
1

Improving Salience Retention and
Identi�cation in the Automated Filtering

of Event Log Messages

by

Paul Radford

A thesis

submitted to the Victoria University of Wellington

in ful�lment of the

requirements for the degree of

Master of Science

in Computer Science.

Victoria University of Wellington

2011

2

Abstract

Event log messages are currently the only genuine interface through which computer sys-

tems administrators can e�ectively monitor their systems and assemble a mental percep-

tion of system state. The popularisation of the Internet and the accompanying meteoric

growth of business-critical systems has resulted in an overwhelming volume of event log

messages, channeled through mechanisms whose designers could not have envisaged the

scale of the problem. Messages regarding intrusion detection, hardware status, operating

system status changes, database tablespaces, and so on, are being produced at the rate

of many gigabytes per day for a signi�cant computing environment.

Filtering technologies have not been able to keep up. Most messages go unnoticed; no

�ltering whatsoever is performed on them, at least in part due to the di�culty of im-

plementing and maintaining an e�ective �ltering solution. The most commonly-deployed

�ltering alternatives rely on regular expressions to match pre-de�ned strings, with 100%

accuracy, which can then become ine�ective as the code base for the software producing

the messages `drifts' away from those strings. The exactness requirement means all pos-

sible failure scenarios must be accurately anticipated and their events catered for with

regular expressions, in order to make full use of this technique.

Alternatives to regular expressions remain largely academic. Data mining, automated

corpus construction, and neural networks, to name the highest-pro�le ones, only produce

probabilistic results and are either di�cult or impossible to alter in any deterministic way.

Policies are therefore not supported under these alternatives.

This thesis explores a new architecture which utilises rich metadata in order to avoid the

burden of message interpretation. The metadata itself is based on an intention to improve

end-to-end communication and reduce ambiguity. A simple yet e�ective �ltering scheme

is also presented which �lters log messages through a short and easily-customisable set

of rules. With such an architecture, it is envisaged that systems administrators could

signi�cantly improve their awareness of their systems while avoiding many of the false-

positives and -negatives which plague today's �ltering solutions.

3

4

Contents

1 Introduction 21

1.1 Salience in event log messages . 22

1.2 Impediments for automated �ltering . 24

1.3 Research criteria for an improved alternative 26

1.4 Potential improvements to software systems 27

2 Literature review 29

2.1 Discovering �salience� . 31

2.1.1 A further exploration of `priority' 33

2.1.2 The psychological point of view . 35

2.1.3 A successful measure developed in medicine 38

2.2 Commonality of meaning . 39

2.2.1 Semiotics: the study of signs . 39

2.2.2 Ontologies: applying semiotics to, and providing structure for, vo-

cabularies . 41

2.2.3 Semiotic engineering: tips for creating commonality 44

2.3 Domain-speci�c limitations . 45

2.3.1 An external examination . 46

2.3.2 Lack of state . 46

2.3.3 Human factors . 48

2.4 Communications theory . 50

2.5 Summary . 51

5

6 CONTENTS

3 Resorting to �rst principles 53

3.1 So, what is a `salient' message? . 54

3.2 The lifecycle of an event log message . 56

3.3 Mechanistically interpreting natural-language messages 66

3.3.1 Examining a common deployment: Logcheck 67

3.3.2 Problems with the current approach 68

3.4 Quantifying information saturation . 70

3.4.1 Saturation results . 71

3.4.2 Implications . 73

3.5 Summary . 74

4 Seeking an organisational context 75

4.1 Power � severity . 77

4.2 Legitimacy� impact . 77

4.3 Urgency� certainty . 79

4.3.1 Certainty as validity, or con�dence in assumptions 80

4.3.2 . . . as anticipation of the future . 81

4.3.3 . . . as a parallel of `urgency' . 82

4.4 Summary: three dimensions for salience . 83

5 Enforcing organisational realities 87

5.1 Stock market parallels . 88

5.2 Introducing rapid iteration to event logging 90

5.3 Making iteration powerful, with weights 92

5.4 Summary . 95

6 Expressing a three-dimensional scale of salience 97

6.1 Arguments for scale length and type . 99

6.2 The application of organisational salience 100

6.3 Outcome mockup . 103

6.4 Summary: outcome mockup conclusions 106

CONTENTS 7

7 A survey of systems administrators 109

7.1 Demographics . 109

7.2 Procedure . 110

7.3 The survey instrument . 111

7.4 Raw survey results . 111

7.5 Analysis of results . 114

7.5.1 Techniques in use . 114

7.5.2 Motivations . 116

7.5.3 Indicators of salience . 119

7.6 Summary . 130

8 Discussion and conclusion 131

8.1 Metric considerations . 133

8.2 Applying weights to the metric . 134

8.3 Evidence supporting a change to the status-quo 135

8.4 But how can this be improved? . 137

8.5 Realising the alternative . 138

8.6 Contributions . 142

8.7 Future work . 146

8.8 Publications . 147

9 Appendix A: Logcheck README 149

10 Appendix B: Outcome mockup 155

11 Appendix C: VUW Human Ethics Policy 161

12 Appendix D: Raw survey results 163

13 GPL License 175

Bibliography 183

8 CONTENTS

Acknowledgments

I would like to express my gratitude �rstly to my supervisors, Andy Linton and Dr Ian

Welch, for their knowledge, support and enthusiasm. They helped to distill my ideas

into a useful form, tempered my rhetoric and provided necessary academic direction. I

must thank the many former students of mine in Japan whose fortitude, simple human-

ity, and generosity inspired me to return to academic study in the �rst place - this thesis

would never have been written without the Japan Exchange and Teaching (JET) Pro-

gramme. Thanks also goes to the attendees of the New Zealand Network Operators'

Group (NZNOG) conference of 2011, who withstood my presentation and then partici-

pated in my survey, the results of which form a very signi�cant part of this thesis' payload.

I am grateful to Roy Maxion of CMU for taking the time to advise us of a particularly

pertinant piece of work which otherwise would have gone undiscovered. Finally, I would

like to acknowledge the considerable support of my family and friends both before, and

during, the period of my MSc study.

9

10 CONTENTS

Terminology

The following terms are often used synonymously within this thesis:

� designer, programmer, developer

� program, (system) daemon

� (organisational) priority, importance

11

12 CONTENTS

List of Figures

2.1 Dimensions in�uential to management decisions [1] (numerals removed) . . 37

2.2 The `representational triangle' [2, 3] . 39

2.3 The dichotomy between designer and user [4] 42

2.4 The �Required Domain Model� [5] . 43

2.5 Shannon & Weaver's communications model [6, 7, 8] 50

3.1 Shannon & Weaver's communications model [6, 7, 8] 57

3.2 Adapted version of Shannon & Weaver's communications model; for event

log messaging . 65

4.1 Core SAW Ontology [9, pg. 547] . 80

4.2 Dimensions possessed by salient event log messages (adapted from [1]) . . . 84

4.3 Scope and context of each dimension . 84

4.4 Adapted version of Shannon & Weaver's communications model; for event

log messaging (with dimensional scopes) 85

5.1 Model of rapid iteration for improving event log message output (program-

mer operating under the auspices of a separate organisation) 91

5.2 Semiotics theory [3] applied to roles, rankings and weights of information/-

computer systems . 94

5.3 Floating-point weighting scale for representing roles and rankings as organ-

isational importance . 94

6.1 Example Likert-type scale . 99

6.2 Weighting results graphs . 101

13

14 LIST OF FIGURES

6.3 Process of applying a normal distribution of weights to Wallin et al.'s

Pareto-like distribution [10, pg. 10] of event alarms & tickets; the result is

unknown (see text) . 102

6.4 Outcome-mockup values sorted by Impact, then Severity, then Certainty . 105

6.5 Consolidated outcome mockup values, sorted by Impact, then Severity,

then Certainty . 106

7.1 Survey instrument, page 1 . 112

7.2 Survey instrument, page 2 . 113

7.3 Response item 1 results . 114

7.4 Response item 2 results . 115

7.5 Response item 3 results . 115

7.6 Mean rated e�ectiveness for each technique 116

7.7 Response item 4 results . 117

7.8 Response item 5 results . 120

7.9 Response item 6 results . 121

7.10 Response item 7 results (raw rankings) . 122

7.11 Mean and median item rankings after �rst stage of data cleaning (std. dev.

displayed) . 125

7.12 Comparison of raw data across stages of cleaning (response item 7) 126

7.13 Mean and median item rankings after second stage of data cleaning (std.

dev. displayed, sorted by mean) . 127

7.14 Response item 8 results . 128

7.15 Hypothetical comparison of `message importance curve' and Pareto-like

event log message distribution . 129

8.1 Outcome mockup results after �ltering with an SIC rule set (with `impor-

tance curve' superimposed) . 139

8.2 One root cause resulting in many noti�cations 140

10.1 Outcome-mockup values sorted by Impact, then Severity, then Certainty . 159

List of Tables

2.1 Syslog severity levels as de�ned in RFC 5424 [11] 32

2.2 �10 features of every Information System� [2] 40

3.1 Other ratios obtained with Weaver's theorem 72

4.1 Relation between the measures of stakeholder salience [1] and event log

message salience . 76

6.1 Stated purposes of the GCS scale [12, pg. 755] 97

6.2 Summary of outcome-mockup values, extracted from the contents of List-

ings 10.1, 10.2 and 10.3 in Chapter 10 on page 155 104

7.1 Motivations in evidence among systems administrators 119

7.2 Statistical corrections to participant responses (�rst stage of data cleaning) 123

7.3 Responses deleted due to endpoint reversal (second stage of data cleaning) 124

7.4 Categorisation of event log message per-motivation (sorted by mean ranking)128

12.1 Raw survey results, page 1 . 164

12.2 Raw survey results, page 2 . 165

12.3 Raw survey results, page 3 . 166

12.4 Raw survey results, page 4 . 167

12.5 Raw survey results, page 5 . 168

12.6 Raw survey results, page 6 . 169

12.7 Raw survey results, page 7 . 170

12.8 Raw survey results, page 8 . 171

15

16 LIST OF TABLES

12.9 Raw survey results, page 9 . 172

12.10Raw survey results, page 10 . 173

List of Algorithms

3.1 Weaver's information theorem [8] . 71

6.1 Simple scaling function for suppressing the perceived impact of messages

from less important sources. Calibrated to `Syslog severity' extremes. . . . 102

17

18 LIST OF ALGORITHMS

List of Listings

1.1 Selected examples of event log messages 23

1.2 Examples of Logcheck rules (regular expressions) used for event log message

�ltering [13] . 25

3.1 tun.c selective snippet from OpenVPN version 2.1.4 [13] 60

3.2 Some OpenVPN messages embedded in a log message �ow 62

6.1 Mocked-up event log messages (selected examples) 105

8.1 Example stanza of rules for �ltering event log messages with the SIC metric 138

10.1 Server A: mocked-up event log messages 156

10.2 Server B: mocked-up event log messages 157

10.3 Server C: mocked-up event log messages 158

19

20 LIST OF LISTINGS

Chapter 1

Introduction

Computer systems administrators, as a part of their job function, must monitor event logs

generated by their systems for signs of failure, impending failure, or security breaches.

Many of these systems are simplistic in nature and produce well-de�ned output that can

be easily �ltered for important events. Many others, however, are inordinately complex,

a situation increasingly common with the advent of multi-tier systems aimed at Inter-

net commerce. This thesis will establish the position that this complexity is negatively

a�ecting the ability of human operators to e�ectively monitor such systems, and that a

fundamentally di�erent approach is required to improve the situation.

The sheer volume of event log messages generated by today's Internet-connected systems

is far beyond what was envisaged when system loggers were �rst conceptualised and

implemented. It is entirely possible for one web portal system at a mid-sized university

to generate at least 250MB of text in the form of log messages, every single day. The

problem is akin to being assigned the task of checking the spelling and grammar in yet-

to-be-published novels. This wouldn't be so bad if (1) much of the text wasn't replicated

yet still super�cially di�erent, (2) you weren't being asked to check �ve novels per day,

24 hours a day, 7 days a week, 365 days a year, (3) the accepted spellings and grammars

weren't changing on a daily basis, or (4) it wasn't possible that massive �nancial losses

could occur, or even lives lost, if one single mistake made it through. The situation,

though, is that all those four conditions can be true in the case of event log messages.

And they're certainly not novels written for a general audience; the vast majority of

possible messages are only able to be interpreted by the software author themselves, but

we have no mechanism for de�nitively determining which ones those are. In fact, there

is no existing way for any machine to genuinely decide whether or not a certain message

really does warrant human attention within an organisational context. The result is

that human systems administrators are bombarded daily with vast numbers of spurious

21

22 CHAPTER 1. INTRODUCTION

messages that obscure the few ones of real value. These are the salient messages: those

which humans would care about if only their attention could be properly brought to bear.

1.1 Salience in event log messages

Real-world computer systems administrators are professionals dealing most often with

two broad categories of tasks: they have to contribute to, facilitate, or lead, the e�orts

involved with the implementation of new systems; and additionally they must maintain

existing systems. The �rst focus for this thesis will be exposing the awareness an individual

administrator must possess in regards to system state � such an awareness would include

a working knowledge of the system components, as well as past, current, and potential

future threats to the operational status of those parts. The only existing mechanism by

which they can exercise such vigilance, other than point-in-time manual checks of resource

usage (such as the disk space remaining, CPU load, etc.) is through monitoring of system

events via event logs, or their synthesised, visual brethren in the form of `dashboards' -

as portrayed by Stephen Few in [14]. A measure of how well such monitoring works is

the degree to which it assists the systems administrator in highlighting the salient events

where a salient event is one that is prominent or useful in identifying potentially-abnormal

system behaviour.

Using the open-source community as an example, the only widespread method of monitor-

ing system event logs is that of �ltering through regular expressions categorised into black-

or white-lists: black-lists �ag known-bad messages while white-lists allow innocuous ones

to pass through. The remainder are typically e-mailed to the administrator as possibly-

suspicious events. Anomaly-detection tools [15] using primarily-statistical routines also

exist and have much academic work invested into them (e.g. [16, 17, 18]), but due to their

relative rarity in actual deployments, the emphasis here will be on policy-based/�ltering

methods. The LogWatch [19] and Logcheck [20] projects typify this approach. Even

though these capabilities exist and are free software, the Debian Linux Project [19] lists

them as installed on only 3.2% and 3.9% of machines, respectively, from an `opt-in' sam-

ple size of 91395 as of this writing [21]. On the commercial side, NMS [22], Snare Server

[23] and Splunk [24] (among many others) also provide such functionality as part of their

o�erings.

The quality and consistency of input to any automated system (such as those mentioned

above) is critical to the quality of its output, for it is here that the established log-

monitoring solutions hit their �rst problem. In reality, systems administrators are called

upon to upgrade software on a daily basis, even if only to implement �xes for identi�ed

1.1. SALIENCE IN EVENT LOG MESSAGES 23

Listing 1.1 Selected examples of event log messages

Feb 3 12:35:56 gateway openvpn -server [2080]: 123.234.147.159:39936 TLS Error: TLS

handshake failed

Feb 3 12:36:16 gateway openvpn -server [2080]: 123.234.147.159:40014 Authenticate/Decrypt

packet error: packet HMAC authentication failed

Feb 3 12:36:16 gateway openvpn -server [2080]: 123.234.147.159:40014 TLS Error: incoming

packet authentication failed from 123.234.147.159:40014

Feb 3 14:38:25 gateway kernel: ATM dev 0: error -110 fetching device status

Feb 3 14:38:44 gateway kernel: ATM dev 0: usbatm_complete: urb 0xdef9f2a0 failed (-84)!

Feb 3 15:12:32 server1 krb5kdc [4196]: TGS_REQ (3 etypes {16 1 3}) 192.168.1.100:

PROCESS_TGS: authtime 0, <unknown client > for host/server1.example.com@EXAMPLE.COM ,

Request is a replay

Feb 4 13:06:42 gateway named [23870]: clients -per -query decreased to 10

security risks, and such changes impact on the e�ectiveness of an automated �lter. An

updated version of the popular Apache web server or of Microsoft Exchange�, for example,

is likely to produce event log output which is not identical to the prior revision. With no

noti�cation of the problematic change provided to a busy administrator (changes to log

messages are typically not reported in the 'changelog' list provided with software; such lists

usually contain new features, con�guration �le format changes, and the like), a critical

log message may no longer exactly match the �violation� black-list regular expression

written to �ag it. On the other hand, the white-list may not function correctly either,

increasing the occurrence of distracting but legitimate messages in the daily report. It

is not di�cult to imagine the maintenance burden [10] incurred by major upgrades such

as an entire operating system. Indeed, in this regard the particular technology used

is practically irrelevant, whether it be data-mining, automated corpus construction or

another alternative because, as re-iterated by Buckley & Siewiorek [25] in an extensive

paper, analysis algorithms can only be as good as the quality of their input data. When

that input data is modi�ed and the �lters are updated/trained/veri�ed either at a later

date, poorly, or not at all, the quality of the resulting (�ltered) output is reduced.

This automated output, meant for administrators to review on a daily basis, su�ers further

from fundamental weaknesses stemming from the process by which event logs have evolved

rather than having been designed, a lack of foresight by programmers as to how the

logs would be used [26], and the almost-imperceptible fusing of human assumptions with

genuine information in the output [25]. The vast and overwhelming number of messages

alone is an intimidating challenge in many cases [27], even when visualisation is considered

[28]. This is without the additional di�culties of parsing their hugely diverse range of

message formats, types and schema [29] and performing the semantic reconciliation that is

therefore necessary [30]. All of these factors are detrimental to a systems administrator's

e�orts towards understanding the current state of the systems under their control.

The most visible outcome is the regular monitoring e-mail, a selected sample of which

24 CHAPTER 1. INTRODUCTION

can be seen in Listing 1.1. Such messages require an extreme level of domain expertise

to decipher; without solutions available even from a modern search engine (the author

has repeatedly attempted to �nd a de�nitive explanation of �clients-per-query...�, without

success). Coupled with the high rate of unpredictable change and the potential for new or

unanticipated situations to produce never-before-seen messages, the existing arrangement

serves both as a impeding factor for systems administration, and an intimidating barrier

to entry for those not 'skilled in the art'. Salience is an attribute added by an experienced

human to the messages; it is not readily encoded for us to extract any more than artistic

merit can be mechanistically deduced from a painting. Art does not even require the

extreme depths of domain expertise that log messages do in order to be appreciated, yet

we persist with the log message 'interface' with its burdensome cognitive and memory

workload, in the hope of cobbling together a mental perception of system state - which

at its highest level of abstraction is either nominal or in fault to some degree.

1.2 Impediments for automated �ltering

The cryptic natural-language nature of event log messages is not only a problem for

systems administrators, but also for those designing automated �ltering solutions. As

mentioned above, regular expressions (or an equivalent technology) are the most common

�ltering technology in active use. Their complexity and syntax, however, makes them

di�cult to generate correctly - as Salzter & Schroeder said of access control mechanisms

in 1975, if the user �must translate his image of his protection needs into a radically

di�erent speci�cation language, he will make errors.�[31, p.5]. Some examples of regular

expressions (or regexes) used with the Logcheck [20] package under Debian Linux v5.0

can be seen in Listing 1.2. These regexes were included with the Debian OpenVPN [13]

package - a GPL-licensed, open source Virtual Private Network (VPN) service - in order

to extend Logcheck's capabilities, and are from the white-list, meaning that all matching

messages will be discarded, irrespective of their quantity.

Note that binary matching with a regular expression is an out-of-context, line-by-line

mechanistic process which does not take into account any surrounding in�uences which

might increase the salience of an otherwise unimportant message. Such �ltering mecha-

nisms obtain one and only one piece of information from a regular expression: it either

matches or does not match a given line of event log output. A machine cannot determine

the category to which any given message should belong, nor can it cope with unantic-

ipated situations or messages. When the regular expressions for message matching are

maintained separately from the codebase generating those very messages, keeping the two

1.2. IMPEDIMENTS FOR AUTOMATED FILTERING 25

Listing 1.2 Examples of Logcheck rules (regular expressions) used for event log message
�ltering [13]

^\w{3} [:0 -9]{11} [._[: alnum :]-]+ (openvpn|ovpn -[._[:alnum :]-]+) \[[0 -9]+\]: (Outgo|Incom

)ing Control Channel Authentication: Using [[: digit :]]+ bit message hash '(SHA1|MD5)'

for HMAC authentication$

^\w{3} [:0 -9]{11} [._[: alnum :]-]+ (openvpn|ovpn -[._[:alnum :]-]+) \[[0 -9]+\]:(([-_.[:

alnum :]]+/) ?[.[: digit :]]{7 ,15}:

[[: digit :]]{2 ,5})? Connection reset , restarting \[[[: digit :]]+\]$

^\w{3} [:0 -9]{11} [._[: alnum :]-]+ (openvpn|ovpn -[._[:alnum :]-]+) \[[0 -9]+\]:(([-_.[:

alnum :]]+/) ?[.[: digit :]]{7 ,15}:

[[: digit :]]{2 ,5})? (Data|Control) Channel MTU parms \[[[: upper :]:0 -9/]+\]$

^\w{3} [:0 -9]{11} [._[: alnum :]-]+ (openvpn|ovpn -[._[:alnum :]-]+) \[[0 -9]+\]:(([-_.[:

alnum :]]+/) ?[.[: digit :]]{7 ,15}:

[[: digit :]]{2 ,5})? TLS Error: Unknown data channel key ID or IP address received from

[0 -9.]{7 ,15}:[0 -9]+: [0-9]+ \(see FAQ for more info on this error \)$

^\w{3} [:0 -9]{11} [._[: alnum :]-]+ (openvpn|ovpn -[._[:alnum :]-]+) \[[0 -9]+\]:(([-_.[:

alnum :]]+/) ?[.[: digit :]]{7 ,15}:

[[: digit :]]{2 ,5})? TLS Error: local/remote TLS keys are out of sync: [0 -9.]{7 ,15}:[0 -9]+

\[1\]$

synchronised is a formidable challenge in itself, and one which (in this author's experience

with these tools) has not come close to being achieved. Furthermore, the large number

of unhandled messages prevents any meaningful statistical analysis of handled-message

counts due to incomplete information; given that the unhandled messages likely contain

relevant events which haven't been handled, simply due to the limitations of the �ltering

mechanism itself.

One must also consider that an inherent `lag' exists in any solution which requires (or even

bene�ts from) maintenance or training, in that any new/unhandled message which passes

through the �lter must be either manually added to the �lter, or achieve enough statistical

signi�cance to warrant exclusion by a data-mining or machine-learning algorithm. In

a sense, even manual addition is the result of a form of statistical signi�cance, as a

message will usually only be added by a systems administrator once its occurrences pass

an arbitrary 'annoyance' threshold. Thus, the unhandled messages which are e-mailed on

a daily basis are the most common output of such tools.

The bad-event detection scenario presents a danger, too, in that any reliance on black-lists

(i.e. attack signatures) by virtue of relying on an exact match to those signatures can

result in a false sense of security when no match is found. A lack of usable metadata

has lead to results which are not reached by an evaluation of whether the message is

important or not, but rather by static string matches which drift away from commonality

with the codebase over time. It is therefore obvious that a never-before-seen message

is considered on a basis of newness rather than whether a human needs to see it; all

unanticipated events are presented as equals, irrespective of actual priority. Current

systems are severely limited by the natural language content of these messages; there is

no useful, easily-accessible metadata that can read both by machines and humans.

26 CHAPTER 1. INTRODUCTION

1.3 Research criteria for an improved alternative

Metadata that is machine-readable o�ers the tantalising possibility of deterministic �lter-

ing without the need to actively interpret and make poorly-informed decisions regarding

the input data. While the input data should ideally be communicating the programmer's

or program-designer's well-informed thoughts on the event in question, and be doing so

in an e�ective manner, we only receive truncated and barely-descriptive messages such as

those displayed in Figure 1.1 - crippled communication by any measure if we consider the

saying �a picture is worth a thousand words�.

The metadata also has to survive the �ltering process itself - even if only to inform that

process. When we accept as a premise that the systems administrator needs the latitude

to adjust their �ltering solution, it becomes clear that the metadata has to be trivially

simple to view; not obscured in a binary bit-packed form - as RFC 5424's �severity� �eld

[11] currently is. Tuning a system for �better� performance (performance being regarded

here as the quality or usefulness of the output) naturally requires knowledge of the input

to that system, and in the case of �ltering event log messages based on metadata, that

input is the metadata.

Furthermore, there is a limitation currently present in event log messaging systems which

may or or may not have been obvious in the examples above: the di�culty (some might

say �impossibility�) of specifying policies that accurately re�ect the concerns of a person

and/or their organisation. Incorporating these realities with regular expressions requires a

duplication and line-by-line customisation of the rule base for each object (e.g. application

daemon, physical server, etc). Data mining algorithms face enough challenges as it is,

with the �ltering of log messages against policy, let alone the burden of �ltering with

gradiated responses, explicit con�dence levels and varying methods of communication.

Neural networks present no details of their internal workings; one would presumably

require a separate network for each policy, and their results would likely be inconsistent.

The metadata, in whichever form it takes, therefore needs to facilitate the automated

application of real-world policies, so that the capabilities of this alternative �ltering ap-

proach prove su�ciently advantageous to justify the e�ort involved in its implementation.

Policies are not supported by any of the log message related literature reviewed in Chapter

2; their only appearance is in heavily-instrumented industrial plant monitoring solutions.

1.4. POTENTIAL IMPROVEMENTS TO SOFTWARE SYSTEMS 27

1.4 Potential improvements to software systems

If the problems above can be dealt with, the implication is that a result from this work

would be software which ful�lls the following aims:

� reduced duplication-of-e�ort

� deterministic and reproducible output

� minimised maintenance requirement in normal operation

� customisable policies that manipulate the output according to personal/organisa-

tional preferences and support multiple modes of communication determined by an

event's real-world priority

� improved communication, with greatly reduced ambiguity, from programmer/pro-

gram designer to end-user/systems administrator.

All these aims are held in contrast with the current situation in event log message �l-

tering. The vast majority of log messages are never observed, either by humans or any

automated process, and the automated tools that are employed entail their own substan-

tial maintenance and implementation burdens. No end-to-end approach yet encountered

has ever attempted to improve the source data of the log messages in question - prior

e�orts such as the Syslog protocol documented in RFC 5424 [11] have instead focussed

on message routing and storage. As will be examined in detail, the entire architecture

of logging and �ltering, as it stands today, requires deep reconsideration in order to im-

prove the monitoring of computing systems which are having to cope with ever-increasing

challenges.

28 CHAPTER 1. INTRODUCTION

Chapter 2

Literature review

�lp1 on fire (One of the more obfuscated kernel messages)�

� fortune package from Debian Linux v5.0

The amount of literature on the speci�c topic of event log system design is scant at best;

only two papers could be located which pertained directly to the problem at hand, and

both lamented this scarcity [25, 32]. Buckley & Siewiorek performed an in-depth analysis

of the event logs produced by VAX/VMS systems and found that even a tightly-controlled

platform/codebase managed by one entity (Digital Equipment Corporation, in this case)

su�ered from inconsistencies and generally lower-than-expected quality in the event logs,

despite being one of the best examples of its day [25]. They witnessed a self-centred design

philosophy wherein the only non-end-user output from the system or system daemons was

in the form of event log messages, yet the programmers writing the code that issued the

messages were doing so exclusively for their own bene�t. Debugging code remained in

shipping products and polluted the event logs. Genuine events were populated with

undocumented, personally-assigned codes. The systems administrator was the intended

user of the product (with non-technical purposes catered for with their own applications

abstracted from the OS) yet was not factored into any interface decisions beyond the

command-line shell. In short, the programmers/designers appeared to be demanding the

administrator possess their level of domain knowledge.

Etalle, Massacci & Yautsiukhin took a security/privacy-oriented look at the landscape;

their framework allows one to formally ascertain the quali�cations of an actual system,

weighing up audit integrity and privacy. Unfortunately, some of their suggestions exem-

pli�ed a `security through obscurity' mindset, such as denying access to the /etc/passwd

29

30 CHAPTER 2. LITERATURE REVIEW

�le in a Linux system with the goal of hiding usernames and therefore preserving privacy

[32]. Etalle et al. had a focus on evaluating existing or proposed systems with a temporal

bent; their criteria included such factors as �partial completeness�, �context independence�,

�chaining� and �exactness�. Their e�orts to 'straddle the fence' on privacy-vs-usefulness

in log �les revolved around disposable pseudonyms for the most part. In any case, their

research did not consider usability for the systems administrator or actual selection of one

or a set of messages from a set of thousands or millions.

Simultaneously, however, there is substantial literature dealing with the formalisation of

the analytical side of logging/event handling systems [5, 33, 17, 34]; such papers most

often attempt to reduce false-positive/negative rates by applying improved data-mining

techniques. Their outcomes are typically characterised as 'probabilistic' and admit that

false-positives and -negatives will occur; e�ort continues in this direction and a break-

through cannot be ruled out. On the other hand, the task these researchers have set

themselves boils down to constructing a strong arti�cial intelligence, in that they aim to

convincingly interpret natural language (i.e. the text contained in the log messages) using

experience, such that novel information can also be handled as though human intuition

were present. The well-known and rocky history of AI suggests that such success may

be either in the distant future, or perhaps impossible with current or even currently-

foreseeable technology.

Other e�orts have emerged with di�ering priorities and design emphases, which led to

results satisfying other goals, such as a logging format for digital libraries using XML

(e.g. [35] and to a large extent [36]), encrypted yet searchable logs (possibly utilising

pseudonyms as well) that deal with the issue of privacy during audits (e.g. [37, 38, 39])

and the statistical analysis of alarms via machine-learning from a trouble-ticket database

[10]. Entire grammars have been proposed, ranging from the building of parsers for audit

logs [40], to the GEM language for coding and dealing with the log messages themselves

[41]. GEM is an interesting case in that the authors' examples appear to rely on a

level of instrumentation that simply has never been present for most events occurring

in distributed systems. GEM also seems to require �awless parsing of messages and

equally superb anticipation of scenarios, in order to reach its true potential. Nonetheless

it represents a thoughtful e�ort that could be of use with higher-quality event log messages

as an input.

What can be readily observed is that the vast majority of literature related to the topic

of event logging accepts the current state of poor and inconsistent input from system

processes. Buckley [26] in his PhD thesis, and when writing with Siewiorek [25], appears

to be practically alone in his calls for higher quality event log messages. Instead, attempts

to enhance the quality of the analysed/�ltered output via the well-established academic

2.1. DISCOVERING �SALIENCE� 31

doctrine of incremental, iterative improvement, appear to be the academic `norm'. These

enhancement e�orts, including those cited in the paragraphs above, typically come in

the form of new or revised analysis algorithms (i.e. entirely post-collection improvement),

ideas for corpus construction (i.e. improving analysis through the incorporation of another

vetted input, as in [42]), or architectures/frameworks - either pre-collection (e.g. [36]) or

formally assessing a logging system after the fact (e.g. [32, 40]).

What appears to be lacking in the literature is any examination of event logging from

a usability perspective, other than when the topic was brushed against by Buckley &

Siewiorek [25]. Event logs are apparently accepted as-is by authors, without critical

analysis as to their suitability for purpose. In particular, the question that has not been

considered is: �how do we deterministically select the `necessary' messages, when we don't

even know the criteria for which ones are necessary?�

2.1 Discovering �salience�

Applied models of salience in computer science are thin on the ground, and none could

be located which were directly relevant to one-line event messages. Salience as a concept

seems to be limited to the pure HCI domain; it has been explored in relation to games and

graphical interfaces, but sadly not in textual analysis. The closest equivalent in logging

systems is the notion of `severity' which is encapsulated in the de-facto standard RFC

5424 [11], or perhaps the `perceived severity' of the ITU's X.733 standard [43]. Severity

by itself has become limited to a very local scope (that of the issuing program itself); this

illustrates the point-of-view of the programmer or designer of the program. Indeed, RFC

5424 accepts that �severities are very subjective, a relay or collector should not assume

that all originators have the same de�nition of severity� [11, pg. 36], reinforcing the

impression that event log messages are written for the programmer/designer rather than

e�ective, i.e. calibrated, communication to another audience.

The severity levels are shown in Table 2.1. In practice, they are conveyed in a `priority'

value which is a bitwise combination of the severity and `facility' values - facility being the

number used to route the message into a particular destination �le - and the priority is

discarded (by default) after message routing has been completed [11]. Newer software such

as Rsyslog [44] is capable of displaying the severity value but again this is not the default

behaviour. The RFC 5424 approach is to consider the type of output (i.e. the facility

number which is intended to categorise messages into authentication, e-mail, CRON, etc

�les) and the severity as (together) indicating an absolute priority.

Given the well-known UNIX security/ring-domain approach, from a systems point of view

32 CHAPTER 2. LITERATURE REVIEW

Numerical code Severity
0 Emergency: system is unusable
1 Alert: action must be taken immediately
2 Critical: critical conditions
3 Error: error conditions
4 Warning: warning conditions
5 Notice: normal but signi�cant condition
6 Informational: informational messages
7 Debug: debug-level messages

Table 2.1: Syslog severity levels as de�ned in RFC 5424 [11]

only the kernel could ever issue a severity �0� message. Other programs, however, would

certainly consider some of their events to be �emergencies�, such as a daemon monitoring a

pool of redundant disks for failures. In terms of the severity levels forming a linear-numeric

scale, each program tends to align the extremes of the scale with the limits of its own

scope, regardless of whether it is a mission-critical database or a frivolous chess-by-email

service.

The X.733 �perceived severity� concept [43], however, gets closer to a notion of salience. It

includes the idea of user perception. Many event messages issued (e-mail server daemons

are a good example) may be consequential to the systems administrator (e.g. the failure

of an indexing mechanism meant to improve scalability) but entirely inconsequential to a

user whose only concern is whether or not their e-mail appears in a timely manner. Even

perceived severity, though, is entirely service-oriented and built from a one-size-�ts-all

perspective. It is also reliant on a static list of probable causes which are technology-

speci�c and therefore immediately outdated. X.733 was �nalised in 1992 and the list

includes items such as �multiplexers� and �DCE-DTE Interface Error� [43, pg. 15] which

may be of limited utility as of this writing.

A NASA paper [45] by Schreckenghost et al., that was primarily concerned with HCI

issues for astronauts, made signi�cant mentions of `noti�cation saliency' but never o�ered

a formal de�nition. Schreckenghost et al. also relied heavily on a static ontology (similar

in nature to X733) as well as information unavailable to an event logging system, such as

a person's physical location, daily schedule, and so on.

Game theory is perhaps the �next best� example of an area of study concerned with

individual events that are part of a greater whole. Andrew Colman's article on salience in

pure-coordination games [46] points out that humans are intuitively drawn to perceived

common touchstones based on knowledge of shared cultural understanding, among other

factors. While this represents an insight into binary decision making in a competition, it

also shows that an implied cultural context is necessary for such systems to be balanced.

2.1. DISCOVERING �SALIENCE� 33

The nature of this context is meant to be shared, but unspoken, by all concerned - meaning

that salience can be viewed (in game theory, at least) as predominantly a human factor

overlaid onto an otherwise rational game of pure chance. As Colman explains, the fact is

that British and American players of �heads or tails?� choose �heads� 87% and 86% of the

time, respectively, regardless of the even probability of outcome. That they regard �heads�

as a �salient focusing point� is a given, but the exact reasons are not yet adequately known

[46].

A more �ne-grained scale can be found in the �C Language Integrated Production System�

(CLIPS) - an expert system framework by Gary Riley - in the form of its �salience rule

property� [47]. CLIPS can interpret a per-rule salience value as a run-time ranking order,

meaning that rules with higher salience will be executed before rules with lower salience.

The scale is given as a range of -10000 to +10000, with a default of zero being assigned if

salience is left unde�ned, and this is meant to be interpreted by the person implementing

CLIPS as a priority indicator [47]. Its utility is obvious in the context of an expert system.

An expert system, at least in 1991 when CLIPS was made available, is supposed to present

a linear series of questions to a user in order to aid them in root-cause discovery, decision

making, or the like.

An unambiguous method of ranking is therefore advantageous when considering such a

one-dimensional (i.e. sequence in time) interface presentation. As discussed above in

regards to the RFC 5424 syslog severity scale, the concepts of `severity' and `priority'

have in the past been combined, and the CLIPS salience value appears to be something

which could more properly be termed as a priority value, given that it is referred to as such

in documentation, and used exclusively for ranking. The nature of such ranking schemes

(as in CLIPS) implies that no two alternatives should have an identical priority. This

clashes somewhat with the human notion of salience; one of the more di�cult moments

faced in reality by a systems administrator is when two ore more items are competing for

their attention but choosing between them is impossible - i.e. the items' salience cannot

be adequately distinguished.

2.1.1 A further exploration of `priority'

Prioritisation, though, was the primary focus of an extensive article by Wallin, Leijon

and Landén. Their stated aim was to automatically prioritise the multiple hundreds of

thousands of alarms which were daily swamping a telecommunications network operation

centre (NOC) [10]. Like event log messages, these alarms had a very low signal-to-noise

ratio. Very high levels of domain expertise were required, leading to a heavy and repetitive

workload for the few so endowed. The alarms were also heavily standardised and therefore

34 CHAPTER 2. LITERATURE REVIEW

quite static in their presentation - a point of di�erence with event log messages which are

often free-form text and prone to un-noti�ed change - Wallin et al.'s �additional text �eld�

contained a mere 3500 unique values [10, pg. 9].

Log messages have the further distinction of not retaining or indicating state, which is

a common feature of the alarms used by Wallin et al. Their approach was to clean the

data �ow (consisting of alarms and trouble tickets), turn a data-mining algorithm loose

on the cleaned data set, and feed the results to a neural network, in the hope of creating

a hybrid �ltering/expert-system which would utilise information from the trouble-ticket

database to assign correct priorities to new alarms.

Wallin et al., as part of their data analysis, identi�ed that the correlation between alarm

`severity' and manually-assigned `priority' (by their de�nition of priority as used in the

telecommunications NOC) was very weak, leading them to conclude that �severities can-

not be used as priorities� [10, pg. 14]. This is a key point to remember with regard to

vocabulary overloading: �priority� is often used in several di�erent senses. In RFC 5424 it

refers to severity+facility; in X.733 as more of a �perceived severity�; and in expert systems

and Wallin et al. as ranking data. What Wallin et al. are pointing out is the mismatch

caused by the programmer/designer deciding upon severity within the context/scope of

the program's functionality whereas the systems/network administrator assigns priority

based upon a wider context that considers the program's role in terms of achieving or-

ganisational goals1. While there is undoubted value in each di�erent interpretation, they

cannot and should not be equated, as is so often done.

The conclusion reached by Wallin et al. was that their neural network could correctly

assign priorities to 50% of incoming alarms. This is an improvement over their �naïve

approach� with its 17% success rate [10]. It does, however, leave 50% incorrectly clas-

si�ed - meaning none of its output could be trusted by humans and would inevitably

be disregarded. Note that a human expert was required to determine the percentage of

correct vs incorrect.

The neural network approach also relies on the trouble-ticket database, leaving it un-

equipped to deal with novel situations, such as those that might be encountered with

a router OS upgrade, a routing topology change, or a malicious network attack like a

distributed denial-of-service. New issues must achieve statistical signi�cance before any

data-miner will regard them as anything other than spurious noise, then be learned by

the neural network; leaving a considerable time lag in which humans must deal with the

1The programmer/designer point-of-view includes severity data: i.e. a narrower focus on the program
being worked on; product/code context. The systems/network administrator point-of-view on the other
hand includes priority data: i.e. a broader focus on the organisation they belong to, end-to-end Service
Level Agreements, etc; organisational context.

