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Abstract 

 

Cannabis is the most widely used illicit drug. Adolescents may be especially 

vulnerable to the effects of cannabis, and alarmingly, adolescence is also a period 

of heavy cannabis use. However, few studies have investigated the cognitive 

effects of cannabis use in adolescents specifically. Furthermore, the 

neurochemical correlates of cognitive impairment associated with cannabis use at 

any age have received very little experimental attention. This research project 

sought to address these shortcomings in the literature using THC, the major 

psychoactive component of cannabis, and a rat model of adolescence.  

 

The rate of learning was slower in THC-treated animals, and this was attributable 

to deficits in the cognitive function of „chunking‟, a process by which the 

information capacity of short-term memory is enlarged. Impairment of chunking by 

cannabinoids has not been previously reported. Behavioural impairment by THC 

was associated with impaired hippocampal plasticity, including changes in 

synaptic activity and architecture, as well as changes in neurogenesis. The 

attenuation of structural and functional plasticity in the hippocampus in response to 

training in a learning task was more pronounced than the subtle effects of THC-

treatment on the survival and early development of newborn neurons. Importantly, 

no effects of THC were seen in animals not trained in the maze. Thus, plasticity is 

more sensitive to the effects of THC during times of learning, and this greater 

sensitivity likely accounts for the behavioural impairment associated with cannabis 

use. 

 

The data presented in this thesis add significantly to the existing literature by 

identifying novel behavioural and neurochemical processes by which cannabis use 

may impair learning and memory. Whether these impairments represent a greater 

sensitivity of adolescents to THC remains to be determined. 
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Chapter 1   Introduction 

1.1 Cannabis Use: Historical Aspects and the New Zealand 

Perspective 

 

The effects of cannabis have been known for over 4,000 years with the oldest 

known pharmacopoeia (the Pen-ts‟ao Ching, 2727 BC) describing the medicinal 

and psychiatric side effects of cannabis. The use of cannabis as a therapeutic 

agent lost favour as the 20th Century progressed, although recreational use 

became commonplace to the point where cannabis use today is perceived as a 

culturally acceptable activity (Murray, Morrison et al. 2007). In New Zealand, the 

use, supply or possession of cannabis is illegal under the Misuse of Drugs Act 

1975,  although a 2003 survey by the Ministry of Health revealed that 44% of 

New Zealanders have used cannabis in their lifetime, with 16% classified as 

frequent users (defined as using cannabis 10 or more times a month over the last 

12 months) (Field and Casswell 2000; 2003). A study of 140 New Zealand 

adolescents in the Canterbury region between the ages of 13 - 18 found that 89% 

had tried cannabis and 70% had tried it more than 5 times in one month at some 

stage. The median age of initiation was 13 years, and the heaviest use was 

reported at age 15 years (Harvey, Sellman et al. 2007). Maori were significantly 

more likely to have used cannabis than non-Maori (2003).  

 

The social costs of illicit drug use can be measured as costs borne by individuals 

and wider society for which there is no corresponding benefit. The tangible costs 

of illicit drug use are associated with the diversion of resources due to the 

presence of illicit drugs (e.g. lost production and the cost of drug associated 

crime). In addition, intangible costs are borne by illicit drug using individuals (e.g. 

suffering caused by illicit drug use) and individuals associated with drug users 

(e.g. suffering caused to the family of an illicit drug user). During the 2005/2006 

period the estimated social cost of illicit drug use in New Zealand was $1.31 

billion, of which $431 million was attributable to cannabis use (Slack, O'Dea et al. 

2008). Fergusson and Boden (2008) assessed the cannabis behaviour of 1256 
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New Zealand born children and assessed a range of life outcomes at 25 years of 

age. Poorer educational achievement, lower income, greater dependency on 

social welfare, higher unemployment and lower life satisfaction were correlated 

with higher levels of cannabis use from ages 14 – 21 years, even when 

extensively controlled for covariate factors. 

 

1.2 Molecular Biology and Biochemistry of the Cannabinoid 

System 

 

1.2.1 Molecular Biology of Cannabinoid Receptors 

 

Following the identification of ∆9-tetrahydrocannabinol (THC) as the major active 

component cannabis in 1964 (Gaoni and Mechoulam 1964), and prior to the 

identification of the cannabinoid receptor nearly a quarter century later, many 

believed that THC exerted its cognitive effects by non-specifically modifying cell 

membrane fluidity due to the hydrophobic structure of THC (Trezza, Cuomo et al. 

2008). The seven transmembrane G protein-coupled CB1R receptor was initially 

described in 1987 (Bonner, Buckley et al. 1987), although at this point its ligands 

were unknown. These were subsequently discovered to belong to the cannabinoid 

family in 1988, using the tritiated cannabinoid agonist CP-55,940 and competitive 

binding assays in the brain (Devane, Dysarz et al. 1988), and confirmed in 1990 

when the 55 kDa CB1R was cloned from rat cerebral cortex (Matsuda, Lolait et al. 

1990).  

 

CB1R is functionally coupled to Gi proteins. Activation of CB1R results in an 

inhibition of cAMP production by adenylate cyclase (Howlett and Fleming 1984), 

and inhibition of voltage gated Ca2+ channels (Mackie and Hille 1992; Mackie, Lai 

et al. 1995; Twitchell, Brown et al. 1997) required for neurotransmitter release 

(Luebke, Dunlap et al. 1993; Wheeler, Randall et al. 1994). In addition, inward 
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rectifying K+ channels are activated, hyperpolarising the neuron (Mackie, Lai et al. 

1995). Cumulatively, activation of CB1R reduces the likelihood of neuronal 

activation, allowing neurons to control their activity as a function of network 

activity, and in this way modulating synaptic plasticity (Freund, Katona et al. 2003). 

Indeed CB1R is the most widely expressed G protein in the CNS, with high 

expression levels in brain areas associated with the cognitive and motor effects of 

cannabis (Herkenham, Lynn et al. 1990).  

 

The cannabinoid receptor 2 (CB2R) was identified in 1993 from HL-60 

promyelocytic leukemic cells by sequence homology to the rat CB1R (Munro, 

Thomas et al. 1993), and like CB1R, is coupled via inhibitory G proteins to 

adenylate cyclase (Kaminski 1993). CB2R shares only 44% homology with CB1R 

suggesting these receptor subtypes diverged some time ago (Munro, Thomas et 

al. 1993). The low level of homology between these cannabinoid receptor 

subtypes is reflected in their differential expression and their different roles 

throughout the body. CB2R is expressed widely in the periphery, particularly in 

immune tissues (Munro, Thomas et al. 1993; Freund, Katona et al. 2003), and 

although not initially detected in the brain, low neuronal levels have since been 

described (Munro, Thomas et al. 1993; Trezza, Cuomo et al. 2008). CB1R, 

however, is only detected in the peripheral tissues at low levels, and is 

predominantly found in neurons of the central and peripheral nervous systems 

(Freund, Katona et al. 2003).  

 

1.2.2 Cannabinoid Ligands 

 

The cannabinoid ligands include the endogenous cannabinoids 

(endocannabinoids) that naturally occur in the nervous system, the active 

components of Cannabis sativa (principally THC) and their metabolic derivatives, 

as well as synthetic analogues of these components. There are two 

endocannabinoid ligands. The first, arachhidonylethanolamide, was discovered by 

Devane et al. (1992)  and named anandamide (ANA; from „ananda‟ meaning bliss, 
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and „amide‟ from the chemical nature of the compound). A second 

endocannabinoid, 2-arachidonylglycerol (2-AG), was discovered 3 years later 

(Mechoulam, Benshabat et al. 1995). Each of the endocannabinoids, ANA and 2-

AG, comprise of an arachidonic acid motif and a polar head group of either 

ethanolamine (ANA) or glycerol (2-AG) (Freund, Katona et al. 2003). The 

endocannabinoids are synthesised at postsynaptic sites and in immune tissues. In 

neurons endocannabinoids are synthesised in an activity-dependent manner. The 

binding of neurotransmitters to receptors, or membrane depolarisation is sufficient 

to elicit their synthesis. The interaction of these two methods of endocannabinoid 

synthesis have furthermore been shown to synergistic (Heifets and Castillo 2009). 

 

In the biosynthetic pathway of ANA (Fig. 2eA), an arachidonate group of a 

phospholipid and phosphatidylethanolamine (PE) undergo a condensation reaction 

catalysed by N-acyl transferase yielding the ANA precursor N-arachidonoyl PE. 

Phospholipase D (PLD) then catalyses the hydrolysis of this molecule to ANA. The 

biosynthesis of 2-AG may proceed in two ways (Fig. 2B). Phosphoinositides (PI) 

are converted to either 1,2-diacylglycerol (DAG) by phospholipase C (PLC), or to 

lysophosphoinositides (lyso-PI) by phospholipase A1 (PLA1). These intermediates 

are then converted to 2-AG by diacylglycerol lipase (DGL) and lyso-PLC, 

respectively (Freund, Katona et al. 2003). It is believed than the PLC/DAG 

pathway largely accounts for the biosynthesis of 2-AG in the CNS (Stella, 

Schweitzer et al. 1997). The synthesis of ANA and 2-AG are Ca2+-dependent and 

are activated as a consequence of the activation of neurotransmitter receptors 

(Freund, Katona et al. 2003). 2-AG is present in the brain at levels 170 fold greater 

than ANA, and activates CB1R as a full agonist, rather than with a partial agonistic 

activity as seen with ANA (Devane, Hanus et al. 1992; Stella, Schweitzer et al. 

1997; Freund, Katona et al. 2003).  As lipids, neither ANA nor 2-AG require 

vesicular release, diffusing directly through the cell membrane to activate 

presynaptic CB1Rs (Freund, Katona et al. 2003). 
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Figure 1: Structures of four compounds of Cannabis sativa: the major psychoactive 

component  ∆
9
-tetrahydrocannabinol, as well as the minor psychoactive compounds ∆

8
-

tetrahydrocannabinol and cannabinol, as well as the non-psychoactive cannabidiol. Adapted from 

(Ameri 1999). 

 

Two mechanisms mediate the termination of endocannabinoid signalling. A 

putative transporter facilitates the diffusion of ANA and 2-AG into the cell in a 

competitive fashion, as evidenced by the fact that the endocannabinoids compete 

with each other for transport and neither is transported in the presence of a 

transport inhibitor (Beltramo and Piomelli 2000; Bisogno, Maccarrone et al. 2001; 

Freund, Katona et al. 2003). The ligands are also rapidly degraded by enzymes. 

Fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGL) are 

abundantly expressed and are located on the cellular inner membranes in close 

association with CB1Rs (Freund, Katona et al. 2003). ANA is rapidly hydrolysed by  
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Figure 2: Biosynthetic pathways of the endocannabinoids. A) Biosynthesis of anandamide. N-

acyl transferase catalyses the transfer of an arachidonate group of a phospholipid (not shown) to 

the primary amino group of phosphatidylethanolamine (PE). Phospholipase D hydrolyses the 

product of this reaction, N-arachidonoyl PE, to anandamide. B) Biosynthesis of 2-arichdonylglycerol 

(2-AG). Phosphoinositides (PI) are converted into either 1,2 diacylglycerol (DAG) by phospholipase 

C (PLC), or to lyso-PI by phospholipase A1 (PLA1). These intermediates are converted to 2-AG by 

diacylglycerol lipase (DGL) and lyso-PLC, respectively. Modified from Freund et al. (2003).  

 

FAAH (Freund, Katona et al. 2003) while 2-AG is primarily degraded by MGL 

(Beltramo and Piomelli 2000; Lichtman, Hawkins et al. 2002). 

 

1.2.3 Interactions with Non-Cannabinoid Receptors 

 

The actions of the CB1 receptor have been strongly linked to the endogenous 

opioid system (Robledo, Berrendero et al. 2008), which is itself involved in a wide 

variety of neuronal functions (Wang, Dow-Edwards et al. 2006). Cannabinoids and 

opioids share a common pharmacological profile, each inducing analgesia, 

hypothermia, hypotension and immunosuppression (Vigano, Rubino et al. 2005). 

Furthermore, both opioid and cannabinoid receptors are coupled to adenylate 
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cyclase through Gi/Go GTP binding proteins, block voltage gated Ca2+ channels, 

and activate K+ channels as well as the MAP kinase pathway (Childers, Fleming et 

al. 1992; Howlett 1995). Antagonists of one receptor are able to block the actions 

of agonists of the other, while co-administration of agonists results in synergistic 

effects (Howlett 1995). Many of these effects reflect a physiological coupling or 

receptors, converging at the level of adenylate cyclase, although a demonstration 

of physical association between these receptor types has still to be achieved 

(Trezza, Cuomo et al. 2008).  

 

The potential for crosstalk between the cannabinoid and opioid systems in 

relation to learning and memory has been demonstrated by several biochemical 

and some behavioural studies. Co-expression of cannabinoid and opioid 

receptors on the same cell has been demonstrated in the hippocampus, 

particularly on inhibitory GABAergic interneurons critical for the induction of long-

term potentiation (LTP), although co-expression has also been seen in other 

areas involved in learning and memory. Comparatively little is known about how 

the interaction of the cannabinoid and opioid systems influences behaviour. The 

few studies that have been published suggest that the opioid receptor antagonist 

naltrexone reverses the learning impairment of cannabinoids and vice versa. 

Taken together, these data certainly appear to indicate that the molecular 

similarities of the cannabinoid and opioid systems carry over, at least to some 

extent, to cognitive processes such as learning and memory (reviewed in 

(Robledo, Berrendero et al. 2008)). Indeed cannabinoid-induced acetylcholine 

release in the prefrontal cortex and hippocampus, implicated in hippocampal 

synaptic plasticity which is important for learning and memory, is modulated by 

the µ-opioid receptor (MOR) (Pisanu, Acquas et al. 2006). Furthermore, cognitive 

defects in later life attributed to cannabis exposure during development, which 

include inattention, hyperactivity and depressive symptoms, are believed to be in 

part caused by cannabinoid-mediated influences on the opioid neurotransmitter 

system (Sundram 2006). 
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In addition to the opioid receptors, there is also strong evidence to suggest that 

cannabinoids can interact with the vanilloid receptor family to modulate synaptic 

plasticity. This is discussed in the next section.  

 

1.3 Roles of the Cannabinoid System 

 

1.3.1 In the Periphery 

 

Cannabinoids, including THC, mediate anti-inflammatory and immunosuppressive 

effects as well as perturb cognition, analgesia and orexigenic (stimulating the 

appetite) processes (Dewey 1986). The effects of cannabinoids on the immune 

system are largely attributable to activation of CB2R, which is enriched in immune 

tissues (Galiegue, Mary et al. 1995) and is present in peripheral tissues at levels of 

up to 100 fold that of CB1R (Galiegue, Mary et al. 1995). In addition, immune cells 

are capable of synthesizing and degrading cannabinoids, suggesting a fully 

functional autocrine or paracrine signalling system (Greineisen and Turner 2010). 

The specific effects of cannabinoids on immune tissues include the inhibition of 

proliferation (Pross, Klein et al. 1987) and cytotoxicity of T lymphocytes (Klein, 

Kawakami et al. 1991), as well as inhibition of antibody synthesis (Arata, Klein et 

al. 1991) and interferon production (Blanchard, Newton et al. 1986). Overall, the 

peripheral endocannabinoids appear to be potent immunomodulatory agents 

(Greineisen and Turner 2010). 

 

1.3.2 In the CNS 

 

The major role of the endocannabinoid system in the central nervous system 

(CNS) is the regulation of synaptic transmission. This is primarily achieved by the 

action of the endocannabinoid system in regulating the mechanisms of LTP 

(Heifets and Castillo 2009). LTP describes the activity-driven strengthening of 

synapses that is required for learning and memory (Martin, Grimwood et al. 2000). 
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Activation of the cannabinoid system by exogenous agents such as THC may 

reduce neurotransmitter release to levels below that required for LTP (Sullivan 

2000). 

 

In the rodent hippocampus, CB1R has been localised to the presynaptic terminal 

of cholecystokinin (CCK) containing GABAergic inhibitory interneurons, but not the 

postsynaptic membrane of the synapse (Katona, Sperlagh et al. 1999). The 

binding of GABA results in inhibitory postsynaptic currents (IPSCs) and a slight 

hyperpolarisation of the postsynaptic membrane. These IPSCs can be reduced by 

depolarisation-induced suppression of inhibition (DSI), a Ca2+ dependent 

mechanism by which presynaptic GABA release is suppressed (Llano, Leresche et 

al. 1991; Pitler and Alger 1992; Alger and Pitler 1995). The presence of CB1R in 

the presynaptic membrane suggests that the endocannabinoid system may be 

important in mediating DSI. The activation of interneurons in the hippocampus by 

the synthetic cannabinoid agonist WIN 55,212-2 reduced GABA release (Katona, 

Sperlagh et al. 1999) and IPSCs (Hajos, Katona et al. 2000), and these effects 

were sensitive to the cannabinoid antagonist SR141716A. CCK-containing 

GABAergic interneurons are hippocampal basket cells thought to be important in 

the synchronisation of neuronal activity from large groups of excitatory pyramidal 

cells (Cobb, Buhl et al. 1995). The association between CCK expressing 

interneurons and CB1R extends to many other forebrain areas as well, including 

the neocortex, amygdala and prefrontal cortex (Ferraro, Tomasini et al. 2001; 

Katona, Rancz et al. 2001; Freund, Katona et al. 2003), and these associations 

are preserved in humans (Katona, Sperlagh et al. 2000). The strong association 

between CB1R and GABAergic neurons in many regions of the CNS (Tsou, Brown 

et al. 1998) predicts that the endocannabinoid system may play an important role 

in the regulation of local network activity (Freund, Katona et al. 2003). Thus, 

through the DSI mechanism, endocannabinoids are able to elicit long-term 

depression (LTD) at GABAergic inhibitory synapses (Chevaleyre and Castillo 

2004). 
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As GABAergic tone is able to induce IPSCs and is modulated by DSI, 

glutamatergic neurotransmission evokes excitatory post synaptic currents (EPSCs 

- characterised by a slight depolarisation of the postsynaptic membrane), and 

these are modulated by depolarisation-induced suppression of excitation (DSE) 

(Kreitzer and Regehr 2001). DSE is a Ca2+-dependent process that is mediated at 

the presynaptic neuron and is able to regulate ESPCs by inhibiting excitatory 

neurotransmission in neurons undergoing LTP (Kreitzer and Regehr 2001). In this 

way DSE preserves the specific regional activation profile characteristic of LTP by 

preventing the aberrant activation of neighbouring neurons (Ohno-Shosaku, 

Tsubokawa et al. 2002), as well as preventing excitotoxicity in these neural 

pathways (Marsicano, Goodenough et al. 2003; Monory, Massa et al. 2006). DSI, 

however, enables neurons in the basal state to be activated into LTP when 

another stimulus is received during disinhibition which would otherwise be unable 

to induce LTP (Alger and Pitler 1995). Thus it appears that the relative activity of 

the short-term (tens of seconds) effects of DSI and DSE plays a crucial role in the 

proper induction and maintenance of LTP (Alger and Pitler 1995; Ohno-Shosaku, 

Tsubokawa et al. 2002; Freund, Katona et al. 2003). The requirement of an 

increase in intracellular Ca2+ for both DSI and DSE coincides with the requirement 

of Ca2+ for the synthesis of endocannabinoids (see section 1.2.2) (Freund, Katona 

et al. 2003) and both DSI and DSE operate via CB1R receptors (although DSE 

appears to be approximately 30x less sensitive to cannabinoids) (Ohno-Shosaku, 

Tsubokawa et al. 2002; Monory, Massa et al. 2006). 

 

The link between endocannabinoids and DSE occurs despite comparatively little 

CB1R expression on glutamatergic neurons (Tsou, Brown et al. 1998). CB1R does 

appear to be involved however, as ESPCs are sensitive to the cannabinoid agonist 

WIN 55,212-2, the effect of which can be antagonised by SR141716A (Shen, Piser 

et al. 1996; Ameri, Wilhelm et al. 1999; Misner and Sullivan 1999; Auclair, Otani et 

al. 2000). However cannabinoids evoked ESPCs have also been reported to be 

unaffected in CB1R-/- mice (Hajos, Ledent et al. 2001), can be antagonised by the 

vanilloid antagonist capsazepine, and can mimicked by the vanilloid agonist 

capsaicin (Hajos and Freund 2002) suggesting that a molecularly distinct receptor 

sensitive to cannabinoids participates in DSE. This receptor may be the vanilloid 
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receptor 1 (VR1) since the synthetic cannabinoid antagonist SR171614A has 

subsequently been shown to act at both the CB1R and VR1 receptors (Hajos, 

Ledent et al. 2001).  

 

A differential regulation of DSI and DSE by endocannabinoids has been proposed. 

Anandamide is able to bind the VR1 receptor (Zygmunt, Petersson et al. 1999) 

and inhibit EPSCs (Ameri, Wilhelm et al. 1999), whereas 2-AG does not affect 

EPSCs despite being present in the brain at levels 170 fold greater than ANA 

(Stella, Schweitzer et al. 1997). DSI however relies on 2-AG only, thus ANA and 2-

AG differentially modulate DSI and DSE respectively (Freund, Katona et al. 2003). 

They may also be a functional interaction between the two endocannabinoids. 

Kainic acid induces a massive increase in ANA levels to prevent seizures in a 

CB1R dependent mechanism (Monory, Massa et al. 2006), and artificial 

enhancement of ANA levels reduces DSI and 2-AG levels (Maccarrone, Rossi et 

al. 2008). Furthermore, VR1 mediates the internalisation of AMPA receptors in the 

postsynaptic neuron upon ANA binding, leading to LTD (Chavez, Chiu et al. 2010). 

Thus, increased ANA production during times of high neural activity appears to 

regulate neurotransmission be re-establishing GABAergic transmission through a 

reduction of 2-AG production, and the removal of AMPA-type glutamate receptors. 

Such a mechanism may help explain the biphasic effects of cannabinoids on 

glutamate release, where low concentrations enhance EPSCs while inhibition of 

EPSCs is observed with concentrations an order of magnitude larger (Kujtan, 

Carlen et al. 1983; Nowicky, Teyler et al. 1987; Kirby, Hampson et al. 1995; 

Freund, Katona et al. 2003). The biphasic sensitivity of DSI and DSE to 

cannabinoids may in part reflect the involvement of multiple receptor systems in 

DSE, and the functional interaction of the endocannabinoids. 

 

Owing to the integral role of the endocannabinoid system in mediating LTP, it is 

hardly surprising that exogenous cannabinoids are able to perturb cognitive 

processes. The behavioural impairment resulting from cannabinoid exposure is 

discussed in Section 1.4.  
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1.3.3 Emerging Roles 

 

In addition to the relatively well defined role of endocannabinoids in the regulation 

of LTP/LTD by retrograde signalling, evidence is also emerging that the 

endocannabinoids may act as paracrine and autocrine regulators (Fig. 3). This 

subject has been reviewed by Ohno-Shosaku et al (2011).  

 

While CB1Rs are generally thought of as regulating GABAergic transmission at 

presynaptic sites only, there also appears to be some somatodendritic CB1R 

expression on inhibitory interneurons. The release of endocannabinoids from 

activated glutamatergic neurons appears to decrease the firing rate of adjacent 

interneurons that, because of their relatively long axons, potentiates the effects of 

endocannabinoid release beyond the diffusible limits of the ligands (Kreitzer, 

Carter et al. 2002). Furthermore, a subpopulation of hyperexcitable GABAergic 

interneurons also appear to regulate their own activity through an 2-AG and CB1R 

mediated mechanism. Glial cells express CB1R and are capable of synthesising 

endocannabinoids, suggesting an ability to communicate using the 

endocannabinoid system. Much as somatodendritic CB1Rs on interneurons are 

able to potentiate the effect of endocannabinoid release by inducing LTD at distant 

GABAergic synapses, activation of CB1Rs on astrocytes potentiates the excitatory 

transmission, possibly by stimulating astrocytic glutamate release, and activating 

neurons that are again beyond the diffusible limits of the endocannabinoids 

(Navarrete and Araque 2011).  

 

Finally, cannabinoids may act through non-cannabinoid type receptors. For 

example ANA may act as an intracellular signalling molecule through its actions on 

VR1, wherein VR1 activation induces the internalisation of AMPA receptors 

resulting in LTD in the postsynaptic neuron (Chavez, Chiu et al. 2010). An 

additional G-protein coupled receptor, GPR55 has been proposed as CB3R 

because of its structural homology in the binding region, as well as its ability to 

bind to a number of cannabinoid ligands, although its exact pharmacology remains 
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unclear (Moriconi, Cerbara et al. 2010). The emerging roles and components of 

the cannabinoid system demonstrate the rapidly expanding knowledge, although 

also the importance of continued study of cannabinoid biology. Regardless, 

cannabinoid signalling represents a significant modulatory system in the CNS, of 

which disruption could be expected to lead to a variety on impairments.   
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Figure 3: Functional roles of endocannabinoid signalling. Endocannabinoids, released from 

postsynaptic sites, have a well defined function as retrograde messengers regulating 

neurotransmitter release (a). In addition, activation of CB1Rs on the soma and dendrites of 

neighbouring interneurons (b) can potentiate the effect of endocannabinoid release beyond the 

diffusible limits of the endocannabinoids by regulating GABA release and LTP induction at distant 

sites (b‟). Some hyperexcitable interneurons use their own endocannabinoid release as a means of 

regulating their activity in an autocrine fashion (c). Activation of CB1Rs on astrocytes by 

endocannabinoids released during neuronal excitation (d) can result in glutamate release and the 

excitation of neurons at sites beyond the diffusible limits of the endocannabinoids (d‟). The 

endocannabinoid ANA acts as an intracellular signalling molecule via VR1 at some postsynaptic 

site, regulating LTD by the internalisation of AMPA receptors (e). Image adapted from (Ohno-

Shosaku, Tanimura et al. 2011) 
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1.4 Behavioural Consequences of Cannabinoid Exposure 

 

In humans the use of cannabis peaks between the ages of 15 and 30 years, with a 

trend of continued use from 30 – 40 years emerging (Trezza, Cuomo et al. 2008). 

A range of cognitive impairments are associated with cannabis abuse in humans, 

including psychomotor, analgesic, satiety and perceptual effects, as well as 

deficits in learning and memory performance across a wide range of tasks. Many 

of these effects are also observed in rodent models (Iversen 2003). 

 

1.4.1 Methods of Behavioural Assessment 

 

Measurements of spatial learning and memory have commonly been used to 

investigate the effects of physical and chemical lesions on learning and memory 

processes. Memory is classically categorised into two major groups. Declarative 

memory is related to information that is communicated or expressed, and 

procedural memory is related to information about procedural or motor skills which 

is not communicated. In addition, a distinction between long- and short-term 

memory is commonly drawn. Spatial memory cannot be attributed to any one 

memory category but is thought to involve contributions from several memory 

processes. Spatial memory uses cues from the environment to locate positions in 

space, and is likely to have evolved as a means of preservation and survival of a 

species. It allows individuals to locate food while avoiding adverse situations 

based on past experiences (Paul, Magda et al. 2009). Spatial memory is therefore 

a collection of processes responsible for recognising, coding, storing and 

recovering information about the spatial arrangement of objects or routes in space 

(Kessels, de Haan et al. 2001).  

 

Mazes such as the radial arm maze (RAM) and Morris water maze (MWM) are 

typically used in the assessment of spatial learning and memory (Paul, Magda et 

al. 2009). Both working and reference memory are involved in each of these tasks. 
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In the initial description of the RAM, animals were required to find food deposited 

at the end of each of 8 arms radiating from a central platform. In order to maximise 

performance in this task, animals must remember from which arms they have 

retrieved food and to which arms they should visit next (Olton and Samuelson 

1976). This design relies heavily on working, or short-term (trial dependent), 

memory processes with little reference, or long-term (trial independent), memory 

input. The RAM design has been adapted to allow a subset of the arms to be 

baited, requiring the animals to learn which arms contain rewards (reference 

memory) and which arms have already been investigated (working memory). 

Learning is inferred from the accuracy with which animals enter the arms 

containing food over successive trials, and errors are attributed to either working 

or reference memory errors. The MWM apparatus is a round pool that is filled with 

opaque water to conceal a platform located 2 – 3 cm beneath the water‟s surface 

in a consistent location. The latency before animals locate the platform over 

successive trials is used to assess learning (or acquisition of reference memory), 

while memory is assessed in a probe trial following the removal (reference 

memory) or relocation (working memory) of the submerged platform (D'Hooge and 

De Deyn 2001; Paul, Magda et al. 2009). Spatial reference memory has been 

reported to be of a greater capacity, duration and resistance to interference than 

working memory (Olton, Becker et al. 1979; Moscovitch, Rosenbaum et al. 2005; 

Paul, Magda et al. 2009), although the acquisition of spatial memory over 

successive trials may be more sensitive to disruption (Da Silva and Takahashi 

2002).  

 

While the MWM holds some distinct advantages over the RAM, including a faster 

rate of learning and no requirement to motivate the desired behaviour by either 

food or water deprivation (Paul, Magda et al. 2009), the MWM lacks the ability to 

investigate some executive functions such as chunking. First proposed by Miller 

(1956), chunking is a strategy of working memory that allows discrete memory 

traces to be organised into related groups called „chunks‟, which can then be 

recalled as a whole rather than as individual entities. Memories are continuously 

reorganised into fewer, but larger, chunks until a suitably small number of chunks 

is achieved to recall all the information accurately (Miller 1956). Chunking has 
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been demonstrated in a range of species, including pigeons (Terrace 1987), rats 

(Dallal and Meck 1990; Cohen, Mallet et al. 1993; Macuda and Roberts 1995; 

Brown and Terrinoni 1996) and humans (Sakai, Kitaguchi et al. 2003; De Lillo 

2004; Ridgeway 2006), suggesting that it may be an important, evolutionarily 

conserved, process.  

 

Solution strategies in mazes designed to assess spatial learning and memory 

have been proposed to fall along a continuum, each point of which relies on 

mnemonic processes to varying degrees. Briefly, animals can be considered to 

advance along this continuum from random sampling, with little reliance on 

memory, through response algorithms with limited requirement of mnemonic 

processes until spatial mapping is achieved, in which strong representations of 

both reference and working memory are required (Dallal and Meck 1990; Paul, 

Magda et al. 2009). Chunking is an extension of spatial mapping in which the 

relationship between spatial goals is organised into groups or „chunks‟ to ease the 

difficulty of the task (Dallal and Meck 1990). This reorganisation may be 

particularly evident in the RAM. Crucially, Miller describes chunking as a gradual 

process in which chunk volume is incrementally increased as associations are 

formed (Miller 1956).  

 

Working memory can additionally be assessed in non-spatial behavioural 

paradigms. Passive and active avoidance tasks are commonly used to assess 

working memory in rodents. In the passive avoidance task, a biologically probable 

response, the movement of an animal from an illuminated to a darkened 

environment, is associated with a mild foot shock; in the active avoidance task foot 

shock is preceded by an auditory stimulus, thus allowing the animal an opportunity 

to escape. An increased latency to enter the darkened environment (passive 

avoidance), or decreased latency to escape the foot shock (active avoidance), is 

regarded as a positive correlate of working memory (Jarvik and Kopp 1967; Paul, 

Magda et al. 2009). These tasks are based on associative learning (Bammer 

1982) and require little spatial input, although they have been adapted to include 

spatial components (Cimadevilla, Kaminsky et al. 2000). Another commonly used 
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paradigm in the evaluation of working memory is the novel object recognition task. 

This task exploits the natural exploratory behaviour of rodents when presented 

with novel stimuli. Briefly, the task consists of exposing an animal to two objects 

inside a chamber and allowing it to explore them freely. The animal is then 

removed for a period of time before being reintroduced to the chamber in which 

one of the objects has been replaced. Animals with intact working memory 

investigate the new object preferentially as they remember that they have seen the 

other object before (Ennaceur and Delacour 1988). A final method for testing 

working memory using non-spatial methods is the delayed-matched (or non-

matched) to sample task (DMTS or DNMS, respectively). Generally the subject is 

presented with a sample stimulus, the stimulus is the removed and a period of 

time is allowed to lapse. The original stimulus plus a novel stimulus is then 

presented to the subject again. Each of the stimuli is associated with a lever, and 

the subject indicates which is the original (DMTS) or novel (DNMS) stimulus in 

order to gain a reward. The accuracy of the subject‟s performance in this task 

represents the integrity of working memory (Lichtman, Varvel et al. 2002). 

 

The impairment of working memory by cannabis is supported by studies assessing 

behaviour in both the spatial and non-spatial domains using methods described 

above. These studies are discussed in the following sections. 

