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Abstract

Recent developments in technology and computation have encouraged
a shift towards a whole-genome approach to genetic analysis. Two key
contributors to this shift, the Human Genome Project and the HapMap
project, sparked an interest in studying the genetic patterns found in par-
ticular groups of individuals. The Maori population of New Zealand is an
ideal, yet untapped, model for such studies due to recent partial mixture of
two distinct population groups, and a culture of good documentation of
genealogical information. A previous study carried out by the author found
observable genetic differences between Maori and European populations
in markers of forensic significance, yet no particular genetic patterns were
found that were uniquely Maori. This study extends the previous work by
developing methods to determine to what scale these differences exist, as
well as demonstrating that a knowledge of these differences and methods
could be used to improve current practices for clinical diagnosis.

The current project began by taking a ‘candidate gene’ approach, study-
ing two regions where there were known large genetic differences between
Maori and European individuals: the region of Alcohol Dehydrogenase
genes on Chromosome 4 (Chapter 2), and the Monoamine Oxidase A gene
region on Chromosome X (Chapter 3). In both of these regions, large
frequency differences were observed between Maori and non-Maori popu-
lations at both a single mutation level, and at a haplotype level.

Despite the differences that were observed, no particular combinations
of mutations could be considered uniquely Maori or uniquely non-Maori,
so studies were expanded to the entire genome. This epansion was made



possible due to the recent and continuing developments in genome-wide
technology and advancements in computational speed and efficiency. Once
it was possible to carry out a genome-wide study of genetic differences, the
goal of research changed from determining whether or not Maori and Euro-
pean individuals were uniquely different at a genotype level, to how small
a marker set could be produced while maintaining population-uniqueness
at a genotype level.

A method that uses bootstrap sub-sampling and other internal valida-
tion techniques has been developed for the generation of such a signature
set for a Maori tribe (Ngati Rakaipaaka), and the generated set has been
validated in other similar populations (Chapter 4). As a consequence of
producing this set, the degree of European admixture was estimated in the
tribe (28.7%), with over 15% of individuals within Rakaipaaka found to
have no discernible European genomic ancestry.

In a validation of the signature set generation method itself, the marker
selection procedure was repeated for Type 1 Diabetes, a disease with high
heritability. An analysis of case and control individuals using this sig-
nature set found that the generated set is able to perform better than a
genome-wide reference set of mutations known to be associated with Type
1 Diabetes. This validation study, other potential uses, and a more de-
tailed discussion of the signature set generation method are presented in
Chapter 5.
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Terminology and Abbreviations

Terminology

New Zealand English is a language that contains no macrons, hence com-
mon New Zealand English words borrowed from Maori will also contain
no macrons in this thesis – the native New Zealand population will be
referred to as ‘Maori’ rather than ‘Māori’.

Advice has been received via email from Te Puni Kōkiri (TPK), the New
Zealand Ministry of Maori Development, regarding the use of the term
‘Maori’ in this thesis:

In the past the Statistics New Zealand Census differentiated
Māori descendents by the two terms ‘New Zealand Māori’ and
‘Cook Island Māori. More recently the ‘New Zealand tag has
become redundant because it is commonly understood that the
term ‘Māori’ refers to Māori descendents from New Zealand. A
point of differentiation is maintained for Cook Island Māori in
the Statistics New Zealand Census, and general use.

If you also discuss Cook Island Māori within your thesis
I agree that clarification may be necessary. However, if you
only discuss Māori, the fact that they are from New Zealand is
inherent.

Hollie Smith, Te Puni Kōkiri, Wellington
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In this thesis, the term ‘Maori’ on its own refers to Maori descendents
from New Zealand, consistent with the advice of TPK. References to Cook
Island Maori will be stated with the fully qualified name, ‘Cook Island
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Chapter 1

Introduction

This PhD project began in 2005, after the completion of the Human Genome
Project, and near the time that the HapMap project released their first set
of public data. Due to the nature of techniques and technologies explored
in this thesis, a number of different investigations have been carried out,
each sharing a common theme: the genomic analysis of genetic variation in
human populations.

This is not a thesis on population genetics, nor is it a thesis on health
science, nor computational biology, nor molecular biology. Rather, it syn-
thesises a number of different areas of research to make new discoveries
that cannot be found by study of a single area alone. This bioinformatics
approach creates more hypotheses than can be tested in the short course
of a PhD project, and as such provides plenty of opportunities for further
exploration by other researchers.

Chapters in this thesis primarily concentrate on analyses of genetic data.
It is expected that individuals who are not specialists in genetic research
will read this thesis (in particular, members of Te Iwi o Rakaipaaka), as com-
ponents of the thesis apply to areas outside genetics. With this in mind, the
introduction begins with material that introduces some concepts relevant to
the study of this thesis. The concepts presented here are not an exhaustive

1
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review of their respective subject areas, but should provide readers with a
grounding to understand key ideas required for the interpretation of results
in subsequent chapters.
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1.1 An Introduction to Bioinformatics

“Bioinformatics applies principles of information sciences and
technologies to make the vast, diverse, and complex life sciences
data more understandable and useful.”

NIH Working Definition Of Bioinformatics
And Computational Biology, 2000

Bioinformatics research, with a study of human populations as a com-
ponent, is a continuous process of research and refinement. Researchers
are challenged to race waves of new biological information to the shore of
public knowledge, finding new insights about that information along the
way. The general-purpose biology researcher, or bioinformatician, will be-
come increasingly important as a consequence of large-scale collaborative
efforts between many researchers (and members of the public) with vastly
different educational backgrounds.

A researcher needs to understand the current studies carried out in
their research domain, so that they can communicate their ideas to other
colleagues within their research community. The main challenge of a bioinf-
ormatics researcher is twofold: they must be able to locate relevant research
from many different areas, and understand research well enough to trans-
late from scientific terminology into a language understood by the general
public.

This research project demonstrates the challenges of bioinformatics.
New genetic data has flooded in at a rate far greater than any ability to
study all of it, requiring a critical eye to observe the available data and
evaluate which data warrants further analysis.
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1.2 Genetic Concepts

1.2.1 DNA

Deoxyribose nucleic acid (DNA) is a sequence of many single and double-
ringed compounds (nitrogenous bases) that are bonded to a repeating
sugar-phosphate backbone.† Each base in the sequence can be one of four
chemicals: adenine, cytosine, guanine or thymine, usually abbreviated as
the first letter of the base name (i.e. A, C, G, and T respectively). The unit
that is a combination of the base, sugar, and phosphate is called a nucleotide.

DNA is typically double-stranded, with each strand being the comple-
mentary opposite of the other, following a base-pairing rule (see figure 1.1)
where adenine and thymine are paired together, as are cytosine and gua-
nine. This allows for exact copies to be made via splitting of strands and
attachment of complementary bases in a process known as DNA replication
(see Berdis, 2009). Lengths of double-stranded DNA are typically measured
in base pairs (bp), with one base pair being a base that has been paired up
with its complementary partner.

A small fraction of this DNA (about 1%) consists of genes. These are a
sequence of bases that describe a particular sequence of amino acids. There
are 20 amino acids that can be used in this sequence and only four bases in
DNA, so a combination of three bases (e.g. ATG), or a codon, is sufficient to
describe each amino acid within the sequence (see Bollenbach et al., 2007).
The amino acids join together in the prescribed sequence by a structure
called a ribosome, then folded and packed (see Cooper et al., 2010). This
packed amino acid sequence is called a protein.‡ Only a portion of the DNA
inside a gene (protein coding DNA) is converted (or translated) into amino

†The sugar is ribose, with one fewer oxygen than a typical ribose sugar, hence deoxyri-
bose.
‡Some proteins are composed of a few of these packed sequences. The components are

then referred to as protein subunits
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Figure 1.1: A depiction of DNA: a double-helical structure with four basic building
blocks (Adenine, Cytosine, Guanine and Thymine, shown as green, blue, yellow and red
bands respectively), attached to a sugar-phosphate backbone (shown here as the red and
green ribbons).

acids, via an intermediate molecule with a structure similar to DNA called
Ribonucleic Acid (RNA). A contiguous sequence of DNA that is converted
into an amino acid (or expressed) is known as an exon; the non-expressed
sequences of protein coding DNA are called introns.

While genes and the proteins derived from genes have typically been
the target for most DNA research in the past, it is now known that a high
proportion of non-protein coding DNA also has functional significance; the
DNA is transcribed into RNA which is involved in the regulation of cellular
processes (see Mattick, 2007). For example, several loci associated with
Crohn’s disease were found in regions with no known genes or transcripts
(Mathew, 2008). Therefore, it is useful to dispense with the classical view
of DNA as something that generates proteins, and consider the possibility
that every region of DNA (not just protein coding regions) may contribute
to the diversity and complexity of our species.
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1.2.2 Mutation

Variation can be introduced into DNA through mutation. A mutation is an
alteration of DNA sequence or structure to something different from the
original sequence. It can be induced by chemicals interacting with DNA, by
electromagnetic radiation, and by random errors in the replication or repair
process. Each DNA variant is known as an allele, with common variants
being referred to as major alleles, and rare variants being referred to as
minor alleles.

1.2.2.1 Single Nucleotide Polymorphism

A Single Nucleotide Polymorphism (SNP), is a DNA sequence variation
that describes a change of a single base of DNA, from one base to another
(see Figure 1.2). Most discovered SNPs have two alleles, in which case
they are called dimorphic SNPs. Some definitions require SNPs to have a
minimum rare variant frequency and/or reside within genes, but the use
of the term in this thesis has none of these additional restrictions.

As some SNPs reside within genes, those SNPs can also be classified
in terms of the change in the amino acid that the base (and its neighbours)
codes for (see Russell, 1998, Chapter 19, pp. 619-621). The redundancy
of the genetic code (i.e. the codons, having 64 different possible base
combinations, only code for 20 amino acids) means that the presence of a
SNP does not always affect the protein product of a gene. A synonymous
mutation keeps the same amino acid, but recent research demonstrates that
in some cases a change at the DNA level can still influence the folding and
binding properties of the final protein product (Kimchi-Sarfaty et al., 2007).
Missense (or non-synonymous) mutations are those that result in an amino
acid substitution (i.e. a codon for one amino acid becomes a codon that
codes for another amino acid). Nonsense mutations are those that result in
the substitution of an amino acid for a signal to stop further addition of
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Figure 1.2: A single nucleotide polymorphism found within the Monoamine Oxidase A
(MAO-A) gene. DNA strand 1 differs from DNA strand 2 at a single base-pair location (a
C/T dimorphism).
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amino acids (a termination codon), which prevents correct construction of
the final protein product.

An Infinite Allele Model of neutral theory (see Kimura, 1991) predicts
that nucleotide substitutions should occur at a constant rate based on time,
rather than on the number of generations. Kumar and Subramanian (2002)
carried out an investigation of nucleotide substitution mutation rate in
mammalian genomes, following a suggestion that mutation did not seem
to be generation-based as previously suspected. They compared 17,208
protein-coding DNA sequences from 326 mammals, and discovered that
substitution mutations occur at a rate of 2.22× 10−9 substitutions per locus
(site) per year. Taking a human genome sequence size of 3.23609 × 109

base pairs†, this works out to just over 7 mutations per person per year.
Alternatively, assuming a generation time of 20 years, this would result in
4.44×10−8 substitutions per locus per generation, or about 145 substitutions
per generation across the entire genome.

1.2.2.2 Tandemly Repeated DNA

Tandemly Repeated DNA is a sequence of DNA that repeats many times
with no break between repeats. The length of the repeated sequence can
vary greatly, from a single base-pair to parts of genes, or even entire genes.
A number of common subclasses of tandemly repeated DNA exist (ranges
of repeat length vary depending on reference) :

CNV Copy number variant – repeated sequence > 1 kb in length (see
Freeman et al., 2006)

VNTR Variable number of tandem repeat – repeated sequence 15-100 bp
(see Russell, 1998, Chapter 15, p. 487)

†http://www.ncbi.nlm.nih.gov/mapview/stats/BuildStats.cgi?
taxid=9606&build=36&ver=3

http://www.ncbi.nlm.nih.gov/mapview/stats/BuildStats.cgi?taxid=9606&build=36&ver=3
http://www.ncbi.nlm.nih.gov/mapview/stats/BuildStats.cgi?taxid=9606&build=36&ver=3
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Minisatellite repeated sequence with 15-70 bp ‘core’ (see Shriver et al.,
1993)

STR Short tandem repeat – repeated sequence 3-5 bp (see Shriver et al.,
1993)

Microsatellites repeated sequence 1-6 bp (see Eckert and Hile, 2009)

1.2.2.3 Differences between SNPs and Tandem Repeats

The most common SNPs are dimorphic and have low mutation rates (ap-
proximately 4× 10−8 per locus per generation, see Section 1.2.2.1). Tandem
repeats have many different possible variant states and a much higher
(but more variable) mutation rate, between 10−6 and 10−2 per locus per
generation (see Eckert and Hile, 2009). These two factors mean that a single
SNP is likely to be less informative than a single tandem repeat. However,
the large number of SNPs in the human genome makes up for the lower
information content in SNPs. As an estimate of how many SNPs exist in
the human genome, the dbSNP database of NCBI (NCBI dbSNP Build
132) indicates that in October 2010, there were 30,442,771 recorded RefSNP
clusters†. However, typing large numbers of SNPs can be extremely costly,
meaning that it is useful to be able to select SNPs that have the highest
information content possible.

1.2.3 Chromosomes and Inheritance

DNA is arranged in structures called chromosomes. In the nucleus of human
cells, the chromosomes are linear and range in size from around 50 million
base pairs (chromosome 21) to 250 million base pairs (chromosome 1). There
are 23 pairs of chromosomes that have a similar structure (homologous
pairs), making up 46 nuclear chromosomes. Outside the nucleus, other

†http://www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi

http://www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi


10 CHAPTER 1. INTRODUCTION

X

Y M

A

Figure 1.3: An indication of the contribution and mixture of each type of chromosome
to an individual, transferred through the generations. Types shown are autosomal (A,
shaded light grey), X-chromosomal (X, shaded cyan), Y-chromosomal (Y, shaded yellow)
and mitochondrial (M, shaded magenta) DNA. The DNA from the individuals shaded in
dark grey is only passed to their common descendant through autosomal DNA.

cell structures called mitochondria carry circular chromosomes of DNA,
containing around 17 thousand base pairs (17 kb).

There are four different inheritance patterns found in Human chromo-
somes, dependant on the parental source from which the chromosomes are
derived (see Figure 1.3). The sex chromosomes, X and Y, are transferred
(or not) from parents to children depending on the sex of the child: males
inherit an X chromosome from their mother, and the Y chromosome from
their father; females inherit an X chromosome from both parents. The non-
sex chromosomes (or autosomes) are inherited from both parents; one set
of 22 autosomes is inherited from the mother, and another matching set is
inherited from the father. Mitochondrial chromosomes are inherited from
the mother, and therefore provide a female inheritance pattern that mirrors
the male inheritance pattern of the Y chromosome. Genetic information
from some ancestors of an individual will only be found in the autosomal
DNA of that descendant individual (shaded in Figure 1.3).
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Figure 1.4: Recombination involves the breakage and rejoining of parental chromosomes.
This process produces recombinant chromosomes that look similar to, but not the same
as, both of the parental chromosomes. The letters in the above figure represent genetic
variants (or markers) that differ in the two parental chromosomes; the remainder of genetic
sequence is identical in both parental chromosomes.

1.2.4 Recombination

In the context of human populations, chromosomes represent a molecular
genealogy, written in an extremely ancient genetic language. Most of the
individual variation of DNA is introduced through a process known as
recombination. During this process, which happens each generation, homol-
ogous pairs of chromosomes bind together and exchange large segments
of DNA, with the exchanges happening via breakage and rejoining of the
DNA backbone at a number of recombination points (see Figure 1.4). The
original chromosomes are referred to as parental chromosomes, while the
recombined chromosomes are referred to as recombinant chromosomes. The
effect of this process is a shuffling of the DNA in a way that preserves a sig-
nificant amount of the genetic structure from the two parents as contiguous
blocks.†

The process of recombination breaks a sequence of DNA into two parts.

†This differs from mutation, where the mutation creates genetic sequence different to
previous generations of DNA.
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Recombination likelihood is typically specified in centimorgans (cM). This
statistic indicates the probability that two genetic regions on the same
chromosome will segregate and not be passed down together to the next
generation. If two points are one centimorgan apart, then there is a 1%
chance that a recombination event will cause those two points to segregate
during the process of DNA recombination. The nature of recombination†

means that even when a recombination event always happens between two
points, the chance of segregation cannot exceed 50%. Hence any points
that are greater than 50cM apart are considered unlinked, as the variant at
one point cannot predict the variant at the other point – this is the same
outcome as when the two genetic regions are on separate chromosomes.

Figure 1.5 demonstrates the effect of this recombination process by
tracking the recombination of a single autosome through four successive
generations (see Appendix F for details on the computer code used to gen-
erate this figure). The process as shown in Figure 1.5 begins with eight
different ancestral chromosomes: black, yellow, magenta, blue, cyan, green,
red, and white, with segments of different colours indicating a chromoso-
mal region that has been inherited from a different ancestral line. Each pair
indicates a set of two homologous chromosomes for a single individual.
Between the first and second generation, 3-4 recombination points form
in each chromosome, resulting in shuffling of DNA of the two parental
chromosomes and a recombinant chromosome that appears different to –
yet shares some structure with – its parental chromosomes. The process con-
tinues on similarly to the next generation, with recombinant chromosomes
still sharing some portion of DNA from the original eight chromosomes. In
the final generation, the random construction of recombination points has
resulted in the DNA from the green and red chromosomes being lost, so
the final recombinant chromosome only has DNA from six of the original
eight chromosomes.

†Recombination only happens in two of four gametes at meiosis (see Russell, 1998, pg.
143)
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Figure 1.5: The genetic ancestry of a single chromosome is complex, the result of mul-
tiple recombination events that happen at each generation. In this figure of simulated
recombination, black lines indicate recombination points (see Figure 1.4). The final chro-
mosome shown in this figure contains a genetic history that is derived from six of the
original eight ancestral chromosomes.
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1.3 Population Genetics Concepts

A haplotype is the entire DNA sequence from a single chromosome, but the
use of the term in this thesis is also used to describe particular subsequences
of the full haplotype (e.g. the haplotype for the MAOA gene). A single
human has 46 haplotypes from 46 nuclear chromosomes (see Section 1.2.3)
which each describe the genetic ancestry of that individual. However,
genetic studies do not usually concentrate on a single individual, but on
groups of individuals (or populations). In a population context, genetic
variants have frequencies within populations, and these frequencies can
differ between different populations. In aggregation, genetic data can
provide information on the way genetic structure changes over time, and
demonstrate whether particular genetic sequences are preserved despite
substantial variation throughout the genome.

1.3.1 Linkage Disequilibrium

When considering recombination at a population level, it is evident that
recombination does not always occur at the same location within a partic-
ular chromosome. The chance of a recombination point forming within
two regions of a chromosome increases with base-pair distance in a more
or less predictable and linear fashion, with 1 centimorgan per megabase
(1cMMb−1) being a reasonable estimate. Mean recombination rates in
the human population vary between about 0.3cMMb−1 and 1.9cMMb−1,
although local regions of high recombination (recombination hotspots) are
found all over the genome (International HapMap Consortium, 2007; Ke
et al., 2004).

Genetic sequences from different regions are linked when they are usu-
ally transferred to the next generation together in a population. Two genetic
variants (or markers) are said to be in Linkage Disequilibrium (LD) if recombi-
nation rarely occurs between those regions, i.e. recombination points are
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unlikely to appear between the markers. The LD structure of the human
genome appears to have functional significance (Hinds et al., 2005), so an
understanding of LD patterns aids investigations into the effects of genetics
on phenotype.

1.3.1.1 Calculating Marker Linkage

Calculations of linkage disequilibrium compare genotypes at two markers
and represent the correlation between genotypes at those two markers (see
Hedrick and Kumar, 2001; Du et al., 2007). Consider two markers with
alleles m/M for marker 1, and n/N for marker 2. It is assumed that M/N
and m/n correspond to the major and minor alleles of the two markers
respectively. The correlation between these markers (D) can be determined
by frequencies in a 2x2 table:

n N
m f(mn) f(mN)
M f(Mn) f(MN)

Where f(mn), f(mN), f(Mn), and f(MN) are the frequencies of the
four possible genotype combinations of major and minor alleles at each
marker.

The statistic, D, is calculated as the difference between linked alleles
(major allele at both sites, or minor allele at both sites) and unlinked alleles
(major allele at one site, minor allele at the other site):

D = f(mn)× f(MN)− f(mN)× f(Mn) (1.1)

However, this statistic suffers from the issue that different combinations
of allele frequencies will have different statistical distributions – the maxi-
mum value for D (0.25) is only possible when both alleles have a frequency
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of 0.5. Two modifications to D are suggested by Hedrick and Kumar (2001)
in an attempt to remove the dependency on allele frequency, namely D′

(D-prime) and r2 (R-squared):

D′ =
D

min(f(m) ∗ f(N), f(M) ∗ f(n))
(1.2)

r2 =
D2

f(m) ∗ f(n) ∗ f(M) ∗ f(N)
(1.3)

Where f(M), f(N), f(m), and f(n) are the frequencies of major and
minor alleles of each marker, rather than genotype frequencies as used in
the calculation of D. The D′ statistic is an adjusted form of D such that
the result for all allele frequency combinations lies within the range of
-1 to 1, adjusted by scaling by the maximum possible value of D for the
particular allele frequency combination. The r2 statistic scales D such that
it fits into the range of 0 to 1 and is equivalent to the square of the Pearson’s
correlation r for the 2x2 table of genotype frequencies (see Du et al., 2007),
but only reaches its maximum value when the frequencies of each marker
are the same (Hedrick and Kumar, 2001).

1.3.2 The Haplotype Block Theory

An analysis of linkage disequilibrium throughout the genome indicates
that human chromosomes exhibit a “block-like” structure built from dis-
crete segments of DNA that form characteristic patterns in populations
(Hurles et al., 2002; Gabriel et al., 2002; Wall and Pritchard, 2003). The
observation of large regions of low recombination and small regions of high
recombination has led to the development of the haplotype block theory of
DNA. A haplotype block is a sequence of DNA that has persisted in a popul-
ation through successive generations with minimal (or no) recombination
occurring within that region. The haplotype block arrangement in human
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groups is influenced by factors such as geographic isolation, founder effect
and admixture and therefore varies substantially among populations with
different demographic histories (Walsh et al., 2003).

The haplotype block model has been reviewed with respect to the hu-
man genome, and while the human genome appears to only be moderately
block-like, such a model is more consistent with the picture we have of the
genome than a model of uniform recombination (Wall and Pritchard, 2003).
It was observed that mutations that are within 20-30kb of each other are
tightly linked, and linkage within haplotype blocks breaks down outside
this distance. It was also noticed that if mutations were part of one block
on one side, and another block on the other side, then it was highly likely
that both sides were actually resides in the same haplotype block. An
analysis by Ke et al. (2004) determined that the average haplotype block
length in European populations is 11.1kb, but only 3.3kb in the African
American samples typed in that study. Another earlier study of block sizes
determined that the mean haplotype block size in European populations
is 22kb, and 11kb in Yoruban and African-American populations (Gabriel
et al., 2002).

1.3.3 Admixture

When a number of genetically diverse populations combine, the combined
group will contain some genetic features from both of the ancestral popula-
tions, a situation known as admixture. A population is considered admixed
if there is substantial genetic contribution (through recombination and
re-assortment) from more than one ancestral population among the indi-
viduals in that population. This definition also extends to an individual
level. A population-based description of admixture should be treated as a
statistical average; it can not be used to infer the degree of admixture for
particular individuals within that population.
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Admixture can be calculated by observing the frequency of particular
genetic variants in ancestral populations, then comparing those frequencies
to the frequencies of those same variants in the population under test. This
can then be expressed as a percentage, e.g. “The Eurvedio population has
58% Apalete admixture, with the remainder from the Daitar and Cralnus
populations.”†

1.4 Genomic and Bioinformatic Concepts

Studies related to population variation at a genetic level have been helped
by international collaboration and public sharing of data.

1.4.1 Human Genome Project

The Human Genome Project (HGP) was a research project with a goal to
generate a human genome reference sequence in about ten years. The
project was launched in 1990, and the first draft genome sequence was
completed in late 2000 (International Human Genome Sequencing Consor-
tium, 2001). The sequence was essentially complete in April 2003, although
some regions still remain (particularly long lengths of repeated DNA) that
are very difficult to unambiguously determine the sequence for using cur-
rent technology. Between July 2000 and October 2009, there have been 18
revisions of the reference sequence;‡ data is publicly available on the US
National Institute of Health (NIH) website.§

The study of genome variation at the molecular level (genomics) did
not start with the human genome project; cytogeneticists have studied

†Population names are fictitious and do not represent any real-world populations.
‡http://www.ncbi.nlm.nih.gov/mapview/stats/BuildList.cgi#

Homosapiens
§http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=9606

http://www.ncbi.nlm.nih.gov/mapview/stats/BuildList.cgi#Homosapiens
http://www.ncbi.nlm.nih.gov/mapview/stats/BuildList.cgi#Homosapiens
http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=9606
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chromosome variation since the 1900s (see Pearson, 2006). However, the
completion of the HGP represented a shift from single-lab research to large
international collaborative efforts, and demonstrates the difference that
collaboration can have for genomic research.

1.4.2 HapMap

The International HapMap Project† is an ongoing attempt to describe com-
mon genetic variation in Human populations. Whereas the Human Gen-
ome Project has produced a single reference sequence for human DNA,
the HapMap Project investigates how DNA sequence changes in different
populations. The initial phase of the project (Phase I), completed in 2005,
was the genotyping of at least one common (occurring in at least 5% of the
population) SNP every 5kb in 270 individuals from four different global
populations (International HapMap Consortium, 2005):

• Yoruba in Ibadan, Nigeria (YRI)

• Japanese in Tokyo, Japan (JPT)

• Han Chinese in Beijing, China (CHB)

• CEPH – Utah residents with ancestry from northern and western
Europe (CEU)

Phase II of the project, completed in 2007, continued this genotyping
process in the four populations, with the aim of effectively capturing all
common SNP variation either directly, or via linkage (r2 > 0.9) with an
already genotyped SNP (International HapMap Consortium, 2007). The
HapMap Project has encouraged a substantial body of research that has
contributed to the process of large-scale genotyping, as well as the use of
genome-wide data for disease association studies.
†http://hapmap.org

http://hapmap.org
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1.4.2.1 SNPchips

The analysis of haplotype blocks in the four HapMap populations led to
the discovery of sets of SNPs that were able to type a large proportion of
the common haplotype block variants in the human population.

SNPchips are a new technology that attempt to capture as much of the
genome-wide SNP variation as possible in a single assay, while only typing
a proportion of that total variation. Commercially available SNPchips
began with around a hundred thousand mutations being typed on a single
chip, and have since increased in capacity to over a million mutations†‡.
They are a tool that can be used to obtain hundreds of thousands of SNP
genotypes out of one DNA sample in a single assay. They end up being
incredibly cheap per SNP (about 0.1 cents), but due to the sheer number of
SNPs being typed, the cost per sample is still quite high (around $400 NZD
at the end of 2007).

There are two main competing companies who develop and license
SNPchip technology, Affymetrix and Illumina. Each company has a differ-
ent process for genotyping, but the basic concept is essentially the same
(see Figure 1.6 and Kim and Misra, 2007). Affymetrix SNPchips are cre-
ated by attaching 25 base-pair synthetic DNA probes (with a fluorescent
tag) to specific locations on a static surface using photolithography. The
genomic sample DNA is amplified, hybridised to the SNPchip, and washed
to remove unbound sample DNA. Fluorescence intensity is then measured
for each probe to indicate which genetic variants have been found in the
target DNA. The Illumina SNPchip technology uses small beads as reaction
substrates for sample DNA hybridisation. The probes are constructed by
combining two fluorescent-tagged allele-specific DNA sequences with a
third locus-specific sequence that is used to identify the location of the

†http://www.illumina.com/products/human1m_duo_dna_analysis_
beadchip_kits.ilmn
‡http://www.affymetrix.com/estore/browse/products.jsp?

productId=131533

http://www.illumina.com/products/human1m_duo_dna_analysis_beadchip_kits.ilmn
http://www.illumina.com/products/human1m_duo_dna_analysis_beadchip_kits.ilmn
http://www.affymetrix.com/estore/browse/products.jsp?productId=131533
http://www.affymetrix.com/estore/browse/products.jsp?productId=131533
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Figure 1.6: A symbolic depiction of a portion of a generic SNPchip. The red-labelled
DNA detects the ‘T’ variant of a mutation (complementary to ‘A’), while the green-labelled
DNA detects the ‘C’ variant (complementary to ‘G’). The inset images are examples of
SNPchips from two main competing companies, Affymetrix (left) and Illumina (right).

variant. Amplified target DNA is hybridised to probe sequence on the
beads, which fill small wells and are identified by a DNA barcode specific
to each bead. Allele-specific fluorescent signals are combined with the
specific barcodes to indicate the location and nature of each genetic variant.

Various analyses and filtering techniques are carried out on the mea-
sured fluorescence intensities, eventually producing a list of SNP IDs to-
gether with the assayed genotype (and probability of error) at that location.

1.4.3 Genome-Wide Association Studies

A genome-wide association study (GWAS) is a hypothesis-generating ap-
proach for identifying genetic risk factors for a particular trait, using SNP-
chips or similar large-scale genome-wide assays. No initial assumptions
are made regarding where in the genome an association may be, allowing
for the discovery of unexpected links between genes and disease. Recent
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Figure 1.7: The processes involved in a standard genome-wide association study in-
clude case/control recruitment (1), genotyping (2), calculation of association statistics (3),
reporting of highest associations (4), and validation in independent populations (5). This
figure is adapted from Figure 1 of Mathew (2008).

GWAS test thousands of individuals, and involve researchers from all over
the world.

The general process for a GWAS is as follows (see Figure 1.7):

1. Recruit case and control individuals from the same source population

2. Genotype individuals at a large number of loci across the genome

3. Compare genotypes for cases and controls at each locus using a rele-
vant association statistic

4. Report loci and genomic regions with the highest association for the
case phenotype

5. Confirm candidate associations by repeating association tests for
reported loci in a separate population
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A benefit of genome-wide association studies is that they allow investi-
gators to screen out genetic variants that are not associated with a particular
trait or disease, and so reduce the cost of further genotyping in a larger
group of people.

1.4.3.1 Wellcome Trust Case Control Consortium

The technology of the SNPchip introduced the world to relatively cheap
genome-wide genotyping, and consequently association studies that cov-
ered the entire genome. The Wellcome Trust Case Control Consortium
(WTCCC) was set up soon after the introduction of the SNPchip, with a
goal to use this technology to identify novel genetic variants associated with
common diseases (Wellcome Trust Case Control Consortium, 2007).† The
initial study investigated genetic associations for seven common diseases
(bipolar disorder, coronary artery disease, Crohn’s disease, hypertension,
rheumatoid arthritis, type 1 diabetes, and type 2 diabetes).

Individual-level genotype data from this study is available by applica-
tion to the WTCCC data access committee, and provides an abundance of
information that can be used for exploratory research of disease suscepti-
bility through genetic variation.

The success of the initial WTCCC study has allowed collaborators to
extend their work into a second phase (WTCCC2), with a goal of typing
over 60,000 participants at over 600,000 genome-wide locations for 13 more
common disease conditions.

1.4.3.2 Purpose of Association Studies

The purpose of a genome-wide association study is to discover associa-
tions between particular markers and the disease of interest. There is an

†http://www.wtccc.org.uk

http://www.wtccc.org.uk
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expectation that these associations may provide an insight into causes of
disease, but this will not happen in all situations because a correlation (or
association) will not always indicate a causative link. Furthermore, if a
marker is not a causative genetic variant, but lies near a causative variant,
then risk will not necessarily be the same in different populations due to
recombination or mutation. Also, similar allele frequencies for a given
marker in different populations may have different associated risks due to
that marker having a different haplotype background in each population
(see Neale and Sham, 2004).

1.4.4 Common Statistics used in Association Studies

An integral part of association studies is the calculation of statistics for
demonstrating association (or lack thereof). No particular statistic is the
best option for testing association in all cases. A number of statistics are
used in this thesis when testing for association, and testing for differences
at a population level. These statistics are described in the next few sections
(Sections 1.4.4.1 to 1.4.5.1).

1.4.4.1 Delta

The simplest calculation to determine genotypic differences between popu-
lations is Delta (∆), the absolute allele frequency difference between two
populations. Assuming possible alleles denoted a1, a2. . .an with the fre-
quency of allele k in population 1 and population 2 being fk,1 and fk,2

respectively, then ∆ can be calculated for a particular marker as follows:

∆ =
n∑
k=1

|fk,1 − fk,2|
2

(1.4)
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For a dimorphic SNP, this formula reduces to the absolute difference in
frequency of any variant in both populations:

∆ = |f1 − f2| (1.5)

Delta is used to give an indication of the degree to which all the possible
variants at a genetic locus differ in frequency between two populations.
Delta is easy to compute, providing a quick overview of differences between
populations. However, the averaging nature of the statistic means that
large differences in frequency of one variant can be masked by many small
differences in frequency of other variants.

