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Abstract

This thesis proposes a new framework to jointly analyze electricity spot
market and hedging decisions in an oligopolistic setup. Firstly, we find
that, when exogenous, both quantity of electricity hedged by contract and
vertical integration decrease the equilibrium spot price. Secondly, we use
a hybrid approach and show that market structure can affect a generator’s
decision to vertically integrate under uncertain demand. Thirdly, we con-
sider uncertainty in costs and demand and show that concentration in the
spot market, for a given hedge quantum, can increase forward prices and
affect the slope of the forward curve. Our empirical results indicate that
the model fits the New Zealand electricity market well. This evidence that
market structure and hedging decisions are closely connected is further
explored in a three period equilibrium model for the spot and forward
markets, where hedging occurs prior to the submission of supply curves.
Taking into account demand-side and supply-side uncertainties, we find
that when hedging is endogenous, hedging quantities are affected by spot
market parameters, but market power is itself mitigated in the conscious
hedging choice of generators. We also show that forward markets can
coexist with highly vertically integrated markets. The importance of our
results is general. Our models can be used by policy makers to analyze
investment and forward price implications of changes in the spot market
structure. Our results also indicate that electricity generators, in equilib-
rium, face a trade-off between market power and hedging. Given that it is
socially beneficial to manage risk, the equilibrium impact of their choices
on welfare should not be considered in isolation by competition authori-
ties.
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Chapter 1

Introduction

The objective of this thesis is to analyze how risk and market structure
affect prices and economic decisions in decentralized electricity markets.
Electricity has unique characteristics that distinguish it from other com-
modities. Classical assumptions from the financial literature do not apply
to electricity derivatives and hedging markets. In addition, electricity mar-
kets frequently present market power issues and intricate structure. There
is a large body of literature addressing each of these matters individually,
but very few articles address the interaction between finance and market
power in electricity markets. Our main contribution consists in develop-
ing a formal framework to analyze, under realistic assumptions, forward
pricing, vertical integration and hedging decisions in electricity markets.
In particular, We assume uncertainty, oligopolistic behavior and uniform-
price auctions in our models.

1.1 Electricity markets and idiosyncrasies

Electricity is an important and ubiquitous good. Modern economies have
experienced rapid growth in the consumption of electricity, either due to
the expansion of production or because of the increasing use of electrical
and electronic devices. Consumers and firms demand large continuous

1



2 CHAPTER 1. INTRODUCTION

supplies of electricity at all hours of the day in most countries. For ex-
ample, according to Birol (2009), the world consumption of electricity in-
creased from 6,799 TWh in 1980 to 16,429 TWh in 2007 and is expected to
achieve 28,930 TWh in 2030.

The power industry is roughly described by the existence of three sec-
tors, each with very particular characteristics. The generation sector is
composed of power plants and produces electricity from particular fuels
or renewable sources. The transmission sector is responsible for trans-
porting electricity from the plants to large consumers and/or populated
regions. The distribution/retail sector is responsible for delivering/selling
electricity to individual households and commercial customers. These sec-
tors are interconnected by a network/grid that crucially depends on its
geographical, energetic and economic characteristics. Aspects such as the
location of power plants and consumers, characteristics of climate and ter-
rain, and demographic characteristics affect the economic performance of
the grid.

The uniqueness of electricity markets is explained above all by the
product’s unusual characteristics. First, at the current state of technol-
ogy, electricity is economically non-storable. Further, it is transported from
generation plants to final consumers instantly. This means that not only
must electricity supply match consumption continuously but also that on-
going delivery requires ongoing generation. As pointed out by Meade and
Evans (2006), because of its physical characteristics, electricity presents
a rather unusual network. Unlike other network industries such as gas,
sewage or railroads, electricity networks do not involve the physical deliv-
ery of a given product to/from specified production/delivery points. This
raises a second electricity demand-side issue. According to Stoft (2002),
the second demand-side issue is the impossibility of controlling real-time
flow of power to specific customers.

As posed by Brennan (2003), in addition to being an important com-
modity, electricity is both vulnerable to supply-demand imbalances (be-
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cause storage costs are prohibitive) and interconnection (because switch-
ing costs are prohibitive). The electricity system physics imply that supply
is always equal to consumption (including physical losses). Therefore, in-
stantaneous differences between supply and demand can be indicated by
neither flows of power (quantities) nor differences expressed by contracts.
The balance of a real-time electricity market is in fact signaled by physi-
cal parameters such as frequency and/or voltage. Since supply and con-
sumption are permanently balanced, for a given demand, any reduction
in supply decreases the voltage and frequency of all the interconnection.1

Besides, constraints caused by physical limitations of particular transmis-
sion and/or distribution lines have immediate effects over the quality and
capacity of the entire system. Consequently, in order to keep the market
balanced and the same frequency/voltage in the grid, any binding con-
straint at any point of the network is almost immediately transmitted to
increases in spot prices. For these reasons, if one supplier fails to meet the
demands of its customers, not only will those customers lose service, but
also all customers sharing the distribution grid will either lose power or
face higher prices.

Therefore, quality and reliability are essential issues in the industry.
The system operator is a natural monopoly service which is responsible
for assuring the reliability of the system and the quality of the power de-
livered. Its mission consists of keeping the system in balance by maintain-
ing supply equal to demand, keeping the voltage and the frequency at the
right levels, and restarting the system when it suffers a complete collapse.
As discussed before, any imbalance between supply and demand causes
the system frequency/voltage to deviate from the standard, which can po-
tentially harm electricity consumers and producers (e.g. plant damage). In
fact, consumers can incur large losses due to problems such as equipment
malfunctions and short-circuits caused by these deviations. In extreme

1An interconnection is a portion of the power grid connected by alternating current
(AC) power lines. The frequency in every utility in an entire interconnection is exactly
the same.
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cases, occurrences such as brownouts and/or blackouts cause enormous
social and economic burden. To sum up, the system operator must guaran-
tee that multiple outputs such as voltage, electrical energy, power and/or
frequency are delivered in real time within very narrow bounds.

Different markets may be required to handle larger deviations and
emergencies (e.g. unpredicted disruptions of supply). These emergency
services are collectively known as ancillary services. They usually bene-
fit the entire market and are either public goods or generate large exter-
nalities. Consequently, all of the electricity markets have a heavily regu-
lated demand side. The system operator is also responsible for coordinat-
ing these markets and for facilitating demand response for these ancillary
services. The operator is usually able to buy energy and frequently has
various grades of operating reserves available to balance the system and
to provide reliability. The management of reliability requirements deter-
mines not only short-term reliability, but the risk inherent to the market
and therefore the long-run investment in generation.

The system operator needs to manage the system in real time to keep
it physically secure. This is the reason why system operators typically as-
sure the operation of real time spot markets. Unlike in regular markets,
electricity customers can take power in real time without a contract. In the
limit, they can cause other customers to be blacked out without suffering
disruption of their own electricity. The operator needs a small lead time
for planning to deal with these externalities. According to Stoft (2002), this
lead time is generally accepted to be approximately a day. Beyond that the
spot market system has no need to pay attention to the energy market.
Notice that electricity industries, with well-functioning competitive spot
markets, rely on the system operator to tackle uncertainties and keep the
real-time markets balanced and reliable. Medium-term and long-term ar-
rangements for the supply of power are made either in forward markets
or in futures markets.

Decentralized electricity industries are characterized by the coexistence
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of several overlapping markets. Electricity trading over any specific pe-
riod of time can start from years to minutes before the actual delivery.
Medium-term and long-term contracts are generally traded through for-
ward and/or futures markets. They are usually financial markets in the
sense that the delivery of electricity is optional and the seller’s obligation
is strictly financial (i.e. contracts are settled in cash). On the other hand,
short-term transactions are made in the so called spot markets. In some
competitive electricity industries, the definition of spot markets comprises
both the day-ahead market and the real-time market. It is true that day-
ahead markets increase market completeness and potentially raise short-
term liquidity. However, despite their specific features, day-ahead mar-
kets are also financial markets. Similarly to forwards and futures, day-
ahead trading is a straightforward negotiation in the sense that bid offers,
quantities sold/delivered and prices are easily established. On the other
hand, electricity real-time markets present unique features. First, they are
the only physical markets (i.e. involves actual delivery of power). Second,
as mentioned, they present issues and externalities that demand a close
regulation by the system operator. For the purposes of this thesis, spot
markets will be taken to mean the real-time markets exclusively.

Electricity markets are frequently cleared by auctions in order to im-
prove price signals. There is an open debate about what is the best auction
design in terms of generating most social/economic welfare. There are
two predominant models of auctions in power markets. The uniform-price
(or single price) auction, where all suppliers receive the same equilibrium
or market clearing price and the pay-as-bid auction, where the price paid
to the winners are the same as their actual bids. The advantages and dis-
advantages of each framework for electricity wholesale markets are still
controversial. According to Oren (2004), most economists would agree
that the uniform-price auctions are better than pay-as-bid auctions for com-
plete and homogeneous markets. The real dispute concerns incomplete
and/or oligopolistic markets. The pay-as-bid could better reduce the price
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volatility in some situations of market incompleteness. It could also avoid
the possibility of collusive equilibria present in repeated uniform-price auc-
tions.2 Several electricity markets, such as for example California (CAISO),
Pennsylvania-New Jersey-Maryland (PJM)3, Texas (ERCOT), New York
(NYSE) and New Zealand (NZEM), adopt uniform-price auctions.

This dichotomy between uniform-price and pay-as-bid auctions is valid
above all for electricity financial markets such as forward, futures and day-
ahead markets. In terms of our definition of spot markets that corresponds
exclusively to real-time markets (e.g. NZEM), uniform-price auction is in
fact a more feasible market clearing approach. Since it is not possible to
control instantaneous flows of electricity in the network, a pure pay-as-bid
auction is very hard to implement in real time: it requires an underesti-
mated/overestimated supply-demand and pricing mechanism. In fact, it
is extremely costly in the horizon of a real time market (hours or minutes)
to reconcile bids in a pay-as-bid auction to the correspondent flows actually
(physically) dispatched/received. For these reasons we assume that spot
markets are cleared through uniform-price auctions. We also assume that
contract (financial) markets such as forwards/futures or day-ahead are
cleared by pay-as-bid auctions. Therefore, in theory, players in our frame-
work are allowed to trade in both auction approaches 4.

Market structure plays an important role in electricity markets5. First,
the characteristics of a particular grid determine the cost structure and di-
rectly affect firms’ marginal costs and their decisions. That is, aspects such

2See Kahn, Cramton, Porter, and Tabors (2001), Oren (2004) and Cramton and Stoft
(2007) for a detailed and accessible discussion of advantages and disadvantages of each
approach.

3The US states covered by the PJM are all or most of Delaware, District of Columbia,
Maryland, New Jersey, Ohio, Pennsylvania, Virginia and West Virginia. Parts of Indiana,
Illinois, Kentucky, Michigan, North Carolina and Tennessee.

4In fact, the contract market is assumed as exogenous in most chapters of the thesis.
Chapter 6 relaxes this hypothesis and analyzes the determinants of hedging decision.

5The notion of market structure is closely tied to technology and ownership and was
developed as part of the ”structure-conduct-performance” paradigm of industrial orga-
nization in the early 1950’s.
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as the number of generators and retailers in each point of the grid, the
disposition of transmission (and distribution) power lines and the pro-
portions of sources of power (hydro, thermal, nuclear, wind, etc.) are
closely tied to costs and, hence, the market structure of a specific indus-
try. Second, because of the usually large returns to scale involved in the
businesses, most electricity wholesale markets are dominated by a small
number of firms. This raises concerns about the existence of wholesale
market power in most of the electricity industries. In other words, the
ability of a relatively large generator to influence equilibrium price out-
comes by their supply decisions. This is the rationale for the oligopolistic
behavior assumption of our models. Some decentralized electricity mar-
kets (e.g NZEM, Spain (IEM) and Germany(GEM)) are also characterized
by the existence of firms with large positions in both the generation and
the retail markets: generally referred to as vertical integration. Possible
causes and consequences of vertical integration is analyzed in subsequent
chapters.

1.2 Price behavior and determinants

The non-storability of electricity, combined with the strong interdepen-
dence between players in the same network, results in the following fea-
tures. First, assuming that the system operator succeeds in keeping the
frequency/voltage constant, any occurrence at any point of the network
that causes a variation in supply relative to demand, whether predicted or
not, is instantly transferred to spot prices. When an supply-demand im-
balance is significant and transitory, there is an abrupt change in the price
followed by a quick reversion to the trend. This is an important explana-
tion for the existence of frequent spikes in electricity spot prices. Second,
since each power plant generates electricity from a very specific fuel (e.g.
water, gas, oil, uranium, wind, etc) their marginal costs are very sensitive
to the availability of these inputs. The non-storability of electricity implies
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that any major variations in input prices shift the supply curve immedi-
ately, contributing to the volatility observed in electricity prices. Third,
demand itself usually has very strong patterns. Consumption of electric-
ity is clearly affected by the time of the day, by the day of the week and by
the month of the year. The same is true of the availability of inputs. Since
these patterns in demand and supply are quickly transferred to prices,
we commonly observe patterns in electricity prices as well. Most empir-
ical studies incorporate one or more of these three basic features (spikes,
volatility and strong seasonality) to model electricity spot prices.

The existence of spikes and high volatility in electricity spot prices rep-
resents a challenge for risk management in the industry. The task is even
harder due to the incomplete nature of electricity markets. That is, the
number of securities available in electricity markets is far less than nec-
essary to optimally insure against future risks and to target a desirable
and feasible level of consumption in each state of nature.6 This means
that complex financial arbitrage and hedge strategies are very difficult to
implement at a relevant scale due to the existence of very few large, orga-
nized, liquid and assorted electricity derivative markets.7

Further, due to non-storability, the ‘cash and carry’ arbitrage argument
(used to price forward/futures contracts for most commodities) does not
apply for electricity. In other words, electricity derivatives hardly ever fit
regular financial models. In practice, electricity firms often resort to bi-
lateral and over-the-counter (OTC) forward contracts to offset their risks.
These forward markets usually trade considerable amounts of electricity
and are almost always dominated by players directly involved in the buy-
ing or selling of wholesale electricity. As examples of the relevance of
OTC forward transactions in electricity markets, according to Meade and

6See Heaton and Lucas (1996) for a formal discussion about incomplete markets and
consequences to risk sharing and asset pricing.

7The Norwegian electricity market (Nordpool) is usually referred as one of the most
developed and complete. However, it cannot be compared to regular commodity markets
such as oil in terms of completeness.
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O’Connor (2009), the volume of outstanding OTC forward contracts is
greater than 100% of the instantaneous physical volume traded in both
the United Kingdom and Australia. According to the same paper, the PJM
market is also predominantly made through OTC markets. The acquisi-
tion of companies in both the generation and the retail sectors by the same
firm (vertical integration) is a long-term contractual arrangement which
can also be viewed as an alternative mechanism by which electricity firms
hedge their risk. According to a survey undertaken by the NZ electricity
commission in 2008 (UMR (2008)), around only 25% of the electricity sold
by generators is hedged through forward/futures markets. As we ana-
lyze later in the thesis, this is a potential consequence of the high degree
of vertical integration in the market.

The analysis of strategic interactions between agents that face such an
intricate array of incentives is very complex. The relationship between
contracts (including both forward contracts and vertical integration ar-
rangements) and market power arise as a particularly important and in-
triguing topic. The evaluation of anti-competitive behavior, the causes and
the consequences of vertical integration and the relationship between con-
tracts and market power have been the subject of an already vast literature
in industrial organization.8 On the other hand, on the financial front, the
idiosyncrasies of electricity spot prices and electricity risk management
have also stimulated the publication of several articles.9 However, sparse

8Joskow (2005), Bushnell, Mansur, and Saravia (2008) and Meade and O’Connor (2009)
offer a broad review about the status quo of the literature over vertical integration. On the
other hand, papers such as Allaz and Villa (1993), Newbery (1998), Green (1999), Ferreira
(2003), Mahenc and Salanie (2004), Liski and Montero (2006), Green and Le Coq (2006)
and Bushnell (2007) deal with the relationship between market power and contracts. In
particular, Allaz and Villa (1993), Newbery (1998), Green (1999) and Bushnell (2007) us-
ing Cournot or supply function equilibria (SFE) frameworks observe the importance of
forward contracts in reducing market power. On the other hand, Ferreira (2003), Mahenc
and Salanie (2004), Liski and Montero (2006) and Green and Le Coq (2006) find opposite
results either using Bertrand models or focusing on the the dynamic aspects of contracts.

9See Falbo, Felletti, and Stefani (2010), Geman and Roncoroni (2006) and Cartea,
Figueroa, and Geman (2009) for literature reviews on both electricity risk management
and spot price modeling.
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effort has been made to relate both fields.

Demand-side and supply-side risks are crucial determinants of hedg-
ing decisions in electricity industries. There is a consensus that long-term
arrangements have an impact in oligopolistic spot prices. There is also
agreement that electricity spot prices and electricity derivatives are some-
how linked. In particular, a large portion of electricity transactions are
established in forward and future markets. We propose in this thesis a
coherent and formal framework to relate these issues and explain the rela-
tionship between forward prices, risk and market power, to analyze verti-
cal integration in terms of risk and real options, and to explore the deter-
minants of hedging decision in a realistic setup.

1.3 Thesis outline

The objective of this thesis is to develop the link between financial and
electricity models. More precisely, to study how volatility and market
structure interact to affect the electricity market outcomes in a realistic
model setup.

We develop a model that takes into account uncertainty, uniform-price
auctions, oligopoly and vertical integration to analyze the relationship be-
tween concentration, risk and forward prices. We use the same framework
to understand how the decision to increase vertical integration is affected
by the demand-side risk and market power. Lastly, we develop a three-
period equilibrium framework to understand how risk, market power
and vertical integration affect hedging decision under the assumption that
electricity markets are incomplete.

The thesis comprises five chapters besides the introduction and con-
clusion. Chapter 2 discusses relevant concepts and assumptions and de-
velops the basic model of the thesis. An electricity equilibrium model that
takes into account short-term uncertainty, market power in the wholesale
market, forward contracts and uniform-price auctions is presented. A link
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between the instantaneous matching of supply and demand and the dy-
namics of supply and demand is established through the inclusion of a
state variable vector that includes cost and demand shifters. This vec-
tor can represent variables associated with input prices (e.g. oil, gas and
uranium), climate (e.g. temperature and water inflows), economic activ-
ity (e.g. GDP growth and income) and institutions. The chapter derives
a linear equilibrium relationship between spot price, contracts and state
variables.

Chapter 3 extends the basic model to incorporate the possibility that
some firms operate in both the generation and retail markets (the exis-
tence of the so-called gentailers). The chapter derives two spot price mod-
els, each with different assumptions regarding the nature of uncertainty.
Under simplifying assumptions, this chapter also shows that forward con-
tracts do not affect spot prices in highly vertically integrated markets. This
result holds even in the case where there are mismatches in a gentailer’s
position in the generation and retail markets. We also show that, under
the assumption of highly vertically integrated markets (even where some
gentailers are predominantly retailers and others are predominantly gen-
erators), spot prices can be described by a linear function of state variables.

Chapter 4 develops the hybrid approach, incorporating the structure
and characteristics of electricity markets, to analyze how forward prices
relate to supply-side and demand-side risks and market concentration.
Specifically, we develop a closed-form solution for the prices of forward
contracts in highly vertically integrated markets (e.g. NZEM, IEM or GEM).
The effects that the number of generators and volatility have on the for-
ward curve are then evaluated. Theoretical results are empirically tested
and applied to the NZEM.

Chapter 5 analyzes the investment decision associated with vertical in-
tegration. Gentailers’ decisions to increase their participation in the retail
market involves sunk costs. In an uncertain environment the option to
postpone this decision has a value. Taking this into account, we develop a
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model that establishes the relationship between parameters of the electric-
ity market, demand uncertainty, and the option to wait for the investment.
The model also determines the level of demand which triggers investment
(an optimal investment rule). As mentioned before, vertical integration is
a relevant phenomenon in electricity markets. Instead of studying vertical
integration from a strategic perspective, we innovate by analyzing its de-
terminants from an investment perspective. In particular, we consider the
role of uncertainty, flexibility and market power in this decision.

Chapter 6 develops a three-period model and discusses the role of for-
ward contracts as an endogenous variable. As was the case in previous
chapters, the assumptions comprise oligopoly, uniform-price auction and
the possibility of forward markets and vertical integration. The model
assumes that firms decide their contract position in the first period. In
the second period, state variables are revealed and generators decide their
optimal supply schedule under short-term uncertainty about the final de-
mand. In the last period, the final demand is revealed and the spot market
clears. The chapter analyzes the impact of demand-side and supply-side
risks over the forward market equilibrium. The impact of risk on genera-
tors/gentailers’ spot market power is also studied.

We conclude the thesis by arguing that hybrid models have an impor-
tant and promising role in the analysis of both derivatives prices and in-
vestment decisions. Last but not least, when analyzing the relationship
between contracts and market power, most papers either take forward
prices/contracts as given or do not consider uncertainty in their models.
First, we stress the importance of not ignoring risk, the main determinant
of hedging, in the discussion about the role of long-term contracts as in-
struments to promote competitive spot prices in electricity markets. We
show that popular measures of wholesale oligopolistic conduct such as
the expected mark-up (difference between spot prices and marginal pro-
duction costs) can be exogenously affected by volatility. Under simpli-
fying assumptions we show that forward/futures contracts do not affect
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spot prices in highly vertically integrated markets. We take into account
both demand-side and supply-side risk and show that, even in this limit
case, concentration in the wholesale market can positively shift and rotate
the forward curve. If changes in the number of generators/gentailers can
affect forward prices, one must expect that they can affect hedging deci-
sion. In other words, the relationship between market power and forward
contracts must be considered in both directions.
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Chapter 2

Basic model

2.1 Model set-up and definitions

This chapter presents and discusses the electricity market model devel-
oped by Hortacsu and Puller(2005, 2008). Their model is modified to in-
clude a general vector of state variables affecting demand and supply. The
equilibrium spot price formulation here analyzed guides the remaining
chapters of the thesis.

The model assumes the following structure. The electricity market has
N players made of K generators and R retailers. The wholesale market is
oligopolistic, in the sense that there are only a few electricity generators,
who must carefully consider the actions of their rivals in setting prices.
The wholesale spot price at a given time is determined through a uniform
price auction, where generators submit an individual supply schedule and
an auctioneer clears the market. The sources of uncertainty at the time of
the auction for a given generator are the rival’s electricity contract posi-
tions and demand oscillation. The bidder’s utility function is generic1.
Both the contract positions and forward prices are considered to be exoge-
nous. The aggregate consumer’s demand and generators’ cost functions

1In fact, as defined later, the utility function is quasi-concave and twice differentiable.
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are influenced by a given set of state variables assumed as known at the
moment of the auction. These state variables drive the stochastic behavior
of demand and supply through time. All these assumptions will now be
formalized and motivated.

Definition 2.1.1. State variables are represented by the L-dimension state vari-
ables vector ~Wt = {w1t, w2t, . . . , wLt} which is assumed to be exogenous and
known by all firms at time t.

Here we define consumer demand and generator cost shifters. These
shifters are assumed as known at time t. For example, in chapter 4, they
are responsible for the stochastic behavior of price through time. in other
words, players are assumed to make their decision and the market equi-
librium is set given all the information available at t.

Definition 2.1.2. The consumers’ aggregate demand at time t is defined by:

D̃t(p
R
t , ~Wt, εt) = Dt(p

R
t , ~Wt) + εt (2.1)

Retail price pRt is assumed to be exogenous and εt represents short-term de-
mand’s fluctuations.

Aggregate demand has two components. The first is represented by
the function Dt which is affected by the price charged to final consumers
(retail price) and by demand drivers. The second is εt which corresponds
to parallel shocks to the demand curve. The probability distribution of
εt is general. Notice that, by definition, ~Wt and pRt are known at time t
by all players but εt is not. At the moment of the auction, players use all
information available to infer demand and costs. However, there is still a
residual uncertainty about the demand at the time of the power delivery
given by εt. The timing of the model is explained in more details later.

Frequently, the literature considers the state variable as the observed
demand itself Dt = w1t. However, we can also think in terms of demand
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shifters such as income, economic activity, institutional changes, season-
ality or climate factors. The assumption of exogeneity of pRt is a good
approximation for electricity markets for two reasons. First, retail prices
are frequently regulated. Second, even when retail prices are freely de-
termined, contracts between retailers and customers usually have a long-
term nature. In other words, it is not reasonable to assume that retailers
react to each instantaneous oscillation in the spot market when deciding
the price they charge consumers. 2

Definition 2.1.3. QCit is firm i’s contracted quantity of electricity to deliver
(buy if negative) at time t, for all i = 1, 2, . . . , N . PCit refers to the price paid for
these contracts.

Definition 2.1.4. The other firms’ correspondences (QCjt, PCjt)∀j 6= i are un-
known by firm i.

The quantity QCit is defined as the total amount of electricity that firm
i is forward contracted to deliver (or to buy if negative) at time t. In reality,
we could think as QCit representing firm i’s portfolio of forward contracts
maturing at t, negotiated at different times in the past. In this case, price
PCit would be a weighted average forward price of this portfolio.

Forward contracts constitute an important part of competitive electric-
ity wholesale markets. Wholesalers, retailers and gentailers frequently
manage their spot price risk trading significant amounts of forward con-
tracts of different maturities in over the counter (OTC) markets. Because of
the bilateral nature of OTC markets, market information is rarely available
even for participants. Firms are often unaware of rivals’ contract positions
at a particular point in time. On the other hand, electricity markets are of-
ten characterized by a lack of relevant and liquid future exchanges. There-
fore, existence of non marked-to-market forward prices and absence of in-
formation about rivals’ average forward prices are very common features

2In reality, wholesale and retail demand can can present different features. In fact
retail and industrial prices are frequently not the same. However, to keep the model
simple, we consider just one aggregate demand affected by retail prices.
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in electricity markets. Frequently, firms’ forward positions in a particu-
lar time correspond to a complex portfolio, characterized by overlapping
contracts established at different periods and prices.

Definition 2.1.5. Function Sit(p,QCit, ~Wt) represents generator i’s supply for
all i = 1, . . . , K. Define St =

∑K
i=1 Sit as the aggregate supply.

Supply is affected not only by the spot price p and cost shifters. Gen-
erators and also gentailers decide on their supply schedule taking into
account the quantity of electricity they are committed to supply at time t
by previously arranged contracts.

Definition 2.1.6. The total cost of each generator i in time t, for all i = 1, 2 . . . , K,
is Cit which is a function Cit(Sit, ~Wt) of the firm supply Sit and the vector ~Wt.
The marginal cost MCit(Sit, ~Wt) is the partial derivative of Cit with respect to
Sit. Also, Cit is twice continuously differentiable and ∂MCit

∂Sit
≥ 0.