 

1.4.2 Consequences of Exposure in Adulthood 

 

Reports on the effects of cannabinoids on learning and memory largely agree that 

specific domains are affected while others appear uninhibited. In the context of 

spatial learning and memory, this is observed by the repeated demonstration that 

aspects of the tasks relating to short term (working) memory are impaired, while 

retrieval of information representing long term (reference) memory is intact 

(Lichtman, Varvel et al. 2002).  
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A delayed RAM task has often been used to measure the effect of cannabinoids 

on spatial working memory in rodents. In this task, animals are allowed to enter a 

group of arms before being removed from the apparatus for a period of time (pre-

delay). In order to accurately perform the task once they are reintroduced to the 

apparatus (post-delay) animals must remember which arms were visited pre-

delay. Studies by Lichtman‟s group (Lichtman, Dimen et al. 1995; Lichtman 2000; 

Wise, Iredale et al. 2008) utilised a delayed task in the RAM in which seven of 

eight rewarded arms were available for entry pre-delay. In the post-delay phase all 

arms were available for entry and animals were required to locate the previously 

unavailable arm. Their results suggest that cannabinoids affect working memory in 

the RAM as post-delay performance was impaired by cannabinoids. Similar effects 

are observed when the number of arms post-delay is increased to four (Nakamura, 

Dasilva et al. 1991; Molinaholgado, Gonzalez et al. 1995). A limitation of these 

studies, modelled heavily on the initial description of the RAM by Olton and 

Samuelson in which every arm contains a food reward (Olton and Samuelson 

1976), is that they contain no reference memory component. Therefore, excluding 

any impairment of reference memory from these studies alone is not possible.  

 

Other studies have assessed the relative impairment of reference and working 

memory associated with cannabinoid exposure in tasks specifically designed to 

include both working and reference memory components. Mishima et al. (2001) 

pre-trained animals to a performance criterion in a working and reference memory 

task in the RAM. Animals were then treated with THC and their behaviour 

assessed following treatment. A significant increase in working memory errors was 

observed in the RAM, while reference memory was unimpaired. Importantly the 

reference memory component of this task represents the retrieval of learnt 

information (the retrieval of reference memory). The attainment of reference 

memory was tested using the MWM and no impairment was observed. This study 

extends others that have investigated the effect of cannabinoids on memory by 

demonstrating that spatial working memory, but not reference memory is impaired 

in either the attainment of retrieval phases. Working, but not reference memory 

(during attainment phases) has also been shown to be affected by THC in the 

MWM (Varvel, Hamm et al. 2001).  However, a later study by Da Silva and 
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Takahashi (2002) used the MWM to show that THC was able to impair not only 

working memory, but also the attainment of reference memory while retrieval 

processes were uninhibited. Thus, while spatial working memory certainly appears 

to be impaired by cannabinoid exposure, reference memory appears to be more 

robust, although some aspects of reference memory may be more sensitive than 

others.  

 

A number of investigations of the effect of cannabinoids on working and reference 

memory in the non-spatial domain support the findings in the RAM and MWM. The 

DMTS/DNMS tasks have been used to illustrate that the CB1R agonists THC 

(Heyser, Hampson et al. 1993) and WIN55,212-2 (Hampson and Deadwyler 1999) 

are able to impair working memory, while cannabinoids also impair working 

memory assessed in passive avoidance (Castellano, Cabib et al. 1997) and novel 

object recognition tasks (Barna, Soproni et al. 2007). As these tasks test 

exclusively working memory, some have paired them with tasks that assess 

reference memory to better assess the relative impairment of these processes by 

cannabinoids. Mallet et al. (1996; 1998) showed that cannabinoids impaired 

working memory in a DNMS task, while reference memory was unimpaired in a 

non-spatial visual discrimination task. In this task a food reward is associated with 

entry to a chamber marked with a specific cue and the accuracy with which 

animals enter the correct chamber represents reference memory. These results 

have been replicated, in that THC impaired working memory in the passive 

avoidance paradigm while visual discrimination was not impaired (Mishima, 

Egashira et al. 2001). 

 

Thus, spatial and non-spatial assessments of the effects of cannabinoids on 

working and reference memory largely agree. Working memory is consistently 

impaired by cannabinoids using a variety of paradigms, whereas retrieval of 

reference memory is not. The attainment of reference memory, however, may be 

more sensitive to disruption by cannabinoids, and although this remains unclear, 

adolescents may be more susceptible to this impairment. 



 21 

1.5 The Importance of Adolescence 

 

Much of the literature that has assessed the behavioural impairment associated 

with cannabis use has focused on the consequences of adult exposure to this 

drug, neglecting the adolescent period entirely. While some assess the eventual 

effects of cannabis exposure during adolescence on adult cognitive processes 

later in life, there are few studies that assess adolescent cognition concurrent with 

adolescent cannabis use. This is despite the fact that cannabis is the most widely 

used illicit drug amongst this age group (Adriani and Laviola 2004), and that 

increasing cannabis use during adolescence is associated with poorer educational 

achievement (Fergusson and Boden 2008). Furthermore adolescence is a period 

of final brain development that underlies the emergence of adult cognition, the 

disruption of which could be expected to have significant consequences (Spear 

2000). 

 

The need for adolescent-specific research is highlighted by the fact that the 

expression of CB1R peaks during adolescence before declining to adult levels. 

The higher expression of CB1R during adolescence may render adolescents more 

susceptible to the effects of cannabinoids by providing more binding sites through 

which they may act (Spear 2000; Adriani and Laviola 2004). The onset, duration 

and magnitude of the effects of CB1R activation by THC are affected by the 

pharmacokinetics of THC. The absorption, metabolism and elimination of the drug 

all affect its bioavailability, and these factors may change over time (Huestis 

2007). While little is known about how developmental age effects 

pharmacokinetics (Anderson 2010), differences in pharmacokinetic properties may 

explain why female rats are more sensitive to some effects of cannabinoids than 

males. Females have lower overall body fat, providing fewer absorption sites for 

THC as it is a lipophillic drug thus increasing its bioavailability, as well as an 

isozyme of cytochrome P450 that produces greater quantities of the psychoactive 

THC metabolite, 11-hydroxy-∆9-tetrahydrocannabinol (Tseng, Harding et al. 2004). 

Lower body fat percentage in adolescent versus adult animals could similarly 

contribute to greater cognitive impairment in adolescents, whereas activity of 



 22 

metabolic enzymes has been shown to be at adult levels by adolescence 

(Anderson 2010). Nonetheless the potential for the continued maturation of 

pharmacokinetics during adolescence, and the lack of understanding of these 

processes, further highlights the need for adolescent-specific research. 

 

1.5.1 An Important Neurodevelopmental Period 

 

The adolescent period is generally associated with a loss of synapses and 

associated structures required for neurotransmission. These processes are 

proposed to be a result of developmental plasticity in which environment and 

experience dictate the final cortical architecture. This subject has been reviewed 

by Spear (2000).  

 

A general overproduction then pruning of synapses takes place during 

adolescence, which in humans occurs between 7 - 16 years of age. By the end of 

adolescence as many as 50% of the synapses per neuron are lost in some cortical 

areas and this coincides with focal, rather than wide-spread activation of the brain 

during task performance. This reduction in synaptic density is correlated with 

alterations in neurotransmitter receptors in various brain regions. For example, 

expression of the NMDA-type glutamate receptor peaks in the prefrontal cortex 

(PFc) and hippocampus during adolescence, reducing by approximately one third 

by adulthood (Spear 2000). Furthermore, dendritic spine density on granule cells 

of the dentate gyrus decreases during adolescence (Zehr, Nichols et al. 2008). 

Dopaminergic (DAergic) input, dopamine synthesis and expression of the 

dopamine transporter (DAT) continues to increase in the PFc during adolescence 

while, in the hippocampus and striatum, these systems peak during adolescence 

then decline to adult levels. Generally, activation of DAergic systems is greater in 

adolescence than adulthood, as indicated by the higher levels of the second 

messenger cAMP in adolescence. Receptors for GABA transmission increase 

during adolescence in the hippocampus, whereas CB1R expression peaks during 

adolescence before declining to adult levels. Changes in the expression of 
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components of the serotinergic and cholinergic systems have also been reported 

to occur during adolescence (Spear 2000).  

  

From these studies it is obvious that the relative contribution of the various 

neurotransmitter systems can be expected to differ between adolescent and adult 

individuals. As such, the effects of drugs on cognitive effects observed in adult 

animals cannot necessarily be extrapolated to the adolescent period. Rather, 

studies that focus on adolescent individuals specifically are required.  

 

1.5.2 Behavioural Effects of Adolescent Cannabinoid Exposure 

 

Relatively few studies investigate the adolescent period specifically. In these 

studies, animals are treated with cannabinoids during adolescence and after a 

period of abstinence their behaviour is tested in adulthood. These behavioural 

effects are compared to the effects seen in adult animals that were identically 

treated during adulthood. Any difference in cognitive abilities is taken to represent 

the relative sensitivity of adolescence. Using the synthetic cannabinoid agonist CP 

55,940, adolescent animals exhibit greater levels of anxiety and impairment of 

working memory in the novel object recognition task than adult animals (Schneider 

and Koch 2003; O'Shea, Singh et al. 2004). Initiation of cannabis use during 

adolescence, but not adulthood, is also associated with increased levels of 

depression (Rubino, Vigano et al. 2008), as well as impairment of working memory 

and strategy selection in the RAM (Rubino, Realini et al. 2009). As a consequence 

of the research design employed in these studies, requiring periods of treatment 

and abstinence, the behavioural consequences of adolescent cannabinoid 

exposure are actually tested in adulthood, not during the adolescent period. Thus, 

these results suggest that either exposure during adulthood does not affect these 

behavioural measures as adults exposed during adulthood were unimpaired 

following a period of abstinence, or more likely that the residual effects of cannabis 

exposure during adolescence persist longer (Rubino, Vigano et al. 2008; Rubino, 

Realini et al. 2009). Others have assessed the differences in cognitive 
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consequences that an adolescent versus an adult user will experience 

concurrently while cannabis is being used.  

 

Adolescent animals generally find THC less aversive than adult animals, are 

equally sensitive to the anxiogenic properties of the drug, and display greater 

lasting cognitive impairment of working memory in the novel object recognition 

task later in adolescence after a short abstinence period (Quinn, Matsumoto et al. 

2008). The fact that the adolescent brain is still developing may protect these 

animals from the aversive effects of THC treatment, which may manifest in the 

human situation as higher rates of continued drug use. These data further 

demonstrate the relative susceptibility of working memory during the adolescent 

period (Quinn, Matsumoto et al. 2008). It is important to note that the drug 

treatment regimen used in this study did not include any drug-seeking component. 

Therefore, the aforementioned consequence of reduced anxiety and continuing 

drug use has the potential to augment the reported deficit in working memory in 

humans.  

 

Fewer studies have assessed the effect of adolescent exposure to cannabinoids 

on learning concurrent with cannabis use. The nature of this impairment was 

tested in two studies by Cha et al. (2006; 2007) using THC as the cannabinoid 

agonist. Adult animals treated with THC learnt the task at rates comparable to 

control animals in the MWM, whereas adolescents were significantly impaired by 

THC treatment. These data strongly suggest that developmental age plays a 

significant role in determining the effects of cannabis on learning. 
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Ligand and Treatment 

Period 

Behaviours tested Findings Reference 

THC 

 During 

adolescence 

 During adulthood 

Tests conducted during THC-

treatment (adolescents tested 

during adolescence) 

 Place aversion 

 Anxiety 

Tests conducted following 

washout (adolescents tested in 

early adulthood) 

 Working memory 

Adult animals found THC adversive during drug 

treatment and this persisted into the wash-out 

phase, whereas no aversion was seen in adolescent 

animals. 

THC was equally anxiogenic in adolescent and adult 

rats. 

Residual effects of THC on working memory were 

seen in only adolescent animals. 

(Quinn, Matsumoto et 

al. 2008) 

THC 

 During 

adolescence 

 During adulthood 

Spatial learning was compared 

in the MWM following: 

 Acute THC (2.5, 5, 

10mg/kg)* 

 Chronic THC following a 

washout period (5 

mg/kg) 

*Training was during treatment 

period 30 min following 

treatment 

 

At all doses, THC impaired spatial learning more in 

adolescent than in adult rats.  

THC disrupted learning in a dose dependent 

manner, with the impairment by 2.5 mg/kg and 5 

mg/kg differing significantly in adolescent but not 

adult rats. 

No lasting impairment of spatial learning was 

observed in either adolescent or adult rats.  

(Cha, White et al. 

2006)  

(Cha, Jones et al. 

2007) 
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Ligand and Treatment 

Period 

Behaviours tested Findings Reference 

THC 

 During 

adolescence 

 During adulthood 

Animals were treated with THC 

for 10 days, with behavioural 

testing from day 6 – 10 

 Spatial learning  

Pre-treatment with THC prevented spatial learning 

impairment in adults, but not adolescents when 

challenged with THC. This may be related to delayed 

activation of tolerance mechanisms in adolescents. 

(Moore, Greenleaf et 

al. 2010) 

THC 

 During 

adolescence 

Animals were treated during 

adolescence, then tested as 

adults 

 Depressive-like 

behaviour 

 Spatial working memory 

Depressive-like behaviour in adulthood. 

Impairment of spatial working memory related to 

poor strategy selection in the radial maze.  

(Rubino, Vigano et al. 

2008; Rubino, Realini 

et al. 2009; Rubino, 

Realini et al. 2009) 

Chronic WIN 55,212-2 or 

CP 55,940 

 During 

adolescence 

 During adulthood 

All behaviours tested as adults 

after a washout period 

 Anxiety 

 Working memory 

Adult animals showed no alterations in working 

memory or anxiety, whereas all measures were 

impaired in adulthood following adolescent 

exposure. 

(Schneider and Koch 

2003)  

(O'Shea, Singh et al. 

2004) 

Table 1: Pharmacological effects of cannabinoids in adult and adolescent animals. 
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1.5.3 Behavioural Deficits in Humans 

 

Harvey et al (2007) investigated the relationship between cognitive performance 

and cannabis use in a group of human adolescents. Lasting impairment of spatial 

and non-spatial working memory, spatial working memory strategy and intelligence 

quotient after a 12 hour abstinence period was associated with adolescent 

cannabis use following normalisation for other variables. These deficits represent 

impairment of executive function, attention and working memory (Harvey, Sellman 

et al. 2007). Similar effects have been observed in other studies using 

considerably longer abstinence periods (Pope and YurgelunTodd 1996; Hall and 

Solowij 1998; Giancola, Shoal et al. 2001; Fried, Watkinson et al. 2005). These 

processes are important for individuals to efficiently process and store information. 

As a result of these impairments adolescent cannabis users are likely 

disadvantaged in learning environments (Harvey, Sellman et al. 2007) owing to the 

disruption of mechanisms responsible for the organisation and integration of 

information (Hall and Solowij 1998). 

 

1.6 The Hippocampal Formation 

 

1.6.1 Subfields and Neural Pathways of the Hippocampal Formation 

 

The formation of memory, and particularly explicit memory required for spatial 

tasks (in which information is consciously recalled), relies on a complex network of 

neural circuitry within the temporal lobe (Fig. 4). The entorhinal cortex receives 

and integrates sensory input, primarily received from the parahippocampal cortex 

and perirhinal cortex. Projections from the entorhinal cortex synapse on the 

dentate gyrus of the hippocampus (the so called „perforant path‟), although some 

innervation of other hippocampal areas from the entorhinal cortex is present 

(Kandel, Schwarts et al. 2000). The „trisynaptic loop‟ describes the pathway 

between the three major regions of the hippocampus. The perforant fibre pathway 
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enters the hippocampus and synapses with the granule cells in the dentate gyrus. 

Granule cell axons, which form the mossy fibres, extend from the cell bodies in the 

dentate gyrus to the CA3 region. Finally, pyramidal cells in the CA3 region extend 

their axons to the CA1 region, forming the Schaffer collateral pathway. The output 

of the hippocampus is received at the subiculum, which passes information back 

to cortical areas via the entorhinal, parahippocampal and perirhinal cortices. The 

entorhinal cortex thus plays a unique role in this circuit, being simultaneously the 

main input and output of the hippocampus. Consequently damage to the 

entorhinal cortex, for example associated with the earliest pathological changes in 

Alzheimers disease, generate particularly severe memory impairments (Kandel, 

Schwarts et al. 2000; Squire, Stark et al. 2004). The hippocampus is considered to 

be essential for acquisition, consolidation, storage and retrieval of spatial 

information (D'Hooge and De Deyn 2001). Studies indicating this are discussed in 

the next section. 
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Figure 4: Neural connectivity of the temporal lobe. Sensory information from a range of cortical 

areas is relayed to the parahippocampal and perirhinal cortices of the temporal lobe, and this 

information is integrated at the level of the entorhinal cortex. This information is passed through the 

hippocampus sequentially, from the dentate gyrus (DG) to the CA3 and then onto the CA1 region 

before leaving the hippocampus through the subiculum. The entorhinal cortex primarily innervates 

at the level of the DG but also has inputs to other areas of the hippocampal circuit. Information is 

then returned to cortical areas via the associated cortices of the temporal lobe. The correct 

functioning of these regions, as well as the connections between them is critical in learning and 

memory processes. Image adapted from Kandel et al. (2000). 
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1.6.2 Importance of the Hippocampus in Learning and Memory 

 

The correct and coordinated functioning of several brain regions are required to 

perform spatial learning and memory tasks. The hippocampus is perhaps the most 

studied, but lesions to the striatum, basal forebrain, and several neocortical areas 

all produce behavioural deficits in these tasks. Lesions that disconnect the neural 

circuitry of these structures may be equally damaging to cognitive performance. 

For example, severing of the fimbra-fornix is commonly used to disrupt the neural 

connections between these areas. As a result of lesions to the fimbra-fornix, input 

from the subiculum to the nucleus accumbens, as well as cholinergic input to the 

hippocampus, is disrupted (D'Hooge and De Deyn 2001). The resulting 

hippocampal dysfunction results in spatial learning impairment (Nilsson, Shapiro et 

al. 1987) that is associated with behavioural inflexibility (Eichenbaum, Stewart et 

al. 1990).  

 

The specific involvement of the hippocampus in spatial memory tasks such as the 

MWM and RAM has been demonstrate in animals with chemical lesions that 

induce significant cell loss in the hippocampus. Lesioned animals are able to 

locate the submerged platform efficiently when it is marked, thus requiring little 

spatial learning, although when the platform is concealed, these animals were 

impaired compared to lesion-free individuals (Moser, Moser et al. 1993; Pearce, 

Roberts et al. 1998). Furthermore, the hippocampus is especially crucial for spatial 

learning and memory since lesions of this type do not interfere with non-spatial 

learning (Gallagher and Holland 1992; Moser, Moser et al. 1993; Skinner, Martin 

et al. 1994; Cho, Friedman et al. 1999). However, it appears that the dorsal, rather 

than the ventral, hippocampus may be more important in these tasks since lesions 

in the dorsal area elicit a much greater impairment. This is likely due to the 

differential innervation of the dorsal and ventral hippocampus in which the dorsal 

receives inputs from the lateral entorhinal cortex and the ventral receives inputs 

from the medial entorhinal cortex. Sensory inputs to the dorsal hippocampus, 

through the lateral entorhinal cortex, include visual, auditory, somatosensory and 
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olfactory processes that likely contribute significantly to spatial learning tasks 

(Moser, Moser et al. 1993). 

 

More sophisticated analyses have investigated specific periods of learning and 

memory in spatial tasks for which intact hippocampal functioning is crucial. By 

infusing a water soluble AMPA receptor antagonist into the hippocampus during 

times of training (acquisition), memory encoding (between trials) and memory 

retrieval (memory), it is possible to block neurotransmission during specific phases 

of information processing. This method has been used to categorically illustrate 

that an intact hippocampus is required at all steps of spatial learning, memory and 

recall, as suggested by previous research (Knowlton and Fanselow 1998; Riedel, 

Micheau et al. 1999). 

 

Other brain regions besides the hippocampus are important for spatial learning 

and memory. Lesions to the basal forebrain impair performance in spatial learning 

and memory tasks, presumably largely accounted for by the disruption of 

cholinergic output of this region that provides the hippocampus and cortex with the 

majority of their cholinergic inputs (Mandel, Gage et al. 1989; D'Hooge and De 

Deyn 2001). Lesions to subcortical regions such as the striatum also impair 

learning in spatial tasks (Whishaw, Mittleman et al. 1987; Block, Kunkel et al. 

1993), perhaps as a consequence of impaired strategy selection (Whishaw, 

Mittleman et al. 1987). Finally, specific regions of the cortex are important in 

spatial learning and memory tasks, including the entorhinal and perirhinal cortices, 

as well as the prefrontal cortex. The range of cortical areas involved likely 

represents the range of cognitive functions required for spatial learning, in which 

planning and execution of required movements, as well as decision making are 

important (D'Hooge and De Deyn 2001). 
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1.6.3 The Cannabinoid System in the Hippocampus 

 

The hippocampus has amongst the highest expression levels of CB1R in the brain 

(Murray, Morrison et al. 2007). CB1Rs are densely expressed in several areas of 

the hippocampus, although in a heterogeneous manner. The pyramidal neurons of 

the hippocampus are covered by a dense network of CB1R (Tsou, Brown et al. 

1998), a distribution pattern that is reflective of GABAergic interneurons in the 

hippocampus (Sloviter and Nilaver 1987). Although not seen at levels as in 

GABAergic neurons, CB1R is present on glutamatergic neurons in the 

hippocampus also (Tsou, Brown et al. 1998; Monory, Massa et al. 2006).  

 

Endocannabinoids are known to facilitate LTP in the hippocampus by mediating 

subtle changes in neuronal excitability in a tightly controlled temporal and spatial 

manner. Briefly, endocannabinoids act as retrograde messengers that are 

released at postsynaptic sites and activate presynaptic CB1Rs, modulating 

neurotransmitter release. Endocannabinoids inhibit GABA release at low 

concentrations, resulting in DSI and the induction of EPSCs in the postsynaptic 

neuron, whereas higher concentrations of endocannabinoids inhibit glutamate 

release. The dual action of endocannabinoids enables the induction of LTP in a 

single cell amongst an unpotentiated group of neighbouring cells, while protecting 

against excitotoxicity (see section 1.3.2). This sensitive and specific regulation of 

LTP and LTD is likely to play a pivotal role in the encoding of information in the 

hippocampus (Chevaleyre and Castillo 2004). Exogenous application of 

cannabinoid such as THC could thus be expected to disrupt this fine balance 

between excitatory and inhibitory signals required for normal functioning, and 

cognitive impairment by cannabis likely involves the combined disruption of 

glutamatergic and GABAergic transmission. Indeed, exogenous cannabinoid 

agents are reported to have a serious deleterious effect on LTP (Collins, Pertwee 

et al. 1995; Terranova, Michaud et al. 1995; Misner and Sullivan 1999), LTD 

(Misner and Sullivan 1999) and a variety of cognitive processes (see sections 1.4 

and 1.5).  
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1.7 The Molecular Basis of Learning and Memory 

 

The molecular basis of learning and memory is associated with plastic changes in 

the brain. The hippocampus has been the focus for much of this work as it is 

involved in encoding and retrieval of many types of memory, and is critical in 

spatial learning and memory tasks. A well characterised feature of the 

hippocampus is that granule cells of the dentate gyrus are continually produced 

beyond the embryonic period in process called neurogenesis. As newborn 

neurons integrate into the hippocampal circuitry, they exhibit hyperplasticity 

resulting in a greater probability of induction into LTP compared to mature granule 

cells. Furthermore, newborn neurons are rapidly growing axons, dendrites and 

synapses, significantly increasing the plasticity of this brain region. This effect is 

augmented by similar structurally plastic events in existing granule and pyramidal 

neurons of the hippocampus, which extend and retract their dendrites and undergo 

associated synapse formation and elimination. Remarkably these processes are 

influenced by the experiences of the individual, including learning and memory, 

and represent significant molecular correlates of learning and memory (reviewed 

in (Leuner and Gould 2010)). 

 

1.7.1 Senescence as a Model for Impairment in Learning and Memory 

Tasks 

 

Ageing is associated with cognitive decline in a variety of species, including 

humans and rats. Memory function, and especially spatial memory have been 

shown to be sensitive to senescence in rodents and humans. Thus, models of 

cognitive decline in senescence are important in understanding and identifying 

important neurochemical correlates of impaired memory (Bach, Barad et al. 1999; 

Foster 1999; Small, Tsai et al. 2002; Nyffeler, Zhang et al. 2007). 
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Proper function of the medial temporal lobe is important for many forms of learning 

and memory, as disruption of the temporal lobe or the fibres that run between the 

various brain regions significantly impairs mnemonic function (see section 1.6). 

Functional MRI studies have shown that hippocampal dysfunction, characterised 

by a reduction in activity in at least one hippocampal subfield, is significantly 

negatively correlated with memory performance in humans (Small, Tsai et al. 

2002). Interestingly, it appears that cognitive impairment associated with aging 

occurs in the absence of significant neuronal loss. Aged individuals with 

associated memory decline were found to have a comparable number of neurons 

in all regions of the hippocampus indicating that changes in neuronal function, 

rather than neuronal number, may be more important for cognitive decline (Peters, 

Rosene et al. 1996; Rapp and Gallagher 1996). Indeed, senescence has been 

associated with deficits in LTP in aged animals with associated cognitive 

impairment, and the maintenance of LTP appears to be especially vulnerable 

(Bach, Barad et al. 1999; Foster 1999). The induction and maintenance of LTP 

relies on a number of discrete molecules at the synaptic terminals for enhanced 

synaptic function and neurotransmission. It stands to reason that age related 

alterations in LTP will be reflected in a down-regulation of regulators of synaptic 

transmission. 

 

A recent investigation of the synaptic proteome revealed that aged animals had 

reduced levels of molecules implicated in LTP. Impairment of exocytosis and 

endocytosis, as well as receptor aggregation at the synapse and synaptic 

maintenance in aged animals with cognitive decline could be expected from the 

results. In some cases these proteins appeared to be replaced by isoforms less 

able to perform these tasks. Impairments in these processes could be expected to 

result in impaired neurotransmission and replenishment of synaptic vesicle pools 

required to maintain LTP (VanGuilder, Yan et al. 2010). Data supporting these 

effects have been published. Dendritic spines represent most of the excitatory 

synapses in the hippocampus (Andersen 1990), and spine density is increased in 

LTP, likely involving the recruitment of synapses from existing and new neurons 

(Muller, Toni et al. 2000). Aging has also been associated with decreases in spine 

density and length (Nunzi, Milan et al. 1987; von Bohlen und Halbach, Zacher et 
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al. 2006), as well as reductions in adult hippocampal neurogenesis (Drapeau and 

Abrous 2008; Leuner and Gould 2010). 

 

Thus, neuroplasticity that encompasses the growth and branching of dendrites, 

reorganising of synaptic connections and neurogenesis, which allows the brain to 

adapt to experience, is impaired in cognitive decline associated with aging 

(Drapeau and Abrous 2008). The role of these processes and the involvement of 

specific molecules are discussed in the following sections. 

 

1.7.2 Hippocampal Neurogenesis 

 

The mammalian brain is able to produce neurons in discrete regions following 

birth. This is particularly evident in the dentate gyrus of the hippocampus (Fig. 5) 

and the subventricular zone (SVZ) of the cortex in rats (Altman and Das 1965). 

Neurogenesis in humans appears to be more restricted, as hippocampal 

neurogenesis is more modest and cortical neurogenesis is largely absent 

(Eriksson, Perfilieva et al. 1998; Bhardwaj, Curtis et al. 2006). Despite its 

comparative modesty, the preservation of hippocampal neurogenesis in humans 

argues for an important functional role. A body of literature that has investigated 

hippocampal neurogenesis in rodents suggests that these newborn neurons play a 

vital role in hippocampal dependent learning and memory (Bhardwaj, Curtis et al. 

2006). While it has been difficult to obtain definitive evidence in humans of this 

important role (largely because of an inability to manipulate human hippocampal 

neurogenesis as we have in the rodent), the functional importance of human 

hippocampal neurogenesis is suggested from animal models of neurodegenerative 

diseases. Alzheimer‟s disease involves the deposit of amyloid-β deposits in the 

hippocampus, a major region of neurogenesis in the human brain. In various 

transgenic animal models of Alzheimer‟s disease, deficits in neurogenesis precede 

the emergence of cognitive decline and memory impairment (Winner, Kohl et al. 

2011). Thus although not a definitive demonstration, the overlap of Alzheimer‟s 
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symptoms with neurogenic sites suggests a vital role of adult hippocampal 

neurogenesis to learning and memory in humans. 

 

A population of astrocytic neural progenitor cells (NPCs) in the subgranular zone 

of the hippocampus (type 1 cells), similar in morphology to the neurogenic radial 

glial cells of the SVZ, has been shown to be entirely responsible for the generation 

of these newborn neurons in the hippocampus (Denise, Garcia et al. 2004). 

Division of these radial glial like cells generates transient amplifying progenitor 

cells (type 2 cells) that divide again to generate neuroblasts. As neuroblasts 

mature, they migrate into the granule cell layer (GCL), developing a process that 

eventually undergoes extensive branching to form the apical dendrite of mature 

granule cells (Seri, Manuel et al. 2004). During the first week after birth, 

neuroblasts migrate a short way into the GCL and extend some limited processes. 

In the second week, neuroblasts become polarised, extending dendrites through 

the GCL towards the overlying molecular layer (ML) and extending their axons 

through the hilus towards CA3 as they contribute to the mossy fibres. At this time, 

neuroblasts receive excitatory GABAergic input, and this input may be important 

for neuroblast survival and maturation. Excitatory GABAergic input continues until 

the third week when glutamatergic input is received from the perforant path, and 

GABA becomes inhibitory in nature. In the following weeks, newborn neurons are 

hyperexcitable, with a lower threshold for the induction of LTP, although these 

neurons are indistinguishable from mature neurons by 2 months of age (Fig. 5) 

(Deng, Aimone et al. 2010). Under baseline conditions, many of these neuroblasts 

are lost by apoptosis, although training in a hippocampal-dependent task 

increases the survival of these neurons (Gould, Beylin et al. 1999; Sun, Winseck 

et al. 2004). Neurons that successfully differentiate become mature granule cells 

which extend axons to the CA3 region of the hippocampus (Hastings and Gould 

1999; Markakis and Gage 1999) and become functionally integrated into the 

trisynaptic loop (van Praag, Schinder et al. 2002; Jessberger and Kempermann 

2003). 
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Figure 5: Development of newborn neurons in the hippocampus.  Type 1 NPCs in the SGZ of 

the GCL divide asymmetrically generating type 2 NPCs that undergo successive rounds of division 

to generate a pool of young neurons. These young neurons undergo a characteristic development, 

migrating a short way into the GCL and extending limited processes by approximately 3 days after 

birth. These processes later develop into the axons and dendrites of mature neurons. By the third 

week of development young neurons have made some limited synapses in both the hilus and 

molecular layer (Mol), at which time GABAergic signalling changes from being excitatory to being 

inhibitory in nature. Synaptogenesis continues in the following weeks, when young neurons have a 

lower threshold for LTP induction and greater LTP amplitude, although these neurons are 

indistinguishable from mature neurons by 2 months of age. Image from Zhao et al. (2008). 

 

There is evidence to suggest that the enhanced survival of neurons associated 

with performance of a learning task may not be a general survival effect. Rather, 

neurons of a defined age appear to be selected for, while neurons of other ages 

are removed. This process suggests that the selective addition and removal of 

neurons may be necessary based on their functional relevance (Deng, Aimone et 

al. 2010). Training in the MWM enhances the survival of neuroblasts born 1 week 

prior to training, but induces apoptosis in those born 3 days prior to training. Worse 

performance in the MWM was associated with lower levels of apoptosis in these 3-

day old neuroblasts, and this could be replicated by pharmacologically blocking 
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apoptosis. Furthermore, neurons born during training were lost, although neural 

progenitor cell proliferation was enhanced following training in the MWM (Dupret, 

Fabre et al. 2007). This time period of enhanced survival coincides with the onset 

of GABAergic input to these neurons and the initial development of 

hyperexcitability, which is not present in younger neurons (Deng, Aimone et al. 

2010). Furthermore, neurons that were hyperexcitable during a time of 

hippocampal-dependent learning (neurons from 2 weeks of age) were 

incorporated into circuits supporting spatial memory more frequently than mature 

granule cells. The  selective ablation of this group of hyperexcitable neurons 

consistently resulted in learning and memory deficits (Clelland, Choi et al. 2009; 

Scobie, Hall et al. 2009), whereas other more general methods of inhibition of 

neurogenesis (pharmacological or irradiation methods) report inconsistent results 

(Deng, Aimone et al. 2010). These data suggest that newborn neurons of a 

defined age make a unique and important contribution to spatial memory (Kee, 

Teixeira et al. 2007). 

