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Abstract 

Task switching and interruption effects—slower and (often) less accurate responses 

when a task changes compared to that when a task remains the same—have been 

investigated from both theoretical and applied vantage points (e.g., Altmann & Trafton, 

2007; Jersild, 1927; Rogers & Monsell, 1995). The task switching research has typically 

used simple tasks with high stimulus-response (S-R) overlap, but there is a need to use 

different  methods and tasks to test the boundaries of task switching effects and the 

theories used to explain them (Logan, 2003). This thesis examined the costs of 

switching between a recognition memory task, which is a more complex task than those 

typically used, and a magnitude judgement task (for the number of dots in a spatial 

array), which is the type of simple task that has been used (e.g., Altmann, 2002; 

Monsell, Sumner & Waters, 2003). Across seven experiments, participants switched 

between the recognition and magnitude tasks in predictable 1, 2, or 4-trial runs. The first 

two experiments examined task switching effects on recognition memory performance, 

with Experiment 2 investigating whether specific recognition processes (i.e., 

recollection and/or familiarity) were affected by switching tasks. Experiment 3 

investigated the recovery from a task switch for both tasks and included a visual, task 

switch ―reminder‖ cue in an attempt to improve switching performance. Finally, 

Experiments 4A, 4B, 5A, and 5B examined evidence for two well-known task switching 

phenomena, the practice effect and the preparation effect. The results led to four critical 

conclusions: (1) switching between two tasks with minimal S-R overlap produced 

significant RT and accuracy switch effects; (2) the cost to recognition memory accuracy 

did not reflect an impairment to controlled recollection processes; (3) the magnitude and 

persistence of task switching effects changed as a function of practice within an 

experiment; and (4) there was little evidence that participants began to switch tasks in 

advance of stimulus presentation. The results reported in this thesis provide a clear 

example of task switching driven by the type of stimulus (word or dots), where a change 

in stimulus type (i.e., from word to dots array or vice versa) initiated the time 

consuming process of retrieving/activating the appropriate task set. Future research will 

need to clarify whether the stimulus-driven nature of switching between the recognition 

and magnitude tasks remains when using different task switching paradigms and when 

S-R overlap is reintroduced. 
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Preface 

This thesis begins by introducing the reader to recognition memory and briefly 

discussing theoretical standpoints on the processes contributing to recognition 

decisions. After discussing experimental manipulations that affect recognition memory 

performance in Chapter One, the effects of periodic interruptions to memory are 

discussed in Chapter Two. Chapter Three suggests that these interruptions can be 

interpreted as task switches. After introducing the reader to various methods of 

exploring task switching and a selection of common task switching effects, the chapter 

closes by briefly discussing theoretical accounts of task switching. Chapter Four 

reviews previous task switching literature that has used memory tasks and introduces 

the two tasks that will be used in this thesis, a recognition memory task and an unrelated 

magnitude task. The chapter closes by presenting the aims of this thesis and an 

overview of the general method to be used to examine the cost of switching between 

these tasks. Chapters Five and Six focus solely on recognition memory performance 

(RT and corrected accuracy). To establish the most effective way of investigating task 

switching effects with this relatively novel task (the recognition task), Chapter Five 

assesses the cost of switching between the two tasks in 1-, 2-, and 4-trial runs. Chapter 

Six focuses on accuracy switch effects and attempts to determine whether the cost to 

recognition memory accuracy can be isolated to a specific memory process (i.e., 

controlled recollection). With a more general focus on task switching performance and 

manipulations that affect it, Chapters Seven and Eight present data from both tasks. In 

Chapter Seven, performance across 4-trial runs is analysed for both tasks with the goal 

of establishing whether recovery from a task switch is immediate or protracted across 

multiple trials. Additionally, the benefit of providing a visual cue to remind participants 

of their position within a run is assessed. Chapter Eight presents four experiments that 

examine evidence for two common task switching effects—preparation effects and 

practice effects. Specifically, these experiments aim to establish whether participants 

can use the time available prior to the start of a trial to prepare for a known, predictable 

task switch. Finally, Chapter Nine summarises the key findings of the experiments 

before discussing how these findings can be interpreted within recognition memory and 

task switching theory. The chapter closes by discussing future directions for research 

examining the cost of switching between two tasks that do not share stimulus sets, such 

as the recognition and magnitude tasks. 
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Chapter One 

Memory 

 

The ability to recall or recognise stimuli, events, or actions that we have 

experienced before is an essential part of the human condition, and all of us rely on this 

ability—our memory—across a variety of situations every day. Given its importance to 

everyday life, considerable thought has been given and much research has been 

conducted to explore factors that influence memory performance and to understand the 

mechanisms of memory function. In one of the earliest accounts of memory in modern 

psychology, James (1890, p. 648) defined memory as ―the knowledge of a former state 

of mind after it has already once dropped from consciousness.‖ James was careful to 

differentiate between events that have happened so recently as to have not yet left 

consciousness (―primary memory‖), and those that have left consciousness and need to 

be reinstated (―memory proper‖), effectively purporting a two-stage model of memory 

(James, p.644, 648). Likewise, in Atkinson and Shiffrin‘s (1968) two-stage model of 

memory, information enters the mind through sensory registers, before flowing into the 

short-term store—a limited capacity, temporary buffer where information could be 

manipulated, rehearsed and/or outputted. Information to be held for later retrieval is 

transferred from the short-term store to the long-term store, where it can be held 

indefinitely (Atkinson & Shiffrin). 

 Multi-system models have evolved beyond the Atkinson and Shiffrin (1968) 

model as experimental evidence has challenged its assumptions. However, it is 

generally accepted that when information enters the mind/brain, if it is to be 

successfully recalled or recognised at a later time it must be processed in such a way 

that it enters long-term memory/storage. This fact remains whether the resulting 

memories are explicit or implicit in nature, and whether they relate to personal events 

and history or are of a general, semantic nature.  In order to advance our knowledge of 

memory processes and develop more accurate theories about the mechanisms involved, 

we need to be able to test what has been successfully transferred to and stored in long-

term memory in a controlled experimental fashion.  

This thesis is particularly interested in episodic memory. Rather than reflecting 

memory for an element of knowledge, an episodic memory consists of ―multi-feature 
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representations in which numerous different kinds of information… [are] bound 

together with the individual‘s awareness of personal experiences in subjective time‖ 

(Schacter & Tulving, 1994, p.28). Tests of episodic memory assess the ability of 

participants to explicitly recall or recognise things (be they objects, events, or 

otherwise) that they have previously experienced. Experimental studies of episodic 

memory have largely relied on a study-test procedure, first presenting item(s) to-be-

remembered and later testing memory for these items using recall or recognition 

memory tests. Conducting a test of memory recall is fairly straightforward—participants 

are instructed to recall items that they have previously encountered, sometimes aided by 

cues (cued recall), in the order they were studied (serial recall) or in any order (free 

recall). Performance is reported as the number of items recalled as a function of study 

list size (proportion recalled) and can also take into account items produced at test that 

were not part of the original study material (intrusions).  

Recognition Memory 

An alternative method of examining episodic memory is to use a recognition 

memory test. Items are presented to participants, who are instructed to decide if each 

item was previously studied (i.e., old) or not (i.e., new). Another method involves 

presenting multiple items at once and instructing participants to select item(s) that were 

presented at study (forced choice recognition: Hockley, 1992; Shepard, 1967). 

Recognition memory tests may solicit participants‘ subjective experiences during the 

recognition attempt (Gardiner, 1988; Tulving, 1985) or participants‘ confidence in their 

recognition decision (Pollack, 1959; Ratcliff & Starns, 2009). Recognition decisions 

provide at least two raw data points to experimenters: the response itself and the time 

taken to make it (reaction/response time; RT). Memory researchers typically emphasise 

responses themselves, particularly the proportion of old items correctly called ‗old‘ (hit 

rate) and the proportion of new items incorrectly called ‗old‘ (false alarm rate). 

Corrected accuracy—calculated by subtracting the false alarm rate from the hit rate—is 

often reported instead of raw hit and false alarm rates, as it provides a measure of 

accuracy that attempts to control for bias towards answering old regardless of item 

status. Corrected accuracy scores fall within the range of -1 to 1 with 0 representing 

chance performance and positive values representing above chance performance.  
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Models of recognition memory. 

Recognition memory performance can also be described using the signal 

detection parameters of discriminability (d’ or A’) and decision criterion/bias (β or C), 

that are calculated using hit and false alarm data. That is, making a recognition memory 

decision can be interpreted as a simple task of discriminating a signal (old memory trace 

plus noise) from noise (latent activation of new items). Old and new items are 

represented by two normal distributions of memory strength, with an item‘s specific 

position in the distribution governed by characteristics of the encoding event and by 

forgetting. A recognition decision is made by comparing an item‘s activation to a 

decision criterion, such that an old decision is elicited when activation exceeds this 

point (Banks, 1970; Green & Swets, 1974; Snodgrass & Corwin, 1988; Swets, 1973). In 

standard signal detection models of recognition memory, old and new distributions have 

equal variance. Studying a set of words produces a constant increase in familiarity for 

all items (Yonelinas, Dobbins, Szymanski, Dhaliwal, & King., 1996). However, there is 

evidence that the variance of the old item distribution is larger than the new item 

distribution, which has led to the development of unequal variance signal detection 

(UVSD) models of recognition memory (Slotnick & Dodson, 2005; Slotnick, Klein, 

Dodson, & Shimamura, 2000; Wixted & Stretch, 2004).  

Using signal detection theory to model recognition memory performance leads 

to a critical assumption—that decisions are based on a single variable of signal strength, 

often called familiarity. Manipulations that affect recognition performance do so by 

changing the discriminability of targets and lures, and/or changing the decision criterion 

so participants‘ responses are more or less conservative (Swets, 1973). That is, signal 

detection models of recognition memory are single process models (although see 

Wixted 2007a, 2007b for a two process signal detection model). Other single process 

models of recognition memory assert that recognition decisions are based on 

assessments of how similar the target is to items stored in memory. Global matching 

models such as Search of Associative Memory (SAM: Gillund & Shiffrin, 1984), 

Retreiving Efficiently from Memory (REM: Malmberg, 2008; Shiffrin & Steyvers, 

1997), and Theory of Distributed Associative Memory (TODAM 2: Murdock, 1997, 

2006), as well as multiple trace models such as Hintzman‘s (1988) multiple trace 

simulation model (MINERVA 2) posit that successful recognition relies on matching 

features of a target probe with features of the relevant trace in memory. During 
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encoding, a memory trace (sometimes called an ‗image‘ or a ‗vector‘) of the item‘s 

features is created. When a test probe is presented, its features are logged and compared 

with traces in memory. When a sufficient number of features match and there are no 

mismatching features, a target probe can be identified as ‗old‘ (Gillund & Shiffrin, 

1984; Klein, Shiffrin, & Criss, 2007; Shiffrin & Steyvers, 1997).  

More recent matching models such as REM (Retrieving Effectively from 

Memory) have added extra parameters to account for a wider range of memory 

phenomena. However, the addition of event traces, time parameters, and other variables 

to global matching models has not changed the key assumption that memory decisions 

are made by calculating a single value representing similarity between a target and 

memory trace. At their core, global matching models and multiple trace models, 

particularly as they apply to recognition memory, are single process models (Klein et 

al., 2007; Rotello & Heit, 1999).  

By comparison, dual process models of recognition assert that a second process 

independent of familiarity (or similarity matching) contributes to recognition memory 

performance (Atkinson & Juola, 1973, 1974; Gardiner, 1988; Wixted, 2007a; 

Yonelinas, 1994). Where familiarity is considered to be fast and automatic, this second 

process (often called recollection) is considered to be consciously driven and slow 

(Heathcote, Raymond, & Dunn, 2006; Rugg & Curran, 2007; Yonelinas, 2002; 

Yonelinas & Jacoby, 1995). To illustrate this distinction, Tulving (1985) drew a 

distinction between explicit remembering of an event and a more general feeling of 

knowing an event occurred. Specifically, ―even when a person does not remember an 

event, she may know something about it‖ (Tulving, p.6). In a typical study-test 

recognition paradigm, delaying the final test decreased the proportion of old recognition 

decisions accompanied by conscious remembering of the study event and increased the 

proportion of old decisions accompanied by feelings of simply knowing the word had 

been studied (Tulving). Similarly, some manipulations at encoding/study have been 

reported to affect the proportion of ‗remember‘ responses, but not ‗know‘ responses 

(Gardiner). Dissociations in subjective experiences support the claim that 

‗remembering‘ and ‗knowing‘ can be considered to reflect conceptually and 

functionally distinct memory processes. That is, ‗remember‘ responses have been used 

as a measure of recollection whereas ‗know‘ responses have been used as a measure of 

familiarity (see Gardiner). However, it is important to acknowledge that alternative 

explanations of the process(es) underlying ‗remember‘ and ‗know‘ judgements have 
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been proposed. A single process model of recognition can account for remember/know 

dissociations by using two decision criteria reflecting two levels of confidence or 

memory strength (Donaldson, 1996; Dunn, 2004).  

In the dual-process recognition theory proposed by Atkinson and Juola (1973, 

1974), memory decisions are made using a combination of judgements of familiarity 

and controlled memory searches. When a participant is presented with a memory probe, 

a measure of familiarity is generated and compared to upper and lower decision 

criterion. If familiarity was above the high criterion or below the low criterion, ‗old‘ or 

‗new‘ decisions are made immediately. However, if the value of familiarity fell between 

the two decision points, participants initiated a controlled search of memory for the 

target. As such, Atkinson and Juola (1973, 1974) proposed that decisions based solely 

on familiarity were fast but error-prone, whereas decisions based on an exhaustive 

search of memory were slower but almost always correct.  

Since Atkinson and Juola (1973, 1974) there have been several versions of dual-

process models (for a review, see Yonelinas, 2002). Many of these models still include 

elements of signal detection theory, such as the dual-process signal detection (DPSD) 

model developed and refined by Yonelinas (1994, 1997, 1999, 2001b). In this model, 

familiarity is considered to be a continuous variable explained by an equal-variance 

signal detection model. By contrast, recollection is formalised as a threshold variable, 

where the study episode (or details about it) are either recalled or not. Familiarity and 

recollection are considered to act independently of one another. Therefore, the 

probability of successfully recognising a studied item is the sum of the probability of 

recollecting the study episode and the probability that familiarity exceeds the decision 

criterion (Yonelinas, 1994).  

Evidence for a DPSD account of recognition memory has been reported using a 

number of experimental procedures. For example, Yonelinas (1994) showed that 

although signal detection models predict symmetrical receiver operating characteristics 

(ROCs), recognition memory ROCs are often asymmetrical. Specifically, they are 

skewed up and to the left of the plot, indicating that high confidence responses—those 

that Yonelinas would argue represent decisions based on recollection processes—

deviate from the signal detection model (for a strength-based explanation of asymmetric 

ROCs, see Wais, Wixted, Hopkins & Squire, 2006). Level-of-processing manipulations 

(Craik & Lockhart, 1972) have produced ROCs consistent with the DPSD model of 

recognition memory (Yonelinas, et al., 1996), as have divided attention manipulations 
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(Yonelinas, 2001a). Likewise, process dissociation procedures (Jacoby, 1991, 1998) 

have also provided evidence for dual-process accounts of recognition memory (e.g., 

Jacoby, 1999; Jacoby, Debner & Hay, 2001; Yonelinas, 2001a; Yonelinas & Jacoby, 

1995). Critically, Yonelinas (2001a; Yonelinas, Aly, Wang & Koen, 2010) has reported 

that remember/know procedures, process dissociation procedures, and ROC functions 

have produced very similar estimates of recollection and familiarity, indicating that they 

were measuring the same two underlying processes (a strong sign of convergent 

validity).  

Similar to the DPSD model, the source activation confusion (SAC) model 

(Diana, Reder, Arndt & Park, 2006; Park, Reder, & Dickison, 2005; Reder et al., 2000;) 

posits that recollection is all-or-nothing (threshold) and familiarity is continuous. The 

SAC model states that studying a word creates a memory of the study event (an episode 

node) which is associated with information about the experimental environment 

(experimental context node), conceptual information about the word itself (concept 

node) and contextual information specific to that trial (specific context node). A 

recognition memory test activates the experimental context node, and the presentation 

of a test word activates its concept node (and sometimes the specific context node). This 

activation spreads throughout the network, including to the episode node. Responses 

driven by recollection of the study event are the product of episodic node activation and 

are all-or-nothing. By contrast, responses driven by familiarity are made when the 

activation of the concept node exceeds a set criterion (Diana et al., 2006). As the resting 

activation of a concept node is governed by frequency and recency of exposure, some 

items (i.e., high frequency words) are more likely to produce old responses even when 

they were not studied. Responses based on familiarity are more prone to error, whereas 

recollection is considered highly accurate (although see Park et al., 2005 for an account 

of false recollection). 

In an alternative conceptualisation of dual process recognition, the multi-process 

unequal variance signal detection model (UVSD; Wixted & Stretch; Wixted, 2007a, 

2007b) claims that, like familiarity, recollection is a graded phenomenon and can be 

partial in nature (i.e., Dodson, Holland & Shimamura, 1998). The USVD model posits 

that two processes (at least) underlie recognition performance and that they are all 

expressed as continuous variables in a signal detection model. An activation value is 

calculated by summing recollection and familiarity strength, and this activation value is 

compared against a criterion to produce a recognition decision. Critically, the controlled 
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recollection process still contributes to recognition performance even though decisions 

are modelled using a signal detection distribution.  

It is, however, important to acknowledge that there are situations where a second 

process such as recollection is not needed to explain memory performance. One 

example of this is face recognition memory, where the discrimination of old and new 

faces as well as the false recognition of conjunction faces (a recombination of two 

studied faces to create a new face) can be adequately explained using a single process 

(familiarity-based) account of recognition memory (Jones & Bartlett, 2009; Jones, 

Bartlett & Wade, 2006). By contrast, similar experiments using words have shown that 

recollection does play a role in recognition performance (Jones & Jacoby, 2001). That 

is, the use or role of a consciously controlled recollection process may also depend on 

what one is trying to recognise: it is bound by experimental conditions.  

Experimental Manipulations that Affect Recognition Performance 

Participants‘ performance on recognition memory tests can be affected by a 

number of different manipulations at encoding (study) and retrieval (test). Encoding 

manipulations affect the strength, integrity, or elaborateness of the memory trace, 

leading to differences in memory performance at retrieval. For example, increasing the 

number of items to be studied decreases accuracy (Pollack, 1959), as does dividing 

attention with a secondary task (Craik, Govoni, Naveh-Benjamin, & Anderson, 1996). 

By contrast, increasing the time spent studying an item (McClelland & Chappell, 1998; 

Ruiz, Soler, & Dasi, 2004) or the number of times an item is presented (Jones, 2005; 

McClelland & Chappell, 1998) increases memory strength and thus accuracy. 

Characteristics of the items to be studied can also affect memory. For example, high 

frequency words are more likely to be falsely recognised as ‗old‘ than low frequency 

words (Heathcote, Ditton, & Mitchell, 2006; Joordens & Hockley, 2000).  

A particularly effective encoding manipulation that will be used in this thesis is 

the level-of-processing manipulation (Craik & Lockhart, 1972). The level-of-processing 

framework proposed that that the strength of a memory was determined by how an item 

is encoded. Optimal strengthening of a memory trace was attained by processing an 

item beyond its physical characteristics to its semantic meaning (Craik & Lockhart). 

This hypothesis was tested by Craik and Tulving (1975), who manipulated level of 

processing at study. During an incidental study phase, participants made deep semantic 

(e.g., is the word a mammal?) or shallow perceptual (e.g., is the word presented in 
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upper-case letters?) encoding judgements. When participants‘ memory for these words 

was tested, a robust level-of-processing effect (accuracy deeply encoded words > 

accuracy shallowly encoded word) was observed across recognition and recall tests, for 

incidental and intentional learning, in the laboratory and in a classroom setting, with and 

without monetary incentive.
1
 Although research soon established that memory 

performance was actually optimised by matching retrieval conditions and processes at 

study and test (Morris, Bransford, & Franks, 1977; Roediger, Gallo, & Geraci, 2002; 

Weldon & Roediger, 1987), the level-of-processing manipulation has remained an 

often-used, standard manipulation in memory research.  

A variety of manipulations at retrieval also affect memory performance. 

Recognition performance can be affected by encouraging conservative or lenient 

response biases (Curran, DeBuse & Leynes, 2007) or by constraining when participants 

can make their responses, thus biasing processes available to make the memory decision 

(Hintzman & Curran, 1994; Odegard, Koen, & Gama, 2008; Rotello, Macmillan, & Van 

Tassel, 2000). Delaying the final test allows for memory traces to decay, thus 

decreasing accuracy (Hockly & Consoli, 1999; Tulving, 1985). Another method of 

decreasing memory accuracy is to divide participants‘ attention; instructing participants 

to perform the recognition task and a second task simultaneously (Hicks & Marsh, 

2000; Jacoby, 1991; Jones & Jacoby, 2001; Knott & Dewhurst, 2007a, 2007b).  

Divided attention manipulations (full vs divided attention) at retrieval are 

relevant to the present research because of their similarity to the attention shifts required 

in task switching, the topic of this thesis. Divided attention at retrieval has the potential 

to demand considerable attentional resources as participants are required to monitor 

multiple tasks and resolve instances of interference. It requires that participants maintain 

two sets of instructions in working memory—one for each task—so that the appropriate 

response can be made when a stimulus is presented. For example, Jacoby‘s (1991) test 

phase required participants in a divided attention condition to identify visually-

presented words as old or new, while also monitoring aurally-presented digit strings for 

a target sequence. Through process dissociation procedures, Jacoby (1991) concluded 

that divided attention at retrieval decreased recognition performance overall, but was 

particularly disrupting to recollection processes.  

                                                 
1
 An additional phonemic level of processing (e.g., ‗does the word rhyme with weight?‘) was also used by 

Craik and Tulving (1975), producing better performance than the perceptual encoding conditions but 

worse performance than the semantic encoding condition. 
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A number of studies have confirmed Jacoby‘s (1991) observation of decreased 

recognition accuracy under divided attention and are in general agreement that these 

effects are either limited to or much more strongly observed for recollection than for 

familiarity (Hicks & Marsh, 2000; Jones & Jacoby, 2001; Knott & Dewhurst, 2007a). 

Although Hicks and Marsh reported significant divided attention effects for secondary 

tasks ranging from adding successive digit pairs to random number and letter 

generation, there is also evidence that the complexity of the divided attention task or the 

degree of interference (or similarity) a divided attention task has with the primary 

recognition task is also important (Fernandes & Moscovitch, 2000; Skinner & 

Fernandes, 2008). Indeed, observing a divided attention effect at retrieval is by no 

means guaranteed (see Craik et al., 1996; Naveh-Benjamin, Craik, Gavrilescu & 

Anderson, 2000). 
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Chapter Two 

Interruptions and Memory 

 

While divided attention experiments (as well as other dual-task paradigms) 

involve the simultaneous monitoring of two sets of stimuli, research on interruptions has 

investigated the impact of a temporary shift away from a primary task to complete a 

secondary task. The onset of the interruption task cues the temporary suspension of the 

primary task, and returning to the primary task after an interruption can take time and 

cognitive effort, resulting in poorer performance (Altmann & Trafton, 2002, 2007; 

Gillie & Broadbent, 1989; Trafton, Altmann, Brock, & Mintz, 2003). There are a small 

set of experiments that have directly examined the effect of interruptions on episodic 

memory (see Edwards & Gronlund, 1998; Gillie & Broadbent; Jones, Burson, & 

Aronsen, 2011). However, Gillie and Broadbent and Edwards and Gronlund used an 

interruption paradigm quite unlike standard episodic memory paradigms and obtained 

data not easily reconciled with accuracy and RT measures typical in the episodic 

memory literature. 

Gillie and Broadbent (1989) trained participants to navigate a computer-

generated town with the goal of collecting a list of five or seven objects from a variety 

of locations in a fixed order or at the participants‘ discretion. Twelve trials were 

completed by participants. Six trials were interrupted half way through the list so that 

participants could perform a secondary task (simple math, free recall memory test, or 

math with coded digits) and six trials were completed without interruption. Gillie and 

Broadbent compared the average time to collect an item and the number of participant 

requests for help (i.e., to clarify what items were to be collected) for the first and second 

halves of each trial as a function of interruption condition (no interruption, interruption). 

Gillie and Broadbent asserted that prior to the interruption (i.e., in the first half of the 

trial) both groups should perform the same. By contrast, for the second half of trials the 

mean time should be longer and the mean requests for help should be greater for 

interruption trials than those for no-interruption trials. That is, Gillie and Broadbent 

hypothesised that interruption effects would be illustrated by an interaction of trial type 

(interruption, no-interruption) and trial half (first half, second half).   
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When the interruption was a simple math task, no interruption effects were 

observed regardless of interruption length (30 seconds or 165 seconds). Likewise, when 

the interruption task required participants to study and then recall a short list (N = 32) of 

words, although the data showed a pattern consistent with an interruption effect, it failed 

to reach statistical significance. Finally, Gillie and Broadbent (1989) examined the 

effect of a more complex and cognitively demanding math interruption task. During the 

interruption, participants solved math problems where the digits were replaced with 

letters (e.g., EF – DG = ?) by using a supplied cypher. Gillie and Broadbent argued that 

these actions required substantial mental processing and placed working memory under 

significant load—much more than the earlier math and recall tasks. Consistent with an 

interruption effect, the average collection time for the second half of interruption trials 

was significantly slower than that for the first half (before the interruption) or either half 

of the no-interruption trials. Following an interruption, participants took longer to recall 

from memory the items they needed to collect and then locate and select them from 

within the town. No interruption effect was observed in request-for-help data, but this 

null effect may have been due to floor effects. At the very least, Gillie and Broadbent 

showed that when the interruption task was sufficiently demanding of cognitive 

resources (such that there is little time to rehearse information from the primary task) 

access to episodic memory was slowed. 

Edwards and Gronlund (1998) used a similar method to Gillie and Broadbent 

(1989), training participants to navigate their way through a ‗town‘ on a computer 

screen to collect a list of 10 items from various locations in a specified order. Six trials 

were completed by participants. The collection order was manipulated between 

participants, such that one group collected the same items in the same order for every 

trial (fixed order) and the other group collected the same items in a different order for 

every trial (arbitrary order). The sixth trial was different from the earlier trials. After 

collecting the fifth item, participants performed an interruption task for three minutes. 

The interruption task was either similar to the primary task (planning a route through 

the town to collect 15 new items or rearrange anagrams) or dissimilar to the primary 

task (performing addition on a matrix of numbers). Prior to resuming the primary task, 

participants answered memory probes about their location (or in Experiment 3, item 

collected) prior to the interruption as well as the next item they were meant to collect.
2
 

                                                 
2
 Experiment 1 also administered these probes as recognition probes, but this manipulation had no impact 

on performance. 
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It is important to note that these probe questions were never asked in the absence of an 

interruption and, as such, Edwards and Gronlund did not have a baseline measure of 

performance. Instead, they compared performance on probe questions to chance, which 

was assessed as 1/19 for the location probe and 1/10 for the item probes, based on the 

number of possible locations or items. After completing every trial, participants were 

instructed to recall (in order) the items they had collected.  

Across all three experiments reported by Edwards and Gronlund (1998), 

participants recalled a mean of 8/10 items in the correct order. In Experiment 1, 

participants in the fixed order condition answered the post-interruption probe questions 

more accurately (M = 0.59 for location probe, M = 0.52 for item probe) than participants 

in the arbitrary order condition (M = 0.44 for location probe, M = 0.28 for item probe). 

Accuracy was consistently better when the interruption task was different to the primary 

task, compared to that when the interruption task was a similar to the primary task—

there was an interruption similarity effect. Together with Gillie and Broadbent (1989), 

Edwards and Gronlund‘s interruption similarity effects are consistent with the divided 

attention literature which emphasises the importance of secondary task complexity and 

similarity to the primary task for observing divided attention effects (Fernandes & 

Moscovitch, 2000; Skinner & Fernandes, 2008). Even in the absence of a baseline (no-

interruption) condition, Edwards and Gronlund‘s findings suggested that participants‘ 

episodic memory can be affected by an interruption. Participants found it particularly 

difficult to remember what item they were meant to collect next following an 

interruption that required them to plan an item search through a village or to rearrange 

anagrams. 

Interruption effects on episodic memory may have been produced as an 

unintended by-product in a recognition memory experiment by Jones and Atchley 

(2006). Jones and Atchley investigated the role of familiarity and recollection in the 

production and prevention of memory errors in a continuous recognition memory 

paradigm. A continuous recognition paradigm does not separate study and test phases. 