We assume that generators have a well behaved cost function shifted
by exogenous state variables. This assumption addresses the potential im-
pact of cost shifters (e.g. capacity availability, temperature, precipitation
and prices, or shadow prices, of inputs such as gas, fuel or water) in the
marginal costs of the generators. Abrupt increases in the marginal cost
of generation associated with non-storability of electricity is well docu-
mented as a reason for the existence of the so-called spikes (see e.g. Deng
(2000) and Hughes and Parece (2002)) . The above cost formulation is flex-
ible enough to capture this phenomenon.

Definition 2.1.7. The market clearing wholesale price pct must equate aggregate
demand and aggregate supply.

∑K
i=1 Sit(p

c
t , QCit,

~Wt) = D̃t(p
R
t ,
~Wt)

Firms simultaneously submit continuous supply schedules Ŝit 3. Con-
3The fact that supply bids are assumed as such continuous functions simplifies the

results. This assumption is adopted as a theoretical benchmark in Hortacsu and Puller
(2008) and in the large Supply Function Equilibrium literature originated from Klemperer
and Meyer (1989). In reality, however, bids are discrete and Von der Fehr and Harbord
(1993), and Kastl(2006, 2008) question the smoothness assumption and study the conse-
quences of constrained bidding.
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sidering each firm’s bid, the auctioneer computes the equilibrium price pct
that satisfies the market clearing condition. Therefore, at the moment of
the auction, from the perspective of firm i, the uncertainty in price is due
to the uncertainty about the short-term demand oscillation ε and the con-
tract positions of rival firms and their respective prices {QCjt, PCjt, j =

1 . . . N, j 6= i}.

Definition 2.1.8. Firm i’s ex-post profit upon the realization of market clearing
price is:

πit = Sit(p
c
t , QCit, ~Wt)p

c
t −Cit(Sit(pct , QCit, ~Wt), ~Wt)− (pct − PCt)QCit (2.2)

The payoff of generators consists of an operating result (pctSit−Cit) and
a financial revenue/loss (PCit−pct)QCit from forward market transactions.

Definition 2.1.9. The conditional cumulative distribution function of market
clearing price (pc) realizations is:

Hit(p, Ŝit(p);QCit, ~Wt) ≡ Pr(pct ≤ p | QCit, ~Wt, Ŝit(p))

where Ŝit(p) is the supply schedule submitted by generator i at time t.

As characterized by Wilson (1979) and explored by Hortacsu and Puller
(2008), we can establish a Bayesian-Nash equilibrium by defining a prob-
ability measure over the realizations of the market clearing price from the
perspective of generator i, conditional on generator i’s private informa-
tion about his contracts (QCit,PCit) and the fact that generator i submits
the supply schedule Ŝit while its generation competitors are playing their
equilibrium bidding strategies {Sjt(p,QCjt, ~Wt), j = 1 . . . K, j 6= i}.

Definition 2.1.10. Ui(π) is the utility enjoyed by the bidder (generator) i from
making π dollars of profit. Ui(π) is twice differentiable utility function and
U ′i(π) > 0 and U ′i(π) ≤ 0.
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A general utility function formulation permits admission of risk aver-
sion of the bidder when participating in the auction. In particular, utilities
matter in a context of incomplete markets such as electricity. Preferences
are discussed more fully in chapter 6.

Here we will also assume that generator i’s bidder when deciding the
bid schedule Ŝit(p) has utility maximizing behavior.

2.2 Equilibrium results

Taking all the previous definitions into account, the bidder i’s expected
utility maximization problem is:

max
Ŝit(p)

∫ p

p

U [Ŝit(p)p− Cit(Ŝit(p), ~Wt)

−(p− PCt)QCit]dHit(p, Ŝit(p);QCit, ~Wt) (2.3)

The integral is taken over all possible realizations of the market clear-
ing price (εt, QCjt;QCit, ~Wt), for all j 6= i, weighted by the probability den-
sity dH(p, S∗it(p);QCit, ~Wt). In other words, by offering to supply at a lower
price, the bidder increases the likelihood that he will supply a larger quan-
tity; whereas, by offering to supply at a higher price, the bidder increases
the likelihood that he will supply a smaller quantity but at a higher price.
Taking into account the inherent probability distribution of the clearing
price and his own risk aversion, a rational bidder optimizes this tradeoff
to maximize his expected utility.

Lemma 2.2.1. Assuming that supply schedules are continuously differentiable
and that S∗it(p) is the optimal supply curve of firm i at time t, the first order
condition (FOC) of the bidder’s (generator) maximization problem is:

p−MCit(S
∗
it(p), ~Wt) = [S∗it(p)−QCit]

HS(p, S∗it(p);QCit, ~Wt)

Hp(p, S∗it(p);QCit,
~Wt)

. (2.4)
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Where

Hp(p, S
∗
it(p);QCit, ~Wt) =

∂

∂p
Pr(pct ≤ p | QCit, ~Wt, S

∗
it(p))

HS(p, S∗it(p);QCit, ~Wt) =
∂

∂S
Pr(pct ≤ p | QCit, ~Wt, S

∗
it(p))

Proof. appendix A.

Notice that the risk aversion of the bidder does not influence equation
(2.4). This result follows from the deterministic nature of all non-control
variables of the bidder’s maximization problem at time t. The bidder’s
problem solution in every state of nature is attainable and produces a sup-
ply schedule that is a monotonically increasing function of price. In other
words, the bidder chooses an optimal supply for each state of nature given
by εt.

As pointed out by Hortacsu and Puller (2008), Hp is the ‘density’ of the
market clearing price when firm i bids S∗it(p). The derivative HS captures
the market power of i and can be interpreted as the ‘shift’ in the probability
distribution of the market clearing price, due to a change in S∗it(p). This
derivative is always nonnegative, because an increase in supply weakly
lowers the market clearing price, which weakly increases the probability
that the market clearing price is lower than a given price p.

This formula is consistent with market power or, in other words, the
existence of declining residual demand curves. Each bidder is indepen-
dently selecting his bid to maximize profits based on his estimate of the
residual demand curve he faces. Equation 2.4 also implies that the exis-
tence of forward contracts mitigates the market power of electricity pro-
ducers. Observe, however, that for a competitive market we have p = MC

independently of the quantity contracted by the generators (as HS = 0).
Equation (2.4) raises three complications. First, as observed by Hor-

tacsu and Puller (2008), its empirical implementation requires the estima-
tion of Hit for each bidder i, in every period t which is a complex econo-
metric problem. Second, the computation of equilibrium strategies is a
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complicated task because Hit is determined endogenously through the
market clearing condition and depends on the joint distribution of con-
tract positions and the distribution of demand noise.4

To understand the possibility of multiple equilibria under the inelas-
tic demand assumption, observe that proposition 2.2.1 becomes a typical
supply function equilibrium model (SFE) when forward contracts are not
considered.5 Anderson and Philpott (2002) show that when demand is in-
elastic and forward markets are not considered (QCi = 0 , ∀i = 1, 2, . . . , N ),
generators with identical and convex cost functions have an infinite num-
ber of choices that yield symmetric equilibria. Different equilibria could
also imply significantly different returns for generators.6 In a general con-
text, as observed by Holmberg and Newbery (2010), the unique equilib-
rium would be determined by price caps and capacity constraints under
perfectly inelastic demand.

As shown by Hortacsu and Puller (2008), the characterization of equi-
librium strategies is greatly simplified when the functional form of the
firm i supply strategy is additively separable in price p and quantity con-
tracted QCi, in which case changes in exogenous variables such as QC or
~W shift the equilibrium supply strategies but do not rotate them. Notice,

4See Hortacsu and Puller (2008) pages 93 and 94. Third, without further assumptions,
equation (2.4) is prone to multiple equilibria. Anderson and Philpott (2002) point out
that this is a particularly relevant problem when demand is assumed to be inelastic to
wholesale prices (definition 2.1.2).

5The SFE approach was originally developed by Klemperer and Meyer (1989) and
first applied to the electricity market by Green and Newbery (1992) and Bolle (1992).
Holmberg and Newbery (2010) offer a broad review on the SFE literature. These authors
define the SFE model as a game-theoretic model of competition in wholesale markets that
assume that each generator chooses its offer curve in order to maximize its profit, given
demand and offer curves chosen by competitors. The setting of SFE assumes that produc-
tion costs are common knowledge and that demand is uncertain. It is also assumed that
the shock ε is additive to the demand and that production uncertainties are neglected for
strategic producers. Following Hortacsu and Puller (2008), our framework uses exactly
the same assumptions plus the assumption of uncertainty about rivals’ quantities con-
tracted. With no forward markets, there is no such additional uncertainty and our setting
collapses into a typical SFE model.

6See Anderson and Philpott (2002) theorem 14, page 486-487.
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however, that exogenous variables can change suppliers’ price elasticities
despite not affecting the suppliers’ price derivatives. We show that the
same assertion is valid in our framework with state variables ~W .

An important caveat, as noticed by Hortacsu and Puller (2008), is that
the additive separability is an a priori restriction on bidding strategy. It is
not necessarily true that every specification of marginal cost functions and
joint distribution of contract quantities will lead to equilibrium strategies
of this form. However, the authors test the additive separability assump-
tion for the Ercot market and find that the restriction holds on average
across bidders.

Lemma 2.2.2. At any time, suppose supply function strategies Si(p,QCi, ~W )

are restricted to the additively separable class of strategies:

Si(p,QCi, ~W ) = αi(p) + βi(QCi) +
L∑
l=1

δli(wli)

then for a range of prices p ∈ [p, p] the first order condition at time t turns to:

pt −MCit(Sit, ~Wt) =
Sit −QCit
∂
∑
j 6=i Sjt

∂p

(2.5)

alternatively,

pt −MCit
pt

= − 1

εit(qit)
(2.6)

where εit(qit) is the elasticity of the net residual demand qit, here defined as qit =

Dt −
∑

j 6=i Sjt −QCit.
Proof: appendix A.

As posed by Holmberg and Newbery (2010), mark-ups in the real-time
market only influence the revenue from sales net of forward contracting.
Hence, it is the residual demand net of forward contracts that are relevant
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for a profit maximizing producer. A producer offers positive net-supply
with positive mark-ups in the realtime market. If a producer has negative
net-supply, i.e. he has to buy back electricity in the real-time market, then
he will use his market-power to push down the price. Hence mark-ups
are negative for negative net-supply. Mark-ups are zero at the contract-
ing point where net-supply is zero. Therefore, the existence of forward
contracts mitigates incentives to bid above marginal costs.

Specifically, in equilibrium, firm i’s supply Si is such that his Lerner
index pt−MCit

pt
corresponds to the negative of the inverse of the elasticity

− 1
εit(qi)

of his residual demand Dt −
∑

j 6=i Sjt net of his forward position
QCit. In other words, the elasticity of the net residual demand qi fully
explains the wholesaler i’s mark-up.

As discussed before, the result of the proposition above comes from
a restriction on the set of admitted supply function strategies. Particu-
larly, by immediate inspection of equation (2.5) one can observe that cost
functions with non-linear marginal costs or highly non-linear aggregate
demand pose problems with satisfying the assumption of additively sepa-
rable supply functions. However, proposition 2.2.3 shows that the empir-
ically implementable simplification of quadratic cost functions and linear
demand is consistent with additively separable supply strategies.

Given the concavity of the profit function, Hortacsu and Puller (2008)
points out that the bid function Si(p) given by equation (2.5) provides a
pointwise best-response to every possible realization of the residual de-
mand curve. This also means that a class of additively separable equilib-
rium strategies are ex post optimal when they exist. That is, seeing other
bidders supply functions would not change bidder is choice of supply
function. This result also resembles Wolak(2000, 2003). In particular, both
papers assume uncertainty in demand, and find that, given certain con-
ditions, and regardless of the residual-demand realization, equation (2.6)
holds for each hour of the day and each supplier.7 The contribution of

7As discussed by Holmberg and Newbery (2010), ex-post optimality is not always
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Hortacsu and Puller (2008) is that they obtain similar results by allowing
for firm i’s uncertainty about both the demand (ε) and his rivals’ contract
positions (QCj).

Following Hortacsu and Puller (2005), proposition 2.2.3 shows that
there is an example in which a potential equilibrium strategy is analyti-
cally characterizable and satisfies the additive separability restriction. In
this example, i) both demand and firms’ costs are affected by state vari-
ables, ii) the demand is inelastic and iii) firms possess linear marginal cost
curves (these can be asymmetric across firms). Further, firms are assumed
to be restricted to linear supply strategies.

As far as tractability of the equilibrium spot price model is essential
to address central subjects of the next chapters such as forward pricing,
vertical integration and hedging decisions, we will restrain our analysis to
this particular case. Despite its limitations, as we discuss in chapters 4-6,
our setting constitutes a considerable improvement over the spot market
structural assumptions made in the optimal hedging / forward pricing
literature, frequently characterized by perfect competition assumptions or
no assumptions at all.

Notice that, in this thesis, Hortacsu and Puller (2008) is expanded by
considering the existence of a vector of state variables ( ~W ) that affect de-
mand and/or supply. This vector is the link between the family of static
electricity models and the multi-period models of chapter 4-6.

Proposition 2.2.3. Assume that Si(p,QCi, ~W ) are restricted to the linear class
of strategies:

Sit(pt, QCit, ~Wt) = ψ + αpt + βQCit +
L∑
l=1

δj(wjt)

possible. In more general settings, producers can choose the best expected outcome be-
fore knowing the shock, but might have chosen a different offer curve once they know the
actual shock. For example, Wilson (2008) analyzes SFE in a transmission network with
multiple nodes where demand shocks are multi-dimensional. In this case, it is generally
not possible to find an ex-post optimal SFE.
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If (i) there are a fixed number K > 2 generators in the market, (ii) marginal
cost functions are linear and symmetrical between firms in the market (MCit =

a+bSit+
∑L

j=1 ρjwjt ∀i = 1, 2, . . . N and b > 0) and (iii) the aggregate demand is
linear with constant retail price (Dt(p

R
t , ~Wt) = c−κopRt +

∑L
j=1 κjwjt+ εt) then

there is a unique symmetric Bayesian-Nash equilibrium, if such an equilibrium
exists. Where:

S∗it = −a(K − 2)

b(K − 1)
+

K − 2

b(K − 1)
pt +

1

K − 1
QCit +

−(K − 2)

b(K − 1)

L∑
j=1

ρjwjt

and the clearing wholesale spot price can be rewritten as the following:

pct = A−B
K∑
i=1

QCit +
L∑
j=1

Cjwjt + (K − 1)Bεt (2.7)

where

A = a+ b
(c− κopR)(K − 1)

K(K − 2)

B =
b

K(K − 2)

Cj = ρj + b
K − 1

K(K − 2)
κj

Proof: appendix A.

Proposition 2.2.3 states a simple and linear equilibrium relationship be-
tween clearing price and state variables under a realistic electricity market
structure. That is, the equilibrium allows for market power in the whole-
sale market and a uniform-price auction clearing mechanism unlike the
usual assumptions of perfect competition and pay-as-bid mechanism. If
K ≤ 2, the results could be not feasible since A, B and Cj would be di-
vided by zero for K = 2. The assumption of K > 2 is valid for many
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competitive electricity markets (e.g. most of competitive US interconnec-
tions, NZEM, Nordpool).

The following results follow from equation (2.7). First, the electricity
spot price is affected by the state variables in the expected way. Positive
shifts in generators’ costs and in aggregate demand increase the spot price
and negative shifts have the opposite effect. Second, an increase in the
retail price, here assumed as exogenous and deterministic, decreases ag-
gregate demand and consequently decreases the spot price.

The third and most significant aspect of this equation is that play-
ers’ hedge decisions, here represented by the sum of generator’s contracts∑K

i=1QCit, can have a significant role in the price formation. As discussed
before, this means that a large forward position can decrease generators’
incentive to exercise market power which, in turn, affects the spot price.
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Chapter 3

Vertical integration

3.1 Motivation

The model described in chapter 2 assumes that electricity markets are
vertically separated. However, electricity firms frequently participate in
both the generation (upstream) and retail (downstream) markets simul-
taneously, which is referred to in the economic literature as vertical inte-
gration. This chapter expands the previous model in order to take into
account the possibility of vertical integration.

No such thing as a unified theory of vertical integration exists so far.
There is an array of theories to explain this rather usual phenomenon in
electricity markets. However, as posed by Joskow (2005), virtually all the-
ories of vertical integration arise from the recognition of market imperfec-
tions of some type.

Traditional approaches have mostly focused on vertical integration as
an arrangement associated either with a strategic move to increase mar-
ket power (downstream and/or upstream) or a response to market power
problems already in existence.1 Other alternative approaches focus on fric-

1In this case, as explained by Joskow (2005), vertical integration could be an optimal
response to costs of successive monopolies (Tirole (2000) chapter 4), it could enhance price
discrimination (Perry (1978)), or it could be used to soften competition by increasing ri-

29
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tions such as transaction costs and incompleteness of contracts to study
vertical integration from an organizational perspective. Unlike most the
traditional approaches that consider the act of vertical integration as the-
oretically costless, alternatives such as the ”Property Rights” approach
and Transaction Cost Economics see vertical integration as a reaction to
costs and benefits of internal organization and to inefficiencies of market
transactions.2 Chapter 3 considers two different equilibrium formulations
for the spot market: the first will be used to build hybrid pricing models
(chapters 4-5) and the second will be used for optimal hedging (6). Both
models treat vertical integration as a long-term hedging arrangement.

The differences between vertical integration and long-term forward
contracts in our formulations is related to the way they are affected by
uncertainty. Given a specific retail market share mi and a retail price PR,
the retail profit of a gentailer iwill immediately follow the variations of ag-
gregate demand. On the other hand, the outstanding quantity contracted
QCit at time t is assumed fixed. In other words, in opposition to forward
contracts, vertical integration fully hedges against risks embedded in de-
mand 3. Observe that this assumption about vertical integration is related
to the transaction costs/property rights’ literature, in the sense that the dif-
ferences between the two arrangements occur due to the incompleteness
of the market. If we could costlessly hedge all the uncertainty in demand
through forward contracts, in each instant t, both arrangements would be
virtually equal for hedging purposes.

The first equilibrium model developed in this chapter assumes that the
only source of uncertainty faced by bidders (generator/gentailer) is the

vals’ costs and/or foreclosure potential competitors(Aghion and Bolton (1987), Ordover,
Saloner, and Salop (1990) and Hart, Tirole, Carlton, and Williamson (1990)). For a more
didactic approach, see Schmalensee, Armstrong, and Porter (2007) chapter 33.

2See, for example, Williamson (1971), Klein, Crawford, and Alchian (1978), Klein and
Leffler (1981), Williamson (1983), Williamson (1985), Grossman and Hart (1986), Hart and
Moore (1990), Hart and Hart (1995), Klein (2000) and Williamson (2000).

3The models developed in this chapter assume that, for a given period t, bothQCit and
mit were already defined and, therefore, are exogenous parameters. These assumptions
will be partially relaxed in later chapters.
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quantity contracted by their rivals. It implicitly assumes that the oscilla-
tions in demand (ε) between the time of the auction and the time of de-
livery are negligible. On the other hand, it considers that a given firm
does not know for sure his rivals’ outstanding contracts. This assump-
tion is particularly appropriate for developing the hybrid pricing models
of chapter 4 since they focus on longer-term risks associated with forward
and real options pricing. As we see in the next chapter, these longer-term
risks are driven by the stochastic process associated to the state variables.

The second formulation assumes that the rivals’ quantity contracted is
absolutely known at time t but there is a residual uncertainty (ε) about the
demand at the same time. This alternative formulation is used in the three-
period model of optimal hedging under vertical integration of chapter
5. This fundamental assumption is appropriate in the context of optimal
hedge modeling. Since players behave rationally and there is no asym-
metric information in the market, each player knows the optimal contract
strategy of all his rivals. Therefore, there is no reason to assume the ex-
istence of uncertainty about QCjt in this three-period world. Notice that,
differently from the first model, this second framework allows for uncer-
tainty in both state variables and post-auction disturbances in demand.
These models are formalized in the next sections.

3.2 General assumptions

Assume N total firms made up of K generators, R retailers and I gentail-
ers, where I = K+R−N . That is, gentailers are included in both retailers
and generators groups. The retailers’ revenues are determined by an ex-
ogenous retail price and by their market shares. Consider that definitions
2.1.1, 2.1.3, 2.1.5 and 2.1.6 hold. The consumers’ aggregate demand at time
t is defined by D̃t. Since the participation of generators in the retail mar-
ket also drives their supply decision, the characterization of each retailer’s
individual demand becomes relevant.
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Definition 3.2.1. Retailers’ demand (gentailer or pure retailer) is defined as
miD̃t(p

R
t ,
~Wt),∀i = 1, 2, . . . , R. Heremi > 0 is the given market share of retailer

i and
∑R

i=1 mi = 1, since gentailers are included in retailers. By construction,∑R
i=1 miD̃t(p

R
t , ~Wt) = D̃t(p

R
t , ~Wt).

A retailer’s demand is assumed to be a fixed proportion of the to-
tal consumers’ demand and, by construction, the total retailers’ demand
must be equal to the aggregate consumers’ demand. The exogeneity of
mi reflects the idea that the retail market shares are relatively fixed. It is
certainly reasonable to assume that at the moment of an auction the re-
tail market share is known and exogenous. In reality, contract arrange-
ments between retailers and final consumers are relatively stable in com-
parison to the strong variations observed in both demand and generation
inputs. Therefore, this assumption is a good approximation for the short
or medium-term.

Definition 3.2.2. The market clearing wholesale price pct must equate aggregate
demand and aggregate supply.

∑K
i=1 Sit(p

c
t , QCit, ~Wt) =

∑R
i=1miD̃t(p

R
t , ~Wt) =

D̃t(p
R
t ,
~Wt)

Again, firms simultaneously submit continuous supply schedules Ŝit
and the auctioneer computes the equilibrium price pct that satisfies the mar-
ket clearing condition.

Definition 3.2.3. Gentailer i’s ex-post profit upon the realization of the market
clearing price is (where mi = 0 for pure generators and mi > 0 for gentailers):

πit = Sit(p
c
t , QCit, ~Wt)p

c
t − Cit(Sit(pct , QCit, ~Wt), ~Wt)

+mi(p
R
t − pct)D̃t(p

R
t , ~Wt) + (PCit − pct)QCit (3.1)

There are three possible sources of payoff for electricity companies i =

1 . . . N : operating profit from generation activity (Sit−Cit), operating profit
from retail activity mi(p

R
t − pct)D̃t and financial revenue (PCit − pct)QCit

from forward market transactions. The differences between financial and
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physical transactions were explained in the introduction. As defined be-
fore, gentailers are characterized by participating in both generation and
retail markets. Therefore, they have operating profits (or losses if negative)
in both activities.

Definition 3.2.4. Pure retailer i’s ex-post profit upon the realization of market
clearing price is:

πit = mi(p
R
t − pct)D̃t(p

R
t ,
~Wt)− (pct − PCit)QCit (3.2)

Notice that, as posed by definition 2.1.3, QCit may be negative. For
example, if pure retailers solely buy electricity in the forward market,
they have a negative contract position by our definition. Definition 3.2.4
assumes retailers as passive players in the instantaneous wholesale spot
market. That is, a retailer’s purchase is totally determined by his exoge-
nous retail market participation miD̃t(P

R
t ,Wt). It also means that there are

no strategic alternatives considered by pure retailers and the spot market
equilibrium is fully determined by supplier strategies and the exogenous
aggregate demand. This is a reasonable approximation for most uniform-
price auctions in electricity markets, where only suppliers bid and mar-
kets are cleared by an auctioneer responsible for matching supply curves
to particular electricity demands.

Definitions 2.1.9 and 2.1.10 still hold. Assume that generator/gentailer
i’s bidder when deciding the bid schedule Ŝit(p) has utility maximizing
behavior. The bidder i expected utility maximization problem is:

max
Ŝit(p)

∫ p

p

U [Ŝit(p)p− Cit(Ŝit(p), ~Wt) +mi(p
R
t − p)D̃t(p

R, ~Wt)

+(PCit − p)QCit]dHit(p, Ŝit(p);QCit), (3.3)

As discussed in chapter 2, the integral is taken over all possible real-
izations of the market clearing price, weighted by the probability density
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dHit. Now we present the models.

3.3 Model 1: uncertain rivals’ contracts

Consider that the following definitions hold.

Definition 3.3.1. The consumers’ aggregate demand at time t is defined by the
function D̃t = Dt(p

R
t ,
~Wt). Retail price pRt is assumed to be exogenous.

Definition 3.3.2. The other firms’ correspondences (QCjt, PCjt)∀j 6= i are un-
known by firm i.

Aggregate demand is only affected by the state variables ~Wt and the
retail price pRt . At the time of the auction, the demand function is de-
terministic. In terms of the model analyzed in the previous chapter, this
definition is equivalent to assuming that ε is negligible. In fact, uniform-
price auctions used to clear electricity spot markets have a very short-term
horizon. Bids into uniform price electricity auctions are made for deliver-
ing energy close to dispatch. In markets such as the NZEM, the bid can be
modified until two hours to the delivery time. The more significant source
of uncertainty for a specific bidder at the time of the auction is the hedging
position of his rivals.

Lemma 3.3.1. In equilibrium, assuming again that supply schedules are contin-
uously differentiable and that S∗it(p) is the optimal supply curve of firm i at time t,
the first order condition for the bidder’s (gentailer/generator) maximization prob-
lem is:

p−MCit(S
∗
it(p), ~Wt) = [S∗it(p)−QC∗it −miDit(p

R
t ,
~Wt)]

HS(p, S∗it(p);QC
∗
it)

Hp(p, S∗it(p);QC
∗
it)

(3.4)
where

Hp(p, S
∗
it(p);QC

∗
it) =

∂

∂p
Pr(pct ≤ p | QC∗it, S∗it(p))



3.3. MODEL 1: UNCERTAIN RIVALS’ CONTRACTS 35

HS(p, S∗it(p);QC
∗
it) =

∂

∂S
Pr(pct ≤ p | QC∗it, S∗it(p))

Proof: appendix B.

As explained in chapter 2, this result follows from the deterministic
nature of all non-control variables and from the fact that the bidder is able
to choose an optimal supply for each possible state of nature.

Assume that generator/gentailer i’s net supply is the difference be-
tween his supply and his retail position (S∗it(p) − miDit). Equation (3.4)
shows that a gentailer’s bid behavior is driven ceteris paribus not only by
contracts but also by his net supply. In the absence of forward contracts,
the bigger the net supply, the bigger the incentive to exert market power
in the wholesale market. The generator’s participation in the retail market
reduces his incentives to bid above marginal cost. If the gentailer is a net
retailer S∗it(p)−miDit < 0 he may even bid below his marginal cost.

Lemma 3.3.2. Consider that assumptions of lemma 2.2.2 hold. For a range of
prices p ∈ [p, p] the first order condition at time t becomes:

pt −MCit =
Sit −QC∗it −miDt

∂
∑
j 6=i Sjt

∂pt

(3.5)

Alternatively,

pt −MCit
pt

=
1

ε′it(q
′
it)

(3.6)

Where ε′it(q′it) is the elasticity of the net residual demand q′it, here defined as
q′it = Dt −

∑
j 6=i Sjt −QC∗it −miDt.