 

Collectively, these processes may be explained on the basis of regulation of target 

innervation. By selecting a subset of neuroblasts to integrate into the hippocampal 

circuit on the basis of their functional properties, it is possible to more tightly 

regulate the targets these neuroblasts innervate. This likely results in a reduction 

of the signal to noise ratio (Dupret, Fabre et al. 2007), that would contribute 

significantly to what is thought to be the major function of neurogenesis in the 

hippocampus, a process called pattern separation (Fig. 6). A critical feature of 

hippocampal neurogenesis in this process is that it occurs in the informational gate 

to the hippocampus, the dentate gyrus. Pattern separation is used to ensure that 

distinct but related memories are encoded in a way that ensures interference 

between memories is minimised. In this way, even memories utilising similar 

efferent neural networks to the dentate gyrus activate very distinct afferent neural 

networks. Computational studies have suggested that in order to separate distinct 

but related memories as they are encoded, highly separated inputs are required. 

Neurogenesis has recently been proposed as a unique input at this level by 

enriching specific memories with granule cells selected on the basis of their age. 

Thus, neurons selected in this process function to simultaneously allow related 
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memories to be recalled together, since hyperexcitability of these neurons allows 

them to be involved in multiple networks, whereas the afferent fibres of these 

neurons innervate very distinct targets preventing interference between these 

memories (reviewed in (Deng, Aimone et al. 2010)). Aging-related cognitive 

decline is associated with prolonged early development of neuroblasts, which may 

disrupt the fine innervation associated with neuroblasts in the hippocampus 

(Nyffeler, Yee et al. 2010). 
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Figure 6: The role of neurogenesis in pattern separation in the hippocampus. A set of related 

but independent inputs to the dentate gyrus of the hippocampus from the entorhinal cortex (EC) 

activate a similar set of granule neurons in the granule cell layer (GCL). These activated neurons 

then activate neurons in the CA3 region of the hippocampus. Newborn neurons make a unique 

contribution to pattern separation, as their unique functional properties enable them to be 

incorporated into a number of distinct circuits. Without neurogenesis (A) mature granule cells are 

unable to separate the similar input firing patterns into distinct output firing patterns. With 

neurogenesis (B) this same input firing pattern results in a less similar output firing pattern, 

reducing interference between memories while enabling related memories to be recalled together.  

Neurons that are activated by a specific input firing pattern are represented in the respective colour 

of that firing pattern, and gradients of colour within a single neuron represent shared activation by 

two input firing patterns. Image adapted from Deng et al. (2010). 
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1.7.3 Presynaptic Mechanisms of LTP and Synaptogenesis 

 

Presynaptic mechanisms of LTP largely relate to an increased likelihood of 

neurotransmitter release. Learning in a variety of tasks and in a range of model 

organisms results in an increase in the number of presynaptic inputs (Bailey and 

Kandel 1993; Moser 1999). A range of proteins have been implicated in the 

molecular cascades accounting for this phenomenon (Sanes and Lichtman 1999). 

For example, LTP induces the transcription of genes for synapsin-I and syntaxin 

1B (Hicks, Davis et al. 1997), and learning in a spatial task increases synapsin-I 

protein levels (Gomez-Pinilla, So et al. 2001). Furthermore the vesicle-associated 

protein Rab3a is essential for LTP in mossy fibres (Castillo, Janz et al. 1997). The 

synapsins are especially interesting because, aside from their involvement in the 

induction and maintenance of LTP, they are involved in synaptic outgrowth and 

synaptogenesis as well as neurogenesis. 

 

The synapsins are a group of functionally conserved yet diverse phosphoproteins 

(Fig. 7) associated predominantly with synaptic vesicles and account for 

approximately 9% of vesicle protein (Greengard, Valtorta et al. 1993). Synapsin-I, -

II and –III are encoded by different genes of which –I and –II may be alternatively 

spliced, yielding α and β isoforms. Only an α isoform of synapsin-III has been 

reported (Greengard, Valtorta et al. 1993; Kao, Porton et al. 1998). 

 

The amino-terminus of the synapsin proteins exhibit extensive homology, although 

there is some minor variation amongst isoforms and splice-variants. These 

proteins differ in their carboxy-terminals where significant variation is observed. 

Divergent domains link the conserved amino-terminal to one of four unique 

carboxy-terminal sequences (Sudhof, Czernik et al. 1989). While all synapsin 

proteins contain phosphorylation sites for CaMKI, CaMKIV, PKA and MAP kinase, 

synapsins-I and –III also share sites for CaMKII in their carboxy-terminal 

sequences that are not found in synapsin-II (Sudhof, Czernik et al. 1989; Kao, 

Porton et al. 1998). That the synapsins are substrates of so many kinases 
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suggests that they may be a convergence point for multiple signalling cascades. 

Furthermore, all synapsins contain actin and vesicular binding sites (Sudhof, 

Czernik et al. 1989), as well as a domain that binds ATP (Esser, Wang et al. 

1998), although ATP binding is differentially regulated by Ca2+ concentration 

between synapsin isoforms (Hosaka and Sudhof 1998). Thus, the synapsins 

appear to be a family of highly related proteins with overlapping but divergent 

functions. 

 

 

 

 

Figure 7: Domains of the synapsin proteins. Various domains are represented by the letters A – 

J, and shown to scale as a function of the length of their polypeptide chains (shown as amino 

acids, numbers at top). The amino terminal sequences of all synapsins are highly homologous 

(domains A – C), but the synapsins diverge at their carboxy-terminus. All α-isoforms terminate in 

the E domain, while others terminate in F and I domains. The terminal regions of all synapsins are 

joined to the conserved C domain by a variable linker region (domains D, G, H and J). Image 

adapted from Kao et al. (1998)  and Sudhof et al. (1989). 
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Synapsin proteins are heavily implicated in neurotransmitter release. All synapsins 

are found associated with synaptic vesicles at presynaptic sites, consistent with 

their major role in neurotransmission in adult animals (Sudhof, Czernik et al. 1989; 

Feng, Chi et al. 2002; Pieribone, Porton et al. 2002). Their function at these sites 

is to tether synaptic vesicles and their contents to the cytoskeleton as a reserve 

pool, not immediately available for exocytosis upon neural stimulation (Greengard, 

Valtorta et al. 1993; Li, Chin et al. 1995; Pieribone, Shupliakov et al. 1995). 

Differences between the roles of synapsin isoforms at excitatory and inhibitory 

synapses have been reported, and indeed their distribution appears to differ 

between synapse types and brain regions (Sudhof, Czernik et al. 1989; 

Greengard, Valtorta et al. 1993; Feng, Chi et al. 2002). Furthermore, synapsins-I 

and –II, but not –III, appear to be important for the formation and maintenance of 

synaptic vesicles (Greengard, Valtorta et al. 1993; Rosahl, Spillane et al. 1995; 

Feng, Chi et al. 2002) and the increase in synaptic vesicle turnover during LTP (Li, 

Chin et al. 1995; Rosahl, Spillane et al. 1995). Neurotransmitter release is tightly 

coupled to the synapsin phosphorylation state, since synapsins are substrates for 

many kinases and synapsin activity is phosphorylation dependent (Rosahl, 

Spillane et al. 1995). For example, an increase in CaMKII activation as a result of 

LTP is associated with synapsin-I phosphorylation (Nayak, Moore et al. 1996) that 

causes a significant decrease in synapsin-I affinity for synaptic vesicles, enhancing 

neurotransmitter release (Navone, Digioia et al. 1989; Ceccaldi, Grohovaz et al. 

1995). Interestingly, the replacement of synapsin-I, containing a CaMKII 

phosphorylation site, with synapsin-II, which is without this domain, is associated 

with age-related cognitive decline (VanGuilder, Yan et al. 2010). Additionally, in 

their unphosphorylated states, synapsins-I and –II are able to initiate actin 

bundling and therefore provide more capture sites for vesicles to prevent 

neurotransmitter release (Greengard, Valtorta et al. 1993).  

 

In addition to an important role in neurotransmitter release, the synapsins play an 

important developmental role as well. Dissociated embryonic hippocampal 

neurons are a homogeneous neural population that undergoes a set of 

characteristic developmental changes when grown in vitro. Neurites extend from 

the soma before the neuron becomes polarised. Polarisation involves the 
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differentiation of one of these neurites into an axon (axonogenesis) and the 

remaining neurites into a dendritic arbour. Axons then form synaptic connections 

with the arbours of neighbouring neurons (Dotti, Sullivan et al. 1988; Chin, Li et al. 

1995). Knockout and knockdown studies in cell culture using this model have been 

used to help determine the role of the synapsin isoforms in neural development 

and synaptogenesis.  

 

Synapsin-I and synapsin-II are clearly involved in neuronal differentiation and 

synaptogenesis in cultured hippocampal neurons, although the specific 

contributions of these two isotypes is unclear. Delayed axonogenesis and neurite 

formation have been attributed to both synapsin-I (Chin, Li et al. 1995) and 

synapsin-II (Ferreira, Chin et al. 1998) in two independent studies. Additionally, 

both synapsin isotypes have been shown to be important in synaptogenesis (Chin, 

Li et al. 1995; Ferreira, Chin et al. 1998), but not absolutely required since 

synapsin null cultures with time eventually become indistinguishable from wild type 

(Rosahl, Geppert et al. 1993; Ferreira, Chin et al. 1998). However, although one 

study has demonstrated that synapsin-II is absolutely required for the formation 

and maintenance of synaptic connections (Ferreira, Han et al. 1995), another has 

suggested that synapsin-I is more important (Rosahl, Geppert et al. 1993). 

Regardless of the specific contribution of each of these isotypes, it is clear that 

synapsins-I and –II play important roles in development and synaptogenesis. 

Interestingly, when these isoforms are removed simultaneously in double knockout 

experiments, the wild type phenotype is largely restored, demonstrating the 

redundancy in this system (Ferreira, Chin et al. 1998) which may contribute to the 

somewhat contradictory accounts of the specific roles of these synapsins in the 

literature. 

 

The specific role of synapsin-III in early development is less controversial. 

Knockdown of synapsin-III impairs early axonal outgrowth and differentiation. 

However, suppression of synapsin-III after this developmental point has no effect 

on synaptogenesis, suggesting a specific role for synapsin-III in the establishment 

of neuronal polarity but not in its maintenance. Additionally, the distribution 
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patterns of the synapsins are very different. Synapsin-III, but not synapsin-I or 

synapsin-II, is concentrated at growth cones, further suggesting a role in early 

development (Ferreira, Kao et al. 2000). While present at vesicles following 

synaptogenesis (Kao, Porton et al. 1998), synapsin-III is present at levels much 

lower than synapsin-I and synapsin-II (Ferreira, Kao et al. 2000). Synapsin-III 

mRNA levels peak early in cultured hippocampal neurons, declining during 

synaptogenesis, whereas synapsin-I and –II mRNA levels increase during this 

time period (Ferreira, Kao et al. 2000). The levels of synapsin-I and –II mRNA are 

known to also increase over time in postnatal animals (Zurmohle, Herms et al. 

1996), and although no analyses of developmental expression have been 

reported, different subcellular distributions have been observed in vivo. Synapsin-

III is predominantly located extrasynaptically in neurogenic regions of the adult 

mouse brain (Pieribone, Porton et al. 2002). The synapsin-III positive cells in these 

regions have been identified as migrating maturing neuroblasts rather than neural 

progenitor cells (Pieribone, Porton et al. 2002; Kao, Li et al. 2008). Progenitor cell 

proliferation was decreased, while the survival of new born neurons was increased 

in synapsin-III knockout animals, demonstrating a novel role for synapsin-III in 

proliferation, survival and differentiation of proliferative cells (Kao, Li et al. 2008). 

Interestingly, despite no net change in the number of surviving neurons in 

synapsin-III null animals (Kao, Li et al. 2008), an associated behavioural 

impairment in explicit memory has been described, suggesting impaired neural 

functioning in these animals (Porton, Rodriguiz et al. 2010). These data clearly 

demonstrate a significant role of synapsin-III in regulating neurogenic processes. 

 

1.7.4 Postsynaptic Mechanisms of LTP and Synaptogenesis 

 

Postsynaptic mechanisms of LTP involve alterations to the responsiveness of the 

postsynaptic neuron to stimulation, often via the recruitment of proteins required 

for neurotransmission at the synapse. A significant mechanism of LTP is an 

increase in the size or number of postsynaptic sites in response to learning (Bailey 

and Kandel 1993; Moser 1999), and this is associated with changes to the 

postsynaptic density (PSD). 
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Dendritic spines account for nearly all excitatory post-synaptic signal transduction 

in neurons of vertebrates. Spines protrude from the dendrite shaft by a couple of 

microns and are observed extensively throughout the elaborately branched 

dendritic arbour. At the immediate cytosolic face of the spine, the PSD, an electron 

dense structure, contains the machinery required to transmit neural signals 

(Kennedy 2000). The chief function of the PSD is to organise α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) 

glutamate receptors in the postsynaptic membrane. In addition, the PSD organises 

signalling molecules that are required to strengthen the synapse as a result of the 

activation of AMPA and NMDA receptors. Each of these ionotropic receptors has 

different properties. Activation of AMPA receptors by binding of glutamate results 

in small, brief membrane depolarisations from passage of Na+ and K+ ions across 

the membrane, leading to ESPCs. Activation of NMDA receptors by glutamate 

allows the influx of Ca2+ ions but requires significant existing membrane 

depolarisation (Sanes and Lichtman 1999; Kennedy 2000). As a consequence of 

Ca2+ influx, several receptor systems are activated that cause increased 

excitability of the neuron and strengthening of the synapse by a variety of 

mechanisms. AMPA receptors are often involved in these effects, in which their 

number (Hayashi, Shi et al. 2000) or the size of current they produce upon 

activation (Benke, Luthi et al. 1998) is changed.  

 

Many of the proteins required to mediate changes in plasticity resulting from Ca2+ 

passage through activated NMDA receptors are maintained in a highly organised 

structure in the PSD. The most immediate target of Ca2+ flowing through the 

NMDA receptor is Ca2+/calmodulin-dependent protein kinase II (CaMKII) which is 

absolutely required for synaptic plasticity (Stevens, Tonegawa et al. 1994). 

Several Ca2+-activated signalling components are located within the PSD, 

including SynGAP (which when phosphorylated results in the activation of the 

MAPK pathway) and neuronal NOS (nNOS). The localisation of these proteins, as 

well as others, to the PSD relies on the scaffolding protein PSD95, which is highly 

co-localised with NMDA receptors at postsynaptic sites (Kennedy 2000). One of a  
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Figure 8: The molecular organisation of the PSD. The PSD95 protein organises the 

arrangement of the NMDA receptor signalling complex in the postsynaptic membrane. An influx of 

Ca
2+

 through the activated NMDA receptor activates CaMKII and SynGAP, amongst other Ca
2+

 

activated signalling components required for synaptic function. The several binding domains of 

PSD95 organise these signal transduction molecules to the NMDA receptor, while CaMKII binds to 

the NMDA receptor itself. Adapted from Kennedy (2000). 

 

family of four closely related scaffolding proteins, PSD95 contains three PDZ 

domains, a SH3 domain and a GuK domain (Kornau, Seeburg et al. 1997). These 

domains bind to the NMDA receptor, SynGAP and nNOS amongst a variety of 

other proteins, while CaMKII binds only to the NMDA receptor (Fig. 8). Thus, the 

PSD represents the core NMDA receptor signalling complex (Kennedy 2000). 

 

Changes in the level of LTP are thought to be paralleled by morphological 

changes at post-synaptic sites, including in particular the appearance of perforated 
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synapses (Calverley and Jones 1990; Luscher, Nicoll et al. 2000). A perforated 

synapse exhibits a larger, although discontinuous, PSD that is typically present in 

two separate and distinct areas beneath the postsynaptic membrane. Perforated 

synapses may then transform into duplicate synapses on separate spines, thus 

increasing spine density, or revert to a single synapse with an increased PSD area 

(Luscher, Nicoll et al. 2000; Muller, Toni et al. 2000). The occurrence of perforated 

synapses themselves appears to be transient, although as a result of their 

formation the area available for signal transduction (through the duplication of PSD 

in a new spine or an increased size of the PSD within a single spine) is increased 

(Geinisman, Detoledomorrell et al. 1991; Geinisman 1993; Muller, Toni et al. 

2000). These changes in the PSD architecture appear to be mediated by AMPA 

receptor stimulation (Luscher, Nicoll et al. 2000; Ganeshina, Berry et al. 2004). 

 

Using animal models of senescence-related cognitive impairment, the importance 

of the PSD to learning and memory processes has been demonstrated. A 

reduction of PSD area in perforated synapses by approximately 30% was 

associated with learning impairment in aged animals compared with young 

animals (Nicholson, Yoshida et al. 2004; Long, Liu et al. 2009). The authors, 

having previously shown that cognitive decline during aging is not associated with 

a reduction in dendritic spines, argue that perforated synapses are less efficient in 

this model of learning impairment (Geinisman 2000; Geinisman, Ganeshina et al. 

2004). The importance of PSD95 specifically in learning and memory was 

demonstrated in mutant animals, as spatial learning was significantly impaired 

(Migaud, Charlesworth et al. 1998). 

 

The PSD represents two functions of plasticity simultaneously. The importance of 

the PSD in the organisation of signalling molecules in the postsynaptic neuron is 

clearly related to the induction of LTP. Additionally, as these changes often involve 

the formation of perforated synapses, LTP increases spine density with an 

accompanying overall increase in PSD volume. Thus, the PSD represents 

plasticity at the level of both LTP and synaptogenesis. 
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1.8 The Effect of Cannabinoids on Hippocampal Plasticity 

 

Adult hippocampal neurogenesis and synaptogenesis are important molecular 

substrates of learning and memory, adding a significant degree of plasticity to the 

hippocampus (see section 1.7). The effect of cannabinoids on these plasticity 

mechanisms has been reviewed (see  (Galve-Roperh, Aguado et al. 2006)), and 

these studies are discussed below. 

 

1.8.1 Cannabinoid Influences on Neurogenesis 

 

Both adult and embryonic neural progenitor cells contain a fully functional 

endocannabinoid signalling system. Enzymes required for the synthesis of 2-AG 

and ANA, as well as the CB1R and FAAH are observed in these cells both in vitro 

and in vivo (Aguado, Monory et al. 2005; Jiang, Zhang et al. 2005; Aguado, 

Palazuelos et al. 2006; Mulder, Aguado et al. 2008). During neurogenesis, neural 

progenitor cells proliferate, and their progeny differentiate and mature into neurons 

(see section 1.7.2). Importantly, CB1R expression is maintained on granule 

neurons as they mature (Wolf, Bick-Sander et al. 2010).  These data strongly 

suggest that all stages of neurogenesis are sensitive to cannabinoid agents.  

 

Several studies have investigated the role of cannabinoids during neurogenesis, 

and cannabinoids are now generally believed to stimulate neural progenitor cell 

proliferation. The evidence for this is that both endogenous and synthetic ligands 

increase proliferation in vitro and in vivo (Aguado, Monory et al. 2005; Jiang, 

Zhang et al. 2005; Aguado, Palazuelos et al. 2006). Similar results are observed in 

animals when endocannabinoid signalling is prolonged by preventing ligand 

degradation with FAAH–/– (Aguado, Monory et al. 2005; Aguado, Palazuelos et al. 

2006; Mulder, Aguado et al. 2008). Conversely, abolition of cannabinoid signalling 

in CB1R–/– animals results in decreased neural progenitor cell proliferation (Jin, Xie 

et al. 2004; Aguado, Palazuelos et al. 2006; Mulder, Aguado et al. 2008). 
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Cannabinoid signalling also appears to modulate the differentiation and maturation 

of neural progenitor-derived daughter cells. Both ANA (Rueda, Navarro et al. 

2002) and the synthetic cannabinoid WIN55212,2 (Galve-Roperh, Aguado et al. 

2006) delay the maturation of neurons in vitro and in vivo by a SR141716A-

sensitive mechanism, suggesting the involvement of CB1R. Furthermore, 

treatment of animals with SR141716A on its own appears to enhance neuronal 

maturation (Rueda, Navarro et al. 2002; Galve-Roperh, Aguado et al. 2006). 

Finally, it has been suggested that cannabinoids influence the differentiation 

decision of neural progenitor daughter cells (Aguado, Palazuelos et al. 2006). This 

is proposed because an increase in the astroglial phenotype of newborn cells is 

associated with WIN55212,2 treatment in vitro, and FAAH knockout in vivo, 

although endocannabinoid signalling is also described to drive the neural 

phenotype (Watson, Chambers et al. 2008). 

 

Not all studies, however, agree that cannabinoids stimulate proliferation and 

modulate neuronal maturation. For example, proliferation in the dentate gyrus was 

not significantly enhanced by ANA despite other reports suggesting this (Rueda, 

Navarro et al. 2002). Nor did THC or WIN55212,2 have any effect on proliferation 

in the dentate gyrus at doses typically causing behavioural impairment (Kochman, 

dos Santos et al. 2006). Indeed this discontinuity was recently illustrated in a study 

in which THC impaired learning in the MWM in the absence of changes in cellular 

proliferation in the dentate gyrus (Wolf, Bick-Sander et al. 2010). This study also 

found no effect of THC on the survival of BrdU-labelled neurons, although survival 

was not assessed in animals that were trained in a spatial task and thus the 

effects of THC on learning-enhanced neuronal survival remain unknown (Deng, 

Aimone et al. 2010). Treatment of animals with SR141716A, expected to mimic 

the decreased proliferation observed in CB1R–/– animals, paradoxically resulted in 

increased proliferation in the dentate gyrus (Jin, Xie et al. 2004). This effect was 

preserved in CB1R–/– animals, but ablated in VR1–/– animals, suggesting that the 

action of cannabinoids on related receptor systems also plays a role in regulating 

neurogenic processes. Finally, both endogenous and synthetic cannabinoids have 

been reported to have no effect on the rate of neuronal maturation (Jiang, Zhang 
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et al. 2005). Other studies have shown accelerated maturation of neurons from 

THC, while CB1R knockout impaired maturation (Wolf, Bick-Sander et al. 2010). 

 

A remarkable feature of adult hippocampal neurogenesis is that experience and 

environment can influence the proliferation of neural progenitor cells and the 

survival of their progeny (see section 1.7.2). While there is some debate as to the 

exact role of cannabinoids on proliferation and maturation, CB1R is nevertheless 

present on cells that are affected by activity-dependent regulation. Recent studies 

have investigated the role of the cannabinoid system in these phenomena. 

Increased proliferation in the dentate gyrus following voluntary exercise was 

associated with an increase in endocannabinoid signalling. This conclusion was 

based on the fact that ANA synthesis, as well as an increase in CB1Rs and their 

functional coupling to G proteins, was increased in exercised animals compared to 

sedentary controls (Hill, Titterness et al. 2010; Wolf, Bick-Sander et al. 2010). 

These adaptations were blocked by the treatment of the animals with the CB1R 

antagonist AM251 concurrently with free access to the running wheel (Hill, 

Titterness et al. 2010) and was also blocked in CB1R–/– animals (Wolf, Bick-

Sander et al. 2010). Stimulation of animals by housing them in an enriched 

environment elicits increases in neuronal survival, similar to that observed in 

animals trained in a learning task. Environmental enrichment increased CB1R 

mRNA in the hippocampus, and the increase in neuronal survival was absent in 

CB1R–/– animals (Wolf, Bick-Sander et al. 2010). These data suggest that the 

endocannabinoid system contributes to, and is required for, experience-induced 

alterations in hippocampal plasticity (Hill, Titterness et al. 2010; Wolf, Bick-Sander 

et al. 2010). Surprisingly, no study has yet specifically investigated whether 

cannabinoids alter the enhanced survival of newborn neurons in response to 

training in a spatial learning and memory task. 
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1.8.2 Cannabinoid Influences on Synaptogenesis 

 

Cannabinoids appear to function as negative modulators of synaptogenesis by a 

variety of mechanisms. CB1R is enriched on GABAergic growth cones in vivo, and 

when grown in vitro, WIN55212,2 is able to induce GABAergic growth cone 

repulsion, suggesting cannabinoids are negative regulators of synaptogenesis 

(Berghuis, Rajnicek et al. 2007). These data are supported by findings in mouse 

neuroblastoma N1E-115 cells. These cells contain high levels of CB1R in their 

growth cones, and the synthetic cannabinoid agonist HU-210 dose-dependently 

induced the retraction of neurites in a mechanism that was sensitive to CB1R 

knockdown (Zhou and Song 2001). Furthermore, CB1R–/– animals showed 

aberrant patterns of synaptogenesis (Berghuis, Rajnicek et al. 2007; Watson, 

Chambers et al. 2008). Unlike GABAergic neurons, glutamatergic neurons show 

very little CB1R at growth cones. Rather, these pyramidal neurons express DGL, 

an enzyme required for the synthesis of 2-AG (see section 1.2.2), at postsynaptic 

dendrites. Synthesis of 2-AG at these sites may aid in steering CB1R+ growth 

cones (Berghuis, Rajnicek et al. 2007), thus completing a functional 

endocannabinoid signalling system in which synaptogenesis is modulated. The 

role of the cannabinoid system of pyramidal neurons in regulating synaptogenesis 

is not limited to guidance of GABAergic growth cones. DGL replaces CB1R at 

growth cones of glutamatergic neurons (Mulder, Aguado et al. 2008), with CB1Rs 

being located to distal areas of the developing axon (Berghuis, Rajnicek et al. 

2007). Treatment of glutamatergic neurons grown in culture with ANA inhibits; 

whereas, the antagonist AM251 increases axonal branching. Furthermore, 

inhibition of DGL results in aberrant synaptogenesis in vitro and in vivo. These 

data implicate endocannabinoid tone in the regulation of axonal branching and 

postsynaptic targeting (Mulder, Aguado et al. 2008). Thus, cannabinoids are able 

to influence both presynaptic and postsynaptic mechanisms of synaptogenesis in 

a variety of neuronal types. 

 

The impact of cannabinoids on physiological responses to neuronal activity have 

been investigated, although not thoroughly. Forskolin, an activator of adenylate 
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cyclase, increases the number of functional boutons in embryonic hippocampal 

cell cultures (Kim and Thayer 2001). The addition of the cannabinoid agonists 

WIN55212,2, THC, or ANA to hippocampal cultures during forskolin treatment 

blocks the recruitment of new synapses in a SR141716A sensitive way. These 

results show that abnormal levels of cannabinoid agonists during times of 

enhanced neural activity impair adaptive responses. However, a limitation of this 

study is the model of neural activity used. Forskolin treatment does not necessarily 

represent patterns of neuronal activation observed in vivo when performing a 

cognitive task. Therefore, the impairment of synaptogenesis in this model merely 

suggests that synaptogenesis may be impaired in vivo, and further studies are 

required. Surprisingly, there are no reports as to whether impairment of LTP in 

vivo by cannabinoids is associated with morphological changes such as alterations 

in spine density. One study, however, has shown that a THC-elicited reduction in 

LTP is associated with reduced levels of AMPA and NMDA receptors, strongly 

associated with dendritic spines (Fan, Yang et al. 2010). 

 

Synaptogenesis is increased when animals perform learning and memory tasks 

(Gomez-Pinilla, So et al. 2001). However, only two studies by Rubino et al. have 

investigated whether cognitive impairment by cannabinoids is associated with 

altered synaptogenesis. Adolescent animals were treated with THC and the 

behavioural, molecular and morphological consequences of this treatment 

assessed in adulthood. Consistent with previous reports (see section 1.5.3), 

spatial working memory was impaired by THC in the RAM. Behavioural 

impairment was associated with reduced markers for presynaptic (VAMP2, 

synaptophyson) and postsynaptic (PSD95) connections in the hippocampus (male 

adolescents) and prefrontal cortex (female adolescents), as well as reduced levels 

of efficiency in these synapses (Rubino, Realini et al. 2009; Rubino, Realini et al. 

2009). Furthermore, reduced dendritic length, dendritic branching and spine 

density were observed in granule cells in the dentate gyrus (Rubino, Realini et al. 

2009). These data suggest that the reduction in the number or efficiency of 

synaptic connections in these brain areas may account for the behavioural 

impairment associated with cannabis treatment. A limitation of these studies was 

that no comparison was made between trained and untrained animals. Thus, it is 
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unclear whether these results reflect a deficit in adaptive changes in response to 

learning, or simply a general depressive effect of the drug on these parameters. 

Furthermore, it is unclear whether changes in structural plasticity may underlie 

behavioural deficits that are measured concurrently with cannabis treatment 

(rather than after a period of abstinence). 

 

Interestingly, cannabinoids also appear to inhibit synapse loss. Reducing the 

culture medium Mg2+ concentration to 0.1 nM (from 0.9 nM) results in intense 

neural activity that leads to eventual synapse elimination in vitro. Both THC and 

the synthetic cannabinoid agonist WIN55212,2 were able to prevent network 

activity driven synaptic loss in cultured embryonic hippocampal neurons (Kim, 

Waataja et al. 2008). It is tempting to speculate that during times of synaptic loss, 

such as the synaptic pruning that is associated with adolescence (see section 

1.6.1), disruption of the balance between synaptic loss and synaptic maintenance 

by cannabinoids may represent a novel molecular mechanism for behavioural 

impairment. There are so far, however, no studies to support this hypothesis. 

 

1.9 Aims of the Present Study 

 

There were two specific aims of this research project. The first aim was to 

characterise the effects of adolescent THC treatment on adolescent learning and 

memory (that is, behavioural assessment concurrent with THC treatment). 

Adolescence was investigated since few studies have examined adolescents 

specifically. Furthermore, adolescents may be at greater risk for the cognitive 

deficits associated with cannabis use. This is because adolescence is associated 

with significant neurodevelopmental changes, most notably with reductions in 

synaptic density in various brain regions including the hippocampus. In addition 

the expression of CB1R, responsible for mediating the cognitive effects of 

cannabis, peaks during adolescence before declining to adult levels. These factors 

may make the adolescent brain more susceptible to molecular alterations from 

cannabis use. There are several molecular mechanisms of learning and memory, 



 55 

including adult hippocampal neurogenesis and synaptogenesis. The effect of THC 

on these two mechanisms of plasticity was investigated in the hippocampus of 

adolescent animals, because their proposed greater sensitivity to the effects of 

THC represents the best chance to identify molecular correlates of THC-induced 

cognitive impairment.   
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Chapter 2  General Methods 

 

2.1 Animals 

 

The use of rats to model human adolescence has been extensively reviewed 

(Spear 2000). The adolescent period in rats is considered to be between P28 - 

P60, and this is generally justified by the display of behaviours that are different to 

both child-like and adult-like behaviour. Social interaction with peers takes on 

greater importance during human adolescence, and this is mirrored by increased 

displays of social behaviour, such as play fighting, in rodents. Risk-taking 

behaviour is more prevalent in both human and rodent adolescents, and this may 

allow adolescents to explore new environments and experiences. Indeed, 

adolescent rats are hyperactive when placed in a novel environment when 

compared to adult animals, and in the wild P28 rats emerge from the relative 

safety of their burrows for the first time. These risk-taking behaviours may help the 

adolescent to transition to adulthood. Finally the onset of puberty, growth spurts, 

and hyperphagia are all considered hallmarks of human adolescence, and all are 

seen in rats of this age range.  

 

In this study, male Sprague Dawley rats were weaned at 3 weeks of age and 

housed in groups of four under 12:12 h light/dark conditions (lights on at 0700). 

Animals were either trained in a spatial learning and memory task (see Chapter 3 

for details), or maintained as untrained home cage controls between the ages of 

28 and 54 days (Spear 2000). From weaning to the time of sacrifice, access to 

water was ad libitum while access to food was restricted to a 5-hour window per 

day, typically between 1200 and 1700 following behavioural assessment. At the 

end of the experimental protocol, animals were sacrificed by carbon dioxide 

asphyxiation and rapid decapitation. All experiments involving the use of animals 

in this research were conducted in accordance with the Victoria University of 

Wellington Animal Ethics Committee guidelines and approved by the Victoria 

University of Wellington Animal Ethics Committee. 
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2.2  Drugs 

 

THC (THC Pharm GmbH the Health Concept, Germany) was dissolved in ethanol 

to a concentration of 30 mg/mL. This stock was diluted to a working concentration 

of 1.5 mg/mL prepared fresh daily by mixing 1:1:18 THC:Cremophor:Saline. 

Animals received nightly intraperitoneal injections of either 6 mg/kg THC or an 

equivalent volume of vehicle, beginning at 27 days of age, the eve of training 

commencement.  

 

This dose of 6 mg/kg THC falls within the range of commonly used doses that 

result in greater cognitive impairment in adolescents, in the absence of biphasic 

effects of the drug (Cha, White et al. 2006; Cha, Jones et al. 2007). In addition the 

daily dosage regimen, where treatment continued from P27 until the time of 

sacrifice or the completion of training, covers a time period comparable to or 

greater than that used in other studies that showed a greater sensitivity of 

adolescents to cannabinoids. Thus this dose and time course is comparable to 

other treatment regimens that have shown a greater sensitivity of adolescents to 

cannabinoids (Quinn, Matsumoto et al. 2008; Rubino, Vigano et al. 2008; Rubino, 

Realini et al. 2009; Rubino, Realini et al. 2009; Moore, Greenleaf et al. 2010) and 

is suitable to model this greater sensitivity of adolescence in the interests of 

identifying molecular correlates of any cognitive impairment by THC. 

