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Abstract

The recent push for environmental regulation has invigorated the discus-

sion of mechanism design and optimal taxation policy. Recent decades

have also seen growing interest in behavioural economics and empirically

based theory. In this thesis we take a step towards combining the two by

asking how a regulator may correct an externality in situations where they

have a time consistency problem.

Time inconsistency is one of the notable developments of behavioural

economics. It posits that an agent’s decisions do not remain consistent

over time, which causes a utility loss if the agent cannot commit them-

selves to a particular course of action and stick to it. The solution to in-

consistency problems is to precommit to a course of action and prevent

future deviations from it. However, finding a mechanism to enable such

precommitment is often problematic.

A regulator who maximises welfare can have a time consistency prob-

lem because welfare will depend on the decisions of firm and households

who may themselves be inconsistent. That inconsistency then propagates

to the regulator’s decision and reduces the level of welfare that the regula-

tor can reach. Alternatively, the regulator’s time consistency problem can

be caused by non-stationarity in their time preferences. To reach the first-

best outcome the regulator must not only eliminate the environmental ex-

ternality: they must also overcome their own time inconsistency problem.



This thesis draws from the literature on strategic delegation to con-

struct a taxation game in which the regulator can achieve the first best tax-

ation regime without the need for external precommitment devices. We

study a dynamic game where the regulator chooses a tax rate and the reg-

ulated monopolist chooses their price. We show that the Markov-perfect

equilibrium price path of this game will replicate the first best plan. Our

results holds for time inconsistency caused by both jump states and quasi-

hyperbolic discounting.
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Chapter 1

Introduction

Environmental protection has become the political cause célèbre of the

twenty-first century. Politicians in the European Union and New Zealand

alike are scrambling to seize the moral high ground on the issue of envi-

ronmental regulation. For many countries, the idea of a tax on pollution

is very attractive, both economically and politically. In this context it is

opportune to examine any difficulties that may arise in the creation of op-

timal regulatory schemes.

Economists have long recognised the problems posed by externalities.

There is a large body of literature on regulation that is designed to over-

come the negative externality imposed on society by polluters. One mech-

anism features prominently in the environmental literature is taxation.

Pigouvian taxation is not only theoretically effective for mitigating ex-

ternalities; it is also a mechanism that is relatively easy for regulators to

implement. Most governments already have various taxes in place, so cre-

ating a pollution tax is a task for which the administrative infrastructure

already exists.

1
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Unfortunately, governments can face certain difficulties in implement-

ing efficient taxation. This thesis will examine regulating an industry where

agents exhibit dynamically inconsistent behaviour. In such an industry, a

regulator who maximises some welfare function that accounts for indus-

try profits will find that his policies may also suffer from time consistency

problems. If the government cannot precommit to future taxes, it will be

unable to achieve the first-best outcome for society. We propose a taxation

mechanism which allows the regulator to overcome his dynamic inconsis-

tency problem, and thus realise the first-best regulatory outcome.

Chapter 2 canvasses the theoretical framework of dynamic inconsis-

tency that underlies the proposed mechanism. Chapter 3 constructs a

model of a polluting monopolist producing a durable good and a regu-

lator attempting to address the pollution problem. This model is used to

demonstrate the that the inability of the regulator to precommit to future

actions will prevent him from achieving the first-best outcome. Chapter

4 describes the proposed Pigouvian taxation mechanism. The method by

which it overcomes the dynamic inconsistency problem and implements

efficiency is explained. Since the model does not permit a closed-form

solution, we develop a numerical example in chapter 5 to investigate the

effect of parameter variations.



Chapter 2

Theoretical framework

The following section discusses the theoretical framework of the thesis.

The game theoretic context of the problem is explained, as is the reason

for choosing to focus on the regulation of pollution.

Section 2.1 briefly covers the theory of dynamic games and specifies

the type of games that will be considered. Section 2.2 explores the notion

of dynamic inconsistency. Here the type of dynamic inconsistency that

affects the model in chapter 3 will be delineated. Section 2.3 surveys the

types of situations such inconsistency problems may occur.

The innovation of this thesis is to design a taxation mechanism that will

aid a government which regulates a polluter while experiencing dynamic

inconsistency. The aim is to show that this regulator can use taxes as an

instrument that provides polluters with efficient incentives even when his

welfare maximisation problem contains a jump variable.

3
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2.1 Dynamic games

2.1.1 Features of dynamic games

Static game theory studies the interaction of strategic agents in a so-called

‘one-shot’ framework. Each player makes a one-time decision, and there

is no future play. Such games can be described as static, since they do not

have any dynamic element. In reality, many important decisions occur in

the context of ongoing relationships. As a result, the idea of a repeated

game (also called a supergame) was developed.

In a repeated game, the one-shot game is played multiple times by the

same players. These games may produce results unobtainable in static

games (e.g. cooperation in the infinite horizon Prisoners’ Dilemma). How-

ever, they cannot capture some important features of many observed rela-

tionships, because the context of the play is the same in every period. In

real life, it is often the case that one’s actions today affect one’s possible

future actions, and thus potential future payoffs. Repeated games do not

acocunt for such inter-temporal linkages. It is these interactions that dy-

namic games seek to model. In this thesis, the term ‘dynamic game’ will

refer to games with state dynamics. Repeated games are not within the

ambit of dynamic games as the term is used here.

A dynamic game is modelled as a dynamical system in which the state

of the world changes over time in response to players’ actions. The state

variables describe the current state of the system. They may influence

the payoffs, or the action space, of the players. The state changes over

time according to a pre-defined law of motion, which may depend upon

the players’ actions. In such a system, players’ current actions will affect
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their future payoffs through the state. In addition to the standard static

strategic effects, these settings allow for the possibility of inter-temporal

strategic effects. Sometimes they also give rise to intra-personal, inter-

temporal strategic effects: an agent may have a conflict with their future

‘self’.

In general, the most popular solution concept in games is that of Nash

equilibrium. In dynamic games, various refinements are used to rule out

Nash equilibria that may be considered implausible. A couple of these

will be explained later in this chapter.

2.1.2 Open loop vs feedback strategies

There are two common ways to model players’ behaviour in a dynamic

game: players could either precommit up front to their future course of

action, or they could choose their action in each period based on the cur-

rent state. The former strategies are known as open loop strategies, as they

are non-responsive to changes in the state. The latter strategies are called

feedback strategies, because a change in the state can affect the player’s

actions.

An equilibrium in open loop strategies is justifiable only if players have

precommitment power. Indeed, in an open loop equilibrium, players will

not change their action in response to deviations from the equilibrium by

other players. Essentially, open loop games are static games with a multi-

dimensional action space: instead of choosing one action, at the beginning

of time the players choose actions for all periods.

In open loop equilibria, players choose their future actions, while tak-
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ing the future actions of their opponents as given. Constructing strategies

in this fashion means that the prescribed actions will often be sub-optimal

if the state variable deviates from the anticipated equilibrium path. Thus,

open loop strategies are generally not subgame perfect: they will not be

optimal in all possible subgames.

When modelling a situation in which players have the ability to re-

spond to deviations of the state, or in other players’ strategies, it is more

appropriate to consider feedback strategies. This approach specifies the

player’s strategy as a decision rule, i.e. a function of the state. It is com-

puted while taking as given the decision rules of the other players. Be-

cause such strategies are optimal for all possible states, by construction

they will be subgame perfect.

2.1.3 State variables

Unlike other types of games, in dynamic games players’ payoffs can be

affected by state variables which change over time. The choice of state

variables is an important modelling decision that can have a marked effect

upon the outcome of the game.

There are two important types of state variables: first, those that have

a direct physical or technological impact upon the game and, secondly,

those that affects the psychology of agents and, through it, their behaviour.

The first type includes components of the game structure that affect play-

ers’ payoffs directly, such as pollution stock levels. The second type in-

cludes variables that are not payoff-relevant, such as the history of play.

In repeated games, the Folk Theorem establishes that there exist a mul-
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tiplicity of equilibria, provided that players have long memories (Fuden-

berg and Maskin, 1986). Current research demonstrates that the same re-

sult holds for dynamic games in which strategies are allowed to depend

on state variables that are not payoff-relevant (Haurie and Pohlohja, 1987;

Ausubel and Deneckere, 1989; Gul et al., 1986) . The reason is that equilib-

rium behaviour is influenced by agents’ beliefs about the consequences of

deviations from the equilibrium path. Including state variables that affect

players’ psyche, such as the history of play, can give rise to many possible

belief structures. This will result in multiplicity of equilibria. Because it is

difficult to draw economic conclusions without a unique prediction, it is

common to restrict the state variables to those which directly affect play-

ers’ payoffs. This restriction does not guarantee a unique equilibrium, but

it does reduce the number of possible equilibria.

2.1.4 Markov strategies

Strategies that are based on information sets which include only payoff-

relevant information are known as Markov strategies. The assumption

of Markov strategies implies that players are unable to observe events

that happened in the deep past. The history of play is thus summarised

through its effect upon the state variables.

When players’ past actions are not directly observable, it is difficult to

punish past deviations from the equilibrium. Effectively, the restriction

to Markov strategies rules out the use of trigger strategies. The range of

potential equilibria is therefore significantly narrowed.

While Markov strategies offer a way to limit the number of possible
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equilibria, they may not always be appropriate. For the Markovian restric-

tion to be reasonable, players must be unlikely to use trigger strategies.

In the regulation games studied here, we claim that players are unlikely

to use trigger strategies. It seems implausible that a government would

choose to punish a firm for deviations from the desired output level by

taxing it for many periods in the future. When governments choose their

tax rules, they enshrine them in legislation. The tax authority then applies

the tax rule as specified in the legislation. Since the creation of the rule

and its application are usually separate activities, taxation rules are un-

likely to be reactionary. Governments also prefer to appear even-handed

in their policies. A trigger strategy relies on the threat of harsh punish-

ments to enforce an efficient equilibrium. Given that a deviation from the

equilibrium output level is not illegal, it is unlikely that the government

would wish to punish a firm for such a deviation. It is more reasonable to

believe that the level of taxation will depend on the current state of the in-

dustry, but not upon the firms’ history of actions. Thus, the use of Markov

strategies in this thesis seems justified.

2.2 Dynamic consistency

2.2.1 Dynamic consistency and precommitment

The extension of game theory to dynamic games opened up a range of

interesting new problems. Among those problems is the issue of dynamic

consistency, which was first explored in the context of economic policy by

Kydland and Prescott (1977). A plan is said to be dynamically consistent
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if a player has no incentive to deviate from it at any time in the future.

Conversely, a dynamically inconsistent plan is one which, while optimal

when conceived, the player will choose to deviate from in the future.

A dynamically inconsistent agent will be unable to adhere to an opti-

mal plan without the aid of some precommitment device. Some of these

devices are usually enforced by a third party. On a personal level, people

rely on family members and friends to help them follow a chosen course

of action; on a business level, the legal system enforces contractual com-

mitments. However, precommitment power is harder to come by when

there is no external ‘enforcer’ available. Governments, in particular, may

find it very difficult to bind themselves, since any legislation that they pass

can be overturned by future legislators. This thesis will examine the prob-

lem of a dynamically inconsistent regulator in some detail and propose a

method by which a regulator can overcome their dynamic inconsistency.

2.2.2 Time-consistency and perfection

If precommitment is not possible, then an equilibrium involving dynam-

ically inconsistent strategies is implausible. No agent will be willing to

rely upon promises that they expect to be broken. Hence, strategies must

be dynamically consistent to generate plausible equilibria. We now ex-

amine in greater detail precisely what is meant by dynamic consistency.

There are two ideas of dynamic consistency that are relevant to this thesis:

‘time-consistency’ and ‘subgame perfection’.

Time-consistency is the weaker of the two requirements. Any equilib-

rium that is not dynamically inconsistent is time consistent. Given that no
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agent has reneged in the past, and none are expected to renege in the fu-

ture, no agent has an incentive to unilaterally renege on a time-consistent

equilibrium.

A subgame perfect equilibrium must satisfy a more stringent test. sub-

game perfection requires that a strategy be optimal regardless of past de-

viations in either the state or in the other players’ actions. This must be

true for all possible values of the state variable and across all time periods.

As such, a perfect strategy will usually depend on the state variable.

Open loop strategies are announced by agents at the beginning of the

game, and so describe actions as functions of time and the initial state.

