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Abstract 

The rainbow trout (Oncorhynchus mykiss) of Lake Taupo, New Zealand provide 

an exceptional opportunity to explore the contemporary adaptation of an introduced 

aquatic species.  Recently it has become evident that their spawning migration time has 

shifted to later in the season. I investigated the genetic basis of these changes in spawning 

time by (1) using genetic markers to determine the origins of Taupo trout in California, 

(2) determining the pattern and extent of spatial population genetic variation throughout 

the Lake Taupo catchment and in comparison to nearby Lake Tarawera in the Rotorua 

district, (3) analysing genetic variation at the OtsClock1b spawning time gene in temporal 

replicates from several sites from Taupo, and (4) comparing contemporary genetic 

variation at this gene and microsatellite markers to genetic variation from three Taupo 

tributaries in 1980s. I compared the ability of single nucleotide polymorphism (SNP) and 

microsatellite markers to determine the origins of Lake Taupo rainbow trout, translocated 

from California around 120 years ago. Data were collected from 15 microsatellite and 93 

SNP markers, using samples from the Lake Taupo population and ten populations 

throughout California, which included all historically indicated populations of origin. 

Results revealed that the Lake Taupo population has significantly diverged from 

Californian populations at both microsatellite and SNP loci. These analyses also showed 

that the Lake Taupo population was probably derived from several sources in California 

(the most likely origins being the McCloud River and Lake Almanor), and an 

indeterminate California coastal population. This conclusion was supported with 

simulations of founder events, which suggested that the genetic patterns of a single source 

of introduction would still be detectable 100 years post-founding, but with multiple 

introductions exact source populations become more difficult to detect. Approximately 50 

individuals from 10 locations throughout the catchment were then analysed using 15 

microsatellite loci to determine if there was any spatial population genetic differentiation.  

There was no significant difference in genetic distance between locations within Lake 

Taupo, although there was a significant difference between these populations and Rotorua 

and Waipakihi, which are isolated by geographic barriers. Lake Taupo rainbow trout do 

appear to diverge at markers potentially under selection, though, because genotyping of 

the poly-Q region of the timing locus OtsClock1b shows significant differentiation 

between individuals sampled at different times in the Waipa River. Two other sites, 

however, did not show the same pattern of significant seasonal variation in OtsClock1b 
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allele frequencies. This suggests that genotypes at this locus could be influencing 

spawning migration time, but that this variation could also be site specific, and therefore 

have a strong environmental component. Scale samples from the 1980s show no 

significant divergence at 5 microsatellites and OtsClock1b, indicating that allele 

frequencies have not changed significantly over the last 20 years at neutral markers or 

markers under selection. I therefore conclude that while Taupo rainbow trout have 

diverged from their origins in California, they have only slightly diverged within their 

new environment, and do not show a consistent pattern of genetic change over time.  This 

information will contribute not only to the management of the Taupo fishery but also to 

the current understanding of the population genetic structuring of introduced salmonids.  
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CHAPTER 1 

Introduction 

1.1 Introduced populations 

The success of introduced species can often be attributed to the novel environment and 

the conditions surrounding the founder event.  If only a few individuals are introduced or are 

introduced from a small number of source populations, then the strong genetic drift 

experienced during the bottleneck can reduce genetic diversity, and overwhelm the efficacy of 

natural selection.  In order for an introduced species to successfully colonise a new 

environment it must be able to persist under a different set of environmental conditions, 

compete with existing species which might occupy the same niche, and in some cases adapt to 

its new habitat. 

Contemporary adaptation is the change in a heritable trait within an observable 

timeframe (Chakraborty and Ryman 1983; Stockwell et al. 2003).  Colonists sometimes need 

to adapt in order to survive and thrive in their new environments, but the reduced genetic 

diversity associated with a colonization bottleneck is expected to limit their evolutionary 

potential. Despite these limitations, introduced species often not only survive and persist in 

their new environments, but also expand their range, and sometimes becoming invasive and 

destructive in their new habitat.  The success of a bottlenecked and naïve species, which 

represents a repeated subversion of an apparent genetic paradox, depends largely on the 

effective population size of the selected colonists and number of source populations, also 

known as propagule pressure (Reznick and Ghalambor 2001; Allendorf and Lundquist 2003). 

High propagule pressure from multiple sources has in some cases resulted in higher genetic 

diversity in the introduced population than in each individual source population; in such a 

case, the genetic ability of the introduced species to respond to its environment is not 

constrained and is possibly enhanced (Kolbe et al. 2004; Roman and Darling 2007).   
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Contemporary adaptation has occurred in a wide variety of introduced taxa worldwide. 

It has been suggested that multiple introductions have played a role in the success of invasive 

Anolis lizards in Florida, where a genetic analysis indicated at least eight introductions have 

contributed to genetic variation, which now exceeds that found in any one native population 

(Kolar and Lodge 2001).  The rapid evolution of Drosophila subobscura in the New World 

illustrates the incredible speed at which evolution can occur (one or two decades) (Huey et al. 

2000).  The mechanisms underlying these adaptations, however, are still not well understood, 

and some successful invaders actually exhibit very low levels of variability (Roman and 

Darling 2007). An understanding of the adaptation of introduced populations first requires an 

understanding of their genetic composition, and therefore it is important to attempt to trace 

the routes and history of invasion (Estoup and Guillemaud 2010) and describe their present 

level of diversity and population structure. 

Freshwater fish introductions 

Freshwater fish translocations are one of the oldest human-mediated forms of 

introduction, since there is documentation of their occurrence dating from the time of the 

Roman empire (Copp et al. 2005a). However, like many introductions, freshwater fish can be 

catastrophic in new environments (Kolbe et al. 2004). Nile perch (Lates niloticus) were 

established in Lake Victoria for sport fishing through multiple introductions in the 1950‟s and 

subsequently caused the extinction of several species of native cichlids (Vitule et al. 2009), 

forever altering the environment.  The introduction of mosquitofish (Gambusia affinis) to 

Australia in the 1920s for mosquito control has also led to the decline of many native fish 

populations (Pringle 2005). The success of mosquitofish in these novel environments is 

attributable to their evolutionary potential, which, combined with their short generation time 

and an ability to tolerate a range of physiological conditions, have made them a model 

organism for studies of microevolution.  Recent introduction events in freshwater systems 

provide unique opportunities to observe contemporary evolution in situ. 

In addition to offering new opportunities for the study of contemporary evolution, 

freshwater fish introductions have been an important aspect of human history. While 

deliberate freshwater fish introductions have a long association with human activities, and 

fish are usually an important contributor to local economies, the laws governing freshwater 
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introductions are often less stringent than for other species (Copp et al. 2005a; Copp et al. 

2005b). Freshwater fish were introduced to New Zealand in the mid-colonial period, with the 

first being goldfish (Carassius auratus) in 1864, followed by perch (Perca fluviatilis), trouts, 

salmon and many other fish towards the end of the 19
th

 century (McDowall 1991) and smelt 

as food for the trout and salmon in the early 20
th
 century (McDowall 1994). Of the salmonids 

introduced to New Zealand, brown trout (Salmo trutta), Chinook (also known as Quinnat) 

salmon (Oncorhynchus tshawyscha), and rainbow trout (Oncorhynchus mykiss) are now most 

abundant and widespread (McDowall 1991). Until the 1960s and 70s, though, relatively little 

trout and salmon research was done (McDowall 1991). The utilization of population genetic 

methods can not only help elucidate patterns of genetic structure and genetic changes 

associated with translocations, but may also clarify this somewhat understudied area 

(Hänfling 2007) and provide both scientific and economic benefits.  

1.2 Population structure and management 

Defining the term “population” is difficult and many different definitions have been 

used in population biology and management. These definitions can be roughly categorized 

into an ecological paradigm and an evolutionary paradigm (Waples and Gaggiotti 2006). The 

ecological paradigm is often delineated by demographic cohesion, where a group of 

individuals lives in the same space at the same time (Berryman 2002). The evolutionary 

paradigm is characterized by reproductive isolation, so that individuals within close spatial 

proximity have the potential to mate with any other member of the group (Hartl and Clark 

1997). Both paradigms have been criticised since neither has thus far been largely applicable 

to datasets from wild populations (Waples and Gaggiotti 2006). However a population is 

defined, though, it is important to quantify genetic differentiation between populations in 

order to implement biologically sustainable management (Laikre et al. 2005). 

Population genetic variation is often spatially structured and it can be roughly 

categorized into three classes based upon rates of gene flow (following Laikre et al. 2005). (1) 

Distinct populations have interpopulation gene flow low enough to permit genetic divergence 

from closely located populations. (2) Populations that show a continuous change have larger 

gene flow which results in an isolation by distance (IBD) pattern. (3) Populations which have 

no interpopulation differentiation have extremely high gene flow which keeps all the 
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individuals in a geographic region genetically similar. It is important to tailor management 

decisions to the type of spatial population structure in a given area, and combinations of these 

three models might be present in any given geographic area since differentiation is often more 

of a continuum than a set of discrete states (Waples and Gaggiotti 2006). 

Population variation can also be temporally structured, as is the case with pink salmon 

(Oncorhynchus gorbuscha), where populations are genetically differentiated between even 

and odd years (Groot and Margolis 1991). While life history characteristics like spawning 

year can create predictable temporal genetic structure, catastrophic events like landslides can 

also alter the genetic structure of a population (Hansen 2002). Therefore it is important, where 

possible, to investigate temporal variation in genetic structure through the analysis of 

historical samples, particularly if using analyses which assume that population differentiation 

does not change over time (Waples 1998). 

Population management 

Fisheries management is aided by the  accurate definition of management units using 

populations genetic tools to identify  genetic structure (Palsbøll et al. 2007). Ideally these 

management groups will be genetically differentiated from their neighbours, and will be 

created with consideration of any seasonal fluctuations in population structure. Locally 

adapted groups should be managed as one unit (Conover 1998); though  the only negative 

consequence of over-splitting these groups is an increased use of management resources 

(Allendorf and Luikart 2007). Treating a series of smaller populations as a large one, 

however, could lead to a depletion of genetic variation and a loss of local adaptations, 

especially in situations where harvesting pressure is not evenly distributed (Stephenson 1999). 

The establishment of management units previously focused on rejecting or failing to reject 

panmixia as a way to determine whether populations were significantly differentiated 

(Palsbøll et al. 2007), since panmictic populations are assumed to lack local adaptations. 

The idea that the complexity of river habitats promotes genetically and phenotypically 

differentiated groups within salmon species led to the stock concept in the study and 

management of fisheries, particularly through the work of W.E. Ricker and several symposia 

by the fisheries biology community (Quinn 2005). Subsequently, genetic tools were applied to 

stock structure analysis, mixed-stock analysis, and conservation of threatened 
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species/exploited species (Carvalho and Hauser 1994). The theory of population structure 

within fisheries was then extended by the inclusion of the concept of evolutionary significant 

units (ESU) (Waples 1991; Waples 1995), which was implemented to more accurately reflect 

the need to preserve genetic diversity and the evolutionary process within stocks. Today a 

combination of ESU and management unit concepts are often used to define exploited 

populations, with the focus on preserving genetic diversity within populations instead of on 

previous concepts of rejecting panmixia (Palsbøll et al. 2007). 

1.3 Rainbow trout 

Background of the species 

Rainbow trout are native to North America and native populations range from 

northern Alaska, just below the outlet  of the Yukon River, down to Rio del Presidio, Mexico 

(Behnke 1992). Pacific salmonids, all members of the Oncorhynchus genus, differentiated in 

the Miocene period (Waples et al. 2008), likely partially due to a genome duplication which 

caused modern day salmonids to be tetraploid (Allendorf and Thorgaard 1984). Rainbow trout 

probably speciated in Southern California/Northern Mexico and then spread north to the 

Columbia River, on the border of what are now the states of Washington and Oregon. It is 

postulated that this occurred between 50,000 and 32,000 years ago, during the Pleistocene 

(Behnke 1992). The original classification of rainbow trout was as Salmo gairdnerii
1
 and 

Salmo iridues, for Columbia River steelhead (which had fine scales) and other coastal 

rainbow trout (which had course scales) respectively (Smith and Stearley 1989). Fisheries 

workers in the 1930s and 1940s found that different incubation temperatures produced 

different numbers of scales and vertebrae, and thereafter all forms of rainbow trout were 

regarded as Salmo gairdnerii (Behnke 1992). Following the revelation that rainbow trout 

                                                

 

 

1 There is also some question as to whether gairdneri should end with a single or double “i” since it is a 

patronym, or species named for a person. The current convention  of the American Fisheries Society as of 2004 

is to use a double “i” (McDowall 2005). 
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were more genetically similar to Pacific salmon than Atlantic salmon, their genus was revised 

to Oncorhynchus mykiss in the late 1980s (Smith and Stearley 1989). The species name 

“mykiss” comes from Russian, since at this time Kamchatkan trout were also found to be the 

same species, and now the full range of O. mykiss is known to encompass Russia (Smith and 

Stearley 1989). These revisions signalled the end of nearly a century of debate over the 

taxonomy of this very phenotypically plastic, and therefore difficult to classify, genus of 

salmon and trout. 

Rainbow trout and steelhead trout are now classified as the same species, O. mykiss, 

but the confusion over their classification stems partly from their different life history types. 

Steelhead trout are anadromous, meaning that they migrate to sea from their natal freshwater 

environment as juveniles and then mature at sea, only returning to their native habitat to 

spawn. Rainbow trout in contrast are adfluvial and remain resident in their natal catchment 

(Quinn 2005).  These two life history types often co-exist and are known to interbreed 

(Docker and Heath 2003; Olsen et al. 2006). 

Spawning migration behaviour varies widely among the O. mykiss ecotypes. Steelhead 

trout migrate upstream in summer, fall or winter depending on the population, but are likely 

to be migrating into freshwater somewhere in their native range at every month of the year 

(Behnke 1992). Steelhead may spawn more than once, but survival to second spawning is low 

(Behnke 1992). Resident rainbow trout populations often spawn in the spring, but spawning 

can occur from December through January and from May through June throughout their 

native range (Behnke 1992). This wide range in spawning time is thought to be due to 

rainbow trout‟s long history of selective breeding in hatcheries, which eliminated the selective 

pressures and interspecific competition that maintained a spring spawning season (Gall and 

Crandell 1992). 

Introduced rainbow trout 

Rainbow trout are a successful introduced species on every continent except 

Antarctica. Introductions since 1874 have included eastern North America, Africa, Asia, 

Australasia, Europe, and South America (MacCrimmon 1971).  Acclimatization societies 

around the world began culturing and shipping rainbow trout in the late 1800‟s as it was a 

valued sport fish, could withstand warmer temperatures and more difficult conditions than 
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other trout, and grew more rapidly in hatcheries (Halverson 2010). There are now at least nine 

domesticated strains of rainbow trait reared in hatcheries in California alone (Busack and Gall 

1980). Steelhead and rainbow trout are threatened and endangered in their native range 

(Northwest Regional Office 2011). They are highly successful, however, as an introduced 

species, and in their new habitats they can have a negative impact as disease vectors and 

aggressive predators of native fishes (Crowl et al. 1992). Because of its global distribution, 

economic importance and long history of exploitation and management, rainbow trout will 

likely remain one of the most heavily managed of freshwater fishes.  

The genetic changes associated with introductions 

Rapid evolution has been documented in introduced salmon and trout populations 

worldwide. Sockeye salmon (Oncorhynchus nerka) introduced to Lake Washington from 

Baker Lake in Washington state developed two different ecotypes, which evolved 

reproductive isolation after fewer than 13 generations (Hendry et al. 2000).  In Patagonia, 

rainbow trout introduced from California around the turn of the 20
th

 century have developed 

anadromy,  longer life spans, and a higher rate of iteroparity, in which multiple spawnings 

occur throughout the life of the fish, though a genetic basis for these changes has not been 

investigated (Pascual et al. 2001). It is in fact thought that the development of anadromy is 

more likely a re-development, since these fish were probably sourced from anadromous 

populations (Behnke 2002). Chinook salmon were introduced to the South Island of New 

Zealand at approximately the same time as rainbow trout were introduced to Patagonia (~27 

generations ago), and they have developed a distinct population structure between drainages 

(Hurlbert et al. 1972), suggesting that significant genetic changes can occur in relatively few 

generations. 

1.4 The Lake Taupo system 

Management of trout in New Zealand and Lake Taupo 

There are no known populations of New Zealand rainbow trout which are 

anadromous; all populations are either solely riverine or adfluvial-lacustrine (McDowall 

1994). This is in spite of the fact that they were likely introduced from anadromous 

populations in California (Scott et al. 1978). Rainbow trout were rapidly established in the 
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inland lakes in the Central North Island and the lakes along the eastern edges of the Southern 

Alps on the South Island (McDowall 1994). Despite the importance of recreational fishing 

throughout New Zealand, scientific fisheries research was only a minor component of initial 

management programs until the 1960s and 70s (McDowall 1991).  

The Lake Taupo trout fishery is notable for large catches of brown and rainbow trout, 

and unusually this fishery is managed by the Department of Conservation, since Ngāti 

Tuwaretoa gifted the lake bed to the Crown in 1926 in exchange for annual royalties 

(Scrimgeour and Oxley 2001). Until a decline in stocks in the 1980s, the fishery was managed 

ad hoc. Subsequently, research was undertaken to attempt to gain a better understanding of 

trout production in the lake. The results led to the introduction of a lower bag limit, still in 

place today (McDowall 1991). Research and monitoring has played more of a role in the 

management of the fishery in the last 20 years. 

Observed change in spawning time and body size 

The exact characteristics of the founding stock or stocks of New Zealand rainbow 

trout are unknown, but populations in Lake Taupo now differ from each other in 

morphometric characteristics, including dissimilar parr marks, developmental characters, 

agonistic behaviours and adult morphometrics (Rosenau 1991).   Recently Taupo trout have 

exhibited reduced fork length and are spawning in more concentrated runs early in the year as 

opposed to year-round (Maclean and Dedual pers. comm.).  This intraspecific phenotypic 

variation might be due to adaptive differences to the environment (Beacham 1990),  

especially since different populations throughout Taupo can have very different spawning 

environments (Maclean and Dedual pers. comm.) and juvenile trout show different fat content 

between streams (Dedual 2002), indicating that some spawning habitats may have preferential 

rearing conditions. Upriver migration of salmonids varies year-to-year based on 

environmental conditions including temperature, river condition and flow (Quinn 2005), and 

therefore the reported interannual changes could be a response to environment (phenotypic 

plasticity) or due to selection pressures within the fishery.  
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1.5 Circadian rhythms and the genetic basis of spawn timing 

Circadian rhythms 

The circadian clock is one of the most widely studied examples of a complex 

phenotypic trait that is controlled by a gene-regulatory network (Kyriacou et al. 2008). 

Circadian clock gene regulatory networks are found in a wide range of taxa, from fungi, 

plants and insects to vertebrates (Bell-Pedersen et al. 2005; Yu and Hardin 2006). Though the 

mechanics of these networks vary between some of these taxa, all contain an autonomous 

circadian oscillator which involves clock-controlled gene expression (Bell-Pedersen et al. 

2005). The Clock gene in particular is a transcription factor within the circadian gene 

regulatory network whose function was first determined in Drosophila (Darlington et al. 

1998). The circadian oscillator is regulated by control of the Clock gene, so Clock is a basic 

helix-loop-helix transcription factor that activates the transcription of  the genes period and 

timeless into mRNAs which are subsequently translated into proteins, but these mRNAs also 

abrogate the activity of Clock in a rhythmic fashion (Darlington et al. 1998). The degradation 

of the timeless protein is light-stimulated so that the Drosophila circadian clock is attuned to 

light-cycling within the environment, although in the absence of environmental cues the 

oscillator persists in maintaining circadian rhythms (Yu and Hardin 2006). In vertebrates the 

Clock gene includes a poly-glutamine repeat known as a poly-Q region which acts as a 

transcriptional trans-activation domain that influences behaviour and physiology (Gekakis et 

al. 1998). 