 

2.3 5-Bromo-2-deoxyuridine (BrdU) injections 

 

Animals received a 100 mg/kg dose of 5-bromo-2-deoxyuridine (BrdU, Sigma-

Aldrich, 858811) as a single intraperitoneal injection on the evening of P27. BrdU 

was freshly prepared in 1x PBS to a concentration of 10 mg/mL. 
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2.4 Molecular Analyses 

 

2.4.1 Tissue Dissection 

 

Animals were sacrificed the day following completion of training in a radial maze 

task. Whole brains were removed from the cranial cavity and cut into thick 2 mm 

serial coronal sections with razor blades using an acrylic stereotaxic brain matrixes 

block (Alto, AgnTho‟s AB, Sweden). These sections were snap-frozen with 

powdered dry ice and stored at -80 ˚C. When required, tissue sections between 

interaural measurements 4 and 6 were thawed and hippocampal tissue isolated by 

gently peeling the hippocampus away from both the cortex and mid-brain (Fig. 9). 

Tissue was transferred to a 1.5 mL microcentrifuge tube containing 300 µL TBS 

and homogenised using a small plastic pestle in the presence of protease (Sigma, 

P8340) and phosphatase (Sigma, P5726) inhibitor cocktails to slow degradation of 

the epitopes needed for subsequent analyses. An aliquot of hippocampal 

homogenate (100 µL) was transferred to 400 µL TRIzol LS reagent (Invitrogen, 

10296-010), thoroughly mixed and immediately frozen at -20˚C until required for 

nucleic acid analysis. A volume of RIPA buffer corresponding to 4 volumes of the 

initial tissue mass was then added to the remaining homogenate and thoroughly 

mixed. This was then incubated for 10 min at room temperature with occasional 

mixing. Cellular debris and DNA were then pelleted by centrifugation at 4˚C and 

the protein containing supernatant transferred to a new tube that was frozen at -

20˚C until required for analysis. 
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Figure 9: Dissection of the hippocampus. (A) Following removal from the cranial cavity, the 

intact brain was cut into 2 mm coronal sections beginning from interaural measurement marker 

zero (position shown by razor blade). The hippocampus, located between interaural positions 2 and 

8, is cut into 3 sections by this method (labelled i, ii and iii). Tissue used for protein and RNA 

analysis originated from between interaural positions 4 and 6 (segment ii, highlighted). (B) The 

hippocampus can be observed in each of the coronal sections between interaural positions 2 and 

8. The hippocampus in section ii (indicated by asterisk) was used for subsequent protein and RNA 

analysis. (C) Illustration of hippocampal removal from segment ii. The hippocampus has been 

removed (#) while surrounding tissue remains. 
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2.4.2 Western Blotting 

 

2.4.2.1 Protein quantification 

 

Total protein was quantified using a bicinchoninic acid (BCA) based assay 

(Thermo Scientific, 23227). In this reaction, cupric ions (Cu2+) are reduced to 

cuprous ions (Cu1+) by protein in an alkaline environment. Each cuprous ion is 

then chelated by two BCA molecules, and this complex exhibits strong absorbance 

at 562 nm, correlating with increasing protein concentration in an almost linear 

relationship. Absorbance at 562 nm was measured using an automated multi-well 

plate reader (Versamax, Molecular Devices, Sunnyvale, CA). Aliquots of protein 

solutions were diluted to a working concentration of 1.6 mg/mL with RIPA buffer. 

 

2.4.2.2 Protein Electrophoresis and Membrane Transfer 

 

Protein samples were reduced with reducing buffer for 10 min at room 

temperature. Samples were not heated during this process, since the 

immunoreactivity of some antigens used in this study was heat sensitive. 

Acrylamide resolving gels were prepared fresh to a concentration of 10%, overlaid 

with 4% stacking gels (30% bis-acrylamide, Bio-Rad, 161-0156), and 25 µg protein 

per lane separated by electrophoresis in 1 x running buffer at 150 V for 

approximately 90 min. Only one protein sample was loaded per lane. The 

electrophoresed protein was run concurrently with Precision Plus Protein Dual 

Colour size standards (Bio-Rad, 161-0374). Protein was transferred to Immobilon-

FL PVDF membrane (Millipore, IPFL00010) that had been pre-soaked in methanol 

for 2 min. Transfer was carried out at 20v for 17 h in transfer buffer. For the 

detection of the Ki67 epitope, 0.038% SDS was included in the transfer buffer to 

facilitate the transfer of high molecular weight proteins. 
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2.4.2.3 Antibody Incubation and Detection 

 

Following transfer, PVDF membranes were blocked in 1 x PBS containing 5% 

BSA (Sigma, A3059) for 1 h at 4˚C, then incubated with the primary antibody at an 

appropriate dilution (Table 2) in 1 x PBS containing 1% BSA for at least 4 h at 4˚C. 

The primary antibody was then washed from the PVDF membrane with two 5 -min 

washes in 1 x TBS-T and one 5-min wash in 1 x TBS at 4˚C. The appropriate 

secondary antibody (Table 3), conjugated to either Alexa-488 or Alexa-555, was 

then incubated with the membrane for at least 2 h at 4˚C, then washed as 

described for the primary antibody. Transferred protein bound by antibody was 

visualised using a Fujifilm FLA5000 fluorescence scanner (Fujifilm Medical 

Systems, USA) at a variety of voltage settings (400 – 1000 V). The dataset that 

spanned the widest range within accurate detection limits was analysed by 

densitometric methods using ImageJ and normalised to the amount of protein 

loaded using the internal standard GAPDH. The specificity of all antibodies used in 

this study was confirmed by performing control experiments in which the primary 

antibody incubation was omitted. 

 

Epitope Host,  Isotype, 

Clonality 

Manufacturer Dilution 

BDNF 

CB1R 

GAPDH 

Ki67 

PSA-NCAM 

PSD95 

Sox2 

Synapsin 1 

Rabbit, IgG, polyclonal 

Rabbit, IgG, monoclonal 

Mouse, IgG, monoclonal 

Rabbit, IgG, polyclonal 

Mouse, IgM, monoclonal 

Rabbit, IgG, polyclonal 

Rabbit, IgG, polyclonal 

Rabbit, IgG, polyclonal 

Abcam (AB46176) 

Alomone Labs (ACR-001) 

Abcam (AB9484) 

Abcam (AB833) 

Chemicon (MAB5324) 

Abcam (AB18258) 

Abcam (AB97959) 

Zymed (51-5200) 

1:1000 

1:2000 

1:1000 

1:250 

1:2000 

1:500 

1:1000 

1:1000 

Table 2: Primary antibodies used for Western blotting. 
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Epitope Host Manufacturer Dilution 

Mouse IgG Goat Molecular Probes (A-11001) 1:1000 

Mouse IgM Goat Molecular Probes (A-21042) 1:1000 

Rabbit IgG Goat Molecular Probes (A-21429) 1:1000 

Table 3: Secondary antibodies used in Western blotting. Antibodies were either conjugated to 

Alexa-488 or Alexa-555 dyes. 

 

2.4.3 Quantitative PCR 

 

2.4.3.1 RNA Extraction 

 

Samples in TRIzol were thawed and incubated at room temperature for 5 min 

before centrifuging at 12 000 x g for 10 min at 4°C to remove lipids and cellular 

debris. The supernatant was transferred to a fresh microcentrifuge tube, and 200 

µL chloroform was added for every 1 mL of TRIzol supernatant. Samples were 

vortexed thoroughly and incubated at room temperature for 3 min, then centrifuged 

at 12 000 x g for 15 min at 4°C to separate the DNA-containing organic phase 

from the RNA-containing aqueous phase. The aqueous phase was transferred to a 

fresh microcentrifuge tube, an equal volume of 70% absolute ethanol was added 

to precipitate the RNA and the sample thoroughly vortexed. RNA was purified 

using a High Pure RNA Tissue Isolation Kit (Roche, 1 828 665) and eluted in 100 

µL of elution buffer. RNA yield and purity were quantified with an ND-1000 

Spectrophotometer (Nanodrop, Wilmington, DE) by measuring the sample 

absorbance at 260 nm and the 260 nm/280 nm absorbance ratio, respectively. 

 

2.4.3.2 Reverse Transcription 

 

Ten µL RNA (typically containing between 250 and 450 µg RNA) was reverse 

transcribed at 55°C into cDNA using Superscript III (Invitrogen, 18080-085) in the 
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presence of RNAseOUT (Invitrogen, 10777-019) to inhibit RNAse A, B and C 

activity. Gene-specific reverse primers (2 pmol) were used to selectively reverse 

transcribe mRNAs to be amplified by PCR. 

 

2.4.3.3 Real-time PCR 

 

SYBR Green chemistry was used to quantify mRNA abundance in neural tissue. 

When SYBR Green binds to double stranded DNA, its fluorescent signal 

increases. The accumulation of PCR product with each successive round of PCR 

results in an increase in SYBR Green fluorescence intensity with each cycle. The 

amount of PCR product in each sample was determined from the cycle at which 

SYBR Green fluorescence rose above an arbitrary threshold (the threshold cycle, 

or Ct value) (Yin, Shackel et al. 2001). For each sample the Ct value for the target 

of interest was subtracted from the Ct value of the housekeeper gene cyclophilin A 

(to normalise for the amount of cDNA added). This value, reported as the ∆Ct 

value, describes how abundant the transcript is in relation to the housekeeper 

gene. By averaging ∆Ct values of different treatment groups and subtracting them 

from a control group a ∆∆Ct value is obtained that describes the difference in 

expression levels between these two groups. A unit difference of 1 between ∆Ct or 

∆∆Ct values represents a doubling (if the change is negative) or halving (if the 

change is positive) of transcript abundance (Livak and Schmittgen 2001). 

 

One µL of cDNA was used per 25 µL PCR reaction. PCR reactions were based on 

a SensiMix SYBR and Fluorescein Kit (supplied as a 2 x concentrate, Bioline, 

QT615-05) to which template (cDNA) and primers (final concentration 200 nM) 

were added. Fluorescein allowed the iQ4 real-time PCR detection system based 

on an iCycler platform (Bio-Rad, Hercules, CA) to correct for variance in the 

baseline fluorescence of samples between reactions.  

 

Cycling conditions were an initial denaturation and activation step at 95°C for 10 

min, followed by 40 cycles of 95°C for 15 s, 55°C for 30 s, then 72°C for 15 s. The 
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annealing temperature used for all primer sets was 55˚C (Table 4). No template 

(cDNA substituted for ddH2O) and equimolar non-reverse transcribed RNA 

reactions were conducted for each primer pair to confirm that PCR products were 

specific for RNA sequences by ruling out the presence of contaminating PCR 

product or gDNA, respectively. Furthermore, where possible, primer pairs were 

designed to cross exon-exon boundaries to reduce the possibility of amplification 

from DNA templates.  

 

2.4.3.3 Melt-Curve Profile Analysis 

 

Because SYBR Green dye is unable to discriminate between specific and non-

specific PCR products, melt-curve profile analysis was carried out following the 

completion of 40 PCR cycles. PCR products were gradually heated from 72°C to 

95°C in 0.5°C increments. SYBR green intercalated double stranded PCR 

products „melt‟ into their single stranded components at a temperature that is 

characteristic of their specific nucleotide sequence, resulting in decreased SYBR 

green fluorescence. By plotting the first derivative of relative fluorescent units over 

temperature (i.e. rate of fluorescent change) against temperature (∆RFU/∆T vs. T) 

a single PCR product will produce a single sharp peak. A diffuse peak between 

75°C to 85°C indicates the presence of primer dimer, while multiple peaks indicate 

multiple PCR products (Brisson, Larissa et al. 2000). 

 

2.4.3.3 Primer Efficiency Testing 

 

Primer efficiencies were calculated for the primer sets used in this study. Good 

primer efficiency is important for the sensitivity of the reaction and primer pairs 

with poor efficiency will have poor sensitivity which will be especially important for 

low copy number transcripts (Peters, Helps et al. 2004). PCR products were 

purified by agarose gel electrophoresis, bands were then excised and 

homogenised in 600 µL 1xTE buffer before being heated at 60˚C for 1 h. This 

template solution was serially diluted over a 5 log scale and dilutions of 102 – 105 
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(corresponding to 3.3 ∆Ct units between dilutions) were amplified by PCR in 

duplicate as described above. Mean Ct values were plotted against the log of the 

dilution to obtain the slope of the trend line. In some cases, a single dilution was 

excluded from the analysis if it appeared to differ significantly from the trend 

observed among the other data points, although at least three data points were 

included in all analyses. The slope of the trend line was used to determine primer 

efficiency using the equation: 

 

Primer Efficiency = (10(1/slope))-1 (Modified from Peters et al., (2004)) 

 

Primer efficiencies of greater than 100% indicate the presence of non-specific 

products while efficiencies of less than 100% indicate the formation of primer-

dimer. The formation of either of these products can significantly reduce the 

amplification efficiency of the intended target, resulting in reduced data accuracy. 

Thus, primer efficiencies of close to 100% are desirable (Brisson, Larissa et al. 

2000). 

 

2.4.3.4 Agarose Gel Electrophoresis 

 

PCR products were visualised with agarose gel electrophoresis to ensure the 

presence of a single product of the expected size. Agarose gels (2%) were 

prepared by microwaving 1 g agarose (Invitrogen, 15510-027) in 50 mL 1 x TAE 

buffer until all granules had dissolved. Ethidium bromide (Invitrogen, 15585001) 

was added to the molten agarose to a final concentration of 200 ng/mL, and this 

solution was then poured into a casting tray and allowed to cool. Neat PCR 

product (25 µL) was mixed with 5 µL of 6 x loading dye by repetitive pipetting, and 

25 µL of this solution was loaded into each lane of the agarose gel submerged in 1 

x TAE buffer containing 200 ng/mL ethidium bromide. Electrophoresis was 

conducted at 100 V for 40 min, and ethidium bromide fluorescence was visualised 

using a KODAK Gel Logic 100 system (Kodak). 
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Primer Target 
Forward (+) Primer Reverse (-) Primer Product 

Size (bp) 
Sequence (5’ – 3’) Tm Sequence (5’ – 3’) Tm 

ACE ACG GAA GCA TCA CCA AGG AG 49˚C TGG CAC ATT CGC AGG AAC G 48˚C 140 

Angiotensinogen CAC GAC TTC CTG ACT TGG ATA AAG A 51˚C CTG CGG CAG GGT CAG A 46˚C 63 

AT2R2 CCC CTT GTT TGG TGT ATG GC 49˚C AGG CAA TCC CAG CAG ACC 47˚C 145 

BDNF CCA TAA GGA CGC GGA CTT GTA C 52˚C GAG GAG GCT CCA AAG GCA CTT 51˚C 68 

CB1R CTA CTG GTG CTG TGT GTC ATC 49˚C GCT GTC TTT ACG GTG GAA TAC 47˚C 153 

Cyclophilin A GGG GAG AAA GGA TTT GGC TA 47˚C ACA TGC TTG CCA TCC ACC C 48˚C 257 

DCX ACT GAC ATC ACA GAA GCG ATC AAA CTG G 55˚C ACT GCT AGA AGT TCC ATT TGC GTC TTG G 55˚C 333 

Ki67 CAT GGG GAT TCT GAG GCT AA 47˚C GGA TCA CTG CTT GCT CTT CC 49˚C 213 

PSD95 AGT ACC CGC TGT AGG GAT GCA GG 56˚C GTG TGA AAG ACA GGG GAC CCT CAG 56˚C 193 

Sox2 GCA CAT GAA CGG CTG GAG CAA CG 56˚C TGC TGC GAG TAG GAC ATG CTG TAG G 56˚C 207 

Synapsin-I CAC CAG GAT GAA GAC AAG CA 47˚C GTC GTT GTT GAG CAG GAG GT 49˚C 184 

Synapsin-II CAT GGG TGT TTG CTC AGA TG 47˚C ACC ACG ACA GGA AAC GTA GG 49˚C 127 

Synapsin-III CAC AGC AAG AAT GGC AGA GA 47˚C TTA GTC TGT GGA CCC CAA GG 49˚C 182 

Table 4: Primers used for qRT-PCR analysis. 

 



2.5 Immunohistochemistry 

 

2.5.1 Tissue Preparation 

 

Following sacrifice, brains were removed from the cranial cavity and segmented as 

previously described (Fig. 9). Tissue was then immediately immersed in freshly 

prepared 4% PFA in 1x PBS for 3 h with gentle agitation at room temperature then 

washed 3 x 5 min with 1 x PBS. Sections were dehydrated using a graded ethanol 

and xylene series with two washes at each stage, changed morning and night, and 

then embedded in paraffin wax (McCormic Scientific, 501006). During the 

embedding process the concentration of paraffin wax was increased gradually to 

enhance the penetration of wax into the tissue, significantly improving the quality 

of resulting sections. This was achieved by five successive cycles of removing 0.2 

volumes of xylene (in the first change) or xylene/paraffin slurry (in subsequent 

changes) and replacing it with molten paraffin. 

 

2.5.2 Tissue Sectioning 

 

Tissue embedded in paraffin was sectioned in the coronal plane at a thickness of 

20 µm using an 820 series microtome (American Optical Co., Buffalo, NY) and 

mounted on Superfrost Plus microscope slides (LabServ, LBS4951+).  

 

2.5.3 BrdU Staining of Paraffin-Embedded Sections 

 

Paraffin-embedded sections were deparaffinised in xylene then rehydrated though 

a graded ethanol series. To detect the BrdU epitope, two antigen retrieval steps 

were required. Sections were first boiled at 100˚C in 10 mM sodium citrate pH 6.0 

for 10 min then allowed to cool at room temperature for 30 min; the correct pH of 

this solution was found to be vital to the success of antigen retrieval by this 
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method. Next, sections were incubated with 2 N HCl for 90 min, then the acid was 

neutralised by washing sections 3 x for 5 min in 1 x PBS. Sections were then 

blocked in 1 x PBS containing 1% BSA (Sigma, D-8001) for 1 h at room 

temperature, then incubated overnight at 4˚C with an anti-BrdU mouse monoclonal 

antibody conjugated to biotin (1:50, Molecular Probes, B35138). The next day, 

sections were washed with 3 x 5 minute washes in 1 x PBS then incubated with 

horseradish peroxidase (HRP) conjugated to streptavidin (1:100, Zymed, 43-4323) 

for 4 hr at room temperature. Sections were processed for antigen detection by 3, 

3‟-diaminobenzidine (DAB) staining. 

 

2.5.3.1 Detection by DAB Staining 

 

The detection of antibody bound epitopes by DAB staining relies on the 

localisation of the haem-containing enzyme HRP to epitope targets. HRP 

catalyses the oxidation of the chromogenic substrate DAB, in the presence of 

H2O2 and heme, to an insoluble brown product (Veitch 2004). As peroxidase is 

naturally present in many tissues, the endogenous peroxidase activity of samples 

used in this study was quenched with 3% H2O2 for 30 min prior to incubation with 

the primary antibody to increase the signal to noise ratio. Sections were then 

processed as previously described. To localise HRP conjugates, sections were 

incubated with 1 x PBS containing 0.5 mg/mL DAB (Sigma, D-8001) to which, 

immediately prior to incubation, H2O2 was added to a final concentration of 0.03%. 

This solution was incubated on sections until sufficient colour development was 

observed, usually 20 min in this research project. Sections were rinsed in ddH2O 

to terminate the reaction. Sections were then counterstained with hematoxylin to 

stain cell nuclei for histological topography and mounted with DPX mounting 

medium (Fluka, 44581). Sections were examined using an Olympus AX70 

photomicroscope (Olympus Optical Co., Hamburg, Germany) and images 

captured using an Olympus DP70 CCD camera. 
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2.6 Research Design 

 

The analyses presented in this study were performed on THC-treated and vehicle-

treated animals that both were and were not trained in the radial maze (Fig. 10). 

This design enabled the effects of THC on processes that occur in response to 

learning (by comparing trained and untrained animals for both THC-treated and 

vehicle-treated groups), to be separated from effects that are independent of 

learning (by observing the effect of THC-treatment in the absence of training). The 

molecular analyses were performed at a period of mid-training where behavioural 

deficits were expected to be slight. This was to identify molecular impairments by 

THC that subsequently led to more marked cognitive impairment. Behavioural 

testing was performed 17 hours after drug treatment. This avoided testing the 

cognitive effects of THC during the acute period, and rather modelled the cognitive 

effects likely experienced by regular patterns of cannabis use after school or in the 

weekends. These effects are likely more relevant to human patterns of cannabis 

use. 
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Figure 10: Training schedule and timing of treatments and analyses used in this study. A) 

Animals received two training trials per day, before access to food was made available for five 

hours. From P27 either drug- or vehicle-treatment coincided with the removal of food, 17 hours 

before training in the radial maze the next day. This allowed the acute effects of the drug to pass 

before behavioural testing, and as such the „post-acute‟ effects of THC-treatment were assessed in 

this study. B) Behavioural analyses were performed on animals that were trained in the radial maze 

from P28 – P54. Animals trained in the radial maze were acclimatized to the apparatus for seven 

days before training began. The molecular analyses were performed on both trained and untrained 

groups to separate the effects of THC-treatment into the effects of treatment on processes related 

to training, and the effects of treatment independent of training. These analyses were performed at 

a time of mid-training to identify early molecular impairments leading to later cognitive impairment. 

All animals received a single dose of BrdU on P27 to trace the survival of newborn neurons. 
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2.7 Statistical Analysis 

 

All statistical analyses in this research were performed using GraphPad Prism 

(version 4.03 for Windows, GraphPad Software, San Diego, California, USA) and 

differences considered significant when p<0.05. Behavioural data were analysed 

as described in chapter 3, while molecular data were analysed using a 

combination of one-way and two-way ANOVA with Bonferroni‟s multiple 

comparison test. An assumption of one-way ANOVA is that the sample groups 

have equal variances. To test this assumption Bartlett‟s test for equal variances 

was used. When variances differed significantly, Kruskal-Wallis with Dunn‟s 

multiple comparison test was used instead. Two-way ANOVA was used to detect 

effects of training (training x marker) or drug treatment (treatment x marker) across 

the range of markers of interest; whereas, one-way ANOVA was used to detect 

specific differences between training and drug treatment groups for a specific 

marker. Statistical analysis were performed using cell counts for 

immunohistochemistry, normalised densitometric values obtained using ImageJ for 

Western blots and average ∆Ct values for real-time PCR.  
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Chapter 3 Effects of THC on Adolescent Learning 

 

3.1 Introduction 

 

Cannabis use is commonly viewed as a culturally acceptable activity and is often 

initiated during adolescence (Harvey, Sellman et al. 2007; Murray, Morrison et al. 

2007). Cannabis use during adolescence has a high social cost as it is 

associated with poorer educational achievement, as well as higher 

unemployment and lower life satisfaction by age 25 (Fergusson and Boden 

2008). 

 

The CB1R is predominantly responsible for mediating the effects of cannabis in 

the brain and is activated by the major psychoactive component of cannabis 

smoke, THC (Murray, Morrison et al. 2007). Spatial learning and memory tasks 

rely heavily on the hippocampus (Nelson, Bawa et al. 1992; Richmond, Yee et al. 

1999; Ward, Stoelzel et al. 1999; Talpos, Dias et al. 2008), a brain region that 

expresses high levels of CB1R (Murray, Morrison et al. 2007). Implantation of the 

synthetic cannabinoid WIN-55,212-2 containing capillaries into the hippocampus 

is sufficient to impair working memory in a CB1R dependent mechanism (Barna, 

Soproni et al. 2007). Animal studies have shown that CB1R agonists impair, and 

antagonists enhance working (short-term) memory without affecting reference 

(factual) memory (Nakamura, Dasilva et al. 1991; Lichtman, Dimen et al. 1995; 

Lichtman and Martin 1996; Lichtman 2000; Mishima, Egashira et al. 2001; Wise, 

Iredale et al. 2008). Similar effects of cannabinoids on learning and memory have 

been reported in both humans and rodents (Iversen 2003). 

 

Chunking is a strategy of organising working memory that allows discrete, 

individual memory units to be organised into related groups called „chunks‟, which 

are then recalled as a whole rather than as individual entities. Memories can be 

continuously reorganised into fewer, but larger chunks until a suitably small 
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number of large chunks is achieved to recall all the information accurately (Miller 

1956). Chunking has been demonstrated in a range of species, including pigeons 

(Terrace 1987), rats (Dallal and Meck 1990; Cohen, Mallet et al. 1993; Macuda 

and Roberts 1995; Brown and Terrinoni 1996) and humans (Sakai, Kitaguchi et al. 

2003; De Lillo 2004; Ridgeway 2006), suggesting that it may be an important and 

evolutionarily conserved process. Furthermore, chunking is considered a key 

mechanism of human cognition (Gobet, Lane et al. 2001). Curiously, despite the 

role of chunking in the organisation of working memory, and the known impairment 

of working memory by cannabinoids, no studies have investigated whether 

cannabinoid impairment of learning and memory involves an impairment of 

chunking. 

 

It has been suggested that adolescents may be more susceptible to the effects of 

cannabis than adults (Spear 2000; Adriani and Laviola 2004); however, relatively 

few studies investigate the adolescent period specifically. Animals treated with 

cannabinoids during adolescence, but not adulthood, exhibit greater levels of 

anxiety and working memory impairment, as well as increased levels of 

depression when tested as adults (Schneider and Koch 2003; O'Shea, Singh et 

al. 2004; Quinn, Matsumoto et al. 2008; Rubino, Vigano et al. 2008; Rubino, 

Realini et al. 2009). When behavioural assessment is concurrent with drug 

treatment, adolescent animals generally find THC less aversive (Quinn, 

Matsumoto et al. 2008), although they display a greater spatial learning 

impairment than adult animals in the Morris water maze (Cha, White et al. 2006; 

Cha, Jones et al. 2007; Moore, Greenleaf et al. 2010). These data strongly 

suggest that developmental age plays a significant role in determining the 

cognitive effects of cannabis. However, these studies assessing behaviour in 

adulthood following adolescent treatment, or in the acute phase immediately 

following drug treatment, reflect long-lasting and acute impairment of the drug, 

respectively. Surprisingly, no studies have investigated the effect of regular 

patterns of use away from learning environments (e.g. after school or in the 

weekend) on cognitive performance between acute exposures.  
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This chapter seeks to further characterise the concurrent effects of adolescent 

cannabis exposure on learning and memory. Specifically, testing during the acute 

period in which the psychoactive effects are dominant was minimised using a 

„post-acute‟ assessment schedule instead. Furthermore, we investigated whether 

any deficit of learning and memory could be attributed to deficits in chunking. 

„Post-acute‟ refers to the period of time after a THC exposure when the 

immediate, acute effects of THC have worn off. This assessment schedule allows 

a better measurement of the risks faced by adolescents who use the drug away 

from the learning environment (e.g. regular patterns of use after school or in the 

weekend), rather than the risks faced by those who are under the influence of the 

drug while learning. 

 

3.2 Methods 

 

3.2.1 Animals and Drugs 

 

Animals were housed and fed as previously described. The study was performed 

twice using two separate groups of adolescent animals. Sixteen animals in each 

group were evenly divided into 8 control and 8 THC-treated animals in each of the 

two studies, resulting in a total of16 control and 16 THC-treated animals. THC was 

prepared and delivered as previously described. 

 

3.2.2 The Radial Arm Maze 

 

3.2.2.1 Apparatus 

 

An eight-arm radial maze (Olton and Samuelson 1976) was constructed with eight 

aluminium arms measuring 100x85x600 mm (widthxheightxlength) evenly spaced 

and leading from a central circular plywood platform measuring 300 mm in 
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diameter and raised 300 mm from the floor of the room. The maze was painted 

black, and a small plastic food cup was fixed to the wall at the end of each arm. All 

trials were conducted in a window-less room with several distinct spatial cues 

present in the extra-maze environment. 

 

3.2.2.2 Acclimatisation Trials 

 

From weaning to day 27, subjects were acclimatised to the radial maze. A small 

quantity of chocolate was deposited in each food cup, and subjects were allowed 

to individually explore the maze for 5 min once per day. Following the completion 

of the acclimatisation trial on day 27, the eve of training, two of the four animals in 

each cage were randomly allocated to the THC-treatment group (total n=8) while 

the other two were assigned to the vehicle-treatment group (total n=8). These 

animals received daily intraperitoneal injections of either 6 mg/kg THC or an 

equivalent volume of vehicle, coinciding with the removal of food at 1700 h.  

 

3.2.2.3 Learning Trials 

 

From day 28 to 54, each rat completed 2 trials per day (approximately 1 h apart) in 

the reference and working memory task in the radial maze (Olton and Papas 

1979). Four of the eight arms in the radial maze were baited with a small quantity 

of chocolate in an open dish that was not replaced during a trial. As controls, the 

remaining four arms were baited with the same amount of chocolate in a dish 

sealed but with a perforated lid to allow the scent to escape. A single baiting 

pattern was used throughout the study in which three of the four baited arms were 

adjacent to each other while the remaining baited arm was separated from the first 

group by one unbaited arm in the clockwise direction. The orientation of this 

arrangement was varied randomly between subjects by rotating the maze with 

regard to the spatial cues in the room. Baited arm positions were grouped into 

either „chunk‟ (A+B+C) or „total‟ (A+B+C+D) for analysis purposes (Fig. 11). 
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Animals were kept inside an opaque cylinder measuring 200x250 mm 

(diameterxheight) on the central platform for 30 s before each trial. The cylinder 

was removed at the beginning of the trial, and the first four entries made by each 

rat were recorded. After four choices had been made or 300 s had elapsed, the 

trial was terminated, and the rat was removed from the maze.  Trials were 

recorded using an HVS Image 2100 Plus video tracking system to facilitate 

analysis (HVS Image, England). An arm was considered to have been entered 

when the hind legs of the animal crossed a threshold one-third of the distance 

down the arm from the centre platform, similar to thresholds used in other studies 

(Lichtman 2000; Wise, Iredale et al. 2008). 

 

 

Figure 11: Configuration of the radial maze. The position of baited (uppercase letters) and 

unbaited (lowercase) arms in the radial maze was the same for all animals used in this study, 

although the spatial orientation in the room varied. Arms A, B and C constituted a „chunk‟ group; 

whereas, all baited arms (A, B, C and D) constituted the „total‟ group.  
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3.2.3 Assessment Parameters 

 

3.2.3.1 Learning 

 

The arm entries made by animals in the radial maze were scored as either correct 

or incorrect entries based on the presence or absence of accessible chocolate in 

that arm. Incorrect entries were further divided into reference memory errors (entry 

to a non-baited arm) and working memory errors (entry to an already visited arm, 

regardless of whether baited or not). To be considered to have learnt the task, 

animals were allowed only 2 errors (any combination of working and reference 

memory errors) over 16 consecutive arm entries (encompassing 4 trials). For 

analysis purposes the 54 trials were divided into six blocks of nine trials each. The 

cumulative frequency of animals that had learnt the task, either in that block or in 

any preceding block, was expressed as a percent of all animals in their respective 

treatment groups (Cumulative % achieved). Accuracy, calculated as the number of 

correct entries divided by the number of total entries, was used as a secondary 

measure of learning. The accuracy of animals in either treatment group was 

determined on a per block basis (36 entries in 9 trials) and as a function of overall 

accuracy (216 entries in 54 trials). Trial latency was measured as the time taken 

from the removal of the cylinder to the termination of the trial, either by the 

investigation of the food cup on the fourth choice or the lapsing of 300 s. Trial 

latency was used to determine whether THC treatment impaired motor function 

(Lichtman 2000). 

 

3.2.3.2 Chunking 

 

The use of a single baiting pattern allowed evaluation of the strategies used by 

animals to solve the maze. The configuration used here specifically supported a 

chunking approach in which two specific and complementary behaviours were 

expected.  The sequential collection of all rewards from the „chunk‟ arm group, 

without visiting an arm outside this group (achievable in either three correct entries 
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or four entries allowing for one working memory error) was termed „exhaustive 

chunk searching‟ and was expected if animals chunked these arms. Because 

exhaustive chunk searching could be achieved by the non-spatial radial searching 

of four adjacent arms, the frequency of non-spatial radial searches, defined as 

entry into four adjacent arms in any order, was also determined. In addition, the 

probability that THC- and vehicle-treated animals entered each of the arms in the 

maze was determined to detect whether any difference in behavioural strategies 

enhanced the probability of entry to specific arms. Arm entry probability was 

calculated as the proportion of trials in which the arm was entered, calculated on 

an arm by arm basis (thus irrespective of what other arms were entered on the 

same trial). 

