: The performance of NSP and CoSyNE on different number of
hidden neurons for the FFA problem. The optimization time in terms of
the average number of function evaluations (Evolution Phase) is shown in
(a), the total optimization time which include the initialisation and Evolu-
tion Phase is shown in (b) and the number of successful runs is shown in
(c).

116



shown in (c). The results are similar in the case of the T2 problem shown
in Figure 3.21, except that for 4 hidden neurons, the performance of NSP
and CoSyNE is similar in the evolution phase (a). However, NSP shows
better performance when the initialisation phase is added to the evolution
phase (total time) for 4 hidden neurons in (b).

In the T3 problem shown in Figure 3.22, the evolution phase in (a)
shows the performance of NSP is similar to CoSyNE for 4 and 7 hid-
den neurons. In (b), NSP gives better performance for the total time. In
(c), NSP generally gives better performance except for 4 hidden neurons
which has also affected the total optimisation time for this case in (c). This
is a special case where CoSyNE has performed better due to its problem
decomposition method. This shows that the nature of the T3 problem
is different when 4 hidden neurons have been used in the hidden layer
where CoSyNE seems more appropriate.

In the T4 problem shown in Figure 3.23, NSP gives better performance
than CoSyNE in general as shown in the total optimisation time in (b). In
(c), NSP has given better success rate except for 7 hidden neurons where
the problem decomposition of CoSyNE was better due to the size of the
network. Similar results were given for the T3 problem for 4 hidden neu-
rons, this also reveals how the nature of the neuron network changes in
terms of the degree of non-separability due to the number of hidden neu-
rons. Due to the changing nature of the problem, adaptation of the prob-
lem decomposition method is necessary.

In the FFA problem shown in Figure 3.24, the performance of NSP is
weaker than CoSyNE for 6 hidden neurons and similar for 7 and 8 hidden
neurons as shown in (a). NSP outperforms CoSyNE in all the cases for the
total time in (b). This is another case where the problem decomposition of
CoSyNE showed better performance due to the size of the network.

Due to the success of CoSyNE in some cases, the results motivates
the adaptation of problem decomposition where CoSyNE and NSP can
be used together. This will be discussed and shown in Chapter 5.

117



3.3.3 Discussion

Cooperative coevolution has been used for the optimisation of separable
and non-separable problems as discussed in Chapter 2. Naturally, coop-
erative coevolution performs better in separable problems, however, for
non-separable problems, heuristic methods have been used to group in-
teracting variables in separate subcomponents for large scale function op-
timization [233]. In the case of neuro-evolution, their architectural proper-
ties have been used to group the subcomponents. In this chapter, NSP has
been introduced, which groups subcomponents according to the synapse-
links that are connected to a neuron. Cooperative coevolution performs
better in separable problems as they can be easily decomposed. Most prob-
lems fall in the partially-separable category and neural network are one of
them.

The results reveal that good performance has been achieved when each
sub-population is evolved for one generation in a round-robin fashion for
the entire cycle of CoSyNE and NSP. In neural networks, interacting vari-
ables exist which determine the degree of non-separability. The degree of
non-separability is dependent on the particular neural network architec-
ture and application problem. The deep greedy search for a large number
of generations for each sub-population has not shown good performance
and gives an indication that recurrent networks on the given grammatical
inference problems are partially-separable. This has also been the case of
training feedforward networks as discussed in Section 3.3.1. In feedfor-
ward networks, NSP has been able to withstand the deep greedy search,
which implies that they have been able to efficiently group the interacting
variables. In the case of recurrent networks, a deep greedy search in NSP
has shown similar performance for 1 to 5 generations. The performance
deteriorates with deeper depth of search. This implies that the degree of
non-separability is higher in recurrent networks when compared to feed-
forward networks. This is due to the application problem and the network
architecture, i.e, in recurrent networks, feedback connections are present

118



which indicate that more interacting variables are present. This can be
the main reason that a deeper greedy search for the case of using NSP
for evolving recurrent networks has not been beneficial. been the case of
CoSyNE in feedforward and recurrent networks which does not group in-
teracting variables.

In feedforward networks, NSP provided better performance than CME
due to the following reasons.

1. NSP provides more diversity than CME, hence it is less prone to local
convergence. This is due to the difference in the number of subcom-
ponents used by the two methods.

2. Synapse level has more diversity, but does not have any feature of
grouping interacting variables. The neural network problem is par-
tially separable and requires interacting variables to be grouped which
is not possible through synapse level problem decomposition.

3. NSP groups the interacting variables in the output layer weights
which is not done by CME. It has been shown in Section 3.1.1 that
the output layer weights interact with each other and it is important
to group them as done in NSP.

The performance of CoSyNE is weak when compared to NSP for train-
ing feedforward neural networks in pattern recognition problems shown
in [27]. However, CoSyNE showed impressive results for pole balancing
problems in [77]. The pole balancing problem is a control problem which
does not use an error function such as the sum of squared error and hence
the degree of non-separability would be different when compared to the
analysis done in Section 3.1.1.

In T3, T4 and FFA problem, the performance of CoSyNE is better in
some cases given the success rate in (c) of Figures 4.13 - 4.15. This has
been mainly observed for larger network sizes where the problem decom-
position of CoSyNE is more applicable, however, NSP does better in these
cases given the total optimisation time (b).

119



The results show that the proposed NSP encoding gives better perfor-
mance than CoSyNE given the total optimisation time in most cases. Note
that these results are specific for grammatical inference problems. The
NSP has shown to have the ability to effectively form the required states
in the recurrent network during the learning process. The major advan-
tage of NSP is that it can represent the same problem in a smaller num-
ber of subcomponents than the CoSyNE and at the same time it provides
better optimization performance. This advantage further enables NSP to
have fewer function evaluations in the initialisation phase as verified by
the results in Table 3.7. The initialisation phase has been one of the rea-
sons for the significant improvement in the total optimization time of NSP
over CoSyNE in most cases. The other reason is due to the degree of non-
separability exhibited by the different problem decomposition methods.
Note that CoSyNE views the neural network as a fully separable prob-
lem as it used a separable subcomponent for each synapse. Canonical
neuro-evolution with a single population views the network as fully non-
separable, while ESP and NSP views the network as partially separable.
The success of NSP shows that the given recurrent network problem is
partially separable. The same can be said about feedforward networks for
the given pattern classification problems.

The generalisation performance of NSP has been similar to the other
methods for the case of feedforward and recurrent networks. This indi-
cates that NSP has achieved the same solution quality with lower opti-
mization time and better success rate which reflects robustness.

The NSP can be used for learning long-term dependency problems.
This is due to the non-gradient requirement of neuro-evolution in opti-
mising the weights of the network. The length of the strings or time lags
does not matter to neuro-evolution. This is evident as the strings of length
15-25 in the Tomita 3 and 4 problem were successfully trained by NSP
which would have not been possible with the back-propagation-through-
time algorithm [226].

120



.

3.4 Chapter Summary

This chapter introduced a new problem decomposition method (NSP) for
the cooperative neuro-coevolution of feedforward and recurrent neural
networks. The method has been tested on pattern classification and gram-
matical inference problems for feedforward and recurrent neural networks,
respectively.

The investigation began with a study for the cost of evaluation of each
encoding scheme in the initialisation phase of the evolutionary process.
The NSP represents the problem with fewer subcomponents when com-
pared to CoSyNE.

An important question raised from this research was to evaluate the
optimal depth of search in the subcomponents for the respective paradigms.
The results show that the depth of search is significant for CoSyNE only.
The depth of search for 1 generation only gives acceptable results in the
CoSyNE algorithm in all the given problems. This was seen for both feed-
forward and recurrent neural networks. The results showed that NSP has
been able to achieve the similar solution quality when compared to other
methods in terms the generalisation performance. In general, NSP has
shown better optimisation performance in terms of time and success rate
than its counterparts for training feedforward and recurrent networks.

The next chapter deals with adaptation using local search in coopera-
tive coevolution. The chapters ahead will mostly focus on the optimiza-
tion performance in terms of the optimization time and success rate. This
is due to the results from this chapter which indicated that the proposed
method has been able to achieve the same level of generalisation as the
other methods.

121



122



Chapter 4

Memetic Cooperative
Neuro-evolution

This chapter presents a memetic cooperative coevolution method that em-
ploys local search. The proposed framework is used for training feed-
forward and recurrent neural networks. The chapter begins with a brief
overview of memetic algorithms and the motivation for the new memetic
cooperative neuro-evolution method. The details of the method are then
given with results and discussion.

4.1 Introduction

Cooperative coevolution has the feature of decomposing a problem us-
ing several sub-populations which provides greater diversity that enforces
global search. Memetic computing provides further enhancement to evo-
lutionary algorithms with local search (LS). The success of local search in
memetic algorithms gives the motivation of using local search in coop-
erative coevolution. This chapter presents a memetic cooperative neuro-
evolution method that utilises the strength of local search. The crossover-
based local search is used as the local search method. The proposed method
is called crossover-based local search in cooperative neuro-evolution (XLCC).

123



XLCC is used for training feedforward and recurrent neural networks.
Pattern classification and grammatical inference problems are used for
feedforward and recurrent networks, respectively. Crossover-based local
search [147] is appropriate for local search in training recurrent neural net-
works as no gradient-information is needed in the search which has been
a problem in learning long-term dependency problems.

In memetic algorithms, much research has been done in the relation-
ship between the diversification using the population of candidate solu-
tions and intensification using the local search. In the memetic cooper-
ative neuro-evolution framework, the diversification is provided by the
sub-populations in cooperative coevolution and the intensification is pro-
vided by the particular local search method. The local search intensity (LSI)
and local search interval (LS-Interval) are important parameters that deter-
mine when and how long to apply local search in the evolutionary process.
These parameters will be adjusted in order to balance diversification with
intensification according to the network architecture and the nature of the
problem. A heuristic for adapting the local search intensity during evolu-
tion is also presented.

4.1.1 Global and Local Search in Evolutionary Algorithms

Global search traverses over several neighbourhood of solutions while lo-
cal search limits itself within a single solution neighbourhood. The neigh-
bourhood N(v) of a vertex v is the sub-graph that consists of the vertices
adjacent to v (not including v itself) [225].

Local search seen is also seen as hill climbing and fine tunes or refines
the solution. Evolutionary search methods begin with global search with
large difference between candidate solutions in the population. As the
search progresses, with evolutionary operators such as selection and re-
combination, the search points to a single solution neighbourhood and the
candidate solutions are closer to each other. Local search is encouraged

124



towards the end of the search when the distance between the candidate
solutions get smaller. The distance between the candidate solutions is of-
ten used as a termination criterion. The evolutionary algorithm is seen
to be ’converged’ when all candidate solutions are similar. The similarity
between candidate solutions can be checked with some distance measure
between the candidate solutions.

It is common to view search algorithms that work with a single can-
didate solution as local search and evolutionary algorithms which have
a population of candidate solution as global search. However, this is not
true. It is not the number of candidate solutions, but the way the new so-
lutions are formed and accepted that determines the difference between
global and local search. Simulated annealing is considered as a global
search technique where a single solution is used [113, 223]. In simulated
annealing, global search is enforced by the way new solutions are formed
and accepted. In the beginning of the search, weaker solutions are ac-
cepted according to a probability distribution and towards the later stages,
only the improved solution is accepted which enforces local search.

Therefore, global and local search can be summarised as follows.

1. Global search is employed if the search traverses several candidate
solution neighbourhoods. In evolutionary algorithms, the popula-
tions with large distance between the candidate solutions and evo-
lutionary search operators enforce this. In simulated annealing, the
criteria of accepting candidate solutions where weaker solutions are
at times accepted encourages global search.

2. Local search is enforced when only a single solution neighbourhood
is considered. The solutions are accepted only if improved, and evo-
lutionary search operators must provide refinement so that the solu-
tion quality is enhanced.

Global search is also known as diversification as the search considers
diverse range of candidate solutions. Local search is also called intensifica-

125



tion as the solution is intensified or refined in terms of accuracy. The can-
didate solution(s) selected for local search is known as meme in memetic
algorithms.

In the proposed memetic cooperative neuro-evolution, crossover-based
LS is used. This LS method has been introduced as a local search method
by [147]. Crossover-based LS employs a small population of candidate
solutions. When LS is needed, the elite solutions from the global search
population are added to the local search population which contains previ-
ous elite solutions. The LS population is evolved with efficient crossover
(such as parent-centric crossover [42]) operator which has properties for
refining the solution.

4.2 Memetic Cooperative Neuro-evolution

In the literature review given in Chapter 2, the discussion on how the neu-
ral network learning problem can be decomposed into subcomponents has
been given.

Memetic algorithms have mainly been developed using evolutionary
algorithms that have a single population of individuals. In the case of
building a memetic computation framework for multiple sub-populations
in cooperative coevolution, the computational cost of having individual
local search for each sub-population has to be considered. The individual
in a sub-population that undergoes local search only represents a subset
of the large problem. In order to apply local search, the respective indi-
vidual has to be concatenated with the best individuals in the rest of the
sub-populations. Therefore, given n sub-populations, n local searches are
required which adds to the computational cost as shown in Figure 4.1.

This section give the details of a new method which efficiently takes
the advantage of the local search and it takes in account, the computa-
tional cost of having a separate local search for every sub-population.
Rather than employing a local search for each sub-population, the pro-

126



Figure 4.1: Problem faced by cooperative coevolution in employing n local
searches (LS) to each sub-population (SP)

posed framework employs local search only when a cycle in the sub-population
is complete. The completion of a cycle indicates that all the respective
sub-populations have been evolved for a given number of generations in
a round-robin fashion.

The meme is the individual that goes through local search. The details
of the memetic cooperative neuro-evolution method is given in Algorithm
6 . The algorithm assumes that it has been given the best parameters for
the evolutionary algorithm such as the sub-population size, crossover and
mutation rate.

The algorithm begins by encoding the neural network into the sub-
population according to the respective cooperative coevolution encoding
scheme (either Synapse or Neural level). The specific encoding scheme for
this work is NSP, which was introduced in Chapter 3.

The crossover-based local search employs a population of few individ-
uals, which is also referred as the local search population. The goal of

127



Alg. 6 Memetic Cooperative Coevolution

– Encode the neural network using an appropriate encoding scheme
– Randomly initialise all sub-populations
– Cooperatively evaluate each sub-population

while NOT termination do
for LS-Interval do

for each sub-population do
for depth of n generations do

Create new individuals using genetic operators
end for

end for
end for

– Concatenate the best individuals from each sub-population into
meme M

– Local search on M for LSI

i) Decompose M according to the respective sub-populations
ii) Replace the worst individuals of the respective sub-populations
with decomposed M

end while

128



Figure 4.2: The memetic cooperative neuro-evolution framework employs
LOCAL SEARCH after concatenating the best individuals from each sub-
population (SP) at the end of each cycle.

129



the cooperative coevolution sub-populations is to promote diversity [168],
and the local search population provides intensification. All the individ-
uals of the respective sub-population are initialised with random real val-
ues. Each individual chromosome is then concatenated with the best indi-
viduals of the rest of the sub-populations and then encoded into a neural
network and evaluated as done in [168].

The algorithm proceeds as a standard evolutionary algorithm which
employs genetic operators such as selection, crossover and mutation to
create new offspring for all the sub-populations. Each sub-population is
evolved for a depth of search of n generations in a round-robin fashion
and the cycle is completed. This process is repeated according to the LS-
interval. After the specified LS-Interval has been reached, the best indi-
viduals from all the sub-populations are concatenated into a meme which
is further refined as shown in Figure 4.2. The meme replaces the weak-
est individual in the local search population. The meme is then refined
using the local search population for a given number of generations as de-
fined by the LSI. The refined meme is then disintegrated and copied to the
respective sub-populations. The refined meme replaces the weakest indi-
vidual in each of the sub-populations. Note that even if the refined meme
is not improved, it replaces the weakest individuals as it may have fea-
tures that will be used later in evolution. However, the best memes in the
local search population are always retained. Although crossover-based lo-
cal search is used as the designated method, the framework can employ
any other local search method.

Meta-Lamarckian learning can also be used in this framework. In meta-
Lamarckian learning, several local searches can be employed and the suit-
able memes are chosen from the pool of local searchers as discussed in
[161]. However, for the case of neural network training, where function
evaluation is costly, employing multiple local searches may not be prac-
tical for the given problem. Nevertheless, it may be suitable for other
types of problems. use an efficient evolutionary algorithm in the sub-

130



populations of the cooperative coevolution framework which is described
in detail in the next sub-section.

4.2.1 G3-PCX for Crossover-based Local Search

As discussed in the literature section, the use of EA for local search has
been effective [109, 131, 147]. In the XLCC, the G3-PCX evolutionary al-
gorithm [42] with a small population size is used as the EA for crossover-
based local search. The G3-PCX is also used as the EA for the sub-populations
of cooperative coevolution. The parent-centric crossover operative of the
G3-PCX has features to provide good local search, therefore, it needs large
population size (of more than 90) even for small 2 dimensional problems
as discussed in [171]. A small population size for the G3-PCX will ensure
that it becomes local search intensive and therefore it is used as a local
search method.

The individuals in the population of the crossover-based local search
are randomly seeded in the beginning of the evolutionary process. The co-
operative coevolution sub-populations are seeded at the same time. Dur-
ing the evolutionary process, the cooperative coevolution sub-populations
transfer the meme, which is the best solution, to the crossover-based local
search population. This is done by concatenating the best solutions from
all the sub-populations as discussed in the previous section. This transfer
is also dependent on the local search interval. Once the meme is trans-
fered, the local search population is evolved according to the local search
intensity. This population consists of the current meme and other candi-
date solutions left from the previous time when this population was used.

Once the local search population has been evolved according to the lo-
cal search intensity, the best solution is transferred to the sub-populations
of the cooperative coevolution. The remaining individuals in the local
search population are kept and used in future local search evolution. This
is done in order to maintain diversity, i.e. these individuals can be used

131



to produce more fit offspring with the next meme that contains the best
solution from cooperative coevolution.

4.3 Simulation

This section presents an empirical study on the proposed memetic cooper-
ative neuro-evolution method for training feedforward and recurrent net-
works. The simulation is done to evaluate the performance of the pro-
posed memetic cooperative coevolution method. The simulation evalu-
ates the relationship between the local search interval and intensity and
presents a heuristic to adapt the local search intensity during evolution.

The G3-PCX evolutionary algorithm [42] is employed in the respec-
tive CC frameworks and also used for crossover-based local search. The
crossover-based local search has a fixed population of 20 individuals. The
cooperative co-evolutionary framework has 100 individuals in all sub-
populations. These parameters were determined in trial experiments.

The G3-PCX employs the mating pool size of 2 offspring, the family
size of 2 parents, and the generation gap model for selection for all the
sub-populations in cooperative coevolution and the population for local
search. This set-up has been used in [42] and has shown good results for
general optimisation problems. This set-up has also been used in Chapter
3. The sub-populations are seeded with random real numbers in the range
of [-5, 5] in all experiments. The memetic cooperative neuro-evolution
method employs the NSP encoding scheme for evolving feedforward and
recurrent networks, respectively . Other encoding schemes from the liter-
ature can also be used.

132



4.3.1 Feedforward Neural Networks

Classification Problems and Configuration

The n-bit parity is a classical problem and has been used to evaluate neural
network training algorithms [94]. The 4-bit-parity problem is used where
an even parity is determined by the even number of 1’s in the input. The
Wine, Iris, Breast-Cancer and Heart-Disease classification problems are also
used to evaluate the performance of the proposed method [6].

Table A.1 in the Appendix gives further details of the problems. The
maximum training time for Iris, Wine and Breast-Cancer problems are
fixed to 15000, the 4-bit-parity and Heart-Disease disease problem has
30000 and 50000 function evaluations, respectively. Note that these val-
ues have been changed in order to make the problem more difficult when
compared to Chapter 3. Lowering the maximum limit of the optimisa-
tion time will have impact in terms of the success rate of convergence.
Although optimisation is the focus of this section, the generalisation per-
formance is also reported. 50 independent runs are done for each case in
the experimental set-up.

Relationship Between Local Search Interval and Intensity

It is important to establish the relationship between the interval and inten-
sity of local search in order to take full advantage for the memetic cooper-
ative coevolution framework. The local search interval determines when
to apply local search, i.e, after how many consecutive cycles of undergo-
ing cooperative coevolution. We used a fixed local search intensity of 10
generations to evaluate the local search interval. We used the 4-Bit Parity,
Iris and Wine classification problems for this experiment. We employed 5
neurons in the hidden layer for these problems and used information for
termination from Table A.1. The results are shown in Figure 4.3. A total of
50 experimental runs have been done.

Figure 4.3 shows that the local search interval of 1 for the three prob-

133



lems gives the best performances in terms of the least function evaluations
in (a) with high success in (b). The performance deteriorates when the in-
terval is increased. The performance deteriorates when the LS-Interval is
increased. When the LS-Interval is increased, more diversity is enforced
as the evolutionary process features evolution from the sub-populations
of cooperative coevolution. In the XLCC, more diversity is encouraged by
allocating more time to CC for evolution. CC through the sub-populations
has more diversity when compared to the local search population. When
the LS-Interval is increased in XLCC, more time is allocated for CC based
evolution.