Rosenberg et al. (2003) discuss a statistic (Informativeness for Assign-
ment, In) that may perform better than Delta in some cases. In a two-
population model testing markers with the same Delta, this statistic in-
creases as allele frequencies within each population deviate from 0.5. This
relationship makes sense, as a variant that has a high frequency in a partic-
ular population will predict membership for that population better than
a variant that is similar in frequency to other variants for that marker. A
limitation of this statistic is that it has upwardly biased estimates of in-
formativeness for small population samples. However, this statistic may
be useful for association testing as this upward bias would be expected
to affect all markers in a similar manner, so markers could at least all be
evaluated with respect to each other within particular populations.

1.4.4.2 Chi Squared

Another statistic that can be used in genetic association studies is Chi
Squared (χ2), typically used to determine if differences in counts between
groups are due to variation that would normally occur through a random
selection of members of those groups. The Chi Squared model compares
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observed counts with expected counts, and a distribution (the χ2 distri-
bution for given degrees of freedom) can be used to ascribe a probability
value to the differences between the observed and expected counts. This
probability (p) value is interpreted as the probability that the differences
are due to chance; it is common to conclude that for p values greater than
0.05, chance effects cannot be ruled out as a factor that explains differences.

The χ2 statistic compares observed and expected counts (not frequencies),
so individual-level genotype data is necessary to calculate this statistic. The
result of a χ2 calculation is a sum of the square of differences between
observed (o) and expected (e) counts for all cells (c) in a table, scaled by the
number of expected counts:

χ2 =
n∑
c=1

(oc − ec)2

ec
(1.6)

The most common χ2 calculation used in association studies for a di-
morphic SNP considers the observed counts to be the counts for each allele
(or each genotype) in both case and control (or affected and unaffected) in-
dividuals. The expected counts are mean counts for all individuals, scaling
counts so that expected row totals are the same as the observed row totals.†

It is also possible to calculate χ2 values using observed counts as counts for
case individuals, and expected counts as counts for control individuals.

1.4.5 Contingency Table Analysis

After a genetic association between groups has been found, it is useful to
know how good that genetic variant is at predicting group membership.
Additional association statistics can be calculated from a contingency table‡,
a 2× 2 table that shows error rates for test outcomes if a particular model is

†This is the calculation used by the computer program Plink.
‡also known as a confusion matrix (see Fawcett, 2006)
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assumed. Columns of the table are categories (indicating the true value of
a particular phenotype), rows are test outcomes (indicating the predicted
value of the phenotype), and cells are filled with counts of categories with
each outcome (assuming an enriched control group that contains no cases):

Case Control
Positive (case,+) (control,+)

Negative (case,-) (control,-)

Cases that produce a positive result are called true positives, cases that
produce a negative result are called false negatives. Conversely, controls that
produce a positive or negative result are called false positives or true negatives
respectively. False positive and false negative results (also referred to as
Type I errors or Type II errors respectively) are undesirable outcomes, and
tests are often modified in an attempt to reduce the frequency of these false
results.

1.4.5.1 Quantitative Test Results

In a situation where continuous quantitative data are available for each
individual, there is frequently no ideal cutoff value for distinguishing
groups (see Figure 1.8). The choice of cutoff value will change depending
on the use of the test.

1.4.5.2 Positive and Negative Predictive Value

Two statistics commonly used for the purpose of evaluating the effective-
ness of a test from a quantitative distribution are sensitivity (proportion of
cases that are correctly classified as positive) and specificity (proportion
of controls that are correctly classified as negative). A sensitivity of 100%
means that a test will produce a positive result for all cases (i.e. no false
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Distribution of test results

Quantitative test outcome
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Figure 1.8: A simulated distribution of quantitative test results, with results sampled
from two groups. The distribution of the two groups overlap, such that for any test cutoff
that is picked over the range of results, there will be at least some false negative (FN)
results and/or some false positive (FP) results. If the cutoff value is increased, then the
number of true negative (TN) results increases, but the number of false negative results
also increases. When the cutoff value is decreased, true positive (TP) results are increased
as well as false positive values.

negative results), while a specificity of 100% means that no false positive
results will be generated for any controls. Sensitivity and specificity are
related to each other – as one is increased (e.g. by adjusting the cutoff
value of a test), the other will decrease (but not necessarily at the same rate).
Clinicians use sensitivity and specificity to help determine the appropriate
use of a test, e.g. screening a population, testing an at-risk individual, or
validating the result of a previous test.

Positive and negative predictive values are statistics that are also used
for investigating the usefulness of a test. The positive predictive value (PPV)
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indicates the likelihood that a positive test result is a true positive result.
The negative predictive value (NPV) indicates the likelihood that a negative
test result is a true negative result. A positive predictive value of 20%
means that only 20% of positive test outcomes are likely to be correct, and
likewise for negative outcomes with a negative predictive value of 20%.
A correct calculation of these statistics requires knowledge of population
prevalence for each class. For example, when a test is used in a population
that has a lower prevalence of cases than the original tested population, the
positive predictive value of the test will be reduced.

1.4.5.3 ROC Graphs

A receiver operating characteristics (ROC) graph can be produced to demon-
strate how the choice of cutoff values influences the outcome of a test (see
Figure 1.9). This graph is generated by plotting false positive rate versus
true positive rate at all possible cutoff values for the quantitative statistic.
The Area Under the Curve (AUC) of this graph indicates how well the quan-
titative test is able to predict the category of an individual across the range
of cutoff values, based on the likelihood of producing a positive result for a
case individual rather than a control individual (see Fawcett, 2006). The
AUC represents the probability that a randomly selected indivdual from
the case group (i.e. those individuals that should be reported as positive)
will have a greater test value than a randomly selected individual from the
control group (see Zweig and Campbell, 1993).

1.4.6 Population Sampling and Statistical Uncertainty

Genotyping entire human populations is a near-impossible exercise: popu-
lations are dynamic due to migration, birth, and death; it is unlikely that
all individuals in a population will even agree to genotyping; and carrying
out whole-genome genotyping on an entire population is prohibitively
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Figure 1.9: An example receiver operating characteristics (ROC) graph – a line graph of
true positive rate vs. false positive rate at all possible cutoff values for a quantitative test.
The Area Under the Curve (AUC) of this graph is 0.8653.

expensive. Therefore, any particular recruitment exercise for genome-wide
genotyping can only type a small sample of a particular population from
which some inferences about the population as a whole can be made. This
process of sampling the population introduces some error (or statistical
uncertainty), as genotype frequencies within samples differ from the fre-
quencies in the total population (see Weir and Cockerham, 1984). As the
proportion of the population that is genotyped increases, this sampling
error will reduce.

A single sample of a population (as used in most GWAS) cannot be used
to estimate the sampling error of a descriptive statistic. This is because there
is no variance in any frequencies calculated from the sample – genotype
frequencies will stay the same for the same group of people no matter how
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many times the calculation is made.† In order to determine sampling error,
multiple samples are required; the variation observed across samples can
be used to estimate the accuracy of genotype sampling. This is an expensive
process – setup costs are minimal compared to the cost of recruitment and
genotyping, so experiment costs for n times the number of samples will be
approximately n times the cost for a single sample.

1.4.6.1 Bootstrapping by Population Sub-Sampling

Bootstrapping is a term to describe a method that uses available data to
generate more information about that data, so called because it is like
pulling yourself up by your own boot straps (or shoe laces). Computers
use a bootstrap process (known as booting) to start up; a computer initially
has no idea about the state of any of its components, and runs a sequence
of steps to get all the components into a known state.

In biology, the term bootstrapping is most commonly used in phylogeny,
where the probability of particular tree branches is estimated by removing
small sections of the aligned sequence in all individuals then recalculating
the most likely tree (see Campbell and Heyer, 2002, Chapter 2.1, p. 45).
Each removal alters the available information very slightly, which can
cause some different branches to be preferred over branches present in
the original tree. The bootstrap value generated for these trees indicates
the confidence that the compared genetic sequence produces a particular
branch structure.

Bootstrapping can also be used to determine the reliability of genotype
frequencies in a population, by removing small numbers of individuals
from the sampled population and then recalculating frequencies. This
bootstrap sub-sampling can help to estimate sampling error by simulating the
process of taking multiple samples to estimate this error (Jain et al., 1987).

†assuming no sampling error.



32 CHAPTER 1. INTRODUCTION

Bootstrap sub-sampling can be used to estimate relative error, i.e. when
allele p has a lower than average frequency in a population sub-sample,
allele q has a higher than average frequency.

1.4.7 Computer Programs used in This Thesis

Over the course of this thesis, over sixty short programs (or scripts) have
been written by the author to supplement the research undertaken for this
thesis, including a program that can carry out a bootstrap sub-sampling
procedure on genetic data. It is expected that the scripts created for this
research will be of use to other people carrying out similar work, and they
have been written with the expectation that the script will be adapted by
other people in the future.

Most commonly, the purpose of these scripts is to convert data from
one file format to another – data is often received in different formats from
different researchers, and will usually need to be converted into another
format in order to work with a particular program. Scripts have also been
written for producing many of the figures seen in this thesis, as well as
simple summary statistics. Where more complex calculations (in an external
program) have been required to be done repeatedly, a script has been
created to automate that process.

Documentation for programs developed over the course of this research
project can be found on the supplementary CD. The CD also contains the
source code for those programs.

1.4.7.1 Structure

Falush et al. (2003) created a clustering program called structure which is
used to determine population structure using a set of unlinked genotypes.
The expected use case for structure is in the analysis of population structure,
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but is also used in this thesis for determining the utility of a given set of
markers for categorising (or quantifying) a given trait.

The main benefit of using structure over other methods is that it can
derive estimated ancestry (or group membership) coefficients from the data,
rather than a discrete yes/no for each individual. This allows for the use of
cutoff values for the assignment of individuals (useful for tweaking false
positive and false negative rates in diagnostic tests), and a quantifiable
value where a classification is not useful or does not make sense (as in the
case of a continuous trait with high heritability such as height).

The program begins by assigning each individual to a given population.
This can be either given in the input data as a ‘popinfo’ flag, or determined
randomly by structure. After this, the program constructs a probability
distribution for the data, considering the population assignments given,
and uses that to estimate population allele frequencies. The program then
constructs another probability distribution for these data, and uses that to
estimate the population that each individual is likely to have originated
from. This process is repeated many times (such a process is known as a
random walk), and the underlying theory suggests that the progression of
population assignments through the random walk process can be used as
an approximation of the actual populations of origin for each individual.

The documentation included with structure describes the general algo-
rithm for each iteration† as follows:

1. Sample (population allele frequencies for iteration m) from the proba-
bility of (allele frequency) given (genotypes of sampled individuals)
and (population of origin of individuals for iteration m− 1).

2. Sample (population of origin of individuals for iteration m) from the
probability of (population of origin) given (genotypes of sampled
individuals) and (allele frequencies for iteration m).

†typical structure runs have about 10,000-100,000 iterations.
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In more simple terms, the steps are similar to the following statements:

1. these populations probably have this allele frequency distribution
therefore. . .

2. these individuals probably came from this population

The structure program is able to accommodate admixture into its model
by considering the population of origin as a probability, rather than a single
discrete value.

The structure program produces a text file with individual identifiers
and predicted ancestry coefficients (Q values). While the program does
provide means to display these data graphically, the visual representa-
tion of data (including sorting) is better controlled using an external pro-
gram. The most commonly used program is Noah Rosenberg’s distruct
(Rosenberg, 2004), a program that allows colour customisation and group
re-ordering. For the purpose of this thesis, a custom R script has been de-
signed (snpchip2structure.R) which also allows selection of different
sorting methods, a scatter plot for two populations, error bars, and a few
additional features (see figure 1.10). More details about this script can be
found in the thesis/programs directory of the supplementary CD for
this thesis.

1.4.7.2 Haploview

The computer program Haploview can be used to locate and visualise hap-
lotype block patterns within a population (Barrett et al., 2005). The most
common visualisation generated by Haploview is the Linkage Disequi-
librium (LD) triangle plot, indicating the degree of LD between markers
within a particular genomic region (see Figure 1.11). Once haplotype blocks
have been identified, Haploview determines frequencies of common hap-
lotypes that are present within those blocks, and the correlation between
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Figure 1.11: An example of the triangle plot Haploview output for two populations
(combined into one image), showing areas of LD in black, grey and red shading. Black
regions have high LD, grey regions have moderate LD, and red regions have high LD but
a low p value (so are not considered statistically signifigant). Non-polymorphic sites are
identified as dotted lines. This image shows a large block containing markers in high LD
in the population below the diagonal (indicated by the red triangle) which is not present
in the population above the diagonal.

different haplotypes in different blocks. The program can also be used
to identify haplotype-tagging SNPs that can be used to describe common
haplotype variation by typing a small subset of SNPs in the population.

The Haploview program is primarily a visual aid for finding the extent
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of haplotype blocks, and new insights into alternative interpretations of LD
statistics mean that the software is under continual development.

1.5 The Maori Population

The Maori settlement of New Zealand represents an end point of a series
of island-hopping voyages (see Figure 1.12) throughout the South Pacific
ocean – the last of the great human migrations (Murray-McIntosh et al.,
1998; Underhill et al., 2001; Hurles et al., 2003; Whyte et al., 2005).

1.5.1 Polynesian Origins

Polynesia is a group of islands in the central Pacific ocean, typically de-
fined as islands within a triangle (see Figure 1.12) with corners at Hawaii,
Rapa Nui (Easter Island), and Aotearoa (New Zealand). The Polynesian
population (i.e. the native settlers of Polynesia) are quite similar in terms
of their culture, biology, and language (see Kayser, 2010; Addison and
Matisoo-Smith, 2010).

Kayser (2010) reviewed current literature regarding the genesis of the
Polynesian population, a population which has its genetic origin in two
main waves of migration. The first wave was an early migration through
Island Southeast Asia (ISEA) around 40,000 years ago (40 kya) to Sahul
(a land mass which broke up to form Australia and Papua New Guinea
around 8 kya). The second wave occurred much later, and is presumed to
have originated in Taiwan around 5.5 kya, spreading through southeast
Asia with some mixing in New Guinea and the Bismarck archipelago (a
group of islands off the northeastern coast of New Guinea) around 3.4 kya,
followed by a fast trip through the vast domain of Polynesia (times for this
later migration were not specified in Kayser’s review). Polynesian popula-
tions have a close genetic similarity to tribes from Island South-East Asia,
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Figure 1.12: Migration history of Polynesian populations. The approximate dates and
migration paths for this figure are from Figure 3 of Chambers (2008). Evidence points to
an ancestral population that migrated from Taiwan around 5000 years ago, and dispersed
throughout Melanesia and Polynesia. The blue and pink arrows indicated on this diagram
represent two different routes of migration that merged in the area of Papua New Guinea
to form the Polynesian population. One of these dispersals was a trip from the Cook
Islands to begin the Maori settlement of Aotearoa (New Zealand) around 800 years ago.
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building on other linguistic and cultural research that suggests a Taiwanese
origin (see Friedlaender et al., 2008). Donohue and Denham (2010) suggest
that the diversity of New Guinea populations makes it difficult to confirm
the origin of the Polynesian migration, and the Taiwanese contribution to
the genetics of ISEA populations is relatively minor. However, some of this
diversity may have been post-dispersal and mask the passage of genetic
signatures through ISEA, even though these signatures are present in the
origin and destination populations (Spriggs, 2010).

A review by Addison and Matisoo-Smith (2010) in general supports this
explanation of the two-wave origin of the Polynesian population, with early
travel to Sahul around 30-40 kya, and mixing in the Bismarck archipelago
around 3.3 kya. However, they also suggest a third wave of migration began
from Asia between 2 and 1.5 kya that introduced new breeds of plants,
animals, culture and ideas. Donohue and Denham (2010) support the idea
of multiple introductions of animals and plants into ISEA. Linguistic and
archaeological evidence suggests a pause of 500-1000 years between the
migration to the west edge of Polynesia (from ISEA) and the subsequent
permanent settlement of the remainder of Polynesia (see Hurles et al., 2003).
More recent computer simulations suggest that the passage from West
Polynesia (Samoa) to East Polynesia (Cook Islands and beyond) would
have been a significant challenge for sail and canoe voyages, a plausible
hypothesis for this long pause (Di Piazza et al., 2007). Given this pause in
time between the arrival in the Bismarcks and expansion into Polynesia, it
seems reasonable to suggest that the introduction of new technology from
a third migration provided the impetus needed to settle the remainder of
the Polynesian islands.

Genetic studies on Y-chromosomal, mitochondrial, and autosomal data
are a component of evidence that supports the hypothesis of a dual-wave
origin for the Polynesian population. A study by Underhill et al. (2001)
identified 9 Y-chromosome haplotypes in the Polynesian ancestral popul-
ation. In particular, three main lineages were identified that had very low
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diversity across the samples in the study, suggesting a recent colonisation
of the islands in Polynesia. Kayser et al. (2006a) found that almost all (94%)
Polynesian mitochondrial DNA was of relatively recent Asian origin, with
6% derived from New Guinea populations, but the contribution was some-
what reversed in Y-chromosomal DNA (28% Asian origin, 66% New Guinea
origin). An analysis of autosomal SNP data by Kimura et al. (2008) found a
mixture closer to, but less extreme than, the mitochondrial data (around
70% Asian origin, 28% New Guinea origin). South-East Asian societies
were historically matrilocal, i.e. females remain in their local village and
males move in with their wives’ family (Jordan et al., 2009), and Kayser
suggest that the discrepancy between Y-chromosomal and mitochondrial
data is due to this matrilocal culture.

1.5.2 Settlement of New Zealand

New Zealand is a geographically isolated island country at the southern
edge of the Pacific ocean. The country is composed of three main islands,
the North Island (Te Ika a Maui), the South Island (Te Wai Pounamu), and
Stewart Island. The native Maori population of New Zealand is believed
to descend from island-hopping adventurers from Eastern Polynesia. A
restricted group of these people travelled to New Zealand, founding the
Maori population in waves around 600-800 years ago (see Marshall et al.,
2005; Anderson, 1991).

The series of settlements and radiation through the Pacific ocean created
multiple bottleneck and founding effects as populations travelled between
islands in Polynesia. The result of such effects would suggest that the Maori
population is likely to be fairly homogeneous, with genetic variants having
unpredictable frequencies. Historically, the New Zealand Maori were
extremely adventurous risk takers (Vayda, 1970), particularly considering
the hazards involved in making long journeys across vast stretches of ocean.
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The settlement of New Zealand by Maori must have been deliberate.
Over 3,000km separate the Cook Islands and New Zealand, requiring a
journey of about a month (see McKinnon, 2003, plate 10) – it is hard to
imagine that a trip to New Zealand was the result of a shorter expedition
blown off course. Also, the remoteness of New Zealand makes it more
likely that returning exploratory voyages preceded an intentional migration
voyage to New Zealand (Irwin et al., 1990). It is therefore reasonable to
conclude that Maori who arrived in New Zealand were selected to be
there. Hence social selection, and probably some genetic selection as well,
occurred during the establishment of the Maori population.

1.5.3 European Colonisation

The first recording of a European sighting of New Zealand was by Abel
Tasman in 1642, when Maori appeared to be well established across the
country (see McLauchlan, 1984, p. 527). However, Abel Tasman did not
land in New Zealand at that time due to Maori hostilities in Golden Bay (at
the North end of the South Island) and Three Kings (North of the top of the
North Island).

The next recorded European visit to New Zealand was by James Cook,
who arrived in New Zealand in 1769 and eventually managed to forge close
associations with local Maori (see McLauchlan, 1984, p. 119). European
migration to New Zealand was largely through traders and missionaries
through the late 1830s, with large European settlements appearing in the
1840s (see McKinnon, 2003, plate 30).

1.5.4 Population Genetic Insights into Maori Migration

The founding population size for Maori settlement of New Zealand was first
estimated at 50-100 females using mitochondrial DNA (mtDNA) sequences,



42 CHAPTER 1. INTRODUCTION

and the observed variability in mtDNA sequences support a fast settlement
over 30 generations (Murray-McIntosh et al., 1998). More recent estimates
of the number of females in the initial Maori settlement of New Zealand
are higher (170-230), and may be even higher, depending on the speed of
population expansion (see Marshall et al., 2005; Whyte et al., 2005).

1.5.4.1 Maori-European Admixture

Variation in genetic sequence has been used to determine the process of
change that has occurred in the Maori population over time. A 2003 study
determined that self-declaration for individuals with a mixed Maori / Eu-
ropean background correlates well with genetic admixture estimated from
New Zealand DNA databases (Walsh et al., 2003). An analysis of the
most recent New Zealand census data that included ancestral information
(1976)† found that the Maori population had 37.4% European ancestry by
self-report. It is expected that this fraction of European ancestry has in-
creased and is now around 40-50% of the Maori gene pool (see Lea and
Chambers, 2007b).

A comparison of Y-chromosomal and mitochondrial DNA (mtDNA)
by Underhill et al. (2001) found complex genetic histories in the Maori
population. The diversity of Y-chromosome DNA was greater than the
diversity of mtDNA in Maori; three core non-European Y-chromosome
haplotypes were identified, but only one non-European mitochondrial
haplotype was found. Their results support a history of mixing of multiple
Austronesian populations before colonisation of Polynesia, and multiple
migrations of Maori ancestors to New Zealand.

A more recent study of genetic data from 687 microsatellites found that
Maori and other Polynesian populations are most similar to Taiwanese abo-
rigines (and then East Asians), with a small amount of European ancestry,

†The New Zealand census no longer collects ancestral information
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probably due to admixture following European colonisation. This sup-
ports a hypothesis that the Polynesian islands were populated by voyagers
starting from the vicinity of Taiwan, and is consistent with evidence from
Y-chromosomal and mitochondrial DNA (Friedlaender et al., 2008).

Genetic studies of the Maori population have concentrated on rare dis-
eases that are prevalent in large Maori families, identifying causal mutations
for diseases including gastric cancer and malignant hyperthermia. Recent
studies have also been carried out investigating the genetics of nicotine,
alcohol, and other drug metabolism that suggest treatment strategies for
Maori may be different than strategies for other New Zealand populations
(see Lea and Chambers, 2007b).

Genetic variation is lower in Polynesian individuals than in either Eu-
ropean or Asian individuals, and the Maori population have even lower
genetic variation (see Marshall et al., 2005).

The preliminary analyses of Maori genetics carried out in the author’s
Honours thesis (Hall, 2004) have provided supporting evidence for genomic
uniqueness and reduced diversity of the Maori population. In particular,
Maori and European populations were easily distinguishable using data
from a genome-wide panel of forensic markers. However, no particular
combinations of forensic marker variants were identified in Maori that
were unique to the Maori population, so individuals could not reliably be
assigned to either population.

1.5.5 Maori Health

There are many diseases for which Polynesian populations (with Maori as
a subset) have a significantly higher frequency in comparison to European
populations. These diseases include coronary heart disease, low choles-
terol, asthma, gout, measles and iron deficiency. Other diseases have a
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reduced frequency of occurrence among the Polynesian ancestral popul-
ation: rheumatoid arthritis, melanoma, Crohn’s disease, and depression.
Many (if not all) of these diseases have possible genetic influences that
affect disease prevalence in the population (see Abbott et al., 2001). More
recent studies have been carried out that demonstrate differences in disease
and disease-associated trait frequency between Maori (specifically) and
non-Maori populations (e.g. Rossaak and Pitto, 2005; Shand et al., 2007;
Sundborn et al., 2007). Genetic links to disease mean that studies carried
out to identify genetic patterns within a population may also improve the
diagnosis and study of disease.

1.6 Hypothesis and Key Questions

An understanding of differences in health outcomes for Maori and Euro-
pean populations in New Zealand, combined with evidence that suggests
the Maori population is genetically unique, led to the following core hypo-
thesis to be tested:

The Maori population has distinct and unique genomic and
related disease patterns that can be identified through a com-
bination of DNA polymorphism, bioinformatics, and medical
analysis.

This hypothesis suggests a number of key questions that should be
answered in order to evaluate whether the hypothesis is valid:

1. Maori are less genetically diverse than European populations, but
previous studies have not found any combinations of markers are
unique to the Maori populations. Can genetic marker combinations
be found that describe the Maori population uniquely?
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2. Considering the lower diversity of the Maori population in compari-
son the non-Maori populations, is the haplotype block model more
appropriate for the Maori population. If so, will it be possible to find
haplotype blocks with low marker density?

3. How does reported ancestral information compare to observed ge-
netic information?

4. Given the exponential increase in available information in most areas
of science, can developing technologies, combined with technologies
from other areas, be used to gain new insights on old data?

Lea and Chambers (2007b) reviewed the current knowledge of disease
prevalence within the Maori population, and have identified smoking
addiction and alcohol dependence as two phenotypes that have different
expression profiles in the Maori and European populations. The next
chapter of this thesis will explore what insights can be gained from a study
of alcohol-metabolising genes in the Maori population.
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Chapter 2

The Genetic Structure of the
Alcohol Dehydrogenase Genes
in the Maori Population

2.1 Overview

This study of the Alcohol Dehydrogenase (ADH) gene cluster on chromo-
some 4 is an extension of the previous work of Chambers et al. (2002b). It
represents a further attempt to identify linked polymorphisms within the
ADH loci that may also have utility as markers for identifying susceptibility
to alcoholism. It is argued that the unique and recent migration history
of the Maori population will help to explore gene interactions within this
region for genetic variants that are not common in other populations. This
chapter is an extension of a study by this author and others that has already
been published in the Journal of Human Genetics (Hall et al., 2007) – see
Appendix A.

47
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2.2 Background

Alcohol is the most commonly used behaviour-altering recreational drug
in New Zealand (Sarfati and Scott, 1999). In 2003, approximately 81% of
all adults (18+) reported that they were current drinkers (McMillen et al.,
2004), and about 10 litres of alcohol per adult (including non-drinkers)
is produced and available for consumption each year (Alcohol Advisory
Council of New Zealand, 2005).† Alcohol consumption has high costs to
society due to crime, reduced work output, hospitalisations and other
diverted resources. The social cost of harmful alcohol use in the 2005/2006
year was estimated to be 4.8 billion dollars (Slack et al., 2009).

2.2.1 Historical Maori Drinking Patterns

Hutt (2003) provides a valuable account of the history of the use of alcohol
in the Maori population. According to the author, alcoholic beverages were
not present within the Maori population prior to the arrival of European
settlers in New Zealand. The Maori word for alcohol is waipiro, literally
‘stinking water’, which suggests that at its introduction, alcohol was not
palatable by many in the Maori population.

The New Zealand government imposed many laws and restrictions on
the Maori population regarding access to alcohol – the most significant of
these being the Ordinance to Prohibit the Sale of Spirits to Natives in 1847.‡

The creation of these laws suggests that Maori were expected to abuse
alcohol, despite their initial distaste for the substance. Having observed the
effects of alcohol consumption, Maori were well aware of the behavioural
traits associated with drinking alcohol. A number of prominent Maori
leaders went beyond these laws from 1850 onwards, restricting access
further within their own people. Discriminatory legislation was removed

†http://www.alac.org.nz/NZStatistic.aspx?PostingID=4346
‡http://www.nzlii.org/nz/legis/hist_act/sostna184711v1847n3430/

http://www.alac.org.nz/NZStatistic.aspx?PostingID=4346
http://www.nzlii.org/nz/legis/hist_act/sostna184711v1847n3430/
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after 1948 (see p. 73 of Hutt, 2003), and refusal to serve alcohol to patrons
on the basis of race was made an offence in 1962 by the Sale of Liquor Act.†

Alcohol was very rare in trade between Maori and Europeans before
1840, but by the 1860s it started to be associated with the formation of
political alliances, so became more desired as an item of trade. From around
1870 to 1920, consumption of waipiro at important occasions became more
evident, and acceptance of drinking anyway was more common. While
the drinking habits varied greatly within the Maori population, there was
still a much lower consumption compared with Europeans. In the post-war
period of the 1950s, brewers began targeting advertising for a Maori market,
and there was an increase in the consumption of alcohol within the Maori
community as a whole.

2.2.2 Recent Maori Drinking Patterns

According to the 1996/97 Health Survey (Sarfati and Scott, 1999), 27.4% of
Maori reported that they had not had a drink in the last year, compared to
12.9% for Europeans. Despite this difference in the proportion of drinkers,
the mean quantity of alcohol consumed is similar between the two groups,
because Maori drinkers typically consume more alcohol per drinking ses-
sion.

In 2000, a detailed survey was carried out to identify Maori drinking
patterns and alcohol-related problems (Barnes et al., 2003), but did not
include non-Maori populations for a comparative study. Among Maori,
20% abstain from alcohol altogether, but those who do drink consume a
large quantity of alcohol annually, much higher than the national average
(22 litres for Maori males, 8 litres for Maori females).‡ Maori drinkers
consume alcohol around once every three days, with about half of the

†http://www.nzlii.org/nz/legis/hist_act/sola19621962n139186/
‡Alcohol consumption figures are standardised to pure alcohol. A 330ml bottle of 5%

beer contains 16.5ml of pure alcohol

http://www.nzlii.org/nz/legis/hist_act/sola19621962n139186/
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alcohol being drunk at residential dwellings. The report produced for the
Alcohol Advisory Council of New Zealand (ALAC) by McMillen et al. (2004)
compared the current trends of alcohol consumption behaviour between
Maori and European populations. The proportion of regular drinkers (at
least one drink per week) in the Maori population (39%) is less than that of
the European population (56%), but these individuals will typically drink
more per session than drinkers in the European population. A statistic that
demonstrates this contrast is the amount consumed in the last drinking
session: 22% of adult Maori drinkers consumed more than 10 standard
drinks of alcohol, compared to 8% for the European population.

2.2.3 The Classification of Alcoholism

While alcohol consumption is fairly easy to characterise and quantify (e.g.
quantity of alcohol consumed per week / session), alcoholism is not. Alc-
oholism refers to an entire class of psycho-social disorders that are based
upon the misuse of alcohol. Prior to 1980, alcoholism was considered as a
single disorder. The introduction of the Diagnostic and Statistical Manual
of Mental Disorders, Third Edition represented a change in how alcohol-
ism was classified, using specific diagnostic criteria and separating it into
alcohol dependence and alcohol abuse (see Hasin, 2003).

Cloninger (1987) also split alcoholism into two types: type 1, which has
a late onset (> 25 years) and an emphasis on psychological dependence and
guilt, and type 2, with an early onset and emphasis on aggressive behaviour
and an inability to abstain.

There are three main sets of diagnostic criteria for alcohol dependence /
abuse classifications that are in current use, with each set having slightly
different definitions (see Hasin, 2003). Hence, individuals classified as
dependent using one set of definitions will not necessarily be put into the
same class using one another diagnostic measure. The Diagnostic and



CHAPTER 2. THE ADH GENE REGION 51

Statistical Manual of Mental Disorders, Third Edition, Revised (DSM-III-R)
classification is still used by researchers due to historical publications that
also use these criteria, even though an updated version (DSM-IV) is used
by clinicians, and a different classification (ICD-10) is used by the World
Health Organisation (WHO).

It is tempting to try to place patients into distinct groups based on what
type of alcoholism they have. For instance, Moss et al. (2007) attempted to
subdivide alcoholism even further, identifying no fewer than five classes of
alcoholism. Their rigid approach does not seem to fit the complex nature
of the disease. A better viewpoint may be to see the two behaviours (abuse
and dependence) as two interacting dimensions of alcoholism (with the
possibility of more unknown dimensions being present), with a continuum
of severity possible for both types. This view is shared by Helzer et al. (2006),
who have written a review that discusses the benefits and disadvantages of
this multidimensional approach to alcoholism.

2.2.4 Genetic and Environmental Contributions to Traits

A common public misconception relating to genetic traits is that a trait
with a genetic component is inescapably influenced by genetic factors – this
is referred to as genetic determinism (see Condit, 2007), portrayed as the
common world view in the film GATTACA (see Kirby, 2000). However,
every human behavioural trait will always have some greater or lesser
genetic component and some environmental component that modifies its
expression.

Heritability is a commonly used statistic that describes the proportion
of variation of a given trait contributed by genetic factors. In the case
of alcoholism, heritability estimates are generally in the range of 40% to
60% (Messas and Filho, 2004; Dick and Foroud, 2003), although these vary
considerably depending on what particular facet of alcoholism is being
looked at (e.g. Liu et al., 2004; Prescott et al., 2005; Saccone et al., 2000).
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One demonstration of an environmental effect influencing alcohol de-
pendence is the recent study by Guéguen et al. (2008) on the association
between sound level and alcohol consumption (one of the typical compo-
nents of diagnostic criteria for alcohol dependence). Researchers recorded
the consumption (number of drinks, gulp size, time to finish) of 250ml
glasses of draft beer by patrons of two bars in France. The study found that
loud (88dB) music resulted in an increase in drink consumption rate when
compared to background-level (72dB) music.

2.2.5 Genetic Contributions to Alcoholism Risk

Alcoholism is a complex disease that has several primary and secondary
contributory factors throughout the genome – it is clearly not a single-
gene disorder (see Devor, 1993). Recent reviews of genetic influences on
alcoholism have been written by Schuckit (2009) and Nurnberger and Bierut
(2007).

There are two main classes of ethanol-metabolising enzymes, Aldehyde
Dehydrogenase (ALDH) and ADH (see Figure 2.1); particular variants of the
genes encoding these enzymes have demonstrated variation in the response
to ingested ethanol. A particular variant of the ALDH genes that is common
in Asian and Polynesian populations (see Chambers et al., 2002b) has been
linked to a flushing reaction and some discomfort after the consumption
of alcohol. The combination of this variant and a slow-metabolising ADH
gene variant substantially decreases the risk of alcoholism (see Nurnberger
and Bierut, 2007), likely due to increased levels of aldehyde remaining in
the blood for an extended period of time.