Thus, a deviation from the expected path by any player will not change the

actions dictated by an open loop strategy. This is likely to cause the open

loop strategy to be sub-optimal in the periods following the deviation.

Therefore, the player will have an incentive to deviate from it. It follows

that the open loop strategy is not subgame perfect. Note that the strategy

may still be time-consistent even if it is not dynamically inconsistent, as

long as play remains on the equilibrium path.

In dynamic games, subgame perfection may be attained with state-

dependent, feedback strategies. Since perfection implies time-consistency

(even though the converse is not true), a perfect feedback strategy will also

be time consistent. Hence, time-consistent strategies can be either open

loop or feedback.
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2.2.3 Sufficient conditions for time-consistency

Feedback strategies are designed to be optimal in all states. Thus, an equi-

librium in feedback strategies is subgame perfect by construction. Open

loop equilibria are rarely subgame perfect, but are often time-consistent

along the equilibrium path. Bellman’s Principle of Optimality states that

the continuation of an optimal strategy is optimal in all states that arise

from past optimal behaviour (Bellman, 1957). Thus, if the initial state is

exogenously given, and players all choose optimal strategies, the result-

ing equilibrium will be time-consistent (Karp and Newbery, 1993).

The difficulty with this result is that it depends upon an exogenously

specified initial state. If the initial state is not exogenous, then the cur-

rent state must be a function of future actions. A variable whose value

depends upon future events is known as a ‘jump variable’. Problems with

jump variables are not covered by the Principle of Optimality and rarely

have time-consistent open loop solutions. However, the absence of a jump

variable is sufficient to ensure time-consistency of an open loop equilib-

rium.

The intuition behind the above statement is fairly straightforward. The

presence of a jump variable suggests that the current state and the cur-

rent payoff depend upon expectations about the future. Thus, in period

t, agents need to form expectations about actions and payoffs in period

t + n, so that they can compute their optimal action. Time inconsistency

can arise in two ways: first, if these expectations are not fulfilled then the

period t action becomes sub-optimal, and so the period t + n action will

be different from what was anticipated. Even if expectations are fulfilled,
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the period t+n action is still likely to differ from the expected action. This

is because the t + n action has an effect upon the period t payoff. Re-

optimising in period t+n would disregard the ‘inter-temporal externality’

on the previous periods’ payoffs, since they are now sunk. Thus, in period

t + n, the optimal action is unlikely to be the same as was expected in pe-

riod t. As a result, the open loop equilibrium calculated in period t will be

time inconsistent.

Dynamic inconsistency is common in settings where governments reg-

ulate non-strategic but forward looking agents (Chari et al., 1988). When

making decisions about the current period, such agents take future pay-

offs into consideration. If current payoffs are affected by future actions,

then the problem of a subsequent regulator will differ from that of the cur-

rent one. This implies that the regulator’s optimal plan will change over

time, and so the regulator will be dynamically inconsistent.

2.2.4 Implications of dynamic inconsistency for regulation

The problem considered in this thesis will exhibit dynamic inconsistency

due to the presence of a jump variable in the regulator’s objective function.

As a result of this, the regulator is unable to obtain the first-best price

path. In the subsequent chapters, we will focus on this inefficiency. But

before describing the specifics of the model, it is worth canvassing the

likely consequences for a dynamically inconsistent regulator. Note that the

assumptions in the following paragraphs are made purely for exposition

purposes. All assumptions underlying the formal model will be explicitly

stated in chapter 3.
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Imagine that the regulator’s objective function includes a jump vari-

able. That is, welfare depends upon the regulator’s future actions. In each

period, the regulator chooses the rate of a tax that is imposed on a pol-

luter. If the tax rate is expected to fall in the next period, the polluter will

inter-temporally substitute away from current production towards future

production; hence, production in the current period will decrease. Sup-

pose that the fall in the current period’s profits and consumer surplus out-

weighs the decrease in pollution. Then the current period’s welfare will

decrease. To prevent this, the regulator must commit to setting high taxes

in future periods. The expectation of high future taxes would remove the

incentive of the polluter for inter-temporal substitution. However, once

these future periods arrive, the regulator will no longer be concerned with

the effect of his tax choice upon past welfare. Thus, the regulator would

revise the tax downward if they have the opportunity to do that.

A sophisticated regulator will anticipate future temptations to decrease

taxes. If they are unable to commit to future policies, they will set the cur-

rent tax strategically to counter future incentives for tax reductions. They

achieve that by setting a low current tax rate. The essence of the problem

is that the polluter is under-producing in the current period, relative to the

future period. This problem can be corrected by decreasing current taxa-

tion to remove the incentive to shift production to the future. As a result,

a sophisticated regulator who is unable to precommit will under-tax the

polluter relative to the social optimum.

Under-taxation of a polluter implies over-pollution. Since pollution

and its consequences are some of the most pressing problems facing mod-

ern industrialised societies, designing an effective mechanism to control it
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is a problem of great importance. Correcting a potential policy flaw that

could lead to significant over-pollution is far more than an academic exer-

cise.

2.3 Causes of regulatory dynamic inconsistency

2.3.1 Inconsistency of the welfare function

A regulator’s welfare function consists of four components: firms’ prof-

its, consumer surplus, externalities and government revenue. For now,

revenues will be ignored. We abstract from them in order to focus on cor-

rective, rather than revenue gathering, regulation.

In a regulated industry that exhibits dynamic inconsistency, firms’ prof-

its will often contain a jump variable. It is also possible that consumer sur-

plus may contain a jump variable, provided that the inconsistency in the

industry is caused by demand-side behaviour. Jump variables in either of

these functions can cause the regulator’s welfare function to exhibit incon-

sistency.

Note that inconsistency in the profit function will not always be trans-

ferred to welfare: if the jump variable is in the inverse demand function

alone, and firms’ revenues are simply a transfer from consumers to firms,

then the jump variable will not appear in welfare. However, this will not

be true if the regulator weighs profits and consumer surplus differently.

In this case, expectations about future variables will still be present in the

welfare function and the regulator will be inconsistent.
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2.3.2 Industries in which dynamic inconsistency arises

There are numerous examples of industries where dynamic inconsistency

arises from a jump variable in a firm’s profit function. Most commonly, it

is found where durable or addictive goods are being produced, or where

an exhaustible resource is being extracted.

Exhaustible resources

Economists have been interested in exhaustible resources since Harold

Hotelling’s seminal paper (Hotelling, 1931). In this paper, Hotelling shows

that the pricing of an exhaustible resource depends upon expectations of

subsequent prices. This dependence upon future decisions introduces a

jump variable the profits of firms who utilise the resource. In particu-

lar, Karp and Newbery (1993) show that a firm with monopsony power

who purchases an exhaustible resource will be dynamically inconsistent if

they face either a competitive fringe of consumers, or increasing extraction

costs.

Addictive goods

The theory of rational addiction suggests that an addictive good can be

modelled as a commodity whose current consumption increases the marginal

benefit of future consumption (Becker and Murphy, 1988). If expected fu-

ture prices are low, then consumption is affected in two ways. First, ex-

pected future consumption will rise as a direct result of the lower expected

price. Secondly, current consumption will rise as consumers attempt to in-

crease the benefits that they will reap from the low future prices. Thus,
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a firm selling an addictive good can affect current demand by manipulat-

ing expectations about its future pricing strategy. This introduces a jump

variable into the firm’s profit function and causes the firm to act in a dy-

namically inconsistent fashion.

Durable goods

A durable good is one which is not consumed instantly, but continues to

provide value for an extended period of time. When an individual decides

to purchase a durable good they must weigh the benefit of purchasing in

the current period against possible price reductions if they delay purchase

until a later period. A firm selling durable goods, like a firm selling ad-

dictive goods, can influence the current period’s profit by manipulating

consumers’ expectations about future prices. A high expected future price

will induce more consumers to buy in the current period. The future price

is a jump variable in the firm’s profit function and induces dynamic incon-

sistency.



Chapter 3

Problem

The problem of regulating a dynamically inconsistent polluter is compli-

cated: a regulator seeking to maximise social welfare will have to take

into account the dynamic structure of consumer demand for the polluter’s

product. This implies that instantaneous welfare will contain a jump vari-

able and hence the polluter’s time consistency problem will be transferred

to the regulator. In the absence of precommitment devices a regulator

faced with a dynamically inconsistent polluter may be unable to attain the

first-best outcome. A likely consequence of this failure is over-pollution.

This chapter presents a model of a polluting durable goods monopoly

and shows how its regulation may be subject to time inconsistency. We

will characterise both the first-best (precommitment) and the second-best

(time-consistent) regulatory outcomes. They will then be used as bench-

marks for the proposed taxation mechanism in the next chapter.

17
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3.1 A model of a dynamically inconsistent regu-

lator

In each situation described in section 2.3.2, a regulator will be affected by

the dynamic inconsistency of the regulated firm. In this chapter we set up

a model to illustrate the problem. We will focus on the specific case of a

durable goods producer, which will serve to illustrate how our proposal

can overcome the regulatory problems induced by jump states.

In this section we elucidate the model and describe the players’ de-

cisions and interactions. The main decision makers are a regulator and

a monopolist who supplies an infinitely durable good to a mass of con-

sumers. We consider a durable goods producer because their behaviour is

known to produce dynamic inconsistency (see section 2.3.2).

3.1.1 The consumption decision

The monopolist produces an infinitely durable good, which is then sup-

plied to a mass of consumers. For simplicity this mass is normalised to 1.

The period-t price is denoted by pt. Each consumer can buy only one unit

of the good in their lifetime. After the purchase they withdraw from the

market, but continue to enjoy a stream of benefits v ∈ [0, 1] in perpetuity.

Future benefits are discounted by a factor β.1

The taste parameter, v, indicates an individual consumer’s valuation of

the good. Consumers are assumed to have heterogeneous valuations and

their tastes are distributed across the population according to a probabil-

1The parameter β can also capture depreciation of the benefits of the durable good.
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ity density function φ(v), which has a corresponding cumulative density

function (CDF) denoted by Φ(v). We assume that φ(v) is everywhere pos-

itive.

Price trajectory

Consumers decide the timing of their purchases. Those who are most ea-

ger will be willing to pay a premium to buy the good early on. Hence,

initially the price of the good will be high. As the early adopters leave the

market the price of the good will be reduced in order to entice the remain-

ing consumers to make a purchase. Consequently, the equilibrium price

path will be decreasing over time.

It must be noted that it may not be optimal for the monopolist to op-

erate in all periods. As Stokey originally showed, a monopolist with con-

stant marginal costs and precommitment power will choose to produce

only in the first period (Coase, 1972; Stokey, 1981). Two key features of the

model studied here distinguish it from Stokey’s:

1. the monopolist does not have precommitment power; and,

2. the monopolist has convex costs (assumption 2).

As shown by Kahn (1986), the presence of either of these properties

invalidates Stokey’s result. Convexity of costs implies that higher produc-

tion will increase marginal costs, and thus it induces the monopolist to

smooth production over time costs. Kahn shows that, in an infinite hori-

zon setting, the monopolist’s production smoothing will cause them to

asymptotically approach a steady-state price. Thus, the good’s price se-

quence is Cauchy and converges to a limit (i.e. a steady state price) as
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t→∞:

pt−1 − pt ≥ pt − pt+1 ∀ t (3.1)

This dynamic stability condition constrains the price trajectory in the mar-

ket under consideration.

Consumers’ intertemporal trade-offs

In a durable goods market the consumer’s main decision is when to pur-

chase. Knowing that the price will decline over time, they weigh the bene-

fit of purchasing in the current period against the expected price reduction

of the subsequent period. If the expected cost reduction from waiting until

the next period outweighs the foregone v, they will delay purchase.

The lifetime net benefit, V t, of purchasing in period-t is the net present

value of the stream of discounted benefits, minus the cost of purchase:

V t =
v

1− β
− pt. (3.2)

Similarly,

V t+1 =
βv

1− β
− βpt+1

e , (3.3)

where pt+1
e is the anticipated future price. Thus, purchase will be delayed

in period-t if

V t+1 > V t. (3.4)

Substituting (3.2) and (3.3) in to (3.4) gives

v < pt − βpt+1
e . (3.5)

By shifting equations (3.3) and (3.2) back one period and performing a

similar rearrangement, one finds that purchase will be delayed in period-
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t− 1 if

v < pt−1 − βpt. (3.6)

Suppose that consumers have rational expectations: pt+1
e = pt. Then

a consumer who chooses not to delay purchase in the current period will

never prefer to consume in a later period. This can be seen by combining

equation (3.1) with β < 1 and shifting it forward one period to give pt −

pt+1 > β(pt+1 − pt+2), which rearranges to

pt − βpt+1 > pt+1 − βpt+2. (3.7)

Equation (3.4) implies that all consumers who choose to buy in the current

period have tastes such that v ≥ pt − βpt+1
e . Hence,

v ≥ pt − βpt+1 > pt+1 − βpt+2 > . . . > pT−1 − βpT , ∀T > t, (3.8)

and each consumer who buys the good in period-t will be worse off de-

laying the purchase to any future period.