It has been observed that the LS-Interval of 1 gives the best perfor-
mance. One reason for this can be that the local search population pro-
vides a means for co-adaptation for the sub-populations in cooperative
coevolution. With the local search population, the search is carried on in-
dividuals that represent the whole solution rather than the sub-solutions
in the sub-populations. Another reason for this is due to the intensification
process provided by the local search population.

134



 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 2 3 4 5 6

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

LS-Interval

Iris

Wine

4-Bit

(a) Function Evaluations for evaluating the LS-Interval

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6

S
u

c
c
e

s
s
 R

a
te

LS-Interval

Iris

Wine

4-Bit

(b) Success Rate for evaluating the LS-Interval

Figure 4.3: The evaluation of the LS-Interval using the 4-bit-parity, Iris and
Wine classification problems. The LS-Interval of 1 shows the highest suc-
cess rate and least number of function evaluations for all three problems.

135



Performance of the Local Search method

In the field of hybrid and memetic evolutionary algorithms, it is common
to see that the performance of local search methods are not evaluated inde-
pendently. It is important to find if the local search method can converge
on its own and what contribution the local search has on the overall con-
vergence of the hybrid algorithm.

To evaluate the crossover-based local search method, some experiments
were done using the 4-Bit, Iris and Wine classification problems. The lo-
cal search method employs the G3-PCX algorithm with a population of
20 individuals. All of the problems employed 5 neurons in the hidden
layer with a maximum of 15,000 function evaluations for the Iris and Wine
problems and 30,000 function evaluations for the 4-Bit problem. The re-
sults revealed that out of 50 interdependent experimental runs, none of
the runs converged within the maximum time for the three problems. All
runs suffered from local convergence which indicates that the small pop-
ulation size was not sufficient for these problems. The small population
size enforces local search in the G3-PCX.

The strengths and limitations of the G3-PCX has been discussed in Sec-
tion 2.3.2 of Chapter 2. It is important to note that the G3-PCX algorithm
requires a large population size (of at least 100 individuals) in order to
maintain diversity in the generalized generation gap (G3) model [171].
Furthermore, the G3-PCX has limitations in multi-modal problems. Train-
ing neural networks is a type of multi-modal problem and the small pop-
ulation size in the G3-PCX makes it hard to converge.

Adaptation in Local Search Intensity

In the previous subsection, it has been established that the local search in-
terval of 1 gives the best performance for XLCC. It is important to use the
right local search intensity. In the evolutionary process, global search is re-
quired in the initial stages and local search in later stages. Hence the local

136



search intensity should increase during the later stages. In consideration,
a method for determining the local search intensity is shown in Equation
4.1

LSI = 1 + (
t

m
∗ k) (4.1)

where, t is the number of function evaluations, m is the maximum num-
ber of function evaluations and k is a constant which specifies the max-
imum intensity of local search to be employed in the final stages. This
heuristic ensures that the intensity of local search increases with the num-
ber of function evaluations. k = 30 is used in all the problems; this value
was determined in trial experiments, it is an initial condition for the given
problems. This value may vary for other types of problems.

Table 4.1: Generalisation Performance

Iris Wine
Hidden CC XLCC Hidden CC XLCC

4 93.67 0.84 94.90 0.77 4 92.96 1.06 93.35 1.10

5 94.30 0.78 94.80 0.70 5 94.20 0.87 93.85 0.89

6 95.75 0.61 95.56 0.60 6 94.35 0.93 93.32 0.98

7 95.85 0.56 95.75 0.58 7 93.55 0.92 94.20 0.96

8 95.51 0.63 95.75 0.64 8 92.95 1.07 93.85 0.94

Heart Cancer
Hidden CC XLCC Hidden CC XLCC

7 79.71 0.96 79.17 0.69 5 96.30 0.52 96.83 0.36

8 81.35 1.15 81.48 0.48 6 96.22 0.46 96.32 0.41

9 81.05 0.96 81.22 0.67 7 95.97 0.50 96.10 0.36

10 81.11 1.01 81.51 0.46 8 95.84 0.35 96.05 0.44

11 79.72 0.92 81.19 0.44 9 95.63 0.41 96.07 0.41

The heuristic proposed in Equation 4.1 is used in Algorithm 6 with a
local search interval of 1 for training feedforward networks. The details
are given in Table A.1. The results are given in Figures 4.4 - 4.8 where a
comparison of the memetic cooperative coevolution framework (XLCC)

137



 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

4 5 6 7 8

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

4-Bit Optimization Time 

CC
XLCC

(a) Mean Function Evaluations

 0

 20

 40

 60

 80

 100

4 5 6 7 8

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

4-Bit Success Rate 

CC

XLCC

(b) Success Rate

Figure 4.4: The 4-Bit parity problem.

138



 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

4 5 6 7 8

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

Iris Optimization Time 

CC
XLCC

(a) Mean Function Evaluations

 0

 20

 40

 60

 80

 100

4 5 6 7 8

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

Iris Success Rate 

CC

XLCC

(b) Success Rate

Figure 4.5: The Iris classification problem.

139



 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

4 5 6 7 8

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

Wine Optimization Time 

CC
XLCC

(a) Mean Function Evaluations

 0

 20

 40

 60

 80

 100

4 5 6 7 8

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

Wine Success Rate 

CC

XLCC

(b) Success Rate

Figure 4.6: The Wine classification problem.

140



 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

5 6 7 8 9

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

Cancer Optimization Time 

CC
XLCC

(a) Mean Function Evaluations

 0

 20

 40

 60

 80

 100

5 6 7 8 9

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

Cancer Success Rate 

CC

XLCC

(b) Success Rate

Figure 4.7: The Breast Cancer classification problem.

141



 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

7 8 9 10 11

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

Heart Optimization Time 

CC
XLCC

(a) Mean Function Evaluations

 0

 20

 40

 60

 80

 100

7 8 9 10 11

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

Heart Success Rate 

CC

XLCC

(b) Success Rate

Figure 4.8: The Heart Disease classification problem.

142



with conventional cooperative coevolution (CC) is given. Note that the
NSP based encoding scheme with G3-PCX is used in both methods.

Table 4.1 gives the details of the generalisation performance of the two
algorithms. The results shown here indicate that there is not a major dif-
ference in the generalisation performance. Note that only the successful
runs have been included in the test for genralisation as done in Chapter 3.
The 4-Bit problem is not tested for generalisation as 100 % of its data was
used for training.

The results in Figures 4.4 - 4.8 show that XLCC has achieved improved
performance given different number of hidden neurons for all the prob-
lems. In these problems, higher success rate and lower optimisation time
is taken by XLCC in comparison to CC which reflects on better scalability
and robustness.

4.3.2 Recurrent Neural Networks

In this subsection, the performance of XLCC is evaluated for training re-
current neural networks on grammatical inference problems. The datasets
for the FFA and Tomita problems (T1-T4) were generated as done in Sec-
tion 3.3.2. In this case, in the Tomita problems, the strings of length 10 to
15 were used. This was done in order to have a smaller dataset to save
computational time, as in this section, more emphasis is given in testing
different parameters of the proposed methods other than the learning abil-
ity of RNNs.

Local Search Interval and Intensity

The FFA problem employs 5 neurons in the hidden layer. 2 neurons in
the hidden layer for T2 and 3 neurons for the hidden layer for T3 and T4
are used. The maximum number of function evaluations in T2, T3 and T4
is 2000, 5000 and 5000, respectively. The FFA problem has 7000 has the
maximum number of function evaluations.

143



Figures 4.9 and 4.10 give the results of the behaviour of XLCC on dif-
ferent LS-Interval for the 4 problems. 95 % confidence interval for 100
experiments is shown as error bars in the histograms. The fixed LSI of 8
generations is used. The figure shows that the interval of 1 gives the best
results in terms of the minimum function evaluations in Figure 4.15(b)
with greater success rates in Figure 4.15(a). The LS-Interval higher than 1
require a greater number of function evaluations. The same behaviour is
seen in Figure 4.10.

Adaptive Local Search Intensity

In the previous subsection, it has been established that the local search
interval of 1 gives the best results. An adaptive method for determining
the local search intensity as shown in Equation 4.1 is used where k = 30

for all the problems.

In these experiments, the maximum number of function evaluation for
T1 and T2 are 2000. T3, T4 and T5 use 5000. All problems use different
number of hidden neurons to demonstrate scalability and robustness.

The results are shown in Figures 4.11-4.15 where the 95 % confidence
interval for 100 experiments are shown as error bars in the histograms.
The comparison of XLCC with standalone cooperative coevolution (CC)
shows that XLCC has given better performance in most cases in terms of
the optimisation time given by the number of function evaluations and
the success rate. The only case where CC has done better (although not
significant) is in Figure 4.13, where 4 hidden neurons are used. In this
case, it seems local search has not been significantly beneficial.

4.3.3 Discussion

The results in general show that the LS-Interval of 1 gives the best per-
formance in all the problems used for evolving feedforward and recurrent
networks. This indicates that the local search has to be applied most fre-

144



 0

 1000

 2000

 3000

 4000

 5000

 6000

1 3 5 7 9 11

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

LS-Interval

T3

T2

(a) Function Evaluations for evaluating the LS-Interval

 0

 20

 40

 60

 80

 100

1 3 5 7 9 11

S
u

c
c
e

s
s
 R

a
te

LS-Interval

T3

T2

(b) Success Rate for evaluating the LS-Interval

Figure 4.9: The evaluation of the LS-Interval for the T2 and T3 grammatical
inference problems. The LSI of 8 generations is used as a fixed parameter
in all problems. The interval of 1 shows the highest success rate and least
number of function evaluations for all problems.

145



 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 3 5 7 9 11

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

LS-Interval

FFA

T4

(a) Function Evaluations for evaluating the LS-Interval

 0

 20

 40

 60

 80

 100

 120

1 3 5 7 9 11

S
u

c
c
e

s
s
 R

a
te

LS-Interval

FFA

T4

(b) Success Rate for evaluating the LS-Interval

Figure 4.10: The evaluation of the LS-Interval for the FFA and T4 gram-
matical inference problems. The LSI of 8 generations is used as a fixed
parameter in all problems. The interval of 1 shows the highest success rate
and least number of function evaluations for all problems.

146



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

2 3 4 5 6

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T1 Optimization Time 

CC
XLCC

(a) Mean Function Evaluations

 0

 20

 40

 60

 80

 100

2 3 4 5 6

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T1 Success Rate 

CC

XLCC

(b) Success Rate

Figure 4.11: The T1 problem.

147



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

2 3 4 5 6

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T2 Optimization Time 

CC
XLCC

(a) Mean Function Evaluations

 0

 20

 40

 60

 80

 100

2 3 4 5 6

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T2 Success Rate 

CC

XLCC

(b) Success Rate

Figure 4.12: The T2 problem.

148



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

3 4 5 6 7

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T3 Optimization Time 

CC
XLCC

(a) Mean Function Evaluations

 0

 20

 40

 60

 80

 100

3 4 5 6 7

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T3 Success Rate 

CC

XLCC

(b) Success Rate

Figure 4.13: The T3 problem.

149



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

3 4 5 6 7

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T4 Optimization Time 

CC
XLCC

(a) Mean Function Evaluations

 0

 20

 40

 60

 80

 100

3 4 5 6 7

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T4 Success Rate 

CC

XLCC

(b) Success Rate

Figure 4.14: The T4 problem.

150



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

4 5 6 7 8

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

FFA Optimization Time 

CC
XLCC

(a) Mean Function Evaluations

 0

 20

 40

 60

 80

 100

4 5 6 7 8

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

FFA Success Rate 

CC

XLCC

(b) Success Rate

Figure 4.15: The FFA problem.

151



quently. The memetic framework has to take maximum advantage of lo-
cal search after every cycle in cooperative coevolution in order to balance
global and local search.

The results also show that local search is important and its intensity is
dependent on the nature of the problem. The heuristic which scales the
LSI has shown to be effective for most of the problems.

In general, comparison of the memetic cooperative framework with
standalone cooperative coevolution shows improved performance in most
of the given problems. The generalisation performance in Table 4.1 shows
that there has not been a major difference in the performance of the two
methods which implies that the memetic cooperative coevolution frame-
work can achieve similar solution quality with better robustness and scal-
ability. The proposed framework has the feature of efficiently utilizing
local search without adding to the overall computational cost in terms of
function evaluations. This indicates that it is important to employ local
search in cooperative coevolution for training feedforward and recurrent
neural networks.

The local search population has also provided the means for apply-
ing co-adaptation between the sub-populations of cooperative coevolu-
tion. Co-adaptation is necessary in cooperative coevolution, especially in
the case when the problem is difficult to decompose. It is difficult to de-
compose neural networks into subcomponents as the interaction between
the synapses depends on the network architecture, the stage of the evolu-
tionary process and the nature of the problem, i.e training data. The local
search population has also provided the means for applying co-adaptation
between the sub-populations of cooperative coevolution. This population
provides the means for selected individuals to be exchanged with different
sub-populations using the crossover operation in the local search popula-
tion.

152



4.4 Chapter Summary

The main problem in this chapter was to efficiently utilise local search in
the respective sub-populations. This problem has been efficiently solved
through the proposed framework which decomposes the locally refined
solution and incorporates it into the sub-populations. The memetic frame-
work progresses with a global search with cooperative coevolution and as
a specified time is reached (in terms of the local search interval), the al-
gorithm incorporates local search into the sub-populations. The memetic
framework also provides the feature of co-adaptation among the sub-populations
of cooperative coevolution using the local search population.

The results in general show improved performance of XLCC in feed-
forward and recurrent networks. This implies that adaptation through
local search is important in cooperative neuro-evolution. The next chapter
presents further work in enhancing the adaptation properties in cooper-
ative neuro-evolution by incorporating different problem decomposition
methods at different stages of evolution.

153



154



Chapter 5

Adaptive Modularity in
Cooperative Neuro-evolution

Adaptation during evolution has been an important focus of research in
training neural networks. Cooperative coevolution has played a signifi-
cant role in improving standard evolution of neural networks by organ-
ising the training problem into subcomponents or modules and indepen-
dently solving them. This chapter introduces a method for the adaptation
of the number of modules during evolution. The method is called adaptive
modularity cooperative neuro-evolution and is used for training feedfor-
ward and recurrent neural networks.

The chapter begins with an introduction which overviews modularity
and interacting variables. Afterwards, the adaptive modularity coopera-
tive coevolution method is presented and then the simulation, results and
discussions are given. The chapter ends with a summary of the findings.

5.1 Introduction

In the original cooperative co-evolutionary method, the problem is de-
composed by having a separate subcomponent for each variable [169]. It
was later found that the strategy was only effective for problems that are

155



separable [127]. In separable problems, there is no interdependency be-
tween the decision variables whereas in non-separable problems, interde-
pendencies exist. It has been discussed in the literature, that a function of
n variables is separable if it can be written as a sum of n functions with
just one variable [165]. The parameters of a separable problem are called
independent variables. Non-separable problems have interdependencies
between decision variables as opposed to separable ones. Cooperative co-
evolution naturally appeals to separable problems as there is no interac-
tion amongst the subcomponents during evolution [183]. The decomposi-
tion of the problem influences its performance. In most problems, groups
of interacting variables exist which determine the degree of non-separability
which has been analysed in Section 3.1.1 of Chapter 3.

In order to take advantage of cooperative co-evolution, it is important
to group interacting variables within a single subcomponent. However,
it is difficult to identify the interacting variables. van den Bergh and En-
gelbrecht [221] used a de-compositional strategy that decomposed the n

dimensional problem into m s-dimensional sub-problems, which showed
better performance than the original CC method. Much work has been
done in the use of cooperative co-evolution in large scale function opti-
mization and the concentration has been on non-separable problems. Sev-
eral methods have been proposed which group interacting variables for
global optimization problems. Yang et. al. [233] have presented the co-
operative coevolution method that uses a random grouping and adaptive
weighting strategy with differential evolution (DECC-G) for its subcom-
ponents. The method groups interacting variables into the same sepa-
rate subcomponents heuristically. Yang et al. also presented a multi-level
cooperative coevolution method (MLCC) [234] which adapts the size of
the subcomponents in DECC-G in order to group interacting and non-
interacting variables. The method starts with small sized subcomponents
and adapts to bigger subcomponents sizes from a predefined set. MLCC
showed better performance than DECC-G for non-separable problems of

156



up to 1000 dimensions. Omidvar et. al. [156] made amendments to the
random grouping approach in DECC-G. They presented a more frequent
random grouping approach which outperformed its counterpart in several
non-separable problems of up to 1000 dimensions.

The number of subcomponents used in the respective encoding schemes
plays an important role during evolution. Each encoding scheme groups
interacting variables and makes an assumption on the degree of non-separability
regardless of the problem. CoSyNE for instance, views the neural network
training as a separable problem and has been only effective for training
RNNs on pole balancing problems. CoSyNE performed poorly in train-
ing feedforward networks for pattern classification problems in Chapter
3. ESP and NSP decomposes the problem with different degrees of non-
separability. NSP showed better performance than the other problem de-
composition methods (ESP and CoSyNE and CME) for training feedfor-
ward networks in pattern classification and recurrent network in gram-
matical inference problems given in Chapter 3. The results in Chapter 3
have demonstrated that different problem decomposition methods are of
advantage to different network architectures and application problems.
Problem decomposition methods such as CoSyNE, ESP and NSP exhibit
different degrees of non-separability by grouping interacting variables. In
literature, it has not been investigated if the nature of the neural network
training problem changes during evolution, i.e if different problem de-
composition methods are needed at different stages of the evolutionary
process.

In the use of cooperative coevolution for neuro-evolution [168, 64, 76,
187] , little attention has been given on the issue of separability and inter-
acting variables in the literature. In the literature, it has been discussed
that multi-level cooperative coevolution (MLCC) [234] adapts the size of
the subpopulation at different levels of evolution and improved perfor-
mance for global optimization problems. A major problem of the MLCC
approach is that it merges the sub-populations based on a predefined set

157



which does not cater for the interacting variables between the sub-populations.
In order to make adaptation of problem decomposition in neural networks,
the interacting variables must be considered and the sub-populations should
be merged using some of the established problem decomposition meth-
ods.

The analysis in Section 3.1.1 of Chapter 3 has shown that the interaction
between the weights increases during the later stages of evolution as the
problem is being learnt. Therefore, it is reasonable to adapt the problem
decomposition method (modularity) as different levels of search (in terms
of non-separability) are needed at different stages of evolution. In the
rest of the discussion, the subcomponents in cooperative neuro-evolution
are referred to as modules and the level of modularity corresponds to the
problem decomposition method. This chapter presents an adaptive mod-
ularity cooperative neuro-evolution method (AMCC) for training feedfor-
ward networks for pattern classification and recurrent neural networks
for grammatical inference problems. Instead of using a fixed level of mod-
ularity during the entire evolutionary process (as in NSP, CoSyNE and
ESP), the AMCC method adapts the number of modules at different stages
of the evolution. The performance of the adaptive modularity method is
compared with CoSyNE and NSP.

5.2 Adaptive Modularity in Cooperative Neuro-

evolution

The general idea behind the adaptive modularity cooperative neuro-evolution
(AMCC ) method is to use the strength of a particular problem decompo-
sition method that reflects on the degree of non-separability when needed
during evolution. The adaptive method can be visualised as a car driving
on a hill where the driver changes the gear according to the steepness of
the hill. Similarly, the adaptive method changes its level of modularity

158



during evolution. It uses a modularity with greater level of flexibility (al-
lowing evolution for separable search space) during the initial stage and
decreases the level of modularity during the later stages of evolution.

The modularity of the general AMCC method for training recurrent
neural networks can transform from synapse level encoding (CoSyNE) to
neuron level encoding (NSP) and finally to network level encoding (stan-
dard neuro-evolution where one population is used). The adaptation of
modularity using all the three levels of encoding forms the general AMCC
method. The levels of encoding are further described as follows:

1. Synapse level encoding: Decomposes the network into its lowest
level to form a single module [77]. The number of connections in the
network determines the number of modules.

2. Neuron level encoding: Decomposes the network into neuron level.
The number of neurons in the hidden, state and output layer deter-
mines the number of modules [27, 28].

3. Network level encoding: The standard neuro-evolutionary encod-
ing scheme where only one individual represents the entire network.
There is no decomposition present in this level of encoding.

The AMCC method is given in Algorithm 7 which follows three main
stages of evolution. At the beginning, all the sub-populations of the synapse
level, neuron level and network level encoding are initialised with random
real values in a range. In Stage 1, the sub-populations at synapse level en-
coding are cooperatively evaluated only. Neuron level and Network level
encoding are left to be cooperatively evaluated at later stages. In the rest of
the discussion, we assume that the algorithm terminates with a specified
minimum error (MinError).

Stage 1 uses synapse level encoding where the sub-populations are
evolved until the maximum number of function evaluations (MaxGlobal)
is reached. The optimal solution is returned if the minimum error is reached

159



(MinError). However, if MaxGlobal and MinError are not satisfied, the
change of modularity is done and the method proceeds to Neuron level
encoding in Stage 2. The best individuals with their fitness are trans-
ferred to the sub-populations of the Neuron level at Stage 2. All the sub-
populations are cooperatively evaluated. During Neuron level evolution,
if the MinError is not reached within the MaxGlobal, then the change of
modularity is done in order to proceed to the Network level encoding at
Stage 3. The best individuals at Neuron level from each sub-population
are concatenated and added to the population at the Network level. Note
that the Neuron level sub-populations and the Network level population
initially contain randomly initialised genetic material. The best individual
from the previous stage is added to the sub-populations at the next stage
and then the evolution proceeds. The condition that enforces the modu-
larity change is given by ChangeMod in Algorithm 7. ChangeMod will be
further discussed in detail later in Section 5.2.3.