2.1. DISCOVERING �SALIENCE� 35

un�ltered alarms as they do now, and create and solve the related trouble tickets (in

Wallin et al.'s NOC), all with no deterministic reassurance that their e�orts will ever

result in correct classi�cation. If the neural network does begin to classify the new alarms

correctly, it cannot even provide a noti�cation of doing so. Such a system is the archetypal

`black box'.

2.1.2 The psychological point of view

This story, of over-reliance on terms such as severity or priority, leaves those of the hu-

manist philosophy distinctly unsatis�ed. It would surely be folly to entirely ignore the

large body of related psychological research. J. Richard Eiser, in a 1971 article on individ-

uals' perceptions, mentions that the �concept of salience, like the concept of a stimulus, is

more easily employed than de�ned.� [48, pg. 444] Eiser's primary investigation was into

the correlation between the strength with which an opinion is held, and the increasing

extremity of that opinion.

That is, an opinion or reaction which is more forceful in its expression will tend to be an

opinion or reaction which is further away from the `middle ground' of society's norms, i.e.

towards either end of a response/survey dimension. In the process of his research, Eiser

had to formulate a concept of �dimensional salience� - and concluded that the various

dimensions that are found to be relevant to a given conceptual idea will be evaluated

di�erently by individuals. In other words, the dimensions themselves possess a salience

attribute; �[t]he individual's frame of reference must therefore be de�ned in terms of the

dimension or dimensions he regards as most important or `salient'.�[48, pg. 443]

We could perhaps therefore bene�t by evaluating the salience of dimensions, rather than

simply accepting dimensions as though they were set in stone. The declaration of a

dimension (for example, severity, or priority) as the single measure of how salient an

event log message actually is, therefore �ies in the face of Eiser's recommendation. It

may very well be that program designers, or programmers, generally �nd the concept of

severity �ts their purposes; that it makes doing their jobs that little bit easier. Eiser

queries: �...which dimensions will be salient to a particular individual?� [48, pg. 443] but

it appears that question has not yet been asked with regard to event log messages, Syslog

standards, or the like. Systems administrators have to su�er the consequences of such

declarations and appear to have minimal, if any, ability to specify how well their primary

interface into a system's inner workings actually functions.

Certainly it is clear that one dimension will not �t all individuals when it comes to a con-

cept as amorphous as salience. An emerging theory belonging to management psychology,

36 CHAPTER 2. LITERATURE REVIEW

�stakeholder salience�, seeks to establish the idea that there are several dimensions which

managers use to judge how they should allocate their �nite time when dealing with stake-

holders in their businesses. Systems administrators, too, have to make very similar value

judgements on a daily basis, especially in the more outsourced environments. A very

widely-cited 1997 article by Mitchell, Agle and Wood [1] o�ers a logical process of de-

duction for the three dimensions they select for consideration: `power', `legitimacy', and

`urgency'. All three are optional, i.e. not all stakeholders will possess all three. They

use a Venn diagram, shown in Figure 2.1, to illustrate the concept; the `most salient'

stakeholders possess all three attributes and therefore reside in the central union.

Mitchell et al. proposed these three dimensions in an attempt to delineate the factors

people use in their evaluations of claims on their time - the multi-dimensional scale is

a response to their premise of no one attribute being reliable enough to capture the

complexity inherent in �identifying stakeholders, as well as in the agency, behavioral,

ecological, institutional, resource dependence, and transactional cost theories of the �rm.�

[1, pg. 854]

Mitchell et al. began with Freeman's broad de�nition of a stakeholder: �any group or

individual who can a�ect or is a�ected by the achievement of the organization's objec-

tives� [1, pg. 854], which they acknowledge as so broad as to not exclude any potential

candidates. Such a de�nition �nds much in common (in scope, at least) with my own

working de�nition of message salience. It should be emphasised here, as Mitchell et al.

themselves emphasise, that the idea of stakeholder salience is not to provide advice or a

framework to deal with future situations, but to reliably identify what factors are used in

reality as people make decisions.

The notion of `power' is the ability for one stakeholder to change outcomes in favour of

their own preferences, i.e. �to impose their will� [1, pg. 865]. It revolves around coercion,

regardless of the tactics used to achieve that coercion. In scope, `power' appears to be

limited to individual parties in a relationship, i.e. few actors, as power could be said

to become increasingly di�use as more actors are involved. `Legitimacy' represents what

some might say is the other side of power's coin: it is the degree to which an action might

be considered acceptable in a larger context, and is judged according to the perceptions

of others [1]. Consequently, those who consistently violate the norms of an organisation

or society-at-large tend to �nd their legitimacy weakened to some degree or another.

Furthermore, Mitchell et al. recall Weber in using the term `authority' to communicate

�the legitimate use of power�.

Whereas power and legitimacy are distinct, yet inter-related, `urgency' �nds itself inter-

nally cleaved in two: the ideas of criticality/importance and time-sensitivity encompass

2.1. DISCOVERING �SALIENCE� 37

Figure 2.1: Dimensions in�uential to management decisions [1] (numerals removed)

(potential) exposure with the entailing risk, and the pressures of timeliness/deadlines,

respectively [1]. That is, for a stakeholder's demands to be considered urgent, they must

possess both those features. �Validity� is perhaps another word that can clarify this po-

sition; the stakeholder's stated requirement of immediate action cannot be valid without

a truly critical situation and genuine time pressure. It is not a large leap to the posi-

tion that `urgency' is the most granular of the dimensions - while power and legitimacy

(possibly combined as `authority') tend to be amorphous and di�cult/impossible to nail

down to particular action items, `urgency' is often tied to a speci�c goal or requirement.

In summary. power and legitimacy are most often thought of as personal attributes; `ur-

gency' on the other hand is attached to outcomes. Taken together, these dimensions form

a measure of salience for stakeholder claims [ibid].

The idea of the three dimensions for management is Mitchell et al.'s response to their

perception of scholarly calls for stakeholder theory to �articulate a normative core� [1, pg.

882], which they de�ne as the search for reasons why �some claims and some relationships

are legitimate and worthy of management attention and why others are not.� [ibid]. Event

log messages require similar investigation, but unlike Mitchell et al. where human nature

was being looked at, such an investigation would have to juxtapose human nature on the

one hand and chaotic log messages on the other - considering the junction where the two

interact.

38 CHAPTER 2. LITERATURE REVIEW

2.1.3 A successful measure developed in medicine

The discovery of a three-dimensional scale for ennumerating demands on one's time re-

called a system used in medicine, structured along similar lines. The modern triage process

in hospitals relies in part on the Glasgow Coma Scale (GCS): a set of three dimensions

for assessing and communicating a patient's neurological condition [49]. Medical profes-

sionals have embraced the scale since its debut in 1974 [12]. It ennumerates the motor

responses, verbal capability, and eye-opening characteristics of a patient; optionally these

numbers can be combined into one, ranging from zero (i.e. dead) to 15 (normal healthy

adult).

Although the GCS is not without its weaknesses, mostly related to the practice of adding

the dimensions together [12], it deals neatly with the clinical need to dependably commu-

nicate important information from one human to another. The GCS score presented by a

paramedic upon delivering a new patient may be written on a chart and later referred to

by doctors and nurses to judge the patient's improvement or decline since presentation.

Departments within a hospital, and across hospitals, all rely on the same scale.

A low GCS score automatically raises the patient's priority for receiving treatment - a

critical part of the triage process, especially in a busy hospital. Every medical institution

is limited to a �nite set of resources and must apportion those resources according to

genuine need. This need usually cannot be assessed by the patient themselves; after

all, most people would assign a higher-than-necessary priority to their own situation

because they are considering a local, self-centred scope (much like the earlier concept of

severity). The �correct� priority can only be assigned by an individual with knowledge of

the organisational situation: load vs capability, as well as an absolute assessment of the

problem based on experience of the breadth of possibilities, from the most trivial to the

worst-case.

In essence, the GCS assigns a salience value (from the point of view of the medical

professionals) to each individual patient. It is worth noting that the range of diagnoses

it covers has changed only slightly since 1974, and that it is considered a discriminative

(between causes), predictive (of outcome) and evaluative (of present condition) scale [12].

The GCS has been thoroughly tested in the medical environment and is now generally

considered indispensible.

2.2. COMMONALITY OF MEANING 39

Figure 2.2: The `representational triangle' [2, 3]

2.2 Commonality of meaning

As identi�ed by Prasad, the GCS actually scores highly in terms of common understand-

ing, with the primary discriminator being experience with its use [12]. Given the concrete

nature of human medical treatment and common, undoubted motivation among those

involved, such a result is not surprising. This commonality of meaning, though, is by no

means assured simply by the use of scales, whether single- or multi-dimensional [50]. Scale

response is fundamentally a categorisation exercise and it has been posited that we can

never prove identical e�cacy across individuals simply because �the absolute meanings of

the response categories are unknown.� [50, pg. 244] As Cook & Campbell also remind us,

experimentation in this (human) domain must be acknowledged as being at the mercy of

innumerable unknown and unaccounted-for factors [51], one of which is simply �meaning�

- always communicated indirectly through the use of �signs�. The very idea of a common

meaning is imperiled in event log messages because of their frequently absurd complexity,

with few common signs.

2.2.1 Semiotics: the study of signs

The use of semiotics in computer science has generally been limited to the human-

computer interaction (HCI) area, or attempts to deal with terminology. An example of

the latter would be Barron et al.'s article [2] on terminology used to identify and classify

various breeds of information system, such as `decision support system', `expert system',

and so on. Such jargon can represent an almost-impenetrable professional dialect, much

like that used by doctors in concert with the Glasgow Coma Scale discussed above. Bar-

ron et al. draw on Stamper's [3] work on semiotics in representing the context around

terminology with a triangle (Figure 2.2) which dates back to Charles Peirce's seminal

work in the early 20th century .

Accepted semiotics theory elucidates that signs are abstract terms representing various

40 CHAPTER 2. LITERATURE REVIEW

Feature Basis in semiotics

Application domain
Action complexity Social level
Social consequence

Acquisition complexity
Acquisition scope
Input usability Pragmatics
Output usability
Justi�cation

Real world relationship Semantics

Representation Syntactics

Table 2.2: �10 features of every Information System� [2]

aspects of real-world objects and social norms. That is, a sign has no meaning without

knowledge of what it represents. Additionally, signs not only signify things or actions

in the real world, but rely entirely on the �social reality� [2] that is understood between

individuals and groups of individuals. One could perhaps characterise signs as labels for

discrete chunks of context. That context is not static � the use of a sign can in�uence it,

after all � but instead is part of the ever-changing present and future of our world. When

the topic of this thesis is applied to the representational triangle, the Observers/Users

are the systems administrators; the Real World Objects are the machines and programs

which are being administered, and the Signs are the administration interface, in this case

event log messages. Again, none of them are truly static for any signi�cant length of time.

Barron et al.'s terminology clari�cation attempt further de�ned 10 features which they

considered to be the de�ning aspects of any information system. These features are given

in Table 2.2 along with their natural �t in the representational triangle. The �rst three

root the system in its social context, the next �ve are to do with the links between

Observers/Users, and Real World Objects and Signs. The illustration is nearly complete

once the depiction of the relationship between RWOs and the Signs is included, with

those �nal representations as the instantiation of the knowledge gathered into one or

more syntactically representative languages (such as a programming language)[2]. The

primary bene�t of the representational triangle is its ability to divide the representation

of a system from the system itself and depict the di�erent approaches taken by users to

those two separate things, as well as providing the `big picture' of the social cause and

e�ect. Barron et al. have therefore provided a framework which includes context, i.e. the

world in which we live.

The lack of social context or user recognition in event log message systems spurred this

search for examples of thought into interfaces. Bear in mind that event log messages

2.2. COMMONALITY OF MEANING 41

consist of textual content and have no graphical element, so interface research into GUIs

was not relevant. The iterative processes of re�nement that have improved GUIs over the

years have not occurred with textual interfaces. This point was made clear by a diagram

in Barr's thesis [4] depicting the dichotomy between the designer's mindset and that of

the end-user, shown in Figure 2.3 on the next page.

While Barr was looking at metaphorical interface elements in computer games, the di-

agram shows the same gulf that exists in event log message systems; that of a de-

signer (and/or programmer) with a scope that is entirely separate from that of the user.

Metaphors such as icons are used to bridge the gap, yet there is an undeniable possibility

of miscommunication. As the representational triangle illustrates, all signs are bedded in

social/cultural context, and derive their meaning from it as well as feeding back into the

context. An example might be the �oppy-disk icon, which has become synonymous with

the �save� function of desktop software despite actual �oppy disks becoming practically

extinct. The �oppy disk still lives on as part of the social context - a sign which has

meaning separate from its real world object, and gains value simply from its uniqueness

[6].

The disappointing conclusion here is: event log messages have not bene�tted from any

of the considerations presented so far. Those examples in Figure 1.1 on page 23 are

brutal evidence of a world-view where the �User� portion of Barr's dichotomy (Figure

2.3) does not even exist. No attempt has been made to embed those signs in a social or

organisational context, or even to adapt them for a non-programmer (of that particular

program) audience. The language chosen has no standardised interpretation, and comes

from an almost in�nite set of choices because there is no `ontology' capable enough.

2.2.2 Ontologies: applying semiotics to, and providing structure

for, vocabularies

According to the literature surveyed, the most common application of ontologies appears

to be the provision of a set of signs for a speci�c purpose, all of which are then strictly

de�ned and provided with a degree of context. This approach is evident in Bunch et al.

[52], a paper on the monitoring set-up within a rocket-fuel manufacturing plant, where

ontologies are provided for noti�cation scenarios and incorporated into their KAoS policy

tool. The primary purpose of ITIL [53] (a set vocabulary and standardised best-practice

procedures for information technology management) could be said to be the same thing.

Matheus et al. use the de�nition of �a speci�cation of concepts and relationships among

the concepts that can exist in a given setting� [9, pg. 547] and inform us that ontologies

are well-established in the disciplines of philosophy and linguistics.

42 CHAPTER 2. LITERATURE REVIEW

Figure 2.3: The dichotomy between designer and user [4]

While applying an ontological approach to event log messages could be bene�cial, it would

be premature to do so without even brie�y considering that approach's rich background.

Stephen Littlejohn, in his book �Theories of human communication� [54], outlines the two

main schools of thought as �actional� and �non-actional�. The actional school takes a more

humanist stand and denies the idea of destiny: people �create meanings, have intentions

and make real choices.� [54, pg. 29] They recognise that change is inevitable and that

there is an element of chaos in life which leads to di�ering decisions even in (apparently)

identical circumstances.

Non-actional adherents, however, hold a pre-destined view [54]. According to this camp,

one's DNA and surroundings can deterministically produce a result, i.e. a law could be

written that X+Y=Z where `Z' is a resulting human being which conforms to a template,

created from `X' DNA and brought up in a given situation, `Y'. This point of view may

appeal to rationalists who might then disagree with Derrida's criticism of philosophy on

the basis of �logocentrism�, �the supposed rational power of the word to explain the world�

[6, pg. 88], in other words, the belief that words or signs represent a super-set of reality.

An example of non-actional thought might be Doeben-Henisch and Wagner's argument

[5] in favour of formalising models of natural language and the representational triangle in

order to produce `provable' models. Their Required Domain Model, shown in Figure 2.4

on the next page, is an example of the emphasis on observation and ennumeration of

factors in relation to a human being. It demonstrates a positivist/essentialist mindset in

which only directly-observed factors may be taken into account.

Considering again the actional side of the debate; remember that here we espouse that

2.2. COMMONALITY OF MEANING 43

Figure 2.4: The �Required Domain Model� [5]

people bring their own meanings to signs/words rather than those same items being

de�ned on a more absolute scale. Cobley and Jansz reside in this school of thought -

they chronicle the thoughts of Jacques Lacan in writing; �the phenomenon of `di�érance'

encapsulates quite nicely the way in which we delude ourselves into thinking we are

rational beings with a �rm grip on the process of signi�cation. . . `Di�érance', by its

very nature, resists attempts to halt its �ow� [6, pg. 98], going on to state that such

ideas can be upsetting to those who desire to sit outside the `social level' (see Figure 2.2

on page 39) and manipulate semiotics as though they were independent of culture and

human nature. Umberto Eco is also cited, in particular his `arctic civilization' example

of mis-interpretation, wherein a civilization which survived a future apocalyptic event by

living under the ice cap later drew absurd conclusions in their archeological research when

pondering the meanings of our artifacts (i.e. our `signs') [6]. This example demonstrates

the extent to which our signs rely on contextual awareness and knowledge.

Any application of ontologies to event log messages would therefore have to deal with the

breadth and skill level of the audience, somehow �nding a small set of words (remember-

ing that it is a purely textual interface) to act as unambiguous signs. The �rst, and most

obvious road-block, is the language barrier: there are systems administrators speaking

practically every language on Earth, with a small percentage of them having (currently

internationally-dominant) English as their �rst language. The nuances of English vocab-

ulary are often lost on non-native speakers through no fault of their own - asking them

to distinguish between the relative merits of �critical� vs �alert� or �warning� is imposing

a hefty burden. Then there is the issue of creating a monotonically-increasing scale from

44 CHAPTER 2. LITERATURE REVIEW

words (such as those just given) and achieving consensus on their meanings, even for

native speakers of any language. This is a global problem simply because software is used

and standardised across almost all cultures and languages existing today.

Ontologies therefore likely have limited potential in this area (i.e. especially open-source

software). Buckley and Siewiorek [25] were disappointed by the poor quality and incon-

sistencies of logging systems under the control of one organisation (Digital Equipment

Corporation), so the likelihood of a word-based scale showing good results is poor when

dealing with volunteers from far-�ung locations around the world.

2.2.3 Semiotic engineering: tips for creating commonality

Semiotic engineering (SE) is a relative newcomer to the HCI arena and focuses on the end-

to-end communication between the program designer and the user. This idea relegates

the actual computer interface to a `designer's deputy'; a proxy which communicates the

decisions taken by, and the world view of, the designer [55]. Semiotic engineering therefore

regards itself as much more all-encompassing than User-Centred Design and cognitive

models, with De Souza and Leitao writing that such established theories �only deal with

the user's actions, not the designer's� [55, pg. 3], and likening the learning of a new

interface to gaining �uency in a human language, albeit with vastly lessened combinatorial

complexity. The root cause of these challenges, they allege, is the lack of consideration

given to the designer's goal of communication, i.e. the degree to which the user actually

received the message being sent.

The basis of SE is the explicit recognition that �the role of the receiver is as important

as that of the sender� [55, pg. 16] - another result of Peirce's representational triangle -

because designers/programmers can only communicate via signs and the receiver brings

their own interpretation to each sign. This is made even more challenging by the notion

(from semiotics, as applied by De Souza and Leitao) that human meanings evolve over

time but meanings/signs encoded into a computer program remain static at least as long

as that software revision is used, which in some cases may be decades. These static signs

are then further limited by the mechanistic methods available for their portrayal. The

upside is that static signs can be inspected and evaluated in great depth. But what should

they be compared to? Each and every human being represents a moving target when it

comes to sign interpretation (and creation of internal meaning) [ibid]. This is the core

di�culty in creating a common meaning.

De Souza and Leitao o�er a considered retreat from this seeming impossibility. They

de�ne `communicability' as the capacity for the deputy to communicate the essence of the

2.3. DOMAIN-SPECIFIC LIMITATIONS 45

designer's idea, perhaps at the cost of detail. The following quote (emphasis De Souza and

Leitao's) outlines how the e�ectiveness of such `metacommunication' can be observed:

�... it su�ces that one of two things happen (sic) when users interact

with computer systems: either that designers mean to tell something to

users (i.e., to get users to behave in a particular way as a result of being

exposed to intentionally produced signs); or that users take a particular

course of action because they believe they are being told something that

justi�es their behavior.� [55, pg. 17]

In other words, the (meta)communication is e�ective to the extent that it results in the

user receiving a message, or even thinking that they are being given a message, but always

with an outcome of action (note that this does not have to be exactly the intended action).

Taken in this light, the overwhelming majority of event log messages are pointless because

(a) the systems administrator either never sees the signs, or (b) does not believe/has great

uncertainty about whether they are being given any message, and so takes no action.

The barrier of manual interpretation without any reference scale for importance actually

hides the designer's/programmer's message. A slightly cynical response might be that

those involved in producing the software used by systems administrators actually view

themselves as the consumers of event log messages, but such a view would implicitly leave

no interface for an administrator - rendering the software a `black box'.

Another take on the quote above might be: if systems administrators are to �believe they

are being told something� [55, pg. 17], then that belief must rest not only on an objective

and absolute set of signs (i.e. non-word signs: hopefully free of issues to do with inter-

pretation), but also has to �[justify] their behavior� [ibid] in an organisational and human

sense. That is, an objective and absolute scale (for the programmer/designer/sender to

indicate their message) must be rendered relative to organisational and human demands

(the sysadmin/user/receiver's world view). A number scale is also indicated as a result

of the �nding that interpretable signs change over time with regard to the human mean-

ings attached to them [55]. This seems to be the best alternative towards the goal of

establishing a commonality of meaning.

2.3 Domain-speci�c limitations

The image appearing here is one of a data set which is subject to semiotic di�culties

(from the point of view of �ltering tools), most often through a rapid (and usually undoc-

umented) change, but also from di�ering understandings between the programmer/de-

signer and their audience, systems administrators. The tools available to us for dealing

46 CHAPTER 2. LITERATURE REVIEW

with these issues are inadequate; relying either on absolutely exact matching either for

elimination or �agging (i.e. regular expressions) or producing probabilistic results (i.e.

data mining, neural networks).

2.3.1 An external examination

The only recent academic critique found of the methods we are using was in the �eld of

bioinformatics; Terri Atwood lamented the unsuitability of exact matching techniques,

including regular expressions, �ngerprinting, etc, as well as probabilistic methods like

Hidden Markov Models (HMM), for the purpose of searching genetic-sequence databases

[56]. Like event log messages, a genetic-sequence data set is often enormous and repetitive.

Conversely, they possess the advantage of being able to take `snapshots' that remain static.

Atwood's external and frank examination of the tools produced by the computer science

establishment unfortunately concluded that none are su�cient for the task at hand.

Atwood identi�es �reliability� as lacking in all approaches, while making the case for relia-

bility as a crucial requirement, given the high cost of false negatives and the overwhelming

quantity of false-positives the moment that search terms are relaxed. In fact, the issues she

faced were remarkably similar to those involved in event log message analysis, especially

the way in which the desired search result may very well contain a tiny and otherwise

inconsequential corruption/mutation, rendering highly-deterministic �discriminators� use-

less.

An interesting distinction exists in Atwood's proposal to resolve the situation. Unlike the

classical computer science approach, i.e. improve the tool/algorithm while not touching

the source data, she advocates the manual annotation of genetic sequence databases and

then searching the annotations together with the raw data. In other words, Atwood

remains open to algorithmic improvements but would prefer improvements in the source

data (via metadata), as painstaking and time-consuming as that may be. While not noting

salience per se, Atwood's contribution may be in pointing out that we can only locate

the most relevant records by actually searching information about relevance, instead of

wasting time trying to mechanistically infer such an index from raw data.

2.3.2 Lack of state

To further illustrate Atwood's conclusion; other industries have managed much better in

their management of events and the construction of a `nominal state'. Event log messages

tend to not indicate or contain state information � in many cases they are received after

2.3. DOMAIN-SPECIFIC LIMITATIONS 47

the event has been completed � which prohibits the construction of a Finite State Machine

to represent a system. Even the entire concept of a `nominal state' is absent. Nominal

state refers to the ability to portray a system as either nominal or in fault to some degree,

most often via a tra�c-light metaphor.

Bunch et al. detailed a NASA research program implementing the KAos Reactive Moni-

toring and Event Noti�cation (KARMEN) from 2002 onwards, at a hydrogen rocket fuel

production plant [52]. Using a subscription model, KARMEN incorporates organisational

policies and rules about groups of alarms (i.e. individual alarms occurring together may

indicate an overall state) into a structure using independent software agents. In compari-

son with RFC 5424, only four levels of severity are used: �Critical�, �Warning�, �Advisory�,

and �Log�. In addition, the well-understood nature of the industrial plant allowed Bunch

et al. to construct thorough and hierarchical ontologies of known failure modes and their

prerequisites.

There are, however, three main glaring di�erences between the NASA fuel plant scenario

and that of Unix event log messages: (1) the fuel production plant is a relatively static

collection of machinery which operates under largely the same physical principles and

designs as used for many years, and (2) all inputs to the KARMEN monitoring system

are quanti�ed, numeric scale measurements. Every input has a lower bound, a nominal

range, and an upper bound. The plant operators do not have to decide whether or not

�Request is a replay� is an important message. Finally, (3) the inputs re�ect a physical

state read at a particular point in time.

This level of quanti�ed monitoring permits sections of plant, or even the entire complex,

to produce a `tra�c light' status indicator which can communicate an overall situation at

a glance. Of course, we must bear in mind that an actual system such as a rocket fuel

plant largely possesses complexities that are physical in nature. They are therefore more

amenable to human intuition in spotting and �xing bugs long before the entire complex

is brought on-line, although deep domain knowledge and experience are often required.

Unlike software code, the range of outcomes is considerably more limited, the domain is

not one of abstraction, and therefore a `lurking timebomb' is less likely.

The use of monitoring systems for industrial plants is not a new idea. E�orts date back at

least as far as the 1960s; W. E. Willison produced a comprehensive architecture for power-

generating stations in 1963 [57], for example. Willison's article speci�es many analogue

mechanisms, as digital interfaces were only just appearing on the market at the time,

but many of the hazards we face today were identi�ed, such as rare failures making it

di�cult for technicians to retain necessary knowledge and the potential cognitive overload

associated with too many data sources. Willison outlined the ways in which a nominal

48 CHAPTER 2. LITERATURE REVIEW

state could be bounded within maxima and minima and methods for aggregating alarms

- techniques available in 1963 for industrial monitoring but still not possible for the vast

majority of event log messages in 2011. It is clear that a quanti�cation e�ort, and even

more importantly, improved instrumentation, are the only ways to achieve manageability.

Note that �improved� should not be read as �more�.

2.3.3 Human factors

Willison's fears about the tendency of automation to result in overwhelming amounts of

data being collected have certainly played out in other industries. Molloy and Parasur-

aman's work on vigilance in aviation [58] identi�ed the same issue. Pilot workload has

only increased over the years as more instruments have been added to aircraft cockpits,

with human intuition being sidelined in favour of automated data collection, the moni-

toring of which is a task we humans are not optimised for [ibid]. Speci�cally, the problem

revolves around the repetitive observation of hundreds or thousands of variables, which

can completely saturate a human's cognitive abilities when a failure occurs (even when

alarms are automatically issued as the parameters breach nominal limits).

The very rarity of failures actually makes the necessary level of vigilance much more dif-

�cult to achieve [58, 57]. The combinatorial complexity of the data collection/monitoring

system itself means the data cannot be assumed as correct, leading to second-guessing of

the output, i.e. false-positives due to a failure in the monitoring system designed to alert

operators to failures. In relation to systems administrators, the outcome is one of disregard

for the data, as it often represents either no correlation or only a weak correlation with

reality. A prime example of this can be seen in Pinheiro et al.'s study of Self-Monitoring,

Analysis, and Reporting Technology (SMART) data [59] which was harvested from the

hard disk drives (reported as �more than one hundred thousand� [59, pg. 3]) in Google's

data centres. SMART is an industry standard intended to improve diagnostic commu-

nication between the hardware (i.e. hard disk drive) and the operating system software,

for the purpose of early detection or even prediction of hard drive failures. In this case,

the failure mode is not usually one of false-positives, but false-negatives: SMART data

overall provides practically no useful/reliable warning of impending disk failure [ibid].

While it is true that a select few SMART parameters do correlate highly with 60-day

failure rates, around 36% of disk drives fail catastrophically with no warning whatsoever

[59]. It is easy to see, therefore, how sysadmins in charge of over 100,000 disk drives

would come to disregard SMART data - in e�ect it becomes a distraction. This is not a

case for eliminating such data collection, but it is one for allowing humans to utilise their

2.3. DOMAIN-SPECIFIC LIMITATIONS 49

intuition for weighting the data �elds. It also makes a good illustration for the di�erence

between �active� and �latent� errors.

In his in�uential book �Human Error� [60], James Reason lays out the distinction. �Active�

errors are high-pro�le, obvious failures or mistakes [ibid]. They tend to be localised and

individual in nature - often epitomising the military refrain �everything has to go perfectly

right for something to go perfectly wrong�. Their `solutions' are most frequently attempts

to remove one or several of those factors that contributed to the `perfectly right' situation.

Indeed, Reason mentions that after-the-fact accident inquiries tend to focus on the active

side of the equation.

�Latent� errors, on the other hand, can lie dormant, unnoticed for decades [60]. The

most frequent cause of these errors are assumptions and mistakes by designers, those

in positions of power, or maintenance personnel [ibid]. Latent errors tend not to have

immediate e�ects but their consequences can be much more severe - active errors often

rely on latent ones, i.e. without the latent, we would have fewer active. Under-design,

cost-cutting, over-optimising; these are some of the names assigned to latent errors if

they are un-earthed. The Y2K issue was a classic latent error. The desire to optimise

and save individual bits led, decades later, to billions being spent in an e�ort to update

both software and hardware.

The di�erence between the two categories can be most easily seen by comparing their cir-

cumstances. Active errors are most frequently errors of judgement in situations of great

pressure and distraction, i.e. we are often unsure whether we could have made better

choices under the circumstances. Latent errors, meanwhile, mostly involve a concious,

rationalised decision often in full knowledge of the potential consequences. If a server

hard disk crashes and this results in data loss, there are many possible errors to consider.

Active: a systems administrator not noticing the pre-failure messages in an event log mes-

sage report, or perhaps not acting fast enough to restore a degraded array of (redundant)

disks so that redundancy was restored. Latent: a sysadmin not doing/testing backups, an

equipment vendor cutting corners on voltage-smoothing componentry, or perhaps most

likely; the disk vendor performing inadequate testing, relaxing quality standards, or not

su�ciently funding the research and programming that is required for an e�ective set of

SMART algorithms and disk �rmware.

Reason has several theories that relate to such issues. He writes that �much of the work

of human-factors specialists has been directed at improving the immediate human-system

interface (i.e. the control room or cockpit).� [60, pg. 173] While not diminishing the

importance of this work, Reason believes it is �aimed primarily at reducing the [visible]

`active failure' tip of the causal iceberg.� [60, pg. 173-174] Experience has shown that

50 CHAPTER 2. LITERATURE REVIEW

Note: numerals added for clarity

Figure 2.5: Shannon & Weaver's communications model [6, 7, 8]

those `closest to the coal-face' are not the primary threat to any system - indeed, they are

the ones most likely to bear the consequences of any obvious, active errors - but that the

risk a person represents rises as their degree of separation to an implemented system rises

[60]. The greater this degree of separation, the more obscured and unaccountable their

decisions are/were. To put it less ominously, a person far up the causal chain from an

implemented system simply has a greatly curtailed ability to clearly communicate their

concerns and reservations with those much more closely involved.

2.4 Communications theory

Further to Reason's rationale on causal chains, the communications process itself can be

analysed for its role in creating errors. Claude Shannon conceived the communications

model [7] in Figure 2.5 to deal with the challenges of radio communication in the late 1940s:

a time of entirely-analogue communications technology. Warren Weaver subsequently

used it in the context of semiotics and human communication [8], helping to formalise the

notion that information was encoded in a lossy manner every time it was communicated

[6].

Shannon's and Weaver's fundamental proposition was that the message being sent was

rarely (if ever) the message being received. Weaver in particular applied this logic to

all human communication regardless of technology; a semiotics problem engendered by

language and its shortcomings, but also images or any other form of imperfect communi-

cation. The following item explanations are drawn from Weaver [8].

1. Information source: The source has a �nite number of possible alternative mes-

sages from which to choose, due to the limits of any established vocabulary or symbol

recognition. Once chosen, this message is sent via the transmitter.

2. Transmitter: The transmitter encodes the message into a signal so that it is then

capable of crossing a medium.

2.5. SUMMARY 51

3. Noise source: Noise encapsulates all the unintended alterations made to the signal

before it reaches the receiver.

4. Receiver: An �inverse transmitter� which decodes the signal and produces a mes-

sage (note: this is not necessarily the same message as that transmitted).

5. Destination: A parallel to the information source which should be able to make

sense of the message.

As Weaver put it: �[w]hen I talk to you, my brain is the information source, yours the

destination; my vocal system is the transmitter, and your ear and the associated eighth

nerve is the receiver.� [8, pg. 4] Shannon's and Weaver's communications model neatly

portrays the ambiguity that inevitably arises from the use of a �nite set of messages, such

as a word vocabulary, for communication.

2.5 Summary

This chapter reviewed the most relevant literature around communication via event log

messages. Salience was outlined and de�nitions from other �elds of research examined.

Methods for establishing common meanings have been considered (including their com-

munication) and the limitations peculiar to the event logging environment presented. It is

clear that the salience of events and information has received considerable attention but

not in the computer science discipline � rather, we have inherited the legacy of ad-hoc

standards which now govern us by virtue of their well-established code bases, the pre-

sumptions of which are not being challenged by academia. The Glasgow Coma Scale and

�stakeholder salience� are but two examples of revolutionary thought that can lead to real

improvements in how we deal with constant �ows information of which some is relatively

more important.

In order to cope with the lack of obviously- and directly-applicable literature, it is neces-

sary at this time to construct a basis for further reasoning. The problem must be clearly

de�ned. That de�nition has to be embedded in an appropriate context. From there, a

foundation can be established using the sca�olding of literature surrounding the issue: is

there a promising way to improve the salience of event log messages that result from an

automated �ltering process? This will be the focus of the next chapter.

52 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Resorting to �rst principles

How can we directly and deterministically improve the salience of event log messages that

are the result of an automated �ltering process? That is, exactly what is it that systems

administrators, i.e. the audience for any deployed system event log, actually consider to

be important? The previous chapter informed us that other disciplines have established

a notion of salience, that multiple dimensions can be better than one, and that it seems

that any solution should allow the observer's own context to be applied when determining

salience.

The salience of the content emerging from previous e�orts has been subjected to only the

most simplistic of tests (if any), such as a small number of `domain experts' that o�er

their opinions on how �good� or �useful� the output is to them. For example, Saniefar

et al. utilised two unidenti�ed people to determine the percentage of terms that were

�really relevant� [42, pg. 775]; whereas Wallin et al. were advised by only a single

network operator, stating that �[the operator] indicated that priority estimates that were

within one step of the true value would be useful� [10, pg. 19]. It barely needs to

be mentioned that these reference sources do not meet any known scienti�c standard

in terms of the sample taken, the miscellaneous factors in�uencing the decisions of the

domain experts (which should be controlled for), or repeatability � their advice embodies

the term `unproven presumptions' [51].

In one �nal case, the rationale for a crucial decision was left entirely unexplained by Ya-

manishi & Maruyama: �[h]ence in the evaluation of this experiment we formally de�ne

a failure symptom as any alarm that is raised within one week before `lock-up'. This

de�nition seems reasonable from the standpoint of network operation� [18, pg. 504] (em-

phasis mine), illustrating a (stated) presumption that alarms are no longer salient after a

period of one week. They also relied on a single human operator for manual assignment of

salience to events, to wit: �the `lock up' was the failure which a network operator taking

53

54 CHAPTER 3. RESORTING TO FIRST PRINCIPLES

care of the network systems thought most critical and was mainly concerned with� [ibid].

To be fair, however, there is no available research on the salience of event log messages,

leading to the use of these unscienti�c sources.

Flack & Atallah [40] came at the problem from a di�erent angle: their paper dealt in part

with the preservation of information from audit logs, as they were parsed into canonical

forms using various approaches. Flack & Atallah were concerned that the parsing process

was discarding a degree of the semantic value contained in log messages - making future

analysis that much more di�cult and error-prone [ibid]. They identi�ed the fact that

messages contain meaning which is embedded in their grammatical form alone, and that

it can be imperilled even by the �rst step of any solution that requires parsing (i.e.

anomaly detectors), leading to a situation where such solutions are working o� of a `lossy'

input. When a message is parsed, it is usually split up into constituent �elds and such a

separation of data points represents a loss of information; much like the pieces of a jigsaw

puzzle versus the completed whole.

Flack & Atallah proceeded to iteratively develop a grammar-based parser for Sun Mi-

crosystem's BSM audit log format to the point where it could interpret almost every

possible message [40]. Note that an audit log is a strictly-de�ned log format that only

records explicit user actions transiting through the system kernel - such as deleting a �le

or listing a directory of �les. The set of possible actions is comparatively small, thus audit

logs are not as complex as the free-form natural language content of event log messages.

Essentially, their e�orts revolved around catering for all identi�able special cases and re-

solving ambiguity wherever possible. One problem, however, with such an approach is

that it rapidly approaches or even exceeds the maintenance burden of a policy/signature-

based �lter, in terms of coping with the inevitable system or software changes. This

is even before the anomaly detection stage, and its associated algorithmic challenges, is

considered. The result: salient messages require yet more time investment to identify.

3.1 So, what is a `salient' message?

What can be deduced is this: researchers have always had to check with real people

about whether a given event log message is salient or not, since there is no mathematical

model for determining message salience. It therefore follows that the researchers did not

believe their own level of domain expertise or experience to be su�cient. After all, the

consultation of one or two people does not constitute evidence per se. A Flack & Atallah-

like exception illustrates that mechanised interpretation principles for log messages cannot

be generalised and the parser has to comprise an expert system, e�ectively creating a

3.1. SO, WHAT IS A `SALIENT' MESSAGE? 55

policy engine for responding to every possible outcome (which is barely feasible even in a

strictly-de�ned, single-source domain like audit logs). The X.733 standard [43] attempted

such an approach for event log messages and was obsolete even before it was released. A

state of continual change does not permit static handling.

To follow a simplistic behaviouralist model for the time being, as well as considering

De Souza and Leitao [55], information considered salient by humans is information that

either initiates, or in�uences the path of, action. It is clear from the prior examination of

semiotics that this salient information will change because it is composed of signs (words)

which are dynamic by nature. To simultaneously narrow down the problem and give it

relevance, context must be introduced.

The context of this investigation is the role of a systems administrator working with

open-source software. Often a professional, the sysadmin is responsible for maintaining,

and where-possible, improving, business continuity and capability (this aspect has not

changed in decades). Any failure of a critical system will result in urgent work being

undertaken and a likely investigation into any active errors committed [60]. In addition,

the proliferation and pervasiveness of modern computing is in stark contrast to the 1970s

era of perhaps a single-digit number of computers in each organisation (and this is the

environment in which event log messages were �rst conceived), resulting in many simul-

taneous pressures on an administrator, thereby decreasing vigilance against failures [58].

Sysadmins therefore sometimes �nd themselves in `survival mode' - spending all their time

maintaining the status quo, with no resources for improvement of the situation.

Informed by context, it is now possible to state that systems administrators consider

information to be salient if it requires or in�uences their action with regard to their

responsibilities in the organisation. Salient information would therefore be anything that

impacts on business continuity or capability; it takes the form of simultaneous pressures

and can unfortunately lead to `survival mode' if it overwhelms an individual's capabilities.