Schuckit (2009) suggests that a reduced level of response to alcohol (i.e. a
need to consume more alcohol in order to obtain a pleasurable effect) seems
to increase the risk of alcoholism. It has been hypothesised that people
who need to drink more to enjoy feeling a pleasurable effect from alcohol
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Figure 2.1: Ethanol (CH3CH2OH) is converted in the liver into acetaldehyde
(CH3CHO), by the ADH enzymes, before being converted into acetate (CH3COO

−)
by ALDH detoxification. This end product of alcohol metabolism can then be used by the
body as an energy source.

will be more likely to drink more per session, and in turn, associate with
other heavy drinkers (reinforcing this behaviour of increased consumption).
Supporting this hypothesis, Schuckit (2009) notes that variants of genes in
the gamma-aminobutyric acid (GABA) receptor gene cluster are associated
with reduced sensitivity to the effects of alcohol, and also that reduced
serotonin levels (e.g. due to increased re-uptake) are suspected to be related
to a reduced response to alcohol.

Risk of alcoholism is also modified in variants of genes that alter concen-
trations of other neurotransmitters. For example, the CHRM2 gene encodes
the M2 muscarinic acetylcholine receptor, part of a family of receptors that
are involved in learning, memory and cognition (see Wang et al., 2004).
Individuals with a common T-T-T haplotype within intron 4 of this gene
have a reduced risk of alcoholism (Wang et al., 2004), such as dopamine
(e.g. a DRD4 exon 3 polymorphism, Bau et al., 2001) and acetylcholine (e.g.
a TTT haplotype in intron 4 of CHRM2).

While there have been many hypotheses generated about genetic pre-
disposition to alcoholism (including linkage studies such as in Edenberg
et al., 2006 and Djoussé et al., 2005), validation of these hypotheses has
been difficult. The complex interactions between different genes for disor-
ders such as alcoholism may mean that a validated genetic interaction that
works for all situations is an unobtainable target.
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The study presented here is an analysis of the ADH gene cluster, which
has a role in the metabolism of alcohol and is a good candidate for a region
that has an influence on alcohol dependence.

2.2.6 Summary of the ADH Genes

2.2.6.1 Enzyme Function & Activity

The hepatic alcohol dehydrogenases (ADH, EC 1.1.1.1) are a family of
catabolic enzymes that oxidise alcohols, including ethanol, to form ac-
etaldehyde (see Crabb et al., 2004). These proteins are dimeric, composed
of a combination of five different classes of ADH subunits, α, β, γ, π, χ and
µ. Although the α − α homodimer is the most common form, multiple
homodimeric and heterodimeric configurations are characteristically ob-
served in liver extracts (e.g. Bosron et al., 1983). These subunits are encoded
by a cassette of linked genes (recently renamed as ADH1A, ADH1B, ADH1C,
ADH4, ADH5, ADH6, and ADH7 respectively)† positioned in order on the
long arm of chromosome 4 (4q21-4q25). Previous studies have shown that
the liver activity of ADH varies among individuals and between human
geographic sub-populations, and may influence metabolic response to in-
gested alcohol and susceptibility to abuse behaviour (e.g. see Chambers
et al., 2002a; Lee et al., 2004). Variation in enzyme activity is due in part
to variation within the genes that encode the enzymes. This variation can
increase the complexity of interactions between ADH dimers, as variants of
the same class of ADH enzymes can have differing kinetic parameters (Lee
et al., 2004; Crabb et al., 2004).
†ADH1→ ADH1A, ADH1B→ ADH2, ADH1C→ ADH3



CHAPTER 2. THE ADH GENE REGION 55

2.2.6.2 Previous Research on ADH Polymorphisms

A variant that is known to alter enzyme activity is a single nucleotide
polymorphism (SNP) within the ADH1B gene, rs1229984. It is an exonic
SNP, coding for an Arginine to Histidine amino acid change in the β subunit
polypeptide of the human ADH protein (see Lee et al., 2004). The rare
variant of this mutation has been widely associated with reducing the risk
of alcohol dependence (Higuchi et al., 2004; Osier et al., 2002; Chen et al.,
1997), and has been found to have a high prevalence in Asian and Pacific
populations (Chambers et al., 2002b; Chen et al., 1997). The proposed
mechanism of protection is based upon metabolic properties that result
from this genetic variant. It has been observed that an ADH1B protein with
the ADH1B*47His variant has a higher affinity for ethanol than an ADH1B
protein without this variant (Higuchi et al., 2004). The metabolic product,
aldehyde, is quite toxic and produces a number of unpleasant physiological
effects (such as nausea and headaches). Due to these unpleasant effects,
it is expected that this genetic variant could make a person less likely to
consume alcohol in large quantities.

Edenberg et al. (2006) have carried out a systematic analysis of the seven
genes within the ADH region, looking at Linkage Disequilibrium (LD)
patterns and association with alcoholism in families from the Collaborative
Study on the Genetics of Alcoholism (COGA).† They found the strongest
evidence for association with alcohol dependence around the ADH4 gene,
but evidence for association in the region around ADH1B only reached
statistical significance when a broader definition of dependence was used.
They also discovered that LD is high within genes and lower in regions
between genes.

†http://zork.wustl.edu/niaaa/

http://zork.wustl.edu/niaaa/
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2.2.6.3 Frequency Differences Within and Between Populations

Chambers et al. (2002b) looked at genotype and allele frequency differences
at three loci within ADH and ALDH genes. They typed alcohol dependent
(DSM-III-R) Maori and non-Maori males, as well as control subjects with
European, Asian, and Polynesian ancestry (including New Zealand Maori,
Cook Island Maori, and Samoan ancestry).

It was found that the ADH2*2 (rare rs1229984 variant) frequency in
Maori alcoholics (0.15) was significantly less (p < 0.01) than that in Maori
controls (0.42), and the difference between alcoholics and controls was
greater than that observed in any other group for which the variant has
been typed. The reported frequency of this variant in most European popu-
lations is very low (around 0.03), high in Asian populations (around 0.76),
but has similar frequencies in Maori and other Polynesian populations
(0.42-0.46). This result was interesting especially considering that Polyne-
sian population more closely resembled the European population than the
Asian population at a SNP found in the ALDH2 gene. While being able to
show the protective effect of the rare rs1229984 variant in Polynesians (irre-
spective of other known protective variants), Chambers et al. (2002b) were
unable to determine if this protective effect was also present in European
populations, due to low frequencies and small sample sizes in the study.
Edenberg et al. (2006) have also failed to validate this protective effect in
European populations, but also reported similarly low allele frequencies
(0.034) of the rare rs122984 variant.

2.2.7 Expectations of Haplotype Block Structure

In previous studies of association with alcohol dependence within the ADH
region it has been common to analyse individual SNPs, rather than combine
linked SNPs and analyse haplotypes, even when it is apparent that two
or more nearby SNPs reside on the same haplotype block (e.g. Djoussé
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et al., 2005; Edenberg et al., 2006). However, some later studies of the ADH
region have now included an analysis of haplotypes. For instance, Han
et al. (2007) identified haplotype block patterns that were consistent with
selection in the neighbourhood of the ADH1B gene. They used the results
from extended haplotype homozygosity (EHH) tests (Sabeti et al., 2002) as
evidence in support of their hypothesis of a selection event in Japanese and
Korean populations. A single ADH1B haplotype showed high homozy-
gosity (> 0.6) over about 100kb in Japanese and Korean populations; this
homozygosity was much higher than that observed for other Asian popula-
tions, where lower homozygosities (between 0.4 and 0.6) were maintained
over a shorter distance (40-80kb).

2.3 Methods

This study is an extension of the design used by Chambers et al. (2002b).
The principal aim is to identify linked mutations within the ADH gene
cluster on chromosome 4 that can be used to determine ADH haplotype
block variation between the Maori and European populations. The study
involves a comparison of experimentally obtained genotypes from Maori
individuals with comparable publicly available genetic data from European
individuals. The genotypes have been analysed at both an allele frequency
and haplotype frequency level.

2.3.1 Study Population

A previous study by Chambers et al. (2002b) collected DNA from 18 male
and 29 female individuals (all unrelated), drawn from the general pop-
ulation of Wellington, New Zealand. Banked DNA samples from these
individuals were used for new SNP genotyping assays covering nine SNPs
within the ADH region. The subjects self-reported four Maori grandparents
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Figure 2.2: A section of chromosome 4, showing the relative positions of the ADH genes
and SNPs typed in this study. Names (from the NCBI database) of typed SNPs are shown
at the bottom.

and as such can be reliably considered as representative of the ancestral
Maori population (i.e. they have zero or minimal European genetic admix-
ture).

2.3.2 ADH SNPs Typed

The ADH genes are located on the long arm of chromosome 4 (region 4q23),
nucleotide locations 10200kb-10600kb according to the NCBI reference
assembly (figure 2.2). Nine SNPs were chosen (both intronic and exonic
polymorphisms), spread across the entire cassette of ADH genes. The SNPs
were chosen based on existing knowledge of mutations that were well
characterised in the literature – no SNPs were chosen within the ADH1A
gene because, at the time of SNP selection, no well-characterised mutations
were known within that gene. Genotyping was done via a service contract
with the Australian Genome Research Facility (AGRF)†, which used the

∗All references to locations of genes and mutations in this chapter are based on the
NCBI reference assembly for Homo sapiens, build 36, March 21, 2006. The names of genes
and mutations refer to the Gene name and refSNP ID respectively in the NCBI database as
of May 2007.
†http://www.agrf.org.au

http://www.agrf.org.au
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Sequenom MassArray Genotyping system (Buetow et al., 2001).

Haplotype frequencies were determined for two gene regions having
two linked SNPs each:

The first haplotype, including the SNPs rs1229984 and rs698, lies within
the region of class I ADH genes (ADH1B and ADH1C). The rs1229984 mu-
tation corresponds with a change in amino acid 48 of the ADH1B product,
from a Histidine (A allele) to an Arginine (G allele). The rs698 mutation
corresponds with a change in amino acid 350 of the ADH1C product, from
an Isoleucine (A allele) to a Valine (G allele). Data from European sub-
jects for this haplotype are from haplotype frequencies for a combination
of the ‘Europeans, Mixed’ and ‘Irish’ populations in ALFRED, the Allele
Frequency Database (Rajeevan et al., 2003).

The second haplotype, including rs1042364 and rs1126671, lies within
the region of the Class II ADH4 gene. The rs1042364 mutation corre-
sponds with a change at mRNA position 1238 (3′ untranslated region).
The rs1126671 mutation corresponds with a change in amino acid 309 of
the ADH4 product, from an Valine (G allele) to a Isoleucine (A allele). Data
from European subjects for this haplotype are from the HapMap dataset
(CEU – Utah residents with ancestry from northern and western Europe),
calculated using Haploview (Barrett et al., 2005).

2.3.3 Sources for Web-based Data

Genotype and haplotype frequency statistics for European subjects were
obtained from the HapMap database (International HapMap Consortium,
2005). Additional genotype and haplotype frequency data that have been
used came from the ALFRED database (Rajeevan et al., 2003), which con-
tains information on SNP and haplotype frequencies for over 1300 popu-
lations at a large number of sites throughout the human genome. Allele
frequencies of European subjects for five mutations (rs13832, rs1042364,
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rs1126671, rs4699733, and rs1789882) were retrieved from the HapMap
database. Allele frequencies of European subjects for rs1229984, rs698,
rs1154458, and rs971074 were retrieved from the ALFRED database.

Only haplotype blocks that were in complete LD with high LOD scores
in the Maori population were used in the analysis. Haplotype frequencies
for a haplotype including the SNPs rs1229984 and rs698 for European
subjects were obtained from ALFRED. European (HapMap CEU) haplotype
frequencies for the haplotype including the SNPs rs1042364 and rs1126671
were determined using Haploview, with blocks defined by the Four Gamete
rule (Wang et al., 2002).

2.3.4 Statistical Analyses of ADH Variants

Frequencies of haplotypes and alleles were determined for Maori and Eu-
ropean populations. Allele frequencies were generated from the genotype
data obtained from AGRF, as well as from the ALFRED and HapMap
databases. To determine probabilities associated with frequency differ-
ences, χ2 values were calculated, and probabilities were determined using
the CHIDIST function in OpenOffice.org Calc (Sun Microsystems, 2009).
The χ2 values have only one degree of freedom when comparing allele
frequencies between two populations. The Haploview program (Barrett
et al., 2005) was used to identify LD (haplotype) patterns among SNPs
within the Maori and European populations.

Calculation of the χ2 values for the comparisons of haplotypes were
carried out in a similar way to those for allele frequencies. They also have
one degree of freedom, comparing each haplotype to all other haplotypes
between the Maori and European populations.
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2.4 Results

2.4.1 Comparison of Allele Frequencies in Maori and Eu-
ropean Populations

Individual χ2 tests were carried out for each SNP, comparing Maori and
European allele frequencies (Table 2.1). All calculated probabilities of
similarity were below 0.01 except at rs4699733 (p = 0.18) and rs971074
(p = 0.56). The largest difference in allele frequency was at rs1229984: the
rare allele was present in 45% of the Maori population, but only 4% of
the European population. Among those SNPs with significant differences
in allele frequencies, only rs1229984 had a greater frequency of the rare
allele in the Maori population. The rare allele frequencies for the Maori
population shows a general trend of reduced prevalence in the population
as the distance from rs1229984 increases (r2 = 0.63). This trend is not
mirrored in the European population (r2 = 0.17), in which most rare allele
frequencies are near 30− 35%.

The smallest difference in allele frequencies was at rs971074, where
frequency of its rare allele for Maori was 4%, while the rare frequency
for European was 12%. Three of the nine SNPs involve non-synonymous
mutations in coding sections of DNA. All of these three SNPs had sig-
nificant differences in allele frequency between the Maori and European
populations.

A total of six SNPs (rs13832, rs1042364, rs1126671, rs698, rs1154458,
rs971074) had a rare frequency in the Maori population of less than 30%,
while only three had a frequency of less than 30% in the European populat-
ion (rs4699733, rs1229984, rs971074). Only one rare allele, that of rs971074,
had a frequency of less than 30% in both the Maori and European popula-
tions.
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RefSNP ID Gene Mutation (Coding) Maori European
rs13832 ADH5 T→G – 0.10(90) 0.38(164)

rs1042364 ADH4 G→A – 0.05(94) 0.32(164)
rs1126671 ADH4 G→A (V→I) 0.07(94) 0.33(164)
rs4699733 ADH6 C→G – 0.31(94) 0.23(164) *
rs1789882 ADH1B A→G (I→I) 0.45(94) 0.88(164)
rs1229984 ADH1B G→A (R→H) 0.45(94) 0.04(328)

rs698 ADH1C A→G (I→V) 0.30(94) 0.44(358)
rs1154458 ADH7 C→G – 0.19(94) 0.38(394)
rs971074 ADH7 G→A (R→R) 0.04(92) 0.12(410) *

Table 2.1: ADH allele frequency statistics for the initial 9-SNP study. Values in parenthe-
ses following the frequencies are the total number of alleles observed (2N). The rs1789882
mutation was subsequently removed from the analysis due to suspected genotyping error.
Amino acid changes are described using the single letter symbols from IUPAC (Dixon
et al., 1984). Intronic variants, or variants outside of a gene transcript, have no associated
amino acid changes.
* All calculated probabilities were below 0.01 except at rs4699733 (p = 0.18) and rs971074
(p = 0.56).

2.4.2 Linkage Disequilibrium Within the ADH Region

Table 2.2 shows results from the analysis that was carried out on the ADH
gene markers in the Maori population, using the program Haploview. The
degree of disequilibrium between pairs of SNPs (as D′) were calculated,
together with an estimate of the level of confidence (p values) which can be
ascribed to that score.

Regions of relatively high LD were observed within the ADH region:
one between rs13832 and rs1126671, and another between rs4699733 and
rs971074. In each of these regions, there were two markers that were in com-
plete LD with each other (D′ = 1, p < 0.01). Haplotype frequencies within
these regions can be found in Table 2.3 and Table 2.4 respectively. Alleles
with the highest frequency in the NCBI RefSeq database are marked with ’*’.
Probabilities calculated are based on χ2 (1 d.f.), comparing each haplotype
to all other haplotypes between the Maori and European populations.
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Gene 1 2 3 4 5 6 7 8
ADH5 1 – 0.76 0.67 0.36 1 0.59 0.29 0.39
ADH4 2 < 0.01 – 1 1 1 0.26 0.01 0.17

3 < 0.01 < 0.01 – 0.07 1 0.34 0.12 0.19
ADH6 4 0.21 0.18 0.64 – 0.91 0.48 0.65 1
ADH1B 5 0.03 0.31 0.11 < 0.01 – 1 0.84 1
ADH1C 6 0.04 0.55 0.17 < 0.01 < 0.01 – 0.54 0.39
ADH7 7 0.13 0.78 0.59 < 0.01 < 0.01 < 0.01 – 1
ADH7 8 0.12 0.35 0.37 0.05 0.04 0.54 0.74 –

Table 2.2: CalculatedD′ scores (above diagonal) and probability values (below diagonal,
derived from a bivariate Spearman’s correlation test of genotype frequencies), showing
Linkage Disequilibrium within the ADH region. Mutations are coded as follows: 1: rs13832,
2: rs1042364, 3: rs1126671, 4: rs4699733, 5: rs1229984, 6: rs698, 7: rs1154458, 8: rs971074

2.4.3 Differences in Haplotype Frequencies

Haplotype Maori (94) European (164) Probability
GG* 0.926 0.667 < 0.01
AA 0.053 0.316 < 0.01
GA 0.021 0.017 0.83
AG 0.000 0.000 1

Table 2.3: ADH4 Haplotypes – rs1042364 (on left), rs1126671 (on right). Values in
parentheses in the column headings are chromosome counts.

Large differences in haplotype frequencies are apparent at both haplo-
type block regions identified in the Maori population (Tables 2.3 and 2.4).
Over 92% of the Maori individuals that were typed had the ‘GG’ haplotype
in the ADH4 region, while fewer than 3% of the European individuals were

Haplotype Maori (94) European (310) Probability
AA 0.447 0.023 < 0.01
GA* 0.255 0.542 < 0.01
GG 0.298 0.435 0.02
AG 0.000 0.000 1

Table 2.4: ADH1B-ADH1C Haplotypes – rs1229984 (on left), rs698 (on right). Values in
parentheses in the column headings are chromosome counts.
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observed with the ‘AA’ haplotype on the ADH1B/ADH1C region. Also
in the ADH1B/ADH1C region, the least common haplotype in the Euro-
pean population is the most common haplotype in the Maori population.
The frequency in Europeans for this haplotype is slightly lower than that
of the rs1229984 rare allele alone, although this difference may be due to
the different European populations from which the haplotype and allele
frequencies were derived.

2.5 Discussion

2.5.1 Large Differences in both Allele and Haplotype Fre-
quencies between Maori and European Populations

There were significant differences (p < 0.01) in allele frequencies between
Maori and European populations for seven of the nine SNPs that have been
typed in this study. While the underlying reasons for these differences
remain unknown, it is evident from this observation, and from the asso-
ciated haplotype comparisons, that the Maori and European populations
do have different genetic signatures within this region. In addition to pro-
viding more genetic evidence to different alcohol responses between the
populations, the differences would also be useful in distinguishing the two
populations, and for understanding the genomic patterns within the Maori
population. In particular, variants that are quite different in frequency
between populations can be used for confirmation of the ancestry of an
individual in situations where that may be uncertain. Individual variants
can be attributed to any population, but more confidence can be placed in
an abundance of variants with a high prevalence in a particular population.
It is hoped that studies such as this will be able to be used to determine the
degree to which genetic differences are related to self-reported ancestry, and
then be used to work out how useful they can be for inference of ancestry
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in the absence of prior genealogical information.

The rare variant of the mutation rs1229984 has been widely associated
with protection against alcoholism (e.g. Higuchi et al., 2004; Osier et al.,
2002; Chen et al., 1997). This mutation resides within a haplotype block in
the Maori population, together with at least one other SNP, rs698. Due to
the close proximity of these two mutations, it would be expected that the
typing of one of these two mutations could be used to predict the result
of typing the other mutation. However, as seen in Table 2.4, the two most
common haplotypes in Maori have the same rs698 allele (A), while the two
most common European haplotypes have the same rs1229984 allele (G).
The minor allele frequencies for rs698 and rs1229984 differ in Maori by 15%
and in Europeans by 40% (Table 2.1), further demonstrating that the typing
of one of these SNPs cannot be used as a proxy for the other SNP.

Another SNP, rs1693482, has been previously determined to be in com-
plete LD (D′ = 0.99, R2 = 0.96) with rs698 for individuals who participated
in the Framingham Heart Study in Massachusetts, USA (Djoussé et al.,
2005). This is a potential candidate for another nearby SNP that might be
in complete LD with rs1229984, but due to overlapping blocks (see Wall
and Pritchard, 2003), linkage is not necessarily inherited from nearby SNPs.
In order to establish conclusively how far the primary haplotype block
of rs1229984 extends, a more detailed analysis of the surrounding region
would be required.

TheD′ values give an indication of linkage disequilibrium (LD), the degree
to which an allele at one location is able to predict the allele at another
nearby location. The D′ value can also be used, together with LOD scores,
as an indicator of how well haplotypes within the region between two SNPs
are preserved. High D′ values indicate that ancestral haplotypes have been
carried down through many generations without recombination, keeping
the haplotype signature from the ancestral population intact. A D′ value of
1 suggests that no recombination has occurred in the observed population.
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However, there is always a possibility that there has been a recombination
event, but subsequent mutation has reverted the particular variant under
test back to what it was before the recombination happened. For this reason,
it is important to consider nearby variants when making inferences about
the degree to which recombination has happened within a region.

It is interesting that the two haplotype blocks identified in Maori within
the ADH gene region have different frequency profiles both when compared
to each other, and when compared to the same haplotype block region in
the European population. The ADH4 haplotype (Table 2.3) is typed as GG
for over 90% of Maori individuals, and the next most common haplotype
in both Maori and European populations is a mutation at both locations,
from GG to AA. For the ADH1B-ADH1C haplotype, the second most
common haplotype in Maori (GG) is again two mutations different from
the most common haplotype (AA), whereas the most common haplotype
in European (GA) and the second most common haplotype (GG) differ by
only one mutation. It is possible that there may be a functional advantage –
with regards to alcohol metabolism – in the inheritance of specific variants
within these regions as a unit, and this advantage results in the putative
haplotype block patterns observed in these regions.

2.5.2 Block Sizes Consistent With Other Populations

Previous studies of haplotype block sizes in the human genome have indi-
cated that a block distance of less than 10-30kb would be consistent with
that observed in other populations (see Introduction, Section 1.3.2). The
two fully-linked regions that have been identified lie within this range:
rs1042364 and 1126671 have a marker separation distance of around 3kb,
and rs1229984 and rs698, have a separation of 11kb. However, it was ex-
pected that the Maori population might have larger block sizes than the
European population because the Maori population is more recently estab-
lished (around 600-800 years ago), and it is therefore necessary for more
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detailed studies of genetic structure surrounding the ADH region in Maori
to determine the extent of blocks observed here.

2.6 Extensions and Future Work

The regions of high LD that Edenberg et al. (2006) found in Europeans
appear to correspond with the regions of high LD that have been observed
here in the Maori population. The present results indicate that Maori and
European populations differ greatly across these regions at both an allele
and haplotype frequency level, which suggests that these differences will
still be apparent when looking at detailed linkage patterns within the region.
No such study of these patterns has been carried out, but it would be an
obvious next-step to enhance the understanding of Maori genetic variation
near the ADH genes.

2.7 Conclusion

This study has contributed to understanding of the population genetic
structure of the ADH genes in Maori, and has demonstrated that this struc-
ture differs in Maori and European populations. It is anticipated that this
improved understanding will aid future researchers in clarifying the link
between alcohol dependence and the ADH genes.

Of the nine SNPs typed in the current study, seven were also included in
the set of 110 SNPs typed in the study by Edenberg et al. (2006), and the two
SNP sets span a similar region on chromosome 4. Of these SNPs, rs1042364
(located in the 3′ UTR of the ADH4 gene) was identified by Edenberg et al.
(2006) as being significantly associated with alcohol dependence.

In this study marked differences were observed in the allele frequency
between Maori and European groups at six SNPs spanning the ADH gene
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region. Very different haplotype signatures have been identified at the
alcohol-metabolising genes in Maori compared with Europeans. A region
of apparent high LD including the well-known ADH1B variant was iden-
tified in Maori, which is perhaps indicative of a large haplotype block of
Polynesian origin.

These findings probably reflect the unique genetic history of the Maori
population and provide important information for designing association
studies of the ADH genomic region in alcohol-related traits in Polynesians.



Chapter 3

Sequence Variation at the
Monoamine Oxidase A Gene
Region in the Maori Population

3.1 Overview

In 2002, Gilad et al. reported evidence for positive selection within the
human monoamine oxidase A (MAOA) gene region on chromosome X in 7
populations: Pygmy, Aboriginal Taiwanese, Chinese, Japanese, Mexican,
and Russian. They did not genotype individuals from Maori or Polynesian
populations, but repeated founder effects due to the migration history of
Polynesia suggest that selective signals may also be evident in the Maori
population. This chapter investigates MAOA gene variation in Maori in
order to determine if a signal of positive selection may be present within
this gene region.

The MAOA gene has been identified as a candidate for influencing sus-
ceptibility to alcoholism and other impulse control disorders (see Ibanez
et al., 2000; Morell, 1993). Variation in MAOA genotypes have been im-

69
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plicated in both alcoholism (Hsu et al., 1996) and smoking behaviour (Jin
et al., 2006) in Asian populations. A study of genetic variation within
the MAOA gene region should help to describe the range of genetic varia-
tion in the Maori population that may influence alcoholism susceptibility.
Also, the characterisation of MAOA sequence variation in Maori should
aid in the design of future genetic association studies for alcohol and drug
dependence.

Data from this chapter, in part, have been abstracted in poster form at the
International Congress of Human Genetics, poster #1329 (Lea et al., 2006),
and published in The New Zealand Medical Journal (Lea and Chambers,
2007a).

3.2 Background

3.2.1 Biochemistry of Monoamine Oxidase A

Monoamine oxidases (MAO, EC 1.4.3.4) are flavoenzymes that are bound
to the outer mitochondrial membrane. This protein class has two known
members, each with a different substrate specificity. Monoamine oxidase
B (MAOB) has low activity towards serotonin but high activity towards
dopamine in human platelets (Glover et al., 1977), while monoamine oxi-
dase A (MAOA) preferentially oxidises serotonin in human liver (Grimsby
et al., 1996). In SH-SY5Y cultured neuroblastoma cells, the predominant
monoamine oxidase is MAOA, and it appears to influence apoptotic path-
ways (Fitzgerald et al., 2007). The two proteins are identical at 70% of
their amino acid positions (see Shih et al., 1999), and the transposition of
substrate binding domains between MAOA and MAOB (residues 161-375
for MAOA, residues 152-366 for MAOB) causes each protein to acquire
substrate binding affinities similar to the other form of monoamine oxidase
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(Grimsby et al., 1996). For reviews of the literature on MAOA biochemistry,
see Shih et al. (1999) and Nagatsu (2004).

3.2.1.1 X-chromosome Inactivation

The MAOA gene resides on the X chromosome, so care must be taken in the
interpretation of association study results in females. Inactivation of one of
the two X chromosomes during early development results in a mosaic of
phenotypes across all the cells of the body. Although some X chromosome
genes can escape inactivation, MAOA has been found to be monoallelic in
skin fibroblasts (Nordquist and Oreland, 2006), so one copy is likely to be
inactivated.

Females who are homozygous for a particular genetic variant will have
that same variant in all cells, regardless of which chromosome is inacti-
vated, so can usually be considered to have a similar genetic profile to
hemizygous males (although statistical tests should be carried out first in
order to confirm that male and female data can be combined). However,
the nature of the X inactivation process can mean that it is difficult to know
which variant may be active in the particular cells of interest for a heterozy-
gous female. Due to these mosaic effects, it is probably best to remove
X-chromosome data for heterozygotes from association studies, because
inclusion of such data could generate false results.

A removal of heterozygous data is not necessary for investigations of
genetic patterns and chromosomal recombination, as in the current study.
These types of analyses aim to determine the history of a variant, rather
than its current effect. Mosaic effects from X-chromosome inactivation in
females will not be expected to affect the outcome of the study, because this
study just counts alleles.



72 CHAPTER 3. MAOA GENE STRUCTURE

AA NHW API HLA

Population

A
lle

le
 F

re
qu

en
cy

0.0

0.2

0.4

0.6

0.8

1.0
3/5
3.5/4

Figure 3.1: Bar plot demonstrating a wide range of MAOA-uVNTR frequencies in 4
different population groups (AA – African American; NHW – Non-Hispanic / White;
API – Asian / Polynesian; HLA – Hispanic / Latino). Frequencies of the high expression
haplotypes (3.5-repeat and 4-repeat) vary from 0.39 in the African American group to 0.71
in the Hispanic / Latino group. Data used to generate this figure are from Sabol et al.
(1998).

3.2.2 Sequence Variation in the MAOA gene

The two known MAO proteins are encoded by two separate (but closely
linked) genes, monoamine oxidase A (MAOA) and monoamine oxidase
B (MAOB). They are found almost tail-to-tail (20kb separation) on the X
chromosome (region Xp11.3). In the promoter sequence 1.2kb upstream of
the MAOA gene, there is a variable-number tandem repeat polymorphism
(VNTR) of a 30bp repeat sequence element (MAOA-uVNTR, see Figure 3.2)
that is known to influence the expression levels of the gene (Sabol et al.,
1998), and occurs at different frequencies in different populations (see
Figure 3.1). The 3 and 5-repeat variants result in low expression, while 3.5
and 4-repeat variants result in high expression of the gene. This promoter
polymorphism has been found to be in LD with genetic markers within the
MAOA gene (Ibanez et al., 2000).
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Gilad et al. (2002) carried out a study of nucleotide diversity at the
MAOA gene region in humans and discovered extensive variation across
seven different population groups: Ashkenazi, Pygmy, Aboriginal Tai-
wanese, Chinese, Japanese, Mexican, and Russian. A direct sequencing
approach was used in order to ensure a high resolution analysis of total
nucleotide variation across the region. A total of five segments of the gene
were selected with total combined length of 18.8kb, i.e. about 20% of the
entire 90kb gene region. Exonic portions of the gene were preferred when
choosing regions to sequence, but intronic sequences were used where
no exonic sequence existed within a particular region. Overlapping 1kb
regions were sequenced in males to provide full haplotype information
for each of the five segments.† A total of 41 polymorphic sites were ob-
served: 33 Single Nucleotide Polymorphisms (SNPs), 7 deletions, and the
MAOA-uVNTR. The polymorphic status of mutations was not consistent
across all populations. Only 12 of 41 sites were polymorphic in all geno-
typed populations (i.e. 29 mutations were non-polymorphic in at least one
population).

3.2.3 The Case for Selection at the MAOA gene

Based on their observations of linkage disequilibrium (LD) patterns across
the MAOA gene region, and reduced diversity within populations, Gilad
et al. (2002) suggest that there may have been positive selection in this
region acting on MAOA-related phenotypes. The most obvious evidence
for selection that was found within this region was consistently higher LD
than that expected under a neutral recombination model throughout the
region. Gilad et al. (2002) supported their evidence for positive selection
at this gene locus with an observation of low within-population diversity
combined with high between-population diversity.

†Males only have one X chromosome, so mutations can be trivially combined into a
haplotype
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3.2.3.1 Statistical Tests for Neutrality

Neutral theory predicts that DNA changes at an approximately constant
rate over time for sites that are selectively equivalent (i.e. the survival
chance for different variants is the same), and that this applies to the ma-
jority of the genome (see Kimura, 1991). The constant rate of change also
means that between-group variation will increase in proportion to within-
group variation, and variation within groups should be proportional to
the rate of evolution. Because regions of the genome with functional im-
portance can acquire mutations that are deleterious (and selected against),
Kimura reasons that those functional regions will evolve slower than non-
functional regions with no selective pressure. This view is supported by
Aguadé et al. (1989) and Charlesworth et al. (1993), who found that selec-
tion against deleterious mutants resulted in a reduction of variability in
regions near the selected locus, and this effect is more pronounced when
recombination rates are low.

The index of nucleotide diversity (π) measures the average number of
differences per site between randomly chosen DNA sequences (Nei and Li,
1979). It is an estimator of θ = 4Nµ, the population mutation parameter. At
the time of writing their initial paper, Nei and Li knew that this quantity
varied between populations even within the same species, so it is important
to establish a baseline diversity before using the statistic to determine
deviation from normality. Gilad et al. (2002) calculated π for all populations
that were typed, and use it as an estimator for mutation frequency for the
calculation of recombination rate. They reported that nucleotide diversity
is similar (about 0.05% per base-pair) in all typed populations, and that this
value is similar to average values reported previously for X chromosome
sequences.

Tajima (1989b) has proposed a statistic, D (more commonly known as
Tajima’s D), which under neutral mutation conditions fits a beta distribution
with a mean of approximately 0, and a variance of approximately 1. It is
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assumed that mutations that are tested using this statistic are sampled at
random from the population. Values of D that deviate from 0 to a large
degree reject a neutral mutation hypothesis, although it is possible that
recent bottleneck effects can result in a large negative D value (see Tajima,
1989a). The statistic can also be influenced by hitchhiking.