160



Alg. 7 Adaptive Modularity in Cooperative Coevolution
Initialise Synapse, Neuron and Network level

Stage 1: Synapse level encoding
Cooperatively evaluate Synapse level only

while (FuncEval ≤ MaxGlobal) OR ChangeMod do
foreach each Subpopulation at Synapse level do

Genetic Operators
Cooperative Evaluation

end
end
Stage 2: Neuron level encoding
i. Carry best individuals from Synapse level into Neuron level
ii. Cooperatively evaluate Neuron level

while (FuncEval ≤ MaxGlobal) OR ChangeMod do
foreach each Subpopulation at Neuron level do

Genetic Operators
Cooperative Evaluation

end
end
Stage 3: Network level encoding
i. Carry best individuals into Network level
ii. Evaluate Network level

while FuncEval ≤ MaxGlobal do
Network level Genetic Operators

if (FuncEval ≤ MinGlobal) then
Go back to Neuron level encoding

end
end

Note that in Stage 3, if the minimum number of function evaluations
(MinGlobal) has not been reached and the problem has not been solved,

161



Figure 5.1: The 3 Stage AMCC method. The figure shows how the method
transforms the evolutionary process with different levels of encoding. The
sub-populations SP (n) at Synapse level and Neuron level are shown. Note
that in Stage 3, if the problem is not solved before reaching the global
minimum time, then the modularity is changed from Network to Neuron
level.

then the method assumes that there is a convergence to a local minimum.
Therefore, the modularity is changed to the Neuron level in order to em-
ploy a different level of evolution. In this case, the best individual from
the Network level is also copied to the Neuron level along with its fitness.
This is also shown in the general AMCC method in Figure 5.1 which gives
a visualization of how the method transforms the evolutionary process
with different levels of encoding.

5.2.1 Function Evaluation During Initialisation

As discussed, there are two main phases of evolution in the cooperative co-
evolution method. These are the initialisation phase and the evolution phase.

The computational cost in terms of the number of function evaluations
for each level of encoding during initialisation in the respective neural
networks architecture can be evaluated. In feedforward networks, the cost

162



of function evaluations during initialisation is calculated as follows.

1. Synapse level encoding
Synapse = ((I ∗H) + (H ∗O) +H +O) ∗P (This includes the biases)

Where I , H and O are the number of Input, Hidden and Output
neurons, respectively. P is the Population size.

2. Neuron level encoding
Neuron = (H +O) ∗ P

Where H and O are the number of Hidden and Output neurons, re-
spectively. P is the Population size.

3. Network level encoding
Network = P

Where P is the Population size.

In recurrent networks, the cost is as follows.

1. Synapse level encoding
Synapse = ((I ∗H) + (H ∗O) + (H ∗H) +H +O) ∗ P (This includes
the biases)

Where I , H and O are the number of Input, Hidden and Output
neurons, respectively. P is the Population size.

2. Neuron level encoding
Neuron = (2H +O) ∗ P

Where H and O are the number of Hidden and Output neurons, re-
spectively. P is the Population size.

3. Network level encoding
Network = P

Where P is the Population size.

163



In general, the AMCC method will include the cost of functional eval-
uations during initialisation in all three stages.

AMCC = Synapse+Neuron+Network

5.2.2 Transfer of Valuable Information

The transition from one level of modularity to another should ensure that
the information gained using the existing level of modularity is transferred
to the next level of encoding. In the AMCC method, the best individu-
als in each population at each level are transferred to the next level. The
transfer of information requires the best individuals from the respective
sub-populations in the Synapse and the Neuron level to be concatenated
into a single individual.

Note that the number of sub-populations used for each level is differ-
ent. The Synapse level encoding has more sub-populations than the neu-
ron level, however, information from the best individuals synapse level
must be added to Neuron level. The transfer of information from each
level is further described as follows.

1. Synapse to Neuron level

The best individuals from all the sub-populations from the synapse
level are concatenated. The concatenated string is broken down into
neuron level and added to the respective sub-population along with
its fitness.

2. Neuron to Network level

Note that the neuron level encoding contains several sub-populations
while network level encoding contains one population only. The

164



best individuals from all the sub-populations are concatenated and
copied into the single population of the Network level.

3. Network to Neuron level

In this case, the best individual from the network level will be de-
composed and transfered to the neuron level.

5.2.3 The Heuristic to Change Modularity

The general idea in changing modularity is to check whether the neural
network is making a good improvement in terms of the overall network
Error over time. If no or little improvement is made, then a change in
modularity will be done.

Alpha and Beta are two small constants which act as a threshold and
determine how much difference is acceptable, and if these thresholds are
passed, then change in modularity is enforced. The constants are small as
they check the change in the overall error of the network during evolution.
Alpha and Beta can be chosen empirically with trial experiments. Alpha will
be usually bigger than Beta as there are greater differences in change of
error during the earlier stages of evolution. During the later/final stages
of evolution, the method will transform from Neuron to Network level
of modularity. In this stage, the change in error is lower than the initial
stages.

ChangeMod is dependent on the change in error (ChangeError) which
can be calculated as follows.

ChangeError = Error[current− n]− Error[current]

where Error is the mean-squared-error or sum-squared-error of the neural
network. current is the current cycle or generation and n is the number of
time steps the change of error is monitored.

165



The heuristic of changing the modularity from the Synapse level to
Neuron level is given as follows.

ChangeError = Error[current− n]− Error[current]

If(ChangeError < Alpha)
Set ChangeMod to TRUE

This heuristic is used in the AMCC method as shown in Algorithm 7 .
Once ChangeMod is TRUE, the modularity is changed from Synapse level
to Neuron level. A similar approach is used for Neuron level to Network
level where Beta is used as the threshold.

The optimal value for the change of modularity can be determined by
experimental runs with different values for Error change in the Synapse-
Neuron level and the Neuron-Network level. This is shown in the experi-
mental section and is compared with the heuristic method for the change
in modularity. Note that this method is not only confined to three stages
(Synapse-Neuron-Network) of modularity adaptation only. More stages
can be incorporated according to the nature of the problem; however, the
performance may deteriorate if more levels are used than required. In
Algorithm 7 , in Stage 3, the system will return to the Neuron level if con-
vergence is not achieved within a specified time which is close to Max-
time. This implies that if local convergence occurs at the Network level,
the AMCC method will revert to Neuron level. Note that the terminol-
ogy “ChangeMod” is similar to the “Halting Windows” approach used
for multi-modal problems [11].

5.3 Simulation and Analysis

This section presents an experimental study of the proposed AMCC method
and compares it with the Neuron Level (NL) and the Synapse Level (SL)
encodings for training feedforward and recurrent neural networks on pat-

166



tern classification and grammatical inference problems, respectively.
Note that AMCC for feedforward networks is referred to as AMCC-

FNN and AMCC-RNN is used for recurrent neural networks for the rest
of the chapter.

The same evolutionary algorithm [42] is used in SL, NL and the AMCC
method for a fair comparison. The population size of 100, the pool size of
2 offspring and the family size of 2 parents is used. This set-up has also
been used in Chapters 3 and 4. The individuals in the respective popula-
tions are seeded with random real numbers in the range of [-5, 5] in all the
experiments.

5.3.1 Feedforward Neural Networks

Benchmark Problems and Neural Network Configuration

Table A.1 of the Appendix shows the neural network configuration and
dataset details used for all the experiments. The 4-Bit, Iris, Wine and Zoo
classification problems are selected. The maximum training time given by
the number of function evaluations in all the problems is fixed as 15000 for
Iris and Wine classification and 30000 for Zoo classification. In addition to
the three real world problems, the 4-Bit parity problem is used and the
network is trained until the sum-squared error goes below 0.001 or when
the maximum number of function evaluations has reached 20000. Note
that 70% of the data is used for training and the remaining 30% is used for
testing the generalisation performance.

AMCC for Feedforward Networks

This section evaluates the performance of the AMC-FNN method and
compares its performance with Neuron and Synapse level encoding. The
2-Stage AMCC-FNN method is also used here where only the Neuron and
Network levels are used; i.e. Neuron level is used initially and later mod-
ularity is adapted to the Network level (Synapse level is not used here).

167



The 3-Stage AMCC-FNN method employs Synapse, Neuron and Network
level encodings as shown in Figure 5.1 and Algorithm 7 . In both cases
(2-Stage and 3-Stage AMCC), the method reverts to Neuron level encod-
ing from Network level if desired convergence is not achieved within 70
percent of the maximum time. This is done in order to ensure that local
convergence has not been reached using Network level encoding.

In the change of modularity for the 3-Stage method, the Alpha of 1E-2 is
used to change from Synapse to Neuron level. The Beta of 1E-5 is used to
change from Neuron to Network level. In the 2-Stage method, 1E-5 is used
to change from Neuron to Network level. These values were determined
during trial experiments.

The goal of the experimental study is to observe the performance of
the respective algorithms in relation to a particular topology; i.e. fixed
number of hidden neurons. This reflects on scalability and robustness.

The results are given in Figures 5.2 to 5.5. The confidence interval is
shown as error bars in the histograms showing the optimization time. In
the wine classification problem shown in Figure 5.2, NL and SL do not
scale well for all the different number of hidden neurons in (a) and (b). The
2-Stage method shows the best performance given by the least optimiza-
tion time in (a) and the success rate in (b). It shows better performance
when compared to the 3-Stage method. SL encoding failed to converge in
all the cases.

In the results of the 4-Bit parity problem shown in Figure 5.3, the 3-
Stage method gives the best performance in terms of scalability shown by
the optimization time in (a) and the success rate in (b). NL shows better
performance than the 2-Stage method in terms of the optimization time in
(a). The SL encoding scheme fails to converge for 3 hidden neurons and
shows the worst performance.

In the results of the Iris classification problem shown in Figure 5.4, the
2-Stage method gives the best results in terms of the optimization time for
4 and 5 hidden neurons as shown in (a). In (b), the 2-Stage method shows

168



similar performance to the 3 Stage method which is better than NL. The
NL encoding shows best results for 6, 7 and 8 neurons which is also shown
in (a). The SL encoding scheme fails to converge within the maximum
number of function evaluations in all the cases.

In the results of the Zoo classification problem shown in Figure 5.5,
the 2-Stage and SL method shows poor performance. The NL and 3-Stage
method shows better performance, however they do not scale well for dif-
ferent number of hidden neurons. The best performance is achieved by
the 3-Stage method for 4 and 6 hidden neurons, while NL gives the best
performance for 5, 7 and 8 hidden neurons.

In general, SL gives poor performance in all four problems. EA gives
poor performance in all problems. In most cases, it had difficulty to con-
verge within the maximum number of function evaluations. In Wine clas-
sification, the 2 Stage framework showed better performance, while in the
4-Bit parity problem, the 3-Stage framework showed the best performance.
In the Iris classification, the 2 Stage framework showed better performance
for lower number of hidden neurons where NL encoding scheme showed
better for greater number of hidden neurons. In Zoo classification, better
performance is achieved by the 3-Stage framework and NL.

Although the main goal of this section is not the generalisation perfor-
mance, Table 5.1 gives a comparison of NL and 3-Stage AMCC framework
for Iris, Wine and Zoo problems. The Iris classification performance shows
minor improvement for 5 or more hidden neurons while the Wine and Zoo
classification problem achieves similar generalisation using both methods.
The subscript for the corresponding values in Table 5.1 gives the 95 % con-
fidence interval. Note that 4-bit parity will not be tested for generalisation
since this is a different type of problem.

Discussion: AMCC in Feedforward Networks

The results in general show that AMCC (2 or 3 Stage) method achieves the
best performance in most cases.

169



Table 5.1: Generalisation Performance of 3-Stage AMCC and NL

Problem Hidden 3-Stage AMCC NL
Iris 4 95.35 0.46 95.58 0.47

5 96.46 0.31 94.74 0.73

6 96.94 0.25 95.93 0.47

7 97.03 0.26 95.37 0.61

8 97.31 0.14 95.24 0.54

Wine 4 93.36 0.76 93.93 1.44

5 91.56 0.95 92.50 0.92

6 90.44 0.88 90.90 1.13

7 94.66 0.87 93.39 0.81

8 92.34 1.23 91.75 1.96

Zoo 4 73.91 2.59 73.23 1.38

5 73.79 1.84 73.92 1.34

6 73.00 1.96 72.51 1.17

7 72.29 1.58 73.07 1.20

8 72.58 2.73 73.75 1.39

170



The difference in the performance of the four methods (NL, SL, 2-Stage,
3-Stage) indicates that the nature of the neural network training changes
during evolution, which is why adaptation is necessary. The nature of
the change during training is dependent on the problem type, learning
difficulty and adaptation in terms of the degree of non-separability.

The nature of the problem also changes when different number of hid-
den neurons is used to represent the problem. The problem becomes too
difficult to be solved when there are not sufficient neurons present in the
hidden layer or when there are more than enough neurons present and the
problem size increases. This can be seen in the performance of the Iris clas-
sification in Figure 5.4 where the 2-Stage method shows best performance
for 4 and 5 hidden neurons and deteriorates in performance for 6 -8 neu-
rons. The success of the 2 Stage evolution in this case indicates that when a
lower number of neurons are present, a higher degree of non-separability
is needed and hence the change in modularity is needed. However, for 6
to 8 neurons, the success of NL where no modularity is adapted indicates
that the degree of non-separability is not increased during later stages in
evolution. Here, it seems that the degree of non-separability can be related
to the number of hidden neurons.

The 4-bit parity problem is of a different nature when compared to pat-
tern classification problems. The 3-Stage method shows the best perfor-
mance as the size of the network is increased.

5.3.2 Recurrent Neural Networks

This section evaluates the performance of the AMCC method for train-
ing recurrent neural networks using grammatical inference problems. The
datasets for the FFA and Tomita problems (T1-T4) were generated as done
in Section 3.3.2.

In all problems, the RNN is trained until the mean-squared-error (MSE)
has reached below 0.0005. This is done in order to make the problem more

171



challenging than the RNN problems in Chapters 3 and 4. The maximum
number of function evaluations for T1 and T2 is 5000. T3, T4 and FFA
problem use a maximum of 10000 function evaluations. The goal of this
section is to observe the performance of AMCC-RNN during training. The
optimization time and success rate are the two main performance mea-
sures for training.

The Change of Modularity

The simulation begins with an observation of the training performance ac-
cording to the mean-squared-error (Error) of the network. The change of
modularity is done when the current level of encoding reaches the speci-
fied Error from Synapse-Neuron level and Neuron-Network level. The aver-
age number of function evaluations is used as the main measure of optimi-
sation time in the AMCC-RNN method. The run is considered successful
if it fulfils the minimum error specified (0.0005) before reaching the maxi-
mum number of function evaluations for the problem.

The change in modularity helps in understanding the nature of the
neural network optimisation problem and how the level of modularity
and its encoding scheme contributes to evolution in terms of the degree of
non-separability.

The results are shown in Figure 5.6 and Figure 5.7. The optimal values
takes in account the optimization time taken and the success rate from
100 independent experimental runs. The T1 and T2 problems employ 2
hidden neurons, T3 and T4 problems employ 3 hidden neurons and the
FFA problem employs 4 hidden neurons in these experiments.

In Figure 5.6, for the FFA problem, the Error of 0.1 (in Synapse–Neuron
level axis) and 0.05 (in Neuron–Network level axis) shows the best success
rate in (a). The corresponding least optimization time taken is shown in
(b). The performance deteriorates when the Error in the Synapse–Neuron
level becomes lower than 0.05.

In Figure 5.7, for the T3 problem, the Error of 0.2 (in Synapse–Neuron

172



level axis) and 0.05 (in Neuron–Network level axis) shows the best success
rate in (a). The corresponding least optimization time taken is shown in
(b).

The performance of the heuristic method is compared with the iterative
search method. The heuristic method allows the AMCC-RNN method to
change modularity without undergoing an iterative search for the param-
eters. This can save computation time that is used for parameter setting.
Table 5.2 shows the comparison of the Heuristic (Heuris.) and Iterative
(Itera.) method for the change in modularity in the AMCC-RNN method.
An iterative search is done to find the best values for the parameters in
Synapse to Neuron level (Sy–Neu) and Neuron to Network level (Neu-
Net). The results of the iterative method for the change of modularity for
the T3 and FFA problems are shown in Figures 5.6 and 5.7.

The heuristic method observes the change in the network error over a
predefined number of cycles. If the change in error is less than the prede-
fined Alpha (for Synapse–Neuron level) and Beta (Neuron–Network level),
then the modularity changes to the next level. The Alpha of 0.05 and Beta
of 0.01 is used in all the experiments. These values are determined in trial
experiments.

Problem Hidden Method Sy–Neu Neu-Net FuncEval Success
T2 2 Itera. 0.2 0.05 2487±232 88

2 Heuris. – – 2606±187 91
T3 3 Itera. 0.2 0.05 6535±451 80

3 Heuris. – – 6528±384 84
T4 3 Itera. 0.15 0.05 4115±315 97

3 Heuris. – – 4396±228 98
FFA 4 Itera. 0.1 0.05 8390±494 59

4 Heuris. – – 8476±409 56

Table 5.2: A comparison of the Heuristic and Iterative method in-order to
determine when to change modularity

The results in Table 5.2 show that there is not a major difference be-

173



tween the heuristic method and the best values taken from the iterative
method for the four problems. The 95 % confidence interval is given in the
subscript of the values for the mean function evaluations. In Table 5.2, it
has been reported that the two methods get similar results for all the prob-
lems. The iterative method requires a search for the best parameter set-
ting, and hence more computation times is needed. The heuristic method
eliminates parameters, and saves the computational time. Therefore, it is
important to use the heuristic method in the AMCC-RNN method. In the
following subsections, the AMCC-RNN will employ the heuristic method
for comparison with other methods.

AMCC for Recurrent Networks

This section evaluates the comparative performance of the AMCC-RNN
method with Neuron and Synapse level encoding. The AMCC-RNN uses
the heuristic in change of modularity as discussed in previous subsection.

The goal is to observe the performance of the respective methods (NL,
SL, AMCC) in relation to a particular network topology; i.e. fixed number
of hidden neurons. Note that the number of hidden neurons directly in-
fluences the difficulty of the learning problem. It is more difficult to learn
the problem if insufficient neurons are present in the hidden layer. It is
also difficult for evolutionary algorithms to optimise a problem when the
number of variables increases according to the number of hidden neurons
in the hidden layer.

Figures 5.8 - 5.12 shows the comparison of the performance of each
method in relation to the number of hidden neurons. The confidence in-
terval is shown as error bars in the histograms showing the optimization
time. The number of successful runs out of 100 experiments is shown in
part (a) while the optimization time in terms of the number of average
function evaluations is shown in part (b) of the respective figures. The
goal of AMCC-RNN is to obtain maximum success with the least opti-
mization time. Note that the average function evaluations consists of both

174



successful and unsuccessful runs.
In Figures 5.8 and 5.9, for the T1 and T2 problems, the performance

of AMCC-RNN is consistent as the number of hidden neurons change in
terms of the optimization time (a) and best success rates (b). The perfor-
mance of SL and NL is good only for certain number of hidden neurons
and deteriorates otherwise.

In Figure 5.10, for the T3 problem, AMCC outperforms SL and NL for
all the different number of hidden neurons in terms of the optimization
time (a) and best success rates (b). In the T4 problem given in Figure 5.11,
the performance of NL is slightly better than AMCC for 3, 4 and 5 neurons.
AMCC outperforms NL for 5 and 6 neurons. The performance of SL is
comparable to AMCC and NL for 4 neurons only. The SL performance
deteriorates otherwise.

In the FFA problem given in Figure 5.12, AMCC outperforms NL in all
the cases. SL performs better than AMCC for 6 hidden neurons only. Its
performance deteriorates otherwise.

In summary, in the majority of the cases, AMCC has outperformed the
other methods. NL and SL seem to perform well only for certain number
of hidden neurons. The results have shown that the AMCC method scales
better than NL and SL when the size of the problem increases. The num-
ber of variables increases significantly as the number of hidden neurons
increases.

Discussion: AMCC for Recurrent Networks

Neural network training is similar to any other optimisation problem which
requires a global search in the initial stage and a local search in the final
stage for further refining the solution. The are two concerns, 1) global and
local search and 2) degree of non-separability. In most problems, a global
search is needed in the beginning and local search is employed during the
final stages. Different evolutionary algorithms balance the intensity of the
global-local search using different forms of crossover and mutation opera-

175



tors. In memetic cooperative coevolution, additional local search is used to
balance the global exploration with local exploitation [200, 164]. This has
been well investigated in Chapter 4 where it was found that local refine-
ment is important for cooperative neuro-evolution. The second issue is to
achieve balance with the adaptation of the training algorithm according to
the degree of non-separability.