Proof: appendix B.

Under the hypothesis of quadratic cost functions and linear demand,
the gentailer’s supply curve obeys the usual pointwise Lerner index as
shown by equation (3.6).
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Specifically, gentailer i’s supply Si is such that his Lerner index pt−MCit
pt

corresponds to the inverse of the elasticity 1
εit(qi)

of his residual demand
Dt −

∑
j 6=i Sjt net of his equilibrium forward position QC∗it and his partic-

ipation in the retail market miDt. In other words, the elasticity of the net
demand qi fully explains wholesaler i’s market power. This result comes
though from the additional assumption of instantaneous perfect inelastic-
ity of aggregate demand Dt to wholesale spot prices pt at time t.

Proposition 3.3.3. If (i) there are a fixed number K > 2 generators/gentailers
in the market, (ii) marginal cost functions are linear and symmetrical between
firms in the market (MCit(Sit, ~Wt) = a + bSit +

∑L
j=1 ρjwjt ∀i = 1, 2, . . . N )

and (iii) the aggregate demand is linear with constant retail price (Dt(p
R
t , ~Wt) =

c− κopR +
∑L

j=1 κjwjt) then there is a simple symmetric equilibrium, if such an
equilibrium exists, where the clearing wholesale spot price can be rewritten as the
following:

pct = A−B
K∑
i=1

QC∗it +
L∑
j=1

Cjwjt (3.7)

Where

A = a+ b
(c− κopR)

(
K − (1 +

∑K
i=1mi)

)
K(K − 2)

B =
b

K(K − 2)

Cj = ρj + b

(
K − (1 +

∑K
i=1mi)

)
K(K − 2)

κj

Proof: appendix B.

All the aspects discussed for equation (2.7) remain valid for equation
(3.7). Positive shifts in generators’ costs and in aggregate demand increase
the spot price. An increase in the retail price decreases spot price. The
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sum of generators’ contracts
∑K

i=1QCit, play an important role in price
formation.4

Equation 3.7 also shows that, holding forward contracts constant, an
increase in the degree of vertical integration (

∑K
i=1 mi) in the market im-

plies a decrease in spot prices. The reason is that more vertically integrated
firms have a smaller net supply Sit−miDit and therefore less incentives to
exert market power in the wholesale market taking contracts as fixed.5

Corollary 3.3.4. If K →∞ then p→MC.

There are two exceptions where the hedging decision does not matter
for spot price modeling purposes, notwithstanding the size of the elec-
tricity hedging market. The first, as posed by the corollary above, refers
to the perfect competition case. If the number of generators in the mar-
ket goes to infinity, the mark-up component of the spot price formation
tends to zero. In the limit, we have the competitive result of spot price
being equal to generators’ marginal cost. In other words, if generators in
an electricity market were atomized, wholesale prices would be primarily
driven by their marginal costs. In practice, perfect competition does not
exist in electricity wholesale markets.

4The aggregate position of generators (
∑K
i=1QCit) is close to zero and does not affect

spot prices in two basic situations: (i) electricity markets with a poorly developed for-
ward market and (ii) fully vertically integrated markets as defined later in this chapter.
In particular, markets made exclusively of gentailers with the same market share in both
the retail and generation markets have little reason to develop forward markets in a large
scale, since their wholesale transactions are internally hedged.

5Hogan (2010) finds a similar result in a different and deterministic framework, ad-
dressing the incentives of gentailers and pure retailers. He finds that the vertically in-
tegrated firm has an incentive to compete more aggressively in the retail market than
pure retailers. Gans, Wolak, and Carlton (2008) find opposite results considering the role
of passive vertical integration. They find that an increase in vertical integration would
decrease quantity contracted that would in turn increase spot prices. This result relies
strongly that the wholesale and retail businesses are completely separated (independent).
This means that the gentailers do not necessarily make a first best decision. Specifically,
the forward contract aspects of vertical integration are not considered in the gentailers’
supply decision.
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Corollary 3.3.5. If K = N then
∑K

i=1mi =
∑N

i=1mi = 1 and we have:

pct = a+
bc− κopR

K
+

L∑
j=1

(
b

K
κj + ρj

)
wjt (3.8)

The second concerns the case where forward contracts are fully cleared
by generators (

∑K
i=1QCit = 0). From equation 3.11, this fact applies to

markets where K = N . That is, where all the firms in the market are
generators or gentailers (i.e. all retailers are also generators). In such a
case, contracts do not affect the aggregate supply and, consequently, the
clearing spot price.

Since this model approximates demand and marginal costs by linear
functions, by equation 3.5 the optimal individual supplies are also linear.
In particular, they are positively affected by the quantity contracted (QCit).
Gentailers can be net wholesalers, net retailers or have the same share in
both markets. Intuitively, in order to hedge risks, they are expected to
have QCit > 0, QCit < 0 and QCit = 0 respectively. Therefore, if all the
players are gentailers and the aggregate supply is linearly affected by the
sum of the generators’ outstanding contracts, it is reasonable to expect
that the oversupply of net wholesalers will offset the undersupply of net
retailers and the aggregate outstanding contracts will have no effect on the
aggregate demand.

Define markets where K = N as fully vertically integrated markets.
Notice that this definition is broader than the usual definition of full ver-
tical integration in the literature, as it admits mismatch between the par-
ticipation of an individual gentailer in the generation and retail markets.6

Our definition comprises (but it is not limited to) either (i) markets where
all the generators are gentailers (K = I = N ) or, more strictly, (ii) mar-
kets where each generator sells all his production directly to consumers
through his retail business (individual full vertical integration).

6As for example Dixit (1983).
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The gentailer dominated electricity markets of Spain, New Zealand or
Germany, for example, fit closely to this definition. In New Zealand, the
market is dominated by gentailers but some firms present mismatch be-
tween their wholesale and retail market shares. In other words, there are
big net wholesalers and big net retailers.

Notice that the clearing price is equal to the average marginal cost in
fully vertically integrated electricity markets since, in equilibrium, the av-
erage supply S is equal to the aggregate demand divided by the number
of gentailers (S = D

K
). This means that individual firms may have market

power when K = N but the average mark-up in the market is equal to
zero. Equation (3.11) is used in the empirical exercise of chapter 4.

3.4 Model 2: uncertain short-term demand

Consider that the following definitions hold.

Definition 3.4.1. The consumers’ aggregate demand at time t is defined by:

D̃t(p
R
t ,
~Wt, εt) = Dt(p

R
t ,
~Wt) + εt (3.9)

Retail price pRt is assumed to be exogenous and εt represents short-term de-
mand fluctuations.

Definition 3.4.2. The other firms’ correspondence (QCjt, PCjt)∀j 6= i is known
by firm i.

Definition 3.4.1 is the same as definition 2.1.2. Demand has two com-
ponents. The first is represented by the function Dt which is affected by
the price charged to final consumers (retail price) and by demand shifters.
The second is εt which corresponds to additive short-term shocks to the
demand curve. The probability distribution of εt is generic. Unlike the
basic model, definition 3.4.2 states that bidders know their rivals’ contract
position. This assumption will be used in a subsequent chapter to derive a
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three-period model where players strategically decide their optimal hedg-
ing and know their rivals’ optimal position.

Lemma 3.4.1. Define St as the aggregate supply. In equilibrium, assume again
that supply schedules are continuously differentiable and that S∗it(p) is the optimal
supply curve of firm i at time t. Consider that the assumptions of lemma 2.2.2
hold. For a range of prices p ∈ [p, p] the first order condition at time t becomes:

pt −MCit =
Sit −QCit −miSt∑

j 6=i
∂Sjt
∂pt

(3.10)

Proof: appendix B.

Recall that S(p) =
∑K

i=1 Si(p) is the aggregate supply curve. Since the
rivals’ quantity contracted are known in this model, there is no uncertainty
about rivals’ supply schedules for a given aggregate demand. Since the de-
mand shock is the only source of uncertainty, both the clearing price pc and
the supply schedules (Si(pc) for all i = 1, 2, . . . , K) are entirely explained
by each realization of ε.

Notice that equation (3.10) is different from equation (3.5). In equation
(3.5) every player knows the demand at the moment of the auction and
the vertical integration arrangement (miDt) is equivalent to forward con-
tracts (QCit). Both arrangements are given at t and affect the clearing spot
price (pct) in a deterministic way. In equation (3.10), the vertical integra-
tion arrangement depends on the aggregate supply (miSt), which in turn
depends on an uncertain demand. In other words, both the rivals’ con-
tract position and the rivals’ participation in the retail market matter for
the optimal supply schedule decision.

Proposition 3.4.2. If (i) there are a fixed number K > 2 of generators/gentailers
in the market, (ii) marginal cost functions are linear and symmetrical between
firms in the market (MCit(Sit, ~Wt) = a+bSit+

∑L
j=1 ρjwjt ∀i = 1, 2, . . . N ) and

(iii) the aggregate demand is linear with constant retail price (D̃t(p
R
t ,
~Wt) = c−
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κop
R+
∑L

j=1 κjwjt+εt) then there is a simple equilibrium, if such an equilibrium
exists, where the clearing wholesale spot price can be rewritten as the following:

pct =
1∑K
i=1 αi

(
D̃t −

K∑
i=1

ψi +
K∑
i=1

βiQCit +
K∑
i=1

L∑
j=1

δijwj

)
(3.11)

where

ψi =
mi

∑
j 6=i ψj +mi

∑
j 6=i βjQCj −

∑
j 6=i αja

1−mi +
∑

j 6=i αjb

αi =
(1 +mi)

∑
j 6=i αj

1−mi +
∑

j 6=i αjb

βi =
1

1−mi +
∑

j 6=i αjb

δi =
mi

∑
j 6=i
∑L

l=1 δjl −
∑

j 6=i
∑L

l=1 αjρl

1−mi +
∑

j 6=i αjb

Proof: appendix B.

Under simplifying assumptions, equation (3.11) shows the relationship
between the electricity spot price and the market parameters. Parameters
ψ, α, β and δ can be solved numerically. This equilibrium result constitutes
the base of the optimal hedging discussed in chapter 5.

The inclusion of vertical integration, under the assumption of uncer-
tain short-term demand, augments the complexity of suppliers’ decisions
and reduces the tractability of the model. Without vertical integration all
the uncertainty in the generators’ profit is reflected in the price distribu-
tion. These results, which mirror the classical findings of (Wolak 2000), are
built under the possibility of constructing continuous and well behaved
supply schedules that take into account an unique and optimal strategic
response for each realization of the clearing price.

With vertical integration, the gentailers’ payoffs are affected by price
and demand uncertainty. Despite the linear relationship between them,
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since all the uncertainty is given by demand (in this case there is no uncer-
tainty about rivals’contracts), this complication poses the need to directly
take into account the rivals’ optimal supply decision when choosing their
own optimal supply. The rivals’ supplies are functions of not only their
quantity contracted but also of their position in the retail market.

This model is particularly useful for dealing with optimal hedging in
the presence of vertical integration. First, it incorporates both the effects
of state variables and the effect of short-term demand fluctuations in the
hedging decision. Second, it permits different participation in the retail
market. Lastly, it allows for the endogenization of quantity contracted
and/or vertical integration in a multiperiod framework. Under assump-
tions of symmetric information and rational agents, it is reasonable to as-
sume that at a specific time t, players know their rivals’ best hedging re-
sponses.



Chapter 4

Concentration and forward prices

4.1 Literature and motivation

This chapter develops a new hybrid model and analyzes the implications
of spot market structure for forward prices. In particular, we derive a
closed form solution that relates spot market concentration and forward
prices. We apply our framework to the highly vertically integrated New
Zealand electricity market (NZEM).

As discussed in the introduction, electricity is a non-storable commod-
ity for which spot prices are characterized by the presence of strong sea-
sonal patterns and short-lived trend deviations (spikes). Several papers
start from these premises and take into account a broad array of stochas-
tic processes to mimic this observed price behavior. They mostly rely on
assumed storage possibilities and make use of no-arbitrage arguments to
value derivatives. Schwartz (1997), Schwartz and Smith (2000) and Lucia
and Schwartz (2002) concentrate on mean reverting behavior, long-term
uncertainty and seasonality. On the other hand, Deng (2000) and Cartea
and Villaplana (2005) focus on short-lived oscillations such as jump and
spike features. However, these papers frequently rely on estimating non-
observable state variables which is costly in terms of data quality and
availability. Few equilibrium insights can be drawn from either of these

43
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models.

To overcome these disadvantages, a growing literature applies the so-
called hybrid models to price derivatives. Hybrid models are composed
of two basic stages. First they build on an equilibrium framework when
explaining electricity price behavior in terms of observable state variables
of demand and supply. Second, they assume a dynamic behavior for state
variables and apply no-arbitrage methodologies to price derivatives. This
approach offers economic insights into derivative pricing. In other words,
derivatives are put in terms of demand and supply parameters.

Skantze, Gubina, and Ilić (2000), Barlow (2002), Pirrong and Jermakyan
(2008), Cartea and Villaplana (2008) and Lyle and Elliott (2009) are repre-
sentatives of this line of research. All these models are characterized by
imposing a functional form, based on equilibrium assumptions, for the re-
lationship between price and variables related to demand and supply. Bar-
low (2002) considers the existence of deterministic and strongly increasing
marginal production costs and a stochastic aggregate demand. Skantze
et al. (2000) consider the spot price as an exponential function of load and
supply bid shifts, treated as stochastic and calculated through principal
component analysis. Pirrong and Jermakyan (2008) also propose to model
the equilibrium price as a function of two state variables. The state vari-
ables are given by electricity demand and the futures price of the marginal
fuel, where electricity prices are an increasing function of demand. Cartea
and Villaplana (2008) use an exponential function of two observable state
variables: demand and generation capacity. They assume that electricity
prices are increasing in demand and decreasing in capacity and propose a
closed-form pricing model for forward prices taking into account season-
ality and heteroskedasticity. Lyle and Elliott (2009) build on Cartea and
Villaplana’s model and use more sophisticated supply assumptions. They
also improve the estimation procedures and derive a closed form solution
for European option prices written on average spot prices.

All the aforementioned models implicitly assume competitive markets
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and a pay-as-bid pricing mechanism without explaining if it is a good ap-
proximation for markets with more complex structures. None of these
derivative models address central aspects of many wholesale electricity
markets: market power, vertical integration, contracts and a uniform price
auction design. This chapter extends this literature by addressing how
more realistic market structure, such as assumed by model I of section 3.3,
can affect hybrid pricing modeling.

In particular, equations (3.7) and (3.11) are respectively used in sections
4.2 and 4.3 to analyze forward pricing. We show that spot market concen-
tration and forward prices are closely connected.

4.2 Model and Results

A large portion of the energy traded in most competitive electricity mar-
kets is hedged. Forward and futures contracts frequently constitute the
most significant hedging instruments. This section provides a closed-form
solution to evaluate how concentration in the electricity generation indus-
try impacts the forward price curve. Our hybrid pricing model also inno-
vates by taking into account common features of electricity markets such
as oligopoly, forward contracts, vertical integration and a uniform price
auction mechanism.1

Suppose we have two relevant state variables in the market: the ag-
gregate demand and the generators’ marginal cost shifter. We assume
that for hydro-dominated markets like New Zealand, a good proxy for
the cost shifter is the shadow price of water. Increases in this price rep-
resent changes in the scarcity of water in the reservoir and affect firms’
marginal costs positively. Aggregate demand follows a stochastic process
mean reverting towards a deterministic function of time. This function

1The effect of hedge contracts on spot market power has been the subject of a con-
siderable and influential literature (see section 1.2). Here we address the problem in the
opposite direction. We analyze how an increase in the spot market concentration can
increase prices in the hedge market.
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can be used to describe, for example, seasonal patterns. The shadow price
of water follows a simple arithmetic Brownian motion. Interest rates are
assumed constant in what follows. Under this assumption, forward and
future prices are equal. Formally, we have the following spot market set-
ting:

Dt(p
R
t , ~Wt) = w1t (4.1)

MCit(Sit, ~Wt) = a+ bSit + ρw2t ∀i = 1, 2, . . . , K (4.2)

Demand is fully explained by the state variable w1t. State variable w2t rep-
resents the shadow price of water. The parameter ρ reflects how sensitive
to changes in w2t the marginal cost is. In the notation of proposition 3.3.3,
we have c = κo = 0 (perfectly inelastic demand) and κ1 = 1. Define
M =

∑K
i=1 mi and assume that the aggregate net position of generators

and gentailers is approximately constant (QC =
∑K

i=1QC
∗
it ∀t). Then, by

rearranging equation (3.7), the spot price formation equation becomes:

pt = a− b QC

K(K − 2)
+
b(K − 1−M)

K(K − 2)
w1t + ρw2t (4.3)

Regarding the state variable dynamics, we assume:

w1t = f(t) + x1t (4.4)

dx1t = −ψx1tdt+ σ1dZ1 (4.5)

dw2t = µdt+ σ2dZ2 (4.6)

dZ1dZ2 = φdt (4.7)

The aggregate demand w1t has two components. The first is a completely
predictable function of time f(t) which can incorporate seasonality. The
second is a diffusion stochastic process (x1t). Particularly, x1t follows a
stationary mean-reverting process, or Ornstein-Uhlenbeck process, with a
zero long-run mean where the speed of adjustment is ψ > 0, the volatility
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is σ1, and dZ1 represents an increment to a standard Brownian motion.
The shadow price of water w2t follows an arithmetic Brownian motion
with drift µ and volatility σ2 (Z2 is a standard Brownian motion). The state
variables are correlated through equation (4.7). The correlation between
Z1 and Z2 is given by φ. The idea is to keep the model simple to infer how
the market parameters affect forward prices in an arbitrage pricing setup.

Proposition 4.2.1. Assume the spot price stochastic behavior described by equa-
tions (4.3-4.7). We have the following formula for the forward prices PC at t for
electricity delivered at time T :

PC(pt, T ) = a− b QC

K(K − 2)
+
b(K − 1−M)

K(K − 2)

(
f(T ) + e−

ψb(K−1−M)
K(K−2)

(T−t)x1t

)
+ρw2t +

(
1− e−

ψb(K−1−M)
K(K−2)

(T−t)
)
η∗ + µ∗(T − t)

η∗ = −λ1σ1/ψ

µ∗ = ρ(µ− λ2σ2) (4.8)

Where λ1 and λ2 are the market prices of risk for demand and for the shadow price
of water respectively. Proof: Lucia and Schwartz (2002).

Equations (4.8) explain how PC is affected by the parameters associ-
ated with the spot price formation and the state variables in this closed
formula.

Corollary 4.2.2. Assume a ≥ 0, b ≥ 0, ρ ≥ 0, QC ≥ 0, µ ≥ 0, ψ ≥ 0 and
f(T ) ≥ 0 ∀T . From equation (4.8) we have the following: ∂PC

∂a
≥ 0, ∂PC

∂x1t
≥ 0,

∂PC
∂w2t
≥ 0,∂PC

∂µ
≥ 0, ∂PC

∂σ1
≤ 0, ∂PC

∂λ1
≤ 0, ∂PC

∂σ2
≤ 0, ∂PC

∂λ2
≤ 0 and ∂PC

∂QC
≤ 0. Proof:

appendix C.

Under the assumptions of Corollary 4.2.2 several results arise. Increases
in the fixed portion of the marginal cost (a) affect forward prices positively.
Ignoring seasonality issues given by f(T ), increases in the current level
of demand (x1t) and shadow price of water (w2t) also increase forward
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prices. Last, ceteris paribus, increases in the exogenous aggregate quantity
contracted by generators QC decreases forward prices.

Regarding dynamics, raising the water price long-term drift µ aug-
ments PC. Positive shifts in demand risk (σ1) and/or price of risk (λ1)
as well as in water risk (σ2) and/or price of risk (λ2) shift forward prices
downwards. That is, an increase in both market prices of risk and cost and
demand volatilities decreases forward prices. If the uncertainty is high or
expensive, generators accept a smaller price for the same amount of elec-
tricity delivered in the future.

On the other hand, increases in the speed of aggregate demand’s mean
reversion (ψ), in the sensitivity of marginal costs to the shadow price of
water (ρ) or in the maturity (T ) have an ambiguous effect on PC. The
impact of K and b on forward prices is also ambiguous. For example,
a decrease in K (increase in b) magnifies the negative effect of the out-
standing quantity contracted on forward prices at the same time that it
accentuates the positive impact of the demand. The net effect depends on
the relationship between variables and parameters such as K, ψ, b, T , x1t,
f(T ), M and QC. We use arbitrary parameters to show, through an illus-
trative example, that market power in the spot market and forward prices
are possibly connected. Assuming f(T ) = 0 and considering arbitrary
parameters, Figure 4.1 illustrates the relationship between the number of
generators/gentailers in the market and forward prices for different ma-
turities. In particular, to stress the relationship between K, market power
and forward prices, this example first considers an electricity market with
QC ≈ 0. That is, an electricity market where most of the forward contracts
are cleared by generators and gentailers. Recall that a gentailers can be net
retailers with a long position in the forward market QCi < 0.

In this case, an increase in K has two impacts on forward prices. It de-
creases the equilibrium spot price pc through a decrease in both the aver-
age marginal cost MC and the average price mark-up (pc−MC). The first
effect is directly related to the assumption of decreasing returns to scale
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Figure 4.1: Market power and forward prices as a function of contract
maturity (parameters: a = 5, b = 0.4, ρ = 0.1, ψ = 0.8, σ1 = 10, λ1 = 0.5,
x1t = 50, M = 0.5, QC = 0, µ = 20, σ2 = 5, λ2 = 0.5 and w2t = 15)

given by the linear marginal cost function with b > 0. That is, an increase
in K decreases the average scale of generators (D

K
), which decreases their

average marginal cost (increases their average efficiency). The second ef-
fect is related to the average market power exerted by the generators since
it affects the average Lerner index.2 We observe from Figure 4.1 that pos-
itive changes in the number of generators (K), which on average imply
a more competitive environment and a more efficient production, reduce
forward prices. In fact, an increase in K not only shifts the forward curve

2Recall that, for simplification, we assumed at chapter 3 that the generators’ fixed costs
are negligible, which means that mark-ups are exclusively related to market power and
are not justified by the recovery of high fixed costs.
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downwards but can also rotate it. Thus, market concentration can have
different implications along the forward curve. Particularly, the illustra-
tive example shows a situation in which concentration plays a bigger role
for shorter maturities.3

Figure 4.2: Market power and forward prices as a function of contract ma-
turity (same parameters as Figure 4.1 with b adjusting for a fixed marginal
cost)

To isolate the market power effect, assume that b adjusts in order to
maintain the average marginal cost fixed. Given our assumptions, Figure
4.2 shows that an increase in market power also shifts the forward curve
positively and rotates it in the same way as in the previous Figure. How-

3Given the parameters assumed in Figure 4.1, an increase in ρ or T , increases PC. For
high values of σ2 (e.g. σ2 = 200), the effect has the opposite sign. On the other hand,
The parameter ψ has a negative effect on PC in the example above. For a sufficient high
value of σ1 (e.g. σ1 = 1000), an increase in ψ augments PC.
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Figure 4.3: Market power and forward prices as a function of contract
maturity (Same assumptions as Figure 4.2 except for QC = 10)

ever, the magnitude of the impact ofK on the forward price PC is reduced
when controlled for its effect on the average MC.

Given our assumptions, the fact that forward prices can be higher in
electricity markets with less generators is a particularly relevant result. It
means that, contrary to results frequently observed in the literature, there
is a possible situation where forward contracts, instead of reducing the
spot market power, can be, in fact, affected by it (since PC is potentially
affected by market power). For example, Allaz and Villa (1993), Newbery
(1998), Green (1999) and Bushnell (2007) observe the importance of exist-
ing forward contracts to reduce market power.

Figure 4.3 analyzes the effect of assuming QC = 10 (20% of the as-
sumed initial demand x1t). The other parameters are the same as used in
Figure 4.2. It shows that there is still a positive, but smaller, effect of mar-
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ket power on the forward curve. This is reasonable, since an increase in
QC decreases spot price mark-up as shown by equation 3.5.

This exercise shows that if the market becomes less concentrated the
forward curve can be shifted or rotated. Specifically, generators’ market
power in the spot market can inflate forward prices and translate into mar-
ket power in the hedge market. This analysis has let K change given QC

fixed. In chapter 6, we consider the determination of the equilibrium PC

and QC.

4.3 Empirical Exercise

The objective of this section is to use our forward pricing model to analyze
the New Zealand Electricity Market (NZEM). We adopt a two-step empir-
ical strategy. The first step consists of estimating the spot price model pa-
rameters. The second step involves the implicit calibration of the market
prices of risk (λ’s) from the observed forward prices.

The reason for not estimating the spot price model and the market
prices of risk jointly is that the forward price data is unbalanced and ir-
regular. That is, we have days where several overlapping forward con-
tracts are traded and days with no trade at all. Reconciling the spot price
data with the forward price data available would imply losing relevant
information about the spot market dynamics. Besides, the forward price
formula is non-linear in several spot price model parameters which would
unnecessarily complicate the empirical exercise.

The electricity spot market in New Zealand is characterized by a bid-
based nodal market where half-hourly uniform-price auctions establish the
spot prices for each relevant node of the system. NZEM also has an active
forward market and potentially oligopolistic wholesalers. Table 4.1 shows
that the NZEM has a concentrated spot market with K = 5 big players
and presents a high degree of vertical integration. That is, the retail mar-
ket share of generators is equal to M =

∑K
i=1mi = 95%). Notice that
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Table 4.1: Market Shares in NZ (2008)
Company Generation Retail
Contact Energy 26% 27%
Genesis Energy 22% 25%
Meridian Energy 28% 12%
Mighty River Power / Mercury Energy 14% 19%
Trust Power 5% 11%
Total 95% 94%

Source: Companies’ annual reports 2008 and NZ Electricity Commission.

it does not mean that the gentailers have the same market share in both
the generation and retail markets. For example, Meridian Energy is a net
generator with 28% of the generation market share and 12% of the retail
market share and, on the other hand, Mercury Energy is a net retailer with
12% of the generation market and 19% of the retail market.

As an approximation, suppose that the assumptions of corollary 3.3.5
hold. That is, we assume that NZEM is fully vertically integrated (K = N ).
This means that the market is predominantly composed of gentailers, that
can be either net retailers such as Mercury Energy or net gentailers such
as Meridian Energy. That is, individual firms are not necessarily fully ver-
tically integrated. Under our equilibrium framework, markets with a very
high degree of vertical integration (not necessarily of individual firms)
have a clearing spot price which is not affected by forward contracts.4

Individual gentailers (net generators) in such markets can exert market
power. However, by equation (3.5), the average spot price mark-up in
equilibrium is equal to zero.5 The K = N assumption also offers a simple
linear relationship between electricity spot price and state variables, given
by equation (3.11), which can easily incorporate dynamics.