The demand function

The above discussion of consumer behaviour enables us to obtain the de-

mand function for a given period t. Current demand is the mass of people

who chose to delay purchase in the previous period but choose not to de-

lay from the current period to the next. Combining the equations describ-

ing consumer choice with the CDF of v gives us the mass of consumers

who purchase in period t. The resulting demand is

xt = x(pt−1, pt, pt+1
e ) =

{
Φ(pt−1 − βpt)− Φ(pt − βpt+1

e ) if t > 0,

1− Φ(p0 − βp1
e) if t = 0.

(3.9)



CHAPTER 3. PROBLEM 22

Since the function Φ(·) is a CDF, it must be increasing. Equation (3.7) im-

plies that Φ(pt−1 − βpt) > Φ(pt − βpt+1
e ), so demand will be positive in all

periods. Furthermore, we require that the demand function to be concave

in both the current and future prices. This, along with Assumption 2 —

introduced in section 3.1.2 — will guarantee the concavity of profits.2

Assumption 1. The demand function function, xt, satisfies ∂2xt

∂(pt)2
≤ 0,

∂2xt

∂(pt+1
e )2

≤ 0.

3.1.2 The production decision

Suppose that the monopolist incurs operating costs C(xt). Thus, his profit

function is

πt = π(pt−1, pt, pt+1
e ) = ptx(pt−1, pt, pt+1

e )− C
(
x(pt−1, pt, pt+1

e )
)
. (3.10)

To ensure concavity of instantaneous profits, it is necessary to assume con-

vexity of the cost function. As discussed above, this also implies that a

monopolist who is able to precommit will not cease production after the

first period (Kahn, 1986).

Assumption 2. The monopolist’s cost function satisfies C ′′(xt) > 0.

Along with Assumption 1 this assumption guarantees that profits will

be concave in both the present price and next period’s price: ∂2πt

∂(pt)2
≤ 0,

∂2πt

∂(pt+1
e )2

≤ 0. See Appendix A for a proof.

2Note that these conditions are sufficient for concavity. We do not demonstrate that

they are necessary.
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3.1.3 The regulator’s decision

We assume that the regulator seeks to maximise social welfare. They take

in to account the monopolist’s profit, the consumer surplus, and potential

externalities arising from production. In the partial equilibrium model

studied here, the consumer surplus considered is solely the net benefit

gained by consumers from purchasing the monopolist’s good. The partial

equilibrium nature of this model makes it difficult to speak accurately of

welfare but we use it as a convenient approximation, having noted that

this is not a true welfare analysis. Consumer surplus is given by

CSt = CS(pt−1, pt, pt+1
e ) (3.11)

=

∫ pt−1−βpt

pt−βpt+1
e

φ(v)(v − pt) dv +

∫ 1

pt−1−βpt
φ(v)v dv (3.12)

= E(v − pt|pt − βpt+1
e ≤ v < pt−1 − βpt) + E(v|v ≥ pt−1 − βpt).

(3.13)

In addition to consumer surplus and profits, the regulator must also

consider the environmental impact of pollution generated by production.

Our setting assumes that pollution is a flow, rather than a stock, external-

ity. That is, instead of modelling pollution as a stock of harm that accumu-

lates over time, we consider harm that is caused by the polluter’s current

production. In other words, we assume that the level of emissions is an

increasing function, ψ(xt), of current output. Specifically, the pollution

function satisfies the following condition.

Assumption 3. The pollution function satisfies ψ′(xt) > 0 and ψ(0) = 0.

Such an assumption is plausible for some, but not all, types of pollu-

tion. Some pollutants are quickly dispersed and may have little time to
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accumulate. Thus, it can be reasonably modelled as a flow externality. Ex-

amples of these are particulate emissions and volatile organic compounds.

Heavy metals and greenhouse gasses, in contrast, can accumulate in the

soil and eventually reach harmful levels. It would be more suitable to con-

sider them as stock pollutants. Either approach is valid for a subset of pol-

lution problems. We have chosen flow pollution because the framework

facilitates simple analysis of time inconsistent regulation.

Our assumptions yield the following instantaneous welfare function:

wt = w(pt−1, pt, pt+1
e ) (3.14)

= CS(pt−1, pt, pt+1
e ) + π(pt−1, pt, pt+1

e )− ψ
(
x(pt−1, pt, pt+1

e )
)

(3.15)

=

∫ 1

pt−βpt+1
e

φ(v)v dv − C(x(pt−1, pt, pt+1
e ))− ψ(x(pt−1, pt, pt+1

e )). (3.16)

Given rational expectations (pt+1
e = pt), the above definition implies the

presence of a jump variable in the regulator’s objective function. As ar-

gued in section 2.2.3 this may cause a time consistency problem for the

regulator.

3.2 Laissez-faire performance

Having described the agents in the market and their interactions, we now

turn to the topic of efficiency. It could be that this market is already ef-

ficient. It is also possible that the regulator may not be able to improve

on the free market outcome. The first step in assessing any government

intervention is to characterise the performance of the unregulated market.

Then in section 3.3.2 we will compare the laissez faire outcome to the reg-

ulator’s benchmark pricing policies.
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3.2.1 The monopolist’s price path

As already established, the monopolist’s demand function is

xt = Φ(pt−1 − βpt)− Φ(pt − βpt+1
e ). (3.17)

It generates the following instantaneous profit function:

π(pt−1, pt, pt+1
e ) = pt

[
Φ(pt−1 − βpt)− Φ(pt − βpt+1

e )
]

− C
(
Φ(pt−1 − βpt)− Φ(pt − βpt+1

e )
)
. (3.18)

The monopolist’s objective is maximization of lifetime profits. Suppose

that his discount factor is δ. To get an interior equilibrium, we assume that

β < δ < 1.

The presence of a jump state, pt+1
e , suggests that profit maximization

will give rise to a time inconsistency problem for the monopolist. This

problem can be conceptualised as a strategic conflict between the mo-

nopolist’s current and future ‘selves’. We will model the time consistent

sequence of decisions as the subgame perfect equilibrium outcome of a

dynamic ‘intrapersonal’ game. This game is played by different agents,

each a temporal incarnation of the monopolist associated with a particu-

lar time period. These temporal ‘selves’ choose prices to maximise their

payoffs while accounting for the discrepancy between their interests and

those of future agents. In that our agents are ‘sophisticated’ in the sense of

O’Donoghue and Rabin (2001).

Our analysis will focus on a particular type of subgame perfect equi-

librium. Namely, we consider the Markov-perfect equilibrium of the mo-

nopolist’s intrapersonal game. This solution concept restricts the players’

strategies to be functions of the current state: pt = g(pt−1). The Markovian
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approach allows us to use dynamic programming techniques to charac-

terise the equilibrium. It assumes away history-dependent punishments

with trigger strategies.

Furthermore, we need to specify how current agents form expectations

about the behaviour of future players. Stokey (1981) shows that rational

expectations are not sufficient to prevent a multiplicity of equilibria simi-

lar to that of the Folk Theorem. To avoid this multiplicity, we assume that

decision makers have perfect rational expectations. That is, we require ex-

pectations of future prices to be correct both on and off the equilibrium

path. The restriction to Markovian strategies and perfect rational expecta-

tions imply that pt+1
e = g(pt).

If the monopolist does not have precommitment power and follows a

Markov strategy g(p), then his optimal decision rule must solve the Bell-

man equation

Π(pt−1) = max
pt

{
π
(
pt−1, pt, g(pt)

)
+ δΠ(pt)

}
. (3.19)

This equation recursively defines each player’s lifetime payoff, as cap-

tured by the value function Π(p), in terms of future players’ lifetime pay-

offs. That is, the current player’s equilibrium lifetime payoff is the max-

imised value of his instantaneous payoff from his decision, plus the an-

ticipated continuation payoff of tomorrow’s decision. Furthermore, the

optimal pricing strategy is time invariant, implying that

g(pt−1) = arg max
pt

{
π
(
pt−1, pt, g(pt)

)
+ δΠ(pt)

}
. (3.20)

In Appendix B we use dynamic programming techniques to charac-

terise the Markov-perfect equilibrium. Differentiation yields a first-order
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condition and an envelope condition. Combining these delivers a gener-

alised Euler-Lagrange equation

πt2 + πt3g
t+1
1 + δπt+1

1 = 0, (3.21)

where the subscript i denotes the partial derivative with respect to the

function’s i-th argument.3 This difference-differential equation implicitly

characterises the price path that will be chosen in equilibrium. The first

term of this equation reflects the direct effect of pt on the profit function.

The second term encapsulates the effect of pt on πt via the strategy choice,

g(pt), of the subsequent agent. The final term captures the discounted ef-

fect of the current action on future profits. Optimality requires that these

effects sum to 0.

3.2.2 Inefficiency of the laissez-faire outcome

Next we investigate whether the laissez-faire price path derived in section

3.2.1 provides a rationale for government intervention. The definitive an-

swer to this question requires characterising the regulatory equilibrium.

Intuitively, our setting exhibits a number of inefficiencies which suggest

that regulation may improve welfare. First, the market is served by a

monopolist. When a producer has market power, he usually tends pro-

duce too little and charge a price above the efficient level. Second, produc-

tion causes a negative externality as pollution is released. Such externali-

ties may imply overproduction relative to the first-best outcome. Finally,

the monopolist’s profit function contains a jump variable. Section 2.2.3

showed how this may create a time consistency problem for the producer.
3For example, πt

2 = ∂π(pt−1, pt, pt+1)/∂pt.
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This problem may induce the monopolist to increase production, further

exacerbating potential overprovision of the durable good.

The three welfare effects mentioned above act in different directions.

Monopoly power pushes the price above efficiency. Conversely, pollution

and the monopolist’s time consistency problem tend to reduce the price

below the efficient level. We cannot predict the net effect without knowl-

edge of market specifics. It may even be possible for the three inefficiencies

to exactly cancel each other out. However, as section 3.3.2 discusses, it is

unlikely that the laissez-faire price will replicate the efficient path. Since

we do not exclude the possibility of a negative tax (i.e. a subsidy), there is

no need to assume that a particular type of inefficiency is dominant. The

proposal described in Chapter 4 will still yield the first-best outcome.

3.3 Benchmarking regulatory performance

To evaluate the regulatory intervention proposed in Chapter 4, we first

need to study the price paths attainable by a regulator. For the purpose of

benchmarking we assume that in each period the regulator has direct con-

trol the price of the durable good. Such equilibria would arise in standard

models of Pigouvian taxation (Benchekroun and Long, 1997).

This section characterises two benchmark plans,

1. the first-best price path where the regulator can commit to future

prices; and,

2. the second-best price path where the regulator is unable to commit

to future prices.
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3.3.1 First-best price plan

Deriving the plan

The regulator’s first-best price path is the plan he would choose in the first

period if at that time he could precommit to a complete sequence of future

prices. Given rational expectations, (pt+1
e = pt+1), this plan can be obtained

as the open-loop Nash equilibrium (OLNE) of the problem

max
pt

∞∑
t=1

δt−1wt(pt−1, pt, pt+1), (3.22)

where pt is the price vector pt = {pt}∞t=1. The solution to this problem is a

sequence of prices, indexed by time, that maximises the net present value

of total welfare.

The optimal precommitment price path, pt, satisfies the first-order con-

ditions

wt2 + δwt+1
1 = 0, t = 1 (3.23)

wt−1
3 + δwt2 + δ2wt+1

1 = 0, t ≥ 2. (3.24)

The above equations are obtained by differentiating period-1 lifetime wel-

fare with respect to the period-1 price p1 and an arbitrary future price pt,

t > 1. Since these prices solve an unconstrained maximisation problem,

they attain the highest possible net present value of welfare.