The AMCC-RNN and AMCC-FNN method utilize the strengths of both
synapse, neuron, and network level encoding. This gives it the flexibil-
ity to apply a particular problem decomposition method at a given situ-
ation in the evolutionary process. The neural network training is a non-
separable problem as it has interacting variables. At different stages of
evolution, the iteration between variable changes and therefore, the de-
gree of non-separability changes. AMCC performs well as it has the flex-
ibility to adapt the search which relates to the different degrees of non-
separability. In the initial stages, the neural network training problem has
a lower degree of non-separability. As the problem is being learnt, the in-
teraction between interacting variables increases which requires a change
of modularity and hence the neuron and network level encodings perform
well when needed.

The AMCC-RNN method uses the synapse level encoding which has
its strength in separable problem (lower degree of non-separability) where
there are lower number of interacting variables. The synapse level en-
coding provides more flexibility, greater global search capability as each
synapse in the network uses a separate sub-population. As the evolution
proceeds, the error of the neural network decreases, and the interaction
amongst the variables (synapses) increases, this has been shown in Section
3.1.1 of Chapter 3. Therefore, it is reasonable to use larger subcomponents
to group interacting variables and hence the neuron level encoding is em-
ployed. During the final stages of the evolution, the interaction among
variables becomes stronger. The problem which has been decomposed
into smaller sized subcomponents at the neuron level has to be merged

176



and solved as a single large problem. At this stage, the network level en-
coding is used where a single population is used to represent the entire
network.

The results have also indicated that the nature of the problem changes
while training recurrent neural network, i.e the degree of non-separability
increases which further validates the analysis shown in Section 3.1.1 of
Chapter 3. The problem has shown to be separable initially (where Synapse
level encoding helps) and later, the degree non-separability increases where
network level encoding with one population is more effective. The im-
proved performance of the AMCC method in comparison with the Neuron
and the Synapse level gives justification that the degree of non-separability
changes during evolution. The Neuron and Synapse level encodings failed
to deliver good or acceptable solutions in all cases as they did not have the
feature of adapting their search according to the requirements of the prob-
lem. It has been shown that the Neuron and Synapse level encodings do
not scale as well as AMCC-RNN when the size of the problem increases
due to the number of hidden neurons.

All the given problems show that, unlike the synapse and neuron level
encodings, AMCC-RNN maintains good performance when a greater num-
ber of hidden neurons are present in the hidden layer. Therefore, it has
the ability to preserve the recurrent state information when the number of
modules and the size of the problem significantly increases.

5.4 Chapter Summary

This chapter introduced a novel cooperative co-evolution method for adapt-
ing modularity during evolution for training feed-forward and recurrent
neural networks. The method provided a better understanding of the de-
gree of non-separability and its relationship to problem decomposition in
cooperative neuro-evolution.

The results have shown that due to the change in the nature of prob-

177



lem (in terms of non-separability) modularity adaptation is needed in the
training of feedforward and recurrent networks. The level of non-separability
changes at different stages of evolution and hence, the change of modular-
ity is needed. Adaptation through changing modularity has shown to play
an important role in cooperative neuro-evolution.

178



 10000

 11000

 12000

 13000

 14000

 15000

 16000

4 5 6 7 8

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

Wine Optimization Time 

NL
SL
EA

3Stage
2Stage

(a) Optimization time in the Wine classification

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 5 6 7 8

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

Wine Success Rate 

NL
SL
EA

3Stage
2Stage

(b) Success rate in the Wine classification

Figure 5.2: The performance the 2 Stage and 3 Stage AMCC-FNN method
on different number of hidden neurons for the Wine classification prob-
lem. The performance of NL and SL is also given.

179



 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

3 4 5 6 7

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

4-Bit Optimization Time 

NL
SL
EA

3Stage
2Stage

(a) Optimization time in the 4-Bit problem

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

3 4 5 6 7

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

4-Bit Success Rate 

NL
SL
EA

3Stage
2Stage

(b) Success rate in the 4-Bit problem

Figure 5.3: The performance of 2 Stage and 3 Stage AMCC-FNN on differ-
ent number of hidden neurons for the 4-Bit problem. The performance of
NL and SL is also given.

180



 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

4 5 6 7 8

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

Iris Optimization Time 

NL
SL
EA

3Stage
2Stage

(a) Optimization time in the Iris classification

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 5 6 7 8

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

Iris Success Rate 

NL
SL
EA

3Stage
2Stage

(b) Success rate in the Iris classification

Figure 5.4: The performance of the 2 Stage and 3 Stage AMCC-FNN
method on different number of hidden neurons for the Iris classification
problem. The performance of NL and SL is also given.

181



 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

4 5 6 7 8

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

Zoo Optimization Time 

NL
SL
EA

3Stage
2Stage

(a) Optimization time in the Zoo classification

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

4 5 6 7 8

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

Zoo Success Rate 

NL
SL
EA

3Stage
2Stage

(b) Success rate in the Zoo classification

Figure 5.5: The performance the 2 Stage and 3 Stage AMCC-FNN method
for the Zoo classification problem. The performance of NL and SL is also
given.

182



(a) Success rate in the FFA Problem

(b) Optimisation time in the FFA Problem

Figure 5.6: The heat-map shows the performance of the AMCC-RNN
method on different values for Error (mean-squared-error) for Synapse–
Neuron level and Neuron–Network level changes in modularity for the
FFA problem. The number of successful runs out of 100 experiments is
shown in (a) while the optimisation time is shown in (b). The goal of
AMCC-RNN is to obtain maximum success with the least optimization
time. The Error of 0.1 in Synapse–Neuron level and 0.05 in Neuron–
Network level shows the best success rate in (a) with corresponding least
number of function evaluations in (b). Note that the optimisation time
consists of both successful and unsuccessful runs.

183



(a) Success rate in the T3 Problem

(b) Optimization time in the T3 Problem

Figure 5.7: The heat-map shows the performance of the AMCC-RNN
method on the T3 problem. The number of successful runs out of 100 ex-
periments is shown in (a) while the optimization time is shown in (b). The
Error of 0.2 in Synapse–Neuron level and 0.05 in Neuron–Network level
shows the best success rate in (a) with corresponding least optimization
time in (b).

184



 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

2 3 4 5 6

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T1 Optimization Time 

AMCC
NL
SL

(a) Optimization time in terms of the number of function evaluations

 0

 20

 40

 60

 80

 100

2 3 4 5 6

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T1 Success Rate 

AMCC

NL

SL

(b) Success rate in the T1 problem

Figure 5.8: The performance of AMCC, NL and SL on different number
of hidden neurons for the T1 problem. The optimization time in terms of
function evaluations is shown in (a) while the success rate is shown in (b).

185



 2000

 2500

 3000

 3500

 4000

 4500

 5000

2 3 4 5 6

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T2 Optimization Time 

AMCC
NL
SL

(a) Optimization time in terms of the number of function evaluations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 3 4 5 6

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T2 Success Rate 

AMCC

NL

SL

(b) Success rate in the T2 problem

Figure 5.9: The performance of AMCC, NL and SL on different number
of hidden neurons for the T2 problem. The optimization time in terms of
function evaluations is shown in (a) while the success rate is shown in (b).

186



 5000

 6000

 7000

 8000

 9000

 10000

 11000

3 4 5 6 7

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T3 Optimization Time 

AMCC
NL
SL

(a) Optimization time in terms of the number of function evaluations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

3 4 5 6 7

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T3 Success Rate 

AMCC

NL

SL

(b) Success rate in the T3 problem

Figure 5.10: The performance of AMCC, NL and SL on different number
of hidden neurons for the T3 problem. The optimization time in terms of
function evaluations is shown in (a) while the success rate is shown in (b).

187



 4000

 5000

 6000

 7000

 8000

 9000

 10000

3 4 5 6 7

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

T4 Optimization Time 

AMCC
NL
SL

(a) Optimization time in terms of the number of function evaluations

 0

 20

 40

 60

 80

 100

3 4 5 6 7

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

T4 Success Rate 

AMCC

NL

SL

(b) Success rate in the T4 problem

Figure 5.11: The performance of AMCC, NL and SL on different number
of hidden neurons for the T4 problem. The optimization time in terms of
function evaluations is shown in (a) while the success rate is shown in (b).

188



 5000

 6000

 7000

 8000

 9000

 10000

 11000

4 5 6 7 8

M
e

a
n

 F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

No. Hidden Neurons

FFA Optimization Time 

AMCC
NL
SL

(a) Optimization time in terms of the number of function evaluations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

4 5 6 7 8

S
u

c
c
e

s
s
 R

a
te

No. Hidden Neurons

FFA Success Rate 

AMCC

NL

SL

(b) Success rate in the FFA problem

Figure 5.12: The performance of AMCC, NL and SL on different number
of hidden neurons for the FFA problem. The optimization time in terms of
function evaluations is shown in (a) while the success rate is shown in (b).

189



190



Chapter 6

Application to Chaotic Time
Series Prediction

The aim of this chapter is to use cooperative coevolution problem decom-
position methods with adaptation for training recurrent neural networks
on chaotic time series problems. Therefore, this chapter is an application of
the methods from Chapters 3 and 5. The prediction of chaotic time series
is chosen as it has a wide range of applications such as in finance, signal
processing, power load, weather forecasting and sunspot prediction.

The chapter begins with an overview of time series prediction and
gives details for the cooperative co-evolutionary methods. The simulation
is presented and a discussion on the analysis of the results is given.

191



6.1 Introduction

The prediction of chaotic time series has a wide range of applications such
as in finance [38], signal processing [110], power load [108], weather fore-
cast [129], and sunspot prediction [117, 182, 67]. Chaos theory is used to
study the behaviour of dynamical systems that are highly sensitive to ini-
tial conditions such as noise and error [128, 205]. The initial conditions can
make large differences in the behaviour of the system. This is known as
the butterfly effect which makes long-term prediction difficult.

Artificial neural networks and related computational intelligence meth-
ods have been successfully deployed as models for chaotic time series pre-
diction. These include multilayer perception [4, 67], support vector ma-
chines [25], radial basis networks [67, 179], fuzzy and neuro-fuzzy meth-
ods [111, 103], wavelet neural networks [210], Elman recurrent neural net-
works [67, 144], evolutionary recurrent neural networks [136], neural fuzzy
network with cultural cooperative particle swarm optimisation [125] , non-
linear autoregressive model process with exogenous input (NARX) net-
works [47, 141] and hybrid of Elman and NARX networks with residual
analysis [3].

Adaptation of problem decomposition in different phases of evolution
has been effective for training feedforward neural networks on pattern
recognition problems and recurrent neural networks on grammatical in-
ference problems in Chapter 5. The results have shown that it is reason-
able to adapt the problem decomposition method which enforces different
levels of modularity during evolution. They showed that the neural net-
work training problem changes at different stages of evolution in terms of
the degree of non-separability.

This chapter employs the adaptive modularity cooperative coevolu-
tion method given in Chapter 5 for training recurrent neural networks on
chaotic time series problems. Chaotic time series problems have been cho-
sen as they are difficult to model and resemble many real-world predic-

192



tion problems [128, 110, 67]. Recurrent networks have been chosen for
this as they are good for modelling temporal sequences due to their ar-
chitectural properties. The Elman recurrent neural network [48] is used
and three different chaotic time series problems are used which consists
of two simulated and one real-world problem. The Lorenz and Mackey-
Glass are the simulated time series while the Sunspot is the real-world
time series. The G3-PCX evolutionary algorithm is employed in the sub-
populations of AMCC. The performance of AMCC is further compared
with neuron, synapse and network level problem decomposition methods.
The behaviour of the respective methods are evaluated on different neural
network topologies which are given by different numbers of hidden neu-
rons. The results are further compared with computational intelligence
methods from literature.

6.1.1 Embedding Theorem and Time Series Prediction

Embedding is the process of finding a space in which the dynamics are
smooth and no overlaps or intersections occur in the orbits of the attrac-
tor. Taken’s embedding theorem provides the conditions under which a
chaotic time series can be reconstructed into a D−dimensional vector with
two conditions which are the time delay and the embedding dimension [207].

Given an observed time series x(t), an embedded phase space Y (t) =

[(x(t), x(t − T ), ..., x(t(D − 1)T )] can be generated, where, T is the time
delay, N is the length of the original time series and D is the embedding
dimension, t = 0, 1, 2, ..., N −DT − 1 [207].

Taken’s theorem [207] expresses that the vector series reproduces many
important characteristics of the original time series. The right values for D
and T must be chosen in order to efficiently apply Taken’s theorem [57].
Taken’s proved that if the original attractor is of dimension d, then D =

2d+ 1 will be sufficient to reconstruct the attractor [207].

Several methods have been proposed in the past to determine the val-

193



ues for the embedding dimensions as discussed in [24]. Evolutionary al-
gorithms have also been used to determine the optimal values of the em-
bedding dimensions [136, 135].

The reconstructed vector is used to train the recurrent network for one-
step-ahead prediction where 1 neuron is used in the input and output
layer. In this way, the recurrent network can effectively take in account
of the input at the previous time steps. The recurrent network unfolds k

steps in time which is equal to the embedding dimension D [117, 144].
The root mean squared error (RMSE) and normalised mean squared

error (NMSE) are used to measure the prediction performance of the re-
current neural network. These are given in Equation 6.1 and Equation 6.2.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (6.1)

NMSE =

(∑N
i=1(yi − ŷi)

2∑N
i=1(yi − ȳi)2

)
(6.2)

where yi, ŷi and ȳi are the observed data, predicted data and average of
observed data, respectively. N is the length of the observed data.

6.2 Adaptation of Modularity

As given in Chapter 5, the general idea behind the adaptive modularity
cooperative coevolution (AMCC) method is to use the strength of a differ-
ent problem decomposition method which reflects on the degree of non-
separability when needed during evolution. AMCC employs modularity
(problem decomposition or encoding scheme) with a greater level of flex-
ibility (allowing evolution for separable search space) during the initial
stage and decreases the level of modularity during the later stages of evo-
lution.

The transformation is from synapse level to neuron level modularity

194



and finally to network level. Note that network level is standard neuro-
evolution where one population is used. This is given in the AMCC method
in Section 5.2.

The AMCC algorithm given in Chapter 5 worked well for the pattern
classification and grammatical inference problems. However, trial exper-
iments revealed that it had problems in time series problem due to the
different nature of the problem. Several trial experiments revealed that it
would be beneficial to migrate all the individuals of the subpopulations to
the next level of evolution. In the version of AMCC given in Chapter 5,
only the best individual was migrated to the next level.

The AMCC method presented in this section is similar, however, slightly
different. It transforms from one level of modularity into another based on
the training time rather than the neural network error. It employs synapse
level encoding for the first α portion of the maximum training time. It
then transforms into neuron level and then into network level and repeats
this level until termination. This is shown in Figure 6.1. The neuron and
network level are encoded for β portion of the total training time given by
number of function evaluations.

In the transformation from one level of encoding to another, all the in-
dividuals of the sub-populations are transferred rather than only the best
ones. In the case when the transfer is from synapse to neuron or neuron
to network level (transfer into higher levels), the transfer is done by sim-
ply merging all the individuals in the same position from the respective
sub-populations. The order is maintained and once merged; the fitness of
each individual is again evaluated. In the case when the transfer is from
network to neuron level (transfer to lower level), then the single popula-
tion of the network level is disintegrated into sub-populations and then
the fitness of the sub-populations is evaluated.

The AMCC method is given in Algorithm 8. Initially, all the sub-populations
of the synapse level, neuron level and network level encodings are ran-
domly initialised with random real values in a range. In Stage 1, the sub-

195



populations at the synapse level encoding are cooperatively evaluated.
The Neuron level and network level encodings are left to be cooperatively
evaluated at Stage 2.

Stage 1 employs synapse the level encoding where the sub-populations
are evolved until α portion of the maximum time. The sub-populations of
the synapse level encoding are merged into the neuron level. The individ-
uals with their fitness are transferred to the sub-populations of the neuron
level in Stage 2. The algorithm proceeds to the neuron and network level
encoding in Stage 2. All the sub-populations are cooperatively evaluated.
The neuron level encoding is then evolved for β portion of the maximum
time. The sub-populations for the neuron level are then merged into a
single population for the network level and evaluated. The network level
encoding is evolved for β portion of the maximum time. The population
of the network level is then broken down and encoded for the neuron level
evolution phase and evaluated. The procedure in Stage 2 is repeated until
the maximum training time has been reached or if the minimum network
error given by RMSE has been reached.

α and β determines the number of function evaluations the algorithm
will evolve at each level. Note that the main termination condition is given
by the maximum number of function evaluations. Therefore, alpha deter-
mines the portion of training time given to synapse level from the total
time. β = (1 − α)/n, where n is the desired number of transformations
in the evolution between neuron and network level. Neuron and network
level use the same β as they are meant to evolve for the same number of
function evaluations.

Cooperative evaluation of individuals in the respective sub-populations
is done by concatenating the chosen individual from a given sub-population
with the best individuals from the rest of the sub-populations. The con-
catenated individual is encoded into the recurrent neural network and the
fitness is calculated by the RMSE.

The transition of modularity has to ensure that the information gained

196



is transferred to the next level of encoding. Note that the number of sub-
populations at each level is different. The synapse level encoding has more
sub-populations than the neuron level, however, the individuals in the
sub-populations of the synapse level must be merged into neuron level.
The sub-populations are merged when the transformation is from synapse
to neuron level and from the neuron level to the network level. The trans-
formation from the network to neuron level requires the population to be
broken down and encoded as neuron level.

197



Alg. 8 Adaptive Modularity in Cooperative Coevolution
Stage 1: Synapse level encoding (SL)
Cooperatively evaluate Synapse level only

while FuncEval ≤ α× MaxGlobal do
foreach each Sub-population at Synapse level do

Create new offspring
Cooperative Evaluation

end
end
Stage 2: Neuron level (NL) and Network level (NetL) encoding
i. Merge individuals from Synapse level into Neuron level
ii. Cooperatively evaluate Neuron level
while FuncEval ≤ MaxGlobal do

while FuncEval ≤ β× MaxGlobal do
foreach each Sub-population at Neuron level do

Create new offspring
Cooperative Evaluation

end
end
i. Merge all individuals into Network level
ii. Evaluate Network level

while FuncEval ≤ β× MaxGlobal do
Create new offspring

end
i. Break all individuals from Network to Neuron level
ii. Evaluate Neuron level

end

198



Figure 6.1: The AMCC method used for training RNN on chaotic time
series. The sub-populations (SP) at synapse level and neuron level are
shown.

6.3 Simulation and Analysis

This section presents an experimental study of AMCC for training recur-
rent neural networks on chaotic time series problems. The neuron level
(NL) and synapse level (SL) and network level (NetL) problem decompo-
sition methods are used for comparison. The Mackey Glass times series
[138] and Lorenz time series [128] are the two simulated time series while
the real-world problem is the Sunspot time series [195]. The behaviour
of the respective methods are evaluated on different recurrent network
topologies. The results are further compared with computational intelli-
gence methods from literature. The details of the three different problems
are given as follows.

6.3.1 Problem description

The Mackay Glass time series has been used in literature as a benchmark
problem due to its chaotic nature [138]. The differential equation used to

199



generate the Mackey Glass time series is given in Equation 6.3.

δx

δt
=

ax(t− τ)

[1 + xc(t− τ)]
− bx(t) (6.3)

In Equation 6.3, the delay parameter τ determines the characteristic of
the time series, where τ > 16.8 produces chaos. The selected parameters
for generating the time series is taken from the literature [103, 179, 67, 3]
where the constants a = 0.2, b = 0.1 and c = 10. The chaotic time series is
generated by using time delay τ = 17 and initial value x(0) = 1.2.

The experiments use the chaotic time series with length of 1000 gener-
ated by Equation 6.3. The first 500 samples are used for training the Elman
network while rest of the 500 samples are used for testing. The time series
is scaled in the range [0,1]. The phase space of the original time series is
reconstructed with the embedding dimensions D = 3 and T = 2.

The Lorenz time series was introduced by Edward Lorenz who has
extensively contributed to the establishment of Chaos theory [128]. The
Lorenz equation are given in Equation 6.4.

dx(t)

dt
= σ[y(t)− x(t)]

dy(t)

dt
= x(t)[r − z(t)]− y(t)

dz(t)

dt
= x(t)y(t)− bz(t)

(6.4)

where η, r, and b are dimensionless parameters. The typical values of
these parameters are η = 10, r = 28, and b = 8/3 [5, 67, 136, 180, 3]. The
x-coordinate of the Lorenz time series is chosen for prediction and 1000
samples are generated. The time series is scaled in the range [-1,1]. The
first 500 samples are used for training and the remaining 500 is used for
testing. The phase space of the original time series is reconstructed with
the embedding dimensions D = 3 and T = 2.

The Sunspot time series is a good indication of the solar activities for
solar cycles which impacts Earth’s climate, weather patterns, satellite and

200



space missions [182]. The prediction of solar cycles is difficult due to its
complexity. The monthly smoothed Sunspot time series has been obtained
from the World Data Center for the Sunspot Index [195]. The Sunspot time
series from November 1834 to June 2001 is selected which consists of 2000
points. This interval has been selected in order to compare the perfor-
mance the proposed methods with those from literature [67, 3]. The time
series is scaled in the range [-1,1]. The first 1000 samples are used for
training while the remaining 1000 samples are used for testing. The phase
space of the original time series is reconstructed with the embedding di-
mensions D = 5 and T = 2.