Hitchhiking is a process that can give clues to whether a genetic variant
has been under selection. Neutral genetic variants appear at a higher
than expected frequency when posited near a selected variant due to low
recombination rates near the selected region. The degree of hitchhiking
increases when selection rates are high, and decreases when recombination
rates are high. Fay and Wu (2000) discuss a statistical test (the H test) that
is used to test for departure from neutrality in the presence of hitchhiking.
This statistic compares two estimators of the mutation rate, θπ (based on
average heterozygosity) and θH (based on homozygosity). The H test
is defined as the difference between these two estimators, with negative
values indicating that a hitchhiking event has occurred.

While Tajima’s D (Tajima, 1989b) compares low frequency and interme-
diate frequency variants to determine if hitchhiking has occurred, the H
test compares the high frequency and intermediate frequency variants to
find signals for hitchhiking. Fay and Wu (2000) state that only demographic
models and positive selection can explain an excess of high-frequency vari-
ants. Gilad et al. (2002) found H values more negative than those expected
under a neutral selection model for four of the seven genotyped popula-
tions, and also for the combination of all seven populations, giving a strong
indication that variation within the MAOA gene region has been influenced
by positive selection. The Taiwanese population was the only population
that Gilad et al. (2002) found to have significant (p < 0.05) deviation from
neutrality for Tajima’s D, and this population was one of the three that did
not show evidence for hitchhiking using the H test.
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3.2.4 The Addition of Maori MAOA Data

The study carried out by Gilad et al. (2002) did not include Polynesian
individuals, so an obvious extension for this project is to investigate genetic
selection in this region in a Polynesian population. The current study has
extended this work to include a Polynesian population (Maori), with a
goal of investigating whether there is also evidence of selection within this
region for the Maori population.

3.3 Methods

This study has an intra-population and inter-population design, looking at
haplotype block patterns in the neighbourhood of the MAOA gene region.
Haplotypes were scored in males and females using banked DNA samples
from the Maori population described in Chapter 2. The principal aim is to
investigate evidence for positive selection within this region in the Maori
population.

3.3.1 Variants Typed

All references to locations of genes and mutations in this chapter are based
on the NCBI reference assembly for Homo sapiens, build 36, March 21,
2006. Gene names are the same as those in the NCBI database as of May
2007.

The genomic sequence for the MAOA gene, including 10kb of flanking
sequence (both upstream and downstream), was also retrieved from the
NCBI database. Flanking sequences for MAOA-uVNTR and 13 of the SNPs
typed by Gilad et al. (2002) were requested from the authors (see Figure 3.2),
and located within the retrieved MAOA genomic sequence (see Table 3.1
for mutations and flanking sequences).
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Figure 3.2: A section of chromosome X, showing the relative positions of MAOA and
MAOB genes and mutations typed in this study. Mutations that were polymorphic in the
Maori population are coloured blue. The labels for each mutation refer to the segment,
region, and nucleotide position from Gilad et al. (2002).

All 13 of these SNP positions were confirmed as present within the
MAOA gene by using the ssearch program (Smith and Waterman, 1981).† To
determine the precise location of SNPs within the X chromosome (according
to the NCBI reference sequence), flanking sequences for the mutations were
used as input for the web-based BLASTn program.‡ After carrying out
this process, it was noticed that the first SNP, 1.1(635) resides within the
30-bp repeat sequence. Hits within chromosome X were found for SNPs
except 2.3(476). A search for 2.3(476) alone against mutations and flanking
sequences on chromosome X produced over 100 results with greater than
92% homology.

It is likely that no results were returned initially for this SNP for the
BLASTn search on the entire genome because too many matches were

†http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
‡http://blast.ncbi.nlm.nih.gov/Blast.cgi

http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Mutation 5′ – Sequence – 3′

1.1(263) AGAGCCCACGCGGCTACACCCAC R TCTACTCCCCCACTCTC

1.1(635) ACCAGTACCGGCACC R GCACCAGTACCCGCACCAGTACCGG

VNTR ACAGCCTGACCGTGGAGAAG ... TCCGAATGGAGCGTCCGTTC

– [repeat] [(ACCGGC)(ACCGGC)(ACCAGT)(ACCCGC)(ACCAGT)]3−5
1.2(769) CAAAAGGGTTCGCCCCGC S CACAGTGCCCGGCTCCCCCCGG

1.5(617) AGTGATCTACAACCATA M TGCTTTTAGGAGGCTTGCCTAGT

2.2(163) GAGTTGCTGAGAAGCAGGTTTTT Y AGCATGGAGATAAAGAA

2.3(476) AGAATTGCTTGAACCC R GGAGGCGGAGCTTGCAGTGAGCCG

2.4(427) GTGTAGGCTATGCATAG Y CTTTTACAGTATGTTAAGATGGG

3.1(224) TTACATGGATCATT Y AACAAAAATAATATATAGCCAGCAAT

3.4(166) TATCACAGTGTCTGGG R GGATGTGGCCCTGCCCCCTACTAC

5.1(183) GACAACTATTTCTAGAATTTGCA Y TGAACTCTGCTTTTCCT

5.1(555) GTATACTTTGCTCTT M CCATTTTCTTGATTAGGGAAGACAT

5.4(790) TCAGGTTCTTGTACCCAGAT R TCTTTCTCGGTCACCTTCCC

5.6(776) ACACCAGGGTCCAGCA M CTTAGGTTTGAATTTATGATAAGG

Table 3.1: The mutations that were typed for the MAOA gene region study. Start and
end primer sequences for the VNTR are displayed in this table, as well as the repeated
sequence. The references here indicate the segment name and sequence position within
each region from the Gilad et al. (2002) study. Mutation codes are as follows: M – A/C; R –
A/G; S – C/G; Y – C/T.

found for this search. Some of these matches may be duplicates, as flanking
sequences for adjacent mutations in NCBI can overlap. However when
restricting the search to only the X chromosome, at least 20 different DNA
sequences were observed (with only one inside the MAOA gene region),
suggesting that at least 20 different partial matches for this sequence are on
chromosome X alone.

3.3.2 Study Population

The 13 SNPs, plus the 30bp-repeat VNTR, were typed by in 47 unrelated
Maori individuals with a self-reported ancestry of four Maori grandparents
(in fact the same 47 individuals that were typed for the alcohol dehydrogen-
ase (ADH) study in Chapter 2). Genotyping was done via a service contract
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with the Australian Genome Research Facility (AGRF)†, which used the
Sequenom MassArray Genotyping system (Buetow et al., 2001).

Genotype data were analysed using Haploview (Barrett et al., 2005) to
establish whether particular combinations of SNPs could be treated as a unit
(i.e. a haplotype block). Female haplotype counts were initially calculated
using Haploview and verified manually by a maximum-parsimony method:
if it were possible that a previously observed haplotype could generate
the observed unphased genotype data, then that haplotype was recorded
as present in that individual (the same method used by Clark, 1990). The
significance of haplotype and VNTR frequency differences between Maori
and other populations was determined using the chisq.test function of
R (R Development Core Team, 2008), treating the total Gilad et al. (2002)
data as an expected probability, and simulating the χ2 distribution when
genotype counts for either Maori or all Gilad populations were below 5.

Neutrality tests carried out by Gilad et al. (2002) were repeated for the
set of 11 SNPs genotyped in Maori, together with data from Maori males,
using the program VariScan version 2.0.2 (Hutter et al., 2006).‡

3.4 Results

3.4.1 Polymorphism in the Maori Population

Of the 13 SNPs typed (all polymorphic in at least one of the seven pop-
ulations that Gilad et al. (2002) had genotyped), two were unable to be
genotyped, 1.1(635) and 2.3(476)§, and five (of the remaining 11) were found
to also be polymorphic in the Maori population (1.1(263), 1.5(617), 3.1(224),

†http://www.agrf.org.au
‡http://www.ub.es/softevol/variscan/
§This was most likely due to the repeat locus and abundance issues described previ-

ously in Section 3.3.1

http://www.agrf.org.au
http://www.ub.es/softevol/variscan/
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Locus Typed Variants Polymorphic
Common Rare All# Maori

1.1(263) Y A G Y Y
1.1(635) N G A N -
uVNTR Y 3* 4 Y Y
1.2(769) Y C G N N
1.5(617) Y C T Y Y
2.2(163) Y T C N N
2.3(476) N A G Y -
2.4(427) Y C T N N
3.1(224) Y C T Y Y
3.4(166) Y A G N N
5.1(183) Y C T Y Y
5.1(555) Y C A N N
5.4(790) Y G A Y Y
5.6(776) Y A C N N

Table 3.2: Genotyping overview, indicating the polymorphic status of mutations typed
in the Maori population. Two mutations, 1.1(635) and 2.3(476), were unable to be geno-
typed by AGRF.
# The polymorphic status represents whether a mutation was polymorphic in all popula-
tions typed by Gilad et al. (2002), and whether a mutation was polymorphic in the Maori
population.
* The common variant globally for MAOA-uVNTR is a sequence repeated 4 times, whereas
the common variant in Maori is a sequence repeated 3 times (globally rare). For all other
mutations, the common variant in Maori was consistent with the common variant in other
populations.

5.1(183), and 5.4(790); see Table 3.2 and Figure 3.3). The MAOA-uVNTR was
also polymorphic in the Maori population. The remaining six SNPs were
all non-polymorphic in every Maori individual tested, with all individu-
als having the most common variant (with respect to other populations)
at each site. Of the 11 SNPs that were genotyped, mutations that were
polymorphic in the Maori population were also polymorphic in all popula-
tions typed by Gilad et al. (2002), and only polymorphic in Maori in this
globally-polymorphic case.
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Figure 3.4: Haploview diagram showing full LD in the Maori population (18 males,
29 females) across the MAOA gene. Red diamonds indicate full LD between two SNPs.
Numbers inside squares represent D′, D′ is 1 where not specified. The VNTR was treated
as a dimorphism and included in this Haploview analysis.

3.4.2 Full LD Among All SNPs

Genotype data from Maori females were analysed using Haploview (see
Figure 3.4), which demonstrates complete LD between all SNPs (D′ = 1),
but incomplete LD between all SNPs and the VNTR (D′ = 0.66). Only three
SNP haplotypes were observed within the MAOA region in Maori females
(AGCCG, GATTA, AGTTA), out of a possible 32 that would be expected
for five unlinked dimorphic SNPs.

3.4.3 Haplotype Counts for the MAOA Gene

Given that LD was found to be complete for all 5 polymorphic SNPs across
the entire MAOA gene region, these SNPs were combined into 5-SNP haplo-
type blocks, but treated separately from the MAOA-uVNTR (as LD in both
Maori males and Maori females was not complete between SNP and VNTR
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variants, see Figure 3.4). Table 3.3 summarises the count data recorded for
these polymorphisms in all genotyped individuals, including data from
the Gilad et al. (2002) study for the five SNPs that were polymorphic in the
Maori population. Counts for heterozygous 3/4 females appear separately
in the table (7 females had a heterozygous VNTR genotype that could not
be assigned with certainty to a particular chromosome).

Only two MAOA 5-SNP haplotypes were observed in the 18 Maori
males that were genotyped: 14 AGCCG haplotypes and 4 GATTA haplo-
types. These two haplotypes are the most common globally, and differ at
all five sites. Because males have only one X chromosome, these haplotypes
can be inferred directly from the genotypes. Among the 29 females that
were genotyped across the MAOA region, three different haplotypes were
observed: 45 AGCCG, 12 GATTA, and 1 AGTTA haplotype. These hap-
lotype counts do not differ significantly from haplotype counts for Maori
males (χ2 = 0.33, p > 0.8). There were 10 females who were heterozygous
across this gene region with both the AGCCG and GATTA haplotypes, and
another female was found to be heterozygous with an AGTTA haplotype
combined with the AGCCG haplotype.

The 3-repeat VNTR variant was observed in 10 Maori males and in
9 Maori females (a total of 11 3-repeat VNTR variants were counted in
females, see Table 3.3). The 4-repeat VNTR variant was observed in 6
males and 20 females (33 4-repeat VNTR variants counted in females). The
proportion of haplotypes with the 3-repeat VNTR is much higher in males
(0.62) than in females (0.09, χ2 = 12, p < 0.003).

In all cases where a 3/4 heterozygote VNTR genotype was observed,
both the rare and common SNP haplotypes were also observed (AGCCG
and GATTA respectively). No male was observed with the GATTA hap-
lotype combined with the 4-repeat VNTR, but one female was observed
with two copies of the GATTA haplotype and was also homozygous for the
4-repeat VNTR.
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Maori Male VNTR Proportions

5 SNP Haplotype 3 4 NG n pHT
AGCCG 0.50 0.50 2 14 0.78
GATTA 1.00 0.00 0 4 0.22

Total 0.62 (10) 0.38 (6) 2 18 1.00

Non-Maori Male VNTR Proportions

5 SNP Haplotype 3 4 NG n pHT
AGCCG 0.17 0.83 0 23 0.41
GATTA 1.00 0.00 0 10 0.18

GGCCG 0.00 1.00 0 7 0.12
GACTA 0.67 0.33 0 3 0.05
GGCTA 1.00 0.00 0 2 0.04
AGCTG 0.50 0.50 0 2 0.04
AACCG 0.00 1.00 0 2 0.04
AGCTA 0.00 1.00 0 1 0.02
GACCG 1.00 0.00 0 1 0.02
GACCA 1.00 0.00 0 1 0.02
AACTA 1.00 0.00 0 1 0.02
AGTCG 1.00 0.00 0 1 0.02
GGTTA 1.00 0.00 0 1 0.02
GATTG 1.00 0.00 0 1 0.02

Total 0.45 (25) 0.55 (31) 0 56 1.00

Maori Female VNTR Proportions

5 SNP Haplotype 3 3/4 4 NG n pHT
AGCCG 0.14 0.00 0.86 3 17 0.59

AGCCG/GATTA 0.00 1.00 0.00 3 10 0.34
AGCCG/AGTTA - - - 1 1 0.03

GATTA 0.00 0.00 1.00 0 1 0.03
Total 0.09 (2) 0.32 (7) 0.59 (13) 7 29 1.00

Table 3.3: Proportions of VNTR variants for SNP haplotypes observed in the MAOA
gene region for 18 Maori males, 56 non-Maori males (from Gilad et al. (2002)), and 29
Maori females. Column heading abbreviations have been used to conserve space: NG
– number of individuals who could not be genotyped for any VNTR variant; n – total
number of individuals with this SNP haplotype; pHT – proportion of this SNP haplotype
in the population.
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Figure 3.5: Comparison of haplotype frequencies between Maori males and all other
populations in Gilad et al. (2002). Shaded lines indicate the frequency of the common
(4-repeat) VNTR allele. The grey area on the Maori AGCCG bar indicates individuals who
were unable to be typed at the VNTR locus.

3.4.4 MAOA Region Haplotype Frequency Comparisons
between Maori and non-Maori Populations

Haplotypes were initially dichotomised into common (AGCCG) and not
common (any other haplotype) in an attempt to better compare Maori and
other human populations (see Figure 3.5). The proportion of the most
common SNP haplotype (AGCCG) is greater in Maori males (0.78) than
in non-Maori males (0.41, χ2 = 10.02, p = 0.0015). Of those individuals
who have the higher frequency AGCCG haplotype, a smaller proportion
of Maori (0.50) have the 4-repeat VNTR allele than non-Maori populations
(0.83, χ2 = 10.36, p < 0.008).

Figure 3.6 shows a mutation network diagram for 5-SNP MAOA haplo-
types that were found. The figure can be broken into two parts comprising
mutations likely to be related to each of the two most common haplotypes,
AGCCG and GATTA, separated by dotted lines. While GGCCG was the
third most common haplotype observed by Gilad et al. (2002), only two
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Figure 3.6: Haplotype mutation network diagram for the MAOA gene region, showing
observed 5-SNP MAOA haplotypes in male individuals for all Gilad et al. (2002) popu-
lations combined, as well as Maori, Mexican, Asian, and Ashkenazi populations. The
SNP haplotypes are indicated by labels, and VNTR variants are indicated by coloured
segments; the common 4-repeat VNTR variant is indicated in blue, the rare 3-repeat vari-
ant is shown as yellow, and not-genotyped is shown as green. The area of the circles is
proportional to the number of haplotypes found (also indicated by numbers, or by dots for
fewer than four samples). Lines indicate all single mutations that would change from one
observed haplotype to another. Dotted lines require both a SNP and a VNTR mutation to
be consistent with observed haplotypes.

haplotypes were found that differed from it at a single locus, AGCCG (the
most common haplotype) and GACCG. The common 4-repeat VNTR poly-
morphism was not found at all in conjunction with the lower frequency
GATTA SNP haplotype in any population. Only one GATTA-related haplo-
type, GACTA, was found in conjunction with the common 4-repeat VNTR
allele. However, the 3-repeat allele was found in conjunction with three
AGCCG-related haplotypes (AGCCG, AGTCG, and AGCTG).

The frequency difference for the common haplotype between Maori and
non-Maori populations is similar when combining counts for single muta-



CHAPTER 3. MAOA GENE STRUCTURE 87

tion variants of the most common haplotype (GGCCG, AACCG, AGTCG,
AGCTG). When including these variants, the proportion of non-Maori
populations with common variants is 0.625 (χ2 = 1.7926, p = 0.18). The
AGTTA haplotype that was found in a single female chromosome (see
Table 3.3) was not present in any of the haplotypes reported by Gilad et al.
(2002).

3.4.5 Re-analysis of Neutrality Tests

Neutrality tests carried out by Gilad et al. (2002) were repeated in the Maori
male population, restricting analysis to the 11 SNPs genotyped in Maori
(see Table 3.4). Sequence data for the entire gene region were unavailable for
Maori, so statistics that require full sequence data were excluded, since they
could not be calculated. The sensitivity of statistics to sequence changes
was determined by embedding short stretches of non-polymorphic pseudo-
sequence between polymorphic sites. Statistics were excluded when the
calculated statistic with pseudo-sequence added differed from that when
pseudo-sequence was absent. Fu and Li’s D statistic (Fu and Li, 1993) has
also been excluded because although it was present in their population
variability parameter table, the statistic was not discussed by Gilad et al.
(2002). The r2 statistic has been included due to advice received that D′ and
r2 should be reported together (See introduction, Section 1.3.1.1).

Most statistics calculated for Maori males lie within the ranges ob-
served for the male populations genotyped by Gilad et al. (2002). However,
there are two clear outliers: the number of distinct haplotypes (K), and
r2. Assuming a normal distribution for these statistics in the non-Maori
populations, the number of distinct haplotypes in Maori is 2.96SD from the
mean (p = 0.0015), and the r2 statistic is 5.1SD from the mean (p� 0.001).
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Population N S K D′ r2 Tajima’s D

Ashkenazi 13 8 7 1 0.187 -0.329
Bedouin 10 6 6 0.958 0.262 0.544
Pygmy 7 9 6 0.893 0.224 0.444
Taiwan 9 5 7 0.805 0.315 1.520
Asian 5 6 4 1 0.528 -0.668
Mexican 5 8 4 0.851 0.488 1.028
Russian 7 8 6 0.854 0.255 0.722
Total Gilad 56 11 23 0.762 0.105 0.630
Maori 18 5 2 1 1 0.820

Table 3.4: Neutrality tests of the MAOA gene region in the Gilad populations and Maori
population for 11 SNPs genotyped in Maori. N is the number of individuals genotyped, S
is the number of polymorphic sites, and K is the number of observed distinct haplotypes.
Some statistics used by Gilad et al. (2002) were sensitive to sequence data (θ, π, H test),
and have been excluded from this table due to the absence of MAOA sequence data for
Maori. The D′ and r2 statistics in this table are mean linkage values across the entire gene
region.

3.5 Discussion

This study has identified three distinct haplotypes in Maori males and
Maori females across a 90kb region encompassing the MAOA gene (see
Section 3.4.3). Haplotypes for males were determined directly from geno-
type data for the X chromosome; the low number of observed haplotypes
in Maori allowed haplotypes to also be determined for females, through a
simple process of elimination.

The results from the analysis of the MAOA region (18 males, 29 females)
in Maori show that there is less genetic variation across the MAOA gene
region in the Maori population than in other populations (see Figure 3.6.
The individuals genotyped in this study were not known to be closely re-
lated to each other, but the Maori population in general has reduced genetic
diversity when compared to other populations (Hall, 2004; Shepherd et al.,
2004) – a characteristic that is predicted when considering the migration
history of Maori (see Whittle, 2010).
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This study has found that a relatively high proportion of Maori indi-
viduals have the uncommon 3-repeat VNTR, when compared with the
populations genotyped by Gilad et al. (2002). There are two possible ways
in which this variation could have been introduced, either through recombi-
nation, or through mutation. If a recombination event is assumed, the most
common repeat polymorphism would be expected to be inherited in tan-
dem with the most common MAOA haplotype. Such a tandem inheritance
is inconsistent with the data presented here. It is more likely that there has
been a recent mutation within MAOA-uVNTR (i.e. a change from a 3-repeat
uVNTR variant to a 4-repeat variant) in the ancestral Maori population.

3.5.1 Statistical Tests for Neutrality

Of the statistical tests that were compared between populations typed by
Gilad et al. (2002) and the Maori male population, two are clear outliers
in Maori, r2 and K (see Table 3.4. Other statistics lie within the range of
what has been observed in non-Maori populations, but this should not be
considered evidence against selection, as selection within this region has
already been demonstrated in non-Maori populations.

The value of Tajima’s D does not deviate much from 0 in the Maori
population (0.82), and is of a smaller magnitude than Tajima’s D for the
Taiwanese and Mexican populations (see Table 3.4). Therefore the null
hypothesis of neutral mutation is not rejected when considering this statistic
for the Maori population. This is not particularly surprising, given that the
calculated value of Tajima’s D only exceeded Gilad et al. (2002)’s threshold
of significance (p < 0.05) in one population that they typed.

Kimura (1991) suggests that the most prevalent form of natural selection
is stabilising selection, and it is interesting to observe that the two haplo-
types observed in Maori males are also the two most common haplotypes
found in non-Maori males. Tajima (1989a) reports that under an infinite
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allele neutral mutation model, founder effects followed by a fast recovery
of population size can have a strong influence on the average number of
pairwise differences between chromosomes sampled from the population
(i.e. π), but little effect on the number of segregating sites (i.e. S). In con-
trast, current population size has a strong influence on S, but not on π. The
ancestors of the Maori population probably experienced repeated founder
effects during migration through Polynesia (see Introduction, Section 1.5.2),
so it is therefore not surprising that the number of unique haplotypes in
Maori is low (resulting in lower π), while the number of segregating sites is
within the range of what is observed in non-Maori populations.

It is unfortunate that the H test (Fay and Wu, 2000) is sensitive to
sequence data (see Section 3.4.5), because this statistic is prominent in the
evidence presented by Gilad et al. (2002) for selection within the MAOA
gene region. However, given that hitchhiking has occurred within the
MAOA gene in a number of different populations as demonstrated by H test
results from Gilad et al. (2002), it is reasonable to evaluate if the available
data suggest that hitchhiking has taken place within this gene region. Only
two SNP haplotypes were found in Maori males, AGCCG and GATTA.
These two haplotypes differ at all five SNP loci, so it does not make sense to
consider that the GATTA haplotype is present in an increased frequency due
to selection for the AGCCG haplotype. In this sense, there does not appear
to be evidence for deviation from neutrality through a hitchhiking event, as
might be found by an increase in intermediate-frequency genetic variants.
There has, in fact, been a removal of variation, even though the presence of
haplotypes with low frequencies in other populations demonstrates that
these low frequency variants are not likely to be deleterious.
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3.5.1.1 Association between SNP Haplotypes and Number of VNTR
Repeats

However, the frequency of the MAOA-uVNTR variant in Maori differs from
that observed in non-Maori populations (see Section 3.4.4): there is a rela-
tively low frequency of the 4-repeat VNTR allele in Maori, corresponding
to a high frequency of the 3-repeat VNTR allele. If the 3-repeat VNTR allele
is considered to be selectively equivalent to the 4-repeat allele, this may
indicate that the more common AGCCG is under positive selective pres-
sure. This indicator alone is not enough to be strong evidence for positive
selection, but is enough to warrant further investigation at a sequence level
of the MAOA gene in Maori.

Seemingly contrary to this indicator of selection, the frequency of the
5-SNP MAOA haplotypes found in the Maori population do not differ
significantly from those in other populations if single-mutation variants
of the common SNP haplotype are included in counts of the common
haplotype (see Section 3.4.4 and Figure 3.6). It is reasonable to consider
these extra haplotypes (GGCCG, AACCG, AGTCG, AGCTG) together with
the common haplotype (AGCCG), because it would be expected that the
haplotype with the largest frequency in a well-established population is
older and therefore likely to accrue additional mutations over time. One of
these minor variants, GGCCG, seems to be an outlier in that it is observed
at a fairly high frequency in three populations typed by Gilad et al. (2002),
namely Ashkenazi, Bedouin, and Asian. In fact, GGCCG is the third most
frequent haplotype beyond the two core haplotypes, differing from AGCCG
at the first SNP in the haplotype, 1.1(263). Hence another variant has been
observed at higher than expected frequency on the background of the most
common SNP haplotype, AGCCG.

These two polymorphisms, MAOA-uVNTR and 1.1(263), are separated
by around 400 base pairs (see Figure 3.2), and are both in the promoter
region of the MAOA gene (about 1.5kb from the 5′ end of the MAOA
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gene itself). The remainder of the SNPs that are polymorphic in Maori
reside wholly within the MAOA gene. As mentioned previously, only
demographic models and positive selection can explain an excess of high-
frequency variants (Fay and Wu, 2000). The interpretation of these results
appears to indicate that a specific variant of the MAOA gene, namely that
described by an XGCCG SNP haplotype, is under positive selection both in
Maori (as evidenced by an increased frequency of the 3-repeat VNTR allele)
and non-Maori (as evidenced by an increased frequency of the GGCCG
haplotype). The location of hitchhiking variants suggests that this selection
is on the gene variant, rather than the expression of the variant.

3.5.2 Large MAOA Haplotype Block Found in the Maori
Population

The Haploview analysis suggests that the 30bp VNTR is not linked to either
of the two major SNP haplotypes in Maori (see Figure 3.4). However, the 4-
repeat VNTR was never observed with the GATTA SNP haplotype in males,
and only observed with the GATTA haplotype in females that had both
GATTA and AGCCG SNP haplotypes (see Table 3.3). It is consistent with
the observed male data and female homozygote data to assume that the 3-
repeat VNTR resides on the same haplotype as the GATTA SNP haplotype
in heterozygous females. When this assumption is considered, the GATTA
SNP haplotype always predicts a 3-repeat MAOA-uVNTR variant, and
LD therefore extends across the entire MAOA gene region (including the
promoter region VNTR).

The Haploview analysis indicates that all SNPs within the 90kb MAOA
gene region were tightly linked in Maori males and Maori females (see
Figure 3.4). This complete linkage is a feature of the Maori population that
was not observed in any of the populations that Gilad et al. (2002) typed
(see Table 3.4). The most similar population found (with respect to linkage
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across the entire region) was a combined Chinese and Japanese population
(D′ = 1, r2 = 0.528, n = 5).

Gabriel et al. (2002) carried out a study that identified haplotype blocks
in 51 autosomal regions covering 13Mb of sequence dispersed throughout
the human genome, with an average size of 250kb per region. Their study
identified blocks in African-American genomes of up to 94kb in length,
(mean length of 9kb), and up to 173kb in length (mean length of 18kb) in
European and Asian genomes. Considering the SNPs within the MAOA
region, the block length of 90kb identified here (Figure 3.4) lies within these
ranges, but is at the higher end.

Recombination in the X chromosome occurs less frequently than in
the autosomes, so a 90kb haplotype block may not necessarily represent
a “large” unit on this chromosome. Although Gilad et al. (2002) have
mentioned that the neighbourhood of the MAOA region experiences high
recombination (up to 4.58cMMb−1), they also observed no decay of LD
across the 90kb region identified here. The results presented here are similar
with respect to LD decay (or lack of it), but differ in that a greater proportion
(i.e. 100%) of typed SNPs show complete LD in the Maori population.

It is established from the observation of LD across the MAOA region
(Figure 3.4) that the haplotype block that MAOA resides on is at least 90kb,
but in reality it is probably longer and genotyping of the region surrounding
the MAOA gene would be required to establish the full extent of this block.
In fact, an unpublished study has found that this block spans a much greater
distance in a Maori population, possibly almost 1Mb (Rod Lea, Personal
communication, 2008).

Across the entire 90kb region, only two SNP haplotypes were identi-
fied in Maori males (out of 32 possible haplotypes), where 14 different
haplotypes were observed in non-Maori males (see Figure 3.6). The two
MAOA haplotypes found in Maori are also the most common haplotypes
found in non-Maori populations, but differ in frequency between Maori
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and non-Maori populations.

Only one possible recombinant haplotype was observed (AGTTA, see
Table 3.3), so the entire SNP variation across MAOA can be described by
genotyping just two SNPs, i.e. 1.1(263) and 3.1(224). The VNTR polymor-
phism was not found to be a good predictor of SNP haplotypes in Maori
(i.e. it is not tightly linked to particular haplotypes), as both the 3-repeat
VNTR and 4-repeat VNTR variants were found together with the most
common SNP haplotype (AGCCG). Including the VNTR would require
3 genotyping assays for the entire 90kb MAOA region, which would be a
suitable proxy for sequencing the entire gene in Maori individuals.

3.6 Concluding Remarks

It is clear that the Maori population shows minimal variation within the
MAOA gene region, most likely because the population is very new (650-
750 years before present) in terms of the global history of human migration.
Lack of recombination within this region – only one instance of recombina-
tion was found in 47 individuals – indicates that some positive selection has
occurred within the Maori population. A reanalysis of male haplotype data
from Gilad et al. (2002), combined with an analysis of Maori haplotypes
indicates that the gene variant described by an XGCCG haplotype is under
positive selection.

Two clear limitations of the study carried out here are the number of
individuals genotyped (18 males, 29 females), and the gene coverage (i.e.
90kb). The Maori population described here was only genotyped across a
small section of the MAOA gene region, and it would be helpful to analyse
genotype data across a larger region to confirm that selection is only on
variants of the MAOA gene itself. The number of genotyped Maori indi-
viduals was chosen to be comparable in size to the study carried out by
Gilad et al. (2002), and as an individual population, exceeds the number
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of individuals typed for all other populations at this region (see Table 3.4).
Given the observation of substantial variation in other populations, vari-
ation beyond the two core haplotypes should have been seen in Maori if
it existed in substantial proportions of the Maori population. However, in
light of the reduced cost of genotyping now available through SNPchip
technology (see Introduction, section 1.4.2.1), both these issues would be
easily overcome in a future study of this gene region in Maori.

A review of literature on the metabolic role of MAOA has revealed a
surprising scarcity of primary research, despite considerable effort to look
for recent articles; it seems that few recent studies have demonstrated that
primary substrates of MAOA in humans actually include serotonin per se.
Such a study is needed, particularly in light of the results from the present
study that suggest a particular gene variant (and hence probably expressed
protein) has been selected for in human populations.

Many recent review articles† that talk about MAOA preferentially acting
on serotonin do not reference this statement, treating it as an accepted fact,
rather than a hypothesis (e.g. Gokturk et al., 2008; Jacob et al., 2005). Some
articles do cite studies in mammals other than humans (e.g. Guo et al.,
2008), and follow a (usually implicit) transitive argument: because MAOA
preferentially acts on serotonin in other animals, it should act similarly
in humans. This argument may be incorrect, given that the human and
rat MAOA have different structures, different polymerisation states, and
different catalytic profiles (Son et al., 2008). Lewis et al. (2007) advises
caution when extrapolating studies of monoamine oxidases from animal
models to humans. Other articles cite papers that only refer to interactions
in the introduction section, with the research outcome of the cited paper
different than what is expected from the citation (e.g. Bach et al., 1988, cited

†i.e. articles that contain no original research
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in addition to other references in Sabol et al., 1998).†

Papers that do cite original research for the interaction between MAOA
and serotonin in humans are difficult to find, possibly because research on
substrates for the monoamine oxidases was mostly carried out in the late
1970s and early 1980s. The scarcity of current primary research suggests
that there is a need for new studies to confirm preferential action in humans,
even though it may have been observed in other closely related mammals.

3.7 Controversy

During the 2006 International Congress of Human Genetics (ICHG, see
Appendix C), preliminary research on the MAOA gene in Maori carried
out by the author and collaborators was presented in poster form (Lea
et al., 2006). The reaction to this research made the author more reluctant to
publish further details of the investigations of this gene region subsequent
to presentation at ICHG, but most of these details have been presented in
this chapter. The media response to the author’s MAOA gene research (see
Appendix B) has emphasised the need to be extremely cautious when re-
porting results, particularly because any misinterpretation of prior research
can be passed on to other researchers and the general public. Because of
the continuing controversy about genetic research on this region, it was
decided to cease further investigation on the MAOA gene for this thesis.