The New Zealand electricity market is dominated by hydro power with

4The determinants of the hedging decision are the subject of chapter 6.
5For all K > 2, equation (3.5) states that E(p) −MC = 0 in situations where an indi-

vidual gentailer is fully vertically integrated. Equation (3.5) also shows that, if gentailers
own the entire retail market, the average mark-up equals zero even if individual firms
are not fully vertically integrated.
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significant participation of gas thermal generation. Therefore, the basic
candidates for marginal cost shifters would be the prices of stored water
and/or gas. In particular, Evans, Guthrie, and Lu (2010), take into ac-
count the optimal intertemporal choices regarding electricity production
and water storage and show that, once adjusted for transmission costs, the
shadow price of water is the same as the shadow price of gas.6 However,
shadow prices are by definition non-observable variables.7 The challenge
is to find the best proxy or proxies for these generation inputs.

There are some primary candidates. The water inflow to the hydro
system, for example, is clearly correlated with the shadow price of wa-
ter. The storage option decreases in value when the inflows are abun-
dant and increases when inflows are scarce. By similar reasons, past gas
generation could also be used as a proxy for the shadow prices of stored
gas. International gas or oil price indexes could be another possibility.
All these alternatives present the same important drawback: they abstract
from marginal valuations and are autocorrelated.

We first consider water inflows (m3/s) in the hydro system as the cost
shifter w2t. The lagged spot price pt−1 is a superior alternative. pt is ob-
servable and approximately equal to the marginal cost of gas (and there-
fore water) adjusted for the spark gap (See Evans and Guthrie (2009)).
Thus, pt−1, which is not endogenous, might well approximate the short-
run marginal cost of the generators.

We use daily frequency data from 22/01/2004 to 30/11/2010. The
daily frequency is consistent with approximating the continuous time as-
sumption of our spot price model. The adopted data range corresponds to
the maximum interval of negotiated forward contracts that we obtained
for the New Zealand electricity market (NZEM).

The Haywards node spot price is assumed to be a proxy for the na-

6According to the same authors, the exceptions correspond to the rare situations
where lakes are entirely full.

7While obviously the case for hydro it also holds for gas in the absence of a spot market
and limitations of gas supply. See Evans and Guthrie (2009).
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tional spot price pt. The demand variable w1t is defined as the NZ national
daily offtake (in Gwh). We analyze two variables as the cost shifterw2t: the
water inflow to the NZ hydro system and the lagged spot price pt−1. The
source for all these variables is the New Zealand Electricity Commission.8

The forward prices are extracted from the negotiated Haywards monthly
and quarterly forward contracts. As mentioned before, the data is irreg-
ular and unbalanced since there are days with no trade and overlapping
contracts of different maturity or nature. The source for the forward prices
is the EnergyHedge website.9 Both the spot prices and the forward prices
are adjusted for the New Zealand Consumer Price Index (CPI).

4.3.1 First step

The empirical estimation of the spot market parameters requires the dis-
cretization of the continuous equations (4.4-4.7), which yields the follow-
ing equations:

x1t̂ = w1t̂ − f(t̂) (4.9)

x1t̂ =

(
1− ψ̂

365

)
x1t̂−1 + ε1t̂ (4.10)

w2t̂ = w2t̂−1 +
µ̂

365
+ ε2t̂ (4.11)

Define t̂ as a discrete period of time (In our case, a day). Following the
approach of Lucia and Schwartz (2002), we define the deterministic com-

8The data was specifically extracted from the centralised dataset (CDS) available at
http://www.ea.govt.nz/industry/modelling/cds/ (accessed on 20/06/2011). There is
no daily aggregate data of water inflow available. The daily water inflow to NZ (w2t)
was built from the sum of the daily inflows to the hydro systems described by Table 1 of
Harte, Pickup, and Thomson (2004).

9The data was collected at http://www.energyhedge.co.nz (accessed on 30/01/2011).
The website is not currently available since the EnergyHedge company signed an agree-
ment with the Australian Stock Exchange (ASX) at 03/06/2011.



56 CHAPTER 4. CONCENTRATION AND FORWARD PRICES

ponent of the demand variable as the following cosine function:

f(t̂) = ζ + υ cos

(
t̂

365
+ τ

)
The advantage of this approach over the use, for example, of dummy vari-
ables to model seasonality is that f(t̂) is continuous and easily integrable.
Most forward contracts in New Zealand involve the delivery in a specific
month or quarter. The integrability of f(t̂) allows for a closed-form solu-
tion for the forward price of these average periods. Later, we show that
this definition of f(t̂) fits the demand behavior quite closely. Taking into
account f(t̂) and the equations (4.9-4.11), the spot price formation is de-
fined by the following system of equations:

pt̂ = a+
b

K
w1t̂ + ρw2t̂ + εt̂ (4.12)

w1t̂ = f(t̂) +

(
1− ψ̂

365

)(
w1t̂−1 − f(t̂− 1)

)
+ ε1t̂ (4.13)

w2t̂ = w2t̂−1 +
µ̂

365
+ ε2t̂ (4.14)

f(t̂) = ζ + υ cos

(
t̂

365
+ τ

)
(4.15)

The spot price model parameters are estimated by the seemingly unre-
lated regression method (SUR), where εt̂, ε1t̂ and ε2t̂ are assumed to be
independent, to have zero mean and to have a finite covariance matrix.10

That is, we assume that the right hand side variables of the system are
all exogenous. This is consistent with the theoretical assumptions of the
model since ~W is by definition exogenous. Thus, we are strictly con-
cerned about the estimation of the conditional expectations of equations
(4.12-4.15). Define w2t̂ as the NZ aggregate water inflow as previously ex-
plained. The estimation results are given by Table 4.2. Notice that both

10See Greene and Zhang (2003) chapter 14.
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Table 4.2: Estimation Results: w2t̂ = water Inflows. Equations (4.12-4.15).
Data: NZ Electricity Commission

Method: SUR
Sample: 22/01/2004 30/11/2010
Included observations: 2505

Coefficient Std. Error t-Statistic Prob.

a -16.15 12.91 -1.25 0.21
b 5.66 0.60 9.40 0.00
ρ -1.79E-05 1.52E-06 -11.77 0.00
ζ 102.98 0.28 365.00 0.00
υ -8.68 0.40 -21.78 0.00
τ 4.95 0.01 677.56 0.00
ψ̂ 148.87 5.81 25.64 0.00
µ̂ -234,501 4,339,872 -0.05 0.96

Determinant residual covariance 3.15E+16

pt̂ = a + b
K
∗ w1t̂ + ρ ∗ w2t̂

R-square 0.085 Mean dependent var 74.68
Adjusted R-square 0.084 S.D. dependent var 57.72
S.E. of regression 55.24 Sum squared resid 7059760
Durbin-Watson stat 0.30

w1t̂ = ζ + υ ∗ cos(2( t̂
365

+ τ)π)

+

(
1− ψ̂

365

)(
w1t̂−1 − (ζ + υ ∗ cos(2( t̂−1

365
+ τ)π))

)

R-square 0.62 Mean dependent var 102.98
Adjusted R-square 0.62 S.D. dependent var 9.48
S.E. of regression 5.82 Sum squared resid 86,591.75
Durbin-Watson stat 1.54

w2t̂ = w2t̂−1 + µ̂
365

R-square 0.40 Mean dependent var 1,424,762
Adjusted R-square 0.42 S.D. dependent var 748,967
S.E. of regression 579,353.3 Sum squared resid 7.96E+14
Durbin-Watson stat 2.17
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the demand and the water inflows are statistically significant. Their pa-
rameters also present the expected signs. Positive shifts in the demand
and negative changes in the water inflows increase the equilibrium spot
price (b > 0 and ρ < 0). The remaining results show that the aggregate
demand is reasonably (and significantly) explained by the deterministic
function f(t̂). As the magnitude and significance of ψ̂ suggests, the de-
mand reverts quickly to f(t̂). Figure 4.4 illustrates this result. On the other

Figure 4.4: Demand - NZEM Offtake (Gwh). Function f(t) given by equa-
tion (4.15): ζ̂ = 102.98, υ̂ = −8.68 and τ̂ = 4.95. Data: NZ electricity
Commission.

hand, the water inflows’ drift µ̂ is not statistically different from zero. This
is not surprising since inflows are stationary. Besides, the R2 of the spot
price equation is almost insignificant (< 10%) with a serious autocorrela-
tion problem, expressed by a Durbin-Watson (DW) statistic very different
from 2. This (and the significance of the autoregressive component pt̂−1
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expressed in Table 4.3) indicates that the hypothesis of cov(εt̂, εt̂−1) = 0

does not hold. This is evidence that the water inflows w2t̂ alone do not
satisfactorily capture the generators’ marginal cost behavior. Several com-
binations of w2t̂ and other related variables such as water storage and gas
generation were tried. All failed to attain serially uncorrelated results.11

In fact, as shown by Lucia and Schwartz (2002) and Mason (2002), pt̂
presents a strong autoregressive component. In our second approach, we
assume that the observed price is a good best proxy available for capturing
shifts in the marginal costs. Specifically, we assume for the reason given
earlier, the lagged price pt̂−1 is a good empirical proxy for w2t̂. Including
pt̂−1 in the regression increases the goodness-of-fit given by the R2, and it
considerably attenuates the serial correlation problem (see Table 4.3). All
the remaining parameter estimates of Table 4.3 yield results similar to the
previous exercise using the other proxies for marginal cost. The fast mean
reversion of the aggregate demand to a significant deterministic function
remains. Again, the drift µ̂ is insignificant.

The lagged spot price alone does not exhaust all the time series possi-
bilities of the daily electricity spot price in the NZEM market. A purely
empirical seasonal autoregressive integrated moving average (SARIMA)
approach would suggest the additional consideration of moving average
and autoregressive components.12 However, the object of this subsection
is to test and estimate our spot price model taking into account the NZEM
data and the results of Table 4.3 show that our model fits well the actual
NZEM data. First, all the parameters are statistically significant, with the
exception of the drift µ̂ which is not expected to be different from zero.
Second, the explanatory power of the equilibrium spot price equation is
reasonable (R2 ≈ 75%). Last, the serial correlation problem is attenuated
with the adoption of pt̂−1 as a proxy to w2t̂.

In summary, this second approach fits closely the actual NZEM data

11Serial correlation affects the quality of estimates and mean that the best forecast of pt̂
is not the estimated equation.

12See Enders (1995) for an introductory discussion about SARIMA models.
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Table 4.3: Estimation Results: w2t̂ = pt̂−1 = lagged spot price. Equations
(4.12-4.15). Data: NZ Electricity Commission

Method: SUR
Sample: 22/01/2004 30/11/2010
Included observations: 2505

Coefficient Std. Error t-Statistic Prob.

a -14.83 1.75 -8.46 0.00
b 0.76 0.08 9.29 0.00
ρ 0.99 0.003 368.79 0.00
ζ 102.97 0.29 358.65 0.00
υ -8.23 0.39 -21.15 0.00
τ 4.96 0.01 674.03 0.00
ψ̂ 148.12 5.59 26.50 0.00
µ̂ 2.89 206.28 0.01 0.99

Determinant residual covariance 3.15E+16

pt̂ = a + b
K
∗ w1t̂ + ρ ∗ pt̂−1

R-square 0.76 Mean dependent var 72.66
Adjusted R-square 0.76 S.D. dependent var 56.90
S.E. of regression 28.04 Sum squared resid 1,967,258
Durbin-Watson stat 2.61

w1t̂ = ζ + υ ∗ cos(2( t̂
365

+ τ)π)

+

(
1− ψ̂

365

)(
w1t̂−1 − (ζ + υ ∗ cos(2( t̂−1

365
+ τ)π))

)

R-square 0.62 Mean dependent var 103.12
Adjusted R-square 0.62 S.D. dependent var 9.44
S.E. of regression 5.84 Sum squared resid 85,173
Durbin-Watson stat 1.55

∆pt̂ = µ̂
365

R-square 0.75 Mean dependent var 72.66
Adjusted R-square 0.75 S.D. dependent var 56.90
S.E. of regression 28.29 Sum squared resid 2,004,258
Durbin-Watson stat 2.62
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between 22/01/2004 and 30/11/2010. The equilibrium and dynamic pa-
rameters are statistically significant with the expected signs. The second
step in the forward price modeling is the calibration of the market prices
of risk (λ1 and λ2) from the actual forward price data.

4.3.2 Second step

The next step in the implementation of our model involves calibrating the
demand market price of risk (λ1) and the supply market price of risk (λ2).
We use the non linear least squares (LS) approach. That is, we choose
the λ’s that minimize the sums of the squares of deviation between the
observed forward prices and the theoretical formula given by equation
(4.16). Notice that equation (4.8) refers to the forward price at t of deliv-
ering electricity at the future instant T . However, electricity contracts are
not instantaneous. They entail a specific time interval. The Haywards for-
ward contracts used in our exercise refer to monthly and quarterly periods
of time. That is, the observed forward price P̂Ct refers to the forward price
cleared at t of a fixed flow of electricity to be delivered between T1 and T2,
with T2 − T1 being a month or a quarter. Therefore instead of directly us-
ing equation (4.8) for pricing, we use its integral between the maturities T1

and T2. That is, we use the following equation:

PC
T1,T2

t =

∫ T2

T1

PC(t, T, w1t, w2t, θ̂, λ̂1, λ̂2)dT (4.16)

Where θ̂ is a vector that comprises all the estimated parameters of Table
4.3, including the standard deviations: we consider the conditional stan-
dard deviations of demand s1 and spot price s2 as proxies for volatility
in our calibration exercise. In addition, we adjust these daily volatili-
ties for the annual basis in which the dynamic processes are defined (t
is proportional to a year). That is, we use σ̂1 = s1

√
365 = 5.84

√
365

and σ̂2 = s2

√
365 = 28.29

√
365. The calibrated market prices of risk for
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the Haywards contracts between 22/01/2004 and 30/11/2010 are then
λ̂1 = 3.63 and λ̂2 = 0.005. Now, we have all the elements for constructing
an estimated forward price curve. Consider a monthly contract. For illus-

Figure 4.5: Market concentration and forward prices in the New Zealand
Electricity Market (NZEM). Equations (4.12-4.15). Parameters: Table 4.3.
Data: NZ Electricity Commission

trative purposes, assume that t = 0 (We price the forward contracts at the
first day of the year) and that the demand and cost shifter are, respectively,
estimated by the sample means Ê(w1) = 103.12 and Ê(w2) = Ê(p) = 72.66.
Figure 4.5 shows that spot market concentration in fact affects forward
prices in the NZEM market. As expected, an increase in the number of
firms decreases forward prices significantly. For example, the peak PC

varies from around NZD70.00, in a market with 7 firms, to more than
NZD85.00, in a market with just 3 firms (increase of more than 20%). We
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observe that the NZEM calibrated forward curve is essentially flat. The
demand seasonal pattern clearly dictates the forward curve shape.

4.4 Summary

We consider the existence of two state variables: the aggregate demand
and the shadow price of fuel (water and gas) moving marginal cost func-
tions. Assuming similar stochastic processes to Lucia and Schwartz (2002)
and applying their two factor arbitrage model results over our equilib-
rium spot price formation rule (equation (3.7)), we derive a closed form
forward price (equation (4.8)). Several results can be derived from com-
parative statics. Increases in either volatility or the price of risk of both
demand and shadow price of fuel decrease the price of forward contracts.
The opposite happens when raising the fuel shadow price’s drift or the
current value of both state variables. Positive shifts in the generators’ cost
functions or in the deterministic portion of aggregate demand also move
forward prices upwards.

We use an illustrative numerical example (Figure 4.1) to show that a
decrease in the number of generators can shift the forward curve posi-
tively. In particular, controlling for the efficiency effect of an increase in
concentration, Figure 4.2 shows that market power in the spot market can
be transferred to the forward market.

Section 3.3 shows that there are two market structures where the spot
price is not influenced by firms’ forward positions. The first one is the
case of perfectly competitive markets. The second corresponds to electric-
ity markets where all the retailers are actually gentailers (K = N ). In this
situation, the forward net positions of all the retailers would be reflected
in the gentailers’ optimal supply strategies. If the participation of outside
speculators in the forward market is negligible, as we assumed, the im-
pact of forward contracts on the aggregate supply curve is completely off-
set when all the generators’ (gentailers included) individual supplies are
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aggregated. This case can be thought of as an approximation for markets
with a high degree of vertical integration as is the case in New Zealand or
Spain. Notice that this assumption allows for differences across gentailers
in their participation in wholesale and retail market. That is, the market
is allowed to be composed by net retailers and net generators. This as-
sumption also means that, despite the average Lerner index in such fully
vertically integrated markets being equal to zero according to our model,
individual net gentailers exert spot market power.

We assume K = N as a good approximation for the New Zealand
electricity market (see Table 4.1) and apply a two-stage empirical method-
ology implementing the model for the NZEM market. Our model fits the
data reasonably and confirms the relevance of spot market concentration
in affecting forward prices.

In summary, chapter 4 develops the link between market structure and
forward prices. We show that if the market becomes less concentrated
the forward curve can be shifted or rotated. Specifically, generators’ mar-
ket power in the spot market can inflate forward prices and translate into
market power in the hedge market.



Chapter 5

Investing in vertical integration

5.1 Motivation

The purpose of this chapter is to model the relationship between vertical
integration and market structure in electricity markets. We adopt the same
hybrid approach of the last chapter to assess how changes in initial market
parameters affect the generators’ decision to increase their participation
in the electricity retail market. In other words, we analyze how changes
in parameters such as σ1 (demand volatility), K (measure of spot market
power) and M =

∑K
i=1 mi (initial degree of vertical integration) affect the

value of a retail expansion project (vertical integration) and the timing of
this investment based on demand. In particular, this chapter analyzes the
case of short-term projects to temporarily increase the vertical integration
of a specific gentailer. 1

The determinants of vertical integration (VI) are a subject of intense
debate. Section 3.3 offers a brief discussion about possible causes and
consequences suggested by the literature. This chapter analyzes vertical
integration from an investment perspective. In particular, we propose a

1The framework here developed can also be used to analyze long-term vertical inte-
gration projects at the cost of modeling additional sources of uncertainty and allowing
for retail price adjustments.
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hybrid equilibrium/real options framework to model the vertical integra-
tion decision.

The cost structure of the electricity retailers has several components.
Retail businesses can be divided into two distinct groups: the low voltage
regional distribution (lines business) and the commercialization of energy
(energy business). On one hand, retailers operate and maintain copper
and/or aluminium wires, power poles and connection points.2 On the
other hand, retailers undertake community/social initiatives and market-
ing campaigns in order to sell more electricity and strengthen their repu-
tation. They also invest in call centres for account and fault management.
For simplification, we assume in our equilibrium model (chapter 3) that
the marginal costs associated with both the distribution O&M expendi-
tures and selling expenses are negligible in comparison to the marginal
costs of power generation.

Gentailers can raise their retail market share by either taking consumers
from rival gentailers or from pure retailers. A gentailer’s decision to in-
crease his vertical integration in the short-term (say, 4 years), involves un-
dertaking projects for either expanding his regional distribution coverage
or for increasing his marketing expenses. A considerable proportion of
the costs associated with marketing campaigns and the expansion of lines
coverage is irreversible. In particular, advertising in marketing campaigns
entail totally sunk expenditure. It may also include a situation of a retailer
entering a region as starting up, incurring transactions costs that are sunk.

As discussed in the previous chapters, electricity markets are charac-
terized by volatile spot prices and uncertainty about the demand. Both
aspects directly affect the retail business. In an uncertain scenario with
sunk costs, the value of flexibility is relevant to the decision of a generator
to expand his participation in the retail market. In other words, the option
to wait for undertaking the project of increasing his vertical integration

2In New Zealand, lines companies do this job and retailers contract for delivery service
over lines.



5.1. MOTIVATION 67

has a positive value.

Precisely, we consider the specific issue of a gentailer’s decision to ir-
reversibly invest in a marketing campaign (and/or in an expansion of the
distribution coverage) to increase his retail market share. For simplifica-
tion, we assume that i) the effect of this campaign is instantaneous and
has a pre-determined and certain duration, ii) the sunk costs associated
with such campaign are one shot and instantaneous iii) demand is the
only source of uncertainty, iv) the retail price is fixed for the investment
horizon, v) competitors do not react strategically to this campaign and vi)
forward contracts are given.

The reason for the assumptions i) and ii) is to focus on the determinants
of vertical integration, avoiding complications arisen from more practical
considerations about the nature of either the investments or the marketing
campaign. The assumption iii) of only one state variable (demand) allows
for the derivation of a closed-form solution for the problem. The rigidity
of retail prices given by iv) is a reasonable approximation for the short and
medium-term in markets that do not face abnormal changes in demand.3

The assumption v) of no predictable strategic reaction to an increase in a
gentailer’s vertical integration simplifies the model considerably and en-
ables for a ceteris paribus analysis.4 Since the retail price is assumed to be
rigid, changes in demand that increase the spot prices have an initial neg-

3The timing and velocity of the retail price adjustments depend on the nature of the
market and the retailers’ expectation about future demand. For example, the more elastic
is the demand, the greater is the sensitivity of retail prices to changes in the expected
demand. The length of contracts also affects how fast changes in expected demand are
translated into variations of equilibrium retail prices. Last, retail prices are also frequently
subject of price regulation (price cap or rate of return). The more binding are these price
constraints, the less retail prices are enabled to vary. A preliminary work allowing for
retail prices to react to demand periodically is currently being conducted and achieves
similar qualitative results.

4The results of this chapter must be viewed as a best case scenario, since the rivals’
reaction to the gentailer’s project of increasing his retail market share would almost cer-
tainly decrease the value of his project. The extension of the framework here developed to
enable for the possibility of strategic interactions among firms in the market is a promis-
ing avenue for future research.
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ative impact on the retail profit margin. Lastly, the assumption vi) implies
that we take a partial equilibrium approach since forward contracts do
not react to increases in vertical integration. That is, this exercise analyzes
the value of vertical integration taking a specific K-dimensional vector of
generators’ quantity contracted ~QC as given.5

5.2 Model

Formally, assume a particular electricity market that meets the assump-
tions of model I of section 3.3. We have K generators in the market and
a specific generator/gentailer i is considering to irreversibly invest I to
expand his retail market share by ∆mi for h years. Assume that ω∆mi of
this increase is taken from the rival gentailers j (where j 6= i and j =

1, 2, . . . , K − 1), changing their average retail market share by ∆mj =

− ω
K−1

∆mi. Notice that ω ∈ [0, 1]. Obtaining retail share from pure retailers
will have different effects than obtaining retail share from rival genera-
tors. As an illustration, we retain an oligopoly in generation (K = 5) and
assume that a generator has the option to irreversibly invest 100 million
dollars in a marketing campaign to increase his retail market share by 2%
for the next 4 years. Assume that ω = 60%, which implies that 1.2% of the
market share is taken from rival gentailers and 0.8% is taken from pure
retailers. In this case, the average market share of firm i’s rival gentailers
would change by ∆mj = −0.30%.

Lemma 5.2.1. Assume that the assumptions of section 3.3 hold. Assume that
demand itself is the only state variable and has no effect on firms’ marginal costs
( ~Wt = Dt, ρ = 0 and κ = 1). A ceteris paribus increase at t in genera-
tor/gentailer i’s retail market share by ∆mi, accompanied by a decrease of ω∆mi

in rival generators’ retail market share, implies the following change in his profit

5It is reasonable to expect that the optimal hedging decreases as a result of an increase
in vertical integration. In fact, we demonstrate this result in Chapter 6. In the end of this
chapter, we conduct simulations to show how the results are affected by changes in QCi.
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level:

∆πit = ÂDt − B̂D2
t (5.1)

where,

Â = ∆mi

(
pR − a+

b

K(K − 2)

(
1− ω

(K − 1)2

)
QC − bω

(K − 1)2
QCi

)
B̂ =

b∆mi

K(K − 2)

(
(K − 1−M)

(
1− ω

(K − 1)2

)
+
ωK(K − 2)

(K − 1)2
mi−(

1 +
ω

(K − 1)2

)
∆mi

2

)
Proof: appendix C.

Equation (5.1) shows the impact on profit at time t of a change in firm
i’s market share. This equation reflects fixed retail prices for all players
in our model and the absence of demand effects except those arising from
exogenous shocks. Assuming everything else constant, an increase in de-
mand increases the clearing spot price pct which decreases the retail margin
(pR − pct) and increases the amount of electricity sold by gentailer i in the
retail market (miDt). Therefore, an increase in demand has an ambiguous
effect on retail profit. The retail margin can become negative for high de-
mand scenarios so that a marginal increment of the demand can decrease
firm i’s profit.

If ω is equal to zero (i.e firm i expands his retail positions solely out of
pure retailers’ market shares), the first order effect of changes in gentailer
i’s retail share on his profit is equal to ∆πit = ∆mi(p

R − pct)D. In equi-
librium, all the indirect effects of changes in firm i’s market share cancel
out. That is, an increase in gentailer i’s retail share (∆mi) causes an in-
crease in his equilibrium supply S∗i which in turn increases his marginal
costsMCi and reduces the price mark-up pc−MCi. As shown in appendix
C, the overall impact of these indirect effects on firm i’s profit is zero, i.e.
∂πi
∂pc

∂pc

∂mi
= − ∂πi

∂S∗i

∂S∗i
∂mi

. An isolated increase in mi linearly increases the profit
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for a given demand.

If ω is different from zero (i.e firm i steals retail market share from rival
gentailers), we have additional first order effects that originate from firm
i’s decision to increase his market share. Despite the fact that a decrease in
the market shares of rival gentailers do not affect firm i’s profits directly,
the indirect effects of ∆mj are not canceled out. A decrease in mj increases
generator i’s supply, which in turn increases his marginal costs but also
increases his wholesale margin (spot price mark-up) and unambiguously
increases πi. The demonstration of these results and the derivation of the
second order effects are in appendix C.

Assume that demand follows a geometric Brownian motion, where µ
is the drift, σ is the demand volatility and dWt is an increment of a Wiener
process.

dDt = Dtµdt+DtσdWt (5.2)

This is a standard assumption in the real options literature that generally
results in closed-form solutions.

Lemma 5.2.2. Define
∑K

k=1 mk as M . Consider that
∑K

k=1QCkt is a constant
QC and that the marginal cost is equal to MCi = a + bSi. Define h as the
horizon of the investment. Assume that r > 2µ+ σ2. The present value Vt at t of
the project’s cash inflows is equal to:

V (Dt) = ÃDt − B̃D2
t − I (5.3)

where:

Ã = Â

(
1− e−(r−µ)h

)
r − µ

B̃ = B̂

(
1− e−(r−2µ−σ2)h

)
r − 2µ− σ2
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and Ã > 0 and B̃ > 0. Proof: appendix C.

The value of undertaking the project is a quadratic concave function of
demand D. This value depends on initial market parameters (K, M , mi,
QC, QCi, a and b), on the characteristics of the project (∆mi, ω, I and h),
the risk-free rate r and on the stochastic process for demand (µ and σ).6

Define F (D) as the value of generator/gentailer i’s investment oppor-
tunity to increase his participation in the retail market for a given real-
ization of D. Expanding dF through Ito’s Lemma and using standard
contingent claims analysis, we have the following quadratic differential
equation:7

1

2
σ2D2F ′′(D) + µDF ′(D)− rF = 0 (5.4)

Finding the value of generator/gentailer is investment opportunity is
not trivial because V (Dt), as defined by equation (5.3), is a quadratic func-
tion of Dt. This means that there is a point where the demand is so high
that the value of the project is increased by reduced demand.