Note that the scaling of the three time series in the range of [0,1] and
[-1,1] are done as in the literature in order to provide a fair comparison.

6.3.2 Experimental set-up

The Elman recurrent network employs sigmoid neurons in the hidden
layer of the three different problems. In the output layer, the sigmoid neu-
rons are used for the Mackey Glass time series while hyperbolic tangent
neuron is used for Lorenz and Sunspot time series. The RMSE and NMSE
given in Equation 6.1 and Equation 6.2 are used as the main performance
measures of the recurrent network.

The G3-PCX evolutionary algorithm [42] is employed in the respective
CC methods. The sub-populations are seeded with random real numbers
in the range of [-5, 5] in all the experiments. 50 individuals make up the
respective sub-populations. The G3-PCX is also used with the same pa-
rameters for training the recurrent networks with a single population for
network level encoding (NetL).

In the respective CC methods for recurrent networks (SL and NL) shown
in Algorithm 8, each sub-population is evolved for a fixed number of gen-
erations in a round-robin fashion. This is considered as the depth of search.
The results in Chapter 3 have shown that the depth of search of 1 genera-

201



tion gives optimal performance for both NL and SL encodings [29]. Hence,
1 is used as the depth of search in all the experiments. Note that all sub-
populations evolve for the same depth of search.

The termination condition of the three problems is when a total of 100
000 function evaluations has been reached by the respective evolutionary
training algorithm. α = 0.2 and β = 0.1 in the AMCC method given
in Algorithm 8. These values have been determined in trial experiments
using the respective time series datasets.

6.3.3 Results and discussion

This section reports the performance of AMCC for training the Elman re-
current network on the chaotic time series problems. Note that the best
performance is given by the least RMSE and NMSE.

Initially, the number of hidden neurons is empirically evaluated and
the mean and the best value of the RMSE is from 30 experimental runs.
The number of hidden neurons directly influences the difficulty of the
learning problem. It is more difficult to learn the problem if enough neu-
rons are not present in the hidden layer. The results of the test set are
shown in Tables 6.1 - 6.3 where the performances of AMCC, NL, SL, NetL
are given. The best results are highlighted in bold.

The best results from Tables 6.1 - 6.3 are chosen and further details are
given in Table 6.4 where the mean and 95 % confidence interval (CI) of
RMSE and NMSE is given with the best performance out of 30 experi-
mental runs. Note that the mean and CI is expressed using ± which is
equivalent to (µ - CI; µ + CI). The best mean prediction performance on
the test dataset is highlighted in Table 6.4 and shown in Figures 6.2 - 6.4.

202



Table 6.1: The prediction performance (RMSE) on the test dataset of the
Lorenz time series

SL NL NetL AMCC
Hidden Mean Best Mean Best Mean Best Mean Best

3 3.0E-2 1.2E-2 3.6E-2 1.8E-2 5.1E-2 2.1E-2 2.2E-2 1.1E-2
5 1.9E-2 6.4E-3 2.7E-2 9.1E-3 2.5E-2 8.6E-3 1.9E-2 6.8E-3
7 2.2E-2 7.0E-3 2.3E-2 9.7E-3 2.1E-2 9.4E-3 1.5E-2 7.6E-3
9 3.8E-1 9.8E-3 2.4E-2 5.0E-3 2.1E-2 8.7E-3 1.3E-2 5.1E-3
11 8.2E-1 1.2E-2 1.8E-2 8.2E-3 2.9E-2 1.1E-2 1.6E-2 6.9E-3
13 1.1 2.2E-2 1.8E-2 6.6E-3 3.2E-1 2.2E-1 1.7E-2 6.3E-3

Table 6.2: The performance (RMSE) on the test dataset of the Mackey Glass
time series

SL NL NetL AMCC
Hidden Mean Best Mean Best Mean Best Mean Best

3 2.1E-2 1.2E-2 2.3E-2 9.7E-3 3.0E-2 1.3E-2 1.8E-2 8.9E-3
5 1.5E-2 7.9E-3 2.0E-2 1.0E-2 1.5E-2 9.5E-3 1.5E-2 6.9E-3
7 1.4E-2 9.0E-3 1.6E-2 1.0E-2 1.4E-2 8.9E-3 1.2E-2 6.8E-3
9 1.2E-2 7.6E-3 1.4E-2 8.3E-3 1.2E-2 7.2E-2 1.2E-2 8.1E-3
11 1.0E-2 5.7E-3 1.3E-2 8.0E-3 2.1E-2 8.8E-3 1.1E-2 7.5E-3
13 9.4E-3 6.3E-3 1.2E-2 8.3E-3 9.6E-2 6.9E-2 1.3E-2 8.0E-3

203



Table 6.3: The performance (RMSE) on the test dataset of the Sunspot time
series

SL NL NetL AMCC
Hidden Mean Best Mean Best Mean Best Mean Best

3 6.9E-2 1.7E-2 5.6E-2 2.6E-2 9.2E-2 4.6E-2 4.4E-2 2.4E-2
5 1.0E-1 2.4E-2 7.5E-2 2.2E-2 7.2E-2 2.1E-2 7.9E-2 1.7E-2
7 1.0E-1 1.9E-2 5.9E-2 2.2E-2 5.7E-2 1.8E-2 8.0E-2 2.4E-2
9 1.3E-1 2.17E-2 8.9E-2 1.7E-2 7.7E-2 1.7E-2 7.4E-2 1.9E-2

204



Ta
bl

e
6.

4:
Th

e
pe

rf
or

m
an

ce
(R

M
SE

an
d

N
M

SE
)

of
A

M
C

C
,

N
L,

SL
,

an
d

N
et

L
on

th
e

te
st

da
ta

se
t

of
th

e
th

re
e

pr
ob

le
m

s.
Th

e
m

ea
n

an
d

95
%

co
nfi

de
nc

e
in

te
rv

al
(C

I)
is

gi
ve

n
w

it
h

th
e

be
st

pe
rf

or
m

an
ce

ou
t

of
30

in
de

pe
nd

en
te

xp
er

im
en

ta
lr

un
s.

R
M

SE
N

M
SE

Pr
ob

le
m

M
et

ho
d

H
id

de
n

M
ea

n
an

d
C

I
Be

st
M

ea
n

an
d

C
I

Be
st

M
ac

ke
y

SL
13

9.
39

E-
3
±

5.
57

E-
4

6.
33

E-
3

6.
31

E-
4
±

7.
60

E-
5

2.
79

E-
4

N
L

13
1.

23
E-

2
±

9.
16

E-
4

8.
28

E-
3

1.
11

E-
3
±

1.
77

E-
4

4.
77

E-
4

EA
9

1.
19

E-
2
±

9.
47

E-
4

7.
24

E-
3

1.
04

E-
3
±

1.
69

E-
4

3.
65

E-
4

A
M

C
C

11
1.

11
E-

2
±

1.
01

E-
3

7.
53

E-
3

9.
17

E-
4
±

1.
78

E-
4

3.
90

E-
4

Lo
re

nz
SL

5
1.

95
E-

2
±

2.
59

E-
3

6.
36

E-
3

8.
28

E-
3
±

1.
98

E-
3

7.
72

E-
4

N
L

11
1.

82
E-

2
±

2.
82

E-
3

8.
20

E-
3

7.
48

E-
3
±

2.
60

E-
3

1.
28

E-
3

EA
7

2.
06

E-
2
±

2.
79

E-
3

9.
43

E-
3

9.
24

E-
3
±

2.
83

E-
3

1.
69

E-
3

A
M

C
C

9
1.

35
E-

2
±

2.
01

E-
3

5.
06

E-
3

4.
04

E-
3
±

1.
31

E-
3

4.
88

E-
4

Su
ns

po
t

SL
3

6.
88

E-
2
±

2.
66

E-
2

1.
66

E-
2

5.
48

E-
2
±

5.
19

E-
2

1.
47

E-
3

N
L

3
5.

58
E-

2
±

8.
01

E-
3

2.
60

E-
2

1.
92

E-
2
±

5.
3e

E-
3

3.
62

E-
3

EA
7

5.
74

E-
2
±

1.
14

E-
2

1.
82

E-
2

2.
28

E-
2
±

1.
07

E-
2

1.
76

E-
3

A
M

C
C

3
4.

39
E-

2
±

5.
61

E-
3

2.
41

E-
2

1.
16

E-
2
±

3.
05

E-
3

3.
11

E-
3

205



The performances of the given methods are first evaluated in terms of
the mean results. In the results for the Mackey time series, SL gives the best
performance in terms of the RMSE, however, AMCC performance is close
to SL. NL and SL use the same number of hidden neurons (13), however,
the performance of SL is better. The results for the Lorenz time series in
Table 6.4 show that AMCC gives the best performance with 9 hidden neu-
rons in terms of RMSE when compared to the other methods. Note that
each method has its strengths with different number of hidden neurons.
SL performs best with the least number of hidden neurons (5) while NL re-
quires the most number of hidden neurons (11 and 13). NetL performs the
best with 7 hidden neurons. This is due to the difference in their encoding
schemes and the application problem. Although the Mackey and Lorenz
time series are both chaotic in nature, they have different characteristics
that contribute to the nature of the network training problems in terms of
non-separability and the balance between global and local search. In the
Sunspot time series, the AMCC gives the best performance with 3 hidden
neurons. Note that this is a real-world problem that contains noise.

AMCC has shown to better maintain its performance with different
number of hidden neurons as compared to other problem decomposition
methods shown in Tables 6.1 - 6.3. This reflects on scalability and robust-
ness. The other methods (SL, NL and NetL) have greater difference when
the best results are compared to the worst ones in terms of the number of
hidden neurons.

Figures 6.2 - 6.4 show that the RNN has been able to give good predic-
tion performance. The RNN has been able to cope with the noise in the
Sunspot time series given in Figure 6.4.

206



-1

-0.5

 0

 0.5

 1

 0  50  100  150  200  250

O
rig

in
al

 v
s 

P
re

di
ct

io
n

Time

   

Predicted
Original

(a) Performance on the training dataset

-1

-0.5

 0

 0.5

 1

 0  50  100  150  200  250

O
rig

in
al

 v
s 

P
re

di
ct

io
n

Time

   

Predicted
Original

(b) Performance on the test dataset

Figure 6.2: Typical prediction given by AMCC for Lorenz time series

207



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  50  100  150  200  250

O
rig

in
al

 v
s 

P
re

di
ct

io
n

Time

   

Predicted
Original

(a) Performance on the training dataset

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  50  100  150  200  250

O
rig

in
al

 v
s 

P
re

di
ct

io
n

Time

   

Predicted
Original

(b) Performance on the test dataset

Figure 6.3: Typical prediction given by AMCC for Mackey Glass time se-
ries

208



-1

-0.5

 0

 0.5

 1

 0  50  100  150  200  250  300  350  400  450  500

O
rig

in
al

 v
s 

P
re

di
ct

io
n

Time

   

Predicted
Original

(a) Performance on the training dataset

-1

-0.5

 0

 0.5

 1

 0  50  100  150  200  250  300  350  400  450  500

O
rig

in
al

 v
s 

P
re

di
ct

io
n

Time

   

Predicted
Original

(b) Performance on the test dataset

Figure 6.4: Typical prediction given by AMCC for Sunspot time series

209



Ta
bl

e
6.

5:
A

co
m

pa
ri

so
n

w
it

h
th

e
re

su
lt

s
fr

om
th

e
lit

er
at

ur
e

[6
7,

14
4,

3]
on

th
e

Lo
re

nz
ti

m
e

se
ri

es

Pr
ed

ic
ti

on
M

et
ho

d
R

M
SE

N
M

SE
Ps

eu
do

G
au

ss
ia

n
-r

ad
ia

lb
as

is
ne

ur
al

ne
tw

or
k

(2
00

2)
9.

40
E-

02
R

ad
ia

lb
as

is
ne

tw
or

k
w

it
h

or
th

og
on

al
le

as
ts

qu
ar

es
(R

BF
-O

LS
)(

20
06

)[
67

]
1.

41
E-

09
Lo

ca
lly

lin
ea

r
ne

ur
o-

fu
zz

y
m

od
el

-L
oc

al
ly

lin
ea

r
m

od
el

tr
ee

(L
LN

F-
Lo

Li
M

ot
)(

20
06

)[
67

]
9.

80
E-

10
Bo

os
te

d
re

cu
rr

en
tn

eu
ra

ln
et

w
or

ks
(2

00
6)

[5
]

3.
77

E-
03

Ev
ol

ut
io

na
ry

R
N

N
(2

00
7)

[1
36

]
8.

79
E-

06
9.

90
E-

10
A

ut
o

re
gr

es
si

ve
m

ov
in

g
av

er
ag

e
w

it
h

ne
ur

al
ne

tw
or

k
(A

R
M

A
-A

N
N

)(
20

08
)[

18
0]

8.
76

E-
02

Ba
ck

pr
op

ag
at

io
n-

th
ro

ug
h-

ti
m

e
(B

PT
T-

R
N

N
)(

20
10

)[
14

4]
1.

85
E-

03
R

ea
lt

im
e

re
cu

rr
en

tl
ea

rn
in

g
(R

T
R

L-
R

N
N

)(
20

10
)[

14
4]

1.
72

E-
03

R
ec

ur
si

ve
Ba

ye
si

an
Le

ve
nb

er
gM

ar
qu

ar
dt

(R
BL

M
-R

N
N

)(
20

10
)[

14
4]

9.
0E

-0
4

H
yb

ri
d

N
A

R
X

-E
lm

an
R

N
N

w
it

h
R

es
id

ua
lA

na
ly

si
s

(2
01

0)
[3

]
1.

08
E-

04
1.

98
E-

10
Ba

ck
pr

op
ag

at
io

n
ne

ur
al

ne
tw

or
k

an
d

ge
ne

ti
c

al
go

ri
th

m
s

w
it

h
re

si
du

al
an

al
ys

is
(2

01
1)

[4
]

2.
96

E-
02

Pr
op

os
ed

SL
-C

C
R

N
N

6.
36

E-
03

7.
72

E-
04

Pr
op

os
ed

N
L-

C
C

R
N

N
8.

20
E-

03
1.

28
E-

03
Pr

op
os

ed
A

M
C

C
-R

N
N

5.
06

E-
03

4.
88

E-
04

210



Ta
bl

e
6.

6:
A

co
m

pa
ri

so
n

w
it

h
th

e
re

su
lt

s
fr

om
th

e
lit

er
at

ur
e

[5
,3

,4
]o

n
th

e
M

ac
ke

y
G

la
ss

ti
m

e
se

ri
es

Pr
ed

ic
ti

on
M

et
ho

d
R

M
SE

N
M

SE
A

ut
or

eg
re

ss
iv

e
m

od
el

1.
9E

-0
1

Ba
ck

pr
op

ag
at

io
n

ne
ur

al
ne

tw
or

k
2.

0E
-0

2
C

as
ca

de
co

rr
el

at
io

n
ne

tw
or

k
6.

0E
-0

2
A

da
pt

iv
e

ne
ur

o
fu

zz
y

in
fe

re
nc

e
sy

st
em

(A
N

FI
S)

(1
99

3)
[1

03
]

1.
5E

-0
3

G
en

et
ic

fu
zz

y
pr

ed
ic

to
r

en
se

m
bl

e
(1

99
7)

[1
11

]
3.

8E
-0

2
Ps

eu
do

G
au

ss
ia

n
-r

ad
ia

lb
as

is
ne

ur
al

ne
tw

or
k

(2
00

2)
[1

79
]

2.
8E

-0
3

A
ut

o
re

gr
es

si
ve

m
ov

in
g

av
er

ag
e

w
it

h
ne

ur
al

ne
tw

or
k

(A
R

M
A

-A
N

N
)(

20
08

)[
18

0]
2.

5E
-0

3
R

ad
ia

lb
as

is
ne

tw
or

k
w

it
h

or
th

og
on

al
le

as
ts

qu
ar

es
(R

BF
-O

LS
)(

20
06

)[
67

]
1.

02
E-

03
Lo

ca
lly

lin
ea

r
ne

ur
o-

fu
zz

y
m

od
el

-L
oc

al
ly

lin
ea

r
m

od
el

tr
ee

(L
LN

F-
Lo

Li
M

ot
)(

20
06

)[
67

]
9.

61
E-

04
Bo

os
te

d
re

cu
rr

en
tn

eu
ra

ln
et

w
or

ks
(2

00
6)

[5
]

1.
60

E-
04

Ev
ol

ut
io

na
ry

R
N

N
(2

00
7)

[1
36

]
3.

15
E-

08
N

eu
ra

lf
uz

zy
ne

tw
or

k
an

d
hy

br
id

of
cu

lt
ur

al
al

go
ri

th
m

an
d

co
op

er
at

iv
e

pa
rt

ic
le

sw
ar

m
op

ti
m

is
at

io
n

(C
C

PS
O

)(
20

09
)[

12
5]

8.
42

E-
03

N
eu

ra
lf

uz
zy

ne
tw

or
k

an
d

pa
rt

ic
le

sw
ar

m
op

ti
m

is
at

io
n

(P
S0

)(
20

09
)[

12
5]

2.
10

E-
02

N
eu

ra
lf

uz
zy

ne
tw

or
k

an
d

co
op

er
at

iv
e

pa
rt

ic
le

sw
ar

m
op

ti
m

is
at

io
n

(C
PS

0)
(2

00
9)

[1
25

]
1.

76
E-

02
N

eu
ra

lf
uz

zy
ne

tw
or

k
an

d
di

ff
er

en
ti

al
ev

ol
ut

io
n

(D
E)

(2
00

9)
[1

25
]

1.
62

E-
02

N
eu

ra
lf

uz
zy

ne
tw

or
k

an
d

ge
ne

ti
c

al
go

ri
th

m
(G

A
)(

20
09

)[
12

5]
1.

63
E-

02
H

yb
ri

d
N

A
R

X
-E

lm
an

R
N

N
w

it
h

R
es

id
ua

lA
na

ly
si

s
(2

01
0)

[3
]

3.
72

E-
05

2.
70

E-
08

Ba
ck

pr
op

ag
at

io
n

ne
ur

al
ne

tw
or

k
an

d
ge

ne
ti

c
al

go
ri

th
m

s
w

it
h

re
si

du
al

an
al

ys
is

(2
01

1)
[4

]
1.

30
E-

03
Pr

op
os

ed
SL

-C
C

R
N

N
6.

33
E-

03
2.

79
E-

04
Pr

op
os

ed
N

L-
C

C
R

N
N

8.
28

E-
03

4.
77

E-
04

Pr
op

os
ed

A
M

C
C

-R
N

N
7.

53
E-

03
3.

90
E-

04

211



Ta
bl

e
6.

7:
A

co
m

pa
ri

so
n

w
it

h
th

e
re

su
lt

s
fr

om
th

e
lit

er
at

ur
e

[6
7,

3]
on

th
e

Su
ns

po
tt

im
e

se
ri

es

Pr
ed

ic
ti

on
M

et
ho

d
R

M
SE

N
M

SE
Se

llo
no

nl
in

ea
r

m
et

ho
d

[1
82

]
3.

40
E-

01
W

al
dm

ei
er

[1
82

]
5.

60
E-

01
M

cN
is

h-
Li

nc
ol

n
[1

82
]

8.
00

E-
02

M
ul

ti
-l

ay
er

pe
rc

ep
tr

on
(1

99
6)

[1
17

]
9.

79
E-

02
El

m
an

R
N

N
(1

99
6)

[1
17

]
9.

79
E-

02
FI

R
N

et
w

or
k

(M
LP

)(
19

96
)[

11
7]

2.
57

E-
01

W
av

el
et

pa
ck

et
m

ul
ti

la
ye

r
pe

rc
ep

tr
on

(2
00

1)
[2

10
]

1.
25

E-
01

R
ad

ia
lb

as
is

ne
tw

or
k

w
it

h
or

th
og

on
al

le
as

ts
qu

ar
es

(R
BF

-O
LS

)(
20

06
)[

67
]

4.
60

E-
02

Lo
ca

lly
lin

ea
r

ne
ur

o-
fu

zz
y

m
od

el
-L

oc
al

ly
lin

ea
r

m
od

el
tr

ee
(L

LN
F-

Lo
Li

M
ot

)(
20

06
)[

67
]

3.
20

E-
02

H
yb

ri
d

N
A

R
X

-E
lm

an
R

N
N

w
it

h
R

es
id

ua
lA

na
ly

si
s

(2
01

0)
[3

]
1.

19
E-

02
5.

90
E-

04
Pr

op
os

ed
SL

-C
C

R
N

N
1.

66
E-

02
1.

47
E-

03
Pr

op
os

ed
N

L-
C

C
R

N
N

2.
60

E-
02

3.
62

E-
03

Pr
op

os
ed

A
M

C
C

-R
N

N
2.

41
E-

02
3.

11
E-

03

212



The performance of the cooperative coevolution methods on the differ-
ent problems are then compared to some of the results published in litera-
ture as shown in Tables 6.5 - 6.7. The best values from the results in Table
6.4 are used to compare with the results from literature. Note that the re-
sults from literature use the same dataset with different neural network
architectures (feedforward and recurrent). These neural networks are also
trained using hybrid training methods and hybrid neural network archi-
tectures are also used. Therefore a fair comparison with literature is not
possible as the proposed methods only deals with a single training algo-
rithm. Some of the methods from literature have more advantage in terms
of network architecture and training algorithms than the proposed meth-
ods.