Instead, words are presented twice in a single list. Recognition memory decisions are 

elicited on every trial, producing a ‗new‘ response for the first presentation of a word 

and an ‗old‘ response for the second presentation of a word. The word stimuli in the 

experiment were compound words (e.g., blackmail, jailbird) that could be recombined 

to produce new ‗conjunction‘ lures (e.g., blackbird). Along with identifying old and 

new words, participants were instructed to identify conjunction lures and in such cases 
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to verbally report one of the parent words that were used to create the conjunction lure. 

This recall-to-reject strategy reflects the successful use of recollection to avoid saying 

old to a conjunction lures.  

In Experiments 2A and 2B, Jones and Atchley (2006) manipulated the lag 

(number of intervening trials) between the first and second presentation of a word and 

measured how the accuracy of ‗old‘ judgements was affected by the length of this lag. 

Each experiment used three lags: a five-trial lag common to both experiments and two 

lags that were different for each experiment. Jones (personal communication, 2005) 

noted that accuracy for old words at lag five was significantly lower in Experiment 2A 

than that in 2B (0.66 and 0.82 respectively), and suggested that this difference could be 

due to a slight difference in the construction of the test lists. For Experiment 2A, a 

conjunction lure was occasionally presented during the five-trial lag, but not for 

Experiment 2B. Therefore, in Experiment 2A participants were sometimes interrupted 

from making recognition decisions to explicitly recall an earlier parent word, and this 

interruption may have had a negative impact on recognition performance.  

 Jones et al. (2011) tested this hypothesis more rigorously in two experiments. 

The size and persistence of interruption effects on recognition memory performance 

were examined using a continuous recognition memory task that was periodically 

interrupted (~ 6% of all trials) with a secondary episodic or semantic memory task. 

Stimuli for the recognition memory task were the same compound words used in Jones 

and Atchley (2006) excluding conjunctions lures (that is, blackmail and jailbird were 

used, but not blackbird). Stimuli for the interruption task were Xes presented in one of 

five colours. On each recognition trial, participants were instructed to judge whether the 

word had been presented earlier in the experiment (i.e., it was ‗old‘) or not (i.e., it was 

‗new‘). The semantic interruption task required participants to identify the colour of the 

X stimuli and the recall interruption task required participants to recall the word 

presented on the preceding trial. Dispersed throughout each experiment were ‗runs‘ of 

seven trials, illustrated in Figure 2.1. A run was either interrupted (containing a single 

interruption on Trial 5 or 6) or uninterrupted (containing only recognition memory 

trials). Of primary interest was performance on Trial 7 of a run, which as a consequence 

of experimental design either followed an interruption by one or two trials (I+1 and I+2 

conditions respectively) or followed only recognition trials (control conditions). This 

critical trial was either old (word presented on Trial 1) or new (word not previously 

presented). 
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Figure 2.1. The design of the seven-trial runs used in Jones et al. (2011). Trial 7 

(marked by *) is the critical trial. The Xes were presented in five different colours and 

were used for the interruption task. In the runs represented here, the critical trial is ‘old’, 

as the word was presented on Trial 1.  

 

Experiment 1A and 1B examined recognition memory performance when it 

immediately followed an interruption (I+1 condition) or not (control condition). Jones et 

al. (2011) reported significantly lower accuracy in the I + 1 condition compared to that 

in the control condition (7 – 14% lower). Participants‘ ability to discriminate between 

old and new words was impaired following an interruption, regardless of whether the 

interruption task was semantic or episodic. An interruption effect was also reported for 

RT performance. As illustrated in Figure 2.2, RTs for correct recognition trials were 

significantly slower following an interruption than that for the control condition where 

no interruption was experienced. This pattern of worse performance following an 

interruption held when incorrect responses were included in the analysis. The 

interruption effect was significantly larger for the recall interruption task than that for 

the colour naming interruption task.  

In their second experiment, Jones et al. compared recognition performance 

across three conditions—control, I+1, and I+2—to investigate whether interruption 

effects persisted beyond the trial immediately following an interruption (the I+1 trial). 

In Experiment 2, critical trials were always old words. Although the interruption effect 

on recognition memory hits (correctly identifying old words) was significant, this effect 

Trial I + 1 I + 2 Control 

1 wheelchair wheelchair wheelchair 

2 drawstring drawstring drawstring 

3 dragonfly dragonfly dragonfly 

4 eyesore eyesore eyesore 

5 fireplace XXXXXXXX fireplace 

6 XXXXXXXX snakeskin fireplace 

7* wheelchair wheelchair wheelchair 
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was isolated to the I+1 trial. By contrast, interruption effects on recognition RTs were 

significant for I+1 (~ 315 ms) and I+2 (~ 82 ms) conditions. Recognition memory RTs 

were slower for the I+1 condition than that for the I+2 condition and both interruption 

conditions were slower than the control condition. That is, there was a gradual recovery 

from the interruption. Unlike the Experiments 1A and 1B, the type of interruption task 

did not affect the size of the RT interruption effect. This may have been a consequence 

of Experiment 2 using only ‗old‘ words for critical trials, as new words showed larger 

task effects in Experiment 1A and 1B. Combined, the experiments reported by Jones et 

al. provided good evidence that interrupting a continuous recognition test to perform a 

brief, unrelated task had a negative effect on recognition performance. Immediately 

following an interruption, recognition memory decisions were slower and less accurate. 

Furthermore, recovery from an interruption was not immediate, as RTs remained slower 

than control conditions two trials after the interruption. 

 

 

 

 

Figure 2.2. Performance on critical recognition memory trials collapsed across 

Experiment 1A and 1B of Jones et al. (2011). RTs are presented as a function of 

interruption task, word status, and run type (interruption or control). Recognition 

decisions were made after a 1250-ms response delay.  
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Chapter Three 

Task Switching 

 

The research presented in this thesis was borne out of the findings of Jones et al. 

(2011), where recognition memory performance was slower and less accurate after an 

interruption. Jones et al. (2011) proposed that the interruptions to the continuous 

recognition task could be interpreted as infrequent task switches. The principle reason 

for a task switching interpretation of Jones et al. is methodological. In a typical 

interruption experiment, an on-going process is interrupted before it can be completed 

and it must be resumed at the end of the interruption. Participants have to suspend a 

goal they are in the process of completing and upon returning to this primary task they 

must remember what they were doing and what they were planning to do next (Altmann 

& Trafton, 2002, 2007; Edwards & Gronlund, 1998; Gillie & Broadbent, 1989; Trafton, 

Altmann, Brock & Mintz, 2003). By contrast, each recognition trial in Jones et al. was a 

discrete encoding and retrieval event and was completed before the onset of the 

interruption task. After the interruption, participants did not have to recall what process 

they were involved in or what they had planned to do next. Instead, they had to adjust 

the goals and rules they were using from those appropriate for the interruption task (i.e., 

identify colour, recall word) to those appropriate for the recognition task (i.e., is the 

word ‗old‘?). Thus, successful performance in Jones et al.‘s continuous recognition task 

required participants to occasionally switch between two different sets of task rules.  

Task switching research is based on the same basic methodology as described 

above—participants complete sequences of two or more tasks that have different goals 

and rules (often called task sets). Each trial requires that the appropriate task set is used 

to produce the correct response to a stimulus. A trial (and thus, task) is completed 

before the next trial begins, which may or may not require switching task sets. 

Switching between task sets is assumed to take time and cognitive resources, and to 

negatively affect performance. That is, compared to task repetition trials (where trial N 

and N-1 are the same task), participants are slower and often less accurate on task 

switch trials (where trial N and N-1 are different tasks). This phenomenon is called a 

switch effect (Monsell, 2003; Schneider, 2007; Vandierendonck, Liefooghe & 

Verbruggen, 2010).  
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Origin of Task Switching Research and Theory 

The origin of task switching research can be traced to Jersild (1927), who 

examined task switching performance by comparing the time taken to complete a block 

of a single task (pure block, AAAAAA) to the time taken to complete a block of two 

tasks that alternated (mixed blocks, ABABAB). In one experiment, Jersild compared 

the completion times for pure and mixed blocks of an addition task (adding 6 to the 

target digit) and a subtraction task (subtracting 3 from the target digit). Completion 

times for mixed blocks were reliably slower than pure blocks, a phenomenon Jersild 

called a shift cost but today is called a mixing cost. Mixing costs were observed when 

participants alternated between tasks that used the same stimulus sets but not when used 

different stimulus sets (e.g., when participants switched between reporting opposites of 

words and performing math operations on numbers). In fact, Jersild reported faster 

completion times for mixed lists compared to pure lists when two tasks used different 

stimulus sets. Jersild concluded that mixing costs were driven by the ambiguity of 

stimuli—that they could elicit responses for more than one task—and that resolving this 

ambiguity is what led to longer completion times.  

Spector and Biederman (1976) further examined the importance of stimulus 

ambiguity. For tasks using different stimulus sets, the advantage for mixed lists 

compared to pure lists was eliminated when stimuli were presented one-at-a-time 

compared to all-at-once on a piece of paper (although there was still no significant 

mixing cost). Spector and Biederman agreed with Jersild‘s (1927) explanation of this 

result: presenting task-unambiguous stimuli on a single piece of paper allowed 

participants to preview upcoming stimuli and plan responses, minimising or eliminating 

switch effects. Furthermore, Spector and Biederman also reported that presenting task 

cues (i.e., ‗+‘ for an addition task) with stimuli reduced completion times for mixed lists 

when tasks shared stimulus sets. Thus, manipulations that reduced stimulus ambiguity 

and eliminated the need for participants to remember the task sequence produced 

smaller mixing costs, leading Spector and Biederman to conclude (consistent with 

Jersild) that switch effects were largely driven by the need to resolve conflict when 

selecting the appropriate task to perform.  

The methods used by Jersild (1927) and Spector and Biederman (1976), as well 

as their interpretation of their results, strongly shaped the development of the task 

switching literature. Subsequent task switching research has used simple tasks that share 
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a stimulus set, such as performing mathematic operations on digit stimuli (i.e., 

Baddeley, Chincotta & Adlam, 2001; Emerson & Miyake, 2003) or making decisions 

about size, identity or colour of stimuli (Altmann, 2006; Mayr & Kliegl, 2003; Miyake, 

Emerson, Padilla & Ahn, 2004; Posse, Waszak & Hommel, 2006; Rubin & Meiran, 

2005). In using the same stimulus set for both (or all) tasks in an experiment, ambiguity 

(or stimulus-response (S-R) overlap) is maintained—a factor considered essential to 

some task switching theories (see Allport, Styles & Hsieh, 1994; Allport & Wylie, 

2000). Post Jersild and Spector and Biederman, there is only a small set of task 

switching research that has used different stimuli for each task or tasks with limited S-R 

overlap (e.g., Allport et al., 1994; Altmann, 2002; Meiran, 2000a; Rogers & Monsell, 

1995), however they have either failed to produce switch effects (Allport et al., 1994) or 

reported switch effects of smaller magnitude (Allport et al.; Meiran 2000a; Rogers & 

Monsell). However, the fact that costs are still observed in these situations suggests that 

task switching effects are more than just an index of conflict/interference resolution. 

Methods of Investigating Task Switching 

The earliest method used to examine task switching was the mixed and pure list 

method (Jersild, 1927) described earlier in this introduction. Comparisons of mixed and 

pure lists have also been used in more modern task switching research (e.g., Allport et 

al., 1994; Baddeley et al., 2001; Emerson & Miyake, 2003). However, this method is 

not without limitations, most notably that participants are under the additional cognitive 

load of maintaining two task sets in mixed lists but not in pure lists (Rogers & Monsell, 

1995). As a consequence, differences in performance between mixed and pure blocks 

represent a mixing cost component in addition to a task switching component. With the 

resurgence in task switching research in the mid-1990‘s, new methods of examining 

task switching performance were developed in large part to eliminate such limitations 

and to produce better measures of cognitive control (Meiran, 1996; Rogers & Monsell). 

These new methods were the alternating runs paradigm (Rogers and Monsell), the 

explicit task cuing paradigm (Meiran, 1996), and more recently, the voluntary switching 

paradigm (Arrington & Logan, 2004, 2005). Generally speaking, these paradigms 

reflect increasing attempts to control the processes contributing to switching 

performance and when they can be engaged. All of these experimental paradigms have 

positive and negative aspects, and the choice of method will rely both on the purpose of 

an experiment and the theoretical outlook of the experimenter. 
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Alternating runs paradigm. 

Since its inception (Rogers & Monsell, 1995), the alternating runs paradigm has 

been used by many different researchers to investigate switch effects (e.g., Altmann, 

2002, 2006, 2007; Brown, Lehmann & Poboka, 2006; de Jong, 2000, 2001; Hunt & 

Klein, 2002; Koch, 2003, 2005; Lindsen & de Jong, 2010; Minear & Shah, 2008; 

Monsell, Sumner & Waters, 2003; Posse et al., 2006). In this paradigm, participants 

complete a set number of trials (a run) of one task before switching tasks and 

completing a run of the alternative task (i.e., AA BB AA BB). Although a 2-trial run 

length is most often used, experimenters have used longer run-lengths or multiple run 

lengths to further understand the cognitive processes involved in switching tasks (e.g., 

Altmann, 2002; Altmann & Gray, 2002; Kieffaber & Hetrick, 2005; Monsell et al., 

2003). Regardless of run length, task switching effects are calculated by comparing RT 

and accuracy performance for the first trial in a run (task switch) to the subsequent 

trial(s) in a run (task repetition).  

As task progression is entirely predictable, participants can use their memory of 

the task sequence to anticipate what task they will perform next. Similar to the mixed 

versus pure blocks paradigm, participants can perform the tasks without explicit trial-

by-trial instructions. However, experimenters have often used task cues in addition to 

this inherent predictability, providing participants with an external reminder of the 

upcoming tasks‘ identity and allowing them to reorient themselves if they lose track of 

the task order. For example, Rogers and Monsell (1995) used spatial location—a 

clockwise progression through four quadrants of a square—as task cues. Alternatively, 

Koch (2003) used geometric frames (square or diamond) as task cues—after a response 

to trial N was made, the task-relevant frame for the N+1 trial was presented prior to 

stimulus onset. Regardless of whether external cues are used or not, the key 

characteristic of the alternating runs paradigm is the constant, predictable pattern of 

switch and repetition trials that allows for RT and accuracy switch effects to be easily 

calculated at the level of individual trials. 

Rogers and Monsell (1995) claimed that one of the primary advantages of using 

an alternating runs paradigm was that the cognitive load of maintaining task sets was 

kept constant. Unlike the mixed versus pure list paradigm, performance on task switch 

and task repetition trials was assessed within one block. Without doubt, the paradigm 

represented a significant contribution to task switching methodology and likely helped 
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revive interest in task switching as a method of examining cognitive control. There are 

researchers who maintain that the alternating runs paradigm is not without faults (see 

Altmann, 2002 for one account). Some have suggested that task switching effects that 

are calculated using this method are artificially inflated by ‗restart costs‘—a slowing of 

performance at the beginning of a run regardless of whether a run uses the same or 

different task from the previous run (Altmann & Gray, 2002; Allport & Wylie, 2000; 

Gopher, Armony & Greenshpan, 2000). However, as reports of this ‗restart cost‘ have 

generally been limited to experiments where instructions or cues are presented prior to 

the start of each run (a variation called an intermittent instruction paradigm), it is 

debatable whether this is a large concern to the alternating runs paradigm as a whole. 

Explicit task cuing paradigm. 

First introduced by Meiran (1996), the explicit task cuing paradigm differs from 

the alternating runs paradigm in that the progression of tasks is not predictable. Instead, 

cues are presented on each trial that instruct participants as to what task to perform. The 

sequence of task cues (and thus tasks) across a block/experiment is pseudo-random, 

with ‗task switch‘ and ‗task repetition‘ trials identified based on the identity of the N-1 

task. Switch effects are calculated by comparing performance for trials identified as task 

switches to performance for trials identified as task repetitions. The cues can vary from 

more transparent to less transparent: from providing responses (e.g., ‗more/less‘), a 

description of the task (e.g., ‗magnitude‘), a letter associated with the task (e.g., ‗m‘), or 

a symbol or colour that needs to be interpreted (e.g., the colour blue cues the magnitude 

task). Researchers have even utilised cues that inform participants about the transition 

(i.e., switch cue, repeat cue) rather than task identity (Schneider & Logan, 2007). As 

such, the cognitive effort and/or processes involved in interpreting cues and then 

switching tasks can vary, which in turn affects the nature and magnitude of the switch 

effect (Emerson & Miyake, 2003; Miyake et al., 2004).  

In the explicit task cuing paradigm, cues and stimuli can be presented 

simultaneously, or the cue can precede the stimulus (that is, cues can vary in temporal 

location). Three timing parameters—illustrated in Figure 3.1—are important when the 

cue is presented prior to the stimulus. The duration between the trial N response and 

trial N + 1 cue is called the response-to-cue interval (RCI). This interval represents a  
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Figure 3.1. An illustration of the timing parameters in the explicit task cuing paradigm. 

RSI = response to stimulus interval. RCI = response to cue interval. CSI = cue to 

stimulus interval.  

 

relatively passive period of time where participants do not know what task they will be 

performing next. The time between the presentation of a cue and the stimulus of trial 

N+ 1 represents the cue-to-stimulus interval (CSI). This interval is of critical importance 

as participants have knowledge of the upcoming task and therefore the opportunity to 

begin to switch tasks sets (Meiran, 1996). Finally, both the RCI and the CSI combined 

represent the response-to-stimulus interval (RSI), representing the total time between 

trials, and (some would argue) the time available for the trial N task set to decay 

passively.  

The explicit task cuing paradigm arguably provides benefits over alternating 

runs and mixed versus pure list paradigms with its ability to disentangle active and 

passive processes contributing to switch effects (Mayr & Keele, 2000; Meiran, 1996). 

Indeed, the flexibility and control over timing in this paradigm has inevitably 

contributed to its popularity in task switching research today. However, this paradigm is 

not without limitations. Experimental evidence has suggested that the presentation of a 

cue does not mean that it will be utilised straight away (Verbruggen, Liefooghe, 

Vandierendonk & Demanet, 2007). Furthermore, Mayr and Kliegl (2003) and Logan 

and Bundesen (2003) noted that cue switches and task switches are confounded in the 

explicit task cuing paradigm. That is, whenever the current (‗online‘) task changed the 

cue changed as well, and therefore the effects of these two changes could not be 

disentangled. When this limitation is controlled for, the observed RT switch effects are 

somewhat smaller (see Logan & Bundesen, 2003; Mayr, 2006; Mayr & Kliegl, 2003; 

Monsell & Mizon, 2006; Schneider & Logan, 2011). 

Voluntary task switching paradigm. 

A more recent contribution to task switching methodology is the voluntary task 

switching paradigm (Arrington & Logan, 2004). This paradigm allows participants to 

CUE 
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choose what task they want to perform on any given trial, with the proviso that they 

perform each task equally often. As such, it is argued that all processes associated with 

switching tasks are initiated by the participant instead of by cues. Responses for each 

task are mapped onto different keys and task repetitions and switches are identified post 

hoc. Critically, Arrington and Logan (2004) have shown that, although it is the 

participant who makes a choice to switch tasks, significant switch effects are still 

observed. The voluntary task switching has primarily been used by Arrington and 

colleagues (e.g., Arrington & Logan, 2004, 2005; Arrington, Weaver & Pauker, 2010), 

but other researchers have used the paradigm (e.g., Forstmann, Brass, Koch & von 

Cramon, 2006; Mayr & Bell, 2006). Again, this task switching paradigm has its own 

limitations: although Arrington and Logan (2004) argued that switch effects reported 

using this paradigm reflected endogenous, participant driven task switching, more 

recent evidence has shown that task switching behaviour in this paradigm can be 

influenced by external factors (see Demanet, Verbruggen, Liefooghe & 

Vandierendonck, 2010).  

Key Task Switching Effects and Manipulations 

New task switching paradigms were developed largely in an attempt to control 

the processes involved in switching task sets and to discriminate between theoretical 

explanations of task switching effects. However, equally important was the systematic 

manipulation of other experimental variables (e.g., timing of trials). Over the history of 

task switching research, researchers have reported a large number of experimental 

manipulations that have produced unique changes in performance (see Vandierendonck 

et al., 2010 for a comprehensive review). This section summarises the several key task 

switching effects: preparation effects, practice effects, and run length effects. These 

effects are highlighted here because of their relevance to the experiments that will be 

presented in this thesis. Preparation effects and practice effects are the product of longer 

RSIs/CSIs and experience with switching tasks, respectively. They both produce 

decreases in the size of RT switch effects. By contrast, run length effects are primarily 

focused on changes in performance across a run of repetition trials for a single task.  

Preparation effects. 

Rogers and Monsell (1995) proposed that with sufficient time (and knowledge 

of the upcoming task), participants could begin to switch task sets in advance of 

stimulus onset. Under these circumstances the appropriate task set would be active 
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when the target stimulus was presented, and thus responses could be made more 

quickly. That is, increasing the RSI (or CSI in the explicit cuing paradigm) should 

decrease the size of the RT switch cost (switch RT – repetition RT) and accuracy switch 

cost (repetition accuracy – switch accuracy). Rogers and Monsell tested this hypothesis 

in a series of experiments that utilised a two-trial alternating runs paradigm and five 

different RSIs ranging from very short (200 ms) to substantially longer (1200 ms). 

Participants completed multiple blocks of trials over two days, switching between 

making parity decisions (is the digit odd or even?) and consonant/vowel distinctions (is 

the letter a consonant or a vowel?) to compound stimuli (e.g., ‗A9‘). As can be seen in 

Figure 3.2, when RSI varied randomly within a block (Experiment 2), the magnitude of 

the switch cost was unaffected by RSI. However, when RSI was varied across blocks 

(Experiment 3 &4), the RT (and accuracy) switch cost decreased with longer RSIs up to 

600 ms, but showed no further decrease beyond that RSI length (there was a residual 

switch cost). Although the RT switch costs were smaller when stimuli contained 

attributes relevant to only one task (low S-R overlap: ‗#9‘) compared to that when 

stimuli contained attributes relevant to both tasks (high S-R overlap: ‗A9‘), both 

conditions showed the same trend of decreasing RT switch costs as RSI lengthened. 

Rogers and Monsell concluded that when provided with additional time prior to 

stimulus onset, participants would use that time to change (or, reconfigure) task sets in 

advance, and called the resulting decrease in RT and accuracy switch costs a 

‗preparation effect‘.  

Meiran (1996) was quick to point out that there was an alternative explanation 

for Rogers and Monsell‘s (1995) preparation effect: increasing the RSI meant that the 

currently irrelevant (‗offline‘) task set had longer to decay and, therefore, preparation 

effects could be the product of less interference. To address this alternative explanation, 

Meiran (1996) and Meiran, Chorev and Sapir (2000) used the explicit task cuing 

paradigm, systematically varying RCI and CSI to assess the contributions of passive 

decay and anticipatory task switching to preparation effects. On each trial, participants 

were presented with a happy face (a circle with eyes and smile) in one of four quadrants 

in a square frame, with task cues (arrows) positioned to the left/right or top/bottom of 

the frame. The two tasks were to identify the location of the face horizontally (left or 

right) or vertically (up or down) and respond using spatially congruent keys on a 

numeric keypad. When the RSI was kept constant, Meiran (1996) reported that the RT 

switch cost was significantly smaller at a long (1716 ms) CSI compared to that at a 
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Figure 3.2.  Reprint of Rogers and Monsell (1995) The cost in mean reaction time and 

error rate of switching task as a function of response to stimulus (R-S) interval, in 

Experiment 2 (varied R-S interval), Experiment 3 (constant R-S interval) and 

Experiment 4 (constant R-S interval). Experiments 3 and 4 used high stimulus-

response overlap stimuli, Experiment 4 used low stimulus-response overlap stimuli. R. 

D. Rogers & S. Monsell. Costs of a predictable switch between simple cognitive tasks. 

Journal of Experimental Psychology: General, 134 (2), 207-231, 1995, APA Publisher. 

Reprinted with permission. 
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short (216 ms) CSI, indicating that pre-stimulus anticipatory task switching contributed 

to decreases in the RT switch cost. Furthermore, lengthening the RCI (with a constant 

CSI) also decreased the RT switch cost, indicating that passive decay (or dissipation) 

also contributed to the size of RT switch costs (Meiran et al., 2000).  However, RCI and 

CSI manipulations provided optimal benefits at different time intervals. Meiran et al. 

(2000) reported that regardless of the accompanying RCI, increases in CSI up to 500 ms 

produced a sizable decrease in switch cost. By contrast, the RT switch cost showed a 

gradual but consistent decrease in size as the RCI was lengthened up to 2000 ms. That 

is, changes in the size of the RT switch cost due to decay and due to advanced 

preparation were independent. Critically, neither long RCIs or long CSIs (or both) 

eliminated the RT switch effects. Consistent with Rogers and Monsell‘s finding, there 

was a residual component to RT switch effects that was insensitive to timing 

manipulations. Meiran et al. (2000) concluded that at least three components could be 

identified in measures of switch costs: a decay component, a preparation component, 

and a residual component. With agreement across the alternating runs paradigm (Rogers 

& Monsell) and the explicit cuing paradigm (Meiran, 1996; Meiran et al., 2000), the 

validity of the preparation effect as a meaningful phenomenon in task switching was 

confirmed. Increasing the time prior to stimulus onset where participants know what 

task they are to perform (i.e., CSI in the explicit task cuing paradigm, RSI in the 

alternating runs paradigm) produces a significant decrease in switch cost beyond what 

can be explained by the decay of offline task sets. 

The preparation effect has been observed in numerous studies using different 

tasks, stimuli, and experimental paradigms (see Altmann, 2004b for an overview) and 

has been used to explore a number of research questions. The explicit task cuing 

paradigm is favoured by many researchers (e.g., Altmann, 2004b; Koch 2003; Logan & 

Bundesen, 2003; Meiran, 1996; Verbruggen et al., 2007), but there are still researchers 

who have continued to utilise the alternating runs paradigm (e.g., de Jong, 2000, 2001; 

Lindsen & de Jong, 2010; Monsell et al., 2003; Nieuwenhuis & Monsell, 2002). More 

recently there has been interest in using the voluntary task switching paradigm (e.g., 

Liefooghe, Demanet & Vandierendonck, 2009) to understand the processes underlying 

preparation effects. However, it is important to note that producing a preparation effect 

is by no means guaranteed. Just as Rogers and Monsell‘s (1995) failed to observe 

preparation effects when RSI varied randomly within a block, researchers using other 

experimental paradigms have also reported cases where longer RSIs/CSIs do not reduce 
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switch costs (e.g., Allport et al., 1994; Koch, 2001, 2003; Altmann, 2004b). The 

preparation effect is sensitive to changes in method, and certain prerequisites (e.g., 

manipulating RSI/CSI within subjects) may need to be met in order for it to be observed 

(see Altmann, 2004b).  

Preparation and the probability of task switch. 

In response to conflicting findings reported when using an explicit task cuing 

paradigm with two cues per task (see Logan & Bundesen, 2003; Mayr & Kliegl, 2003), 

Monsell and Mizon (2006) proposed that participants may use information about the 

probability of a task switch occurring on a given trial to adjust their task switching and 

preparation strategies. That is, if participants perceived there to be a high probability 

that the next trial would require a switch in tasks they could change task sets prior to 

cue presentation; task switching could be anticipatory. Consistent with this proposal, 

Monsell and Mizon reported that as the probability of a task switch increased, the 

magnitude of the RT switch cost decreased to the point where the length of the CSI no 

longer had any effect on the size of the RT switch cost (i.e., the preparation effect was 

eliminated). Thus, Monsell and Mizon (2006) provided strong evidence that (at least 

when multiple cues were used for each task) participants are sensitive to experimental 

characteristics such as task switch probability.
3
 In particular, Monsell and Mizon‘s 

explanation of probability effects suggests that the process of switching tasks can be 

initiated before explicit, external information about the upcoming task is presented. If 

the preparation effect is explained as the consequence of pre-stimulus task set switching 

or activation, findings such as these force one to acknowledge that beyond providing 

time for reconfiguration to occur, participants‘ ability or willingness to reconfigure in 

advance of stimulus onset can be affected by any number of experimental manipulations 

(see Verbruggen et al., 2007, for another example). That is, whether (and how) 

advanced preparation occurs depends on a number of experimental factors.  

Practice. 