Therefore, we have a demand interval where the project is undertaken.
Define the the critical lower and upper bounds that trigger the investment
as D∗1 and D∗2, respectively. The solution of the differential equation above
can be attained by separating the problem into three different regions. The
first one, given by [0, D∗1], concerns the low demand region where waiting
for an increase in demand has equal or greater value than undertaking the
project. The second is given by [D∗1, D

∗
2] and reflects the exercise region

where the project is undertaken and F (D) = V (D). Lastly, in the region
where the demand is greater than D∗2 (D∗2,∞) the firm’s optimal strategy
is to wait for the demand to decrease before initiating the project.

The solution also requires the determination of suitable boundary con-

6Since ETt (D2
t ) = e(2µ+σ

2)(T−t)D2
t , the condition r > 2µ + σ2 guarantees that the

discounted value of the expected demand squared converges.
7See Dixit, Pindyck, and Davis (1994) pages 114-117 and 150-151.
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Figure 5.1: Concavity of V (Dt)

ditions for the first and third regions. If D ∈ [0, D∗1],

F (0) = 0 (5.5)

F (D∗1) = ÃD∗1 − B̃D∗21 − I (5.6)

F ′(D∗1) = Ã− 2B̃D∗1 (5.7)

If demand, D, goes to zero then the value of undertaking the project will
remain at −I .8 Therefore, as stated by equation (5.5), it is reasonable to
assume that the value of the investment opportunity is zero in such a case

8Notice that, in this case, F (0 ≤ D ≤ D∗
1) = 0 because the investment will not be

taken.
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(F (0) = 0). The other two conditions come from optimality considera-
tions. Equation (5.6) establishes that the gentailer i receives a net payoff of
ÃD∗1−B̃D∗21 −I upon investment, which is equal to the value of the project
if it is undertaken (F (D∗1)). This is sometimes called the value matching
condition. As is usual in the real options literature, equation (5.7) assumes
that F (D) is continuous and smooth at the critical exercise demand D∗1,
i.e. F(D∗1) and V(D∗1) have the same derivatives. This is also known as the
smooth pasting condition.9

Conversely, If D ∈ [D∗2,∞),

F (D∗2) = ÃD∗2 − B̃D∗22 − I (5.8)

F ′(D∗2) = Ã− 2B̃D∗2 (5.9)

F (∞) = 0 (5.10)

In this case, the value function is decreasing in D. For sufficiently high lev-
els of demand the project is not executed unless demand decreases to the
trigger point D∗2. Again we assume that F (D) is continuous and smooth at
this critical point (equations (5.8-5.9)). The greater is the demand from D∗2

onwards, the smaller is the value of the project opportunity. As stated by
equation (5.10), in the limit this value goes to zero. This is often referred
to as the transversality condition.

Proposition 5.2.3. The particular solution of the PDE given by equation (5.4)
and bounded by equations (5.5-5.10) is the function F : <+ → <+ below:

F (D) =


α11D

β1 if D ∈ [0, D∗1]

ÃD − B̃D2 − I if D ∈ [D∗1, D
∗
2]

α22D
β2 if [D∗2,∞[

9See Dixit et al. (1994).
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β1 =
1

2
− (r − µ)

σ2
+

√(
(r − µ)

σ2
− 1

2

)2

+
2r

σ2
(5.11)

β2 =
1

2
− (r − µ)

σ2
−

√(
(r − µ)

σ2
− 1

2

)2

+
2r

σ2
(5.12)

D∗1 =
(1− β1)Ã+

√
(1− β1)2Ã2 + 4(2− β1)β1B̃I

2(2− β1)B̃
(5.13)

D∗2 =
(1− β2)Ã+

√
(1− β2)2Ã2 + 4(2− β2)β2B̃I

2(2− β2)B̃
(5.14)

α11 =
Ã

β1

D∗1−β1

1 − 2
B̃

β1

D∗2−β1

1 (5.15)

α22 =
Ã

β2

D∗1−β2

2 − 2
B̃

β2

D∗2−β2

2 (5.16)

Proof: appendix C.

5.3 Numerical Example

We now consider a numerical example, approximately based on actual
NZEM numbers. We use this example to illustrate possible consequences
and results of our theoretical model. Empirical tests and estimations of our
VI model are not the scope of this thesis and are left for future research.
Our main objective is to set out the potential of the hybrid pricing ap-
proach to shed light on the determinants of vertical integration decisions.

Our base scenario corresponds to a vertically integrated market com-
posed of initially symmetric gentailers with 50% of the retail market (K =

5, M = 0.5 and mi = M/K ∀i = 1, 2, . . . , K). Assume the same parameter
as used in our illustration (K = 5, I = 100 million, ∆mi = 2%, h = 4 and
ω = 60%). Consider that the annual aggregate demand at t is equal to 37.5

TWh (the approximate annualized average of the NZEM offtake between
22/01/2004 and 30/11/2010). Suppose that 10 TWh is hedged through
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forward contracts (QC = 10) and remains fixed during the project’s hori-
zon. The base scenario considers average levels of vertical integration and
hedge coverage. We analyze the project value under different scenarios.
In equilibrium, the average annual supply is equal to 7.5 TWh (S = D/K).
Consider a spot price of approximately NZD72.50/MWh (Haywards node
average between 22/01/2004 and 30/11/2010). We know by equation
(3.5) that marginal costs are equal to spot prices (p = MC) in fully ver-
tically integrated economies (see chapter 3). In this example, we assume
that a = 50 and b = 3 to keep the same average marginal cost (p = MC =

a + b ∗ 7.5 = 72.5) as in the empirical exercise of chapter 4.10 In addition,
assume the risk free rate is r = 0.06, the annual demand growth rate to
be µ = 0.0135 (the NZEM annual average since 1997), the volatility to be
σ = 0.08 and the retail price to be fixed and equal to pR = NZD150.00.

As shown by Figure 5.2, the risk-free rate has the standard impact on
the value of the investment opportunity. An increase in r raises the op-
portunity cost of the project and diminishes the value of the investment
opportunity F . However, the impact on the timing of the project is more
ambiguous. The triggers (D∗1 and D∗2) in each scenario are represented by
the squares. An inspection of equations (5.13-5.14) and Figure 5.3 shows
that the impact on the timing of the investment differs. This happens be-
cause the impact of r on D∗1 and D∗2 is not monotonic (r affects not only
the characteristic roots but also the parameters Ã and B̃). In this example,
an increase in r slightly postpones investments in both high (D > D∗2) and
low (D < D∗1) demand scenarios.

Figure 5.3 shows that changes in the demand growth rate µ have an
ambiguous effect on both the value of the investment opportunity and
the timing of the investment. An increase in µ, increases the expected de-
mand which in turns raises the expected amount of electricity sold. On
the other hand, since the retail price pR is fixed, an increase in µ, increases
the expected spot price and decreases the expected margin. The overall

10Recall that ρ = 0 in this exercise since demand is the only state variable.
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Figure 5.2: Project value and investment policy (different risk free rates)

net effect on the value of undertaking the project (payoff) depends on the
market parameters. In our example, decreases in µ postpone the invest-
ments for low values of demand and anticipate it for high values of de-
mand. The effect on the value of the investment depends on the level of
demand. For example, for sufficiently extreme values of the demand (low
or high), the highest value of the project opportunity occurs when µ = 0.
The opposite happens for intermediate values of demand. This happens
because the quadratic term of the payoff function V (D) decreases since
B ≥ 0. For longer investment horizons, it is reasonable to expect that
drifts greater than zero µ > 0 would significantly affect the retail price.
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Figure 5.3: Project value and investment policy (different drifts)

Figure 5.4 shows that volatility has negative impact on the value of the
investment in the exercise range. An increase in σ decreases the value of
the option to wait when the demand is smaller than D∗1 and also decreases
the value of the undertaken project in the exercise region (D∗1 < D < D∗2).
However, the effect of volatility on F (D) is positive for a sufficiently high
demand level. These results reflect the functional form of the payoff func-
tion (max(V (Dt) − I, 0)). Unlike standard single variable American call
options whose payoffs are convex in terms of their underlying state vari-
able, here, the payoff of undertaking the project presents both convex and
concave regions with regards to demand D. Inspection of the dash-dot
line in Figure 5.5 shows that the payoff function is typically convex in
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Figure 5.4: Project value and investment policy (different volatilities)

the non-exercise regions (D < D∗1 and D > D∗2) and concave in the ex-
ercise region. This means that the effect of volatility on the call option F

depends in which region the average demand lies. Clearly, the concave
region dominates in the given example. We observe from Figure 5.6 that
an increase in the number of firms increases the value of the opportunity
to invest in retail expansion. The main reason is that the more competitive
is the market, the greater is the retail margin for a given retail price. In the
considered example, D∗1 that triggers the decision to undertake the invest-
ment is greater in markets with smaller numbers of generators (say, K = 4

versus K = 6). The same happens to D∗2. This means that, in this example,
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Figure 5.5: Concavities of F(D) and V(D)

the investments will be undertaken in competitive markets later than in
non-competitive markets when the demand is low (D < D∗1) but are less
likely to be prevented by high demand outcomes.

Figures 5.7 and 5.8 respectively show that the effect of the generators’
forward contracts (QC) and the degree of vertical integration (M ) over
both the value and timing of the investment in retail expansion follow a
similar pattern. Given pR and QCi (firm i’s hedging position), Markets
with greater QC have ceteris paribus a smaller electricity spot price and
a bigger retail margin (see equation (3.7)). The same happens for M for
a given firm i’s market share (mi). In particular, ceteris paribus, Figure
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Figure 5.6: Project value and investment policy (different number of firms)

5.7 shows that a decrease of forward contracts QC would decrease the
project value but would not affect significantly the decision to undertake
the project. In the most extreme (and unrealistic) case, where the retail ex-
pansion of 2% decreases the gentailers’ financial hedges to zero (QC = 0),
the changes on both timing and value of the project are very small.

Figure 5.9 shows that changes in the retail price have the expected re-
sult on both the value and timing of increasing vertical integration. Projects
with smaller retail prices are postponed and have smaller values. Since the
retail price is fixed in our framework, a decrease in pR directly decreases
the profitability of the investment (with no short-term effect on demand).
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Figure 5.7: Project value and investment policy (quantity contracted)

In this example, the demand interval which triggers the gentailer i’s retail
market expansion is considerably shorter for pR = 120 than for pR = 170.

In summary, in electricity markets where retail prices are relatively
fixed, the gentailers’ decision to undertake sunk investments (e.g market-
ing campaigns) to increase their participation in the retail market is af-
fected both by market equilibrium parameters and the level of demand
(D < D∗1 or D > D∗2). In particular, because of the rigidity of pR, the
project’s payoff is potentially concave and can imply an unusual negative
relationship between volatility and the option to wait. In addition, aspects
such as market power and the degree of vertical integration play an impor-
tant role in the retail expansion decision. While the example, is somewhat
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Figure 5.8: Project value and investment policy (degree of vertical integra-
tion)

stylised, it does suggest that market frictions arisen from unrecoverable
costs can be an important factor in market/region entry decision for re-
tailers.
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Figure 5.9: Project value and investment policy (Retail prices)
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Chapter 6

Market power and hedging
decision

The interaction between exogenous forward contracts and spot market
power in electricity wholesale markets has been the subject of a consider-
able literature. However, the relationship between risk, spot market power
and hedge pricing have not yet received proper attention. We propose
to address this relationship where the spot market obeys a uniform-price
auction clearing mechanism and where the hedging decision faces uncer-
tainty on both demand and supply. In our approach we have equilibria in
the spot and hedge markets. These aspects are common to many compet-
itive wholesale electricity markets.

The relationship between forward markets and market power was first
presented by Allaz and Villa (1993). The authors developed a duopoly
model with Cournot competition, linear demand, and constant marginal
costs, and concluded that an increase in exogenously set forward com-
mitments pushes the spot market towards a competitive solution. Pa-
pers such as Newbery (1998), Green (1999) and Bushnell (2007) followed
the same cost, demand and forward price assumptions and extended Al-
laz and Villa (1993) to deal with more generic oligopolistic frameworks,
greater number of firms, capacity constraints and market entry. These pa-

85
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pers also find that exogenous forward markets reduce wholesale market
power.1 This result is confirmed by empirical papers such as Wolak (2000)
and Bushnell et al. (2008). A common feature of all these models is the as-
sumption that production decisions are made at a particular point in time
and all the hedging decisions affecting this particular point in time are
taken in previous periods in some unspecified way. They share the limita-
tion of considering an (almost) perfect foresight of demand and supply in
the exogenously setting of the forward price.2 In other words, (expected)
spot prices are equal to forward prices and the risk and possible market
power determinants of hedging decisions are neglected.

Another group of papers use an equilibrium framework to relate risk
and economic fundamentals to contract decisions in electricity markets.
However, most of them rely on the perfect competition assumption. An
important representative of this equilibrium literature on optimal hedging
is Bessembinder and Lemmon (2002). The authors use a mean-variance
approach and analyze the impact of demand uncertainty, in a context of
non-linear costs, on the forward premium and hedging quantities under
perfect competition. They find that forward contracts are influenced by
the risk premium, price volatility and price skewness. Porchet, Ad, Touzi,
and Chemla (2009) extend the model to account for vertical integration but
still rely on the perfect competition assumption. Anderson and Hu (2008)
offer an original approach, in which they combine a duopoly structure in

1On the other hand, Ferreira (2003), Mahenc and Salanie (2004), Liski and Montero
(2006) and Green and Le Coq (2006) find opposite results using Bertrand models or fo-
cusing on the dynamic aspects of contracts.

2Neither of these papers consider QC or PC as endogenous variables. Besides, un-
certainty is either neglected (Allaz and Villa (1993) and Bushnell (2007)) or modeled as a
very minor aspect. For example, Newbery (1998) and Green (1999) discuss the potential
implications of uncertainty for their results. They respectively conclude that shocks in
price and demand do not change their main findings. However, they both assume risk
neutrality of all agents in the market and adopt very particular and predictable proba-
bility distributions for shocks in demand (exclusively). That is, Newbery (1998) assume
that generators take account of reasonably predictable variations in demand over the day
and Green (1999) argues that his results would be the same considering a normally dis-
tributed demand intercept with small volatility.
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the generation market with uncertainty. The authors consider the retail-
ers’ perspective and show that market power affects forward decisions
and can by itself justify the existence of a forward premium. However,
they assume risk neutrality of both generators and retailers and no capital
constraint, neglecting a major purpose of hedging, i.e. risk aversion (see
section 6.1 for explanation).

An important drawback of all these papers is that they consider the
key specific elements in isolation, and they do not consider uncertainty in
costs. In reality, no matter the time horizon, generators’ marginal costs are
possibly influenced by random and volatile variables (e.g. input prices,
shadow prices relating to storage level of water or other fuel and oper-
ational constraints to capacity).3 Uncertainty in costs can have different
implications for hedging decisions than the commonly assumed demand
randomness.

Our model takes into account costs and demand uncertainty in an elec-
tricity market characterized by risk aversion, oligopoly, vertical integra-
tion and a uniform-price auction clearing mechanism. We develop a two-
period framework under the usual assumptions of linearity of demand
and marginal costs. We analyze the implications of these assumptions for
the forward premium and optimal hedging quantum. Moreover, we show
that uncertainty and volatility have implications for the exertion of market
power. The spot price mark-up, measured by the Lerner index, is not only
affected by strategic conduct (in our model represented by Cournot behav-
ior and the number of firms), but also by exogenous stochastic variables
that influence demand and costs. In other words, in highly concentrated
electricity markets with forward contracts, the usual measure of market
power can reflect risk management instead of solely oligopolistic conduct.

This chapter is organized as follows. In section 6.1, we discuss the role
of preferences on hedging decision. Sections 6.2 and 6.3 analyze the case of
a fully separated electricity market, where generators and retailers are all

3See Evans and Guthrie (2009).
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different firms. We use numerical exercises in section 6.4 to infer the pos-
sible implications of risk and market concentration on forward premium,
on the hedging quantity and on the expected spot price mark-up. Section
6.5 looks at the theoretical and numerical changes on the same three mea-
sures (forward premium, hedging quantities and expected Lerner index)
under the presence of vertical integration (VI).

6.1 The role of preferences

The general literature on determinants of corporate hedging has two par-
allel approaches. The first one is founded on papers such as Stulz (1984)
and focuses on how hedging policy responds to corporate frictions related
to a) tax rules; b) transaction costs of bankruptcy and c) agency costs. Pa-
pers such as Stulz (1990), Bessembinder (1991) and Froot, Scharfstein, and
Stein (1993) argue that firms can benefit from hedging market risks be-
cause excessive volatility increases the expected costs of financial distress
and can lead to suboptimal investment.

The second approach relies on arbitrage pricing methodologies and the
timing aspects of hedging. This literature starts from the premise that
corporate hedging does not add value to the firm in complete markets
with no capital frictions. According to this approach, no-arbitrage as-
sumption holds and preferences do not matter. Frictions and constraints
such as illiquidity arise as possible determinants of hedging. The firm’s
optimal hedging strategy is the one that maximizes its value given such
constraints. Mello and Parsons (2000) and Boyle and Guthrie (2006) are
representative of this line of research. Mello and Parsons (2000) argue that
popular hedging strategies such as minimizing the variance of the firm’s
cash flow or revenue are suboptimal because they ignore the relationship
between cash flow in the next period and the marginal value of cash bal-
ance. Boyle and Guthrie (2006) show that hedging can have the effect of
reducing investments. Their model shows that hedging could add value
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by allowing investments to be delayed in situations where capital frictions
would cause it to commence prematurely.

According to Cartea and Geman (2009), however, the non storability of
electricity renders useless the usual arguments of cash and carry, dynamic
hedging and buy-and-hold strategies which are the basis of no-arbitrage
arguments employed in the commodity derivatives literature. Liquidity
and other corporate frictions are not the only constraints to firms’ opti-
mal decisions. The hedging policy itself is further limited when applied to
the electricity market in incomplete markets. As observed by Willems and
Morbee (2008), the extent to which a firm can hedge its exposure depends
on the availability of markets, their liquidity and the presence of specu-
lators who can absorb part of the risk. According to the authors, these
factors change as markets evolve from pure over-the-counter (OTC) mar-
kets to more complete markets in which there is a liquid trade in a broad
set of derivatives. Unfortunately, electricity contracts are mostly traded in
OTC markets and a ”liquid trade of a broad set of derivatives” is a rare
exception in this industry. As discussed in chapter 1, preferences and risk
aversion are closely connected to asset pricing in markets characterized by
incompleteness. Thus, decision modeling in incomplete markets is intrin-
sically related to utility functions (preferences).

As argued by Bessembinder and Lemmon (2002) and Porchet et al.
(2009), the mean-variance approach can offer useful insights to the hedg-
ing decision analysis despite its known limitations. It is reasonable to as-
sume that managers trade-off between increasing their expected profit and
decreasing their risk in proportion to their risk aversion. As mentioned,
the idea of a firm penalizing risk is associated in the corporate finance
literature with liquidity, transaction and agency costs that arise from an
increase in the probability of default. The mean-variance approach also
offers a tractable way to model incomplete markets such as electricity.
The mean-variance function, under certain conditions, corresponds to a
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second-order approximation to generic utility functions. 4

The following section will explore an equilibrium approach in the spirit
of papers such as Bessembinder and Lemmon (2002), Porchet et al. (2009)
and Willems and Morbee (2010). In particular, we use utility functions
to model electricity firms’ decisions. We also adopt the mean-variance
approach to encapsulate market frictions and incompleteness in a tractable
framework.

6.2 Basic assumptions and spot market results

Consider the following structure. Firms do not participate simultaneously
in the retail and generation business (no vertical integration). Each firm’s
decision is made by a utility maximizing agent. The electricity market
has N total firms made of K generators and R retailers. Generators are
symmetric and oligopolistic. Retailers’ revenues are determined by an ex-
ogenous retail price and their respective market share of consumers’ de-
mand. Demand and generators’ cost functions are influenced by a given
set of stochastic state variables. Players know the probability distribution
of stochastic variables. As shown in Figure 6.1, our model has three pe-

Figure 6.1: Timing framework

t=0 state variables revealed // t=1 demand disturbances revealed // t=2

hedging decision

OO

auction/generation decision

OO

spot market clearing

OO

riods. At a point in time in the first period (t = 0) the hedging decision
is made by generators and retailers. The forward market clears. At the
second period (t = 1), state variables are revealed and generators decide

4See, for example, Baron (1977), Levy and Markowitz (1979) and Pulley (1981).
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their production through a uniform price auction. Despite the knowing
the state variables in t = 1, some uncertainty about the final realization
of the demand remains. At the third period (t = 2), the demand is com-
pletely revealed and the electricity is delivered. The wholesale spot market
clears. Notice that the time duration between these dates is unlikely to the
same and depends on electricity market rules.5 The nature of choice in this
model is essentially recursive. Firms choose their optimal supply, S∗(QC),
at t = 1 for a given QC and choose the optimal quantity contracted, QC∗,
at t = 0 taking their optimal supply into account. All the assumptions will
be now formalized and motivated.

Assume that definitions (2.1.1-2.1.10) of the basic model described in
chapter 2 hold and also that the assumptions of proposition 2.2.3 are valid.
That is, at t = 1, W is known and the stochastic aggregate demand D̃ is
formed by a deterministic component D = c − κopR +

∑L
j=1 κjwj and an

additive shock ε. The deterministic component is affected by the price
charged to final consumers pR (retail price) and by demand shifters. The
retail price can either be assumed to be a state variable or to be a known
constant. Frequently, the literature considers a unique state variable rep-
resented by the observed demand itself (say, D = w1). However, we can
also think of demand shifters as including income, activity, institutional
changes, seasonality and climatic factors. The stochastic component ε is
unknown at t = 0 and t = 1 and represents short-term demand fluctua-
tions that occur between the auction and the specific time of delivery at
t = 2. Hence, the demand D̃ is totally revealed only at t = 2.

As stated in proposition 2.2.3, we assume that generators have a sym-
metric and well behaved quadratic cost function. The total cost of each
generator i in t = 1 is Ci = b

2
S2 +

(
a+

∑L
j=1 ρjwj

)
S + F for all i =

1, 2, . . . , K. Therefore, the marginal cost MCi(Si, ~W ) of each generator is
linear: MCi = a+ bSi +

∑L
j=1 ρjwj .

5In the NZEM, for example, forward contracts can be traded several months before
the energy dispatch and the uniform-price auctions are undertaken in less than a day from
delivery.
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This assumption addresses the potential impact of generators’ marginal
cost shifters such as capacity utilization, temperature, water precipitation
or shadow prices of inputs (such as gas, water or other fuel). It also takes
into account abrupt increases in the marginal cost of generation associ-
ated with non-storability of electricity, which are well documented as a
reason for the existence of the so-called spikes (see e.g. Deng (2000) and
Hughes and Parece (2002)). The assumption of linearity of marginal cost is
common in the theoretical literature on the impact of exogenous forward
contracts over the spot market power. The assumption of symmetry of
generators simplifies our results.

Definition 6.2.1. Retailer i’s market share is fixed and defined by mi. There-
fore, his demand is miD̃(pR, ~W ) and, by construction,

∑R
i=1miD̃(pR, ~W ) =

D̃(pR, ~W ).

Retailers’ demand is assumed to be a fixed proportion of D̃ and, by
construction, total retailers’ demand must be equal to aggregate consumer
demand. The exogeneity of the market share mi, of all i = 1, 2, . . . , R,
means no significant change in the retailers’ participation in the market
during the model horizon. It is certainly reasonable from a short-term
perspective and it is a simplification that is not far from reality also in the
long-term for stable electricity retail markets (e.g. NZEM). In our model,
retail market variables mi and pR are taken as given. This chapter focus is
on the determinants of the spot and forward market equilibrium.

Definition 6.2.2. There is one forward market only, attended by generators and
retailers (no outside speculators). AssumeQC∗i the generator i’s optimal quantity
contracted (chosen at t = 0). The forward market is cleared at t = 0 and the
equilibrium forward price PC∗ determined (so that

∑N
i=1QC

∗
i (PC∗) = 0).

We simplify the forward transactions by assuming that they can be ap-
proximated by a unique forward market cleared by a known equilibrium
price PC. Issues related to liquidity or the nature of bilateral transac-
tions will not be analyzed here. Bessembinder and Lemmon (2002) argues



6.2. BASIC ASSUMPTIONS AND SPOT MARKET RESULTS 93

that, while the assumption of absence of speculators in the market is an
over-simplification of actual markets, it is a reasonable starting point since
speculators rarely can take part in the physical electricity delivery market,
which is responsible for the great majority of forward transactions. Fol-
lowing their argument, we also assume that there are no speculators.

Decisions have a recursive nature. Generators simultaneously submit
supply schedules Ŝi at t = 1. Considering each firm’s bid, the auctioneer
computes at t = 2 the equilibrium price pc that satisfies the market clearing
condition. Bidders can infer rivals’ optimal contract strategies (adopted in
t = 0) since there is no asymmetry of information and firms agree about
the probability distribution of stochastic variables. Therefore, at the mo-
ment of the auction (t = 1), from the perspective of firm i, uncertainty
about price is due exclusively to the uncertainty about the short-term de-
mand fluctuation ε revealed at t = 2.

Definition 6.2.3. Generator i’s ex-post profit upon the realization of the market
clearing price at t = 2 is:

πGi = Si(p
c, QCi, ~W )pc − Ci(Si(pc, QCi, ~W ), ~W )

+(PC − pc)QCi, (6.1)

and his ex-post operating profit at t = 2 is

Υi = Si(p
c, QCi, ~W )pc − Ci(Si(pc, QCi, ~W ), ~W ). (6.2)

There are two sources of payoff for generator i = 1 . . . N at time t = 1.
The operating profit from the generation activity, here defined by Υi =

pcSi−Ci, and the revenue (PC−pc)QCi from forward market transactions.

Definition 6.2.4. Retailer i’s ex-post profit upon the realization of market clear-
ing price at t = 2 is:

πRi = mi(p
R − pc)D̃(pR, ~W )− (pc − PC)QCi (6.3)
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That is, retailer i’s purchase is determined by his exogenous retail mar-
ket participationmiD̃(PR,W ). It also means that there is no purchase deci-
sion for retailers since the spot price is determined by suppliers’ strategies
and the exogenous aggregate demand. However, retailers are active play-
ers in the forward market.

Definition 6.2.5. The owner of firm i has the following maximization problem if
he is a generator:

max
QCi,Ŝi

EW,ε[Ui(π
G
i )] = max

QCi
EW

[
max
Ŝi

Eε|W [Ui(π
G
i )]

]
,

and the following maximization problem if he is a retailer:

max
QCi

EW,ε[Ui(π
R
i )],

where W, ε are random variables and Ŝ is the supply schedule.