In Table 6.5, the performance of the cooperative coevolution methods
are better than some of the existing methods. However, the best results
are of the evolutionary recurrent neural network (ERNN)[136] and the
Hybrid NARX-Elman network [3]. These are also seen for the Mackey
Glass time series given in Table 6.6. This is because the ERNN has also
optimised the values for the embedding dimensions for the phase space
reconstruction. The Hybrid NARX-Elman network has the advantage of
architectural properties of the two methods (NARX and Elman network)
with residual analysis which further improves the results. These methods
can be combined with the proposed method in future work to improve the
results.

In Table 6.6, the proposed methods have given better performance than
similar evolutionary approaches such as training neural fuzzy networks
with hybrid of cultural algorithms and cooperative particle swarm optimi-
sation (CCPSO), cooperative particle swarm optimisation (CPSO), genetic
algorithms and differential evolution (DE) [125]. In Table 6.7, the proposed
methods have given better performance than most of the methods from lit-
erature with the only exception being the Hybrid NARX-Elman networks
[3].

213



6.4 Chapter Summary

This chapter has introduced problem decomposition in cooperative coevo-
lution to the field of chaotic time series prediction. The original time series
have been embedded in state space using the embedding theorem. Recur-
rent neural networks have been trained by cooperative co-evolutionary
problem decomposition methods for the prediction of chaotic time series
which include Lorenz, Mackey Glass and Sunspot time series.

The cooperative coevolution methods for chaotic time series problems
have shown promising results. The next chapter concludes the thesis with
discussion on future research.

214



Chapter 7

Conclusions and Future Work

Problem decomposition and adaptation have been the major focus of the
thesis. This chapter concludes the results and discussion from Chapters
3-6 with directions for future research.

7.1 Conclusions

Problem decomposition, local search and modularity adaptation have been
used for enhancing cooperative neuro-evolution with application for the
prediction of chaotic time series. The overall research goal of this the-
sis was to explore and improve problem decomposition and adaptation
in cooperative neuro-evolution of feedforward and recurrent networks.
The overall research goal has been achieved and the following conclusions
have been reached for each of the contributions in the thesis.

7.1.1 Problem decomposition

In Chapter 3, an analysis on the degree of non-separability for feedfor-
ward networks has been given. A problem decomposition method called
neuron-based sub-population (NSP) has been introduced and used for
training feedforward and recurrent neural networks.

215



1. In feedforward networks, NSP has achieved better performance than
other encoding schemes in terms of the optimisation time and the
success rate for all the given problems. The major advantage of NSP
is that it can represent the same problem in a smaller number of sub-
components than the synapse level encoding and at the same time it
provides better training performance. NSP also exhibits good scaling
properties for different numbers of hidden neurons.

2. In recurrent networks, NSP has shown better properties than synapse
level encoding in terms of the total optimisation time for grammati-
cal inference problems. There have been some cases where the synapse
level encoding performed better in terms of the success rate. This
has been observed for different network topologies, which indicates
that the degree of non-separability also changes with the size of the
neural network. In these cases, the synapse level encoding has been
more appropriate. This has motivated the adaptation of modularity
during evolution for a more robust method.

3. In feedforward networks, NSP has shown to efficiently decompose
the problem by grouping interacting variables into separate subcom-
ponents. The depth of search directly relates to the degree of non-
separability. A good performance with a large depth of search indi-
cates that there is little interaction among the subcomponents during
evolution and the problem decomposition method has been effec-
tive. This has also been the case for recurrent neural networks.

4. In feedforward networks, NSP provided better performance than
CME due to the following reasons. 1) NSP provides more diver-
sity than CME, hence it is less prone to local convergence. 2) NSP
groups the interacting variables in the output layer weights which is
not done by CME. It has been shown in Section 3.1.1 that the output
layer weights interact with each other and it is important to group
them as done in NSP.

216



5. Synapse level has more diversity, but does not have any feature of
grouping interacting variables. The neural network problem is par-
tially separable and requires interacting variables to be grouped which
is not possible through synapse level problem decomposition.

7.1.2 Memetic cooperative neuro-evolution

In Chapter 4, a novel method for incorporating local search into a memetic
cooperative neuro-evolution method has been introduced for evolving feed-
forward and recurrent networks. Crossover-based local search has been
used as the local search method. .

The main problem in this chapter was to efficiently utilise local search
in the respective sub-populations. This problem has been efficiently solved
through the framework which decomposes the locally refined solution
and incorporates it into the sub-populations. The memetic framework pro-
gresses with a global search through diversity given by the sub-populations
of cooperative coevolution, and as a specified time is reached (in terms of
local search interval), the algorithm incorporates local search into the sub-
populations.

1. In feedforward networks, the memetic cooperative coevolution method
has performed better for all the given problems when compared to
the performance of cooperative coevolution alone. This opens the
road for further research in using other local search methods.

2. In all of the problems used in feedforward and recurrent networks,
the best results have been given when the memetic cooperative co-
evolution method used the local search interval of 1 implying that lo-
cal search is most frequently needed. The local search intensity must
be tailored for different problems. The memetic cooperative coevolu-
tion method gave better performance than conventional cooperative
neuro-evolution. The method is general, therefore, any evolutionary

217



algorithm in the subpopulations can be used with any suitable local
search depending on the application.

3. The memetic framework also provides the feature of co-adaptation
among the sub-populations of cooperative coevolution using the lo-
cal search population. This local search population provides the
means for selected individuals to be exchanged with different sub-
populations using the crossover operation in the local search popu-
lation.

7.1.3 Adaptation of Modularity

In Chapter 5, the adaptation of modularity in cooperative neuro-evolution
is done by employing different levels of problem decomposition in the
evolutionary process.

1. In feedforward and recurrent networks, the adaptive modularity method
gave better performance than the neuron and synapse level problem
decomposition. The proposed adaptive modularity method adapts
from one level of problem decomposition to another based on the
change of error of the neural network during the evolutionary pro-
cess. The heuristic for determining the change in modularity reduces
the additional computational cost of parameter setting for the net-
work architecture and the problem.

2. The main strength of the AMCC in feedforward and recurrent net-
works is its ability to perform better than the other methods when
the problem size has been increased. AMCC performed better than
the other methods with different number of hidden neurons. The na-
ture of some problems changes when the dimension of the problem
is increased. For instance, the Rosenbrock function is uni-modal for
3 dimensions and multi-modal for greater than 3 dimensions. The
change in the number of hidden neurons of the network also alters

218



its nature in terms of multi-modality and adaptation is necessary in
the evolutionary process.

3. The results have also shown that the nature of neural network train-
ing changes during evolution in terms of the degree of non-separability
increases which further validates the analysis shown in Section 3.1.1
of Chapter 3.

7.1.4 Application to Chaotic Time Series Prediction

In Chapter 6, the cooperative coevolution problem decomposition meth-
ods with adaptive modularity have been used for training recurrent neural
networks for chaotic time series predictions. The Lorenz, Mackey Glass
and real-world Sunspot time series have been used and the results have
been compared to other computational methods from literature.

1. The two different problem decomposition methods (synapse and neu-
ron level) in cooperative coevolution have performed better than
a standard evolutionary algorithm (network level) in general. The
adaptation of problem decomposition has shown to be beneficial in
some cases. The results show that the given methods have been able
to predict chaotic time series with good level of accuracy. The co-
evolutionary methods have performed very well on the real world
Sunspot time series that contain noise.

2. The comparison of results with literature has shown that the pro-
posed cooperative coevolution methods performed better than sev-
eral other methods. However, it has not outperformed some meth-
ods that have additional enhancements such as the optimisation of
the embedding dimensions and strength of architectural properties
of hybrid neural networks with residual analysis [136, 3]. These can
be added to cooperative coevolution to further improve the results.
The cooperative coevolution methods outperformed several other

219



methods on the real-world Sunspot time series that contained noise.
This reflects on robustness.

7.2 Further Findings and Discussion

Apart from the major conclusions which have fulfilled the research goals,
there are other findings which are discussed as follows.

1. In neural networks, interacting variables exist that determine the de-
gree of non-separability. The degree of non-separability depends
on the particular neural network architecture and application prob-
lem. Different degrees of non-separability are exhibited by the dif-
ferent problem decomposition methods as they give varied perfor-
mance for the problems in feedforward and recurrent networks. The
synapse level encoding views the neural network as a fully separable
problem as it employs a separate subcomponent for each synapse.
Network level encoding views the network as fully non-separable,
while ESP and NSP views the network as partially separable. The
success of NSP shows that the given neural network problems are
partially separable.

2. The depth of search in the subcomponents made a major difference
for synapse level encoding in feedforward and recurrent networks.
A significant difference in performance was not observed in NSP
than the other neuron level encodings such as CME and ESP. This im-
plies that the neuron level encodings are able to group the interacting
variables more efficiently in the partially separable neural network
problem. The synapse level encoding does not provide any grouping
of interacting variables. Therefore, the depth of 1 generation enables
the synapse level encoding to deal with the higher level of separabil-
ity. A larger depth of search in synapse level encoding would have
given good performance if the problem was fully separable.

220



3. In both cases (feedforward and recurrent networks), it has been ob-
served that the nature of the problem changes as the problem is being
learnt. Apart from the problem nature in terms of multi-modality,
the nature of the problem changes in terms of the degree of separa-
bility. The success of the proposed adaptive modularity method indi-
cates that during the later stages of evolution, the bond between the
interacting variables increases and the problem becomes more non-
separable which requires larger subcomponents, and finally, evolu-
tion with a single population only. This is the main reason that stan-
dard cooperative co-evolution problem decomposition methods like
neuron level and synapse level encoding failed to perform as they
had a fixed problem decomposition method throughout entire evo-
lution.

7.3 Limitations

The limitations of the methods developed in this thesis are as follows.

1. In the proposed cooperative coevolution methods, there has not been
any means of ensuring that diversity is retained in the search pro-
cess. Diversity can be maintained by employing some distance mea-
surements among the individuals in the sub-populations and also by
adapting the number of hidden neurons during evolution.

2. The results have been presented in a way where premature conver-
gence is separated from late convergence. The success rate measures
the robustness of the methods, however it does not distinguish the
type of convergence (either premature or later convergence) in un-
successful runs. This measurement can help in analyzing the existing
approaches to further enhance them in future research.

3. In AMCC, it would be useful to examine the number of times the
ChangeMod is fired in the evolutionary process, i.e, the number of

221



times NL and NetL levels are employed before convergence. This
information will be useful in designing improvements in the AMCC
method in future research.

4. Although evolutionary computation methods are known to be global
optimization methods; their use for neuro-evolution would require
more computational time when compared with gradient based meth-
ods. The application of these methods is intended for problems where
the use of gradient descent based methods have local convergence.

7.4 Future Research Directions

1. The proposed memetic cooperative coevolution framework has per-
formed better for all the given problems when compared to the per-
formance of standard cooperative coevolution. This opens the road
for further research in using other local search methods. In the case
of training neural networks, back-propagation can also be utilised.
It can replace the crossover-based local search or be used as an ad-
ditional tool. This will enable the memetic cooperative coevolution
method to incorporate gradient information from back-propagation
into the evolutionary search process. In the case of recurrent neural
networks, backpropagation-through time can be used.

2. The interacting variables from the training data also has some effect
on neural network training. This has been observed for the four dif-
ferent problems for the case of feedforward networks where the dif-
ferent modularity adaptation methods (2-Stage and 3-Stage) showed
different performance exhibiting their strengths and limitations. For
instance, in the 4-bit parity problem, the 3-Stage framework has been
effective and for the Wine classification, the 2-Stage framework has
been effective. This shows that the training data is a major factor in
determining the change of modularity. Hence, future work can be

222



directed towards building neural network architectures and training
algorithms that consider the nature of the training data; i.e. depen-
dencies among the attributes in the training data.

3. Neural network training requires a global search in the initial stage
and a local search in the final stage for further refining the solution.
The two main issues of concern, 1) global and local search and 2) de-
gree of non-separability. In most problems, a global search is needed
in the beginning and refinements using local search is required dur-
ing the final stages. The second issue is the balance in the degree of
the non-separability. There seems to be a relationship between these
global and local search and the degree of non-separability. Future
research questions can relate on how the degree of non-separability
affects global-local search.

4. The performance of cooperative coevolution on chaotic time series
problems compares well with the results given by other computa-
tional intelligence techniques from literature. This motivates fur-
ther research in using evolutionary computation methods for chaotic
time series prediction. The results can be further improved by incor-
porating boosting techniques, gradient based local search, residual
analysis and evolving the neural network topology during evolu-
tion.

5. In future work, it will be interesting to apply the proposed methods
for other real-world applications such as speech recognition, gesture
recognition and signature verification using neural networks. The
same method can also be used for training other neural network
architectures and also be extended for general global optimisation
problems.

223



224



Bibliography

[1] A., K., AND A., H. J. A simple weight decay can improve general-
ization. In Advances in Neural Information Processing Systems (1992),
pp. 950–957.

[2] ANGELINE, P., SAUNDERS, G., AND POLLACK, J. An evolutionary
algorithm that constructs recurrent neural networks. IEEE Transac-
tions on Neural Networks 5, 1 (1994), 54 –65.

[3] ARDALANI-FARSA, M., AND ZOLFAGHARI, S. Chaotic time series
prediction with residual analysis method using hybrid elman-narx
neural networks. Neurocomputing 73, 13-15 (2010), 2540 – 2553.

[4] ARDALANI-FARSA, M., AND ZOLFAGHARI, S. Residual analysis
and combination of embedding theorem and artificial intelligence in
chaotic time series forecasting. Appl. Artif. Intell. 25 (January 2011),
45–73.

[5] ASSAAD, M., BON, R., AND CARDOT, H. Predicting chaotic time
series by boosted recurrent neural networks. In Neural Information
Processing, I. King, J. Wang, L.-W. Chan, and D. Wang, Eds., vol. 4233
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2006, pp. 831–840.

[6] ASUNCION, A., AND NEWMAN, D. UCI machine learning reposi-
tory, 2007.

225



[7] AUGER, A., AND HANSEN, N. Performance Evaluation of an Ad-
vanced Local Search Evolutionary Algorithm. In IEEE Congress on
Evolutionary Computation (2005), pp. 1777–1784.

[8] BAKER, J. E. Reducing bias and inefficiency in the selection algo-
rithm. In Proc. of the 2nd Intl Conf on GA (1987), Lawrence Erlbaum
Associates, Inc. Mahwah, NJ, USA, pp. 14–21.

[9] BARRICELLI, N. A. Esempi numerici di processi di evoluzione, 1954.

[10] BAUM, E. B., AND HAUSSLER, D. What size net gives valid gener-
alization? Neural Comput. 1 (March 1989), 151–160.

[11] BEASLEY, D., BULL, D. R., AND MARTIN, R. R. A sequential niche
technique for multimodal function optimization. Evol. Comput. 1, 2
(1993), 101–125.

[12] BELLMAN, R. E. Adaptive control processes: a guided tour. Princeton
University Press, 1961.

[13] BENGIO, Y., SIMARD, P., AND FRASCONI, P. Learning long-term
dependencies with gradient descent is difficult. IEEE Trans. Neural
Networks 5, 2 (1994), 157–166.

[14] BENNETT, K. P., AND PARRADO-HERNÁNDEZ, E. The interplay of
optimization and machine learning research. J. Mach. Learn. Res. 7
(December 2006), 1265–1281.

[15] BLANCO, A., DELGADO, M., AND PEGALAJAR, M. C. A real-coded
genetic algorithm for training recurrent neural networks. Neural
Netw. 14, 1 (2001), 93–105.

[16] BLANCO, A., DELGADO, M., AND PEGALAJAR, M. C. A real-coded
genetic algorithm for training recurrent neural networks. Neural
Netw. 14, 1 (2001), 93–105.

226



[17] BLUM, A. L., AND RIVEST, R. L. Training a 3-node neural network
is np-complete. Neural Networks 5, 1 (1992), 117 – 127.

[18] BLUM, C., AND ROLI, A. Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACM Comput. Surv. 35
(September 2003), 268–308.

[19] BLUM, C., AND ROLI, A. Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACM Comput. Surv. 35
(2003), 268–308.

[20] BROOKSHEAR, J. G. Theory of computation: formal languages, automata,
and complexity. Benjamin-Cummings Publishing Co., Inc., Redwood
City, CA, USA, 1989.

[21] BUK, Z., KOUTNÍK, J., AND SNOREK, M. Neat in hyperneat substi-
tuted with genetic programming. In ICANNGA (2009), pp. 243–252.

[22] CAI, X., ZHANG, N., VENAYAGAMOORTHY, G. K., AND WUN-
SCH, II, D. C. Time series prediction with recurrent neural net-
works trained by a hybrid PSO-EA algorithm. Neurocomput. 70, 13-
15 (2007), 2342–2353.

[23] CANT-PAZ, E., AND KAMATH, C. An empirical comparison of com-
binations of evolutionary algorithms and neural networks for classi-
fication problems. IEEE Transactions on systems, man and cybernetics-
Part B: Cybernetics 35, 5 (2005), 915–933.

[24] CAO, L. Practical method for determining the minimum embedding
dimension of a scalar time series. Physica D: Nonlinear Phenomena
110, 1-2 (1997), 43 – 50.

[25] CAO, L. Support vector machines experts for time series forecasting.
Neurocomputing 51 (2003), 321 – 339.

227



[26] CASTAO, M. A., VIDAL, E., AND CASACUBERTA, F. Finite state
automata and connectionist machines: A survey. In IWANN (1995),
J. Mira and F. S. Hernndez, Eds., Lecture Notes in Computer Science,
Springer, pp. 433–440.

[27] CHANDRA, R., FREAN, M., AND ZHANG, M. An encoding scheme
for cooperative coevolutionary feedforward neural networks. In AI
2010: Advances in Artificial Intelligence, J. Li, Ed., vol. 6464 of Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg, 2011,
pp. 253–262.

[28] CHANDRA, R., FREAN, M., ZHANG, M., AND OMLIN, C. Build-
ing subcomponents in the cooperative coevolution framework for
training recurrent neural networks. Technical Report ECSTR09-14,
School of Engineering and Computer Science, Victoria University of
Wellington, New Zealand, 2009.

[29] CHANDRA, R., FREAN, M., ZHANG, M., AND OMLIN, C. W. Encod-
ing subcomponents in cooperative co-evolutionary recurrent neural
networks. Neurocomputing In Press (2011).

[30] CHANDRA, R., AND OMLIN, C. W. Training and extraction of fuzzy
finite state automata in recurrent neural networks. In Proc. of Inter-
national Conference on Computational Intelligence (2006), pp. 274–279.

[31] CHANDRA, R., AND OMLIN, C. W. The comparison and combi-
nation of genetic and gradient descent learning in recurrent neural
networks: An application to speech phoneme classification. In Proc.
of International Conference on Artificial Intelligence and Pattern Recogni-
tion (2007), pp. 286–293.

[32] CHELOUAH, R., AND SIARRY, P. Genetic and nelder-mead algo-
rithms hybridized for a more accurate global optimization of contin-

228



uous multiminima functions. European Journal of Operational Research
148, 2 (2003), 335 – 348. Sport and Computers.

[33] CHEN, W., WEISE, T., YANG, Z., AND TANG, K. Large-scale global
optimization using cooperative coevolution with variable interac-
tion learning. In Proceedings of the 11th international conference on Par-
allel problem solving from nature: Part II (Berlin, Heidelberg, 2010),
Springer-Verlag, pp. 300–309.

[34] COBB, H. G., AND GREFENSTETTE, J. J. Genetic algorithms for
tracking changing environments. In Proceedings of the 5th Inter-
national Conference on Genetic Algorithms (San Francisco, CA, USA,
1993), Morgan Kaufmann Publishers Inc., pp. 523–530.

[35] COLSON, B., AND TOINT, P. L. Optimizing partially separable func-
tions without derivatives. Optimization Methods and Software 20, 4
(2005), 493–508.

[36] CURRY, B., AND MORGAN, P. Neural networks: a need for caution.
Omega 25, 1 (1997), 123 – 133.

[37] C.W.J., AND GRANGER. Long memory relationships and the aggre-
gation of dynamic models. Journal of Econometrics 14, 2 (1980), 227 –
238.

[38] DAS, A., AND DAS, P. Chaotic analysis of the foreign exchange
rates. Applied Mathematics and Computation 185, 1 (2007), 388 – 396.

[39] DAWKINS, R. Oxford University Press, 1976.

[40] DE LA HIGUERA, C. A bibliographical study of grammatical infer-
ence. Pattern Recognition 38, 9 (2005), 1332 – 1348.

[41] DEB, K., AND AGRAWAL, R. B. Simulated Binary Crossover for
Continuous Search Space. Tech. rep., 1994.

229



[42] DEB, K., ANAND, A., AND JOSHI, D. A computationally efficient
evolutionary algorithm for real-parameter optimization. Evol. Com-
put. 10, 4 (2002), 371–395.