It has recently been observed that there are latitudinal clines in variation of the poly-Q 

region of the Clock gene variation, with larger alleles usually occurring at higher latitudes 

(Johnsen et al. 2007; O'Malley and Banks 2008a). Because Clock is regulated by daylength, it 

also shows seasonal fluctuations in expression which can be attributed to daylength variation 

(Davie et al. 2009); although the effect of other environmental changes through the year, such 

as temperature, cannot be ruled out as a cause for the fluctuations (Tournier et al. 2007). This 

seasonal difference in length of the poly-Q region in Clock has been associated with egg-

laying time and fledgling success (ergo fitness) in blue tits (Cyanistes caeruleus), suggesting 

that it is likely under positive selection (Liedvogel et al. 2009). The importance of these 

biological activities for fitness and survival means that there is probably intense selection on 
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the circadian rhythm gene regulatory network, particularly the poly-Q region, and that 

observed variation in that network is related to biologically important traits. 

The genetic basis of spawn timing 

Spawning time is controlled by multiple genes and timing is associated with genetic 

variation: individuals spawning at the beginning and end of the season have reduced 

heterozygosity (Leary et al. 1989). Clock genes are involved in both the reproductive 

development and timing of spawning in rainbow trout, and therefore they can influence life 

history differences across the lifespan of trout populations, including migration to sea as 

juveniles and spawning migration time as adults. Reproductive development in rainbow trout 

is directly related to photosensitivity and circadian rhythm (Duston and Bromage 1988), and 

photoperiod is used in aquaculture to control and often accelerate the maturation of farmed 

fish (Bromage et al. 2001).  Since photoperiod is important to maturation, mutations in the 

timing genes could result not only in changes to adult spawning but also in development. 

A single autotetraploidization event 25 to 100 MYA likely led to the evolution of 

salmonid fishes, including rainbow trout (Allendorf and Thorgaard 1984). As a result there 

are functional molecules, including several hormones, known to be encoded by duplicated 

genes in Oncorhynchus species (Allendorf and Waples 1996).  The duplication of genes 

throughout the genome is an important consideration not only for functional genes, but also 

when interpreting non-functional microsatellite markers, especially if they are used to 

estimate effective population size and genetic diversity of managed populations. Duplication 

is also known to have occurred in salmonid Clock genes: OtsClock1a and OtsClock1b are two 

homologous copies of the Clock gene which have both remained functional in the salmonid 

genome (O'Malley and Banks 2008b).  

The poly-Q region, a region which influences behaviour and physiology as described 

previously, has shown variability across salmonid species, particularly in the Clock1b gene 

(Paibomesai et al. 2010).  This most likely indicates that it is an important region for altering 

circadian phenotypes. Changes to Q-rich regions in other species has shown to alter circadian 

rhythms, with deletion of amino acids in a Q-rich region in mice resulting in a lengthening of 

circadian period up to 4 hours (Vitaterna et al. 2006). Longer variants of the poly-Q region in 

Chinook salmon have been correlated with greater latitude, perhaps causing fish further north 
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to spawn later in the year when conditions are more appropriate (O'Malley and Banks 2008a). 

This emphasizes the importance of this region for the regulation of circadian behaviours, and 

particularly the potential for the regulation of spawning behaviours. 

1.6 Aims of the thesis research 

The overall goal of the research reported in this dissertation was to investigate the 

population genetic structure and spawning time genetics of Lake Taupo rainbow trout. This 

goal was comprised of four specific aims: 

1) Tracing the origins 

The aim of this section of the study was to determine the source population(s) for the 

New Zealand trout introduction. The origins of rainbow trout from Lake Taupo, New Zealand 

are investigated by comparing their genotypes at 15 microsatellite and 93 single nucleotide 

polymorphism (SNP) loci with those from native Californian rainbow trout and steelhead 

sampled from multiple geographic sites. The Californian sites were chosen as the possible 

source populations for the New Zealand introduction. The expectation is that Lake Taupo 

rainbow trout will have similar genetic characteristics to one or more of the sites of origin 

specified in historical records, and that those characteristics and their history of introduction 

will have contributed to their current population genetic structure. 

2) Spatial population genetic structure 

The aim of this section of the study is to determine whether there is genetic 

differentiation among populations sampled from tributaries around Lake Taupo. It is 

important to understand whether the spawning populations of different tributaries are 

genetically differentiated from each other, to understand both  the population genetics of 

introduced species and, more practically, to be able to manage fisheries.  Microsatellite DNA 

markers are used to determine the levels of genetic variation within rivers and between rivers 

in the Lake Taupo catchment. The null hypothesis is that there will be genetic panmixia 

throughout the catchment (i.e., no statistical differences will be observed in population 

genetic variation based on geography, lake vs. tributaries; among tributaries).   
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3) Spawn timing genetics 

The aim of this section of the study is to determine whether there is a correlation 

between variation at the OtsClock1b gene and the spawn timing of rainbow trout. Recently 

Taupo rainbow trout showed a reduction in fork and spawning runs were more concentrated 

early in the year as opposed to year-round (Maclean and Dedual pers. comm.). This study 

investigated whether there are polymorphisms in the poly-Q area of the OtsCock1b gene and, 

if so, whether the variation is attributable to spatial structuring. Although previous studies in 

North America have only ever detected one allele at the OtsCock1b locus in rainbow trout, 

there could be more than one allele in the Lake Taupo populations and spatial structuring 

associated with allele size, as is found in Chinook salmon (O'Malley and Banks 2008a). In 

addition to investigating the possibility of a spatial cline in allele frequencies, seasonal 

structuring of OtsClock1b allele frequencies is only investigated, because the observed shift in 

spawning times may be due to a selection event within the Taupo catchment.  

4) Temporal genetic variation 

The aim of this section of the study is to determine whether there is temporal 

population genetic structure of rainbow trout populations in Lake Taupo. Variation at a 

candidate gene for selection, OtsClock1b, is also investigated to determine whether there is 

change over time at this locus.  The null hypothesis is that there is no change over time, in 

either genetic diversity, genetic structure, or in the spawning time locus OtsClock1b.



 

 

CHAPTER 2 

The origins of New Zealand rainbow trout (Oncorhynchus 

mykiss) 

2.1 Introduction 

Aquatic species have a long history of anthropogenic translocations, both 

intentional and unintentional (Roman and Darling 2007). Understanding the pathways 

and timing of introductions can help explain contemporary patterns of genetic variation. 

However, as the time following introduction increases, it becomes more difficult to trace 

the source population(s) accurately because the processes of genetic drift, mutation and 

natural selection will change the composition of alleles in the newly founded and source 

populations. Furthermore, if the size of the introduced population fluctuates below the 

original number of founders, it is difficult to accurately estimate the actual size or 

composition of the founding population (Anderson and Slatkin 2007). Bottlenecks may 

also lead to a significant loss of genetic diversity and a shift in allele frequencies from 

those found in the source populations (Frankham 2005). In addition, the difficulty of 

identifying the source of an introduction is often compounded by the lack of or the 

inaccuracy of historical documentation, which could verify potential sources. 

Previous studies in a variety of taxa that have tackled this problem relied on one 

or two types of genetic markers to track poorly documented introductions back to their 

source populations (Astanei et al. 2005; Kawamura et al. 2006). Traditionally, markers 

like allozymes, microsatellites, and mitochondrial DNA have been used to determine the 

source population of introduced freshwater species (Astanei et al. 2005; Colautti et al. 

2005), including several fish species (Quinn et al. 1996; Riva Rossi et al. 2004; 

Kawamura et al. 2006; Brown and Stepien 2009). However, these studies were often 

inconclusive. For instance, Riva Rossi et al. (2004) concluded from their mtDNA 

analyses that the single source of Argentinean rainbow trout was the McCloud River, but 

also noted that there were possible multi-source scenarios that could have led to the same 

outcome. Similarly, Quinn et al. (1996) found that although allozymes confirmed a 
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Sacramento River population as a source, neither allozymes nor mtDNA provided a 

definitive answer for the ancestral population of New Zealand Chinook salmon 

(Oncorhynchus tshawytscha) populations, most likely because of possible genetic 

changes over the years in both introduced stocks and Californian populations. While these 

studies have contributed valuable information about the genetic effects of introduction, 

the increased availability of high resolution molecular genetic markers like single 

nucleotide polymorphisms (SNPs) for non-model species offer the opportunity to tackle 

these problems in even finer detail, as demonstrated in marine fisheries genetics (Hauser 

and Carvalho 2008) and salmonids (Abadia-Cardoso et al. 2011; Clemento et al. 2011). 

Among molecular markers currently available, microsatellites exhibit the highest levels of 

polymorphism, while multilocus SNP panels can be used to genotype larger numbers of 

loci with less laboratory effort (Seeb et al. 2011). The combination of a high rate of 

polymorphism and a large number of loci increases the overall number of alleles. This, in 

turn, increases the statistical resolution when trying to identify diagnostic genotypes 

among populations (e.g. population genetic assignments; Narum et al. 2008); and when 

trying to correctly identify the sources of recently founded populations (Astanei et al. 

2005; Brown and Stepien 2009). 

Rainbow trout (Oncorhynchus mykiss) are an excellent species to assess whether 

the power of larger multiple-marker datasets allows a conclusive understanding of 

historical translocations. They are native to the North Pacific Rim from Mexico to north-

eastern Asia and have been deliberately introduced all around the world (Behnke 1992). 

Most introductions originated from California, particularly from the Baird station on the 

McCloud River (Dollar and Katz 1964; see Fig. 2.1 for location), although this was not 

the first or only source (Behnke 1992). There is also extensive genetic information 

available for rainbow trout because of their commercial and recreational importance 

(Rexroad et al. 2008). 

Introduced rainbow trout have successfully colonised many river systems in New 

Zealand, particularly those associated with lakes (McDowall 1994). The precise origins of 

New Zealand rainbow trout, however, are unclear, with several authors indicating 

conflicting sources and dates of shipment. For example, there is inconsistency among 

different records regarding the shipment of rainbow trout from San Francisco to the 

Auckland Acclimatisation Society in New Zealand in 1883 (Scott et al. 1978). Hobbs 
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(1948) cites a memorandum from the Marine Department which indicates that trout eggs 

shipped to New Zealand came from the Russian River, while Stokell (1955) firmly 

believed that one source was Lake Almanor (Feather River, California basin). However, 

Scott et al. (1978) cite evidence which supported the hypothesis that the first introduction 

in 1883 came from a hatchery on Sonoma Creek, a tributary of San Francisco Bay, 

because no Russian River hatchery was operational before the late 1800s, and the town of 

Ukiah, where the hatchery was eventually located, was only accessible by stagecoach 

before 1887. Furthermore, although many international rainbow trout introductions came 

from the Baird Station on the McCloud River, Scott et al. (1978) could find no direct 

record in the U.S.A. to corroborate a shipment of trout eggs from the McCloud River to 

New Zealand. There are indirect mentions in several reports, but there is no record of 

shipment from Lake Almanor until 1930. While there was a record in Auckland of a 

shipment in 1878 taken from Lake Tahoe, this has since been dismissed (Scott et al. 

1978) as Lahontan cutthroat trout (Oncorhynchus clarki henshawi). It is therefore 

possible that the Lake Taupo stock originated from a coastal Sonoma Creek population 

and/or the McCloud River in the late 1800s, with a later introduction from Lake Almanor 

in the 1930s. 

Here the origins of rainbow trout from Lake Taupo, New Zealand are investigated 

by comparing their multilocus genotypes at 15 microsatellites and 93 SNPs with those 

from native Californian rainbow trout and steelhead (the anadromous ecotype of O. 

mykiss) sampled from multiple geographic sites. These Californian sites are evaluated as 

possible source populations for the New Zealand introduction. This study‟s aims are to: 1) 

assess the ability of SNPs and microsatellites to detect the sources of an introduction and 

2) use data collected from these two marker types to determine the source populations for 

the New Zealand trout introduction. Our null hypothesis is that there is a single McCloud 

River origin. We expect that Lake Taupo rainbow trout will have similar genetic 

characteristics to one or more of the sites of origin specified in historical records, and that 

those characteristics and their history of introduction will have contributed to their current 

population genetic structure. 
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2.2 Materials and Methods 

Sampling 

Rainbow trout were captured at six locations throughout the Lake Taupo catchment in 

New Zealand from August 2006 to June 2007 at stream traps, by angling, or with 

electrofishing. Fifty fin clips were taken and stored in 95% ethanol at 4°C until DNA 

extraction. 

Samples from ten Californian O. mykiss populations were collected between 2001 and 

2006 using back-pack electro-fishers and a stratified stream sampling design intended to 

minimize sampling of siblings. These populations include those that were reported as sources 

for the Lake Taupo population (Scott et al. 1978); the Upper Feather River sample was taken 

just downstream from the outflow of Lake Almanor and Miller Creek was used as a proxy for 

Sonoma Creek, since their outflow into San Francisco Bay are only ~12km apart and Sonoma 

Creek is now highly degraded (Figure 2.1). 

DNA Extraction and Genetic Analyses 

Genomic DNA was extracted from the Lake Taupo samples using a proteinase K 

digestion followed by salt extraction. The remaining pellet was subjected to two ethanol 

washes and resuspended in TE buffer. Total DNA was quantified using a spectrophotometer 

(NanoDrop™ ND-1000, Thermo Scientific). Genomic DNA was extracted from Californian 

samples using QIAGEN DNeasy kits on a QIAGEN Bio Robot 3000 (Qiagen Inc.). 

Samples were genotyped using 15 microsatellite loci following polymerase chain 

reaction (PCR): Omy1011, Omy77 (Morris et al. 1996), One11b, One13b (Scribner et al. 

1996), Ots103, Oki23 (Smith et al. 1998), OtsG243, OtsG249b, OtsG409, OtsG43, OtsG85, 

OtsG253b, OtsG3 (Williamson et al. 2002), Ots1b (Banks et al. 1999), and Ssa289 

(McConnell et al. 1995). Thermal cycling was performed on MJ Research Thermocyclers 

(PCR conditions are available from the authors upon request). Amplified PCR products were 

analysed on ABI 377 automated DNA sequencers (Applied Biosystems). All genotypes were 

called and confirmed by two people independently. 

Ninety-three SNP loci including Omy_AldA, OMGH1PROM1-SNP1, Omy_aspAT-

123, Omy_COX1-221, Omy_nramp-146, Omy_Ogo4-304, OMY_PEPA-INT6, ONMYCRBF_ 
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1-SNP1 (Aguilar and Garza 2008), Omy_arp-630, Omy_g12-82, Omy_gh-475, Omy_gsdf-

291, Omy_mapK3-103, Omy_mcsf-371 (Campbell et al. 2009), and eighty-five loci from 

Abadía-Cardoso et al. (2011) were then genotyped. These SNPs were discovered through 

sequencing of rainbow trout expressed sequence tags (ESTs) in public databases. See Abadía-

Cardoso et al. (2011) for details. A PCR pre-amplification was first performed, in order to 

increase the DNA fragments of interest, with the following reagent concentrations: 2.5 L of 

2X Master Mix (QIAGEN Inc.), 1.3 L of pooled 0.2X TaqMan (5′ nuclease allelic 

discrimination) assays (Applied Biosystems Inc.) and 1.6 L of unquantified template DNA 

diluted 1:2 in ddH20. Pre-amplification thermal cycling consisted of an initial denaturation of 

15 min at 95°C, and 13 cycles of 15s at 95°C, 4 min at 60°C for  (+1°C/cycle). Pre-

amplification PCR products were diluted 1:3 in 2 mM Tris. High-throughput genotyping was 

then performed on 96.96 Dynamic Arrays (Fluidigm Corporation), which use nanofluidic 

circuitry to simultaneously genotype up to 96 samples with 96 assays. The preamplified 

samples were mixed with 1.25 L of 40X TaqMan SNP assay (Applied Biosystems), 2.5 L 

of 2X Assay loading reagent (Fluidigm Corporation), 0.25 L of 50X ROX (Fluidigm 

Corporation) and 1 L of ddH2O. The 10x SNP assays preparation consisted of 2.1 L of pre-

amplified DNA, 2.5 L of TaqMan Universal Master Mix (Applied Biosystems Inc.), 0.25 

L of 20X GT Sample loading reagent (Fluidigm Corporation), 0.05 L of AmpliTaq Gold 

DNA polymerase (Applied Biosystems Inc.), and 0.10 L of ddH2O. All thermal cycling and 

imaging was performed per the manufacturers‟ recommendations. Genotypes were then 

called using the Fluidigm SNP Genotyping Analysis Software. 

Data Analysis 

Lake Taupo samples were treated as a single population because previous analyses 

showed no significant genetic differentiation between sites (ERH unpublished data). Fifty 

Lake Taupo individuals were randomly chosen to represent the combined, introduced 

population. Departures from Hardy-Weinberg (HWE) and gametic phase equilibria were 

examined using GENEPOP on the web (Raymond and Rousset 1995). Comparisons were 

considered significant if P < 0.05 after a sequential Bonferroni correction (Holm 1979). 

Pairwise FST and expected heterozygosity were calculated using FSTAT 2.9.3 (Goudet 1995). 

Allelic richness was calculated using HP-RARE V1.0 (Kalinowski 2005), which uses a 

rarefaction method to account for different sample sizes. An exact binomial test was used to 
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compare differences in expected heterozygosity and allelic richness between Californian and 

Lake Taupo populations. 

The distribution of allele frequencies for all microsatellite markers in the Californian 

populations and Lake Taupo was graphically represented, as this can be useful to detect 

bottlenecks by evaluating whether there has been a reduction in the proportion of rare alleles 

in the founded population (Luikart et al. 1998b). In addition, assuming a single-source 

scenario in which all of the loss in heterozygosity occurred in the first post-bottleneck 

generation (Kalinowski et al. 2010), the effective number of founders was estimated by 

comparing mean HE in putative source populations and Lake Taupo with the equation: 

HTAUPO = (1 – 1/2Nf) HSOURCE where Nf is the effective number of founders (Allendorf and 

Luikart 2007, Eq. 6.6). The estimate of Nf was used to calculate the frequency threshold at 

which there would be a 5% binomial probability of failing to detect alleles from the source 

population in Lake Taupo, assuming the loss of alleles strictly occurred during the founding 

event. This calculation was applied to both marker types, but for SNPs the expected 

heterozygosity was higher in Lake Taupo than some of the sources. 

Principal components analysis (PCA) based on allele frequencies was used to 

examine population differentiation and was performed using MINITAB 13 (Minitab Inc., State 

College, PA, U.S.A.). One allele at each locus was excluded to account for non-independence 

among alleles within loci for microsatellites and SNPs, and the PCA was done on a 

covariance matrix. 

Of the 93 SNPs that were analysed, many of the Californian populations had one or 

more SNPs which were fixed for one genotype (e.g. AA). To investigate which Californian 

populations might be sources for the Lake Taupo population, SNPs fixed in Californian 

populations were compared to data from Lake Taupo trout. The pattern of genetic 

differentiation between populations at SNPs and microsatellites, as measured by FST,, was 

compared using a Mantel test in the vegan package (1994) for R 2.10.0 (R Foundation for 

Statistical Computing, Vienna). An FST outlier analysis of the SNP loci in Californian 

populations was done using BAYESCAN (Foll and Gaggiotti 2008). 
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Simulations 

In order to compare the efficiency of microsatellite and SNP markers to accurately 

detect the true source of the New Zealand population, bottleneck simulations were performed 

under various scenarios. Allele frequencies from one Californian population (microsatellite 

and SNP data) were used to generate a starting population of 10 and 50 founders in 

BOTTLESIM 2.6. Only the results of 10 founders are shown as this is the most conservative 

estimate of the two, and a single source is even more easily identifiable with a 50-founder 

scenario. Random mating was assumed, with longevity set at five years and individuals 

reaching sexual maturity at two years (mark-recapture experiments during the 1980‟s indicate 

that about 70% of Taupo rainbow trout return as 3 year olds; Department of Conservation, 

unpublished data). The simulated population was allowed to grow every year until it reached 

5000 individuals after 70 years (increasing by five individuals every year until it reached 50, 

then by 50 individuals every year until it reached 1000, and then by 100 individuals every 

year until it reached a maximum size of 5000 individuals at 70 years, and was maintained at 

that size for another 30 years (100 years total). This process was repeated 1000 times; for 

each replicate, the simulated genotype data option of BOTTLESIM was chosen and genotypes 

from 50 individuals were randomly selected from the resulting population. Batch files 

containing these data and the observed data from the source and all other California 

populations were then created to compare FST values between simulated data and observed 

populations in ARLEQUIN 3.5 (Excoffier et al. 2005) . For simulated data, 95% confidence 

intervals (CIs) for mean FST values were obtained by discarding the lowest and highest 25 

values (2.5%) for each set of simulations. For the observed data from the Lake Taupo and 10 

Californian populations, 95% CIs were computed by bootstrapping loci 1000 times. 