Although practice does produce an overall speeding of responses, the term 

‗practice effect‘ here refers specifically to the decrease in the size of a switch effect over 

blocks of trials (Jersild, 1927; Koch, 2005; Kramer, Hahn, & Gopher, 1999; Kray & 

Lindenberger, 2000; Meiran, 1996; Minear & Shah, 2008) or over days (Rogers & 

                                                 
3
 Schneider and Logan (2006) replicated Monsell and Mizon‘s (2006) findings but posited a very different 

theoretical explanation that did not rely on reconfiguration or participants‘ sensitivity to probability of 

task switches. 
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Monsell, 1995; Monsell et al., 2003). The role of practice has been acknowledged from 

the very earliest task switching research. Jersild (1927) compared the effects of practice 

on completion times for mixed and pure blocks. In one experiment, participants 

performed naming and number substitution tasks in response to visual forms in mixed 

and pure blocks. Completion times for ten successive mixed and pure blocks were 

plotted and visually compared. Although both block types showed decreases in 

completion times across the ten blocks, this improvement was much larger for mixed 

blocks than for pure blocks (improvement of 13.8 and 6 seconds respectively). Practice 

decreased the size of the mixing cost. Jersild proposed that in addition to the individual 

task sets, practice produces a ―more comprehensive mental set‖ that encompasses both 

tasks and the processes involved in shifting between them, eventually leading to more 

efficient performance on mixed blocks (p. 58). 

Along with their manipulations of S-R overlap (‗#9‘ versus ‗A9‘) and RSI, 

Rogers and Monsell (1995) included analyses of performance across two days of testing 

(~768 trials per day). Significant decreases in RT switch cost were reported from day 

one to day two in all experiments, ranging from 31 to 96 ms in size. By contrast, 

practice effects on accuracy were only significant in two of the six experiments. Rogers 

and Monsell generally downplayed practice effects—noting that the decrease in RT 

switch cost was relatively small, especially when expressed as a proportion of baseline 

performance. Similar practice effects were reported by Meiran (1996), thus establishing 

that practice benefits task switching performance across a variety of paradigms 

including those most common in the literature. Meiran (1996) proposed that practice 

effects reflect a strengthening of associations between task cues and task sets, speeding 

changes in task sets. 

Practice effects have been used as a tool to gauge the impact of other 

manipulations. Researchers have questioned whether the benefits of practice can be 

transferred to situations that use different tasks (Minear & Shah, 2008) or sequence 

predictability (Koch, 2005). However, practice effects have largely been considered an 

extraneous variable that needs to be controlled rather than an effect of interest per se. 

Researchers have attempted to control for practice by excluding the first trials (or blocks 

of trials) of an experiment from their analyses of task switching performance. For 

example, Altmann (2004b) excluded the first 175 trials from his analyses and Monsell 

et al. (2003) excluded the first 336 trials from theirs. These numbers are by no means 

unusual. One can quickly conclude that practice effects are often considered a nuisance 



29 

 

 

 

variable to be controlled instead of a source of information about task switching 

processes. 

Repetition trial performance. 

RT switch costs are generally calculated by subtracting repetition trial 

performance from switch trial performance. The repetition trial used to calculate this 

measure is usually the trial immediately following the switch (e.g., position two in a 

run). However, this method of calculating switch costs is based on the assumption that 

the performance cost of switching tasks is isolated to the first trial in a run (i.e., 

performance on all repetition trials is equivalent). There is evidence to support this 

assumption from studies that have used the alternating runs paradigm (Altmann, 2002; 

Altmann & Gray, 2002; Keele & Rafal, 2000; Rogers & Monsell, 1995). However, 

evidence from the explicit task cuing paradigm (Salthouse, Fristoe, McGuthry & 

Hambrick, 1998) and theories of task switching that implicate interference (e.g., Allport 

et al., 1994) would suggest that recovery from a task switch is more gradual. Monsell et 

al. (2003) reconciled these competing results by identifying the predictability of task 

switches as an essential quality that affects whether switch costs are isolated to the first 

(switch) trial or not. Participants made magnitude and parity decisions to digits, 

switching between the two tasks in a 4-trial alternating runs paradigm (predictable task 

switches) or an explicit task cuing paradigm (random task switches). When task 

switches were predictable, switch effects were isolated to the first trial in the run and the 

mean RTs and accuracies of position two, three, and four were roughly equal. By 

comparison, when task switches were unpredictable the mean RTs across the four trials 

of a single task decreased significantly with each subsequent trial to position three. 

Monsell et al. concluded that participants used their knowledge of task predictability to 

moderate their preparedness: when a task switch is likely to be followed by another task 

switch, participants will voluntarily ‗release‘ the task set rather than keep it fully 

engaged. 

Within-run slowing. 

Within-run slowing refers to a gradual increase in RTs across repetition trials in 

a run of a task (Altmann, 2002; Altmann & Gray, 2002). Altmann and Gray (2002) used 

an intermittent instruction paradigm: a task cue was presented at the beginning of a run 

and participants continued to perform this task until the next cue appeared. Participants 

made magnitude and parity judgements to digit stimuli across a range of run lengths, 
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with mean run length manipulated between subjects (Mshort = 10, Mlong = 20). Repetition 

trials (position two onwards) became progressively slower further into a run of a task 

for both the short and the long run length conditions. Similar effects were reported for 

accuracy, as error rates became progressively higher further into a run of a task. The 

rate of slowing depended on the average run length. Responses slowed more rapidly 

when the average run length was short than that when the average run length was long.  

Altmann (2002) and Altmann and Gray (2002, 2008) explained within-run 

slowing as a consequence of task set decay. When participants switched to a new online 

task, the appropriate task set was activated so that its rules could be used to generate a 

response. Across a run, the level of activation for the online task set decayed. If the 

online task set needed to be sampled to produce the appropriate response, this sampling 

was likely to take longer and be more error prone for later positions in a run where the 

task set was more decayed. Within run slowing has been observed when run length was 

entirely unpredictable (Altmann & Gray, 2002) as well as when it remained constant 

(Altmann, 2002; Poljac, Koch & Bekkering, 2009). Furthermore, Altmann (2002) 

reported observing within-run slowing when tasks used different stimulus sets and when 

spatial cues were provided as an aid to monitor task sequence. According to Altmann 

(2002), the observation of within-run slowing is not the result of anticipatory processes 

and is not dependent on the maintenance of task sequences in memory.  

Task Switching Theories and Models 

Early interpretations (e.g., Jersild, 1927; Spector & Biederman, 1966) of task 

switching emphasised the importance of S-R overlap (or ambiguity), and posited that 

RT switch effects reflected time needed to resolve this ambiguity. This explanation (and 

task switching research as a whole) remained unchanged until the early 1990s when the 

publication of two influential papers by Allport et al. (1994) and Rogers and Monsell 

(1995) reinvigorated interest in task switching and prompted the development of new 

task switching theories. Models of task switching can be broadly classified by whether 

they rely on consciously controlled processes (e.g., Meiran, 2000b; Rogers & Monsell; 

Rubinstein, Meyer & Evans, 2001) or whether they emphasise unconscious, automatic 

processes such as interference or priming (e.g., Allport et al.; Allport & Wylie, 2000; 

Altmann & Gray, 2008; Logan & Bundesen, 2003). 
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Task set reconfiguration. 

Reconfiguration models of task switching originated with Rogers and Monsell 

(1995) and were largely developed to explain preparation effects and residual switch 

costs. In essence, Rogers and Monsell proposed that performance on a switch trial 

required the completion of two distinct stages where the online task set was loaded into 

working memory and used to produce responses. The first stage is endogenously 

controlled, time consuming, and can be completed in advance of stimulus presentation. 

The second stage is exogenously controlled and stimulus-locked. Full reconfiguration of 

task sets cannot be achieved until the stimulus has been presented (thus, producing 

residual switch costs). Rogers and Monsell‘s model has spurred the development of 

more detailed conceptual and computational reconfiguration models (Mayr & Kliegl, 

2000; Meiran, 2000a, 2000b; Rubinstein et al., 2001; Ruthruff, Remington & Johnston, 

2001; Sohn & Anderson, 2001). However, a critical characteristic of all reconfiguration 

models is that they hypothesise that switch trials require additional processes be 

completed (relative to repetition trials), thus producing slower and less accurate 

performance.  

Meiran (2000a, 2000b) states that task switch effects are observed when stimuli, 

motor responses, or other elements are ambiguous within the context of an experiment. 

Examples of this ambiguity would be if a single stimulus (e.g., a happy face in the top-

left corner) is associated with more than one task, or a single motor response (e.g., 

pressing the number 7 on the keyboard) is appropriate for more than one task. 

Performing in such an environment relies on the use of task sets that clarify which of 

the multiple interpretations of a stimulus or response is appropriate. In Meiran‘s (2000a, 

2000b) reconfiguration model, a task set consists of a series of algorithms—most 

critically, stimulus and response task sets—that are configured independently of each 

other and often at different points in time between trial N and trial N+1. The course of a 

trial begins with the reconfiguration of the stimulus set as soon as information about the 

upcoming task is available (e.g., when a task cue is presented) and is used to direct 

attention towards the relevant dimension(s) of the upcoming stimulus. Response task 

sets are reconfigured after stimulus task sets and constrain response options to those 

appropriate to the task. When the stimulus is presented, task-appropriate responses are 

compared to the stimulus representation to produce a measure of potency (similarity), 

and the most potent response option is selected for execution. After a response is made, 
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stimulus and response task sets remain activated until a cue (externally or internally 

generated) prompts a new case of reconfiguration (Meiran, 2000a, 2000b).   

Rubinstein et al. (2001) conceptualised performance in task switching experiments 

using two general processes (executive control processes and task-driven processes) that 

advance in parallel, with some elements occurring prior to stimulus onset but others 

occurring after stimulus onset. The progression of these two processes is illustrated in 

Figure 3.3. Executive control processes contain two stages: goal shifting and rule 

activation. The goal shifting stage is responsible for monitoring tasks by keeping the 

current (‗online‘) goal in working memory and removing a goal when it is no longer 

relevant. By contrast, the rule activation stage is responsible for retrieving the 

appropriate task rule. For example, if a trial required participants to perform a 

magnitude task, the current goal would be ‗make a magnitude decision‘, whereas the 

current rule would be ‗if digit is numerically larger than 5 then its magnitude is more, 

otherwise its magnitude is less‘. Rubinstein at al. stated that both goal setting and rule 

activation stages can be completed prior to stimulus onset, although this is less likely for 

rule activation. Furthermore, there are situations (short RSIs, stimuli that include 

explicit task cues) where these stages can become exogenously initiated.  

 

 

Figure 3.3. The executive control process and the task process of Rubinstein et al.’s 

(2000) two-stage reconfiguration model of task switching. J. S. Rubinstein, D. E. 

Meyer, and J. E. Evans. Executive control of cognitive processes in task switching. 

Journal of Experimental Psychology: Human Perception and Performance, 27(4), 763-

797, 2001, APA publishing, Adapted with permission. 
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Task-driven processes consist of three stages: stimulus identification, response 

selection, and movement production. The stimulus identification stage involves 

encoding stimulus features into working memory.  Stimulus identification is followed 

by the response selection stage, where the currently active rule (see rule activation) is 

used to generate the appropriate conceptual response. Finally, the conceptual response is 

translated into a motor response during the movement production stage. Continuing 

with the earlier example, upon presentation of the stimulus (e.g., ‗7‘), its features—

including its value—are encoded in working memory where the appropriate conceptual 

response of ‗more‘ is produced using the current task rules. Finally, ‗more‘ is translated 

into a motor response of pressing ‗z‘ with the left index finger.  

According to Rubinstein et al.‘s (2001) model, the difference between repetition 

and switch trials is that repetition trials involve only the task processes, whereas switch 

trials also involve executive control processes. In its computational form, Rubinstein et 

al.‘s model uses additive factor logic (Sternberg, 1969) in that each stage of a process 

(both executive control and task) must be completed in succession and the RT on a 

given trial reflects the sum of completion times for contributing stages. Therefore, 

experimental manipulations that affect different stages and/or processes should have 

additive effects, whereas those that affect the same stages should produce interactions. 

For example, Rubinstein et al. manipulated rule complexity (easy or difficult math 

tasks) and task cuing (providing or withholding math operation cue) within the same 

experiment. As rule complexity was expected to affect rule activation and response 

selection stages, and presenting an external cue was expected to affect goal shifting and 

response selection stages, they expected to (and indeed, did) observe an interaction for 

completion times of mixed lists. Similar use of additive factor logic has confirmed that 

manipulations of task expectancy and task recency affected different stages (goal 

shifting and response selection respectively) of reconfiguration (Ruthruff et al., 2001).  

Research has provided strong evidence that switching tasks involves the 

reconfiguration of task sets, some of which can be initiated endogenously and some of 

which are locked to the presentation of a stimulus (Meiran, 2000a, 2000b; Rogers & 

Monsell, 1995; Rubinstein et al., 2001). However, these reconfiguration models do not 

rule out the impact of other more automatic processes on task switching effects. Indeed, 

researchers such as Sohn and Anderson (2001) have produced models of task switching 

performance that involve contributions from executive control processes as well as 

automatic processes such as repetition priming. As it stands today, most researchers 
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who support the role of endogenous controlled reconfiguration in task switching are 

also willing to accept the following: (a) task sets need to be ‗loaded‘ into working 

memory from long term memory in order to be utilised, and it is this process which is 

called reconfiguration (Mayr & Kliegl, 2000; Meiran, 1996); (b) with predictable task 

progressions or the use of instructional cues, reconfiguration can be initiated in advance 

of stimulus presentation; (c) some aspect of reconfiguration cannot occur until the 

stimulus is presented (see de Jong, 2001, for an exception); and (d) there are 

components of switch effects that reflect interference and inhibition processes that exist 

independent from any reconfiguration (see Mayr & Keele, 2000; Meiran, 1996; 

Arbuthnott & Frank, 2000).  

Proactive interference and negative priming. 

Task set inertia theory. 

Task set inertia theory proposes that when a participant switches tasks and there 

is an element of S-R overlap, proactive interference from the offline task set negatively 

affects performance. Time is required to overcome this proactive interference from 

competing offline task sets, resulting in task switching costs and mixing costs (Allport 

et al., 1994). In task set inertia theory, task switching effects are interpreted wholly 

within an interference framework, without reference to or reliance on consciously 

controlled processes unique to switch trials (i.e., reconfiguration). Task set inertia 

theory was developed to explain results reported in Allport et al. that used the mixed 

versus pure block paradigm. In Allport et al., the stimuli were arrays of digits within a 

rectangle (e.g., ‗4‘ presented six times) and Stroop colour-words (e.g., the word ‗blue‘ 

presented in red). For word stimuli, participants read the colour name (dominant task) or 

identified the colour of the word (non-dominant task). For number stimuli, participants 

identified the value of the digit (dominant) or the number of digits in the array (non-

dominant). Consistent with Jersild‘s (1927) findings, the mean time to complete a 

mixed list was significantly longer than that to complete a pure list (that is, there was a 

mixing cost), and the magnitude of this slowing was greater when the mixed lists used 

the same stimuli for both tasks. More importantly, mixed lists that used different 

stimulus sets for each task (e.g., word reading and digit value tasks) only produced 

mixing costs when previous lists had used the same stimuli for different tasks (e.g., 

participants had previously identified the colour of words).  
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Allport et al. (1994) compared the size of switch costs when switching from 

dominant to non-dominant task (e.g., word reading to colour naming) and vice versa to 

examine whether the relative automaticity of tasks affected the cost of switching tasks. 

The size of the RT switch cost was significantly larger when switching to the dominant 

task compared to that when switching to the non-dominant task (i.e., there was an 

asymmetric switch cost). Allport et al. suggested that as the dominant task (e.g., word 

reading) was easy and natural to perform, it required little additional activation to 

become the ‗online‘ task set. By contrast, the non-dominant task (e.g., colour naming) 

was more difficult and had a lower level of latent activation and required more 

activation to become the ‗online‘ task set. The additional activation to the non-dominant 

task set resulted in higher levels of interference when it was no longer relevant, thus 

producing larger switch costs for the dominant word reading task.  

Negative priming. 

Where Allport et al. (1994) established that persisting activation from a prior 

task set can interfere with performance and produce switch effects, the work of Allport 

and Wylie (2000) and Wylie and Allport (2000) found that this interference was largely 

due to the inappropriate retrieval of task sets and responses previously associated with a 

specific stimulus. That is, interference is the product of a specific stimulus (e.g., ‗blue‘ 

presented in red) prompting the retrieval of a specific response (e.g., ‗blue‘), rather than 

a stimulus set (e.g., colour words) prompting the retrieval of a task set (e.g., ‗read the 

word‘). Allport and Wylie used Stroop stimuli including incongruent colour words, 

neutral colour stimuli and neutral words (as in Allport et al., 1994). In the experiments 

of interest (Experiments 3 – 5), participants completed three phases: (1) a baseline block 

of the word reading task; (2) a block of the colour naming task (interference condition) 

or a block of rest (control condition); and (3) a final block containing two runs of word 

reading with instructions between the runs. Note that participants never switched tasks 

within a block and only those in the interference condition performed more than one 

task in the whole experiment. RT performance for Stroop words in the first run of phase 

three was slower overall for the interference condition than the control condition. 

Having previously made colour naming decisions participants produced slower 

responses. In another experiment, Allport and Wylie (2000) manipulated S-R 

associations at a stimulus level. During the second phase of the experiment, only half of 

the colour-word stimuli were presented for participants to make colour naming 

responses. Thus, only half of the Stroop colour words developed competing colour 
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naming S-R associations—they were negatively primed. Phase three performance was 

compared for colour-words that were negatively primed in phase two and colour-words 

that were not negatively primed. For the first trial in a run, the mean RT for negatively 

primed colour-words was significantly slower than that for the unprimed colour-words. 

Allport and Wylie (2000) concluded that a significant portion of the interference from 

alternative task sets is stimulus specific, particularly on switch trials.  

Waszak, Hommel and Allport (2003, 2004) posited that the effects of negative 

priming are largely isolated to switch trials because the activation of the online task is 

relatively weak and is therefore particularly vulnerable to irrelevant S-R associations. 

When stimuli are associated with multiple tasks they develop multiple S-R associations 

over the course of an experiment. Consequentially, the presentation of a stimulus can 

result in the spontaneous retrieval of S-R associations specific to that item that are 

currently counterproductive. This type of spontaneous (yet incorrect) retrieval of S-R 

associations produces the longer RTs observed on switch trials (Allport & Wylie, 2000; 

Koch & Allport, 2006; Waszak et al., 2003, 2004; Wylie & Allport, 2000).  

Cognitive control model—activation and decay. 

The Cognitive Control Model (CCM) of task switching (Altmann & Gray, 2008) 

frames task switching performance within the ACT-R memory model (Anderson, 

1996). Put simply, the CCM model posits that the successful completion of a trial (be 

that a task switch or a task repetition trial) requires that the appropriate task set is 

sampled from memory and applied to the current stimulus. The CCM model does not 

rely on (nor support the existence of) consciously controlled reconfiguration processes. 

When a task cue is presented, it creates/updates and activates a representation in 

episodic memory called a task code (or task set). The activation of the ‗online‘ task code 

and the most active ‗offline‘ task code are represented using signal detection theory 

(Green & Swets, 1974) by two normally distributed activation densities (Altmann & 

Gray, 2008). The point at which the online and offline task codes intersect is called the 

retrieval threshold and activation above this threshold means that the online task is 

accessible. When the appropriate task set is accessible, it can be used to guide task 

performance and select the appropriate response to the presented stimulus. When one 

switches tasks, a greater amount of activation (and thus time) is required to reach the 

retrieval threshold and overcome interference from the offline task set, producing task 

switching effects. 
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In its computational form, the CCM model uses multiple parameters, such as the 

retrieval threshold, baseline activation levels of task codes, and activation of offline task 

codes to simulate data for a number of critical task switching phenomena. Within-run 

slowing has already been discussed in this chapter, with its effects representing changes 

in decay rates for task codes (Altmann & Gray, 2002, 2008). Another phenomenon that 

the CCM model has been used to explain is the preparation effect—manipulations of 

RSIs/CSIs change when the activation of a task code is initiated. In brief, identifying a 

cue and then activating the online task code to a level above threshold takes multiple 

encoding cycles (time). With long preparation intervals, the likelihood of cue 

identification and task code activation being achieved prior to stimulus onset is higher. 

Thus, fewer encoding cycles are likely to be needed after stimulus presentation, 

producing faster RTs (Altmann & Gray, 2008).  

Compound cue retrieval model. 

The compound cue retrieval model explains task switch effects when an external 

task cue is presented (see Logan & Bundesen, 2003; Mayr & Kliegl, 2003). Logan and 

Bundesen (2003) noted that by combining information from the cue and stimulus, the 

correct answer can be retrieved directly from long term memory (LTM) without needing 

to reconfigure task sets. For example, when completing a magnitude task, a cue of 

‗magnitude‘ and a target of ‗7‘ produces a compound cue (‗magnitude-7‘) that can be 

used to retrieve the correct answer ‗more‘ from memory. According to the compound 

cue retrieval model, the presentation of a task cue initiates the process of comparing that 

cue to representations held in memory. When trial N and trial N-1 cues are the same, 

representations of the cue are held in LTM and short-term memory (STM). However, 

when trial N and trial N-1 cues are different, representations of the cue are held only in 

LTM. As the rate of processing (or encoding) a cue depends on the memory systems it 

is represented in, cue repetitions (held in STM and LTM) produce faster processing 

rates (and shorter encoding times) than that for cue switches (held only in LTM). A 

shorter cue encoding time means that the correct response can be retrieved from LTM 

more quickly, thus decreasing RTs and the size of switch effects. Thus the compound 

cuing model, like the CCM model, argues that the same processes occur for repetition 

and switch trials. The difference between switch and repetition trial performance 

represents a benefit of repeating a task rather than a cost of switching tasks. Subsequent 

work by this group of researchers (Logan & Bundesen, 2004; Logan & Schneider, 2010; 
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Logan, Schneider & Bundesen, 2007; Schneider & Logan, 2005, 2006, 2007) has 

continued to develop and provide evidence to support the compound cue retrieval 

model, claiming that (at least for the explicit task cuing paradigm), additional 

reconfiguration processes are unnecessary to explain task switching performance.  

Summary of task switching theories. 

The task switching models outlined above can be broadly classified by whether 

they include a role for endogenous cognitive control process(es) (Mayr and Kliegl, 

2000, 2003; Meiran, 1996; Meiran, 2000a, 2000b; Rogers & Monsell, 1995; Rubinstein 

et al., 2001) or not (Allport & Wylie, 2000; Altmann & Gray, 2002, 2008; Logan & 

Bundesen, 2003; Wylie & Allport, 2000). Generally speaking, reconfiguration models 

of task switching tend to be more accepting of additional parameters of interference or 

inhibition, although they fall short of formally including such processes in their models 

(i.e., Mayr and Kliegl, 2000; Rubinstein et al., 2001). By contrast, Altmann and Gray 

(2002, 2008) have argued that task switching effects can be explained without reference 

to consciously controlled reconfiguration processes. Similar statements have been made 

by proponents of the compound cuing model of task switching (Logan & Bundesen, 

2003, 2004; Logan, Schneider & Bundesen, 2007) and task set inertia / negative 

priming theorists (Allport & Wylie; Wylie & Allport).  
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Chapter Four 

Task Switching and Episodic Memory 

 

In the opening of Chapter 3, the interruptions effects reported by Jones et al. 

(2011) were interpreted from a task switching perspective. It was suggested that the 

periodic interruption of the recognition task for a single trial was functionally very 

similar to an infrequent task switch. From this perspective, the slower RTs and lower 

accuracy for recognition decisions that followed an interruption trial (recall or colour 

identification) reflected the cost of switching from the interruption task set back to the 

recognition memory task set. Of particular interest to this thesis is that Jones et al. 

showed that participants‘ ability to correctly identify old and new words was 

significantly impaired when they had recently switched tasks. This thesis seeks to 

further explore this observation and to use task switching and recognition memory 

methods to investigate task switching using a task arguably more complex than those 

typically used in the task switching literature (that is, the recognition task). 

Three studies have reported switch effects on explicit memory (Kavcic, Krar & 

Doty, 1999; Mayr & Kliegl, 2000; Werkle-Bergner, Mecklinger, Kray, Meyer & Duzel, 

2005). Mayr and Kliegl (2000) reported significant task switching effects when 

participants switched between making source recognition decisions and semantic 

memory decisions. In the initial phase, participants repeatedly studied a short list of 

words (N = 16) and were then tested for their memory of each word‘s location and 

colour. The aim was for participants to learn each word‘s colour and location to a set 

criterion—a word was dropped from subsequent study-test cycles when its colour and 

location had been correctly recalled four consecutive times. In the test phase, these same 

words were used as stimuli for the completion of four tasks: recalling the colour at 

study, recalling the location at study, reporting the size of the object, and reporting 

whether the object is living or non-living. The first two tasks required episodic memory 

whereas the second two tasks required semantic memory. Four blocks (two tasks per 

block) using 4-trial alternating runs (AAAA BBBB) were presented to participants in 

the test phase. Each test block used a different combination of semantic and episodic 

tasks. Mayr and Kliegl (2000) reported significant RT switch costs for all four 

combinations of tasks, although this cost was larger when switching to an episodic task 
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(range ~1200 ms to 1350 ms) than that when switching to a semantic task (range ~950 – 

1050 ms). Similarly, participants committed more errors on switch trials relative to 

repetition trials, particularly when the online task was episodic. These effects were also 

observed using an explicit task cuing procedure. Mayr and Kliegl (2000) concluded that 

tasks with large long term memory (LTM) retrieval demands (e.g., episodic memory 

tasks) took longer to install in working memory. Without adequately long preparation 

intervals or cues that eliminated the need to retrieve the task set from LTM, large switch 

costs were observed. However, for the interests of this thesis the critical finding of Mayr 

& Kliegl (2000) was that switching tasks had a negative effect on source recognition 

performance (both RT and accuracy), even though stimuli had been thoroughly studied 

prior to the test phase. 

Werkle-Bergner et al. (2005) used a recognition task and a source recall task in 

their examination of the electrical signals in the brain (event related potentials, ERP) 

associated with switching between tasks. The experiment consisted of eight study-test 

blocks. During study, 30 words were presented one at a time and participants were 

instructed to memorise the word and its font, as well as judge whether the word 

contained the letter ‗a‘. There were two tasks at test: identifying words as ―old‖ or 

―new‖ (general task, G), and judging whether the target word was presented in the same 

or different font relative to its study presentation (specific task, S). Half of the study-test 

blocks used only one task at test (pure blocks) and half used 2-trial alternating runs 

(mixed blocks: GG SS…). For both types of test block, geometric frames (rectangles or 

ovals) were presented 300 ms before target onset as task cues. In addition to ERP data, 

Werkle-Bergner et al. reported behavioural data consistent with mixing effects and 

switch effects. The mean RT was slower and the mean accuracy was lower for mixed 

blocks than those for pure blocks. Within the mixed blocks, comparing performance on 

repetition and switch trials also produced significant RT (~134 ms) and accuracy 

(~0.13) switch effects. The magnitude of these switch effects did not differ significantly 

for either task. Thus, Werkle-Bergner et al. (2005) provided evidence that recognition 

memory performance could be affected by switching between two types of episodic 

memory tasks. 

Mayr and Kliegl (2000) and Werkle-Bergner et al. (2005) both reported RT and 

accuracy switch effects on episodic memory performance. As is common in the task 

switching literature, the tasks they were switching between used the same stimulus sets. 

By comparison, Kavcic et al. (1999) investigated the effect of switching between 
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different sets of visual stimuli (but maintaining the same task). The experiment used a 

continuous recognition paradigm. Participants were instructed to respond whether each 

stimulus had been presented earlier in the experiment (i.e., it was old) or not (it was 

new). The stimuli were words, nonwords, faces, coloured butterflies, coloured abstract 

images, and monochromatic abstract images (20 per stimulus set). Whether stimulus set 

switching was predictable or unpredictable was manipulated between participants. In 

the predictable condition stimulus type switched every trial, whereas in the 

unpredictable condition stimulus type switched pseudo-randomly. As there was only 

one task—to make recognition memory decisions—no task cues were used. More often 

than not, Kavcic et al. did not observe significant set switching effects for recognition 

accuracy. However, with unpredictable stimulus switches (but not predictable) between 

particular stimulus sets (nonwords following words, butterflies following faces), reliable 

switch effects were observed (accuracy switch cost of 0.06 and 0.11 respectively). The 

effect of set switches on recognition RTs was considerably more reliable. Kavcic et al. 

reported that stimulus set switches produced a significant increase in RT, regardless of 

switch predictability (RT switch cost 24 – 92 ms). 