Information that is not salient does not have these impacts, exerts pressure only in the

sense that its salience has to �rst be identi�ed, and should not push one into `survival

mode'. It is necessary to bear in mind, though, that each organisation and each individual

sysadmin have di�ering standards and requirements for the services they rely on and these

may change over time (some use the term �intrinsically non-stationary�, e.g. [18, pg. 499]

to describe the event-logging environment). Any salience threshold is therefore a moving

target and more can perhaps be gained by using the salient/non-salient distinctions as

end-points on a sliding scale, in agreement with Buckley's premises in [26].

56 CHAPTER 3. RESORTING TO FIRST PRINCIPLES

3.2 Modelling the end-to-end lifecycle of an event log

message

To set the scene for the lifecycle of a message, it is important to consider some statistical

likelihoods. An exaggerated form of the Pareto principle has previously been located

in statistical analyses of event data [10]; simply put, a very few distinct events happen

frequently, while the bulk (more than 95%) occur rarely or even only a handful of times

over several years. Following a `low-hanging fruit' approach, the nature of humans is

to �lter the most common events �rst, and when the most straightforward solution is a

simplistic and deterministic regular expression, the elimination of known events (whether

known-good or known-bad) is the path of least resistance. This leaves behind a pool

of unknown events which belong to either or both of these categories: `unknown due to

rarity or �rst sighting' and `common but unknown due to insu�cient system knowledge

or familiarity'. Such a quandary exists independent of any current �ltering technology.

Digging deeper, the issue with the automated �ltering stage (in whichever form it may

take) between humans and the event log message-generating systems comes from the very

nature of the solutions implemented. Humans are poorly adapted to deal with the �ood

of messages that even one busy system can produce, so the normal coping strategy is to

reduce the cognitive load by selectively excluding most or all of the surrounding contextual

information on o�er, simply to avoid overload. Yet there is one contextual area currently

being entirely neglected: the software code itself.

Event log messages are issued from code, of course, but they then have to rely on lossy

and ambiguous natural language to communicate as the `designer's deputy' (see page 44).

Code represents the designer/programmer's most direct instantiation of their ideas [61];

it contains (among other things) comments, conditional testing structures, mathematical

algorithms and loops. As a formalised representation it is already a limited subset of the

thoughts inside the head of the designer/programmer. A million-line program may then

cut this back even further, only ever issuing a few thousand di�erent log messages: for

example, OpenVPN version 2.1.4 [13] contains 79,710 lines of code, of which 1,311 are for

issuing non-debugging event log messages, making for a ratio of roughly 1:61. The cycle

of restriction continues with every step, continuously losing context and paring back the

value of whatever semiotic signs eventually make it to the other end of the communication

process: the mind of a systems administrator.

A model for such fundamentally lossy communication has not previously been applied to

a unidirectional interface such as event log messages. Shannon and Weaver's communica-

tions model is presented here once again for the bene�t of the reader. The model helps

3.2. THE LIFECYCLE OF AN EVENT LOG MESSAGE 57

Note: numerals added for clarity

Figure 3.1: Shannon & Weaver's communications model [6, 7, 8]

to visualise Weaver's notion that information was encoded in a lossy manner every time

it was communicated [6]. Here I will attempt to further adapt the model - this time into

the semiotic context of event logging (see [62]).

1. The information source is de�ned as the original intention or thoughts of the

programmer and/or program designer; those individuals editing source code that

later becomes the binary executable, libraries, scripts, etc running on systems. The

programmer is the person best informed about the situations leading to an event

log message being issued � their mental model of the problem domain is the most

detailed and in-depth of the actors in this context � and originally creates the

sequence of conditionals leading to such an issuing. Semiotics informs us that this

level of conciousness cannot ever be communicated without loss because no sign is

entirely adequate (the `picture worth a thousand words' premise). The thoughts

of the programmer are often most candidly portrayed in code comments, such as

�should never get to here!� or �probably going to fail, but we'll try to recover anyway,

for what it's worth�. The �message� represents the transition stage of writing code.

Limitations: human competence, memory, decision-making, clarity, rationality, in-

tuition, reasoning.

Information state: context-rich, vague, informal human thought processes.

Example: Hypothetical OpenVPN programmer: �We need to initialise the network

tunnel adapters using the operating system - there is no other way.

Errors have to be catered for and we have to inform the user if there is

an error. This all has to be done in a cross-platform manner with as few

platform-speci�c clauses as possible.�

2. The transmitter is de�ned as the encoded thought process of the programmer, i.e.

the source code which is then (most often) compiled into binary machine code. Such

information is a subset of the original intention of the `information source', having

58 CHAPTER 3. RESORTING TO FIRST PRINCIPLES

been formalised and revised into a Turing-complete grammar, following absolute

rules of logic and with conditionals that are machine-testable. Thus the human

thought processes have transitioned from poorly-de�ned but context-rich, to well-

de�ned, testable and context-poor. The �transmitter� is therefore the implemented

mechanism which `transmits' the event log message when all the (machine-testable)

conditions for doing so have been met. The �signal� is an individual log message

sent by the binary program in question.

Limitations: grammar expressiveness, human language ability (i.e. a native speaker

of the applicable natural language, the individual's level of education).

Information state: formalised, testable grammar, probably in a binary form.

Example: shows three message-issuing lines (40, 45, 48) in all of the platform-

speci�c tunnel initialisation code (partial listing in Listing 3.1 on page 60).

OpenVPN itself only issues messages in the Win32 platform section, or a

generic `giving up' message if the platform is unsupported. For all other

platforms it relies on piping any errors from the ifconfig command

it runs, which is supposed to con�gure the VPN tunnel interface in a

command-line shell, back to the user (these lines are omitted because

they do not have any content of their own). It is easy to perceive that a

user might be bewildered by such an error message, presented as-is with-

out reasons or interpretation - as OpenVPN is not creating the message

itself and the semiotic context is therefore di�erent. When ifconfig is

run, it of course does not change its output to match the style of Open-

VPN's and most users would likely not be aware that ifconfig is being

utilised at all.

Another point to note in Listing 3.1 is the nested conditionals consisting

of a �switch-case�, an �if� statement and numerous variations of �#if�.

These conditionals create their own context which is omitted from the is-

sued message, perhaps wisely, but omitted nonetheless. The message on

line 45 could be su�xed with the following: �This message was issued

because the Win32 API returned a null value in response to your

`--ip-win32 netsh' parameter.� Similarly, the message on line 48

could o�er more information on the various platforms that it tried to

match already, i.e. explain which conditionals it tested, that then led to

issuing the message.

3.2. THE LIFECYCLE OF AN EVENT LOG MESSAGE 59

It is true that speci�c debugging messages can help with these situa-

tions, but the use of debugging techniques requires deliberate and fo-

cussed action to be taken (i.e. enabling the debug messages, which may

be a drawn-out operation on a change-controlled system that is already

deployed in production) which can only happen once that action has

been identi�ed as a necessary step. For e�ective communication to take

place, the error message would have to explicitly stipulate one or all of

the following: the reading of the source code, the enabling of debug mes-

sages, or telling the user that the message is not important and can be

discarded. As a designer's deputy, the code must highlight salient mes-

sages that it issues, and when a message is salient it must facilitate the

user's understanding of why - a line of reasoning which needs to draw

on programmatic context as background for the situation. Otherwise

the signs being used are semiotically-impotent because no `real-world

objects' (see Figure 2.2 on page 39) are being o�ered - only isolated and

cryptic snippets, analogous to hearing only a single sentence from a long

discussion.

3. The noise source is de�ned as both the sources of other disparate messages and

unrelated messages from our own binary, as well as any packet loss related to the

commonplace use of the User Datagram Protocol (UDP) with logging daemons.

Thankfully, Shannon & Weaver's concept of `engineering noise' has largely been

nulli�ed in our domain due to the layering of digital communications, the Transmis-

sion Control Protocol (TCP) and packet checksums. TCP is being standardised for

event-logging purposes by the Internet Engineering Task Force (IETF) as demand

grows for a reliable network transport, despite TCP itself not being ideally suited to

the job [63]. The use of UDP as a transport for messages has its advocates too, and

their justi�cations are valid: lossy or congested networks can prevent session-based

protocols from working [64, 63], simplicity can be invaluable in emergencies, and

UDP retransmission can be tailored to each individual situation [64]. Malicious at-

tacks such as man-in-the-middle (MitM), intentional spurious distractions or merely

simple mistakes with �rewall rules also cannot be entirely ruled out with any trans-

port and lead to imperfect information (or none at all) being received: these have to

be considered as noise contributing to what Weaver calls �undesirable uncertainty�

[8].

Complex multi-tier systems, clusters of machines issuing identical messages, denial-

60 CHAPTER 3. RESORTING TO FIRST PRINCIPLES

Listing 3.1 tun.c selective snippet from OpenVPN version 2.1.4 [13]

1 /*

2 * Platform specific tun initializations

3 */

4 void

5 init_tun_post (struct tuntap *tt,

6 ...

7 {

8 tt->options = *options;

9 #ifdef WIN32

10 ...

11 #endif

12 }

13

14 /* execute the ifconfig command through the shell */

15 void

16 do_ifconfig (struct tuntap *tt ,

17 ...

18

19 #if defined(TARGET_LINUX)

20 #ifdef CONFIG_FEATURE_IPROUTE

21 ...

22 #else

23 ...

24 #endif /* CONFIG_FEATURE_IPROUTE */

25 #elif defined(TARGET_SOLARIS)

26 ...

27 #elif defined(TARGET_OPENBSD)

28 ...

29 #elif defined(TARGET_NETBSD)

30 ...

31 #elif defined(TARGET_DARWIN)

32 ...

33 #elif defined(TARGET_FREEBSD)|| defined(TARGET_DRAGONFLY)

34 ...

35 #elif defined (WIN32)

36 ...

37 switch (tt->options.ip_win32_type)

38 {

39 case IPW32_SET_MANUAL:

40 msg (M_INFO , "******** NOTE: Please manually set the IP/netmask of '%s' to %

s/%s (if it is not already set)",

41 actual , ifconfig_local , print_in_addr_t (tt->adapter_netmask , 0, &gc));

42 break;

43 case IPW32_SET_NETSH:

44 if (! strcmp (actual , "NULL"))

45 msg (M_FATAL , "Error: When using --ip -win32 netsh , if you have more than

one TAP -Win32 adapter , you must also specify --dev -node");

46 ...

47 #else

48 msg (M_FATAL , "Sorry , but I don't know how to do 'ifconfig ' commands on this

operating system. You should ifconfig your TUN/TAP device manually or use an

--up script.");

49 #endif

50 ...

51 }

3.2. THE LIFECYCLE OF AN EVENT LOG MESSAGE 61

of-service attacks, continual change and poor documentation: all of these aspects

make it more di�cult for an administrator to locate a problem signature, and to iso-

late it from the continuous �ow of information; a task not dissimilar to siphoning o�

one particular drop whilst drinking from a �re hose. Such problems are exacerbated

by undesirable uncertainty - the perpetual requirement for a systems administrator

to second-guess the validity of data. Weaver envisaged yet another noise source:

�semantic noise�, contributing �perturbations or distortions of meaning which are

not intended by the source but which inescapably a�ect the destination� [8, pg.

15]. This is at least partially catered for above, in the �message� transition between

thought-processes and code.

The `received signal' is the combination of all these possibilities �owing into a cen-

tralised log collector, i.e. a logging server. The hundreds-of-megabytes �gures men-

tioned on page 21 are measured at this point. A factor that must be remembered is

that the systems administrator may not have any control over the devices sending

event log messages to their central collection server.

Limitations imposed: incomplete information which has possibly been deliberately

manipulated or omitted, spurious information (also possibly injected as

a distraction tactic).

Information state of the `received signal': possibly-salient content submerged in a

�ood of distractions.

Example: a 9-second snapshot on a lightly-loaded system shows an OpenVPN ses-

sion re-initalisation, shown in Listing 3.2 on the next page. The example

is quite `kind' in that the messages are contiguous in this case. On a

highly-loaded system in a large production environment, it is unlikely

that they would be contiguous simply because of the volume being re-

ceived. There is also no relationship between the OpenVPN messages

and those surrounding them, but such a data point should not form the

basis of any assumption that this would always be the case. Root causes

can produce errors further up `the stack', for example, disk read errors

on a database server causing a client on another machine to issue event

log messages about database timeouts.

4. The receiver is de�ned as the system processes or daemons which both receive

messages, and then perform �ltering on them. The �ltering process may appear

out of place, but is similar in its intention to Weaver's �semantic receiver� which

62 CHAPTER 3. RESORTING TO FIRST PRINCIPLES

Listing 3.2 Some OpenVPN messages embedded in a log message �ow

1 ...

2 Dec 16 17:35:16 host named [3898]: automatic empty zone: A.E.F.IP6.ARPA

3 Dec 16 17:35:16 host named [3898]: automatic empty zone: B.E.F.IP6.ARPA

4 Dec 16 17:35:16 host named [3898]: command channel listening on 127.0.0.1#953

5 Dec 16 17:35:16 host named [3898]: zone 0.in-addr.arpa/IN: loaded serial 1

6 Dec 16 17:35:16 host named [3898]: zone 127.in -addr.arpa/IN: loaded serial 1

7 Dec 16 17:35:17 host named [3898]: zone 16.172.in-addr.arpa/IN: loaded serial 2010042601

8 Dec 16 17:35:17 host named [3898]: zone 255.in -addr.arpa/IN: loaded serial 1

9 Dec 16 17:35:17 host named [3898]: zone localhost/IN: loaded serial 2

10 Dec 16 17:35:17 host named [3898]: zone example.com/IN: loaded serial 2010071901

11 Dec 16 17:35:17 host named [3898]: running

12 Dec 16 17:35:17 host ovpn -server [3912]: OpenVPN 2.1 _rc11 i486 -pc-linux -gnu [SSL] [LZO2] [

EPOLL] [PKCS11] built on Sep 18 2008

13 Dec 16 17:35:18 host ovpn -server [3912]: /usr/bin/openssl -vulnkey -q -b 2048 -m <modulus

omitted >

14 Dec 16 17:35:20 host ovpn -server [3912]: Control Channel Authentication: using 'tls -auth.

key ' as a OpenVPN static key file

15 Dec 16 17:35:20 host ovpn -server [3912]: WARNING: normally if you use --mssfix and/or --

fragment , you should also set --tun -mtu 1500 (currently it is 1442)

16 Dec 16 17:35:20 host ovpn -server [3912]: TUN/TAP device tun0 opened

17 Dec 16 17:35:20 host ovpn -server [3912]: /sbin/ifconfig tun0 172.16.201.1 pointopoint

172.16.201.2 mtu 1442

18 Dec 16 17:35:20 host ovpn -server [3921]: GID set to nobody

19 Dec 16 17:35:20 host ovpn -server [3921]: UID set to nobody

20 Dec 16 17:35:20 host ovpn -server [3921]: UDPv4 link local (bound): [undef]:1194

21 Dec 16 17:35:20 host ovpn -server [3921]: UDPv4 link remote: [undef]

22 Dec 16 17:35:20 host ovpn -server [3921]: Initialization Sequence Completed

23 Dec 16 17:35:25 host sensord: sensord started

24 Dec 16 17:35:25 host sensord: Chip: acpitz -virtual -0

25 Dec 16 17:35:25 host sensord: Adapter: Virtual device

26 Dec 16 17:35:25 host sensord: temp1: 32.0 C

27 Dec 16 17:35:25 host sensord: Chip: vt8231 -isa -6000

28 Dec 16 17:35:25 host sensord: Adapter: ISA adapter

29 Dec 16 17:35:25 host sensord: +3.3V: +3.27 V (min = +3.13 V, max = +3.45 V)

30 Dec 16 17:35:25 host sensord: +2.5V: +2.47 V (min = +2.37 V, max = +2.62 V)

31 Dec 16 17:35:25 host sensord: VCore: +2.08 V (min = +1.89 V, max = +2.39 V)

32 Dec 16 17:35:25 host sensord: +5V: +4.96 V (min = +4.71 V, max = +5.22 V)

33 ...

3.2. THE LIFECYCLE OF AN EVENT LOG MESSAGE 63

he imagined sitting between the receiver and the destination, the di�erence being

that the semantic receiver was to cater to the varying characteristics of each poten-

tial receiver device [8]. Receiving Syslog daemons, however, are relatively simple

automata which currently do little more than appending the contents of network

packets to an appropriate log �le.

Here it is useful to step back for a moment and reconsider the state of the informa-

tion in the �ow which has been received. As Weaver speci�ed, the word information

as used here is distinct from meaning, in that the very notion of meaning has disap-

peared by this stage and must be reconstructed from scratch from mere information

(akin to data). �Information [represents] freedom of choice and hence uncertainty

as to what choice has been made� [8, pg. 11] - which tells us that more information

can mean more uncertainty but this can still be desirable. Consider the example of

audio CD sampling rates: the virtue of the 16-bit wave format is excellent descrip-

tiveness in that there are so many values with which to describe an analogue audio

wave. Compared to a 4-bit wave format, 16-bit is clearly superior. Yet 16-bit creates

much more uncertainty in that the probability of any given value being received is

greatly reduced.

The automata handling the �ow, though, cannot determine a meaningful message

from nonsense, with the result that messages like those in Figure 1.1 on page 23

are (by default) piped into a few broadly-speci�ed �les, dependent on their Syslog

facility value. The common Linux/open-source �les would be auth.log, messages,

syslog, daemon.log, mail.log, and so on. On Windows operating systems the

three logging categories are Security, System and Application. From the point of

view of automata, the only reliable method for determining where a message should

be delivered is for the programmer/designer to pre-decide this via the facility value.

RFC 5424 standardises these but does not broach the topic of reliably determining

which messages a human should see.

The task of reverse-engineering salience into the messages is bequeathed to the

�ltering process, and this task has thus far been performed with the (valid) assump-

tion that since a message's meaning cannot yet be determined by a machine, we

have to make do with matching regular expressions (e.g. Listing 1.2 on page 25),

or using statistical methods � usually boiling down to trained data mining. This

is a crucial weakness of the natural-language nature of log messages. Furthermore,

their unpredictable yet often rapid rate of change means most solutions are obsolete

64 CHAPTER 3. RESORTING TO FIRST PRINCIPLES

even before coding begins. Whereas message routing was accepted as a function

of metadata set into source code, the human-interface side was apparently never

considered beyond the very locally-focussed severity levels. We might as well turn

our tools to bear on a newspaper's website and rely on them to tell us the `impor-

tant' headlines, along with succinct and relevant quotes from the articles, for all the

real-world success witnessed to date in the log analysis �eld.

Limitations: static or trained �ltering tools that must assess salience based on pre-

de�ned rules or trends, probabilistic factors in neural networks, and/or

signatures.

Information state: out-of-context messages, littered with potential false-positives

and -negatives, and most importantly, devoid of any organisationally-

useful or machine-readable indicator of salience.

Example: A centralised log-collection server running software which is almost in-

evitably using regular expressions (or a comparable variant of static

string-matching �lters) such as those in Listing 1.2 on page 25. The

software detailed in Section 3.3.1 on page 67 is one example. This point

of the �ow is therefore purely automatic and handled by a �nite state

machine. Challenging aspects like encryption, authentication, session

management and others outside the scope of this thesis are dealt with

here.

5. Predictably, the destination is de�ned to be the systems administrator. This role

is �lled by a human who must make critical decisions on a daily basis, often using

the information presented by the various automated monitoring processes. Such a

role requires vigilance � a di�cult and error-prone task when there might be only

one failure indicator amid the logs, and the administrator has other business tasks

to complete [58]. There can be no guarantee of the administrator being a speci�c

domain expert, let alone being experienced with any particular (sub-)system - an

administrator `covering' for another who is on vacation is but one counter-example.

Limitations: busy human with other priorities competing for their attention, ex-

perience level and language ability of said administrator. Uncertainty

about the method of information presentation (E-mail? Website? How

often is it checked? How much time or opportunity is there for a human

to verify the information?), i.e. interface assumptions that may not be

suitable for the end-user.

3.2. THE LIFECYCLE OF AN EVENT LOG MESSAGE 65

Information state: mental impressions formed by the information of questionable

salience that has made it through the �ltering process.

Example: any systems administrator who may or may not take action as a result

of a message reported to them. In this OpenVPN working example,

the sysadmin has to decide the importance of the message �WARNING:

normally if you use --mssfix and/or --fragment, you should also

set --tun-mtu 1500 (currently it is 1442)� and proceed from there.

The real-world system this message was taken from has been running

an OpenVPN server daemon for over six years, during which the warn-

ing message has been displayed around twice a week (on average). No

problems have ever been noticed as a result of the warning.

Speci�cally, the message relates to where IP packets will be fragmented:

either 1500-byte data packets will be cut up to �t into valid VPN packets

which then travel over a layer-2 media with a maximum packet size of

1500 bytes, or the data packets are packed into >1500 byte VPN packets

which themselves then have to be fragmented to �t on the media. In

the implementation examined, the former alternative was chosen, but

OpenVPN issues the warning message despite no problems being evi-

dent. A design (i.e. Syslog) requiring this level of detailed consideration

for every possible log message, including ones that have yet to be issued,

is not feasible in today's environments, and even less so in tomorrow's.

Figure 3.2: Adapted version of Shannon & Weaver's communications model; for event log
messaging

It is clear from the process above, depicted in an adapted form in Figure 3.2, that a

communication de�cit develops between the source and the destination. The argument

presented here is that this de�cit is a factor in dulling the vigilance of administrators;

creating a risk of �latent failures� [60]. Merely learning the nominal state of systems

becomes an exercise in futility, as can be seen in the many `dashboards' that seek to

66 CHAPTER 3. RESORTING TO FIRST PRINCIPLES

visually portray a current state and yet fail utterly to do so [14] � and through such a

systemic lack of awareness, failures can result [58].

3.3 Mechanistically interpreting natural-language mes-

sages

A common thread among the academic literature is the di�culty involved in interpreting

natural-language portions of event log messages. Not only is there the immense challenge

of parsing a language itself, but the complications arising from non-standard formats,

non-native users of any given language, in consistencies across and within products (e.g.

[25]), and even spelling mistakes, are far from trivial. The general approach to anomaly

detection can thus be summed up as �rare == bad� (which can be observed in [65, 17, 18]);

an assumption that results from the abandonment of the actual interpretation of meaning.

Such an approach is not re�ected in other well-established disciplines that were detailed

earlier (industrial chemical plant monitoring failure [52], failure monitoring in aviation

[58], and electricity-generation equipment monitoring [57]) that tend to focus on nominal

states, rates of change and threshold trips. Those examples rely on quanti�ed measure-

ments wherein the scales themselves depict salient points. That is, the scales have meaning

in and of themselves. Without quanti�ed and useful scales available to us, the approaches

taken to event log messages universally rely on identifying `bad' messages; in isolation to

begin with and occasionally seeking correlations with other messages at a later point in

time.

It is true that policy/signature-based tools can complement the results of frequent-pattern

data mining, which left to its own devices would consider a weekly time-synchronisation

issue to be more serious than one hundred disk-write failures every day, but the results

of such regular-expression �lters still fundamentally re�ect the competence of the �lter

set and not an objective, or even subjective, evaluation of importance. The statistical

or neural-network approaches feature only probabilistic outcomes and a need for training

which, even when drawing from knowledge bases, seems unable to surpass a 50%-correct

threshold (as in [10]).

These issues resonate with Atwood's �ndings [56], and those of a large-scale literature

survey (of more than 150 published papers) by Facca and Lanzi which concluded that the

most promising approach for useful Web usage data mining was an end-to-end conceptual

schema that improved the quality of the source data [66]. Filters which use a statistical

or neural-network technique also tend to be limited to academic settings. In summary,

e�ective �ltering is still a `hard' problem [67].

3.3. MECHANISTICALLY INTERPRETING NATURAL-LANGUAGE MESSAGES67

3.3.1 Examining a common deployment: Logcheck

To know where one is going, one �rst has to know where one has come from. For a work-

ing example, an unmodi�ed installation of Logcheck v1.2.69 [20], the most-often installed

policy/signature-based alternative [21] under Debian Linux v5.0 [68] was examined. In

this context, �white-listing� refers to matching for the purpose of discarding a message as

unnecessary/known-good/routine, while �black-listing� is the opposite practice of match-

ing known-bad messages explicitly for noti�cation purposes.

The `server' monitoring pro�le contains 1324 lines of regular expressions for white-listing

innocuous event log messages, 47 lines termed �cracking� that black-list suspicious mes-

sages, 12 lines for �violations� black-listing (often used for �agging emergency conditions

such as disk failure) and 155 �violation-ignore� lines that white-list speci�c cases other-

wise �agged as violations. These numbers are from the rules shipped with the Logcheck

package - they do not include any rules added by other software packages. The Logcheck

software uses this repository of regular expressions to �lter event log messages, which by

default it does daily, resulting in an e-mail to the administrator. This e-mail contains all

the messages which either matched a black-list expression or did not match a white-list

one.

It should be noted here that there are several issues with this simplistic approach: there

is a presumption that all unanticipated `bad' messages will pass through the �ltering

process; that all high-priority messages will be �agged by the �violations� or �cracking�

black-lists; and that the white-list will be maintained so as to reduce `noise' in the daily

report and therefore call attention only to genuine issues. Noise generally consists of the

non-salient and/or duplicated messages created by node 3 in Figure 3.2 on page 65.

Rules such as the small sample in Listing 1.2 on page 25 are typical of the mechanism

used for policy/signature-based tools. These particular rules are representative of the

enumerated whitelist that removes messages which administrators do not need to be made

aware of � every line represents a special case deemed to be acceptable. The blacklist rules

are written identically and are only identi�ed as `bad' by the �le they are stored in.

The ratios of whitelist-to-blacklist rules are indicative of the potential for regular expres-

sions to cope with unanticipated situations. Logcheck's `server' pro�le possesses a total

of 1479 message whitelist rules that eliminate known-good messages, compared to only

59 blacklist rules that highlight known-bad messages. This ratio of roughly 25:1 clearly

illustrates the usefulness of the regular expression mechanism: when it comes to system

failures, it is only possible to anticipate highly-speci�c cases, and indeed Logcheck (as of

v1.2.69 in Debian v5.0) only does so with disk monitoring errors and a very few cases of

kernel events. An anonymized sample of real events which didn't match any of the default

68 CHAPTER 3. RESORTING TO FIRST PRINCIPLES

Logcheck �lter sets is shown in Listing 1.1 on page 23. These lines were e-mailed to the

system administrator as possibly-serious events.

Notably, compared to the `server' pro�le characteristic, the `paranoid' monitoring pro-

�le caters for increased administrator paranoia by removing whitelist elimination rules,

without adding blacklist rules. Choosing this pro�le results in a daily e-mail with an

increased number of spurious events. As another point of comparison, the LogWatch [19]

package in Debian Linux v5.0 contains a default �lter set of 1104 regular expressions, the

vast majority of which are used to count event `hits' in log �les and whether a given hit

is considered harmless or not is particular to each log �le input. In only 39 cases is a

�bad� counter incremented. This represents a whitelist:blacklist ratio of roughly 27:1, as

of LogWatch v7.3.6.cvs20080702-2.

3.3.2 Problems with the current approach

A fundamental issue with the policy/signature-based situation as it stands, is the emphasis

on removing known-good event log messages, �agging or counting known-bad messages,

and the implicit assumption that an acceptable outcome is for any remaining events to

fall into a category of `unknown'. The number of unknowns can be iteratively reduced

with the addition of regular expressions to the �lter set, but this is a considerable mainte-

nance burden in modern environments [10] and any automated attempt to generate these

expressions has a signi�cant and unavoidable risk in regard to false positives/negatives

[56].

Human involvement cannot be avoided altogether [56, 65]: although an algorithm can

identify trends in data, it does not and cannot know exactly what a human observer is

interested in. Worse yet, this e�ort is being repeated in parallel in every organisation

which utilises log analysis tools, as the �nal burden of interpretation and �ltering is on

the end-user (i.e. systems administrators). To a limited degree, however, the �ltering

e�ort always has to be customised according to the needs, policies and priorities of each

organisation, and thus this capability should not be removed, but instead the need for its

use minimised.

Whichever approach is used, it can be di�cult to categorically justify the addition of such

unknown events to a white- or blacklist, leading to a situation where the distraction `noise'

level in a �ltered event log incrementally builds over time as the software base changes.

An example of this dilemma is a message from the Berkeley Internet Name Daemon

(BIND) [69]: �clients-per-query decreased to [a two-digit number]�, for which

this author has not been able to locate a conclusive result regarding severity or priority,

despite many searches.

3.3. MECHANISTICALLY INTERPRETING NATURAL-LANGUAGE MESSAGES69

Such a known vs unknown con�ict is not helped when the data input source represents a

continuous �ow that is continuously changing (chaotic in nature), incomplete, inconsistent

[25] and semantically heterogeneous [70] � thereby defying any attempt to reliably/deter-

ministically correlate events, such as [15] but especially ontological e�orts such as [71, 70]

(see Section 2.2.2 on page 41 for more details of ontologies). Event correlation relies on

a relatively static and well-understood environment; for the purposes of identifying root

causes [72], and optimally, downstream impacts. Indeed, Yamanishi & Maruyama use the

term �intrinsically non-stationary� [18] to describe the modern situations within which

event logging systems exist.

This `moving target' becomes even more relevant when considering research in the health-

care sector which asserts that interoperability between disparate systems cannot take place

in a meaningful manner unless valid relationships are identi�ed between the systems' on-

tologies [73], simply because ontologies that are continually in �ux cannot maintain those

relationships in stasis (by de�nition). Current automated techniques to cope with this

reconciliation challenge are far from complete [30] and event correlation (in the sense of

automatically linking events across and between systems) remains a `hard' problem [18].

Other attempts at automatically and independently assigning priorities to events have not

met any greater success: the correlations between system-assigned problem severity and

actual real-world problem priority appear to be weak at best, and practically non-existent

when examining event type versus real-world priority [10]. Such a disparity is partly due

to a given device or system daemon issuing event log messages with no knowledge of, or

regard to, its own place in an organisation's infrastructure. In short, a piece of computer

code is written with only an awareness of the component's functionality, and not with any

prescient foresight as to how salient its messages will be to the administrators receiving

them. This information, an indexed indicator of salience (as opposed to severity), is

absent in every event log message yet seen.

As somewhat-anecdotally identi�ed by Wallin et al. in [10], systems administrators utilise

their domain expert knowledge of the object in question (this author would add that this

includes a historical perspective of system issues) and its infrastructural importance, as

well as the time and type of the event, when evaluating importance/relevance/priority

on a per-event basis. This is of course contingent on being able to reduce the volume

of messages to a reasonable level [63]. And yet, as identi�ed earlier, there are messages

which even experienced administrators are bewildered by due to the pace of change in the

computing sector and the depth of knowledge required.

With their neural network and trouble-ticket database combination (i.e. attempting to

make use of organisational knowledge derived from tickets), Wallin et al. found a �statis-

70 CHAPTER 3. RESORTING TO FIRST PRINCIPLES

tically signi�cant improvement for operators compared with the currently available alarm

severity� [10, pg. 19]. By their own admission though, the outcomes were probabilistic

rather than deterministic, and the system could provide no justi�cation whatsoever for

why a particular alarm had been highlighted. The neural network remained a `black box'.

Another point of failure is the trouble-ticket database: Wallin et al. make optimistic

assumptions regarding the validity of the information here, and as covered earlier, deter-

mining the true salience of an alarm often requires knowledge and expertise which may

not be available within any given organisation. As such, the solution posited by Wallen et

al. attempts to `make do' with information that is, from a semiotics point of view, incom-

plete and likely misconceived. It does not attempt to improve information quality, convey

meaning from the program developer, or otherwise support human decision making.

A natural upper bound therefore exists on the usefulness of expert systems, neural net-

works, customised policy/signature-based tools, data-mining and machine-learning, when

the role of the veri�er or trainer is taken by people who themselves cannot categorically

determine the desired outcome in all cases. Fundamentally this comes back to the com-

petence of those who choose or clean the training data set � and this is a weakness of

many academic studies, e.g. [15, 10, 16, 17, 18], which proceed with a static, vetted data

set, rather than one in a constant state of random �ux. It is all very well to optimise an

algorithm (in the broadest sense) for messages that are two years old, but quite another

to engineer one that can adapt to new and unforeseen situations without a specialised

team of researchers on-hand.

Log messages cannot be classi�ed with the same simplistic, binary strategy as e-mail

spam. Regarding the problem as information triage is more valid. The current solutions

do not recognise and cannot cope with the constraining factor of limited human attention,

so it follows that they are inadequate at triaging event log messages. Would any reader

of this thesis be genuinely comfortable with the scenario of being wheeled into a hospital

emergency department and having their Glasgow Coma Scale assigned by a computer

running an expert system based on regular expressions, or a data mining algorithm with

only �probablistic� results?

3.4 Quantifying information saturation

To quantify the problem at hand, and due to the apparent lack of any prior such work, the

raw information content of event log messages from a Los Alamos National Laboratory

(LANL) Cray XT supercomputer [74] were analyzed using Weaver's information theorem,

shown in Algorithm 3.1. This is to demonstrate the scale of information that the current

3.4. QUANTIFYING INFORMATION SATURATION 71

Algorithm 3.1 Weaver's information theorem [8]

H = −[p1logp1 + p2logp2 + ...+ pnlogpn]

solutions are attempting to handle. The `syslog' �le (named messages.sdb), which receives

all kernel and daemon messages, was used for the analysis.

It is important to remember that Weaver de�ned `information' in this context as �freedom

of choice�. The set of all possible values that may be received is indicative of the depth of

information; when this set is larger, a set of data can contain more information. Binary is

thus the practical minimum as far as `information' goes. Trinary or quaternary (e.g. DNA)

codes can contain more information in the same number of bits. The more possible values

there are, the more uncertainty there is about which value was sent from sender to receiver

- this can be considered `good' because the greater freedom of choice enables a more

descriptive communication about an analogue world. Noise also increases uncertainty but

simply in a `bad' sense; the result (an increase in uncertainty) can be identical but from

a di�erent cause, yet the receiver cannot distinguish between causes [8].

The natural counter is redundancy - and indeed Weaver states the redundancy of the

English language as around 50%, which enables us to communicate even when words are

lost or misheard. That redundancy in natural language is an advantage for a human

listener with a `wet-ware' brain to e�ortlessly process it. The same redundancy is a

liability for algorithmic computing, however, as algorithms cannot discard it and instead

�ag even tiny, semantically-trivial alterations as di�erences just as signi�cant as any other.

From a semiotics point of view (see Figure 2.2 on page 39) algorithms process signs as, and

only as, data; they have no genuine experience as observers, nor any genuine knowledge

of real-world objects, i.e. context. After all, signs are the only interface for algorithms.

Human-level language interpretation is still a problem reserved for strong AI.

3.4.1 Saturation results

Since it is the information of the messages themselves that concerns us rather than any

arti�cial uniqueness, the �rst �ve columns of event-log data (time-stamp and machine

name) from LANL's Cray XT [74] log �les were removed. All 621494 messages in the

event log �le were considered, with the most frequent occurring 9804 times. Using each

message's probability of occurrence (p1...pn) produced a value for H of 16.126 (3 d.p.).

The maximum attainable value of H for 621494 records (i.e. each record having equal

probability) is 18.552 (3 d.p.). This gives a ratio of roughly 0.869 (3 d.p.), meaning

72 CHAPTER 3. RESORTING TO FIRST PRINCIPLES

Data sourcea Number of messages Ratio of H
0809181018 3,397,749 0.851
0810082020 51,951 0.967
0810151644 97,644 0.906
0811011951 878,503 0.830

`Typical' Munin monitoring tool 18,931,584 0.512
`Typical' Debian v5.0 e-mail servers 41,080 0.922

Default Ubuntu 10.04 desktop 24,947 0.926

Table 3.1: Other ratios obtained with Weaver's theorem

aNumbered sources are available from [74]

that the variability/freedom-of-choice in the event log �le was 86.9% of the theoretical

maximum.

To verify the results of the initial experiment, subsequent runs were performed, some

with data from sources other than LANL's Cray XT. The additional results are shown in

Table 3.1. Note that input data was only obtained from systems running a Linux kernel;

this was to reduce skew from the di�erent kernel logging frequency one might encounter

with a proprietary UNIX or open-source BSD kernel. Time-stamps and machine names

were consistently pruned at the �rst stage.

The one application-speci�c log �le examined was from an open-source statistical moni-

toring tool named Munin [75], which graphs metrics such as hard disk temperatures. As

expected, the variation in messages was greatly reduced in such a speci�c domain, which

consists entirely of highly-repetitive messages concerning graph generation and authenti-

cation to hosts for the purposes of statistics collection. The `typical' Debian v5.0 setup

was a two-machine cluster running Post�x, Cyrus IMAP and Spamassassin. The Debian

and Ubuntu systems only retained their /var/log/syslog �les for seven days, as per

default settings, so all the available contents were analyzed.

While the results show some variation amongst similar systems (i.e. Linux kernels with a

largely-to-entirely GNU userland), and a much more signi�cant gap to the more uniform

sample (Munin), we can be con�dent that the generally high ratios show a highly-packed

information space. In other words, they indicate that event log messages represent a

remarkably rich source of `information' (by Weaver's de�nition of information representing

freedom of choice), due to a high uncertainty of which message may arrive next.

The uncertainty referred to here is `desirable' in that it results from the vast array of

choices available to the sender [8], yet it makes the �ltering task a hard problem. Simply

put, the burden of automated log �ltering could be greatly eased by reducing H, meaning

3.4. QUANTIFYING INFORMATION SATURATION 73

the destruction of information, by cutting the number of choices available to any program

issuing log messages. Strangling the event log output like this could only be achieved by

permitting a certain (restricted) selection of words and phrases to be used - a technique

which culminates in immediate or even pre-empted obsolesence, as in the case of X.733

[43].

Systems are only becoming more complex and permanently `strangling' them would

inevitably cut information vital to those with su�cient domain expertise, when trou-

bleshooting is necessary. The author and Internet Engineering Task Force (IETF) contrib-

utor Marshall T. Rose put it best when he stated that troubleshooting is a `�re-�ghting'

operation and that what is appreciated during those times is an unobscured simplicity[64].

The aim here is not to obscure information or reduce communication via a restricted vo-

cabulary, but rather to enable salient information to be automatically recognised.

3.4.2 Implications

The situation systems administrators �nd themselves in is that the sender's information

represents a large proportion of non-incidental noise; the noise source is largely the sender

itself, or groups of other senders (see Figure 3.2 on page 65). The underlying-yet-unstated

assumption that the receiver wants all the information transmitted by the sender, though,

is �awed in this case. Weaver suggested the concept of �semantic noise� in part to deal

with such issues � �the perturbations or distortions of meaning which are not intended by

the source but which inescapably a�ect the destination� [8, pg. 15]: a concept which �nds

echoes in Buckley & Siewiorek's observation that event log messages represent information

fused with assumptions [25].

The underlying subtext in such messages is the assumption of equivalent knowledge on

the part of the consumer (here, the systems administrator) compared to the programmer

or program designer. No metric, other than the coarse and ambiguously-worded Syslog

severity scale (Table 2.1 on page 32), exists to alleviate the burden of such source-code-

level knowledge acquisition. Many would opine that �critical� is worse than �alert�, as

might �error� be, but the Syslog scale disagrees. Wallin et al. wrote that the system-

determined severity correlates poorly with priorities in organisations, so much so that it

is largely disregarded [10]. This is not to say that the scale is without its uses, however.