The arrival of SNPchip data and subsequent data-crunching (see Chap-
ter 4) provided another reason to delay further investigations of the Mono-
amine Oxidase A gene until a later date. The next chapter explores Maori
genetic structure at a genomic scale, to determine if large genotype fre-
quency differences observed between Maori and European populations in
†Bach et al. (1988) compared human liver cDNA sequence of MAOA and MAOB, but do

not discuss how sequence difference alters substrate specificities. They already knew that
the two proteins were distinct molecules, and their key findings are the cDNA sequence
differences themselves, not what these differences mean in terms of enzyme substrates.
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the ADH and MAOA gene regions are representative of genotype differ-
ences across the entire genome.
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Chapter 4

Quantification of Genomic
Ancestry in a Maori Population

4.1 Overview

This chapter describes the genomic ancestry of a Maori tribe, Ngati Rak-
aipaaka of Nuhaka. This profiling has only been possible within the last
few years, due to a combination of new technologies, the formation of the
Rakaipaaka Health and Ancestry Study, and informed participation from
almost all members of the tribe.

A set of genetic markers for distinguishing between Maori and Euro-
pean genomic ancestry was discovered in two small groups of non-admixed
Maori and European individuals, and then validated in two independent
(and larger) groups of non-admixed Maori and European individuals. The
selected markers were then typed in almost the entire adult Rakaipaaka
population (including admixed and non-admixed Maori and European in-
dividuals), providing a good estimate of the distribution of Maori genomic
ancestry and European admixture within Rakaipaaka.

99
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Figure 4.1: Nuhaka – the home of Te Iwi o Rakaipaaka

4.2 Background

4.2.1 Rakaipaaka and Nuhaka

Ngati Rakaipaaka are descendants of the Maori chief Rakaipaaka, and have
a rohe (home area) of Nuhaka, New Zealand (see Figure 4.1. Rakaipaaka
was expelled from a pa (Maori village) on the banks of the Waipaoa River
(north of Gisborne), and fled to a mountain in Nuhaka, where he and his
family set up a pa and governed the neighbouring district. This mountain,
now called Momoukai (literally “waste food”), was the site where a Maori
musket army had been repelled around 200 years later by Ngati Rakaipaaka,
partly due to the attackers running out of food – Moumoukai had good
access to a fresh water spring, plenty of food and storage, and possibly also
an underground route to the coast for fishing (Walker, 2008).

The genesis of Ngati Rakaipaaka, formerly considered to be people
of Ngati Kahungunu, began in the mid 1980s with the then Labour gov-
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ernment’s promotion of iwi (tribe) development. In 1996, descendants
of Rakaipaaka decided to carve their own identity by establishing them-
selves as a new tribe and organisation, Te Iwi o Rakaipaaka Incorporated
(TIORI), created as a vehicle to promote cultural and tribal development
(Johnny Whaanga, TIORI Day, 2008).† They now have a regular yearly event
(Rakaipaaka Day) to reaffirm their identity and pride as descendants of
Rakaipaaka.

Nuhaka is a small town, with a general store, fire brigade, garage,
and local school. There are six Marae (Maori meeting houses) in Nuhaka:
Kahungunu, Manutai, Tamakahu, Te Rehu, Taane, and Kotahitanga, each
comprising different whanau (extended family units) and genealogical
backgrounds (Eva Paea, TIORI Day, 2008). Census data from 2006 indicates
that Nuhaka has a population of around 300 people, with a mean income
of around $15,000.‡ Similar to most other iwi groups, a fair proportion of
Rakaipaaka do not live in the traditional rohe, but have connections back to
Nuhaka. There are about two thousand people registered with TIORI, and
it is estimated that about eight thousand Rakaipaaka members live in New
Zealand, most in Auckland, Hamilton, Wellington and Napier / Hastings
(Johnny Whaanga, TIORI Day, 2008).

4.2.1.1 Rakaipaaka Health and Ancestry Study

Different whanau (extended families) in Nuhaka have high rates of some
common diseases (including heart disease, cancer and diabetes), and ques-
tions amongst families created an interest in why these high rates existed.
This led to an interest in health development, particularly the genetic and
environmental contributions to health and wellbeing within the community.
Rakaipaaka Discussions with Dr. Rod Lea and the Institute of Environmen-
tal Science and Research (ESR) about a health and ancestry project indicated
†Personal communication: TIORI Day, 11 December 2008, Wellington, New Zealand
‡http://www.stats.govt.nz/Census/2006CensusHomePage/QuickStats/

AboutAPlace/SnapShot.aspx?id=3545303

http://www.stats.govt.nz/Census/2006CensusHomePage/QuickStats/AboutAPlace/SnapShot.aspx?id=3545303
http://www.stats.govt.nz/Census/2006CensusHomePage/QuickStats/AboutAPlace/SnapShot.aspx?id=3545303
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a need for the community to better understand their health status and use
that knowledge to provide future benefits (Johnny Whaanga, TIORI Day,
2008).

These discussions led to the creation of the Rakaipaaka Health and An-
cestry Study (RHAS), launched at Rakaipaaka day in 2005. The study was
set up in order to answer questions about why particular ailments were
common among Rakaipaaka descendants, and to determine ways in which
the wellbeing of individuals can be improved to protect against current
and future health issues within the community. The study is Iwi-governed,
focusing on identifying social, environmental, and genetic determinants of
health. About 300 adult participants have enrolled in RHAS, filling out a
questionnaire about heath-related traits, and donating blood for biochem-
istry and DNA analysis.

Part of the outcome of the initial discussions was an acknowledgement
that both lifestyle and ancestral history contribute towards the health of a
population, and the ancestral component of this suggested a need to have a
better understanding of the genetic background of Rakaipaaka (Whaanga,
2008). The beginning of RHAS coincided with the start of this PhD research
project, and my interest in genetic structure has blended well with a study
of genomic ancestry in the Rakaipaaka population.

An understanding of population genetic structure is important for dis-
ease studies because many diseases have an underlying genetic basis (see
Introduction, Section 1.5.5), and genetic structure at disease-associated loci
can vary in different populations (see Chapters 2 and 3). In some cases
where there is a substantial difference in disease frequency in different
populations, it is possible to derive false genetic disease associations when
population ancestry is not taken into account (see Pritchard and Donnelly,
2001).
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4.2.2 Genetic History

The ancestral history of Maori represents a unique opportunity for genomic
research, due to the low genetic diversity of Maori coupled with relatively
recent (< 500 years) admixture with Northern Europeans.

Studies carried out at Victoria University and elsewhere (see Chapter 1,
Section 1.5) have recreated the genetic history of Polynesians through se-
quencing of regions of mitochondrial DNA (e.g. Whyte et al., 2005). Other
studies on Polynesian populations have been carried out on DNA from
Y-chromosomes (e.g. Kayser et al., 2006b), a structure which has similar
properties to mtDNA in its single line of derived ancestry (see Introduction,
Section 1.2.3).

4.2.2.1 Uni-parental Ancestry

Recent Maori-European admixture is difficult to determine using DNA
data that are derived from a single line of ancestry (i.e. maternal and pa-
ternal lineages). Low mutation rates and a lack of recombination reduce
the variation of this DNA as it is passed down from generation to gener-
ation, so genetic differences between two people of similar origins may
be difficult to determine. Also, the single line of ancestry excludes a large
proportion of the genealogical history of a person – even three generations
back, mitochondrial and Y-chromosomal DNA can only capture (at most)
genetic information from one eighth of the ancestors of an individual (see
Introduction, section 1.2.3). This can introduce substantial errors when
the individual’s ancestors are from many different geographical locations
(see Koenig et al., 2008, Chapter 10, p. 207-8). Studies of recent admixture
require a genomic approach, capturing recent genetic variation introduced
by recombination, particularly in autosomes.
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4.2.2.2 Genome-wide Analyses

It has only recently been possible to carry out cost-effective genome-wide
studies on DNA. The information on flanking DNA sequence for Single
Nucleotide Polymorphisms (SNPs) can now be retrieved as a result of the
human genome project (Sachidanandam et al., 2001), together with a large-
scale genotyping effort by the HapMap project (International HapMap
Consortium, 2007). The genetic information provided from these efforts
has led to the development of a genome-wide microarray genotyping assay,
the SNPchip (Gunderson et al., 2005). This technology enables genotyping
of thousands of different genetic loci in one assay, greatly reducing the
cost and effort of typing large numbers of genetic variants in a group of
individuals. Such genome-wide analysis is expected to reveal a great deal
of information about variance in the genome as a whole, without requiring
full genome sequences for all individuals involved.

4.2.3 Genome-Wide Association Studies

Genome-wide Association Studies (GWAS) typically involve determining
the degree of association between genetic markers and a heritable trait.
Most often, these studies look for associations relating to susceptibility for
particular diseases (e.g. Wellcome Trust Case Control Consortium, 2007;
Mathew, 2008), but some have also looked at traits that are not directly
associated with disease (e.g. blood lipid phenotypes in Kathiresan et al.,
2007). However, replication consistency can be an issue in GWAS (see
Kathiresan et al., 2007), suggesting a large proportion of false positive
associations.

This study will test for genetic association with Maori genomic ancestry,
a trait which has no environmental component (i.e. a heritability of 100%).
Contributions towards this trait come from everywhere in the genome,
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greatly reducing (and one hopes eliminating) the chance of false positive
associations.

Genomic ancestry is also a useful trait for this study because of re-
ported good agreement between self-reported genealogical ancestry and
estimated genomic ancestry from genetic data (Walsh et al., 2003). Further
benefits come from looking at Maori genomic ancestry, because the Maori
gene pool is less diverse and more differentiated when compared to other
outbred populations (European, Asian, African, etc.). The Maori popul-
ation originated from a series of long voyages between isolated islands,
with admixture happening only recently in the population between Maori
and European individuals (see Chapter 1, section 1.5). This allows easy
sampling of an observed phenotype with fairly high accuracy by asking
participants about their recent genealogical history.

4.3 Objectives

Discussions during the implementation of the Health and Ancestry Study
evoked an interest in how knowledge of genetic features might better tar-
get treatments and interventions that could impact on the health of the
community. This knowledge can be enhanced by a comparison of genetic
differences between individuals of European descent and individuals of
Maori descent, as well as an analysis of admixture within the Rakaipaaka
community. The study presented here is an attempt to investigate auto-
somal genetic variation in the Rakaipaaka population, using the SNPchip
platform for genotyping within this population. This has been done with
the following goals in mind:

1. Establish a framework for the ethical conduct of genetic studies in
partnership with Te Iwi o Rakaipaaka
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2. Carry out a genome-wide scan to identify markers that are informa-
tive for ancestry

3. Use these markers to estimate ancestral structure within the commu-
nity

4. Establish the utility of these markers for explaining differences in
disease risk

4.4 Methods

This study used a whole-genome approach to derive a suitable SNP set for
the estimation of genomic ancestral fractions for most of the individuals in
the Rakaipaaka community (see Figure 4.2).

A total of 30 Maori individuals with 100% reported Maori ancestry
were initially compared with 90 European individuals for this study (see
Figure 4.3). After removing markers that had a high rank variance in
simulated subsamples from the two groups, 59 markers were selected as
candidate ancestry-informative SNPs. This set was then reduced to a set of
23 SNPs with minimal loss of information. Of these SNPs, 14 were chosen
to be validated using 95 more Rakaipaaka individuals (RHAS) from the
Ancestry Study, and 271 European individuals (PDC) from a Parkinson’s
Disease study (see Fung et al., 2006).†

4.4.1 Genotyping

A total of 30 Individuals from Rakaipaaka with full Maori genealogical an-
cestry were genotyped at 317,503 SNPs, using the Illumina 317k SNPchip.‡

†http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000089.v3.p2
‡BDCHP-1x10-HUMANHAP300v1-1-11219278-C

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000089.v3.p2
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000089.v3.p2
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Figure 4.2: A visual summary of steps carried out during the investigation of Genomic
Ancestry in the Rakaipaaka population. Candidate markers were discovered by genotyp-
ing 30 Rakaipaaka individuals (RHAS) and comparing population allele frequencies to 90
HapMap European individuals (CEU). Markers were further refined by determining the
difference of mean group Q values, as calculated by structure, over increasing numbers
of markers. Validation of markers was carried out with an additional 95 Rakaipaaka
individuals, together with 271 European Individuals from a Parkinson’s Disease study
(PDC).
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RHAS Participants (July 2007)
[completed quesionnaire]

322

Participants with DNA extracted (DEP)
292

DEP with reported ancestry
228

DEP with 100% reported Maori ancestry
125

SNPchipped Group      Validation Group
30 95

Figure 4.3: A breakdown of the participants from the genomic study of the Rakaipaaka
population. The study was initially conducted with a SNPchipped group of 30 RHAS
individuals, validated using the 95 remaining individuals with 100% reported Maori
ancestry, and then used to generate an estimated genomic ancestry profile for all 292
participants who had DNA extracted.
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These data were then combined with matching data from the HapMap
project (http://www.hapmap.org) for the CEU population (90 individ-
uals), and filtered to only include SNPs that had different profiles across all
individuals in both populations (i.e. no two SNPs had the same reported
genotype in all individuals). The data were filtered again to remove any
SNPs that did not have genotypes for all 120 individuals, as well as remov-
ing SNPs on the X chromosome, resulting in full genotype data at 234,914
filtered SNPs (approximately 74% of the Illumina 317k SNP set).

4.4.2 Population Sub-sampling

A population sub-sampling procedure was carried out, where 100 random
subgroups of 25 individuals from each of the two populations were chosen.
SNPs were ranked based on the allele frequency difference between these
two subgroups, and only those SNPs that were consistently in the list
of 1000 top-ranked SNPs for all 100 groupings were chosen for the next
stage, resulting in a consensus list of 64 SNPs. Of these SNPs, five were
found to deviate from Hardy-Weinberg Equilibrium, so were removed from
subsequent analysis.

4.4.3 Using structure to Determine SNP Set Effectiveness

The computer program structure (Pritchard et al., 2000) was used to de-
termine how effective different groups of SNPs were at classifying Maori
vs European ancestry. This program uses iterative methods to determine
group membership ancestry coefficients (Q values) for each genotyped
individual, representing how likely it is that an individual belongs to a
particular group. These Q values are usually interpreted as an estimate of
the proportion of genomic ancestry from that group.

This program attempts to fit the individuals to a model with a specific
number of populations. The algorithm used by structure is an iterative

http://www.hapmap.org
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algorithm that generates the next potential solution from previous attempts
at solutions. The probability distribution, or model, that this algorithm
simulates is the probability of each individual being assigned to a specific
cluster. Eventually, the process settles into an equilibrium from which
the overall probability distribution of different states – in this case, the
allocation of individuals to population clusters – can be estimated. The
population clustering model is based on allele frequencies, assuming that
within pseudo-populations there is no Linkage Disequilibrium (LD) and
markers are in Hardy-Weinberg Equilibrium (HWE). Modifications have
been made to the original program to include the possibility of weakly
linked markers that may result from admixture (Falush et al., 2003).

Each structure run used a bootstrap of 10,000 iterations, followed by
an additional 90,000 iterations. Lambda was set to 0.85, and separate
alpha values were calculated for each population (initially set to 0.3). A
preliminary set of structure runs were carried out on the set of 59 SNPs to
validate a two-population hypothesis, comparing estimated probability for
varying numbers of populations from 1 to 10.

In order to determine the minimum number of SNPs required to pro-
vide adequate information about Maori ancestry (i.e. a minimal SNP set),
structure runs were carried out with increasing numbers of SNPs, using
the 59-SNP set with SNPs ranked based on the allele frequency difference
between the 30 RHAS and 90 CEU individuals (i.e. delta). The effective-
ness of particular SNP sets was quantified by a difference of means test,
calculating differences between mean Q value for each population and its
associated Standard Error for 1 to 59 SNPs.

4.4.4 Validation of 10-SNP Marker Set

A further 262 Rakaipaaka individuals were then typed by AGRF for 24 of
the top markers from the 59-SNP set. Including the original 30 SNPchipped
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RHAS individuals, this represents about 89% of Rakaipaaka living in the
Nuhaka area (of 327 reported in the 2006 census). There was a genotyping
failure for one SNP, and 5 additional markers were removed due to being
posited within 5MB of another marker (the markers with the lowest delta
were removed, with ties broken by removing the marker with lowest FST ,
then by removing the marker further from the start of the chromosome
according to the marker location in the NCBI database), leaving 18 markers
for use in the estimation of admixture in the Maori population. These
18 SNPs were used for validation in two independent replication groups,
95 RHAS-Maori individuals with full Maori genealogical ancestry, and
271 European controls from the Parkinson’s disease study mentioned in
Section 4.4. Due to a different initial genotyping platform being used for the
Parkinson’s disease study,† only 14 of these SNPs were typed in both groups
and therefore represent all that were available to be used for validation.

As it had been established that fewer than 14 SNPs would be sufficient
to determine ancestry coefficients, the 10 SNPs with the highest frequency
difference were selected as a final signature set of ancestry-informative
SNPs. To estimate the accuracy of this signature set, the Q value outputs
for the final 10-SNP set were compared with Q value outputs from the
larger 59-SNP set. Self-reported ancestral fractions were also compared to
Q values for the 10-SNP set as another estimate of accuracy.

4.5 Results

4.5.1 Distribution of Delta Throughout the Genome

Figure 4.4 shows the distribution of delta values across the genome. Large
delta values are observed throughout the entire genome, with no regions

†Illumina Infinium 1
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Figure 4.5: Scatter plot indicating maximum rank over all bootstrap sub-samples vs.
minimum rank in any bootstrap sub-sample for the bootstrap-consistent set of 64 SNPs
(A), and a random sample of 5000 of the remaining SNPs (B). A total of 105803 SNPs
(not included when generating these graphs) were unranked in at least one bootstrap
sub-sample, as no genetic difference was observed between RHAS and CEU populations
with that SNP. The difference between minimum and maximum rank gives an indication
of the reliability of a particular marker for association testing in a general population. Of
those markers in this bootstrap-consistent set of 64 SNPs, 59% were ranked in the top 600
markers in all bootstraps. Of the remaining 234850 SNPs, 59% (138388) had a maximum
rank of 200000 or more (including 105803 unranked SNPs).

that can be easily identified as showing particularly large differences betw-
een the two populations when compared with the general trend across the
genome.

4.5.2 Population Sub-sampling

Figure 4.5 compares minimum and maximum rank of SNPs, both those 64
SNPs that were ranked in the top 1000 SNPs in all bootstrap sub-samples,
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and the remaining 234850 SNPs. Each bootstrap sub-sample used a different
group of 25 individuals from each population. Most of the consistent set of
64 SNPs had a maximum rank below 600, whereas most of the remaining
234850 SNPs had a maximum rank above 200000.

Five of these SNPs were excluded due to HWE probabilities of less than
5%, resulting in a HWE-filtered set of 59 SNPs (see Figure 4.6).

4.5.3 Estimation of Maori Ancestral Fraction

Figure 4.7 shows the two-population output for the HWE-filtered set of
59 SNPs. There is a greater spread of Q values among RHAS individuals
(x = 0.92, σ = 0.095) than among CEU individuals (x = 0.0055, σ = 0.014).
All RHAS individuals were within 3 SD of the mean Q values, while two
outliers (> 3SD) were observed in the CEU population (with Q values of
0.075 and 0.11). With all individuals included, there is a difference of 0.60
between the most extreme Q values of the two populations (i.e the Q value
ranges for the two populations do not overlap).

Increasing numbers of SNPs were run through structure, using the
candidate set of 59 markers (Figure 4.8). In each run, the top n SNPs
were tested together, with n ranging from 1 to 59 SNPs. Effectiveness of
particular SNP sets was quantified by a difference of means test, calculating
differences between mean Q for each population and associated Standard
Error for each run of SNPs. The maximum mean difference of 0.95 (SE =

0.0095) was observed with 6 SNPs, after which the difference drops for
increasing numbers of SNPs, then reaches a local peak of 0.93 (SE = 0.018)

with 21 SNPs.

Figure 4.9 shows the unsorted two-population output for the set of 14
community-validated SNPs. Spread is still greater among RHAS individu-
als (x = 0.81, σ = 0.18) than among Parkinson’s Control (PCE) individuals
(x = 0.017, σ = 0.035), but greater than that observed in the initial test of 59
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Figure 4.7: Structure output (K=2) for 59 SNPs, showing Q values for the SNPchipped
RHAS individuals and the CEU population. Mean Q value (grey line) and the standard
deviation of Q values (red line) are also indicated for each population.

SNPs. All RHAS individuals were within 3 SD of the mean Q values (with
one individual 2.98 SD from the mean), while six outliers were observed in
the CEU population (with Q values of 0.12, 0.15, 0.17, 0.20, 0.25, and 0.37).
If these outliers are included, there is an overlap of 0.12 between the most
extreme Q values of the two populations, otherwise the difference is 0.15
between the most extreme values.

The spread of Q values from the Rakaipaaka community genotyping
study (see Figure 4.10) is still greater among RHAS individuals (mean =

0.685, SD = 0.280) than among European individuals (mean = 0.028, SD =

0.040, not shown in figure), and also greater than that observed in the initial
test of 59 SNPs. All RHAS individuals were within 3 SD of the mean Q
values, and eight outliers were observed in the European populations (with
Q values of 0.16, 0.16, 0.18, 0.24, 0.26, 0.26, 0.30, and 0.37). Choosing the



CHAPTER 4. MAORI GENOMIC ANCESTRY 117

0 10 20 30 40 50 60

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of SNPs

D
iff

er
en

ce
 o

f m
ea

n 
Q

●

●

●
●

●

●
● ●

●
● ● ● ● ●

● ● ● ●
●

● ● ●
● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 4.8: Difference of means tests for the top 1..59 SNPs comparing mean Q values
between 30 SNPchipped RHAS individuals and 90 CEU individuals. The difference of
mean Q values between the two populations rises steeply for the first six SNPs, then
gradually drops for increasing numbers of SNPs.

maximum European Q value as a cutoff point, 86% of RHAS individuals
have a Q value greater than this value. Also, 92% of RHAS individuals
have a Q value greater than 3SD from the mean Q value of the European
population (0.15).

45 Maori individuals have an estimated ancestral fraction greater than
0.97, which cannot be distinguished from a value of 1.0 using our test.

4.5.4 Final List of SNPs

A total of 10 SNPs (Table 4.1) have been found that have good discrimina-
tion power for comparing Rakaipaaka and European ancestry, covering
nine chromosomes (two on chromosome 12). Of these 10 SNPs, six re-
side within genes (or hypothetical genes). The minimum delta observed
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Figure 4.9: Structure output (K=2) for 14 SNPs, showing Q values for the 95 individuals
from the Rakaipaaka validation group (RHAS) and the Parkinson’s Control (PCE) popul-
ation. Mean Q value (grey line) and the standard deviation of Q values (red line) are also
indicated for each population.

Marker Mutation c/s Location (Mb) Delta Nearest Gene
rs1160638 C/T 2 158.594 0.67 UPP2*
rs10485317 A/G 6 47.841 0.73 OPN5
rs6950662 G/T 7 14.917 0.72 DGKB
rs6558383 C/T 8 144.845 0.72 ZNF707*
rs7911256 C/T 10 25.897 0.67 GPR158*
rs11224580 C/T 11 100.444 0.74 PGR*
rs10842036 A/G 12 22.596 0.68 KIAA0528
rs1592672 G/T 12 78.653 0.76 LOC100133105*
rs12440301 A/G 15 46.177 0.73 SLC24A5
rs10502789 A/G 18 38.324 0.75 LOC284260*

Table 4.1: Location information for the 10 community-validated SNPs with highest delta
values, together with their nearest gene (including hypothetical genes with ’LOC’ prefix).
A ’*’ indicates that the SNP resides within the gene. Delta values represent a comparison
of 123 RHAS individuals who reported full Maori ancestry with 361 European individuals.
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Figure 4.10: Structure output (K=2) for a the final set of 10 SNPs, showing Q values for
all 292 participants from Rakaipaaka who consented to DNA extraction and analysis. Mean
Q value (grey line) and the standard deviation of Q values (red line) are also indicated for
this population.

[

(comparing 123 RHAS individuals who reported full Maori ancestry with
the total set of 361 European individuals) was 0.67, while the maximum
observed delta was 0.76.

4.5.5 Accuracy of reported Q values

Using the initial 30 RHAS and 90 CEU individuals, Q values were compared
between sets of increasing numbers of SNPs, from 1 to 59 SNPs (Figure 4.11).
Accuracy was calculated using the absolute difference between the 59-SNP
set and the set under test, subtracting the result from 1.

The range in accuracy decreases as the number of SNPs in the set in-
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Figure 4.11: Boxplots demonstrating SNP set accuracy (Y axis) for increasing numbers
of SNPs (from 1 to 59, X axis) assuming the 59-SNP set produces perfect Q values. The
Q value for each individual was compared with the Q value for the 59-SNP set, and the
error rate was assumed to be the same as the Q value difference. Data were generated
using structure, using the 30 SNPchipped RHAS individuals and the 90 CEU individuals.
Distributions shown in this figure are based on Q value differences for the 30 RHAS
individuals only.

creases. The lower bound of accuracy is greater than 75% for all SNP sets
of size 8 and greater, and median accuracy is greater than 95% for all SNP
sets of size 2 and greater. The maximum Q value difference for the 10 SNPs
set was 0.218 (accuracy of 78%), and median difference for the 10 SNPs set
was 0.0431 (accuracy of 96%).

Figure 4.12 compares Q values derived from structure with reported
ancestry from 228 RHAS individuals. The Pearson’s correlation of Q vs
reported ancestry is r = 0.72 (p < 10−15). For the 123 individuals with a
reported ancestry value of 1 (i.e. four Maori grandparents), no Q values
were observed below 0.3. For the 10 individuals who reported no Maori
ancestry, no Q values were observed above 0.09.
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Figure 4.12: Scatter plot comparing structure-derived Q values with self-reported
ancestry (228 RHAS individuals).

4.6 Discussion

A genome-wide scan of SNPs associated with Maori ancestry has been car-
ried out, identifying those most consistently associated among subgroups,
and these SNPs have been validated in independent populations. This
study is the first genome-wide SNP analysis of a subset of the Maori popul-
ation, and has demonstrated that only 10 SNPs (and possibly as few as 6)
are required for a reliable estimation of European admixture in Maori.

The approach used here is similar to a Genome-wide Association Study
(GWAS) in that two populations are compared in order to search for genetic
markers across the whole genome that differ in frequency between the two
populations. However, here a population sub-sampling process is applied
to the set of markers in order to remove marker-population associations in
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a discovery group that may not be applicable to a more general population.

The discovery of this set of 10 SNPs has also demonstrated the utility
of the population sub-sampling method developed over the course of the
investigation. For more details about the application of this method, see
Chapter 5.

This set of SNPs is able to be used for the quantification of Maori genomic
ancestry in an individual. Note that this is different from the typical ge-
nealogical interpretation of ancestry (see Frudakis, 2008). Genomic ancestry
refers to what is passed down through the DNA, while genealogical ances-
try refers to a person’s direct ancestors, whether or not that genealogical
history is detectable in the DNA. A demonstration of this can be found
in Chapter 1, figure 1.5, where a chromosome has a genealogical ancestry
of all eight ancestors, but a genomic ancestry that is composed of only
six of those eight ancestors in quite unequal proportions. In this context,
references to Maori ancestry relate to DNA inherited from the ancestral
Maori population (i.e. a hypothetical population from which all Maori are
descended).

4.6.1 Large Genomic Differences in Allele Frequencies
between Maori and European Populations

The SNPs identified here describe a genomic signature – a genome-wide set
of SNPs that can be used to estimate genomic ancestry. Although there are
two polymorphisms (rs10842036, rs1592672) on this list that both reside
on chromosome 12, their frequencies are likely to be independent, as the
distance between these two SNPs is greater than 50MB (see Introduction,
Section 1.2.4 and Section 1.3.1). Apart from those two SNPs, all other SNPs
are on different chromosomes, so can be considered independent due to
segregation at meiosis. Unlike gene based approaches for trait signatures
(e.g. Huang et al., 2007), the process outlined here has found differences
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throughout the genome, regardless of the presence of genes near mutations
of interest. Such an approach considers the possibility that DNA sequence
outside of genes may have a functional effect on a particular trait.

The genome-wide delta chromosome plot (Figure 4.4) indicates that the
two populations are clearly distinct at a genomic level. The distribution of
delta is spread consistently across the entire genome. This is what would be
expected when looking at two groups separated by substantially different
genomic ancestry.

4.6.2 Population Profile of Rakaipaaka Indicates Substan-
tial Maori Ancestry

A total of 292 Adults from Rakaipaaka were profiled for the genotyping
study (see Figure 4.10), with mean estimated Maori ancestral fraction within
Rakaipaaka of 0.685 (SD = 0.280). The European individuals that they were
compared against were the 90 HapMap CEU individuals and 271 PCE
individuals from the discovery/validation phases. The mean estimated
ancestral fraction for European individuals was 0.028 (SD = 0.040). The
difference of the mean estimated ancestral fraction between the RHAS and
CEU groups was 71.3%, suggesting 28.7% European admixture within
Rakaipaaka.

Just over 15% of Rakaipaaka participants had an estimated European
ancestral fraction that was smaller than the error of the test. For a theoretical
perfect genomic ancestry test and uniform recombination, an individual
would drop below this level with one European ancestor 5-6 generations
back. While this is possible given that Europeans arrived in New Zeal-
and earlier than 5-6 generations before present, it is also likely that these
individuals have no European ancestry at all. This appears to support a
hypothesis that there are still Maori who are not of European blood lines in
New Zealand, despite some comments to the contrary (e.g. Brash, 2004).
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4.6.3 Population Sub-sampling is an Effective Tool for
the Identification of Ancestry-Informative Markers

A multi-marker approach for quantifying genetic variation has been pre-
sented, using an ideal model population (Rakaipaaka) for this task. The
benefit of using multiple markers has been shown by Marchini et al. (2005),
who found that a multi-marker approach will generate more informative
results, even after considering the multiple-testing cost. The approach here
has used a sub-sampling method, which may help in the removal of false
positive signal that is common in GWAS (see Wellcome Trust Case Control
Consortium, 2007; Healy, 2006).

The sub-sampling approach is advantageous because it reduces bias
towards a particular grouping of individuals, and also buffers against a SNP
being falsely selected due to genotyping error in an individual from the
tested populations – this effect is more of an issue in smaller populations,
especially when the observed minor allele frequency is low. This sampling
approach should also reduce the influence of admixture on the selection
of SNPs, as regions of admixture are unlikely to be consistent in unrelated
individuals.

The high delta values observed in the genome-wide plot (Figure 4.4)
are a strong indication that the tested populations are not substantially
admixed, i.e. The Maori individuals who were genotyped reported no
European ancestry in the past three generations, and these data support
that.

The difference in the maximum rank between SNPs included in the
bootstrap-consistent set of 64 SNPs and the remainder of the SNPs (Fig-
ure 4.5) suggests that the less-informative SNPs for given subgroups are
being filtered out. These filtered SNPs are likely to be associated with
particular groupings of individuals, rather than the general Rakaipaaka
population (i.e. a false positive signal), but might be included in a typical
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GWAS study where such a sub-sampling process is not carried out. The
large number of SNPs captured in all 100 bootstrap sub-samples supports
a hypothesis that these SNPs are not related to particular groupings, and
reflect the general populations as a whole. In the presence of substantial ad-
mixture, fewer SNPs would be expected to be captured in all sub-samples,
and the maximum rank for SNPs included in a bootstrap-consistent set
would be higher (depending on the degree of admixture in the sample).

Rosenberg et al. (2003) have derived a formula that approximates the
number of markers required for calculating ancestral fraction, n = 1/(8 ∗
∆2 ∗ V ) (where V is the accepted variance, and ∆ is the mean delta for
the markers). Using this formula with an accepted standard deviation
of 0.2 and delta of 0.7, the estimated number of markers for informative
classification is 7, which is similar to the number of markers that have been
used in this investigation.

The results shown in Figure 4.8 suggest that sampling 20-30 SNPs from
the informative set of 59 SNPs would be more than sufficient to capture
information about Maori genetic ancestry. While choosing the 6 top SNPs
may also be effective, the chance of genotyping errors and the risk of false
positive signal for one or more SNPs means that choosing the absolute
minimum (for non-validated SNPs) is not the best choice.

Given the observation in Figure 4.8, it appears that as few as 6 SNPs
are required to capture a large portion of the genetic differences between
the two groups. Treating standard error as an indication of the normal
range of values, this graph also suggests that 15 SNPs should be just as
effective as 59 SNPs at quantifying genetic differences between the RHAS
and CEU populations. This is evidence that only a small number of SNPs
(15 or fewer, based on these results) are required in order to quantify the
majority of the genetic variation in Maori ancestry.
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4.6.4 Accuracy

The data available can not be used to determine the accuracy of the Q
value output with respect to its ability to quantify true Maori genetic an-
cestry. In order to determine accuracy correctly, full ancestral information
from a number of individuals with varying degrees of admixture would
be required. Alternatively (or supplementary to this), full genome-wide
SNPchip data from a similar group of individuals with varying admixture,
independent of the initial discovery group, could serve a similar purpose.

However, estimates of accuracy have been determined, using the 59-
SNP set (see Figure 4.11) and the self-reported ancestral fraction (see Fig-
ure 4.12) as reference values.

The boxplots in Figure 4.11 provide one estimate of accuracy and as-
sumes that Q values generated using the 59-SNP set represent the true Q
value for a fully informative set of markers. Difference in Q value (rather
than difference from a Q value of 1) was used as a statistic to test accuracy
because it removes systematic error associated with structure Q values (i.e.
the estimated proportion of shared ancestry between the two populations).
The median accuracy for a 10-SNP set was 96% , indicating that a 10-SNP set
produces very accurate results for a large proportion of individuals. These
results suggest that the choice of a 10-SNP signature set for the estimation
of ancestry is reasonable in this case.