Additional simulations were performed by using the genotype data of two (either two inland 

populations or one inland and one coastal population) and three different Californian 

populations as sources in order to evaluate introduction scenarios from multiple sources (with 

20 total founders for all scenarios involving more than one source population). Simulation 

results for microsatellites were also recoded so that all but the most frequent allele at each 

locus were pooled (following McDonald 1994), to investigate whether differences in FST 

between SNPs and microsatellites could be attributed to differences in polymorphism. 

Functions to convert data to and from BOTTLESIM format, to subsample individuals within 

simulated datasets, to combine simulated data with empirical data, and to create ARLEQUIN 

batch files are available in the R package PopGenKit (Rioux Paquette 2011). 
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2.3 Results  

Genetic variation within populations 

Overall, neither the microsatellites nor SNPs had substantial significant departures 

from Hardy-Weinberg proportions or gametic disequilibrium. No locus had more than four 

significant HWE comparisons and the significant gametic disequilibrium comparisons were 

spread across all microsatellite and SNP loci, and populations, indicating that the significant 

results were likely the result of type-1 error due to the overall number of comparisons made. 

The Lake Taupo sample had one allele fixed at microsatellite OtsG409 and therefore the Lake 

Taupo data at that locus were not included in these comparisons. The Lake Taupo population 

was also fixed for seven SNP markers, McCloud was fixed for six markers, Russian and 

Klamath for two each, and Miller and Tuolumne for one each. 

An FST outlier analysis in Californian populations indicated that eight SNPs were 

candidates for selection, five for positive selection and three for balancing selection (P = 

0.99). 

Lake Taupo trout had significantly lower allelic richness and heterozygosity at 10 of 

the 15 microsatellite loci (P < 0.05; Table 2.1) and a lower proportion of rare alleles than 

McCloud River (24 %; Figure 2.2), but no mode shift was detected. At the 93 SNP loci Lake 

Taupo trout did not have significantly different heterozygosity, but did have more fixed loci 

than any Californian population (Table 2.1). 

Genetic variation between populations 

The Lake Taupo population was significantly differentiated from all Californian 

populations at all genetic loci used in this study, with a range of Lake Taupo-California 

pairwise FST between 0.137 - 0.188 for SNPs and microsatellites combined (Table 2.2). FST 

values overall were higher at SNP markers than microsatellites with a range of Lake Taupo-

California pairwise FST between 0.137 - 0.211, as compared to 0.087 -0.160 for microsatellite 

markers (Table 2.3). There was a strong correlation between FST values derived from both 

types of markers, as revealed by a Mantel test (r = 0.556, P < 0.001; Figure 2.2). 



Chapter 2 The origins of New Zealand rainbow trout 

22 

 

Table 2.1. Sample size (n), expected heterozygosity (HE) and allelic richness (Ar) for 
Lake Taupo, New Zealand and California, USA populations computed from 15 

microsatellite loci and expected heterozygosity.  

  microsatellites  SNPs  All 

Population n HE Ar  n HE Ar  n HE 

Taupo 50 0.606 5.23  66 0.330 1.91  42 0.369 
           

Almanor  53 0.686 9.34  52 0.314 1.97  52 0.366 

American 60 0.702 8.77  60 0.380 2.00  60 0.425 

Eel 63 0.703 8.88  32 0.336 1.96  32 0.387 

Gualala 64 0.691 8.29  32 0.384 1.99  32 0.427 

Klamath 71 0.700 8.88  72 0.303 1.96  72 0.359 

Lagunitas 61 0.705 9.50  61 0.377 2.00  61 0.423 

McCloud 54 0.635 7.15  38 0.319 1.92  38 0.363 

Miller 69 0.667 7.33  62 0.361 1.98  62 0.404 

Russian 62 0.646 7.00  64 0.369 1.97  64 0.408 

Tuolumne  47 0.684 8.62  47 0.325 1.98  47 0.375 

Total 

California 653 0.682 11  586 0.347 2.00 

 

562 0.394 

   

The greatest pairwise FST values were between Lake Taupo and Klamath River 

(0.194), followed by Lake Taupo and Russian River (0.186), while the lowest values were 

between Lake Taupo and Gualala (0.138), American (0.139) and McCloud (0.141) rivers. 

Based on the 5% difference in HE between the McCloud River and Lake Taupo at 

microsatellites, the estimated number of Lake Taupo founders was 10 individuals, which 

translates into a 0.05 probability of missing alleles with frequencies of 26% in McCloud; 

OtsG43, the 153 bp allele is present at 42% in McCloud and 0% in Lake Taupo (Figure 2.3). 

The most common allele at that locus in Lake Taupo is the 165 bp (at 53%), which is present 

at 23% in Lake Almanor, 3% in McCloud River, and 29% in Miller Creek (the coastal 

Creek). The same analysis in other putative sources also showed the same pattern of presence 

of common alleles in potential progenitor populations that were not present in Lake Taupo 

(data not shown). 
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Figure 2.2. Allele frequency distribution for Lake Taupo, Lake Almanor, and the 

McCloud River rainbow trout populations, calculated from 15 microsatellite loci. The 
number under each set of bars is the median of that allele frequency class, with the 

number of fixed alleles shown in class “1”. 

 

 

Figure 2.3. A plot of the allele frequencies for all alleles in the Lake Taupo and McCloud 

River populations at 15 microsatellite loci. If McCloud is the sole source, there is less 
than a 5% chance of missing an allele present at 14% in the McCloud River during the 

founding event (denoted by the arrow on the x axis). 
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Figure 2.4. A plot of microsatellite and SNP pairwise FST values for the Lake Taupo and 

ten Californian populations. 

 

 

Figure 2.5. A principal component analysis (PCA) computed from 15 microsatellite loci 

and 93 SNP loci for Lake Taupo and ten Californian populations. 
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In all ten Californian populations, except Lagunitas Creek and American River, there 

was at least one of the 93 SNPs that was fixed in that Californian population but not fixed in 

the Lake Taupo population. A PCA of both the combined SNP and microsatellite data sets 

showed differentiation along PC axis 1 of coastal and inland Californian populations, with 

Lake Taupo most closely clustering with inland populations (Figure 2.5). 

Simulations 

Bottleneck simulations from the empirical data suggest that even with only 10 

founders, both the microsatellite and the SNP markers would reliably detect the real source if 

the introduction was from a single source, regardless of the population chosen as the actual 

source (Figure 2.6a). Therefore, only results from simulations carried out with McCloud are 

presented. For both types of markers, the real source had the lowest FST in all replicates, and 

the mean difference in FST between the real source and the second closest population was 

0.114 for SNPs (95% CI = 0.078 – 0.155) and 0.085 for microsatellites (95% CI = 0.047 – 

0.135). In the observed results (for microsatellites and SNPs, Table 2.2 and Figure 2.6e ), the 

difference in FST between the Lake Taupo and nine of the 10 Californian populations was 

smaller than the lower boundary of the 95% CI calculated from single-source simulations, 

suggesting that more than a single population contributed to the Lake Taupo population. For 

the scenario involving two inland populations (McCloud River and Lake Almanor; Figure 

2.6b), 98.4% (microsatellites) and 94.4% (SNPs) of replicates correctly identified the two 

sources with the two lowest FST values. However, the difference between the FST values of 

sources and those from other populations was smaller than for single-source simulations. On 

the other hand, when one coastal and one inland population were involved (McCloud River 

and Miller Creek; Figure 2.6c), results were considerably different: the two correct sources 

were identified in 73.6% of replicates for microsatellites, but only 0.8% for SNPs. The 

coastal population of origin was mostly identified correctly (83.4% of replicates) but not the 

inland population of origin (5.8%). When a third coastal population was added as a source 

(Miller Creek, Figure 2.6d), the lowest FST values were also spread among the correct and 

incorrect sources. For microsatellites, the three lowest FST values were with the actual 

sources in 69.6% of replicates, but never for the SNP data, mostly because the American 

River population had the smallest FST value in 95% of replicates. Interestingly, the American 

River population also exhibited a lower observed FST than putative source populations 

(McCloud River, Lake Almanor, and Miller Creek). Correlations between FST values from 
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the empirical data and those from simulations were 0.27 (SNPs) and 0.68 (microsatellites) for 

the single-source scenario; 0.07 (SNPs) and 0.86 (microsatellites) for the scenario with two 

inland sources; 0.58 (SNPs) and 0.73 (microsatellites) for the scenario with one coastal and 

one inland source; and 0.61 (SNPs) and 0.91 (microsatellites) for the three-source scenario. 

Across all simulations, estimated FST values from pseudo-biallelic microsatellite data were 

generally intermediate between the values for SNPs and microsatellites, but the variance in 

FST was much greater, as illustrated by wider CIs, even for the observed results (Fig 2.6e). 

Finally, additional simulations with 50 founders showed that the difference between FST 

values from real sources and those from other Californian populations increased with the 

number of founders (results not shown). 
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Figure 2.6. Mean FST values calculated between 1000 simulated introduced 

populations and ten Californian rainbow trout when one  population (A), two 
inland populations (B), one coastal and one inland populations (C), and three 

Californian populations (D) contributed to the introduction, in comparison with the 

empirical data (E). For A-D, the populations used as sources at the start of 

simulations are underlined. Results are indicated for SNP markers (SNPs), 
microsatellite markers (mSATs) and microsatellite markers recoded as biallelic 

markers (mSATsBi). Error bars for simulations represent 95% confidence intervals 

obtained by eliminating the top and bottom 2.5% replicates for each population. 

For the empirical data, 95% CIs were computed by bootstrapping loci 1000 times.  

2.4 Discussion 

What pattern of introduction do the data support? 

The results from both microsatellite and SNP data strongly suggest that Lake Taupo 

has experienced multiple rainbow trout introductions from more than one source, so the null 
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hypothesis is rejected, that the McCloud River was the single source. Historical records have 

suggested that the McCloud River, Lake Almanor, the Russian River, and a San Francisco 

Bay creek are all the possible source populations for the Lake Taupo introduction. Based 

upon microsatellite allele frequencies, Lake Almanor and McCloud River are the most 

similar to Lake Taupo, and Russian River the most differentiated of all the Californian 

population used for comparison. There are, however, some common McCloud River alleles, 

which are not present in Lake Taupo trout, one of which is statistically significant. This 

absence of common alleles is indicative of multiple introductions, since one would expect an 

introduced population to contain the most common alleles from its source. At the SNP 

markers, only two California populations, Lagunitas Creek and American River, were 

polymorphic for all markers that were also polymorphic in the Lake Taupo population. 

Therefore these would be identified as source populations if Lake Taupo only contains 

polymorphisms introduced from source populations and there have been no recent mutations, 

and if there have been no alleles in the source populations lost either because of drift or 

selection, both of which are unlikely to be true. These populations, however, are not sources 

reported in historical records. The historical records also argue against a single source, and 

are consistent with the genetic evidence that multiple introductions have contributed to a 

mixed stock in Lake Taupo. The Lake Taupo population also has lower expected 

heterozygosity at the SNP markers than several of the putative source populations, which one 

would not expect after an introduction founder event; this also likely reflects a mixed origin. 

Overall it can be concluded from the combined evidence that multiple source populations 

likely contributed to the rainbow trout population in Lake Taupo, New Zealand. 

Although Scott et al. (1978) suggest that New Zealand rainbow trout originated from 

a Sonoma Creek coastal population, there is little genetic evidence to corroborate their 

assertion. Acclimatisation records show that multiple source populations contributed to the 

Lake Taupo founding, but it is possible that the translocations from particular sources, like 

the McCloud River, made the greatest genetic contribution to the introduction. A PCA 

analysis of data from both marker types showed that Lake Taupo most closely clustered with 

inland Californian populations rather than coastal populations. Our simulations showed that, 

had there been a single source, then the expectation would be to find a significantly lower FST 

value when comparing that source to the Lake Taupo population than for any pairwise 

comparison to another Californian population. This pattern was not found with either the 

observed SNP or microsatellite data, as multiple Californian populations had similar FST 
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values to Lake Taupo. Alternatively, the most common alleles in these populations could 

have become more prominent in Lake Taupo through strong drift or selection. Because there 

were likely multiple introductions, the data are inconclusive in determining which 

populations were sources for the Lake Taupo introductions. 

Previous studies showed that introduced rainbow trout tend to lose some rare alleles, 

but maintain much of their original genetic diversity (Quinn et al. 1996). Lake Taupo 

rainbow trout, however, have significantly lower allelic richness and heterozygosity, 

proportionally fewer rare alleles, and more fixed SNP loci than Californian populations. 

Bottlenecks are known to substantially reduce genetic diversity and change allele frequency 

distributions (England et al. 2003; Frankham 2005; Smith et al. 2005). In some cases the loss 

of genetic diversity can be counteracted by high propagule pressure, as happens when there 

are multiple introductions or a large number of founding individuals (Allendorf and 

Lundquist 2003; Roman and Darling 2007). Multiple introductions from diverse sources can 

lead to a population that is more genetically diverse than the individual source population, as 

has happened in Anolis lizards in Florida (Kolbe et al. 2004). A diverse genetic background 

from multiple founding populations may have helped trout more successfully adapt to their 

new habitat in Lake Taupo because of greater genetic diversity than was contained within 

their individual founding populations (Ellstrand and Schierenbeck 2000; Mooney and Cleland 

2001). Nevertheless, New Zealand trout still show signs of a founder effect, as do introduced 

Chinook salmon (Quinn et al. 1996). This indicates that the propagule pressure was not high 

enough to counteract the loss of genetic diversity due to the founding bottleneck. Despite this, 

both salmonids are examples of genetically depauperate colonial populations succeeding 

despite the potentially deleterious effects of introduction. 

What genetic patterns would be expected for different introduction scenarios? 

The simulation results for both marker types suggest that a single-source scenario is 

unlikely for the introduction of rainbow trout into Lake Taupo, New Zealand. A clear pattern 

can be expected to emerge with both microsatellites and SNPs if only one population 

contributed to the introduction into Lake Taupo, with the source population exhibiting 

significantly lower differentiation for the two marker types when compared to non-source 

populations. When two inland sources are taken into consideration, the signal weakens, and 

can completely disappear when there are more than two source populations, particularly with 



Chapter 2 The origins of New Zealand rainbow trout 

32 

the addition of a coastal population, which makes discerning the true source purely from 

pairwise FST comparisons untenable. However, the situation is more complicated than 

simulations can show. While these analyses assume that the current genetic composition of 

Californian populations reflects their historical composition (at the time of the exports to 

New Zealand), hatchery stocking and anthropogenic alterations of the river drainages have 

modified the genetic signature of all salmonid populations in California, including the 

putative sources (Pearse and Garza 2008; Pearse et al. 2011). Finally, the only evolutionary 

force considered in the simulations is drift, but it is possible that selection may also affect 

some loci, particularly those eight SNP loci identified by the outlier analysis as candidates for 

selection. 

Do SNP markers and microsatellites provide comparable results? 

The SNP and microsatellite markers used in this study provided comparable genetic 

results, and both marker types provided consistent findings on the origins of Lake Taupo 

trout. FST values were significantly higher at SNP loci than at microsatellites, but this is at 

least in part attributable to differences in polymorphism. Indeed, when the microsatellite data 

were recoded to biallelic data (Figure 2.6), FST values were intermediate or even higher than 

those from SNPs. Overall, the SNP and microsatellite loci showed similar patterns of 

divergence between populations, which indicates that SNPs and microsatellites provide 

similar information, even when some of the loci do not reflect purely neutral processes, and is 

consistent with the findings of other comparative studies (Narum et al. 2008; Glover et al. 

2010). However SNP data are more easily combined between labs than microsatellite data, 

and have lower genotyping error and mutation rates, which are very useful when either trying 

to identify the source population of an introduced species or understanding evolutionary 

change since introduction. For these reasons SNPs are preferable to microsatellites when 

choosing markers for introduction studies, although one needs to take into account the 

smaller mean number of alleles and consequent need for more SNP loci for similar statistical 

power. As SNP discovery and SNP typing methods become increasingly available to those 

studying non-model species, they will become the marker of choice for population genetic 

study of introduced and invasive species. 
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Conclusions 

While it was not possible to definitively identify the source populations of Lake 

Taupo rainbow trout, the data and analyses presented here indicate that is most likely that 

McCloud River and Lake Almanor (Feather River) are the primary contributors, although a 

coastal population may have contributed as well. Our simulations show that a multiple source 

population scenario reduces pairwise FST values for non-source population comparisons and 

makes the determination of the true source difficult. We also found that SNPs and 

microsatellites produce comparable results. However, the ability to easily combine SNP data 

between labs, coupled with their greater stability and higher genotyping throughput, will 

probably make them a preferable genetic marker for tracing the history and spread of 

introductions and biological invasions. 

Ultimately studies like this give insight into how species will respond to new 

environments by studying populations that have been introduced into novel environments. As 

Behnke (2002) observed, understanding the true sources is also important for understanding 

life history characteristics: in the case of Patagonian rainbow trout, the assumption of a 

McCloud River sole source could have led to the claim of re-evolved anadromy (Pascual et 

al. 2001) when, in fact, the trout were expressing a trait they inherited from another ocean-

going source. By understanding the population genetic changes that many introduced 

populations undergo to persist in their new environments, researchers and managers can 

better anticipate populations‟ response to changing conditions and design management 

actions to better mitigate potential negative outcomes. 

 

 

 

 

 

 

 

 



Chapter 2 The origins of New Zealand rainbow trout 

34 

 

 



 

 

CHAPTER 3 

Population genetic structure of the rainbow trout in Lake 

Taupo, New Zealand 

 

3.1 Introduction 

Freshwater fish populations often have high interpopulation genetic differentiation 

since connectivity between rivers and lakes is restricted, which limits the size of 

subpopulations (Ward et al. 1994).  Due to the geographic constraints to migration, 

freshwater populations tend to have a lower level of overall genetic variation, evidenced by 

both lower heterozygosity and number of alleles per locus (DeWoody and Avise 2000; 

McCusker and Bentzen 2010). The lower effective population sizes of freshwater fishes 

relative to marine populations, which are estimated to be almost 10-fold higher, are partially 

attributable to this lower genetic variation (DeWoody and Avise 2000). One would expect 

that low genetic variation of freshwater fishes would be disadvantageous (e.g., fewer genetic 

potential for adaptation to new environmental conditions) when they are introduced to new 

environments. Approximately 63% of freshwater fish introductions worldwide are successful 

(Ruesink 2005), indicating that the majority of introductions are successful in spite of the 

limiting factors. 

The genetic variation of introduced populations largely depends on the conditions and 

composition of the introduction. If new populations are established from a small number of 

individuals and source populations, they typically have low within population genetic 

variation due to the effects of genetic drift during the founder event. Many rainbow trout 

(Oncorhynchus mykiss) introductions, however, have occurred from multiple sources.  For 

instance, a study of rainbow trout from Lake Ontario utilizing microsatellite markers found 

highly significant levels of differentiation between populations in the lake (O'Connell et al. 