The Syslog scale is indeed the closest that systems have come to quantifying their log

output, but it limits output to an entirely component-centric view and does not deal with

several important aspects: how the component �ts into the organization's infrastructure

(i.e. important vs super�uous); the impact an event could have on that infrastructure; or

74 CHAPTER 3. RESORTING TO FIRST PRINCIPLES

the certainty of the programmer/program designer about the situation surrounding the

issuing of the log message. These issues imply that we need to add metadata (as Atwood

[56] advised for genetic sequence databases) so that events that systems administrators

consider to be important, i.e. salient messages, can be more easily distinguished from

noise.

Moreover, we have been attempting to �lter data based on the data itself. This is analo-

gous to categorising news stories into �current events�, �sports�, �lifestyle�, and so on, by

searching for signature phrases or using a data-mining algorithm. Much of the event-log-

message job is little more than a matter of opinion, e.g. �bad�, �don't care�, �normal�,

�crisis� but this is perhaps the most di�cult task of all for a machine �lter. It is simply

easier and vastly more accurate with such a data-set for a human to provide categorisation

metadata, via tags or the like. The �ltering of event log message data is not generally

a problem involving potential adversaries, as it is in web censorship (e.g. [67]) or spam

�ltering, since the programs running on one's systems are not assumed to be malicious

and in the event of a system being compromised, no output (i.e. data or metadata) could

be trusted anyway.

If the metadata can be trusted, then the task of interpreting the natural-language portion

of the message can be largely discarded. Such a highly-packed and redundant information

space could be left for those best suited to deal with it: humans; while machine-readable

metadata is used to trivially whittle down and tune the volume received. The reader may

view this as a `retreat' from the problem of language analysis, and it is, but such a retreat

is a necessary step given the explosion of operational systems and their log output over

the past 15-20 years, a period during which minimal advances have been made in textual

analysis. The advent of strong AI would likely permit this ground to be re-taken - after

all, what else could acceptably handle Weaver's concept of semantic noise?

3.5 Summary

This chapter has attempted to illustrate the event log message problem from �rst prin-

ciples. The lack of relevant literature stipulates a more adventurous approach and sig-

ni�cant reasoning to reach the point where established literature can again be drawn on.

A working de�nition of salience has therefore been presented in the context of a message

lifecycle, followed by a real-world example of message �ltering, and �nally the immense

density of information that must be dealt with. This leaves the question: where do we go

from here?

Chapter 4

Seeking an organisational context

�How should I know if it works? That's what beta testers are for. I only coded it.�

� Attributed to Linus Torvalds, somewhere in a posting

- fortune package from Debian Linux v5.0

Wallin et al. [10] described system-assigned `severity' as correlating poorly with `priority'

in a larger context. But what is `priority'? For their part, Wallin et al. only o�ered

one anecdote of the network provider they studied: �the event time, managed object, and

alarm type attributes in combination with [the individual's] own experience and lookups

in support systems� [10, pg. 8]. The most directly relevant theories actually come from

the business disciplines, speci�cally management.

Stakeholder salience (�rst introduced on page 36) is the notion of assigning priorities

to competing demands for one's time when dealing with external in�uences. Mitchell

et al. de�ned a three-dimensional scale to recognise and quantify the pressures which

in�uence decisions made about the claims of stakeholders. `Power' is the ability of a

stakeholder to cause a change in their favour, `legitimacy' measures the wider perception

of a stakeholder's actions, from the point of view of established societal and cultural

norms, and `urgency' communicates the genuine need of the stakeholder for their claim

to be looked at. In this chapter, the stakeholder salience concept will be applied to the

comparable factors weighed up by systems administrators - although a critical divide does

exist in the sense of agency. Agency is used here with the sense of autonomy, in that an

agent can perform actions according to beliefs and for its own bene�t [76, 77]. Logging

systems are simplistic message routers and lack any notion of agency (by this de�nition).

75

76 CHAPTER 4. SEEKING AN ORGANISATIONAL CONTEXT

S
ta
ke
h
ol
d
er

d
im
en
si
on

C
h
ar
ac
te
ri
st
ic
s
of

st
ak
eh
ol
d
er
s

(e
n
ti
ti
es

w
it
h
`a
ge
n
cy
')

C
h
ar
ac
te
ri
st
ic
s
of

m
es
sa
ge

sa
li
en
ce

(m
es
sa
ge
s
b
ei
n
g
li
n
es

of
fr
ee
-f
or
m

te
x
t

w
it
ho
u
t
`a
ge
n
cy
')

C
u
rr
en
tl
y

av
ai
la
b
le
in

m
es
sa
ge

m
et
ad
at
a?

P
ow

er
�

S
co
p
e:

in
d
iv
id
u
a
ls
/
re
p
re
se
n
ta
ti
v
e
s

�
A
b
il
it
y
to

b
ri
n
g
a
b
o
u
t
ch
a
n
g
e

�
C
a
n
b
e
se
lf
-p
er
ce
iv
ed

�
S
co
p
e:

in
d
iv
id
u
a
l
c
o
m
p
o
n
e
n
t/
d
a
e
m
o
n

�
M
ea
su
re

o
f
h
ow

n
o
te
w
o
rt
h
y
a
n
ev
en
t
is

�
S
el
f-
p
er
ce
iv
ed

w
it
h
in

p
ro
g
ra
m
m
a
ti
c
sc
o
p
e,
i.
e.

th
e
sc
a
le

is
ca
li
b
ra
te
d
to

ea
ch

p
ro
g
ra
m
's

ex
-

tr
em

es

Y
es
,
a
s
�s
ev
er
it
y
�

L
eg
it
im

a
cy

�
S
co
p
e:

so
c
ie
ty
,
o
rg
a
n
is
a
ti
o
n

�
N
o
t
a
se
lf
-p
er
ce
p
ti
o
n

�
B
a
se
d
o
n
n
o
rm

s,
va
lu
es
,
b
el
ie
fs

�
S
co
p
e:

o
rg
a
n
is
a
ti
o
n
,
b
u
si
n
e
ss

�
E
n
fo
rc
ed

b
y
ex
te
rn
a
l
fa
ct
o
rs
,
i.
e.

m
a
n
a
g
er

�
B
a
se
d

o
n

p
o
li
ci
es
,

n
o
rm

s,
se
rv
ic
e-
le
ve
l-

a
g
re
em

en
ts

(S
L
A
s)
,
et
c

N
o

U
rg
en
cy

�
S
co
p
e:

e
a
ch

d
e
c
is
io
n
p
o
in
t

�
M
u
lt
i-
fa
ce
te
d
;
ti
m
e
se
n
si
ti
v
it
y
v
s
cr
it
i-

ca
li
ty

�
C
o
n
ce
rn
ed

w
it
h

r
is
k
a
n
d
p
o
te
n
ti
a
l
ex
-

p
o
su
re

�
S
co
p
e:

e
a
ch

c
o
n
d
it
io
n
a
l
st
a
te
m
e
n
t

�
M
u
lt
i-
fa
ce
te
d
:
va
li
d
it
y
/
co
n
�
d
en
ce

in
a
ss
u
m
p
-

ti
o
n
s
v
s
a
n
ti
ci
p
a
ti
o
n
o
f
si
tu
a
ti
o
n
s

�
C
o
n
ce
rn
ed

w
it
h
q
u
a
li
ty

o
f
in
p
u
t
d
a
ta

to
ea
ch

co
n
d
it
io
n
a
l;
i.
e.

p
ro
b
a
b
il
it
y
of

a
va
li
d
/
co
rr
ec
t

te
st

in
a
ll
ci
rc
u
m
st
an

ce
s

N
o

Table 4.1: Relation between the measures of stakeholder salience [1] and event log message
salience

4.1. POWER � SEVERITY 77

4.1 Power � severity

The �rst dimension in Table 4.1, `power', has a straightforward parallel in the existing

severity scale. Mostly obviously, the scope is similar in that power is vested in individuals

and severity is assessed within the context of an individual daemon. Each of these has its

own context, or `ecosystem', of factors, assumptions and priorities. Just as `power' can

be perceived by and in a person - and therefore calibrated by that person's experience -

`severity' is calibrated according the extremes encountered in a given program. Buckley

commented on this pecularity of scales; they tend to be de�ned by their endpoints, with

`normalcy' residing at the mid-point of the range [26].

4.2 Legitimacy� impact

To discover a parallel for `legitimacy' the parameters must �rst be de�ned; here we are

searching for the characteristics of salience when it comes to the real-world impact or rel-

evance of an event log message. Not the message itself; but rather the event it was issued

to describe and communicate. The event has some level of impact on the organisation(s)

within its range. Mitchell et al. quote Suchman for their working de�nition of legiti-

macy: �a generalized perception or assumption that the actions of an entity are desirable,

proper, or appropriate within some socially-constructed system of norms, values, beliefs

and de�nitions� [1, pg. 866].

If we subsititute an automated system for the entity in question, we can say that a `legit-

imate' system is one that acts in a desirable manner, calibrated by a socially-constructed

and established set of norms, etc. But the system/entity itself is not the intended target

of this application; the event noti�cations the system generates are to be measured in-

dividually against a calibrated scale. The system can be classi�ed in typologies such as

[2] and judged in a larger social context as set out in [78] given that it is a (relatively)

static entity with the resulting distinct attributes. Event log messages merely give wit-

ness to events that the system's programmers/designers thought notable for any number

of reasons, and as single lines of free-form textual content, do not have distinct attributes

beyond character counts and character set/encoding.

It therefore follows that the primary parameter in the social/organisational context is the

perceived impact of events which result from the formalised programming of the automated

system. Despite the immediate semantic disconnect, this concept is remarkably similar

to the �perceived severity� [43] of X.733, in which it is the perception of those interacting

with the system that matters. These ideas revolve around the real-world impact of events,

78 CHAPTER 4. SEEKING AN ORGANISATIONAL CONTEXT

i.e. the cumulative outcomes, rather than the severity of each particular data point. A

disk fault may be a particularly severe error simply because a physical piece of equipment

needs to be replaced, but when it occurs in a redundant disk array (i.e. RAID) speci�cally

set-up and con�gured to cope with that problem, user perception of the fault is likely to

be entirely absent. Redundant RAID features exist to maximise system availability by

allowing faulty disks to be dealt with in a timely manner, with no interruption to service

and therefore no impact. Essentially these arrangements allow for faults without �ow-on

errors or failures. The fault is catered for just as error-correcting-codes exist to cope with

inevitable errors in data transmission or storage.

`Impact' is not a measure of potential consequences should a machine or service fail.

Mitchell et al.'s `legitimacy' doesn't work in such a way either. Their scale is for assessing

the cumulative standing of an external claim on managers' time; `impact' quanti�es the

cumulative estimation of an event's e�ects as described. The process for determining

an event message's impact value therefore excludes speculation � the generation of false

positives must be avoided � and includes these factors:

1. The known/expected (not speculative) functionality consequences for the entire soft-

ware and/or hardware stack to which the event's component belongs. The `compo-

nent' is the item of software or hardware to which the event has happened.

2. The (non-)existence of redundancy or comparable measures to cope with errors or

failures. This requires ennumerated con�guration knowledge to be available to the

decision tree issuing messages. E�ectively this factor encompasses the capability to

avoid a decrease in service levels which could be perceived by a system user.

3. Knowledge of organisational priorities for the event's component. Such priorities,

by de�nition, will be di�erent for each organisation. This is perhaps the most

important factor, because it is the strongest break with severity; it widens the scope

of existing logging techniques to include a human norm/value system; and allows

complex relationships between components to be expressed via the assignment of

similar prioritisation levels.

One factor explicitly not included is the likelihood of the estimated impact. To combine

the estimate and the certainty of that estimate would be overloading the scale, resembling

a statement such as �the �ood will have a likely peak and variable range within three

metres� rather than �the �ood will likely peak at three metres, plus or minus half a

metre�, the latter being rather more useful.

4.3. URGENCY� CERTAINTY 79

4.3 Urgency� certainty

So far the concepts of severity and impact have been divorced through recognising their

di�ering scopes and contextual demands. As amply demonstrated by the quote at the

beginning of this chapter, though, programmers and designers often entertain doubt due

to external factors beyond their control or knowledge of the assumptions embedded within

their code.

The notion of certainty in this work was originally inspired by literature on, perhaps

surprisingly, ontologies for enhancing military battle�eld awareness. An early distinction

to bear in mind is the nature of the problem when dealing with battle�eld events: a

�situation� is bookended by event notices with their own timestamps, requiring a system

which regards events as entities: long-lived and possessing their own attributes [9]. Event

log messages, on the other hand, tend to be instantaneous noti�cations of events which

are usually completed within nanoseconds, so the noti�cation is only written to disk (at

best) tens of milliseconds later, i.e. an eternity in computing time.

Matheus, Kokar and Baclawski introduced their �core ontology for situational awareness�

[9] with the goal of improving situational awareness through making salient information

easier to identify. Their conceptual result is shown in Figure 4.1 on the following page.

The �certainty� attribute of �PropertyValue� is one they justi�ed as so:

�In real-world situations sensory information is not always accurate. To

account for this there needs to be a way to represent the certainty/uncer-

tainty inherent in sensory data; this becomes particularly important if

the system using the data intends to perform data fusion or higher-order

reasoning� [9, pg. 549]

Matheus et al. apply their concept of certainty to individual attributes; meaning that

they assign varying certainties to values from di�erent sources. The underlying purpose

is to portray the unavoidable margin of error that accompanies quanti�cation rather

than discarding such information. Margins of error, of course, surround any variable

which purports to exactly represents an analogue or subjective source. These margins are

naturally expanded when a variable is used outside its original purpose, as can happen

when re-purposing a data source; for example, the infamous Imperial vs metric units

conversion issue which led to the loss of the Mars Climate Orbiter spacecraft. Data

intended for one purpose was re-used without an adequate veri�cation of its properties

(in the case of MCO, the unit). Such a veri�cation would have increased the certainty of

receiving valid data from that source.

80 CHAPTER 4. SEEKING AN ORGANISATIONAL CONTEXT

Figure 4.1: Core SAW Ontology [9, pg. 547]

4.3.1 Certainty as validity, or con�dence in assumptions

The `certainty' measure appeals because it can convey information that has never be-

fore been codi�ed by the programmer/designer. Every conditional structure is built on

the assumption that the variables being tested are appropriate for their purpose; such

as in industrial plant design, where measurements like pressures and temperatures can

be delivered correctly by the sensor but unintended outcomes can still result if other

unanticipated factors contribute to a problem. The Three-Mile Island nuclear accident,

for example, was in large part caused by an operator assumption that the reactor vessel

relief valve would close when power was cut to its solenoid (an �active� error [60]). In

fact there was no sensor to detect whether the valve was closed or not - the manufacturer

had also assumed the valve would close in the absence of solenoid activation, and also

assumed that the operators would be su�ciently experienced to incorporate temperature

and pressure readings from the pressure-relief piping that the valve controlled, into their

determination of correct operation (a �latent� error [ibid]).

Retaining an indicator of certainty in such cases would retain the in�uence of doubt, a

factor which some consider to be invaluable, as explored in [79]. Airline pilots are another

case, often being required to corroborate instrument readings with information from other

sources [58] as an explicit admission that doubt exists in instrument readings. Indeed,

programmers and designers incorporate such techniques as far as they are able; this is

sometimes betrayed by their informal comments in source code. The Linux kernel is a

�ne example - many device drivers must cater for tremendous levels of doubt when ini-

tialising or recon�guring hardware which contains foibles/bugs or simply doesn't follow

4.3. URGENCY� CERTAINTY 81

established standards. One of the greatest throwbacks in PC architecture is the Basic In-

put/Output System (BIOS): it is a well-known source of surprise issues, compounded by

non-standard implementations of such standards as Advanced Con�guration and Power

Interface (ACPI), themselves comprised of assumptions built on older assumptions. Any-

one who has experienced hibernate or suspend problems (i.e. notebook/laptop power

management) with an open-source operating system has seen the results of compounded

assumptions �rst-hand. To act as though doubt does not exist, or to proclaim that it can

be ignored, is to invite future error.

At a more basic level, consider that every situation-dependent event log message is, by

de�nition, issued as the result of conditional tests. An if statement comparing the

variables RealTimeClockRate (i.e. RTC) and HighPrecisionClockRate (i.e. HPET) for

equality may then result in the issuing of a success (or failure) message. But how valid is

the test to begin with? Any pre-determined tolerance threshold carries with it personal

evaluations that should be expressed. Not only that, but the sampled measurements

may not su�ciently cater for �uctuations in the instantaneous clock rate, and if they

do, how certain can we be of what is �su�cient�? Entertaining doubt like this entails the

acknowledgement of risk. Ignoring doubt is tantamount to taking the risk of painting over

rusted metal: sooner or later, reality catches up with us. The `certainty' measure attempts

to convey this contextual information to the end-user (i.e. systems administrator).

These everyday decisions made by program creators may seem insigni�cant, but their

event log messages still clutter up log �les on innumerable systems. The �higher-order

reasoning� Matheus et al. write of is exactly what today's log �ltering systems attempt to

do, though without any knowledge of certainty. Particularly concerning is the requirement

for program code to issue messages (for later �ltering) in situations which have not yet

occurred. This is the second hurdle for the concept of certainty in logging systems.

4.3.2 . . . as anticipation of the future

The second aspect of certainty is not concerned with the immediate validity of data and

assumptions, but rather the applicability of the reasoning itself, regarding the troublesome

tendency of `real life' to alter situations and make them inconceivable to past anticipation.

The recent Fukushima nuclear power plant disaster in Japan is a �ne example of this �if

only we had done X� quandary. To an extent this uncertainty can never be ameliorated

because it involves a degree of crystal-ball gazing. Many applications, though, are written

in environments where the designer/programmer is aware that the `rules of the game' may

very well change.

82 CHAPTER 4. SEEKING AN ORGANISATIONAL CONTEXT

The question the program writer needs to consider is this: �how certain am I that the

situation this test is predicated on will always hold?� An author of a anti-virus program,

or intrusion-detection system (IDS), may choose to automatically categorise all detected

attacks. Some examples might be �SYN packet �ood�, �port knocking attempt�, �bu�er-

over�ow attempt�, �Trojan horse�, �privilege escalation�, or the like, all of which are well-

known techniques. There is of course no natural law which prevents an entirely new form

of attack being devised - one which then could not be automatically categorised as the

appropriate conditionals couldn't be envisaged ahead of time.

A conditional structure in this sense (e.g. a nested switch-case) is limited not only by

the input variables being tested, as discussed above in section 4.3.1, but by the very code

it is composed of. Anti-virus `engines' are frequently updated to deal with exactly this

problem. Anti-virus signatures, on the other hand, are analogous to the input variables.

If we accept source code as a static snapshot of an individual's or team's impressions

at the time, it is easy to perceive that such a snapshot will inevitably drift from reality

as reality moves on; a problem also faced by practitioners of semiotics, especially those

whose attempts are aimed at freezing an absolute set of de�nitions [6].

4.3.3 . . . as a parallel of `urgency'

Urgency as presented in Mitchell et al. is a human imperative. It relies on agency as the

reason for its existence; urgency is only found in situations where humans are depending on

a speci�c outcome. Given that event log messages and the static automata that generate

them lack their own agency, what remains in its absence?

To strip away context, dynamism, knowledge, opinion, and all other characteristics of

sentience and culture, leaves us only one third of the semiotics representational triangle

(see Figure 2.2 on page 39). More precisely, the signs (i.e. syntactics) are all that remain.

Barron's ten features of information systems, shown in Table 2.2 on page 40, o�ers us

an equivalent term: �representation�. This is the level of perception of the computer;

encodings as representations, signs without meaning, action without awareness.

The scope of Mitchell et al.'s `urgency' dimension is always limited to a particular claim

or relationship [1], and it additionally appears to be the most temporally-curtailed (i.e.

shortest-lived) dimension of the three. Urgency changes minute-to-minute, decision point

to decision point, giving it the highest granularity in comparison with `power' and `le-

gitimacy'. This point can justify its application to each or any conditional statement in

code.

Yet perhaps most importantly, urgency is forward-looking. Power is grown to be exer-

4.4. SUMMARY: THREE DIMENSIONS FOR SALIENCE 83

cised, legitimacy accumulates only to be drawn down, while urgency anticipates future

success or failure in order to reduce potential risk. The reader may wish to pause here

and contemplate the semiotic signs used to communicate and represent risk. Common

responses might include best and worse cases, margins of error, and statistical likelihoods

(e.g. the percentage of people who will contract a medical condition by age 60). All of

these are representations of (un-) certainty, making `certainty' the unifying concept/notion

for signs which originate at a highly-granular source code level. So, when communicating

the foreseen risks of individual conditional statements that by the very nature of source

code are entirely syntactic, an indication of `risk' would be too overloaded by connotations

of individual investment and agency. Certainty succeeds as a clearer delineation between

risk's contextual concerns, and the syntactic competence and foresight possible in source

code.

4.4 Summary: three dimensions for salience

The sections above have outlined the rationale for adapting Mitchell et al.'s measures

of stakeholder salience into measures of event log message salience. The varying scopes

and other analogous characteristics were �rst compared in Table 4.1. How can these

dimensions be drawn together, though? A mere re-labelling of Figure 2.1 on page 37

leads to Figure 4.2, illustrating the intersection where the most salient messages reside;

identical to Mitchell et al. with their stakeholder claims. This does not su�ciently portray

the distinctions of scope between the dimensions, though.

Figure 4.3 o�ers a layered interpretation of the dimensions. `Impact' is the richest con-

text and exists in the human situation surrounding the systems administrator: it is the

larger picture outside the computing system that exerts all the pressures and dictates the

priorities which decide how the sysadmin spends their time. Many of these are outside

the sysadmin's control, but again, the actions of administering the system are controlled

by this context.

Further modifying Weaver's communication theory to illustrate the �ow of communication

from scope to scope, the `impact' scope is centred around item �ve in Figure 4.4, although

it possibly envelopes item four as well, since the Syslog aggregation and �ltering point only

enacts the policies determined by the sysadmin. Typically there will be a few sysadmins

in each organisation; they will be aware of each other's abilities, and policies can serve to

standardise organisational priorities amongst them.

An important distinction between Figures 4.3 (the �tra�c light�) and 4.4 (the adapted

communications model) is this: the tra�c light is hierarchical; it depicts the dimensions

84 CHAPTER 4. SEEKING AN ORGANISATIONAL CONTEXT

Figure 4.2: Dimensions possessed by salient event log messages (adapted from [1])

Figure 4.3: Scope and context of each dimension

4.4. SUMMARY: THREE DIMENSIONS FOR SALIENCE 85

Figure 4.4: Adapted version of Shannon & Weaver's communications model; for event log
messaging (with dimensional scopes)

in relation to each other, ordered by relevance to an organisational context. Figure 4.4

depicts the dimensions in terms of their conceptual origin, i.e. where the core scope is

within the communications �ow which includes the source and destination for messages.

`Severity' has its origin in the daemon scope - which is what de�nes the extremes of

the severity scale - and is therefore often di�erent across daemons, as detailed earlier in

this document. It is safe to assume that there will be many sources of messages in an

organisation: between ten and several hundred per server, and at least one per switch,

router, printer or other such embedded device. In comparision, the organisation will

likely have only one `impact' context (due to established policies), but it will be sitting

atop many individual `severity' contexts which originated in other organisations, such as

vendors or open-source developer groups.

`Certainty' still remains as the largest conceptual challenge. It has no known precedent in

event logging. Its scope is in every individual conditional statement that leads to the issu-

ing of an event log message - rather than being calibrated by the entire daemon/program

as whole, in which it resides. With the multitude of programmers and designers involved

with software projects (for example: the Linux kernel, as of 2008, had over 1000 develop-

ers committing code between every release [80]), there are likely to be many individuals

per daemon/program, but more importantly, it is also safe to assume that there are many

conditionals per daemon/program. The designer/programmer writing each statement is

best placed to rate them on `impact' (initial values only) and `severity'. The `certainty'

value simply re�ects the con�dence of that person that the values they have assigned will

be correct for the future situations where the program is being used.

86 CHAPTER 4. SEEKING AN ORGANISATIONAL CONTEXT

Chapter 5

Enforcing organisational realities

Faced with a paucity of suitable research related to event logging in organisations, the

question had to be asked; is it possible to adapt successful strategies from other research

areas? Parallels in other established disciplines were thus sought for any examples of use-

ful methodologies. Speci�cally; any research which had signi�cantly improved outcomes

while dealing with familiar domain limitations. The following characteristics of event log

messages were used in this search:

1. A data set without the statistical nature of a `population', and which therefore does

not accurately match a distribution [26];

2. can be intentionally skewed to provide a distraction or reinforce false impressions;

3. often without documentation or substantiating evidence [25];

4. an unpredictable, rapidly changing (perhaps chaotic) stream of information, at least

on signi�cant time scales [18];

5. and thus requires constant work to maintain an automated �lter[10].

The �nancial stock market model was determined to be the best �t for these character-

istics: the �e�cient market hypothesis� certainly makes the case for unpredictability in

stock markets (with perhaps with the exception of very brief, i.e. millisecond, time scales)

[81] - something that can be observed as �fashionable� market trends take hold and a mar-

ket bubble develops only to �pop� later, in a cycle which has been recurring since the 1970s

[79] (applies to points 2, 3, 4 above). Stock markets are commonly `attacked' for personal

gain; trying to fathom the whys-and-wherefores of the market is a business in itself; and

the data does not �t any de�nition of a natural population but more closely resembles

the Pareto principle [10] (points 1 & 2). A further attraction point lies in the ongoing

87

88 CHAPTER 5. ENFORCING ORGANISATIONAL REALITIES

development of automated, autonomous trading agents such as those from Sherstov and

Stone [82]: software designed to extract pro�t without direct human involvement, and

the rapid iterative cycle involved in trying to gain a competitive advantage in such a

complicated market space (points 4 & 5).

The situation surrounding the stock market is arguably more complex and harder to

comprehend than any computing environment, even leading to attempts (such as Zhai et

al. [83]) to automate the prioritising of such diverse information as media reports. While

there are several parallels to be drawn, such as the widespread industry use of simple

`trading rules' [81] which as signature detectors closely resemble the regular expressions

used with log �ltering, one must note the dissimilarities too.

Event log data cannot be placed on a ticker or meaningfully graphed (one only has to

look at the history of dashboards to see how poorly suited a condensed format is to their

presentation of data [14]). There is no quanti�ed mean, nominal state, or `norm' to tell

a sysadmin the state of their computing systems at a glance, as can be done so trivially

with stock prices and indices; which e�ectively communicate state according to a shared

(industry) `norm' or perception of value. Event log systems do not contain actors or

autonomous agents that receive feedback and that are presumed to possess motivations

or beliefs [76, 77], nor do they engage in competition. Many of these discrepancies make

the problem of analyzing event logs less hard, whereas the lack of instrumentation and,

therefore, quanti�ed analysis makes it more di�cult. Messages tend to be written in nat-

ural language, cryptic data �eld formats, or both. Yet there is no reliable and automated

way to, on a daily basis, determine which particular messages a systems administrator

would want to see, and therefore �lter out the millions of messages deemed unimportant.

Finally, salient log reports are not yet a reality [62], yet the world's �nancial markets

are increasingly governed by the rules in automated trading agents [84, 85], with some

estimates placing the trading volume controlled by them as high as 90%. These agents

deal with a never-ending and time-critical stream of data; some of the factors behind

their success are examined and those factors' applicability to another such stream of data

(event log messages) is considered in the following section.

5.1 Stock market parallels

The afore-mentioned `trading rules' are analogous to the regular expressions most com-

monly used to �lter log messages (e.g. in Logcheck [20]): mechanised rules which apply

a simplistic conditional test. Such rules can optionally be clustered together to make use

of tuples [82] and incorporated into automated `agents'. Evolutionary algorithms can be

5.1. STOCK MARKET PARALLELS 89

used to then select the best agents across many thousands of generations, as done in [81],

or they can be selected through the results of tailored, empirical testing, from distinctly

di�erent, handcrafted algorithms, as in [82].

It is at this point that we run into the �rst of several distinctions between event logs

and stock trading; the �tness test (either automated or manual) for the stock agents is

very simple indeed: did the agent make a pro�t over the course of a day [82, 81]? The

test for event logs, though, is one of salience [62]; a contextual de�nition and not a thing

which can be instantiated in an if statement. Thus, comparisons of `state' are easily

formalised for any trader of stocks (�is the price higher now than before?�), whereas they

are practically non-existent for computing systems and their event log messages.

Another parallel that was initially identi�ed, the rapid cycle of iteration, soon turned into

a discrepancy upon closer examination. Stock traders alter their autonomous agents with

the aim of increasing pro�t, i.e. taking advantage of any change in the price of a targeted

stock, and/or even changing that price through their own actions. A rapid rate of code

revision is driven by the desire to maximize pro�t versus the competition. The agents also

receive feedback and use reward mechanisms to reinforce pro�table behavior [82]. This

is highly distinct from the iteration cycle that systems administrators are accustomed to:

they simply have to accept the messages that are issued and cannot e�ectively alter the

contents.

It is either impossible or di�cult for a sysadmin to fundamentally alter the components

in a running system. For closed-source systems this is a given, in that the end-user

has no ability to change the system, and may very well be legally prevented from doing

so. For open-source systems the only alternatives are submitting a code patch which, if

accepted by upstream developers with di�ering motivations, represents a global change,

or maintenance of a customised code branch: likely to be a heavy burden indeed. The

examples in Figure 1.1 on page 23 are strong evidence that users of software are not

always able to positively in�uence the textual content of what are highly technical event

log messages. The iterative feedback loop, whether automated as a reward mechanism or

involving a human programmer/designer, is the most promising feature of trading agents,

given the comparative absence of this feature in event logging systems.

Software is heavily reliant on standards, whether they be `open' like TCP/IP, or `de-

facto' like the current dominance of the Microsoft Windows® ecosystem on desktop

computers. The systems administrator stands to gain little from non-standard software

- interoperability is diametrically-opposed to competition. Stock-trading systems, on the

other hand, bene�t from unique and proprietary approaches in a competitive environment.

It is di�cult to imagine a community of Wall Street stock-traders all co-operating on an

90 CHAPTER 5. ENFORCING ORGANISATIONAL REALITIES

open-source trading algorithm which they then all hoped to bene�t from. Nonetheless,

the model of rapid iteration appears an encouraging method for independently honing

and improving an information �ow, which in many other respects resembles that of event

log messages.

5.2 Introducing rapid iteration to event logging

The current situation, illustrated in Figure 5.1, involves a third party who usually resides

outside the systems administrator's organisation. This third party is the designer/pro-

grammer (i.e. developer) responsible for the software product being used by the sysadmin.

As the `gateway' for any improvements or re�nements to the daemon in question, the de-

veloper should respond in a timely and honest manner to requests from sysadmins. The

`real world' situation rarely re�ects this ideal, however.

A recent example of a dysfunctional process is the code �fork� of the FOSS OpenO�ce.org

o�ce suite into a separate product now named LibreO�ce[86] � an action prompted

by the purchase of Sun Microsystems Corporation (which had editorial and trademark

control of OpenO�ce.org) by Oracle Corporation. This created a perception that changes

originating in the community were less likely to be accepted into the codebase [87, 88]. In

this case, the free software community duplicated the OpenO�ce.org codebase because

Oracle's corporate culture, organisational priorities and interests appeared to clash with

those of the community. Individual systems administrators, though, are unlikely to possess

su�cient time, budget and ability to perform a similar code fork against a free software

project whose log messages they would like to improve. This situation has led to literature

(covered earlier) which presumes that event log messages e�ectively cannot be altered and

must be accepted �as-is�.

The key conceptual motivation here is: the developer (a corporation, designer, program-

mer, etc) is most often outside the organisation of the systems administrator and therefore

does not perceive that organisation's priorities, policies, SLAs, and so on. Note that the

word `organisation' can be interpreted here as di�erent units within the same entity. The

pressures on the developer, and their motivations, are distinctly di�erent from those of

the sysadmin. By introducing a method for sysadmins to directly alter the contents of

event log messages without a patch or code fork, a cycle of rapid iteration can be intro-

duced; entirely within the sysadmin's organisation and consequently responsive to that

organisation's particular requirements.

Current, `normal' processes are shown in Figure 5.1. Sysadmins usually have a degree of

control over the daemons they run, in the form of con�guration options, which most often

5.2. INTRODUCING RAPID ITERATION TO EVENT LOGGING 91

Figure 5.1: Model of rapid iteration for improving event log message output (programmer
operating under the auspices of a separate organisation)

allow tweaking of log message verbosity or debug levels � o�ering the ability to `strangle'

log output to one extent or another. That is; verbosity and debug levels throttle the

number of messages issued in given circumstances but do not allow the messages' contents

to be altered or tuned. To perform any alteration, the sysadmin must provide feedback

to the programmer/designer of the daemon or program in question, hoping that their

feedback will be accepted and result in code changes in a future version of the daemon.

Alternatively (and assuming a FOSS project), the sysadmin can e�ectively fork the source

code of the project - by maintaining a code patch which changes messages to their liking.

In the case of LibreO�ce, external end-users and developers of the OpenO�ce.org project

forked the entire source code repository, duplicating it to form their own project. Such

code-level changes are most likely the only way to modify natural-language messages

simply because they cannot be mathematically/mechanistically transformed.

Bypassing the project's developer (as in the �proposed process� in Figure 5.1) simply

mirrors the e�ect of the con�guration options already provided by most daemons. An

administrator whose systems are to accept e-mail for a new Internet domain name of course

does not have to ask for a code alteration; the capability is provided in the Mail Transfer

Agent's (MTA) con�guration �le. Elevating event log tuning to the same operational

level as established capabilities is little more than an honouring of Buckley's call for

logging to be taken seriously � for it to be seriously regarded as a feature rather than an

92 CHAPTER 5. ENFORCING ORGANISATIONAL REALITIES

afterthought [26]. Debug levels and verbosity settings are not a su�cient con�guration

mechanism after all - they merely provide a passive throttling mechanism. An ability

to actively alter messages, pre-transmission, is needed to enforce organisational realities

for event logging. The daemon is presumably only being run to facilitate organisational

goals; why must its messages be otherwise?

The ability to iterate a con�guration to match one's needs is hardly new. Autonomous

stock market agents, however, have applied the technique to a data �ow with common

characteristics to those of event log messages, and their success has highlighted its use-

fulness when combined with the ability to make changes that actively alter the outcome.

Introducing a mechanism for such tuning, i.e. customisation, is the focus of the next

section.

5.3 Making iteration powerful, with weights

A mechanism for enforcing organisational realities on event log messages has one intended

outcome: moderating noti�cations so that only events which can have an impact on the

organisation are passed on. Each organisation would, of course, have di�erent human

thresholds and tolerances for �impact�. For example: events on servers under test will not

have a direct impact on a business simply because those machines are not in production

use. Other cases are less clear-cut, such as whether a database failure will have more or

less impact than a web server failure, and it is in these situations, especially when problem-

solving resources are �nite, that weights can become a useful expression of organisational

priority.

Section 4.2 laid out the reasoning behind appropriating Mitchell et al.'s `legitimacy' scale

and re-naming it `impact'. �Knowledge of organisational priorities for the event's com-

ponent� was mentioned as one aspect of the scale - such a notion harks back to `legiti-

macy' representing a wider scope than just one person's perception. Indeed, it incorpo-

rates the entire human context `system' of norms, values and beliefs that exist in any

organisation[61]. Yet our computer systems do not know where they �t in to this milieu,

given their lack of those human attributes. Hierarchy, importance of self, quality (of its

own hardware and software) - all these concepts are as foreign to a computing system as

disappointment or satsifaction. The depth of a computer's knowledge of its own char-

acteristics extends only as deep as kernel versions in software and motherboard model

numbers in hardware. Only the systems administrator can think �that kernel build has

been great�, �I couldn't care less if this disk array failed� or �the whole lot is going to

come crashing down if that jury-rigged network router dies�, yet currently there is no

5.3. MAKING ITERATION POWERFUL, WITH WEIGHTS 93

mechanism for codifying such contextual information.

The basis for these perceptions of importance is easily deduced from the semiotic repre-

sentational triangle (see Figure 2.2 on page 39, or the top-left of Figure 5.2); computers

deal only with signs, humans are the observers/users, leaving the real-world objects -

which are, of course, what humans �nd the most straightforward to base their thinking

on and what we refer to when we use signs [2]. These same objects run the software

created by developers and therefore are the originating point for our event log messages.

Moreover, they (mostly) perform the roles assigned them by humans, such as DNS server,

boundary router, or database server; a system's role determines its place in the hierar-

chy of importance, because the purpose it ful�lls forms the relationship to organisational

function rather than the piece of hardware or software itself.

Roles, however, are the abstract constructs of human minds and as such are merely

embodied in particular pieces of equipment; whether virtual or physical, hardware or

software. Then how can the role's organisational importance (which determines its ranking

in the hierarchy of systems) be communicated? Especially given that the ranking is also

an abstract construct (but like roles, still a `real world object' at the social level). The

application of the semiotics representational triangle to roles, rankings and weights is

depicted in Figure 5.2, itself somewhat reminiscent of Barr's designer/user dichotomy

(Figure 2.3 on page 42), to clarify the relationships between these terms.

The ranking can sometimes be thought of as the order in which systems should be restored

in a disaster-recovery scenario. Simply put, conceptually embodying the ranking together

with the software component allows a program/daemon to utilise the ranking for weighting

purposes, i.e. elevating or depressing its own reports based on the ranking which represents

human impressions of its importance. Weights, the expression of the ranking concept,

seek only to modify and shape the programmer/designer's best anticipation for a unique

computing environment: that of the organisation in which the program or daemon is

running.

In keeping with the earlier call to enhance automation through the use of machine-readable

metadata, the ranking must be expressed in a numeric form, i.e. a weighting. The alter-

native (that is, keywords) would limit granularity to pre-de�ned levels and re-introduce

the ambiguity of RFC 5424 (see Table 2.1 on page 32) with its pre-assigned textual labels.

The entire rationale for the weighting mechanism is that it allows organisations to repre-

sent their own unique hierarchy of importance, so it follows that the granularity should

also be of their choosing. A �oating-point number between 0 and 1 a�ords a transparent

model wherein the seed value in the original event log message is simply multiplied by

the weighting value to obtain a number which conveys the programmer's knowledge com-

94 CHAPTER 5. ENFORCING ORGANISATIONAL REALITIES

Figure 5.2: Semiotics theory [3] applied to roles, rankings and weights of information/-
computer systems

0 1

Figure 5.3: Floating-point weighting scale for representing roles and rankings as organi-
sational importance

bined with organisational importance. Shown in Figure 5.3, �0� represents the extreme

possession of importance, �1� represents the extreme lack of importance.

These weighting values can be altered without recourse to a code patch or writing a static-

matching �lter to match all the possible messages a program might produce. As with

any other con�guration option for a program/daemon, the setting can be experimented

with in an iterative process. At this initial stage it seems appropriate for each daemon to

accept one weighting simply because the daemon performs a role through service provision.