Kavcic et al. (1999) argued that stimulus set switch effects were comparable to 

measures of residual switch costs and that these switch effects represented the time 

taken to end one processing mode (e.g., processing faces) and initiate the next 

processing mode (e.g., processing words). Similar conclusions can be drawn when 

Kavcic et al.‘s experiment is interpreted using Meiran‘s (2000a, 2000b) model of task 

switching. Each stimulus in Kavcic et al. uniquely belonged to one stimulus set—they 

were univalent. By comparison, ―old‖ and ―new‖ motor responses (i.e., the keys pressed 

to respond) were bivalent. The same motor responses were made in response to memory 

searches for word, face, and butterfly stimuli. In essence, switching from face stimuli to 

butterfly stimuli affected a change in response set from ‗respond old face or new face‘ 

to ‗respond old butterfly or new butterfly‘. With univalent stimuli and bivalent 

responses, Meiran‘s (2000a) model of task switching hypothesises that performance 

costs will reflect the residual component of a switch cost. Thus, Kavcic et al. provided 

evidence that stimulus switches can negatively affect recognition memory performance 

and may be considered a type of task switching.  
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Justification for Current Studies 

The work of Mayr and Kliegl (2000), Werkle-Bergner et al. (2005) and Kavcic 

et al. (1999) confirmed that task switching and stimulus set switching can negatively 

affect performance on episodic memory tasks. However, it is difficult to attribute these 

switch effects to a failure of memory proper rather than to interference from other task 

sets associated with stimuli or negative priming from earlier stimulus-response 

associations. Mayr and Kliegl‘s (2000) relatively overlearned, very small set size could 

have produced an underestimation of the real cost to memory. Their use of forced recall 

for source information and the absence of new words at test meant that Mayr and 

Kliegl‘s (2000) results do not give an indication of participants‘ ability to discriminate 

between old and new words. Finally, although source recognition and item recognition 

are arguable related, they reflect qualitatively different types of memory (Glisky, Polster 

& Routhieaux, 1995) and may be differently affected by task switches. Finally, although 

Werkle-Bergner et al. established that item recognition performance was lowered on 

switch trials they did not examine what this observation meant for memory processes.  

These studies have used memory tasks as tools to examine task switching rather than 

using task switching as a tool to examine memory. This thesis attempts to cast the 

investigative light in both directions: to examine how episodic memory is affected when 

participants switch tasks as well as how the process of switching tasks is affected when 

the task itself involves retrieving information from episodic memory. 

General Methodology 

All of the experiments in this thesis used a study-test recognition memory 

design. In a study phase, participants were presented with words to study, sometimes 

with no further instructions and sometimes with the addition of a semantic or perceptual 

judgement task. A study phase was followed by a test phase, where participants switch 

between a recognition memory task and a magnitude task in 1-, 2-, and 4-trial 

alternating runs. Given the transparency of the two tasks and that task repetitions and 

switches were always predictable, external task cues are generally not supplied 

(although Experiment 3 uses a visual sequence cue in some conditions).  

For the magnitude task, an array of dots was presented to participants who were 

instructed to judge whether there were more or less than specific number of dots. The 

choice of secondary task was motivated by several factors. Firstly, I wanted a secondary 

task that would use different stimuli to the primary recognition memory task and that 
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would elicit responses that could not be applied to the word stimuli. This choice to use a 

magnitude task limited the S-R overlap between the two tasks so that the only element 

shared across the tasks was a motor response (responses to both tasks were made on the 

same keys on the keyboard). An additional consequence was that it was impossible for 

participants to inadvertently perform the wrong task—a magnitude judgement could not 

be made for word stimuli, and an old/new decision could not be made for dot arrays. 

Any differences in recognition accuracy between repetition and switch trials would 

represent a failure on the part of long term memory as a result of switching tasks. 

Although novel, dot arrays have been used in task switching experiments before; 

Ruthruff et al. (2001) used dot stimuli arranged as they would be represented on a die in 

place of numbers for a parity task. In this thesis, the magnitude task used randomly 

positioned dots within a predefined area of the monitor such that none of the dots 

overlapped. The random positioning of the dots discourages overestimation of the 

number of dots in a display (Ginsburg, 1978), as does ensuring that dots are not 

overlapping or connected (He, Zhang, Zhou & Chen, 2009). More importantly, the 

random positioning of dots ensures that, like the word stimuli in the recognition 

memory task, each magnitude judgement is made in response to a unique array of dots. 

The use of unique stimuli for every trial during the study phase seriously limits the 

effects of positive or negative S-R priming (Allport & Wylie, 2000; Wylie & Allport, 

2000). 

The Aims of This Thesis 

This thesis examines how task switching and recognition memory methods and 

theories can be combined to increase our understanding of these disciplines separately. 

Additionally, it presents an opportunity to investigate task switching effects with 

relatively novel tasks in a novel experimental design. Logan (2003) stated that the 

advancement of task switching theory and understanding would require researchers to 

expand their horizons beyond the simple tasks and standard task switching methods 

typically used in the literature. This thesis aims to contribute toward that goal by 

examining the effects of switching between making recognition decisions to word 

stimuli (recognition task) and magnitude judgements to dot stimuli (magnitude task). 

The experiments in this thesis were developed to address three primary research aims:  

1. To establish that task switching effects can be observed when switching between 

two tasks that utilise different stimuli and arguably different cognitive processes.  
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2. To examine how task switching methods can be used in conjunction with 

recognition memory theory to establish the locus of costs to memory performance.  

3. To examine the characteristics of two common task switching effects—preparation 

effects and practice effects—within the more naturalistic experimental conditions 

produced when switching between recognition and magnitude tasks.  

Experiments 1 and 2 establish that task switching effects can be observed when 

participants switch between the recognition task and the magnitude task. They develop a 

reliable experimental method of examining task switching effects on recognition 

performance and seek to confirm that the observed switch effects are consistent with 

those observed in earlier task switching research. Importantly, Experiment 2 also 

examines whether switching tasks differentially affects familiarity or recollection 

processes. Experiment 3 examines how performance changes over a 4-trial run for the 

purpose of examining recovery from a task switch (Monsell et al., 2003) and within-run 

slowing (Altmann, 2002; Altmann & Gray, 2008). The value of providing a visual 

sequence cue to remind participants of an upcoming task switch is also investigated. 

The focus of Experiments 4A, 4B, 5A, and 5B is on two commonly observed 

phenomena in task switching research: preparation effects and practice effects. Each 

experiment comprised two study-test blocks and each test block was associated with a 

single response-to-stimulus interval (RSI). With the use of different stimulus sets for 

each task and the absence of external cues to scaffold performance, these experiments 

aim to study preparation and practice effects in an experimental design that more 

closely resembles everyday life experience. Critically, these experiments represent an 

attempt to establish a boundary for when preparation effects are observed. 

Performance on the secondary magnitude task is not reported for Experiments 1 

and 2, as they focus on task switching effects as they relate to recognition memory 

performance and theory. Although recognition memory performance remains the 

primary interest, Experiments 3 – 5B report task switching performance for both the 

recognition and magnitude tasks as these experiments focus on more general task 

switching effects. The primary measures of performance are RT and accuracy as a 

function of task transition (switch or repetition trial). To preview the general findings, 

switching between tasks consistently resulted in significant RT switch costs. Across all 

experiments, accuracy of switch trials was lower than that for repetition trials and this 

difference reached significance more often than not.  
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Chapter Five 

Experiment 1: Establishing Task Switching Effects 

 

Experiment 1 was designed to address the first aim of this thesis, namely to 

establish whether task switch effects could be observed when switching between a 

recognition memory task and an unrelated secondary task with limited stimulus-

response (S-R) overlap. During the study phase, participants studied a list of words. In a 

test phase, participants switched between making recognition memory (R) decisions to 

word stimuli and magnitude (M) decisions to dot stimuli. The two tasks were presented 

in an alternating runs design, and run length (1-, 2-, or 4-trial runs) was manipulated 

between participants. The primary purpose of manipulating run length was to establish 

the most efficient and effective way of assessing task switching effects with these 

particular tasks.  

Jones et al. (2011) reported significant RT and accuracy interruption effects 

when the interruption was unpredictable and tasks used different S-R sets. However, the 

interruptions were relatively rare and were only present for one trial. When using 1-trial 

runs (mixed blocks), some researchers have struggled to observe task switching effects 

with tasks that do not share stimulus sets (e.g., Jersild, 1927). When they have been 

observed, they have been eliminated with a very small amount of practice (Allport et al., 

1994). By contrast, Rogers and Monsell (1995) observed significant RT and accuracy 

switch effects that persisted over two days of testing when using a 2-trial alternating 

runs paradigm and tasks with limited S-R overlap (e.g., ‗#9‘ for the parity task and 

‗A&‘ for the letter task). Given these mixed results, it is important to assess the size and 

resilience of switch effects across a variety of run lengths to establish the most effective 

way of testing task switching effects with these types of tasks. 

For a 1-trial run condition (i.e., a mixed block) every trial is a switch trial, 

making it impossible to compare switch and repetition performance within participants 

when only a single test block is used. In order to keep the analysis of switch effects 

consistent across run conditions it was therefore necessary to include an additional 

condition where critical trials were repetition trials. Traditionally, performance on 

mixed blocks has been contrasted with performance on task-pure blocks (e.g., Allport et 

al., 1994; Baddeley et al. 2001; Jersild, 1927). However, this method confounds task 
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switching and cognitive load, as participants must maintain task sets for two tasks in 

mixed blocks and one task in pure blocks (Rogers & Monsell, 1995). Also, when task 

cues are not provided, mixed blocks require participants to monitor task sequence—

what they have just performed and what they are to perform next—but pure blocks do 

not require this additional cognitive process (Baddeley et al., 2001). To avoid these 

confounds, repetition trial performance was measured by a separate run condition 

(hereafter referred to as the control run condition) that used a 2-trial alternating runs 

design offset by one trial. This approach meant that there were two groups that used a 2-

trial alternating runs: the 2-trial run condition where critical trials were switch trials 

(MM RR MM…) and the control run condition where the critical trial was a repetition 

trial (M RR MM R…). It is important to note that comparisons of switch and repetition 

trial performance could be made within a run for the 2-trial and 4-trial conditions—

these run conditions contained switch and repetition trials. However, in this experiment 

all analyses of  task switching effects (RT and accuracy) were made by comparing 

critical trial performance in the experimental conditions (1-, 2-, and 4-trial run 

conditions) to critical trial performance in the control run condition. This held the 

position of critical switch and repetition trials constant across all run conditions and 

maintained a common point of comparison for all experimental conditions. 

Additionally, this meant all analyses of task switching effects were made between 

participants, as opposed to some within (2- and 4-trial runs) and some between (1-trial 

run). 

The primary hypothesis for Experiment 1 was that switch effects would be 

observed for recognition memory RT and perhaps for accuracy. That is, recognition 

memory performance on the critical trials would be slower and less accurate for the 1-, 

2-, and 4-trial run conditions (where they were switch trials) compared to that for the 

control run condition (where they were repetition trials). An additional interest that was 

explored in this experiment was whether the length of a run had an impact on 

performance on task switch trials. The Cognitive Control Model (CCM, Altmann & 

Gray, 2008) posits that the activation of a task set decays over time. As such, one could 

hypothesise that the longer a task set has been ‗offline‘, the more activation (and thus, 

time) the task set should require to reach threshold. Despite this seemingly logical 

assumption, research that has manipulated run length has either failed to report if 

performance on the switch trial is affected by the number of trials that have passed since 

its last use (Altmann, 2002; Altmann & Gray, 2002) or has reported no significant 



47 

 

 

 

differences (Monsell et al., 2003). Therefore, the effect of run length on task switching 

performance was explored with a tentative hypothesis that, for the three experimental 

conditions (1-, 2-, and 4-trial run conditions), critical recognition memory RTs may 

increase as run length increases.  

Method 

Participants  

Ninety-six undergraduates (24 per run length condition) from Victoria 

University of Wellington participated for research credit towards an introductory 

psychology paper. All participants in the final data set: (1) had normal or corrected-to-

normal vision, (2) spoke English from early childhood, and (3) had mean RTs for 

correct critical recognition trials within 3 SD of the group mean. Participants who failed 

to meet the above criteria were replaced to achieve proper counterbalancing. 

Materials 

Words (N = 128) from the English Lexicon Project (Balota et al. 2007) were 

used in the experiment. Thirty of these words were used to create two critical lists (see 

Appendix A) that were balanced for mean word frequency (Kucera & Francis, 1967, M  

= 75.83), word length (M = 6.50), and syllables (M = 1.97). The remaining words had 

similar properties and were used as filler words in the study and/or test phases. Dot 

stimuli were black circles (diameter = 35 mm). Words were presented centrally on a 

white screen in black bold 18-pt Courier New font. The experiment was conducted 

using E-Prime software (Schneider, Eschman & Zuccolotto, 2002). 

Design and Procedure 

The experiment comprised a study phase and a test phase. During the study 

phase, participants viewed and attempted to learn a list of words. During the test phase 

participants switched between the recognition memory task and the magnitude task in 

predictable 1-, 2-, or 4-trial runs. Critical recognition trials were manipulated in a 4 (run 

condition: 1, 2, 3, control) x 2 (item type: old, new) mixed design. Participants sat 

approximately 0.5 meters from the monitor at individual computer stations. One to four 

participants were run per session. General instructions for the experiment and 

instructions for the study phase were presented visually and verbally, after which 

participants worked at their own pace. 
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Study Phase.  

The study phase consisted of 68 trials: 4 primacy buffer words, 15 words from a 

critical list, 45 non-critical words, and 4 recency buffer words. Words from the critical 

list were evenly dispersed every four words throughout the study phase, excluding the 

first and last four study trials, which were used for primacy and recency buffer words. 

Participants were instructed to study each word as they would be tested on their 

memory later in the experiment. A study trial began with the presentation of a brief (100 

ms) focal stimulus (+++) presented in the centre of the monitor. Immediately after the 

focal stimulus the target word was presented in the same position for 3000 ms. An 

intertrial interval (ITI; 500 ms) with a blank screen occurred between a study word and 

the focal stimulus on the following trial.  

Test Phase.  

The test phase comprised a practice test and the actual test. Participants 

alternated between a recognition memory task (R) and a magnitude task (M) every one, 

two, or four trials, as illustrated in Figure 5.1. The actual test for the 1-, 2-, and 4-trial 

run conditions were constructed so that critical trials were switch trials. The actual test 

for the control run condition was constructed so that the critical trial was a repetition 

trial. Participants were informed that they would be alternating between a magnitude 

task and a recognition memory task in a predictable sequence. The length of each 

sequence—which varied depending on run condition—was described verbally and 

illustrated visually to participants.  

The 16-trial practice test used buffer words from the study phase or new words 

otherwise not presented in the experiment. The 240-trial actual test used words from the 

studied critical list (critical ‗old‘ recognition trials), the nonstudied critical list (critical 

‗new‘ recognition trials), studied non-critical words (other ‗old‘ recognition trials), and 

non-studied words (other ‗new‘ recognition trials). The allocation of critical list to item 

type (old, new) was balanced across participants. During the actual test, the presentation 

of the first critical word occurred after four trials, and every eight trials subsequently. 

The actual test was designed so that ‗old‘ and ‗new‘ recognition responses were 

randomly distributed across the critical recognition trials. For the magnitude task, the 

actual test used an equal number of ‗more‘ and ‗less‘ magnitude trials (four and six dots  
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Trial 1-trial 2-trial 4-trial Control 

1 RGN RGN MAG RGN 

2 MAG RGN MAG MAG 

3 RGN MAG MAG MAG 

4 MAG MAG MAG RGN 

5 RGN RGN RGN RGN 

6 MAG RGN RGN MAG 

7 RGN MAG RGN MAG 

8 MAG MAG RGN RGN 

 

Figure 5.1.  Trial and task progression for the 1-, 2-, and 4-trial run conditions and the 

control run condition in Experiment 1. RGN = recognition memory trial, MAG = 

magnitude judgement trial. The critical trial (trial 5) is presented in bold. Critical trials 

are switch trials for 1-, 2-, and 4-trial run conditions, and repetition trials for the control 

condition.  

 

respectively). A single list of magnitude trials was constructed with ‗more‘ and ‗less‘ 

magnitude responses distributed pseudo-randomly. Magnitude trials in the actual test 

selected trials from this list sequentially in the pattern relevant to the run condition (i.e., 

1-, 2-, or 4-trials in a row).   

A recognition memory trial began with the brief (100 ms) presentation of a focal 

stimulus (+++) in the centre of the monitor. Immediately after the focal stimulus the 

target word was presented in the same location. Old and new judgements could be made 

at any time after the word was presented using the f and j keys on the keyboard. The 

allocation of keys to responses was balanced across participants. A trial terminated 

when a response was made, and the next trial began after a 500-ms ITI of a blank 

screen. 

A magnitude trial began with the brief (100 ms) presentation of a focal stimulus 

(+++) in the centre of the monitor. Immediately after the focal stimulus the dot targets  

(four or six) were presented. The location of dots on any given trial was random, with 

the proviso that no dots overlapped. Participants were instructed to judge whether there 
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were more or less than five dots and to respond using the f (more) or j (less) keys on the 

keyboard. The allocation of key to magnitude judgement response was not balanced as 

there was no interest in magnitude performance or in comparing performance for ‗more‘ 

and ‗less‘ decisions. A trial terminated when a response was made, and the next trial 

began after a 500-ms ITI of a blank screen.  

After receiving instructions about the two tasks, participants completed the 

practice test. Participants were then reminded about the response allocations for the 

recognition and magnitude tasks prior to starting the actual test. Participants were 

debriefed and thanked for their participation after completing the experiment.  

Results 

All statistical analyses were conducted on critical recognition memory trials. 

Data from the practice test were excluded from analyses. Statistical analyses of RT 

performance used participants‘ median RTs for correct critical recognition memory 

trials. An alpha level of 5% was used for all statistical tests. 

Accuracy 

Corrected accuracy was calculated by subtracting the false alarm rate from the 

hit rate for critical recognition trials. The mean hit and false alarm rates for this and all 

subsequent experiments can be found in Appendix B. Accuracy for the control (task 

repetition) condition was moderate (M = 0.50, SD = 0.19) and well above chance (0), 

indicating that participants were capable of discriminating between old and new words. 

Accuracy for the 1-, 2-, and 4-trial run (task switch) conditions was very similar and 

showed good discrimination between old and new words. Of these three conditions, 

mean corrected accuracy of the 1-trial run condition (M = 0.54, SD = 0.23) was highest, 

followed by the 2-trial run condition (M = 0.47, SD = 0.17), and the 4-trial run condition 

(M = 0.43, SD = 0.14). Accuracy in the 2- and 4-trial run conditions was numerically 

lower than that for the control condition, consistent with a switch effect on recognition 

accuracy. However, accuracy in the 1-trial run condition was higher than the control 

condition and inconsistent with an accuracy switch effect. 

A Oneway ANOVA was conducted on corrected accuracy to examine task 

switching effects. The main effect of run condition was not significant (F (3, 92) = 1.52, 

p = 0.215), indicating that there was no accuracy switch effect for the recognition task 

and no difference between the switch trials for the different run lengths. The lack of a 

significant task switching effect may have in part been due to the large variance in 
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performance, particularly in the 1-trial run condition which is arguably a special case in 

task switching (i.e., it is a mixed block as opposed to an alternating run). However, even 

when the 1-trial run condition was excluded from the analysis, the main effect of run 

condition failed to reach significance (F (3, 92) = 1.07, p = 0.348). Likewise, combining 

the 2- and 4-trial run conditions (switch trials) and comparing to the control run 

condition (repetition trials) using a planned difference contrast did not produce a 

statistically significant task switching effect on recognition accuracy (p = 0.256). 

Reaction Times 

RT analyses utilised correct recognition responses, resulting in the exclusion of 

26% of the critical recognition memory trials. These exclusion rates are higher than 

reported in the task switching literature, but reflect the relative difficulty of the 

recognition task in comparison to typical tasks used to investigate task switching 

effects. Therefore, the exclusion rate is not overly concerning. The means of median 

RTs for the recognition task are reported in Table 5.1 as a function of item type. To be 

clear, the RTs reported for the 1- 2- and 4-trial run conditions represented switch trial 

performance and the RTs reported for the control condition represented repetition trial 

performance. The mean RTs for the control run condition were considerably faster than 

those for the 1-, 2-, and 4-run conditions, providing evidence of an RT switch effect. 

The RTs tended to slow as the run length increased, although compared to the 

 

Table 5.1 

Means and Standard Deviations for Correct Critical Recognition RTs in 

Experiment 1 as a Function of Item Type and Run Condition. 

Run Condition 

Item Type 

Old 

 

New 

M SD   M SD 

1-trial run 1199 374 

 

1261 408 

2-trial run 1410 544 

 

1321 423 

4-trial run 1454 583 

 

1454 509 

Control 884 179   995 227 

Note. Mean RTs for 1- 2- and 4-trial run conditions are switch trials. Mean RTs for the 

control run condition are repetition trials.  
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difference in RT between repetition and switch trials, these increments were relatively 

subtle.  

To confirm the presence of a RT switch effect a 2 (item type: old, new) x 4 (run 

condition) mixed ANOVA was conducted on correct critical recognition RTs. There 

was a significant main effect of run condition [F(3, 92) = 7.60, MSE = 319649.73, p < 

0.001, ηp
2
 = 0.20], illustrated in Figure 5.2. Post-hoc comparisons using Games-Howell 

corrections for unequal variance were used to examine group differences. The mean RT 

for the control condition (M = 939.34, SD = 189.61) was significantly faster than that 

for the 1-trial condition (M = 1230.28, SD = 352.55), 2-trial condition (M = 1365.56, SD 

= 460.79) and 4-trial condition (M = 1454.18, SD = 516.46). The RTs for the 1-, 2-, and 

4-trial run conditions did not differ significantly. That is, although there was a 

significant switch effect on correct recognition RTs there was no evidence that run 

length affected the size of the RT switch effect. Neither the main effect of item type (F 

= 0.46, p = 0.50), nor the interaction of item type and condition (F = 1.93, p = 0.13) 

were significant.  

Exploring Practice Effects 

As practice switching tasks has been shown to decrease the size of the RT  

 

Figure 5.2. Mean RTs for correct critical recognition decisions in Experiment 1 as a 

function of run condition. The mean RTs for 1- 2- and 4-trial run conditions are switch 

trials. The mean RT for the control condition is a repetition trial. Error bars represent 

S.E. 
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Figure 5.3. Mean RTs of correct critical recognition memory decisions in Experiment 1 

as a function of test third and run length condition. The mean RTs for 1- 2- and 4-trial 

run conditions are switch trials. The mean RTs for the control condition are repetition 

trials. Error bars represent S.E. 

 

switch effect (e.g., Koch, 2005; Meiran, 1996; Minear & Shah, 2008; Rogers & 

Monsell, 1995) it is worth examining if (and how) performance on the critical 

recognition trials changed over the course of the experiment. To examine evidence for 

this change in performance across the course of the experiment, raw RTs for correct 

critical recognition memory trials were coded post-hoc for test third (1
st
 = critical trials 

1-10; 2
nd

 = critical trials 11-20; 3
rd

 = critical trials 21-30). Given the exploratory nature 

of this enquiry, statistical analyses were not performed on these data. Instead, the mean 

recognition RT for each run condition was plotted as a function of test third so that a 

visual assessment of practice effects could be made.
4
 As can be seen in Figure 5.3, the 

mean RTs were faster for the control run condition (critical trials = repetition trials) than 

any of the other run conditions (critical trials = switch trials) at each test third, 

confirming the presence of a RT switch effect. Similar to the RT analyses performed on 

participants‘ median RTs, the 4-trial run condition was slowest at each third. However, 

given the large variance in performance and the relatively small difference between the 

experimental run conditions compared to the large difference between the experimental 

                                                 
4
 Practice effects on task switching performance will be examined more purposefully in Chapter 8. 
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and control run conditions (i.e., the switch effect), it is difficult to interpret this as 

support for a run length effect.  

With regard to the effects of practice within the experiment, the mean RTs for 

critical recognition memory decisions trended downwards across the thirds in a linear 

fashion for all of the run conditions. More importantly, the decrease in mean RT for 

critical recognition memory decisions across test thirds appeared larger for the 1-, 2-, 

and 4-trial run conditions (where critical trials were switch trials) than that for the 

control run condition (where critical trials were repetition trials). The 1-, 2-, and 4-trial 

run conditions did not seem to differ largely from one another in the size of the decrease 

across test thirds. It may be that there were too few trials and that performance was too 

variable to observe any sizable differences across run lengths. Thus, Experiment 1 

provided at least some visual confirmation of practice effects. Not only did experience 

with the recognition task speed correct recognition responses, but this improvement was 

somewhat larger for switch trials than that for repetition trials.  

Discussion 

Experiment 1 examined the effect of a task switch on recognition memory 

performance when participants alternated between a recognition memory task and a 

magnitude task in 1-, 2-, or 4-trial runs. Mean RTs for correct recognition responses on 

critical trials were significantly slower for switch trials (1-, 2-, and 4-trial run 

conditions) compared to repetition trials (control condition). That is, consistent with 

previous research (Rogers & Monsell, 1995; Jones et al., 2011), there was a significant 

RT switch effect when participants switched between tasks with limited S-R overlap.  

However, recognition memory accuracy did not show a significant switch effect. 

Unlike in Jones et al. (2011), participants‘ ability to discriminate between old and new 

words at test was not significantly affected by a task switch. This failure to produce a 

statistically significant difference in recognition memory accuracy may be the result of 

the method used to examine it. The critical comparison of switch and repetition trials 

was made between participants, and as such could have lacked statistical power. Indeed, 

accuracy in the 2- and 4-trial run conditions was numerically lower for critical trials 

than that for the control condition (3% and 7% lower respectively). It is also worth 

noting that the 1-trial run condition—where accuracy for critical (switch) trials was 

numerically higher than that for critical (repetition) trials in the control condition—is 

essentially a mixed block (Jersild, 1927). There is evidence that mixed blocks using 



55 

 

 

 

different stimulus sets for each task do not always show mixing or switch effects 

(Jersild; Allport et al., 1994).  

When the effect of run condition was analysed using participants‘ median RTs, 

the trend towards increasing switch RTs with longer run lengths was not significant. 

Despite the Cognitive Control Model (Altmann & Gray, 2008) of task switching 

proposing that task sets decay at a steady rate, the length of time (i.e., number of trials) 

since a task set was last used did not significantly affect recognition memory 

performance on switch trials. This finding suggests that either the proposed decay of 

task set activation did not occur, or it was extremely slow such that the longest run 

length (4 trials) was not long enough to observe significant run length effects. It is, 

however, worth noting that this failure to observe a significant run length effect is 

consistent with Monsell et al. (2003), who also reported no significant effect of run 

length on switch RTs.  

Finally, a visual comparison of critical recognition memory RTs across 

experiment thirds showed that overall RT performance improved as participants gained 

experience within the experiment. Consistent with a practice effect (e.g., Koch, 2005; 

Minear & Shah, 2008), the size of this improvement from the first to final thirds 

appeared larger for switch trials than that for repetition trials. The amount or frequency 

of task switches had no sizable impact on task switching performance or its 

improvement across experiment thirds.  

Summary 

In Experiment 1, significant RT switch effects were observed for recognition 

memory performance but an accuracy switch effect was not observed. Finally, a visual 

comparison of critical recognition decision RTs across experiment thirds showed 

evidence of practice effects. 
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Chapter Six 

Experiment 2: Task Switching and Level of Processing Effects 

 

Given that Jones et al. (2011) reported a sizable interruption effect on 

recognition accuracy, the non-significant accuracy switch effect in Experiment 1—

particularly in the 2- and 4-trial run conditions—may have been due to a lack of 

statistical power from comparing performance between participants. Experiment 2 

addressed this concern by using a within-participants design and comparing task switch 

and task repetition trials to assess the effect of task switching on recognition memory 

performance. However, the interest in task switching effects on recognition performance 

went beyond establishing that there is a cost to participants‘ ability to discriminate 

between old and new words. A number of manipulations at encoding and retrieval are 

known to differentially affect recollection or familiarity processes (see Yonelinas, 2002 

for a review). Of particular note, divided attention at retrieval has been shown to affect 

recollection more than familiarity (e.g., Hicks & Marsh, 2000; Jacoby, 1991; Jones & 

Jacoby, 2001). As such, it is important to establish if specific memory processes are 

differentially affected by task switching.  