 

In addition to an expected reduction in error rate as chunking associations are 

formed, it would be expected that entry to the spatially isolated arm would become 

strongly biased to either the first entry (before exhaustive chunk searching) or 

fourth entry (after exhaustive chunk searching). The deviation score calculation 

was devised to describe how biased the pattern of entry to a specific arm was, and 

this value was later used to measure the use of chunking strategies in the two 

treatment groups. The deviation score is unable to determine the exact order of 

preference with which an animal enters an arm. A deviation score of zero indicates 

that the number of entries to an arm is randomly spread over the number of visits 

to the arm (e.g. 20 arm visits were equally spread between entries on each of four 

choices allowed per trial); whereas, deviation scores other than zero indicate that 

the pattern was non-random. Greater deviation scores indicate a greater deviation 

from a random entry pattern.  

 

To calculate the deviation score, the number of entries to each arm expected by 

randomness was calculated by dividing the total number of entries to the arm by 

four. Then, the sum of the absolute difference between the expected and actual 

number of entries to the arm on each of the four allowed choices was calculated. 

This value was then divided by the total number of entries to the arm (Equation 1). 

When multiple spatial locations were used to calculate a deviation score, as in the 
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chunk and total baited arm patterns, the sum of the differences between observed 

and expected entries for all arms was divided by the sum of the total entries to all 

arms, rather than simply summing deviation scores for each individual arm 

position. 

   

ArmtoEntriesofNumber

ChoiceonEntriesActualChoiceonEntriesExpected
ScoreDeviationArm

XX )(

     

  
TrialperChoicesofNumber

ArmtoEntriesofNumberTotal
ChoiceonEntriesExpected X

 

 

Equation 1: Calculation of the deviation score.  

 

3.2.4 Statistical Analyses 

 

Linear regression was used to measure and compare the rates of learning 

between treatment groups. Linear regression was performed alongside the Wald-

Wolfowitz runs test to determine wether a linear fit was appropriate for the data. 

Differences in either the slopes or elevations of the trend lines obtained with linear 

regression were interpreted as different rates of learning, as has been previously 

reported (Stiglick and Kalant 1982). Between-treatment group differences in trial 

latency, rates of reference and working memory errors, radial searches, 

exhaustive chunk searching, arm entry probabilities and deviation scores were 

assessed using two-way ANOVA with Bonferroni post-hoc tests. The number of 

trials required to achieve the learning criterion between treatment groups was 

assessed with a t-test. Within-treatment group arm entry probabilities, deviation 

scores, and block accuracy were assessed using one-way ANOVA with Bonferroni 

post-hoc tests. Correlations between chunking behaviours and either mean 

accuracy in the radial maze, or the block in which the learning criterion was 

achieved, were performed using Spearman correlation. 
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3.3 Results 

 

Data from the two training groups were combined since vehicle-treated animals in 

each group learnt the radial maze at equivalent rates. Thus, analyses are based 

on a pooled total of 16 THC-treated and 16 vehicle-treated animals. 

 

3.3.1 Maze Performance 

 

Trial latency was unaffected by THC-treatment, suggesting the absence of motor 

impairment at the dose used. Vehicle-treated animals made fewer reference 

memory errors than THC-treated animals (p<0.01), and reference memory errors 

were reduced as training continued for both treatment groups (p<0.001, Fig. 12A). 

Neither treatment, nor training affected the rate of working memory errors, and 

their mean occurrence was very low (Fig. 12B). THC-treated animals learnt the 

maze more slowly than vehicle-treated animals, seen as a difference in the slopes 

of the best fit lines (p<0.05). THC-treated animals also required more training 

blocks to improve their performance over baseline (Fig. 12C), and more trials to 

achieve the learning criterion (Fig 12D). 
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Figure 12: THC impaired learning in the radial maze. (A) THC-treated animals committed more 

reference memory errors than vehicle-treated animals (p<0.01). Chance performance is 

represented by a dotted line. (B) Rates of working memory errors were not affected by THC-

treatment. (C) THC-treated animals learnt the maze slower (p<0.05, decreased slope of graph) and 

required more training to improve their accuracy over baseline levels observed in the first training 

block (the first point at which this was observed for each treatment group is indicated by asterisks 

above their respective trend lines). (D) THC-treated animals required more trials to achieve the 

learning criterion. Data are mean ± SEM, *p<0.05, **p<0.01. 
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3.3.2 Response Bias 

 

The utility of a chunking strategy in learning the chunking task was assessed for 

THC-treated and vehicle-treated animals. Exhaustive chunk searching and 

deviation scores at baited arm position D were plotted against overall accuracy in 

the radial maze, as well as the block in which the learning criterion was satisfied 

for animals that had learnt the task. An increased incidence of both of the 

chunking behaviours correlated with increased accuracy and earlier learning of the 

task in vehicle-treated, but not THC-treated animals (p<0.05, Fig. 13).To establish 

how the use of a chunking strategy enhanced the rate of learning in vehicle-

treated animals, the probability and bias of entry to each of the eight arms of the 

maze was compared between treatment groups.  

 

Treatment had no significant effect on the probabilities of THC-treated and vehicle-

treated animals entering any specific baited arm position, although the probability 

of entering baited arm positions B and C appeared higher in vehicle-treated 

animals. When the data for the probability of entering individual arms of the chunk 

group were pooled, vehicle-treated animals made more entry to chunk arm 

locations than THC-treated animals (p<0.05, data not shown). Both treatment 

groups were more likely to enter arms of the chunk than the spatially isolated arm 

(with the exception of baited arm position A in vehicle-treated animals, that fell just 

outside significance). Treatment did not affect the probability of entry to unbaited 

arm positions, although a trend towards significance was observed (p=0.09). 

Unbaited arm position d, between the chunked and isolated baited arms, was  
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Figure 13: Chunking facilitates increased performance in vehicle-treated, but not THC-

treated animals. An increased incidence of chunking behaviours (deviation scores at arm D and 

exhaustive chunk searching) in vehicle-treated animals was correlated with increased overall 

accuracy (p<0.05, A) and earlier learning (p<0.05, C) in the radial maze. No correlations were 

observed in THC-treated animals (B, D). Trend lines: Dashed (exhaustive chunk searching), dotted 

(deviation scores at arm position D). 

 

equally likely to be entered by both THC-treated and vehicle-treated animals. The 

likelihood of entry to this arm was generally greater than any other unbaited arm 

position for vehicle-treated animals (with the exception of unbaited arm position a, 

that fell just outside significance). However, in THC-treated animals, unbaited arm 

position c, adjacent to the chunk baited group on the other side, was equally as 

likely to be entered as unbaited arm position d (Fig. 14A). THC-treated animals 

had equal bias of entry to any rewarded arm or arm group as vehicle-treated 

animals (Fig. 14B). However, it appeared that THC-treated animals relied less on 

exhaustive chunk searching (Fig. 14C) and more on radial searching (Fig. 14D). 

The frequency of exhaustive chunk searches increased, while that of radial 

searching decreased with training (p<0.001). 
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Figure 14: THC-treated animals rely less on spatial searching strategies. (A) Generally, arm D 

(the spatially isolated, rewarded arm) was entered less frequently than arms of the chunk group 

(arms A, B and C) for animals of both treatment groups. Animals of both treatment groups were 

equally likely to enter unbaited arm position d (between the rewarded chunk arms and rewarded 

isolated arm D). Arm d was generally entered more than any other unbaited arm position in vehicle-

treated animals. However, THC-treated animals were equally likely to enter unbaited arm position 

c, adjacent to the chunk on the opposite side as arm d. THC-treated animals were more likely to 

enter this arm than vehicle-treated animals (p<0.01, #). (B) Differences in arm entry probabilities at 

unbaited arms did not affect levels of response bias observed for baited arm positions and arm 

groups between THC-treated and vehicle-treated animals. Despite equal response biases, vehicle-

treated animals had a higher incidence of exhaustive chunk searching (C), and THC-treated 

animals displayed radial search patterns in a greater proportion of trials (D). Data are mean ± SEM; 

*p<0.05, **p<0.01, ***p<0.001. 
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3.4 Discussion 

 

Spatial learning and memory tasks require animals to locate rewards using 

environmental cues. In the radial maze, food is deposited at the end of arms 

radiating from a central platform. Animals improve their performance by 

remembering which arms contain food, which arms have already been visited, and 

which arm or arms they should  visit next (Olton and Samuelson 1976; Olton and 

Papas 1979). There is some suggestion that different configurations of the same 

task may alter the cognitive requirements of subjects (Hodges 1996), and indeed 

the spatial relationship between goals influences the search strategy of rats (Dallal 

and Meck 1990; Brown and Terrinoni 1996; Brown and Giumetti 2006). Thus, it 

may be important to match the spatial configuration of goals between treatment 

groups, particularly if a specific cognitive process associated with any given 

configuration is being affected by the treatment under investigation. 

 

These results show that THC impairs adolescent spatial learning in the radial 

maze task used here. THC-treated animals learnt the maze slower, required more 

trials to achieve the learning criterion and committed more reference memory, but 

not working memory errors than vehicle-treated animals. These results cannot be 

explained by an impairment of motivation, as food rewards were always 

consumed. Similarly the results cannot be explained by an impairment of motor 

function, as trial latencies were equivalent between treatment groups. The 

absence of locomotor effects is despite cannabinoids having been reported to 

affect motor function following acute treatment (Williams and Kirkham 2002; Shi, 

Luo et al. 2005; Le Foll, Wiggins et al. 2006); perhaps these effects had passed by 

the time of behavioural testing in this study. It is noteworthy that these results were 

obtained when animals were tested in the post-acute period. These data thus 

assess the concurrent consequences of regular patterns of cannabis use away 

from the learning environment (e.g. at nights or in the weekend) that affect 

learning when the acute effects of THC have passed (e.g. the next day at school). 

However, it is possible that withdrawal from THC may have contributed to these 

deficits. A modest withdrawal syndrome has been described in rats, with 
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significant symptoms of withdrawal beginning only after 48 hours of abstinence 

(Aceto, Scates et al. 1996). The time scale of this study, where testing was 17 

hours after drug treatment, argues against a significant withdrawal effect as results 

were collected more than 24 hours before these effects were described by Aceto 

et al. (1996).  

 

The results presented here support previous studies that show that adolescent 

learning is sensitive to disruption by THC (Cha, White et al. 2006; Cha, Jones et 

al. 2007; Moore, Greenleaf et al. 2010). However, in these earlier studies, 

behavioural testing immediately followed drug treatment, thus assessing the 

cognitive impairment associated with the acute effects of THC. Therefore, these 

data appear to represent the first evidence that post-acute THC effects are able to 

impair adolescent learning. This is significant because post-acute effects are 

arguably more relevant to patterns of cannabis use commonly observed in human 

adolescents. The use of the radial maze, rather than the Morris water maze, is 

also a significant point of difference between previous studies and the results 

presented here, since the radial maze allows a better evaluation of specific search 

strategies. Recently, the radial maze was used to show that working memory 

impairment in adulthood, following adolescent THC treatment, is associated with 

the inability of THC-treated animals to utilise an appropriate search strategy 

(Rubino, Realini et al. 2009). However, their study was performed in the working 

memory paradigm of the radial maze (all arms baited), and thus does not assess 

any impairment of strategy selection in relation to acquisition of reference memory 

(learning).  

 

Chunking describes the hierarchical recall of reference memory into working 

memory, facilitating improved performance over time (Miller 1956). Curiously, 

although spatial working memory is known to be affected by cannabinoids 

(Nakamura, Dasilva et al. 1991; Lichtman, Dimen et al. 1995; Lichtman 2000; 

Mishima, Egashira et al. 2001; Wise, Iredale et al. 2008), and chunking is known 

to facilitate the organisation of working memory (Miller 1956), no one has 

specifically investigated the effect of THC on chunking. This study used a specific 
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arrangement of baited arms designed to encourage the use of a chunking strategy 

during learning to investigate the effects of THC on this strategy.  

 

Two specific behaviours were predicted to arise from the use of a chunking 

strategy in this maze design; exhaustive chunk searching, and increased deviation 

scores at the spatially isolated arm. These behaviours were correlated with greater 

accuracy and earlier learning of the task in vehicle-treated animals, consistent with 

reports that chunking strategies facilitate earlier learning in tasks supporting a 

chunking approach (Dallal and Meck 1990; Macuda and Roberts 1995). However, 

no correlations were observed in THC-treated animals, suggesting the observed 

learning impairment by THC is mediated at least in part by an impairment of 

chunking. The benefit conferred to vehicle-treated animals by the use of a 

chunking strategy appeared to be an increased likelihood of entering chunk arm 

locations together, as indicated by a higher incidence of exhaustive chunk 

searching, and the fact that errors at two of these chunk arm positions were 

sufficient to account for the behavioural impairment in THC-treated animals. It 

initially seems curious that small differences in exhaustive chunk searching and 

arm entry probabilities result in such a robust learning deficit. However, the small 

magnitude of these differences is likely to be an artefact of the experimental 

design. Had the specific arm layout used here not supported a radial search 

pattern so strongly, the magnitude of these differences may have been greater. 

 

It has been suggested that a radial search pattern may be the preferred strategy in 

the radial maze, except when the task prevents its efficient use (Olton, Collison et 

al. 1977; Dubreuil, Tixier et al. 2003; Rubino, Realini et al. 2009). The baiting 

arrangement used here certainly supports radial searching, as radial searches 

originating from all but two arms (unbaited arm positions a and b) have the 

potential to result in the collection of three rewards. As such, a higher reliance on 

radial search strategies has the potential to produce similar error rates in spite of 

significantly different rates of learning. Indeed, THC-treated animals were equally 

likely to enter unbaited arm positions c and d that could result in the collection of 

three rewards from a radial search (and in addition contribute to the frequency of 
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exhaustive chunk searching); whereas, vehicle-treated animals were only as likely 

to enter one of these locations. These data are consistent with the increased 

reliance of THC-treated animals on radial searching. Reliance on radial searching 

virtually eliminates the possibility of being considered to have learnt the task, as 

the learning criterion demands error rates lower than can be achieved by radial 

searching. Thus, despite small differences in error rates and the frequency of 

exhaustive chunk searching, learning was significantly impaired in THC-treated 

animals. It is likely that in a task that did not support radial searches so strongly, 

the difference in the rate of learning between THC-treated and vehicle-treated 

animals would be greater, as would the difference in the error rate between these 

two groups. 

 

Learning in a spatial task such as the radial maze advances along a continuum, 

from the systematic sampling of arms relying little on spatial cues, to the formation 

of a cognitive map of goals as the spatial cues associated with specific goals are 

strengthened. Spatial goals are then chunked to reduce the difficulty of the task 

until accurate performance is achieved (Dallal and Meck 1990). During times of 

learning, chunking and the development of spatial mapping are likely parallel 

processes. As associations between adjacent arms are made, the information 

content (or size) of the chunk is gradually increased, thus reducing the cognitive 

load of the task and allowing more cognitive resources to be devoted to locating 

the remaining arms. Chunk size would continue to be gradually increased until the 

resources required to complete the task accurately were available (Miller 1956). 

Thus, by impairing chunking THC appears to slow the progression of animals 

along this continuum, resulting in an increased reliance on other strategies, and 

impairing learning as a result. As such, it is not surprising that a reduction in 

accuracy and a reduced reliance on chunking behaviours were observed together 

in THC-treated animals. 

 

These data demonstrate for the first time that adolescent learning is sensitive to 

the effects of THC in the post-acute period. Significantly, they show that this 

reference memory impairment is due to disruption of chunking, a process of 
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organising working memory. It thus appears that the attainment of reference 

memory (learning) is impaired by disruption of the organisation of working 

memory. There are, however, a number of questions arising from this study that 

require further investigation. For example, the relative contribution of chunking to 

impairment, rather than deficits in other cognitive skills, remains to be determined. 

Processes contributing to learning other than chunking are certainly impaired by 

THC, as learning impairment by THC has been reported in the Morris water maze 

(Da Silva and Takahashi 2002; Cha, White et al. 2006; Cha, Jones et al. 2007; 

Moore, Greenleaf et al. 2010), a task that likely involves chunking to a much lesser 

degree than the radial maze. Titrating the relative role of the impairment of 

chunking by THC in radial maze tasks that support chunking to lesser degrees 

than the task used here would help elucidate the relative contribution of chunking 

to this learning impairment. Additionally the issue of developmental stage may be 

important, as adolescents have been shown to be more sensitive to the effects of 

cannabinoids than adults (Schneider and Koch 2003; O'Shea, Singh et al. 2004; 

Cha, White et al. 2006; Cha, Jones et al. 2007; Quinn, Matsumoto et al. 2008; 

Rubino, Vigano et al. 2008; Rubino, Realini et al. 2009; Moore, Greenleaf et al. 

2010). As such, it will be important to determine whether chunking impairment by 

THC in adolescents is preserved in adults. Finally, the specific nature of the 

chunking impairment remains to be determined. 

 

The chunking impairment by THC reported here operated during learning phases 

of a spatial task, and as such, may not be representative of the cannabinoid-

induced impairment commonly associated with retrieval of already learnt 

information into working memory (Nakamura, Dasilva et al. 1991; Lichtman, Dimen 

et al. 1995; Lichtman and Martin 1996; Lichtman 2000; Mishima, Egashira et al. 

2001; Wise, Iredale et al. 2008). Furthermore, these are unable to determine if the 

absence of chunking in THC-treated animals reflects a delay in the development of 

chunking, or a prevention of chunking. The assessment used in this analysis was 

an endpoint method, in which the involvement of chunking in learning after a 

defined training period was measured. It is possible that chunking in THC-treated 

animals may have been detected had the duration of training been extended. An 

impairment, rather than prevention of chunking, could explain the reduced rate of 
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learning in the THC-treated group. Learning in vehicle-treated animals appeared to 

increase linearly, while learning in THC-treated animals was suppressed until late 

training when it increased rapidly. An analysis of chunking in the hierarchical radial 

maze would address these issues. In the hierarchical radial maze, subsets of arms 

are rendered more or less desirable to animals by altering the strength of 

reinforcers, and animals learn to retrieve more desirable rewards preferentially 

(Dallal and Meck 1990; Macuda and Roberts 1995; Cohen, Pardy et al. 2003). 

THC-treatment during the development of chunking in initial stages of training 

would be sufficient to assess whether THC impairs, or prevents, the formulation of 

chunking strategies. To assess any impairment of the use of existing chunking 

strategies by THC, treatment following asymptotic performance could be used. 

This method is also less likely to favour radial searches, and thus would aid in the 

measurement of the true chunking impairment operating in THC-treated animals. 

 

The data presented in this chapter add to the few studies that have investigated 

the effects of THC exposure in the adolescent, rather than studying the 

consequences of adolescent exposure later in life. Furthermore, the data were 

obtained by focussing on the post-acute period in which acute drug effects were 

absent, since learning impairments in the post-acute period are more 

representative of cannabis use patterns commonly found in human adolescents. 

The results indicate that patterns of persistent adolescent cannabis use away from 

learning environments are detrimental to learning. The learning impairment elicited 

by THC in adolescents was mediated by impairment of chunking. Chunking 

organises the recall of information into working memory, facilitating earlier learning 

by reducing the cognitive load on working memory (Dallal and Meck 1990; Macuda 

and Roberts 1995). Thus the impairment of working memory, robustly affected by 

cannabinoids (Nakamura, Dasilva et al. 1991; Lichtman, Dimen et al. 1995; 

Lichtman 2000; Mishima, Egashira et al. 2001; Wise, Iredale et al. 2008), may in 

fact be related to an impairment of the organisation of working memory. These are 

the first data to suggest that chunking is affected by THC in animals of any age. 

Further investigation is required to fully elucidate the nature of the chunking 

impairment operating in THC-treated animals. For instance, whether adolescents 
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are particularly sensitive to this impairment, as well as whether chunking is merely 

delayed or completely abolished remains to be determined. 
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Chapter 4 Effects of THC on Changes in Synaptic 

Plasticity 

 

4.1 Introduction 

 

The molecular basis of learning and memory is largely attributed to plasticity 

mechanisms in the brain, and particularly in the hippocampus. Plasticity is affected 

by the experiences of the individual, such as during times of learning and memory 

(Leuner and Gould 2010). In spatial learning and memory, the hippocampus is 

involved in the learning of new information, the encoding of this information, and 

the subsequent recall of memory (Knowlton and Fanselow 1998; Riedel, Micheau 

et al. 1999). Thus, the hippocampus is crucial for the performance of spatial tasks. 

Lesions to the hippocampus (Gallagher and Holland 1992; Moser, Moser et al. 

1993; Skinner, Martin et al. 1994; Pearce, Roberts et al. 1998; Cho, Friedman et 

al. 1999), or the fibres connecting the hippocampus to related structures (Nilsson, 

Shapiro et al. 1987; Eichenbaum, Stewart et al. 1990), result in cognitive 

impairment.  Furthermore, the hippocampus expresses especially high levels of 

CB1R (Murray, Morrison et al. 2007), suggesting that hippocampal plasticity may 

be especially sensitive to impairment by cannabinoids. 

 

Synaptic plasticity, one form of hippocampal plasticity, is critical in hippocampal-

dependent learning and memory. The most studied feature of synaptic plasticity in 

relation to learning and memory is the induction of LTP in the hippocampus. LTP 

describes the strengthening, or facilitation of specific synapses supporting learning 

in an activity dependent manner, and this form of functional plasticity is required 

for learning and memory processes (Martin, Grimwood et al. 2000). In addition to 

LTP, learning and memory is well documented to require structural changes 

(structural plasticity), including the recruitment of new, and reorganisation of 

existing synapses (Bailey and Kandel 1993; Moser 1999). Indeed the induction of 

LTP in the hippocampus is associated with increased synaptogenesis, with 

enhanced dendritic spine density (Muller, Toni et al. 2000) and transcription of 
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presynaptic markers (Hicks, Davis et al. 1997). While cannabinoids are known to 

impair LTP in hippocampal neurons (Collins, Pertwee et al. 1995; Terranova, 

Michaud et al. 1995; Misner and Sullivan 1999), relatively little is known about how 

cannabinoids affect structural plasticity.  

 

An impairment of synaptic recruitment by cannabinoids has been proposed as a 

molecular mechanism by which these drugs affect learning and memory 

processes. In vitro studies have shown that both synthetic and natural 

cannabinoids are able to prevent synaptic recruitment in response to forskolin-

induced neural activity (Kim and Thayer 2001). Rubino et al. have recently 

investigated whether behavioural impairment by THC can be attributed to changes 

in synaptic plasticity in vivo. In their studies, THC-treatment during adolescence 

appeared to impair structural and functional plasticity in adulthood, leading to 

cognitive impairment (Rubino, Realini et al. 2009; Rubino, Realini et al. 2009). 

However, the studies of Rubino et al. leave a number of important questions 

unanswered. As no comparison was made to untrained animals, it is unclear 

whether these deficits represent a particular sensitivity of synaptic plasticity to the 

effects of THC, or rather whether the effects of THC in the basal state culminate in 

cognitive impairment. Additionally, the analyses were conducted following a period 

of abstinence from THC, and it is unclear whether these changes in synaptic 

plasticity are sufficient to explain the impairment of learning and memory 

associated with behavioural impairment concurrent with drug treatment. 

 

The results of Chapter 3 demonstrate that adolescent learning is sensitive to 

disruption by THC. Since a major molecular mechanism of learning and memory is 

synaptic plasticity, including structural and functional plasticity; in the present 

chapter, the effect of THC on synaptic plasticity was investigated. Specific markers 

of presynaptic and postsynaptic connections were used to evaluate synaptic 

plasticity in the hippocampus. The synapsins, which are involved in synaptic 

vesicle docking, were used as presynaptic markers; whereas, PSD95, a 

component of the postsynaptic density, was used as a postsynaptic marker. These 

proteins are tightly correlated with presynaptic (Sudhof, Czernik et al. 1989; Feng, 



 94 

Chi et al. 2002; Pieribone, Porton et al. 2002) and postsynaptic (Kennedy 2000) 

sites, respectively. Furthermore, despite the involvement of CB1Rs in the induction 

of LTP (Heifets and Castillo 2009), and the critical involvement of LTP in learning 

and memory processes (Martin, Grimwood et al. 2000), no one has investigated 

whether the expression of CB1R in the hippocampus is altered by learning of a 

spatial task. Thus, the effect of learning on CB1R expression was also determined. 

 

4.2 Methods 

 

4.2.1 Animals 

 

Adolescent male Sprague Dawley rats were trained in the radial maze and treated 

daily with THC or vehicle (see section 3.2.2). The period of training was from P28 - 

P41. This time period, representing the middle stages of training (Chapter 3), was 

selected because at this time vehicle-treated animals were beginning to learn the 

radial maze task, whereas THC-treated animals were yet to significantly improve 

their performance (see Chapter 3). In addition to this trained group, a cohort of age 

and sex matched animals were identically treated with either THC or vehicle but 

received no training in the radial maze. Animals were maintained in their 

respective groups (trained or untrained) from P28 – P41, with access to food and 

water as described (see section 2.1), and then sacrificed on P42. All molecular 

analyses were conducted on hippocampal samples, collected and processed as 

previously described (see section 2.4). 

 

4.2.2 Molecular Analyses and Experimental Design 

 

PSD95 and the synapsins (synapsin-I, synapsin-II and synapsin-III) were used to 

assess the effect of adolescent THC-treatment on synaptic plasticity using 

Western blotting and real-time PCR. The synapsin primers used in this study were 
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able to discriminate between the synapsin genes but were unable to differentiate 

between the α and β splice variants of synapsin-I and synapsin-II. The synapsin 

antibody used in this research detects both the α and β forms of synapsin-I, both 

present as a band of ~80kDa. PSD95 and CB1R are expressed as single 

transcripts and are present as bands of ~80 kDa and ~50 kDa, respectively.  

 

These analyses were performed on hippocampal tissue from both trained and 

untrained animal groups. Comparison was made between THC-treated and 

vehicle-treated animals trained in the radial maze, between THC-treated and 

vehicle-treated animals not trained in the radial maze, and between trained and 

untrained animals of either treatment group. Differences between THC-treated and 

vehicle-treated animals trained in the radial maze may represent either the 

sensitivity of synaptic plasticity to THC, or rather the effects of THC on the basal 

state resulting in cognitive impairment during testing. Differences between 

untrained and trained animals for either treatment group represent synaptic 

plasticity that occurs in response to training in the radial maze for that treatment 

group. Differences between untrained THC-treated and vehicle-treated animals 

represent effects of the drug on the basal state, not related to synaptic plasticity 

associated with learning, that may contribute to learning impairment. 

 

4.2.3 Statistical Analysis 

 

Measures of statistical analysis were performed as previously described (see 

section 2.6). Analysis of mRNA expression are based on n=8 trained and n=5 

untrained vehicle-treated, and n=7 trained and n=5 untrained THC-treated 

animals. Western blot analyses are based on n=11 trained and n=10 untrained 

animals for both THC-treated and vehicle-treated groups.  
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4.3 Results 

 

4.3.1 Real-Time PCR Validation 

 

Hippocampal homogenates from THC- and vehicle-treated animals that had been 

either trained in the radial maze or maintained as home cage, untrained controls 

were analysed by real-time PCR for the expression of CB1R, PSD95, synapsin-I, 

synapsin-II and synapsin-III. Because the sensitivity of the real-time PCR assay 

can be influenced by the primer efficiency (Peters, Helps et al. 2004), and the 

SYBR Green dye detection system used here is unable to discriminate between 

intended and spurious PCR products (Brisson, Larissa et al. 2000), the efficiency 

and target specificity of the PCR primers were assessed. 

 

4.3.1.1 Primer Efficiencies 

 

Serial dilutions of purified PCR product covering a 4 log scale were amplified in 

duplicate, and Ct values plotted against the log of the dilution (Fig. 15). The slope 

of the trend line of these graphs was used to determine primer efficiency (Peters, 

Helps et al. 2004). Ideally the efficiency of primer pairs will be 100%, indicating the 

absence of competing PCR products. This will give maximum assay sensitivity. 

With the exception of synapsin-I, all primer efficiencies were close to 100%.  
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Figure 15: Efficiencies of the primers used to assess markers of plasticity. Purified PCR 

products were diluted and amplified in duplicate, and the mean Ct value plotted against the log of 

the dilution. The slope of the best fit line was used to calculate primer efficiencies (displayed on the 

graph). R
2
 values demonstrate the fit of the trend line to the data.  
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4.3.1.2 Melt Curve Analysis 

 

Following the completion of the final PCR amplification cycle (representative 

sample trace shown in Fig. 16A), melt curve analysis was used to determine the 

purity of PCR products. A single product is illustrated by a single peak when the 

rate of fluorescence change is plotted against the temperature. The temperature at 

which the peak occurs is determined by the base composition of the product. 

 

A single sharp peak was observed in the melt curves for CB1R (86 ˚C), cyclophilin 

A (84 ˚C), synapsin-I (89.5 ˚C), synapsin-II (83 ˚C) and synapsin-III (85 ˚C), 

indicating the presence of a single PCR product; whereas, the melt curve of 

PSD95 showed a more diffuse peak (between 80.5 – 90.5 ˚C). This may indicate 

the generation of spurious PCR product by the PSD95 primer pair. All primer sets 

appeared to have at least some level of primer dimer, as suggested by the 

presence of a small amount of product between 73 – 85 ˚C (Fig. 16B). PCR 

products were resolved and visualised using agarose gel electrophoresis to 

confirm the identity on the basis of size (Fig. 16C). All primer sets amplified a 

single product of the expected size. In addition the PSD95 primer pair produced 

some primer dimer, and the synapsin-I primer pair appeared to also amplify a 

small amount of off-target product of approximately 500 bp. Because these 

products were scarce compared to the expected product, and because analysis on 

samples with Ct values between 20 – 30 cycles, as seen for these transcripts, 

have been reported to be relatively unaffected by primer-dimer and non-specific 

product formation, the contribution of these products to the analysis were 

considered to be negligible (Peters, Helps et al. 2004). 
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Figure 16: Representative real-time PCR data used to assess plasticity. (A) A representative 

trace image of data acquired by real-time PCR for target genes used in this chapter. All genes 

(Cyclophilin A, black; CB1R, blue; PSD95, gold; synapsin-I, red; synapsin-II, dark green; synapsin-

III, lime) were analysed in duplicate to ensure the accuracy of the results. (B) Melt-curve profile 

analysis of these samples revealed single sharp peaks for CB1R (86˚C), synapsin-I (89.5˚C), 

synapsin-II (83˚C), synapsin-III (85˚C) and cyclophilin A (84˚C) while PSD95 shows a more diffuse 

peak (85˚C).Low levels of product were also detected at 73 - 85˚C for all primer pairs. (C) PCR 

products were validated using agarose gel electrophoresis (lane 1, CB1R; lane 2, PSD95; lane 3, 

synapsin-I; lane 4, synapsin-II; lane 5, synapsin-III; lane 6, cyclophilin A). (D) Melt-curve profile 

analysis of negative controls (PCR reactions completed with template replaced with either ddH2O 

or equi-molar non-reverse transcribed RNA) showed no specific PCR product for any of the genes 

analysed. 

 

 

For each primer pair, PCR amplification and melt curve analysis of negative 

controls (in which template was replaced with either ddH2O or equi-molar non-

reverse transcribed RNA) detected no specific PCR product (Fig. 16D). These 

data rule out the possibility that contaminating PCR product or genomic DNA were 

amplified during the PCR reaction. 
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4.3.2 Chronic THC Exposure Attenuates Transcription of Plasticity 

Markers 

 

For each transcript, mean ∆Ct values were determined for each treatment and 

training group. From the ∆Ct values, the ∆∆Ct values were calculated relative to 

vehicle-treated untrained control animals. Calculated ∆Ct values and ∆∆Ct values 

are presented in (Table 5) and (Fig. 17), respectively. 

 

Two-way ANOVA (training x transcript) found that training of vehicle-treated, but 

not THC-treated animals in the radial maze increased mRNA expression 

(p<0.001), especially the expression of synapsin-I (p<0.001) and synapsin-III 

(p<0.01). These transcripts increased by 136% (corresponding to 1.24 ∆∆Ct units) 

and 104% (corresponding to 1.03 ∆∆Ct units), respectively. One-way ANOVA 

detected significant differences between treatment and training groups for 

synapsin-I (p<0.05) and synapsin-III (p<0.01), that were increased in vehicle-

treated but not THC-treated animals by training in the radial maze (p<0.05 and 

p<0.01, respectively), supporting the findings of Two-way ANOVA above. A 54% 

(corresponding to 0.62 ∆∆Ct units) increase in PSD95 (p=0.059), and a 62% 

(corresponding to 0.7 ∆∆Ct units) increase in CB1R (p=0.066) upon training in 

vehicle-treated animals, however, marginally failed to achieve significance, 

although strong trends were observed. Consequently, Two-way ANOVA 

(treatment x transcript) found that vehicle-treated animals trained in the radial 

maze had higher transcript levels than trained THC-treated animals (p<0.001). 