1997).  A similar allozyme study of rainbow trout populations in Lake Superior showed 

genetic differentiation between tributaries, although at a lesser extent than what is  seen in the 

species‟ native range on the West Coast of North America (Krueger and May 1987). Previous 
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allozyme based studies of New Zealand trout showed no interpopulation genetic variation 

throughout the Central North Island; contrasting with known variation in physiology and 

morphology between populations (Snowdon and Adam 1992) and known physical barriers to 

migration such as dams and waterfalls.  In fact, no published population genetic studies 

utilizing hyper-variable microsatellite markers have been performed on New Zealand 

rainbow trout. Relative to allozyme markers the more variable microsatellite DNA loci can 

permit greater resolution of population genetic variation (Sanchez et al. 1996)  

Rainbow trout were first introduced from California to Lake Taupo in the late 1800‟s, 

and subsequent introductions occurred well into the early 1900‟s (Scott et al. 1978). Rainbow 

trout introductions were carried out for recreational and commercial purposes, and 

established an economically important fly fishing industry (Scrimgeour and Oxley 2001). 

Formed by the calderas of two volcanoes, Lake Taupo is the largest lake in New Zealand 

having an average depth of 100 meters and a surface area of 616 km
2
 (Figure 3.1).  Huka 

Falls at the lake outlet forms an impassable barrier to fish migration.  The Tongariro River is 

the major tributary, although there are at least eleven rivers and streams which are part of the 

Lake Taupo catchment. Hinemaiaia River is a high-flow tributary with controlled flow due to 

two hydroelectric dams.  The Waimarino River, however, is a natural flow river, with 

seasonal variation in flow and overall lower stream temperatures.  The observed 

morphological and physiological differences between trout from the tributaries of Lake 

Taupo may be due to the different hydrological conditions experienced by populations living 

in these rivers.  In these heterogeneous environments one might expect that introduced trout 

would have adapted to their particular spawning stream, resulting in genetic differentiation 

between streams, especially given salmonids potentially rapid rate of local adaptation (Fraser 

et al. 2011). In their native range there are numerous examples of salmonids harbouring local 

adaptations on small geographic scales (Taylor 1991). Even when introduced to new 

environments, salmonids can show evidence of local adaptation in as few as six generations 

(Fraser et al. 2011). Chinook salmon (Oncorhynchus tshawtyscha) showed significant genetic 

differentiation from their source populations within 30 generations of introduction (Kinnison 

et al. 2002). 

It is important to understand whether the spawning populations of different tributaries 

are genetically differentiated from each other, both to understand the population genetics of 
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introduced species and, more practically, to be able to manage fisheries.  In this study I used 

microsatellite markers to determine the levels of genetic variation and structure within rivers 

and among rivers in the Lake Taupo catchment. The null hypothesis was that no statistical 

differences will be observed in population genetic variation based on geography among 

tributaries (i.e. panmixia throughout the catchment).   

3.2 Materials and Methods 

Sample collection and genetic methods 

Rainbow trout were captured at ten locations throughout the Lake Taupo catchment in 

New Zealand by the Department of Conservation from August 2006 to March 2009 at stream 

traps, by angling, or with electrofishing (Figure 3.1; Table 3.2).  Individuals were collected in 

Rotorua, approximately 80 km northeast of Lake Taupo, at Lake Tarawera in 2009 by 

Department of Fish and Game staff at a stream trap. Fin clips were taken and stored in 95% 

ethanol at 4°C until DNA extraction was performed. 

Genomic DNA was extracted from fin clips using proteinase K digestion, proteins 

were then salted out, and the remaining pellet was subjected to two ethanol washes and 

resuspended in TE buffer.  Some samples were also extracted using either a phenol-

chloroform method (Current Protocols in Molecular Biology, 1996), or ZyGEM kits 

(ZyGEM Corporation) following the manufacturer‟s directions.  DNA concentration was 

quantified using a spectrophotometer which examined absorbance at 280 nm (NanoDrop™ 

ND-1000, Thermo Scientific). 

All individuals were genotyped at the following 19 microsatellite loci: Oki23 

(McClelland and Naish 2007), Oke4 (Buchholz et al. 2001), Oneu18, One14 (Scribner et al. 

1996), One102 (Olsen et al. 2000), Ssa289 (McConnell et al. 1995), Ssa407, Ssa408 (Cairney 

et al. 2000), Ssa20.19 (Sanchez et al. 1996), Ots4 (Banks et al. 1999), Ots100 (Nelson and 

Beacham 1999), Omy7 (K. Gharbi and R. Guyomard, INRA), Ogo4 (Olsen et al. 1998), 

OMM1046, OMM1036 (Rexroad et al. 2002), Omy1011, Omy1001 (Spies et al. 2005), 

Ots3M (Greig and Banks 1999), OmyFGT12-TUF (Sakamoto 1996).  Polymerase chain 

reaction (PCR) assays to amplify microsatellite alleles were performed using the protocols 
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developed by the SPAN loci standardization group (Stephenson et al. 2009) and Dr. Megan 

McPhee (University of Alaska Fairbanks), using four different multiplexed PCRs (Table 3.1). 

All DNA was amplified in a 5 µl reaction containing 2.5 µl of QIAGEN PCR master mix 

(QIAGEN Inc.), the specified concentration of primers per multiplex (Table 3.1), 1.5 µl of 

genomic DNA, and double distilled water where needed. The PCR profile consisted of an 

initial denaturation time of 15 minutes at 95ºC followed by 28 cycles of 30 seconds at 94ºC, 1 

minute 30 seconds at multiplex-specific annealing temperature (Table 3.1), and 1 minute at 

72ºC.  This was followed by an extension at 60ºC. PCR products were electrophoresed on an 

ABI 3730 and alleles were scored using GeneMapper (ABI).  Raw genotype data was binned 

into size ranges using the program tandem (Matschiner and Salzburger 2009). Three loci, 

Oki23, Ots4 and Ogo4, were excluded from further analysis due to a high percentage of 

missing data. Therefore 16 loci were used for subsequent analysis. 

Table 3.1. Microsatellite loci, fluorescent dye label used for visualization, PCR 

multiplex, annealing temperature and PCR concentration in a 5 µl reaction for 19 

markers used in this study. 

locus 

dye 

label multiplex 

annealing 

temp 

(ºC) 

PCR 

concentration 

(mM) 

Oki23 FAM A 51 0.03 

Oke4 FAM A 51 0.20 

One14 VIC A 51 0.30 

Ssa289 NED A 51 0.10 

Ssa408 PET A 51 0.20 

Ots4 FAM B 57 0.40 

Omy7 FAM B 57 0.20 

Ogo4 VIC B 57 0.20 

One102 VIC B 57 0.15 

OMM1046 NED B 57 0.15 

Ssa407 PET B 57 0.40 

Ots100 FAM C 57 0.30 

Omy1011 VIC C 57 0.16 

Omy1001 NED C 57 0.16 

Ots3m NED C 57 0.20 

OMM1036 PET C 57 0.16 

OmyFGT12TUF-F PET D 57 0.20 

Oneu18 NED D 57 0.20 

Ssa20.19 FAM D 57 0.20 
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Genetic variation 

Conformance to Hardy-Weinberg equilibrium (HWE) and the presence of gametic 

disequilibrium were evaluated using GENEPOP on the web (Raymond and Rousset 

1995). Estimation of exact P-values for a HWE probability test were calculated using the 

Markov chain method, with 1000 dememorizations, 100 batches, and 1000 interations per 

batch.  Locus by locus pair-wise tests for gametic disequilibrium also utilized 1000 

dememorizations, 100 batches, and 1000 iterations per batch. Comparisons were considered 

significant if P < 0.05 with a sequential Bonferroni correction (Holm 1979).  The presence of 

null alleles and large allele drop-out was assessed using the program MICROCHECKER (Van 

Oosterhout et al. 2004).  Missing data was omitted from the analysis, and a 95% confidence 

interval was used with 1000 replications. 

To determine whether sampling sufficiently represented allelic variation, allelic 

discovery curves were computed using a custom function in R (R development Core Team 

2005).  One thousand replicates of the data set were jackknifed, using an interval of one.  If 

the allele discovery curve approaches an asymptote, it indicates that the number of samples 

were sufficient to represent the allelic diversity of the populations.  For this analysis all 

populations‟ data were combined. 

Pairwise FIS, FST, and expected heterozygosity were calculated using FSTAT 2.9.3 

(Goudet 1995).  Allelic richness was calculated using HP-RARE V1.0 (Kalinowski 2005), 

which uses a rarefaction method to correct for differing sample sizes, with the smallest 

sample size used for calculation being N = 12.  An exact binomial test was used to compare 

differences in expected heterozygosity and allelic richness. A principal components analysis 

was performed in GenAlEx (Peakall and Smouse 2006) in order to examine the variation 

between populations. 

Spatial genetic structure 

Geographic distance between sampling sites was estimated based on the distance by 

water (also known as streamwise distance). Geographic and genetic distances were compared 
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using a mantel test implemented in the sub-routine ISOLDE of GENEPOP on the web (Raymond 

and Rousset 1995), which tests for the statistical relation of two distance matrices. 

An FST outlier analysis of the microsatellite loci in all populations was done using 

LOSITAN (Antao et al. 2008; Foll and Gaggiotti 2008).  Average neutral FST was 

approximated by removing loci potentially under selection and the “force mean FST” option 

was used to increase the reliability of mean FST by running a bisection algorithm over 

repeated simulations. Ten thousand simulations were run using an infinite alleles model and a 

sample size of 50. Significant outliers were determined using a 0.95 confidence interval. 

Population genetic structure between populations was evaluated using the program 

STRUCTURE, in which K subpopulations are characterized by allele frequencies at each locus 

being in HWE and not in gametic disequlibrium. (Pritchard et al. 2000). Ten iterations were 

performed for each value of K, for values of K from 1 to 15.  For each Monte Carlo Markov 

Chain iteration, a burn in of 10,000 replicates and run of 100,000 replicates of the MCMC 

chain were performed.  The optimal value of K was assessed both by the Evanno method 

(Evanno et al. 2005) as well as by assessing the largest log likelihood (App. Figure 3.2). 

Effective population size for Taupo with all populations pooled was calculated using 

LDNe (Waples and Do 2008), which estimates effective population size based on linkage 

disequilibrium data, and estimates are subsequently jackknifed to obtain confidence intervals. 

The program BOTTLENECK was used to test for recent population bottlenecks (Piry et al. 

1999); departure from mutation drift equilibrium is tested by assessing heterozygosity excess 

or deficiency, assuming data were collected from neutral loci and that populations are 

experiencing mutation-drift equilibrium. This program was also used to test for a mode shift 

(Luikart et al. 1998a), an absence of low frequency alleles in a population which can indicate 

recent genetic bottlenecks. Variance for the two phase mutation model (TPM) was set at 30, 

with the proportion of the step-wise mutation model (SMM) in TPM set at 70%. 1000 

iterations were performed for each population. 
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Figure 3.1. Map of ten sampling locations for rainbow trout around Lake Taupo, New 

Zealand. Sampling sites are named according to the tributary they are located on. 

Rotorua samples were collected approximately 80 km northeast of Huka Dam at the 

Tarawera trap. 
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3.3 Results 

Genetic variation 

All 19 microsatellite loci were polymorphic. Our allelic richness curves indicate that 

sampling was significant to encompass the allelic variation in the lake overall (App. Figure 

3.1). MICROCHECKER detected some null alleles and allelic drop out;  null alleles may be 

present at Omy1001, Omy1011 in Hinemaiaia, Ssa408 and Ssa289 in Rotorua, Ssa408 in 

Tauranga-Taupo, Ssa408, Ots100 and One102 in Waiotaka, Ssa289 in Waimarino, One102 in 

Kuratau, One102, OmyFGT12, and Ssa289 in Waipa, Ssa408, Ssa289, Ssa407 and Ots100 in 

Waipakihi, and Oneu18 in Whangamata due to homozygote excess. Stutter error may be 

present at Ssa289 in Rotorua, although this is likely an artefact of the analysis since no other 

population showed the same result. Only the locus One14 showed a consistent pattern of 

departure from HWE. After a strict Bonferroni correction no gametic disequilibrium was 

observed. Because of extremely high FIS values (0.407 – 0.773, App. Table 3.1) and 

departure from HWE at 8 loci (P < 0.001), One14 was excluded from further analyses.  A 

total of 15 loci were used in the final analysis. Ots100 and OmyFGT12 were identified as 

candidates for positive selection, and Omm1046 was detected as a candidate for balancing 

selection as the result of an FST outlier analysis.   

Expected heterozygosity ranged from 0.722 to 0.764 in Lake Taupo, and these values 

were similar to HE in the Rotorua population (0.723, Table 3.2 and App. Table 3.1). 

Waimarino and Waiotaka had 10 and 11 private alleles respectively, while Whangamata had 

no private alleles; Rotorua was within the range of Taupo values with 8 private alleles.  

Although the Rotorua population had an allelic richness of 4.49 which was lower than any 

measured Taupo population (4.54 - 4.97), it was not significantly lower than the overall 

Taupo allelic richness of 4.90. 

Spatial genetic structure 

Pairwise comparisons indicated that all populations were not significantly different at 

the remaining panel of 15 microsatellite loci, and that FST was low when calculated over all 
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populations (FST = 0.022) (Table 3.3).  Pairwise FST values range widely, though, from 0.002 

(Kuratua-Hinemaiaiaa) to 0.083 (Rotorua-Waipakihi).  Overall theta is 0.022.  

There was a significant positive correlation between stream distance and genetic 

differentiation (r = 0.573, P = 0.029), however this correlation was no longer significant 

when Waipakihi was removed from the analysis (r = 0.195, P = 0.24) (Figure 3.3). The FCA 

shows that Taupo populations cluster together with the exception of Waipakihi and Rotorua 

(Figure 3.2). STRUCTURE analysis indicated, using the maximum log likelihood value that the 

number of clusters was most likely K=10, and utilizing the Evanno method (Evanno et al. 

2005) that the number of optimal clusters was likely with K= 4 or 15, which had the highest 

values of delta K (App. Figure 3.2).  Upon examination none of these values of K showed 

clear geographic population structuring (i.e. the assignment of the majority of a geographical 

population to one cluster). Only the Waipa population had greater than 95% proportional 

membership consistently assigned in all 10 iterations to one cluster when K = 4, all other 

populations were admixed between clusters. 

Seven populations were identified as departing from mutation-drift equilibrium using 

a Wilcoxon sign test (P < 0.001) in the program BOTTLENECK, these were Hinemaiaiaa, 

Kuratau, Tauranga-Taupo, Waiotaka, Whitikau, Waipa, and Waipakihi. However no 

population showed evidence of a mode shift when tested within the same program, with all 

populations exhibiting a classic, L-shaped distribution. 

Effective population size for all of Lake Taupo was calculated as 1309.5 with a 95% 

confidence limit between 850.4 and 2666.8, when 0.01 is the lowest allele frequency used 

with a random mating model.  This was the most reliable estimation, since other values of the 

lowest allele frequencies produced confidence intervals larger than the effective population 

size estimates. The variation in estimates is likely an effect of small sample size (Tallmon et 

al. 2004). 
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Table 3.2. Sample size, expected heterozygosity (HE), allelic richness (Ar), private alleles 

(PA), and inbreeding coefficient (FIS) in ten Lake Taupo and one Rotorua rainbow trout 
populations.  Allelic richness was calculated using rarefaction to account for the smallest 

sample size for a locus (N = 12). TT represents Tauranga Taupo. 

Population N Ar HE PA FIS 

Hinemaiaia  40 4.80 0.748 6 0.046 

Kuratua  46 4.70 0.747 3 0.010 

TT  48 4.56 0.758 2 0.015 

Waihukahuka  47 4.93 0.764 3 0.002 

Waimarino  33 4.83 0.763 10 0.015 

Waiotaka 30 4.97 0.750 11 0.156 

Waipa  50 4.78 0.750 3 0.032 

Waipakihi 20 4.63 0.722 7 0.114 

Whangamata 25 4.54 0.722 0 0.069 

Whitikau  39 4.96 0.766 7 -0.019 

Total Taupo 378 4.90 0.749 52 0.044 

      

Rotorua 43 4.49 0.723 8 0.035 

 

 

 

Figure 3.2. A factorial correspondence analysis of the genetic differentiation of ten 

riverine populations from Lake Taupo and one population from Rotorua based on allele 

frequencies from 14 microsatellites. 
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Figure 3.3. Comparison of geographic distance and Nei‟s genetic distance in Lake Taupo 
(solid line; P = 0.029) and within watersheds in the native steelhead range in British 

Columbia (dashed line; from Heath et al. 2001) and Taupo without the Waipakihi 

population (dashed and dotted line; P = 0.024). Data points shown are from Lake Taupo 

only. 

 

3.4 Discussion 

Genetic variation 

Throughout this study there was no observed pattern of significant genetic 

differentiation among Lake Taupo populations. While overall FST values ranged widely 

(0.002 to 0.083), populations generally did not have a large number of private alleles, nor did 

they show statistically significant differences in allele frequencies. Pairwise FST comparisons 

(Table 3.3) revealed Taupo populations to be genetically similar, although Waipaikihi and the 

Rotorua population did have relatively higher genetic distances when compared to all other 

populations.  These two populations were significantly differentiated because of their 

geographic isolation and lack of gene flow with Lake Taupo populations. Populations within 
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the Lake Taupo catchment, which are geographically connected, do not show signs of genetic 

differentiation. 

Lake Taupo has a different level of genetic variation compared to other populations of 

native and introduced rainbow trout that have been studied in other countries. The expected 

heterozygosity measured in Taupo is lower than that measured in Lake Ontario, another 

introduced population (0.785 to 0.952 LO, 0.722 to 0.766 Lake Taupo) and the allelic 

richness is significantly lower than what has been found in the anadromous ecomorph‟s 

native range in Alaska (5.68 to 10.89 Alaska, 4.56 to 4.90 Taupo) (McPhee pers. comm). The 

lower levels of allelic richness could be due to population bottlenecks in Lake Taupo, either 

as a result of the founder event during introduction, or from subsequent fluctuations in the 

lake‟s population size, and is a finding consistent with the results reported in Chapter 2. 

Demographic fluctuations can increase the strength of genetic drift, which eliminates some 

allele lineages and makes the population history difficult or impossible to ascertain from 

genetic data (Charlesworth et al. 2003). The Lake Taupo population is known to have 

undergone several population size contractions since its founding, although in spite of having 

a population size that fluctuates by a factor of four, the lowest population level was still 

greater than 50,000 individuals (M. Dedual, pers. comm.).    

The limited amount of population differentiation in Lake Taupo may be, in part, 

attributable to the movement of fish by various management agencies from the time that 

rainbow trout introductions began in the Lake Taupo catchment.  In the 1960‟s, 25,000 

juvenile rainbow trout were released in Lake Taupo from the Lake Tarawera site in Rotorua.  

In addition, ova were taken from Waiotaka River and Tokaanu River rainbow trout for the 

main fish hatchery in Rotorua (M. Dedual, pers. comm.). This may explain the finding that 

some of the Rotorua samples from Tarawera cluster with individuals from several of the Lake 

Taupo populations. Translocations will promote gene flow and quite possibly prevent 

population divergence. This anthropogenic form of dispersal could initially swamp out the 

development of locally adapted groups and limit the effects of natural selection; however, 

once the genetic influences of translocation have ceased, natural selection can have a large 

effect on introduced individuals (Stockwell et al. 2003).  
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The genetic divergence of the Lake Taupo and Rotorua populations could also be 

partly due to the influence of the hatchery programme on the genetic composition of Rotorua 

fish. For example, Rotorua fish might experience strong genetic drift each year as a relatively 

small number of broodstock are used, which is artificially driving the divergence of the 

Rotorua population from Lake Taupo, or the possibility of hatchery selection (intentional, 

unintentional or natural) acting on genes that are linked to all, or some, of the microsatellite 

loci. Another consideration is fisheries-induced evolution, which can alter population 

subdivision, cause levels of genetic variation to decline, and produce selective genetic 

changes. Exploitative selection has previously been implicated in life-history changes to fish 

populations within several generations (Fraser et al. 2011). It is difficult to determine whether 

there has been a specific selective force contributing to the recent shifts in the spawning 

behaviour of Lake Taupo trout. One of the microsatellite loci reported in this study 

(Omy12FGT-TUF), which was a candidate for positive selection, is known to be linked to a 

QTL associated with spawning time (Sakamoto et al. 1999). It is likely that spawning time, or 

some other nearby linked gene function, is under selection in Lake Taupo. 