As reported in the introduction, Craik and Lockhart (1972) asserted that memory 

for a specific item was largely determined by how it was studied or ‗processed‘. That is, 

encoding conditions that encouraged elaborative (deep) processes, such as judgements 

of semantic meaning (e.g., ‗is the word a type of fish?‘) produced superior memory 

performance at test compared to encoding conditions that encouraged less elaborative 

(shallow) processes, such as judgements of perceptual form (e.g., ‗is the word presented 

in upper-case letters‘). Craik and Tulving (1985) obtained level of processing (LOP) 

effects across a range of memory tests (e.g., recall, recognition) and experimental 

situations (e.g., laboratory, classrooms). Memory was superior for deeply studied words 

compared to shallowly studied words. 

 Even today, the level-of-processing (LOP) effect remains an important and 

influential finding in cognitive psychology (see Craik, 2002; Roediger, Gallo & Geraci, 

2002; Watkins, 2002). The LOP effect is important to the current experiment because 

research has consistently reported that, relative to shallow encoding, deep encoding 

strategies not only improve memory accuracy, but also increase the use of controlled 
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recollection to make recognition decisions (e.g., Gardiner, 1988; Rajaram, 1993; 

Yonelinas et al., 1996; Boldini, Russo & Avons, 2004). The increase in production of 

recollection-based recognition responses elicited by deep levels of processing has also 

been reported to be relatively large in comparison to other encoding manipulations such 

as study duration (Yonelinas, 2002).  

Although LOP effects are considered very robust, they are not always observed 

(e.g., Morris et al.,1977) and can be eliminated (Boldini et al., 2004). For example, LOP 

effects can be eliminated by controlling participants‘ ability to access/use recollection 

by using a response signal delay (RSD) with a 400-ms response window. In a RSD 

condition, participants are instructed to make their recognition responses after a 

specified interval of time has passed after stimulus onset. Boldini et al. examined the 

effects of a LOP manipulation and the effects of matching study and test modality (i.e, 

encoding specificity) across 7 RSDs ranging from 100 ms to 3000 ms. The study-test 

modality and level of processing variables were manipulated within participants, and 

the RSD at test variable was manipulated between participants. In the study phase, 

words (N = 80) were presented one at a time visually or aurally. Participants rated the 

pleasantness of a word on a three-point scale (deep encoding condition) or repeated the 

word aloud (shallow encoding condition). In the test phase, participants made 

recognition memory decisions to studied and unstudied words (N = 160). A response 

signal (asterisks above and below a word) was presented to participants after the RSD 

had passed, signalling that participants had a 400 ms window to make a response. 

Participants were instructed to respond using the keyboard if they had seen or heard the 

presented word during the study phase and to withhold any response if they had not (a 

go/no-go paradigm).  

Boldini et al. (2004) reported that matching study-test modalities produced 

superior recognition accuracy than that for different study-test modalities at shorter 

RSDs (< 300 ms) but not at longer RSDs (> 300 ms). An initial difference in familiarity 

produced superior performance when modalities matched at shorter RSDs but this 

advantage was obscured by the contribution from recollection at longer RSDs. More 

important was the finding that, although overall recognition accuracy was always above 

chance, deep encoding produced superior recognition accuracy than that for shallow 

encoding at longer RSDs (> 300 ms) but not shorter RSDs (< 300 ms). Boldini et al. 

interpreted these findings as evidence that LOP effects were driven by the contribution 

of recollection, which took time to access. For shorter RSDs there was insufficient time 
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for recollection to be used when making recognition decisions, and thus no LOP effect 

was produced. By contrast, for longer RSDs, the slow, consciously controlled 

recollection process was available for use and produced a large LOP effect.  

Evidence from Boldini et al. (2004) showed that the controlled recollection 

process took time to access and utilise so that it could contribute to performance in the 

deep LOP condition. If switching tasks is a time consuming and cognitively demanding 

process—which is arguably the position of most task switching theories—then it stands 

to reason that the recollection process may be affected by a task switch. Therefore, the 

purpose of Experiment 2 was to examine task switching effects on recognition memory 

accuracy, with a particular interest in whether participants‘ ability to use recollection 

was affected by a task switch. In the study phases of Experiment 2, participants 

alternated between identifying words as representing living or non-living things (deep 

encoding) and reporting whether words contained the letter ‗e‘ (shallow encoding). 

During test phases, participants switched between making recognition memory 

decisions to words and magnitude judgements to dots in 2-trial alternating runs.  

Three key research interests produced three hypotheses for Experiment 2. First, 

it was hypothesised that accuracy would be lower and RTs would be slower for switch 

trials compared to those for repetition trials, reflecting accuracy and RT switch effects 

respectively. Second, it was hypothesised that, at least for repetition trials, a LOP effect 

would be observed. Deep encoding at study should produce higher recognition accuracy 

than shallow encoding at study. Taking into account the findings of Boldini et al. (2004) 

and the idea that divided attention is argued to have a greater impact on recollection 

than familiarity (Yonelinas, 2002), there is reason to expect task switching to affect 

accuracy for words studied in the deep encoding condition more than that for words 

studied in the shallow encoding condition. Thus, the final hypothesis for Experiment 2 

was that the LOP effect would be reduced or eliminated on task switch trials, reflecting 

impaired recollection processes. That is, task transition (at test) and level of processing 

(at encoding) would interact. 

Method 

Participants  

The participants were 32 undergraduate psychology students from Victoria 

University of Wellington who: (1) had normal or corrected-to-normal vision, (2) had 

spoken English since early childhood, and (3) met minimum performance requirements. 
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The performance requirements were: (a) above chance repetition trial accuracy for the 

magnitude task and the deep encoding recognition condition, (b) mean RTs for correct 

trials within 3 SD of the group mean, and (c) fewer than 20% timeouts for either task. 

Participants who failed to meet the above criteria were replaced to achieve proper 

counterbalancing. Remuneration was credit towards a research requirement of an 

introductory psychology class.  

Materials 

Concrete nouns (N = 150) from the Toronto Word Pool (Friendly, Franklin, 

Hoffman & Rubin, 1982) were used to create 16 lists of 8 words (see Appendix A). 

Lists were closely matched for syllables (M = 2.00), length (M = 6.03), imagery (M = 

5.66), concreteness (M = 6.27), and frequency (Kucera & Francis, 1967, M = 11.54). 

Lists were constructed so that the correct responses to deep and shallow encoding 

judgements were roughly equal (e.g., approximately half of words in a list had no letter 

‗e‘). The 16 lists of critical words were separated into 2 groups of 8 lists (lists A-H, and 

lists I-P). Each group was used for one study-test block (i.e., lists A-H for study-test 1, 

lists I-P for study-test 2). To be clear, while word lists cycled through conditions within 

a study-test block, they did not cycle between study-test blocks. The allocation of list 

group to the first or second study-test block was balanced across participants. Buffer 

and filler words (N = 22) had similar linguistic characteristics to list words. Words were 

presented centrally in black bold 24-pt Courier New font on a white background. Dot 

stimuli were black circles (diameter = 8 mm). The experiment was conducted using E-

Prime software (Schneider et al., 2002). 

Design 

The critical manipulation in Experiment 2 was the level of processing (LOP) at 

encoding/study. At test, the recognition memory task was manipulated in a 3 (item type: 

old-deep encoding, old-shallow encoding, new) x 2 (transition: repetition, switch) 

repeated measures design. The magnitude task was manipulated in a 2 (item type: more, 

less) by 2 (transition: repetition, switch) repeated measures design.  

Procedure 

Participants sat approximately 0.5 meters from the monitor at individual 

computer stations. One to four participants were run per session. The experiment was 

conducted in a single session that comprised two study-test blocks. The choice to use 
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two blocks was driven by a desire to increase accuracy and reduce participant fatigue. In 

each study phase, participants studied words under deep and shallow encoding 

conditions. In each test phase, participants switched between the recognition memory 

task and the magnitude task in 2-trial alternating runs.  

Study phases. 

Each study phase consisted of 42 trials: 5 primacy buffer words, 32 words 

selected in an alternating pattern from 4 lists (for each level of processing: 1 list for 

repetition transitions at test and 1 list for switch transitions at test), and 5 recency buffer 

words. Participants were instructed to make a level of processing decision for each word 

presented and to study each word for a later memory test. That is, learning in this 

experiment was intentional. Although Lockhart and Craik (1990) preferred the use of 

incidental learning conditions for LOP manipulations, the effect has been reported in 

experiments that use intentional learning conditions (see Roediger et al., 2002; Postman 

& Kruesi, 1977; Hogan, Kelly & Craik, 2006). The deep encoding trials required 

participants to decide if the word represented a living or non-living thing and to respond 

using the f and j keys respectively.  Shallow encoding trials required participants to 

decide if the word contained the letter ‗e‘ and to respond using the f and j keys 

respectively.  

A study trial began with the presentation of a brief (100 ms) focal stimulus 

(+++) in the centre of the monitor. Immediately after the focal stimulus a word was 

presented for 3000 ms in the same location. Participants alternated between the deep 

and shallow encoding trials, aided by the presentation of response statements (i.e., 

‗living‘ and ‗non-living‘, or ‗e‘, and ‗no e‘) below the word. The spatial location of the 

response options corresponded to the location of the f or j response. After the 3000-ms 

word presentation was complete, an ITI with a blank screen occurred for 500 ms. 

Although alternating between deep and shallow encoding conditions provided an 

element of task switching during encoding/study, previous research has reported that 

switching between deep and shallow LOP at study has no effect on recognition 

performance at test (Hogan et al., 2006). 

Test phases. 

Each of the two test phases comprised a practice test and the actual test. 

Participants completed a recognition memory task (R) and a magnitude task (M) in a 2-

trial alternating runs sequence (RR MM RR MM...). The practice test consisted of 10 



62 

 

trials, starting with the magnitude task. Recognition trials in the practice test used buffer 

words from the study phase or new words otherwise not presented in the experiment. 

The actual test consisted of 130 trials, again starting with the magnitude task. For the 

recognition memory task, old target words were from the four lists presented in the 

immediately preceding study phase. Four lists not previously presented were used for 

new words. One deep encoding list, one shallow encoding list, and two ‗new‘ lists were 

used for each position (position 1, position 2) in a run of the recognition task. The 

allocation of lists to item status and position within each test phase was counterbalanced 

across participants. For each position in a run of the magnitude task, half of the trials 

contained eight dots (‗more‘ trials), and half of the trials contained six dots (‗less‘ 

trials). All iterations of ‗more‘ and ‗less‘ trials within a 2-trial run were presented 

pseudo-randomly throughout the actual test such that correct magnitude judgements 

were not predictable within or across runs and were not useful to predict the status of an 

upcoming recognition trial.  

A recognition trial began with the brief (100 ms) presentation of a focal stimulus 

(+++) in the centre of the monitor. Immediately after the focal stimulus the target word 

was presented in the same location. A response delay of 400 ms passed before 8 

asterisks (********) appeared above and below the target word, indicating that old/new 

judgements could be entered using the f and j keys on the keyboard. The allocation of 

keys to responses was balanced across participants. The response delay prevented 

participants from responding prematurely and increased the availability of recollection 

(Boldini et al. 2004). After 1000 ms, exclamation marks (!!!!!!!!) replaced the asterisks 

for 600 ms to warn participants that an immediate response was required to avoid a 

timeout. This response deadline was used in order to constrain RTs and to reduce 

variance in participants‘ performance. The trial terminated when a response was made 

or the warning period ended. The next trial began after a 500-ms ITI of a blank screen.  

A magnitude trial began with the brief (100 ms) presentation of a focal stimulus (+++) 

in the centre of the monitor. Immediately after the focal stimulus the dot targets (6 or 8 

dots) were presented randomly within a central 100 mm (length) x 70 mm (height) 

section of the display with the proviso that dots did not overlap. Participants were 

instructed to judge whether there were more or less than seven dots and to respond 

using the f (more) and j (less) keys on the keyboard. As in Experiment 1, the allocation 

of key to magnitude judgement response was not balanced. When a response was made 

(or 2000 ms had elapsed), the trial was terminated. The next trial began after a 500-ms 
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Table 6.1. 

Means and Standard Deviations for Corrected Recognition Accuracy in 

Experiment 2 as a Function of Test Block, Level of Processing at Study, and 

Task Transition.  

  
Test Block 

  
Test 1 

 
Test 2 

  
M SD 

 
M SD 

Deep 
      

   Repetition 0.59 0.24 
 

0.68 0.22 

   Switch 
 

0.52 0.31 
 

0.60 0.25 

Shallow 
      

   Repetition 0.45 0.28 
 

0.58 0.21 

   Switch 
 

0.37 0.30 
 

0.50 0.20 

  

ITI of a blank screen.  

Full instructions were presented prior to each test phase. After receiving 

instructions about the two tasks and the structure of the test phase, participants 

completed a practice test. Participants were then reminded about the response 

allocations for the magnitude and recognition tasks prior to starting the actual test. 

Participants were debriefed and thanked for their participation after completing the 

experiment.  

Results 

The analyses reported in Experiment 2 focused on performance on the 

recognition memory task. Data from the practice tests and the first two trials of the 

actual tests were excluded from analyses. Statistical analyses of RT performance used 

participants‘ median RTs for correct trials in each condition. An alpha level of 5% was 

used for all statistical tests. 

Corrected Accuracy 

Corrected accuracy (hit rate – false alarm rate) was calculated at a participant 

level for each level of processing (LOP) at encoding, task transition, and test block. 

These data are reported in Table 6.1. Across both test blocks and LOP conditions the 
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corrected accuracy of switch trials was lower than that of repetition trials, demonstrating 

an accuracy switch effect. The size of this switch effect showed no noticeable difference 

for deeply or shallowly encoded words. Corrected accuracy showed typical LOP effects, 

with higher accuracy for the deep encoding condition than that for the shallow encoding 

condition. The size of this LOP effect was very similar for repetition and switch trials 

within each test. Finally, the data also showed a general improvement in accuracy from 

Test 1 to Test 2, particularly for the shallow encoding condition.  

Switch effects and LOP effects were examined using a 2 (test block) x 2 (LOP) 

x 2 (transition) repeated measures ANOVA. Demonstrating an accuracy switch effect, 

the mean corrected accuracy for repetition trials (M = 0.57, SD = 0.18) was significantly 

higher than that for switch trials (M = 0.50, SD = 0.21), F(1, 31) = 7.42, MSE = 0.05, p 

= 0.011, ηp
2
 = 0.19. Participants‘ ability to correctly identify words as old or new was 

significantly impaired following a task switch. The mean corrected accuracy for 

semantically encoded words (deep LOP: M = 0.60, SD = 0.20) was significantly higher 

than that for perceptually encoded words (shallow LOP: M = 0.48, SD = 0.17), F(1, 31) 

= 29.80, MSE = 0.03, p < 0.001, ηp
2
 = 0.49. That is, there was a significant LOP effect. 

However, as can be seen in Figure 6.1, the size of the LOP effect was similar for 

repetition and switch trials: the interaction of LOP and transition was not significant 

 

Figure 6.1. Mean corrected accuracy of recognition decisions in Experiment 2 as a 

function of task transition and level of processing at study. Error bars represent S.E. 
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(F = 0.04, p = 0.849). If switching tasks influenced familiarity and recollection 

processes of recognition memory differently, an interaction of transition and LOP 

would be expected. Specifically, it was hypothesised that while an LOP effect would be 

observed for repetition trials it would be reduced or eliminated for switch trials. 

Contrary to this hypothesis, although a task switch reduced accuracy of recognition 

decisions, the level of processing effect remained unchanged. 

A significant effect of test block [F(1, 31) = 10.15, MSE = 0.07, p = 0.003, ηp
2
 = 

0.25] indicated that participants mean corrected accuracy improved from the first test 

(M = 0.47, SD = 0.24) to the second test (M = 0.58, SD = 0.16). Performance on the 

recognition memory task improved as participants had more experience with the task 

and the experimental setting. This improvement was general in nature, and equivalent in 

size for repetition and switch trials. That is, test block and task transition did not interact 

significantly (F = 0.01, p = 0.924). No other effects or interactions were significant (Fs 

< 1.17). 

Recognition accuracy was also analysed using measure A’. These analyses 

produced the same results as corrected accuracy and are included for the sake of 

completeness in Appendix C. 

Reaction Times 

RT analyses used correct recognition memory responses, resulting in the 

exclusion of 24% of the data. As was noted in Experiment 1, given the relative 

difficulty of the recognition task compared to typical tasks used to investigate task 

switching effects, this exclusion rate was not concerning. The percentage of timeouts 

was very low (1%), indicating that participants were capable of making their 

recognition decision within the response window used in this experiment. The mean 

RTs for correct recognition decisions are reported in Table 6.2 as a function of test 

block, item type (old-deep encoding, old-shallow encoding, new), and task transition. 

Reported RTs do not include the 400-ms response delay that occurred after stimulus 

presentation. Across all item types and test blocks, correct RTs for switch trials were 

longer than those for repetition trials, showing RT switch effects for the recognition 

task. For repetition trials in particular, RTs were very similar across item status. That is, 

participants took a similar amount of time to correctly identify words studied in the 

deep and shallow encoding conditions as well as new words. Performance on switch 

trials showed more variability across item types. Finally, an obvious decrease in correct  
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Table 6.2 

Mean and Standard Deviation for Correct Recognition Decisions in Experiment 

2 as a Function of Test Block, Item Type, and Task Transition.   

 

Test Block 

Test 1 

 

Test 2 

M SD   M SD 

Deep (old) 

         Repetition 404 105 

 

330 99 

   Switch 

 

499 166 

 

511 172 

Shallow (old) 

         Repetition 396 147 

 

360 93 

   Switch 

 

552 177 

 

497 157 

New 

         Repetition 406 123 

 

360 118 

   Switch   517 162   474 174 

 

RTs from Test 1 to Test 2 occurred, particularly for repetition trials. Correct recognition 

memory decisions were made more quickly when participants had gained experience 

with the task. 

Switch effects and LOP effects on correct recognition RTs were assessed using a 

2 (test block) x 3 (item type) x 2 (transition) repeated measures ANOVA. Participants 

were slower to make correct recognition decisions when the preceding trial was a 

magnitude task (M = 508.10, SD = 113.98) than when it was a recognition task (M = 

376.01, SD = 84.69), F(1, 31) = 73.49, MSE = 22789.42, p < 0.001, ηp
2
 = 0.70. That is, 

an RT switch effect was observed. The main effect of item type was not significant (F = 

0.29, p = 0.747), nor was the interaction of item type and transition (F = 0.18, p = 

0.836). Depth of encoding at study did not affect the time to make a correct recognition 

decision or the RT cost of switching tasks.  

Mean RTs for correct recognition responses showed a benefit of practice, 

reflected in a significant main effect of test block, F(1, 31) = 7.27, MSE = 21572.06, p = 

0.011, ηp
2
 = 0.19. Collapsed across repetition and switch trials, participants made  
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Figure 6.2. Mean RTs for correct recognition memory decisions for deeply encoded 

words in Experiment 2 as a function of task transition and test block. Error bars 

represent S.E. 

 

correct recognition decisions more quickly in the second test (M = 421.85, SD = 105.17) 

than that in the first test (M = 462.26, SD = 108.41). The main effect was qualified by a 

significant 3-way interaction of test block, item type, and transition, F(1, 31) = 4.43, 

MSE = 744.35, p = 0.016, ηp
2
 = 0.13. The 3-way interaction was driven by a significant 

interaction of transition and test block for deeply encoded words [F(1, 31) = 6.91, MSE 

= 8478.32, p = 0.013, ηp
2
 = 0.18] but not shallowly encoded  words [F = 1.25, p = 

0.273] or new words [F = 0.64, p = 0.430]. The interaction of test block and transition 

for deeply encoded words is illustrated in Figure 6.2. Deeply encoded old words showed 

an effect of test block for repetition trials [t(31) = 3.28, MSE = 22.58, p = 0.003] but not 

for switch trials [t(31) = -0.39, MSE = 30.00, p = 0.701]. Most curiously, the time taken 

to make a correct recognition decision on switch trials showed no improvement from 

the first to second test block for deeply encoded old words. This result, in stark 

opposition to traditional practice effects (e.g., Jersild, 1927; Merian, 1996; Rogers & 

Monell, 1995), is difficult to explain from a theoretical standpoint. No other effects or 

interactions were significant (Fs < 0.92). 

Discussion 

Experiment 2 examined task switching effects on recognition memory 

performance when words were studied under deep or shallow encoding conditions. 
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There were three critical results in this experiment: a LOP effect, task switching effects, 

and a (non-significant) interaction of LOP and task transition. First, the level of 

processing manipulation was effective despite using intentional learning conditions. 

Consistent with prior research (Boldini et al. 2004; Craik & Tulving, 1975; Hogan et al., 

2006; Postman & Kruesi, 1977; Rajaram, 1993), deeply encoded words were identified 

as ‗old‘ more accurately during the test phase than shallowly encoded words.
5
 The LOP 

effect in this experiment was smaller than those reported for recognition performance in 

Craik and Tulving. This difference may have been the consequence of the different 

methods used to test recognition memory. Craik and Tulving used an incidental learning 

paradigm and allowed participants unlimited time to respond to each test word, whereas 

the current experiment used an intentional learning paradigm and used a response delay 

and a response deadline (i.e., a response window). When considering the size of the 

LOP effects reported in this thesis, perhaps the most valid point of comparison is to the 

results of Boldini et al. The LOP effects reported in this thesis (400-ms RSD, range 0.10 

– 0.15) were very similar in size to the LOP effect reported for the 300-ms RSD 

condition in Boldini et al. (0.12). Thus despite the frequent task switches in the current 

experiment, the reported LOP effects were consistent with previous literature.   

There were significant task switching effects on recognition memory RTs and 

accuracy. Participants‘ recognition memory responses were slower and less accurate on 

task switch trials than they were for task repetition trials. The reported RT switch effects 

on recognition memory were similar to those reported in Jones et al. (2001), but smaller 

than those reported in Experiment 1 of this thesis. This difference could in part reflect 

the change from using an unlimited response time to using a response window that 

constrained responding (and thus, maximum switch RTs). Unlike in Experiment 1, the 

current experiment reported significantly lower corrected accuracy for switch trials than 

that for repetition trials. That is, participants‘ ability to correctly identify old words and 

reject new words was impaired when they had just switched tasks. Increasing the 

number of critical trials and changing to a within-participant comparison of task switch 

and task repetition performance likely increased experimental power and sensitivity to 

detect switch effects on recognition accuracy. The accuracy switch costs reported in 

Experiment 2 (range 0.07 – 0.09) were within the range reported in Jones et al. (0.07 – 

                                                 
5
 The mean RTs for correct recognition responses (repetition and switch trials) were very similar for 

deeply and shallowly encoded words, indicating that differences in accuracy were not the result of a 

speed/accuracy trade-off. 
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0.14), albeit at the lower end. The smaller accuracy switch costs reported in the current 

experiment may reflect the advantage of frequent and predictable task switches over the 

relatively infrequent and unpredictable interruptions in Jones et al. It is also worth 

noting that recognition trials in Jones et al. also served as encoding events (i.e., it was a 

continuous recognition paradigm), which may have inflated costs to recognition 

performance.  

The hypothesised interaction of LOP at study and task transition at test was 

based on the assumption that, like divided attention at retrieval and short RSDs, task 

switching would affect the availability and use of recollection processes. As previous 

research has shown that, relative to shallow encoding, deep encoding produces a higher 

proportion of recognition decisions based on recollection (e.g., Gardiner, 1988; 

Rajaram, 1993; Yonelinas et al., 1996), deep encoding should also show a greater task 

switching effect. That is, it was hypothesised that the LOP effect would be reduced or 

eliminated for task switch trials. However, the interaction was not significant—the size 

of the switch effect on corrected recognition accuracy was equivalent for deeply 

encoded and shallowly encoded words. Phrased in terms of LOP effects, the size of the 

performance advantage for deeply encoded words relative to shallowly encoded words 

was the same regardless of task transition. Thus, there was no evidence to support the 

hypothesised interaction. 

As Experiment 2 produced a LOP effect, a dual process account of recognition 

memory would suggest that recollection contributed to recognition accuracy, 

particularly for deeply encoded words (see Boldini et al., 2004). In dual process signal 

detection models of recognition memory, the probability of correctly recognising a 

studied item as old is the sum of the probability of the item being recollected and the 

probability of the item‘s familiarity exceeding a decision criterion (Jacoby, 1991; 

Yonelinas, 1994; 2000b). Thus, if the size of the LOP effect is used as an approximate 

index of recollection, then the contribution of recollection to recognition accuracy did 

not change between task switch and task repetition trials.  

It is worth noting that although dual process theorists emphasise the larger role 

of recollection in producing LOP effects, they acknowledge that changes in familiarity 

also play a (relatively small) part in increasing recognition accuracy (see Yonelinas, 

2002). Thus, the LOP effect observed in this experiment may reflect differences in 

memory trace strength (i.e., familiarity) between the two encoding conditions, without 

any contribution from recollection. The limited (or lack of) contribution from 
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recollection could explain why the LOP effect reported in this experiment was smaller 

than those reported in Craik and Tulving (1975) or at the longer RSD conditions in 

Boldini et al. (2004).
6
  

From either of these perspectives (recollection not affected, recollection not 

contributing), the lower corrected accuracy for switch trials compared to that for 

repetition trials suggests that familiarity (or memory strength) was affected when 

switching tasks. While not congruent with the divided attention literature (Jacoby, 1991; 

Hicks & Marsh, 2000; Jones & Jacoby, 2001; Knott & Dewhurst, 2007a), the isolation 

of switch effects to familiarity could be reconciled theoretically. Familiarity is a fast and 

automatic process that is initiated with the onset of a target stimulus (Yonelinas, 2002). 

Thus, evidence of familiarity/memory trace strength is being accrued and evaluated 

during a period of time where a participant is likely to be devoting significant resources 

to retrieving task sets from long term memory (see Mayr & Kliegl, 2000) and resolving 

instances of interference (Allport et al., 1994; Allport & Wylie, 2000). That is, the 

process(es) of switching tasks may have created a bottleneck (see Pashler, 1994) that 

stalled or disrupted the evaluation of a word‘s familiarity. As a consequence, 

participants‘ ability to discriminate between signal plus noise (‗old‘) and noise (‗new‘) 

levels of familiarity was impeded by a recent task switch.   

Summary 

Experiment 2 manipulated level of processing at study and task transition at test 

to further investigate task switching effects on recognition memory performance. A 

level of processing effect was observed for recognition accuracy, and task switching 

effects were reported for recognition accuracy and RTs. The size of the level of 

processing effect was unchanged by task transition. Contrary to the hypothesis that a 

task switch would affect recollection processes, the equal size of the accuracy switch 

effects for deeply and shallowly encoded words suggested that task switching affected 

the familiarity process.   

  

                                                 
6
 Boldini et al. (2004) reported an LOP effect of 0.25 for the 3000-ms RSD condition—considerably 

larger than the size of the LOP effect reported in their 300-ms RSD condition or the LOP effects reported 

in this experiment. 
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Chapter Seven 

Experiment 3: Recovery from a Task Switch and Transition Cuing 

 

The experimental method developed to assess task switching effects on 

recognition memory in Experiments 1 and 2 has some unique characteristics that 

warrant further investigation. Because external cues were not provided, to optimise 

performance participants needed to monitor task sequences internally by maintaining a 

representation of the task sequence in working memory, which arguably required 

considerable cognitive resources. In this case, providing a visual cue to scaffold 

sequence monitoring (a ‗reminder‘) may aid participants in monitoring the task 

sequence and decrease the size of the RT switch effect.  

To this end, Experiment 3 used a 4-trial alternating runs paradigm with a 

between participant manipulation of sequence cue. For some participants, the standard 

focal stimulus presented prior to target onset (+++) was replaced with an alternative, 

novel focal stimulus ($$$ presented in red) on a single trial within the run. This novel 

focal stimulus occurred at Position 4 in a run (i.e., the last trial in a run) or Position 1 in 

a run (i.e., the first trial in a run). A final group of participants always saw the standard 

focal stimulus. Unlike cues in the explicit task cuing paradigm, the novel focal stimulus 

did not cue the task to be performed (i.e., the cues were not task specific). Instead, it 

provided an external cue to remind participants of their position within the run of a task 

and cue an upcoming change in task. That is, it utilised a modified transition cuing 

paradigm (e.g., Schneider & Logan, 2007). Beyond providing a reminder of one‘s 

position within a run of a task, the sequence cue (particularly when presented at Position 

4) could encourage participants to monitor the task sequence and to prepare for a task 

switch before it occurs. 