There is uncertainty about the true accuracy of the test when using
this method of comparing Q values. Error is likely to be underestimated
due to the assumption that Q values from the 59-SNP set represent the
true genetic ancestry. Differences based on Q values from a larger set of
SNPs are expected to be greater, but including other markers would require
selecting them from the set of markers rejected by the sub-sampling process,
increasing the risk of false positive associations and overfitting. Also, an
underestimate of error is likely due to the marker set being designed to
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maximise differentiation of the two population groups that are used to test
accuracy.

Comparisons with self-reported ancestry (Figure 4.12) indicate a much
higher error that exceeds 50% in some instances, but indicate that the Q
values underestimate Maori ancestral fraction. However, the comparison
with self-report is likely to overestimate error, as the self-report will also
include error associated with phenotypic variation. For those individuals
who reported no Maori ancestry, the maximum difference of Q from 0 was
0.09, which is consistent with the observed error in Q values in Figure 4.11.

Even when considering substantial error in observed Q values for the
Parkinson’s control individuals (PCE) in Figure 4.9, the 10-SNP set would
still be effective as a qualitative test to determine if a person has substantial
Maori genomic ancestry. A suggested cutoff Q value for this would be 0.3,
based on the self-report comparison data.

Another method for estimating accuracy is by observing the spread of
ancestry estimates for which the true ancestry value is known. In this case,
CEU European individuals clearly do not have any Maori ancestry, so the
true ancestral fraction for all CEU European individuals is really 0%. The
mean estimated European ancestral fraction was 2.8%, so an assumption of
a 97% accuracy in this Q value statistic can be made. This accuracy estimate
is similar to that derived from the comparison of the 59-SNP signatures
with 10-SNP signatures (median 98%, IQR 95-99%).

4.6.5 Genomic Ancestry is not a Good Representation
of True Genealogical Ancestry

A genomic test for ancestry can never be a true representation of the ge-
nealogical (or biological) ancestry of an individual. Even if ancestral coeffi-
cients match the constructed genetic history, the random nature of recom-
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bination produces an uneven spread of genetic sequences from different
ancestral chromosomes.

It would be expected that given the random nature of recombination, a
much more accurate representation of genetic ancestry could be obtained
by using more markers. For example, a selection of SNPs could be made
with 1 marker per 50cM, or around 60 markers across the entire genome.
The rationale behind this would be that varied admixture in individual
chromosomes would balance out over the whole genome. However, this
does not appear to be the case, as can be demonstrated by the results in
the 10-SNP to 59-SNP comparison (Figure 4.11), where a 10-SNP signature
appears to be consistent with a larger 59-SNP signature (estimated 98%
accuracy) for most individuals.

A couple of possible explanations for this come to mind. First, the
random nature of recombination may exacerbate, rather than alleviate,
admixture proportions – i.e. the true genetic structure is not a good repre-
sentation of genetic history. Second, the selection process for the signature
set of 10 SNPs has discovered markers that provide a very good approxima-
tion of admixture. These markers were chosen to maximise allele frequency
differences between populations, and minimise variation in those frequency
differences. This selection for minimal variation should ensure that the
genetic history of blocks that markers reside in is consistent in different
individuals, and therefore consistent throughout the population.

4.6.6 Conclusions

An estimate of the admixture profile of the Rakaipaaka population has been
produced using the SNPchip platform together with publicly available data.
Also, a 10-SNP signature set of genetic markers has been produced that has
good accuracy in quantifying Maori genomic ancestry.
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4.6.6.1 Applications

One direct use of the set of Ancestry-informative SNPs described here is
as a genetic ancestry measure to control for admixture in disease studies.
It may also be possible to use this value as an included factor for disease
prediction, moving away from prediction based on group membership (i.e.
ethnicity) and towards more personalised, gene-based prediction profiles.

Large allele frequency differences were used in combination to derive
a set of genetic markers that could be used to estimate Maori ancestral
fraction in this chapter. A population sub-sampling (bootstrapping) method
was used in the process of generating this marker set, but this bootstrap
sub-sampling method is also applicable to other traits that have a genetic
basis. This method of sub-sampling is investigated in more detail in the
next chapter (Chapter 5), where bootstrapping is used to identify a set of
markers that could be used to estimate genetic risk for Type 1 Diabetes.
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Chapter 5

Internal Validation of Genetic
Associations for Type 1 Diabetes

5.1 Overview

Personalised medical treatment based on genome profiles is a major goal
of genetic research in the 21st century (see Avery et al., 2009; Province
and Borecki, 2008). However, complex genotype-environment interactions
for common diseases make it difficult to determine which specific genetic
features should be used to construct such profiles. Hence the prediction of
genetic risk is a major challenge of the 21st century.

The introduction of large-scale Single Nucleotide Polymorphism (SNP)
genotyping systems has enabled genetic variants to be typed en-masse,
shifting the main effort required in a genetic risk study from genotyping
to data analysis (or bioinformatics). The investigation of genetic markers
for Type 1 Diabetes (T1D) in this chapter is a demonstration of how a
population sub-sampling method developed in the previous chapter may
assist in the identification of risk markers for a complex disease. This can
be considered an alternative application of the method used in Chapter 4,

131
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where the sub-sampling method was used for estimating Maori genomic
ancestry.

This chapter is laid out in a slightly different fashion from a typical
investigative study, in order to emphasise the theory behind the marker
selection method. Method theory and results are combined into one section
(Section 5.3), and the discussion of results for this particular study of T1D
risk appear in the final section of the chapter (Section 5.4).

5.2 Background

5.2.1 Type 1 Diabetes

Type 1 Diabetes mellitus (T1D) is a disorder characterised by an absence of
insulin-producing beta cells in the pancreas. This disorder shares with the
more common Type 2 Diabetes mellitus (T2D) a characteristic symptom of
high blood glucose levels. In some cases, this glucose also passes through
to the urine, creating a sticky/sweet substance that attracts ants (see Ekoé
et al., 2002, pp. 7,11). In T2D, this high blood glucose is caused by cells not
responding to insulin (insulin resistance), while in T1D the excess is caused
by a reduction in insulin production (insulin dependence).

The incidence of T1D varies throughout the world, with rates of inci-
dence as low as 0.0006% per year in China, 0.02% in the UK, up to nearly
0.05% per year in Finland. About 50-60% of cases of T1D manifest in child-
hood (younger than 18 years), and the disease is believed to be caused by
an abnormal immune response after exposure to environmental triggers
such as viruses, toxins or food (see Daneman, 2006).
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5.2.1.1 Symptoms, Diagnosis and Management of T1D

Typical symptoms of T1D include excess urine output (polyuria), thirst and
increased fluid intake (polydypsia),blurred vision, and weight loss. When
left untreated, this form of diabetes can lead to a build-up of ketone bodies
and a reduction of blood pH (ketoacidosis), reducing mental faculties and
causing a loss of consciousness (see Ekoé et al., 2002, p. 7).

Diabetes can be diagnosed by a single random† blood glucose test, as
long as symptoms are present and blood glucose levels are found to be in
excess (typically > 11.1mmoll−1) of those normally observed. In situations
where symptoms are less obvious and/or glucose levels are at the high end
of the normal range, a glucose tolerance test (GTT) is used for diagnosis.
In this test, fasting patients have their blood glucose level tested, patients
then consume a measured dose of oral glucose, and blood glucose levels
are measured 2 hours later. A fasting glucose level in excess of 6.1mmoll−1,
or post-load level in excess of 11.1mmoll−1 is considered diagnostic for
both forms of Diabetes Mellitus. Type 1 Diabetes (as distinct from T2D)
encompasses a range of diseases that involve autoimmunity. It can be
diagnosed by the presence of antibodies to glutamic acid decarboxylase,
islet cells, insulin, or ICA512 (see Ekoé et al., 2002, p. 19).

As the symptoms of T1D are caused by high blood glucose levels (hy-
perglycaemia) due to a lack of insulin, these symptoms can be relieved by
the introduction of insulin into the blood. This is typically carried out by
supplying measured doses of insulin via intramuscular injections or by the
use of insulin pumps (see Daneman, 2006). Individuals with T1D need a
constant supply of insulin for survival, together with occasional insulin
bursts to control variable blood glucose levels throughout the day (e.g.
after meals). Individuals with T2D only require insulin for survival in rare
cases (see Ekoé et al., 2002, p. 16). Slow-release insulin and consumption of

†i.e. taken at any time of the day, as opposed to a fasting glucose test taken at least 8
hours after the last meal
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foods with a low glycaemic index can help to reduce the extremes of T1D
symptoms.

Improperly managed treatment can cause further medical complica-
tions in a diabetic patient. Too much insulin, excessive physical activity, or
not enough dietary sugar can result in low blood glucose levels (hypogly-
caemia), which produce short-term autonomic and neurological problems
such as trembling, dizziness, blurred vision, and difficulty concentrating.
Hypoglycaemia is treated either by ingestion of sugar, or by intravenous
glucose in severe cases (see Daneman, 2006).

5.2.1.2 Complications of T1D

The initial symptoms of T1D are not usually severe, and the disease may
progress for a few years before a diagnosis is made and treatment is given.
However, long-term complications can appear when the disease is not man-
aged appropriately (see Ekoé et al., 2002, p. 8). Retinal damage progresses
in about 20-25% of individuals with T1D, with later stages causing retinal
detachment and consequent loss of sight. Renal failure is also a problem
in diabetic individuals, which is indicated by high urinary protein levels.
When individuals have these high levels, progression to end-stage renal
disease occurs in about 50% of cases. Neural defects are also a potential
complication of T1D, most commonly damage to peripheral nerves, leading
to ulceration, poor healing and gangrene unless good care is taken of the
body extremities (see Daneman, 2006).

5.2.1.3 Genetic Contribution to T1D Risk

Type 1 Diabetes has a heritability of around 88% (Hyttinen et al., 2003),
indicating that a substantial proportion of variance in disease susceptibility
can be attributed to genetic factors. About 50% of the genetic contribution
to T1D can be accounted for by variation in the HLA region on chromosome
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6, and 15% is accounted for by variation in two other genes, IDDM2 and
IDDM12 (see Daneman, 2006). Incidence rates in migrant populations
quickly converge to those of the background population, suggesting that
although the genetic contribution to the disease is high, environmental
factors probably play a significant role in triggering the onset of disease
(see Daneman, 2006).

5.2.2 Wellcome Trust Case Control Consortium Study

The Wellcome Trust Case Control Consortium (WTCCC)† was established
in 2005 to identify novel genetic variants associated with seven common dis-
eases, including Type 1 Diabetes (Wellcome Trust Case Control Consortium,
2007). 2000 individuals with T1D, and 1500 individuals from the National
Blood Service (NBS)‡ were genotyped for the WTCCC using an Affymetrix
GeneChip 500k Mapping Array Set (See Introduction, Section 1.4.3.1).

The Wellcome Trust Case Control Consortium (2007) reported associa-
tions near five gene regions that had been previously associated with T1D:
The major histocompatibility complex (MHC) on chromosome 6, CTLA4
and IFIH1 on chromosome 2, PTPN22 on chromosome 1, and IL2RA on
chromosome 10. The insulin gene (INS) on chromosome 11 was also associ-
ated with T1D; the only SNP tagging INS failed quality control filters, but
also indicated strong association with T1D when examined. A number of
other regions showed evidence of association with T1D in the Wellcome
Trust Case Control Consortium (2007) study: 4q27 (chromosome 4); 10p15
(chromosome 10); 12p13, 12q13 and 12q24 (chromosome 12) 16p13 (chromo-
some 16); and 18p11 (chromosome 18). Most of these regions include genes
involved in the immune system. However, only two genes are in 16p13,
and both have unknown functions (KIAA0350 and dexamethasone-induced
†http://www.wtccc.org.uk
‡The study also typed 2000 individuals for each of the six other diseases: a total of

14,000 cases genotyped for seven diseases.

http://www.wtccc.org.uk
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transcript). The strongest association signal for T1D was detected within
the HLA region of chromosome 6, a region in which multiple SNPs had
strong associations with T1D, but only one of those SNPs (rs9272346) was
reported in the results table of the strongest associations (see Wellcome
Trust Case Control Consortium, 2007, table 3).

5.2.3 Replication Issues in GWAS

The Genome-wide Association Study (GWAS) is currently seen as the best
way to tackle the search for genetic contributions to complex human dis-
eases. The outcome of these studies is to determine the degree of association
between single genetic markers and a heritable trait. Commonly, an analy-
sis is carried out on a large number of genetic variants in a large number of
people, allowing the detection of small genetic effects that are associated
with a trait.

A study style that is built around correlation and association rather than
a hunt for causal variants requires extreme care to ensure that observed
associations are valid and causal. Studies need to have good within-study
validation to reduce the likelihood of false-positive results being obtained
and treated as true associations, and need to be supported by good inde-
pendent validation. The distinction between association and causation
is important – GWAS are used as hypothesis-generating tools to narrow
down, through association, the search for potential causative loci. After
the associations have been validated, it is expected that they will be fol-
lowed up with studies attempting to determine the true causative status
of that association. Such causative studies are difficult, and progress to-
wards understanding the aetiology of common disease has been slow (see
Dermitzakis and Clark, 2009).
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5.2.4 Sampling Errors in GWAS

Natural variation of genotypes within populations means that any particu-
lar sample from the population may not represent the true genotype fre-
quencies within that population (see Introduction, Section 1.4.6). This may
lead to the observation of marker-disease associations when no such associ-
ation exists. This is particularly important when considering populations
with mixed ancestry, where markers that are informative for distinguishing
population ancestry may become accidentally associated with a particular
disease (see Pritchard and Donnelly, 2001).

Bootstrapping by repeated re-sampling of a representative draw made
from a group can estimate population variation in genotype frequencies by
observing variation within the sub-samples. The marker selection method
used in this chapter utilises a re-sampling technique similar to that used in
Chapter 4 in order to reduce the influence of allele frequency variation in
producing false-positive results for particular samplings of the population.

5.3 Method and Results

5.3.1 Method Summary

The Wellcome Trust Case Control Consortium (WTCCC) have genotyped
2000 individuals diagnosed with T1D, and 1500 individuals from the Na-
tional Blood service (NBS) using the Affymetrix 500k chip (500568 SNPs).
These genotypes were obtained from WTCCC for subsequent computer-
based research exploring the utility of the author’s new bootstrap sub-
sampling method for genome-wide association studies. Genotype data
were filtered at a SNP level to remove those SNPs that were present on
the X chromosome; individuals flagged by WTCCC as having potentially
invalid genotype data were removed from the dataset.
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Figure 5.1: An overview of the marker set construction procedure, using an initial
validation/discovery split, bootstrap sub-sampling, set refinement, and internal validation.

The study group was randomly split into two equal-sized groups: a dis-
covery group (981 T1D cases, 729 NBS controls), and a validation group (982
T1D cases, 729 NBS controls). Subsequent filtering, analysis, and selection
of SNPs was carried out on the discovery group, while the validation group
was only used to test the effectiveness of the selected SNP set in a situation
distinct from that used to generate this set of SNPs (see Figure 5.1).

A bootstrap sub-sampling method was used to reduce the initial panel
of 500k SNPs down to a set that consistently produced associations on all
bootstrap sub-samples. Sub-samples of the Type 1 Diabetes (T1D) cases and
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National Blood Service (NBS) controls were used to estimate the in-group
variance of association statistics throughout the genome. Markers that were
informative and had low variance were selected as candidate markers for a
minimal informative set of 45 markers.

The final refinement step tested sets of SNPs in combination, rather than
single SNPs alone, in the hope that those sets would be able to capture a
wider range of genetic variation than any single marker (or combination of
data for single markers alone) could provide. Once a suitable SNP set was
found, that set was tested in the validation group to confirm the utility of
the set for distinguishing T1D cases from NBS controls.

5.3.2 Genotyping and Filtering of Individuals and SNPs

Genotype data from 2000 T1D cases and 1500 NBS controls were provided
by WTCCC. This genotyping had been carried out on an Affymetrix 500k
SNPchip (500568 SNPs). The purpose of the initial genotyping procedure is
to obtain a large sample of candidate markers (> 100, 000) from which to
pick the most informative.

Due to sex differences in expression for X-chromosome SNPs, all 10536
X chromosome SNPs were excluded. The WTCCC dataset also included a
list of 37 T1D cases and 42 NBS controls to exclude for a number of reasons
(e.g. high proportion of missing genotype data, duplicate individuals,
non-European ancestry), so these individuals were also removed from the
present study (X chromosome filtered set of 490032 SNPs, 1963 cases, 1458
controls).

5.3.2.1 Separation of Discovery and Validation Groups

Individuals were randomly assigned into one of two groups, a discovery
group with 981 T1D cases and 729 NBS controls, and a validation group
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with 982 T1D cases and 729 NBS controls. To ensure a robust analysis, the
validation group was only used for the final validation of a generated SNP
set, and not used for any part of the SNP discovery procedures.

An alternative approach to genotyping a group of individuals from
a target group is to use large public (and free) datasets from the closest
matching groups to generate the initial set. This approach would be used if
large-scale genotyping from the target group were unavailable, or would
be prohibitively expensive.

While genotyping similar groups is much cheaper, it also has a high
chance of misses for relevant markers, as the marker mutation profile
of populations can differ quite significantly between populations. As a
demonstration of this, allele frequency differences between HapMap CEU
and HapMap CHB populations were calculated for SNPs in a 10Mb region
centred on the ADH region. In this case, the HapMap CHB population was
used as a proxy for the Maori population. A total of 37 SNPs were selected,
all with allele frequency differences greater than 0.5, for then genotyping
in 45 Maori (the target group). Of these 37 SNPs, 19 had allele frequency
differences between HapMap CEU and Maori populations of less than 0.2,
and only 2 SNPs had allele frequency differences greater than 0.5.

5.3.2.2 Marker Association Values Across the Entire Genome

Association scores were calculated across the entire autosomal genome (see
Figure 5.2). A genotype χ2 test was used, comparing observed genotype
counts for each group to expected genotype counts for both groups com-
bined. High association scores (χ2 > 100) were found on chromosomes 3,
6, 12, 16, and 22, but the scores were only consistently high for a region
of about 10Mb in the middle of the short arm of chromosome 6 (30-40Mb
from the 5′ end of the forward strand).
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5.3.3 Bootstrap Sub-sampling of the Discovery Group

A bootstrap sub-sampling method was then carried out, generating 100
subsample replicates of the discovery group, each replicate having 490
T1D cases and 364 NBS controls (i.e. retaining the same proportions as the
original 981 cases and 729 controls), sampled from the original discovery
set without replacement. The SNPs were then ranked by χ2, and a bootstrap-
consistent set of 458 SNPs was identified, each ranked in the top 5% of SNPs
(24501 SNPs) in every bootstrap sub-sample (see Figure 5.3-A). Most of
these 458 SNPs had a maximum rank below 5000, whereas most of the
remaining 489574 SNPs had a maximum rank above 350000 (see Figure 5.3-
B).

5.3.4 Bootstrap Sub-sampling

The bootstrap sub-sampling method was used to eliminate those markers
from the initial X chromosome filtered set of 490032 SNPs that were not
effective for genetically distinguishing case and control groups. In each
iteration of the bootstrap process, a sub-sample of individuals from each
group was carried out, then markers were ranked based on a statistic that
evaluates the effectiveness of each marker (see Figure 5.4). Markers that
consistently had a high association statistic in each bootstrap sub-sample
were selected for the next stage in the process.

5.3.4.1 Comparison of Bootstrap Sub-sampling With a Simple Rank-
ing Method

The bootstrap sub-sampling process attempts to eliminate markers that
are specific to the particular sample of individuals under study, rather
than the more general population those individuals have been sampled
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Figure 5.3: Scatter plot indicating maximum rank over all bootstrap sub-samples vs.
minimum rank in any bootstrap sub-sample for the bootstrap-consistent set of 458 SNPs
(A), and a random sample of 5000 of the remaining SNPs (B). A total of 126519 SNPs
(not included when generating these graphs) were unranked in at least one bootstrap
sub-sample, as no genetic difference was observed between case and control groups with
that SNP. The difference between minimum and maximum rank gives an indication of
the reliability of a particular marker for association testing in a general population. Of
those markers in the bootstrap-consistent set of 458 SNPs, 57% were ranked in the top 5000
markers in all bootstraps. Of the remaining 489574 SNPs, 95% (4464977) had a maximum
rank of 350000 or more (including 126519 unranked SNPs).

from. The effect of using a simple ranking procedure that has no sub-
sampling would be to identify the markers that are most differentiated
in that particular sample of individuals. However, natural variation in
genotype frequency introduces noise into association analyses, so markers
that are differentiated in a particular sample may not be differentiated in
the population the sample was derived from.

The problem of discovering associated features that are not present in
the more general case is known as overfitting (see Russell and Norvig, 2003,
Chapter 14, pp. 661-663). In the conventional GWAS context, overfitting
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Figure 5.4: Visual representation of the key points of the bootstrap process. The groups
are sub-sampled a number of times, and marker ranking statistics are calculated for each
sub-sample (bootstrap). Markers are then ranked, identifying the markers with the highest
association statistic for each sub-sample. Markers that were consistently ranked in the top
5% in all sub-samples were passed onto the next stage of the selection process.

produces false positive associations, where an association with a particular
genotype does not extend to the general population. Using a method that
includes bootstrap sub-sampling should reduce the degree of overfitting
by removing markers that are only relevant for distinguishing between the
specific groups involved in marker discovery.

5.3.4.2 Choosing a Marker Ranking Statistic

A ranking statistic is necessary for the bootstrap process to determine
which markers are more likely to be associated with the phenotype of
interest. The purpose of this statistic is to rank the effectiveness of markers
in distinguishing groups, rather than give a precise indication of their utility.
This means that the actual statistic used is not important, as long as it is
able to rank an informative marker higher than a less informative marker.
Statistics useful for evaluating genetic association are discussed earlier in
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this thesis (see Chapter 1, Section 1.4.4). In this case, a genotype-based
χ2 statistic was chosen for evaluating marker effectiveness. This statistic
considers situations where a heterozygous genotype may have a strong
association that is not present in either homozygous genotype, as well as
identifying strong associations for homozygous genotypes.

5.3.4.3 Ranking Markers Using the Observed Distribution of Rank-
ing Statistics

A non-parametric ranking method selected markers based on rank order
across all bootstraps. Markers are assigned a rank within each bootstrap:
the marker with the most informative statistic is assigned rank 1, the second-
most informative is assigned rank 2, and so on. The minimum, maximum,
and mean marker rank are determined for each marker in all bootstrap
sub-samples (see Table 5.1).

Markers that are not ranked in the top 5% of markers in any sub-sample
are excluded from further analysis. When using this process on the T1D
discovery group, a bootstrap-consistent set of 458 SNPs were found in the
top 24501† SNPs in all 100 sub-samples. Of these bootstrap-consistent
SNPs, 182 (40%) are located between 30Mb and 33Mb from the beginning
of chromosome 6, near the HLA region. The remaining 276 SNPs are
distributed fairly evenly throughout the genome (see Figure 5.5). From
these observations of chromosomal location, T1D appears to have a very
strong association signal near the HLA region on chromosome 6, and limited
signal elsewhere in the genome.

5.3.5 Linkage Refinement

Linked SNPs were removed from the bootstrap-consistent SNP set in order
to reduce the redundancy of associative signal produced by the generated
†24501 = b0.05 ∗ 490032c
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Marker Min Rank Max Rank Mean Rank
rs2027852 9 27 17.8
rs3135342 42 1598 196.2
rs16917773 48 2196 261.5
rs10144861 59 2817 491.3
rs10842028 44 3028 543.4
rs10742084 61 5290 679.9
rs7158350 84 6736 730.4
rs16854531 126 13477 735.1
rs1429445 54 7451 975.9
rs17023486 472 16210 2903.6
rs12117563 1508 377782 77651.8
rs11189528 1563 385065 162459.9
rs17038075 47938 453037 172338.7
rs11081211 13893 376453 185579.0
rs11249611 1731 376943 190683.0
rs16831752 119403 461199 222291.4
rs1006931 22398 369366 232357.9
rs9317562 15117 383671 235382.3
rs11205709 477789 477983 477890.9
rs1027341 487082 487165 487114.9

Table 5.1: A sample of markers from the T1D study, showing minimum, maximum,
and mean rank in 100 bootstrap sub-samples. In order to demonstrate differences between
included (low rank in all bootstrap sub-samples) and excluded markers, the first ten
markers were sampled randomly from the group of 458 markers ranked in the top 5% of
markers in all subsamples, and the remaining ten markers were sampled randomly from
the remaining 489574 markers.

SNP set. Markers were ordered based on mean rank order and any SNPs
that were linked (r2 > 0.1) with a higher-ranked SNP were removed from
the set, leaving an unlinked set of 34 SNPs.

Markers within a signature marker set should be unlinked, so it is a
good idea to calculate a linkage-associated statistic such as D′ or r2 dur-
ing the discovery phase of the analysis, and remove the least informative
marker among linked high-association pairs. This step is carried out af-
ter the bootstrap sub-sampling process in order to reduce the number of
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Figure 5.6: A marker refinement plot, showing the effectiveness score (AUC) for increas-
ing numbers of SNPs in the discovery group. The highest AUC value (0.835 for 5 SNPs) is
circled in red.

pairwise calculations required for linkage analysis – pairwise calculations
for 500 markers would require 124,750 linkage comparisons,† while pair-
wise calculations on 500,000 markers would require around 1.25 × 1011

comparisons.

5.3.6 Set Size Refinement

The optimal marker set size was identified using an Area Under the Curve
(AUC) test on the Q-values generated by structure (10,000 bootstraps, and
100,000 total runs), finding marker sets with large differences in mean Q
value between the two groups (see Figure 5.6). Increasing numbers of
markers were selected from the unlinked SNP set based on mean rank
†124, 750 = (5002 − 500)/2
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order identified during the previous (bootstrap sub-sampling) stage. The
effectiveness of a given set of markers was evaluated using the structure
program (see Introduction, Section 1.4.7.1), followed by an AUC calculation
for each set of markers based on Q values reported by the program.

The structure program outputs values that represent how genetically
similar an individual is to a particular group (Q values), attempting to
cluster pooled individuals into two “populations”.† The Q values produced
by structure are continuous in the range between 0 and 1 inclusive, and are
treated as an estimate of the probability that an individual has a particular
trait.

Analysis of Q values was used to determine false positive and true
positive rates for given Q-value cutoffs (see Figure 5.8). The true positive
rate was calculated as the proportion of T1D cases with Q below the cutoff
value, and false positive rate was calculated in the same way for NBS
controls. The area under the curve of this graph can be used as an indication
of the effectiveness of a quantitative test. An AUC of 1 indicates a perfect
test (no misclassification), while an AUC of 0.5 indicates a test that cannot
distinguish between groups.

The greatest difference between cases and controls was observed when
the top 5 SNPs were selected, producing an AUC of 0.8449. This signature
set of 5 SNPs was considered to be the most appropriate T1D-informative
set.

5.3.7 Validation of Final 5 SNP Set

The signature set of 5 SNPs (see Table 5.2) was finally tested on the valida-
tion group (982 T1D cases, 729 NBS controls) using structure, followed by
an AUC analysis of the Q values. There is a small overlap between some

†The structure program is designed for population analysis, but is used here for group
analysis.
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Marker Chromosome Location (Mb) χ2 Mean Rank
rs9273363 6 32734250 485 1
rs3957146 6 32789508 317 2.2
rs3135377 6 32493377 264 4.3
rs7431934 3 40268801 199 13.7
rs1046089 6 31710946 108 37.9

Table 5.2: Location information for the top 5 SNPs discovered in a bootstrap sub-
sampled GWAS for T1D associations, after removing linked SNPs, and choosing the set
with the highest AUC value. Mean rank reported in this table is based on the marker rank
for 100 bootstrap sub-samples. Out of the five markers, four are within a 2Mb region of
chromosome 6.
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Figure 5.7: Structure output (K=2) for the top 5 SNPs discovered in a bootstrap sub-
sampled GWAS for T1D associations, showing Q values for individuals from T1D and
NBS groups (using validated group). Mean Q value (grey line) and the standard deviation
of Q values (red line) are also indicated for each group.

T1D cases and some NBS controls (Figure 5.7), but most T1D cases cluster
together, and are separate from the cluster of NBS controls.

The AUC value associated with this test of the signature set of 5 SNPs in
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SNP Chr Region Gene Locus
rs9270986 6q21 HLA
rs6679677 1p13 PHTF1-PTPN22
rs17696736 12q24 C12orf30
rs2292239 12q13 ERBB3
rs12708716 16p13 KIAA0350
rs2542151 18p11 PTPN2
rs3741208 11p15 INS
rs17388568 4q27 Tenr-IL2-IL21
rs7722135 5q14 Q8WY63
rs9653442 2q11 AFF3-LOC150577
rs6546909 2p13 DQX1
rs2666236 10p11 NRP1

Table 5.3: A list of SNPs found by other researchers to be associated with T1D risk. The
first SNP (rs9270986) yielded the most extreme statistic in the WTCCC analysis (Wellcome
Trust Case Control Consortium, 2007). Marker names and locations for the remaining 11
SNPs are from Table 1 of Todd et al. (2007).

the validation group was 0.8395. Setting the false positive rate to 5% (cutoff
Q value 0.129) produced a true positive rate of 43%, while setting the true
positive rate to 85% (cutoff Q value 0.5583) produced a false positive rate of
38%. The position on the curve nearest to a true positive rate of 100% and a
false positive rate of 0% was when the cutoff Q value was set at 0.506, with
a true positive rate of 78%, and a false positive rate of 29%.

5.3.8 Comparison with SNP set from Literature

Todd et al. (2007) carried out an analysis of 11 SNPs that were found to
be associated with Type 1 Diabetes in genome-wide association studies.
This group of SNPs, in combination with the most informative SNP from
the WTCCC study (Wellcome Trust Case Control Consortium, 2007), was
selected to be compared with the signature set of 5 SNPs in the present
study (see Table 5.3). The structure program was used in combination with
an AUC analysis to evaluate the effectiveness of this group of 12 SNPs
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Figure 5.8: Receiver-operator characteristic graph of true positive rate vs. false positive
rate based on the structure plot of validated set of 5 SNPs (see Figure 5.7). The area
under the curve (AUC) of this graph indicates that when comparing randomly selected
individuals from each group, the probability that a T1D case individual will have a higher
Q value than a control individual is around 84%.
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Figure 5.9: Structure output (K=2) for 12 SNPs found by other researchers to be associ-
ated with T1D risk (see Table 5.2). Mean Q value (grey line) and the standard deviation of
Q values (red line) are also indicated for each group.

for 1963 WTCCC T1D cases and 1458 NBS controls (see Figure 5.9 and
Figure 5.10).

This 12-SNP comparison set had an AUC of 0.73 when tested with 1963
T1D cases and 1458 NBS controls. Setting the false positive rate to 5%
(cutoff Q value 0.933) produced a true positive rate of 18%, while setting
the true positive rate to 85% (cutoff Q value 0.895) produced a false positive
rate of 53%. The position on the curve nearest to a true positive rate of
100% and a false positive rate of 0% was when the cutoff Q value was set
at 0.910, with a true positive rate of 65%, and a false positive rate of 35%.
These results indicate that the signature SNP set discovered in the present
study is considerably more informative than a set of T1D-associated SNPs
found in other genome-wide association studies.
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Figure 5.10: Receiver-operator characteristic graph of true positive rate vs. false pos-
itive rate based on structure plot of SNPs found by other researchers (see Table 5.2 and
Figure 5.9).
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5.4 Discussion

This study has identified a group of 5 SNPs that classify individuals with
T1D with good reliability (AUC = 0.84, see Figure 5.8). The heritability of
Type 1 Diabetes is around 88% (Hyttinen et al., 2003), so the maximum
possible sensitivity (true positive rate) of a genetic test for T1D should be
88%, with the remaining 12% of variation being due to non-genetic factors.

One of the assumptions made in GWAS is that the individuals selected
as candidates for the phenotypic groups (cases and controls) are ideal mem-
bers of those groups – affectation status tends to be a binary or integer
value that does not allow for intermediate values. Due to the difficulty
in qualitatively describing traits, as well as mutation and admixture ef-
fects (particularly for population-derived groups), this assumption may be
invalidated.

The marker construction method used a bootstrapping procedure as an
internal validation to remove markers that had substantial variation in χ2

values within the tested groups. In an ideal case, a bootstrapping procedure
would not be necessary as the genetic makeup of the total population will
reflect the makeup of any given subgroup of that population. In such a case,
the ranking after each bootstrap will be the same as the overall ranking.
However, the comparison of minimum and maximum rankings for SNPs
across all bootstrap sub-samples has demonstrated that this is clearly not
the case (see Section 5.3.4).

5.4.1 Type 1 Diabetes Study Results

It is known that genetic variation within the HLA region on chromosome
6 plays an important role in T1D, accounting for about 50% of the genetic
susceptibility for T1D (see Daneman, 2006). This role is supported by the
preliminary results in the present study, which show consistently strong
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predictive power using genetic markers, all but one from this region alone
(see Table 5.2).

5.4.1.1 Accuracy of the Signature SNP Set

The interpretation of accuracy of a genetic test is difficult, particularly
when considering what would be expected if the test were used in an
untested population. A statistic that can be useful in this case is the positive
predictive value (how likely a test is positive, given a positive result).