Spatial genetic structure 

The strong genetic structuring of many freshwater fish populations has been attributed 

to several factors, including natural and artificial barriers to dispersal, habitat modification, 

homing behaviour and site fidelity, and in some cases fishing pressure (Duncan and 

Lockwood 2001). We did not detect either the discrete or isolation-by-distance types of 

population genetic structure within Lake Taupo. The only exceptions to this pattern were the 

genetically divergent Waipakihi and Rotorua populations, which are known to be physically 

separated (i.e. there are barriers to gene flow) from Lake Taupo, and it should also be noted 

that Rotorua has the additional influence of a hatchery management practise. Our findings 

were consistent with the result of the previous study conducted by Vonlanthen and Dedual 

(unpublished DoC report), which found that a population sampled at Te Whaiau in Lake 

Otamangakau was significantly different from Lake Taupo. Lake Otamangakau is also 

physically separated from Lake Taupo. Our study showed that based on the sites sampled, 

Lake Taupo currently fits the model of no distinct population structure and that there is gene 

flow among sites (Laikre et al. 2005; Waples and Gaggiotti 2006). It is difficult to determine 

the specific amount of migration among sites, but if gene flow were low then it would not 
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preclude the possibility of local adaptations arising with a tributary system. The presence of 

private alleles in many populations, although they are at low frequency, indicated that there 

were some localised differences, albeit on a very small scale. Allelic measures of genetic 

structure are often more sensitive than measures of heterozygosity or F-statistics and this 

might be an early indicator of site specific changes in genetic variation (Allendorf 1986). 

There are other confounding factors for determining the demographic structure of 

Lake Taupo rainbow trout. The size of the lake is considerably smaller than lakes studied in 

other countries, which have shown higher levels of genetic differentiation. For instance, Lake 

Ontario is 19,529 km² as compared to Taupo‟s 616 km
2
, and Lake Ontario populations are 

genetically differentiated from each other (O'Connell et al. 1997). The larger habitat size 

could also explain the difference in estimates of effective population size, because Taupo 

trout have a much lower estimated Ne than Lake Ontario trout (Taupo Ne = 1310, Ontario Ne 

= 20,012).  The estimation of Ne assumes discrete generations and panmixia (Waples 1989), 

and the low sample size for some populations could well have biased the estimates of Ne. 

Defining a population or stock for management purposes is an important exercise for 

the proper management of a fishery, and molecular genetic tools offer an important resource 

for managers (Carvalho and Hauser 1994). While it can be conceptually complex to define a 

„management unit‟ (Waples and Gaggiotti 2006), the traditional stock concept has been 

refined in recent years to include population genetic structure. This more accurately reflects 

fish breeding units within a harvested area and more closely aligns the management unit to a 

self-sustaining and demographically independent biological group (Laikre et al. 2005). The 

loss of genetic diversity as a result of a reduced population size due to either natural or 

human-induced changes, could have a detrimental effect on a fishery population and make it 

more susceptible to harvest-induced evolutionary change (Jorgensen et al. 2007). Maintaining 

levels of genetic diversity and structure through good management practises is important for 

the long-term sustainability of a fishery. The general rule is that managing a panmictic stock 

as separate stocks is generally harmless, but it is risky to manage distinct genetic stocks as a 

single stock.  It is important to continue to monitor levels of genetic diversity and 

differentiation within the Lake Taupo rainbow trout population. 



Chapter 3 Population genetic structure of Lake Taupo rainbow trout 

50 

 

 

 

 



 

 

CHAPTER 4 

 

Lack of spatial variation but significant seasonal variation 

in OtsClock1b in Lake Taupo rainbow trout (Oncorhynchus 

mykiss) 

4.1 Introduction 

Life history patterns are highly diverse in salmonids (Quinn 2005).  The anadromous 

life history, multiple spawning runs and natal homing means that adaptation can occur at 

multiple life stages, including between “seasonal races”, or individuals which spawn in the 

same geographic location but at different times (Taylor 1991). This complexity of life 

histories likely evolved during periods of habitat fragmentation and divergence in isolation 

followed by expansion and hybridization due to the expansion and retreat of glaciers and sea-

level fluctuations on the Pacific coast of western North America (reviewed in Waples et al. 

2008). Aside from Chinook salmon (Oncorhynchus tshawytscha), ecotypes of Oncorhynchus 

mykiss (rainbow trout and steelhead salmon) show the most diverse array of life history 

strategies of all North American Pacific coast salmonids  (Waples et al. 2001; Quinn 2005). 

The key question is: how much of the observed variance in life history behaviour is 

attributable to genetic variation, and how much is phenotypic plasticity, which is defined as 

the expression of different phenotypes from the same genotype under different environmental 

conditions (Waples et al. 2004). The heritabilities of life-history traits among salmonids are 

often trait specific, and those heritabilities themselves may also be influenced by the quality 

of the environment (Carlson and Seamons 2008). Life history traits have generally lower 

heritability than morphological traits due to the increased selection and therefore lower 

genetic diversity associated with these traits (Mousseau and Roff 1987; Carlson and Williams 

1999). Despite these limitations, spawning time has been shown to have a strong genetic 

component (Gall and Huang 1988; Siitonen and Gall 1989; Danzmann et al. 1994). 
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Although spawning time is a polygenic trait which is still not widely understood, 

several copies of the Clock gene have recently been isolated and mapped in multiple 

salmonids (Paibomesai et al. 2010).  There are multiple copies of the Clock gene in many 

teleost fish due to genome duplication events, with different duplicates retained in different 

species (Wang 2008). In salmonids two copies were retained of Clock1, Clock1a and 

Clock1b, and one copy of Clock3 was retained (Paibomesai et al. 2010). Initially the Clock 

gene was mapped in rainbow trout to a QTL that is reported to have a large effect on 

spawning time, development, and maturation: segregation at this QTL accounted for 50% of 

the phenotypic variation in males and 20% in females (Leder et al. 2006)  This copy of the 

Clock gene was subsequently identified as OtsClock1a (Paibomesai et al. 2010).  Variation in 

the poly-Q region of this gene is of particular interest because it has been correlated with 

spawning time and  fitness traits in blue tit (Cyanistes caeruleus) (Johnsen et al. 2007), and 

acute modulation of circadian rhythms in mice (Mus musculus) (Vitaterna et al. 2006). No 

variation the OtsClock1a glutamine repeat (poly-Q region) has been found to date in Chinook 

salmon (Oncohynchus tshawytscha) (O'Malley and Banks 2008b) or rainbow trout (Chapter 

2); however an insertion-deletion polymorphism was found in this gene during its mapping 

(Leder et al. 2006), suggesting that variation in this gene might be outside the poly-Q area 

currently under investigation. In wild Chinook salmon populations on the west coast of North 

America, the pattern of OtsClock1b allele distribution corresponded to a latitudinal gradient 

and significantly differed from neutral expectations, suggesting that these differences may be 

maintained by selection (O'Malley and Banks 2008a). This inference of selection makes 

sense in light of the biological importance of spawning time for the success of offspring 

(Quinn et al. 2002). 

There are several anthropogenic factors which can influence spawning time. Rearing 

in hatcheries often leads to earlier spawning times (Quinn et al. 2002), since in the wild 

natural selection favours later spawning to avoid redd superimposistion (the nesting of one 

salmon on top of another salmon‟s nest) and disturbance (McPhee and Quinn 1998). In 

hatcheries early emerging fry are also protected from predation, also known as relaxed early 

culture selection, whereas they may be more susceptible in the wild (Quinn et al. 2002). 

Exploitation can also have an impact on spawning time, particularly since fishing pressure is 

often focused to only a few months of the year, often early in the year (Consuegra et al. 2005; 
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Quinn et al. 2006). Fishing pressure has potentially caused decreased body weight, delays in 

run timing, increases in age at maturation, and decreases in longevity within exploited salmon 

populations (Hard et al. 2008). It has been difficult, however, to detect genetic changes 

associated with these changes in phenotype (Conover and Munch 2002). 

Recently Lake Taupo rainbow trout have been reported to show reduced fork length 

and are spawning in more concentrated runs late in the year as opposed to year-round (Figure 

4.1, G. Maclean and M. Dedual pers. comm.). An autumn spawning run had been present in 

many Tongariro populations since introduction to the lake in the early 20
th
 century (M. 

Dedual pers. comm.). The reduction of the autumn spawning run presents both a management 

challenge, since it is affecting angler success and hence tourism at the lake, and a scientific 

challenge, since the cause of the loss is unknown. It is possible that the observed shift in 

spawning times might be due to a selection or drift event within the Taupo catchment which 

has altered allele frequencies. Managers at Lake Taupo have been concerned that angling 

method may be selecting for specific spawning times. 

This study has three aims. The first aim is to determine whether there is a spatial cline 

in allele frequencies in Lake Taupo populations, similar to what has been observed in west 

coast North American Chinook salmon (O'Malley and Banks 2008a). The second aim is to 

test for seasonal patterns in OtsClock1b allele frequencies which may be correlated with 

spawning run. The third aim is to investigate whether there is a genetic difference between 

the lake-caught and river-caught fish.  
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Figure 4.1. Historical changes in rainbow trout spawning time in the Waipa stream 

from 2001 to 2008, with number of rainbow trout trapped on the y-axis. Data from 

the Department of Conservation. 

 

4.2 Materials and Methods 

Spatial Sampling 

Samples were collected at five representative sites around Lake Taupo to investigate 

the spatial pattern of variation in the timing gene OtsClock1b (Table 4.1). The location of 

these sites is detailed in Chapter 3. 
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Samples from each of nine California populations were analysed and compared to a 

selection of 50 fish from Lake Taupo (Table 4.1) to determine the genetic differences at 

OtsClock1b between Lake Taupo trout and trout from their native range in California. 

Samples were collected and analysed by the Southwest Fisheries Science Center. 

Fishing location sampling 

Fin-clips were collected from rainbow trout caught by longlining on Lake Taupo and 

fly-fishing on rivers to compare genetic differences at OtsClock1b between the two collection 

types. Thirty-nine river-caught trout were compared to thirty-four lake-caught fish. Fishing 

method was assumed to have a negligible effect (pers. comm. M. Dedual). 

Seasonal sampling 

Samples were collected at three sites: Waipa River trap, Waihukahuka Stream trap, 

and Waiotaka River at 39°0' S/175°49' E. These rivers were chosen according to the seasonal 

presence of fish (i.e. trout running upstream at multiple times of year), and further collection 

on other tributaries was not undertaken due to low numbers of fish present.  Approximately 30 

to 50 individuals were sampled per month, every three months at the Waipa trap and 

Waihukahuka trap, for autumn (May/June), winter (July, August, September), and spring 

(October, November, December) from 2006 to 2010. A winter (late June/July) and spring 

(October/November) sample were collected by angling in 2008 through 2010 for the 

Waiotaka (Table 4.3).  These fish were measured for forklength and sexed when a fin clip 

was collected. 

Genomic DNA extraction and genotyping 

Genomic DNA was extracted using phenol-chloroform, Prep-GEM protocol (ZyGEM 

Corp. Limited), or Invitrogen PureLink Genomic DNA extraction kits (Life Technologies).  

We amplified the OtsClock1b gene using published primer sequences and conditions 

(O'Malley et al. 2007). The fluorescently labelled sense primer was 5′-CCTGTGTTT-

GTCTCCAACAGCA-3′ and the antisense primer was 5′-CTGTCACTGCGAAATTACA-

GTCCT-3. DNA was amplified in 10 µl reactions using 0.20 mM of the sense and antisense 

primer, 2.5 mM MgCl2, 1 X buffer, 0.20 mM dNTPs, and 0.5 units of Taq. The touchdown 
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PCR profile consisted of one initial denaturing cycle of 3 min at 94°, followed by one cycle 

of 1 min at 94 °C, 1 min at 62 °C annealing temperature and 1 min 30 s at 72 °C. In 

subsequent cycles, the annealing temperature was decreased by 2° until 56 °C was reached, 

followed by 29 more cycles of 1 min 94 °C, 1 min at 56 °C, 1 min 30 s at 72 °C and a final 

extension of 10 min at 72 °C. PCR products were initially electrophoresed on an ABI 3730 

and analysed as length polymorphisms using GENEMAPPER software. Subsequently PCR 

product was electrophoresed on 2.5% fine-sieve agarose gels at 100 volts for 45 minutes, 

using a 50 bp ladder for fragment length identification following staining with ethidium 

bromide. A total of 700 fish were analysed with a mean of 87 fish per site and season (Table 

4.1).  

Table 4.1. Samples used to investigate spatial variation in the OtsClock1b gene in 

both Lake Taupo and California. 

site N Date of collection 

Lake Taupo 

Whitikau River 35 October 2006 

Waimarino River 34 October 2008 

Kuratau River 34 August 2006 

Taruranga-Taupo River 41 June-July 2007 

Hinemaiaia River 31 August 2006 

      

California 

Lake Almanor 51 November 2002 

American River 53 September, October, December 2005 

Big Creek 15 November 2003 

Eel River 15 February 1999 

Middle Fork Eel River 37 August 1999 

Lagunitas Creek 61 August 2001 

McCloud River 53 November 2002 

Miller Creek 70 October 2001 

Scott Creek 16 March 2000 

 

Two samples from the Waipa trap from November 2006 and May/June 2007 were 

also genotyped at 12 neutral microsatellite loci: Oke4 (Buchholz et al. 2001), Oneu18, One14 

(Scribner et al. 1996),  Ssa289 (McConnell et al. 1995), Ssa408 (Cairney et al. 2000), 

Ssa20.19 (Sanchez et al. 1996), Ots100 (Nelson and Beacham 1999), OMM1036 (Rexroad et 

al. 2002), Omy1011, Omy1001 (Spies et al. 2005), Ots3M (Greig and Banks 1999), and 
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OmyFGT12-TUF (Sakamoto 1996).  Polymerase chain reaction (PCR) assays to amplify 

microsatellite alleles were performed using the protocols developed by the SPAN loci 

standardization group (Stephenson et al. 2009) and Dr. Megan McPhee (University of Alaska 

Fairbanks), using four different multiplexed PCRs (Table 4.2). All DNA was amplified in a 5 

µl reaction containing 2.5 µl of QIAGEN PCR master mix (QIAGEN Inc.), the specified 

concentration of primers per multiplex (Table 4.2), 1.5 µl of genomic DNA, and double 

distilled water where needed. The PCR profile consisted of an initial denaturation time of 15 

minutes at 95ºC followed by 28 cycles of 30 seconds at 94ºC, 1 minute 30 seconds at 

multiplex-specific annealing temperature (Table 4.2), and 1 minute at 72ºC.  This was 

followed by an extension at 60ºC. PCR products were electrophoresed on an ABI 3730 and 

alleles were scored using GeneMapper (ABI). 

Table 4.2. Microsatellite loci, fluorescent dye label used for visualization, PCR 

multiplex, annealing temperature and PCR concentration in a 5 µl reaction for 12 neutral 
markers used in this study. 

locus dye label multiplex 

annealing 

temp 

(ºC) 

PCR 

concentration 

(mM) 

Oki23 FAM A 51 0.03 

Oke4 FAM A 51 0.20 

One14 VIC A 51 0.30 

Ssa289 NED A 51 0.10 

Ssa408 PET A 51 0.20 

Ots100 FAM C 57 0.30 

Omy1011 VIC C 57 0.16 

Ots3M NED C 57 0.20 

OMM1036 PET C 57 0.16 

OmyFGT12TUF PET D 57 0.20 

Oneu18 NED D 57 0.20 

Ssa20.19 FAM D 57 0.20 

Statistical analysis: Spatial variation 

Exact tests for genic differentiation (G test) were conducted using GENEPOP on the 

web (Raymond and Rousset 1995) to assess the statistical difference of allele frequencies 

between spatial sites and for comparisons to the native range in California. Statistical tests 

were carried out to determine the genetic differentiation at OtsClock1b. Pairwise FST values 

between collections were calculated using FSTAT 2.9.3 (Goudet 1995) for spatial 

comparisons, comparisons to the native range, and between Taupo samples.  
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Statistical analysis: Temporal variation 

For temporal samples, Hardy-Weinberg equilibrium was tested using GENEPOP on the 

web (Raymond and Rousset 1995) utilizing a probability test, a test for heterozygote excess, 

and a test for homozygote excess with estimation of P-Values by the Markov chain method, 

using 1000 dememorizations, 100 batches and 1000 iterations per batch. Exact tests for genic 

differentiation (G test) were also conducted using GENEPOP on the web (Raymond and 

Rousset 1995) to assess the statistical difference of allele frequencies between seasons at each 

site. Pairwise FST values between collections were calculated using FSTAT 2.9.3 (Goudet 

1995). 

Table 4.3. The number (N) of male and female rainbow trout genotyped from 

seasonal samples at three tributaries of Lake Taupo. 

trap Waihukahuka (HS) 

season Autumn (2009, 2010) Winter (2006,2009,2010) Spring (2009,2010) 

sex Male Female Total Male Female Total Male Female Total 

N 24 36 60 44 30 74 27 47 74 

          

angling Waiotaka (WA) 

season Winter (2009,2010) Spring (2008,2009,2010) 

sex Male Female Total Male Female Total 

N 26 18 44 52 34 86 

          

trap Waipa (WP) 

season Autumn (2007,2009,2010) Winter (2006,2008-2010) Spring (2006,2008-2010) 

sex Male Female Total Male Female Total Male Female Total 

N 50 54 104 72 58 130 54 74 128 

 

A generalized linear model (GLM) using the stepwise backward elimination method 

in R (see App. Figure 4.1; Ihaka and Gentleman 1996; Team 2011) was used to test the 

interaction of phenotypic factors (forklength and sex) and location with allele frequency. 

Since the data were overdispersed, a quasi-binomial distribution was used for statistical 

testing. A global model including multiple variables and interactions was constructed, and 

then interactions and variables removed from the model.  If an analysis of deviance, utilizing 

an F-statistic test, showed that the simpler model was not significantly different from the 
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more complex model, then the model was further simplified, until only significant factors 

remained. The residual deviance was then used to perform a goodness-of-fit test.  

Statistical analysis: Fishing location 

Exact tests for genic differentiation (G test) were conducted using GENEPOP on the 

web (Raymond and Rousset 1995) to assess the statistical difference of allele frequencies for 

the two different fishing types. 

4.3 Results 

OtsClock1b allele frequency distribution geographically  

Two alleles were found at the OtsClock1b gene, 324 and 345 base pairs respectively. 

Spatial samples around Lake Taupo show little divergence at OtsClock1b, with only 

Tauranga-Taupo and Whitikau being significantly different (
2 

= 7.84, P = 0.02, Figure 4.2), 

similar to the low divergence at the microsatellite loci (Chapter 3).  

Lake Taupo trout have a significantly higher frequency of the 345 bp allele than their 

putative source populations in California (
2
 ≥ 9.35, P < 0.01, Figure 4.3). While no 

Californian population had the 345 bp allele at a frequency higher than 6% in the population, 

an average of several Lake Taupo populations had an allele frequency of 29.8%, and in the 

timing samples taken in Lake Taupo the frequency of the 345 bp allele ranges between 26% 

and 39% (Figure 4.6).  

 

Figure 4.2. Spatial distribution of OtsClock1b allele frequencies at five sampling 

sites around Lake Taupo. Sample size is noted at the top of the bars. There is only 

significant genic difference between Tauranga-Taupo and Whitikau (2 
= 7.84, P 

= 0.02). 
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OtsClock1b allele frequency distribution seasonally 

Seasonal variation in allele frequency at OtsClock1b appeared to be site specific. The 

Waipa trap showed a gradual increase in the frequency of the 345 bp allele from autumn 

through winter and into spring (Figure 4.6). A comparison of pairwise FST values indicated 

that the genetic difference between seasonal samples at OtsClock1b was greater than at 

neutral markers (Figure 4.4). There was a significant genic difference between Waipa autumn 

and the other Waipa samples (
2
 > 15, P < 0.001). There was a statistical trend between the 

Waihukahuka autumn and winter samples (
2
 = 5.76, P = 0.055). The Waiotaka sample also 

appears to show a slight increase in 345 bp allele frequencies from winter to spring. The 

winter Waiotaka sample is the only sample which is not in Hardy Weinberg equilibrium, 

because it contained no homozygotes for the 345 bp allele (P = 0.005). The Waihukahuka, 

however, showed an increase in the winter but then a slight decrease in spring. This same 

pattern was reflected at each site in the genotypic frequencies (Figure 4.7). Seasonal 

differences in genotypic frequency at OtsClock1b at three sampling sites around Lake Taupo. 