The use of a 4-trial alternating runs design also allowed for detailed analysis of 

performance on repetition trials of a run. Of specific interest were the time course of 

recovery from a task switch (i.e., Monsell et al., 2003; Jones et al., 2011) and evidence 

for slowing within a run (i.e., Altmann, 2002; Altmann & Gray, 2002). With regard to 

recovery from a task switch, Monsell et al. (2003) reported that when run length was 

predictable, the cost of switching tasks was isolated to Position 1 (switch trial) of a run, 

and subsequent repetition trials showed no further decrease (or increase) in RT. When 
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run length was unpredictable, RTs showed a more gradual decrease from the switch trial 

across the first few repetition trials before RTs stabilised for the remaining positions in 

the run. Jones et al. reported RT costs that persisted to the second recognition memory 

trial following an interruption/task switch, even though participants knew that the 

interruption task would last only one trial and many trials would pass before the next 

interruption. With regard to within-run slowing, Altmann (2002) and Altmann and Gray 

(2002) have reported that repetition trial RTs showed a significant positive linear trend 

within a run, which was argued to reflect decay of the online task set activation. That is, 

the RT for Position 2 was significantly faster than that for Position 8.  

In Experiment 3, participants performed the recognition memory and magnitude 

judgement tasks in 4-trial alternating runs. As the experiment manipulated variables that 

were equally applicable to the recognition and magnitude tasks, performance on both 

tasks was analysed. There were three key aims: (a) to examine task switching 

performance in the recognition and magnitude tasks, (b) to evaluate evidence of 

recovery and/or slowing within a run for each task, and (c) to investigate whether a 

visual reminder could decrease the size of task switching effects or influence the pattern 

of recovery from a task switch.  

Consistent with Experiments 1 and 2, it was hypothesised that significant RT 

and accuracy switch effects would be observed for the recognition task. Furthermore, 

performance on the magnitude task should show similar switch effects. With regard to 

performance within runs of a task, although Jones et al. (2011) showed that RT switch 

costs could persist past the first recognition trial in a run, considerable differences in 

design may limit its applicability in the current experiment. Specifically, there were 

fewer interruptions and as participants did not know precisely when the next 

interruption would occur, the run length of the recognition task was unpredictable. 

Given that this experiment used a design with frequent and predictable task switches, 

Monsell et al.‘s (2003) findings were used to develop hypotheses. First, RT and 

accuracy switch effects in Experiment 3 should be isolated to the first position in the 

run, with performance on the remaining trials showing no differences in performance. 

Second, providing a sequence cue should help participants monitor task sequences and 

prepare for task switches. Thus, RT switch effects should be smaller for conditions that 

use a sequence cue than that for the control condition that did not use a sequence cue.  
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Method 

Participants  

One-hundred-and-seventy undergraduates from Victoria University of 

Wellington participated in the experiment as part of an undergraduate cognitive 

psychology course, or for course credit in an introductory psychology course. All 

participants in the final data set: (1) had normal or corrected-to-normal vision, (2) spoke 

English from early childhood, and (3) met minimum performance requirements outlined 

in the results section. The performance requirements were: (a) above chance accuracy 

for repetition trials on the magnitude and recognition tasks, (b) mean RTs for correct 

trials within 3 SD of the group mean; (c) fewer than 20% timeouts for either task. Cases 

that met inclusion requirements were added to the final dataset chronologically until the 

maximum number of counterbalances was filled for each of the three sequence cue 

conditions (i.e., an equal number of participants and counterbalances for each sequence 

cue condition). Using this process, 120 participants‘ data (40 per sequence cue 

condition) were included in the final data set.  

Materials  

Nouns (N = 147) from the English Lexicon Project (Balota et al., 2007) were 

used to construct 16 lists of 8 words (see Appendix A). The 16 lists of critical words 

were separated into 2 groups of 8 lists (lists A-H, and lists I-P). Each group was used for 

one study-test block (i.e., lists A-H for study-test 1, lists I-P for study-test 2). To be 

clear, while word lists cycled through conditions within a study-test block, they did not 

cycle between study-test blocks. The allocation of list group (A-H, I-P) to test block 

was not balanced. Lists (and list groups) were balanced word frequency (Kucera & 

Francis, 1967; M = 97.92), word length (M = 6.54) and syllables (M = 2.11). Buffer 

words (N = 20) had similar linguistic properties. Word stimuli were presented centrally 

on a white screen in black bold 18-pt Courier New font. The sequence cue was three red 

dollar signs ($$$) presented in red bold 18-pt Courier New font. Dot stimuli were black 

circles (diameter = 8 mm). The experiment was conducted using E-Prime software 

(Schneider et al., 2002). 

Design  

The critical manipulation in Experiment 3 was the between-participant 

manipulation of sequence cue. A novel focal point was used on Position 1 (P1 cue 



74 

 

condition), Position 4 (P4 cue condition), or not at all (control condition). The 

recognition memory task was manipulated in a 3 (sequence cue position: P1, P4, 

control) x 4 (run position: P1, P2, P3, P4) x 2 (item type: old, new) mixed design. The 

magnitude task was manipulated in a 3 (sequence cue position: P1, P4, control) x 4 (run 

position: P1, P2, P3, P4) x 2 (item type: less, more) mixed design.  

Procedure 

Prior to participants entering the testing room each computer was assigned to a 

sequence cue condition using latin square counterbalancing. Upon entering the room, 

individual participants sat at a computer station of their choice approximately 0.5 meters 

from the monitor. The opening screen of the computer programme was the same for all 

sequence cue conditions so that participants could not choose which cue condition to 

complete. The experiment was conducted in a single session that comprised two study-

test blocks. In each study phase, participants studied a list of words for a later memory 

test. In each test phase, participants switched between the recognition memory task and 

the magnitude judgement task in 4-trial alternating runs.  

Study phases. 

Each study phase consisted of 40 trials: 4 primacy buffer words, 32 words 

selected in an alternating pattern from 4 lists, and 4 recency buffer words. Participants 

were instructed to study each word for a later memory test. A study trial began with the 

presentation of a brief (100 ms) focal stimulus (+++) in the centre of the monitor. 

Immediately after the focal stimulus a word was presented for 3000 ms in the same 

location. After the 3000-ms presentation was complete, an intertrial interval (ITI) with a 

blank screen occurred for 500 ms.  

Test Phases. 

Each of the two test phases consisted of a practice test and an actual test. 

Participants were instructed that they would perform a recognition memory task (R) and 

a magnitude judgement task (M) in a predictable, 4-trial alternating runs sequence 

(MMMM RRRR MMMM…). The practice test consisted of 12 trials, starting with the 

magnitude task. Recognition trials in the practice test used buffer words from the study 

phase or new words otherwise not presented in the experiment. The actual test consisted 

of 132 trials, again starting with magnitude task. Each of the four positions within a run 

of the recognition task used one ‗old‘ list (presented during the immediately preceding 
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study phase) and one ‗new‘ list (not previously presented in the experiment). As was 

mentioned in the materials subsection, the same eight lists were associated with a study-

test block for all participants. However, the allocation of lists to item type (old or new) 

and position (P1, P2, P3, or P4) within a study-test block was counterbalanced across 

participants. For each position in a run of the magnitude task, half of the trials contained 

eight dots (‗more‘ trials), and half of the trials contained six dots (‗less‘ trials). All 

iterations of ‗more‘ and ‗less‘ trials within a 4-trial run were presented pseudo-randomly 

throughout the actual test such that correct magnitude judgements were not predictable 

within or across runs and were not useful to predict the status of an upcoming 

recognition trial.  

A recognition memory trial began with the brief (100 ms) presentation of a focal 

stimulus (+++ or $$$) in the centre of the monitor. Immediately after the focal stimulus 

the target word was presented in the same location. A response delay of 400 ms passed 

before 8 asterisks (********) appeared above and below the target word, indicating that 

old/new judgements could be made. The response delay prevented participants from 

responding prematurely. Participants responded using the f (old) and j (new) keys on the 

keyboard. As the interest of this experiment was not differences between old and new 

items, and neither Experiment 1 nor 2 reported significant main effects of item type or 

interactions of item type and transition, the allocation of key to recognition decision was 

not balanced. After 600 ms, exclamation marks (!!!!!!!!) replaced the asterisks for 400 

ms, warning participants that they needed to make an immediate response as they were 

about to run out of time. The trial terminated when a response was made or the warning 

period ended. The next trial began after a 500-ms ITI of a blank screen. Note that the 

total length of a recognition memory trial was shorter (1400 ms) in the current 

experiment than that in Experiment 2 (2000 ms). Given that the mean RTs reported in 

Experiment 2 were considerably shorter than 2000 ms, this was not expected to be 

problematic. 

The magnitude judgement task began with a brief (100 ms) presentation of a 

focal stimulus (+++ or $$$) in the centre of the monitor. Immediately after the focal 

stimulus the dot targets (6 or 8 circles) were presented randomly within a central 100 

mm (length) x 70 mm (height) section of the display with the proviso that dots did not 

overlap. Participants were instructed to judge whether there were more or less than 

seven dots and to respond using the f (more) and j (less) keys on the keyboard. As with 

earlier experiments in this thesis, the allocation of key to magnitude judgement was not 
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balanced. When a response was made (or 1400 ms had elapsed), the trial was 

terminated. The next trial began after a 500-ms ITI of a blank screen. 

All participants were told that they could use the predictable pattern of tasks 

(i.e., the 4-trial runs) to know what task they would be performing next. In addition to 

this sequence information, participants in the P1 sequence cue condition and the P4 

sequence cue condition were instructed that, for a specific run position, the normal focal 

stimulus (+++) would be replaced with a novel focal stimulus ($$$) presented in red. 

They were informed that the novel focal stimulus could be used to remind them that 

they were on the first trial of a run (P1 cue condition) or the last trial of a run (P4 cue 

condition). The control sequence cue condition received no additional information. 

Full instructions were presented prior to each test phase. After receiving 

instructions about the two tasks and the structure of the test phase, participants 

completed a practice test. Participants were then reminded about the response 

allocations for the magnitude and recognition tasks prior to starting the actual test. 

Participants were debriefed and thanked for their participation after completing the 

experiment.  

Results 

Data from the practice tests and the first four trials of the actual tests were 

excluded from analyses. Statistical analyses of RT performance used participants‘ 

median RTs for correct trials in each condition. An alpha level of 5% was used for all 

statistical tests. 

Accuracy 

Recognition Task. 

Overall corrected accuracy (hit rate – false alarm rate) was moderate (M = 0.48, 

SD = 0.19), but lower than the accuracy reported in Experiment 2. Experiment 3 did not 

include any encoding instructions beyond studying words and used a shorter response 

window for recognition trials at test, thus this difference was not unexpected. Table 7.1 

reports the mean corrected accuracy of recognition decisions as a function of run 

position and sequence cue condition. To reiterate, Position 1 was a task switch trial, and 

Positions 2, 3, and 4 were task repetition trials. For all sequence cue conditions, the 

corrected accuracy was lowest on the switch trial (Position 1) and steadily improved 

across the remaining positions of the run. That is, recognition accuracy performance 

showed a typical switch effect. The largest improvement in performance was between 
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Table 7.1.  

Means and Standard Deviations for Corrected Recognition Accuracy in 

Experiment 3 as a Function of Position in Run and Sequence Cue Condition. 

  
P1 

 
P2 

 
P3 

 
P4 

  
M SD 

 
M SD 

 
M SD 

 
M SD 

Sequence Cue 
           

Control 
 

0.39 0.23 
 

0.45 0.21 
 

0.47 0.22 
 

0.48 0.22 

P1 Cue 
 

0.46 0.23 
 

0.50 0.21 
 

0.52 0.22 
 

0.54 0.18 

P4 Cue 
 

0.43 0.26 
 

0.46 0.27 
 

0.54 0.25 
 

0.51 0.25 

Note. P1 = position 1, P2 = position 2, P3 = position 3, P4 = position 4. Control = no 

sequence cue. P1 cue = sequence cue at position 1 of a run. P4 cue = sequence cue 

at position 4 of a run.  

 

Positions 1 and 2, suggesting a rapid recovery from a task switch. The accuracy of the 

control condition (no external cue) was lowest for all four positions, suggesting that 

monitoring task sequence may have affected overall accuracy, and the presentation of a 

sequence cue may have made it easier to perform the recognition task.  

Switch effects on recognition corrected accuracy were analysed using a 3 

(sequence cue) x 2 (test block) x 4 (run position) mixed ANOVA. The Huynh-Feldt 

correction was used for statistical tests that included position because the assumption of 

sphericity was violated. There was a significant main effect of position [F(2.96, 346.60) 

= 7.81, MSE = 0.05, p < 0.001, ηp
2
 = 0.06], illustrated in Figure 7.1. Pair-wise 

comparisons using Bonferroni corrections showed that corrected accuracy for Position 1 

(M = 0.43, SD = 0.24) was significantly lower than that for Position 3 (M = 0.51, SD = 

0.23) and Position 4 (M = 0.51, SD = 0.22) but did not differ from Position 2 (M = 0.47, 

SD = 0.23). Although accuracy appeared to trend upwards across the repetition 

positions of the run, the differences in recognition accuracy between Positions 2, 3, and 

4 were not significant. That is, the task switch effect to recognition performance was 

largely isolated to the first (switch) trial in a run, with perhaps some slight persistence 

of the switch effect into Position 2. Both the main effect of test block (F = 0.82, p = 

0.367) and the interaction of test block and run position (F = 1.06, p = 0.366) were not 

significant. Participants‘ ability to discriminate between old and new words was no 
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Figure 7.1. Mean corrected accuracy of recognition memory decisions in Experiment 3 

as a function of run position. Error bars represent S.E. 

 

different for the first and second test blocks.  

Although corrected accuracy data hinted that the use of a sequence cue may 

have improved recognition memory performance at Position 1, the main effect of 

sequence cue was not significant (F = 0.84, p = 0.434), nor was its interaction with 

position (F = 0.30, p = 0.933). A planned Helmert contrast comparing the corrected 

accuracy of the control sequence cue condition to the combined accuracy of the P1 and 

P4 sequence cue conditions also confirmed that there was no significant difference 

between the sequence cue conditions (p = 0.226). Thus, the recognition accuracy data 

produced no statistically significant evidence to support the hypothesis that presenting a 

sequence cue reminder improved performance overall or on the switch trial. 

Magnitude task. 

Collapsed across all conditions, magnitude judgement accuracy was moderately 

high, but not near ceiling (M = 0.83, SD = 0.11). Participants were able to correctly 

judge whether more or less than seven dots presented. Table 7.2 reports the mean 

accuracy of magnitude judgements as a function of run position and sequence cue 

condition. Mean accuracy across the three sequence cue conditions was similar,  
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Table 7.2.  

Means and Standard Deviations for Magnitude Judgement Accuracy in 

Experiment 3, as a Function of Position in Run and Sequence Cue Condition. 

    P1   P2   P3   P4 

    M SD   M SD   M SD   M SD 

Cue Condition 

              Control 
 

0.76 0.15 

 

0.84 0.14 

 

0.83 0.13 

 

0.83 0.12 

   P1 Cue 
 

0.80 0.14 

 

0.88 0.09 

 

0.85 0.10 

 

0.85 0.11 

   P4 Cue   0.80 0.13   0.84 0.12   0.87 0.09   0.87 0.11 

Note. P1 = position 1, P2 = position 2, P3 = position 3, P4 = position 4. Control = no 

sequence cue. P1 cue = sequence cue at position 1 of a run. P4 cue = sequence cue 

at position 4 of a run.  

 

suggesting that sequence cues did not improve the accuracy of magnitude judgements. 

For all cue conditions the mean accuracy was lower at Position 1 than that for remaining 

(repetition) positions in the run, demonstrating an accuracy switch effect. The accuracy 

of magnitude judgements for the three repetition positions were very similar, except in 

the P4 cue condition where Position 2 accuracy fell midway between Position 1 and 

Position 4, suggesting a more gradual recovery.  

Switch effects on magnitude task accuracy were analysed using a 3 (sequence 

cue) x 2 (test block) x 4 (position) x 2 (item type) mixed design ANOVA. As the key 

allocation of dot decisions was not counterbalanced, effects and interactions of item 

type cannot be interpreted and therefore are not reported. The Huynh-Feldt correction 

was used for statistical tests that included position as the assumption of sphericity was 

violated. The significant main effect of position, [F(2.64, 308.46) = 29.32, MSE = 0.02, 

p < 0.001, ηp
2
 = 0.20] is illustrated in Figure 7.2. Pair-wise comparisons using 

Bonferroni corrections showed that the mean magnitude task accuracy at Position 1 (M 

= 0.79, SD = 0.14) was significantly lower than that of Position 2 (M = 0.85, SD = 

0.12), Position 3 (M = 0.85, SD = 0.11), and Position 4 (M = 0.85, SD = 0.12). Positions 

2, 3, and 4 were not significantly different from one another.  
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Figure 7.2. Mean accuracy of magnitude judgements in Experiment 3 as a function of 

run position. Error bars represent S.E. 

 

The main effect of test block was significant, F(1,117) = 14 .52, MSE = 0.12, p 

< 0.001, ηp
2
 = 0.11. The mean accuracy of magnitude judgements in the first test (M = 

0.80, SD = 0.16) was significantly lower than that of the second test (M = 0.86, SD = 

0.11). The accuracy of participants‘ magnitude judgements improved as they gained 

experience with the task. The interaction of test block and position was also significant, 

F(2.82, 329.70) = 3.46, MSE = 0.02, p = 0.021, ηp
2
 = 0.03. The mean magnitude 

judgement accuracy is shown in Table 7.3 as a function of run position and test block. A 

3 (sequence cue) x 2 (test block) x 2 (position: P1, P2) x 2 (item type) mixed ANOVA 

confirmed that the interaction was driven by a decrease in the size of the accuracy 

switch effect from the first to second test block, F(1, 117) = 4.70, MSE = 0.02, p = 

0.032, ηp
2
 = 0.04. The main effect of position was significant for the first [F(1, 117) = 

45.10, MSE = 0.02, p < 0.001, ηp
2
 = 0.28] and second [F(1, 117) = 17.40, MSE = 0.02, p 

< 0.001, ηp
2
 = 0.13] test blocks, but the size of this difference between Position 1 and 

Position 2 accuracy was substantially smaller in the second test (0.02) than that in the 

first test (0.08). By contrast, A 3 (sequence cue) by 2 (test block) by 3 (position: P2, P3, 

P4) by 2 (item type) mixed ANOVA showed that the pattern of magnitude judgement 

accuracy within repetition trials of the run was no different for the first and second test 

blocks, F(2, 234) = 0.38, MSE = 0.01, p = 0.684, ηp
2
 = 0.00. Accuracy of magnitude  
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Table 7.3 

Means and Standard Deviations for Magnitude Judgement Accuracy in 

Experiment 3 as a Function of Position in Run and Test Block. 

    P1   P2   P3   P4 

    M SD   M SD   M SD   M SD 

Test Block 

              Test 1 
 

0.74 0.19 

 

0.83 0.19 

 

0.82 0.17 

 

0.83 0.17 

   Test 2   0.83 0.15   0.88 0.12   0.88 0.12   0.87 0.14 

Note. P1 = position 1, P2 = position 2, P3 = position 3, P4 = position 4. 

 

judgements showed a significant practice effect—the size of the accuracy switch effect 

was smaller after participants had completed the first test block. 

The effect of sequence cue (F = 0.99, p = 0.374) and interaction of sequence cue 

and position (F = 1.64, p = 0.149) on magnitude judgement accuracy were not 

significant. Consistent with the recognition accuracy data, a planned Helmert contrast 

showed no significant difference in magnitude judgement accuracy between the control 

and experimental (P1, P4) cue conditions (p = 0.162). Consistent with the recognition 

accuracy data, the magnitude accuracy data showed no indication that the presentation 

of a sequence cue reminder aided performance.  

Reaction Times 

The RT analyses used correct recognition RTs and correct magnitude RTs, 

resulting in the exclusion of 27% and 17% of the data for the recognition and magnitude 

tasks respectively. The exclusion rate for the recognition task is similar to that reported 

in Experiments 1 and 2. The smaller exclusion rate for the magnitude task likely reflects 

the relative ease of performing this task compared to the recognition task. The 

percentage of timeouts for the recognition and magnitude tasks (2% for both tasks) was 

higher than that for Experiment 2 and was likely the consequence of the shorter 

response deadline used in Experiment 3. However, the rate of timeouts was still low.  

Recognition Task. 

Table 7.4 shows mean RTs for correct trials as a function of test, position in run, 

and sequence cue condition. Note that the reported recognition RTs do not include the 
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400-ms response delay. The mean RTs were very similar for all three sequence cue 

conditions and showed a large drop in RT from Position 1 to Position 2, demonstrating 

a RT switch effect. There was a very small decrease in RT from Position 2 to Position 3 

for both tests, but more-so for the first test block. Relative to the drop in RT from 

Position 1 to Position 2, this decrease was almost negligible. Participants tended to 

make correct recognition decisions more quickly in the second test block. This decrease 

from the first to second test block was most sizable for Position 1 (the switch trial). 

A 3 (sequence cue) x 2 (test block) x 4 (position) x 2 (item type) mixed ANOVA 

was conducted on correct recognition RTs. As the key allocation of recognition 

decisions was not balanced, effects and interactions of item type cannot be interpreted 

and therefore are not reported. The Greenhouse-Geisser correction was used for 

statistical tests that included position because the assumption of sphericity was  

 

Table 7.4. 

Means and Standard Deviations for Correct Recognition RTs in Experiment 3 

as a Function of Position in Run, Test Block, and Sequence Cue Condition. 

      P1   P2   P3   P4 

      M SD   M SD   M SD   M SD 

Test 1 
 

           

 

Control 
 

448 198 

 

313 145 

 

289 137 

 

298 138 

 

P1 Cue 
 

443 204 

 

296 149 

 

300 140 

 

288 142 

 

P4 Cue 
 

455 201 

 

313 147 

 

290 138 

 

287 140 

Test 2 

            

 

Control 

 

406 145 

 

289 118 

 

278 131 

 

278 122 

 

P1 Cue 

 

385 149 

 

264 121 

 

263 134 

 

275 125 

  P4 Cue   384 147   285 120   276 132   269 124 

 

Note. P1 = position 1, P2 = position 2, P3 = position 3, P4 = position 4. Control = no 

sequence cue. P1 cue = sequence cue at position 1 of a run. P4 cue = sequence cue 

at position 4 of a run. Reported RTs do not include the 400 ms response delay. 
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Figure 7.3. Mean RTs for correct recognition memory decisions in Experiment 3 as a 

function of run position and test block. Error bars represent S.E. 

 

violated.
7
 There was a significant main effect of position, F(1.85, 205.23) = 332.54, 

MSE = 10022.20, p < 0.001, ηp
2
 = 0.75. The mean RT for recognition decisions at 

Position 1 (M = 420.11, SD = 87.10) was significantly slower than that for Position 2 (M 

= 293.36, SD = 64.38), Position 3 (M = 282.71, SD = 65.42) and Position 4(M = 282.62, 

SD = 66.28). The mean RT for correct recognition decisions at Position 2 was also 

significantly slower than that for Positions 3 and 4. Mean RTs for Position 3 and 4 were 

not significantly different from each other. That is, recognition RTs recovered from a 

task switch gradually over the next two repetition trials rather than immediately after a 

task switch. 

The main effect of test block was significant, F(1, 111) = 24.76, MSE = 

17247.98, p < 0.001, ηp
2
 = 0.18. Participants‘ correct recognition RTs were faster in the 

second test (M = 304.39, SD = 60.65) than those in the first test (M = 335.01, SD = 

79.77). As is illustrated in Figure 7.3, the interaction of position and test block was also 

significant, F(2.72, 301.76) = 7.89, MSE = 5212.62, p < 0.01, ηp
2
 = 0.07. A 3 (sequence 

cue) x 2 (test block) x 2 (position: P1, P2) x 2 (item type) mixed ANOVA confirmed 

                                                 
7
 Following the recommendations of Field (2009), because the Mauchly‘s W was below 0.75 a 

Greenhouse-Geisser correction was used. The earlier analyses of position on recognition and magnitude 

accuracy used a Huynh-Feldt correction, which Field recommends when the Mauchly‘s W is above 0.75.  
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that the interaction was driven by a decrease in the size of the RT switch effect from the 

first to second test block, F(1, 111) = 7.28, MSE = 6324.35, p = 0.008, ηp
2
 = 0.06. The 

main effect of position was significant for the first [F(1, 115) = 304.03, MSE = 8114.66, 

p < 0.001, ηp
2
 = 0.73] and second [F(1, 113) = 196.77, MSE = 7659.53, p < 0.001, ηp

2
 = 

0.64] test blocks, but the size of this RT switch effect (P1 - P2) was smaller in the 

second test (113.99) than that in the first test (144.61). By contrast, A 3 (sequence cue) 

by 2 (test block) by 3 (position: P2, P3, P4) by 2 (item type) mixed ANOVA showed 

that the pattern of correct recognition RTs within repetition trials of the run was no 

different for the first and second test blocks, F(1.95, 228.75) = 0.84, MSE = 3464.98, p 

= 0.432, ηp
2
 = 0.01. Thus the interaction of test block and position reflected a practice 

effect—a decrease in the RT switch effect from the first to second test block. It is worth 

noting that as the first and second test blocks used different list groups, the effects and 

interactions of test block for the recognition task should be treated with some caution. 

However, as considerable effort was made to balance linguistic characteristics both 

within and across list groups, these effects likely represent changes in performance due 

to experience with the task rather than due to stimulus differences. 

Neither the main effect of sequence cue (F = 0.27, p = 0.762) nor the interaction 

of sequence cue and position (F = 0.76, p = 0.546) was significant. Furthermore, a 

planned Helmert contrast showed no significant difference in correct recognition RTs 

between the control and experimental (P1, P4) cue conditions (p = 0.530). There was no 

evidence that the presentation of a sequence cue reminder improved overall RT 

performance or switch trial performance in particular.  

Magnitude task. 

Table 7.5 shows the mean RTs for correct magnitude judgements as a function 

of test block, position in run, and sequence cue condition. RTs for magnitude 

judgements were fast, particularly for repetition trials. Mean RTs for switch trials were 

longer than all repetition trials, demonstrating a RT switch effect. Performance on the 

repetition trials (Position 2 – 4) was more variable for the magnitude task than for the 

recognition task, with some conditions showing a slight slowing at Position 4. Finally, 

correct magnitude RTs were faster in the second test block compared to the first test 

block, indicating that experience with the magnitude task allowed participants to make 

correct magnitude judgements more quickly.  
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Table 7.5 

Means and Standard Deviations for Correct Magnitude Judgement RTs in 

Experiment 3 as a Function of Position in Run, Test Block, and Sequence Cue 

Condition. 

      P1   P2   P3   P4 

      M SD   M SD   M SD   M SD 

Test 1 
 

           

 

Control 
 

711 191 

 

660 153 

 

653 148 

 

673 125 

 

P1 Cue 
 

693 193 

 

651 155 

 

642 150 

 

641 127 

 

P4 Cue 
 

735 188 

 

681 151 

 

675 146 

 

699 123 

Test 2 

            

 

Control 

 

651 156 

 

601 140 

 

605 133 

 

621 135 

 

P1 Cue 

 

634 158 

 

583 141 

 

588 135 

 

596 137 

  P4 Cue   673 154   620 138   642 131   651 134 

Note. P1 = position 1, P2 = position 2, P3 = position 3, P4 = position 4. Control = no 

sequence cue. P1 cue = sequence cue at position 1 of a run. P4 cue = sequence cue 

at position 4 of a run.  

 

A 3 (sequence cue) by 2 (test block) by 4 (position) by 2 (item type) mixed 

ANOVA was conducted on correct magnitude RTs. As the key allocation for magnitude 

judgements was not balanced, effects and interactions of item type are not reported. 

The Greenhouse-Geisser correction was used for statistical tests that included position 

as the assumption of sphericity was violated. The significant main effect of position 

[F(2.19, 243.11) = 34.66, MSE = 9828.37, p < 0.001, ηp
2
 = 0.24] is illustrated in Figure 

7.4. Pairwise comparisons using Bonferroni corrections showed that RTs for correct 

magnitude judgements at Position 1 (M = 682.91, SD = 83.67) were slower than for that 

Position 2 (M = 632.62, SD = 74.70), Position 3 (M = 634.37, SD = 65.82) and Position 

4 (M = 646.86, SD = 65.53). However, the mean RT for correct magnitude judgements 

at Position 4 was also significantly slower than Position 2 and Position 3 (which did not 

differ significantly from each other). Although the switch effect was isolated to Position 
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1, this result shows that participants‘ responses slowed at the end of the run, suggestive 

of within run slowing. 