Substituting the derivatives of instantaneous welfare (3.14) into (3.23)

and (3.24) yields equivalent conditions expressed in terms of monopoly
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profit, consumer surplus and pollution costs.

πt2 + CSt1 − ψt2 + δ
[
πt+1

1 + CSt+1
1 − ψt+1

1

]
= 0

(3.25)

πt−1
3 + CSt−1

3 − ψt−1
3 + δ

[
πt2 + CSt2 − ψt2

]
+ δ2

[
πt+1

1 + CSt+1
1 − ψt+1

1

]
= 0

(3.26)

Dynamic inconsistency of the first-best plan

As already argued, the presence of a jump variable in the instantaneous

welfare function will likely give rise to a time consistency problem for the

regulator. It would cause the social planner to change their price plan if

they could re-optimise in a future period. To see this, suppose that cur-

rently the regulator follows the plan prescribed by condition (3.24). If,

however, they were able to deviate from that plan, they would choose

their current price according to (3.23), rather than (3.24).

Mathematically, time inconsistency arises from the presence of the term

wt−1
3 in condition (3.24). This term captures the effect of a change in the

current period’s price on the previous period’s welfare. This effect will be

internalised by a regulator who can precommit to future prices. However,

if a subsequent regulator can re-optimise, he will disregard periods that,

from his viewpoint, have already passed. Consequently the re-optimised

price path will be revised downward, drawing too much demand away

from the preceding period.

Unless the social planner has access to a precommitment device that

enables him to enforce the plan defined by (3.23) and (3.24), he will not

be able to attain the first-best outcome because of his incentive to deviate
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from it in future periods. When choosing his pricing strategy, a sophisti-

cated social planner will recognise this problem and account for future in-

centives to deviate. The subgame perfect equilibrium of the intrapersonal

game between the current and regulators will deliver a time consistent

sequence of prices.

3.3.2 Second-best price path

A regulator who is sophisticated (in the sense of O’Donoghue and Ra-

bin (1999)) will take into account the behaviour of their future selves and

will choose the current price accordingly. That is why we now consider

a dynamic intrapersonal game, where the players are the various tem-

poral incarnations of the social planner. Essentially the current regula-

tor solves a constrained maximisation problem where future pricing poli-

cies are required to be sub-game perfect. Again, we focus on the Markov-

perfect equilibrium of the regulator’s intrapersonal game: the current pric-

ing strategy is assumed to depend only on the current state of the world:

pt = f(pt−1). Furthermore, we assume that the strategy function f(p) is

continuously differentiable, which eliminates the possibility of an infinite

number of equilibria. However, the above assumptions do not guarantee

existence or uniqueness of a Markov-perfect equilibrium.

Again, we need to specify how the regulator forms their expectations

about future prices. As before, we assume that the social planner has per-

fectly rational expectations. That is, he correctly predicts future prices on

and off the equilibrium path. This assumption prevents the existence of

a multiplicity of equilibria (Stokey, 1981). Given the focus on Markovian
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strategies it implies that pt+1 = f(pt).

The regulator’s MPE price path can be characterised with the help of

dynamic programming. The equilibrium pricing strategy solves the Bell-

man equation:

W (pt−1) = max
pt

{
w
(
pt−1, pt, fe(p

t)
)

+ δW (pt)
}

∀ : t ≥ 1, (3.27)

where W (p) is the social planner’s value function. Since MPE strategies

are time invariant, we must also have

f(pt−1) = arg max
pt

{
w
(
pt−1, pt, fe(p

t)
)

+ δW (pt)
}
. (3.28)

The recursive formulation of this problem ensures the regulator’s pricing

policy will be time consistent.

Suppose that Assumptions 1 and 2 are satisfied. Then the method used

to derive the monopolist’s Euler equation can also yield the generalised

Euler-Lagrange equation of the welfare maximisation game:

wt2 + wt3f
t+1
1 + δwt+1

1 = 0. (3.29)

This equation implicitly defines the second-best price trajectory that

would result from adhering to the time consistent policy function f(p).

The term wt3f
t+1
1 reflects the intrapersonal strategic effect, i.e. the effect

of current prices on current welfare via future pricing. When the period-

t + 1 price is determined, the regulator will not take into account the neg-

ative effect of this pricing decision on period-t welfare. Thus, from the

current viewpoint, future prices are expected to be suboptimally low. The

period-t regulator anticipates this behaviour and mitigates these effects by

choosing lower current prices. This implies that the time consistent prices
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described by equation (3.29) will be below the first-best precommitment

prices, thus generating lower welfare.

Using the definition of instantaneous welfare, equation (3.29) can be

rewritten as(
πt2 + f t+1

1 πt3 + δπt+1
1︸ ︷︷ ︸

laissez-faire Euler eqn

)
+
(
CSt2 + f t+1

1 CSt3︸ ︷︷ ︸
effect of p on CS

)
−
(
ψt2 + f t+1

1 ψt3 + δψt+1
1︸ ︷︷ ︸

effect of p on pollution

)
= 0 (3.30)

or, alternatively,[
πt2 + CSt2 − ψt2

]︸ ︷︷ ︸
direct effect

+ f t+1
1

[
πt3 + CSt3 − ψt3

]︸ ︷︷ ︸
indirect effect of pt
on present via f t+1

+ δ
[
πt+1

1 − ψt+1
1

]︸ ︷︷ ︸
discounted, direct effect

of pt on the future

= 0.

(3.31)

Note that, if

CSt2 + f t+1
1 CSt3 = ψt2 + f t+1

1 ψt3 + δψt+1
1 , (3.32)

then the time consistent laissez-faire price path could replicate the regu-

lator’s second-best price path. That is to say, if the downward pressure

on the price from the reduction in market power is precisely offset by the

upward pressure from the pollution externality, the laissez-faire outcome

will be efficient. Of course, this coincidence is highly unlikely. It should

also be noted that, if the regulator is unable to precommit, social welfare

could possibly be higher in the absence of government intervention.

We conclude that the social planner’s optimal time-consistent price se-

quence is not first best. The dynamic consistency problem experienced by

the regulator prevents them from fully correcting the inefficiencies associ-

ated with the pollution emissions of a durable goods monopolist.
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Proposition

The previous section demonstrated that if there is a jump variable in firm

profits and if the regulator cannot precommit to future prices, he is unable

to follow the first-best price path. That is because the polluter’s time con-

sistency problem is transferred to the regulator. In order to maintain time

consistency of his policies, the regulator can only implement a second best

outcome. The first-best level of welfare is feasible only if the government

could credibly precommit to future actions.

The problem of gaining commitment power, where it is not obviously

available, has been explored in the literature on strategic delegation. In

this chapter we study how the idea of strategic delegation has been used

in the context of duopoly games to avail agents of precommitment power.

We then combine the concept of strategic delegation with Pigouvian tax-

ation to create a taxation mechanism that overcomes the regulator’s time

consistency problem.

34
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4.1 Strategic delegation

The strategic delegation literature claims that the separation of ownership

and management can be used as a means of gaining a strategic advan-

tage in imperfectly competitive markets. Oligopolists who compete in

a Cournot setting would each like to be in the position of a Stackelberg

leader. By delegating output decisions, they can use managerial contracts

to gain a first-mover advantage. If the owners can set the managerial wage

contracts before output decisions are made, they can provide their man-

agers with incentives for aggressive production. Thus, wage contracts can

have commitment power: delegation will provide firms with a first-mover

advantage.

The idea of strategic delegation began with the papers of Sklivas (1987)

and Fershtman and Judd (1987), in which they suggest that each duopolist

could increase their profits by delegating output decisions to a manager.

The manager’s behaviour is incentivised through a remuneration contract.

The papers show that the decision to delegate managerial control is indi-

vidually rational and a dominant strategy for each firm. This line of work

has been continued by many authors, including Miller and Pazgal (2001),

Basu (1993) and Baye et al. (1996).

In a different strand of research, Rogoff (1985) shows that a govern-

ment too can benefit from the precommitment power of delegation. He

studies a macroeconomic model of monetary policy. Agents’ rational ex-

pectations imply the presence of jump states in welfare, giving rise to a

time consistency problem for the government. Thus, in the absence of

precommitment, the government’s monetary policy decisions tend to ex-
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hibit inflationary bias. Rogoff argues that the appointment of a central

banker with a particular set of preferences would allow the government

to credibly commit to socially optimal inflation However, such one-shot

delegation would require the regulator to find a third party whose prefer-

ences are socially optimal. The difficulties this entails are obvious, so such

a solution cannot be considered a practical.

Similarly, we argue that ‘delegation’ could provide the government

with the necessary precommitment power to achieve the first-best out-

come when regulating a durable goods monopolist. We combine the ap-

proaches of Rogoff (1985) and Sklivas (1987). In our model, pricing deci-

sions are ’delegated’ to the monopolist, while the regulator uses pecuniary

incentives to influence future prices. The monopolist is induced to follow

the regulator’s preferred price path with the help of a taxation mechanism.

The purpose of the tax is to provide the producer with socially optimal

incentives. Our contribution is to show that taxes not only redress the in-

efficiencies arising from pollution and market power, but also serve as a

commitment device by decoupling the regulator’s decision from the pric-

ing decision.

4.2 Optimal taxation

Using a delegation tax game to overcome dynamic inconsistency has three

key advantages over Rogoff’s one-shot delegation approach:

Ease of implementation Taxation is a type of regulation that is already

performed by the government and so the institutions are already in
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place to implement this policy. The regulator only needs to adjust

the tax rule to ensure time-consistent implementation.

Dynamic robustness A regulator who has a time consistency problem

will have an incentive to intervene in the future if they are not in-

sulated from the pricing decision. We show that our proposal attains

the first-best outcome even when the government is able to alter the

taxation policy in future periods.

Insensitivity to managerial preferences In contrast to the approach taken

by Rogoff, our model does not require delegation to a party with a

particular set of preferences. Pricing decisions are made by the mo-

nopolist themselves and the taxation mechanism will provide them

with correct incentives regardless of their demand and cost structure.

4.2.1 A regulatory model

We now extend the model described in the previous chapter to include

a taxation mechanism and show how it overcomes the regulator’s time

inconsistency problem.

To maximise social welfare, the social planner must eliminate the in-

efficiencies generated by the pollution externality, the market power and

the dynamic inconsistency of the monopolist. The government can mo-

tivate him to follow the socially optimal price path by using Pigouvian

taxes that increase firm costs. Rather than directly choosing prices, the so-

cial planner now maximises welfare by choosing a tax policy. The timing

of the taxation game discussed below implies that the regulator cannot af-

fect the current choice. This enables him to resolve his time inconsistency
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problem.

Pigouvian taxes

In this model we consider a flow pollution externality ψ(xt). The Pigou-

vian tax could be levied on either output or pollution. We assume that the

government taxes emissions, but our results would be similar if output

was taxed instead. Thus, the monopolist’s period-t tax obligation can be

written as

Ωt = τ tψ(xt). (4.1)

Note that τ t might vary over time. In our model, this would happen if the

value of the state variable changes throughout the game.

The monopolist’s instantaneous profit, net of taxes, is given by

πt(pt−1, pt, pt+1, τ t) = ptxt − C(xt)− τ tψ(xt). (4.2)

Tax revenues

The tax revenue raised by the government is defined as the sum paid by

the monopolist. However, the regulator’s valuation of this revenue may

not be the same as its monetary value. To recognise that the government

and the monopolist may value tax revenues differently, we assume that the

welfare benefit from the tax revenues is ατ tψ(xt), α ∈ [0, 1]. If α = 0 tax

revenues have no social benefit, while α = 1 indicates that the government

and the monopolist value the revenue equally.

We do not hypothesise what might be done with the tax revenues since

they may not remain within the industry. However, in order to remain

revenue-neutral, they could be returned to the monopolist as a lump-sum
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transfer. Provided that the transfer is not dependent upon the monopo-

list’s actions, they would not have an impact on the price path chosen or

the efficiency of the market.

Costs to policy adjustment

In many real-world situations, government policy changes are not cost-

less. There could be costs to changing the tax regime in the consultation,

policy development and political manoeuvring that must be done. Ana-

lytically this implies that previous tax policies may affect current welfare.

Consequently, τ t−1 would be a payoff-relevant state variable in period t.