This was especially evident for PSD95 levels, that were 111% higher 

(corresponding to 1.08 ∆∆Ct units) in vehicle-treated trained animals (p<0.01). No 

effects of THC-treatment on transcript levels, however, were detected for home 

cage, untrained animals (Fig. 17). 
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Target 

Trained Animals Untrained Animals 

Vehicle-

Treated 
THC-Treated 

Vehicle-

Treated 
THC-Treated 

CB1R 

3.64 ± 0.13 

(1.62X) 

4.16 ± 0.21 

(1.09X) 

4.34 ± 0.17 

4.28 ± 0.32 

(1.04X) 

PSD95 

8.09 ± 0.26 

(1.54X) 

9.17 ± 0.52 

(0.93X) 

8.71 ± 0.2 

9.06 ± 0.11 

(0.78X) 

Synapsin-I 

5.33 ± 0.23 

(2.36X) 

5.76 ± 0.16 

(1.51X) 

6.57 ± 0.38 

6.35 ± 0.37 

(1.16X) 

Synapsin-II 

1.15 ± 0.09 

(1.36X) 

1.51 ± 0.19 

(1.16X) 

1.59 ± 0.21 

1.72 ± 0.33 

(0.91X) 

Synapsin-III 

9.37 ± 0.16 

(2.04X) 

9.86 ± 0.13 

(1.57X) 

10.4 ± 0.29 

10.51 ± 0.3 

(0.93X) 

Table 5: Relative gene expression levels between treatment and behavioural groups for 

plasticity markers. Data are mean ± SEM of the ∆Ct values. Fold change relative to untrained 

animals of the same treatment (for trained animals), or vehicle-treated animals (for untrained THC-

treated animals) are shown in parenthesis. 
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Figure 17: THC attenuates the transcription of markers involved in synaptic plasticity. 

Training in the radial maze increased the transcription of markers analysed overall, and although 

specific increases in transcript levels were only observed for synapsin-I and synapsin-III transcripts, 

those for CB1R and PSD95 only just failed to achieve statistical significance. While training also 

appeared to increase transcription in THC-treated animals, this relationship was not statistically 

significant, and indeed, a significant difference was detected between the transcript levels in THC-

treated and vehicle-treated animals. THC did not affect the baseline expression of transcripts. Data 

are presented as the mean ∆∆Ct values ± SEM relative to untrained vehicle-treated animals, with 

the y-axis inverted for presentation purposes. *p<0.05 by One-way ANOVA, **/
##

 p<0.01 by One-

way ANOVA/Two-way ANOVA. 

 

4.3.3 Chronic THC Exposure Prevents Adaptive Reponses in Synaptic 

Plasticity 

 

Hippocampal protein lysates were immunoblotted to determine if the trends 

observed in the mRNA data were corroborated by similar changes in protein 

expression (Fig. 18). Two-way ANOVA (training x protein) found that training 

significantly reduced protein expression in vehicle-treated animals (p<0.001), and 

that CB1R (32%, p<0.05) and PSD95 (31%, p<0.05) were especially reduced by 
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training. No reduction was observed in THC-treated animals trained in the radial 

maze. One-way ANOVA detected significant differences between the mean 

expression levels of both CB1R (p<0.001) and PSD95 (p=0.05) between treatment 

and training groups. The levels of both CB1R and PSD95 were reduced by training 

in vehicle-treated animals (p<0.05 for both). However, THC-treatment reduced the 

expression of CB1R (53%, p<0.001), but not PSD95 (9%) in untrained, home cage 

control animals. The trends observed in the PSD95 dataset appeared to be 

consistent with trends in the levels of synapsin-I, including a 27% reduction of 

expression upon training that was not observed in THC-treated animals, although 

the synapsin-I changes were not statistically significant (p=0.25). Two-way ANOVA 

(treatment x protein) detected a significant interaction effect when either trained or 

untrained THC-treated and vehicle-treated animals were compared, making the 

data difficult to interpret. However, the reduction of CB1R in THC-treated untrained 

animals appeared to entirely account for the interaction effect, because when 

CB1R data were excluded from the analyses no interactions were detected. 

Vehicle-treated animals had lower levels of PSD95 and synapsin-I than THC-

treated animals trained in the radial maze (p<0.05); whereas, no differences in 

these levels were observed between THC-treated and vehicle-treated untrained, 

home cage control animals.  
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Figure 18: The training-induced reduction in synaptic protein abundance is blocked by THC-

treatment. (A) Training in the radial maze reduced the abundance of PSD95 and CB1R in vehicle-, 

but not THC-treated animals. A similar reduction in synapsin-I in vehicle-treated animals only upon 

training did not achieve statistical significance. THC had no effect on synapsin-I and PSD95 levels 

in untrained animals, but significantly reduced the expression of CB1R.  Data are mean ± SEM; * 

p<0.05, ***p<0.001 by one-way ANOVA. (B) Fluorescent scans of representative immunostained 

bands, for CB1R, PSD95 and synapsin-I.  
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4.4 Discussion 

 

While the behavioural deficits associated with cannabis use are widely accepted, 

few studies have investigated the molecular changes that may account for this 

behavioural disruption. This chapter has investigated whether the impairment of 

learning in adolescent animals (shown in Chapter 3) is correlated with impairment 

of synaptic plasticity. Synaptic plasticity, including functional plasticity (LTP) as 

well as structural plasticity (the recruitment of new and rearrangement of existing 

synapses), is required to perform complex brain functions such as learning and 

memory (Bailey and Kandel 1993; Moser 1999; Martin, Grimwood et al. 2000). 

Analyses were conducted on animals that were both trained in the radial maze, 

and those that were left untrained. This allowed the investigation of whether 

synaptic plasticity in response to training in a spatial task is especially sensitive to 

disruption by THC, or rather whether the effects of THC on the basal state 

culminate in behavioural impairment 

 

Synaptic plasticity was investigated in the hippocampus because it represents the 

brain structure most relevant to spatial learning and memory (Gallagher and 

Holland 1992; Moser, Moser et al. 1993; Skinner, Martin et al. 1994; Cho, 

Friedman et al. 1999). A range of plasticity markers were included in the analysis. 

The synapsins are a group of phosphoproteins associated with presynaptic 

terminals (Sudhof, Czernik et al. 1989; Feng, Chi et al. 2002; Pieribone, Porton et 

al. 2002), and thus are good markers for presynaptic connections. Additionally, 

synapsin-I is strongly implicated in the induction and maintenance of LTP (Nayak, 

Moore et al. 1996). PSD95 is a postsynaptic marker, tightly correlated with 

postsynaptic sites, although it, like synapsin-I, is also involved in the induction and 

maintenance of LTP (Kennedy 2000). Thus, PSD95 and synapsin-I are markers of 

both structural and functional plasticity. Finally, CB1R is the main cannabinoid 

receptor in the CNS (Trezza, Cuomo et al. 2008). CB1R is strongly implicated in 

the mechanism of LTD (Heifets and Castillo 2009), inhibiting the release of GABA, 

and leading to the induction and maintenance of LTP, required for learning (Martin, 

Grimwood et al. 2000). 
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Training in the RAM enhanced the transcription of markers of synaptic plasticity in 

vehicle-treated animals, and these increases were attenuated by THC-treatment. 

The levels of synapsin-I and synapsin-III were especially affected by training in 

vehicle-treated animals, and vehicle-treated animals generally had higher levels of 

all transcripts than THC-treated animals trained in the RAM. This was particularly 

evident for the levels of PSD95. Importantly, the impairment of learning associated 

transcription by THC was observed in the absence of any difference in the 

transcription of these markers in animals that were not trained in the RAM. Thus, 

the behavioural impairment associated with THC-treatment during adolescence is 

due to the sensitivity of synaptic plasticity during learning to THC, rather than 

because of the effects of THC in the basal (unlearning) state. 

 

Increases in transcription of synapsin-I and PSD95 upon training presented in this 

chapter suggest an increase in structural and functional plasticity upon learning. 

Memory consolidation and long-term memory require de novo protein synthesis 

from learning induced changes in gene expression (Davis and Squire 1984; Bailey 

and Kandel 1993). The data in this chapter showing changes in the expression of 

these genes are supported by similar protein changes in previous studies (Gomez-

Pinilla, So et al. 2001; Skibinska, Lech et al. 2001). Few studies, however, have 

investigated the effect of THC on synaptic plasticity. In one study, behavioural 

impairment in adulthood following adolescent THC treatment was associated with 

reduced levels of the presynaptic protein VAMP2, and PSD95 in the hippocampus 

(Rubino, Realini et al. 2009). Synapsin-I and VAMP2 are roughly analogous 

markers, as both are vesicle-associated proteins found together at presynaptic 

sites and are involved in increasing neurotransmitter release during LTP (Nayak, 

Moore et al. 1996; Sanes and Lichtman 1999; Schoch, Deak et al. 2001). Rubino 

et al. concluded that adolescent THC treatment caused lasting impairment of 

structural and functional plasticity, resulting in cognitive impairment in adulthood 

(Rubino, Realini et al. 2009). The data presented in this chapter support a similar 

impairment in structural and functional plasticity when testing is concurrent with 

THC-treatment in adolescence. Furthermore, they indicate that plasticity 

associated with learning, rather than the basal state, is especially sensitive to 

disruption by THC. This finding of the present study refines the nature of the 
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impairment reported by Rubino et al., since in their study, no comparison was 

made with untrained animals.  

 

CB1R mRNA was increased by training in the radial maze in vehicle-treated 

animals. Learning enhances LTP in the hippocampus (Martin, Grimwood et al. 

2000), and this is mediated by increasing the expression of a number of 

molecules responsible to the induction and maintenance of LTP (Sanes and 

Lichtman 1999). Although a number of studies have implicated CB1R as a 

molecule important in LTP (Collins, Pertwee et al. 1995; Terranova, Michaud et 

al. 1995; Misner and Sullivan 1999), none have demonstrated any alteration in its 

expression upon learning. Subjecting animals to enriched environment or 

exercise, however, both of which enhance hippocampal dependent learning, have 

been shown to increase hippocampal CB1R mRNA levels (Wolf, Bick-Sander et 

al. 2010). An increase in CB1R may contribute to increased LTP required for 

learning. Higher levels of CB1R presumably cause a greater inhibition of 

GABAergic interneurons in response to endocannabinoid signalling from the 

postsynaptic neuron, thus facilitating a greater DSI and the induction of LTP. 

THC-treated animals trained in the RAM showed no enhancement in CB1R 

mRNA levels, and this may impair learning by reducing the likelihood of LTP 

induction. This effect is likely compounded by the down regulation of CB1R 

protein in an apparent tolerance response observed in THC-treated animals in 

this study. Indeed, it has been suggested that cannabinoids impair LTP by 

preventing the attainment of sufficient levels of neurotransmitter required for LTP 

induction (Sullivan 2000), and inhibition of LTD would increase the threshold 

required for LTP induction.  

 

Overall, the results of the mRNA analyses indicate that deficits in adolescent 

learning following THC-treatment can likely be attributed to the effects of THC on 

plasticity responses to learning, rather than any effects on the basal state that 

culminate in cognitive impairment. When protein levels were analysed, training of 

vehicle-treated, but not THC-treated animals in the RAM reduced the expression 

of synaptic proteins, especially CB1R and PSD95. Once CB1R data were 



 108 

excluded from the analyses, THC had no effect on base line expression of 

synapsin-I and PSD95, and the abundance of these proteins were lower in 

vehicle-treated, but not THC-treated animals trained in the RAM. This data 

suggests a reduction in synaptic connections in the hippocampus upon training in 

adolescents is blocked by THC-treatment. CB1R data were excluded from this 

analysis because the decreases in the levels of this protein in THC-treated 

animals appeared to be mediated by the development of tolerance to the ligand, 

rather than the effects of the drug on synaptic plasticity. Indeed, the development 

of tolerance to ligands such as THC can be achieved by receptor degradation 

(Hsieh, Brown et al. 1999; Leterrier, Bonnard et al. 2004; Martini, Waldhoer et al. 

2007) and has been shown in adolescent animals previously (Breivogel, Childers 

et al. 1999; Rubino, Vigano et al. 2008).  

 

Interestingly, cognitive impairment resulting from THC-treatment has been 

associated with enhanced translation (Puighermanal, Marsicano et al. 2009) that 

has the potential to mask any reduction of plasticity markers by training seen in 

vehicle-treated animals. This possibility is however unlikely for several reasons. 

Firstly, memory consolidation requires de novo protein synthesis in the period 

immediately following training (Inda, Delgado-Garcia et al. 2005), and this was the 

period Puighermanal et al (2009) administered THC within in their study. Protein 

translation was elevated for up to 4 hours following treatment, and the cognitive 

impairment measured 24 hours later could be reversed using a protein synthesis 

inhibitor. In this study THC was administered 19 hours before the completion of 

training. This is significantly greater than the 4 hours after THC-treatment where 

de novo protein synthesis is particularly important (Inda, Delgado-Garcia et al. 

2005) and when translation is enhanced by THC (Puighermanal, Marsicano et al. 

2009). Furthermore the expression of CB1R was significantly reduced by the 

chronic THC-treatment regimen used in this study. This is significant because the 

increase in translation was mediated via CB1R (Puighermanal, Marsicano et al. 

2009), and reduced receptor density could be expected to minimise this effect of 

THC. Finally, THC appeared to have no effect on protein levels in animals not 

trained in the radial maze, arguing against any increase in translation by THC-

treatment. As such the potential effects of THC on protein translation appear to 
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have been mitigated by the experimental design of this study. Thus the protein 

data support the conclusions drawn from the mRNA data, as THC-treatment 

prevented plasticity in response to learning, rather than the drug affecting the 

basal state culminating in cognitive impairment. It is not immediately clear 

however, why training of vehicle-treated animals is associated with increased 

transcription, but reduced protein levels for these plasticity markers. Interestingly, 

reductions in synaptic protein, such as those seen here upon training, are routinely 

observed during neurodevelopment in the adolescent period of a number of 

species. 

 

During adolescence, synaptic connections in the hippocampus and other brain 

regions are refined into their adult neural architecture. Significant reductions in 

spine density and associated neurotransmitter systems, including reductions in 

CB1R levels, are observed in this pruning mechanism in the hippocampus (Spear 

2000; Zehr, Nichols et al. 2008). Changes such as these are associated with the 

emergence of adult patterns of brain activation during task performance and the 

improvement of many cognitive functions (Spear 2000). Significantly, spatial 

learning and memory skills develop throughout the adolescent period, and this is 

related to cellular changes in the hippocampus (Uysal, Dayi et al. 2010). 

Adolescence can thus be thought of as a plastic period that precedes the 

emergence of adult cognitive processes. Surprisingly, whether learning, known to 

elicit increases in structural and functional plasticity (Bailey and Kandel 1993; 

Moser 1999; Martin, Grimwood et al. 2000), enhances the developmental plasticity 

associated with the adolescent period has not been investigated. The results of 

this chapter show an impairment of synaptic plasticity by THC treatment in 

adolescence, although the direction of change was different at the mRNA and 

protein levels. It is tempting to speculate that the adolescent age period, in which 

these data were collected, may represent a unique paradox in which these 

different results may be explained.  

 

The data of this chapter show that training in the radial maze facilitated reductions 

in synaptic proteins similar to that reported during adolescent neurodevelopment. 



 110 

This may represent an acceleration of adolescent development corresponding to 

enhanced spatial learning. This is because adolescence is associated with 

significant developmental changes, including reductions in pre and postsynaptic 

connections (Spear 2000), and because spatial learning, that develops during the 

adolescent period (Uysal, Dayi et al. 2010), was greater in animals that appeared 

to eliminate their synapses in response to training in the RAM. That reductions in 

these proteins were not seen in THC-treated animals may suggest that THC 

prevents accelerated adolescent neurodevelopment associated with spatial 

training. Interestingly, an impairment of synaptic elimination by THC has been 

shown previously, as network driven synapse loss was prevented by THC using 

an in vitro model of high neural activity (Kim, Waataja et al. 2008). Additionally, 

training of vehicle-treated, but not THC-treated animals in the RAM increased the 

mRNA levels of these markers. Decreases in protein levels, possibly representing 

synaptic elimination, appeared to significantly outweigh any de novo protein 

synthesis associated with increased mRNA levels upon training. As such, 

decreased protein and increased mRNA may represent two plasticity mechanisms 

operating simultaneously in adolescent learning animals; developmental plasticity, 

and synaptic plasticity, respectively. Thus, THC-elicited disruption of the balance 

between synaptic elimination and synaptic establishment during times of learning 

may represent a novel set of molecular circumstances in which adolescent 

learning is impaired simultaneously at two levels of plasticity. However, this 

proposal is merely speculation as the data presented here are unable to confirm 

this possibility and more investigation is required. 

 

These data build significantly on the limited earlier studies that have investigated 

the molecular basis of learning and memory impairment that is associated with 

cannabis use. The results suggest that an increase in CB1R may be important for 

learning, and that increases in CB1R mRNA are blocked by THC. This effect may 

be compounded by the induction of CB1R degradation upon ligand binding in 

THC-treated animals. Additionally, the data suggest that the adolescent 

behavioural deficits caused by THC exposure are at least partly attributable to 

impairment of structural and functional plasticity associated with training. Similar 

impairments in adults have been reported following adolescent THC exposure 
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(Rubino, Realini et al. 2009). The data in this chapter extend these previous 

findings by demonstrating a particular sensitivity of synaptic plasticity to the effects 

of THC, rather than effects of THC in the basal sate culminating in learning 

impairment. The relative contribution of these impairments was previously unclear. 

Finally, the data may suggest that adolescent neurodevelopment is accelerated by 

spatial learning, and that this acceleration was impaired by THC-treatment. The 

data are however insufficient to absolutely support this hypothesis, and further 

investigation is required. 

 

Significant changes in mRNA levels for synapsin-III were also seen in this study. 

Training in the radial maze increased the expression of synapsin-III, and this was 

prevented by THC treatment. While located at presynaptic sites, synapsin-III is 

predominantly located on maturing newborn neurons (Pieribone, Porton et al. 

2002; Kao, Li et al. 2008), where it is concentrated in early growth cones and is 

involved in axonal outgrowth and differentiation (Ferreira, Kao et al. 2000). Despite 

the apparent role of synapsin-III in neurogenesis, and the fact that learning 

increases neurogenesis in the hippocampus (Gould, Beylin et al. 1999), these are 

the first data that demonstrate that learning enhances the expression of synapsin-

III. Furthermore, these data suggest that deficits in neurogenesis, in addition to 

synaptic plasticity, may contribute to cognitive impairment in THC-treated animals. 

Indeed, the behaviour of THC-treated animals trained in the RAM (see Chapter 3) 

shares similar features to synapsin-III knockout animals, including subtle deficits in 

reference memory and a reduced reliance on spatial search strategies (Porton, 

Rodriguiz et al. 2010). The effects of THC on neurogenesis are investigated in 

Chapter 5. 
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Chapter 5 Effects of THC on Hippocampal Neurogenesis 

 

5.1 Introduction 

 

Neurons are continuously generated in discrete regions of the adult brain, 

including the dentate gyrus of the hippocampus (Altman and Das 1965). A 

population of neural stem cells (NSCs) lines the inner face of the dentate gyrus 

(Denise, Garcia et al. 2004), and these cells divide to generate neuroblasts (Seri, 

Manuel et al. 2004). In normal circumstances, many of these neuroblasts are lost 

by apoptosis (Sun, Winseck et al. 2004). Survival of these newborn neurons, 

however, is enhanced by (Gould, Beylin et al. 1999), and indeed required for 

(Shors, Miesegaes et al. 2001), performance in hippocampal-dependent learning 

tasks. Neurons that survive become functionally integrated into the hippocampus, 

extending processes towards the molecular layer and to the CA3 region of the 

hippocampus (Deng, Aimone et al. 2010). The contribution of these synapses to 

the hippocampal circuit is thought to be an important mechanism of increased 

structural plasticity (see Chapter 4) during learning (Bailey and Kandel 1993; 

Moser 1999). However, the major role of adult hippocampal neurogenesis is 

thought not to be its contribution to structural plasticity, but rather to a process 

called pattern separation. 

 

Increased survival of neuroblasts during learning appears restricted to neurons 

able to receive functional input; whereas, those that are not able to are eliminated 

(Deng, Aimone et al. 2010). In this way, the targets innervated by newborn 

neurons are enriched for connections that support the memory learnt during 

training (Dupret, Fabre et al. 2007). The hyperexcitability associated with the early 

age of newborn neurons that are selected during learning allows them to be 

preferentially incorporated into multiple memory circuits. In this way, memories 

activating similar sets of granule cells in the dentate gyrus can result in the 

activation of very different efferent neural networks. This allows related memories 

to be recalled together, but prevents interference between these memories (Deng, 



 113 

Aimone et al. 2010). Thus adult hippocampal neurogenesis is an important 

plasticity mechanism contributing to learning and memory in various tasks 

including that used in the present thesis, the RAM, in which similar cues are used 

to determine the location of rewarded and non-rewarded arms. 

 

Neural progenitor cells contain a functional endocannabinoid signalling system 

(Aguado, Monory et al. 2005; Jiang, Zhang et al. 2005; Aguado, Palazuelos et al. 

2006; Mulder, Aguado et al. 2008) including the CB1R receptor, that is maintained 

on maturing granule neurons (Wolf, Bick-Sander et al. 2010). Activation of CB1R 

receptors increases neural progenitor cell proliferation; whereas, knockout of 

CB1R decreases proliferation (Jin, Xie et al. 2004; Aguado, Monory et al. 2005; 

Jiang, Zhang et al. 2005; Aguado, Palazuelos et al. 2006; Mulder, Aguado et al. 

2008). Furthermore, cannabinoids appear to delay the maturation of neuroblasts 

(Rueda, Navarro et al. 2002; Galve-Roperh, Aguado et al. 2006), although they 

have no effect on the survival of newborn neurons in the absence of training (Wolf, 

Bick-Sander et al. 2010). Thus, cannabinoids appear able to influence 

neurogenesis from neural progenitor cell proliferation through to maturation of 

adult born neuroblasts. Curiously, the research that has investigated the effects of 

cannabinoids on neurogenesis has neglected to determine whether enhanced 

neurogenesis associated with learning is affected by cannabinoid drugs, despite 

the important role played by neurogenesis in learning. 

 

This chapter investigates whether changes in neurogenesis associated with 

learning are affected by treatment with THC. The effect of THC on learning-

enhanced neuronal survival was tested using BrdU labelling to trace newborn 

neurons. Other aspects of neurogenesis were investigated by 

immunohistochemistry (IHC) staining using specific markers. Sox2 was used as a 

marker to determine the number of neural stem cells in the hippocampus that are 

responsible for producing young neurons (Graham, Khudyakov et al. 2003; Ferri, 

Cavallaro et al. 2004; Suh, Consiglio et al. 2007; Favaro, Valotta et al. 2009). The 

level of proliferation in the hippocampus was assessed using the marker Ki67 that 

stains all proliferating cells (Scholzen and Gerdes 2000). The overall number of 
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newborn neurons was assessed using the markers doublecortin (DCX) and the 

post-translational addition of polysialic acid (PSA) to the neural cell adhesion 

molecule (NCAM). Expression of both DCX and PSA-NCAM is evident shortly 

after birth, does not co-localise with markers of neural stem cells and is down-

regulated in mature neurons (von Bohlen und Halbach 2007). Finally, the 

expression of brain-derived neurotrophic factor (BDNF), a cytokine that has 

previously been shown to promote the differentiation and survival of neurons, was 

measured to determine whether THC elicited any change in the level of this 

important neurotrophic factor (Memberg and Hall 1995; Palmer, Takahashi et al. 

1997; Sairanen, Lucas et al. 2005). Analyses were performed in both trained and 

untrained animals to determine if any effects of THC were attributable to 

impairment of adaptive responses specifically, or rather to the effects of THC on 

the basal, untrained state. 

 

5.2 Methods 

 

5.2.1 Animals 

 

The basic experimental design was as described in Chapter 4. Briefly, adolescent 

rats were treated with THC for 15 days, and the effect of THC on neurogenesis in 

animals that either had or had not been trained in the radial maze during this time 

was assessed. This training period coincided with the early emergence of 

behavioural differences between THC-treated and vehicle-treated animals (see 

Chapter 3). Hippocampal tissue was collected from these animals as described 

previously (see section 2.4 and 2.5). 
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5.2.2 Molecular Analyses and Experimental Design 

 

A combination of IHC, Western blotting and real-time PCR were used to assess 

the effects of THC on neurogenesis in the hippocampus. Survival of a cohort of 

BrdU-labelled nuclei can be used to assess the effect of THC on the survival of 

neurons born at the beginning of training. BDNF, Sox2 and Ki67 present a 

snapshot of neurogenesis at the time of sacrifice. PSA-NCAM and DCX are 

expressed for 3 – 4 weeks following neuronal birth (von Bohlen und Halbach 2007; 

Deng, Aimone et al. 2010), and thus their presence indicates the birth and survival 

of neurons in the weeks before as well as during the 2-week experimental window 

used in this study. This combination of analyses allows the simultaneous 

investigation of several stages of neurogenesis. 

 

5.2.2.1 Western Blotting and Real-Time PCR 

 

A variety of neurogenic markers were used in this chapter. Sox2 was used as a 

marker of NSCs, and Ki67 was used as a proliferative marker. PSA-NCAM was 

used as a marker of young neurons. The addition of PSA to the NCAM is a post-

translational modification, and thus cannot be assessed by real-time PCR. Instead, 

DCX mRNA levels were assessed, as PSA-NCAM and DCX are considered 

equivalent markers of young neurons (von Bohlen und Halbach 2007). In addition, 

BDNF was assessed because of its role in promoting the generation and survival 

of newborn neurons. The antibodies used for Sox2 (43 kDa), PSA-NCAM (~300 

kDa), and BDNF (~28kDa) detected single bands of the expected size. The Ki67 

antibody detected a doublet of ~345 and ~395 kDa as expected, and both of these 

bands were used in the densitometry analysis. The analyses of protein and mRNA 

quantities were performed as previously described (see section 2.4). 
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5.2.2.2 Immunohistochemistry 

 

Animals were injected with BrdU on the eve of training to label a cohort of newborn 

neurons (see section 2.3). Fifteen days later, animals were sacrificed and 

processed for the detection of surviving BrdU-labelled neurons by IHC and DAB 

staining (see section 2.5). The analysis was based on a method using matched 

sections and systematic random sampling (Fig. 19). Every fifth section of 20 µm 

through a 1200 µm segment of the dorsal hippocampus was processed for the 

enumeration of surviving BrdU-labelled neurons from the cohort of labelled 

neurons.  Analysed sections were 100 µm apart, ensuring the same cell was not 

counted twice. All BrdU+ cells were counted throughout the entire length of the 

dentate gyrus and thickness of the section, and binned as being in either the hilus, 

the subgranular zone (SGZ, defined as the zone encompassing a 2-cell nuclei 

width either side of the interface between the hilus and dentate gyrus) or the 

granule cell layer (GCL, defined as all cells of the dentate gyrus not included in the 

SGZ, Fig. 19B). These regions were counted in both the superior and inferior 

blades dentate gyrus. Where the blades met, the superior and inferior dentate 

gyrus was separated by drawing a line through the apex of this structure (Jiang, 

Zhang et al. 2005). 
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Figure 19: Method for the enumeration of BrdU
+
 nuclei in the hippocampus. A) Cell counting 

was performed using systematic sampling. The first appearance of the superior blade of the 

dentate gyrus, before the merging of the superior and inferior blades, was used as a common 

morphological feature defining the first section to be analysed. B) BrdU
+
 nuclei (brown) were 

counted in the SGZ (arrows) and GCL (asterisk) of both the superior and inferior blades of the 

dentate gyrus, as well as the hilus (arrow heads). The interface between the dentate gyrus and the 

hilus is shown by a solid line, and a 2-cell-bodywide zone along this interface was considered the 

SGZ. The area between the superior and inferior blades of the dentate gyrus that was not included 

in the SGZ was considered the hilus; whereas, the area of the dentate gyrus not included in the 

SGZ was considered the GCL. 
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5.2.3 Statistical Analyses 

 

Western blot and real-time PCR analyses were conducted as described previously 

(see section 2.6) using the same samples and number of observations as in 

Chapter 4. Briefly, mRNA data are based on n=8 trained and n=5 untrained 

vehicle-treated animals, and n=7 trained and n=5 untrained THC-treated animals. 

Western blot analyses are based on n=11 trained animals and n=10 untrained 

animals in each treatment group. Immunohistochemical analyses in this chapter 

are based on a separate set of n=7 trained and n=6 untrained vehicle-treated 

animals, and n=6 trained and n=4 untrained THC-treated animals. A separate 

group of animals was used, as this analysis was conducted in the same region 

used for protein and mRNA expression analyses and required the preservation of 

morphology. 

 

5.3 Results 

 

5.3.1 Real-Time PCR Validation 

 

5.3.1.1 Primer Efficiencies 

 

Serial dilutions of purified PCR product covering a 4 log scale were amplified in 

duplicate, and Ct values plotted against the log of the dilution (Fig. 20). The slope 

of the trend line of these graphs was used to determine primer efficiency (Peters, 

Helps et al. 2004). Ideally the efficiency of primer pairs should be 100%, indicating 

maximum assay sensitivity. With the exception of DCX, all primer efficiencies were 

close to 100%.  
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Figure 20: Efficiencies of the primers used to assess markers of neurogenesis. Purified PCR 

products were diluted and amplified in duplicate, and the mean Ct value plotted against the log of 

the dilution. The slope of the best fit line was used to calculate primer efficiencies (displayed on the 

graph). R
2
 values demonstrate the fit of the trend line to the data. 

 

5.3.1.2 Melt Curve Analysis 

 

Following the completion of the final PCR amplification cycle (representative 

sample trace shown in Fig. 21A), melt curve analysis was used to determine the 

specificity of the PCR products. A single product is illustrated by a single peak 

when the rate of fluorescence change is plotted against the temperature. The 

temperature at which the peak occurs is determined by the base composition of 

the product. 

 

A single sharp peak was observed in the melt curves for cyclophilin A (84˚C), Sox2 

(89.5˚C), DCX (85˚C), Ki67 (82.5˚C) and BDNF (81.5˚C), indicating the presence 

of a single PCR product. All primer sets appeared to have at least some level of 

primer dimer, as suggested by the presence of a small amount of product between 
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73˚C and 86˚C (Fig. 21B). PCR products were resolved and visualised using 

agarose gel electrophoresis to confirm their specificity on the basis of size (Fig. 

21C). All primer sets amplified a single product of the expected size (see section 

2.4). In addition, the Ki67 primer pair appeared to also amplify a small amount of 

off-target product of approximately 500 bp. This product was, however, scarce in 

comparison with the major, expected product of the PCR reaction, and its 

contribution to the analysis was considered to be negligible (Peters, Helps et al. 

2004). 

 

 

Figure 21: Representative real-time PCR data used to assess neurogenesis.  (A) A 

representative trace image of data acquired by real-time PCR for target genes used in this chapter. 

All genes (cyclophilin A, black; Ki67, red; Sox2, lime; DCX, green; BDNF, teal) were analysed in 

duplicate to ensure the accuracy of the results. (B) Melt-curve profile analysis of these samples 

revealed single sharp peaks for cyclophilin A (84˚C), Sox2 (89.5˚C), DCX (85˚C), Ki67 (82.5˚C), 

BDNF (81.5˚C). Low levels of product were also detected at 73 - 86˚C for all primer pairs. (C) 

Single PCR products were validated according to size using agarose gel electrophoresis (lane 1, 

Sox2; lane 2, DCX; lane 3, Ki67; lane 4, BDNF). (D) Melt-curve profile analysis of negative controls 

(PCR reactions completed with template replaced with either ddH2O or equi-molar, non-reverse 

transcribed RNA) showed no specific PCR product for any of the genes analysed. 
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For each primer pair, PCR amplification and melt curve analysis of negative 

controls detected no specific PCR product (Fig. 21D). Thus, no contaminating 

PCR product or genomic DNA were amplified during the PCR reaction. 

 

5.3.2 THC Does Not Affect Enhanced Neuronal Survival Associated 

with Learning in a Cohort of BrdU-Labelled Neurons 

 

BrdU labelling and immunohistochemistry were used to assess neuronal survival 

after 2 weeks (Table 6), and a significant difference between group means was 

detected (p<0.001). There were no significant effects of THC on survival in either 

trained or untrained animals. Additionally, training-enhanced survival of BrdU+ 

neurons was seen in both vehicle-treated (p<0.001) and THC-treated animals 

(p<0.05). Furthermore, no difference in the relative distribution of labelled neurons 

throughout the dentate gyrus was detected between training and treatment groups 

(Fig. 22). 