There was a significant genotypic difference between Waipa autumn and other Waipa 

samples (
2
 > 15, P < 0.001).  

 

Figure 4.3. Allele frequencies at OtsClock1b in nine Californian populations and a 

combined Lake Taupo sample from several different tributaries. An asteriks  

denotes a putative source population for the Lake Taupo introduction. Sample size 
is noted at the top of the bars. Lake Taupo is significantly different from all other 

populations (
2
 ≥ 9.35, P < 0.01). 
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Figure 4.4. Pairwise FST values for the November 2006 and May/June 2007 

genetic samples taken at Waipa trap.  

Pairwise FST comparisons between seasonal samples showed significant differences 

between the Waipa autumn sample and Waipa winter and spring samples, and between the 

early season Waipa sample and later season Waihukahuka samples (Table 4.4). 

 

Table 4.4. Pairwise FST values for seasonal samples from Lake Taupo – see Table 
4.1 for site abbreviations. P-values obtained after 560 permutations, the adjusted 

significance level (5%) after a Bonferroni correction for multiple comparisons is P 

= 0.002. P-values are displayed in the upper right hand corner, FST comparisons 

are displayed in the lower left hand corner. Significant values are bolded. 

 

  HSaut HSwint HSspr WAwint WAspr WPaut WPwint WPspr 

HSaut -- 0.070 0.171 0.245 0.011 0.239 0.025 0.002 

HSwint 0.019 -- 0.613 0.648 0.570 0.004 0.886 0.141 

HSspr 0.008 0.000 -- 1.000 0.232 0.002 0.504 0.046 

WAwint 0.005 0.000 0.000 -- 0.270 0.016 0.493 0.043 

WAspr 0.039 0.000 0.003 0.003 -- 0.002 0.604 0.420 

WPaut 0.004 0.065 0.045 0.042 0.092 -- 0.002 0.002 

WPwint 0.024 0.000 0.000 0.000 0.000 0.068 -- 0.113 

WPspr 0.064 0.007 0.019 0.020 0.000 0.123 0.006 -- 
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Table 4.5. Summary of stepwise backward elimination of factors model selection 

for 345 bp allele frequency in Lake Taupo rainbow trout. P < 0.01 necessary for 

model inclusion. Final model and goodness-of-fit are reported. 

Model 

Residual 

deviance df Δdeviance 

Δ
df Probability 

Null 4.27 4    

-season:sex 9.75 6 5.48 2 0.158 

-trap:sex 16.0 10 6.27 4 0.455 

-trap:season 19.9 12 3.93 2 0.321 

-sex 20.8 13 0.86 1 0.475 
-trap 21.7 15 0.88 2 0.756 

+ trap, -season 51.2 15 30.4 2 0.002 

      

Final model: 345allele~season, probability = 0.116     

 

The relative effects of several factors were tested with a stepwise backwards 

elimination of factors in generalized linear models. The results of these tests indicated that 

sex, trap and forklength were not significant factors in the difference in allele frequency, but 

that season was a significant factor (Table 4.5). Subsequently the residual deviance for the 

final model was used, with only season as a factor, to perform a goodness-of-fit test.  The 

goodness of fit test was not significant (P = 0.116) indicating that the model fits the data. The 

estimated coefficients for the seasons were -0.6581 for autumn, 0.8999 for winter, and 1.1043 

for spring respectively. Taking the exponential of estimated coefficients of the later two 

seasons indicates the probability of seeing the 345 bp allele in those seasons in relation to 

autumn, the intercept. This indicates that there is a 2.46 greater chance of seeing the 345 bp 

allele in winter and a 3.02 times greater chance of seeing the 345 bp allele in spring than in 

autumn respectively. 

Effects of fishing location 

There did not appear to be a difference in OtsClock1b genotypes between collection 

locations, since fish caught by trolling in the lake, and fish caught in streams by fly fishing 

had similar allele frequencies (
2
 = 1.12, P = 0.568, Figure 4.5). 
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Figure 4.5. Allele frequencies at OtsClock1b compared between two different 
collection locations taken in winter of 2009. Frequencies are not significantly 

different (
2
 = 1.12, P = 0.568). Sample size is noted at the top of the bars. 

 

4.4 Discussion 

In this study I investigated OtsClock1b variation in Lake Taupo rainbow trout 

spatially, seasonally, and between different fishing methods. While there was no evidence for 

geographic structuring or a difference in the effect of different fishing locations, there was 

some evidence that allele frequencies varied seasonally. 

OtsClock1b allele frequency distribution geographically 

Only the 324 bp allele at OtsClock1b has been observed in O. mykiss samples from 

the northwest coast of the United States (K. O‟Malley pers. comm), but this study found a 

second larger allele, at 345 bp, in both Lake Taupo populations and in Californian 

populations. It has been hypothesized that larger alleles in the poly-Q region of Clock genes 

have been associated with seasonal rate-of-change of photoperiod since higher latitudes 

experience a different rate of change than lower latitudes (Johnsen et al. 2007; O'Malley and 

Banks 2008a).  Our study area is much smaller than those shown to have latitudinal gradients 
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in previous studies, and accordingly there was not a latitudinal pattern to the allele frequency 

variation discovered in the OtsClock1b gene. 

The 345 bp allele in Lake Taupo rainbow trout was most likely introduced to New 

Zealand in the founder populations sourced from California. It is less likely to be a result of a 

parallel mutation given the limited time following the introduction. However the Lake Taupo 

population did show a much higher frequency of this large allele, which was either caused by 

a founder effect (i.e. more individuals with the 345 bp allele were translocated from 

California), natural selection for the larger allele over time, or the chance effect of genetic 

drift since introduction. Changes in the poly-Q region alter the circadian phenotype by 

affecting binding affinity of the Clock transcription factor (Darlington et al. 1998), and 

because of this direct relationship to phenotype Clock could be under positive selection. 

Therefore it is unlikely that a change in allele frequency would be caused by random genetic 

drift, so genetic differences at the OtsClock1b gene are either due to a founder effect or 

natural selection. 

OtsClock1b allele frequency distribution seasonally 

Season was the only significant factor affecting allele frequency at OtsClock1b, and 

that the frequency of the 345 bp allele was significantly less in autumn at the Waipa trap, as 

was the frequency of homozygotes for the 345 bp allele.  While there was a decrease in the 

presence of the 345 bp allele at the Waihukahuka trap in autumn, the difference between 

seasons at this site showed a trend but was not significant (P = 0.056). Recently a similar 

pattern has also been discovered in blue tits, where female birds with fewer poly-Q repeats 

laid eggs earlier in the season, which suggests that the Clock gene might be a component of 

local adaptation to seasonal environments (Liedvogel et al. 2009).  

Spawning time is heritable in rainbow trout (Siitonen and Gall 1989). It is possible 

that the variation in the data and the intermittent pattern of seasonal variation between sites is 

due to phenotypic plasticity. Modifications of spawning behaviour in response to the 

environment may be a way to mitigate the effects of interannual environmental variation on 

reproductive success (Quinn and Adams 1996); therefore some flexibility of the spawning 

time trait was likely selected for over years of salmonid evolution (Waples et al. 2008). The 
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study of introduced Chinook salmon in New Zealand has shown that local populations can 

also evolve divergent life-history types even though they come from a recent common 

ancestral source (Kinnison et al. 2011). In the absence of a “common garden” experiment it is 

difficult to say how much of the site variation observed in this study is due to aspects of 

sampling or environment, and how much of the variation is due to genetic differences 

between sites. In South Island New Zealand Chinook salmon, though, seasonal variation has 

actually led to neutral differentiation as well (Quinn et al. 2000). Ultimately the seasonal 

differentiation observed at Waipa trap could lead to neutral differentiation between different 

temporal “populations” based on spawning time. However, sites closer to Lake Taupo, like 

Waihukahuka and Waimarino may have hatchery introgression or other confounding factors 

that prevent this sort of differentiation. 

Effect of angling: exploitative selection? 

The variability of life history characteristics is an important factor in a species‟ 

response to exploitative selection (Dunlop et al. 2007), but human exploitation, including 

fishing pressure, often changes phenotype more rapidly than other agents of change because 

of the intensity of selection for particular traits (Darimont et al. 2009). Selective exploitation 

by angling of early running fish has altered phenotypic and genetic traits in Iberian Atlantic 

salmon (Consuegra et al. 2005). Angling can exert sufficient exploitative pressure to alter the 

life-history traits of fish stocks, particularly migration (Theriault et al. 2008).  A difference in 

the genotypes being caught in different fishing habitats was not detected, so if there was 

exploitative selection, fishing in different habitats does not seem to be necessarily selecting 

for a particular spawning time. Fishing effort through the spawning season (May through 

November) is at its most stable for the year, with wider fluctuations in summer than in winter. 

This is true for both the lake and river habitats, which diminishes the possibility that the 

observed spawn timing shift is due to intense season specific exploitation (Figure 4.8). 

However the combined lake and river fishing pressure may be having a large overall impact 

on the population. The selective exploitation of certain population components by anglers can 

lead to an overall decrease in population viability due to a loss of genetic variation and 

decrease in body size (Consuegra et al. 2005; Quinn et al. 2006).  Conversely, some salmon 

stocks have shown resilience to exploitation (Quinn et al. 2007), and it is possible that the 

changes in the Taupo fishery are attributable to phenotypic plasticity. Genetic monitoring is a 
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valuable tool to understand the genetic impact of exploitation (Allendorf et al. 2008), and 

further genetic monitoring is certainly warranted to fully understand the causes of the Lake 

Taupo early-run decline. 
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Figure 4.8. Fishing effort on Lake Taupo and the Tongariro River for 2005 in 

hours. Figure courtesy Department of Conservation Taupo-nui-a-Tia Office, 

Turangi. 
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CHAPTER 5 

 

Minimal temporal genetic variation in Lake Taupo rainbow 

trout  

Population genetics studies are frequently only a snapshot in time, analysing data 

from a sample of one year‟s cohort, and, depending on sampling strategy, this can lead to an 

incorrect assessment of population structure because it fails to take into account temporal 

variation in genetic diversity and population differentiation (Waples 1998).  Without the 

analysis of historical samples the effect that temporal variation has on the results of a study 

on spatial population structure is not quantified. Studies often interpret outlier populations in 

population genetic structure analysis as evidence for genetic bottlenecks or outcrossing 

events (Heath et al. 2001), which assumes that genetic diversity has changed relatively 

recently as the result of a demographic shifts (Queney et al. 2000). Inferences from such 

studies provide greater statistical power when assumptions about the processes that have led 

to genetic structure can be verified using temporal samples (Nielsen et al. 1997; Nielsen et al. 

1999a; Tessier and Bernatchez 1999; Queney et al. 2000; Heath et al. 2002). However the 

availability of historical samples to study is rare. 

Genetic drift can cause larger stochastic fluctuations in allele frequencies in small 

populations – in salmonids, variation in the number of spawners in a year directly affect the 

magnitude of the fluctuations (Waples and Teel 1990). Population bottlenecks result in the 

loss of genetic diversity (Luikart and Cornuet 1998) and often leave a population more 

susceptible to the effects of genetic drift due to a reduction in effective population size. For 

instance, Atlantic salmon (Salmo salar) show a decline in the number of alleles over time, 

likely as a consequence of exploitation (Nielsen et al. 1997). The loss of alleles due to genetic 

drift reported in New Zealand Snapper (Pagrus auratus) lead to low genetic diversity in 

current populations after years of exploitation (Hauser et al. 2002). Although demographic 

changes significantly affect genetic diversity within populations, genetic differentiation 

between populations can remain relatively stable over time even after a large population 
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bottleneck. Stable patterns of genetic differentiation of populations over time have been 

shown in landlocked Atlantic salmon (Tessier and Bernatchez 1999), peregrine falcons 

(Falco peregrines) (Brown et al. 2007), Newfoundland cod (Gadus morhua) (Ruzzante et al. 

2001), and European otters (Lutra lutra) (Pertoldi et al. 2001). In cod populations genetic 

differentiation is thought to be preventing recovery of populations since it signals a lack of 

migration (Ruzzante et al. 2001), which could increase effective population size and 

replenish genetic variation among populations. The maintenance of genetic differentiation 

during population bottlenecks does not always result in a loss of genetic diversity, though, as 

shown in peregrine falcons, which actually exhibit more contemporary genetic diversity than 

that found in historical samples taken before their DDT-induced bottleneck (Brown et al. 

2007). This is due to the introduction of individuals from fostering programs, some of which 

came from extra-continental populations. North Sea sole are another example of the 

maintenance of genetic diversity in spite of a population decline (Solea solea), since they 

have consistent levels of genetic diversity despite exploitation over the last fifty years 

(Cuveliers et al. 2011). Despite a reduction in population size it seems that genetic recovery 

of diversity can happen on shorter time scales than previously thought. Effective population 

size (i.e. the number of reproductive individuals) is not the only potential cause of temporal 

fluctuation in genetic diversity and differentiation, though. Demographic stochasticity, 

particularly with regard to reproductive success between individuals, can also lead to changes 

in allele frequencies over time.  

Several studies have examined temporal variation in genetic structure of salmonids. In 

wild steelhead in British Columbia, Heath et al. (2002) found little or no change in levels of 

genetic diversity but large variation in genetic structure over time, in spite of some highly 

structured populations. On the other hand, Hansen (2002) found that historical and 

contemporary samples of brown trout were genetically similar despite the stocking of 

domesticated trout, although admixture with indigenous fish was prevalent over time. 

Therefore the temporal stability of genetic structure in salmon populations is largely reliant 

on the environment and their history of management. 

Collections of historic fish scales have been maintained at many fisheries institutions 

throughout Europe and North America for fish ageing purposes. There is often a small piece 

of desiccated tissue still attached to these scales which contains enough historic DNA for 
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analysis. The samples were often dried quickly and there is a limited occurrence of tissue 

degradation or decay (Nielsen et al. 1999a). Several protocols have been developed for the 

extraction of DNA from fish scales (Nielsen et al. 1999a), although scales that are less than 

fifty years old are often successfully processed with standard DNA extraction techniques 

(Eric Iwamoto pers. comm.). 

This study is investigating the introduced population of rainbow trout (Oncorhynchus 

mykiss) in Lake Taupo New Zealand, which may have lower levels of diversity at neutral loci 

compared with native source populations (Chapter 2). It is unknown whether this lower 

diversity is due to genetic drift resulting from the bottleneck that occurred as a result of 

introduction or a subsequent reduction of population size, or if it is due to a selective sweep 

within Lake Taupo. The investigation of historical samples will help to elucidate whether 

understand recent local events in the Lake Taupo rainbow trout population. 

 The aim of this study was to determine whether there has been temporal variation in 

the population genetic structure and levels of diversity of Lake Taupo rainbow trout. I also 

examined a candidate gene for selection, OtsClock1b, to determine if there has been a change 

over time at this locus.  The null hypothesis is that there has been no change over time, in 

either genetic diversity, genetic structure, or in the spawning time locus OtsClock1b. 

5.2 Materials and Methods 

Genomic DNA extraction and genotyping 

Scales were collected by Marvin Rosenau from Tokaanu stream, Waimarino Stream, 

and Hinemaiaia Stream in September 1987 in the Lake Taupo catchment as part of his PhD 

research at Waikato University (Rosenau 1991). Samples were stored in a dry dark place at 

room temperature. Scale samples were mounted on slides with glycerine, and were 

subsequently removed with sterile razor blades.  

All work with historic samples pre-PCR was done in facilities physically separated 

from where tissue and post-PCR materials were processed, and lab staff did not visit the 

historic lab if they had worked with tissue on the same day. Genomic DNA was extracted 

using Invitrogen PureLink Genomic DNA extraction kits (Life Technologies) with the tissue 
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protocol, with the scale removed after the digestion step. DNA concentration was quantified 

using a spectrophotometer which examined absorbance at 280 nm (NanoDrop™ ND-1000, 

Thermo Scientific). Details of the samples are summarized in Table 5.2. 

Tissue was collected in 2006 and 2008 in Hinemaiaia River and Waimarino River 

respectively. Fin clips were preserved in 70% ethanol which was drained and refreshed 

within a week of collection. Genomic DNA was extracted from fin clips using proteinase K 

digestion, proteins were then salted out, and the remaining pellet was subjected to two 

ethanol washes and resuspended in TE buffer.   

All individuals were genotyped at the following seven microsatellite loci: Ots100 

(Nelson and Beacham 1999), Omm1046 (Rexroad et al. 2002), Ssa407 (Cairney et al. 2000), 

Omy1011, Omy1001 (Spies et al. 2005), Ots3M (Greig and Banks 1999), OmyFGT12-TUF 

(Sakamoto 1996).  Polymerase chain reaction (PCR) assays to amplify microsatellite alleles 

were performed using the protocols developed by the SPAN loci standardization group 

(Stephenson et al. 2009) and Dr. Megan McPhee (University of Alaska Fairbanks). All PCRs 

were performed in a 5 µl reaction. All DNA was amplified in a 5 µl reaction containing 2.5 µl 

of QIAGEN PCR master mix (QIAGEN Inc.), the specified concentration of primer (Table 

5.1), 1.5 µl of genomic DNA, and double-distilled water where needed. The PCR profile 

consisted of an initial denaturation time of 15 minutes at 95 ºC followed by 28 cycles of 30 

seconds at 94 ºC, 1 minute 30 seconds at 57 ºC, and 1 minute at 72 ºC.  This was followed by 

an extension at 60 ºC. PCR products were electrophoresed on an ABI 3730 and alleles were 

scored using GeneMapper (ABI). Omm1046 and Ots100 were not used for further analysis 

due to poor amplification.  

The spawning time gene OtsClock1b was also amplified following the conditions in 

O‟Malley (2008a). The fluorescently labelled sense primer was 5′-

CCTGTGTTTGTCTCCAACAGCA-3′ and the antisense primer was 5′-CTGTCACTGCG-

AAATTACAGTCCT-3‟. Genomic DNA was amplified in 10 µl reactions using a touchdown 

PCR profile. This consisted of one initial denaturing cycle of 3 min at 94°, followed by one 

cycle of 1 min at 94 °C, 1 min at 62 °C annealing temperature and 1 min 30 s at 72 °C. In 

subsequent cycles, the annealing temperature was decreased by 2° until 56 °C was reached, 

followed by 29 more cycles of 1 min 94 °C, 1 min at 56 °C, 1 min 30 s at 72 °C and a final 

extension of 10 min at 72 °C. After electrophoresis on an ABI 3730, polymorphisms were 
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scored using GENEMAPPER software (ABI).  Raw microsatellite genotype data was binned into 

size ranges for allele calls using the program tandem (Matschiner and Salzburger 2009).  

Table 5.1. Microsatellite loci, fluorescent dye label used for visualization, and PCR 

concentration in a 5 µl reaction for seven markers amplified in this study. 

locus dye label PCR concentration (mM) 

Omm1046 NED 0.15 

Ots100 FAM 0.30 

Ssa407 PET 0.40 

Omy1011 VIC 0.16 

Omy1001 NED 0.16 

Ots3m NED 0.20 

OmyFGT12TUF-F PET 0.20 

 

Statistical analysis 

Conformance to Hardy-Weinberg equilibrium (HWE) and the presence of gametic 

disequilibrium were evaluated using GENEPOP on the web (Raymond and Rousset 

1995). Locus-by-locus pair-wise tests for gametic disequilibrium utilized 1000 

dememorizations, 100 batches, and 1000 iterations per batch. Comparisons were considered 

significant when P < 0.05 with a sequential Bonferroni correction (Holm 1979).  Hardy-

Weinberg exact tests were performed for each locus in the population using a probability test, 

with 1000 dememorizations, 100 batches, and 1000 iterations per batch.  