We assume that the larger the deviation from the status quo, the larger

the welfare cost. To model this consideration, we include the term

θ
(
τ t − τ t−1

)2 (4.3)

in period-t instantaneous welfare. That is, the cost of changing the tax

rate increases proportionately to the square of the change.1 This specifica-

tion ensures that the adjustment cost is positive. Moreover, it reflects the

difficulty of enacting significant changes in regulations. The coefficient θ

allows us to capture the importance of these costs relative to consumer

surplus and profits.

1Any convex function would suffice but the use of a quadratic function simplifies the

derivations with little loss of generality since the functional form is not central to the

proposed mechanism.
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The regulator’s instantaneous payoff is thus

wt
(
pt−1, pt, pt+1, τ t−1, τ t

)
= πt

(
pt−1, pt, pt+1

)︸ ︷︷ ︸
Gross profits

+CSt
(
pt−1, pt, pt+1

)︸ ︷︷ ︸
Consumer

surplus

− ψt
(
pt−1, pt, pt+1

)︸ ︷︷ ︸
Pollution

externality

− (1− α)τ tψt
(
pt−1, pt, pt+1

)︸ ︷︷ ︸
Net cost of

taxation

− θ
(
τ t − τ t−1

)2︸ ︷︷ ︸
Cost of policy

adjustment

(4.4)

As already discussed, welfare maximization with respect to prices is likely

to create time inconsistency issues since period-t welfare would depend

on the jump variable pt+1. However, in the tax games analyzed below,

the regulator now chooses taxes, while leaving pricing decisions to the

durable goods monopolist.

4.2.2 Timing

Having established the implications of taxation for welfare and profits,

we now define the timing of the interactions between the two parties. We

consider a setting where the monopolist and the regulator make their de-

cisions simultaneously in each period. The assumption of simultaneity

describes a situation in which the monopolist is unaware of the regula-

tor’s current tax rate prior to setting the price. This describes the common

situation in which firms make decisions before the details of current tax

policies have been announced to the public. It is likely that there would

be some scope for discussion of risk and option value in this model. We

leave these issues for future research.

The timing assumption is crucially important for our results. The si-

multaneity of decisions causes the monopolist’s current price choice to be



CHAPTER 4. PROPOSITION 41

independent of current taxes. This removes the jump state from the regu-

lator’s objective and remedies his time inconsistency problem. If the mo-

nopolist knew the current period’s taxes, the regulator could influence the

current period’s price. The regulator’s current payoff would then depend

on his next period’s choice and thus his time inconsistency problem will

remain.

4.2.3 The equilibrium of the regulation game

In this section we formulate the above problem as a dynamic game and

then solve for the subgame-perfect equilibrium tax and pricing strategies.

We model regulation as a game between the various temporal incarnations

of the regulator and the monopolist. When the regulator sets the current

tax rate τ t, he takes in to account not only the consequences of his deci-

sion for the future behaviour of the monopolist, but also the effect on the

behaviour of his own future selves. Similarly, when the durable goods

monopolist chooses the current price pt, he takes into account the implica-

tions for current profits, future regulation, as well as the behaviour of his

future selves.

Again, we focus on the Markov perfect equilibrium of the taxation

game. This will enable us to compare our results to the benchmarks stud-

ied in the previous chapter. The period-t strategies of the regulator and the

monopolist are restricted to be functions of the two payoff-relevant state

variables:

1. the previous period’s price pt−1; and,

2. the previous period’s tax level τ t−1.
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Let the strategies of the regulator and the monopolist be τ t = f(pt−1, τ t−1)

and pt = g(pt−1, τ t−1), respectively. We assume that these functions are

continuously differentiable. This allows us to use dynamic programming

to characterise them and rules out a potential multiplicity of equilibria.

Also, we need to specify how players form their expectations about

future prices. Just as before, we assume that agents have perfect rational

expectations: they correctly anticipate future prices both on and off the

equilibrium path. Given our focus on Markov strategies, this assumption

implies that pt+1
e = g(pt, τ t).

To solve for the equilibrium strategies, we formulate the problems of

the monopolist and the regulator recursively. The solution concept of

Markov perfect equilibrium requires that these strategies solve a pair of

Bellman equations. The regulator’s Bellman equation states that the equi-

librium tax rate must maximise the net present value of welfare:

W (pt−1, τ t−1)

= max
τ t

{
w

(
pt−1, g

(
pt−1, τ t−1

)
, g
(
g
(
pt−1, τ t−1

)
, τ t, τ t−1

)
, τ t
)

+ δW
(
g
(
pt−1, τ t−1

)
, τ t
)}

. (4.5)

The monopolist’s Bellman equation states the equilibrium pricing strategy

must maximise the discounted stream of profits:

Π
(
pt−1, τ t−1

)
= max

pt

{
π

(
pt−1, pt, g

(
pt, f

(
pt−1, τ t−1

))
, f
(
pt−1, τ t−1

))

+ δΠ

(
pt, f

(
pt−1, τ t−1

))}
. (4.6)
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Moreover, time invariance of Markov-perfect strategies requires that

f(pt−1, τ t−1)

= arg max
τ t

{
w

(
pt−1, g

(
pt−1, τ t−1

)
, g
(
g
(
pt−1, τ t−1

)
, τ t, τ t−1

)
, τ t
)

+ δW
(
g
(
pt−1, τ t−1

)
, τ t
)}

, (4.7)

and

g(pt−1, τ t−1) = arg max
pt

{
π

(
pt−1, pt, g

(
pt, f

(
pt−1, τ t−1

))
, f
(
pt−1, τ t−1

))

+ δΠ

(
pt, f

(
pt−1, τ t−1

))}
. (4.8)

The recursive formulation yields strategies that prescribe optimal ac-

tions for any values of the state variables. Thus, optimality is ensured for

any history of play. Consequently, the Markov-perfect equilibrium is also

subgame perfect, and therefore time consistent.

4.2.4 Resolving the regulator’s time inconsistency

An inspection of the regulator’s Bellman equation (4.5) reveals that its

right hand side no longer depends on the regulator’s future decision, τ t+1,

but only on his current strategy, τ t, and the current state, (pt−1, τ t−1). Thus,

delegation resolves the regulator’s time consistency problem by effectively

removing the jump variable from instantaneous welfare. The economic

interpretation is that the regulator’s period-(t + 1) decision no longer im-

poses an externality on period-t welfare.

In our setting, taxation serves as an intrapersonal commitment device:

the current regulator is unable to interfere in the choice of the current price.
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Note that the social planner is free to affect future prices. However, the

period t and t + 1 regulators do not disagree about the choice of pt+2 .

Thus, if the cost of delegation is low, they will provide the monopolist

with incentives to choose the first-best (i.e. precommitment) price path.2

The above observation is crucially dependent upon the assumption of

simultaneous choice of prices and taxes. If the monopolist knew the tax

rate before he set his price level, the current regulator would be able to

influence the monopolist’s current price choice. This would create a temp-

tation for the regulator to deviate from the plan preferred by his prede-

cessor. Analytically, there would still be a jump variable in instantaneous

welfare.

4.2.5 Equilibrium strategies

Bellman equations (4.5)–(4.8) yield a pair of Euler equations which charac-

terise the equilibrium strategies of the monopolist and the regulator. They

are provided in the following proposition.

Proposition 1. Suppose that Assumptions 1, 2 and 3 are satisfied. The Markov

perfect equilibrium strategies solving the taxation game from period 2 onward sat-

isfy the necessary conditions defined by the following generalised Euler-Lagrange

equations:

Regulator’s condition

wt1 − gt1
[
δwt4 + wt−1

5

δgt2

]
+
δwt−1

2 + wt3
δ2

+
δwt−1

4 + wt−2
5

δ2gt−1
2

= 0 ∀ t ≥ 0

(4.9)
2If θ = 0 then τ t−1 is not an element of the payoff function and the resulting equilib-

rium, while time consistent, will no longer be Markov-perfect.
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Monopolist’s condition

πt3g
t+1
2 + πt4 +

πt−1
2 + πt−1

3 gt1 + δπt1
δf t1

= δf t+1
2

[
πt+1

3 gt+2
2 +

πt2 + πt3g
t+1
1 + δπt+1

1

δf t+1
1

]
∀ t ≥ 0. (4.10)

Proof. See Appendix B.2.

4.3 Comparison with benchmarks

If we substitute the derivatives of (4.4), we can rewrite the regulator’s Eu-

ler equation as

πt−1
3 + CSt−1

3 − ψt−1
3 + (α− 1)τ t−1ψt−1

3

+
1

gt2

[
(α− 1)ψt−1 + 2θ

(
δ
(
τ t − τ t−1

)
−
(
τ t−1 − τ t−2

))]
+δ
(
πt2−ψt2 +CSt2 +(α−1)τ tψt2

)
+δ2

(
πt+1

1 −ψt+1
1 +CSt+1

1 +(α−1)τ t+1ψt+1
1

)
− δgt+1

1

gt+1
2

[
(α− 1)ψt − 2θ

(
τ t − τ t−1

)
+ 2δθ

(
τ t+1 − τ t

)]
= 0. (4.11)

When θ = 0 and α = 1, this equation replicates the precommitment Euler

equation, (3.24). The implication is that if policy adjustment costs are zero

and the government’s valuation of the tax revenue is equal to the firm’s

valuation of the cost of taxation, then the regulator will choose the tax rate

in such a way as to induce the monopolist to follow the first-best price

path.

Our taxation mechanism provides the regulator with commitment op-

portunities for one period at a time. It enables him to overcome his time

inconsistency. As long as his incentives are not distorted by other consid-

erations, he can achieve the first best outcome. In chapter 5 we explore
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the extent to which the price is distorted by revenue valuation and costs

of changing policy.



Chapter 5

Computation

The previous chapter analytically demonstrated that the outcome of the

regulation game replicates the first-best price path, which is likely to be

different from the second best and laissez-faire outcomes. However, it

was not possible to explore comparative statics, since characterization was

provided with difference-differential Euler equations. In this chapter we

develop a numerical example of the regulation game to investigate the

impact of parameter changes on the outcome of the game.

First, our model is given specific functional form and solved for strate-

gies and a steady state. We then vary the parameter values in order to

assess the effect upon both the transition path and the resulting steady

state.

In the interests of brevity, a numerical solution for the first-best and

second-best paths is not provided. The previous chapter has already char-

acterised those analytically, so a numerical simulation can add little in-

sight.

47
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5.1 Defining the model

To solve our model numerically, we need to specify functional forms for

agents’ payoffs.

5.1.1 The demand function

For simplicity, consumers’ tastes are assumed to be uniformly distributed

across the support: φ(v) = 1. This implies that Φ(v) = v and demand is

therefore

xt = pt−1 − (β + 1)pt + βpt+1. (5.1)

5.1.2 The welfare function

To construct welfare, the cost function and the pollution function must be

defined. The monopolist’s cost function is assumed to be quadratic:

C
(
xt
)

=
ρ

2

(
xt
)2
. (5.2)

This specification guarantees that assumption 2 is satisfied. Furthermore,

we assume that the pollution function is linear:

ψ
(
xt
)

= κxt. (5.3)

Substituting (5.1) into the consumer surplus defined in equation (3.12)

yields

CSt =
1

2

(
1−

(
βpt+1

)2
+
(
pt
)2
)

+ β
(
pt
)2 − ptpt−1. (5.4)

Combining equations (5.1), (5.2) and (3.10) delivers the monopolist’s
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instantaneous profit

πt = −1

2

(
(β + 1)pt − βpt+1 − pt−1

)
[(

2 + (β + 1)ρ
)
pt − ρ

(
pt−1 + βpt+1

)]
. (5.5)

Finally, combining the above equations into the form of (3.14) gives us

welfare. For brevity, that function is not reproduced here.

The initial parameter values used in the system of equations are shown

in Table 5.1. They give us a base case scenario, which is a starting point of

our analysis.

Description Symbol Value

Government revenue valuation α 1

Cost of policy adjustment θ 0.5

Production cost coefficient ρ 1

Pollution cost coefficient κ 3

Consumer discount factor β 0.5

Bellman discount rate δ 0.8

Table 5.1: Base case parameter values

5.2 Solving the model

Having specified the problem, we now solve it numerically. Since this

problem is linear in its state dynamics and quadratic in the players’ pay-

offs, it will generate a Markov-perfect equilibrium in linear strategies. Hence,

we conjecture that the strategy functions which solve the players’ Euler
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equations have forms

f(pt−1, τ t−1) = αr + γr1p
t−1 + γr2τ

t−1, (5.6)

g(pt−1, τ t−1) = αm + γm1p
t−1 + γm2τ

t−1. (5.7)

The subscriptsm and r denote the coefficients on the the monopolist’s and

regulator’s strategy parameters.