 

 

 Trained Untrained 

THC 141 ± 8 103 ± 12 

Vehicle 152 ± 9 90 ± 7 

Table 6: Number of BrdU labelled neurons surviving for 2 weeks. THC had no effect on the 

survival of BrdU-labelled neurons. Data are mean counts ± SEM counts. 
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Figure 22: THC does not affect the number or localisation of surviving BrdU-labelled 

neurons. A) Training in the radial maze enhanced the survival of BrdU
+
 neurons labelled 2 weeks 

earlier in both THC-treated and vehicle-treated animals. B) The proportion of surviving BrdU
+
 

neurons in different regions of the dentate gyrus was not affected by either training in the radial 

maze or drug treatment. Data are mean ± SEM; *p<0.05, ***p<0.001 by One-way ANOVA; SGZ, 

subgranular zone; GCL, granule cell layer. 



 123 

5.3.3 Neurogenesis is Affected by Learning, and THC has Only Subtle 

Effects 

 

Mean ∆Ct values for each transcript were used to compare relative transcript 

abundance between treatment and training groups (Table 7). For presentation 

purposes, ∆∆Ct values were calculated from these data relative to vehicle-treated, 

untrained animals (Fig. 23). 

 

Target 

Trained Animals Untrained Animals 

Vehicle-Treated THC-Treated Vehicle-Treated THC-Treated 

Sox2 
6.86 ± 0.17 

(1.04X) 

6.64 ± 0.15 

(1.35X) 
6.91 ± 0.24 

7.07 ± 0.17           

(0.90X) 

DCX 
8.67 ± 0.24              

(0.64X) 

9.08 ± 0.43             

(0.51X) 
8.03 ± 0.31 

8.11 ± 0.29          

(0.95X) 

Ki67 
4.54 ± 0.22               

(0.32X) 

5.09 ± 0.57              

(0.30X) 
2.91 ± 0.06 

3.37 ± 0.26          

(0.73X) 

BDNF 
9.21 ± 0.15           

(0.60X) 

9.15 ± 0.27             

(0.80X) 
8.48 ± 0.26 

8.82 ± 0.28          

(0.79X) 

Table 7: Relative gene expression levels between treatment and behavioural groups for 

neurogenic markers. Data are mean ± SEM ∆Ct values. Fold change relative to untrained animals 

of the same treatment (for trained animals), or vehicle-treated animals (for untrained THC-treated 

animals) are shown in parentheses. 

 

Two-way ANOVA (training x transcript) indicated that training of both THC-treated 

(p<0.05) and vehicle-treated (p<0.001) animals in the radial maze reduced mRNA 

expression. However, significant effects of both transcript (p<0.05), and an 

interaction (training x transcript, p<0.05) were also detected for both treatment 

groups. The detection of an “interaction” between these factors suggests that the 

data be interpreted with caution. The interaction effect, however, appeared to be 

mediated by transcript levels of Sox2 alone, for which training and drug treatment 
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had no effect. When data for Sox2 were excluded from the analysis no interaction 

effect was detected, and reduction in mRNA levels for both THC-treated (p<0.01) 

and vehicle-treated animals (p<0.001) upon training remained statistically 

significant. Bonferroni post-hoc testing and one-way ANOVA confirmed that Ki67 

levels were especially affected by training, and were reduced by 70% 

(corresponding to 1.72 ∆∆Ct units, p<0.05) and 68% (corresponding to 1.63 ∆∆Ct 

units, p<0.01) for THC-treated and vehicle-treated animals, respectively. No other 

statistically significant effects of training were observed, although training reduced 

the expression of DCX by 49% (corresponding to 0.97 ∆∆Ct units) in THC-treated, 

and 36% (corresponding to 0.64 ∆∆Ct units) in vehicle-treated animals, 

respectively. Training induced a 40% reduction in BDNF levels in vehicle-treated 

animals, greater than the 20% reduction seen in THC-treated animals, although 

the levels of BDNF were ultimately equivalent between THC-treated and vehicle-

treated animals trained in the RAM. Overall, drug treatment had no effect on 

transcript levels in either trained or untrained groups, and Ki67 was reduced by 

training in both THC-treated and vehicle-treated animals. 
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Figure 23: Training in the radial maze reduced mRNA for neurogenic markers, but was 

unaffected by THC. Training in the radial maze resulted in a general suppression of mRNA levels 

for DCX, Ki67 and BDNF; whereas, Sox2 levels were unaffected by training. Levels of Ki67 mRNA 

were especially reduced by training for both THC-treated and vehicle-treated animals. THC-

treatment had no effect on mRNA levels for any marker. Data are mean ± SEM ∆∆Ct values 

relative to untrained vehicle-treated animals.*p<0.05, **p<0.01 by One-way ANOVA. 

 

Hippocampal lysates were immunoblotted to determine if the trends observed in 

the mRNA data were corroborated by similar changes in protein expression (Fig. 

24). Two-way ANOVA (training x protein) indicated that training of both THC-

treated and vehicle-treated animals reduced the abundance of all neurogenic 

marker proteins in the hippocampus (p<0.001 for both). Significant reductions in 

the abundance of individual proteins upon training were detected with Bonferroni 

post-hoc testing and One-way ANOVAs. The effects of training on protein 

abundance were similar, but subtly different between THC-treated and vehicle-

treated animals. In vehicle-treated animals, training induced a 33% reduction in 

the abundance of Sox2 (p<0.01) and a 37% reduction in the abundance of Ki67 

(p<0.05). Training of THC-treated animals induced a reduction in Sox2 similar to 

that observed in vehicle-treated animals (32%, p<0.05), although the 27% 

reduction in the abundance of Ki67 was not statistically significant. Levels of PSA-

NCAM were relatively unaffected by training in vehicle-treated animals, as only a 

slight (19%) reduction was observed; whereas, training of THC-treated animals 
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resulted in a much larger 44% reduction (p<0.001). Modest reductions in BDNF 

expression upon training failed to achieve statistical significance, and no effects of 

THC-treatment in either trained or untrained animals were detected for any 

marker. 
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Figure 24: Training in the radial maze reduces protein levels of neurogenic markers, and 

THC has a subtle effect. (A) Training in the radial maze reduced the abundance of neurogenic 

proteins in both THC-treated and vehicle-treated groups. Sox2 and Ki67 were similarly reduced by 

training in both treatment groups, although the reduction of Ki67 fell marginally outside significance 

in THC-treated animals. PSA-NCAM was reduced by training in THC-treated animals only. Data 

are mean ± SEM; *p<0.05, **p<0.01, ***p<0.001 by One-way ANOVA. (B) Fluorescent scans of 

representative immunostained bands for Sox2, PSA-NCAM, Ki67 and BDNF. 
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5.4 Discussion 

 

Neurogenesis occurs in the adult hippocampus and is thought to contribute 

significantly to hippocampal plasticity by a process of pattern separation during 

learning and memory (Deng, Aimone et al. 2010). The survival of newborn 

neurons is enhanced by performing a hippocampal-dependent task (Gould, Beylin 

et al. 1999), such as training in the RAM. Neural progenitor cells (Aguado, Monory 

et al. 2005; Jiang, Zhang et al. 2005; Aguado, Palazuelos et al. 2006; Mulder, 

Aguado et al. 2008) and their progeny (Wolf, Bick-Sander et al. 2010) contain 

functional endocannabinoid signalling systems, and several aspects of 

neurogenesis are sensitive to cannabinoid treatment (Rueda, Navarro et al. 2002; 

Jin, Xie et al. 2004; Aguado, Monory et al. 2005; Jiang, Zhang et al. 2005; 

Aguado, Palazuelos et al. 2006; Galve-Roperh, Aguado et al. 2006; Mulder, 

Aguado et al. 2008). Although cannabinoids cause significant cognitive impairment 

(Nakamura, Dasilva et al. 1991; Lichtman, Dimen et al. 1995; Lichtman and Martin 

1996; Lichtman 2000; Mishima, Egashira et al. 2001; Wise, Iredale et al. 2008) 

that is paralleled by significant behavioural disruption when hippocampal 

neurogenesis is ablated (Clelland, Choi et al. 2009; Scobie, Hall et al. 2009; Deng, 

Aimone et al. 2010), few studies have investigated whether behavioural disruption 

by cannabinoids is associated with perturbations in adult hippocampal 

neurogenesis. This chapter investigated the effects of THC on several aspects of 

hippocampal neurogenesis in the adolescent rat.   

 

Training in a hippocampal-dependent task increases the survival of recently born 

neurons in the dentate gyrus (Gould, Beylin et al. 1999; Ambrogini, Cuppini et al. 

2000; Epp, Spritzer et al. 2007). THC was recently shown to have no effect on 

neuronal survival in the hippocampus using a treatment regimen that resulted in 

behavioural impairment in the MWM (Wolf, Bick-Sander et al. 2010). However, the 

animals on which these analyses were performed were not actually trained in the 

MWM. Thus, while these results indicate that neuronal survival in untrained 

animals is not affected by THC, the effect of THC on enhanced neuron survival 

associated with training remains unclear. The data of this chapter indicate that in 
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addition to not altering neuronal survival in untrained animals, learning-enhanced 

neuronal survival also appears to be unaffected by THC-treatment. Because 

learning may differentially enhance the survival of young neurons in the superior 

and inferior blades of the dentate gyrus (Ambrogini, Cuppini et al. 2000), the 

location of surviving neurons was recorded. No differences in the relative regional 

distribution of surviving neurons were observed upon THC-treatment. No 

difference in the survival of young neurons upon training in a spatial task does not 

mean that the functional properties of these neurons are equal between THC-

treated and vehicle-treated groups. It remains possible that differences in the 

activity and architecture of these neurons exist, and that these differences may be 

associated with the behavioural disruption by THC observed in this study (Chapter 

3). The analyses performed in this study, however, were unable to definitively 

resolve this possibility, although some of the data do support this hypothesis. 

 

As previously shown (see Chapter 4), synapsin-III levels increase with training, 

and this effect is attenuated by THC. Synapsin-III is expressed in newborn 

neurons (Pieribone, Porton et al. 2002) where it is important in early outgrowth and 

differentiation of neural processes (Ferreira, Kao et al. 2000). Neuronal outgrowth 

and differentiation occurs during the first two weeks of neural development (Deng, 

Aimone et al. 2010). Importantly, the survival of newborn neurons in this study was 

followed for 2 weeks, at which time molecular analyses were conducted. Thus, 

attenuation of synapsin-III mRNA levels, and presumably neurite outgrowth and 

differentiation in THC-treated animals trained in the RAM, coincides with the 

second week of differentiation and development of BrdU-labelled neurons in this 

study, although the development of neurons born up to 1 week before training in 

the RAM may also have been affected by THC (Fig. 25). This suggests that the 

early development of this cohort of labelled neurons in trained animals is impaired 

by THC-treatment. Indeed, cannabinoids delay early neural development in vitro 

(Rueda, Navarro et al. 2002), prolonged early development of newborn neurons is 

associated with cognitive decline in aged animals (Nyffeler, Yee et al. 2010), and 

deficits in synapsin-III are associated with cognitive impairment (Kao, Li et al. 

2008). Delayed early development of newborn neurons might be expected to delay 

later developmental events, such as the integration of young neurons into the 
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hippocampal circuit and development of hyperexcitability between 2 – 4 weeks of 

age (Deng, Aimone et al. 2010). Indeed, the greatest behavioural differences 

between THC-treated and vehicle-treated groups were observed between 2 – 4 

weeks of training (Chapter 3), coinciding with this period. Thus, it is certainly 

plausible that impaired early development of the cohort of young neurons labelled 

with BrdU in this study leads to subsequent cognitive impairment by delaying the 

use of these neurons in pattern separation. This would be an interesting topic for 

future research. 

 

NSCs are required for neurogenesis. NSCs can divide asymmetrically, producing 

another NSC to maintain the NSC pool, while also producing a transient amplifying 

progenitor cell that then rapidly undergoes several rounds of division to generate a 

pool of post-mitotic neurons (Suh, Consiglio et al. 2007). Sox2 is a transcription 

factor involved in maintaining the stem cell phenotype (Graham, Khudyakov et al. 

2003; Ferri, Cavallaro et al. 2004; Favaro, Valotta et al. 2009), although its 

expression also persists during the transient amplifying progenitor stage (Liu, 

Namba et al. 2010). Sox2 mRNA levels were unaffected by either THC-treatment 

or training, and in addition, THC had no effect on Sox2 protein expression in either 

trained or untrained animals. Training, however, reduced the expression of Sox2 

protein in both treatment groups. This reduction is likely due to a reduction in the 

levels of transient amplifying progenitor cells, rather than NSCs. Many Sox2+ cells 

are also Ki67+, and represent transient amplifying progenitor cells (Liu, Namba et 

al. 2010). Reductions in Ki67 mRNA levels similar to those seen for Sox2 protein 

levels for both THC-treated and vehicle-treated animals were observed. A 

corresponding reduction was observed in the abundance of the Ki67 protein in 

vehicle-treated animals. Although a similar reduction was observed in THC-treated 

animals, this decrease was not statistically significant. Protein levels were, 

however, near identical between THC-treated and vehicle-treated animals in both 

the trained and untrained groups, suggesting that THC-treatment does not affect 

levels of cell proliferation, or has only minor effects. Thus, reductions in the level of 

proliferation in the hippocampus upon training in the RAM are unaffected by THC.  
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These results are to some extent counterintuitive, since cannabinoids are 

generally reported to promote progenitor cell proliferation (Jin, Xie et al. 2004; 

Aguado, Monory et al. 2005; Jiang, Zhang et al. 2005; Aguado, Palazuelos et al. 

2006; Mulder, Aguado et al. 2008), and learning is generally believed to enhance 

hippocampal neurogenesis (Gould, Beylin et al. 1999; Ambrogini, Cuppini et al. 

2000; Epp, Spritzer et al. 2007). However, these studies have focussed on the 

effects of synthetic, rather than natural cannabinoids on progenitor cell 

proliferation, and on the effects of learning on promoting neuronal survival, 

respectively. Of the few studies that have used plant derived cannabinoids in vivo 

at doses that typically cause cognitive impairment, such as THC in this study, no 

effect on cellular proliferation has been reported (Kochman, dos Santos et al. 

2006; Wolf, Bick-Sander et al. 2010). Very few studies have investigated the 

effects of learning on proliferation, rather than neuronal survival. A recent study 

demonstrated a reduction in the number of Ki67+ neurons in animals trained in the 

MWM. The reduction of proliferation upon learning may be a mechanism to 

counterbalance the increased survival of newborn neurons associated with 

learning, thus maintaining an optimal number of neurons for provision of clearer 

pattern separation (Epp and Galea 2009). The survival of neurons born at the 

beginning of training was unaffected by THC-treatment. However, because BrdU-

labelling only shows that neurons of a specific age were unaffected by THC-

treatment, it remains possible that the survival of young neurons of different ages 

may be susceptible to the effects of THC. To investigate this possibility, PSA-

NCAM and DCX were used as markers of young neurons. 

 

THC-treatment did not significantly affect the expression of either PSA-NCAM or 

DCX in untrained animals. However, training reduced the expression of PSA-

NCAM in THC-treated animals only, and although not significant, similar 

expression patterns for DCX mRNA levels were seen for vehicle-treated and THC-

treated, trained and untrained animals. There are several possible interpretations 

for these data. The progeny of progenitor cell divisions are able to commit to either 

the neural or glial lineage, and the endocannabinoid system has been suggested 

to promote astroglial differentiation (Aguado, Palazuelos et al. 2006). This could 

be expected to detract from the unique contribution young neurons make to 
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hippocampal function (Deng, Aimone et al. 2010). While it is possible that THC-

treatment resulted in a shift in the balance of neurogenesis and gliogenesis, this 

seems unlikely since the levels of both DCX mRNA and PSA-NCAM protein were 

unaffected by THC-treatment in untrained animals. In addition THC-treatment had 

no effect on cell proliferation (Sox2, Ki67) or the neurogenic promoter molecule 

BDNF, suggesting lower levels of young neuronal markers is not related to deficits 

in cell proliferation. Alternatively, because PSA-NCAM is involved in structural 

plasticity (von Bohlen und Halbach 2007), the differences in PSA-NCAM levels 

may be unrelated to neurogenesis. This is unlikely since the role of PSA-NCAM in 

structural plasticity is short-lived. Increases in PSA-NCAM levels associated with 

structural plasticity return to baseline levels within 24 hours of initial training, and 

are undetectable in whole hippocampal homogenates of the type used in this 

study (Murphy, Oconnell et al. 1996; Murphy and Regan 1998; Venero, Herrero et 

al. 2006). Finally, PSA-NCAM is most densely expressed in the SGZ of the DG 

where neurogenesis occurs (Nacher, Blasco-Ibanez et al. 2002), and similar 

trends were observed using both DCX and PSA-NCAM, considered to be 

equivalent markers of newborn neurons (von Bohlen und Halbach 2007). Thus, it 

appears most likely that the differential effect of training on PSA-NCAM levels 

reflects differences in the number of young neurons that survive between THC-

treated and vehicle-treated animals.   

 

While the data are insufficient to categorically identify the particular subpopulation 

of young neurons that account for this difference, it appears likely that neurons 

would be either post-mitotic at the time of BrdU labelling, or born during training 

(Fig. 25). Enhanced young neuronal survival associated with training in a spatial 

task has been shown to be restricted to neurons in their second week of 

development (Dupret, Fabre et al. 2007; Epp, Spritzer et al. 2007). In this study 

animals were trained for 14 days prior to the molecular analyses. Neurons born 

during the second week of training would not fit within this temporal window of 

enhanced survival. While neurons born during the first week of training were of the 

correct age during the second week of training, THC had no effect on the survival 

of a cohort of these neurons labelled with BrdU. Thus, the neurons whose survival 

was enhanced by training in vehicle-treated animals were likely to be post-mitotic 
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at the time of BrdU labelling. A sub-population of neurons born 6 – 10 days prior to 

training are the most likely group to account for the differences in survival seen 

upon training between treatment groups. The survival of neurons of this age group 

has been shown to be enhanced by spatial training (Epp, Spritzer et al. 2007), and 

neurons born at this time would still be expressing PSA-NCAM and DCX at the 

time of sacrifice (von Bohlen und Halbach 2007). Finally, the temporal window for 

enhanced survival of neurons born before this time does not coincide with the 

period of training in the RAM. 

 

It is interesting to speculate on the mechanism by which THC-treatment may elicit 

effects on neurogenesis as reported in this chapter. The period for enhanced 

survival of newborn neurons, from approximately 1-2 weeks after birth, coincides 

with the development of excitatory GABAergic signalling (Deng, Aimone et al. 

2010). Local ambient GABA levels may inform newborn neurons of hippocampal 

activity, leading to their enhanced incorporation during learning (Ge, Goh et al. 

2006). It could be expected, therefore, that a reduction in GABA release, such as 

that mediated by THC and other cannabinoid agonists (Heifets and Castillo 2009), 

would impair GABA mediated processes. Indeed, THC appeared to prevent the 

enhanced survival of neurons that were developing GABAergic inputs at the onset 

of training and THC-treatment. This effect, however, may be specific for neurons 

born 1 week before training, as no difference in the survival of a cohort of neurons 

labelled with BrdU at the beginning of training was observed. In addition to 

regulating neuronal survival, GABA is important for the later establishment of 

glutamatergic input to newborn neurons and the development of dendritic 

complexity (Ge, Goh et al. 2006). A reduction in presynaptic and postsynaptic 

markers was reported in this study (see Chapter 4), and this may be related to an 

impairment of synaptogenesis in newborn neurons. The attenuation of increases in 

synapsin-III upon training by THC supports this hypothesis, as delayed early 

development could be expected to delay later synaptogenesis by newborn 

neurons. Thus, the impairment of GABA release has the potential to explain the 

effects of THC on both neurogenesis and synaptic plasticity. An investigation of 

the role of GABA in the effects described in this thesis would be an interesting 

area of research. 
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Figure 25: THC has subtle effects on hippocampal neurogenesis. A) Several stages of 

development  lead to the production of mature granule cells in the dentate gyrus (for details, see 

section 1.8.2). Briefly, immature neurons are generated from successive rounds of division of 

transient amplifying cells that are themselves generated from the asymmetric division of a neural 

progenitor cell (NPC). Both progenitor cell types express the stem cell marker Sox2. In addition, 

transient amplifying progenitor cells express the proliferative marker Ki67, and incorporate BrdU 

that is then passed onto daughter cells. PSA-NCAM and DCX expression begins shortly before 

terminal differentiation of late transient amplifying progenitor cells and is maintained until 3 – 4 

weeks of age. The number of neurons that survive to maturity is greatly enhanced by training in a 

hippocampal-dependent task during the second week of development (critical window), and this 

effect is thought to be mediated by excitatory GABAergic signalling. B) The differential effects of 

training on the expression of young neuronal markers in THC-treated and vehicle-treated animals 

is likely attributable to neurons born approximately 1 week before training begins in the radial 

maze. Neurons born before or after this time are unlikely to account for the difference, either 

because training did not coincide with the critical window of enhanced survival (pink arrows), or no 

difference in the survival of BrdU-labelled neurons trained in this critical window were detected. 

Early neurite outgrowth and development of all neurons born from one week before training 

onwards, however, may have been disrupted by THC-treatment. Figure adapted from (Deng, 

Aimone et al. 2010; Liu, Namba et al. 2010). 

 

 

There are few published accounts of the effects of cannabinoids on neurogenesis 

during times of learning and memory, despite its important role. Previously, cellular 

proliferation and neuronal survival have been shown to be unaffected by THC in 

the absence of training (Kochman, dos Santos et al. 2006; Wolf, Bick-Sander et al. 

2010). These data demonstrate that in addition to having no effect on cellular 

proliferation and neuronal survival in untrained animals, reduction of proliferation 

upon training is similarly unimpaired by THC-treatment. THC did, however, appear 

to reduce the survival of a subpopulation of newborn neurons that were born 

before, but not during training in the RAM; alternatively, the lineage commitment of 

new born cells may have been affected by THC but this seems less likely. Finally, 

the data suggest that training in the RAM enhanced the early development of 

newborn neurons, and that this was prevented by THC-treatment. These data are 

the first description of the sensitivity of neuronal survival and early development to 

THC during times of learning, and further investigations are warranted to better 

characterise these effects.  
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Chapter 6 General Discussion 

 

6.1 Project Summary 

 

Of the many effects of cannabis use, the effects on learning and memory are 

perhaps the most worrying. This is particularly true in the case of adolescent 

cannabis users, since cannabis consumption is often initiated and heaviest during 

adolescence, a developmental period that may be especially sensitive to 

disruption (Spear 2000). The current literature on the effects of cannabis use on 

learning and memory is inadequate. Many studies have focused predominantly on 

the consequences of cannabis use in adult animals, with very little investigation of 

the molecular correlates of behavioural effects elicited by the drug. This thesis 

sought to address these inadequacies by investigating the cognitive deficits 

associated with cannabis use in adolescent animals. Furthermore, the 

hippocampus was assessed for neurochemical correlates of behavioural 

impairment. Thus, this thesis makes significant contributions to our understanding 

of each of these issues. 

 

The data support the few studies that report on learning impairments in 

adolescents when behavioural testing is concurrent with drug treatment (see 

section 1.6.2). In adult animals, cannabinoids are generally believed to affect short 

term (working) memory, but not learning (see section 1.5.3). While the data do not 

specifically indicate a greater sensitivity of the adolescent period to learning 

deficits, as no comparison was made with adult animals, the behavioural analyses 

presented in this research are novel for two reasons. First, the drug treatment 

regimen that animals were placed on designed to model patterns of cannabis use 

that could be expected in human adolescents. Adolescent learning in rats was 

impaired 17 hours after THC-treatment, highlighting the cognitive dangers of 

regular cannabis use patterns outside the learning environment. Secondly, this 

data reports for the first time that cannabis use is associated with a disruption of 

the hierarchical organisation of working memory, known as „chunking‟ (see 
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Chapter 3). Since the second aim of this research was to investigate the effect of 

THC on molecular processes that may underlie this learning impairments, 

neurochemical changes from THC exposure were also analysed.  

 

The hippocampus is a brain structure that is crucial for several forms of learning 

and memory. This research used a novel approach that involved both trained and 

untrained animals to better understand the nature of the molecular impairment 

operating in THC-treated animals. Subtle differences in the expression of markers 

of structural and functional plasticity were seen between THC-treated and vehicle-

treated animals trained in the RAM. When untrained animals were included in the 

analysis, it was discovered that changes in the levels of expression of these 

markers upon training were profoundly attenuated by THC-treatment. More subtle 

differences in neurogenesis between THC-treated and vehicle-treated groups 

were also detected, suggesting that neuronal survival and early development were 

impaired by THC-treatment whereas proliferation was not. This study is one of 

only a very few that have investigated the neurochemical correlates of cannabis-

induced behavioural disruption.  

 

6.2 Strengths and Limitations of this Study 

 

At the beginning of this project it was expected that the neurochemical alterations 

in the hippocampus as a result of THC-treatment would be subtle and difficult to 

detect. Indeed this was the case, as when only animals trained in the RAM were 

compared, changes associated with THC-treatment were often not seen between 

THC-treated and vehicle-treated animals. When data from untrained animals were 

included in the analysis, however, THC had a more pronounced effect. Training 

resulted in specific neurochemical adaptations in vehicle-treated animals that were 

attenuated by THC-treatment. By including these untrained animals in the analysis 

it was possible to identify effects of THC-treatment that otherwise would not have 

been detected, and identify molecular processes that were impaired by THC, 

rather than molecular correlates of learning impairment. Therefore the inclusion of 
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untrained animals significantly strengthened this study, and the inclusion of these 

animals is a major advantage over the few other studies that have investigated the 

neurochemical correlates of cannabis induced behavioural impairments. The 

inclusion of these data also likely helped overcome a potential limitation of this 

study by controlling for the effects of THC-treatment on adolescent development.  

 

Adolescence in an important developmental period in which changes to the 

organisation and architecture of the brain precede the emergence of adult brain 

function (Spear 2000). In addition, learning relies on similar plasticity processes 

that are thought to underlie the improvement in cognitive functioning (Bailey and 

Kandel 1993; Moser 1999). Measuring the dynamic changes associated with 

learning on the background of a developmental period associated with 

considerable change itself (see, for example, Appendix 4) presents a potentially 

difficult set of circumstances for which there is no easy solution. Any 

neurochemical correlates of behavioural impairment associated with adolescent 

THC-treatment, such as those in adulthood reported by Rubino et al. (2009; 2009), 

may be attributable to effects of drug treatment on adolescent development in 

addition to any deficits in learning-induced plasticity. Alternatively, it is possible 

that meaningful effects of THC-treatment may be masked if the effects of drug 

treatment are masked by the plasticity or changes associated with learning. By 

controlling for the sensitivity of adolescent development to THC-treatment, this 

study was able to overcome this limitation. In most cases THC-treatment had no 

effect on the expression of markers of interest in untrained animals, demonstrating 

the specificity of the effects of THC for learning induced plasticity.  

 

The use of adolescent animals, although central to the aims of this study, 

presented their own problems. While significant differences between the behaviour 

of THC-treated and control animals were detected, these corresponded to small 

differences in the number of correct entries in the arms of the RAM (see Chapter 

3). Conventionally, to provide motivation to perform the RAM task, animals are 

reduced to 85% of their free-feeding weight. Such a feeding schedule is not 

possible in adolescent animals that are rapidly growing. Instead animals were fed 
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for a 5-hour period each day, and this limit provided sufficient motivation to 

perform the RAM task, as well as maintain animals at a healthy weight. However, 

this feeding schedule was also associated with a reduced rate of learning (see 

Appendix 3) that has previously been linked to lower incentive values of the food 

rewards used to motivate behaviour (Hodges 1996). This was evident in that only 

about 50% of control animals achieved the learning criterion in this research (see 

Chapter 3), similar to the proportion of adult animals that achieved the criterion 

when trained under the same feeding regimen (see Appendix 3). The rate of 

learning in both adolescent and adult animals with 5 hours of access to food was 

much slower than conventionally motivated adult animals. These adult animals 

were fully trained within 5 blocks; whereas, adult and adolescent animals with only 

5 hours of food access per day required 9 blocks to reach a plateau in learning. 

Under the training regimen used in this study, training of adolescent animals for 9 

blocks was not possible as this timeframe is greater than the adolescent period in 

rats (Spear 2000). Reaching a plateau in learning would have been desirable 

because the lower error rates associated with mastery of the task would increase 

the sensitivity of the behavioural assay to cognitive disruption, likely resulting in an 

error rate better corresponding to the magnitude of learning impairment between 

THC-treated and vehicle-treated animals. 

 

Modifications to the methodologies may have facilitated faster learning and an 

earlier learning plateau within the adolescent period. For example, a shorter 

feeding window may have led to more rapid learning by increasing the incentive 

value of the food reward. In addition, some researchers have manipulated the 

number of trials per day and inter-trial intervals to maximise behavioural 

differences between treatment groups. In doing so, the experimenter alters the 

amount of information presented to the individual and the requirements placed on 

long-term memory (Hodges 1996). Indeed, increasing the number of trials from 2 

to 3 per day would have resulted in animals performing the same number of trials 

as had they been trained for 9 blocks required for full learning in adult animals 

(see Appendix 3). An alternative approach would be to use a different training 

apparatus more suited to the requirements of the adolescent period. For example, 

the MWM typically requires only half the trials of the RAM to attain a plateau in 
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learning, and this can readily be achieved in the adolescent period in rats. The use 

of an aversive stimulus (water immersion), rather than the hunger stimulus of the 

RAM, also requires no pre-treatment and carries a much greater incentive value 

since failure to complete the task is potentially life-threatening (Hodges 1996; 

Paul, Magda et al. 2009). However the MWM induces more stress in animals, that 

could potentially affect brain function, and in addition is less adaptable to 

experimental requirements, such as the investigation of chunking measured in this 

study (Paul, Magda et al. 2009). 

 

It is important to note that no animal model can effectively simulate all the 

neurochemical and behavioural attributes of human adolescence, although certain 

attributes of human adolescence are shared by many species. All major human 

brain regions are represented both structurally and functionally in the rodent brain. 

The development of these structures continues throughout adolescence in both 

species; however, the temporal scale differs significantly and is measured in days 

in rodents and weeks to months or even years in humans (Rice and Barone 2000; 

Spear 2000). THC-treatment during the 4-week adolescent period in rats resulted 

in a learning impairment associated specifically with an inhibition of hippocampal 

plasticity in this research. It is unclear whether exposure of human adolescents to 

THC for only 4 weeks is likely to result in lasting behavioural and neurochemical 

alterations that persist throughout the adolescent period, as this exposure window 

represents only a fraction of human adolescence. More relevant to human 

adolescents are the cumulative effects of cannabis use over months to years, for 

which an accurate animal model is not available. While no effects of THC were 

seen in untrained animals in this study, continued and extended exposure during a 

more significant proportion of human adolescence could be expected to have a far 

greater cumulative effect. As such, an impairment of adolescent development, in 

addition to an impairment of hippocampal plasticity as shown in this study, may 

contribute to cognitive impairment with prolonged exposure to cannabis in 

humans.  
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Another important consideration regarding the use of rodents to model the effects 

of human adolescent cannabis use is the absence of social context. Adolescence 

is associated with increased risk taking that is augmented by peer pressure in 

humans. Social interaction with peers takes on significant importance during 

human adolescence. The desire for peer conformity can lead to antisocial 

behaviour such as drug taking that is often perceived as a normal and acceptable 

activity during adolescence (Spear 2000). By engaging in cannabis use, 

adolescents are more likely to adopt an unconventional lifestyle and withdraw from 

conventional societal expectations such as completing their education and 

obtaining employment (Lynskey and Hall 2000). This undoubtedly contributes to 

the established association between adolescent cannabis use and lower levels of 

educational achievement and employment (Fergusson and Boden 2008). The 

results of this thesis were obtained in a rodent model, free from the social contexts 

of adolescent cannabis use. As such, the data represent a significant learning 

impairment by THC as a result of direct neurochemical effects, and these may be 

augmented by social context in human adolescents. Importantly these effects were 

obtained during times of low drug burden, more accurately reflecting cognitive 

impairment commonly experienced by human adolescent cannabis users. 

However, low drug burden was assumed in this study, and it would have been 

interesting to determine plasma concentrations of THC during the time of 

behavioural testing to validate this assumption. 

 

Some technical limitations were encountered during this research. The use of the 

DNA binding dye SYBR Green enabled a more rapid and cost effective 

assessment of several genes across four treatment groups. However, 

quantification using DNA binding dyes requires rigorous optimisation since DNA 

dyes bind to all dsDNA regardless of sequence. Good primer specificity and 

efficiency were therefore particularly important to ensure the high quality of the 

data in this research (Wong and Medrano 2005). All primer pairs generated single 

PCR products of the expected size. Some measurements made in this study failed 

to achieve statistical significance, despite apparent strong trends in the data and 

acceptable primer efficiencies (see Chapter 4, Chapter 5, Appendix 5). These 

calculated efficiencies may be inaccurate as they can be greatly affected by even 
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small differences in Ct values, although this effect can be mitigated by using 

dilutions over a greater log range than that used in this study (Applied-Biosystems 

2006). The most easily influenced factors that affect primer efficiency are primer 

sequence and the annealing temperature used. Greater optimisation of these 

parameters may have improved the power of the statistical analyses and resolved 

these apparent trends into meaningful changes (Wong and Medrano 2005). 