In addition, the machine running the daemon should have its own weighting which is

combined with all the impact values which pass through its Syslog forwarding system

(i.e. forwarding event log messages to a central collection point). Situations such as

a memory leak in a less-important daemon are therefore not obscured on an important

server. The granularity for assigning weighting values must be based on the possible

range of any in�uencing factor - the containment barrier, in e�ect - and this currently is

based on physical or virtual hardware instances. Non Uniform Memory Access (NUMA)

supercomputing clusters with a single memory address space, on the other hand, would

5.4. SUMMARY 95

apply the weighting to each partition of resources.

Organisations assign roles to their computing resources, which then assume a ranking

in the hierarchy of importance, in�uenced by factors such as dependencies and business

continuance. The `impact' scope depicted in Figures 4.4 and 4.3 covers these areas by

virtue of its focus on the larger environment surrounding any given system. Rankings

within that scope can then be codi�ed as weighting values; allowing their direct use

in software to express and incorporate roles and rankings in a human- and machine-

readable form. Scope and context also govern the number of weighting values to assign;

the granularity of `impact' is limited to replaceable components, i.e. daemons, programs,

and the resource partitions they run within.

5.4 Summary

This chapter examined an identi�ed parallel to event log messages in stock market high-

frequency-trading algorithms. Rapid iteration of a code base is a critical capability for

those carrying out such stock trading as a way of coping with market changes and the

actions of competitors. It was then determined that a direct application of that particular

technique would not be feasible with either open- or closed-source software. Con�gurable

weights were then introduced as a method for achieving the goal of a convenient and

low-maintenance method for altering event log output. Weights allow the organisational

knowledge and priorities of the systems administrator to be incorporated into that output.

96 CHAPTER 5. ENFORCING ORGANISATIONAL REALITIES

Chapter 6

Expressing a three-dimensional scale of

salience

Inspired by the Glasgow Coma Scale (the GCS, a three-dimensional scale used globally

for communication between medical professionals and triage [12]), a scale composed of

`severity', `impact' and `certainty' dimensions is proposed as a metric for communicating

event log message salience. But how should each dimension be de�ned, at what granular-

ity? The GCS incorporates the gravity of each dimension by using di�ering ranges: 1 to

4 for �eye response�, 1 to 5 for �verbal response� and 1 to 6 for �motor response�, but we

must bear in mind its purpose before adopting such a technique (i.e. item scaling [ibid]).

The GCS is intended as a tool with the following purposes:

Discrimination Refers to the assessment of the depth of impaired
consciousness and coma in patients with acute

cerebral disorders and involves distinguishing severe
from mild or moderate cerebral dysfunction.

Evaluation Refers to the measurement of change in the level of
consciousness of patients with cerebral dysfunction

while under observation
Prediction Refers to prediction of the outcome of these patients

on the basis of their level of consciousness at the
time of assessment

Table 6.1: Stated purposes of the GCS scale [12, pg. 755]

Any attempt to relate these purposes to the scopes of event log messaging is likely fu-

tile, but they should not be dismissed out of hand, either. `Discrimination' can, for our

purposes , be summed up as `severity'; `evaluation' is equivalent to �rate of change� and

`prediction' is e�ectively �likely outcome� or �prognosis�. Some distinctions can immedi-

97

98 CHAPTER 6. EXPRESSING A THREE-DIMENSIONAL SCALE OF SALIENCE

ately be seen. For example, no attempt has been made to incorporate any �rate of change�

measurement into the event log messaging proposal here, as Syslog-recorded events tend

to be short-lived points in time with no state to change; and �prediction� is similar in

that it has been left out of this proposal given that event correlation researchers have

demonstrated little to no success (in real-world situations).

Another blow to �prediction� is merely the pace of change in computing. The medical

profession has developed slowly over millenia, yet just 150 years ago �bleeding� was still

considered the go-to treatment despite its propensity for killing the patient [79]. Human

anatomy has not changed appreciably over this timescale, apart from improved environ-

mental conditions and nutrition bringing forth better overall health and taller populations.

It is likely that there are more `anatomical' changes to the Debian Linux �unstable� soft-

ware repository in a single day than there have been to humans in thousands of years,

to say nothing of the immense variation that might be contained in the umbrella terms

�computer� or �operating system�. Medicine is very often able to apply lessons that were

learned many years prior, and is capable of making valid, con�dent predictions due to such

a stable and uni�ed (by comparison) human `platform'. If computing had not changed

appreciably in 40 years � i.e. the only computer available today was a Burroughs B5000

running the original, unmodi�ed MCP operating system � the computer science discipline

may have had greater success with event prediction and correlation.

Returning to �item scaling�; the GCS was designed for the dimensions to be added to-

gether to produce a score between �0� (dead) and �15� (normal function), so the relative

importance of each dimension was factored in with numeric constraints on each one.

More recent research has conclusively demonstrated the dimension-summing approach to

be lacking in resolution - it actually discards useful dimensional information, resulting in

poorer outcomes for patients in time-critical situations [12]. Reporting each dimension

separately has become more common as a result.

The advantages of separated dimensions can easily be illustrated with event log messages,

too. A disk fault in a RAID array may produce a log message pre�x of �S:0 I:6 C:3�

(for argument's sake) indicating high severity, low impact and middling certainty. To add

these dimensions together would produce �9� from an event which has been catered for

with the provision of redundant disks and is highly likely to be imperceptible for end-

users. For comparison: a disk volume/partition �lls up, preventing a volume snapshot

from being created, and therefore an overnight backup process fails (which generates the

event log message); this event may produce a pre�x of �S:3 I:2 C:4� - indicating much

less severity, greater organisational impact, but greater uncertainty. The dimensions still

add up to �9� but for an event which hasn't been catered for and could even result in

contractual or legal consequences. The other events in the chain would generate their own

6.1. ARGUMENTS FOR SCALE LENGTH AND TYPE 99

Would you tend to agree or disagree with the following

statement: "Apples are like oranges."

D
is
ag

re
e

st
ro

ng
ly A

gr
ee

st
ro

ng
ly

N
ei
th

er

ag
re

e
no

r

di
sa

gr
eeD

is
ag

re
e

S
om

ew
ha

t

di
sa

gr
ee

A
gr

ee

S
om

ew
ha

t

ag
re

e

Figure 6.1: Example Likert-type scale

messages and pre�xes.

Reporting the dimensions separately allows discrimination between the three factors of

event severity, organisational impact, and programmer/designer certainty. To combine

them would result in one scale ranging from, for example: �0� (apocalypse) to �21� (incon-

sequential and uncertain), obscuring the source of the score, therefore limiting usefulness

to events at either extremity. The `middle ground' would be impossible to analyse as

their scores could have come from any of the three dimensions. In essence a colour pho-

tograph would be converted to grayscale: red, green and blue become indistinguishable

and luminance is all that remains.

6.1 Arguments for scale length and type

With seed values intended to be implemented in code (by the programmer/designer who

is the individual best-informed about the algorithm and its assumptions), there is a valid

argument that any given scale should conform to research conclusions on response scales.

Such scales are meant to elicit unbiased responses from members of a population, as with

surveys, and to dovetail with the cognitive nature of human beings when attempting to

quantify opinions/attitudes [89]. That is; they o�er two extremes and a mid-point. The

`Likert-type' scale (see Figure 6.1) typically does this with opinions/attitudes of preference

or approval.

The underlying problem with applying response scales to the event logging context is this:

they rely on sampling a natural population that will (with a large enough sample) return

a bell-shaped standard distribution of results. The concept of the mid-point represents

the �average� � and this is why the Likert-type scale, or similar ones such as the �linear-

numeric� scale, consists of an odd number of response items (most often �ve or seven [89]).

Event log messages do not conform to the standard distribution [10] nor can statistical

techniques be used to predict them [26]. At the time of writing, they contain no usable

100 CHAPTER 6. EXPRESSING A THREE-DIMENSIONAL SCALE OF SALIENCE

and meaningful metric, either.

To propose a Likert or �linear-numeric� scale for an event logging metric would be to

suggest that most messages should reside near the middle of the scale. Standard deviations

and other statistical tools simply can't be applied to a domain where the data much more

closely resembles the Pareto principle (i.e. a few messages occur frequently while most

messages occur rarely, but neither frequency nor `severity' is any indicator of salience)

[10]. It is therefore more logical to follow Buckley's [26] advice and implement a linear

scale calibrated by the extreme possibilities yet with no notion of a mid-point to imply a

`norm'. The purpose here is not to dictate a `norm' to developers or the organisations and

their systems administrators that run daemons on their servers; but rather to allow the

developers' norms to be perceived and the organisation's norms to be imposed on their

running systems.

RFC 5424 is only the most recent RFC to document the Syslog severity scale (see Ta-

ble 2.1 on page 32) but the scale itself has existed since the 1980s, with its �rst o�cial

documentation in 2001's RFC 3164[90]. Encoded into three bits (to most e�ciently pack

it into one byte with �ve bits left for the logging `facility'), it features eight levels of

severity numbered �0� through �7�. In reality there are undoubtedly millions of lines of

software code, even when only counting FOSS projects, which already incorporate sever-

ity values according to RFC 5424. Simply discarding such an immense body of work,

when those severity values could potentially alleviate by one-third the workload involved

in implementing a three-dimensional logging scale, would be folly at best. This is not to

deny that future work could evaluate the validity of the Syslog severity scale vs �linear-

numeric� or another type. A priority in this work is to ease any possible integration into

real-world software and re-using the Syslog severity scale dovetails with that aim. More-

over, it features suitable extremes, no explicit notion of a mid-point, and what shall next

be explained as a feature: beginning with �0�. A disadvantage is that its ordering requires

a marginally more complex weighting function.

6.2 The application of organisational salience

At �rst sight, it appears that any numeric scale must start with a �0� value representing

the least important end, in order to incorporate weightings (see Section 5.3 on page 92)

via fractional (0...1) multiplication, and this is correct. The RFC 5424 scale, however, re-

gards �0� as the most severe extreme - meaning that weighting with fractions produces the

inverse of the intended outcome. That is, the scaling `asymptote' resides at zero when it is

meant to be �7�, the least severe extreme, because the mechanism of weighting is primar-

6.2. THE APPLICATION OF ORGANISATIONAL SALIENCE 101

7

0 7Seed value in code (pre-weighting)

R
e

p
o

rt
e

d
 v

a
lu

e
 (

p
o

s
t-

w
e

ig
h

ti
n

g
)

W
ei
gh

t:
1

Weight: 0
.5

Weight: 0.1

(a) Incorrect scaling: elevating minimum impor-
tance rather than suppressing maximum impor-
tance

7

0 7Seed value in code (pre-weighting)

R
e

p
o

rt
e

d
 v

a
lu

e
 (

p
o

s
t-

w
e

ig
h

ti
n

g
)

Weight: 1

Weight: 0
.5

W
ei
gh

t:
0

(b) Correct scaling

Figure 6.2: Weighting results graphs

ily meant as a straightforward method for suppressing spurious/unimportant messages

(where �spurious� or �unimportant� is de�ned by the organisation running the program

or daemon). In e�ect, the least important events would be elevated in importance. This

scenario is illustrated in Figure 6.2a.

As can be seen in Figure 6.2b, the `correct' scaling has the e�ect of suppressing the reports

from components judged less important. A system or daemon with a weighting of �1� will

always report its events as being of minimum impact while a weighting of �0� results in

no suppression. Whether the scaling should be characteristic of a straight line or not

across all seed values in the code would be a worthwhile topic for future research. A

parameter for specifying a curved scaling line could certainly be devised, perhaps at the

cost of introducing some complexity and administrator uncertainty about the results.

Another research question regarding the weights might be: what distribution are the

weights themselves likely to form? If we accept, for argument's sake, that an organisation

might de�ne the mid-point of �0.5� as the appropriate weighting for the archetypal �average

system�, then is it possible or likely for the distribution of weights to resemble a standard

distribution? Such a distribution would permit the usage of diverse existing theories and

analysis tools. It would represent the combined assessments of importance for messages

issued by all the source components included in it, regardless of its shape, meaning the

application of the weighting algorithm is almost inevitably going to transform the Pareto-

like distribution of event log messages into an as-yet unknown form.

102 CHAPTER 6. EXPRESSING A THREE-DIMENSIONAL SCALE OF SALIENCE

0.5 10

Higher-than-average

importance

Below-average

importance

Weighting value

transforms

Figure 6.3: Process of applying a normal distribution of weights to Wallin et al.'s Pareto-
like distribution [10, pg. 10] of event alarms & tickets; the result is unknown (see text)

Note: the alarms graph extends out to 3500 alarm types [10], indicative of the `long tail' in this problem
domain.

Depicted in Figure 6.3, the application of weights (which are per-message-source, re�ecting

the importance of each component in the organisation's context) to the previously de�ned

three-dimensional scale would likely produce a signi�cantly di�erent distribution of event

log messages. It is important to remember that the number of message types will not

change as the output will not be `throttled'; Wallin et al.'s alarms domain, with only 3,500

unique types, more closely resembles the less packed space of the Munin monitoring tool

(see Table 3.1 on page 72) than more general event logs with higher ratios for Weaver's

H. Instead, the change will be in the plotting of the �% of tickets� dashed line as a

result of source importance being incorporated via scaling. Possible outcomes are as yet

unknown since trials would have to be run in valid production environments to gather

su�cient data. Such an experiment would entail the patching of source code, compilation

of patched programs/daemons, and the assignment of an importance weighting to all the

participating components. The outcome mockup presented later does not feature enough

data points to demonstrate any transformation.

The scaling function mentioned up to this point was originally intended to be a simple

multiplication of the seed value in code and the source's weight. The re-use of the Syslog

severity scale then required a reversal of the scaling function (as explained above). It

remains a simple function, resulting in the graph shown in Figure 6.2b.

Algorithm 6.1 Simple scaling function for suppressing the perceived impact of messages
from less important sources. Calibrated to `Syslog severity' extremes.

ireported = iseed + w(7− iseed)

6.3. OUTCOME MOCKUP 103

With �i� as the `impact' metric and �w� as the per-source weighting value, the scaling

function allows the contextual role of the source system component to be re�ected in

all its event log messages, even those messages which have never before been issued in

a given organisation. The mechanism avoids any delays attributable to the achieving

of statistical signi�cance or a message being placed in the large bin of �unknowns�, as

happens today with static-matching solutions. On the other hand, it relies on systems

administrators or policy-makers for the assignment of sensible and useful weights, and

the programmer/designer for sensible and useful seed values; neither of these caveats are

new, however, as existing `solutions' place similar burdens on these people today.

6.3 Outcome mockup

To illustrate some of the possible outcomes with the presented design, selected event log

messages will be shown with pre�x values assigned by the author. The pre�xes take the

form of a [S?,I?,C?] tuple (hereafter called a SIC tuple) to communicate each mes-

sage's rating according to its severity, certainty and impact. For example, the message

�kernel[S4,I6,C4] : ATM dev 0: error -110 fetching device status� has been

assigned a severity of �4�, an impact of �6� and a certainty of �4�. The mockup scenario

includes three server systems representative of several di�erent organisational roles:

1. Server A: A critical �rewalling, proxying and external e-mail system, essential for

organisational activities.

2. Server B: An internal server running network authentication daemons, a few internal

databases of average importance, and some internal e-mail storage. Some of this

system's workload can be handled by other machines running redundant services

for fail-over purposes.

3. Server C: An internal web site development machine which is 90% used for testing

and development rather than production sites. Beta sites may occasionally be made

available to a small, selected audience.

Three examples from each server were selected for the sake of brevity and the reader's

bene�t, and can be seen in Listing 6.1. The complete data set is contained in Appendix B

on page 155, as Listings 10.1, 10.2 and 10.3 (containing 28 messages each). The messages

were chosen, using the author's experience of systems administration, from a genuine �ow

of event log messages which accumulated 32.7MB of plain-text data, to demonstrate a

104 CHAPTER 6. EXPRESSING A THREE-DIMENSIONAL SCALE OF SALIENCE

Server A
Impact weight: 0
S I C
6 4 3
3 5 5
6 4 3
6 4 3
2 5 6
3 5 5
2 5 4
6 4 3
2 5 6
5 7 2
7 4 3
7 5 3
7 5 3
7 6 3
7 6 1
7 4 3
7 7 1
7 7 1
7 5 1
7 7 1
7 7 2
7 7 1
7 7 2
7 6 1
1 2 3
7 6 1
2 6 2
6 6 1

Server B
Impact weight: 0.6
S I C
7 6.6 2
4 5.8 5
4 5.8 5
7 7 1
7 6.6 1
7 6.2 3
7 7 1
7 6.2 3
7 7 1
4 6.6 5
6 6.6 3
7 6.2 3
7 7 1
7 7 1
4 6.6 2
4 6.6 2
7 6.6 2
6 6.6 2
7 6.6 2
7 6.6 1
7 6.6 1
7 6.6 1
7 7 1
7 6.6 1
7 7 1
5 7 1
2 4.6 6
2 5.8 3

Server C
Impact weight 0.9
S I C
7 6.8 2
7 7 1
7 6.9 1
7 7 1
7 7 1
7 7 1
7 7 1
7 7 1
7 7 1
7 6.8 2
4 6.8 4
4 6.8 4
7 7 3
7 7 3
7 7 3
3 6.7 6
3 6.7 6
3 6.7 6
3 6.7 6
7 7 2
7 7 2
7 7 2
7 7 2
7 7 2
3 6.9 2
4 6.9 5
7 6.8 3
7 6.9 2

Table 6.2: Summary of outcome-mockup values, extracted from the contents of Listings
10.1, 10.2 and 10.3 in Chapter 10 on page 155

Note: the �I� value given here is the reported impact derived from the seed impact value
and the con�gured weighting for each system being monitored.

6.3. OUTCOME MOCKUP 105

Listing 6.1 Mocked-up event log messages (selected examples)

Jan 30 06:56:56 serverA postfix/smtpd [31944][S6 ,I4,C3]: disconnect from unknown

[190.51.227.124]

Jan 30 06:56:56 serverA postfix/smtpd [31944][S2 ,I5,C6]: lost connection after DATA (0

bytes) from unknown [190.51.227.124]

Jan 30 07:45:58 serverA ntpd [2304][S5,I7 ,C2]: kernel time sync status change 0001

...

Feb 1 19:10:15 serverB krb5kdc [2656][S6 ,I6,C2]: AS_REQ (3 etypes {16 1 3}) 172.16.1.100:

NEEDED_PREAUTH: example@EXAMPLE.COM for krbtgt/EXAMPLE.COM@EXAMPLE.COM , Additional

pre -authentication required

Feb 1 19:10:15 serverB krb5kdc [2656][S7 ,I6,C2]: TGS_REQ (3 etypes {16 1 3})

172.16.1.100: ISSUE: authtime 1296540615 , etypes {rep =16 tkt=16 ses=16},

example@EXAMPLE.COM for host/serverB.example.com@EXAMPLE.COM

Feb 1 19:25:19 serverB cyrus/ctl_cyrusdb [31955][S7 ,I6,C1]: archiving database file: /var

/lib/cyrus/mailboxes.db

...

Feb 6 12:28:53 serverC apache2 [8472][S4 ,I5,C4]: [06/ Feb /2011 12:28:52 20583] [error]

OpenSSL: error :1407609C:SSL routines:SSL23_GET_CLIENT_HELLO:http request [Hint:

speaking HTTP to HTTPS port !?]

Feb 6 13:50:57 serverC kernel: [511040.208020] hub 1 -1:1.0[S7,I7 ,C3]: activate --> -19

Feb 6 13:50:57 serverC kernel: [511040.208092] usb 1-1[S7,I7,C3]: USB disconnect ,

address 3

�

�

�

�

�

�

�

�

	
��
��

	

�

�

(a) Server A; impact weight �0�

�

�

�

�

�

�

�

�

	
��
��

	

�

�

(b) Server B; impact weight �0.6�

�

�

�

�

�

�

�

�

	
��
��

	

�

�

(c) Server C; impact weight �0.9�

Figure 6.4: Outcome-mockup values sorted by Impact, then Severity, then Certainty

range and variety of SIC tuple values that would occur in real systems, while avoiding

copious numbers of repetitive messages.

Summarising the tuples from the mockup yields the information shown in Table 6.2 on the

facing page, after incorporating a per-system weight for the impact column. For example,

the Server B event for cyrus/ctl_cyrusdb at 19:25:19 on February 1 has a seed impact

of �6� and server B has a weighting of �0.6�, so the reported impact (using Algorithm

6.1) is �6.6�. When graphing these values, as can be seen in Figure 6.4 for the purpose

of comparison, each line is sorted �rst by Impact, then by Severity within each Impact

bracket, then by Certainty within the two preceding brackets. The e�ect of the simple

weighting algorithm can be observed in the `impact' plot line curve.

Consolidating event log messages from (potentially) many systems is of course the goal

here and the combined graph is in Figure 6.5 on the next page. The horizontal axis shows

a fairly even distribution of impact values from the most important system (server A) to

the least important (server C). Another point to note is the wide variation of the severity

and certainty values with respect to impact; no stable relationship appears until impact

and severity both reach �7�. At this point, only `certainty' can vary, whereas earlier no

106 CHAPTER 6. EXPRESSING A THREE-DIMENSIONAL SCALE OF SALIENCE

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

Figure 6.5: Consolidated outcome mockup values, sorted by Impact, then Severity, then
Certainty

clear correlation appears between the three variables. This �nding is closely aligned (for

severity and impact) to Wallin et al.'s determination that severity correlates poorly with

real-world priority [10].

With the three-dimensional metric in place, several simple if/then/else conditionals

could be used to apply organisational policies (e.g. Service-Level-Agreement-speci�ed

responses) based on considerations of each dimension. For example, an if statement

might page a systems administrator if severity ≤ 2, impact ≤ 2 and certainty ≤
4. This statement would automatically activate for only one message in this example:

�+3.3V: +3.12 V (min = +3.13 V, max = +3.45 V)�, which shows one of server A's

motherboard voltages outside of its acceptable range. The same message on servers B or C

would not page the administrator because those machines are not considered as important;

naturally another conditional could be written to pick up such an event on B or C (e.g.

severity ≤ 2 and certainty ≤ 4) and add it to a daily e-mail report. It is likely

that 5-10 conditional statements could handle many environments, while also handling

messages which were not anticipated, and yet not require the regular maintenance that

existing solutions do.

6.4 Summary: outcome mockup conclusions

The capabilities demonstrated with the mockup appear to be unique; namely the notions

of organisational importance and policy implementation (as those notions were presented

in a NASA paper by Schreckenghost et al., [45], although that e�ort focussed on HCI

6.4. SUMMARY: OUTCOME MOCKUP CONCLUSIONS 107

etiquette for information presentation to astronauts1). A similar set of capabilities with a

�ltering solution utilising regular expressions would require the maintenance of separate

sets of regexes for each and every server. No policy or organisational-importance capability

was noted in any of the literature reviewed on data mining or other statistical approaches

(including neural networks). Could data mining approaches incorporate policies? Would

such algorithms require training for each operational pro�le or server? These topics would

be worthy avenues for research in that direction.

The graphs produced also open up possibilities for graph analysis to establish a `nominal

state' that additionally takes the volume of events into account. Signi�cant data volumes

can be looked at in retrospect, when the state of a server has been con�rmed as �good�,

and tolerances assigned to its graph output, leading to prompt detection of operation

outside of these established norms. Each server would have its own �pro�le� represented

by the graphs of SIC tuples it produces and this pro�le is likely to change with extensive

modi�cations to the system such as an operating system upgrade. Once the systems

administrator was satisifed that a su�cient amount of `nominally-good' log data had been

collected, the pro�le graph could be regenerated. As for what could be protected against

with this approach, one example would be a volume-based attack such as a distributed-

denial-of-service or dictionary attack, which would quickly distort the shape of the SIC-

metric graph. This is not a �new is bad� technique: the metric portrays the salience of

the information, not its raw volume or newness.

`Leaky buckets' are another mechanism in this regard: a rate limit (e.g. 200 per minute) of

messages with a certain SIC metric, when exceeded, could trigger actions within seconds

of an attack beginning. These possibilities will not be examined further here but are

left as open questions for future e�orts. It is also acknowledged that they might inherit

some of the disadvantages of statistical approaches; principally, a time lag between initial

detection and su�cient signi�cance being achieved to warrant action being taken. The

advantage of the presented approach is the machine-readable metadata which can inform

such algorithms.

1Where `etiquette' refers to the need to follow established conventions such as chains of command and
sleep schedules, i.e. taking into account the larger context outside the computer system.

108 CHAPTER 6. EXPRESSING A THREE-DIMENSIONAL SCALE OF SALIENCE

Chapter 7

A survey of systems administrators

Throughout this thesis the paucity of academic research into the situation of systems

administrators has frequently been raised. In short, it appears that these software and

hardware users has been regarded as the `expert' population and therefore not in need

of help when it comes to interfacing with computing technology. Their level of systems

knowledge would surpass that of the academic community in many or most cases. Ev-

idently, though, complexity and information overload is catching up with our coping

abilities and techniques [29, 15, 91, 58, 59, 62, 10, 38, 18].

A lack of research into the opinions or priorities of sysadmins has led to anecdotal ev-

idence being cited and unjusti�ed thresholds being used, as demonstrated in Wallin et

al. [10] and Yamanishi & Maruyama [18]. To an extent, this is understandable: systems

administrators are often under very signi�cant pressure given their responsibility for an

organisation's computing infrastructure. There is no one industry body with membership

being legally obligated, as is the case with the medical and legal professions. There isn't

even a centralised ethical standard by which systems administrators must abide. Such is

the state of a profession which only emerged within the last few decades and is perpetually

in �ux as the industry changes (e.g. due to outsourcing).

7.1 Demographics

The New Zealand Network Operators Group's (NZNOG) [92] annual conference in Jan-

uary 2011 presented an opportunity to conduct such a survey. NZNOG is not an organi-

sation per se, but rather a mechanism for network, Internet-Service-Provider, and systems

administrators to communicate with each other and collaboratively work through chal-

lenges facing themselves and the industry, primarily through a mailing list. The annual

109

110 CHAPTER 7. A SURVEY OF SYSTEMS ADMINISTRATORS

conference is aimed at developing face-to-face relationships and disseminating knowledge

about upcoming products, Internet standards, Internet governance, and the like. The

NZNOG membership is highly technical in nature and not a�liated with any academic

goals or institution. Participation in the conference is entirely voluntary (although re-

stricted to registered attendees); as a result the audience is likely to vary from day to day,

due to external commitments.

The audience was therefore a mix of systems administrators, network administrators, ISP

sta� (often overlapping with the previous two categories), telecommunications workers,

managers, marketing sta� and vendor representatives. It cannot be overemphasised that

these people are usually di�cult to gain access to, and are often under great pressure,

due to their pivotal roles in their organisations [10]. NZNOG has a tradition of technical

discussions held under `Chatham House Rules', wherein any details given that may betray

competitive plans or technology are held in con�dence, and are never to be attributed to

the speaker. An entirely anonymous survey that does not solicit any identifying informa-

tion is therefore the appropriate choice for facilitating a free and fair discussion.

7.2 Procedure

The survey was administered following a preliminary 25-minute presentation of this re-

search. These actions were carried out in a hotel conference room, beginning at 11:45 on a

Friday morning; the second day of presentations made at the conference. Responses were

collected as the participants broke for lunch after a subsequent, unrelated presentation;

the author held out a large labelled box and thanked participants as they returned the

forms. The chaotic pile of forms was then shu�ed, checked for any identifying information

such as names (there were none) and stored. The box was left in place, unobserved by the

author, until the end of the lunch break to allow any further responses; �ve were received

in this manner. As shown on the form itself in Figure 7.2, the forms will be held securely

for one year and then disposed of. Destruction will be via shredding.

The audience numbered roughly 120: 50 responses were received, giving a response rate

of around 42%. This is higher than the average organisational response rate of 35.7%

(std. dev. 18.8) reported by Baruch & Holtom, in 2008, [93] for surveys. As noted above

regarding the demographics surveyed, the audience did not consist entirely of systems and

network administrators or people with equivalent experience.

7.3. THE SURVEY INSTRUMENT 111

7.3 The survey instrument

The research goals for the survey were aimed largely at deducing what kind of event

log information systems administrators found to be salient. Secondary to this goal were

the desires to establish the prevalence of event log �ltering, the techniques used and

the e�ectiveness of those techniques. Validation/support for the concept of the three-

dimensional scale (severity, impact, certainty) was also sought.

The instrument used is shown in Figures 7.1 and 7.2. It was printed on both sides of

one sheet of A4 paper. Alreck & Settle's resource The Survey Research Handbook [89]

was heavily consulted during the creation process. Linear-numeric scales were used for

three items where the average response was expected to be around the scale's mid-point.

One notable omission only realised after the survey had been completed was the lack of

calibration information for the rankings item (number seven on page two of the form).

Around 18% of respondents seemed to reverse the order of the Syslog scale and used �10�

as the most important extreme when that was intended to be �0� (as was explained in the

presentation immediately beforehand).

The vast majority of those responses appear to have reversed both extremes, rating items

such as the UPS check - an entirely innocuous message simply noting a successful self-test

- as �0� and the disk fault, a failure likely to cause immediate and severe problems for

the system, as �10�, exactly the opposite of most other responses1. The Syslog scale, as

explained on page 32, regards �0� as the most important, and �7� as the least important.

The survey used �1�-�10� merely as ranks.

This two-page response form was approved under Section 4.7 of the Victoria University

of Wellington Human Ethics Policy [94], avoiding the need for a formal Human Ethics

Committee approval process. Section 4.7 sets out conditions that were taken into account

when designing the instrument, and the relevant excerpt can be viewed in Chapter 11 on

page 161.

7.4 Raw survey results

The raw results are presented in tabular form in Chapter 12 on page 163. The size of the

data set requires a multi-page format, with each response spread over two pages. One

duplicate was noticed: form 28 appeared to be an exact facsimile of form 27, right down

to the handwriting. Form 28's results were therefore omitted.

1See Section 7.5.3 for a discussion on the data cleaning process that was carried out.

112 CHAPTER 7. A SURVEY OF SYSTEMS ADMINISTRATORS

��������	�
����	�������

�� �������	�
�����������������
�������������������������
������
�����	����������������������

���� �������

�� �������
��� ������	����������!����������������
������"�	��
���
�� �
���

��	��
���
�� ������������
����	
������������� �����������
� �����

��	��
���
�� ������������
����	
������������� �����������

���
�����!��������������#���������

���
������	��
���
�� �����������$�����%���%��%
���!���
���
������������������

������
�� ������	������������$
����������
���

��� ��
������������
�
��

���������
�� ��� ���
���!���!�&��
�����	�����'

(�)������	���
���������
������
��
���	���������������	
��
������
���������*���������������

� (+ , - . /

+� ����������	�
���
�����0������������
���������!��������������� �	�����������
�
�
�����0���
����������
��
���

���
��
�������������������	
��
������
���������*���������������

� (+ , - . /

,� ��
���	��
�������������������
������#
��
����	�� ����������
�����������������
�
������

���� ��	��
��� ���� ��	��
���

1�����
����
����!��������������������%

����!�123���4��
����

� �
�

5���!������������
�������������� �������!��% ���

�������!���
�����������
�������
�!����������

1������%���
��!�������� ������
�
�!����%

	����
����������!��
�����

��
���

)������ ���
���!������
� ���
����!������	��%

����$16�7�!�	��������!����
���

��
���
��
���!�����������$�����
��������!�

��������������!���������
���������

8
���9:::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::

��
�����
���!������	��������������
����!�

;����������������
����
�!�1<3���#��
��

=���$�����>
���
�
���#
��
������	��
���

-� ������������������	�
�����	�
����
��������������� ����������� ���
�
�
����������������
�
������

���� ?�
�� ���� ?�
��

������ �����	��������������	�����
���%

��� �����!���������!�
���!�
�������

*�����
���!����������� �������	�� ���		����
�

����������������������������	����������
�����

��#
������
��
!������
����
���
�#
��	�
���

 �������
����
����� �����

=� ���������
��
!�������� ���������

��
�������
���

 �������
����
���
�#
$�������

������������	�
��� �����!����
�� ���	�

���������
� ��� �����
���������

8
���9:::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::

.�)�� � �� �
� �� � �� �
�� � ��
 � �(� ��
�� � ��� � ������� � �� � � ��� � 	��� � ���� � ��� �
� � 	��� � �� � 	�# � � ������ �

�*���������������

=��� �%-�
� �� -%�@�
� �� �@A�
� ��

=�
����	���

���

<#
�� ����

���	��

1� ���
�

���	��

=�
��		��
����

��������������

	�������������

<#
�� ����

�		��
���

1� ���
�

�		��
���

Figure 7.1: Survey instrument, page 1

7.4. RAW SURVEY RESULTS 113

/� B������# ����
����� ������!����������������#��������!�����
�� ����������
��
������������	
!�	�� ���
��

�@��C�������������������������	��������������!���
��������
��
����
���� ������!���
�����������������	���

	��� �������
�� ���������
����������
��������� ����� ����������������������������������%������������������

�����������
�����

�5���������������� ���������������7�����������
����"������������
���������������������%����
�	�����

��	��
����

7�� <���
����� �����

�����������	�
������������������
�����������

7����9

�����������	��������������������������
����������������

7����9

��
����������������	��

����������
������������������ !"�#$"�"�������%�&!����!

7����9

'����������	���(�
����
���������)#*������+���	�����,�-���.���!*��*	�%	&�

7����9

/�����	�0������1)2��������������
����34���5�
������
��&�%!%&*�

7����9

67����������5�������	�67�����������
�������	�0�����2/

7����9

�����������	������8�(�����"
��8�����,������������17��������4�,��
���������
���

7����9

/�����	���'�����*	����������*���
���5�����
������

7����9

97��������	��:��;����	���
����5���
���������
������������������"!"%"�	&%�&�

7����9

/��������������
����	��<�=>;?�+%�������@�#���%A-�� !"�#$"!"#$	�7>2B;��=�<�	�
�������*4��C�����,��
����D��������)������E;F�'7:;"B2'4�>�����������������

7����9

D� *��������
���	�������������
��
�������"��	������	�
��� ��������������������	�#�����
����� �����������	�

�������	
������������
������
��
�
����!��������	���������
�
����	����������*���������������

� (+ , - . /

E� B�����
����
������#�
�������
�
����������������������
����
���	�����������
���9��F������������

&��������
���
�
�
�������������������
��	�� �
������������������������
����������� ����������!����
�
�

���� ���������������
������� ��
��
���	���������=������������	��
�����������������������������
��!����

����	��������
�����������
�������������������
������	�� �������������
�����������������
�	������������	����

�������������
�����������������������	�'

���������	������
����
����
��
����������������
������
��	� �����������!������������	����
� ��� ����
�
����

�������������������
����������� �����

���!����
�����	��
�����
��������������	�����	�
������������

�		��
������#���
�
�������������������������
����
�������� ��
�����
���=G=8H� ���������
�

=�
����	���

���

<#
�� ����

���	��

1� ���
�

���	��

Figure 7.2: Survey instrument, page 2

114 CHAPTER 7. A SURVEY OF SYSTEMS ADMINISTRATORS

���
��
��
���
�	
�

��
��
��
�
��
� ��
��
��
���
��
� �
�

��
��
� �
��
� �
��
��
�
�

�
��
���
���
��

��
�
�
��
�

�

���
��

��
�
�
��
���
��
��
���
�	
�
�
��
�

	
��
��

	�
��
��
��
��
��
���
��
��
��
��

�
��
��
��
�

���
��

��
�
�
��
���
��
��
���
�	
�
�
��
�

	
��
�

	�
��
��
��
��
��
���
��
��
��
�

�

��
��
�

��
��
��

���
���
��
��
��
��
��
��
��
�
��

��	
�

��
�
���
��

��
�
�
��
�
��
��
�
��
���
�

��
��
��
�
	�
��
��

�
��
���
�

��

�
��
��
�

��
��
��
���
��
�� ���

��
�
�
��
�
��
� �
�
���
��
��
��
��
�

�
��
��
��

��
�

���
��
�

��
��
��
��

��

�

��
�

���
��
�
��

�
��
��
�
��
�

��
� �
�
��

!	
��

��
�
��
���
�"
#

$

%

&$

&%

'$

'%

($

' '

)

&'

'*

$ $

+��������
���&
,-�������
������������������
������������	 ���������	 �
������
���������",

.
�
�
�
�
��

��
��
�
�

�
�
�
�

Figure 7.3: Response item 1 results

7.5 Analysis of results

7.5.1 Techniques in use

Figure 7.3 shows us that the most common `technique' for dealing with log �les is simply

to leave them alone until they are needed after a speci�c event. That is; they are reserved

for reactive use instead of proactive interpretation. Only 27% of participants regularly

monitored or �ltered their log �les. Notably, static matching techniques are over four

times more likely to be employed than data-mining.

An impression of `comfort' with the existing situation can be garnered from Figures 7.4

and 7.5. Both data sets have medians of four, and means signi�cantly towards the right:

�4.43� for item 2, �4.35� for item 3. The audience in general appears somewhat ambiva-

lent to raw event logs with the most-expert feeling right at home. Certainty about the

e�ectiveness of their chosen `coping method' for log �les, however, drops o� rapidly above

�5�, with comparatively few participants willing to state unreservedly their belief in the

method they employed. One might posit that this re�ects an awareness that much of the

information generated at system level is simply never examined, but that conclusion must

be considered in light of the survey being held immediately after the author's presentation

about the issues created when using event log messages for system monitoring.

The vision presented in Figure 7.6 on page 116 (mean rated e�ectiveness for each tech-

nique) incorporates averages with as few as two data points and this should be kept in

mind. An important conclusion is the small range within which the means reside; from

7.5. ANALYSIS OF RESULTS 115

� � � � � � �

�

�

�

�

	

��

��

��

�

�

	

��

�
�

�������������

��� ��!������"#

$
�
�
%
�
��
�
��
��

�
�
�

�

$���������
������

&��������
�����

'(��������
�����

Figure 7.4: Response item 2 results

� � � � � � �

�

�

�

�

	

��

��

��

��

�	

�

�

	

��

��

�

�

�������������

�� !���"��������#�����$����
�����%������������%����%�����"�����������������������$�$%"&��$���������#��������'

(
�
�

)
�
$�
�
��
$�

�

�
�
�
�
�

(����������
%��%��

*���"�%��
������

+,�$������
������

Figure 7.5: Response item 3 results

116 CHAPTER 7. A SURVEY OF SYSTEMS ADMINISTRATORS

� � � � � � � �

�

�

�	�

�	��

�	��

�

�

��

�������������

�������������

�������������

��������������

��������������

 �!��""#�$����!#�"�%���"���""��#&�
����#��#�����������""#'���"�������!�����

 ���"�������!���%�"�"#�$��������$���
$��������!��"#���������!����%

 ���"�������!���%�"�"#�$��������$���$��������!��"#�
�����������!�����%&��	�	���%�"���(���������

 �$���������"�������!��������""#)
����#*��$*��*����&�+�����������#���%�"��+���

 ��������!���"#����
��+�%%��%)����+"��������%

 �"!����������"��,������!

 ��%��������!���!�"���"#&���&
-$���"�%���"��./

Figure 7.6: Mean rated e�ectiveness for each technique

�4� to �5� for e�ectiveness of each technique. This certainly does not suggest any great

dissatisfaction (on average) with the choices that systems administrators have made, but

neither does it display great satisfaction.