There was a significant main effect of half, F(1, 111) = 69.84, MSE = 19044.26, 

p < 0.001, ηp
2
 = 0.39. The mean RT for the first half (M = 676.20, SD = 71.91) was 

significantly slower than that for the second half (M = 622.17, SD = 71.56). Participants 

made magnitude judgements more quickly after they had gained experience with the 

task. However, unlike the recognition RT data, the interaction of position and test block 

was not significant (F = 1.87, p = 0.140). That is, the size of the RT switch effect and 

the pattern of performance within a run of a task did not change from the first to the 

second test. Unlike the recognition task, there was a significant main effect of sequence 

cue on correct magnitude task RTs, F(2, 111) = 4.66, MSE = 63257.064, p = 0.011, ηp
2
 

= 0.08. Post-hoc tests using a Bonferroni correction showed that the mean RT for the P4 

sequence cue condition (M = 672.16, SD = 107.30) was significantly slower than that 

for the P1 sequence cue condition (M = 628.33, SD = 110.37). However, neither group 

differed significantly from the control group (M = 647.07, SD = 108.91), where no 

visual sequence cue was presented. Neither sequence cue provided an advantage over 

the control condition. Critically, there was no interaction of external cue and position (F 

= 0.58, p = 0.693), indicating that that the use of a sequence cue reminder did not 

change the size of the RT switch effect or the pattern of recovery from a task switch.  

 

 

Figure 7.4. Mean RTs for correct magnitude judgements in Experiment 3 as a function 

of run position. Error bars represent S.E. 

580

600

620

640

660

680

700

1 2 3 4

R
e
a
c
ti

o
n

 T
im

e
  
(m

s
) 

Run Position 



87 

 

 

 

Discussion 

In Experiment 3, participants switched between a recognition memory task and a 

magnitude task in 4-trial alternating runs. In addition to examining RT and accuracy 

performance within a run of a task, the current experiment examined the effectiveness 

of providing a sequence cue to aid participants in monitoring the task sequence and 

anticipating task switches. Significant RT and accuracy switch effects were observed for 

the recognition and magnitude tasks. Participants‘ performance on switch trials 

(Position 1) was significantly slower and less accurate than that on subsequent trials of a 

run. Interestingly, the accuracy switch effect for the recognition task was very similar in 

size to those reported in Experiments 2 and 3. Even though the current experiment used 

a longer run length and did not use an encoding manipulation, the cost to recognition 

accuracy was largely unchanged. Finally, it is particularly important to note that the 

significant RT and accuracy switch effects for the magnitude task confirm that the novel 

task switching paradigm used in this thesis can produces task switching effects that are 

not isolated to the (arguably more complex) recognition task.  

Effects of Providing a Sequence Cue 

Providing a visual cue to aid task sequence monitoring had no impact on task 

switching performance relative to a condition where no visual cue was used. For both 

the recognition and magnitude tasks, supplying a sequence cue did not change RT and 

accuracy switch effects. Furthermore, the patterns within repetition trials of a run 

showed no difference across sequence cue conditions. This failure to produce decreases 

in RT and accuracy switch effects was particularly interesting for the P4 sequence cue 

condition. In this condition, participants were presented with a visual cue that reminded 

them of an upcoming task switch and were provided with plenty of time to use this 

information to prepare. However, this was not the case. The main effect of run position 

did not differ between sequence cue conditions, indicating that participants in the P4 

cue condition were no more prepared for an upcoming task switch than those in the 

other two cue conditions.  

If the sequence cue was perceived, which seems to be a safe assumption, why 

did the cue have no effect on performance? One explanation could be that, while 

participants perceived the sequence cue, they may not have remembered the meaning of 

it. For example, participants in the P4 cue condition may have not remembered that the 

novel focal stimulus indicated that they were completing the last trial in a run of a task. 



88 

 

However, the instructions presented prior to each test phase placed great emphasis on 

the meaning of the novel sequence cue and its use as a reminder of their position within 

a run. Alternatively, participants may have evaluated the visual sequence cue and 

decided not to use it. Given that the novel focal stimulus ($$$) occurred on only one of 

four trials, participants still needed to actively monitor the task sequence for the 

majority of a run. Although presenting a visual sequence cue at Position 4 may have 

aided participants on the switch trial, it was not particularly helpful when a participant 

was attempting to remember if they were currently completing the second or third trial 

in a run. As such, participants may have decided that the additional load associated with 

monitoring focal stimuli and holding the meaning of the sequence cue in working 

memory was not worth the bother.  

Performance Changes Within a Run 

Experiment 3 tested the hypothesis that a constant run length and predictable 

task switches would produce switch effects isolated to Position 1 (the switch trial). The 

RT and accuracy data for the magnitude task supported this hypothesis. For the 

magnitude task, the accuracy switch effect was isolated to the first trial. Magnitude 

accuracy increased from the first to second trial in the run, but showed no further 

improvement for later positions. Likewise, the magnitude RTs were very consistent with 

the hypothesised immediate recovery from a task switch. Correct magnitude judgement 

RTs were faster for Positions 2 and 3 (which were equal) than that for Position 1. With 

regard to the recognition task, corrected accuracy was lower on the switch trial than that 

on Positions 3 and 4 (which were equivalent). However, corrected accuracy of Position 

2 fell midway between the Position 1 and 3 and was not significantly different from 

either position. While these data suggest that some of the cost of switching tasks may 

persist beyond the switch trial, they would have been stronger if Position 2 had been 

significantly lower than Position 3. Thus it is difficult to definitively conclude if the 

accuracy data illustrated immediate or gradual recovery. The recognition RT data were 

more clear-cut. Correct recognition RTs showed that the mean RT for Position 3 was 

significantly faster than that for Position 2, which was in turn faster than that for Potion 

1. The switch effect persisted to the second trial in the run.  

Why did the recognition task data (but not the magnitude task data) produce 

evidence of gradual recovery? Monsell et al. (2003) proposed that when run length was 

unpredictable, participants in their experiment strategically modulated the activation of 
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the online task set following the first trial of the run, in anticipation of an upcoming 

(unknown) task switch. This strategic modulation produced a gradual recovery over the 

first few trials in a run until the benefits of task set priming overcame this strategic 

modulation. By contrast, when run length was predictable, no such modulation occurred 

and switch effects were isolated to the first trial in a run. The relative difficulty and high 

cognitive demands of the recognition memory task (compared to that of the magnitude 

task) perhaps made it challenging for participants to monitor their position within a run. 

Participants may have occasionally lost track of when the next task switch would occur 

and in such cases adopted a strategy similar to that supported by Monsell et al.‘s for 

unpredictable run length data. In essence, despite the run length being consistent and 

predictable, when participants lost track of their position within the run they behaved as 

if the run length was unpredictable. That is, they modulated the activation of the online 

task set in case the next trial was a task switch. 

By contrast, the magnitude task may have shown an immediate recovery pattern 

because it was relatively easy to perform. The mean accuracy of the magnitude task was 

higher than that for the recognition task and the size of the RT switch effect was 

considerably smaller. Combined with the limited long term memory retrieval demand 

(see Mayr & Kliegl, 2003), the relative ease of performing the magnitude task likely 

meant that participants were more successful at tracking their position within a run of 

the magnitude task. Participants performed this task as if they were aware of the 

consistent and predictable run length and largely capable of keeping track of their 

position within a run. Thus performance on the magnitude task may have produced a 

pattern similar to that reported by Monsell et al. (2003) for predictable run lengths.  

Finally, it is worth noting that the size of the difference between Positions 2 and 

3 RTs for the recognition task was very small (10.65 ms) compared to the difference 

between Positions 1 and 2 (126.75 ms). Occasions where participants lost track of their 

position within a run of the recognition task—and thus modulated the online task set 

activation—may have been relatively few in number. It may be that the component of 

the switch effect that persisted past Position 2 was an artefact of the considerable 

statistical power in this experiment.  

With regard to evidence of within run slowing, that the magnitude task showed 

significant slowing on the last trial of a run, whereas the recognition task did not. 

Altmann and Gray (2002) explained within-run slowing as the result of decay in 

activation of the online task set. That is, performance on the fourth trial of the 
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magnitude task was slowed because the task set had decayed and thus needed additional 

activation before it could direct behaviour. However, confirming this account would 

require a similar slowing for the recognition task, and no such slowing was observed. 

The run length used in the current experiment was relatively short compared to those 

used in Altmann and Gray (2002). Thus, the run length may not have been sufficiently 

long to observe within-run slowing for the recognition task. Alternatively, the slowing 

of Position 4 in the magnitude task could be explained as a change task switching 

strategy. A unique characteristic of the experiments in this thesis is that, contrary to 

most task switching experiments, one task may appear more important than the other. In 

the study phases prior to each test, participants were instructed to study the words for a 

later recognition memory test. At test, participants were informed that they would be 

performing a recognition memory task with an additional magnitude task. In response to 

this information, participants may have placed more attention and importance on the 

recognition task. Thus the slowing of performance on Position 4 of the magnitude task 

may have reflected participants‘ anticipation of the upcoming switch to the more 

important recognition task. By contrast, the last trial in a run of recognition tasks is 

afforded the same importance (and similar performance) as other repetition trials in a 

run and thus shows no slowing. 

Summary 

In Experiment 3, participants switched between the recognition memory task 

and the magnitude task in predictable 4-trial alternating runs. Both tasks showed 

significant accuracy and RT switch effects. Providing a sequence cue on either Position 

1 or Position 4 of a run did not decrease the size of the RT or accuracy switch effects or 

aid participants in monitoring task sequence. While magnitude task RTs and accuracy 

showed an immediate recovery pattern, the recognition task RTs showed a more gradual 

recovery pattern. This difference in recovery patterns likely reflected the different 

strategies of switching and maintaining task sets used by participants for each task. 

An interesting result in Experiment 3 was the decrease in the size of the 

recognition task RT switch effect and the magnitude task accuracy switch effect from 

the first to second tests test blocks. The decrease in RT switch effect, called a practice 

effect, has had relatively limited coverage in the literature (Jersild, 1927; Koch, 2005; 

Merian, 1996; Minear & Shah, 2008; Rogers & Monsell, 1995) but could provide 

further information about the processes of switching between the magnitude and 

recognition tasks. As such, Chapter 8 aims to explore this effect in more detail.  
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Chapter Eight 

Experiments 4A – 5B: Preparation and Practice 

 

As previously noted in this thesis, participants may adjust or refine their task 

switching processes/strategies in response to methodological characteristics of an 

experiment (e.g., Altmann, 2002; Altmann & Gray, 2002; Mayr, 2007; Monsell et al., 

2003; Monsell & Mizon, 2006).  A popular example of this type of change is the 

preparation effect. A preparation effect is defined as the decrease in the size of the 

switch effect (commonly RTs, but sometimes accuracy) with longer cue-to-stimulus 

intervals (CSIs, Altmann, 2004a, 2004b; Mayr & Kliegl, 2003; Meiran, 1996; Monsell 

& Mizon, 2006), or in the alternating runs paradigm, with longer response-to-stimulus 

intervals (RSIs., Arrington & Logan, 2004, 2005; de Jong, 2000; Rogers & Monsell, 

1995; Monsell et al., 2003). As was illustrated in Experiment 3, the speed or use of 

specific task switching processes can also change as participants gain experience with 

the tasks and with switching between them. One consequence of this change, called a 

practice effect, is the decrease in the size of switch costs or mixing costs across the 

course of an experiment (Jersild, 1927; Koch, 2005; Kramer et al., 1999; Kray & 

Lindenberger, 2000; Meiran, 1996; Minear & Shah, 2008; Monsell et al., 2003; Rogers 

& Monsell, 1995).  

Over the span of the last two decades, the preparation effect has become a well-

established phenomenon in task switching research (see Monsell, 2003; 

Vandierendonck et al., 2010). The effect has been used in the development and 

validation of task switching theories (Altmann & Gray, 2008; Rogers & Monsell, 1995) 

and as a tool through which to examine the effects of other manipulations (Mayr & 

Keele, 2000; Miyake et al., 2004; Philipp & Koch, 2006). Proponents of two-stage 

reconfiguration models of task switching (Meiran, 1996, 2000a; Rogers & Monsell, 

1995; Rubinstein et al. 2001) have argued that longer RSIs and CSIs allow participants 

additional time to reconfigure elements of the task set that are not dependent on 

stimulus presentation. By contrast, the failure-to-engage (FTE) hypothesis (deJong, 

2000, 2001; Lindsen & de Jong, 2010) posits that longer RSIs/CSIs increase the 

probability that task sets will be completely reconfigured prior to stimulus onset. The 

Cognitive Control Model (Altmann & Gray, 2008) explains the preparation effect as the 
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product of additional cycles (iterations) of activation applied to a cued task set with 

longer CSIs/RSIs.  

Conflicting ideas about the methods that will or will not produce a preparation 

effect have been reported, particularly with the alternating runs paradigm. For example, 

there are inconsistencies regarding the appropriate way to manipulate RSI. When 

Rogers and Monsell (1995) presented multiple RSIs within a single block, they did not 

observe preparation effects. However, other researchers have presented multiple RSIs 

within an alternating runs block and reported significant preparation effects (e.g., de 

Jong, 2000). Despite this inconsistency, one generally accepted requirement for 

observing preparation effects is that the RSI should be manipulated within participants. 

That is, the effect seems to rely on exposure to more than one RSI (Altmann, 2004b). 

Another case of inconsistency regards the necessity of task cues in the alternating runs 

paradigm. While Koch (2003) reported that preparation effects were not observed when 

a task cue was not used, Kray and Lindenberger (2000) reported significant preparation 

effects in the absence of task cues. Thus although investigations of preparation effects 

are incredibly common, there remains an uncertainty about when they will be observed.  

Practice effects were first reported by Jersild (1927), who showed that 

completion times for mixed blocks (e.g., ABABAB) decreased over the course of an 

experiment to a greater extent than that for pure blocks (AAAAAA). Jersild attributed 

this differential improvement to participants developing efficient task and instructional 

sets that allowed them to switch tasks more quickly. A more detailed and theoretically-

driven account of practice effects was proposed by Meiran (1996), who identified the 

speeding of task set reconfiguration as the source of practice effects. Practice with tasks 

within an experiment strengthened the association between task cues and task sets, 

allowing those task sets to be retrieved more quickly. As a consequence, task set 

reconfiguration was completed more quickly. Interestingly, Meiran reported that 

practice interacted with a manipulation of CSI. That is, significant practice effects were 

observed for trials using a short (132 ms) CSI, but no practice effects were observed for 

trials using a long (1632 ms) CSI. This interaction was interpreted as reflecting a 

difference in the benefit of fast reconfiguration at short and long CSIs. At short CSIs, 

fast reconfiguration increased the likelihood that this reconfiguration would be 

completed prior to stimulus onset, thus decreasing the RT switch cost. At long CSIs, 

reconfiguration is more likely to be completed prior to stimulus onset regardless of the 
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speed of reconfiguration, and as such practice provides little additional benefit (Meiran, 

1996).
8
 

Relative to preparation effects, practice effects have a longer, but leaner legacy. 

With the exception of Meiran‘s (1996) examination of practice effects, the task 

switching literature has largely referred to practice effects in passing (e.g., Rogers & 

Monsell, 1995) or acknowledged them by way of methodology—excluding many trials 

at the beginning of each experiment. There are, however, some notable exceptions. Task 

switching costs for older and younger adults have been shown to decrease in size across 

multiple sessions (Kray & Lindenberger, 2000). Furthermore, the size of older adults‘ 

RT switch cost can decrease over the course of an experiment until it is equivalent to 

younger adults‘ (Kramer et al., 1999). The benefit of practice for task switching 

performance does not transfer to different tasks (Minear & Shah, 2008). By contrast, the 

benefit of practice to task switching performance can remain intact when the 

predictability of task sequences changes. Koch (2005) showed that a practice effect that 

developed across multiple blocks of predictable task switching was maintained when a 

block using random task switches (with the same tasks) was introduced. Although 

overall RTs increased for this random sequence transfer block, the size of the switch 

cost was equivalent to the last predictable sequence block. In combination with the 

findings of Jersild (1927) and Meiran (1996), these studies show that practice effects 

make an important contribution to task switching performance and support the claim 

that practice strengthens the associations between task cues and task sets.   

Experiment 3 of this thesis reported a significant decrease in the size of the RT 

switch effect (Position 1 – Position 2) from the first to second test for the recognition 

memory task. With practice, participants became more efficient at switching tasks and 

thus made their recognition memory decisions more quickly after a task switch. The 

current chapter reports results from four experiments that aimed to further examine 

these practice effects whilst also exploring the role of RSI length on task switching 

performance. In each experiment, participants completed two study-test blocks. During 

the study phases, participants studied and made semantic judgements to words. During 

the test phases, participants switched between the recognition and magnitude tasks in 

predictable, two-trial runs. Two RSIs were used in each experiment—one for each test 

                                                 
8
 Koch (2005) reported significant practice effects with a CSI of 900 ms—a CSI clearly beyond the 

optimal preparation duration posited by Rogers and Monsell (1995). Thus, it may be incorrect to say that 

practice effects can never be observed in conjunction with preparation effects. 
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phase. Assessments of preparation and practice were made by comparing performance 

across these two test blocks.  

It is important to acknowledge that the method of examining task switching and 

preparation used in this chapter departed from usual methods. Typically, experiments 

that examine preparation effects have used very simple tasks and have provided some 

type of external task cue. When an alternating runs paradigm has been used participants 

have often been explicitly instructed that that they should use the time between trials to 

prepare for the upcoming task. The choice to deviate from this standard paradigm was 

made in response to the specific research questions this thesis sought to address. 

Critically, the current experiments sought to examine evidence for preparation effects 

using a more conservative and naturalistic task switching method. Participants switched 

between the higher order recognition task and the relatively simple magnitude task that 

have been used throughout this thesis. Switching between these two different tasks with 

different stimulus sets is arguably more reflective of everyday life than switching 

between two simple tasks that use the same stimulus set. To encourage participants to 

monitor the task sequence and keep track of upcoming changes in task (as they would 

likely do in everyday life), explicit task cues were not provided. Finally, to establish if 

participants naturally prepare for upcoming task switches (as opposed to if they can be 

instructed to prepare), participants were made aware of the task progression and the 

length of RSIs but were not explicitly told to use the RSI to prepare. This desire to 

ascertain if and how participants naturally prepare is not unheard of, and is a valid point 

of scientific inquiry. Indeed, research in the related field of interruptions conducted by 

Trafton et al. (2003) did not instruct participants to prepare during a ‗warning‘ interval 

between the primary task and the start of the interruption task for the specific purpose of 

―measuring people‘s natural propensity to prepare…‖ (p. 589). 

Although these changes in method are fairly substantial, there is evidence to 

suggest that preparation effects will still be observed. For example, in Kray and 

Lindenberger (2000), younger and older adults switched between two tasks (e.g., shape 

or colour discrimination for shape stimuli) in two-trial alternating runs over multiple 

blocks. Each block used a long (1200 ms) or a short (200 ms) RSI. External task cues 

were not provided and participants were not explicitly instructed to use the RSI to 

prepare for upcoming trials. Kray and Lindenberger reported a typical preparation 

effect; significantly smaller RT switch costs for long RSI blocks than that for short RSI 

blocks. Kray (personal communication, February 2011) stated that by not using task 
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cues, participants were forced to keep track of the task sequence and consequentially 

prepare for task switches.
9
 As has been noted earlier in this chapter, Koch (2003) 

reported that without task cues preparation effects were not observed, and he argued that 

internally generated cues (i.e., cues generated as a product of monitoring a task 

sequence) provided weak support for reconfiguration. Clearly, there is a lack of 

agreement about the exact parameters for which preparation effects will (or will not) be 

observed. The current research should aid in clarifying this debate.  

There were three key hypotheses for the experiments presented in this chapter. 

First, it was hypothesised that, consistent with earlier experiments in this thesis, 

switching between the recognition and magnitude task would produce significant RT 

and accuracy switch effects. That is, recognition and magnitude task responses should 

be slower and less accurate for switch trials compared to those for repetition trials. 

Second, it was hypothesised that significant practice effects would be observed. The 

size of RT switch effects should decrease from the first to the second test block. Given 

that previous research has shown that the benefits of practice are specific to task as 

opposed to other experimental factors (Koch, 2005; Meiran, 1996), it seems reasonable 

to assume that changes in the RSI across test blocks should not affect the observation of 

practice effects. Finally, it was hypothesised that a preparation effect would be observed 

for recognition and magnitude tasks. The size of RT switch effects (and perhaps 

accuracy switch effects) should be significantly smaller for long RSI test blocks than for 

short RSI test blocks. If, as suggested by Altmann (2004b), advanced preparation is 

only enacted after exposure to multiple RSIs, preparation effects may only be observed 

when examining performance on Test 2 (i.e., between participants). For the second test, 

the RT switch cost should be smaller for participants completing a long RSI test than 

that for participants completing a short RSI test.   

General Method 

Participants  

Undergraduate psychology students at Victoria University of Wellington 

participated in the studies for credit toward a research requirement in an introductory 

psychology class. All participants in the final data set: (1) had normal or corrected-to-

normal vision, (2) spoke English from early childhood, and (3) met minimum 

                                                 
9
 Kray also stated that it was this property that made it unnecessary to explicitly instruct participants to 

use the RSI to prepare—as task cues were not provided participants had to keep track of the task sequence 

internally.  
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performance requirements. These performance requirements were: (a) above chance 

accuracy for repetition trials on the magnitude and recognition tasks, (b) mean RTs for 

correct trials within 3 SD of the group mean, and (c) fewer than 20% timeouts for either 

task. Participants who failed to meet the above criteria were replaced to achieve proper 

counter-balancing. 

Materials 

Concrete nouns (N = 150) from the Toronto Word Pool (Friendly et al. 1982) 

were used to construct 8 lists of 16 words (see Appendix A). Lists were closely matched 

for syllables (M = 2.00), word length (M = 6.27), frequency (Kucera & Francis, 1967, M 

= 11.52), concreteness (M = 6.03) and imagery (M = 5.66).  Buffer and filler words (N = 

22) had similar linguistic properties. Words stimuli were presented centrally on a white 

screen in black bold 24-pt Courier New font. Dot stimuli were black circles (diameter = 

8 mm). The experiments were conducted using E-Prime software (Schneider et al., 

2002).  

Design  

The critical manipulation in the current experiments was a within-participant 

manipulation of RSI. Each experiment consisted of two study-test blocks, and each 

study-test block was associated with a single RSI at test. The recognition memory task 

was manipulated in a 2 (RSI: short, long) x 2 (test block: test 1, test 2) x 2 (transition: 

repetition, switch) x 2 (item type: old, new) repeated measures design. The magnitude 

task was manipulated in a 2 (RSI: short, long) x 2 (test block: test 1, test 2) x 2 

(transition: repetition, switch) x 2 (item type: less, more) repeated measures design. The 

order of the two RSIs (RSI order: long-short, short-long) was balanced across 

participants and was included as a variable in the statistical analyses. 

Procedure 

The experiment was conducted in a single session that comprised two study-test 

blocks. Participants (one to four in a session) sat at individual computer stations 

approximately 0.5 meters from the monitor. In each study phase, participants studied a 

list of words for a later memory test. In each test phase, participants switched between 

the recognition memory task and the magnitude task in 2-trial alternating runs. The 

RSIs used in each experiment are presented in Table 8.1.   
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Study Phases. 

Each study phase consisted of 42 trials: 5 primacy buffer words, 32 words from 

2 critical lists (one for each position at test), and 5 recency buffer words. Participants 

were instructed to try to decide whether each word represented a living or non-living 

thing and to study the word for a later test. The living/non-living encoding task was 

used to ensure that participants attended to the stimuli during study (evidence from 

Experiment 2 suggested that it also improved memory performance at test). A study 

trial began with the presentation of a brief (100 ms) focal stimulus (+++) in the centre of 

the monitor. Immediately after the focal stimulus a word was presented for 3000 ms in 

the same location. Once a word was presented, participants entered living/non-living 

decisions on the keyboard using the f and j keys respectively. After the 3000-ms 

presentation was complete, an intertrial interval (ITI) of a blank screen occurred for 500 

ms. 

Test Phases. 

Each of the two test phases comprised a practice test and an actual test. 

Participants performed a recognition memory task (R) and a magnitude task (M) in a 

predictable, 2-trial alternating runs sequence (RR MM RR…). The practice test 

contained 10 trials, starting with the magnitude task. Words for recognition trials in the 

practice test were either buffer words from the study phase or new words otherwise not 

presented in the experiment. The actual test consisted of 130 trials, again starting with  

 

Table 8.1 

Characteristics of Experiments in Chapter 8. 

 Experiment 
RSI        

Short (ms) Long (ms)   N Notes 

4A 200   600 
 

32 
 

4B 600 1300 
 

32 
 

5A 200 2600 
 

32 
 

5B 200 2600   64 practice tests used both RSIs 

Note. RSI = Response-to-stimulus interval. N = number of participants in the 

experiment. 
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the magnitude task. ‗Old‘ words were from the two lists presented in the associated 

study phase and ‗new‘ words were from two lists not previously presented. One ‗old‘ 

list and one ‗new‘ list were used for each position in the run of recognition trials. The 

allocation of lists to test block, position and item status was counterbalanced across 

participants. For each position in the magnitude task run, half the trials required ‗more‘ 

decisions, and half ‗less‘ decisions. All iterations of ‗more‘ and ‗less‘ decisions across 

the two run positions were presented pseudo-randomly throughout the actual test such 

that correct magnitude judgements were not predictable within or across runs and were 

not useful to predict the status of an upcoming recognition trial. 

Each test phase was associated with a long RSI or a short RSI. The order of RSI 

presentation was balanced across participants so that half experienced the long RSI first 

and half experienced the short RSI first. The RSI itself was made up of a variable length 

ITI of a blank screen plus the 100-ms focal stimulus prior to target onset (i.e., the long 

600-ms RSI in Experiment 4A consisted of a 500-ms blank ITI plus the focal point). 

RSI was manipulated in a naturalistic manner—participants were made aware of the 

time between trials, but not explicitly instructed to use this time to prepare.  

A recognition memory trial began with the brief (100 ms) presentation of a focal 

stimulus (+++) in the centre of the monitor. Immediately after the focal stimulus the 

target word was presented in the same location. A response delay of 400 ms passed 

before 8 asterisks (********) appeared above and below the target word, indicating that 

old/new judgements could be entered using the f and j keys on the keyboard. The 

response delay prevented participants from producing responses pre-emptively or based 

on anticipatory processes. After 1000 ms, exclamation marks (!!!!!!!!) replaced the 

asterisks for 600 ms, warning participants they needed to make an immediate response 

as they were about to run out of time. The response deadline was used to constrain 

responding and reduce the variance of RTs. The trial terminated when a response was 

made or the warning period ended. The next trial began after the ITI. The allocation of 

keys to recognition responses was balanced across participants. 

A magnitude task began with the brief (100 ms) presentation of a focal stimulus 

(+++) in the centre of the monitor. Immediately after the focal stimulus the dot targets 

(6 or 8 circles) were presented randomly within a central 100 mm (length) x 70 mm 

(height) section of the display with the proviso that dots did not overlap. Participants 

were instructed to judge whether there were more than or less than seven dots and to 

respond using the f (more) and j (less) keys on the keyboard. When a response was 
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made (or 2000 ms had elapsed), the trial was terminated. The next trial began after the 

ITI. The allocation of keys to magnitude responses was not balanced as there was no 

interest in comparing performance for ‗more‘ and ‗less‘ decisions.  

Each test phase provided instructions about the two tasks, the structure (i.e., task 

sequence) of the test phase, and the RSI. After completing the practice test, participants 

were reminded about the response allocations for the magnitude and recognition tasks 

prior to starting the actual test. Upon completion of the first study-test block, the 

instructions were repeated for the second study-test block (with a change to the RSI 

information). When both study-test blocks were completed, participants were debriefed 

and thanked for their participation.  