Pairwise FIS, FST, and expected heterozygosity (HE) were calculated using FSTAT 2.9.3 

(Goudet 1995).  Allelic richness was calculated using HP-RARE V.1.0 (Kalinowski 2005), 

which uses a rarefaction method to correct for differing sample sizes, with the smallest 

sample size used for calculation being N = 16.  A principal components analysis (PCA) was 

performed in PCAGEN (J. Goudet unpublished; http://www.unil.ch/izea/softwares/pca-

gen.html) in order to examine the variation between populations.  

A power analysis of sample size was performed using the spatial genetic dataset from 

Chapter 3 using data from the seven markers used in this study. Pairwise FST was calculated 

using GENEPOP on the web (Raymond and Rousset 1995) between Hinemaiaia and nine other 

populations with 37, 27, and 17 individuals, with individuals randomly removed from the 
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Hinemaiaia population to create the smaller test populations. The percentage difference 

between the largest sample set and the smaller samples was calculated as the difference in 

FST divided by the average across markers. This process was repeated for Waimarino. 

 

5.3 Results 

Genetic diversity 

In the analysis of historic samples there was no evidence of contamination in any of 

the negative controls.  The number of alleles per locus ranged from 3 to 14. 18 private alleles 

were observed, the majority of them (15) in the 2006 Hinemaiaia sample (Table 5.2). All 

populations had similar allelic richness and expected heterozygosity. FIS was lowest in the 

2008 Waimarino sample (-0.045), and highest in the 1987 Hinemaiaia sample (0.176). The 

highest FIS value for Hinemaiaia is likely attributable to high FIS at the Omy1001 locus, 

which occurs in both Hinemaiaia samples and also in the 1987 Waimarino sample. Samples 

not in HWE were the Hinemaiaia 2006 at Omy1011 and Omy1001, Hinemaiaia 1987 at 

OmyFGT12TUF. MICROCHECKER indicated that null alleles may be present at Omy1011 in 

Tokaanu 1987 and Hinemaiaia 2006 and Omy1001 in Hinemaiaia 2006, and OmyFGT12TUF 

in Hinemaiaia 1987 due to a homozygote excess in these populations. I observed no gametic 

disequilibrium after a strict Bonferroni correction.  

Table 5.2. Sample information, including river, sampling year, and number of samples 

(N),  and summary statistics, including FIS, allelic richness (Ar), expected heterozygosity 

(HE), and the number of private alleles (PA). 

River 

(abbreviation) 

Time of 

sampling N 

Source of 

DNA FIS Ar HE PA 

Hinemaiaia(H) Sept 1987 19 scales 0.176 5.35 0.759 1 

 Aug 2006 37 tissue 0.153 6.12 0.795 15 

Tokaanu (T) Sept 1987 14 scales 0.142 5.10 0.796 0 

Waimarino(W) Sept 1987 24 scales 0.100 5.55 0.784 1 

  Oct 2008 32 tissue -0.045 5.17 0.770 1 
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Figure 5.1. A principal components analysis (PCA) of temporal samples from three Lake 

Taupo populations. 

 

 

Figure 5.2. Allele frequencies of three Lake Taupo populations for the poly-Q region of 

OtsClock1b over time. Samples sizes are at the top of the bars. There is no significant 

difference in the frequency between populations (χ
2
 < 2.4, P > 0.05) as tested by genic 

differentiation. 
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Table 5.4. Pairwise estimates of genetic differentiation (FST) from 5 microsatellite loci. 

FST  values are below the diagonal and P values above the diagonal, obtained after 200 
permutations. The adjusted significance level after a Bonferroni correction for multiple 

comparisons was P < 0.005. See Table 1 for full names of sampling locations).  

  H1987 H2006 T1987 W1987 W2008 

H1987 -- 0.160 0.190 0.600 0.280 

H2006 0.000 -- 0.220 0.550 0.060 

T1987 0.000 0.000 -- 0.140 0.360 

W1987 0.007 0.006 0.012 -- 0.200 

W2008 0.001 0.000 0.000 0.007 -- 

 

Genetic differentiation 

Comparison of pairwise estimates of genetic differentiation (FST) indicates that there 

was no significant genetic divergence between populations (Table 5.4). FST values between 

populations ranged from 0.000 to 0.012, with a global FST of 0.022. The PCA showed that 

both samples from the Hinemaiaia clustered together in principle component PC 1, while the 

Waimarino samples were most similar on PC 2 (Figure 5.1). The Tokaanu sample was most 

similar to the Hinemaiaia samples.  

Allele frequencies at OtsClock1b have remained constant over time (Figure 5.2) and 

there is no statistical difference in the frequency of the 345 bp allele between samples, as 

determined with an exact test of genic differentiation (χ
2
 < 2.4, P > 0.05). 

 The power analysis indicated that a decrease in sample size could substantially 

change the pairwise FST values calculated, particularly if the population contains less than 15 

individuals (Figure 5.3). 
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Figure 5.3. Power analysis of the effect of sample size for Hinemaiaia and Waimarino 

populations when compared with their true sample sizes (N = 37 and N== 32 

respectively) for the modern day sample used in this study. Bars represent positive 

standard deviation. The Waimarino N=12 sample had a percentage difference of 246% 

with a standard deviation of 5.0. 

 

5.4 Discussion 

The Lake Taupo population shows possible genetic stability over time following 

introduction. Lake Taupo has a greater proportion of the 345 bp allele than any of the 

Californian founding populations, indicating either a founder effect or selection over time for 

this large allele.  But there is no detectable change over between populations in 1987 and 

2006/2008 in allele frequencies at OtsClock1b in two Lake Taupo populations. Some 

exploited populations see a decline in genetic diversity, particularly heterozygosity, over time 

(Miller and Kapuscinski 1997), but no similar trend has been detected in Lake Taupo.  

Genetic diversity 

The 2006 Hinemaiaia sample did have a much larger number of private alleles than 

the Hinemaiaia 1987 sample, but these alleles were at such low frequency that they did not 

result in a significant difference between the samples. Allelic diversity is often more sensitive 

than HE for detecting changes in population size, so could be a better indicator for 

fluctuations in the population (Schwartz et al. 2007), and therefore this may be an indication 
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of recent demographic and/or migratory changes to the population. These low frequency 

alleles could be a sign of recent migration into the Hinemaiaia population from elsewhere in 

the lake, and if they increase in frequency would lead to changes in the genetic differentiation 

of the Hinemaiaia population. Alternately, these low frequency alleles might not have been 

observed in the historic population because of poor amplification of the older, possibly more 

degraded samples. If poor amplification had been a factor, however, there would be similar 

results for the Waiotaka.  

The historic Waiotaka and Hinemaiaia samples had only one private allele each, 

indicating that only one allele from each population has been lost over the last twenty years. 

Loss of rare alleles is one of the first signs of a loss of genetic diversity, and in New Zealand 

snapper indicated that population size had become small enough for genetic drift to have a 

large effect in the population (Hauser et al. 2002).  Lake Taupo rainbow trout do not appear 

to have undergone a loss of genetic diversity despite their continued exploitation, indicating 

that effective population size is likely high enough that genetic drift does not have a large 

effect on populations. Since there was no evidence of strong genetic drift, it can be concluded 

that the higher frequency of the 345 bp allele at OtsClock1b in Lake Taupo populations 

compared to California source populations is due to either a founder effect or selection. 

Californian populations either did not have the 345 bp allele at OtsClock1b or it was 

present at low levels (6% or less), as compared to a minimum of 26% in one temporal sample 

in Lake Taupo, and on average was present at 29.8% in a random sample of Taupo 

individuals (Chapter 4). While this difference in allele frequency could be due either to a 

founder effect or to selection, there was no significant variation in OtsClock1b allele 

frequencies observed between samples from the 1980s and the 2000s. It is therefore unlikely 

that the frequency of the 345 bp allele has increased recently, but it is not clear from these 

results whether the frequency has been higher in Taupo than California since introduction, or 

if there was possibly a selective sweep early in the history of Taupo rainbow trout that caused 

them to have a higher frequency of the large allele. 

Genetic differentiation 

Pairwise FST comparisons revealed that there is no significant variation between 

current samples and samples from the 1980s. The power analysis performed on sample size, 
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though, indicates that the low sample sizes utilized for the scale analysis could substantially 

affect the calculation of pairwise FST, particularly when sample size is lower than 15 

individuals (Figure 5.3). 

In spite of the confounding effects of sample size, the finding that there has not been 

substantial change in the population differentiation of Hinemaiaia and Waimarino 

populations fits a general pattern that is often observed in multiple historic population 

genetics studies where, in the absence of a major catastrophic event, populations will 

maintain much of their genetic structure over time (Tessier and Bernatchez 1999; Ruzzante et 

al. 2001; Hansen 2002; Brown et al. 2007). It is important to test for stability in temporal 

patterns of genetic differentiation since it is an underlying assumption of many population 

genetic analyses (Waples 1998). In the case of British Columbia steelhead a change in 

genetic structure, as well as a decrease in genetic diversity and lowered effective population 

size over time was not anticipated, but was hypothesized to be caused by a landslide event in 

the studied catchment (Heath et al. 2002). This result emphasizes the importance of analysing 

historical samples whenever they are available to gain a more complete picture of the 

underlying causes of population structure. 

Conclusions and future work 

The relative genetic stability that was observed in Lake Taupo should be viewed 

cautiously in light of the limited sample size and low number of genetic markers. Due to a 

limited numbers of individuals and polymorphic loci estimates of F-statistics could have been 

underestimated (Waples 1989). Sufficient sampling is important in historical studies because 

historical data are error prone (Wandeler et al. 2007). To better understand the historical 

population dynamics of Taupo rainbow trout this study would benefit from a current-day 

Tokaanu sample and the analysis of further individuals and loci from both historic and 

current sampling groups. The inclusion of a modern day Tokaanu sample is currently being 

undertaken and will be included in any future publications. 

Luikart et al. (1998b) recommends that one should sample a minimum of five highly 

variable loci from 30 individuals to have a greater than 80% chance of detecting a bottleneck 

with an effective size of 10 individuals, and therefore a significant loss of heterozygosity,  

after one generation.  This study examines individuals with more than one generation 
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between sampling points and this dataset barely meets the criteria for a high probability of 

detecting changes in allele frequency. To make definitive conclusions about the temporal 

genetic variation in Lake Taupo populations, particularly in light of the change in the number 

of private alleles at Hinemaiaia, it will be necessary to sample more loci. 

Overall these results are positive for the continued viability of Lake Taupo 

populations. Temporal variation should be a major consideration when interpreting 

population genetic structure (Heath et al. 2002). Allele frequency can be expected to vary 

year to year through genetic drift alone (Waples and Teel 1990), but variations in effective 

population size can have large effects on genetic structure, and it is important to analyse 

historic samples to understand this variation (Heath et al. 2002). 
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CHAPTER 6 

 

General Discussion 

6.1 Introduction 

This study of population genetic structure and spawn timing genetics of Lake Taupo 

rainbow trout contributes to a broader understanding of the effects of translocation and the 

genetics of salmonid spawning time.  The aims of this study were to 1) determine the source 

populations for the New Zealand trout introduction, specifically the founding populations for 

Lake Taupo, 2) determine whether there was genetic differentiation among populations from 

tributaries around Lake Taupo, 3) determine whether there was a correlation between 

variation at the OtsClock1b gene and the spawn timing of rainbow trout, and 4) determine 

whether there were temporal changes in population genetic structure and allele frequencies at 

locus OtsClock1b. 

In this chapter I will discuss the implications of my findings, and present management 

recommendations for the Lake Taupo fishery that arise from the genetic study. Initially this 

study was undertaken in collaboration with the Department of Conservation to establish a 

population genetic baseline for Lake Taupo and determine the causes for the decline of their 

early spawning run. Over the last few months a stocking program has been proposed as a 

method for trying to restore the early run of Lake Taupo rainbow trout by taking individuals 

from nearby manmade Lake Otomangakau (Target Taupo July 2011, Issue 63). The 

management recommendations in this chapter therefore contain not only recommendations 

pertaining to the genetic structure and spawning time genetics of Lake Taupo trout, but also 

some recommendations pertaining to this proposed and currently operational stocking 

program. 
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6.2 Major findings and their implications 

Genetic structure 

Lake Taupo rainbow trout most likely come from multiple sources based on the 

results of Chapter 2 and historical records. Although multi-source introductions are thought 

to enable a species to subvert the so-called “invasion paradox” (Allendorf and Lundquist 

2003), a bottleneck is still detectable in Lake Taupo rainbow trout. These results indicate that 

the introduction bottleneck and/or the subsequent demographic fluctuations were still strong 

enough to leave a persistent signature of lowered genetic diversity on the Taupo population 

compared to source populations. The lower level of genetic diversity observed at the fifty 

Lake Taupo samples used in Chapter 2 was consistent with the results from all ten 

populations sampled for the full spatial population study (Chapter 3). This is unusual 

considering that a recent review of freshwater introductions showed that successful invasive 

species often do not exhibit the genetic signatures of bottlenecks (Roman and Darling 2007). 

This finding emphasizes the importance of genetic monitoring of translocated populations, 

since allelic diversity can be lost even when the founding population is large (Stockwell et al. 

1996). However levels of molecular diversity are not necessarily a predictor of ecological 

success, because variation at only a few particular genes could have a large impact on 

colonising ability  (Lee 2002). The persistence and abundance of Lake Taupo trout despite 

their bottleneck signature exemplifies the success of an introduced species in spite of reduced 

genetic diversity. 

The bottleneck simulations showed that Taupo trout are likely derived from both 

inland and coastal sources. If introduced individuals come from two distinct genetic groups 

(in this case inland and coastal Californian populations), the simulations indicated that 

detecting the true sources becomes difficult, if not impossible. This finding could be 

particularly important for controlling and managing introductions, since an inability to 

determine the true sources or signal pollution from an unknown source may make the results 

of origins studies inconclusive. Tracing introductions, also known as “routes of invasion”, is 

increasingly recognized as an important field of study if non-native translocations, both 

intentional and not, are to be properly managed (Estoup and Guillemaud 2010). 
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The analysis of spatial population structure in Chapter 3 showed that only populations 

whose migration is constrained by landscape barriers are differentiated in a small lake 

catchment, but there was not an overall pattern of genetic differentiation between populations 

within Lake Taupo.  Dispersal barriers are known to have a large impact on increasing 

genetic structure, as they usually decrease gene flow (Wofford et al. 2005).  This lack of gene 

flow therefore increases the possibility that genetic drift will cause a population to lose 

diversity (Slatkin 1985). Lake Tarawera in the Rotorua area did have the lowest allelic 

richness of all populations, which particularly makes sense given its history of hatchery 

stocking, since fish cannot spawn naturally in the Lake Rotorua habitat. 

In spite of the lack of genetic differentiation at F-statistics, the presence of rare alleles 

in most Lake Taupo populations, even though they are at low frequency, indicates that there 

may be some locally developing differentiation. While rare alleles can be a sign of migration 

in long established population, in recently introduced populations, Slatkin‟s “radiation 

model” suggests that rare alleles merely represent a founder effect (Slatkin 1985). Over time 

these rare alleles become a true sign of migration within a population, because any rare 

alleles which resulted from a founder effect would become either more frequent in the 

population or be eliminated, due to genetic drift. In Chapter 5, I reported that the Hinemaiaia 

sample from 2006 shows an abundance of private alleles which are not present in a sample 

from the same site in 1986, which following Slatkin‟s radiation model would suggest that 

these alleles are likely present due to migration. 

There is also the risk that the genetic differences observed between populations using 

pairwise FST values are actually signs of population subdivision, and that the Bonferroni 

correction used for multiple tests to prevent Type I error actually causes Type II error. While 

some other measures, including false discovery rate (FDR) (Benjamini and Hochberg 1995) 

and modified FDR (Narum 2006) show less Type I error than Bonferroni, there is still 

quantitative way to evaluate whether statistical significance correlates with biological 

significance (Waples 1998; Hedrick 1999; Balloux and Lugon-Moulin 2002; Narum 2006). 

Because multiple analyses, including the Bayesian structure analysis and the FCA, indicate 

that Taupo populations are not structured, using the more conservative Bonferroni correction 

is likely appropriate, considering that most of the analyses performed in Chapter 3 indicate 

that there is more danger with this dataset of Type I error occurring than Type II, or that 
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structure would be inferred where none is present. Throughout this dissertation the P value is 

also usually accompanied by the test statistic, since the reporting of the effect size, and 

allowing the reader to evaluate the meaningfulness of the subsequent P value, is another way 

to combat the Type II error introduced by Bonferroni corrections (Nakagawa 2004). This 

illustrates the importance of utilizing multiple analyses, not just pairwise F-statistics, to 

evaluate population genetic structure so that results are biologically relevant and not only 

statistically significant. 

There is no evidence of any recent population turnover in Lake Taupo populations, as 

there have been no relevant local catastrophic events that significantly affected the lake 

rainbow trout. It is possible that there has been sufficient exploitation pressure, or migration 

in the lake itself to cause a shift in genetic differentiation and/or diversity over the last twenty 

years. Indeed this study determined that while rare alleles in the present Hinemaiaia sample 

may indicate migration within the lake, there is not further evidence of temporal instability in 

the two populations examined here. This result is in keeping with other studies of salmonid 

population structure which showed that even in disturbed conditions salmon maintain stable 

population structuring (Nielsen et al. 1997; Nielsen et al. 1999b; Tessier and Bernatchez 

1999).  Future geological instability could cause genetic changes, as was the case with British 

Columbian steelhead, whose population structure was likely impacted by a landslide (Heath 

et al. 2002). This is a very real possibility for Lake Taupo trout considering that the lake is 

contained within a caldera on a volcanic plateau. There were volcanic eruptions of Mount 

Ruapehu, in close proximity to Lake Taupo, in 1995 which caused ash to fall on some of the 

tributaries around the lake, and since a tracking study was underway, some immediate 

changes in trout migration around the lake were observed, although trout returned to their 

previous spawning tributaries within two weeks (M. Dedual pers comm.). There was also 

some flooding which caused trout to augment their spawning habitat to spawn further 

upstream, although migration to different spawning tributaries was not indicated (Venman 

and Dedual 2005). It is possible that events of larger magnitude could lead to migration 

between tributaries or even fish kill in certain populations and therefore lead to changes 

within the demography and genetic structure of the lake. 
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Spawn timing genetics 

This study is the first to report two alleles in the poly-Q region of OtsClock1b locus 

amplified from rainbow trout, and the larger previously undiscovered allele was shown to be 

associated with later spawning time. This expands the growing volume of literature on the 

association of larger poly-Q regions at timing loci with later reproductive behaviours 

(Johnsen et al. 2007). A generalized linear model indicated that the large allele frequency 

varied with season in Lake Taupo populations, but not with fishing type or in relation to 

spatial location around the lake. This result makes sense in light of recent studies which show 

that day length at spawning accounts for much of the OtsClock1b allele frequency variation 

in two species of salmonid (O'Malley et al. 2010). However the study reported herein did not 

show a strong correlation between allele frequency and season at all sites, which may be due 

to environmental variation.  While photoperiod is a major cue for migration for spawning 

(Quinn and Adams 1996), these processes may be delayed if certain physiological thresholds 

are not met (Arnesen et al. 2003). Environmental plasticity is one of the characteristics which 

make spawning migration time a difficult trait to study. 