Recall that decisions are taken recursively. Firm i chooses his bid sched-
ule Ŝi(p) (if he represents a generator) and decides about hedging QCi in
order to maximize his expected utility. The general uncertainty is given by
the joint distribution of the state variables W and the short term demand
shock ε. However, as illustrated by Figure 6.1, the timing and information
are different for both decisions. Thus, the agent problem can be split into
two separate decisions and solved recursively. The agent bids the supply
schedule at t = 1 that maximizes the expected utility taking the state vari-
ables as given and then he decides at t = 0 about the quantity to contract in
order to maximize his expected utility given the optimal supply schedule
and the joint distribution of W and ε.

In particular, the only uncertainty that generators face when they bid
their supply schedules (t = 1) corresponds to the uncertainty about de-
mand (ε) at the moment of delivery (t = 2). Formally, firm i has the fol-
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lowing problem at t = 1:

max
Ŝi(p)

∫ p

p

Ui[Ŝi(p)p− Ci(Ŝi(p), ~W ) + (PC∗ − p)QC∗i ]dHi(p, Ŝi(p))(6.4)

Define QCG
i as the quantity contracted by generator i (chosen at t = 0).

Taking the previous assumptions into account, the results of proposition
2.2.3 apply. Therefore, the spot market equilibrium at t = 2 is given by:

S∗i =
D̃ +QCG

i −
∑
j 6=iQC

G
j

K−1

K
(6.5)

pc = a− b

K(K − 2)

K∑
i=1

QCG
i +

L∑
j=1

ρjwj + b
(K − 1)

K(K − 2)
D̃ (6.6)

As before, j 6= i corresponds to a index that ranges over all generators
other than i. Notice that, for given hedging quantities, the risk aversion of
the bidder does not influence equations (6.5-6.6).6 As explained in chapter
2, this result follows from the fact that the bidder’s optimum in every state
of nature is attainable and produces a supply schedule that is a monotoni-
cally increasing function of price and realizations of the residual demand.
In other words, the bidder has a unique optimal supply for each state of
nature related to residual demand.

As discussed in chapter 2, equation (6.6) has the following character-
istics. First, the electricity spot price is affected by the state variables in
the expected way. Positive shifts in generators’ costs and in aggregate de-
mand increase the spot price and negative shifts have the opposite effect.
Second, an increase in the retail price decreases aggregate demand and
consequently decreases the spot price. The third and most significant as-
pect of this equation is that players’ equilibrium hedge decisions, here rep-
resented by the sum of generator’s contracted quantities

∑K
i=1QC

G
it , can

6We show in the next section that, in equilibrium, risk aversion do affect equations

(6.5-6.6) via ~QC
G
= {QCG1 , QCG2 , . . . , QCGK}.
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have a significant role in spot price formation. It means that a large for-
ward position decided at t = 0 can offset generators’ spot market power
and affect the spot price at t = 2. Notice that retailers make no decision at
t = 1 in our model.

6.3 Hedging decision and equilibrium results

In the first period (t = 0), managers of generators and retailers make the
decision of how much electricity to hedge (i.e. they choose QC∗i ). Assume
that the utility function U(.) can be approximated by a quadratic function,
yielding a mean-variance utility locally. The maximization problem at t =

0 is then:

max
QC∗i

E[π∗i ]−
λi
2
V ar[π∗i ] (6.7)

Define λi as the firm i’s risk aversion parameter. In order to simplify the
results, assume that all the generators have the same risk aversion (λi = λG

for all generators) and similarly for retailers (λi = λR for all retailers). In
this case, generators are perfectly symmetric and have the same optimal
quantity contracted (QCG∗

i = QCG∗). From equation (6.5-6.6), this symme-
try assumption implies that the equilibrium results at t = 1 change to the
following:

S∗ =
D̃

K
(6.8)

pc = a− b

K − 2
QCG∗ +

L∑
j=1

ρjwj + b
(K − 1)

K(K − 2)
D̃ (6.9)

This results from the fact that if QCG∗
i = QG∗ then QCG∗ −

∑
j 6=iQC

G∗

K−1
= 0

and
∑K

i=1QC
G∗
i = K QCG∗. Equations (6.8-6.9) also imply that all genera-

tors have the same optimal aggregate profit and operating profit, respec-
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tively defined as π∗G and Υ∗ (see definition 6.2.3). Retailers do not partic-
ipate in the spot market. They maximize their mean-variance function at
t = 0 by choosing their optimal quantity contractedQCR

i . Their retail mar-
ket share is assumed exogenous. That is, retailers optimize their hedging
strategies ex-ante at t = 0 based on both the mean and the variance of their
profits (mi(p

R − pc)D̃) revealed solely at t = 2.
Define σ2 to be the variance of pc,QC∗G the optimal quantity contracted

by each symmetric generator andQC∗Ri the optimal quantity contracted by
retailer i.

Proposition 6.3.1. Solving the mean-variance problem for a given hedge price,
the generator’s and retailer i’s optimal quantities contracted are given by:

QC∗G =
PC − E(pc)

λGσ2
+

cov(pc,Υ∗)

σ2
(6.10)

QC∗Ri =
PC − E(pc)

λRσ2
+mi

cov(pc, (pR − pc)D̃)

σ2
(6.11)

Proof: appendix D.

The interaction between the equilibrium results (6.10-6.11) and each of
the stochastic variables is not simple. State variables and demand fluc-
tuations ambiguously affect the risk exposure of generators and retailers
through their impact on clearing prices, costs and demand. For example,
the spot price is linearly, positively and additively affected by the stochas-
tic distribution of ~W . On the other hand, the uncertainty about cost and
demand has nonlinear (and sometimes ambiguous) effect on revenues and
costs of generators and retailers. However, since spot prices are positively
linked to generation revenue, it is reasonable to expect that K cov(pc,Υ∗),
the covariance between spot prices and generators’ operating profits, is
positive. For an analogous reason, since spot prices are directly related
to retail costs, it is also reasonable to expect that cov(pc, (PR − pc)D̃), the
covariance between spot prices and retailers’ operating profits, is negative
for a given retail price pR. That is, generators are expected to have a posi-
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tive risk exposure to spot prices while retailers have a negative risk expo-
sure. We adopt the assumptions that K cov(pc,Υ∗) > 0 and cov(pc, (PR −
pc)D̃) < 0. Our numerical exercise (section 6.4) validates this assumption.

From proposition 6.3.1, we observe that, for a given PC, the hedging
decision depends on two factors. The first is the risk exposure, represented
by the price, operating profit covariance relative to the price variance. We
describe this component as an operating beta, in which case the generation
beta is cov(pc,Υ∗)

σ2 and the retail beta is mi
cov(pc,(pR−pc)D̃)

σ2 . Notice that the
retail beta of an individual retailer depends directly on his market share
mi. That is, the risk exposure of retailers is proportional to their size (retail
market shares).

The second factor is the willingness to profit from forward premium
discrepancies. It is represented by the forward premium itself over the
cost of assuming this risky position (risk aversion λR or λG times the price
variance σ2). It implies that, given λs and σ2, an increase in the forward
premium (PC − E(pc)) raises the expected profit of selling electricity in
the forward market (QCi > 0). That is, ceteris paribus, an increase in the
forward premium increases the incentives for assuming a short position
(or for reducing a long position) in the forward market.

Proposition 6.3.2. Assume cov(pc,Υ∗) > 0 and cov(pc, (PR − pc)D̃) < 0.
From

∑N
i=1QC

∗
i (PC∗) = 0 (the forward market clearing condition), we have the

following equilibrium results:

PC∗ = E(pc)− K cov(pc,Υ∗) + cov(pc, (PR − pc)D̃)
R
λR

+ K
λG

(6.12)

QC∗G =
cov(pc,Υ∗)− λR

λG

cov(pc,(PR−pc)D̃)
R

σ2
(

1 + K
R
λR
λG

) > 0 (6.13)

QC∗Ri = −
K
R

cov(pc,Υ∗) +
(

1
R
−mi

(
λR
λG

+ K
R

))
cov(pc, (pR − pc)D̃)

σ2
(
λR
λG

+ K
R

)
(6.14)
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Proof: appendix D.

Assuming the existence of a single forward market, the equilibrium
forward price PC∗ is determined through the forward market clearing
condition in which demand equals supply of forward contracts and then∑N

i=1QC
∗
i (PC∗) = 0. Equation (6.13) determines the equilibrium quan-

tity contracted QC∗G for generators. Assumptions cov(pc,Υ∗) > 0 and
cov(pc, (PR − pc)D̃) < 0 directly imply that QC∗G > 0. That is, in equi-
librium, pure generators sell electricity in the forward market. Equation
(6.14) determines the equilibrium quantity contracted QC∗Ri for pure re-
tailers i. By the forward market clearing condition (

∑R
i QC

∗R
i = −K QC∗G),

the aggregate retailers’ quantity contracted is negative (
∑R

i QC
∗R
i < 0).

That is, on aggregate, retailers have a long position in the electricity for-
ward market.

We observe from equation (6.12), the sign of the risk premium (PC∗ −
E(pc)) is affected by the aggregate operating risk exposure in the market of
generators and retailers, where risk exposure to spot prices is the covari-
ance between clearing spot prices and firms’ optimal operating profits.
Therefore, if the positive risk exposure of generators as a whole more than
offsets the negative aggregate risk exposure of retailers, we have a nega-
tive forward premium (i.e a forward discount). Otherwise, if the negative
risk exposure of retailers predominates, we have a positive forward pre-
mium. The magnitude of this forward premium (or discount) is increased
in absolute value by the risk aversion of both generators and retailers.

In equilibrium, from equation (6.13), two issues arise. One is that the
negative forward premium effect of generators’ operating exposure is off-
set by its positive direct effect on its hedging decision. The second is that
the positive effect of retailers’ operating risk exposure on the forward pre-
mium appears in the equilibrium generator’s optimal forward position
equation. That is, an increase in each of generators’ and retailers’ oper-
ating risk exposures increases generators’ demand for forward contracts.
Notice that an increase in the risk aversion of retailers relative to the risk
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aversion of generators (λR
λG

) has an ambiguous effect over the equilibrium
quantities contracted by both generators and retailers.

By construction, retailers’ contracts mirror the generators’ decisions.
From equation (6.14), we observe that the net impact of aggregate retail-
ers’ risk exposure (cov(pc, (PR − pc)D̃)) on a particular retailer i’s optimal
quantity contracted (QC∗Ri ) depends on whether the risk premium effect
or the direct hedging effect prevails. If his market share (mi) is sufficiently
small, he can even sustain a long forward position (i.e. optimally contract
to sell electricity forward).

Proposition 6.3.3. From the equations (6.5-6.14), we have the following mark-
up for all i = 1, 2, . . . , K:

E(pc −MCi) =
b

(K − 2)

E(D̃)

K
−

cov(pc,Υ∗)− λR
λG

cov(pc,(PR−pc)D̃)
R

σ2
(

1 + K
R
λR
λG

)
(6.15)

Proof: appendix D.

Equation (6.15) shows that the spot price mark-up of a particular gen-
erator is decisively reduced by the risk choice of generators as whole at
t = 0. As observed by papers such as Allaz and Villa (1993), Newbery
(1998), Green (1999) and Bushnell (2007), exogenous forward contracts can
reduce the spot price mark-up. However, here, forward contracts are en-
dogenous. The forward decisions of retailers and gentailers respond to
their risk aversion and to the volatility of variables affecting their risk ex-
posure. In absolute values, higher generator or retailer risk exposure raises
the volume of contracts and therefore decreases the capability to exert mar-
ket power. In other words, in electricity markets with a forward market,
market power indexes, such as the Lerner index, can capture the risk con-
figuration instead of completely reflecting the generators’ potential market
power. A Lerner index close to zero (E(p−MC) ≈ 0) could be erroneously
interpreted as a sign of competitive conduct when it could be a symptom
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of the existence of high risk exposure at the moment when forward con-
tracts were transacted. In this sense, since risk is costly, there would be a
trade-off between managing risk (reducing their cost) and more competi-
tive prices (decreasing generators’ operating revenue).

Market power is typically assessed with respect to the spot market.
Holding everything else constant, increases in the spot price mark-up (p−
MC) have a negative welfare effect. For this reason, competition authori-
ties are frequently concerned about the existence of price mark-ups. Con-
sider that ε is negligible since the time auctions take place t = 1 and the
time of spot market clearing t = 2 are frequently very close. The forward
market remaining in equation (6.15) shows the need in the market power
assessment to control for risks associated with the state variables W in or-
der to separate risk management from potential anti-competitive behavior.
Since uncertainty can also produce negative impacts on welfare and gen-
erators face a trade-off between hedging and sacrificing market power, the
equilibrium impact of their choices on welfare should not be considered
in isolation. More explicit analysis is helped by a numerical example.

6.4 Numerical exercise

To illustrate implications of cost and demand volatility for our equilibrium
hedging results we conduct a series of simulations based on calibrated pa-
rameters as approximations to actual values. The purpose is to explore
the role of supply-side volatility, as well as demand volatility, in deter-
mining the supply and demand for hedges. We also address the effect
of changes in both volatilities on the forward premium and on expected
market power. Comparative static results will be explored by varying the
parameters.
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6.4.1 Calibration Methodology

We assume two random state variables: one state variable shifting costs
w̃2t and the other being the demand D̃t. Equation (6.9) states that:

pct = ψ + ρw̃2t + βD̃ (6.16)

ψ = a− b

K − 2
QCG∗

β = b
(K − 1)

K(K − 2)

Our calibration strategy has two basic steps. First, we regress the spot
price against historical series of the state variables which gives us a fitted
equation for the spot price at t.

p̂ct = ψ̂ + ρ̂w̃2t + β̂D̃t (6.17)

Notice that endogeneity is not a problem in the estimation of equation
(6.17), since we are only interested in the equilibrium relationship between
spot price and state variables. That is, we do not need to estimate the
structural functions of demand and supply since the identification of the
relevant parameters is done by our theoretical model. Rearranging the
coefficients we have:

b̂ =
K(K − 2)

K − 1
β̂ (6.18)

â = ψ̂ + β̂
K

K − 1
QC∗G (6.19)

The equilibrium quantity contracted QC∗G is almost never an observed
variable. Define P̂C as the actual observed future/forward price. Assume
that the risk aversion of retailers and generators is the same (λG = λR =

λ) and that the expected retail margin pR − E(pc) is fixed and equal to
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ν.7 Substituting (6.17-6.19) in equations (6.8-6.9) and (2.2), we have the
following stochastic variables:

pc = â+ ρ̂w̃2t + β̂(D̃t −
QC∗G

K − 1
) (6.20)

S∗ =
D̃

K
(6.21)

C∗ = (
K − 2

2K(K − 1)
β̂)(D̃)2 + (ψ̂ +

β̂

K − 1
QC∗G + ρ̂w̃2t)

D̃

K
+ F (6.22)

Υ∗ = S∗pc − C∗ (6.23)

π∗G = Υ∗+ (PC∗ − pc)QC∗G (6.24)

From equations (6.12-6.14), we need to calculate the covariances to obtain
PC∗ and QC∗G. Therefore, we need to assume a probability distribution
for the stochastic variables we observe (w2 and D̃) and estimate its param-
eters. For simplicity, assume that the state variables follow a multivariate
normal distribution (W = (w2t, D̃t) ∼ NID((E(w2t), E(D̃t)),Σ)). Consider
the historical means and unconditional variance to be reasonable estima-
tors. Substitute equations (6.20-6.23) in equations (6.12-6.14). For a given
λ, we have the following optimal quantity contracted by generators:

QC∗G =
ˆcov(pc,Υ∗)− ˆcov(pc,(PR−pc)D̃)

R

σ̂2
(
1 + K

R

) (6.25)

In order to calibrate the risk aversion, choose the λ̂ that equates the equilib-
rium forward price PC∗ to an observed forward/future price P̂C. Given

7This is not an unrealistic assumption since retail prices are relatively fixed in com-
parison with the volatile spot prices. At the same time, it is reasonable to suppose that,
at t = 0, pR is greater than the expected spot price E(pc). Otherwise, retailers would
not have reasons to be in the business. The assumption of a fixed expected retail margin
simplifies our results.
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equation (6.12), λ̂ solves the following:

P̂C − E(pc) = −λ̂K
ˆcov(pc,Υ∗) + ˆcov(pc, (PR − pc)D̃)

R +K
(6.26)

From equations (6.8-6.15), we notice that all the estimates are uncondi-
tional (means, variances and covariances). When deciding their hedging
strategies at t = 0, firms only know the unconditional distribution of the
state variables.

6.4.2 Illustrative example: New Zealand

The characteristics of NZEM were discussed in section 4.3. Briefly, NZEM
is predominantly hydro-based. It is composed of five major generators
(K = 5) and five retailers (R = 5). The generators are assumed to have a
symmetric cost structure for simplification to the model. Here we use a nu-
merical exercise to illustrate how hedge/demand ratio and market power
are affected by demand and cost volatilities if either vertical integration is
not considered, or vertical separation is implemented or VI mimics hedg-
ing. The last section of this chapter relaxes this hypothesis and analyzes
the implications of vertical integration.

Consider again the Haywards node spot price pc, the aggregate mar-
ket demand D and NZ hydro lake inflows (w2). The variables, and their
sources, are the same as explained in section 4.3. We use monthly fre-
quency data from 04/2004 to 06/2010. The monthly series are built from
an arithmetic average of the daily series. That is, we assume that the in-
terval between the contract decision (t = 0) and the spot market clearing
(t = 2) is one month. The results of applying an ordinary least square
regression (OLS) to equation (6.17) are represented in Table 6.1: Table
6.1 shows that the parameters have the expected sign. The parameter ρ̂
indicates that the water inflows have a statistically significant effect on
monthly prices. However the high p-value of the intercept and demand
imply that they are not statistically different from zero. For the purposes
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Table 6.1: Results of the OLS estimation of equation (6.17)
Parameters Coefficients p-value
ψ̂ 88.10 0.35
ρ̂ -0.06 0.00
β̂ 0.66 0.43

of this numerical illustration, we use these point estimates and ignore the
confidence interval.

To complete our calibration we need to estimate the one-month ahead
forward premium (P̂C −E(pc)). Note that E(pc) is unconditional in equa-
tion (6.12). Specifically, we use the average forward premium in the inter-
val between 04/2004 and 06/2010.

We choose the month-ahead Haywards forward prices as proxies for
PC. Unfortunately, the month-ahead Haywards contract is not traded
each month. There are some months where only forward contracts for
quarterly delivery are traded for initiate delivering at the month ahead.
To be coherent in terms of the the length of the forward contracts, we use
exclusively month-ahead contracts. This requires that we calculate our
forward premium average from an irregular series since there are missing
observations in the month-ahead Haywards forward price series. In par-
ticular, we build our forward price series by considering the Haywards
forward price at the first trading day of a specific month t for delivering
electricity at the following month t+ 1.

Given the information available at t, we use an ordinary least square
(OLS) regression to calculate the unconditional expected spot price (one
month ahead). In particular, we calculate Et+1(pct) by estimating equation
(6.16) using the information available in each month. Specifically, we use
the demand and water inflows data from 01/1997 to t to estimate the un-
conditional expected spot price at t + 1.8 The average of the 65 forward
premium observations in the interval is 2.6%.

8For simplification, issues related to seasonality are not considered in this formulation.
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Consider the historical mean and the unconditional variance-covariance
as proxies to our distributional parameters. Approximately, we haveE(D̃) =

102.62,E(w2) = 1422.86, σD = 6.60, σ2 = 353.83 and corr(w2, D̃) = −0.2515.
From equation (6.26), we numerically obtain λ = 0.00045. The λs and the
remaining calibrated parameters are shown in Table 6.2.

Table 6.2: Calibrated Parameters for the model outlined in equations (6.12-
6.15)

a 97.27 ρ -0.06
b 2.46 λG 0.00045
corr(w2, D̃) -0.2515 λR 0.00045
w̄2 1422.86 σD 6.60
D̄ 102.62 σ2 353.83
K 5 R 5

6.4.3 The Role of Cost and Demand Volatilities

We assume that volatilities ofw2 and D̃ can range from half the value of the
historical standard deviations shown in Table 6.2 to three times these val-
ues. Figure 6.2 shows that, in this situation, the NZEM forward price bias
PC∗−E(pc)

E(pc)
is positively affected by both the hydro inflow volatility (cost

shifter) and the demand volatility. Bessembinder and Lemmon (2002) ob-
serve that, for a deterministic quadratic cost function, an increase in the
demand volatility decreases the forward price bias. The authors show
that the opposite happens for an exponential cost function of higher de-
gree. In their model, an increase in the non-linearity of costs increases
the skewness of the spot price distribution which accounts for higher bias.
Here, with uncertainty in costs, we show that it is possible to have positive
bias even with a quadratic cost function. Moreover, the forward price bias
can be more responsive to increases in the cost volatility than in demand
volatility.

This means that an increase in hydro inflow volatility increases the re-
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Figure 6.2: Bias in forward price as function of estimated parameters as
per Table 6.2. Model used is outlined by equations (6.12-6.15)

tailers’ operating risk exposure more than it increases the generators’ op-
erating risk exposure. In other words, the positive effect of cost volatility
on retailers’ operating risk exposure dominates the also positive effect on
generators’ risk exposure, which produces a pronounced positive impact
on forward bias. On the other hand, the demand volatility effects on gen-
erators’ and retailers’ risk exposures are of equivalent magnitude which
makes their net impact on the forward bias almost offset. Particularly,
the sensitivity of the forward price bias to demand volatility depends on
the parameter ρ (sensitiveness of marginal costs to w2). The sign of the
demand volatility effect on forward bias can even change for sufficiently
high values of ρ. Figure 6.3 shows that the impact of cost volatility and
demand volatility on the generator’s hedge ratio (QC

∗G

E(S∗)
) can have opposite
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Figure 6.3: Hedging as function of estimated parameters as per Table 6.2.
Model used is outlined by equations (6.12-6.15)

signs. As illustrated above, an increase in the demand volatility increases
the generators’ relative demand for hedging protection and an increase in
cost volatility affects their optimal hedge ratio negatively. As discussed
in the previous section, ceteris paribus, optimal hedging reacts in response
to the effect of the state variables on both generators and retailers’ sys-
tematic profit risks and on the forward premium. Using our calibrated
parameters, the cost and demand volatility effects on generators’ beta is
mostly responsible for variations in optimal hedging since their effect on
retailers’ beta is almost negligible. Notice that, in this case, the negative
effect of cost volatility on optimal hedging ratios is greater in a high de-
mand volatility scenario. The reason is that in a high demand volatility
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Figure 6.4: Market power as function of estimated parameters as per Table
6.2. Model used is outlined by equations (6.12-6.15)

situation, increases in σ2 lead to decreases in generators’ operating beta.
In other words, bigger hydro inflow volatility augments the price volatil-
ity more than it increases the covariance between price and generators’
operating profit. An increase in ρ magnifies this effect. Decreases in ρ can
even lead to a positive relationship between hydro inflow volatility and
optimal hedge ratios given the calibrated demand volatility.

Lastly, we notice from Figure 6.4 the importance of risk management
over the generator’s expected market power, here represented by an ad-
justed Lerner index (E(pc−MC∗)

E(pc)
). Basically, the market power results mirror

the optimal hedging determinants. In the situation of high water outflow
volatility we have higher market power. On the other hand, an increase
in the demand volatility diminishes the Lerner index. In other words, the
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capability to exert market power in an oligopolistic framework can be con-
strained or stimulated by a particular risk environment. Finally, as ob-
served, cost-side and demand-side risks can have different roles and may
have different effects.

6.5 Vertical integration

This section analyzes the impact of vertical integration over the empiri-
cal results previously discussed. We focus on the case of fully vertically
integrated markets such as New Zealand, Spain or Germany. In particu-
lar, we show that mismatches in generation market share and retail market
share justify the existence of forward markets. However, important results
that hold for vertically separated markets are not valid under the full VI
assumption.

Consider now that generator i can participate of the retail market and
has a market share of mi ≥ 0, and define the sum of the market shares of
generators (gentailers) in the retail market to be

∑K
i=1mi = mI .

The generator/gentailer i’s ex-post profit upon the realization of the
market clearing price at t = 2 is:

πIi = Sip
c − Ci(Si,W ) + (pR − pc)miD̃ + (PC − pc)QCi (6.27)

In this case, the maximization problem is the following:

max
QCi,Ŝi

EW,ε[Ui(π
I
i )] = max

QCi
EW

[
max
Ŝi

Eε|W [Ui(π
I
i )]

]
= max

QCi
EW,ε[Ui(π

I
i (Ŝ

∗
i ))]

The maximization problem of pure retailers is the same as given by
definition 6.2.5. Again, at at t = 0 firms decide their forward contracts, at
t = 1, firms decide their supply schedules and at t = 2 all the stochastic
variables are revealed. If mi = 0, firm i is a pure retailer.
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Assume that all the generators and gentailers have the same risk aver-
sion (λI). Pure retailers have risk aversion equal to λR

Suppose that the definitions and propositions of model II described in
section 3.4 hold. That is, there is a symmetric Bayesian-Nash equilibrium
at t = 2 where the equilibrium supply and the clearing wholesale spot
price are the following:

pct =
1∑K
i=1 αi

(
D̃t −

K∑
i=1

ψi −
K∑
i=1

βiQC
I
it −

K∑
i=1

L∑
j=1

δijwj

)
(6.28)

S∗i =
K − 2

b(K − 1)

(
pct − a−

L∑
j=1

ρjwjt

)
+
QCI

it +miDt

K − 1
(6.29)

, where

ψi =
mi

∑
j 6=i ψj +mi

∑
j 6=i βjQCj −

∑
j 6=i αja

1−mi +
∑

j 6=i αjb
(6.30)

αi =
(1 +mi)

∑
j 6=i αj

1−mi +
∑

j 6=i αjb
(6.31)

βi =
1

1−mi +
∑

j 6=i αjb
(6.32)

δi =
mi

∑
j 6=i
∑L

l=1 δjl −
∑

j 6=i
∑L

l=1 αjρl

1−mi +
∑

j 6=i αjb
(6.33)

The equations above state the equilibrium spot price and the equilibrium
generator i’s supply at t = 2 under the possibility of vertical integration.

Consider now a fully integrated market such as NZEM, where mI ≈ 1.
Define ~QC = {QC1, QC2, . . . , QCI} as the vector of the quantities con-
tracted by each gentailer in the market. For all gentailers, we approximate
U(πIi ) by the mean variance function

F (πIi ) = E(πIi )−
λI
2
var(πIi ) (6.34)
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where πI,Ri is the profit function of gentailer i evaluated at (pc, S∗(pc)),
which is given by equations (6.28-6.29). Gentailer i’s optimal quantities
contracted (QC∗i (PC)) maximize the objective function (6.34), given all his
rivals’ optimal quantities contracted (QC∗j (PC),∀j 6= i). Vector ~QC∗ =

{QC∗1 , QC∗2 , . . . , QC∗I } represents the optimal quantities contracted by all
gentailers in the market. The forward price PC∗ is given by the price that
clears the forward market (

∑I
i QC

∗
i (PC∗) = 0). The retail price pR is taken

to be exogenous. We haven’t obtained a closed-form solution equivalent
to (6.12-6.14) for this vertical integration extension. The problem is solved
numerically.