In order to determine the positive predictive value of a test, it is neces-
sary to establish the prevalence of the trait in the population of individuals
who are to be tested. A country which is considered to have a very high
incidence of T1D, Finland, has an overall cumulative incidence of around
0.5-0.6% at the age of 35 years (Hyttinen et al., 2003). Also, there has been a
general trend of a 2-3% increase in the incidence rate of childhood T1D in
South West England over the past 20-30 years, with the incidence in 2003 at
around 0.16% per year (Zhao et al., 2003). Even at the higher incidence rate
in Finland, fewer than 0.6% of individuals in a typical non-enriched control
population would be expected to have T1D.

The NBS controls for the WTCCC study had not been enriched to re-
move individuals that have T1D. Given an expected prevalence of T1D of
0.6%, it would be expected that around 4 individuals from the validation
NBS control group (or 9 from the discovery and validation groups com-
bined) have T1D. Setting the false positive error rate to this value (i.e. 0.6%)
is unrealistic for the current data set, as only a small fraction of T1D cases
would be identified with that cutoff (just over 5%, see Figure 5.8). However,
if a more moderate 5% false positive error rate is accepted (identifying 43%
of T1D cases, see Section 5.3.7), then 36 NBS individuals would be identi-
fied by this test as at risk for T1D. This is about ten times that expected by
cumulative incidence rates for T1D, indicating a positive predictive value
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of 10% with the discovered signature set of 5 SNPs. Given that the populat-
ion prevalence of T1D is so low, the NBS control group should not differ
substantially from an enriched control group, and the positive predictive
value of this genetic test will remain around 10%.

5.4.1.2 Accuracy in Other Populations

The low positive predictive value of the marker set, together with heri-
tability values of less than 100%, means that it is unlikely that a genetic
test using these T1D markers would be useful as a diagnostic test for a
general population. However, if used in conjunction with other clinical
indicators, it may be appropriate to use these genetic markers for a screen-
ing test, identifying individuals that should be more closely monitored for
T1D symptoms. This is because it will still exclude a large proportion of
the normal population, while also identifying a high proportion of at-risk
individuals. However, the signature SNP set has not been validated in
groups of individuals outside the WTCCC study, and caution should be
taken in attempting to extrapolate results to non-validated populations.

Taken in the context of disease, it can be very difficult to accurately de-
termine the phenotype of an individual – this is a particular problem when
the disease is a continuous (rather than discrete) trait, as often happens
with common complex diseases. Phenotype identification is further com-
plicated by non-Mendelian patterns of inheritance. It is possible for there
to be numerous paths to the same apparent end disease, and numerous
gene-gene interactions that contribute to the same disease. Furthermore,
trait variation is often a mixture of genetic and environmental factors (i.e.
heritability is less than 100%), so potential gene-environment interactions
also need to be taken into account when describing phenotype.

The effectiveness of any given set of markers will be reduced due to the
presence of erroneous false positive results (i.e. some of the false positives
will later turn out to have T1D). In a situation where the marker set is
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constructed to remove as many false positive results as possible, this may
result in a refined test that is over-fitted to the initial discovery group of
case and control individuals, and is not reliably generalisable to other
populations. It is possible that such situations would be apparent when
follow-up studies on independent case/control groups for the same trait
are carried out, and it is recommended that such validations are carried out
before using this signature SNP set.

5.4.2 Overfitting Generates Spurious Associations

For a genetic association study to be successful, individuals must be sep-
arable into distinct groups based on a particular phenotype, and some
differences between the groups must be attributable to genetic factors.
Methods for identifying associated markers in a GWAS relies on a clear
distinction between trait and non-trait individuals. In situations where
the trait of interest is not easy to classify, an associated marker may not
reflect the true distinction between those groups. In addition, a low genetic
influence for the expression of a particular trait can mean that even when a
trait can be classified completely, the genetic component of that trait (the
only component able to be identified by any DNA marker-based method)
will not always determine the observed phenotype completely.

Overfitting is the generation of a set of distinctive parameters that re-
lies on irrelevant attributes for the model being observed. The problem
exists when vital information about the model is missing, and the discovery
algorithm ends up being required to derive a model based on other spuri-
ous distinctions between discovery groups (see Russell and Norvig, 2003,
Chapter 14, pp. 661-663). Overfitting is applicable to the case of generating
minimal marker sets because any such method assumes that a minimal
set can be found for the data. When cases and controls are not genetically
distinct, and distinct only due to the trait under test, any resultant marker
set will be invalid. In such a situation, the set of markers generated is
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informative only for the specific group of individuals that were used for
discovery of that set of markers, and will not be applicable for individuals
outside the discovery group. Internal validation within groups, and exter-
nal validation of results in similar populations, is essential to ensure that
overfitting has not occurred.

Bootstrap sub-sampling uses variance among group sub-samples to
remove markers that are associated because of genetic chance effects rather
than the particular phenotype under test. However, it cannot distinguish
between genetic differences due to the tested phenotype and genetic differ-
ences due to sampling bias. The problem of overfitting is especially relevant
for genetic data, where one pattern of genotypes due to a group-associated
factor with high heritability may outweigh the disease-causing factor under
test. This is similar to the population stratification problem that has been
discussed by Pritchard (1999) and Pritchard and Donnelly (2001) who say
that due to the influence of genetic chance (e.g. genetic drift, founder effects,
non-random mating), alleles can appear with high frequency differences
between groups within a given population sample even though the differ-
ences are not directly associated with the trait of interest. This is particularly
important when a population group has a high incidence of a given disease,
and the genetic history of the case and/or control subgroups is not known.
Pritchard and Donnelly (2001) recommend testing for structured associa-
tion in case and control groups before carrying out further association tests
in order to remove confounding genetic factors that may be present in a
case/control study.

5.4.2.1 Genome-wide Trait Contributions

While there may be many gene-gene interactions throughout the genome
that all contribute to a particular disease, it is unlikely that all genetic
variants in the subgroup will influence the trait. In addition, some variants
may influence the trait more than others and in some cases may even negate
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the effects of another variant. Both of these factors increase the potential for
spurious associations and false positive results when carrying out a whole
genome scan.

Genotyping carried out in an association study is restricted to a subset of
the total genome, because full-genome sequencing is still prohibitively ex-
pensive. Also, only a subset of interactions between multiple genetic factors
can be studied (if any), because multi-factorial analysis is computationally
expensive.†

It is expected that any reduction of SNP set size will result in decreased
reliability, as there is an information loss when fewer markers are typed.
For a reduction method to be useful, the information lost due to typing
fewer markers must be compensated by cost reduction. However, in this
investigation, the opposite appears to be true – a small number of markers
are useful to distinguish the case and control groups, and appear to provide
more information than a full genome set.

5.4.2.2 Interactions from Multiple Genetic Variants

In some cases, a first-pass single association analysis of markers will not
be useful for the classification of a trait. This will be the case for traits that
have complex interactions that result in non-linear association patterns be-
tween marker frequency and trait prevalence. As an example of a complex
interaction, two causative variants may interact in a neutralising fashion
(i.e. the effects of one variant are cancelled out by another variant). In this
sort of case, a simple one-way association test would not work as expected,
retaining a lack of observed association even when there is a strong signal
(Pickrell et al., 2007). Other non-linear interactions between different mark-
ers would also reduce the effectiveness of an association test to determine
informative markers.
†It has an exponential complexity with respect to the number of factors studied in

tandem.
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The ideal situation for investigating complex traits at a genetic level is an
analysis of the effectiveness of every possible set of marker interactions. Once
such an analysis is carried out, the best set of markers will be identified as
being the set that is most informative for classifying individuals into groups.
However, the computational requirements for such testing combined with
the increased danger of overfitting due to small cell sizes, make such an
analysis effectively useless when carried out on the total marker set (see
Province and Borecki, 2008).

The bootstrapping approach as outlined here does not consider combi-
nations of genetic markers. However, it provides an efficient way to reduce
a large set of markers down to a much smaller set. This smaller set can
then be used by programs that determine multi-way interactions, which
are typically computationally expensive procedures.

5.5 Conclusion

The application of the bootstrap sub-sampling process to marker selection
is a useful complement to current GWAS. It can be used to remove potential
spurious associations that are specific to the tested groups, and may help
to reduce the set of individuals required for initial large-scale genotyping.
Bootstrap sub-sampling acts as an internal validation of association signals,
which helps to reduce the likelihood of false positive associations in pub-
lications. This, in turn, would hopefully make clinicians less likely to use
these false positive associations when evaluating disease risk.

The method for identifying a minimal set of SNPs is an association-
based method that discovers genome-wide combinations of SNPs for the
identification of a particular trait. The method relies on a clear distinction
between trait and non-trait individuals, and in situations where the trait of
interest is not easy to qualify, the identified SNP set may not reflect the true
distinction between those groups. In addition, the non-genetic influence
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for the expression of a particular trait can mean that even when a trait
can be classified completely, the genetic component of that trait (the only
component able to be identified by any DNA marker-based method) will
not always determine the observed phenotype.

The signature set of 5 SNPs identified here should be suitable for esti-
mating T1D risk for screening purposes, particularly in combination with
other clinical parameters, in at least the UK population. It is essential that
this set be externally validated in other populations, but given reasonable
validation the set may also be used for a global indicator of T1D risk.



Chapter 6

Conclusions and General
Discussion

The process of research carried out in this thesis led to the development of
two sets of genetic markers: one set reliably determines Maori-European
admixture in New Zealand Maori populations, and another set can be used
to screen for individuals who are at high risk for Type 1 Diabetes. Under-
standing of genetic variation in the Maori population has also progressed,
from noticing reduced genetic diversity in Maori compared to other popula-
tions, to identifying some of the genetic signatures that are unique to Maori.
These genetic patterns probably have clinical significance, and appear to be
present throughout the genome.

At this point, it is appropriate to step back, examine the key discoveries
of this thesis, and consider how these discoveries can work together to
open more avenues for further investigation. The key findings from each
chapter are abstracted in the next four sections (Section 6.1 to Section 6.4),
and a discussion of linked themes follows (Section 6.5 onwards).

163
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6.1 The ADH Gene Region

Alcohol response is a genetically influenced trait, and variation in alc-
ohol consumption is found between New Zealand populations. Maori
(especially young men) tend to drink less often but consume much higher
volumes of alcohol when compared to Europeans. Chambers et al. (2002b)
found that a specific variant of the ADH1B gene (ADH1B*47His) is as-
sociated with protection against alcohol dependence. This research was
extended in Chapter 2 by typing eight additional Single Nucleotide Poly-
morphisms (SNPs) within the Alcohol Dehydrogenase (ADH) gene region
in the Maori population. Substantial Linkage Disequilibrium (LD) was
found at two areas within the ADH gene region: one near the ADH1B gene,
and another near the ADH4 gene.

While common and rare haplotype frequencies were found to be sim-
ilar in both Maori and European populations near the ADH4 gene, they
differ near the ADH1B/ADH1C genes. This disparity demonstrates the
need to consider haplotypes when investigating association at a particular
genetic locus, and that SNP associations will not necessarily be consistent
for different populations.

6.2 MAOA Gene Structure

The Monoamine Oxidase A (MAOA) gene was another candidate gene for
influencing alcohol consumption behaviour. (Gilad et al., 2002) reported
evidence for positive selection within the human MAOA gene region on
chromosome X in seven populations. The original study lacked an analy-
sis of any Polynesian populations, but consideration of migration history
suggested that a similar study would be appropriate for the Maori popul-
ation. A comparison of genetic variation between Maori and non-Maori
populations in Chapter 3 found a substantial reduction in genetic diversity
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at the MAOA gene locus, and an increase in the frequency of the most
common MAOA gene variant in the Maori population. The results support
the findings of Gilad et al. (2002), but also demonstrate that a 5-SNP haplo-
type (XGCCG) can describe the gene variant under selection, and that this
variant has also undergone positive selection in the Maori population.

The controversy based around research on the MAOA gene (see Ap-
pendix B) led to a cessation of gene-based research for this PhD project,
but also drove research towards two genome-wide analyses of genetic
variation.

6.3 Maori Genomic Ancestry

In Chapter 4, a bootstrap sub-sampling method was developed to generate
a set of markers for the investigation of Maori-European admixture within
Rakaipaaka, a tribe of Maori from Hawkes Bay. This bootstrapping method
was tested with a trait that is 100% heritable, namely New Zealand Maori
genomic ancestry.

Genotype data from 30 Maori individuals and 90 European individuals
were compared at 300k autosomal polymorphisms, the first genome-wide
study carried out in in a Maori population. After bootstrap sub-sampling
and evaluating the effectiveness of marker sets of different sizes, a validated
set of 10 genetic markers was constructed that estimates individual Maori
ancestral fraction with high accuracy (median = 98%, IQR = 95-99). These
markers were then used to determine the variation of Maori-European
ancestral fraction within Rakaipaaka, and were also used to provide an
estimate of the amount of European ancestry within Rakaipaaka (28.7%).
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6.4 Validation for T1D Associations

Chapter 5 develops the bootstrap sub-sampling method further by apply-
ing the method to a domain outside population genetics, a genome-wide
association study for Type 1 Diabetes (T1D).

Previous literature on Type 1 Diabetes identified some DNA variants
that are associated with the disease. These variants, even in combina-
tion, are not particularly informative for distinguishing between T1D cases
and control individuals using genetic information alone (AUC = 0.7284).
Population sub-sampling helped to filter out noise from genome-wide
association data, and increase the chance of finding useful associative sig-
nals. Subsequent filtering based on marker linkage and testing of marker
sets of different sizes produced a 5-SNP signature set of markers for T1D.
The combination of markers used in this set, primarily from the HLA re-
gion on chromosome 6, is considerably more informative than previously
known associated variants for predicting T1D phenotype from genetic data
(AUC = 0.8395). Given this predictive quality, the signature set may be
useful alone as a screening test for T1D, and would certainly be useful as a
screening test in combination with other clinical cofactors for T1D risk.

6.5 A Combination of Different Approaches

This thesis necessarily describes two different approaches for research.
Chapters 2 and 3 investigate candidate genes for influencing alcohol de-
pendence phenotypes, planned out at the beginning of this PhD research
project. Both the ADH gene region study and the MAOA study involved
an analysis of additional genotyping carried out on Maori individuals as a
follow-up to results in 2002 papers (Chambers et al., 2002b and Gilad et al.,
2002 respectively).



CHAPTER 6. CONCLUSIONS AND GENERAL DISCUSSION 167

The subsequent two chapters of the thesis represent research carried out
after SNPchip genotyping of a Maori population (Chapter 4), and publicly
available SNPchip data from a UK case-control study (Chapter 5); both
these datasets were not available at the beginning of the research project,
so the outcomes of these two chapters could not be predicted at the time
that the thesis project began. However, it was known at the time of starting
research that genome-wide data would be available about a year into study.
The RHAS study was based on SNPchip genotyping that was carried out
near the end of 2006, while the T1D association study was based on SNPchip
data that became publicly available in 2007 (Wellcome Trust Case Control
Consortium, 2007).

6.5.1 Recombination and Haplotype Block Genetics

Chapters 2 and 3 investigate the ADH genes and MAOA gene region re-
spectively, with considerable emphasis on the haplotype block patterns
observed in the Maori population. It it important to realise that most genetic
variation in human populations is due to recombination (see Introduction,
Section 1.2.4), and this is particularly important for recent family history
(i.e. 1-5 generations back). An understanding of the physical structure of
the genome (where particular genes and genetic sequences lie with respect
to each other) can help to explain why particular traits, diseases, or other
responses to environmental factors are more likely to be inherited together.

Both the ADH and MAOA gene studies were carried out on the same
group of Maori individuals, although males were of primary interest in the
MAOA study. Maori individuals were compared with a number of different
populations within the MAOA gene, but compared only to the European
population at the ADH gene region. The MAOA study concentrates on a
single gene, while the ADH study considers block structure across a cassette
of related genes. In the MAOA study, the common 5-SNP haplotype in
Maori matched the common 5-SNP haplotype in other populations. For one
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haplotype block near ADH4, the common variant in Maori was identified
as the common variant in European, but for another block (near ADH1B,
ADH1C), the common Maori variant matched the rare variant in European.
Marker densities differed between the two studies, about one marker per
8k for MAOA (13 markers in a 90kb region), and one marker per 45k for
ADH (7 markers in a 400kb region).

Initial genotyping and analysis carried out in Chapter 4 demonstrated
large allele frequency differences between Maori and European populations
for many SNPs throughout the genome (see Chapter 4, Figure 4.4). This
supports the hypothesis that the two populations are different across the
entire genome.

The results from Chapter 2 suggest that haplotype block patterns will
be different throughout the ADH gene region. A more detailed analysis
(i.e. higher density marker coverage) of haplotype block structure is recom-
mended, as well as experimental tests that compare alcohol response at a
haplotype level, rather than at an allele level.

Chapters 2 and 3 demonstrate that haplotype-level differences exist
between Maori and European populations at two gene regions, and that
these differences probably exist throughout the genome. These populations
differ at a haplotype level within these regions (multiple combinations of
genetic variants occurring at the same time), therefore clinical outcomes are
less likely to match predictions derived from previous studies in different
populations.

6.5.2 Bootstrap Sub-sampling and Internal Validation

The two bootstrap sub-sampling studies (a population study in Chapter 4,
and an association study in Chapter 5) differ substantially in many ways,
but they achieve similar outcomes; they each produce a small set of SNPs
that can be used to describe the phenotype under test. The effectiveness of
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the bootstrapping process in generating a validated set of markers, both for
Maori ancestry and for Type 1 Diabetes, demonstrates the potential utility
of this process for a wide range of different heritable traits.

Some differences reflect the evolution of the bootstrapping method.
Delta (or allele frequency difference) was used as an association statistic
in Chapter 4, but it was realised that delta failed to capture some forms
of genetic differences, so a genotype χ2 test was used in Chapter 5. The
top 1000 markers were chosen in each bootstrap for investigations of Maori
genomic ancestry, and the top 5% of markers were chosen for T1D associa-
tions. It was not beneficial to repeat discovery of markers in the genomic
ancestry study with the revised method, because the set of markers for
validation and community genotyping had been chosen (and validation
populations had been genotyped) prior to these realisations. However, the
genome-wide differences in allele frequencies between Maori and Euro-
pean populations has meant that the methodology differences made little
impact on the outcome of the study.

The statistic used to evaluate the effectiveness of marker sets was also
different between the two studies. A comparison of the validation plots for
each study (Figure 4.9 and Figure 5.7) demonstrates why this was necessary.
The Area Under the Curve (AUC) for the Maori ancestry study is effectively
1 (0.9999) because there is only minimal overlap in Q values for the two
populations. However, the overlap of case and control groups for the
T1D study means that the an AUC analysis can be used to compare the
usefulness of different marker sets. While the false positive / true positive
curve used in AUC analysis is a more descriptive result for diagnostic tests,
the difference of means test is clearly more informative for populations that
are distinct at a genetic level.

Other differences were necessary due to the reduced sample size of the
RHAS study. The bootstrap sub-samples were limited to 25 individuals
for both Maori and European populations, because it was assumed that
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choosing half the Maori population for each sub-sample (i.e. 15 individ-
uals) would be too small a group of individuals to produce informative
results. However, it is unlikely that the proportion of individuals in each
bootstrap sub-sample had an effect on the outcome of the study as allele
frequency differences for the 59-SNP consistent set in Chapter 4 were all
above 0.7 (see Figure 4.6). To guard against potential genotyping errors
and misclassification of ancestry due to small discovery group sizes, more
markers were included in the final SNP set for the genomic ancestry study
than strictly necessary based on results (i.e. 10 SNPs rather than 6 SNPs).

While the initial marker set sizes are quite different (500k on an Affym-
etrix SNPchip for the T1D association study, 317k on an Illumina SNPchip
for the genomic ancestry study), both platforms capture a similar amount
of common variation in human populations (Ele Zeggini, Personal Commu-
nication, 2007†). The two final, validated marker sets cover quite different
regions, and likely reflect the traits that were used to separate the groups in
the two studies: a genome-wide set of markers from population groups sep-
arated by Maori/European ancestry in Chapter 4, and a marker set largely
restricted to the HLA region for groups separated by T1D case/control
status in Chapter 5.

Given the large number of T1D-informative SNPs found near the HLA
region prior to linkage filtering (see Chapter 5, Figure 5.5), there is likely to
be more variation that alters genetic risk for T1D within this region beyond
what can be captured from SNPs alone. As such, it would be a good idea to
attempt full sequencing of some parts of this region, in conjunction with
validation of either this 5-SNP signature set or a slightly larger group of
markers taken from the 458-SNP consistent set. This validation should be
carried out for T1D case/control groups sampled from other populations
(e.g. T1D studies from dbGaP) to reduce the chance of population-specific
markers being identified as having good global association with T1D.

†See Appendix D, Section D.3
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Other possible extensions of work presented in this thesis lie in the area
of genetic risk calculation. The bootstrap sub-sampling studies carried out
in Chapters 4 and 5 demonstrate that bootstrapping association results
through population sub-sampling and linkage refinement is an effective
tool for identifying useful markers linked to heritable traits. This procedure
should extend to other traits with a strong genetic basis. Suitable targets
may include drug response, and diseases where early intervention provides
benefits.

6.5.3 Tractability and Bootstrap Sub-sampling

An issue that was largely passed over when considering bootstrap sub-
sampling results is the number of bootstrap sub-samples that were used to
generate a consistent set of SNPs. The number of sub-samples used here
(100) is just below the range of 100 ∼ 200 recommended for classification
algorithms in computer science applications over 20 years ago (Jain et al.,
1987). The number of iterations used for the structure program† is typically
around 100,000 for human populations (Falush et al., 2003), and 10,000 for
other animal populations (Falush et al., 2007), which may better represent
an accepted value of sub-samples given computing power available today.
The main reason for the selection of 100 sub-samples for bootstrap sub-
sampling for this research project has been one of tractability – a typical
genome-wide analysis (i.e. 500k markers, 100-1000 individuals) with 100
bootstrap sub-samples using code written by the author will take about 30
hours on a present-day desktop computer. The bootstrap results file size
scales linearly based on the number of sub-samples (about 1.2GB for the
T1D investigation of Chapter 5), and the time taken appears to also scale
linearly based on the number of sub-samples.

More bootstrap sub-samples do appear to reduce the size of the consis-
tent set of markers – a re-analysis of Maori data with 1000 sub-samples
†structure does not use population sub-sampling, but it does use repeated simulation.
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produced a consistent set around half that of the 100 sub-sample set (data
not shown) – but the time taken outweighed any benefit gained by this in
the present studies. It is likely that a more efficient bootstrap sub-sampling
program will be developed in the future, permitting a greater number of
sub-samples to be attempted within a reasonable time period.

6.6 The Potential for Low-cost and Informative

Research

Although Chapters 4 and 5 emphasise bootstrap sub-sampling, this sam-
pling method should not be the only tool used to identify mutations as-
sociated with traits and diseases with a genetic component. Similarly, the
haplotype block approach for analysing gene structure (used in Chapters 2
and 3) should not be the only tool used to investigate gene variation and
physiological effects. These tools are emphasised in this thesis as methods
that are often overlooked by researchers investigating disease association
and gene function.

An approach that uses both of these tools should produce useful results
for a number of genes typed in the Maori population. The Maori studies
in this project have been small in terms of population size (47 individuals
in the studies for the ADH and MAOA gene regions, 30 individuals in
the initial genome-wide study of Chapter 4), yet have led to insightful
discoveries. The marker coverage for currently available genome-wide
SNPchips will exceed that of both haplotype block analyses in this thesis
(1M SNPs covering 3Gb, or around one SNP per 3k), so follow-up studies
for at least those regions could be carried out with a similar group size
and a high expectation of clinically informative results. Other genes that
may be a useful target for a combined study are those that are candidate
genes for diseases with different health outcomes for Maori and European
populations (see Introduction, Section 1.5.5).
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In conclusion, consider a more general situation in which the two ap-
proaches are combined, i.e. an internally-validated genome-wide analysis
combined with a haplotype approach to investigate association. When
investigating mutations and their causal relationship to disease, it may not
be appropriate to study single genetic variants, as they could be linked to
another variant on the same haplotype block. The investigations in this
thesis that looked at haplotype block structure in Maori (Chapters 2 and 3)
demonstrate that this is indeed the case, and the methods developed to sup-
plement genome-wide association studies (Chapters 4 and 5) should help
to make any future discoveries of association more robust to the genetic
complexities that are inherent in human populations.
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Kōrero o Te Tairāwhiti (issue 17), The Gisborne Herald, Gisborne, New
Zealand.

Wall, J. D. and Pritchard, J. K. (2003). Assessing the Performance of the
Haplotype Block Model of Linkage Disequilibrium. American Journal of
Human Genetics , 73, 502–515.

Walsh, S. J., Triggs, C. M., Curran, J. M., Cullen, J. R. and Buckleton, J. S.
(2003). Evidence in Support of Self-Declaration as as Sampling Method
for the Formation of Sub-Population DNA Databases. Journal of Forensic
Science , 48, 1091–1093.

Wang, E., Ding, Y.-C., Flodman, P., Kidd, J. R., Kidd, K. K., Grady, D. L.,
Ryder, O. A., Spence, M. A., Swanson, J. M. and Moyzis, R. K. (2004). The
Genetic Architecture of Selection at the Human Dopamine Receptor D4
(DRD4) Gene Locus. American Journal of Human Genetics , 74, 931–944.

Wang, E. T., Baldi, P. and Moyzis, R. K. (2006). Darwin’s Fingerprint:
Accelerated Recent Adaptive Evolution in Humans. In International
Congress of Human Genetics The American Society of Human Genetics.
Free paper #0558.

Wang, J., Hinrichs, A., Stock, H., Budde, J., Allen, R., Bertelsen, S., Kwon, J.,
Wu, W., Dick, D., Rice, J., Jones, K., Nurnberger, J., Tischfield, J., Porjesz,
B., Edenberg, H., Hesselbrock, V., Crowe, R., Schuckit, M., Begleiter, H.,
Reich, T., Goate, A. and Bierut, L. (2004). Evidence of common and



BIBLIOGRAPHY 195

specific genetic effects: association of the muscarinic acetylcholine recep-
tor M2 (CHRM2) gene with alcohol dependence and major depressive
syndrome. Human Molecular Genetics 13, 1903–1911.

Wang, N., Akey, J. M., Zhang, K., Chakraborty, R. and Jin, L. (2002).
Distribution of Reconbination Crossovers and the Origin of Haplotype
Blocks: The Interplay of Population History, Recombination, and Muta-
tion. American Journal of Human Genetics 71, 1227–1234.

Weir, B. S. and Cockerham, C. C. (1984). Estimating F-statistics for the
Analysis of Population Structure. Evolution 38, 1358–1370.

Wellcome Trust Case Control Consortium (2007). Genome-wide association
study of 14,000 cases of seven common diseases and 3,000 shared controls.
Nature 447, 661–678.

Whaanga, J. (2008). Rhas background. Health and Ancestry Study Seminar,
ESR.

Whittle, P. M. (2010). Health, inequality and the politics of genes. The New
Zealand Medical Journal 123, 67–75.

Whyte, A. L., Marshall, S. J. and Chambers, G. K. (2005). Human evolution
in Polynesia. Human Biology 77, 157–177.

Zhao, H. X., Stenhouse, E., Sanderson, E., Sopert, C., Hughest, P., Cross,
D., Demaine, A. G. and Millward, B. A. (2003). Continued rising trend
of childhood Type 1 diabetes mellitus in Devon and Cornwall, England.
Diabetic Medicine 20, 168–170.

Zweig, M. H. and Campbell, G. (1993). Receiver-Operating Characteris-
tic (ROC) Plots: A Fundamental Evaluation Tool in Clinical Medicine.
Clinical Chemistry 39, 561–577.



196 BIBLIOGRAPHY



Appendix A

ADH Paper

A study of the alcohol dehydrogenase genes (see Chapter 2) was printed
in the Journal of Human Genetics in February 2007 (Hall et al., 2007). The
print version of this thesis reproduces the paper here, but this has been
removed from the electronic version at the request of the journal editors.
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Appendix B

MAOA Controversy

On Thursday 10thAugust 2006, while at the International Congress of Hu-
man Genetics (ICHG) the author was made aware of some of his research
on the MAOA gene being reported in a daily newspaper in New Zealand
(The Dominion Post, 2006). His research supervisor, Dr. Rod Lea, spent
the rest of the day talking to a number of different media groups in New
Zealand, trying to provide the public with a more balanced account of their
research group’s MAOA gene research.

The media reaction to Dr. Lea was surprising, considering that he
had not mentioned the prevalence of MAOA gene variants except as a
brief aside during his Tuesday, August 8th talk on nicotine replacement
therapy at ICHG (Lea et al., 2006). It was after that talk that he had been
initially approached by the media about his research. Most of the media
attention, however, seemed to be due to the abstract of a poster at the same
conference, with a title of “Tracking the Evolutionary History of the Warrior
Gene Across the South Pacific” (Lea et al., 2006).

The low-expression 3-repeat variant of MAOA-uVNTR was labelled as
a “Warrior gene” during the American Association of Physical Anthropolo-
gists Meeting (Gibbons, 2004), a label that was used in this poster, and also
by Dr. Lea during his talk at the Congress. Despite the bad experiences in
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the scientific community in labelling genes or variants with seemingly infor-
mative (at the time of discovery) or humourous names (see Maclean, 2006),
this practice still continues. In fact, a genetic variant of AVPR1a has been
labelled in a Nature news article as a “ruthlessness gene” (Hopkin, 2008),
which evokes similar images to that of the Warrior gene label attached to
the MAOA promoter variant.

The discussion time for the MAOA poster was about 4 hours after Dr
Lea’s talk, and at that time the author (being the researcher who generated
the presented data) was standing next to the poster, ready to talk about the
results of that research. However, he was not knowingly approached by
anyone from the media about his results, which would be expected if the
media concern had actually been about this research.

The controversy over the research entered the New Zealand public
domain in the Dominion Post (the local newspaper for Wellington, New
Zealand) on the 9thAugust with a rather incendiary title, “Maori violence
blamed on gene” (The Dominion Post, 2006). Dr. Lea accepted an offer
of an interview on Campbell Live, a New Zealand current-affairs news
show, during which he was able to take some of the heat out of the debate.†

Responses from other scientists followed, with Merriman and Cameron
(2007) and Crampton and Parkin (2007) expressing their viewpoints in the
March 2nd, 2007 edition of The New Zealand Medical Journal. While these
responses were valid in rejecting a direct causative link between MAOA
variants and aggressive behaviour, they did not appear to consider the
role that the media had played in getting this suggestion of a causative
link into the public arena. Lea and Chambers (2007a) reported preliminary
results of this MAOA gene research in the same journal, together with
some comments on the responses of Merriman and Cameron (2007) and
Crampton and Parkin (2007). Discussion on this issue still continues (see
Whittle, 2010).
†http://www.3news.co.nz/TVShows/CampbellLive/Stories/tabid/817/

articleID/12000/cat/100/Default.aspx

http://www.3news.co.nz/TVShows/CampbellLive/Stories/tabid/817/articleID/12000/cat/100/Default.aspx
http://www.3news.co.nz/TVShows/CampbellLive/Stories/tabid/817/articleID/12000/cat/100/Default.aspx
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B.1 Cultural Selection in Human Populations

Evidence for recent selection in the human genome was presented at the last
International Congress of Human Genetics (Wang et al., 2006). In his talk,
Robert Moyzis speculated that a developing culture may shape the genome.
Comparing the recent evolution of the human genome with results from
corn and other domesticated species introduces the possibility that we have
“accidentally” domesticated ourselves.

His theory was based on a large number of variations in the human
genome that were in quite a high frequency – in particular, a high frequency
of common bad diseases. These frequencies are not predicted by neutral
theory, and appear to be driven because of natural selection, probably
happening about 40,000 years ago. An LDD test was used (outlined in
Wang et al., 2004) that identified about 2500 sites that exhibited a selection
pattern in the human genome, a much greater number than had been
expected. The selective sites were mostly related to pathogen response,
neuronal function, the cell cycle and DNA function.

These mutations, surprisingly, are still substantially polymorphic in the
human population. It was noted that even a modest selection coefficient of
5% (i.e. individuals with a selected-for variant produce 5% more grandchil-
dren than those without the variant) should drive a variant to fixation over
about 200 generations. Looking at the population growth curve, it was sug-
gested that the population was expanding faster than what was required in
order for these variants to become fixed – exponential population growth
has meant that fixation of alleles is less likely to occur.

B.2 The case for Maori Cultural selection

It is reasonable then to assume that there has been some cultural selection in
the Maori population. Only the bravest among the Polynesian population
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would have decided to take the initial long journeys in large canoes across
the Pacific, and this inclination to take risks would have been fortified by
land wars and revenge battles after settlement and population expansion
in New Zealand (Whittle, 2010). This cultural selection of risk-takers may
have had an effect on the genetic structure of the Maori population, and as
a result, produce some selective signals that can be observed in the genome.

Considering the limited founding population size and geographic iso-
lation, the genomic patterns of the Maori population will likely display
distinctive haplotype signatures. In addition, haplotype blocks should
extend over larger genetic distances and have markedly reduced diversity
compared to other human populations. It is expected that selective signals
in the genome will be able to be detected more easily due to these factors.

B.3 MAOA And Risk-taking Behaviour

Caspi et al. (2002) investigated whether a repeat polymorphism at MAOA-
uVNTR (which alters MAOA expression) could predict if maltreatment
during childhood was carried through to antisocial behaviour at age 26. It
was found that individuals with severe maltreatment and high MAOA ac-
tivity were able to regulate their own behaviour in a similar fashion to those
with no maltreatment during childhood, but this capability of moderation
was not present in individuals with low MAOA activity. A separate study
has shown that brain MAOA activity correlates inversely with aggression
levels (Alia-Klein et al., 2008), which supports the aggression association
with low expression variants of the promoter region. The association of
this region with aggressive, risk-taking behaviour indicates a plausible
candidate for a gene region that has been under selection during the risky
Polynesian voyages and later land wars (Whittle, 2010).