[43] DEEP, K., AND THAKUR, M. A new crossover operator for real
coded genetic algorithms. Applied Mathematics and Computation 188,
1 (2007), 895 – 911.

[44] DEJONG, K. A. An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, 1975.

[45] DELGADO, M., AND DEL CARMEN PEGALAJAR JIMNEZ, M. A mul-
tiobjective genetic algorithm for obtaining the optimal size of a re-
current neural network for grammatical inference. Pattern Recogni-
tion 38, 9 (2005), 1444–1456.

[46] DELGADO, M., AND PEGALAJAR, M. A multiobjective genetic algo-
rithm for obtaining the optimal size of a recurrent neural network
for grammatical inference. Pattern Recognition 38, 9 (2005), 1444 –
1456.

[47] DIACONESCU, E. The use of narx neural networks to predict chaotic
time series. WSEAS Trans. Comp. Res. 3 (March 2008), 182–191.

[48] ELMAN, J. L. Finding structure in time. Cognitive Science 14 (1990),
179–211.

[49] ELMAN, J. L., AND ZIPSER, D. Learning the hidden structure of
speech. The Journal of the Acoustical Society of America 83, 4 (1988),
1615–1626.

[50] ENGEL, A. Complexity of learning in artificial neural networks. The-
oretical Computer Science 265, 1-2 (2001), 285 – 306.

230



[51] ESHELMAN, L. J., AND SCAHFFER, J. D. Real-coded genetic algo-
rithms and interval-schemata. Foundations of Genetic Algorithms 2
(1993), 187–202.

[52] FAN, H., LU, J. W., AND XU, Z. An empirical comparison of three
novel genetic algorithms. Engineering Computations 17 (2000), 981–
1002.

[53] FISH, K. E., JOHNSON, J. D., DORSEY, R. E., AND BLODGETT, J. G.
Using an artificial neural network trained with a genetic algorithm
to model brand share. Journal of Business Research 57, 1 (2004), 79 –
85.

[54] FOGEL, L., OWENS, A., AND WALSH, M. John Wiley, 1966.

[55] FRASCONI, P., GORI, M., AND TESI, A. Successes and failures of
backpropagation: a theoretical investigation. In Progress in Neural
Networks. Ablex Publishing (1993), Ablex Publishing, pp. 205–242.

[56] FRASER, A. Simulation of genetic systems by automatic digital com-
puters. i. introduction. Australian Journal of Biological Sciences 10
(1957), 484–491.

[57] FRAZIER, C., AND KOCKELMAN, K. Chaos theory and transporta-
tion systems: Instructive example. Transportation Research Record:
Journal of the Transportation Research Board 20 (2004), 9–17.

[58] GABRIJEL, I., AND DOBNIKAR, A. On-line identification and recon-
struction of finite automata with generalized recurrent neural net-
works. Neural Netw. 16, 1 (2003), 101–120.

[59] GANG, P., IIMURA, I., AND NAKAYAMA, S. Application of genetic
recombination to genetic local search in tsp, 2007.

231



[60] GARCÍA-MARTÍNEZ, C., AND LOZANO, M. Advances in Metaheuris-
tics for Hard Optimization. Springer, 2008, ch. Local search based on
genetic algorithms.

[61] GARCIA-PEDRAJAS, N., HERVAS-MARTINEZ, C., AND MUNOZ-
PEREZ, J. Multi-objective cooperative coevolution of artificial neural
networks (multi-objective cooperative networks). Neural Netw. 15,
10 (2002), 1259–1278.

[62] GARCIA-PEDRAJAS, N., HERVAS-MARTINEZ, C., AND MUNOZ-
PEREZ, J. COVNET: a cooperative coevolutionary model for evolv-
ing artificial neural networks. IEEE Transactions on Neural Networks
14, 3 (2003), 575–596.

[63] GARCIA-PEDRAJAS, N., HERVAS-MARTINEZ, C., AND ORTIZ-
BOYER, D. Cooperative coevolution of artificial neural network en-
sembles for pattern classification. IEEE Transactions on Evolutionary
Computation 9, 3 (2005), 271–302.

[64] GARCÍA-PEDRAJAS, N., AND ORTIZ-BOYER, D. A cooperative con-
structive method for neural networks for pattern recognition. Pat-
tern Recogn. 40, 1 (2007), 80–98.

[65] GARCÍA-PEDRAJAS, N., AND ORTIZ-BOYER, D. A cooperative con-
structive method for neural networks for pattern recognition. Pat-
tern Recogn. 40, 1 (2007), 80–98.

[66] GARCA-MARTNEZ, C., LOZANO, M., HERRERA, F., MOLINA, D.,
AND SNCHEZ, A. Global and local real-coded genetic algorithms
based on parent-centric crossover operators. European Journal of Op-
erational Research 185, 3 (2008), 1088 – 1113.

[67] GHOLIPOUR, A., ARAABI, B. N., AND LUCAS, C. Predicting chaotic
time series using neural and neurofuzzy models: A comparative
study. Neural Process. Lett. 24 (2006), 217–239.

232



[68] GILES, C. L., HORNE, B. G., AND LIN, T. Learning a class of large
finite state machines with a recurrent neural network. Neural Net-
works 8, 9 (1995), 1359 – 1365.

[69] GILES, C. L., MILLER, C. B., CHEN, D., CHEN, H. H., SUN, G. Z.,
AND LEE, Y. C. Learning and extracting finite state automata with
second-order recurrent neural networks. Neural Comput. 4 (May
1992), 393–405.

[70] GILES, C. L., OMLIN, C., AND THORNBER, K. K. Equivalence in
knowledge representation: Automata, recurrent neural networks,
and dynamical fuzzy systems. Proceedings of the IEEE 87, 9 (1999),
1623–1640.

[71] GLOVER, F. Future paths for integer programming and links to arti-
ficial intelligence. Comput. Oper. Res. 13 (1986), 533–549.

[72] GLOVER, F. W., AND KOCHENBERGER, G. A. Handbook of Meta-
heuristics . Springer, 2003.

[73] GOLDBERG, D. E. Real-coded genetic algorithms, virtual alphabets,
and blocking. Complex Systems 5 (1991), 139–167.

[74] GOLDBERG, D. E., AND RICHARDSON, J. Genetic algorithms with
sharing for multimodal function optimization. In Proceedings of the
Second International Conference on Genetic Algorithms on Genetic algo-
rithms and their application (Hillsdale, NJ, USA, 1987), pp. 41–49.

[75] GOMEZ, F., AND MIKKULAINEN, R. Incremental evolution of com-
plex general behavior. Adapt. Behav. 5, 3-4 (1997), 317–342.

[76] GOMEZ, F., AND MIKKULAINEN, R. Incremental evolution of com-
plex general behavior. Adapt. Behav. 5, 3-4 (1997), 317–342.

233



[77] GOMEZ, F., SCHMIDHUBER, J., AND MIIKKULAINEN, R. Acceler-
ated neural evolution through cooperatively coevolved synapses. J.
Mach. Learn. Res. 9 (2008), 937–965.

[78] GOMEZ, F. J. Robust non-linear control through neuroevolution.
Technical Report AI-TR-03-303, PhD Thesis, Department of Com-
puter Science, The University of Texas at Austin, 2003.

[79] GOMEZ, F. J., AND SCHMIDHUBER, J. Co-evolving recurrent neu-
rons learn deep memory pomdps. In GECCO ’05: Proceedings of the
2005 conference on Genetic and evolutionary computation (New York,
NY, USA, 2005), ACM, pp. 491–498.

[80] GOUDREAU, M., GILES, C., CHAKRADHAR, S., AND CHEN, D.
First-order versus second-order single-layer recurrent neural net-
works. Neural Networks, IEEE Transactions on 5, 3 (May 1994), 511
–513.

[81] GREEWOOD, G., FOGEL, G., AND CIOBANU, M. Emphasizing ex-
tinction in evolutionary programming. In Evolutionary Computa-
tion, 1999. CEC 99. Proceedings of the 1999 Congress on (1999), vol. 1,
pp. 666–671.

[82] GRIEWANK, A., AND TOINT, P. L. Partitioned variable metric up-
dates for large structured optimization problems. Numerische Math-
ematik 39 (1982), 119–137. 10.1007/BF01399316.

[83] HANSEN, N., MÜLLER, S. D., AND KOUMOUTSAKOS, P. Reducing
the time complexity of the derandomized evolution strategy with
covariance matrix adaptation (cma-es). Evol. Comput. 11 (March
2003), 1–18.

[84] HANSEN, N., AND OSTERMEIER, A. Completely derandomized
self-adaptation in evolution strategies. Evol. Comput. 9, 2 (2001), 159–
195.

234



[85] HANSEN, N., AND OSTERMEIER, A. Completely derandomized
self-adaptation in evolution strategies. Evol. Comput. 9, 2 (2001), 159–
195.

[86] HAYKIN, S. Neural Networks and Learning Machines. Prentice Hall,
2008.

[87] HEIDRICH-MEISNER, V., AND IGEL, C. Neuroevolution strategies
for episodic reinforcement learning. Journal of Algorithms 64, 4 (2009),
152 – 168. Special Issue: Reinforcement Learning.

[88] HERRERA, F., AND LOZANO, M. Gradual distributed real-coded
genetic algorithms. IEEE Transactions on Evolutionary Computation 4
(2000), 43–63.

[89] HERRERA, F., AND LOZANO, M. Gradual distributed real-coded
genetic algorithms. IEEE Transactions on Evolutionary Computation 4
(2000), 43–63.

[90] HERRERA, F., LOZANO, M., AND VERDEGAY, J. Tackling
real-coded genetic algorithms: Operators and tools for be-
havioural analysis. Artificial Intelligence Review 12 (1998), 265–319.
10.1023/A:1006504901164.

[91] HERTZ, J., KROGH, A., AND PALMER, R. G. Introduction to the the-
ory of neural computation. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1991.

[92] HOCHREITER, S. The vanishing gradient problem during learning
recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 6, 2 (1998), 107–116.

[93] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory.
Neural Comput. 9, 8 (1997), 1735–1780.

235



[94] HOHIL, M. E., LIU, D., AND SMITH, S. H. Solving the n-bit parity
problem using neural networks. Neural Networks 12, 9 (1999), 1321 –
1323.

[95] HOLLAND, J. H. Adaptation in natural and artificial systems. Univer-
sity of Michigan Press, Ann Arbor, Michigan, 1975.

[96] HORNIK, K., STINCHCOMBE, M., AND WHITE, H. Multilayer feed-
forward networks are universal approximators. Neural Networks 2
(July 1989).

[97] HORNIK, K., STINCHCOMBE, M., AND WHITE, H. Multilayer feed-
forward networks are universal approximators. Neural Networks 2, 5
(1989), 359–366.

[98] HUNG, S. L., AND ADELI, H. Parallel genetic/neural network learn-
ing algorithm for mimd shared memory machines. IEEE Trans. Neu-
ral Networks 5 (1994), 900–909.

[99] IGEL, C. Neuroevolution for reinforcement learning using evolu-
tion strategies. In Evolutionary Computation, 2003. CEC ’03. The 2003
Congress on (8-12 2003), vol. 4, pp. 2588 – 2595 Vol.4.

[100] ISHU, K., VAN DER ZANT, T., BECANOVIC, V., AND PLOGER, P.
Identification of motion with echo state network. In OCEANS ’04.
MTTS/IEEE TECHNO-OCEAN ’04 (2004), vol. 3, pp. 1205 – 1210.

[101] JAEGER, H. The ”echo state” approach to analysing and training re-
current neural networks. GMD Report 148, GMD - German National
Research Institute for Computer Science, 2001.

[102] JAIN, A. K., MAO, J., AND MOHIUDDIN, K. M. Artificial neural
networks: A tutorial. Computer 29 (March 1996), 31–44.

236



[103] JANG, J.-S. Anfis: adaptive-network-based fuzzy inference system.
Systems, Man and Cybernetics, IEEE Transactions on 23, 3 (may/jun
1993), 665 –685.

[104] JORDAN, M. I. Attractor dynamics and parallelism in a connection-
ist sequential machine. 112–127.

[105] JR., M. M. G., AND ARAJO, A. F. A population dynamics model to
describe gene frequencies in evolutionary algorithms. Applied Soft
Computing (2012), –.

[106] K. TANG, XIAODONG LI, P. N. S. Z. Y., AND WEISE, T. Benchmark
functions for the CEC’2010 special session and competition on large
scale global optimization. Tech. rep., Nature Inspired Computation
and Applications Laboratory, USTC, China, Tech. Rep., 2009.

[107] KALINLI, A., AND KARABOGA, D. Training recurrent neural net-
works by using parallel tabu search algorithm based on crossover
operation. Engineering Applications of Artificial Intelligence 17, 5
(2004), 529 – 542.

[108] KAWAUCHI, S., SUGIHARA, H., AND SASAKI, H. Development of
very-short-term load forecasting based on chaos theory. Electrical
Engineering in Japan 148, 2 (2004).

[109] KAZARLIS, S. A., PAPADAKIS, S. E., THEOCHARIS, I. B., AND

PETRIDIS, V. Microgenetic algorithms as generalized hill-climbing
operators for ga optimization. IEEE Trans. Evolutionary Computation
5, 3 (2001), 204–217.

[110] KENNEL, M. B., AND ISABELLE, S. Method to distinguish possible
chaos from colored noise and to determine embedding parameters.
Phys. Rev. A 46, 6 (1992), 3111–3118.

237



[111] KIM, D., AND KIM, C. Forecasting time series with genetic fuzzy
predictor ensemble. Fuzzy Systems, IEEE Transactions on 5, 4 (nov
1997), 523 –535.

[112] KINNEBROCK, W. Accelerating the standard backpropagation algo-
rithm using genetic approach. Neurocomput. 6, 5-6 (1994), 583–588.

[113] KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. Optimization
by simulated annealing. Science 220, 4598 (May 1983), 671–680.

[114] KOK, S., AND SANDROCK, C. Locating and characterizing the sta-
tionary points of the extended rosenbrock function. Evol. Comput. 17
(September 2009), 437–453.

[115] KOLMAN, E., AND MARGALIOT, M. Extracting symbolic knowl-
edge from recurrent neural networks–a fuzzy logic approach. Fuzzy
Sets and Systems 160, 2 (2009), 145 – 161.

[116] KORDK, P., KOUTNK, J., DRCHAL, J., KOVRK, O., CEPEK, M., AND

SNOREK, M. Meta-learning approach to neural network optimiza-
tion. Neural Networks 23, 4 (2010), 568 – 582. The 18th International
Conference on Artificial Neural Networks, ICANN 2008.

[117] KOSKELA, T., LEHTOKANGAS, M., SAARINEN, J., AND KASKI, K.
Time series prediction with multilayer perceptron, fir and elman
neural networks. In In Proceedings of the World Congress on Neural
Networks (1996), pp. 491–496.

[118] KRASNOGOR, N., AND GUSTAFSON, S. Toward truly ”memetic”
memetic algorithms: discussion and proofs of concept. In Advances
in Nature-Inspired Computation: The PPSN VII Workshops (2002).

[119] KRASNOGOR, N., AND SMITH, J. A memetic algorithm with self-
adaptive local search: Tsp as a case study. In Proceedings of the in-
ternational conference on genetic and evolutionary computation (2000),
Morgan Kaufmann, pp. 987–994.

238



[120] KREMER, S. On the computational power of elman-style recurrent
networks. Neural Networks, IEEE Transactions on 6, 4 (1995), 1000 –
1004.

[121] KU, K. W. C., MAK, M.-W., AND SIU, W.-C. A study of the lamar-
ckian evolution of recurrent neural networks. IEEE Trans. Evolution-
ary Computation 4, 1 (2000), 31–42.

[122] LAWRENCE, S., AND GILES, C. Overfitting and neural networks:
conjugate gradient and backpropagation. In Neural Networks, 2000.
IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint
Conference on (2000), vol. 1, pp. 114 –119 vol.1.

[123] LI, M., TIAN, J., AND CHEN, F. Improving multiclass pattern recog-
nition with a co-evolutionary rbfnn. Pattern Recogn. Lett. 29, 4 (2008),
392–406.

[124] LI, X., AND YAO, X. Tackling high dimensional nonseparable opti-
mization problems by cooperatively coevolving particle swarms. In
Proceedings of the Eleventh conference on Congress on Evolutionary Com-
putation (Piscataway, NJ, USA, 2009), CEC’09, IEEE Press, pp. 1546–
1553.

[125] LIN, C.-J., CHEN, C.-H., AND LIN, C.-T. A hybrid of cooperative
particle swarm optimization and cultural algorithm for neural fuzzy
networks and its prediction applications. Trans. Sys. Man Cyber Part
C 39 (January 2009), 55–68.

[126] LIN, T., HORNE, B., TINO, P., AND GILES, C. Learning long-term
dependencies in narx recurrent neural networks. IEEE transactions
on neural networks 7, 6 (1996), 1329–1338.

[127] LIU, Y., YAO, X., ZHAO, Q., AND HIGUCHI, T. Scaling up fast evo-
lutionary programming with cooperative coevolution. In Evolution-
ary Computation, 2001. Proceedings of the 2001 Congress on (2001).

239



[128] LORENZ, E. Deterministic non-periodic flows. Journal of Atmospheric
Science 20 (1963), 267 – 285.

[129] LORENZ, E. The Essence of Chaos. University of Washington Press,
1993.

[130] LOZANO, M., AND GARCA-MARTNEZ, C. Hybrid metaheuristics
with evolutionary algorithms specializing in intensification and di-
versification: Overview and progress report. Computers and Opera-
tions Research In Press.

[131] LOZANO, M., HERRERA, F., KRASNOGOR, N., AND MOLINA, D.
Real-coded memetic algorithms with crossover hill-climbing. Evol.
Comput. 12, 3 (2004), 273–302.

[132] LOZANO, M., HERRERA, F., KRASNOGOR, N., AND MOLINA, D.
Real-coded memetic algorithms with crossover hill-climbing. Evolu-
tionary Computation 12, 3 (2004), 273–302.

[133] LOZANO, M., HERRERA, F., KRASNOGOR, N., AND MOLINA, D.
Real-coded memetic algorithms with crossover hill-climbing. Evol.
Comput. 12 (September 2004), 273–302.

[134] LUKOSEVICIUS, M., AND JAEGER, H. Reservoir computing ap-
proaches to recurrent neural network training. Computer Science Re-
view 3, 3 (2009), 127 – 149.

[135] LUKOSEVICIUTE, K., AND RAGULSKIS, M. Evolutionary algorithms
for the selection of time lags for time series forecasting by fuzzy in-
ference systems. Neurocomput. 73 (2010), 2077–2088.

[136] MA, Q.-L., ZHENG, Q.-L., PENG, H., ZHONG, T.-W., AND XU, L.-
Q. Chaotic time series prediction based on evolving recurrent neu-
ral networks. In Machine Learning and Cybernetics, 2007 International
Conference on (aug. 2007), vol. 6, pp. 3496 –3500.

240



[137] MAASS, W., NATSCHLGER, T., AND MARKRAM, H. Real-time com-
puting without stable states: A new framework for neural computa-
tion based on perturbations. Neural Computation 14, 11 (2002), 2531–
2560.

[138] MACKEY, M., AND GLASS, L. Oscillation and chaos in physiological
control systems. Science 197, 4300 (1977), 287–289.

[139] MANOLIOS, P., AND FANELLI, R. First-order recurrent neural net-
works and deterministic finite state automata. Neural Comput. 6, 6
(1994), 1155–1173.

[140] MCCULLOCH, W., AND PITTS, W. A logical calculus of ideas imma-
nent in nervous activity. Bulletin of Mathematical Biophysics 5 (1943),
127–147.

[141] MENEZES, JR., J. M. P., AND BARRETO, G. A. Long-term time series
prediction with the narx network: An empirical evaluation. Neuro-
comput. 71 (2008), 3335–3343.

[142] MICHALEWICZ, Z. Genetic algorithms + data structures = evolution
programs (3rd ed.). Springer-Verlag, London, UK, 1996.

[143] MICHALEWICZ, Z. Genetic algorithms + data structures = evolution
programs (3rd ed.). Springer-Verlag, London, UK, 1996.

[144] MIRIKITANI, D., AND NIKOLAEV, N. Recursive bayesian recurrent
neural networks for time-series modeling. Neural Networks, IEEE
Transactions on 21, 2 (feb. 2010), 262 –274.

[145] MITCHELL, T. M. Machine Learning. McGraw-Hill, Boston, MA,
1997.

[146] MOLINA, D., LOZANO, M., GARCÍA-MARTÍNEZ, C., AND HER-
RERA, F. Memetic algorithms for continuous optimisation based on
local search chains. Evol. Comput. 18 (March 2010), 27–63.

241



[147] MOLINA, D., LOZANO, M., GARCA-MARTNEZ, C., AND HERRERA,
F. Memetic algorithms for continuous optimisation based on local
search chains. Evol. Comput. 18, 1 (2010), 27–63.

[148] MORIARTY, D. E., AND MIIKKULAINEN, R. Forming neural net-
works through efficient and adaptive coevolution. Evolutionary Com-
putation 5, 4 (1997), 373–399.

[149] MOSCATO, P. On evolution, search, optimization, genetic algo-
rithms and martial arts: Towards memetic algorithms. Tech. rep.,
1989.