We examine the hedging contracting effects of vertical integration (VI)
by means of a calibrated model. The same calibrated model is used to an-
alyze how vertical integration affects forward premium and spot market
power.

6.5.1 Numerical results

We calibrate this VI model with parameters of Table 6.2. We adjust the 2008
NZEM retail market shares, given by Table 6.2, in order to implement the
assumption of a fully vertically integrated market (mI = 1). Table 6.3 illus-
trate the retail market share adjustment. Figure 6.5 shows that the effects

Table 6.3: Adjusted retail market shares
Company 2008 2008 adjusted
Contact Energy 27% 29%
Genesis Energy 25% 27%
Meridian Energy 12% 12%
Mighty River Power / Mercury Energy 19% 20%
Trust Power 11% 12%
Total 94% 100%

of the hydro inflow and demand volatilities on the forward price bias (rel-
ative forward premium) have the same sign as in the vertically separated
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case. Changes in the demand volatility σD do not alter the forward price
bias significantly and increases in the hydro inflow volatility σ2 increases
the forward premium. The reasons have been outlined above. An increase
in hydro inflow volatility increases the retailers’ operating risk exposure
more than it increases the generators’ operating risk exposure. In fact, the
magnitude of the impact of the cost shifter volatility on the forward pre-
mium is bigger in the VI case. That is, given all the assumptions of this
empirical exercise, the positive effect of cost volatility on the retail oper-
ating risk exposure relative to its effect on the generation risk exposure
is more pronounced than in the vertically separated case. In the full VI

Figure 6.5: Bias in forward price as function of estimated parameters as
per Tables 6.2-6.3. Model used is outlined by equations (6.27-6.34)

scenario, the gentailers’ forward transaction in absolute terms over their
production is around 30%. Under complete vertical separation, the gen-
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erators and retailers have a hedge ratio of 54%.9 That is, fully vertically
integrated markets can have a reasonable level of forward transactions.
In such markets, where there are gentailers with different participation in
the generation and retail markets, we have net generators and net retailers
that trade with each other.

Figure 6.6 shows that the relevance of volatility to the hedge ratio is
quite different from the exercise where generators and retailers are differ-
ent firms. Both demand and cost volatilities have only marginal effects on
the hedge ratio under full vertical separation. The reason is that, unlike
pure retailers and pure generators, gentailers internalize effects of oppo-
site signs caused by these volatilities by their vertical integration. There-
fore, the aggregate impact of these volatilities on the industry average
hedge ratio is considerably attenuated. Lastly, as we discussed in chap-
ter 4, spot prices are not significantly affected by hedge contracts in an
electricity market solely composed of gentailers, regardless of the contract
position of individual gentailers. As far as contracts do not affect expected
spot prices, they are not affected by demand or cost volatilities as well. As
shown by Figure 6.7, this means that the adjusted Lerner index of fully
vertically integrated markets is not affected by either demand or hydro
inflows volatility. Figure 6.7 also shows that, as occurs in Model I, the av-
erage market power is close to zero. The intuition is best expressed by
equation (3.4). In a fully vertically integrated market, most of the aggre-
gate demand is hedged through vertical integration and there is no mark-
up of spot prices over the firms’ average marginal costs. In summary,
chapter 6 uses a three period equilibrium model to analyze hedging de-
cisions in electricity markets. Firstly, the model shows that demand-side
and supply-side volatilities have an important role in explaining hedge
size. The sign and magnitude of their effects on forward prices strongly
depend on the relative risk exposure of generators and retailers. Secondly,
it shows that spot price mark-ups can be influenced by risk in electricity

9Some gentailers are net retailers and have negative optimal quantity contracted QC∗
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Figure 6.6: Hedging as function of estimated parameters as per Tables 6.2-
6.3. Model used is outlined by equations (6.27-6.34)

markets which are not entirely hedged. That is, market power measures
such as the Lerner index must be controlled for risk, otherwise, they can
reflect the exogenous risk environment instead of oligopolistic conduct.
Lastly, our empirical exercise shows that demand-side and supply-side
volatilities play a lesser role in explaining either the hedge ratio or market
power in fully vertically integrated markets such as the NZEM. In fact, as
occurs in model I of chapter 4, the average mark-up is equal zero. The
signs of the effect of both volatilities on the forward price remain the same
in the vertically separated and in the fully vertically integrated cases.
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Figure 6.7: Market power as function of estimated parameters as per Ta-
bles 6.2-6.3. Model used is outlined by equations (6.27-6.34)



Chapter 7

Conclusion

This thesis proposes a new framework to jointly analyze electricity spot
market and hedging decisions in an oligopolistic setup. Chapters 2 and 3
develop the spot market equilibrium models which form the basis of the
thesis. We find that, when exogenous, both quantity of electricity hedged
by contract and vertical integration decrease the equilibrium spot price.
Chapter 5 uses a hybrid approach and shows that market structure can
affect the generators decision to vertically integrate under uncertain de-
mand. Chapter 4 considers uncertainty in costs and demand and shows
that concentration in the spot market, for a given hedge quantum, can
increase forward prices and affect the slope of the forward curve. Our
empirical results indicate that the model fits the New Zealand electricity
market well. This evidence that market structure and hedging decisions
are closely connected is further explored in chapter 6.

Chapter 6 starts from the premise that electricity markets are incom-
plete and that therefore preferences matter. A three period equilibrium
model for the spot and forward markets, where hedging occurs prior to
the submission of supply curves, is developed. This model takes into ac-
count demand-side and supply-side uncertainties. Most importantly, the
spot price, forward price, spot supply and hedging quantities are endoge-
nous. We find that when hedging is endogenous, hedging quantities are

117
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affected by spot market parameters, but market power is itself mitigated
in the hedging choice. An ex-ante positive mark-up in the spot market is
implied by the risk environment, but the mark-up is less than it would
be in the absence of hedging. This is a clear indication that policy mak-
ers should not dissociate market power from risk in their social welfare
considerations.

Other important issue in the thesis refers to vertical integration. There
is no such thing as fully hedged electricity markets. If electricity firms
always know exactly the state of the world at the time of delivery, spot
markets would not be necessary. Taking this into account, we show in
chapter 6 that highly hedged markets, either by forward contracts or verti-
cal integration, have the average mark-up close to zero. We also show that
forward markets can coexist with highly vertically integrated economies
if the firms have different market shares in the retail and generation mar-
kets (i.e. existence of net retailers and net generators). The New Zealand
market is a typical example of such situation.

There are several possible extensions and improvements to this thesis.
First, each of the two models of chapter 3 has a single source of uncer-
tainty: rivals forward positions in Model I and/or demand in Model II. An
important and challenging theoretical extension would be assuming both
sources of uncertainty simultaneously in the vertical integration frame-
work and finding tractable results. This would constitute a generalization
of Hortacsu and Puller (2008) for VI markets. Second, fixed retail prices
can be a rather strong assumption for extended periods of time. The anal-
ysis of chapter 5 about investment in vertical integration would benefit
extensively if either retail prices are adjustable or supply-side uncertainty
is considered. Third, the same model assumes that the retail expansion
is exogenous. An interesting extension would be incorporating strategic
issues related to the investment decision and considering the increase in
retail participation as an endogenous decision. This would increase the
generality (and the complexity) of the problem considerably.
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The model of chapter 6 has a very flexible framework that allows for at
least two important extensions. Despite being substitutes to some extent,
forward contracts and vertical integration are hedging instruments with
different characteristics. In practice, retail contracts adjust more quickly
than forward contracts to shocks in demand and prices. Our framework
assumes exogenous vertical integration, however the model could be ex-
tended to include the decision of vertical integration and the retail market
clearing. That is, at the time of the hedging decision, retailers/gentailers
would be able to choose their retail market share and retail prices would
be the product of the equilibrium in the retail market (also endogenous).
This could answer important questions about the determinants of verti-
cal integration in a more general equilibrium setup and also about how
retail prices relate to forward and spot prices in equilibrium. Of course,
relaxing the hypothesis of symmetry could achieve additional insights at
the cost of less tractability. In chapter 6 we also develop an illustrative ex-
ample based on calibrated parameters. An immediate empirical extension
would be to use a more robust econometric framework to test the model.
Since the model is mostly based on the moments of stochastic variables
(expectations, variances and covariances), the generalized method of the
moments (GMM) could be a first candidate for estimating the parameters
of our model.

The importance of our results is not strictly theoretical. The hybrid
partial equilibrium frameworks of chapters 4 and 5 can be used for policy
makers to analyze uncommon implications of changes in the spot market
structure. Ceteris paribus, they produce insights about how concentration
affects the forward curve, which is an important (and frequently underes-
timated) reference for decisions of electricity firms. Recall that a significant
amount of transactions in electricity markets do not happen in the spot
market: even though there may be a compulsory pool. They can also an-
swer questions about the relationship between the spot market structure
(e.g. concentration or hedge ratios) and the optimal timing of investments.
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For example, everything else constant, does an increase in the number of
firms postpone or encourage investments? Most importantly, the frame-
work of chapter 6 should be taken into account for policy makers. The
conclusion that market power and risk are closely connected in equilib-
rium is, to our knowledge, a new result. A welfare analysis within this
framework could achieve promising insights for competition authorities,
for example. Our results indicate that electricity generators, in equilib-
rium, sacrifice market power to protect themselves against both supply-
side and demand-side risk. Given that it is socially beneficial to manage
risk, it would be interesting to analyze the effects of relaxing symmetry
and the exogeneity of vertical integration and retail prices on our results.
A reasonable question left for future research is: is there a trade-off be-
tween risk and market power in term of social welfare? If the answer is
positive, the concern about increases in electricity market power should
be put in perspective. They could just reflect a welfare optimal option for
risk reduction.
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Appendix A

Chapter 2

A.1 Proof of lemma 2.2.1

To solve this maximization problem we need first to integrate by parts the
objective function. Suppressing the i and t indices we have, modulo a
constant term:

−
∫ p

p

U ′(S(p)p− C(S(p), ~W )− (p− PC)QC)(S ′(p)p−

C ′(S(p), ~W )S ′(p)−QC)H(p, S(p);QC)dp.

Labeling the integrand:

F (p, S, S ′) = −U ′(S(p)p− C(S(p), ~W )− (p− PC)QC)(S ′(p)p

+S(p)− C ′(S(p), ~W )S ′(p)−QC)H(p, S(p);QC),

from the calculus of variation, the Euler-Lagrange necessary condition for
the optimal S(p) is given by:

d

dp
FS′ = FS.
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Evaluating the derivatives:

−FS = HSU
′(.)[pS ′ + S − C ′(S, ~W )S ′ −QC]

+HU ′′(.)(p− C ′(S, ~W ))[pS ′ + S − C ′(S, ~W )S ′ −QC]

+HU ′(.)[1− C ′′(S, ~W )S ′]

−FS′ = HU ′(.)[p− C ′(S, ~W )],

and taking the total derivative of FS′ with respect to p:

− d

dp
FS′ = HpU

′(.)[p− C ′(S, ~W )] +HSS
′U ′(.)[p− C ′(S, ~W )]

+HU ′′(.)[pS ′ + S − C ′(S, ~W )S ′ −QC](p− C ′(S, ~W ))

+HU ′(.)(1− C ′′(S, ~W )S ′).

Equating and canceling terms we get:

HSU
′(.)(S −QC) = HpU

′(.)(p− C ′(S, ~W )).

Considering again the i and t indices we have:

p−MCit(S
∗
it(p), ~Wt) = [S∗it(p)−QCit]

HS(p, S∗it(p);QCit)

Hp(p, S∗it(p);QCit)
.

A.2 Proof of lemma 2.2.2

Suppose that,

Si(p,QCi, ~W ) = αi(p) + βi(QCi) +
L∑
l=1

δli(wl).

Given that we can use the spot market clearing condition
∑K

i=1 Si = D

to represent the probability Pr(pct ≤ p | QCi, Si(p)):
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∑
j 6=i

βj(QCj) +
∑
j 6=i

M∑
k=1

δkj(wk)− ε ≥ D(pR, ~Wt)− Si −
∑
j 6=i

αj(p).

The left hand side of this inequality can be labeled as a (bidder specific)
random variable, θi that does not depend on p, and the right hand side
is a deterministic function of price. Let Γi(.) denote the cdf of θi and γi(.)

denote the pdf (both conditional on the bidder’s contract quantity QCi.
Given these:

Hp(p, Si;QCi) =
∂

∂p
Pr(pct ≤ p | QCi, Si)

=
∂

∂p
Pr(θi ≥ D(pR, ~Wt)− Si −

∑
j 6=i

αj(p))

=
∂

∂p
[1− Γi(D(pR, ~Wt)− Si −

∑
j 6=i

αj(p))]

= −γi(D(pR, ~Wt)− Si −
∑
j 6=i

αj(p))
∂

∂p
(D(pR, ~Wt)

−Si −
∑
j 6=i

αj(p)),

and

HS(p, Si;QCi) =
∂

∂Si
Pr(pct ≤ p | QCi, Si)

= −γi(D(pR, ~Wt)− Si −
∑
j 6=i

αj(p))
∂

∂Si
(D(pR, ~Wt)

−Si −
∑
j 6=i

αj(p)).

Evaluating the derivatives gives Hp(p,Si;QCi)

HS(p,Si;QCi)
= −[D′(pR, ~Wt) −

∑
j 6=i α

′
j(p)],

which is the derivative in respect to price of the residual demand faced by
firm i.
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Substituting these results in the equation (2.4), defining the marginal
cost C ′i(Si(p), ~W ) as MCi(Si, ~W ) and considering again the index t, we
yield the following equation:

pt −MCit(Sit, ~Wt) =
Sit −QCit
∂
∑
j 6=i Sjt

∂p

.

Now let us consider qit = D̃t −
∑

j 6=i Sjt − QCit. The elasticity εit is

equal to dqit
dpt

pt
qit

. Observe that dqit
dpt

= −∂
∑
j 6=i Sjt

∂pt
and, in equilibrium, Dt −∑

j 6=i Sjt = Sit. Therefore qit = Sit −QCit and,

pt −MCit
pt

= − 1

εit(qit)
.

A.3 Proof of proposition 2.2.3

The assumed general form of the symmetric Bayesian-Nash equilibria is a
linear supply function of the form:

Sit(pt, QCit, ~Wt) = ψ + αpt + βQCit +
L∑
j=1

δjwjt.

Now substituting and suppressing time subscript t, we have:

p− a−
L∑
j=1

ρjwj − bSi =
QCi − Si
−(K − 1)α

(K − 1)αp− (K − 1)αa− (K − 1)α
L∑
j=1

ρjwjt +QCi

= Si(p)[1 + (K − 1)αb].
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Reorganizing equations we have:

(K − 1)αp− (K − 1)αa− (K − 1)α
L∑
j=1

ρjwjt +QCi

= (ψ + αp+ βQCi +
L∑
j=1

δjwj)[1 + (K − 1)αb],

which implies that the following must hold for i = 1, 2, . . . N :

(K − 1)α

1 + (K − 1)αb
= α

− a(K − 1)α

1 + (K − 1)αb
= ψ

1

1 + (K − 1)αb
= β

− ρ1(K − 1)α

1 + (K − 1)αb
= δ1

− ρ2(K − 1)α

1 + (K − 1)αb
= δ2

...

− ρL(K − 1)α

1 + (K − 1)αb
= δL.

This system of equations has 2 solutions. In the first α = ψ = δj = 0

and β = 1. However, this solution corresponds to a vertical supply curve
which would not in general clear the market for our inelastic demand. The
second solution is given by α = K−2

b(K−1)
, ψ = −a(K−2)

b(K−1)
, δj = −ρj(K−2)

b(K−1)
and

β = 1
K−1

. Substituting this solution back into the assumed general supply
function,

Sit(pt, QCit, ~Wt) = −a(K − 2)

b(K − 1)
+

K − 2

b(K − 1)
pt +

1

K − 1
QCit +
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−(K − 2)

b(K − 1)

L∑
j=1

ρjwjt

D̃t(p
R
t , ~Wt) = c− κ0p

R +
L∑
j=1

κjwjt + εt.

Putting in terms of p,

pt = a+
b(K − 1)(c− κ0p

R)

K(K − 2)
+

L∑
j=1

(
b(K − 1)

K(K − 2)
κj + ρj

)
wjt −

b

K(K − 2)
QCit

− b

K(K − 2)

∑
j 6=i

QCjt +
b(K − 1)

K(K − 2)
εt

= A−B
N∑
i=1

QCit +
L∑
j=1

Cjwjt + (K − 1)Bεt.
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Chapter 3

B.1 Proof of lemma 3.3.1

To solve this maximization problem we need first to integrate by parts the
objective function. Suppressing the i and t indices we have, modulo a
constant term:

−
∫ p

p

U ′
(
S(p)p− C(S(p), ~W )− (p− PC)QC −mi(p− pR)D(pRt , ~Wt)

)
×(S ′(p)p− C ′(S(p), ~W )S ′(p)−QC)H(p, S(p);QC)dp.

Labeling the integrand:

F = −U ′
(
S(p)p− C(S(p), ~W )− (p− PC)QC −m(p− pR)D(pRt , ~Wt)

)
×(S ′(p)p+ S(p)− C ′(S(p), ~W )S ′(p)−QC −mD(pRt , ~Wt))

×H(p, S(p);QC).

From the calculus of variation, the Euler-Lagrange necessary condition for
the optimal S(p) is given by:

d

dp
FS′ = FS.
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Evaluating the derivatives:

−FS = HSU
′(.)[pS ′ + S − C ′(S, ~W )S ′ −QC −mD(pRt , ~Wt))]

+HU ′′(.)(p− C ′(S, ~W ))[pS ′ + S − C ′(S, ~W )S ′ −QC −mD(pRt , ~Wt))]

+HU ′(.)[1− C ′′(S, ~W )S ′]

−FS′ = HU ′(.)[p− C ′(S, ~W )].

And taking the total derivative of FS′ with respect to p:

− d

dp
FS′ = HpU

′(.)[p− C ′(S, ~W )] +HSS
′U ′(.)[p− C ′(S, ~W )]

+HU ′′(.)[pS ′ + S − C ′(S, ~W )S ′ −QC −mD(pRt , ~Wt))](p− C ′(S, ~W ))

+HU ′(.)(1− C ′′(S, ~W )S ′).

Equating and canceling terms we get:

HSU
′(.)(S −QC −mD(pRt , ~Wt))) = HpU

′(.)(p− C ′(S, ~W )).

Considering again the i and t indices we have:

p−MCit(S
∗
it(p), ~Wt) = [S∗it(p)−QCit −miD(pRt , ~Wt))]

HS(p, S∗it(p);QCit)

Hp(p, S∗it(p);QCit)
.

B.2 Proof of lemma 3.3.2

Suppose that,

Si(p,QCi, ~W ) = αi(p) + βi(QCi) +
L∑
j=1

δki(wk).
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Given that we can use the market clearing condition to represent the event
Pr(pct ≤ p | QCi, Si(p)):

∑
j 6=i

βj(QCj) +
∑
j 6=i

M∑
k=1

δkj(wk) ≥ D(pR, ~Wt)− Si −
∑
j 6=i

αj(p).

The left hand side of this inequality can be labeled as a (bidder specific)
random variable, θi that does not depend on p, and the right hand side
is a deterministic function of price. Let Γi(.) denote the cdf of θi and γi(.)

denote the pdf (both conditional on the bidder’s contract quantity QCi).
Given these:

Hp(p, Si;QCi) =
∂

∂p
Pr(pct ≤ p | QCi, Si)

=
∂

∂p
Pr(θi ≥ D(pR, ~Wt)− Si −

∑
j 6=i

αj(p))

=
∂

∂p
[1− Γi(D(pR, ~Wt)− Si −

∑
j 6=i

αj(p))]

= −γi

(
D(pR, ~Wt)− Si −

∑
j 6=i

αj(p)

)
∂

∂p
(D(pR, ~Wt)

−Si −
∑
j 6=i

αj(p)),

and

HS(p, Si;QCi) =
∂

∂Si
Pr(pct ≤ p | QCi, Si)

= −γi

(
D(pR, ~Wt)− Si −

∑
j 6=i

αj(p)

)
∂

∂Si
(D(pR, ~Wt)

−Si −
∑
j 6=i

αj(p)).

Evaluating the derivatives gives Hp(p,Si;QCi)

HS(p,Si;QCi)
= −[∂D(pR, ~Wt)

∂p
−
∑

j 6=i α
′
j(p)],
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which is the derivative in respect to price of the residual demand faced by
firm i. By definition of the aggregate demand, ∂D(pR, ~Wt)

∂p
= 0.

Substituting these results in the equation (3.4), defining the marginal
cost C ′i(Si(p), ~W ) as MCi(Si, ~W ) and considering again the index t, we
yield the following equation:

pt −MCit = −Sit −QCit −miDt

∂Dt
∂pt
− ∂

∑
j 6=i Sjt

∂pt

pt −MCit =
Sit −QCit −miDt

∂
∑
j 6=i Sjt

∂pt

.

Now let’s consider q′it = Dt −
∑

j 6=i Sjt − QCit − miDt. The elasticity ε′it

is equal to −dq′it
dpt

pt
q′it

. Observe that dq′it
dpt

= −∂
∑
j 6=i Sjt

∂pt
and, in equilibrium,

Dt −
∑

j 6=i Sjt = Sit. Therefore q′it = Sit −QCit −miDt and,

pt −MCit
pt

=
1

ε′it(q
′
it)
.

B.3 Proof of proposition 3.3.3

Let’s now assume that the general form of the symmetric Bayesian-Nash
equilibria is a linear supply function of the form:

Sit(pt, QCit, ~Wt) = ψi + αpt + βQCit +
L∑
j=1

δjwjt.

Now substituting and suppressing time subscript t, we have:

p− a−
L∑
j=1

ρjwj − bSi =
QCi +miD − Si
−(K − 1)α

(K − 1)αp− (K − 1)αa− (K − 1)α
L∑
j=1

ρjwjt +QCi +mi(c− κopR +
L∑
j=1

κjwjt)
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= Si(p)[1 + (K − 1)αb].

Reorganizing equations we have:

mi(c− κopR)− (K − 1)αa+ (K − 1)αp−
L∑
j=1

((K − 1)αρj −miκj)wjt +QCi

= (ψi + αp+ βQCi +
L∑
j=1

δijwj)[1 + (K − 1)αb],

which implies that the following must hold for i = 1, 2, . . . N :

(K − 1)α

1 + (K − 1)αb
= α

+mi(c− κopR)− a(K − 1)α

1 + (K − 1)αb
= ψi

1

1 + (K − 1)αb
= β

−ρ1(K − 1)α−miκ1

1 + (K − 1)αb
= δi1

−ρ2(K − 1)α−miκ2

1 + (K − 1)αb
= δi2

...

−ρL(K − 1)α−miκL
1 + (K − 1)αb

= δiL

Solving the system and substituting back into the assumed general supply
function,

Sit(pt, QCit, ~Wt) = −a(K − 2)

b(K − 1)
+

K − 2

b(K − 1)
pt +

1

K − 1
QCit

+
mi

K − 1
Dt(p

R
t , ~Wt)−

(K − 2)

b(K − 1)

L∑
j=1

ρjwjt
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Dt(p
R
t , ~Wt) = c− κopR +

L∑
j=1

κjwjt.

Clearing the market and putting in terms of pct ,

pct = a+ b
(c− κopR)

(
K − (1 +

∑K
i=1 mi)

)
K(K − 2)

− b

K(K − 2)

K∑
i=1

QCit

+
L∑
j=1

ρj + b

(
K − (1 +

∑K
i=1mi)

)
K(K − 2)

κj

wjt,

which is the same as:

pct = A−B
K∑
i=1

QC∗it +
L∑
j=1

Cjwjt,

where

A = a+ b
(c− κopR)

(
K − (1 +

∑K
i=1mi)

)
K(K − 2)

B =
b

K(K − 2)

Cj = ρj + b

(
K − (1 +

∑K
i=1mi)

)
K(K − 2)

κj.

B.4 Proof of proposition 3.4.1

Assume that Hit(p, Ŝit(p);QC
∗
kt) ≡ Pr(pct ≤ p | Ŝit(p), QC∗kt)∀k = 1, 2 . . . N .

Therefore, by the market clearing condition (ε = Sit(p
c
t ,
~Wt)+

∑
j 6=i Sj(p

c
t ,
~W )−

D(pR, ~Wt)), we know that εt is a function εt(p
c
t , Sit(p

c
t)) of the spot market

clearing price pct and the firm i’s bid Sit.
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A vertically integrated firm has the following maximization problem:

max
Ŝit(p)

∫ p

p

Ui[Ŝit(p)p− Cit(Ŝit(p), ~Wt) +mi(p
R
t − pct)(Dt(p

R
t , ~Wt)

+εt(p, Ŝit(p))) + (PCit − p)QCit]dHit(p, Ŝit(p);QCit).

To solve this maximization problem, we integrate by parts the price inte-
gral of the objective function. Suppressing the i and t indices we have,
modulo a constant term: ∫ p

p

F (p, S, S ′)dp.

Labeling the integrand:

F (p, S, S ′) = −[S ′(p)p+ S(p)− C ′(S(p), ~W )S ′(p)−QC −m(D(pR, ~W )

+ε(p, S(p))−mp
(
∂ε(p, S(p))

∂p
+
∂ε(p, S(p))

∂S
S ′(p)

)
]

×H(p, S(p);QC),

from the calculus of variation, the Euler-Lagrange necessary condition for
the optimal S(p) is given by:

d

dp
FS′ = FS.

Evaluating the derivatives:

−FS = HS[pS ′ + S − C ′(S, ~W )S ′ −QC −m(D(pR, ~W ) + ε(p, S)

−mp
(
∂ε(p, S)

∂p
+
∂ε(p, S)

∂S
S ′
)

] +H[1− C ′′(S, ~W )S ′

−m∂ε(p, S)

∂S
−mp

(
∂2ε(p, S)

∂p∂S
+
∂2ε(p, S)

∂S2
S ′
)

]

−FS′ = H

[
p− C ′(S, ~W )−mp∂ε(p, S)

∂S

]
,
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and taking the total derivative of FS′ with respect to p:

− d

dp
FS′ = Hp[p− C ′(S, ~W )−mp∂ε(p, S)

∂S
]

+HSS
′[p− C ′(S, ~W )−mp∂ε(p, S(p))

∂S
]

+H[1− C ′′(S, ~W )S ′ −m∂ε(p, S)

∂S

−mp
(
∂2ε(p, S)

∂p∂S
+
∂2ε(p, S)

∂S2
S ′
)

].

Equating and canceling terms we get:

HS[S −QC −m(D(pR, ~W ) + ε(p, S))−mp∂ε(p, S)

∂p
]

= Hp[p− C ′(S, ~W )−mp∂ε(p, S)

∂S
].