7.5.2 Motivations

Figure 7.7 shows the `desire' of sysadmins to monitor their systems more closely; only

one participant indicated that they did not have any interest in log �le information. Note

that �kernel messages� was not included as an option, as messages from the kernel are

typically treated according to cause, such as disk failures under �hardware monitors� and

stack-smashing attacks under �security notices�. The two most heavily-favoured response

items were �service-related� (37) and �hardware monitors� (34) - both of which are critical

to service availability, and therefore potentially require the most urgent response from

a systems administrator; if a provided service (e.g. e-mail, web proxy) or hardware

component (e.g. ISP border router) is no longer available, there can be an impact on

those who rely on `our service'.

The other two response items in the majority were �security notices� (33) and �authenti-

cation� (30). Neither of these are directly related to immediate service availability (except

perhaps via individual account compromises or corrupt/deleted data after-the-fact) and

are closer to the concept of system integrity, i.e. maintaining a consistent and known

state without rogue actors or processes. System integrity creates trust in the system's

output; which will be deterministic in nature. For example, a serious security notice with

7.5. ANALYSIS OF RESULTS 117

�

��

��

��

��

��

��

�� ��

��

��	
��	������

�� ������	!

"�������������	#�$�$

�� ������	��������	#
"%&��'�����������
�	

"�� ���(�������#�$�$
��������	����	#������(
������������	#������	�

	����	���	

)�������������#�$�$
�����*������������	#

�		����������	#��(
�������
�		����	

)������	�����#�$�$����
����		 ��������	#+��(
����		�� ���������	#

",&�������$
-	���#�$�$���	���	

 ���������
�����	#�(
����������	#���	�����(

��������	���#����� (

�����

.��������������	#�$�$
���
�������	#��	�����(

���	*"/)�0#���	
���	#
 ������	

1����
2	�������	���	3

4���*5���6���������(
�������������������

Figure 7.7: Response item 4 results

118 CHAPTER 7. A SURVEY OF SYSTEMS ADMINISTRATORS

evidence of an SQL injection means the a�ected database is fundamentally compromised

and will likely have to be either entirely restored from a prior backup or have all recent

transactions rolled back to before the time of the injection. The service itself, however,

will most likely remain available until sysadmin intervention occurs.

The notion of benign system state is perhaps most lucidly conveyed by the �usage� item

(23) : the primary metric here is �what are people doing with the system�, which can

include factors as diverse as thread/fork load, UNIX load averages, memory and disk con-

sumption, distributed-denials-of-service, percentage of spam e-mail vs legitimate, or even

whether �Bob in accounting� is viewing unsavoury content with organisational resources.

Rather abstractly, usage can have an e�ect on service availability, and it is here that

sysadmins may need to obtain statistics about performance and resource consumption,

for example, in order to forecast new hardware purchases or additional budget for cloud

computing. Usage as such is probably the �least bad� of the items presented but was

important enough, at least to organisations, for slightly less than half of the participants

to select it. It is also emblematic of the densely-packed information space of event log

messages (see Section 3.4.1 on page 71) in that usage can be interpreted from so many

di�erent possible angles in �normal� event logs with a high value for Weaver's H, while a

more uniform log such as one that is application-speci�c (e.g. Munin) will have a much

lower value for H and be much more straightforward to judge for usage purposes.

�Authorisation� is evidently (with only 17 responses) a less serious response item. It must

be noted that authorisation is the mechanism which regulates what an authenticated

identity can or cannot do. This authorisation often takes the form of a permissions

mechanism (such as �le and directory permissions in a �lesystem) that discriminates on

a basis of identity � which requires authentication �rst to verify that identify.

The primary conceptual gap between authorisation and �authentication� is authorisa-

tion's lack of a challenge-response motif. It is just a check against a pre-de�ned list of

allowed/disallowed actions. For example, an authenticated user may try to open a �le that

they are not allowed to, such as the password hash �le on a UNIX or UNIX-like system;

/etc/shadow. This action will fail, and will always fail, unless permission is manually

granted by the superuser. Authorisation therefore cannot be teased, gamed, experimented

with, or brute-forced. It is either buggy and broken, or not - there is no concept here

of authentication mechanisms' �strength� or �weakness�. Similarly, it is also much more

�nely-grained (e.g. per-�le permissions vs per-system authentication). Authorisation vi-

olations indicate that `bad behaviour' has been caught and entirely prevented; yet the

bad behaviour, and therefore motive, still exists. System integrity is maintained when

authorisation is violated and the sysadmin can be noti�ed of possible/probable intent. [95]

7.5. ANALYSIS OF RESULTS 119

From the above analysis, it should be possible to synthesize a list of motivations that

would drive almost all sysadmins to monitor their systems more closely if they could.

The reader should not necessarily be surprised at the position of the last motivation in

Table 7.1: systems administrators cannot ever assume the Internet is a `safe' place.

1 Service availability
2 System integrity
3 Resource consumption levels
4 Intent of attack or compromise

Table 7.1: Motivations in evidence among systems administrators

7.5.3 Indicators of salience

With 41 responses, the source of the message leads the pack of salience indicators for

systems administrators in Figure 7.8 on the next page. This �nding lends support to

the `impact' dimension and related weighting mechanism presented earlier, in that sysad-

mins discriminate (perhaps most heavily) by source, independent of the message content.

Current systems have no method for including the importance of the source into the log

messages issued by that source.

�Textual content� and �correlation� were the same, at 37 responses. While automating

the analysis of correlation remains a hard problem [10], and higher quality and more

consistent log �les have been called for to help with correlation (as in Buckley [26]),

another interesting distinction exists between the responses for textual content and nu-

meric content (16). The di�erence between the response levels (i.e. 37 vs 16) shows the

weighting assigned to the two types of log message content by sysadmins; yet no such

di�erence could be identi�ed in the literature on automated log �le analysis. Data mining

algorithms, neural networks, and static-matching �lters of course regard the content as

binary streams to either match or analyse for patterns. They do not incorporate even the

evidently-higher regard for textual content vs numeric that humans do, yet they attempt

to achieve human-like e�ectiveness.

One base which appears to be relatively frequently utilised by automated mechanisms,

perhaps due to its statistical obviousness, is the �number of occurences of a particular

message� (29). The Logwatch software project [19] uses this as one of its primary met-

rics; displaying to the administrator the daily counts of matches for each static pattern-

matching regular expression it uses (such as logins and logouts recorded in log �les and

then later being matched and counted). Outside of well-de�ned/unchanging and common

cases, however, the usefulness of this approach is undermined by trivial di�erences (to a

120 CHAPTER 7. A SURVEY OF SYSTEMS ADMINISTRATORS

�

��

��

��

��

��

��

�	

�

�������������

���

!������"������������������
�����������������������#��$�$�

���#�����#����������

!�%������������#��$�$�
�������������%���������
���������������
��������"����

!�����������������
�������#�������������

�������������
������������������

&����������#��$�$������
������������������������
��������������'����

�'�������������������������

(����������������#��$�$�
���"�������������������������

��������������������
��%�)�������

*�����+���������������,

Figure 7.8: Response item 5 results

human observer) that nonetheless greatly degrade any automated mechanism. Atwood

[56] pointed out this di�culty with the tools produced by the computer science discipline,

in relation to genetic pattern databases (as explained on page 46).

The log �le mechanism itself appears highly salient, as can be seen in Figure 7.9; not one

participant had gone without the use of a log �le in the past year. The overall relevance

of event log messages is therefore con�rmed for a professional, technical audience.

Asking the audience to rank ten di�erent log messages in terms of their importance raised

an issue which has already been alluded to (the likelihood of participants reversing the

1-10 scale). Figure 7.10 on page 122 displays the raw rankings as a stacked bar graph -

items with usually-long bar sections were ranked less important and items with shorter bar

sections were ranked more important. 13 participants did not provide any rankings while

four provided incomplete rankings and two provided rankings with duplicated ranks (e.g.

two �9� 's). Figure 7.10 contains this raw data, and the (absent) rankings of the duplicated

form 28.

In order to maintain as many data points as possible (necessary with such a small sample),

duplicate and missing ranks were altered while maintaining the overall mean. Cleaning

7.5. ANALYSIS OF RESULTS 121

����

����	
���

����	
���

���	
���

 � � �� � �� � �� �

�

�

��

���������
	����

���������	
����
��	������	�������	����
������
���
��������
����������!�	��
����"�
#����"�$���%

Figure 7.9: Response item 6 results

the data entailed these actions:

� deleting blank rankings

� duplicate ranks were altered to maintain a per-participant mean rank of 5.5

� missing ranks were �lled in to maintain a per-participant mean rank of 5.5

The altered forms are detailed in Table 7.2, with the actual alterations in bold italics.

These alterations maintain the per-participant ranking mean of 5.5.

Examining the per-item mean and median rankings after these alterations produces the

graph in Figure 7.11. Surprisingly (for the author at least) the �Name daemon: clients-

per-query...� item was ranked the least serious, with both its mean and median rankings

signi�cantly above the standard deviation. Correspondingly, and as expected, the �Kernel:

Bu�er I/O error on device...� item was ranked as signi�cantly the most important, again

outside the standard deviation. It therefore follows that these two items can be considered

the `endpoints', or the extremes of importance, of the items available to be ranked.

Stage two of the cleaning process will eliminate the responses where both the endpoints

appear to have been reversed; i.e. where the �Name daemon: clients-per-query...� item

was ranked as �1� (most important) and where the �Kernel: Bu�er I/O error on device...�

item was ranked as �10� (least important). This is not intended to ensure a `perfect' data

set where the only responses are consistent with the author's expectations, but rather to

retain the largest sample while eliminating the very-likely outliers and enhancing the mean

values for each ranking. Reversed rankings act as `noise', obscuring the true picture. The

decision to perform this cleaning was taken as a result of advice from Victoria University

of Wellington's consulting statistician.

122 CHAPTER 7. A SURVEY OF SYSTEMS ADMINISTRATORS

Figure 7.10: Response item 7 results (raw rankings)

7.5. ANALYSIS OF RESULTS 123

Response item _ Form� 7 9 10 16 23 37

Name daemon: clients-per-query decreased
to 14

4 7.2 5.25 8.5 2 10

Time daemon: no server suitable for
synchronization found

9 9 3 4 5.2 4.5

Secure shell daemon: Accepted publickey
for root from 192.168.1.1 port 43152 ssh2

8 7.2 10 5 5.2 4

Mail daemon: max connection rate 1/60s
for (smtp:unknown) at Jan 20 10:13:54

4 1 5.25 6 7 9

Kernel: Bu�er I/O error on device sdj,
logical block 51323504

10 3 8 7 9 1

UPS monitoring daemon: UPS Self Test
completed: Battery OK

1 7.2 1 8.5 5.2 8

Name daemon: zone 'example.com' allows
updates by IP address, which is insecure

7 7.2 5.25 3 7 7

Kernel: ATM dev 0: error -110 fetching
device status

4 4 5.25 2 5.2 5

VPN daemon: TLS Error: incoming packet
authentication failed from 1.2.3.4:53151

4 7.2 5 1 4 4.5

Kerberos authentication: TGS_REQ (3
etypes {16 1 3}) 192.168.2.68:

PROCESS_TGS...

4 2 7 10 5.2 2

Table 7.2: Statistical corrections to participant responses (�rst stage of data cleaning)

124 CHAPTER 7. A SURVEY OF SYSTEMS ADMINISTRATORS

Response item _ Form� 2 15

Name daemon: clients-per-query decreased
to 14

1 1

Time daemon: no server suitable for
synchronization found

6 9

Secure shell daemon: Accepted publickey
for root from 192.168.1.1 port 43152 ssh2

8 8

Mail daemon: max connection rate 1/60s
for (smtp:unknown) at Jan 20 10:13:54

5 6

Kernel: Bu�er I/O error on device sdj,
logical block 51323504

10 10

UPS monitoring daemon: UPS Self Test
completed: Battery OK

2 3

Name daemon: zone 'example.com' allows
updates by IP address, which is insecure

9 7

Kernel: ATM dev 0: error -110 fetching
device status

7 2

VPN daemon: TLS Error: incoming packet
authentication failed from 1.2.3.4:53151

4 5

Kerberos authentication: TGS_REQ (3
etypes {16 1 3}) 192.168.2.68:

PROCESS_TGS...

3 4

Table 7.3: Responses deleted due to endpoint reversal (second stage of data cleaning)

7.5. ANALYSIS OF RESULTS 125

�����������	�
������������������
�����������

�����������	��������������������������
����������������

��
����������������	��

����������
����������������

!����������	���"�
����
���������#$%�����

&�����	�'������(#)��������������
����*+���,�
������
�

-.����������,�������	�-.�����������
�������	�/

�����������	������0�"�����
��0�����1������������/

&�����	���!�����%	����������%���
���,�����
������

2.��������	��3��4����	���
����,���
���������
����

&��������������
����	��5�6748�9:�������;�$���:<=

% � > : � ? $ @ A B

$ @�

? %>

? �?

$ %�

� %B

$ >?

? @$

? %�

? $?

? :?

A ?

� ?

?

$

>

@

$

?

?

$

!�������������������������,�

9������������,���������
������,=

!��� !�����

Figure 7.11: Mean and median item rankings after �rst stage of data cleaning (std. dev.
displayed)

The two responses which �tted the end-point criteria (i.e. opposite values given for

the response items whose means and medians were outside of one standard deviation)

were forms 2 and 15. Those responses are shown in Table 7.3. It is expected that the

participants responsible for forms 2 and 15 simply inverted the �1-10� importance scale,

which is entirely understandable; as noted earlier, the endpoints were not detailed or

ennumerated on the response form. Further surveys could test the acceptance of scales

in each direction, with clear instructions about which endpoint is which; or other scale

characteristics such as the presence of midpoints and length (number of scale positions).

For comparison, the raw data at each stage is presented in Figure 7.12 on the following

page. Note that the vertical axis shows the form numbers independently for each graph,

and these numbers cannot be compared across graphs.

A ranking of the importance of the events can be obtained, as shown in Figure 7.13; which

is sorted by mean due to there being several identical median values. To validate the list

of motivations in Table 7.1 on page 119, the event items will be categorised according to

motivation. Table 7.4 shows the outcome of the categorisation. With this small num-

ber of event log messages, no conclusive outcome can be drawn; but the distribution of

event items still appears to be generally in-line with the order of the motivations. In

other words, event log messages which portray service availability or system integrity is-

126 CHAPTER 7. A SURVEY OF SYSTEMS ADMINISTRATORS

Raw data

Data cleaning; stage 1

Data cleaning; stage 2

Figure 7.12: Comparison of raw data across stages of cleaning (response item 7)

7.5. ANALYSIS OF RESULTS 127

�����������	�
������������������
�����������

��������������������	��������������
�������	��

�����������	�����
����
��������� !"�����###

$���������	��%��&����	���
��������
'����(���
����###

�����������	�)����*�������#
��*�����+���������,���

-��,�������(���
����	��.�/0&1�23�������4�!���356###

-�����	�7�����8�"	����������"���
(������8�
������

��
�����(����������	�7

�������,��
'���������������###

�����������	�������8�������,����������
(����)����������

-�����	�9������: ;������������8�
����<=�����
���,��
'###

" � > 3 � ? ! @ A B �"

@#"!

!#�A

!#"�

?#@>

?#!>

?#�!

?#"�

�#BA

�#A@

3#@3

B

@#>

!

!

?#>?

!

?

�

�

>

�����������������������'����

2�������
����������������
�������C�������,������6

���� ������

Figure 7.13: Mean and median item rankings after second stage of data cleaning (std.
dev. displayed, sorted by mean)

sues are considered more important, while resource consumption and intent of attack are

considered less important.

In addition, the distribution of importance may warrant further investigation. To the ex-

tent that it has been limited by the small sample size presented here, a larger investigation

would provide evidence for a more accurate plotting of systems administrators' concerns.

As it is, a curve has been plotted in Figure 7.15, which shows a sharp increase in impor-

tance assigned to a small proportion of messages, and a mirrored decrease in importance

towards the other end of the scale. Hypothetically, this curve may represent a cognitive

model of perception that could be compared to the existing Pareto-like distribution of

event log messages.

An ideal event log message handling solution might indeed transform the existing distri-

bution into the identi�ed curve; eliminating the long-tail problem and instead presenting

messages on a basis of overall importance or salience, as perceived by the sysadmin, and

this hypothesis would need to be investigated. The mechanism of weights applied to the

impact metric (discussed earlier) is an initial attempt to realise this goal.

The �nal response item gathered feedback from the audience as to their disposition to-

wards the proposed �severity, impact, certainty� scale. Figure 7.14 depicts a positive

disposition with a mean of �4.89� and median of �5� where �4� is the midpoint.. We must

bear in mind that this is an opinion solicited from end-users of the proposed scale and not

128 CHAPTER 7. A SURVEY OF SYSTEMS ADMINISTRATORS

Event log message Motivation category

Name daemon: clients-per-query
decreased to 14

Resource consumption levels

UPS monitoring daemon: UPS Self
Test completed: ...

Service availability (but with no
impact)

Mail daemon: max connection rate
1/60s for...

Resource consumption levels/Intent of
attack or compromise

VPN daemon: TLS Error: Incoming
packet authentication...

Intent of attack or compromise

Name daemon: zone 'example.com'
allows updates by...

System integrity (but with no impact)

Kerberos authentication: TGS_REQ
(3 etypes {16 1 3})...

System integrity/intent of attack or
compromise

Kernel: ATM dev 0: error -110 fetching
device status

Service availability

Secure shell daemon: Accepted
publickey for root from...

System integrity

Time daemon: no server suitable for
synchronization found

Service availability/system integrity

Kernel: Bu�er I/O error on device sdj,
logical block...

Service availability (likely impact)

Table 7.4: Categorisation of event log message per-motivation (sorted by mean ranking)

� � � � � � �

�

�

�

�

	

��

��

��

��

�	

�

�

�

��

��

��

�

������������	

�� �!�����������"�������
���#�������������������������$�������������!������!�����%&�����#���#����#�������� ��������#'

Figure 7.14: Response item 8 results

7.5. ANALYSIS OF RESULTS 129

Figure 7.15: Hypothetical comparison of `message importance curve' and Pareto-like event
log message distribution

130 CHAPTER 7. A SURVEY OF SYSTEMS ADMINISTRATORS

the program developers who would be responsible for implementing the scale as a pre�x

on the log messages in their source code. It does perhaps indicate a willingness on the

part of the audience to improve on the status-quo.

7.6 Summary

The survey, as conducted, has provided what is most likely the �rst evidence of systems

administrators' preferences for event log message processing. Motivations were deduced

from the data; these are `service availability', `system integrity', `resource consumption

levels' and `intent of attack/compromise', with SA being most important. While sysad-

mins appear largely content with the status quo, they also perceive that the situation

could be improved. Certainly any improvement could have a signi�cant impact, given

that all sysadmins surveyed made (usually extensive) use of their log �les.

Chapter 8

Discussion and conclusion

This thesis began with the following premise: event log messages are growing in quantity

but the tools available for processing them have not seen anything like an equivalent

increase in capability. Regular expressions may have added the occasional improvement

in syntax, however, they remain largely identical to their 1980s cousins. Data mining

and other statistical approachs (neural networks included) are still probabilistic at best -

and only show true promise when painstakingly tuned over long periods of time against

a hermetically-sealed data set kept in stasis. The only constant is change, though, and

such algorithms simply do not cope with change; often retreating to a position of �new

must be bad�. A lack of useful metadata only compounds the situation.

In proposing a metric to improve the event logging landscape, it is worthwhile recalling

these motivations and their accompanying responses:

� A data set containing poorly-de�ned textual descriptions, prone to change, and very

densely-packed `information' content (high ratios for Weaver's H).

à Provide an embedded, machine-and-human-readable scale. This avoids the

need to reverse-engineer human impressions of meaning into the data set - a

need created by the discarding of context and background knowledge that is a

natural consequence of the event log messaging paradigm.

� Include a notion of context in the larger computing environment.

à The scale should include a programmer-assigned seed value for the potential

impact of the event mentioned in the message. This value is then manipulated

according to the systems administrator's preferences and experience in their

particular environment.

131

132 CHAPTER 8. DISCUSSION AND CONCLUSION

� Improve the iterative process by drawing on observations of another sector faced

with a not-dissimilar problem.

à Allow systems administrators to rapidly-iterate their impact weights/manipu-

lations on a per-service, per-server/cluster basis. This metric would be exposed

to log-analysis tools as a simple scale pre�x on existing message text. Other

disciplines have recognised the value of splitting scales into multiple dimensions

to distinguish between in�uences on the output value; sysadmins can be better

informed if they additionally perceive the programmer's view of severity and

certainty for each particular message.

The argument for the scale values being de�ned in code was developed in [62] and is based

on the logic that the programmer or program designer is the person best-acquainted with

the problem domain surrounding the issuing of an event log message. `Severity' as a value

in code is already facilitated by RFC 5424 [11] but with less-than-complete uptake since

the value is, by default, discarded by Syslog daemons after routing each message. The

scope of `severity', however, is limited to each individual message and simply conveys

�how bad� it is on a scale of �0� (worst/most consequential) to �7� (least worst/most

inconsequential), as shown in Table 2.1 on page 32.

Unfortunately, such a unidimensional scale cannot hope to accurately convey information

about either the consequences for the larger computing environment, or the developer's

certainty that their coded values will actually apply in every situation. Even the tex-

tual messages themselves do not include this information and it must be added by a

human (as was done in Listings 6.4a, 6.4b and 6.4c, beginning on page 156). Person-to-

person communication has been enhanced with multi-dimensional scales before; specif-

ically, medicine's Glascow-Coma Scale (GCS) [49] which has been tested and accepted

globally as a method for quickly and unambiguously conveying patient triage priority and

likely outcome, but there are reservations about summing the dimensions into a single

number (e.g. [12]).

The GCS was adopted, in part, to improve information retention when patients were being

brought into hospital emergency rooms and then possibly being seen by many di�erent

individual medical professionals. Information was prone to being lost; one could charac-

terise this as being like the childhood game of `Chinese Whispers'. Event log messaging

faces a similar challenge caused by the loss of context and background knowledge, not to

mention information-overload thanks to `noise', as information is passed from the mind

of the program developer to the mind of the end-user (the systems administrator, in this

case). Shannon and Weaver's information model can accurately portray the lossy process

and is discussed from page 57 onwards.

8.1. METRIC CONSIDERATIONS 133

8.1 Metric considerations

Any proposed metric for event log messages should aim to facilitate improved informa-

tion retention by mitigating the e�ects of �ltering (i.e. loss of context, false negatives and

positives), noise (false negatives and positives) and volume (cognitive overload). Main-

tenance demands should also be minimal; continual change can lead to disenchantment

with continual maintenance.

As discussed in Chapter 6 on page 97, the metric is designed to improve the lot of the

systems administrator. By creating metric seed values in code, the salience-encoding work

is performed once (globally) as opposed to millions of sysadmins needing to maintain �lters

(e.g. lists of regular expressions) which are painstakingly matched to their own needs.

Machine-readable metadata reduces the �ltering task to a near-trivial exercise.

The metric as presented in this thesis takes the form of a three-dimensional scale, featuring

the following dimensions:

� Severity: an existing concept drawn from RFC 5424 [11]. Some existing projects,

such as OpenVPN [13], have implemented `severity' to the extent where it is o�ered

as a throttling option for the daemon's logging output; OpenVPN can be con�gured

to discard all log message output which has been seeded with a `severity' value above

this con�guration integer (remembering that �0� is the most important endpoint).

Many projects, perhaps the majority, do not o�er any similar capability and their

severity values, where they exist, should therefore be treated with a degree of skep-

ticism as they may have been inserted simply to satisfy the logging programming

interface. Developers are aware that severity values are simply discarded by default

Syslog server con�gurations.

The domain scope of `severity' is limited to the program or daemon issuing the

message and as a result the extremes of the scale are calibrated according to the

best and worst possibilities for that one entity.

� Impact: a synthesis of ideas from X.733 (perceived severity) [43], Wallin et al.

(priority correlating poorly with severity) [10], Mitchell et al. (stakeholder salience)

[1] and semiotics (the social level above that of mere signs) [6, 54, 3, 61], among

others. It refers to the consequences for the larger computing environment of a

given event and how these consequences a�ect humans' real-world priorities. Some

events can be very severe in themselves but of minimal impact (e.g. a failed disk

in a redundant array) while others can be minimally severe but potentially of great

impact (e.g. individual portions of a distributed-denial-of-service attack).

134 CHAPTER 8. DISCUSSION AND CONCLUSION

The domain scope of `impact' is �the forest rather than the trees�; it refers to ser-

vice provision and availability/organisational-viability overall. The endpoints are

calibrated according to the best and worst possibilities for the organisation as a

whole.

� Certainty: drawn from sources as diverse as Mitchell et al. (urgency/con�dence)

[1], Matheus et al. (certainty of information reported in battle�eld scenarios) [9],

Reason (knowledge of human failings with active and passive errors) [60] and Mol-

loy et al. (acknowledgement of the consequences of automation on humans) [58].

`Certainty', as a scale, is an explicit indication of doubt, which exists no matter how

much we might crave absolute certainty [79]. Each and every log message is subject

to pre-conceived notions when it is coded and depending on the quality of the input

data to the preceding conditional statements, and the associated assumptions, the

information contained therein may or may not be accurate in an as-yet-unknown

real world event.

The domain scope of `certainty' is as small each individual log message, or perhaps

as large as each code block under a given conditional which is acknowledged as re-

lying on less-than-perfect assumptions. For example, a large switch-case structure

makes each of its cases, no matter how involved they are, subject to the validity of

the initial switch conditional.

The 0-7 scale utilised here is based on the volume of pre-existing software already featuring

valid `severity' values (as documented in RFCs 5424 and 3164), and a desire to facilitate

re-use wherever possible. The 0-7 scale does not feature a midpoint as Likert-type scales

do (a scale commonly used for opinion surveys in populations, as explained on page 99);

it is not a classical �response scale� where the results are expected to form a standard

distribution, as no such distribution is either anticipated or in evidence with event log

messages.

8.2 Applying weights to the metric

The incorporation of the wider scope associated with `impact' naturally requires a mech-

anism which can be customised for each organisation (see Chapter 4 on page 75). Here,

this mechanism takes the form of a weighting which expresses the relative importance of

daemons (i.e. according to the services they provide) and also hosts/servers. It is hypoth-

esized that a su�ciently large number of such weightings, honestly assigned, may begin

to resemble a standard distribution: where the distribution is such that most services

8.3. EVIDENCE SUPPORTING A CHANGE TO THE STATUS-QUO 135

and machines are �average�, a smaller number are �more important than average� and a

similarly small number are �less important than average�. Such a distribution would be

distinctly di�erent from the Pareto-like distribution of event log messages with its long

tail of rarely-encountered issuings.

Weights readily-con�gurable by the systems administrator also present an opportunity

for rapidly-iterated tuning of the log message output. There are two existing methods

for tuning that are both problematic and therefore remain largely theoretical, in that

they are hardly ever, if ever, utilised. The �rst entails submitting a source code patch to

the program developer (and acceptance is far from guaranteed) or maintaining one's own

code repository - but obviously these do not apply to closed-source products. The second

is the only available avenue for closed-source, although it can also work for FOSS, is a

cumbersome string-replacing engine con�gured with long lists of regular expressions. Such

an engine simply recognises pre-con�gured signatures and either replaces strings or adds

information for other tools to make use of later. Weights, in contrast, simply take the

form of an integer value in a con�guration �le, one per service daemon and one for each

server's Syslog forwarding daemon (which scales all impacts across the other daemons

according to the importance of that machine).

Note that weights are only proposed here for the `impact' dimension. The much more

tightly-scoped `severity' and `certainty' dimensions are intended to enhance communica-

tion from developer to end-user on the topics of �how bad� a message was for the issuing

entity, and the degree of con�dence the developer has in their tests and associated assump-

tions, respectively. Therefore, at this time, it is di�cult to perceive how end-user weights

could be valid in those contexts due to the depth of source-level knowledge required to

meaningfully in�uence or second-guess the provided values. Any mechanism for weight-

ing `severity' and `certainty' may also be greatly burdened by their �ner granularity: the

smaller scopes would entail unique serial numbers on each message-issuing statement in

the source code and a (potentially very large) lookup table for con�guring each and every

one.

8.3 Evidence supporting a change to the status-quo

As can be seen in Chapter 7, event logs are used very extensively by systems (including

�network�) administrators, to the point where no respondents denied their use. Automated

�ltering is uncommon, however, with only one third of the audience making any use of such

tools. Larger samples from statistics-gathering e�orts like the Debian Popularity Contest

[21] showing uptake of less than 10% (for FOSS packages installed from distribution

136 CHAPTER 8. DISCUSSION AND CONCLUSION

repositories). Increasing the awareness of important event log messages is no doubt a

worthy goal and one that can be aided by useful, con�gurable �ltering producing timely

and relevant results.

The general attitude to existing solutions could perhaps best be characterised as �ambiva-

lent� to �positive�. Distinctly few respondents indicated high or very high con�dence in

their solutions, though, according to Figure 7.5 on page 115. This may indicate awareness

of shortcomings or even simply a lack of familiarity with the tools at hand. By far the

largest proportion of respondents only use their log �les in a reactive manner, leading to

knowledge of just how much information is available, but results from other response items

(speci�cally Item 4 on page 117) would imply they then �nd themselves without su�cient

time, motivation or budget to implement a worthwhile mechanism for automated �ltering.

A quick, e�ective/straightforward, and free solution is likely to be the proverbial �Holy

Grail�, even though it violates the similarly-proverbial �fast, good, cheap; pick two� rule.

Any of the existing solutions, however, require a signi�cant investment of time to imple-

ment well. An absence of metadata means messages very often contain no indication of

their importance - certainly not beyond the scope of their own issuing entity (i.e. `sever-

ity' values, in those cases where they have been responsibly implemented in code: such

as in OpenVPN). This means the solution provider has to have interpreted the messages

for meaning and importance. Naturally, this interpretation may not match up with the

priorities and organisational realities of the systems administrator, yet a statistical or

regex-based approach does not allow for tuning without very deep knowledge of the �lter-

ing mechanism itself. Lowering this barrier to entry has not been a primary academic aim

other than when Buckley [26] circled around the topic in 1992, and again when writing

with Siewiorek [25] in 1995.

Both the academic and technical communities needs to remove the barriers to e�ective

event log message �ltering to improve system-level awareness; any progress can be as-

sessed against the percentage of systems administrators utilising the relevant tools �in

anger�. Survey response item 7.8 on page 120 identi�es source, textual content and event

correlation as the top-three factors in a sysadmin's mind when deciding the importance of

messages; yet current solutions ignore such prioritisation of input. Indeed, the relatively-

few e�orts that have thus far emerged from the computer science discipline focus on

statistical heavy-lifting (e.g. [96, 30, 67, 15, 97, 42, 28, 33, 16, 17, 18, 34]) and black-box

neural networks (e.g. [10]). It could be said that we have been making our task more

di�cult through a desire to apply our favoured tools, trying to �nd a problem for our so-

lution, when in fact the problem in event log messaging is right at the source: inadequate

communication from the message's originator (the mind of the designer/developer) to the

end-user, thanks to a lack of metadata re�ecting real-world concerns. This is an interface

8.4. BUT HOW CAN THIS BE IMPROVED? 137

shortcoming and we have e�ectively been trying to use approaches such as data mining

to judge inadequate interface output - reconstructing meaning where none yet exists.

8.4 But how can this be improved?

The fundamental issue facing all those who attempt to usefully �lter event log messages

is a highly-packed, ever-changing data stream (i.e. low redundancy [8]) full of noisy and

incomplete communications. Context is critical and yet di�cult, at best, to preserve - this

is re�ected in the challenges encountered in event correlation (e.g. [29, 91, 72]). Improving

the lot of event correlation is admittedly not a central goal here although the SIC metric

may help.

What is the �rst step? Upgrading the various aspects (highly packed, cryptic, incomplete,

etc) starts with the provision of human- and machine-readable metadata to remove the

need to reverse-engineer meaning into messages that can be as short as two characters.

This not only relieves a human systems administrator of the research burden involved in

�nding out whether or not she needs to be concerned about a given message, but also

relieves pressure on the academic community to provide a �awless data mining algorithm

or even strong AI. The use of a three-dimensional metric is consistent with well-established

precedents like medicine's Glasgow Coma Scale.

The second step comes through an incorporation of organisational realities. As imple-

mented in this thesis, these realities are represented with weights which, due to reasons of

scope compatibility examined earlier, are applied to the `impact' dimension. The mech-

anism comfortably facilitates the relative positioning of message sources as more or less

important than others: a method for re�ecting the per-source criteria selected by sysad-

mins in survey response item �ve (see page 120). It also plays a role in highlighting the

types of messages that sysadmins are interested in (from survey response item four) by

allowing them to select the daemons which they consider to have potential impact on their

organisation. Rapid iteration becomes possible with easily-con�gured numeric weights,

so the output can be customised according to personal and/or organisational preference.

The message types themselves were broadly categorised into four motivations in Table

7.1; service availability, system integrity, resource consumption levels and intent of attack

or compromise, which should be of help to developers seeking to provide useful seed values

in their source code.

Thirdly and �nally, after metadata has been added to event log messages and weights

taken into account, the question of exactly how to best utilise this metric remains. Regular

expressions cannot usefully reference the metric's values due to combinatorial complexity.

138 CHAPTER 8. DISCUSSION AND CONCLUSION

Listing 8.1 Example stanza of rules for �ltering event log messages with the SIC metric

if (S<=2 && I<=2) then pageSysAdmin;

if (S<=2 && C<=5) then emailSysAdminImmediately;

if (S>2 && S<=6 && I<=5 && C<=5) then emailSysAdminDaily;

if (S=7 && I<=6 && C<=4) then emailSysAdminWeekly;

if (S<=4 && I>=6 && I<=7 && C<=2) then emailSysAdminMonthly;

Data mining/neural networks would likely not produce output of any higher determinism

either - the addition of more information to an already highly-packed space simply in-

creases the number of possible cases - and these techniques already produce results that

their authors often admit are probabilistic, at best.

We should leave the task of interpreting cryptic textual messages meant for human con-

sumption, to humans. Instead, a metadata metric that is machine-readable can itself

be used independently of the message's textual content. This step away from textual

pattern-matching and statistical analysis (including the various permutations such as

corpus construction, data mining, ontological data fusion, neural networks and so on) is

core to realising a low-maintenance, tunable alternative which reduces, on a global scale,

needless duplication of e�ort among users of event log messages.

8.5 Realising the alternative

The e�ective �ltering of event log messages remains the aim of this example; a small

stanza of pseudo-code rules is shown in Listing 8.1 as a realistic mockup. These rules

would largely or entirely replace the regular expressions (which number more than 1000

in a default installation of Logcheck on Debian Linux v5.0), or the algorithms used in

data mining or other largely-academic solutions. Note that the scheduled daily, weekly

and monthly e-mails have mutually-exclusive content thanks to the bracketing of their

`severity' and `impact' conditions. The top two rules are for �emergency� situations and

may produce duplicate noti�cations - this is likely to be acceptable given that multiple

modes of contact increase the chances of reaching a systems administrator in a timely

manner.

Applying the stanza of rules to the outcome mockup presented in Section 6.3 is an ex-

ercise that is useful for gauging the feasibility of an `importance curve', which itself was

hypothesised from the survey results in Chapter 7. The importance curve is a worthwhile

goal even if for only one reason: it eliminates the long tail which features prominently in

plots of event log messages - the large number of messages that occur rarely but make up

such a signi�cant proportion of the data stream due to their high degree of variation. It

8.5. REALISING THE ALTERNATIVE 139

Figure 8.1: Outcome mockup results after �ltering with an SIC rule set (with `importance
curve' superimposed)

also represents a possible avenue for further research into human value judgements when

faced with such data streams.

The results of the rules' �ltering is shown in Figure 8.1. The action to be taken is shown on

the X axis, pre�xed with the name of the server (A, B or C) which generated the message.

The rows of graph data were sorted as they were for the mockup graphs: impact �rst,

severity second, certainty third. It should also be remembered that the rules are only for

noti�cation purposes; all messages would still be stored on disk by default, as they are

today. Finally, while it might appear anomalous, the �rst two items (�A: Page� and �A:

E-mail immediately�) are the same event selected twice by di�erent rules. The message

itself is for the motherboard voltage out-of-bounds event. Only the e-mail rules were

chosen to produce exclusive output between themselves, as mentioned above; this is due

to the identical method and destination of communication.

With the mockup's sample of only 84 messages, no authorititive correlation was expected,

and the correlation observed between the `importance curve' and `impact' is not strong.

Indeed, the mockup sample does not contain any events of �0� severity or impact, but these

are highly likely to be observed (albeit rarely) in any large-scale logging environment. One

claim that might be made seems at �rst to be a negative allegation: that values can be

intentionally selected via a stanza of rules so that the impact plot line conforms to this,

or any other, `importance curve' - yet this is exactly the capability intended. Systems

administrators should be able to manipulate their log �ltering results to achieve their

140 CHAPTER 8. DISCUSSION AND CONCLUSION

Figure 8.2: One root cause resulting in many noti�cations

desired outcome but such �ne-grained control eludes them with the current toolset. With

a su�cient sample of event log messages (e.g. up to one year's worth), and rule tuning,

any given `importance curve' is likely achievable.

One point requiring further work would be whether or not duplicated events should be

included in any consideration of an importance curve. This author's initial response was

that duplicated events should not be included. But what of the duplicated events which

share a root cause? For example, it is increasing common for many servers in a datacentre

to rely entire on a centralised Storage Area Network (SAN) for disk space, rather than

having locally-attached disks in each server's chassis. If the SAN were to fail, or merely

respond somewhat slowly to servers' requests for data, a �hailstorm� of event log messages

may result from many machines due to the one root cause, as portrayed in Figure 8.2.

Reliably and automatically eliminating such duplicated messages is a hard problem when

each server vendor or operating system revision may issue distinct and non-comparable

messages about the event. Given these di�cult circumstances, is it correct to delete

only the duplicated messages caused by overlapping SIC rules, and not others, when

considering a plotted line representing importance? To put this question in other words,

should an importance curve portray or suppress the noti�cations which are caused by

the use of multiple communication/noti�cation methods? This would be an interesting

topic for future research. In any case, duplication of noti�cation is left as a decision

for each systems administrator via simple changes to the pseudo-code rules; they could

8.5. REALISING THE ALTERNATIVE 141

take advantage of the �best-match rule� principle with break, else-if, or switch-case

clauses, for example.

The nature of the three-dimensional SIC metric appears to justify itself when focussing on

the right-hand half of Figure 8.1. When it comes to selecting a method of communication

(i.e. paging, e-mail over di�erent timeframes, etc) in addition to whether or not a message

is important in and of itself, the `severity' and `certainty' dimensions can be considered

in the decision. Thus, server B's message regarding a safe and normal MySQL database

shutdown being completed (rated S2, I4, C3) can be selected for immediate e-mailing

despite server B not being particularly important. Moreover, the preceding message about

beginning the database shutdown (rated S2, I1, C6) is never selected for noti�cation even

though it is a �worse� message - simply because the stanza of rules considers the certainty

of the message content - with the result of the systems administrator not being needlessly

distracted by information about server B which is highly uncertain. This scheme almost

permits us a degree of `atomic operation' when it comes to event log messages: systems

that are relatively unimportant can only send more urgent noti�cations when system state

has been established with greater certainty, i.e. after a potentially long and involved

operation such as a database shutdown has concluded.

Similarly, the very-certain but low impact messages (rated S4, I6, C2) from server B

about �SQUAT failed...� are included in a monthly e-mail so these errors are not entirely

discarded. SQUAT is an indexing system for the Cyrus IMAP e-mail server software

which can improve performance but is by no means necessary for a functioning system.