However, within certain limits and using comparative analyses (as in this study), 

less than optimal efficiencies are tolerable since the conditions are the same for all 

samples.  

 

An alternative approach that would have avoided these issues would have been to 

use hydrolysis probes, commonly known as TaqMan chemistry. TaqMan chemistry 

uses traditional primers but an additional sequence specific probe is nested 

between them. The internal probe is conjugated to a reporter flurophore at the 3‟ 

end and an appropriate quencher at the 5‟ end. When annealed to the target 

sequence, the 5' ‟exonuclease activity of DNA polymerase separates the reporter 

and quencher, resulting in an increase in fluorescence proportional to the amount 

of product produced (Wong and Medrano 2005). Because the increase in 

fluorescence is sequence-specific, the results are uninfluenced by any off-target 

priming. Furthermore, efficiency can be assured because commercially available 

TaqMan probes for a wide range of genes that run  at 100% efficiency at 55˚C 

annealing temperature are available (Applied-Biosystems 2006). The use of these 

probes would have provided the most sensitive assay possible and may have 

resulted in some of the apparent trends achieving statistical significance. The use 

of TaqMan chemistry, however, is associated with significant increases in cost. 

 

Finally, some errors in sample storage and preparation were made that negatively 

affected the results obtained by Western blotting in initial experiments. The large 

number of animals required by the chosen experimental design were split into two 

experimental groups to ease the logistical requirements of the experiment (drug 

treatment, training, sample processing etc.). The analysis of behaviour and protein 

expression of the first group of animals, those trained in the RAM, was brought to 
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completion before the treatment of the untrained animals was started. During 

analysis, individual polyacrylamide gels contained all samples from an individual 

treatment group and samples from different treatment groups were not spread 

evenly between gels. Results were normalised between gels and treatment groups 

using a protein standard loaded on all gels. Unfortunately these results had to be 

disregarded and the analysis repeated with fresh samples, because the antigens 

in the first group of animals, and the protein standard, had degraded significantly 

by the time attempts were made to compare the data to the second group of 

untrained animals. Furthermore, the inter-gel normalisation method yielded 

inconsistent results. When the experiments were repeated, samples were stored 

at -80˚C until all samples were available. These samples were then processed in 

parallel with a higher concentration of protease inhibitor and distributed evenly 

amongst each gel to control for differences in transfer efficiency and 

immunological detection. This resulted in much more consistent results, and 

indicated that sample age, the correct use of protease inhibitors and correct 

sample processing greatly influences the quality of the results obtained. 

 

6.3 Future Directions 

 

The results of this study suggest that THC has subtle effects on neurogenesis, 

likely to be related to an impairment of increases in neuronal survival and early 

development upon training seen in control animals (see Chapter 5). Several 

directions of future research could build substantially on these findings, beginning 

with a simple experiment to confirm the hypothesis that THC impairs the survival 

of neurons born 1 week prior to training in the RAM. This could be easily achieved 

by altering the timing of the BrdU injection. A similar experiment could be used to 

determine the effects of THC on the survival of neurons born 3 days before the 

beginning of training, since apoptosis is increased in neurons of this age and lower 

levels of apoptosis in these neurons is associated with poorer performance in the 

MWM (Dupret, Fabre et al. 2007). These analyses could be strengthened by 

including a demonstration of whether THC-treatment affects the fate-determination 

of new born cells in the hippocampus, because the deficits observed in trained 
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THC-treated animals ultimately reflects the balance of fate specification and 

neuronal survival. This could be achieved using IHC and triple-fluorescent labelling 

to determine whether BrdU+ neurons also expressed neural or glial markers. A 

result indicating that THC has no effect on fate determination would demonstrate 

that differences in young neuron number were attributable only to differences in 

neuronal survival. If THC was found to affect fate determination, the difference 

could be attributable to a combined effect on cell survival and fate specification. 

 

The possible impairment of early development suggested by the data is more 

enigmatic, although it appears likely that such a delay would have a flow-on effect 

for later developmental events. An impairment in early neurite outgrowth and 

development should first be confirmed in a cohort of newborn neurons of known 

age using definitive immunohistochemical approaches. BrdU labelling is an 

inappropriate method for this assessment, because only the soma is labelled; 

whereas, visualisation of dendritic and axonal processes of newborn neurons is 

required for determining dendritic and axonal development. A retrovirus encoding 

green fluorescent protein (GFP) that infects only dividing cells has been developed 

and is well suited to this purpose, since constitutively and stably expressed GFP 

fills the dendritic and axonal processes as well as the soma (van Praag, Schinder 

et al. 2002). GFP labelling would allow the study of the effects of THC on 

processes of neurite outgrowth, dendritic arborisation and reception of synaptic 

input that all lead to the functional integration of newborn neurons into 

hippocampal circuits (Deng, Aimone et al. 2010). 

 

The impact of any impairment of structural development of newborn neurons by 

THC would be likely to mediate behavioural disruption through changes in the 

unique contribution of newborn neurons to hippocampal function. Newborn 

neurons reach a state of hyperexcitability by 4 weeks of development that is 

related to their preferential incorporation into circuits supporting learning and 

memory (Deng, Aimone et al. 2010). The GFP-retrovirus approach is also well 

suited to assessing the development of hyperplasticity. Using fluorescence 

microscopy, cohorts of newborn neurons of a known age could be identified using 
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GFP as a marker and electrophysiological measurements could be taken from the 

neurons (van Praag, Schinder et al. 2002; Ge, Yang et al. 2007). The preferential 

recruitment of newborn neurons into circuits supporting specific memories has 

already been studied using IHC (Ramirez-Amaya, Marrone et al. 2006; Kee, 

Teixeira et al. 2007; Tashiro, Makino et al. 2007; Deng, Aimone et al. 2010). 

Immediate early gene (IEG) expression, such as c-Fos and Arc, is tightly coupled 

to neuronal activity and can be used to identify individual neurons that are 

activated during memory retrieval. The effect of THC on this preferential 

incorporation could be measured by staining for IEGs in BrdU-labelled neurons of 

different ages immediately following training.  

 

The hippocampus consists of 3D subfields that change rapidly in space and 

interact with each other via long and defined fibre tracts (see Section 1.6.1). Many 

of the markers used in the present study are restricted to specific regions of the 

hippocampus. For example, neurogenic markers are generally restricted to the 

dentate gyrus; whereas, others such as pre and postsynaptic markers are more 

widely spread between the various hippocampal regions. This study reports 

changes in the expression of these genes and proteins using an approach based 

on a homogenate of all of these subfields in the dorsal hippocampus. As such, 

regional topography was lost, and changes may not have been detected if they 

were small in size and associated with a specific region or regions. Alternatively, in 

the case of broad changes in expression, it is unclear with what region or regions 

the change is associated. This could result in valuable information being lost, such 

as the identification of drug effects in specific hippocampal fibre pathways. Thus, 

the structural heterogeneity of the hippocampus is a significant barrier to the 

molecular analyses of this study. By preserving the topology during sample 

collection and analysis it is possible to overcome some of these limitations. 

 

Microdissection and regional analysis of the hippocampus is a promising 

alternative to the use of whole hippocampal homogenates. Microdissection 

requires precision and is commonly achieved from mounted sections using a 

sterile scalpel and needle under a dissection microscope. This technique has 
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previously been used successfully to isolate the CA subfields and the dentate 

gyrus of the hippocampus (Ginsberg and Che 2004). Recent technological 

advancements allow this process to be automated, removing experimental error 

and allowing for a consistent and accurate dissection of brain regions. Of these 

advances, laser capture microscopy (LCM) is perhaps best suited to this study, as 

both RNA and protein are preserved in the dissected samples for later analyses 

(Walch, Specht et al. 2001). With LCM, specific regions of a specimen are 

dissected by adhesion to a thermoplastic polymer following precise activation of 

the desired area with a near infrared laser. The region can then be accurately 

removed from the surrounding tissue for mRNA and protein analysis (Simone, 

Bonner et al. 1998; Walch, Specht et al. 2001). However, the microdissection of 

tissue from thin histological sections results in the collection of relatively few cells. 

This can be overcome in the case of mRNA analysis by RNA amplification with T7 

polymerase (Luo, Salunga et al. 1999); however it is uncertain whether enough 

protein could be collected to allow protein abundance studies. Quantitative IHC is 

an alternative method for measuring regional protein abundance and has 

previously been used to detect increases in synapsin-I in specific hippocampal 

subfields (Vaynman, Ying et al. 2004). Analyses such as these would help in 

determining the effects of THC-treatment on specific regions of the hippocampus, 

or rather to identify them as hippocampal-wide effects. 

 

Finally this study could be replicated using adult animals, thus allowing the 

determination of whether the effects of THC on behavioural and molecular 

processes reported in this thesis are specific to the adolescent period. This 

research represents the first evidence that the cognitive process of chunking is 

impaired by THC in animals of any age, while the impairment of hippocampal 

plasticity by THC treatment during adolescence reported in this study appears to 

persist into the adult period (Rubino, Vigano et al. 2008; Rubino, Realini et al. 

2009; Rubino, Realini et al. 2009). Although adolescents do appear more sensitive 

to the behavioural effects of cannabinoids than adult animals (Spear 2000), the 

absence of adult animals in this study precludes any conclusions on the basis of 

developmental age. 
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6.4 Final Conclusions 

 

This study sought to determine the effects of THC on adolescent learning and 

memory, as well as to identify the molecular mechanisms through which any 

impairment was operating. Adolescent learning was impaired by THC, and specific 

neurochemical changes were observed in the hippocampus. A significant strength 

of this research was that it showed that the higher cognitive function of chunking, 

as well as hippocampal plasticity in response to learning, were both affected by 

THC during adolescence. Thus, the study identified definitive cognitive and 

molecular processes that were impaired by THC. However because no 

comparison was made with adult animals in this study, it remains unclear whether 

these impairments represent a greater sensitivity of adolescents to THC, or rather 

whether these impairments operate in animals of all ages. Thus, this research sets 

a framework for future experiments designed to characterise the mechanisms of 

cannabis-induced learning and memory impairment. 
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Chapter 7 Appendices 

 

Appendix 1 Reagent List 

 

 10 x Tris Buffered Saline (TBS) 

o 60.5 g Tris-HCl 

o 87.5 g NaCl 

 

Salts were dissolved in 800 mL ddH2O and the solution adjusted to pH 7.5 with 

HCl. The solution was then made up to 1 L with ddH2O. TBS was split into two 500 

mL containers and autoclaved. 1 x TBS was prepared from this stock. 

 

 TBS-tween (TBST) 

o 1 L 1 x TBS 

o 1 mL Tween-20 

 

Mix constituents. 

 

 10 x Phosphate Buffered Saline (PBS) 

o 80 g NaCl 

o 14.2 g Na2HPO4 (anhydrous) 

o 2 g KCl 

o 2.4 g KH2PO4 
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Salts were dissolved in 800 mL ddH2O and the solution adjusted to pH 7.4 with 

HCl. The solution was then made up to 1 L with ddH2O. PBS was split into two 500 

mL containers and autoclaved. 1 x PBS (0.15M) was prepared from this stock. 

 

 5 x Western Running Buffer 

o 15 g Tris-HCl 

o 72 g Glycine 

o 5 g SDS 

 

Salts were dissolved in 1 L ddH2O without pH adjustment. 1 x running buffer was 

prepared from this stock. 

 

 Western Transfer Buffer 

o 3.03 g Tris-HCl 

o 14.4 g Glycine 

o 0.38 g SDS (when required for the transfer of high molecular weight 

proteins) 

 

Salts were dissolved in 800 mL ddH2O without pH adjustment. Immediately prior to 

use 200 mL methanol was added to this solution. Transfer buffer was made fresh 

as required. 

 

 5 x Reducing Buffer 

o 1 mL 1.5 M Tris-HCl pH 6.8 

o 5 mL 10 % SDS 
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o 3.2 mL 80 % Glycerol 

o 0.8 mL 1% Bromophenol Blue 

 

 DAB solution (0.5 mg/mL) 

o 5 mg DAB 

o 10 mL 1 x PBS 

 

DAB was dissolved in 1 x PBS by vortexing, separated into 1.5 mL aliquots and 

frozen at -20˚C. Immediately prior to use aliquots were thawed and 1.5 µL of 30% 

H2O2 was added to a final concentration of 0.03%. This solution was then applied 

to histological sections to reveal HRP conjugates. 

 

 4 % Paraformaldehyde (PFA) 

o 20 g Paraformaldehyde 

o 480 mL PBS 

 

Paraformaldehyde was dissolved in 400 mL 1 x PBS, made to pH 12.0 by addition 

of NaOH, and dissolved by heating and stirring. Once dissolved the solution was 

adjusted to pH 7.4 with HCl and made up to 500 mL with 1 x PBS. 

 

 RIPA Buffer 

o 606 mg Tris-HCl 

o 877 mg NaCl 

o 37.22 mg Na2EDTA 
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o 1 mL Triton-X 100 

o 1 g Sodium Deoxycholate 

o 100 mg SDS 

 

Mix constituents to 100 mL with ddH2O, pH to 7.4. 

 

 Acid Ethanol 

o 100 mL 70% Ethanol 

o 0.25 mL concentrated HCl 

 

Mix constituents. 

 

 10% acrylamide resolving gel (enough for 2 gels) 

o 8.2mL ddH20 

o 5mL 1.5M Tris-HCl, pH 8.8 

o 200µL 10% w/v SDS 

o 6.6mL 30% Acrylamide/Bis 

o 100µL 10% w/v APS 

o 10µL TEMED 

 

Gently mix and pour into casting module. Layer 100% isopropanol on top while gel 

dries, but remove prior to layering with stacking gel. 
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 4% acrylamide stacking gel (enough for 4 gels) 

o 6.1mL ddH2O 

o 2.5mL 0.5M Tris-HCl, pH 6.8 

o 100µL 10% w/v SDS 

o 1.3mL 30% Acrylamide/Bis 

o 50µL 10% w/v APS 

o 10µL TEMED 

 

Gently mix and pour on top of resolving gel, then insert comb and allow to dry. 
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Appendix 2 Hematoxylin staining of brain sections following 

DAB staining 

 

Hematoxylin was used as a nuclear stain in this research project as it was 

relatively insensitive to the 2N HCl denaturation required for the detection of the 

BrdU epitope. In contrast, Nissl (thionin) staining was almost undetectable 

following the 2N HCl denaturation. To stain cell nuclei with hematoxylin sections:  

 Wash sections 2 x 2 min in ddH2O 

 Immerse sections in Harris type Hematoxylin stain for 30 s 

 Briefly rinse sections in 2 changes of ddH20 

 Wash sections in tap water for 5 min 

 Destain sections for 1 min in acid ethanol  

 Rinse sections 2 x 1 min in tap water 

 Rinse sections 2 min ddH2O 

 Dehydrate sections 

o 1 x 2 min in each of 70, 80, 90, 100% Ethanol 

o 2 x 10 min in 100% Xylene 

 Remove excess Xylene from sections and mount using DPX mounting 

medium 
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Appendix 3 Considerations of the Effect of Animal Treatment 

on Learning 

 

The RAM relies on motivating animal behaviour through hunger. This motivation is 

commonly achieved by restricting food intake to maintain animals at 85 % of their 

free-feeding weight. This method is unsuitable for adolescent rats that are rapidly 

growing. An alternative is to allow free access to food for a limited period each 

day. To determine whether the period of access affected motivation to collect 

rewards in the RAM, groups of adolescent animals were allowed either free 

access to food, or their access was restricted to a 3, 4, 5 or 6 hour period per day. 

Following 1 week of their respective feeding schedules, animals were placed in the 

RAM in which every arm was rewarded for 10 min, and the number of rewards 

collected over 3 sessions (1 session per day) was recorded. A similar number of 

rewards were consumed by animals in each of the restricted feeding groups, and 

all restricted feeding groups consumed more rewards than animals with free 

access to food (Fig. 26A). Thus, this study used a 5-hour feeding window which 

provided sufficient motivation in the RAM while providing maximum access to 

food. It also fit well with the logistical requirements of the experiment.  

 

To ensure that the restriction of animals‟ access to food did not cause 

unacceptable suffering to the animals in this experiment, the weight gain of a small 

number of both THC-treated and vehicle-treated animals was followed over the 

experimental timeframe. While THC-treatment reduced the rate of weight gain, an 

animal care technician determined that all animals were healthy. Figure 26B 

shows the weight gain of all animals that were subsequently used in behavioural 

analyses. The rate of weight gain was reduced in THC-treated animals (p<0.001, 

Two-way ANOVA), and this was especially evident from approximately 2 weeks of 

treatment. 

 

To determine the effect of using a restricted access (rather than a reduced weight) 

motivational approach, these methods were directly compared in adult animals. 
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Animals in the weight-reduced group learnt the maze more rapidly than those in 

the restricted access group using measures of both cumulative percent that 

achieved the learning criterion (see Chapter 3 for details) and the overall group 

accuracy (Fig. 26C,D). Differences in the rates of learning presumably represent a 

reduction in motivation in the restricted access group, and similar performances 

using this method were seen in both adolescent and adult animals. It could be 

expected that reduced motivation and slower learning would result in a less 

sensitive assay for learning impairment. Thus, the true magnitude of the cognitive 

impairment by THC detected in this research (see Chapter 3) may in fact be larger 

than that described in this research. 

 

Figure 26: Considerations of the effects of animal treatment on learning. A) Food restriction 

was required to motivate adolescent animals to retrieve rewards in the RAM, but shorter restriction 

did not affect motivation; n=4 animals in each group; asterisk indicate fewer rewards collected than 

any other group. B) THC impaired the rate of weight gain in adolescent animals; n=23 animals for 

both treatment groups, asterisks indicate the first significant differences seen. (C, D) Adolescents 

and adults with restricted food access learnt at similar rates, but reduction of adult baseline weight 

resulted in faster learning as measured by achievement of the learning criterion (p<0.01, C) and 

overall group accuracy (p<0.001, D); n=6 adult weight reduced, 16 adult food restricted, and 15 

adolescent food restricted animals. Data are mean (A,B,D) ± SEM (A,B); *p<0.05, ***p<0.001. 
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Appendix 4 Developmental Gene Expression 

 

Adolescence is a neurodevelopmental period in which significant synaptic pruning 

underlies the emergence of the adult neural architecture (Spear 2000; Adriani and 

Laviola 2004). Preliminary studies were conducted to characterise this process in 

preparation for later investigations of whether behavioural deficits in adolescence 

following in utero and neonatal cannabis exposure (Schneider 2009) were 

associated with changes in structural and functional plasticity, as reported for 

adolescent exposure in this thesis (see Chapter 4). However, these experiments 

were later abandoned to focus on completing other experiments already in 

progress.  

 

Data were collected from male rats that were 7, 14, 21 or 28 days old, and from 

adults weighing more than 300g. Animals up to 28 days old were maintained with 

their mothers, and adult animals were housed in pairs with food and water 

available at all times. Animals aged 7 and 14 days were sacrificed by rapid 

decapitation without carbon dioxide asphyxiation, while all other older animals 

were asphyxiated before decapitation. Statistical analysis were conducted using 

the number of litters analysed as the base value for „n‟ (n=1) in animals aged up to 

28 days. This was done because it has been shown that in developmental studies 

conducted using multiparous species such as the rat, treatment of each individual 

within the litter as an independent observation can triple the likelihood of achieving 

the alpha level. This is because individuals within a litter are more likely to be 

similar to each other than to individuals of another litter (Holson and Pearce 1992). 

For each litter, hippocampal tissue was collected from three males and then 

combined to make a single sample. This sample was then analysed as a discrete 

observation. For adult animals the base value for „n‟ was designated as an 

individual animal. 
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Figure 27: The expression of transcripts involved in synaptic plasticity is developmentally 

regulated. In most cases expression appears to peak at 4 weeks of age, coinciding with the 

beginning of the adolescent period, before declining into adulthood. Data are mean ± SEM ∆Ct 

values, significant changes in expression compared to P7 levels are indicated. *p<0.05, **p<0.01, 

***p<0.001.  

 

Significant changes in expression during development were detected for PSD95 

(p=0.022), synapsin-I (p=0.001), synapsin-II (p=0.011) and synapsin-III (0.015), 

but not CB1R (p=0.21) (Fig. 27). PSD95 and synapsin-I had increased in 

expression over levels observed in P7 animals by 4 weeks of age; while, synapsin-

II had increased by 3 weeks of age. These differences were less pronounced in 

adulthood. While not statistically significant, this general trend was also observed 

for CB1R; whereas, synapsin-III levels decreased during development, dropping 

significantly below levels observed in P7 animals by adulthood (Table 8). These 

data are largely supported by previous studies that have shown a decline in 

synapsin-III mRNA levels in vitro (Ferreira, Kao et al. 2000), a peaking of CB1R 

levels during adolescence (Spear 2000), and the development of synaptic 

connections during neonatal development into adolescence (Zurmohle, Herms et 

al. 1996; Lu, Rong et al. 2000). 
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Target 

Age 

7 (n=2) 14 (n=3) 21 (n=3) 28 (n=4) Adult (n=2) 

CB1R 5.38 ± 0.22 4.78 ± 0.29 

(1.52X) 

4.68 ± 0.25 

(1.62X) 

4.48 ± 0.23 

(1.87X) 

5.08 ± 0.02 

(1.23X) 

PSD95 10.25 ± 1.05 8.53 ± 0.07 

(3.29X) 

8.38 ± 0.10 

(3.66X) 

7.89 ± 0.21 

(5.13X) 

9.13 ± 0.68 

(2.17X) 

Synapsin-I 8.15 ± 0.45 6.92 ± 0.27 

(2.35X) 

6.93 ± 0.33 

(2.33X) 

5.40 ± 0.27 

(6.73X) 

5.45 ± 0.15 

(6.50X) 

Synapsin-II 4.5 ± 0.35 2.93 ± 0.39 

(2.97X) 

2.60 ± 0.37 

(3.73X) 

2.14 ± 0.26 

(5.13X) 

2.25 ± 0.35 

(4.76X) 

Synapsin-III 8.78 ± 0.08 

 

8.88 ± 0.19 

(0.93X) 

 

9.38 ± 0.21 

(0.66X) 

 

9.51 ± 0.30 

(0.60X) 

 

10.48 ± 0.13 

(0.31X) 

 

Table 8:Relative gene expression levels between developmental stages for plasticity 

markers. Data are mean ± ∆Ct values, n as indicated. Fold change in expression relative to P7 

animals is shown in parentheses. 
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Appendix 5 THC and the Renin-Angiotensin System 

 

The renin-angiotensin system (RAS) is perhaps best known for its role in the 

regulation of blood pressure, although a role in modulating learning and memory 

processes is emerging. All angiotensin peptides originate from the pro-hormone 

angiotensinogen, from which the angiotensin peptides (Ang) I and AngII are 

cleaved. AngI, containing all the peptide sequences necessary for signalling by the 

RAS but possessing little biological activity, is cleaved from angiotensinogen by 

the aspartyl protease renin. Conversion of AngI to AngII by the angiotensin 

converting enzyme (ACE) results in the first bioactive form of angiotensin, and 

AngII acts on both the angiotensin II receptor (AT2R)1 and AT2R2. AngII can be 

further converted to AngIV and Ang1-7 that have retained but modified bioactivity, 

and act on distinct receptor classes. Components of the RAS required for peptide 

synthesis and signalling are widely expressed on neurons and glia in the brain 

where the angiotensins act as neuropeptides. AngII, when delivered exogenously, 

increases the firing rate of neurons in several brain regions including the 

hippocampus and impairs performance in various learning and memory tasks. It 

appears likely that these impairments are associated with the suppressive effects 

of AngII on LTP induction, although opposite effects of the angiotensin peptides 

have also been described (Hellner, Walther et al. 2005; Kerr, Bevilaqua et al. 

2005; von Bohlen und Halbach 2005; Braszko, Walesiuk et al. 2006; Akhavan, 

Emami-Abarghoie et al. 2008). 

 

Because of the emerging role of the RAS in learning and memory processes, the 

effect of THC-treatment on the expression of components of the RAS in trained 

and untrained animals was assessed in the present study. Messenger RNA for 

ACE, AT2R2 and angiotensinogen in the hippocampus was measured in the same 

samples using the same methods for which markers of structural and functional 

plasticity (Chapter 4), as well as neurogenesis (chapter 5), were assessed. 

Several primer pairs for AT2R1 were tested; however, all pairs generated multiple 

PCR products and were thus unsuitable for mRNA quantification. Primer pairs for 
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ACE, AT2R2 and angiotensinogen, however, had efficiencies close to 100% (Fig. 

28) and generated single PCR products (Fig. 29B, C). 

 

 

Figure 28: Efficiencies of the primers used to assess markers of the RAS.  Purified PCR 

products were diluted and amplified in duplicate, and the mean Ct value plotted against the log of 

the dilution. The slope of the best fit line was used to calculate primer efficiencies (displayed on the 

graph). R
2
 values demonstrate the fit of the trend line to the data. 
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Figure 29: Representative real-time PCR data used to assess the RAS. (A) Representative 

trace image of data acquired by real-time PCR for target genes used in this chapter. All genes 

(cyclophilin A, black; angiotensinogen, pink; AT2R2, gold; ACE, purple) were analysed in duplicate 

to ensure the accuracy of the results. (B) Melt-curve profile analysis of these samples revealed 

single sharp peaks for cyclophilin A (84°C), angiotensinogen (83°C), AT2R2 (85°C) and ACE 

(84.5°C). Low levels of product were also detected at 73 - 82°C for all primer pairs. (C) Single PCR 

products were validated according to size using agarose gel electrophoresis (lane 1, ACE; lane 2, 

angiotensinogen; lane 3, AT2R2). (D) Melt-curve profile analysis of negative controls (PCR 

reactions completed with template replaced with either ddH2O or equi-molar non-reverse 

transcribe RNA) showed no specific PCR product for any of the genes analysed. 

 

Mean ∆Ct values for each transcript were used to compare relative transcript 

abundance between treatment and training groups (Table 9). From these data, 

∆∆Ct values were calculated relative to vehicle-treated, untrained animals for 

presentation purposes (Fig. 30). No statistically significant effects of drug 

treatment were observed in either trained or untrained animals, nor did training 

affect gene expression in either THC-treated or vehicle-treated animals. However, 

a trend towards significance was observed in the latter (p=0.096) in which training 

of vehicle-treated but not THC-treated animals appeared to increase ACE 

expression. This may indicate that training increases the concentration of AngII in 

the hippocampus and this effect is blocked by THC. AngII and its derivatives have 

been implicated in the modulation of a variety of mnemonic functions, including 
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LTP, memory consolidation and the beneficial effect of voluntary exercise on 

learning and memory (Hellner, Walther et al. 2005; Kerr, Bevilaqua et al. 2005; 

Braszko, Walesiuk et al. 2006; Akhavan, Emami-Abarghoie et al. 2008). It is 

difficult, however, to draw any meaningful conclusions from these data as no clear 

trends are observed and the errors are significantly larger than those presented in 

Chapters 4 and 5. Perhaps further optimisation of the PCR reaction for these 

transcripts would provide a more accurate resolution of the data. For example, in 

some instances the combined errors associated with statistical measurement were 

greater than an 80% difference between means, approximately double that 

observed in the data presented in previous chapters.  

 

Target 

Trained Animals Untrained Animals 

Vehicle-Treated THC-Treated Vehicle-Treated THC-Treated 

ACE 

7.28 ± 0.42 

(1.84X) 

8.54 ± 0.53 

(0.85X) 

8.16 ± 0.43 

 

8.30 ± 0.35 

(0.91X) 

Angiotensinogen 

5.96 ± 0.29 

(0.67X) 

5.88 ± 0.20 

(0.89X) 

5.39 ± 0.37 

 

5.71 ± 0.39 

(0.80X) 

AT2R2 

6.86 ± 0.47 

(1.47X) 

7.41 ± 0.49 

(0.64X) 

7.42 ± 0.17 

 

6.76 ± 0.37 

(1.58X) 

Table 9: Relative gene expression levels between treatment and behavioural groups for 

markers of the RAS. Data are mean ± SEM ∆Ct values. Fold change relative to untrained animals 

of the same treatment (for trained animals), or vehicle-treated animals (for untrained THC-treated 

animals) are shown in parenthesis. 

 

In an effort to overcome the apparent limitations of the PCR reactions for these 

transcripts, attempts were made to quantify the protein for ACE and AT2R2 using 

Western blotting. However, the antibodies used were found to be of poor quality, in 

that they either detected their targets inconsistently (for ACE) or failed to detect 

them altogether (AT2R2). The investigation into whether cannabis may perturb 

cognition by interfering with the RAS was therefore abandoned because of the 
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financial and time restraints. It would be interesting, however, to investigate this 

possibility using an improved PCR reaction and better quality antibodies. 

 

 

 

 

 

Figure 30: Neither training nor drug treatment had any significant effect on the expression 

of genes of the RAS. Data are mean ± SEM ∆∆Ct values based on n=8 trained and n=5 untrained 

vehicle-treated animals, and n=7 trained and n=5 untrained THC-treated animals.  
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Appendix 6 Whole Gel Images of Western-blots 

 

 

Figure 31: Western-blot of CB1R. A) Representative gel used to determine the protein 

abundance of CB1R. B) Western-blot data normalised to GAPDH. *p<0.05, ***p<0.001 by one-way 

ANOVA with Bonferroni post-hoc testing. 
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Figure 32: Western-blot of PSA-NCAM. A) Representative gel used to determine the protein 

abundance of PSA-NCAM. B) Western-blot data normalised to GAPDH. ***p<0.001 by one-way 

ANOVA with Bonferroni post-hoc testing. 
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Figure 33: Western-blot of Sox2. A) Representative gel used to determine the protein abundance 

of Sox2. B) Western-blot data normalised to GAPDH. *p<0.05, **p<0.01 by one-way ANOVA with 

Bonferroni post-hoc testing. 
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Figure 34: Western-blot of BDNF. A) Representative gel used to determine the protein 

abundance of BDNF. B) Western-blot data normalised to GAPDH.  
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Figure 35: Western-blot of Synapsin-I. A) Representative gel used to determine the protein 

abundance of Synapsin-I. B) Western-blot data normalised to GAPDH. 
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Figure 36: Western-blot of Ki67. A) Representative gel used to determine the protein abundance 

of Ki67 in this study. B) Western-blot data normalised to GAPDH. *p<0.05 by one-way ANOVA with 

Bonferroni post-hoc testing. 
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Figure 37: Western-blot of PSD95. A) Representative gel used to determine the protein 

abundance of PSD95 in this study. B) Western-blot data normalised to GAPDH. *p<0.05 by one-

way ANOVA with Bonferroni post-hoc testing. 
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Appendix 7 Validation of CB1R Antibody 

 

Antibodies raised against specific target proteins are a useful and powerful tool in 

the localisation and quantification of proteins of interest. The quality of these 

analyses is however, ultimately limited by the quality of the antibodies used. In the 

case of antibodies raised against CB1R, a number of the commercially available 

antibodies have been reported to give unsatisfactory results. Specifically, the 

staining patterns observed in immunohistochemistry did not match with the known 

distribution of CB1R in a variety of brain sections, and the antibodies detected 

non-specific proteins of a similar size to CB1R (Grimsey, Goodfellow et al. 2008). 

The anti-CB1R antibody used in this study (Alomone Labs) was not assessed in 

the study of Grimsey et al (2008), and as such their findings do not apply to this 

antibody. However, the specificity of the Alomone Labs anti-CB1R antibody used 

in this analysis was assessed by immunohistochemistry and Western-blot using 

the criteria of Grimsey et al (2008). Strong staining was observed surrounding the 

dentate gyrus, consistent with previous reports of CB1R localisation in the 

hippocampus (Glass, Dragunow et al. 1997), and a single species was detected 

within the monomeric CB1R range of ~ 50 – 60 kDa on Western-blots (Fig. 38). 

These results compare favourably to the antibodies tested by Grimsey et al 

(2008), and suggest that the Alomone Labs anti-CB1R antibody is suitable for the 

specific detection of CB1R in this study. 
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Figure 38: Validation of CB1R antibody. A) CB1R (green) is strongly expressed surrounding the 

dentate gyrus of the hippocampus (cell nuclei, blue), consistent with the accepted distribution of 

CB1R in the hippocampus. B) Only a single protein within the monomeric range of CB1R (~50 – 60 

kDa) was detected using the Alomone Labs anti-CB1R antibody. 
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