We know by the market clearing condition that:

ε(p, Si) = Si +
∑
j 6=i

Sj(p,QCj, ~W )−D(pR, ~W )

∂ε(p, Si)

∂Si
= 1

∂ε(p, Si)

∂p
=

∑
j 6=i

S ′j.

Thus, we have the following first order condition:

p− C ′i = [Si −QCi −miS]
HS

Hp

+mip

(
1−

∑
j 6=i

S∗
′

j

HS

Hp

)
. (B.1)
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Now suppose that the supply is the following,

Si(p,QCi,W ) = ψi + αip+ βiQCi +
L∑
k=1

δkiwk.

Given that we can use the market clearing condition to represent the event
Pr(pct ≤ p | QCi, QCj, Si(p)):

∑
j 6=i

ψj +
∑
j 6=i

βjQCj +
∑
j 6=i

L∑
k=1

δkjwk − ε ≥ D(pR,W )− Si −
∑
j 6=i

αjp.

The left hand side of this inequality can be labeled as a (bidder specific)
random variable, θi that does not depend on p, and the right hand side
is a deterministic function of price. Let Γi(.) denote the cdf of θi and γi(.)

denote the pdf.

Given that:

Hp(p, Si) =
∂

∂p
Pr(pct ≤ p | Si)

=
∂

∂p
Pr(θi ≥ D(pR,W )− Si −

∑
j 6=i

αjp)

=
∂

∂p
[1− Γi(D(pR,W )− Si −

∑
j 6=i

αjp)]

= −γi(D(pR,W )− Si −
∑
j 6=i

αjp)
∂

∂p
(D(pR,W )

−Si −
∑
j 6=i

αjp),

and

HS(p, Si) =
∂

∂Si
Pr(pct ≤ p | Si)
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= −γi(D(pR,W )− Si −
∑
j 6=i

αjp)
∂

∂Si
(D(pR,W )

−Si −
∑
j 6=i

αjp),

evaluating the derivatives gives Hp(p,Si)

HS(p,Si)
= −[∂D(pR,W )

∂p
−
∑

j 6=i αj] =
∑

j 6=i
∂Sjt
∂pt

,
which is the derivative with respect to price of the residual demand faced
by firm i. By definition of the aggregate demand, ∂D(pr,W )

∂p
= 0.

Therefore, substituting these results in (B.1) we have:

pt −MCit =
S∗it −QCit −miSt∑

j 6=i
∂Sjt
∂pt

+mip

(
1−

∑
j 6=i

∂Sjt
∂pt∑

j 6=i
∂Sjt
∂pt

)

=
S∗it −QCit −miSt∑

j 6=i
∂Sjt
∂pt

. (B.2)

B.5 Proof of proposition 3.4.2

Assume that supply is Si(p,QCi,W ) = ψi +αip+βiQCi +
∑L

l=1 δilwl. Skip-
ping the subscript t and applying equation B.2, we have the following:

∑
j 6=i

αjp−
∑
j 6=i

αja−
∑
j 6=i

αjbSi −
∑
j 6=i

αj

L∑
l=1

ρlwl = (1−mi)Si −QCi

−mi

∑
j 6=i

(ψj + αjp+ βjQCj +
L∑
l=1

δjlwl) (B.3)

(1 +mi)
∑
j 6=i

αjp−
∑
j 6=i

αja−
∑
j 6=i

αj

L∑
l=1

ρlwl = (1−mi +
∑
j 6=i

αjb)Si −QCi
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−mi

∑
j 6=i

(ψj + βjQCj +
L∑
l=1

δjlwl) (B.4)

(1−mi +
∑
j 6=i

αjb)Si = mi

∑
j 6=i

(ψj + βjQCj)−
∑
j 6=i

αja+ (1 +mi)
∑
j 6=i

αjp

+QCi + (mi

∑
j 6=i

L∑
l=1

δjl −
∑
j 6=i

L∑
l=1

αjρl)wl (B.5)

Si =
mi

∑
j 6=i ψj +mi

∑
j 6=i βjQCj −

∑
j 6=i αja

1−mi +
∑

j 6=i αjb
+

(1 +mi)
∑

j 6=i αj

1−mi +
∑

j 6=i αjb
p

+
1

1−mi +
∑

j 6=i αjb
QCi +

mi

∑
j 6=i
∑L

l=1 δjl −
∑

j 6=i
∑L

l=1 αjρl

1−mi +
∑

j 6=i αjb
wl

= ψi + αip+ βiQCi +
L∑
l=1

δilwl. (B.6)

We have the following systems:

ψi =
mi

∑
j 6=i ψj +mi

∑
j 6=i βjQCj −

∑
j 6=i αja

1−mi +
∑

j 6=i αjb

αi =
(1 +mi)

∑
j 6=i αj

1−mi +
∑

j 6=i αjb

βi =
1

1−mi +
∑

j 6=i αjb

δi =
mi

∑
j 6=i
∑L

l=1 δjl −
∑

j 6=i
∑L

l=1 αjρl

1−mi +
∑

j 6=i αjb
,

which can be solved numerically. With αi we solve βi for all i = 1, 2, . . . , K.
Then we solve the linear system of K equations for ψi and the L linear
systems of K equations for δs.
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Appendix C

Chapters 4 and 5

C.1 Proof of corollary 4.2.2

Consider a ≥ 0, b ≥ 0, ρ ≥ 0, µ ≥ 0, ψ ≥ 0 and f(T ) ≥ 0 ∀T .

We have:

∂PC(pt, T )

∂a
= 1 ≥ 0

∂PC(pt, T )

∂x1t

=
b(K − 1−M)

K(K − 2)
e−

b(K−1−M)
K(K−2)

ψ(T−t) ≥ 0

∂PC(pt, T )

∂w2t

= ρ ≥ 0

∂PC(pt, T )

∂µ
= ρ(T − t) ≥ 0

∂PC(pt, T )

∂σ1

= −
(

1− e−
b(K−1−M)
K(K−2)

ψ(T−t)
) λ1

ψ
≤ 0

∂PC(pt, T )

∂λ1

= −
(

1− e−
b(K−1−M)
K(K−2)

ψ(T−t)
) σ1

ψ
≤ 0

∂PC(pt, T )

∂σ2

= −ρλ2(T − t) ≤ 0

∂PC(pt, T )

∂λ2

= −ρσ2(T − t) ≤ 0.

149
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C.2 Proof of lemma 5.2.1

The profit function is equal to:

πi = pcS∗i (p
c)− C(S∗(pc)) + (PC − pc)QCi +mi(p

R − pc)D. (C.1)

The optimal supply function is equal to:

Sit(pt, QCit, ~Wt) = −a(K − 2)

b(K − 1)
+

K − 2

b(K − 1)
pt +

1

K − 1
QCit

+
mi

K − 1
Dt −

(K − 2)

b(K − 1)

L∑
j=1

ρjwjt. (C.2)

Now, consider QCjt =
∑
j 6=iQCjt

K−1
and mj =

∑
j 6=imj

K−1
. The clearing price pct is

described by the equation:

pct = a+
L∑
j=1

ρjwjt + b
(K − (1 +mi + (K − 1)mj))

K(K − 2)
Dt

− b

K(K − 2)

(
QCi + (K − 1)QCj

)
.

(C.3)

Substituting back in the firm i’s supply equation, we have the following
optimal equilibrium supply:

Sit(pt, QCit, ~Wt)

=
K − 2

b(K − 1)

(
a+

L∑
j=1

ρjwjt + b
(K − (1 +mi + (K − 1)mj))

K(K − 2)
Dt

)

− 1

K(K − 1)

(
QCi + (K − 1)QCj

)
− a(K − 2)

b(K − 1)
+

1

K − 1
QCit

+
mi

K − 1
Dt −

(K − 2)

b(K − 1)

L∑
j=1

ρjwjt
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=
K − 1−mi − (K − 1)mj

K(K − 1)
Dt −

QCi + (K − 1)QCj

K(K − 1)
+

1

K − 1
QCit

+
mi

K − 1
Dt

=
K − 1− (1−K)mi − (K − 1)mj

K(K − 1)
Dt −

(1−K)QCi + (K − 1)QCj

K(K − 1)

=
1 +mi −mj

K
Dt +

QCi −QCj

K

S∗it =
(1 +mi −mj)Dt

K
+
QCit −QCjt

K
.

(C.4)

Now suppose that the generator/gentailer i has the option to establish/expand
his retail position by investing I to increase his retail market share by ∆mi.

Using Taylor expansion, we know that the impact of a change in mi on
the gentailer/generator profit is equal to:

∆πi =
dπi
dmi

∆mi +
1

2

d2πi
dm2

i

(∆mi)
2 (C.5)

∆πi =
dπi
dmj

∆mj +
1

2

d2πi
dm2

j

(∆mj)
2. (C.6)

Calculating the derivatives of the first equation and skipping the time sub-
scripts, we have:

dπi(p
c(mi), S

∗(mi))

dmi

=
∂πi
∂mi

+
∂πi
∂pc

∂pc

∂mi

+
∂πi
∂S∗i

∂S∗i
∂mi

∂πi
∂mi

= (pR − pc)D

∂πi
∂pc

∂pc

∂mi

= −b(S −QCi −miD)D

K(K − 2)



152 APPENDIX C. CHAPTERS 4 AND 5

∂πi
∂S∗i

∂S∗i
∂mi

= (P −MC)
D

K
.

Define M =
∑K

k=1mk and
∑K

k=1QCkt = QC. Now we show that the first
two terms are equal to zero:

pc −MCi = pc − (a+
L∑
j=1

ρjwj)− bSi

= b
(K − 1−mi − (K − 1)mj))

K(K − 2)
D −

b(QCi + (K − 1)QCj)

K(K − 2)

−b

(
(1 +mi −mj)D

K
+
QCit −QCj

K

)
=

b

K(K − 2)
(K − 1−mi − (K − 1)mj)D

− b

K(K − 2)
(K − 2)(1 +mi −mj)D

−b(QCi + (K − 2)QCi)

K(K − 2)
−
b((K − 1)QCj − (K − 2)QCj)

K(K − 2)

=
b (1− (K − 1)mi −mj)

K(K − 2)
D −

b
(
(K − 1)QCi +QCj

)
K(K − 2)

Si −QCi −miD =
(1 +mi −mj)D

K
+
QCi −QCj

K
−QCi −miD

=
(1− (K − 1)mi −mj)

K
D −

(
(K − 1)QCi +QCj

)
K

.

Calculating the first order derivative we have:

∂πi
∂pc

∂pc

∂mi

+
∂πi
∂S∗i

∂S∗i
∂mi

= 0.
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We also have the following first order derivative:

dπi(mi, p
c(mi), S

∗(mi))

dmi

= (pR − pc)D (C.7)

The second order derivative is equal to:

d2πi
dm2

i

= −D ∂pc

∂mi

=
b

K(K − 2)
D2, (C.8)

so that

∆πit = (pR − pc)D∆mi +
1

2

b

K(K − 2)
D2(∆mi)

2. (C.9)

We have an analogous calculation for the impact of a decrease in rival
gentailers’ average mj .

Calculating the derivatives of the first equation and skipping the time
subscripts, we have:

dπi(mj, p
c(mj), S

∗(mj))

dmj

=
∂πi
∂mj

+
∂πi
∂pc

∂pc

∂mj

+
∂πi
∂S∗i

∂S∗i
∂mj

∂πi
∂mj

= 0

∂πi
∂pc

∂pc

∂mj

= (K − 1)
∂πi
∂pc

∂pc

∂mi

∂πi
∂S∗i

∂S∗i
∂mj

= − ∂πi
∂S∗i

∂S∗i
∂mi

.

Considering that ∂πi
∂pc

∂pc

∂mi
= − ∂πi

∂S∗i

∂S∗i
∂mi

,

we have:

dπi(mj, p
c(mj), S

∗(mj))

dmj

= K
∂πi
∂pc

∂pc

∂mi
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=
b
(
(K − 1)QCi +QCj

)
K(K − 2)

D

−b (1− (K − 1)mi −mj)

K(K − 2)
D2.

The second order effect is equal to:

d2πi(mj, p
c(mj), S

∗(mj))

dm2
j

=
b

K(K − 2)
D2. (C.10)

Therefore, we have:

∆πi =
b
(
(K − 1)QCi +QCj

)
K(K − 2)

D∆mj −
b (1− (K − 1)mi −mj)

K(K − 2)
D2∆mj

+
1

2

b

K(K − 2)
D2(∆mj)

2.

For simplicity, consider that
∑K

k=1QCkt is a constant QC and that costs are
not driven by any additional state variable. That is, MCi = a+ bSi and the
clearing price is defined as:

pct = a+ b
(K − 1−M)

K(K − 2)
Dt.−

b

K(K − 2)
QC

Define ∆mj = −ω∆mi
K−1

. Putting the direct (mi) and indirect (mj) effects
together, the investment has the following impact on profit:

∆πit = ∆mi(p
R − pc)D + ∆mj

b
(
(K − 1)QCi +QCj

)
K(K − 2)

D

+
(∆mi)

2

2

b

K(K − 2)
D2 −∆mj

b (1− (K − 1)mi −mj)

K(K − 2)
D2

+
(∆mj)

2

2

b

K(K − 2)
D2

= ∆mi

(
pR − a+

b

K(K − 2)
QC

)
D
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+∆mj

b
(
(K − 1)QCi +QCj

)
K(K − 2)

D

−∆mib
(K − 1−M)

K(K − 2)
D2 +

(∆mi)
2

2

b

K(K − 2)
D2

−∆mj
b (1− (K − 1)mi −mj)

K(K − 2)
D2 +

(∆mj)
2

2

b

K(K − 2)
D2

= ∆mi

(
pR − a+

b

K(K − 2)
QC

)
D

−ω∆mi

K − 1

b
(
(K − 1)QCi +QCj

)
K(K − 2)

D

−∆mib
(K − 1−M)

K(K − 2)
D2 +

(∆mi)
2

2

b

K(K − 2)
D2

+
ω∆mi

K − 1

b (1− (K − 1)mi −mj)

K(K − 2)
D2 +

ω2(∆mi)
2

2(K − 1)2

b

K(K − 2)
D2

= ∆mi

(
pR − a+

b

K(K − 2)
QC −

bω
(
(K − 1)QCi +QCj

)
K(K − 1)(K − 2)

)
D

− b∆mi

K(K − 2)

(
K − 1−M − ∆mi

2

)
D2

+
ωb∆mi

K(K − 1)(K − 2)

(
1− (K − 1)mi −mj +

ω∆mi

2(K − 1)

)
D2

= ∆mi

(
pR − a+

b

K(K − 2)
QC − bω (QC +K(K − 2)QCi))

K(K − 1)2(K − 2)

)
D

− b∆mi

K(K − 2)

(
K − 1−M − ∆mi

2

)
D2

+
ωb∆mi

K(K − 1)2(K − 2)

(
K − 1−M −K(K − 2)mi +

ω∆mi

2

)
D2

= ∆mi

(
pR − a+

b

K(K − 2)

(
1− ω

(K − 1)2

)
QC − bω

(K − 1)2
QCi

)
D

− b∆mi

K(K − 2)

(
(K − 1−M)

(
1− ω

(K − 1)2

))
D2

− b∆mi

K(K − 2)

(
ωK(K − 2)

(K − 1)2
mi −

(
1 +

ω

(K − 1)2

)
∆mi

2

)
D2

= ÂD − B̂D2.
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C.3 Proof of lemma 5.2.2

Consider that the demand follows a geometric brownian motion,

dDt = Dtµdt+DtσdWt. (C.11)

The present value of the inflows Vt is equal to:

Vt = Â

∫ T

t

Et [Dτ ] e
−r(τ−t)dτ − B̂

∫ T

t

Et
[
D2
τ

]
e−r(τ−t)dτ

= Â

∫ T

t

eµ(τ−t)e−r(τ−t)dτDt − B̂
∫ T

t

e(2µ+σ2)(τ−t)e−r(τ−t)dτD2
t

= Â

(
1− e−(r−µ)(T−t))

r − µ
Dt − B̂

(
1− e−(r−2µ−σ2)(T−t)

)
r − 2µ− σ2

D2
t

= ÃDt − B̃D2
t . (C.12)

Therefore, we have:

Vt = ÃDt − B̃D2
t − I (C.13)

Ã is clearly greater than zero if pR > pc. We can easily show that B̃ ≥ 0 as
well. By contradiction, suppose that B̃ < 0. Then the following holds:(

1 +
ω

(K − 1)2

)
∆mi

2
≥ (K − 1−M)

(
1− ω

(K − 1)2

)
+
ωK(K − 2)

(K − 1)2
mi(

1 +
ω

(K − 1)2

)
∆mi

2
≥ (K − 1−M)

(
1− ω

(K − 1)2

)
∆mi ≥ 2

1− ω
(K−1)2

1 + ω
(K−1)2

(K − 1−M).
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The second term of the inequality achieves his minimum value if ω = 1,
K = 3 and M = 1. Therefore in this case,

∆mi ≥ 2
1− 1

(3−1)2

1 + 1
(3−1)2

(3− 1− 1)

∆mi ≥
6

5
.

However, this is a contradiction because ∆mi ≤ 1. Therefore, B̃ ≥ 0.

C.4 Proof of proposition 5.2.3

Over a short period of time, dt, the total return from holding the invest-
ment opportunity, F (D), is simply its expected change in value. With a
rate of return r, this is:

rFdt = E(dF ). (C.14)

Expanding dF using Ito’s Lemma, we get the quadratic differential equa-
tion:

1

2
σ2D2F ′′(D) + µDF ′(D)− rF = 0. (C.15)

The general solutions for F in the domains [0, D∗1[ and ]D∗2,∞[ are equal
to F = α11D

β1 + α21D
β2 and F = α21D

β1 + α22D
β2 , respectively. The pa-

rameters β1 and β2 are the characteristic roots of the partial differential
equation given by equation (5.4). We know that β1 is greater than 1 and β2

is negative.1 Therefore, the conditions given by equations (5.5) and (5.10)
imply that α21 = 0 and α12 = 0. We obtain α11 and α22 from the remaining
boundary conditions.

Assume that, for D ∈ [0, D∗1], F (D) satisfies the following boundary

1See Dixit et al. (1994) pages 142-144.



158 APPENDIX C. CHAPTERS 4 AND 5

conditions:

F (0) = 0 (C.16)

F (D∗1) = ÃD∗1 − B̃D∗21 − I (C.17)

F ′(D∗1) = Ã− 2B̃D∗1. (C.18)

Using the first boundary condition we have F (D) = α11D
β1 where:

β1 =
1

2
− (r − µ)

σ2
+

√(
(r − µ)

σ2
− 1

2

)2

+
2r

σ2
. (C.19)

Applying the boundary conditions we have:

α11β1D
∗β1−1
1 = Ã− 2B̃D∗1 (C.20)

α11D
∗β1

1 = ÃD∗1 − B̃D∗21 − I. (C.21)

Dividing C.20 by C.21,

1

β1

D∗1 =
ÃD∗1 − B̃D∗21 − I

Ã− 2B̃D∗1

⇒ Ã

β
D∗1 − 2

B̃

β
D∗21 = ÃD∗1 − B̃D∗21 − I

⇒ −2− β1

β1

B̃D∗21 +
1− β1

β1

ÃD∗1 + I = 0

⇒ −(2− β1)B̃D∗21 + (1− β1)ÃD∗1 + β1I = 0. (C.22)

Lastly, we have:

D∗1 =
(1− β1)Ã+

√
(1− β1)2Ã2 + 4(2− β1)β1B̃I

2(2− β1)B̃
(C.23)

α11 =
Ã

β1

D∗1−β1

1 − 2
B̃

β1

D∗2−β1

1 . (C.24)
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It is reasonable to assume that if the project has a negative value at a the
critical demand, the option to exercise it has no value.

Therefore, α11 is, in fact, equal to:

α11 = max

(
Ã

β
D∗1−β − 2

B̃

β
D∗2−β, 0

)
. (C.25)

For D ∈ [D∗2,∞] we have the following boundary conditions:

F (∞) = 0 (C.26)

F (D∗2) = ÃD∗2 − B̃D∗22 − I (C.27)

F ′(D∗2) = Ã− 2B̃D∗2. (C.28)

Using the transversality condition, the solution in this region is F (D) =

α22D
β2 , where:

β2 =
1

2
− (r − µ)

σ2
−

√(
(r − µ)

σ2
− 1

2

)2

+
2r

σ2
. (C.29)

Analogously, we have the following results:

D∗2 =
(1− β2)Ã+

√
(1− β2)2Ã2 + 4(2− β2)β2B̃I

2(2− β2)B̃
(C.30)

α22 =
Ã

β2

D∗1−β2

2 − 2
B̃

β2

D∗2−β2

2 . (C.31)
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Appendix D

Chapter 6

D.1 Proof of proposition 6.3.1

Assuming that the objective function is twice continuously differentiable,
to solve: maxQCi F (π∗Gi (QCi, p

c(QCi), S(QCi))) = E[π∗Gi ] + λG
2
V ar[π∗Gi ], we

need first to calculate the first order condition. Skipping subscripts and
superscripts, we know that:

dF (QC, pc(QC), S(QC))

dQC
=

∂F

QC
+
∂F

∂pc
∂pc(QC)

∂QC
+
∂F

∂S

∂S(QC)

∂QC
= 0.

Solving the differential we have:

dF (QC, p(QC), S(QC))

dQC
= PC − E(p)− λGσ2QC + λGcov(p,Υ∗)

+
∂F

∂p

∂p

∂QC
+
∂F (S)

∂S

∂S(QC)

∂QC
= 0.

Now, assume B = b
N(N−2)

. Solving for ∂F
∂p

∂p
∂QC

and ∂F (S)
∂S

∂S(QC)
∂QC

, the follow-
ing applies:

∂F

∂pc
∂pc

∂QC
= E

(
∂π

∂pc
∂pc

∂QC

)
− λG

2

(
2E

(
π
∂π

∂pc
∂pc

∂QC

)
− 2E(π)E

(
∂π

∂pc
∂pc

∂QC

))
161
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= E

(
∂π

∂pc
∂pc

∂QC

)
− λGcov

(
π,
∂π

∂pc
∂pc

∂QC

)
= −B (E(S∗ −QC)− λGcov(π, S∗))

∂F

∂S

∂S

∂QC
= E

(
∂π

∂S

∂S

∂QC

)
− λG

2

(
2E

(
π
∂π

∂S

∂S

∂QC

)
− 2E(π)E

(
∂π

∂S

∂S

∂QC

))
= E

(
∂π

∂S

∂S

∂QC

)
− λGcov

(
π,
∂π

∂S

∂S

∂QC

)
=

1

K
(E(pc −MC)− λGcov (π, pc −MC)) .

From equation (6.8) we have D̃
K

= S∗. Subtracting MCi = a + bSi +∑L
j=1 ρjwj from equation (6.9), we have:

pc −MCi = −bS∗ − b

K − 2
QC∗G +

b(K − 1)

K(K − 2)
D̃

=
b(K − 1)

K − 2

D̃

K
− b D̃

K
− b

K − 2
QC∗G

=
b

K − 2

(
D̃

K
−QC∗G

)
. (D.1)

Last,

∂F

∂S

∂S

∂QC
= B

(
E

(
D̃

K
−QC∗G

)
− λGcov(π,

D̃

K
)

)
= B (E(S∗ −QC)− λGcov(π, S∗)) ,

which means that,

∂F

∂pc
∂p

∂QC
+
∂F (S)

∂S

∂S(QC)

∂QC
= 0.

Therefore,

QC∗G =
PC − E(pc)

λGσ2
+

cov(pc,Υg∗)

σ2
.
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Since the quantity contracted by retailers does not have indirect effects on
their profits (they do not affect spot prices, demand or retail prices), the
solution for the retailers’ problem is straightforward and equal to:

QC∗Ri =
PC − E(pc)

λRσ2
+mi

cov(pc, (pR − pc)D̃)

σ2
.

D.2 Proof of proposition 6.3.2

Clearing the forward market we have:

K∑
i=1

QC∗Gi = K QC∗G

= K

(
PC − E(pc)

λGσ2
+

cov(pc,Υ(S∗, pc))

σ2

)
R∑
i=1

QC∗Ri = RQC∗R

= R
PC − E(pc)

λRσ2
+

cov(pc, (pR − pc)D̃)

σ2

⇒ σ2

N∑
i=1

QC∗i =

(
K

λG
+

R

λR

)
(PC∗ − E(pc)) +

K cov(pc,Υ(S∗, pc)) + cov(pc, (pR − pc)D̃) = 0

⇒ PC∗ − E(pc) = −K cov(pc,Υ∗) + cov(pc, (PR − pc)D̃)
R
λR

+ K
λG

.

Substituting the equation above in the equation (6.10), we have the equa-
tion (6.13):

QC∗G = −K cov(pc,Υ∗) + cov(pc, (PR − pc)D̃)

λGσ2
(
R
λR

+ K
λG

) +
cov(pc,Υ∗)

σ2
(D.2)

= −K cov(pc,Υ∗) + cov(pc, (PR − pc)D̃)

σ2
(
λG
λR
R +K

) +
cov(pc,Υ∗)

σ2
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= −cov(pc, (PR − pc)D̃)

σ2
(
λG
λR
R +K

) +
1

σ2

(
1− K

λG
λR
R +K

)
cov(pc,Υ∗)

= −cov(pc, (PR − pc)D̃)

σ2
(
λG
λR
R +K

) +
1

σ2

 λG
λR
R +K −K(
λG
λR
R +K

)
 cov(pc,Υ∗)

= −

cov(pc, (PR − pc)D̃)

σ2
(
λG
λR
R +K

) − 1

σ2

(
λG
λR
R

λG
λR
R +K

)
cov(pc,Υ∗)

× λR
λG

1
R

λR
λG

1
R

=
cov(pc,Υ∗)− λR

λG

cov(pc,(PR−pc)D̃)
R

σ2
(

1 + K
R
λR
λG

)

QC∗Ri = −K cov(pc,Υ∗) + cov(pc, (PR − pc)D̃)

σ2
(
λG
λR
R +K

) +mi
cov(pc, (PR − pc)D̃)

σ2

= −
K cov(pc,Υ∗) +

(
1−mi

(
λG
λR
R +K

))
cov(pc, (PR − pc)D̃)

σ2
(
λG
λR
R +K

)
= −

K
R

cov(pc,Υ∗) +
(

1
R
−mi

(
λR
λG

+ K
R

))
cov(pc, (pR − pc)D̃)

σ2
(
λR
λG

+ K
R

)

D.3 Proof of proposition 6.3.3

Given D̃
K

= S∗ in equilibrium and substituting D.2 in D.1, we have:

pc −MCi =
b

(K − 2)

 D̃

K
−

cov(pc,Υ∗)− λR
λG

cov(pc,(PR−pc)D̃)
R

σ2
(

1 + K
R
λR
λG

)
 ,
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which gives the following expectation:

E(pc)−MCi =
b

(K − 2)

E(D̃)

K
−

cov(pc,Υ∗)− λR
λG

cov(pc,(PR−pc)D̃)
R

σ2
(

1 + K
R
λR
λG

)
 .