Substituting the derivatives of welfare and the strategy conjectures into

the generalised Euler equations gives us a system of equations that can be

solved numerically. We determine the strategy parameters in equations

(5.6) using the method of undetermined coefficients For brevity the solu-

tion procedure is not presented here. The numerical results of the simula-

tions can be found in Appendix C.

5.3 Base case

This section presents the results of our simulations. We first explain the

intuition behind the numerical example. Then we examine the effect of

varying some of the key parameters listed in Table 5.1. The equivalence of

the regulatory game and the first best is not explicitly discussed here be-

cause this result has been demonstrated generally in the previous chapter.

In order to compare outcomes across various parameter values, two

approaches are utilised. First, a comparison of convergence paths is made

for variation in time preference parameters, δ and β. Secondly, a compari-

son of steady states is made across all parameter values.

However, before turning to comparative statics, we outline the results

from the base line scenario and discuss some of the less intuitive elements
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of the simulation.

Prices and demand

Let us first examine the trajectories of prices and demand. They are shown

in Figures 5.1a and 5.1c overleaf.

The price is falling over time as the market participants with the great-

est valuation of the good purchase and exit the market. Therefore, condi-

tion (3.1) is satisfied. The price gradually converges towards a steady state

of p̄ ≈ 1.2 (see Appendix C for a precise value). It should be noted that the

steady state is an asymptote of the price trajectory and is not reached in

finite time.

Demand declines over time as the price differences across periods di-

minish. If the price were to reach the steady state level, demand would

drop to zero. But since the steady state is approached only asymptotically,

demand is positive in all periods. As demand declines, so does the level

of pollution generated by production (Figure 5.1e).

Notably, firm profits are negative in this example. This raises the ques-

tion of why would this firm want to stay in business. Remember that

the profits reported in Figure 5.1d are after-tax. Pre-tax profits happen

to be positive in all periods. As the monopolist cares about net profits,

the regulator could return the tax revenues to the monopolist as a lump-

sum transfer to keep him in business. Indeed, the point of taxation in this

model is to induce optimal behaviour, not to redistribute wealth. Thus,

there is nothing inherently objectionable about returning the revenues to

the monopolist. So long as the government’s transfers to the monopolist

are not conditional on the current state variables, the efficiency of the mo-
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Figure 5.1: Convergence in the base case over 12 periods
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nopolist’s decisions will not be affected.

Given our initial conditions, the equilibrium tax rate is also declining

over time as pollution levels are reduced. In the steady state the level of

taxation is about a third of the sale price (τ̄ ≈ 0.4). The declining pollution

externality reduces the need for taxation to alleviate the problem. In ad-

dition, the monopolist’s time inconsistency causes them to charge a lower

price in the current period in order to offset their incentive for a price re-

duction in the following period. As prices in consecutive periods converge

over time, that incentive is reduced. Consequently, the level of taxation re-

quired to correct for the monopolist’s inconsistency also declines.

The final variable charted in Figure 5.1 is instantaneous welfare. It is

initially negative but converges to a positive value as the pollution level

drops. The positive value of the welfare is driven by consumer surplus.1

So far, the convergence paths of each variable in the base case accord

with what might be expected. Having canvassed them, we now turn to

variations of the parameters in Table 5.1 and the effect that such variations

have on the convergence paths and steady state levels of p̄ and τ̄ .

5.4 Varying parameters

Variation of the parameters is conducted in two parts. First, variations

that affect the convergence paths are considered. The simulation results

1Readers may be concerned about the negative values of profit and welfare in the

early periods. Note first that steady-state welfare and profits are non-negative. Then the

values for each off the equilibrium path are entirely determined by the initial conditions.

An arbitrarily different choice of initial conditions could generate everywhere-positive

profits and/or welfare.
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demonstrate that the parameters with the greatest impact upon conver-

gence paths are the time preference parameters, δ and β. The remaining

parameters have a negligible effect upon convergence rates: it would not

be visible at the scale plotted above in Figure 5.1. Consequently, conver-

gence plots are given only for those two variables.

The implications of the remaining variables for the equilibrium out-

come are analysed solely through their effect on the steady state levels p̄

and τ̄ .

5.4.1 Convergence across parameter values

In this subsection, the effect of varying the time preference parameters on

convergence rates is investigated.

Varying β

The first parameter that we vary is β, the consumer discount rate. It em-

bodies both the rate of consumer time preference and the depreciation rate

of the durable good. Consequently, it is rather lower than one might ex-

pect for an ordinary time preference rate. In the base case, we set it to

β = 0.5. For the variation we consider a range of values between 0.49

and 0.52. Beyond that range the steady state of the system is not in the

neighbourhood of the base case.

The results are shown in Figure 5.2 where β = 0.49. The lower end of

the range is denoted by the pale blue line and β = 0.52, at the upper end,

is in red. The first thing to notice is that the trajectory of demand is steeper

when β is lower. A lower value of β decreases the value of postponing
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Figure 5.2: Convergence for β ∈ {0.49, 0.5, 0.51, 0.52}
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consumption, as the perceived value of the durable good in the next pe-

riod is lower. Consequently, socially optimal consumption is shifted to

earlier periods and demand is initially higher but falls more quickly since

there is a constant mass of consumers. The increase in demand in early pe-

riods also pushes up pollution levels and results in higher total pollution

flows, which also cost the monopolist profits due to the higher taxation.

Interestingly, despite the higher pollution levels the regulator chooses not

to change the tax rate significantly across the range of β’s tested.

Varying δ

The final part of our examination of convergence is an investigation of

variations of the discount factor of the government and the monopolist,

δ. It describes how future payoffs are valued relative to the current pe-

riod’s payoff in the taxation game. The results are shown in Figure 5.3 and

are very similar to the results for variation in β, as one might expect for

another time preference parameter.

The only notable differences are in the magnitude of the effect and the

impact upon the tax rate. The magnitude of the effect is slightly greater

since β influences all future values, rather then solely consumers’ valua-

tions of the durable good. However, it is the path of the tax rate that is

more interesting.

In Figure 5.2b the tax rate varied little between different values of β

whereas, in Figure 5.3b, the tax rate shows similar variation to the price

path.
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Figure 5.3: Convergence for δ ∈ {0.78, 0.79, 0.8, 0.81, 0.82}
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5.4.2 Steady states across parameter values

Having examined the impact on convergence of time preference rates we

now turn to the steady state comparison. In this subsection we focus on

the difference in steady states as the parameters vary. Figure 5.4 shows a

scatter plot of p̄ and τ̄ for pairs of parameter values. The pairs are chosen

by the magnitude of their effect so the scale of the plot shrinks from Figure

5.4a through to Figure 5.4c.

A indicated in the previous section, the time preference rates have the

greatest impact on the result and in a similar fashion; δ with greater magni-

tude than β. That is clearly shown by Figure 5.4a, which indicates that the

effect of each on the steady state is identical in direction and varies only

in magnitude. As agents reduce their valuation of future payoffs the mo-

nopolist is forced to lift their production and reduce their price in order to

maintain demand for their product. That, in turn generates pollution and

causes a commensurate lift in the tax rate to compensate.

In Figure 5.4b the government’s valuation of tax revenues, α, and the

pollution function’s coefficient, κ, are varied. The effect of a drop in α is

to increase the tax rate levied by the regulator while changing the rate of

pollution has no effect upon the tax rate but does affect the price charged

by the monopolist.

Finally, Figure 5.4c shows the negligible impact that the cost of policy

changes, θ, and the production cost coefficient, ρ, have on the steady state.

Increasing ρ causes the monopolist to increase prices, as might be expected

when their marginal costs rise; however, the scale of the impact is such

that it is an insignificant effect relative to that of time preference and the
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coefficient on pollution.
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Chapter 6

Extension: a quasi-hyperbolic

discounting model

In Chapter 2.2 we mentioned that there are two main causes of dynamic

inconsistency: jump states and hyperbolic discounting. The prior chapters

of this thesis have dealt extensively with the issue of regulation in the pres-

ence of jump states. We developed a variant of a strategic delegation game

to deal with inconsistency implied by a jump state. Inefficiencies due to

hyperbolic discounting can be addressed in a similar way. In this chapter

we demonstrate how the same mechanism can also be used by a regulator

who suffers from inconsistency due to quasi-hyperbolic discounting.

We will argue that this type of inconsistency is different from the prob-

lem posed by jump states. However, the taxation mechanism described in

chapter 4 can still attain the socially optimal outcome.

61
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6.1 Quasi-hyperbolic discounting

Hyperbolic discounting models originated from Ainslie (1992)’s empiri-

cal work. He showed that a hyperbolic curve is a far better match for the

discount rate of most people than the standard exponential curve. When

agents use hyperbolic discounting, their intertemporal trade-offs are not

time invariant. Thus, such discount functions are not as mathematically

easy to work with as exponential functions. Because of this difficulty

Ainslie’s book did not get the attention it deserved until the modifications

by Laibson (1997) which made the analysis more tractable.

Rather than adopting a full hyperbolic function, Laibson introduced an

exponential function with a modifier on the current period’s discount rate.

In Laibson’s model, the discount factor for the next period is βδ, where 0 <

β < 1 and 0 < δ < 1. All subsequent periods are discounted exponentially

by a factor δ. This modification makes the model both simple to work with

and a fair approximation of a hyperbolic function. Time preferences with

this structure are known as quasi-hyperbolic preferences.

Quasi-hyperbolic discounting captures non-stationary time preferences,

à la hyperbolic discounting, while preserving analytical tractability. Non-

stationarity gives rise to time inconsistency, as the intertemporal trade-off

between two successive periods will change with the agent’s time refer-

ence. Consequently, precommitment has value similar to that in models

with jump states.

In the following two chapters we develop a simple quasi-hyperbolic

discounting model analogous to the monopolistic model of Chapter 3.

Then we demonstrate the ability of the taxation game to correct both the
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regulator’s time inconsistency as well as the pollution externality.

6.2 The quasi-hyperbolic model

As before, this model also involves a monopolist producing a good that

creates a pollution externality. The regulator addresses inefficiencies caused

by this externality through Pigouvian taxation. However, the regulator

suffers from self-control problems induced by quasi-hyperbolic time pref-

erences.

6.3 Elements of the model

The description of our model begins with a characterisation of the agents:

a consumer, a monopolist and a regulator.

6.3.1 The consumer

Imagine a representative consumer who derives utility from two goods:

a polluting good, x, and a numeraire, m. The consumer’s instantaneous

utility function is

U(x,m) = u(x) +m. (6.1)

We assume that u(x) satisfies the Inada conditions. This ensures that the

inverse demand is well-defined for all positive values of x.

The consumer’s budget constraint is

px+m = I. (6.2)
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Therefore, inverse demand in this market is given by

p = u′(x). (6.3)

6.3.2 The monopolist

The market for good x is served by a monopolist with a cost function C(x)

. His instantaneous profit function is

π(x) = R(x)− C(x) (6.4)

= px− C(x). (6.5)

Equation (6.3) implies that profit can also be written as

π(x) = u′(x)x− C(x). (6.6)

The monopolist has standard exponential time preferences and is thus

time consistent.

6.3.3 The regulator

Production generates a pollution externality that is not internalised by the

monopolist. Unlike in the previous chapters, here pollution is modelled

as a stock externality rather than a flow externality. The regulator has

oversight of the monopolist and seeks to mitigate the damage wrought

by the monopolist’s emissions. The stock of pollution generated by the

production of good x at time t is denoted by kt.1 The environmental harm

caused by this stock is ϕ(kt), where ϕ′(kt) > 0.

1For tractability in this model we have switched from flow pollution to stock pollu-

tion.
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The stock of pollution evolves according to the following law-of-motion:

kt = θkt−1 + xt−1. (6.7)

The parameter θ ∈ [0, 1) represents the rate of pollution carry-over. Instan-

taneous welfare is thus given by

w(xt, kt) = π(xt) + CS(xt)− ϕ(kt) (6.8)

= u′(xt)xt − C(xt) +

∫ xt

0

u′(x) dx− u′(xt)xt − ϕ(kt) (6.9)

= u(xt)− C(xt)− ϕ(kt). (6.10)

The regulator suffers from time inconsistency and is modelled as hav-

ing quasi-hyperbolic preferences. In particular, his net present valuation

of welfare from the period-t perspective is

Wt = w(xt, kt) + β
∞∑
i=1

δiw(xt+i, kt+i). (6.11)

Note the β modifier in lifetime welfare. If β = 1 then the preferences

are ‘exponential’ and time consistent. If β < 1, as is assumed here, then

preferences are ‘present biased’ (i.e. non-stationary) and the regulator will

experience dynamic inconsistency.