There are limitations to the candidate gene approach, since this study only examined 

one portion of one gene involved in photoperiodic behaviours. A recently published study, 

which utilized 92 SNP markers linked to 75 functional genes tested for a correlation with run-

timing, found three loci which may be important factors in the phenotype of upriver 

migration time (Hess and Narum 2011). This sort of genomic scan approach might have 

greater utility in elucidating the effects that many different sites throughout the genome have 

on migration and spawning time. However, the lack of specific run-timing information for 

fish of known origin is a shared limitation of Hess and Narum (2011) and the study discussed 

herein. Without knowing the natal location of the fish being studied it is difficult to conclude 

whether straying migrants are being examined or true migrating individuals who seek to 

spawn upstream. There is a great need in this field for studies with adequate phenotypic data 

and/or greater control over environmental conditions. In the future spawning time genetics 

studies would greatly benefit from a combination of genomic scans and precise phenotypic 

spawning data.  
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Future work 

It is important to note that although season was the only significant factor in the 

generalized linear model, the data were overdispersed, which indicates that there is variance 

within the data that the factors tested did not address. Temperature is known to be a major 

factor in the timing of salmonid migration (Heggberget 1988; Quinn and Adams 1996; Quinn 

2005). River discharge has also been suggested as an important factor for salmonid 

migration, with fish preferring to move upstream after periods of high flow (Trépanier et al. 

1996). Therefore it would be advisable to collect and analyse further environmental data to 

determine what the other significant factors are that determine allele frequency at 

OtsClock1b.  

6.3 Management recommendations  

Spatial genetic management 

The current genetic structure of rainbow trout supports the management of Lake 

Taupo as a single fishery stock. However, it would still be reasonable to exercise the 

precautionary principle and manage the fishery by tributary in case genetic differentiation is 

in the process of forming. Freshwater fish species typically form genetically structured 

populations (Gyllensten 1985). It is important in setting management units not to just reject 

or fail to reject panmixia, but to incorporate the genetic diversity within a managed system 

into the delineation of management areas and population groups (Palsbøll et al. 2007).  

I did find some evidence of outlier loci and private population alleles, which suggests 

the possibility of developing local differentiation or adaptation. If re-stocking was to occur in 

Lake Taupo there is no compelling evidence, based on the data presented here, to suggest that 

any particular local area having an unimpeded migration pathway to the lake should not be 

used as a source. If any populations that are currently isolated from Lake Taupo were to be 

source populations for stock movement (e.g. the Te Whaiau trap at Lake Otamangakau) then 

it would be advisable to conduct a specific genetic study to determine the level of 

differentiation, since the two populations of the present study (Rotorua and Waipakihi) that 

are physically isolated from Lake Taupo were the only populations that were found to be 

significantly different. If considering restocking from Rotorua or Waipakihi, the genetic 
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differentiation of these two populations could negatively impact the local population and/or 

the success of the introduced trout. Further investigation of differentiation at loci potentially 

under selection (e.g. OtsClock1b) and modelling of the effects of stocking would help to 

determine the extent of the risk involved with restocking from these geographically isolated 

populations. It would also be advisable to investigate genes associated with disease resistance 

(i.e. major histocompatibility complexes) in case there were a disease event in the lake, since 

a lack of genetic diversity at these loci could be detrimental were such an event to occur. 

Recovery from catastrophic events can occur naturally, with recolonization by 

surviving individuals (Lamberti et al. 1991; Swanson et al. 1998). Radio telemetry studies of 

the Taupo catchment have shown that rainbow trout have augmented their spawning and 

migration sites after flooding events within the fishery (Venman and Dedual 2005), and it is 

likely they would do the same in the face of larger events. Waiting for natural recovery to 

occur may be the best management recommendation for Lake Taupo rainbow trout, 

particularly since stocked fish are known to be more susceptible to angling that wild fish 

(Dwyer and Piper 1984), and many fisheries management programs in Europe are now 

implementing native population supplementation programs (Caudron et al. 2009). 

Seasonal variation: restoring the early run of Taupo rainbow trout? 

The high frequency of the 345 bp allele in the Lake Taupo population compared to the 

lower frequencies found in the Californian source populations was most likely the 

consequence of the random choice of founding fish at the time of introduction. However, the 

process of selection (either natural or due to harvesting pressure) could also explain this high 

frequency pattern. Genetic variation at the OtsClock1b locus and the seasonal catches of 

anglers should be investigated. The seasonal OtsClock1b pattern at Waipa trap and the 

somewhat temporal stability of allele frequencies since the 1980s suggests that it may be 

possible to select for early spawners for restocking purposes. A plan for the supplementation 

of early spawners has already been proposed (Target Taupo 63) and it has been suggested 

that individuals could be introduced to Lake Taupo from the Te Whaiau trap at Lake 

Otamangakau.  A specific study should be conducted to determine the level of variation at 

microsatellite loci and the OtsClock1b locus because the possibility of genetic differentiation 

has been suggested in a previous study. The proposed stocking program may need to be 



General Discussion 

92 

 

augmented (i.e. fewer fish released or fish stocked from a different location) to ensure 

minimal negative impact on the Tongariro fishery. 

An important component of developing a restocking program will be assessing the 

potential impacts of introducing hatchery-reared broodstock on the genetic structure of 

existing populations.  Therefore it would be prudent to investigate this issue using simulated 

models of the possible genetic impacts of restocking under difference scenarios (e.g. size of 

the restocking populations and its genetic composition).  For example, computer models 

could simulate the introduction of Te Whaiau and/or Rotorua genotypes into the Tongariro 

catchment and the possible consequences of genetic drift. This work would be similar to the 

genetic bottleneck simulations performed as part of the origins work in this present research 

project, and would allow managers to design a restocking program the minimised any 

possible risks of genetic change to the existing populations.  

 It would be useful to compare a third modern sample to the historic samples, so that 

an investigation could be conducted into whether allele frequencies have changed in the 

Tokaanu population.  This sample was recently collected and would add much to the study of 

temporal genetic variation in Lake Taupo populations. It would also be useful to add more 

loci to the comparison of current and historic population structure. More data would be useful 

in determining an estimate of migration rate between populations in Lake Taupo, which 

would in turn allow for a more quantitative determination of the appropriateness of managing 

the lake as one, or conversely many, stocks, depending on the migration rate. Optimally these 

genetically determined migration rates would be related back to the demographic 

independence of the target population to yield a management program which fully reflected 

the demography of Lake Taupo trout. 

6.4 Contribution to the field 

This study of introduced rainbow trout makes several important contributions to 

introduction ecology and fisheries management. The simulations of introduction scenarios 

performed for Chapter 2 show that multi-source introduction scenarios are difficult to 

interpret, but simulations can help identify the most likely true history.  The study of 

introduced species which are endangered and threatened in their native range offers a unique 
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opportunity to inform conservation in a somewhat circuitous way. My finding that seasonal 

spawning migration might have an association to allele frequency at the OtsClock1b gene 

may have commercial applications for domesticated trout strains. It will also inform 

conservation management of native O. mykiss. Understanding translocated salmon 

populations will be particularly important as new habitats emerge, due to opening of new 

stream habitats through climate change or the addition of fish passages to dams, or as current 

salmon stocks invade new areas, as has happened in Patagonia (Becker et al. 2007). It‟s 

possible that the genotypic differences in spawning time that were observed in Waipa may 

eventually lead to differentiation at  neutral markers as well, and there by the segregation of 

different spawning times into separate spawning populations. Quinn (2000) have shown that 

divergence in spawning time can drive divergence at other traits, and it is likely that Taupo 

rainbow trout could eventually show the same divergence as South Island Chinook 

populations. 

Salmonids phenotypic plasticity and duplicated genome make them a challenge suite 

of species to study genetically, but also make them a fascinating candidate for studies of 

contemporary evolution and the response to environmental change. While I suspect that an 

environmental change has caused the depletion of the early run of fish in Lake Taupo, and it 

may never be known what that environmental trigger was, that depletion provided an 

opportunity to investigate the population genetics of a New Zealand rainbow trout population 

more thoroughly than they have ever been examined before. Hopefully this is only the 

beginning of more intensive genetic studies of introduced salmonid populations, and the 

elucidation of the influence that circadian oscillators have on salmonid spawning migration. 
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App. Figure 3.2. Determination of number of K cluster from population genetic data 

from ten Lake Taupo populations and one Rotorua population.  The upper graph is the 
log likelihood for values of K from 1 to 15, while the lower is the (Evanno et al. 2005) 

delta K value for values of K from 2 through 15. The largest average log likelihood is 

K=10 (-20775.6). 
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App. Figure 4.1 R code for the stepwise backwards elimination generalized linear model. 

> clock1b <- read.csv("D:/R-D drive/wd/clock1b.csv") 

>   View(clock1b) 

> clock.df <- clock1b 
> clock.df$season <- as.factor(clock.df$season) 
> clock.df$trap <- as.factor(clock.df$trap) 
> clock.df$year <- as.factor(clock.df$year) 
> clock.df$has324 <- as.factor(clock.df$has324) 
> clock.df$has345 <- as.factor(clock.df$has345) 
> clock.df$has345 <- as.factor(clock.df$has345) 
> levels(clock.df$has345)<-c("N","Y") 
> str(clock.df) 
'data.frame': 698 obs. of  9 variables: 
 $ sex       : Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 2 ... 
 $ forklength: int  450 510 550 455 470 435 530 450 450 430 ... 
 $ month     : Factor w/ 8 levels "August","December",..: 1 1 1 1 1 1 1 1 
1 1 ... 
 $ year      : Factor w/ 5 levels "2006","2007",..: 1 1 1 1 1 1 1 1 1 
1 ... 
 $ has324    : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ... 
 $ has345    : Factor w/ 2 levels "N","Y": 1 1 1 2 2 1 1 1 1 2 ... 
 $ trap      : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ... 
 $ season    : Factor w/ 3 levels "1","2","3": 2 2 2 2 2 2 2 2 2 2 ... 
 $ genotype  : Factor w/ 3 levels "0|1","1|0","1|1": 2 2 2 3 3 2 2 2 2 
3 ... 
>  
> dat<-
data.frame(ftable(tapply(clock.df$has345,list(clock.df$season,clock.df$tra
p,clock.df$sex,clock.df$has345),length))) 
> names(dat)<-c("season","trap","sex","has345","freq") 
> dat$freq[is.na(dat$freq)==TRUE] <- 0 
> y<-cbind(dat[,5][dat[,4]=="Y"],dat[,5][dat[,4]=="N"]) 
> data<-dat[1:18,1:3] 
>  
> model.global <- glm(y ~ season + trap + sex + season:sex + trap:sex + 
trap:season, data=data, family=quasibinomial) 
> summary(model.global) 
 
Call: 
glm(formula = y ~ season + trap + sex + season:sex + trap:sex +  
    trap:season, family = quasibinomial, data = data) 
 
Deviance Residuals:  
       1         2         3         4         5         6         7         
8   
-0.39759   0.06773   0.30353  -1.25787   0.51615  -0.10285   0.55963  -
0.30964   
       9        10        11        12        13        14        15        
16   
-0.17966   0.49262  -0.05553  -0.39731   0.80819  -0.46759   0.08391  -
0.56446   
      17        18   
 0.28161   0.19244   
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)   
(Intercept)   -0.31669    0.29068  -1.089   0.3372   
season2        0.56001    0.39021   1.435   0.2246   
season3        0.85176    0.37418   2.276   0.0851 . 
trap2         -0.88148    0.91478  -0.964   0.3898   
trap3         -0.62675    0.35727  -1.754   0.1542   
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sexM          -0.22509    0.37937  -0.593   0.5849   
season2:sexM  -0.09245    0.40288  -0.229   0.8298   
season3:sexM  -0.84231    0.40922  -2.058   0.1087   
trap2:sexM     1.16122    0.46247   2.511   0.0660 . 
trap3:sexM     0.49351    0.34752   1.420   0.2286   
season2:trap2  0.77363    0.96831   0.799   0.4691   
season3:trap2  0.61834    0.93510   0.661   0.5446   
season2:trap3  0.53383    0.43005   1.241   0.2823   
season3:trap3  1.06392    0.43725   2.433   0.0717 . 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for quasibinomial family taken to be 0.9010412) 
 
    Null deviance: 54.5102  on 17  degrees of freedom 
Residual deviance:  4.2728  on  4  degrees of freedom 
AIC: NA 
 
Number of Fisher Scoring iterations: 4 
 
>  
> model.1 <- update(model.global, ~.-season:sex) 
> summary(model.1) 
 
Call: 
glm(formula = y ~ season + trap + sex + trap:sex + season:trap,  
    family = quasibinomial, data = data) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.45097  -0.64970  -0.00137   0.61464   1.03751   
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept)    -0.1933     0.3500  -0.552    0.601 
season2         0.5761     0.4405   1.308    0.239 
season3         0.5356     0.4345   1.233    0.264 
trap2          -0.6734     1.1417  -0.590    0.577 
trap3          -0.5918     0.4543  -1.303    0.240 
sexM           -0.5501     0.3549  -1.550    0.172 
trap2:sexM      0.8878     0.5721   1.552    0.172 
trap3:sexM      0.4962     0.4464   1.111    0.309 
season2:trap2   0.7070     1.2235   0.578    0.584 
season3:trap2   0.4576     1.1773   0.389    0.711 
season2:trap3   0.4864     0.5553   0.876    0.415 
season3:trap3   0.9891     0.5559   1.779    0.125 
 
(Dispersion parameter for quasibinomial family taken to be 1.490203) 
 
    Null deviance: 54.510  on 17  degrees of freedom 
Residual deviance:  9.749  on  6  degrees of freedom 
AIC: NA 
 
Number of Fisher Scoring iterations: 4 
 
>  
> anova(model.global,model.1,test="F") 
Analysis of Deviance Table 
 
Model 1: y ~ season + trap + sex + season:sex + trap:sex + trap:season 
Model 2: y ~ season + trap + sex + trap:sex + season:trap 
  Resid. Df Resid. Dev Df Deviance      F Pr(>F) 
1         4     4.2728                           
2         6     9.7490 -2  -5.4762 3.0388 0.1575 
>  
> model.2 <- update(model.1, ~.-season:trap) 
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> summary(model.2) 
 
Call: 
glm(formula = y ~ season + trap + sex + trap:sex, family = quasibinomial,  
    data = data) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.7746  -0.6739   0.1022   0.5487   1.7578   
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.51951    0.29070  -1.787  0.10422    
season2      0.93988    0.26203   3.587  0.00495 ** 
season3      1.09733    0.26070   4.209  0.00180 ** 
trap2       -0.31689    0.42942  -0.738  0.47751    
trap3       -0.05838    0.30664  -0.190  0.85281    
sexM        -0.56779    0.36070  -1.574  0.14653    
trap2:sexM   0.90106    0.58057   1.552  0.15171    
trap3:sexM   0.48919    0.44815   1.092  0.30062    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for quasibinomial family taken to be 1.538733) 
 
    Null deviance: 54.510  on 17  degrees of freedom 
Residual deviance: 16.016  on 10  degrees of freedom 
AIC: NA 
 
Number of Fisher Scoring iterations: 4 
 
>  
> anova(model.1,model.2,test="F") 
Analysis of Deviance Table 
 
Model 1: y ~ season + trap + sex + trap:sex + season:trap 
Model 2: y ~ season + trap + sex + trap:sex 
  Resid. Df Resid. Dev Df Deviance      F Pr(>F) 
1         6      9.749                           
2        10     16.015 -4  -6.2665 1.0513 0.4545 
>  
> model.3 <- update(model.2, ~.-trap:sex) 
> summary(model.3) 
 
Call: 
glm(formula = y ~ season + trap + sex, family = quasibinomial,  
    data = data) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.3822  -0.7702   0.1004   0.7615   1.4521   
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -0.7024     0.2643  -2.657  0.02089 *  
season2       0.9130     0.2645   3.451  0.00479 ** 
season3       1.0941     0.2640   4.144  0.00136 ** 
trap2         0.1605     0.2991   0.536  0.60145    
trap3         0.1686     0.2257   0.747  0.46936    
sexM         -0.1461     0.1983  -0.737  0.47551    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for quasibinomial family taken to be 1.588046) 
 
    Null deviance: 54.510  on 17  degrees of freedom 
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Residual deviance: 19.948  on 12  degrees of freedom 
AIC: NA 
 
Number of Fisher Scoring iterations: 4 
 
>  
> anova(model.2,model.3,test="F") 
Analysis of Deviance Table 
 
Model 1: y ~ season + trap + sex + trap:sex 
Model 2: y ~ season + trap + sex 
  Resid. Df Resid. Dev Df Deviance      F Pr(>F) 
1        10     16.015                           
2        12     19.948 -2  -3.9328 1.2779 0.3205 
>  
> model.4 <- update(model.3, ~.-sex) 
> summary(model.4) 
 
Call: 
glm(formula = y ~ season + trap, family = quasibinomial, data = data) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.60490  -0.72283   0.04899   0.95417   1.71171   
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.7647     0.2464  -3.104  0.00838 **  
season2       0.8968     0.2586   3.467  0.00417 **  
season3       1.0966     0.2591   4.232  0.00098 *** 
trap2         0.1382     0.2921   0.473  0.64399     
trap3         0.1647     0.2214   0.744  0.47025     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for quasibinomial family taken to be 1.531983) 
 
    Null deviance: 54.510  on 17  degrees of freedom 
Residual deviance: 20.811  on 13  degrees of freedom 
AIC: NA 
 
Number of Fisher Scoring iterations: 3 
 
>  
> anova(model.3,model.4,test="F") 
Analysis of Deviance Table 
 
Model 1: y ~ season + trap + sex 
Model 2: y ~ season + trap 
  Resid. Df Resid. Dev Df Deviance      F Pr(>F) 
1        12     19.948                           
2        13     20.811 -1 -0.86271 0.5432 0.4753 
>  
> model.5 <- update(model.4, ~.-trap) 
> summary(model.5) 
 
Call: 
glm(formula = y ~ season, family = quasibinomial, data = data) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.89968  -0.61665   0.04609   0.62619   1.91790   
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.6581     0.1911  -3.444 0.003615 **  
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season2       0.8999     0.2449   3.674 0.002257 **  
season3       1.1043     0.2386   4.628 0.000328 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for quasibinomial family taken to be 1.394941) 
 
    Null deviance: 54.510  on 17  degrees of freedom 
Residual deviance: 21.686  on 15  degrees of freedom 
AIC: NA 
 
Number of Fisher Scoring iterations: 3 
 
>  
> anova(model.4,model.5,test="F") 
Analysis of Deviance Table 
 
Model 1: y ~ season + trap 
Model 2: y ~ season 
  Resid. Df Resid. Dev Df Deviance      F Pr(>F) 
1        13     20.811                           
2        15     21.686 -2 -0.87455 0.2854 0.7563 
>  
>  
> model.6 <- update(model.4, ~.-season) 
> summary(model.6) 
Call: 
glm(formula = y ~ trap, family = quasibinomial, data = data) 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-3.2547  -1.0711  -0.0279   0.8884   3.3154   
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept) -0.04832    0.25188  -0.192    0.850 
trap2        0.40876    0.41052   0.996    0.335 
trap3        0.15893    0.31593   0.503    0.622 
 
(Dispersion parameter for quasibinomial family taken to be 3.281313) 
 
    Null deviance: 54.510  on 17  degrees of freedom 
Residual deviance: 51.231  on 15  degrees of freedom 
AIC: NA 
 
Number of Fisher Scoring iterations: 3 
 
> anova(model.4,model.6, test = "F") 
Analysis of Deviance Table 
 
Model 1: y ~ season + trap 
Model 2: y ~ trap 
  Resid. Df Resid. Dev Df Deviance      F   Pr(>F)    
1        13     20.811                                
2        15     51.231 -2   -30.42 9.9282 0.002413 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
 
> s1<-coef(model.5)[[1]] 
> s2<-coef(model.5)[[1]] + coef(model.5)[[2]] 
> s3<-coef(model.5)[[1]] + coef(model.5)[[3]] 
> s <- c(s1,s2,s3) 
> 1/(1+1/(exp(s))) # after back transforming from logit: gives mean 
proportion estimated by the GLM for 345 being present in each season; 
season1: 0.3411765; season2: 0.5601660; season3: 0.6097561 
[1] 0.3411765 0.5601660 0.6097561 
>  
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> gof<-cbind(res.diviance=model.5$deviance, df=model.5$df.residual, p=1-
pchisq(model.5$deviance, model.5$df.residual)) 
> gof 
     res.diviance df         p 
[1,]     21.68561 15 0.1163164 
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