An alternative representation of the results can be considered, namely
that individuals with low MAOA activity are more likely to continue the
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customs and behaviour of their parents. This hypothesis removes the em-
phasis of aggressive behaviour in association with this gene, and instead
considers how individuals may respond to learning and reward pathways.
However, any association analyses must be interpreted with caution. Ge-
netic contributions can never be treated as absolute, as discussed previously
in Chapter 3, Section 2.2.4. Both Caspi et al. (2002) and Guo et al. (2008)
point out some complexities of gene-environment interactions for MAOA,
noting that associations can be interpreted differently depending on the
environmental interactions being tested.
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Appendix C

ICHG

The International Congress of Human Genetics (ICHG) 2006 was based
in Brisbane, Australia, and lasted from 6thAugust to 10thAugust. There
were about 1500-2000 people attending the Congress, which was held
at the Brisbane Convention and Exhibition Centre. I attended 60 oral
presentations, presented two posters, and was listed as a contributing
researcher on two other posters.

The congress only happens once every five years, so it was great to be
able to have the opportunity to attend this large conference in my first year
of study. What I got out of ICHG was more of an understanding of Human
Genetics as a very broad subject area, and some confidence that the research
I am doing for my PhD is novel, useful, and interesting to others. I chose
to go to a number of seminars that were outside my area of study, and in
many cases was able to find some way to approach problems that would be
useful in my own research. In addition to the attendance at talks, I was also
introduced to a number of people who have been working with Rod Lea,
Geoff Chambers, and myself over the course of my PhD project. Overall,
the conference has helped me to get an idea of where my research lies with
respect to other human genetic research, and to develop links with people
who I can advance my career with in the future.
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If I had only attended talks that were within the range of what I was
studying, then I would likely have missed out on the talks about educa-
tion. I sneaked into the last few minutes of Peter Farndon’s talk, and was
disappointed that I had not dropped by earlier for that. He likened the
current method of teaching genetics to being given a 747 flight manual at
the beginning of a flight, and being expected to understand the mechanics
of flight in order to be able to understand the in-flight speed indicator. In
other words, he was suggesting that we don’t consider the population able
to understand genetics until they have been taught everything we consider
as necessary before entering research, even though there is a much smaller
subset of key concepts needed for this understanding. MaryAnne Aitken
said that we should never start teaching genetics with Mendel’s peas, some-
thing that has very little relevance in today’s understanding of genetics.
She said that the students may have a knowledge of the terms through the
media and TV programs such as CSI, but don’t have an understanding of
the underlying meaning of these terms. Joseph McInerney suggested that
viewing every student as a potential bench scientist was not necessarily the
best approach for teaching. Joseph also pointed out that graduate students
are the worst at teaching to a high-school level because they have very
specific learning, and do not tend to study outside their own course.

Genomic structure and structural variation was a common theme in
many of the talks that I attended, one of the things that the current human
genome sequence is not able to show. Ewan Eichler noted that most ap-
proaches cannot detect inversions or novel sequences. His group checked
one person against the reference sequence, choosing 300 sites at random
that had structural differences, and found that 2% of these sites were clini-
cally relevant. He also noted that a 5Mbp region near chromosome 1 was
a structural variation hotspot. Stephen Scherer highlighted that no single
technology will capture all genome variance – one example of this is that
SNP tests are not typically able to detect DNA duplications. Nigel Carter
compared a BAC assay with an Affymetrix 500k SNP chip, and showed that
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there were variants throughout the genome that were only picked up by
one of these methods. The BAC assay was better at detecting duplications
and complex variations, while the Affymetrix array was good at detecting
deletions.
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Appendix D

HapMap Training Courses

During the first week of of April, 2007, a Wellcome Trust course was held,
Working With The HapMap. The course that I attended was held at the
Sanger Centre in Hinxton, Cambridge (UK). There were 30 participants,
coming from all over the world. It was an intensive, 4-day course that
introduced participants to the HapMap project and a number of different
genetic analyses that could be carried out using the publicly available data.
All of the software demonstrated during the course is freely available for
download. Wellcome Trust have a very open policy about their information
and software, and it is generally made freely available to anyone who wants
to use it.

D.1 Merging of rs Numbers

Mike Feolo gave a talk at the Cambridge course on the dbSNP database.
He talked about how new Single Nucleotide Polymorphisms (SNPs) were
submitted, compared against currently existing SNPs, and merged if they
were already in the database. The database RefSeq(rs) numbers are updated
about twice a year, and whenever there is a new build of the human genome
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sequence. As a result of these builds, some rs numbers are merged to
account for increased knowledge of mutations, a process that I was not
aware of. This has an impact on my research, because I have received
data from an Illumina 317k SNPchip, which I compare to the HapMap
dataset. The RS numbers from the Illumina chip are for a specific dbSNP
build, which may not be fully consistent with the most recent build (from
which the HapMap data is retrieved). Mike has recommended that both
the build number and the rs number are used when referring to a specific
mutation. Sharma Buch pointed out that it was possible to ask Illumina
for information about the merged rs numbers for their chips, which would
allow datasets from different builds to be used together.

D.1.0.1 Haplotype Blocks and Linkage

Paul de Bakker noted that researchers have moved away from primarily
using D′ as a descriptive statistic in association studies, because it is not
considered to be relevant for association testing. Researchers will typically
use D′ when investigating haplotypes and haplotype blocks, as this statistic
gives an indication of the recombinational history between two SNPs. This
apparent history can be misinterpreted due to recurrent mutations and
back mutations. In a case where new mutations arise on a single haplotype
background,D′ will not be reduced, because these mutations do not suggest
that a recombination event has occurred. On the other hand, such mutations
do affect r2 values, so for studies where the mutational histories of SNP are
more important than recombinational histories (as with association studies),
r2 is seen as a better choice. However, it is a good idea to report both
values in situations where an estimate of the degree of interaction between
markers was required.
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D.2 Data Mining Utilities

Mike also introduced a new program to integrate with dbSNP called Ge-
nome Workbench. The program allows zooming from chromosome level
to sequence level, extraction of data, filtering, and many other tools that
reduce the effort in finding genes (or mutations) of interest. Mike also
introduced a new database of human variation, called dbGAP, that aimed
to store all individual data – including SNPchip, biochemical, and pheno-
typic information – for various NCBI-funded research projects. Aggregate
information will be available for most people accessing the site, but further
access will require appropriate approval through a submission process to
NCBI.

Albert Vernon Smith demonstrated the HapMap website,† showing how
most tracks in the browser were customisable, and attempted to show the
best possible summary of information at each level (in particular, the SNP
display). It is possible to output phased haplotype tracks and tag SNPs,
as well as the Haploview triangle plot. In addition, it is possible to add
other data to the tracks for display in the browser. The data tracks can
then be downloaded as a high-resolution SVG file for submission to jour-
nals. Another function available in the browser is the ability to download
genotype-level data (including Phased Haplotype Data) for further analysis
using other programs. For situations where such a download is not enough,
there is a hapmart website, which allows a user to select many different
combinations and filtering of data and output options. Albert also demon-
strated the new version of Haploview, which supports the import of a few
other data types in addition to the Linkage format previously supported.
Haploview is now able to download HapMap data from the website from
within the program, and is building up support for PLINK data files.

PLINK was demonstrated briefly by Paul de Bakker. It is a command-
line driven software package that carries out many useful genome wide
†http://www.HapMap.org

http://www.HapMap.org
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association analyses, and has modular code that allows additional analyses
to be coded in without too much effort. The package produces summary
statistics, carries out association analyses and IBD estimates, and is de-
signed to do its calculations fast.

All the software demonstrated during the course is freely available for
download. Wellcome Trust have a very open policy about their information
and software; all data and software are freely available to anyone who
wants to use them0.

D.3 Genome Coverage

Ele Zeggini, presented a few statistics relating to genome coverage for the
HapMap populations. Covering 70% of the ≈ 7 million SNPs in HapMap
(i.e. capturing 70% of the total genetic variation) would require a SNP
density of around 6-10kb (depending on how aggressive the tagging for
SNP selection was). This results in SNPchips of around 300-500k for the
whole genome – 300k for SNPs selected via a tagging mechanism, 500k for
SNPs selected at random. These values happen to be about the level of
SNPs available on SNPchips currently. The Affymetrix chips tend to have
randomly selected SNPs, while Illumina chips are more geared towards
variation identified through HapMap. This suggests that either a 500k Affy-
metrix chip, or a 317k Illumina chip may be sufficient for a reasonable study
of genome-wide variation. While coverage for CEU, and to a lesser degree
CHB+JPT, populations is fairly high, the coverage for YRI populations is
much less (probably around 40%), so an idea of the study population ori-
gins is important before carrying out such investigations. For investigations
that need to go into a bit more detail early on, both Affymetrix and Illumina
are bringing out 1000k chips that are made up of about 500k SNPs, and
500k Copy Number Variants (CNVs).
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Jonathan Marchini compared the various SNPchips with a theoreti-
cal “HapMap Chip”, and demonstrated that all chips except the Affym-
etrix 100k had similar effective power for detecting associations (RR=1.7,
MAF=[0.1,0.5]). Power reached around 80% for sample sizes of 1000, sug-
gesting that there may be quite a bit of luck involved in finding associations
in population sizes of less than 500 (where the power is around 40%).

D.4 Imputation of SNPs

Jonathan Marchini spoke about probability and Bayesian methods that
could be used to extract more information from data sets. He demonstrated
that it was possible to use the HapMap data to infer the confidence that an
untyped SNP may have a given mutation – this process is referred to as
imputation. The HapMap data give an excellent insight into the mutational
relationships between SNPs, allowing the addition of imputed SNPs into a
dataset to give a better idea of potential loci of disease. Jonathan carried out
confirmation studies of imputed SNPs, and noted that the error rate was
similar to that of the SNPchips. Of course, if an association were implied
for imputed SNPs, they should certainly be typed, but this process would
likely cost much less than using a more concise SNPchip for the initial
typing. An extension of the imputation process is assigning confidence
values of mutation to every SNP, allowing a researcher to include data that
would be discarded in a standard study.

D.5 ENCODE Regions

Manolis Dermitzakis discussed the availability of data from the ENCODE
regions. As part of the HapMap project, there are about 50 regions (500kb to
2Mb) of the human genome that have been sequenced in their entirety in 42
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individuals. The variants discovered within these regions were then typed
in all individuals in the HapMap population, providing a very detailed
insight into genomic structure across human populations. It was noted
that, in this set, there was on average one SNP per 300bp. This provides an
insight into the average expected variation within a sequence of DNA of
a given length, which would be useful in working out how much work is
required within a region to categorise the total human variation.

D.6 Recombination Hotspots and Defining Hap-

lotype Block Structure

Manolis Dermitzakis also spoke about the lengths of haplotype blocks that
were discovered in the HapMap populations. Comparing blocks between
populations, it was noticed that although there were areas in the genome
where recombination was more likely, very few regions had a point that
resulted in recombination all the time. The implications of this are that any
defined haplotype block definitions will not be absolute, and any models
of haplotype blocks must take into account these numerous points of “soft”
recombination. Current methods for defining haplotype block regions (e.g.
Gabriel, 2-gamete) result in absolute regions of recombination. In addition,
there is also no provision for overlapping blocks, or blocks within blocks,
both phenomenon that I have observed by looking at European data across
the Alcohol Dehydrogenase (ADH) gene region on chromosome 4. Both of
these observations would probably be able to be integrated into a recombi-
nation probability model that accounts for such recombination overlaps.
The feedback from the attendees at the course was that such models were
difficult to comprehend, and the GWAS method using mutational history
is easier (and is currently producing many useful results).

In addition, while recombination hotspots were discussed briefly, not
much was mentioned about the idea of mutation hotspots – genome loci
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that were more likely to have a mutational event. The hyper-variable HLA
region was mentioned, but reasons (structural or otherwise) behind this
variability were not known by the course participants.
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Appendix E

HUGO Symposium on Genomics
and Ethics, Law and Society

At the beginning of November 2009, a Human Genome Organisation Sym-
posium was held in Geneva on Genomics and Ethics, Law and Society:
Sequencing of Individual Genomics – Impact on Society and Ethics (GELS).
The symposium was attended by around 50 people from across the world,
representing a global group of people interested in the ethical applications
of genomic research. The Human Genome Organisation (HUGO) was set
up to promote international collaborative effort to study the human gen-
ome, and since the completion of the human genome reference sequence,
its focus has shifted to the study of issues related to knowledge of genetic
data.

E.1 The Thousand Dollar Genome

The completion of the human genome project has propelled genetic re-
searchers towards cheap, fast whole-genome sequencing for the masses.
Single molecule sequencing techniques promise to be the next significant
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stage in genome analysis, allowing sequencing of up to a billion DNA base-
pairs per run (Liu, GELS).† Even with 100× genome coverage (to correct
for sequencing, orientation, and alignment errors), this brings a 2-week
sequencing of a single human genome within reach – this is a time period
that would be considered reasonable for high-resolution genetic testing in
a clinical setting. Despite this speed, cost is still a fairly large barrier for
direct-to-consumer testing, as a 100× run on current sequencing platforms
costs about $400,000 (Liu, GELS). However, the cost for an accurate full
genome sequence is expected to drop quickly, bringing the target of a $1000
genome into the realm of possibility within the next five years.

E.1.1 Genome Sequencing and Informed Consent

Whole genome sequencing is happening, and at an accelerating pace. Mar-
jolein Kriek was selected for sequencing after the completion of genetic
sequences for Craig Venter and James Watson. As Marjolein is a clinical ge-
neticist, informed consent – an understanding of all the issues involved as a
pre-requirement to testing – was a given (van Ommen, GELS). Likewise, the
first 10 individuals who are participating in the Personal Genome Project
(PGP-10) underwent a fairly rigorous process (including a non-trivial test)
to demonstrate their understanding of issues involved in sequencing an
entire genome. Impressively, all these individuals have agreed to the re-
lease of their full genome sequence to the scientific community (and, by
extension, the public). This immense database of personal information can
describe a reasonable amount about a person, but as was relayed to Mar-
jolein at the end of her talk, you can learn more from a person by talking to
them than by reading their DNA.

The fact that well-informed scientists have gone through (or will go
through) the process to get their genome sequenced may result in other

†Speakers at the HUGO symposium are referenced with their last name and the tag,
“GELS”, as used here
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less-informed people leaping into full-genome sequencing without fully
understanding the consequences of their choice. A metaphor of the Judas
goat was provided to demonstrate concerns about this (Knoppers, GELS) –
abattoirs use a goat to lead sheep into a slaughterhouse†; the sheep willingly
follow the leader, not fully understanding the consequences of their actions.
The use of this metaphor emphasised that it is immensely important for
people to understand the impact genetic sequence exposure can have, not
just for them, but also for their children, parents, and other relatives.

E.1.2 Public Collaboration – Research 2.0

The speed of genomic technology advances suggests that there will be a
window of only a few years before the low cost of genetic testing will put
these tests within easy reach of most of the population, regardless of the
amount of training and knowledge that people have. Furthermore, if the
goal of an information-based economy is to get public data and results
to the public, there cannot be a requirement that people have degrees in
biology and/or genetics before having access to those data and results. The
current outlook for the next generation of research is an Internet-driven
approach, with massive collaboration and data sharing between research
participants (Avey, GELS). If investigators are not prepared for this explosion
of participant-driven collaboration, they will be in danger of getting lost in
the noise of public discussion.

†Evocative phrases were often used in the safety of the symposium environment to
remind participants about extreme views that should be considered in discussions.
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E.2 Consequences of Public Release of Genomic

Data

The initial impact of full-genome sequences for the people who have had
their genome sequenced seems to be largely media-derived. Marjolein
Kriek changed from a nobody scientist into someone who had captured the
interest of lots of journalists, and no longer needed to pay anyone to get a
good photo of herself (Kriek, GELS). Many expected questions were asked
of her, but also a couple that she hadn’t really thought about:

• Will your family still be able to eat the same stuff?

• Will you be able to choose your partner?

A genetic analysis may suggest that certain foods are not compatible
with a person’s genetic makeup, and possibly even that certain partners
may not be the best choice for producing healthy offspring. Knowing that
there is an enhanced genetic risk for a particular disease, it may not be okay
to carry out actions that increase the environmental risk for that disease (e.g.
a climbing career for someone with weak bones), particularly if a person
wishes to keep their health insurance premiums low. This is a particularly
sensitive area in the USA, where insurance may be refused if someone is
considered high-risk. These personal concerns also apply to relatives to
some extent. Some component of the genomic sequence will be shared,
possibly also exposing some family secrets that were not intended to be
made public knowledge.

E.2.1 The True Impact of Public Release

Despite concerns, the public release of full genome sequence data has, so
far, not resulted in substantial setbacks for those people. Simply, everything
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that could go wrong and should go wrong. . . hasn’t (Knoppers, GELS). This
does not mean concerns should be ignored, but as it stands, society in
general seems to have a fairly reasonable and measured approach to how it
deals with public exposure of genetic data.

E.3 Defining Rules for Genetic Patents

Sequence data for novel genetic variants has been used as part of patent
applications in an attempt to attach a commercial value to DNA. These
attempts have mostly been rejected, because genetic sequences, in them-
selves, cannot be used to make anything. There was a recent legal case on
Expressed Sequence Tags (ESTs) – short DNA sequences that tag particu-
lar genetic regions, attempting to clarify whether or not these sequences
could be patented. The patent offices cannot set the rules under which new
patents are granted, but can receive new types of patents (such as ESTs) that
there are no current rules for. When new types of patents are considered,
the office needs to predict what might be held up in courts, even though
it may be many years before applications are tested in the court system.
When the ruling was finally made, It was pointed out that ESTs were only
an intermediate process, and unless they were associated with a specific
utility and real-world use, the patent application should be rejected. This
case was brought to the courts about fifteen years after the first patents for
ESTs were applied for, demonstrating how difficult it can often be to decide
on what rules should be applied to new applications (Toupin, GELS).

E.3.1 The Futility of Genetic Patents

There are two main practical arguments against patents: patents hurt the
innovation process, and patents hurt downstream research. Although lack
of innovation seems to be a common argument by opponents of patents,
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there does not seem to be any evidence of the impact of research volume
on patented genes – they seem to be doing just as well as genes that have
no patents (Caulfield, GELS). With regards to affecting downstream res-
earch, patents (by design) provide inventors with a monopoly to prohibit
external use of patented inventions. However, in many cases researchers
are knowingly breaching patent licenses in order to discover new things
about patented genes. There is little evidence to suggest that patents are
needed (i.e. they don’t seem to promote innovation), and patents tend
to be fairly expensive to obtain, maintain, and very expensive to litigate
(Caulfield, GELS). In fact, fewer than 50% of all patents are maintained
through their entire life (Ducor, GELS), suggesting that the licensing costs
alone are enough to cause inventors to reconsider the benefits of a patent
license. It seems reasonable to expect that genetic patent applications will
have increasingly less worth in the future information-driven society, and
research will still carry on, as before, at an exponential rate.

E.4 Privacy and Information Flow

People often consider privacy to be an absolute quality, equating it with
secrecy. This is not a true view of privacy, because expecting absolute
secrecy in every case means that nothing is disclosed to anyone. In this
sense, privacy is an issue of respecting the social rules of information
flow in particular contexts. When privacy is compromised, it means that
information has been inappropriately shared, i.e. the social rules have
been broken (Nissenbaum, GELS). In this light, the concept of specific
features being always personally identifiable information (PII, a term often
used when discussion anonymisation of data) doesn’t make sense, because
context matters in defining whether or not it is appropriate for information
flow to happen. Social rules can be defined together with context in a
specific and explicit fashion, but this does not often happen in a research
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or diagnostic context. It is more common for researchers and clinicians to
make an absolute statement of secrecy (e.g. a privacy clause in a consent
form, or doctor-patient confidentiality) when it is obvious that information
flow is a necessary part of research and clinical practice.

E.5 Genetic Determinism and Public Education

It is clear that the public do not have an intuitive grasp of what genetic
tests mean. American parents have been encouraged to get genetic testing
to establish what sport their child will excel in, but the research behind
those tests suggest a very small (< 5%) contribution to phenotypic variation
(Cox, GELS). In other words, parents are led to believe that their child’s
future is set in stone by their genes, when other environmental factors
(e.g. physical training) play a much larger role. However, this lack of
understanding is not restricted to the general public; doctors and physicians
(whom people are likely to trust more than anyone else in medical matters)
are also caught out by misrepresentation of results (Cox, GELS). Part of this
misunderstanding may be due to different terms used by researchers and
clinicians (Lindpaintner, GELS). Academia generally discuss odds ratios
and relative risk, and tend to be happy with odds ratios of 2 (sometimes as
low as 1.15 for some genome-wide studies). Clinicians prefer sensitivity
and specificity and are usually only interested when these statistics are
greater than 75% (an odds ratio of about 9). A greater concern is that
misunderstanding exists in the scientific research community as well. If the
researchers can’t agree on the importance of discovered genetic associations
(including causal links), there is little hope that the general public will be
able to be properly educated on the issues involved.

This raises a very important question, how should the public be edu-
cated?
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E.6 Case Study – Genomic Medicine in Mexico

One of the best examples of dissemination of knowledge to the public can
be found in the recent research of genomic medicine carried out in Mex-
ico (Jiménez-Sánchez, HUGO). A research project was introduced by the
Mexican congress to analyse the genetic structure of the Mexican populat-
ion. In conjunction with this project, an Ethics, Law and Society research
centre was opened to enable good communication and discussion with
the Mexican community for genomic research. A key goal of the research
project was to produce public results through an interactive database. To
emphasise this, following the conclusion of the initial phase of the research,
both the research paper and the database were presented to the Mexican
president at the same time.

E.6.1 Returning Research to the Mexican Community

Before research began, Researchers educated community leaders about the
intended goals of the research project. These leaders then presented a series
of informative sessions to the public and the media. Brochures and comic
books were also produced and distributed to the public. A month before
participants provided blood samples, an exact copy of the consent form
was posted in universities and other public spaces to make sure everyone
would be aware of what they would be asked to do. Blood was taken at the
universities where the genomic research was carried out, and a series of
public lectures were given on that collection day to educate people about
the research. Aside from general geographical location data, blood samples
were completely anonymised, and participants were made aware that there
was no way to get or find their sample later on in the study. Results were
initially released as a research paper and interactive database. This paper
was translated into Spanish, simplified into a comic book, and packages
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were made to be delivered to governors and attendees of public lectures in
which the results were reported.

E.7 Genetics in Africa

All evidence points towards a human origin of Africa, with a series of
migrations from there to other areas in the world. It follows from this that
African populations are the most diverse and genetically evolved group of
people in the world (Daar, GELS). However, studies of African populations
tend to be quite limited in scope, and leave behind few benefits for the study
participants. Apart from a study of the malarial genome (and possibly the
HapMap project), there do not seem to be any ongoing projects in Africa
that are likely to provide advantages to the community. To add further
strain to the research capabilities of Africa, researchers will typically only
come to Africa if they are invited, and only 30-50% of professionals trained
in Africa are retained (Ramesar, GELS). The lack of studies on African
populations is a shame, especially because of the benefits from carrying
out genetic research in Africa in tandem with other countries. Due to
the increased genetic diversity of African populations, disease-associated
variants may be found in higher frequency in Africa (Olopade, GELS). This
makes associations easier to validate and investigate further, because the
number of people with a particular variant (or combinations of variants)
will be higher.

E.8 Poster Presentations

Most of the attendees who were not giving a talk at GELS were presenting
a poster. A total of sixteen posters were presented at the symposium, most
covering topics relating to the impact of genomic technologies on society.
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For example, Christen Rachul presented a poster on how racial terminology
was portrayed differently in peer-reviewed articles, press releases, and
newspaper articles. Press releases and newspaper articles often exclude
references and context from terms used in articles, and simplify language to
terms that often have more emotional impact to readers. Billie-Jo Hardy pre-
sented a poster on genomic sovereignty, the idea that populations should
have a right to management of their own genetic samples and associated
information. The decisions of community leaders define where that in-
formation lies on a continuum from a global public good (free access for
everyone) to a commodity (limited access at a price).

My poster presentation was about a genomic test that we have designed
to estimate Maori-European admixture (genetic mixing of multiple popu-
lations) in a Maori tribe, Rakaipaaka.† The population profile was part of
a larger “Rakaipaaka Health and Ancestry Study” to investigate ways in
which the current and future health of the community can be improved.
Many attendees at the conference were interested in the migration history
of Maori, a recent (1000-500 years ago) migration to a land that had no
previous established human population.

E.9 Speakers at GELS 2009

• Stylianos E. Antonarakis, The Medical Genome

• Charles Auffray, Redefining Intellectual Property in the Transition from
Genomics to Systems Medicine

• Linda Avey, Personal Genetics

• Alastair V. Campbell, What is Special about ‘Genetic Privacy’

• Timothy Caulfield, Are Gene Patents the Problem?

†http://gringer.org/gels_poster.pdf

http://gringer.org/gels_poster.pdf
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• Ruth Chadwick, Redefining Privacy, Choice, and the Internet

• David Cox, Genetic Determinism and Real Life

• Abdallah Daar, Genomics Initiatives in Developing Countries

• Philippe Ducor, ‘Open Access’ Aspects of DNA Patenting

• Gerardo Jiménez-Sánchez, Genomic Medicine in Mexico

• Klaus Lindpaintner, Future of Health Care Industry

• Edison T. Liu, Genomic Sequencing

• Jeantine Lunshof, Redefining Privacy

• Bartha-Maria Knoppers, Personal Genomics and Privacy

• Mark McCarthy, What Will New Sequencing Technologies Deliver for
Science and Society

• Partha Majumdar, Ethical Dilemmas in the Conduct of Genetic Research

• Helen Nissenbaum, Privacy, Technology, Policy, and the Integrity of Social
Life

• Olufunmilayo Olopade, Advances in Breast Cancer

• G. J. B. van Ommen and Marjolein Kriek, Aims, Outcomes and Experi-
ences of a Dutch Female Sequence

• Raj S Ramesar, Will Africa be Relegated to the Role of a Neglected Parent?

• James Toupin, The Development of the Law of Gene Patenting
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Appendix F

Recombination Simulation

In order to demonstrate recombination in presentations and reports, it was
useful to carry out a basic simulation to generate a visual representation
of recombination through successive generations. The algorithm written
for this purpose is an R script that generates a list of “Haplotype Blocks”,
together with a number between 0 and 1 indicating the location at which the
block begins (or, alternatively, the location of the recombination points). An
example of this is shown in Table F.1, which indicates the block structure
of the final recombinant chromosome of Figure 1.5 in the Introduction
(reproduced here as Figure F.1). Not including the beginning and end of
the chromosome, there are 10 recombination points.

The recombination simulation function takes four variables as inputs:
the first two variables being the parental chromosomes from which to
generate the recombinant chromosome, and the second two being the
minimum and maximum number of recombination events. The output of
the function is the recombinant chromosome, as a data frame containing
a list of blocks together with the recombination point at which the blocks
start (as shown in Table F.1). The actual number of recombination events
is determined by a single unweighted random sample (i.e. the sample
function of R ) from a list of numbers between the minimum and maximum
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Figure F.1: The genetic ancestry of a single chromosome is complex, the result of mul-
tiple recombination events that happen at each generation. In this figure of simulated
recombination, black lines indicate recombination points (see Figure 1.4). The final chro-
mosome shown in this figure contains a genetic history that is derived from six of the
original eight ancestral chromosomes.
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Block Points
cyan 0.00000000
white 0.03082244
black 0.08267944
red 0.11491636
magenta 0.53165148
blue 0.55864589
red 0.68870415
black 0.73414129
white 0.80855758
black 0.91409931
magenta 0.96201204

Table F.1: Haplotype blocks simulated after 4 generations of recombination.

number of specified recombination events. The location of recombination
points is determined by the generation of a random number having uniform
distribution over the interval (0, 1) (i.e. the runif function of R ).

The function selects at random a chromosome to start extracting se-
quence from, and stores the part of that chromosome up to the first re-
combination point. At each subsequent recombination point, the function
changes chromosome, creates a recombination event, then continues ex-
tracting sequence from the other chromosome:

recombine <- function(ChrX, ChrY, minPoints = 3, maxPoints = 4){

result <- NULL;

recombPoints <- sort(runif(sample(minPoints:maxPoints,1)));

currentChr <- sample(c(0,1),1);

startPos <- 0;

newPoints <- NULL;

for(endPos in c(recombPoints,1)){

if(currentChr == 0){

stopX <- c(ChrX$Points[-1],1);

curPoints = which((ChrX$Points<=endPos) &

(stopX >= startPos));

newPoints <- ChrX[curPoints,];
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} else {

stopY <- c(ChrY$Points[-1],1);

curPoints = which((ChrY$Points<=endPos) &

(stopY >= startPos));

newPoints <- ChrY[curPoints,];

}

newPoints$Points[1] <- startPos;

result <- rbind(result,newPoints);

startPos <- endPos;

currentChr <- (currentChr + 1) %% 2;

}

return(result);

}

It is important to note that this algorithm has been designed for demon-
stration purposes only and should not be used to infer anything about
the nature of recombination that has already happened in a real-world
situation. In particular, this simple recombination algorithm makes an
assumption about recombination that is incorrect – it assumes that the prob-
ability of a recombination event is uniform across the entire chromosome.
This assumption can be corrected by providing a distribution indicating
the probability of recombination across the entire chromosome, and modi-
fying the random number generation to take account of this non-uniform
probability distribution.
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Databases

I designed and built a database based on the Rakaipaaka Beneficiary Elec-
toral Roll forms, which has been used by Te Iwi o Rakaipaaka (TIORI) as
an electronic record of membership. I also cleaned up the questionnaire
database, making it easier to extract answers to specific questions, and up-
date the layout of the database in the future. My work on these databases
has been useful for the implementation of a new sample storage database
at ESR (which has been integrated with the Rakaipaaka database and the
questionnaire database). This database includes genetic and biochemical
data from analysed samples, and has made future data processing and
analysis much easier. Part of my work has also involved helping to design
and develop this database, increasing its utility for other people.

In September 2006, I travelled to Nuhaka and spent two days TIORI
with their membership database. The genealogical information from this
database may be used in the future to determine how well genomic infor-
mation correlates with recorded ancestry. Work carried out included setting
up their network to enable easier communication between computers, and
organising domain name registration and forwarding for rakaipaaka.iwi.nz
and rakaipaaka.co.nz.
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Additional work for the Health and Ancestry Study (RHAS) has in-
cluded the conversion of survey forms from Microsoft Word files to Mi-
crosoft Infopath documents. The Infopath format allows for the entry of
data using a computer, producing a well-structured text file (XML) as out-
put that can then be integrated into the ESR database. I have converted both
the general Health and Medical Research Questionnaire (which includes
questions about Employment, cigarette and alcohol consumption, drug use,
family medical history, exercise, and eating habits) and the consent form
for RHAS (relating to genetic testing, and feedback about study-derived
results) into the Infopath format.

G.1 Genealogical Construction

Using the genealogical information from the RHAS database, a consen-
sus family tree was constructed with 926 individuals linked together via
marriage or ancestry, and an additional 206 individuals who could not be
placed on the larger linked tree.

G.1.1 Transliteration

The most interesting initial outcome of this was the observation of names
that were transliterated between different languages. The largest disagree-
ment among the individuals who reported ancestry was in the name of
Yoachim (or Johann) Schmidt (one of the many different names he was
given). This ancestor had a Prussian origin, but his name has been modi-
fied to numerous English and Maori equivalents by his descendants. The
English-sounding first names that have been given to him have been Jack
Hachem (with possible alternative spellings of that second name being
Hacham, Hakken and Hakon), with a surname of Smith. The Maori inter-
pretation for the first name has been Haki (or just Ki), with a surname of



APPENDIX G. DATABASES 235

Mete. There seems to be no further support in the English or Maori names
for the first name being Johann, which would probably be transliterated to
English as John (rather than Jack) or in Maori as Hoani (or Hone). However,
there is still a possibility of Johann being an alternate (but more rarely
used) name for the same person. Looking at the extremes of these name
variations, the same person is referred to both as Yoachim Schmidt and as
Ki Mete – it would be difficult, in the absence of intermediary evidence, to
work out that these two names referred to the same person.

Some of the English/Maori variations that were observed during an
attempt at creating a consensus family tree for Rakaipaaka can be found
in Table G.2 and Table G.3. Note that these are the author’s own infer-
ences, and may not necessarily reflect the typical translations used for
English/Maori name conversions.
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Maori English
Ahenata May
Ani Annie
Arihi Alice
Ema Emma
Haki Jack
Hoani John
Hone John
Te One John
Keita Kate
Matenga Martin
Mere Mary
Oriwa Olive
Paora Paul
Pira Bill
Piripi Phillip
Pita Peter
Rangi Henry
Raniera Daniel
Rawiri David
Rewi Dave
Ripeka Rebecca
Ruihi Lucy
Taare Charles
Tame Tom
Te Rina Lena
Timoti Timothy
Wiremu William

Table G.2: English/Maori transliteration of first names

Maori English
Harete Hallet
Huka Hook
Mete Smith
Pakai Park

Table G.3: English/Maori transliteration of surnames
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