Server C also contributes one message (rated S3, I6, C2) to the noti�cations: a �404 not

found� web server error due to a missing image �le. Such an error is highly certain but

is an example of an event which alone has minimal impact whereas many (i.e. thousands

per day) of these errors may indicate a con�guration error or denial-of-service attack,

or in the case of tens or hundreds, perhaps a search-engine web spider such as Google

or Bing trawling for common �les like robots.txt. Messages similar in nature to this

�404�, from system components that are open to malicious attack, may be very certain in

relation to each individual message and only gain importance when their rate increases.

`Leaky buckets' or graph analysis could be applied to these quite-severe, minimal-impact,

very-certain messages; but this is another topic for future study.

Some readers may query the rate of `false negatives' which were not selected for noti�cation

by the stanza of rules. One of these might be server B's message about a Kerberos

authentication failure; the second �[d]ecrypt integrity check failed� one in particular. By

itself this message does not indicate any system compromise whatsoever and there may

be many hundreds of them daily on any given Kerberos server in a large organisation, all

legitimate and due to mistakes when typing passwords. In that sense it is not an error

142 CHAPTER 8. DISCUSSION AND CONCLUSION

- no permanent and deterministic failure can be identi�ed, unlike the �404� error above

which will always fail when that (likely valid) HTTP request is made. Kerberos errors

are extremely likely to be caused by human factors and therefore highly variable in rate,

i.e. depending on which individuals are using the system; the �404� is extremely likely to

have an automated cause in an HTML page which contains the broken link, or another

automated system probing/trawling the web server.

Given these varied scopes, it would be bene�cial if the Kerberos server could scale its

own message metadata based on event rate - a form of internal and highly-speci�c `leaky

bucket', perhaps. If su�cient research had been performed, the Kerberos server could even

incorporate a con�guration parameter for the number of people in the organisation and

use established statistical data to anticipate a �normal� number of failed authentication

attempts within a certain time period: operation outside these bounds would cause the

SIC metric to ramp up the `impact' and `certainty' dimensions, resulting in steadily-more-

urgent noti�cations as the situation (such as a password dictionary attack) became more

clear.

8.6 Contributions

Here, the objectives presented at the beginning of this thesis will be reviewed and delin-

eated.

1. Determining the criteria used by systems administrators when assessing

system state, including their awareness of the challenges they face with

their current automated-�ltering toolsets: Beginning with the concept of a

mental understanding informed by intuition, this was re�ned with the help of survey

evidence into a set of four motivations: `service availability', `system integrity', `re-

source consumption levels', and `intent of attack or compromise'. They may not be

a de�nitive list of categories under which all awareness factors can be categorised,

but represent a substantial improvement in this area. Evidence was also gathered

regarding the uptake of log-�ltering technology. Both extensive reasoning and anal-

ysis were presented as rationale for introducing architectural modi�cations to ease

di�culties created by the present pace of change.

2. Distilling the impediments for automated �ltering due to communication

di�culties and context loss: Shannon and Weaver's theory of communication

was applied in the context of event log messaging; it exposed latent issues in the

communications process between the developer of a program deployed on computing

8.6. CONTRIBUTIONS 143

systems, and the systems administrators responsible for said systems. Semiotic

principles were also examined for their contribution to a domain which has seen little,

if any, academic consideration of such fundamentals - and helped to strictly de�ne

both the modes and methods of communication we currently use, and the nature of

the shortcomings. Parallels were identi�ed in other disciplines, and their responses

considered as avenues for future improvement in log messaging, in particular; the

Glasgow Coma Scale, stakeholder salience theory, military communications, and

industrial monitoring.

3. Based on the impediments identi�ed above, designing representative

metadata that can survive a di�cult communications process and the

loss of surrounding context: Drawing primarily on two of the established ap-

proaches mentioned immediately above (the GCS and stakeholder salience), a three-

dimensional metric was proposed: �Severity, Impact, Certainty� (SIC) with each

dimension indicated on a separate scale from �0� - meaning the most severe, most

profound impact, or least level of certainty - to �7�, meaning the least severe, smallest

impact, or highest level of certainty. The GCS provided the template for this metric,

given that the GCS was developed for medical triage and prognosis communication

purposes in an environment where quick and unambiguous communication is criti-

cal. Stakeholder salience, originally meant for identifying the highest priorities for

managers in businesses to allocate their time to, was morphed into a systems form,

while retaining its useful notions of multiple scopes. Knowledge of each di�erent

scope has been utilised to replace the varying dimensional size inherent to the GCS

(where each of the three dimensions has a di�erent upper bound).

4. Including real-world factors that in�uence decision-making about sys-

tems and services: A simple recognition of di�ering requirements among individ-

uals and organisations was developed further using semiotics, speci�cally Stamper's

representational triangle, and can be substantiated with evidence from the survey in

Chapter 7. The representational triangle takes information from the human/social

level (i.e. roles and importance), represents it using numeric weights, and applies

it to the real-world-objects that we use as computing systems (i.e. programs/dae-

mons, servers). The human notion of `the bigger picture' surrounding computing

systems, i.e. their context, is thus represented to a certain degree and used to trans-

form the logging output. This is, as far as this author can establish, the �rst time

that a feedback or tuning mechanism has been included in an event-logging system

architecture.

5. Integrating all the steps above into a deterministic �ltering alternative

144 CHAPTER 8. DISCUSSION AND CONCLUSION

that o�ers potential improvements compared to existing approaches: This

item refers speci�cally to the software improvement goals listed in Section 1.4 on

page 27.

(a) Reduced duplication of e�ort.

Achieved. The existing approaches require each site or systems administrator to

customise a substantial list (over 1000 items by default) of regular expressions:

the burden of interpretation and action is largely on the end-user, rather than

the developer. Shifting a very small proportion of this burden back to the

developer, through the creation of simple numeric pre�xes for each message,

removes a much greater proportion of the workload from the collective user

base (i.e. systems administrators) by eliminating much or all of the duplicated

interpretation, and additionally distilling the method of action into a simple

conditional statement.

(b) Deterministic and reproducible output.

Achieved. An architecture based on numeric thresholds and a simple scaling

function will produce identical output given identical input. The same cannot

be said for statistical approaches such as data mining or neural networks. The

architecture presented here evalutes every line separately, leaving the higher-

level relationship analysis either to a human or a downstream system, whereas

data mining, neural networks, and the like attempt to employ poorly- or un-

directed relationship analysis at the �rst stage and are therefore burdened by

the message-interpretation problem.

(c) Minimised maintenance requirement in normal operation.

Likely achieved, but this remains to be proven. Systems based on regular ex-

pressions require maintenance upon many of the changes that are necessitated

by running a computing environment of any substance (security updates or

patches, for example). Until such maintenance is carried out, any altered mes-

sages are likely to be tagged as possible attacks. Statistical algorithms require

time for new events to cross a threshold of experience and/or statistical sig-

ni�cance as well as a constant time investment in training to obtain optimal

e�ectiveness. Neural networks combined with trouble-ticket databases (as in

Wallin et al. [10]) are an attempt to re-purpose existing data as a training set,

but inevitably hit problems due to mismatches in data-set purpose with the

result of a �correct� output rate of only 50%.

In comparison with `the competition' above, the SIC architecture has a minis-

cule amount of con�guration to deal with: only the stanza of rules and a single

8.6. CONTRIBUTIONS 145

weighting value for each contributing component such as a daemon or server.

Interpretation metadata in a machine-readable form frees an event-log-message

�lter to simply �lter - resulting in a compact and maintainable stanza of rules

for laying out personal or organisational thresholds. The SIC architecture has

yet to be deployed in a large-scale environment, though, so cannot be regarded

as proven.

(d) Customisable policies that manipulate the output according to personal/organ-

isational preferences and support multiple modes of communication determined

by an event's real-world priority.

Achieved. The stanza of rules is a mechanism for enacting such policies. Its

capabilities are limited only by those of the language used to code it, e.g. Perl

or Python, and the modes of communication which can be scripted. Service

Level Agreement (SLA) policies could be enacted as graph tolerances around

an established known-good history, such as �operation outside a 5% tolerance

shall be considered to be in fault�, if graph analysis techniques were applied

to the three dimensions of the SIC metric. At perhaps the most basic level,

means and medians for each dimension could be tracked within windows of one

hour, one day, one week, one month, or any other given timeframe, to detect

abnormal activity.

(e) Improved communication, with greatly reduced ambiguity, from programmer/pro-

gram designer to end-user/systems administrator.

Likely achieved. While the SIC metric was designed with input from literature

on triage, salience identi�cation and priority management, to deal with the

communication de�cit eluciated with the help of Shannon, Weaver, and semi-

otics in general, it has not been formally considered from a psychological point

of view. SIC attempts to encode the contextual background knowledge of the

programmer/program designer so that a deeper context can be included with

each message and in a form which survives the �ltering process. It has been

largely supported by the results of a small survey, but this is not a rigorous

examination.

What is clear is that SIC does provide a machine-readable piece of metadata

which can be assessed without the need for background research into the mean-

ing of the message. A systems administrator can therefore save time by �ltering

out messages with trivial content. The unambiguous nature of numeric scales

allows for more e�ective communication across cultures and languages, reduc-

ing or eliminating the reading of source code (the action of which is itself a

reversion to a standardised and less-ambiguous form of communication) and

146 CHAPTER 8. DISCUSSION AND CONCLUSION

other forms of �second-guessing�.

8.7 Future work

The research and premises set out in this thesis lead directly and indirectly to some

interesting avenues for future work.

� Deploying the SIC metric in a large-scale trial. For example: the writing

of patches applied to source code to create SIC-enabled daemons which are then

deployed at an Internet Service Provider. A signi�cant trial would provide invaluable

data with which to test the concept of the `importance curve', as well as elucidating

a possible distribution that server and daemon weights conform to.

� Further analysis of SIC's dimensions, particularly validity testing against es-

tablished psychological/cognitive guidelines. It should be remembered that the di-

mensions are not currently intended to be response scales suitable for gathering data

expected to conform to a standard distribution; but rather they should represent, as

far as is possible, a linear progression from endpoint to endpoint. From a numeric

viewpoint this is of course trivial. The situation becomes more challenging, however,

once one seeks to enrich the scale with sets of example events for guiding program

developers in assigning their seed values.

� Optimisation of rule stanzas: is there a valid default setting? Following

on from a large-scale trial, an interesting research topic would be the evaluation of

a variety of `importance curves' produced by their associated rule stanzas. That is,

which curve represents the best overall starting point, or default setting, for a SIC-

enabled logging system? Or is the curve too closely associated with an individual's

personal preference to be separately discerned or indeed generalised across systems

administrators? Optimisation should also consider the role of `leaky buckets', du-

plicated messages (whether from an identical root cause or rule overlap) and other

issues pertinant to dealing with a variety of systems issues.

� Investigating the e�ectiveness of a straight-line scaling function. As shown

in Section 6.2 on page 100, the proposed scaling function (for applying the assigned

weights to the `impact' dimension) achieves an entirely linear result, in the name of

simplicity. It remains to be seen if this is actually the best outcome: there may well

be scenarios where a logarithmic result is preferable, for example. Certain system or

daemon roles may be best served by particular scaling functions - this is unknown

at the present moment.

8.8. PUBLICATIONS 147

� A deeper analysis and cross-correlation of the survey results. This author

does not have su�cient experience with survey analysis to have produced an `exhaus-

tively interpreted' set of results. There may be underlying nuances and correlations

which have not been identi�ed.

� Evaluation of SIC beside academic alternatives such as data mining al-

gorithms, on the same data set. With a large sample of SIC-enabled data, the

usefulness of the metric to other academic approaches could be evaluated. Data

mining or neural networks may indeed be able to produce improved �ltering results

when SIC metadata is present; having a common source data set would allow direct

comparisons to be drawn.

8.8 Publications

The research conducted for this thesis was the basis for one publication:

� Radford, P., Linton, A., Welch, I. Accepted for publication. Event log messages as

a human interface. Proc. OZCHI Brisbane 2010.

148 CHAPTER 8. DISCUSSION AND CONCLUSION

Chapter 9

Appendix A: Logcheck README

The following README �le is located at:

�/usr/share/doc/logcheck-database/README.logcheck-database.gz�

following installation of the logcheck-database package (version 1.2.69) on Debian Linux

v5.0 [8]. The package is released under the terms of the General Public License (GPL),

version 2. As with all software, this information is subject to change.

SYNOPSIS

Logcheck-database provides the egrep patterns required by the package "logcheck"; they are

used to �lter recent log messages (collected using "logtail") into a mailed news summary.

SETS OF RULES

There are three layers of sets of �ltering rules, all of which are normal egrep pattern-matches,

applied in turn.

1. the "SECURITY ALERTS" layer, designed to detect the traces of active intrusion at-

tempts. Patterns raising the alarm go in "/etc/logcheck/cracking.d"; any event that

matches one of these patterns turns the report into an urgent "Security Alerts" report,

with the relevant event moved to a special section. The cracking.d standard keywords �le

is seeded with known symptoms of hostile activity (see logcheck's README.keywords

�le). Patterns cancelling such maximum-priority alarms are not used in the default

logcheck con�guration, but if the local administrator enables this layer of �ltering in

logcheck.conf, then the rules go in the directory "/etc/logcheck/cracking.ignore.d".

149

150 CHAPTER 9. APPENDIX A: LOGCHECK README

Matches with cracking.ignore rules will then reclassify the alert as a false alarm (compare

violations.ignore below). Note that this means they are totally ignored - log messages

handled at one layer are not carried over to lower layers.

2. the "SECURITY EVENTS" layer, designed to detect less critical events still considered

worthy of special attention. Patterns raising the alarm go in "/etc/logcheck/viola-

tions.d"; matches with these result in a "Security Events" alert, with the relevant event

moved to a special section. Patterns cancelling such alarms go in the standard direc-

tory "/etc/logcheck/violations.ignore.d"; apparent "Security Events" that match with

violations.ignore patterns are discarded as false alarms.

3. the "SYSTEM EVENTS" layer, handling leftover log messages. This layer doesn't have

an equivalent to the alarm-raising cracking.d and violations.d; instead _all_ remaining

lines from the log�les are considered for inclusion in the main "System Events" section.

Patterns in the three "/etc/logcheck/ignore.d.*" directories again function to overrule

alerts; the log messages that match them are excluded from the report as trivial. The

speci�c directories consulted depend on the prevailing logcheck "REPORTLEVEL" (for

details see the corresponding README for logcheck). The bare minimum is the set of

�lters in ignore.d.paranoid. When _no_ logged events make it through the �lters no

report is mailed.

FILES WITHIN EACH DIRECTORY

Each of the rules-directories can contain pattern �les of the following kinds:

./<packagename> The rule �lename must only contain characters compatible with run-

parts(8). As of this writing, this includes alphanumeric characters, underscore, and hyphen.

Contains �lters relevant to only one Debian package - for example if "fooserver" logs sus-

picious events like this: "$DATE $HOSTNAME fooserver[$PID]: $USER is up to no good"

then a line in "/etc/logcheck/violations.d/fooserver" with an appropriate pattern will pro-

mote it from a mere "System Event" to a full "Security Event" in a subsection of the mailing

headed "fooserver". Or then again if that kind of log message is more trivial than it looks

(maybe "foo" is a networked game of spy-and-counterspy) then a line in "/etc/logcheck-

/ignore.d.server/fooserver" will turn it into a nonevent for all but the most assiduous of

administrators. Sometimes a package will have not only special alarm calls which _do_

need to be "Security Events" triggers but also exceptional variants which _don't_ - maybe

it logs either �$DATE $HOSTNAME fooserver[$PID]: $USER barred" or �$DATE $HOST-

NAME fooserver[$PID]: none barred". In this situation the alarm can be overruled by a

151

violations.ignore rule�le named "fooserver" which �lters "none barred". This will _not_ af-

fect other "Security Events" featuring the words "none barred" (that might allow crackers

to use those words to cover attacks on ssh). Instead, any <packagename> ignore-�les only

a�ect the log messages that would have been in that package-speci�c report section. Apart

from anything else this limitation reduces the number of rules that need to be processed.

./logcheck or ./logcheck-<packagename> Standard "generic" rules go in each directory's

"./logcheck" �le; thus for instance any log message at all matching "ATTACK" (listed in

"/etc/logcheck/cracking.d/logcheck") _always_ triggers a "Security Alert", unless you de-

liberately tamper with "cracking.ignore.d" rules. ** Debian Note: we emptied out ./logcheck

and merged all ./logcheck-<packagename> �les into the ignore.d.*/<packagename> �les.

This was done because the standard rules in ./logcheck matched too many false positives (see

e.g. #449028) and resulted in a lot of rule duplication (#254542).

Remember that package-speci�c "ignore" �lters will _not_ override non-package-speci�c

"�agging" patterns! Thus for instance if "fooserver" outputs syslog messages like this:

"$DATE $HOSTNAME fooserver[$PID]: 3 attempts 0 rejected" then the standard keyword

"reject" listed in the generic "/etc/logcheck/violations.d/logcheck" �le will trigger frequent

"Security Events" reports. Putting a �ltering pattern in

"/etc/logcheck/violations.ignore.d/fooserver"

won't help here! The solution is to use a �le named in the specially-privileged ./logcheck-

<packagename> format:

"/etc/logcheck/violations.ignore.d/logcheck-fooserver".

This can contain patterns provided by that particular package which nonetheless need to take

precedence over the generic rules.

./local or ./local-<packagename> Sysadmins can use the "local-*" �lenames to create their

own additions to the "logcheck-*" pattern lists. If you have "ippl" logging network connections

verbosely into syslog then you can put custom "Security Events" keywords in

"/etc/logcheck/violations.d/local-ippl" and exceptions in

"/etc/logcheck/violations.ignore.d/local-ippl".

WRITING RULES

Be careful when editing local rule �les; logcheck will preprocess them to eliminate dangerous

blanks (since "egrep � syslog" matches every line) and comment lines, but some attention is

needed when composing custom patterns to avoid excessively generous �ltering. The objective

152 CHAPTER 9. APPENDIX A: LOGCHECK README

in logcheck rules is to match precisely the target log messages and no more, using all the

resources of Extended Regular Expressions. If you're sick of reading log messages like this:

Apr 6 19:30:24 oempc wwwo�ed[11763]: WWWOFFLE Online.

Apr 6 19:31:54 oempc wwwo�ed[11763]: WWWOFFLE O�ine.

...then the local ignore pattern you need is something like this:

^\w{3} [:0-9]{11} oempc wwwo�ed\[[0-9]+\]: WWWOFFLE (On|O�)line\.$

The characters ".?*+[](){}^$|\" are "special" in extended-regexps, so they need to be escaped

if intended literally (like the �nal stop in the example above). Be especially wary of unbalanced

brackets, which can choke egrep. Local administrators can a�ord to be more speci�c than

the package maintainers who provide �lters for "fooserver" etc. You can take the locale for

granted, saying "[a-zA-Z]" where package maintainers should be using "[[:alpha:]]"; and you

can write out things like hostnames explicitly - hence "oempc" above, rather than the pattern

"[._[:alnum:]-]+".

TESTING RULES

To test new rules, you can grep your log �le, and remove trailing space with something like

this:

sed -e 's/[[:space:]]*$//' /var/log/syslog | egrep \ '^\w{3} [:0-9]{11} oempc wwwo�ed\[[0-

9]+\]: WWWOFFLE (On|O�)line\.$'

If the log line is displayed, then your regex works. Pass all rules �les through "sort -u"

to simplify maintenance, then ensure they have a �nal end-of-line carriage return so that

they "cat" nicely. Since System Events aren't subdivided by package, it makes no di�erence

whether ignore.d.*/local rules are split up into "local-x", "local-y" and "local-z" or merged

into one "local" �le; use whatever's convenient. Another safety-net is provided by the fact

that the process that collates all the applicable rules uses "run-parts", the standard Debian

utility also used for iterating through "/etc/cron.d", "/etc/ppp/ip-up.d" etcetera. It therefore

automatically ignores �les with names such as "fooserver.disabled" or "local~".

SUBMITTING RULES

If there are messages which are not ignored by logcheck that should be, �le a bug against the

package logcheck-database in the Debian Bug Tracking System (BTS). If you're new to the re-

porting bugs using the Debian BTS, you can learn more at: http://www.debian.org/Bugs/Reporting

153

Unfortunately, we don't have the time to add and update rules for everything, therefore the

following exceptions apply:

� Debug messages

� Messages produced by software not included in Debian

� Temporary messages which are due to a bug in the package

� Messages related to daemon startups and shutdowns

Please do not �le bugs related to these messages.

154 CHAPTER 9. APPENDIX A: LOGCHECK README

Chapter 10

Appendix B: Outcome mockup

The messages in this appendix are genuine and have been modi�ed to contain pre�xes

with �S, I, C metric� values. Full-size versions of the per-server graphs on page 105 are also

included here. The tuples which were graphed were �rst sorted by their `impact values',

then each impact bracket was sorted by their `severity' values, then each impact+severity

bracket was sorted by their `certainty' values. This is e�ectively a �zooming-in� by scope,

where `impact' is the largest scope and `certainty' is the smallest scope.

155

156 CHAPTER 10. APPENDIX B: OUTCOME MOCKUP

Listing 10.1 Server A: mocked-up event log messages

Jan 30 06:56:45 serverA postfix/smtpd [31944][S6 ,I4,C3]: connect from unknown

[27.57.212.209]

Jan 30 06:56:45 serverA postfix/smtpd [31944][S3 ,I5,C5]: warning: 27.57.212.209: hostname

Static -209.212.57.27. airteldataservices.com verification failed: Name or service not

known

Jan 30 06:56:50 serverA postfix/smtpd [31944][S6 ,I4,C3]: connect from unknown

[190.51.227.124]

Jan 30 06:56:50 serverA postfix/smtpd [31944][S6 ,I4,C3]: disconnect from unknown

[27.57.212.209]

Jan 30 06:56:50 serverA postfix/smtpd [31944][S2 ,I5,C6]: lost connection after CONNECT

from unknown [27.57.212.209]

Jan 30 06:56:50 serverA postfix/smtpd [31944][S3 ,I5,C5]: warning: 190.51.227.124: hostname

190 -51 -227 -124. speedy.com.ar verification failed: Name or service not known

Jan 30 06:56:54 serverA postfix/smtpd [31944][S2 ,I5,C4]: NOQUEUE: reject: RCPT from

unknown [190.51.227.124]: 554 5.7.1 Service unavailable; Client host [190.51. 227.124]

blocked using bl.spamcop.net; Blocked - see http ://www.spamcop.net/bl.shtml

?190.51.227.124; from=<hiblancheg@yowzahost.com > to=<account@example.com > proto=ESMTP

helo=<hm5slz4q.yi>

Jan 30 06:56:56 serverA postfix/smtpd [31944][S6 ,I4,C3]: disconnect from unknown

[190.51.227.124]

Jan 30 06:56:56 serverA postfix/smtpd [31944][S2 ,I5,C6]: lost connection after DATA (0

bytes) from unknown [190.51.227.124]

Jan 30 07:45:58 serverA ntpd [2304][S5,I7,C2]: kernel time sync status change 0001

Jan 30 08:26:02 serverA postfix/smtpd [2539][S7 ,I4,C3]: connect from bulkmail1.freecycle.

org [94.102.157.234]

Jan 30 08:26:04 serverA postfix/cleanup [2543][S7,I5,C3]: 0617 DB6A5: message -id=<E1PjGQo

-0001Er-G6@bulkmail1.freecycle.org >

Jan 30 08:26:04 serverA postfix/qmgr [28214][S7 ,I5,C3]: 0617 DB6A5: from=<post

-12594045 -8691005 @bounces.freecycle.org >, size =2626, nrcpt =1 (queue active)

Jan 30 08:26:04 serverA postfix/qmgr [28214][S7 ,I6,C3]: 0617 DB6A5: removed

Jan 30 08:26:04 serverA postfix/smtpd [2539][S7 ,I6,C1]: 0617 DB6A5: client=bulkmail1.

freecycle.org [94.102.157.234]

Jan 30 08:26:05 serverA postfix/smtpd [2539][S7 ,I4,C3]: disconnect from bulkmail1.

freecycle.org [94.102.157.234]

Jan 30 08:29:25 serverA postfix/anvil [2541][S7 ,I7,C1]: statistics: max cache size 1 at

Jan 30 08:26:02

Jan 30 08:29:25 serverA postfix/anvil [2541][S7 ,I7,C1]: statistics: max connection count 1

for (smtp :94.102.157.234) at Jan 30 08:26:02

Jan 30 08:29:25 serverA postfix/anvil [2541][S7 ,I5,C1]: statistics: max connection rate

1/60s for (smtp :94.102.157.234) at Jan 30 08:26:02

Jan 30 08:45:01 serverA CRON [3057][S7,I7,C1]: pam_unix(cron:session): session closed for

user root

Jan 30 08:45:01 serverA CRON [3057][S7,I7,C2]: pam_unix(cron:session): session opened for

user root by (uid=0)

Jan 30 08:45:01 serverA CRON [3059][S7,I7,C1]: pam_unix(cron:session): session closed for

user root

Jan 30 08:45:01 serverA CRON [3059][S7,I7,C2]: pam_unix(cron:session): session opened for

user root by (uid=0)

Jan 30 08:47:21 serverA sensord[S7,I6,C1]: +12V: +11.94 V (min = +11.38 V, max = +12.57

V)

Jan 30 08:47:21 serverA sensord[S1,I2,C3]: +3.3V: +3.12 V (min = +3.13 V, max = +3.45 V

)

Jan 30 08:47:21 serverA sensord[S7,I6,C1]: CPU Temp: 34.3 C (limit = 65.3 C, hysteresis

= 60.2 C)

Jan 30 14:57:30 serverA squid [3123][S2,I6 ,C2]: Squid Parent: child process 3125 exited

with status 0

Jan 30 14:59:37 serverA squid [3118][S6,I6 ,C1]: Squid Parent: child process 3120 started

157

Listing 10.2 Server B: mocked-up event log messages

Feb 1 16:04:51 serverB krb5kdc [2656][S7 ,I6,C2]: AS_REQ (3 etypes {16 1 3}) 172.16.1.100:

NEEDED_PREAUTH: example@EXAMPLE.COM for krbtgt/EXAMPLE.COM@EXAMPLE.COM , Additional

pre -authentication required

Feb 1 16:04:51 serverB krb5kdc [2656][S4 ,I4,C5]: AS_REQ (3 etypes {16 1 3}) 172.16.1.100:

PREAUTH_FAILED: example@EXAMPLE.COM for krbtgt/EXAMPLE.COM@EXAMPLE.COM , Decrypt

integrity check failed

Feb 1 16:04:51 serverB krb5kdc [2656][S4 ,I4,C5]: preauth (timestamp) verify failure:

Decrypt integrity check failed

Feb 1 17:53:35 serverB spamd [8148][S7,I7,C1]: prefork: child states: II

Feb 1 17:53:35 serverB spamd [8206][S7,I6,C1]: spamd: clean message (-3.5/5.0) for nobody

:65534 in 1.7 seconds , 8715 bytes.

Feb 1 17:53:35 serverB spamd [8206][S7,I5,C3]: spamd: result: . -3 - AWL ,BAYES_00 ,

HTML_IMAGE_RATIO_08 ,HTML_MESSAGE ,MIME_HTML_ONLY ,MIME_QP_LONG_LINE ,RCVD_IN_DNS WL_MED

scantime =1.7, size =8715, user=nobody ,uid =65534 , required_score =5.0, rhost=localhost ,raddr

=127.0.0.1 , rport =56269 , mid=<31 f101$a0vuv3@tmmta2.akl.trad eme.local >,bayes =0.000000 ,

autolearn=ham

Feb 1 18:15:16 serverB cyrus/imap [28222][S7,I7,C1]: executed

Feb 1 18:15:16 serverB cyrus/imapd [28222][S7 ,I5,C3]: accepted connection

Feb 1 18:15:16 serverB cyrus/master [28222][S7 ,I7,C1]: about to exec /usr/lib/cyrus/bin/

imapd

Feb 1 18:15:18 serverB cyrus/imapd [28222][S4 ,I6,C5]: TLS engine: No CA file specified.

Client side certs may not work

Feb 1 18:15:18 serverB cyrus/imapd [28222][S6 ,I6,C3]: starttls: TLSv1 with cipher AES256 -

SHA (256/256 bits new) no authentication

Feb 1 18:15:19 serverB cyrus/imapd [28222][S7 ,I5,C3]: login: station.example.com

[172.16.2.3] example plain+TLS User logged in

Feb 1 18:15:20 serverB cyrus/imapd [28222][S7 ,I7,C1]: open: user example opened INBOX

Feb 1 18:15:20 serverB cyrus/imapd [28222][S7 ,I7,C1]: seen_db: user example opened /var/

lib/cyrus/user/e/example.seen

Feb 1 18:25:13 serverB cyrus/imapd [28472][S4 ,I6,C2]: SQUAT failed

Feb 1 18:25:13 serverB cyrus/imapd [28472][S4 ,I6,C2]: SQUAT failed to open index file

Feb 1 19:10:15 serverB krb5kdc [2656][S7 ,I6,C2]: AS_REQ (3 etypes {16 1 3}) 172.16.1.100:

ISSUE: authtime 1296540615 , etypes {rep=16 tkt=16 ses=16}, example@EXAMPLE.COM for

krbtgt/EXAMPLE.COM@EXAMPLE.COM

Feb 1 19:10:15 serverB krb5kdc [2656][S6 ,I6,C2]: AS_REQ (3 etypes {16 1 3}) 172.16.1.100:

NEEDED_PREAUTH: example@EXAMPLE.COM for krbtgt/EXAMPLE.COM@EXAMPLE.COM , Additional

pre -authentication required

Feb 1 19:10:15 serverB krb5kdc [2656][S7 ,I6,C2]: TGS_REQ (3 etypes {16 1 3})

172.16.1.100: ISSUE: authtime 1296540615 , etypes {rep =16 tkt=16 ses=16},

example@EXAMPLE.COM for host/serverB.example.com@EXAMPLE.COM

Feb 1 19:25:19 serverB cyrus/ctl_cyrusdb [31955][S7 ,I6,C1]: archiving database file: /var

/lib/cyrus/mailboxes.db

Feb 1 19:25:19 serverB cyrus/ctl_cyrusdb [31955][S7 ,I6,C1]: archiving log file: /var/lib/

cyrus/db/log .0000000011

Feb 1 19:25:19 serverB cyrus/ctl_cyrusdb [31955][S7 ,I6,C1]: checkpointing cyrus databases

Feb 1 19:25:19 serverB cyrus/ctl_cyrusdb [31955][S7 ,I7,C1]: done checkpointing cyrus

databases

Feb 1 19:25:19 serverB cyrus/master [31955][S7 ,I6,C1]: about to exec /usr/sbin/

ctl_cyrusdb

Feb 1 19:25:19 serverB cyrus/master [4799][S7 ,I7,C1]: process 31955 exited , status 0

Feb 1 20:12:15 serverB ntpd [2933][S5,I7 ,C2]: kernel time sync status change 0001

Feb 2 13:30:51 serverB mysqld [2754][S2,I1,C6]: Feb 2 13:30:51 serverB mysqld [2754]:

110202 13:30:51 InnoDB: Starting shutdown ...

Feb 2 13:30:51 serverB mysqld [2754][S2,I4,C3]: 110202 13:30:51 [Note] /usr/sbin/mysqld:

Normal shutdown

158 CHAPTER 10. APPENDIX B: OUTCOME MOCKUP

Listing 10.3 Server C: mocked-up event log messages

Feb 6 00:57:30 serverC kernel: [1069432.548709] md[S7 ,I5,C2]: data -check of RAID array

md5

Feb 6 00:57:30 serverC kernel: [1069432.548715] md[S7 ,I7,C1]: minimum _guaranteed_

speed: 1000 KB/sec/disk.

Feb 6 00:57:30 serverC kernel: [1069432.548724] md[S7 ,I6,C1]: using maximum available

idle IO bandwidth (but not more than 200000 KB/sec) for data -check.

Feb 6 00:57:30 serverC kernel: [1069432.548735] md[S7 ,I7,C1]: using 128k window , over a

total of 979840 blocks.

Feb 6 00:57:30 serverC kernel: [1069432.551279] md[S7 ,I7,C1]: delaying data -check of md6

until md5 has finished (they share one or more physical units)

Feb 6 00:57:30 serverC kernel: [1069433.022527][S7,I7,C1] --- wd:2 rd:2

Feb 6 00:57:30 serverC kernel: [1069433.022527][S7,I7,C1] disk 0, wo:0, o:1, dev:sdb2

Feb 6 00:57:30 serverC kernel: [1069433.022527][S7,I7,C1] disk 1, wo:0, o:1, dev:sda2

Feb 6 00:57:30 serverC kernel: [1069433.022527][S7,I7,C1] RAID1 conf printout:

Feb 6 00:58:00 serverC kernel: [1069462.353975] md[S7 ,I5,C2]: md5: data -check done

Feb 6 12:28:53 serverC apache2 [8472][S4 ,I5,C4]: [06/ Feb /2011 12:28:52 20583] [error] SSL

handshake failed: HTTP spoken on HTTPS port; trying to send HTML error page (OpenSSL

library error follows)

Feb 6 12:28:53 serverC apache2 [8472][S4 ,I5,C4]: [06/ Feb /2011 12:28:52 20583] [error]

OpenSSL: error :1407609C:SSL routines:SSL23_GET_CLIENT_HELLO:http request [Hint:

speaking HTTP to HTTPS port !?]

Feb 6 13:50:57 serverC kernel: [511040.208020] hub 1 -1:1.0[S7,I7 ,C3]: activate --> -19

Feb 6 13:50:57 serverC kernel: [511040.208092] usb 1-1[S7,I7,C3]: USB disconnect ,

address 3

Feb 6 13:50:58 serverC kernel: [511040.320035] usb 1-1[S7,I7,C3]: new full speed USB

device using uhci_hcd and address 5

Feb 6 13:50:58 serverC kernel: [511040.440024] usb 1-1[S3,I4,C6]: device descriptor read

/64, error -71

Feb 6 13:50:58 serverC kernel: [511040.664035] usb 1-1[S3,I4,C6]: device descriptor read

/64, error -71

Feb 6 13:50:59 serverC kernel: [511041.848038] usb 1-1[S3,I4,C6]: device not accepting

address 5, error -71

Feb 6 13:51:00 serverC kernel: [511042.368098] hub 1 -0:1.0[S3,I4 ,C6]: unable to

enumerate USB device on port 1

Feb 7 11:19:20 serverC apache2 [16971][S7,I7,C2]: example -client.net.nz - - [07/ Feb

/2011:11:19:20 +1300] "GET / HTTP /1.1" 200 2784 "-" "Mozilla /5.0 (Macintosh; U; Intel

Mac OS X 10_6_6; en -us) Apple WebKit /533.19.4 (KHTML , like Gecko) Version /5.0.3

Safari /533.19.4"

Feb 7 11:19:20 serverC apache2 [16971][S7,I7,C2]: example -client.net.nz - - [07/ Feb

/2011:11:19:20 +1300] "GET /css/main.css HTTP /1.1" 200 2669 "http :// example.example.

com/" "Mozilla /5.0 (Macintosh; U; Intel Mac OS X 10_6_6; en-us) AppleWebKit /533.19.4

(KHTML , like Gecko) Version /5.0.3 Safari /533.19.4"

Feb 7 11:19:20 serverC apache2 [16971][S7,I7,C2]: example -client.net.nz - - [07/ Feb

/2011:11:19:22 +1300] "GET /images/bg_guests.gif HTTP /1.1" 200 91 "http :// example.

example.com/" "Mozilla /5.0 (Macintosh; U; Intel Mac OS X 10_6_6; en-us) AppleWebKit

/533.19.4 (KHTML , like Gecko) Version /5.0.3 Safari /533.19.4"

Feb 7 11:19:22 serverC apache2 [16971][S7,I7,C2]: example -client.net.nz - - [07/ Feb

/2011:11:19:22 +1300] "GET /images/heading_guests.gif HTTP /1.1" 200 2241 "http ://

example.example.com/" "Mozilla /5.0 (Macintosh; U; Intel Mac OS X 10_6_6; en-us)

AppleWebKit /533.19.4 (KHTML , like Gecko) Version /5.0.3 Safari /533.19.4"

Feb 7 11:19:24 serverC apache2 [16971][S7,I7,C2]: example -client.net.nz - - [07/ Feb

/2011:11:19:23 +1300] "GET /images/bg_guests_bottom.gif HTTP /1.1" 200 475 "http ://

example.example.com/" "Mozilla /5. 0 (Macintosh; U; Intel Mac OS X 10_6_6; en-us)

AppleWebKit /533.19.4 (KHTML , like Gecko) Version /5.0.3 Safari /533.19.4"

Feb 7 11:19:24 serverC apache2 [16971][S3,I6,C2]: example -client.net.nz - - [07/ Feb

/2011:11:19:23 +1300] "GET /images/bg_uplight.jpg HTTP /1.1" 404 216 "http :// example.

example.com/" "Mozilla /5.0 (Macintosh; U; Intel Mac OS X 10_6_6; en-us) AppleWebKit

/533.19.4 (KHTML , like Gecko) Version /5.0.3 Safari /533.19.4"

Feb 7 14:59:27 serverC kernel: [28.704024][S4,I6 ,C5] Clocksource tsc unstable (delta

= -334799556 ns)

Feb 7 15:10:35 serverC kernel: [696.379037][S7,I5 ,C3] XFS mounting filesystem dm -0

Feb 7 15:10:35 serverC kernel: [696.880997][S7,I6 ,C2] Ending clean XFS mount for

filesystem: dm -0

159

�

�

�

�

�

�

�

�

	
��
��

	

�

�

(a) Server A; impact weight �0�

�

�

�

�

�

�

�

�

	
��
��

	

�

�

(b) Server B; impact weight �0.6�

�

�

�

�

�

�

�

�

	
��
��

	

�

�

(c) Server C; impact weight �0.9�

Figure 10.1: Outcome-mockup values sorted by Impact, then Severity, then Certainty

160 CHAPTER 10. APPENDIX B: OUTCOME MOCKUP

Chapter 11

Appendix C: Victoria University of

Wellington Human Ethics Policy

This is an excerpt from Section 4.7 of the VUW HEP [94], under which the survey was

approved without a formal Ethics Committee hearing.

�(a) Research in which the subject's participation is restricted to the completion of a writ-

ten questionnaire in a manner not requiring the disclosure of the subject's identity,

and which meets the criteria for questionnaires in section 4.7(b), may be approved

in writing by the Head of the School...

(b) The questionnaire must:

(i) Be totally anonymous (responses should be returned anonymously and there

should be no coding or other means of identifying respondents from the re-

sponse);

(ii) Not contain questions on sensitive topics (e.g. sexual practices, drug taking,

illegal activities);

(iii) Be designed to meet the research goals set;

(iv) In the case of student projects, be subject to appropriate supervision;

(v) Normally state the purpose of the questionnaire, the use to which the results

will be put, the disposal of the questionnaire forms, and the fact that the

questionnaire is anonymous.�

161

162 CHAPTER 11. APPENDIX C: VUW HUMAN ETHICS POLICY

Chapter 12

Appendix D: Raw survey results

The horizontal axis is �participant/form�, the vertical axis is �response item�. Response

item seven has two caveats: participants who appear to have reversed the rankings (i.e.

used �10� to indicate the most important message) are noted with red cells, while the

presence of optional comments is indicated with yellow cells. These optional comments

were not included for brevity as well as consistency reasons: only two participants �lled

in all the comment spaces for response item seven. Any author comments are in green

cells.