[150] MOSCATO, P. On evolution, search, optimization, genetic algo-
rithms and martial arts: Towards memetic algorithms. Technical
Report 826, Caltech Concurrent Computation Program, 1989.

[151] MOSCATO, P. A gentle introduction to memetic algorithms. In Hand-
book of Metaheuristics (2003), Kluwer Academic Publishers, pp. 105–
144.

[152] MÜHLENBEIN, H., AND SCHLIERKAMP-VOOSEN, D. Predictive
models for the breeder genetic algorithm i. continuous parameter
optimization. Evol. Comput. 1, 1 (1993), 25–49.

[153] MUTOH, A., KATO, S., AND ITOH, I. Efficient real-coded genetic
algorithms with flexible-step crossover. In Evolutionary Computation,
2005. The 2005 IEEE Congress on (2005), pp. 1470 – 1476 Vol. 2.

[154] NGUYEN, Q. H., ONG, Y.-S., AND LIM, M. H. A probabilistic
memetic framework. Evolutionary Computation, IEEE Transactions on
13, 3 (june 2009), 604 –623.

[155] NOMAN, N., AND IBA, H. Accelerating differential evolution using
an adaptive local search. Evolutionary Computation, IEEE Transactions
on 12, 1 (2008), 107 –125.

242



[156] OMIDVAR, M., LI, X., AND YAO, X. Cooperative co-evolution for
large scale optimization through more frequent random grouping.
In Evolutionary Computation (CEC), 2010 IEEE Congress on (2010),
pp. 1754–1761.

[157] OMIDVAR, M., LI, X., AND YAO, X. Cooperative co-evolution with
delta grouping for large scale non-separable function optimization.
In Evolutionary Computation (CEC), 2010 IEEE Congress on (2010),
pp. 1762 –1779.

[158] OMLIN, C. W., AND GILES, C. L. Constructing deterministic finite-
state automata in recurrent neural networks. J. ACM 43, 6 (1996),
937–972.

[159] OMLIN, C. W., AND GILES, C. L. Extraction of rules from discrete-
time recurrent neural networks. Neural Networks 9, 1 (1996), 41 –
52.

[160] OMLIN, C. W., THORNBER, K. K., AND GILES, C. L. Fuzzy finite
state automata can be deterministically encoded into recurrent neu-
ral networks. IEEE Trans. Fuzzy Syst. 6 (1998), 76–89.

[161] ONG, Y. S., AND KEANE, A. Meta-lamarckian learning in memetic
algorithms. Evolutionary Computation, IEEE Transactions on 8, 2 (april
2004), 99 – 110.

[162] ONG, Y. S., LIM, M. H., AND CHEN, X. S. Memetic computation
- past, present and future. IEEE Computational Intelligence Magazine
(2010), In Press.

[163] ONG, Y. S., LIM, M. H., ZHU, N., AND WONG, K. W. Classification
of adaptive memetic algorithms: A comparative study. IEEE Trans-
actions on Systems Man and Cybernetics – Part B 36, 1 (2006), 141–152.

243



[164] ONG, Y.-S., LIM, M.-H., ZHU, N., AND WONG, K.-W. Classifica-
tion of adaptive memetic algorithms: a comparative study. Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 36, 1
(feb. 2006), 141 –152.

[165] ORTIZ-BOYER, D., HERVS-MARTNEZ, C., AND GARCA-PEDRAJAS,
N. CIXL2 - a crossover operator for evolutionary algorithms based
on population features. Journal of Artificial Intelligence Research 24
(2005), 2005.

[166] PALIWAL, M., AND KUMAR, U. A. Neural networks and statistical
techniques: A review of applications. Expert Systems with Applica-
tions 36, 1 (2009), 2 – 17.

[167] PHAM, D. T., AND KARABOGA, D. Training elman and jordan net-
works for system identification using genetic algorithms. Artificial
Intelligence in Engineering 13, 2 (1999), 107 – 117.

[168] POTTER, M. A., AND DE JONG, K. A. Cooperative coevolution: An
architecture for evolving coadapted subcomponents. Evol. Comput.
8, 1 (2000), 1–29.

[169] POTTER, M. A., AND JONG, K. A. D. A cooperative coevolutionary
approach to function optimization. In PPSN III: Proceedings of the
International Conference on Evolutionary Computation. The Third Con-
ference on Parallel Problem Solving from Nature (London, UK, 1994),
Springer-Verlag, pp. 249–257.

[170] POTTS, J. C., GIDDENS, T. D., AND YADAV, S. B. The development
and evaluation of an improved genetic algorithm based on migra-
tion and artificial selection. Systems, Man and Cybernetics, IEEE Trans-
actions on 24, 1 (1994), 73–86.

[171] POŠIK, P. Bbob-benchmarking the generalized generation gap
model with parent centric crossover. In Proceedings of the 11th An-

244



nual Conference Companion on Genetic and Evolutionary Computation
Conference: Late Breaking Papers (New York, NY, USA, 2009), GECCO
’09, ACM, pp. 2321–2328.

[172] RACHENBERG, I. (In German) Evolutionsstrategie Optimierung tech-
nischer Systeme nach Prinzipien der biologischen Evolution. PhD thesis,
Reprinted by Fromman-Holzboog, 1973.

[173] RADCLIFFE, N. J. Equivalence class analysis of genetic algorithms.
Complex Systems 5 (1991), 183–205.

[174] RAIDL, G. A unified view on hybrid metaheuristics. In Hybrid Meta-
heuristics, F. Almeida, M. Blesa Aguilera, C. Blum, J. Moreno Vega,
M. Prez Prez, A. Roli, and M. Sampels, Eds., vol. 4030 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2006, pp. 1–12.

[175] RAY, T., AND YAO, X. A cooperative coevolutionary algorithm with
correlation based adaptive variable partitioning. In Proceedings of
the Eleventh conference on Congress on Evolutionary Computation (Pis-
cataway, NJ, USA, 2009), CEC’09, IEEE Press, pp. 983–989.

[176] RAY, T. V., N. KOK, S. W., AND KIAN, P. C. Study on the behaviour
and implementation of parent centric crossover within the general-
ized generation gap model. In IEEE Congress on Evolutionary Compu-
tation (2004), IEEE, pp. 1996–2003.

[177] ROBINSON, A. J., AND FALLSIDE, F. The utility driven dynamic
error propagation network. Tech. rep., Cambridge University En-
gineering Department, Technical Report CUED/F-INFENG/TR.1,
1987.

[178] ROBINSON, T. An application of recurrent nets to phone probability
estimation. IEEE Transactions on Neural Networks 5 (1994), 298–305.

245



[179] ROJAS, I., POMARES, H., BERNIER, J. L., ORTEGA, J., PINO, B.,
PELAYO, F. J., AND PRIETO, A. Time series analysis using normal-
ized pg-rbf network with regression weights. Neurocomputing 42, 1-4
(2002), 267 – 285.

[180] ROJAS, I., VALENZUELA, O., ROJAS, F., GUILLEN, A., HER-
RERA, L., POMARES, H., MARQUEZ, L., AND PASADAS, M. Soft-
computing techniques and arma model for time series prediction.
Neurocomputing 71, 4-6 (2008), 519 – 537.

[181] RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. Learning
internal representations by error propagation. In Parallel distributed
processing: explorations in the microstructure of cognition, vol. 1 (Cam-
bridge, MA, USA, 1986), MIT Press, pp. 318–362.

[182] S., S. Solar cycle forecasting: A nonlinear dynamics approach. As-
tronomy and Astrophysics 377 (2001), 312–320.

[183] SALOMON, R. Re-evaluating genetic algorithm performance under
coordinate rotation of benchmark functions. a survey of some theo-
retical and practical aspects of genetic algorithms. Biosystems 39, 3
(1996), 263 – 278.

[184] SCHAEFER, A., AND ZIMMERMANN, H. Recurrent neural networks
are universal approximators. Int. J. Neural Systems 17, 4 (2007), 253–
263.

[185] SCHAEFER, A. M., UDLUFT, S., AND ZIMMERMANN, H.-G. Learn-
ing long-term dependencies with recurrent neural networks. Neuro-
comput. 71 (August 2008), 2481–2488.

[186] SCHLIERKAMP-VOOSEN, D. Strategy adaptation by competition. In
Proceedings of the Second European Congress on Intelligent Techniques
and Soft Computing (1994), pp. 1270–1274.

246



[187] SCHMIDHUBER, J., WIERSTRA, D., GAGLIOLO, M., AND GOMEZ, F.
Training recurrent networks by evolino. Neural Comput. 19, 3 (2007),
757–779.

[188] SERONT, G., AND BERSINI, H. A new ga-local search hybrid for con-
tinuous optimization based on multi-level single linkage clustering.
In GECCO (2000), pp. 90–95.

[189] SEXTON, R. S., AND DORSEY, R. E. Reliable classification using neu-
ral networks: a genetic algorithm and backpropagation comparison.
Decision Support Systems 30, 1 (2000), 11–22.

[190] SEXTON, R. S., AND GUPTA, J. N. D. Comparative evaluation of ge-
netic algorithm and backpropagation for training neural networks.
Information Sciences 129, 1-4 (2000), 45 – 59.

[191] SEYAB, R. A., AND CAO, Y. Nonlinear system identification for pre-
dictive control using continuous time recurrent neural networks and
automatic differentiation. Journal of Process Control 18, 6 (2008), 568
– 581.

[192] SHANG, Y.-W., AND QIU, Y.-H. A note on the extended rosenbrock
function. Evol. Comput. 14 (March 2006), 119–126.

[193] SHI, Y.-J., TENG, H.-F., AND LI, Z.-Q. Cooperative co-evolutionary
differential evolution for function optimization. In Advances in Nat-
ural Computation, L. Wang, K. Chen, and Y. S. Ong, Eds., vol. 3611 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2005,
pp. 1080–1088.

[194] SHIMODAIRA, H. A diversity control oriented genetic algo-
rithm (DCGA): Development and experimental results. In Proceed-
ings of the Genetic and Evolutionary Computation Conference (1999),
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, Eds., Morgan Kaufmann, pp. 603–611.

247



[195] SIDC. World data center for the sunspot index, montly smoothed
sunspot data.

[196] SIEGELMANN, H., HORNE, B., AND GILES, C. Computational ca-
pabilities of recurrent NARX neural networks. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on 27, 2 (1997), 208
–215.

[197] SIMA, J. Back-propagation is not efficient. Neural Networks 9, 6
(1996), 1017 – 1023.

[198] SINHA, A., TIWARI, S., AND K., D. A population based steady state
procedure for real parameter optimization. Tech. rep., KANGAL
Technical Report no. 2005004, 2005.

[199] SMITH, J. Modelling gas with self adapting mutation rates. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (2001).

[200] SMITH, J. Coevolving memetic algorithms: A review and progress
report. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Trans-
actions on 37, 1 (feb. 2007), 6 –17.

[201] SOAK, S.-M., LEE, S.-W., MAHALIK, N., AND AHN, B.-H. A new
memetic algorithm using particle swarm optimization and genetic
algorithm. In Knowledge-Based Intelligent Information and Engineering
Systems, B. Gabrys, R. Howlett, and L. Jain, Eds., vol. 4251 of Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg, 2006,
pp. 122–129.

[202] STANLEY, K. O. Compositional pattern producing networks: A
novel abstraction of development. Genetic Programming and Evolv-
able Machines 8, 2 (2007), 131–162.

[203] STANLEY, K. O., D’AMBROSIO, D. B., AND GAUCI, J. A hypercube-
based encoding for evolving large-scale neural networks. Artificial
Life 15, 2 (2009), 185–212. PMID: 19199382.

248



[204] STANLEY, K. O., AND MIIKKULAINEN, R. Evolving neural net-
works through augmenting topologies. Evolutionary Computation 10,
2 (2002), 99–127.

[205] STEPHEN, H. K. In the Wake of Chaos: Unpredictable Order in Dynam-
ical Systems. University of Chicago Press, 1993.

[206] STORN, R., AND PRICE, K. Differential evolution a simple and effi-
cient heuristic for global optimization over continuous spaces. Jour-
nal of Global Optimization 11 (1997), 341–359.

[207] TAKENS, F. Detecting strange attractors in turbulence. In Dynamical
Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics.
1981, pp. 366–381.

[208] TALBI, E.-G., AND BACHELET, V. Cosearch: A parallel cooperative
metaheuristic. Journal of Mathematical Modelling and Algorithms 5, 1
(2006), 5–22.

[209] TEO, J., HIJAZI, H. A., OMAR, Z. A., MOHAMAD, N. R., AND

HAMID, Y. Harnessing mutational diversity at multiple levels for
improving optimization accuracy in g3-pcx. In IEEE Congress on Evo-
lutionary Computation (2007), IEEE, pp. 4502–4507.

[210] TEO, K. K., WANG, L., AND LIN, Z. Wavelet packet multi-layer per-
ceptron for chaotic time series prediction: Effects of weight initial-
ization. In Proceedings of the International Conference on Computational
Science-Part II (2001), ICCS ’01, pp. 310–317.

[211] THOMSEN, R., RICKERS, P., AND KRINK, T. A religion-based spatial
model for evolutionary algorithms. In Proceedings of the 6th Interna-
tional Conference on Parallel Problem Solving from Nature (London, UK,
2000), PPSN VI, Springer-Verlag, pp. 817–826.

[212] TOMASSINI, M. Parallelism and evolutionary algorithms. IEEE
Transactions on Evolutionary Computation 6 (2002), 443–462.

249



[213] TOMITA, M. Dynamic construction of finite automata from exam-
ples using hill-climbing. In Proceedings of the Fourth Annual Cognitive
Science Conference (Ann Arbor, MI., 1982), pp. 105–108.

[214] TSOI, A. C., AND BACK, A. Locally recurrent globally feedforward
networks: a critical review of architectures. Neural Networks, IEEE
Transactions on 5, 2 (1994).

[215] TSOI, A. C., AND BACK, A. Discrete time recurrent neural network
architectures: A unifying review. Neurocomputing 15, 3-4 (1997), 183
– 223. Recurrent Neural Networks.

[216] TSOULOS, I. G. Modifications of real code genetic algorithm for
global optimization. Applied Mathematics and Computation 203, 2
(2008), 598 – 607.

[217] TSUTSUI, S., GHOSH, A., CORNE, D., AND FUJIMOTO, Y. A Real
Coded Genetic Algorithm with an Explorer and an Exploiter Popu-
lations. In Proceedings of the 7th ICGA (1997), T. Bäck, Ed., Morgan
Kaufmann, pp. 238–245.

[218] TSUTSUI, S., YAMAMURA, M., AND HIGUCHI, T. Multi-parent
recombination with simplex crossover in real coded genetic algo-
rithms. In Proceedings of the Genetic and Evolutionary Computation
Conference (13-17 July 1999), vol. 1, pp. 657–664.

[219] URSEM, R. Multinational evolutionary algorithms. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (1999),
vol. 3, pp. 1633–1640.

[220] URSEM, R. K. Diversity-guided evolutionary algorithms. In Proceed-
ings of the 7th International Conference on Parallel Problem Solving from
Nature (London, UK, UK, 2002), PPSN VII, Springer-Verlag, pp. 462–
474.

250



[221] VAN DEN BERGH, F., AND ENGELBRECHT, A. A cooperative ap-
proach to particle swarm optimization. Evolutionary Computation,
IEEE Transactions on 8, 3 (2004), 225 – 239.

[222] VAN KEMENADE, C. Cluster evolution strategies. enhancing the
sampling density function using representatives. In Evolutionary
Computation, 1996., Proceedings of IEEE International Conference on
(May 1996), pp. 637 –642.

[223] ČERNÝ, V. Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Optimization
Theory and Applications 45, 1 (January 1985), 41–51.

[224] WATROUS, R. L., AND KUHN, G. M. Induction of finite-state lan-
guages using second-order recurrent networks. Neural Comput. 4, 3
(1992), 406–414.

[225] WATTS, D. J. Small worlds: The dynamics of networks between order and
randomness. Princeton University Press, Princeton, NJ, 1999.

[226] WERBOS, P. J. Backpropagation through time: what it does and how
to do it. Proceedings of the IEEE 78, 10 (1990), 1550–1560.

[227] WHITLEY, D. The genitor algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best. In Proceedings of
the Third International Conference on Genetic Algorithms (1989), Mor-
gan Kaufmann, pp. 116–121.

[228] WHITLEY, D., DOMINIC, S., DAS, R., AND ANDERSON, C. W. Ge-
netic reinforcement learning for neurocontrol problems. Machine
Learning 13, 2 (1993), 259–284.

[229] WILLIAMS, R., AND ZIPSER, D. Experimental analysis of the real-
time recurrent learning algorithm. Connection Science 1, 1 (1989), 87–
111.

251



[230] WILLIAMS, R. J., AND ZIPSER, D. A learning algorithm for contin-
ually running fully recurrent neural networks. Neural Comput. 1, 2
(1989), 270–280.

[231] WONG, M. L., LEE, S. Y., AND LEUNG, K. S. Data mining of
bayesian networks using cooperative coevolution. Decis. Support
Syst. 38, 3 (2004), 451–472.

[232] WRIGHT, A. H. Genetic algorithms for real parameter optimiza-
tion. In Foundations of Genetic Algorithms (1991), Morgan Kaufmann,
pp. 205–218.

[233] YANG, Z., TANG, K., AND YAO, X. Large scale evolutionary op-
timization using cooperative coevolution. Inf. Sci. 178, 15 (2008),
2985–2999.

[234] YANG, Z., TANG, K., AND YAO, X. Multilevel cooperative coevo-
lution for large scale optimization. In IEEE Congress on Evolutionary
Computation (2008), pp. 1663–1670.

[235] YAO, X. Evolving artificial neural networks. Proceedings of the IEEE
87, 9 (1999), 1423–1448.

252



Appendix A

Problem Features Classes Min. Train (%) No. Instances
4-Bit 4 1 – 16
Wine 13 3 95 178
Iris 4 3 95 150
Heart-Disease 13 1 88 303
Breast-Cancer 9 1 95 699
Zoo 16 7 95 102

Table A.1: The dataset information and neural network configuration for
the given problems. Note that the Breast-Cancer dataset contains 16 miss-
ing values and is class imbalanced (65.5 % Benign and 34.5 % Malignant).
In the 4-Bit problem, the network is trained until the mean-squared-error
goes below 1E-3. 70 % of the data is used for training while the remain-
ing 30 % is used for testing in all the other problems. The classification
targets given by “Min. Train (%)” were determined in trial experiments.
The number of input and output neurons in the network depends on the
number of features and classes in the dataset.

253


	Introduction
	Premises
	Motivations
	Research Goals
	Major Contributions
	Thesis Outline

	Background and Literature Review
	Machine Learning and Optimisation
	 Neural Networks
	Feedforward Neural Networks
	Learning in Feedforward Networks
	Overview of Recurrent Neural Networks
	First-Order Recurrent Networks
	Learning in Recurrent Neural Networks
	Learning Finite-State Machines with RNNs 

	Evolutionary Computation
	Real Coded Genetic Algorithms
	G3-PCX: Generalised Generation Gap with PCX 

	Hybrid Meta-heuristics and Memetic Algorithms 
	Collaborative Hybrid MHs
	Integrative Hybrid MHs: Memetic Algorithms
	 MHs with evolutionary intensification and diversification

	 Cooperative Coevolution 
	Diversity in Cooperative Coevolution
	Cooperative Coevolution for Non-Separable Problems

	Neuro-Evolution
	Direct Encoding in Neuro-evolution
	Indirect Encoding in Neuro-evolution
	Hybrid HMs for Neuro-Evolution
	Modularity and Problem Decomposition 
	Fitness Evaluation of the Sub-populations
	Evaluation of Cooperative Neuro-evolution
	Chapter Summary


	Problem Decomposition in Cooperative Neuro-evolution
	Introduction
	 Preliminaries and Motivation

	Neuron Based Sub-population (NSP) 
	Feedforward Neural Networks
	Recurrent Neural Networks

	Simulations
	Feedforward Neural Networks
	Recurrent Neural Networks
	Discussion 

	Chapter Summary

	Memetic Cooperative Neuro-evolution
	Introduction
	Global and Local Search in Evolutionary Algorithms

	 Memetic Cooperative Neuro-evolution 
	G3-PCX for Crossover-based Local Search

	Simulation 
	Feedforward Neural Networks
	Recurrent Neural Networks
	Discussion 

	Chapter Summary

	 Adaptive Modularity in Cooperative Neuro-evolution
	Introduction
	 Adaptive Modularity in Cooperative Neuro-evolution 
	Function Evaluation During Initialisation
	Transfer of Valuable Information
	The Heuristic to Change Modularity

	Simulation and Analysis
	Feedforward Neural Networks
	Recurrent Neural Networks

	Chapter Summary

	 Application to Chaotic Time Series Prediction
	Introduction
	Embedding Theorem and Time Series Prediction 

	 Adaptation of Modularity 
	Simulation and Analysis
	Problem description 
	Experimental set-up
	Results and discussion

	Chapter Summary

	Conclusions and Future Work
	 Conclusions
	 Problem decomposition
	Memetic cooperative neuro-evolution
	Adaptation of Modularity 
	Application to Chaotic Time Series Prediction

	Further Findings and Discussion
	 Limitations
	Future Research Directions

	