6.4 Laissez-faire equilibrium

First we consider the laissez-faire case. Suppose that the firm is not regu-

lated by the government. The monopolist does not account for the dam-

ages arising from his pollution. As a result, the pollution stock does not

appear in his payoff. In each period, the firm solves the following static
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problem:

max
x

u′(x)x− C(x). (6.12)

The first order condition of this problem is

u′′(x`)x` + u′
(
x`
)
− C ′

(
x`
)

= 0, (6.13)

where x` denotes the laissez-faire level of output chosen by the monopo-

list. Intuitively, condition (6.13) delivers the output level at which marginal

profit is equal to zero.

Since the monopolist discounts future payoffs exponentially, his life-

time profit is
∞∑
t=0

δtπt =
u′
(
x`
)
x` − C

(
x`
)

1− δ
. (6.14)

6.5 Benchmarking regulation

6.5.1 First best regulation

Before we analyse the taxation game, let us first benchmark the perfor-

mance of a regulator who could choose output levels. Again, we first

examine the problem of a hypothetical regulator who can both directly

determine output and perfectly precommit to future policies.

Suppose that the regulator can directly choose the lifetime output plan

{xt}∞t=0 at time 0. The optimal plan would solve

W0 = u(x0)− C(x0)− ϕ(k0) + β
∞∑
t=1

δt [u(xt)− C(xt)− ϕ(kt)] (6.15)

where the state variable evolves according to

kt = θkt−1 + xt−1,
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δ is the discount rate and β is the quasi-hyperbolic modifier on the future

discount factor.

The regulator’s optimal choice will satisfy

w0
1 + βδ

(
w1

2 − θw1
1

)
= 0 (6.16)

in period 0, and

wt1 + δ
(
wt2 − θwt+1

1

)
= 0 ∀ t ≥ 2. (6.17)

for each subsequent period t. See Appendix D.1 for more detail.

Equations (6.16) and (6.17) together characterise the output path the

regulator would choose, were he able to directly control output levels.

From the perspective of the regulator at time 0, this is the first best out-

put path. After substituting w(xt, kt) from (6.8), we obtain

u′(xt)−C ′(xt)− δθ (u′(xt+1)− C ′(xt+1))− δϕ′(kt+1) = 0 ∀ t ≥ 2. (6.18)

This equation will be used for comparison with the laissez-faire condition,

as they have similar forms.

6.5.2 Comparison to laissez-faire outcome

It is instructive to compare the first-best outcome to the laissez-faire equi-

librium characterised in equation (6.13):

u′
(
x`
)
− C ′

(
x`
)

+ u′′
(
x`
)
x` = 0. (6.19)

Remember that this condition sets the monopolist’s marginal profit to zero.

Since profit is concave, marginal profit is a decreasing function.
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We focus on the steady state of the model. Suppose that xt = x̄, ∀t, and

thus kt = k̄,∀t. Now rearrange equation (6.18),

u′ (x̄)− C ′ (x̄) =
δϕ′
(
k̄
)

1− δθ
, (6.20)

and add u′′ (x̄) x̄ to both sides:

u′ (x̄)− C ′ (x̄) + u′′ (x̄) x̄ =
δϕ′
(
k̄
)

1− δθ
+ u′′ (x̄) x̄. (6.21)

The left-hand side of the above equation represents the monopolist’s marginal

profit evaluated at the steady-state first best output level. Remember that

marginal profit is a decreasing function. Thus, if
δϕ′(k̄)
1−δθ + u′′ (x̄) x̄ > 0 then

x̄ < x` and vice versa.

Signing the component parts gives

δϕ′ (x̄) > 0 (6.22)

1− βδ > 0 (6.23)

u′′ (x̄) x̄ < 0 (6.24)

So if
δϕ′
(
k̄
)

1− δθ
> u′′ (x̄) x̄ (6.25)

then x̄ < x`. The left hand side of the inequality represents the lifetime

marginal cost of the externality, while the right hand side is the dead-

weight loss due to monopoly power. The externality implies that the

quantity produced may be too high from a welfare point of view, while

the firm’s market power suggests that production could be too low. Tax-

ing the firm to reduce pollution is only worthwhile when the former effect

outweighs the latter. Henceforth, we shall assume that equation (6.25)

holds.
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6.5.3 Second best regulation

Sophisticated regulators would recognise that they have a time inconsis-

tency problem. Therefore, they will try to avail themselves of a solution.

If they unable to precommit to future policies, they will act strategically

to influence the decisions of their future selves. Such behaviour would

give rise to a time-consistent second best-output path. This path would

occur if the regulator could directly choose output, but had no means of

precommitting themselves to future decisions.

To solve for the time consistent equilibrium, we must formulate the

problem recursively. Let the MPE strategy of the regulator be xt = f(kt).

Then his Bellman equation is

U(kt) = max
xt
{w(xt, kt) + βδV (θkt + xt)} (6.26)

where U(·) is his current period’s value function and V (·) is his continua-

tion value function. The continuation value function captures the stream

of future payoffs from period t + 1 onward. It is different from the cur-

rent period’s value function because quasi-hyperbolic preferences are non-

stationary. Since from next period onwards the regulator would discount

welfare exponentially, the continuation value function must satisfy the re-

cursive equation

V (kt) = w (f(kt), kt) + δV (θkt + f(kt)) . (6.27)

Dynamic programming renders a generalised Euler equation that char-

acterises the regulator’s output strategy:

wt1 + βδ(wt+1
1 f t+1

1 + wt+1
2 )− δ(θ + f t+1

1 )wt+1
1 = 0. (6.28)
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Note the difference between equation (6.28) and equation (6.17) . This

difference suggests that the time consistent path will not coincide with the

first-best (i.e. precommitment) path.

6.6 Regulation with delegation

Intuitively it should be possible to solve a quasi-hyperbolic discounting

problem through ‘delegation’ of the pricing decision.

Quasi-hyperbolic time preferences give rise to time inconsistent be-

haviour. However, the internal strategic conflict between two successive

regulators, in periods t and t + 1, only concerns the choice of the period-

t + 1 action. These two regulators do not disagree about future actions,

as both will discount future payoffs exponentially. Thus, by eliminating

the direct effect of today’s decision on next period’s payoff, it should be

possible to render the regulator consistent.

In our delegation game, the regulator sets a tax rate for pollution si-

multaneously with the monopolist’s choice of output. Both the tax and

the output are feedback strategies. As in the previous chapters, we con-

sider a linear tax on emissions.

6.6.1 The welfare function

Taxation affects the regulator’s problem in two ways: first, he gains rev-

enue from taxation and, secondly, there is a cost to changing the tax rate

over time. Economists are often criticised that they do not account for

the cost of taxes when they recommend them. That is why we explicitly
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include the costs of implementing and modifying tax schemes in the reg-

ulator’s welfare function.

Suppose that the tax is levied on emissions and the revenue from the

tax is given to consumers as a lump sum transfer. Since the marginal util-

ity of income to consumers is 1, the value of the revenue in the welfare

function is equal to the cost of taxation borne by monopolist. Hence, the

tax is a simple transfer of surplus and does not change total welfare.

Period-t tax revenue is τtxt, where τt is the tax rate chosen by the gov-

ernment. Let the adjustment cost of changing policies be κρ(τt, τt−1).2 Then

instantaneous welfare is given by

w(xt, kt, τt, τt−1) = u(xt)− C(xt)− ϕ(kt)− κρ(τt, τt−1). (6.29)

Welfare is not directly affected by tax revenue, but changing the tax rate

over time is costly for the regulator. This assumption introduces a ‘sticki-

ness’ to the tax rate. Note that if κ = 0, policy adjustment will be costless

and the welfare function will not depend directly on the tax rate.

6.6.2 The profit function

Taxation implies that the monopolist’s instantaneous profit will now have

the following form:

πt = u′(xt)xt − C(xt)− τtxt. (6.30)

2A plausible, specific functional form might be (τt − τt−1)
2, as in Chapter 4.2.1.
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6.6.3 The taxation game

Next we set up a regulation game for this problem that mirrors the game

discussed in Chapter 4.

State variables and strategies

The state variables in this game are the previous period’s tax rate, τt−1, and

the stock of pollution, kt. Note that the current period’s tax rate is not a

state variable, as it is set in the current period.

In each period, the monopolist chooses output simultaneously with

the regulator’s choice of the current tax rate. Let the MPE strategy of the

monopolist be xt = h(τt−1, kt) and the MPE strategy of the regulator be

τt = g(τt−1, kt).

The regulator’s problem

The regulator Bellman equation is now given by

U(τt−1, kt) = max
τt

{
w
(
h(τt−1, kt), kt, τt, τt−1

)
+ βδV

(
τt, θkt + h(τt−1, kt)

)}
. (6.31)

The continuation value function V solves the functional equation

V (τt−1, kt) = w
(
h(τt−1, kt), kt, g(τt−1, kt), τt−1

)
+ δV

(
g(τt−1, kt), θkt + h(τt−1, kt)

)
. (6.32)
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The monopolist’s problem

Since the monopolist discounts exponentially there is no β in his Bellman

equation and it is standard:

Π(τt−1, kt) = max
xt
{π(xt, g (τt−1, kt)) + δΠ (g(τt−1, kt), θkt + xt)} . (6.33)

Equilibrium strategies

From Bellman equations (6.31)– (6.33) we obtain the generalised Euler-

Lagrange equations characterising the optimal strategies for each player.

Using dynamic programming techniques, we can derive the monopo-

list’s Euler-Lagrange equation. It is given by

πt2g
t
1 +

gt1
gt2

(
θπt1 − πt2gt2 −

1

δ
πt−1

1

)
−
θπt−1

1 − πt−1
2 gt−1

2 − 1
δ
πt−2

1

δgt−1
2

= 0. (6.34)

See Appendix D.3.2 for the details.

The Euler-Lagrange equation characterising the regulator’s strategy is

wt−1
3 gt−1

1 − β
(
wt−1

1 ht−1
1 + wt−1

3 gt−1
1 + wt−1

4

)
δht−1

1

− wt−2
3

δ2ht−1
1

= β(wt1h
t
2 + wt2 + wt3g

t
2)− gt2wt3

+
(θ + ht2)

ht1

[
wt3g

t
1 − β

(
wt1h

t
1 + wt3g

t
1 + wt4

)
− wt−1

3

δ

]
. (6.35)

The derivations are detailed in Appendix D.3.1.

To compare this game to the first-best outcome, let us consider the spe-

cial case where κ = 0, so policy change is costless. We substitute in the
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following partial derivatives of the welfare function:

wt1 = u′(xt)− c′(xt) (6.36)

wt2 = −ϕ′(xt) (6.37)

wt3 = 0 (6.38)

wt4 = 0. (6.39)

After this substitution, Euler equation (6.35) reduces to

u′(xt−1)− c′(xt−1)

δ
− ϕ′(xt)− θ

(
u′(xt)− c′(xt)

)
= 0. (6.40)

Multiplying by δ and shifting the equation forward one period yields

u′(xt)− c′(xt)− δϕ′(xt+1)− δθ
(
u′(xt+1)− c′(xt+1)

)
= 0. (6.41)

Note that this replicates Euler equation (6.18) that characterizes the pre-

commitment outcome. Therefore, the regulation game will deliver the

first-best output path.
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Conclusions

Time consistency is an important issue for regulators and can have serious

implications for policy effectiveness. This thesis demonstrates that mech-

anism design can alleviate this problem. We construct a game that allows

the regulator to attain the first best in a setting with externalities despite

his time inconsistency.

We take a case study of a polluting monopolist and demonstrate that

the regulator’s time inconsistency can adversely affect welfare. The regu-

lator’s inability to precommit may prevent him from fully eliminating the

inefficiency of the pollution externality. The main contribution is to show

that careful policy design may provide the regulator with precommitment

opportunities. The particular mechanism considered here is a modified

version of a Pigouvian tax. Obviously, such an instrument is not appropri-

ate for every situation. The general implication is that careful mechanism

design could enable regulators to achieve first-best outcomes, even in the

face of obstacles such as dynamic inconsistency.