163

164 CHAPTER 12. APPENDIX D: RAW SURVEY RESULTS
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�
� �

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�

�
�
��

��

�
�
�
�
�
�
�
�
��
��

�
��

 !
��

�
��

�
�

�
�
�
"
�
��

"
��

"
�#

 !
��

��

�
$�

�
�
�
�

�
�
�
��

�
�

��
"
��

��
%�
�
��
�
��

�
$�

��
�
��
��

�
�

��
��

��
�

�
�
#

&
�'

�
$(

��
�
)
�
��

�
�
�

��
�
'
��

�
��
�
��
��
�
�

��

Table 12.1: Raw survey results, page 1

165

�
�

�
�

�
�

�
�

	
�

�
�

�
�
��
��

�
�

�

�
�

�
	

	
�

�
�

�
�

�
�

�
	

�
	

�

�

�
�

	
	

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

	
�

�
�

�

�
�

�
�

�
�

�
	

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
5

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

	
�

�
�

�
�

�
�

�
�

�
�

Table 12.2: Raw survey results, page 2

166 CHAPTER 12. APPENDIX D: RAW SURVEY RESULTS

�
�

�
�

�

�
�

�
� �
�

�
� � � �
�

�
�

�

�
�

�
� �
�

�
�

�
�

�
�

�
�

�

�
�

�
� �
�

�
�

�
�

�

�
�

�
�
��

��

�
�
�
�
�
�
�
�
��
��

�
��

&
�'

�
$(

��
�
)
�
��

�
�
�

��
�
'
��

�
��
�
��
��
�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�

 *
�
�+

�
�'

�
�
)
�
�
��

%�
�
,�

,�
$��

'
�"

�
-�

�
+

�
#

Table 12.3: Raw survey results, page 3

167

�
�
��
��

�
�

�
�

�

�
�

�
� �
�

�
�

�
� �
�

�
5 � 	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

	
	

�
�

	
�

	
�

�
�

�
	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

	
�

�
�

�
�

�

�

�
�

	
�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

Table 12.4: Raw survey results, page 4

168 CHAPTER 12. APPENDIX D: RAW SURVEY RESULTS

�
�

�
�

�

�
�

�
� �
�

�
� � � �
�

�
�

�

�
�

�
� �
�

�
�

�
�

�
�

�
�

�

�
�

�
� �
�

�
�

�
�

�

�
�

�
�
��

��

�
�
�
�
�
�
�
�
��
��

�
��

&
�'

�
$(

��
�
)
�
��

�
�
�

��
�
'
��

�
��
�
��
��
�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

.
"
�
$�

�
��

��
��
�
�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

 /
0
�
�
��
�
�

�
#

�

�
�

�
�

�
�

�
�

�

�
�

�

Table 12.5: Raw survey results, page 5

169

�
�
��
��

�
�

�
�

�

�
�

�
� �
�

�
�

�
� �
�

�
5 � 	

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

�
�

.
"
�
$�
�
��
��
��
�
�

�
	

	
�

�

�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�

�

�
�

�
�

�
�

�
�

�

	
�

	
�

�
�

�
�

�

�

	
�

�
�

�

�

�
�

�
�

�
�

�
�

�
	

�

�

�

	
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Table 12.6: Raw survey results, page 6

170 CHAPTER 12. APPENDIX D: RAW SURVEY RESULTS

�
�

�
�

�

�
�

�
� �
�

�
� � � �
�

�
�

�

�
�

�
� �
�

�
�

�
�

�
�

�
�

�

�
�

�
� �
�

�
�

�
�

�

�
�

�
�
��

��

�
�
�
�
�
�
�
�
��
��

�
��

&
�'

�
$(

��
�
)
�
��

�
�
�

��
�
'
��

�
��
�
��
��
�
�

��

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

 �
��
�
+

�
$$-

1.
2

#

�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

 2
�
�

��
�

�
�
0
��
�

��
�
�
�
�

�
�
�
�
�
��

�
��
�
�
�

�
(
�
��

�
��
�
�
'
#

 �
�
)
�
)
�
$�

�

�
�

��
��
�
�
"
�
�3

�
�
0
�
�
��

�

�
,�

��
,�
�
��

�
$�

�
�

�

"
��
�
�
�0

�
$�

�
��

�
�
�
�
�
�
�

��

�
�)

�
�
��

��
0
#

Table 12.7: Raw survey results, page 7

171

�
�
��
��

�
�

�
�

�

�
�

�
� �
�

�
�

�
� �
�

�
5 � 	

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

	
�

�

�

�

	
�

�

�
�

�
�

�
�

�
�

�
	

�
	

�
�

�
	

�

�
	

�
	

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

��
�
�
�
�
�

��
�
'
��
�
6

Table 12.8: Raw survey results, page 8

172 CHAPTER 12. APPENDIX D: RAW SURVEY RESULTS

�
�

�
�

�

�
�

�
� �
�

�
� � � �
�

�
�

�

�
�

�
� �
�

�
�

�
�

�
�

�
�

�

�
�

�
� �
�

�
�

�
�

�

�
�

�
�
��

��

�
�
�
�
�
�
�
�
��
��

�
��

&
�'

�
$(

��
�
)
�
��

�
�
�

��
�
'
��

�
��
�
��
��
�
�

��

�
�

�
�

�
�

�
�

�
	

�

 �

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�

�
�

�
�

 �
�
��
�
%�

��
��

��
�

�
�
%�

�
�
�)

�
�
�
%�

$��
'
�
#

 �
�
�+

�
�'

�
"
��
$�4

�
��
�
�
�

�
$�

��
�
%�

$�
��

�

(
-$
�
�
�
-5
�

��
�
��
�
$�

��
�
#

Table 12.9: Raw survey results, page 9

173

�
�
��
��

�
�

�
�

�

�
�

�
� �
�

�
�

�
� �
�

�
5 � 	

�
�

�
�

�
�

�
�

�
	

�

�

 � � � � 	 � � � �

�
�

�
�

�

�
�

�
�

�
�

Table 12.10: Raw survey results, page 10

174 CHAPTER 12. APPENDIX D: RAW SURVEY RESULTS

Chapter 13

GPL License

This license is included here as a legal requirement, given that GPL-licensed code has

been included in this document.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor,

Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,

but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change

it. By contrast, the GNU General Public License is intended to guarantee your freedom

to share and change free software�to make sure the software is free for all its users. This

General Public License applies to most of the Free Software Foundation's software and

to any other program whose authors commit to using it. (Some other Free Software

Foundation software is covered by the GNU Lesser General Public License instead.) You

can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute copies

of free software (and charge for this service if you wish), that you receive source code or

can get it if you want it, that you can change the software or use pieces of it in new free

programs; and that you know you can do these things.

175

176 CHAPTER 13. GPL LICENSE

To protect your rights, we need to make restrictions that forbid anyone to deny you

these rights or to ask you to surrender the rights. These restrictions translate to certain

responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you

must give the recipients all the rights that you have. You must make sure that they, too,

receive or can get the source code. And you must show them these terms so they know

their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this

license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone un-

derstands that there is no warranty for this free software. If the software is modi�ed by

someone else and passed on, we want its recipients to know that what they have is not

the original, so that any problems introduced by others will not re�ect on the original

authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid

the danger that redistributors of a free program will individually obtain patent licenses,

in e�ect making the program proprietary. To prevent this, we have made it clear that

any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow. TERMS

AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General

Public License. The "Program", below, refers to any such program or work, and a "work

based on the Program" means either the Program or any derivative work under copyright

law: that is to say, a work containing the Program or a portion of it, either verbatim or

with modi�cations and/or translated into another language. (Hereinafter, translation is

included without limitation in the term "modi�cation".) Each licensee is addressed as

"you".

Activities other than copying, distribution and modi�cation are not covered by this Li-

cense; they are outside its scope. The act of running the Program is not restricted, and

the output from the Program is covered only if its contents constitute a work based on

the Program (independent of having been made by running the Program). Whether that

is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you

receive it, in any medium, provided that you conspicuously and appropriately publish on

177

each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty; and give any other

recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your

option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming

a work based on the Program, and copy and distribute such modi�cations or work under

the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modi�ed �les to carry prominent notices stating that you changed

the �les and the date of any change. b) You must cause any work that you distribute

or publish, that in whole or in part contains or is derived from the Program or any part

thereof, to be licensed as a whole at no charge to all third parties under the terms of this

License. c) If the modi�ed program normally reads commands interactively when run,

you must cause it, when started running for such interactive use in the most ordinary

way, to print or display an announcement including an appropriate copyright notice and

a notice that there is no warranty (or else, saying that you provide a warranty) and that

users may redistribute the program under these conditions, and telling the user how to

view a copy of this License. (Exception: if the Program itself is interactive but does not

normally print such an announcement, your work based on the Program is not required

to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections of that

work are not derived from the Program, and can be reasonably considered independent

and separate works in themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you distribute the same

sections as part of a whole which is a work based on the Program, the distribution of the

whole must be on the terms of this License, whose permissions for other licensees extend

to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work

written entirely by you; rather, the intent is to exercise the right to control the distribution

of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program

(or with a work based on the Program) on a volume of a storage or distribution medium

does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in

object code or executable form under the terms of Sections 1 and 2 above provided that

you also do one of the following:

178 CHAPTER 13. GPL LICENSE

a) Accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium customarily

used for software interchange; or, b) Accompany it with a written o�er, valid for at least

three years, to give any third party, for a charge no more than your cost of physically

performing source distribution, a complete machine-readable copy of the corresponding

source code, to be distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or, c) Accompany it with the information

you received as to the o�er to distribute corresponding source code. (This alternative

is allowed only for noncommercial distribution and only if you received the program in

object code or executable form with such an o�er, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi�cations

to it. For an executable work, complete source code means all the source code for all

modules it contains, plus any associated interface de�nition �les, plus the scripts used to

control compilation and installation of the executable. However, as a special exception, the

source code distributed need not include anything that is normally distributed (in either

source or binary form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component itself accompanies

the executable.

If distribution of executable or object code is made by o�ering access to copy from a

designated place, then o�ering equivalent access to copy the source code from the same

place counts as distribution of the source code, even though third parties are not compelled

to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense or dis-

tribute the Program is void, and will automatically terminate your rights under this Li-

cense. However, parties who have received copies, or rights, from you under this License

will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its derivative

works. These actions are prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the Program), you indicate

your acceptance of this License to do so, and all its terms and conditions for copying,

distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the

recipient automatically receives a license from the original licensor to copy, distribute or

modify the Program subject to these terms and conditions. You may not impose any

179

further restrictions on the recipients' exercise of the rights granted herein. You are not

responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether by

court order, agreement or otherwise) that contradict the conditions of this License, they do

not excuse you from the conditions of this License. If you cannot distribute so as to satisfy

simultaneously your obligations under this License and any other pertinent obligations,

then as a consequence you may not distribute the Program at all. For example, if a

patent license would not permit royalty-free redistribution of the Program by all those

who receive copies directly or indirectly through you, then the only way you could satisfy

both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular cir-

cumstance, the balance of the section is intended to apply and the section as a whole is

intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property

right claims or to contest validity of any such claims; this section has the sole purpose

of protecting the integrity of the free software distribution system, which is implemented

by public license practices. Many people have made generous contributions to the wide

range of software distributed through that system in reliance on consistent application of

that system; it is up to the author/donor to decide if he or she is willing to distribute

software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence

of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by

patents or by copyrighted interfaces, the original copyright holder who places the Program

under this License may add an explicit geographical distribution limitation excluding those

countries, so that distribution is permitted only in or among countries not thus excluded.

In such case, this License incorporates the limitation as if written in the body of this

License.

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the present

version, but may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a version

number of this License which applies to it and "any later version", you have the option of

following the terms and conditions either of that version or of any later version published

180 CHAPTER 13. GPL LICENSE

by the Free Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose dis-

tribution conditions are di�erent, write to the author to ask for permission. For software

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-

dation; we sometimes make exceptions for this. Our decision will be guided by the two

goals of preserving the free status of all derivatives of our free software and of promoting

the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-

CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-

RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS

IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST

OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAWOR AGREED TO IN

WRITINGWILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTYWHOMAY

MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE

LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-

DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-

ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS

OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED

BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-

ATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER

PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END

OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to

the public, the best way to achieve this is to make it free software which everyone can

redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the

start of each source �le to most e�ectively convey the exclusion of warranty; and each �le

should have at least the "copyright" line and a pointer to where the full notice is found.

181

one line to give the program's name and an idea of what it does. Copyright (C) yyyy

name of author

This program is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this

program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth

Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with

ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and

you are welcome to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of

the General Public License. Of course, the commands you use may be called something

other than `show w' and `show c'; they could even be mouse-clicks or menu items�whatever

suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,

to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the

names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision'

(which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary

programs. If your program is a subroutine library, you may consider it more useful to

permit linking proprietary applications with the library. If this is what you want to do,

use the GNU Lesser General Public License instead of this License.

182 CHAPTER 13. GPL LICENSE

Bibliography

[1] R. Mitchell, B. Agle, and D. Wood, �Toward a theory of stakeholder identi�cation

and salience: de�ning the principle of who and what really counts,� Academy of

Management Review, vol. 22, no. 4, pp. 853�86, 1997.

[2] T. M. Barron, R. H. L. Chiang, and V. C. Storey, �A semiotics framework for

information systems classi�cation and development,� Decision Support Systems,

vol. 25, no. 1, pp. 1�17, February 1999.

[3] R. K. Stamper, �Signs, Information, Norms and Systems,� in Signs at Work,

B. Holmqvist, P. B. Andersen, H. Klein, and R. Posner, Eds. Berlin: De Gruyter,

1996, pp. 349�397.

[4] P. Barr, �User-Interface Metaphors in Theory and Practice,� Master's thesis,

Victoria University of Wellington, December 2003.

[5] G. Doeben-Henisch and M. F. Wagner, �Validation within Safety Critical Systems

Engineering from a Computational Semiotics Point of View,� in Proc. IEEE

Africon2007 International Conference. Piscataway, NJ, USA: IEEE Computer

Society, 2007.

[6] P. Cobley and L. Jansz, Introducing Semiotics. Cambridge, England: Icon Books

Ltd., 1999.

[7] C. E. Shannon, �Communication in the Presence of Noise,� Proceedings of the IRE,

vol. 37, no. 1, pp. 10�21, 1949.

[8] W. Weaver, �Recent Contributions to The Mathematical Theory of

Communication,� The Mathematical Theory of Communication, vol. 1, pp. 93�117,

1949.

[9] C. Matheus, M. Kokar, and K. Baclawski, �A Core Ontology for Situation

Awareness,� in Proc. FUSION'03, Cairns, Queensland, Australia, 2003, pp.

545�552.

183

184 BIBLIOGRAPHY

[10] S. Wallin, V. Leijon, and L. Landén, �Statistical analysis and prioritisation of

alarms in mobile networks,� International Journal of Business Intelligence and

Data Mining, vol. 4, no. 1, pp. 4�21, 2009.

[11] RFC 5424: The Syslog Protocol, Network Working Group Std., 2009. Available at:

http://tools.ietf.org/html/rfc5424

[12] K. Prasad, �The Glasgow Coma Scale: A Critical Appraisal of its Clinimetric

Properties,� Journal of Clinical Epidemiology, vol. 49, no. 7, pp. 755�763, July

1996.

[13] OpenVPN project. (Retrieved 2010-07-16). Available at: http://openvpn.net

[14] S. Few, Information Dashboard Design: The E�ective Visual Communication of

Data. Sebastopol, CA, USA: O'Reilly Media Inc, 2006, iSBN 978-0-596-10016-2.

[15] Z. Li, J. Taylor, E. Partridge, Y. Zhou, W. Yurcik, C. Abad, J. J. Barlow, and

J. Rosendale, �UCLog: A uni�ed, correlated logging architecture for intrusion

detection,� in Proc. 12th ICTSMA, 2004.

[16] N. Xianjun, �Design and implementation of WEB log mining system,� in Proc.

2009 International Conference on Computer Engineering and Technology.

Piscataway, NJ, USA: IEEE Computer Society, January 2009, pp. 425�427.

[17] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, �Online System Problem

Detection by Mining Patterns of Console Logs,� in Proc. 9th IEEE International

Conference on Data Mining. IEEE Computer Society, December 2009, pp.

588�597.

[18] K. Yamanishi and Y. Maruyama, �Dynamic Syslog Mining for Network Failure

Monitoring,� in Proc. 11th ACM SIGKDD international conference on knowledge

discovery in data mining. ACM New York, NY, USA, 2005, pp. 499 � 508.

[19] LogWatch. (Retrieved 2010-06-22). Available at: http://www.logwatch.org

[20] Logcheck. (Retrieved 2010-06-22). Available at: http://logcheck.org

[21] Debian Popularity Contest. (Retrieved 2010-06-23). Available at:

http://popcon.debian.org

[22] NMS. (Retrieved 2010-06-23). Available at: http://www.nimsoft.com

[23] Snare Server. (Retrieved 2010-06-24). Available at:

http://www.intersectalliance.com

http://tools.ietf.org/html/rfc5424
http://openvpn.net
http://www.logwatch.org
http://logcheck.org
http://popcon.debian.org
http://www.nimsoft.com
http://www.intersectalliance.com

BIBLIOGRAPHY 185

[24] Splunk. (Retrieved 2010-06-24). Available at: http://www.splunk.com

[25] M. F. Buckley and D. P. Siewiorek, �VAX/VMS Event Monitoring and Analysis,�

in FTCS, Computing Digest of Papers, June 1995, pp. 414�423.

[26] M. F. Buckley, �Computer Event Monitoring and Analysis,� Ph.D. dissertation,

Carnegie-Mellon University, Pittsburgh, Pennsylvania, USA, May 1992.

[27] K. Kent and M. Souppaya, Guide to Computer Security Log Management

(SP800-92), Information Technology Laboratory Std., September 2006.

[28] S. Tricaud and P. Saadé, �Applied parallel coordinates for logs and network tra�c

attack analysis,� Journal in Computer Virology, vol. 6, no. 1, pp. 1�29, January

2010.

[29] N. Hammoud, �Decentralized Log Event Correlation Architecture,� in Proc.

International Conference on Management of Emergent Digital EcoSystems. ACM

New York, NY, USA, 2009, pp. 480�482.

[30] D. Caragea and V. Honavar, �Learning Classi�ers from Distributed Data Sources,�

Encyclopedia of Database Technologies and Applications, vol. 2nd edition, p.

unknown, 2008.

[31] J. Saltzer and M. Schroeder, �The Protection of Information in Computer

Systems,� Proceedings of the IEEE, vol. 63, no. 9, pp. 1278�1308, 1975.

[32] S. Etalle, F. Massacci, and A. Yautsiukhin, �The Meaning of Logs,� in Trust,

Privacy and Security in Digital Business: TrustBus 2007, ser. LNCS,

C. Lambrinoudakis, G. Pernul, and A. M. Tjoa, Eds., vol. 4657. Springer, August

2007, pp. 145�154.

[33] D. Tu, R. Chen, Z. Du, and Y. Liu, �A Method of Log File Analysis for Test

Oracle,� in Proc. 2009 International Conference on Scalable Computing and

Communications; Eighth International Conference on Embedded Computing.

Washington, DC, USA: IEEE Computer Society, 2009, pp. 351�354.

[34] E. Yoneki and J. Bacon, �Ubiquitous Computing: Challenges in Flexible Data

Aggregation,� in Embedded and Ubiquitous Computing, ser. LNCS, L. T. Yang,

Ed., vol. 3824. Springer, November 2005, pp. 1189�1200.

[35] M. A. GonÇalves, M. Luo, R. Shen, M. F. Ali, and E. A. Fox, �An XML Log

Standard and Tool for Digital Library Logging Analysis,� in ECDL 2002, ser.

LNCS, M. Agosti and C. Thanos, Eds., vol. 2458. Springer, 2002, pp. 129�143.

http://www.splunk.com

186 BIBLIOGRAPHY

[36] S. M. Serra da Cruz, M. L. M. Campos, P. F. Pires, and L. M. Campos,

�Monitoring E-Business Web Services Usage through a Log Based Architecture,�

in Proc. IEEE Conference ICWS. IEEE Computer Society, 2004, pp. 61�69.

[37] V. Stathopoulosa, P. Kotzanikolaoua, and E. Magkos, �Secure log management for

privacy assurance in electronic communications,� Computers & Security, vol. 27,

no. 7-8, pp. 298�308, December 2008.

[38] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, �Building an Encrypted

and Searchable Audit Log,� in ISOC Network and Distributed System Security

Symposium. The Internet Society, February 2004.

[39] S. Weber, �Harnessing Pseudonyms with Implicit Attributes for

Privacy-Respecting Mission Log Analysis,� in Intelligent Networking and

Collaborative Systems. IEEE Computer Society, November 2009, pp. 119�126.

[40] C. Flack and M. J. Atallah, �Better Logging through Formality,� in Proc. Recent

Advances in Intrusion Detection, ser. LNCS, H. Debar, L. Mé, and F. Wu, Eds.,

vol. 1907. Springer, 2000, pp. 1�16.

[41] M. Mansouri-Samani and M. Sloman, �GEM: a generalized event monitoring

language for distributed systems,� Distributed Systems Engineering, vol. 4, no. 2,

pp. 96�108, June 1997.

[42] H. Saneifar, S. Bonniol, A. Laurent, P. Poncelet, and M. Roche, �Terminology

Extraction from Log Files,� in Proc. Database and Expert Systems Applications -

20th International Conference, ser. LNCS, S. S. Bhowmick, J. Küng, and

R. Wagner, Eds., vol. 5690. Springer, 2009, pp. 769�776.

[43] X.733: Information Technology - Open Systems Interconnection - Systems

Management: Alarm Reporting Function, CCITT Std., 1992.

[44] Rsyslog. (Retrieved 2010-11-17). Available at: http://www.rsyslog.com

[45] D. Schreckenghost, C. Martin, and C. Thronesbery, �Specifying Organizational

Policies and Individual Preferences for Human-Software Interaction,� in Etiquette

for Human-Computer Work, Papers from the AAAI Fall Symposium. Technical

Report FS-02-02. AAAI Press, 2002.

[46] A. M. Colman, �Salience and focusing in pure coordination games,� Journal of

Economic Methodology, vol. 4, no. 1, pp. 61�81, 1997.

http://www.rsyslog.com

BIBLIOGRAPHY 187

[47] C Language Integrated Production System (CLIPS) Programming Guide.

(Retrieved 2010-12-07). Available at:

http://www.csie.ntu.edu.tw/~sylee/courses/clips/bpg/node5.4.10.1.html

[48] J. R. Eiser, �Categorization, cognitive consistency and the concept of dimensional

salience,� European Journal of Social Psychology, vol. 1, pp. 435�454, 1971.

[49] G. Teasdale and B. Jennett, �Assessment of coma and impaired consciousness: a

practical scale,� Lancet, vol. 304, no. 7872, pp. 81�84, July 1974.

[50] B. Edvardsson and M. Linden, �A method for evaluation of metric properties of

response scales,� Quality and Quantity, vol. 10, pp. 241�249, 1976.

[51] T. Cook and D. T. Campbell, Quasi-Experimentation: Design and Analysis Issues

for Field Settings. Chicago: Rand McNally, 1979.

[52] L. Bunch, M. Breedy, J. M. Bradshaw, M. Carvalho, N. Suri, A. Uszok, J. Hansen,

M. Pechoucek, and V. Marik, �Software Agents for Process Monitoring and

Noti�cation,� in Proc. 2004 ACM symposium on Applied computing. ACM New

York, NY, USA, March 2004, pp. 94�100.

[53] Information Technology Infrastructure Library (ITIL). (Retrieved 2010-08-12).

Available at: http://www.itil-o�cialsite.com/

[54] S. Littlejohn, Theories of human communication, 7th ed. Belmont, California,

USA: Wadsworth/Thomson Learning, 2002.

[55] C. S. De Souza and C. F. Leitao, Semiotic Engineering Methods for Scienti�c

Research in HCI, ser. Synthesis Lectures on Human-centred Informatics, J. M.

Carroll, Ed. Morgan & Claypool Publishers, 2009.

[56] T. Atwood, �The role of pattern databases in sequence analysis,� Brie�ngs in

Bioinformatics, vol. 1, no. 1, pp. 45�59, 2000. Available at:

http://bib.oxfordjournals.org/cgi/content/abstract/1/1/45

[57] W. E. Willison, �Data Logging in Power Generating Stations,� British Radio and

Electronic Engineer, vol. 25, no. 6, pp. 559�570, June 1963.

[58] R. Molloy and R. Parasuraman, �Monitoring an Automated System for a Single

Failure: Vigilance and Task Complexity E�ects,� Human Factors, vol. 38, no. 2,

pp. 311�322, 1996.

http://www.csie.ntu.edu.tw/~sylee/courses/clips/bpg/node5.4.10.1.html
http://www.itil-officialsite.com/
http://bib.oxfordjournals.org/cgi/content/abstract/1/1/45

188 BIBLIOGRAPHY

[59] E. Pinheiro, W. Weber, and L. Barroso, �Failure Trends in a Large Disk Drive

Population,� in Proc. 5th USENIX Conference on File and Storage Technologies

(FAST'07), San Jose, CA, USA, 2007. Available at:

http://labs.google.com/papers/disk_failures.html

[60] J. Reason, Human Error. New York, USA: Cambridge University Press, 1990.

[61] R. K. Stamper, K. Liu, M. Hafkamp, and Y. Ades, �Understanding the roles of

signs and norms in organizations - a semiotic approach to information systems

design,� Behaviour & Information Technology, vol. 19, no. 1, pp. 15�27, 2000.

[62] P. Radford, A. Linton, and I. Welch, �Event log messages as a human interface,� in

Proc. OZCHI 2010, Accepted for publication.

[63] H. Tsunoda, T. Maruyama, K. Ohta, Y. Waizumi, G. M. Keeni, and Y. Nemoto,

�A Prioritized Retransmission Mechanism for Reliable and E�cient Delivery of

Syslog Messages,� in Proc. Communication Networks and Services Research

Conference, 2009, pp. 158 � 165.

[64] M. T. Rose, The Simple Book: An introduction to management of TCP/IP-based

internets, ser. Prentice Hall Series in Innovative Technology, D. R. Allison, D. J.

Farber, and B. D. Shriver, Eds. New Jersey, USA: Prentice-Hall, Inc., 1991.

[65] M. Nagappan, K. Wu, and M. A. Vouk, �E�ciently Extracting Operational

Pro�les from Execution Logs Using Su�x Arrays,� in Proc. Software Reliability

Engineering. IEEE Computer Society, November 2009, pp. 41�50.

[66] F. Facca and P. Lanzi, �Mining interesting knowledge from weblogs: a survey,�

Data & Knowledge Engineering, vol. 53, no. 3, pp. 225�241, 2005, elsevier.

[67] R. Du, R. Safavi-Naini, and W. Susilon, �Web �ltering using text classi�cation,� in

Proc. 11th IEEE International Conference on Networks, 2003, pp. 325�330.

Available at: http://ro.uow.edu.au/infopapers/166

[68] Debian Linux Project. (Retrieved 2010-06-21). Available at:

http://www.debian.org

[69] Berkeley Internet Name Daemon. (Retrieved 2010-07-29). Available at:

http://www.isc.org/software/bind

[70] T. Moser, H. Roth, S. Rozsnyai, R. Mordinyi, and S. Bi�, �Semantic Event

Correlation Using Ontologies,� in On the Move to Meaningful Internet Systems,

http://labs.google.com/papers/disk_failures.html
http://ro.uow.edu.au/infopapers/166
http://www.debian.org
http://www.isc.org/software/bind

BIBLIOGRAPHY 189

ser. LNCS, R. Meersman, T. Dillon, and P. Herrero, Eds., vol. 5871. Springer,

November 2009, pp. 1087�1094.

[71] A. Boury-Brisset, �Ontology-based Approach for Information Fusion,� in Proc. 6th

International Conference on Information Fusion, 2003, pp. 522�529.

[72] R. Sterritt, �Towards Autonomic Computing: E�ective Event Management,� in

Proc. 27th Annual NASA Goddard/IEEE Software Engineering Workshop.

Maryland, USA: IEEE Computer Society, December 2002, pp. 40�47.

[73] A. Zimmermann, R. Sahay, R. Fox, and A. Polleres, �Heterogeneity and Context

in Semantic-Web-Enabled HCLS Systems,� in On the Move to Meaningful Internet

Systems, ser. LNCS, T. Meersman, R.and Dillon and P. Herrero, Eds., vol. 5871.

Springer, November 2009, pp. 1165�1182.

[74] USENIX LANL supercomputer event logs (messages.sdb �le). (Retrieved

2010-09-24). Available at: http://cfdr.usenix.org/data.html,0807080346.tar.gz�le

[75] Munin. (Retrieved 2010-04-22). Available at: http://munin-monitoring.org

[76] S. Franklin and A. Graesser, �Is it an Agent, or just a Program?: A Taxonomy for

Autonomous Agents,� in Intelligent Agents III Agent Theories, Architectures, and

Languages, ser. LNCS, vol. 1193. Springer, 1997, pp. 21�35.

[77] M. Luck and M. d'Inverno, �A Formal Framework for Agency and Autonomy,� in

Proceedings of the First International Conference on Multi-Agent Systems, 1995,

pp. 254�260.

[78] J. M. Bradshaw, P. Beautement, M. R. Breedy, L. Bunch, S. V. Drakunov, P. J.

Feltovich, R. R. Ho�man, R. Je�ers, M. Johnson, S. Kulkarnt, L. Lott, A. K. Raj,

N. Suri, and A. Uszok, Intelligent Technologies for Information Analysis:

Advances in Agents, Data Mining, and Statistical Learning. Springer, 2004, ch.

12: Making Agents Acceptable to People, pp. 355�400.

[79] J. R. Saul, The Doubter's Companion: A Dictionary of Aggressive Common

Sense. Toronto, Canada: Penguin Books, 1995.

[80] LinuxForDevices. (Retrieved 2011-02-07). Available at: http://www.

linuxfordevices.com/c/a/News/Linux-kernel-developers-have-tripled-in-number/

[81] H. Subramanian, S. Ramamoorthy, P. Stone, and B. J. Kuipers, �Designing Safe,

Pro�table Automated Stock Trading Agents Using Evolutionary Algorithms,� in

http://cfdr.usenix.org/data.html, 0807080346.tar.gz file
http://munin-monitoring.org
http://www.linuxfordevices.com/c/a/News/Linux-kernel-developers-have-tripled-in-number/
http://www.linuxfordevices.com/c/a/News/Linux-kernel-developers-have-tripled-in-number/

190 BIBLIOGRAPHY

GECCO '06: Proc. 8th annual conference on Genetic and evolutionary

computation. ACM New York, NY, USA, 2006, pp. 1777�1784.

[82] A. Sherstov and P. Stone, �Three Automated Stock-Trading Agents: A

Comparative Study,� in Agent-Mediated Electronic Commerce VI, ser. LNCS,

P. Faratin and J. Rodriguez-Aguilar, Eds. Springer, 2005, vol. 3435, pp. 173�187.

[83] Y. Zhai, A. Hsu, and S. Halgamuge, �Combining News and Technical Indicators in

Daily Stock Price Trends Prediction,� in Advances in Neural Networks, ISNN

2007, ser. LNCS, D. Liu, S. Fei, Z. Hou, H. Zhang, and C. Sun, Eds., vol. 4493.

Springer, 2007, pp. 1087�1096.

[84] Algorithms take control of Wall Street. (Retrieved 2011-01-11). Available at:

http://arstechnica.com/tech-policy/news/2011/01/

algorithms-take-control-of-wall-street.ars

[85] The stock market as a single, very big piece of multithreaded software. (Retrieved

2010-10-30). Available at: http://arstechnica.com/business/news/2010/10/

you-say-stock-market-i-say-ginormous-multithreaded-application.ars

[86] LibreO�ce. (Retrieved 2011-02-02). Available at: http://www.libreo�ce.org/

[87] OpenO�ce.org is Dead, Long Live LibreO�ce � or, The Freedom to Fork, by

Terry Hancock. (Retrieved 2010-10-06). Available at: http://www.

freesoftwaremagazine.com/columns/openo�ce_org_dead_long_live_libreo�ce

[88] The Document Foundation. (Retrieved 2011-02-10). Available at:

http://www.documentfoundation.org/foundation/

[89] P. Alreck and R. Settle, The Survey Research Handbook, 3rd ed. New York, USA:

McGraw-Hill/Irwin, 2004.

[90] RFC 3164: The BSD Syslog Protocol, Network Working Group Std., 2001.

Available at: http://tools.ietf.org/html/rfc3164

[91] S. A. Macskassy and F. Provost, �Intelligent Information Triage,� in Proc. 24th

Annual International ACM SIGIR conference on Research and Development in

Information Retrieval. Louisiana, USA: ACM New York, NY, USA, September

2001, pp. 318�326.

[92] New Zealand Network Operators Group. (Retrieved 2010-05-12). Available at:

http://www.nznog.org

http://arstechnica.com/tech-policy/news/2011/01/algorithms-take-control-of-wall-street.ars
http://arstechnica.com/tech-policy/news/2011/01/algorithms-take-control-of-wall-street.ars
http://arstechnica.com/business/news/2010/10/you-say-stock-market-i-say-ginormous-multithreaded-application.ars
http://arstechnica.com/business/news/2010/10/you-say-stock-market-i-say-ginormous-multithreaded-application.ars
http://www.libreoffice.org/
http://www.freesoftwaremagazine.com/columns/openoffice_org_dead_long_live_libreoffice
http://www.freesoftwaremagazine.com/columns/openoffice_org_dead_long_live_libreoffice
http://www.documentfoundation.org/foundation/
http://tools.ietf.org/html/rfc3164
http://www.nznog.org

BIBLIOGRAPHY 191

[93] Y. Baruch and B. Holtom, �Survey response rate levels and trends in

organizational research,� Human Relations, vol. 61, no. 8, pp. 1139�1160, 2008.

[94] VUW Human Ethics Policy. (Retrieved 2010-10-27). Available at: http:

//policy.vuw.ac.nz/Amphora!~~policy.vuw.ac.nz~POLICY~000000000744.pdf

[95] Apache server documentation. (Retrieved 2011-03-03). Available at:

http://httpd.apache.org/docs/1.3/howto/auth.html

[96] R. Ando, �Automated Log Analysis of Infected Windows OS Using Mechanized

Reasoning,� in Neural Information Processing - 16th International Conference,

ICONIP 2009, ser. LNCS, C. S. Leung, M. Lee, and J. H. Chan, Eds., vol. 5864.

Springer, December 2009, pp. 540�547.

[97] T. T. Y. Lin and D. P. Siewiorek, �Error Log Analysis: Statistical Modeling and

Heuristic Trend Analysis,� IEEE Transactions on Reliability, vol. 39, no. 4, pp.

419�432, 1990.

[98] A. Blackwell, Your Wish Is My Command: Programming by Example,

H. Lieberman, Ed. London: Academic Press, 2001.

[99] E. Daniel, R. Lal, and G. Choi, �Warnings and Errors: A Measurement Study of a

UNIX Server,� in Proc. 29th IEEE Int. Symposium on Fault-Tolerant Computing,

vol. 29, 1999.

[100] C. Gunther and W. van der Aalst, �A generic import framework for process event

logs,� in Business Process Management Workshops. Springer, 2006, pp. 81�92.

[101] D. Jonker, W. Wright, D. Schroh, P. Proulx, and B. Cort, �Information triage with

TRIST,� in 2005 International Conference on Intelligence Analysis. Washington,

DC, USA: Oculus Info, Inc., May 2005.

[102] J. Lewis, �IBM computer usability satisfaction questionnaires: psychometric

evaluation and instructions for use,� International Journal of Human-Computer

Interaction, vol. 7, no. 1, pp. 57�78, 1995.

[103] LogSaw. (Retrieved 2010-07-23). Available at: http://logsaw.sourceforge.net/

[104] The Limitations of Server Log Files for Usability Analysis. (Retrieved 2010-07-23).

Available at: http://www.boxesandarrows.com/view/the-limitations-of

http://policy.vuw.ac.nz/Amphora!~~policy.vuw.ac.nz~POLICY~000000000744.pdf
http://policy.vuw.ac.nz/Amphora!~~policy.vuw.ac.nz~POLICY~000000000744.pdf
http://httpd.apache.org/docs/1.3/howto/auth.html
http://logsaw.sourceforge.net/
http://www.boxesandarrows.com/view/the-limitations-of

	1 Introduction
	1.1 Salience in event log messages
	1.2 Impediments for automated filtering
	1.3 Research criteria for an improved alternative
	1.4 Potential improvements to software systems

	2 Literature review
	2.1 Discovering ``salience''
	2.1.1 A further exploration of `priority'
	2.1.2 The psychological point of view
	2.1.3 A successful measure developed in medicine

	2.2 Commonality of meaning
	2.2.1 Semiotics: the study of signs
	2.2.2 Ontologies: applying semiotics to, and providing structure for, vocabularies
	2.2.3 Semiotic engineering: tips for creating commonality

	2.3 Domain-specific limitations
	2.3.1 An external examination
	2.3.2 Lack of state
	2.3.3 Human factors

	2.4 Communications theory
	2.5 Summary

	3 Resorting to first principles
	3.1 So, what is a `salient' message?
	3.2 The lifecycle of an event log message
	3.3 Mechanistically interpreting natural-language messages
	3.3.1 Examining a common deployment: Logcheck
	3.3.2 Problems with the current approach

	3.4 Quantifying information saturation
	3.4.1 Saturation results
	3.4.2 Implications

	3.5 Summary

	4 Seeking an organisational context
	4.1 Power → severity
	4.2 Legitimacy→ impact
	4.3 Urgency→ certainty
	4.3.1 Certainty as validity, or confidence in assumptions
	4.3.2 … as anticipation of the future
	4.3.3 … as a parallel of `urgency'

	4.4 Summary: three dimensions for salience

	5 Enforcing organisational realities
	5.1 Stock market parallels
	5.2 Introducing rapid iteration to event logging
	5.3 Making iteration powerful, with weights
	5.4 Summary

	6 Expressing a three-dimensional scale of salience
	6.1 Arguments for scale length and type
	6.2 The application of organisational salience
	6.3 Outcome mockup
	6.4 Summary: outcome mockup conclusions

	7 A survey of systems administrators
	7.1 Demographics
	7.2 Procedure
	7.3 The survey instrument
	7.4 Raw survey results
	7.5 Analysis of results
	7.5.1 Techniques in use
	7.5.2 Motivations
	7.5.3 Indicators of salience

	7.6 Summary

	8 Discussion and conclusion
	8.1 Metric considerations
	8.2 Applying weights to the metric
	8.3 Evidence supporting a change to the status-quo
	8.4 But how can this be improved?
	8.5 Realising the alternative
	8.6 Contributions
	8.7 Future work
	8.8 Publications

	9 Appendix A: Logcheck README
	10 Appendix B: Outcome mockup
	11 Appendix C: VUW Human Ethics Policy
	12 Appendix D: Raw survey results
	13 GPL License
	Bibliography