Finally, it is worth pointing out that this thesis abstracts from many

75
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concerns facing regulators. We assume perfect information, discrete time,

a single market, a single firm serving that market and limited heterogene-

ity among consumers. Further research in the field would do well to relax

some of those assumptions and investigate the impact for regulators’ abil-

ity to achieve first-best outcomes.



Appendix A

Concavity of the monopolist’s

profit function

For concavity of the profit function we require ∂2π
∂(pt)2

< 0. Now, by differ-

entiating equation (3.10) twice

∂2π

∂(pt)2
= 2

∂x

∂pt
− ∂x

∂pt
C ′′(x) +

∂2x

∂(pt)2

(
p− C ′(x)

)
< 0 (A.1)

The term 2 ∂x
∂pt

is negative because of the downward slope of the demand

function and − ∂x
∂pt
C ′′(x) must also be negative since by Assumption 2 the

cost function is convex. Now a monopoly will always set P > MC so

p−C ′(x) must be positive. Hence, it is sufficient for concavity of the profit

function that the demand function be weakly concave: ∂2x
∂(pt)2

≤ 0.

Note that while this condition is sufficient it is not necessary since if the

cost function were highly convex then a mildly convex demand function

could still give a concave profit function.

Taking the second derivative of the demand function (equation (3.9))
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gives
∂2x

∂(pt)2
= β2Φ′′(pt−1 − βpt)− Φ′′(pt − βpt+1) < 0. (A.2)

Hence, the condition for concavity of the demand function is

β2Φ′′(pt−1 − βpt) < Φ′′(pt − βpt+1). (A.3)

Now, by equation (3.7), pt−1 − βpt > pt − βpt+1 so (A.3) can only hold for

all possible price trajectories if Φ′′′ ≤ 0. However, if Φ′′ < 0 then condition

(A.3) still cannot be guaranteed to hold. It is sufficient to further assume

that Φ′′ ≥ 0. Again, this is a sufficient rather than a necessary condition for

concavity of the profit function.



Appendix B

Equilibria of the durable goods

model

B.1 Time-consistency without precommitment

To solve the game described in 3.3.2 by maximising the Bellman function

(3.27) with respect to pt first differentiate it with respect to that variable to

give the first-order condition

∂V t

∂pt
= wt2 + wt3f

t+1
1 + δV t+1

1 = 0 (B.1)

which rearranges to give

V t+1
1 = −w

t
2 + wt3f

t+1
1

δ
. (B.2)

Now, to find the envelope condition that holds for the optimal strategy,

differentiate V t with respect to the state variable pt−1:

V t
1 = wt1 + f t1

(
wt2 + wt3f

t+1
1 + δV t+1

1

)
(B.3)
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Since, at the optimal point, the first order condition from (B.1) holds, we

know that wt2 + wt3f
t+1
1 + δV t+1

1 = 0 and the envelope condition is thus

V t
1 = wt1 (B.4)

Now substituting the derivative of the Bellman value function from (B.4)

into equation (B.2) gives equation (3.29).

B.2 MPE of the taxation game

This section demonstrates the solution to the game described in Section

4.2.

The regulator’s necessary condition

The first order condition for the regulator is derived by differentiating the

regulator’s Bellman equation with respect to τ t and setting it equal to zero.

∂W t

∂τ t
= wt3g

t+1
2 + δW t+1

2 = 0 (B.5)

Thus the Bellman value function for the regulator is characterised by

W t+1
2 = −w

t
3g
t+1
2

δ
. (B.6)

To solve for the generalised Euler-Lagrange equations which characterise

the equilibrium strategies of the regulator and the monopolist it is neces-

sary to find the envelope conditions in addition to the first-order condi-

tion. These are found by differentiating the Bellman value function with

respect to the states:

W t
1 = wt1 + gt1

(
wt2 + wt3g

t+1
1 + δW t+1

1

)
+ f t1

(
wt3g

t+1
2 + δW t+1

2

)
(B.7)

W t
2 = gt2

(
wt2 + wt3g

t+1
1 + δW t+1

1

)
+ f t2

(
wt3g

t+1
2 + δW t+1

2

)
(B.8)
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Since we know from the first order condition, (B.5), thatwt3g
t+1
2 +δW t+1

2 = 0

in optimality it follows that the envelope conditions for the regulator’s

optimal strategy are

W t
1 = wt1 + gt1

(
wt2 + wt3g

t+1
1 + δW t+1

1

)
(B.9)

W t
2 = gt2

(
wt2 + wt3g

t+1
1 + δW t+1

1

)
. (B.10)

From these conditions and the first order conditions it is possible to solve

for the Euler-Lagrange equations by eliminating the unknown Bellman

value functions. First substituting (B.6) into (B.10) gives

−w
t−1
3 gt2
δ

= gt2
(
wt2 + wt3g

t+1
1 + δW t+1

1

)
(B.11)

which simplifies to

W t+1
1 = −

wt−1
3 + δ

(
wt2 + wt3g

t+1
1

)
δ2

(B.12)

Now substituting (B.12) into (B.9) to eliminate the unknown Bellman value

function derivative gives

−
wt−2

3 + δ
(
wt−1

2 + wt−1
3 gt1

)
δ2

= wt1

+ gt1

(
wt2 + wt3g

t+1
1 + δ

(
−
wt−1

3 + δ
(
wt2 + wt3g

t+1
1

)
δ2

))
(B.13)

which, shifted forward two period, simplifies to give equation (4.9).

The monopolist’s necessary condition

The first order condition for the monopolist is derived by differentiating

the monopolist’s Bellman equation with respect to pt and setting it equal

to zero.
∂Πt

∂pt
= πt2 + πt3g

t
1 + δΠt+1

1 = 0 (B.14)
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The Bellman value function for the monopolist can then be characterised

by the equation

Πt+1
1 = −π

t
2 + πt3g

t
1

δ
(B.15)

Now finding the envelope conditions for the monopolist as was done for

the regulator:

Πt
1 = πt1 + gt1

(
πt2 + πt3g

t+1
1 + δΠt+1

1

)
+ f t1

(
πt3g

t+1
2 + πt4 + δΠt+1

2

)
(B.16)

Πt
2 = gt2

(
πt2 + πt3g

t+1
1 + δΠt+1

1

)
+ f t2

(
πt3g

t+1
2 + πt4 + δΠt+1

2

)
(B.17)

From the first order condition, (B.14), πt2 +πt3g
t
1 + δΠt+1

1 = 0 and, hence, the

envelope conditions for this problem are:

Πt
1 = πt1 + f t1

(
πt3g

t+1
2 + πt4 + δΠt+1

2

)
(B.18)

Πt
2 = f t2

(
πt3g

t+1
2 + πt4 + δΠt+1

2

)
(B.19)

Now to solve, first substitute (B.15) into (B.18) to give

−π
t−1
2 + πt−1

3 gt−1
1

δ
= πt1 + f t1

(
πt3g

t+1
2 + πt4 + δΠt+1

2

)
(B.20)

which rearranges to

Πt+1
2 = −π

t−1
2 + πt−1

3 gt−1
1 + δπt1

δ2f t1
− πt3g

t+1
2 + πt4
δ

. (B.21)

Now substituting (B.21) into (B.19) eliminates the unknown Bellman value

function derivative:

− πt−2
2 + πt−2

3 gt−2
1 + δπt−1

1

δ2f t−1
1

− πt−1
3 gt2 + πt−1

4

δ

= −f t2
πt−1

2 + πt−1
3 gt−1

1 + δπt1
δf t1

(B.22)

This, shifted forward two periods, simplifies to give equation (4.10).



Appendix C

Numerical results of

linear-quadratic example

Included in this appendix are the raw results of the computations from

Chapter 5.

83
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Appendix D

Hyperbolic discounting

equilibrium derivations

D.1 First best regulation

Equations (6.15) and (6.8) can be combined to give lifetime welfare from

the viewpoint of the period-0 regulator:

W0 = w(x0, k0) + βδw(x1, θk0 + x0) + βδ2w(x2, x1 + θx0 + θ2k0) + . . . (D.1)

Maximising this function requires taking first-order conditions with re-

spect to xt ∀t ≥ 0. Derivatives are notated as usual with the time super-

87
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script taken from the time subscript of the state variable.

∂W0

∂x0

= w0
1 + βδw1

2 + θβδ2w2
2 + . . . = 0 (D.2)

∂W0

∂x1

= βδw1
1 + θβδ2w2

2 + θβδ3w3
2 + . . . = 0 (D.3)

∂W0

∂x2

= βδ2w2
1 + θβδ3w3

2 + θβδ4w4
2 + . . . = 0 (D.4)

... (D.5)

Compacting these conditions, (D.2)−(D.3)×θ gives

w0
1 + βδ

(
w1

2 − θw1
1

)
= 0, (D.6)

and ((D.4)−(D.6)×θ)/βδ gives

wt1 + δ
(
wt+1

2 − θwt+1
1

)
= 0 ∀ t ≥ 2. (D.7)

D.2 Second best regulation

The current period’s first-order condition for welfare maximisation is

wt1 + βδV t+1
1 = 0 (D.8)

∴ V t+1
1 = −w

t
1

βδ
. (D.9)

Differentiating (6.27) gives

V t
1 = wt1f

t
1 + wt2 + δV t+1

1 (θf t1) (D.10)

and substituting in equation (D.9) gives the Euler-Lagrange equation:

wt1 + βδ(wt+1
1 f t+1

1 + wt+1
2 )− δ(θ + f t+1

1 )wt+1
1 = 0. (D.11)
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D.3 The regulation game

D.3.1 The regulator’s problem

To solve for the generalised Euler equation that characterises the welfare

maximising price path we first take first order conditions:

wt3 + βδV t+1
1 = 0 (D.12)

∴ V t+1
1 = −w

t
3

βδ
. (D.13)

Taking the envelope conditions for this problem from equation (6.32) gives

V t
1 = wt1h

t
1 + wt3g

t
1 + wt4 + δ

[
V t+1

1 gt1 + V t+1
2 ht1

]
(D.14)

V t
2 = wt1h

t
2 + wt2 + wt3g

t
2 + δ

[
V t+1

1 gt2 + V t+1
2

(
θ + ht2

)]
. (D.15)

Solving for the Euler-Lagrange equation: (D.13)→ (D.14) gives

wt1h
t
1 + wt3g

t
1 + wt4 −

wt3g
t
1

β
+ δV t+1

2 ht1 +
wt−1

3

βδ
= 0 (D.16)

∴ V t+1
2 =

wt3g
t
1

βδht1
− wt1h

t
1 + wt3g

t
1 + wt4

δht1
− wt−1

3

βδ2ht1
(D.17)

Now (D.13), (D.16)→ (D.15) gives the result

wt−1
3 gt−1

1 − β
(
wt−1

1 ht−1
1 + wt−1

3 gt−1
1 + wt−1

4

)
δht−1

1

− wt−2
3

δ2ht−1
1

= β(wt1h
t
2 + wt2 + wt3g

t
2)− gt2wt3

+
(θ + ht2)

ht1

[
wt3g

t
1 − β

(
wt1h

t
1 + wt3g

t
1 + wt4

)
− wt−1

3

δ

]
. (D.18)
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D.3.2 The monopolist’s problem

The first order condition of this problem is

πt1 + δΠt+1
2 = 0 (D.19)

∴ Πt+1
2 = −π

t
1

δ
. (D.20)

The envelope conditions for this problem are

Πt
1 = πt2g

t
1 + δΠt+1

1 gt1, (D.21)

Πt
2 = πt2g

t
2 + δΠt+1

1 gt2 + θδΠt+1
2 . (D.22)

Solving for the Euler equation: (D.20)→(D.21) gives

−π
t−1
1

δ
= πt2g

t
2 − θπt1 + δΠt+1

1 gt2 (D.23)

Πt+1
1 =

θπt1 − πt2gt2 − 1
δ
πt−1

1

δgt2
. (D.24)

Now, (D.24)→(D.22) yields the Euler-Lagrange equation:

πt2g
t
1 +

gt1
gt2

(
θπt1 − πt2gt2 −

1

δ
πt−1

1

)
−
θπt−1

1 − πt−1
2 gt−1

2 − 1
δ
πt−2

1

δgt−1
2

= 0 (D.25)
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