Data from the practice tests and the first two trials (both magnitude trials) of the 

actual tests were excluded from analyses. Statistical analyses of RT performance used 

participants‘ median RTs for correct trials in each condition. An alpha level of 5% was 

used in all statistical analyses. Although accuracy data will be reported, the key interest 

in this chapter is the RT data, where practice and preparation effects are more 

consistently observed. For each task, the data were analysed with regard to three key 

interests: (1) the effect of task transition, (2) the effect of test block, and (3) the effect of 

RSI length. Changes in the size of the accuracy switch effect or the RT switch cost as a 

function of test block or RSI length were of particular interest as they should represent 

practice effects and preparation effects respectively. It is important to note that by 

analysing each performance measure with respect to these effects of interest there is a 

certain level of redundancy in the analyses. For example, a main effect of test block can 

also be reported as an interaction of RSI and order of RSI presentation (the between-

participant manipulation). As such, interactions that are redundant (i.e., covered 

elsewhere in the results for that task) will not be reported. Toward this goal of 

conciseness, it is also important to note that for the RT analyses, an interaction of 

transition and any other variable (say, test block) is the same as a main effect of this 

variable on RT switch cost. Thus, the RT analyses do not report interactions that include 

task transition as they are covered in detail in the RT switch cost analyses. 

Experiment 4A 

Experiment 4A used a short RSI of 200 ms and a long RSI of 600 ms. These 

RSIs were selected based on previous literature that has suggested that preparation 

effects reach asymptote at around 600 ms (Rogers & Monsell, 1995; Meiran, 1996).  
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Results and Discussion 

Thirty-two participants met the performance requirements and were included in 

the final data analysis. The use of only correct responses in the RT and switch cost 

analyses led to the exclusion of 14% of recognition memory trials and 13% of 

magnitude judgement trials. The percentage of timeouts was very low for both tasks (< 

1%). 

Accuracy 

Recognition task. 

Table 8.2 shows the mean corrected accuracy (hit rate – false alarm rate) for 

recognition decisions as a function of RSI, transition, and test block. Mean corrected 

accuracy across all conditions was moderately high (M = 0.73, SD = 0.13) and there was 

no difference in overall accuracy between the two RSI order groups (F = 0.39, p = 

0.536).  

Effects of transition and test block. 

As can be seen in Table 8.2, the mean corrected accuracies for repetition 

conditions were higher than those for switch conditions at both RSIs and test blocks, 

illustrating an accuracy switch effect. Corrected accuracy showed an increase from the 

first to second test, suggesting that experience with the tasks improved overall 

performance. However, the difference between repetition and switch trial corrected 

accuracy did not consistently decrease from the first to second test. That is, there was 

 

Table 8.2 

Means and Standard Deviations for Corrected Recognition Accuracy in 

Experiment 4A as a Function of RSI, Test Block, and Transition. 

Transition 

Long RSI (600 ms)   Short RSI (200 ms) 

Test 1 
 

Test 2 
 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Repetition 0.73 0.16 
 

0.81 0.12 
 

0.75 0.17 
 

0.81 0.16 

Switch   0.62 0.28   0.73 0.16   0.71 0.13   0.70 0.18 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 
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little evidence of a practice effect on recognition accuracy. The effects of transition and 

test block on corrected recognition accuracy were analysed using a 2 (test block) x 2 

(transition) x 2 (RSI order) mixed ANOVA. The main effect of transition was 

significant, F(1, 30) = 17.27, MSE = 0.01, p < 0.001, ηp
2
 = 0.37. Typical of an accuracy 

switch effect, participants‘ ability to discriminate between old and new words was 

significantly lower for switch trials (M = 0.69, SD = 0.18) than that for repetition trials 

(M = 0.78, SD = 0.12). The main effect of test block was significant, F(1, 30) = 6.21, 

MSE = 0.02, p = 0.018, ηp
2
 = 0.17. Participants‘ corrected accuracy improved with 

experience from Test 1 (M = 0.70, SD = 0.18) to Test 2 (M = 0.76, SD = 0.13). Test 

block did not interact with transition (F = 0.25, p = 0.623). The improvement to 

recognition accuracy from Test 1 to Test 2 was equivalent for repetition and switch 

trials—there was no practice effect. 

Effects of RSI. 

The corrected accuracy reported in Table 8.2 shows that overall accuracy and 

the difference between repetition and switch accuracy showed no consistent pattern 

across the two RSI conditions. A 2 (RSI) x 2 (transition) x 2 (RSI order) mixed 

ANOVA confirmed that both the main effect of RSI (F = 0.55, p = 0.464) and the 

interaction of RSI and transition (F = 0.58, p = 0.451) were not significant. Providing 

additional time between trials did not improve memory accuracy overall or for switch 

trials in particular. That is, the corrected recognition data showed no evidence of a 

preparation effect. No other effects or interactions were significant (Fs < 1.28). 

 Magnitude task. 

Table 8.3 shows the mean accuracy of magnitude judgements as a function of 

RSI, transition, decision, and test block. As expected, the mean accuracy across 

conditions was high (M = 0.87, SD = 0.07) and there was no difference in overall 

accuracy between the two RSI order groups (F = 0.27, p = 0.608).  

Effects of transition and test block. 

Table 8.3 shows that the mean accuracies for the repetition conditions were 

higher than those for the switch conditions, illustrating an accuracy switch effect. The 

accuracy of magnitude judgements generally improved from the first to second test. 

However, the difference between repetition and switch trials did not show a consistent 

pattern of improvement across tests—there was no evidence of a practice effect. The 

effects of transition and test block were analysed using a 2 (test block) x 2 (transition)  
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Table 8.3 

Means and Standard Deviations for Magnitude Judgement Accuracy in 

Experiment 4A as a Function of RSI, Test Block, Transition, and Decision. 

Transition  

and Decision 

Long RSI (600 ms)   Short RSI (200 ms) 

Test 1 
 

Test 2 

 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Repetition More 0.88 0.16 
 

0.94 0.07 

 

0.90 0.12 
 

0.90 0.10 

 
Less 0.85 0.13 

 
0.91 0.12 

 

0.83 0.14 
 

0.94 0.06 

Switch More 0.77 0.25 
 

0.93 0.05 

 

0.85 0.10 
 

0.89 0.09 

  Less 0.84 0.18   0.88 0.13   0.81 0.13   0.86 0.13 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 

 

x2 (item type) x 2 (RSI order) mixed ANOVA. For this and all other experiments in this 

chapter ‗less‘ and ‗more‘ magnitude judgements were analysed together to detect the 

differences of critical interest. However as the allocation of keys to responses was not 

balanced for the magnitude task, the effects and interactions of item type cannot be 

interpreted. As such, they are not reported. The main effect of transition was significant, 

F(1, 30) = 9.34, MSE = 0.01, p = 0.005, ηp
2
 = 0.24. Participants‘ magnitude judgements 

were significantly less accurate on switch trials (M = 0.85, SD = 0.10) than those on 

repetition trials (M = 0.90, SD = 0.07). The main effect of test block was significant, 

F(1, 30) = 11.52, MSE = 0.02, p = 0.005, ηp
2
 = 0.28. The accuracy of magnitude 

judgements improved from Test 1 (M = 0.84, SD = 0.12) to Test 2 (M = 0.91, SD = 

0.06). The interaction of test block and transition was not significant (F = 0.63, p = 

0.43). Although magnitude task accuracy showed a general benefit of experience, this 

benefit was equivalent for repetition and switch trials. That is, there was no practice 

effect for magnitude accuracy. 

Effects of RSI. 

As can be seen in Table 8.3, the mean accuracy (and the difference between 

repetition and switch trial accuracy) showed no discernable pattern of differences for 

long and short RSI conditions, suggesting that the RSI did not contribute to the accuracy 

of magnitude judgements. A 2 (RSI) x 2 (transition) x 2 (item type) x 2 (RSI order) 
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mixed ANOVA confirmed that neither the main effect of RSI (F = 0.01, p = 0.936), nor 

the interaction of RSI and transition (F = 0.02, p = 0.891) were significant. The length 

of the RSI had no impact on overall magnitude task accuracy or the size of the accuracy 

switch effect. That is, there was no evidence of a preparation effect for magnitude task 

accuracy. No other effects or interactions were significant (Fs < 0.83). 

Reaction Times 

Throughout this chapter, the RT results are separated into several subsections: 

(1) analyses of correct recognition RTs, (2) analyses of correct magnitude RTs, and (3) 

analyses of RT switch costs (switch RTs – repetition RTs). For this experiment as well 

as subsequent experiments in this chapter, the mean correct median RTs for the 

recognition and magnitude tasks can be found in the supplementary material (Appendix 

D). The overall RT for correct recognition decisions was similar to that reported in 

earlier experiments (M = 390.10, SD = 77.35). Furthermore, when the 400-ms response 

signal delay is taken into account, the overall correct recognition RT was relatively 

similar to the overall correct magnitude RT (M = 730.72, SD = 82.44). The order of RSI 

presentation had no effect on correct recognition RTs (F = 0.46, p = 0.501) or correct 

magnitude RTs (F = 0.12, p = 0.727). 

Recognition task. 

The effects of transition and test block on correct recognition RTs were analysed 

using a 2 (test block) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. A 

significant main effect of transition [F(1, 30) = 54.72, MSE = 12734.66, p < 0.001, ηp
2
 = 

0.65] confirmed a RT switch effect. Correct recognition decisions were slower for 

switch trials (M = 442.58, SD = 108.80) than those for repetition trials (M = 338.23, SD 

= 57.56). The main effect of item type was also significant, F(1, 30) = 36.05, MSE = 

6016.10, p < 0.001, ηp
2
 = 0.55. Participants were slower to correctly identify new words 

(M = 419.52, SD = 78.82) than old words (M = 361.30, SD = 85.20). There was a main 

effect of test block, F(1, 30) = 19.36, MSE = 8559.94, p < 0.001, ηp
2
 = 0.39. Mean RTs 

for correct recognition trials were slower in Test 1 (M = 415.85, SD = 96.90) than in 

Test 2 (M = 364.97, SD = 68.69). Participants became faster at producing correct 

recognition responses with experience. 

The effect of RSI length on correct recognition RTs was analysed using a 2 

(RSI) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. Although the 

mean RT for correct recognition decisions was slightly faster for the long RSI condition 
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(M = 379.52, SD = 88.42) than that for the short RSI condition (M = 401.30, SD = 

79.30), this difference did not reach statistical significance (F = 3.55, p = 0.069). No 

other effects or interactions were significant (Fs < 1.53).  

Magnitude task. 

The effects of transition and test block on correct magnitude RTs were analysed 

using a 2 (test block) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. 

Again, the main effects and interactions of item type are not reported as response key 

allocation was not balanced for the magnitude task. The main effect of task transition 

was significant, F(1, 30) = 25.26, MSE = 9078.82, p < 0.001, ηp
2
 = 0.46. Participants 

took significantly longer to make correct magnitude judgements for switch trials (M = 

768.79, SD = 101.78) than that for repetition trials (M = 708.79, SD = 74.19). Collapsed 

across both transitions, there was a main effect of test block, F(1, 30) = 18.71, MSE = 

14022.81, p < 0.001, ηp
2
 = 0.39. The mean RTs for correct magnitude judgements were 

slower in Test 1 (M = 770.73, SD = 104.83) than in Test 2 (M = 706.71, SD = 78.17), 

illustrating the benefit of experience with the magnitude task. The main effect of test 

block was qualified by a significant interaction with RSI order, F(1, 30) = 6.95, MSE = 

14022.81, p = 0.013, ηp
2
 = 0.19. When the long RSI was used in the first test, the 

decrease in mean RT from Test 1 (M = 756.34, SD = 111.29) to Test 2 (M = 731.34, SD 

= 89.86) was not significant (F = 1.59, p = 0.227). However, when the short RSI was 

used in the first test, the decrease in mean RTs from Test 1 (M = 785.11, SD = 97.94) to 

Test 2 (M = 682.07, SD = 64.39) was significant, F(1, 15) = 21.96, MSE = 154710.18, p 

< 0.001, ηp
2
 = 0.59. Faster correct responses in the long RSI test block drove the 

interaction of test block and RSI order by inflating the benefit of experience when the 

short RSI was used for the first test.  

The effect of RSI length on correct RTs for the magnitude task was analysed 

using a 2 (RSI) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. The 

main effect of RSI was significant, F(1, 30) = 6.95, MSE = 14022.81, p = 0.013, ηp
2
 = 

0.19. Participants made correct magnitude judgements more quickly in the long RSI 

condition (M = 719.21, SD = 90.92) than in the short RSI condition (M = 758.23, SD = 

93.99). No other effects or interactions were significant (Fs < 0.07). 

RT switch costs. 

In the task switching literature, the preparation effect is generally 

operationalized as a decrease in RT switch cost with longer RSIs/CSIs (Monsell, 2003; 
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Vandierendonck et al. 2010). The benefit of the RT switch cost measure (over RTs) is 

that it gives a concrete value showing the extent that performance is affected by a task 

switch. Mean RT switch costs, presented in Table 8.4, were calculated for each 

participant by subtracting the median correct repetition RTs from the median correct 

switch RTs for each RSI, task and item type. The RT switch costs showed considerable 

variability across conditions and the standard deviations were very large. There was a 

great deal of variability in participants‘ ability to switch tasks quickly. The RT switch 

costs were generally larger for the recognition task than those for the magnitude task, 

particularly in the first test block. The order of RSI presentation had no effect on the RT 

switch costs (F = 0.00, p = 0.968). 

The RT switch costs for both tasks and item types (‗old‘, ‗new‘, ‗more‘, ‗less‘) 

were analysed together to increase the statistical power to detect the differences of 

critical interest—changes in RT switch cost due to experience switching tasks (practice 

effects) and the length of the RSI (preparation effects). However, it is important to 

acknowledge that in this case comparisons are being made across items where some are 

balanced for key allocation (recognition task) and some are not balanced for key 

allocation (magnitude task). As such, item type differences in RT switch cost are 

interpreted with caution. 

 

Table 8.4 

Means and Standard Deviations for the RT Switch Costs in Experiment 4A as a 

Function of RSI, Test Block, Task and Decision.  

Task and Decision 

Long RSI (600 ms)   Short RSI (200 ms) 

Test 1 
 

Test 2 

 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Recognition New 110 145 
 

74 72 

 

119 105 
 

116 113 

 

Old 125 114 
 

92 98 

 

117 127 
 

81 75 

Magnitude More 59 117 
 

63 70 

 

63 93 
 

37 85 

  Less 62 89   52 73   73 127   69 81 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 
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Effects of test block. 

There was a numeric decrease in the size of the recognition task RT switch cost 

from the first to second test, suggesting that practice may have decreased the cost of 

switching (see Table 8.4). However, differences in the magnitude task RT switch cost 

from the first to second test were smaller and less consistent. The effect of test block on 

RT switch costs was analysed using a 2 (test block) x 4 (item type) x 2 (RSI order) 

mixed ANOVA. There was a significant main effect of item type [F(1, 30) = 4.89, MSE 

= 8802.86, p = 0.003, ηp
2
 = 0.14], illustrated in Figure 8.1. Pairwise comparisons using 

Bonferroni corrections showed that the mean RT switch cost for ‗old‘ recognition trials 

(M = 103.94, SD = 93.06) was significantly larger than that for ‗more‘ dot trials (M = 

55.45, SD = 85.56), but did not differ from ‗new‘ recognition trials (M = 104.78, SD = 

92.69) or ‗less‘ dot judgement trials (M = 64.46, SD = 65.91).  There were no other 

significant differences between item types. These results provide some support for a 

task effect on task switching performance, but as the effect is limited to one recognition 

decision and one magnitude judgement, this is far from convincing. Although the mean 

RT switch cost for the first test (M = 91.08, SD = 83.31) was larger than that for the 

second test (M = 73.12, SD = 56.66), the difference was not significant (F = 2.30, p = 

0.140). The interaction of test block and item type was also not significant (F = 0.44,   

 

 

 

Figure 8.1. Mean RT switch costs for Experiment 4A as a function of task and item 

type. Error bars represent S.E. 
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p = 0.69). Thus, there was no significant evidence of a practice effect on the RT switch 

costs. 

Effects of RSI. 

With regard to evidence for preparation effects, the RT switch costs reported in 

Table 8.4 showed no systematic differences for RSI length. The effect of RSI on RT 

switch costs was analysed using a 2 (RSI) x 2 (RSI order) x 4 (item type) mixed 

ANOVA. The mean switch cost for the long RSI condition (M = 79.82, SD = 74.41) 

was numerically lower than that for the short RSI condition (M = 84.39, SD = 67.58), 

but the difference was not significant (F = 0.15, p = 0.702). No other effects or 

interactions were significant (Fs < 0.99). When each test block was analysed 

separately—with RSI as a between-participant variable—the main effect of RSI was not 

significant for Test 1 (F = 0.02, p = 0.902), or after participants had experienced both 

RSIs (Test 2, F = 0.08, p = 0.785). Thus the analyses of RSI effects on RT switch costs 

showed no evidence to support the hypothesised preparation effect.  

Cumulative RT distributions. 

One proposal regarding task set reconfiguration is that task sets can be 

reconfigured (or ‗engaged‘) prior to stimulus onset but that the process is all or nothing 

(de Jong, 2000). From this perspective, when pre-stimulus reconfiguration is successful 

the RT for that switch trial will be indistinguishable from repetition RTs. According to 

de Jong‘s model, increasing the RSI/CSI increases the probability that participants will 

have successfully engaged the appropriate task set before stimulus onset. To illustrate 

this idea visually, de Jong (2000) used cumulative RT distributions. When individual 

(or group) RTs are plotted cumulatively they often produce a sigmoidal function. 

Functions produced from switch RTs are often displaced to the right of functions 

produced from repetition RTs (showing the overall slowing of RTs for switch trials). 

Also, compared to repetition functions, switch functions have a shallower gradient, 

which reflects the larger variance in switch trial RTs. Figure 8.2 shows prototypical 

cumulative RT functions that illustrate a preparation effect. There are several 

characteristics indicative of a preparation effect. First, repetition functions should be the 

same or similar for both RSIs (although see Monsell et al., 2003 for an exception). 

Second, switch trial functions for long RSIs should be displaced to the right of the 

repetition function, but overlap for the first one or two deciles. Finally, switch trial 
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functions for short RSI should be furthest to the right of the plot and should not overlap 

with the repetition function at any stage.  

Although de Jong (2000) analysed cumulative RT distributions by fitting 

equations, the current experiment followed Monsell et al.‘s (2003) procedure of 

presenting the distributions and providing a descriptive visual analysis. This procedure 

was used for the recognition task as it was the task of primary interest in this thesis. In 

order to construct the cumulative distribution functions, the raw RTs from every correct 

recognition trial (collapsed across participants) were conditionalised by RSI and 

transition. These data were then ranked-ordered and split into deciles. The median RT 

from each decile was used to plot cumulative RT functions. The cumulative distribution 

functions for correct repetition and switch decisions at the short (200 ms) and long (600 

ms) RSIs are presented in Figure 8.3. 

Functions for repetition trials were similar at both RSIs, consistent with typical 

preparation cumulative functions. The long RSI repetition and switch functions were 

positioned to the left of their respective short RSI functions. Functions for switch trials 

were displaced to the right, consistent with the slower RTs observed for switch RTs. 

However, there was very little difference between the long and short RSI switch 

functions, suggesting that the long RSI provided very little benefit in terms of 

increasing successful pre-stimulus engaging of task sets. Finally, the long RSI switch 

function did not overlap the repetition functions at the early deciles, as would be 

predicted by de Jong (2000) when preparation effects are observed. In sum, cumulative 

RT distributions showed no evidence of a preparation effect.  

Experiment 4B 

The 600-ms proposed asymptote for preparation effects (Rogers & Monsell, 

1995; Meiran, 1996) has largely been accepted (and unchallenged), without 

consideration for the role of task complexity, retrieval demand, or experimental design. 

Given that the experiments in this thesis intentionally deviated from the typical tasks 

and designs found in the task switching literature, it is possible that Experiment 4A 

failed to obtain preparation effects because the RSIs were not long enough for advanced 

preparation to occur. As such, Experiment 4B used a short RSI of 600 ms and a long 

RSI of 1300 ms.  



 

 

 

 

 

Figure 8.2 A prototypical cumulative RT distribution illustrating a preparation effect. 
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Figure 8.3. Cumulative RT distributions of correct recognition memory trials for Experiment 4A as a function of RSI and task transition.  
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Results and Discussion 

Thirty-two participants met the performance requirements and were included in 

the final data analysis. The use of only correct responses for RT and switch cost 

analyses led to the exclusion of 16% of recognition trials and 10% of magnitude trials. 

The percentage of timeouts was very low (< 1% for both tasks).  

Accuracy 

Recognition task. 

Table 8.5 shows the mean corrected accuracy (hit rate – false alarm rate) for 

recognition decisions as a function of RSI, transition, and test block. Mean corrected 

accuracy across all conditions was moderately high (M = 0.70, SD = 0.17) and there was 

no difference in overall accuracy between the two RSI order groups (F = 0.00, p = 

0.955).  

Effects of transition and test block. 

The mean corrected accuracies reported in Table 8.5 were numerically higher for 

repetition conditions than those for switch conditions, but this difference was 

particularly small for the short RSI condition at Test 2. Corrected accuracy improved 

from the first to second test, suggesting that experience with the task improved 

participants‘ ability to perform the recognition task. This increase in corrected accuracy 

was slightly larger for switch conditions than those for repetition conditions, providing  

 

Table 8.5 

Means and Standard Deviations for Corrected Recognition Accuracy in 

Experiment 4B as a Function of RSI, Test Block, and Transition. 

Transition 

Long RSI (1300 ms)   Short RSI (600 ms) 

Test 1 
 

Test 2 

 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Repetition 0.70 0.21 
 

0.75 0.12 

 

0.69 0.26 
 

0.74 0.17 

Switch   0.64 0.24   0.72 0.1   0.63 0.34   0.73 0.16 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 
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some evidence of a practice effect for recognition memory. The effects of transition and 

test block on corrected recognition accuracy were analysed using a 2 (test block) x 2 

(transition) x 2 (RSI order) mixed ANOVA. Although the mean corrected accuracy for 

switch trials (M = 0.72, SD = 0.18) was numerically higher than that for repetition trials 

(M = 0.68, SD = 0.19), this difference was not significant (F = 3.03, p = 0.092). That is, 

there was no accuracy switch effect. Experience with the recognition task numerically 

increased corrected accuracy from Test 1 (M = 0.67, SD = 0.24) to Test 2 (M = 0.73, SD 

= 0.12), but this difference did not reach statistical significance (F = 3.92, p = 0.057). 

Critically, the interaction of test block and transition was not significant (F = 0.73, p = 

0.400). There was no practice effect for corrected recognition accuracy.  

Effects of RSI. 

As can be seen in Table 8.5, there were no sizable differences in mean corrected 

accuracy between the long and the short RSIs. A 2 (RSI) x 2 (transition) x 2 (RSI order) 

mixed ANOVA on corrected recognition accuracy confirmed that the main effect of RSI 

was not significant (F = 0.04, p = 0.844). The interaction of RSI and transition was also 

not significant (F = 0.04, p = 0.838). Providing additional time prior to stimulus onset 

did not improve recognition accuracy overall or for switch trials in particular. Corrected 

recognition accuracy showed no evidence of a preparation effect. No other effects or 

interactions were significant (Fs < 0.03). 

 Magnitude task. 

Table 8.6 shows the mean accuracy of magnitude judgements as a function of 

RSI, transition, decision, and test block. Overall accuracy was very high (M = 0.90, SD 

= 0.07) and there was no difference in overall accuracy for the two RSI order groups (F 

= 0.87, p = 0.357).  

Effects of transition and test block. 

As can be seen in Table 8.6, the accuracy of repetition trials was very similar (if 

slightly higher) to that of switch trials. There was little evidence of an accuracy switch 

effect. The accuracy of magnitude judgements was generally higher in Test 2 than that 

in Test 1, particularly in the case of Short RSIs. However, the benefit of experience to 

overall magnitude accuracy was quite subtle and was largely equivalent for repetition 

and switch trials. That is, magnitude task accuracy showed no evidence of a practice 

effect. The effects of transition and test block were analysed using a 2 (test block) x 2 

(transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. As a reminder, the effects 
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Table 8.6 

Means and Standard Deviations for Magnitude Judgement Accuracy in 

Experiment 4B as a Function of RSI, Test Block, Transition, and Decision. 

Transition  

and Decision 

Long RSI (1300 ms)   Short RSI (200 ms) 

Test 1 
 

Test 2 

 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Repetition More 0.95 0.05 
 

0.96 0.05 

 

0.88 0.16 
 

0.96 0.07 

 

Less 0.89 0.10 
 

0.89 0.15 

 

0.85 0.13 
 

0.92 0.09 

Switch More 0.91 0.10 

 

0.95 0.08 

 

0.89 0.12 
 

0.93 0.10 

  Less 0.88 0.12   0.91 0.11   0.80 0.20   0.87 0.12 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 

 

and interactions of item type are not reported as response-to-key allocations were not 

balanced for the magnitude task. Although the mean magnitude judgement accuracy 

was higher for repetition trials (M = 0.91, SD = 0.06) than that for switch trials (M = 

0.89, SD = 0.08), this difference did not reach statistical significance (F = 3.51, p = 

0.071). The main effect of test block was significant, F(1, 30) = 6.28, MSE = 0.02, p = 

0.018, ηp
2
 = 0.17. The accuracy of participants‘ magnitude judgements improved from 

Test 1 (M = 0.88, SD = 0.09) to Test 2 (M = 0.92, SD = 0.07), illustrating that 

experience with the magnitude task improved participants ability to make correct 

magnitude judgements. The interaction of test block and transition was not significant 

(F = 0.07, p = 0.793), confirming that there was no practice effect for magnitude task 

accuracy.    

Effects of RSI. 

For the first test, the mean accuracy of the magnitude task was higher for the 

long RSI condition than that for the short RSI condition (see Table 8.6). However, by 

the second test performance looked similar for both RSI conditions. Regarding the size 

of the accuracy switch effect, there was no discernable pattern of differences for short 

and long RSIs. The effect of RSI was analysed using a 2 (RSI) x 2 (transition) x 2 (RSI 

order) x 2 (item type) mixed ANOVA. Neither the main effect of RSI (F = 2.51, p = 

0.124) nor the interaction of RSI and transition (F = 1.57, p = 0.220) were significant. 
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The length of the RSI had no effect on overall accuracy, and there was no evidence of 

preparation effects on magnitude accuracy. No other effects or interactions were 

significant (Fs < 0.92). 

Reaction Times 

As a reminder, the RT results are separated into several subsections: (1) analyses 

of correct recognition RTs, (2) analyses of correct magnitude RTs, and (3) analyses of 

RT switch costs (switch RTs – repetition RTs). A comprehensive table of RT 

performance for both tasks can be found in Appendix D. When the 400-ms RSD is 

taken into account, the overall mean recognition RT (M = 402.18, SD = 110.17) was 

fairly similar to the overall mean magnitude RT (M = 760.81, SD = 25.40). The order of 

RSI presentation had no significant effect on overall RTs for the recognition (F = 0.13, 

p = 0.718) and magnitude (F = 0.18, p = 0.671) tasks.  

Recognition task. 

The effects of transition and test block on correct recognition RTs were analysed 

using a 2 (test block) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. 

The main effect of transition was significant, F(1, 30) = 73.61, MSE = 6593.83, p < 

0.001, ηp
2
 = 0.71. Correct recognition RTs were significantly slower for switch trials (M 

= 445.72, SD = 127.85) than those for repetition trials (M = 358.64, SD = 97.85), 

illustrating a typical RT switch effect. The main effect of item type was also significant, 

F(1, 30) = 20.06, MSE = 7946.66, p < 0.001, ηp
2
 = 0.40. Overall, correct new responses 

(M = 427.14, SD = 109.06) were significantly slower than correct old responses (M = 

377.23, SD = 119.85). The main effect of test block was significant, F(1, 30) = 8.23, 

MSE = 15770.54, p = 0.007, ηp
2
 = 0.22. The mean RT for correct recognition trials was 

significantly faster for Test 2 (M = 379.66, SD = 129.14) that that for Test 1 (M = 

424.70, SD = 107.42). Experience with the recognition task allowed participants to 

produce correct recognition responses more quickly.   

The effect of RSI length on correct recognition RTs was analysed using a 2 

(RSI) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. Although the 

main effect of RSI did not reach statistical significance (F = 3.59, p = 0.068), there was 

a significant interaction of RSI and item type, F(1, 30) = 5.74, MSE = 2689.44, p = 

0.023, ηp
2
 = 0.16. When the effects of RSI were analysed for ‗old‘ and ‗new‘ words 

separately, the main effect of RSI was significant for ‗old‘ words [F(1, 30) = 8.00, MSE 

= 8196.34, p = 0.008, ηp
2
 = 0.26] but not ‗new‘ words (F = 0.63, p = 0.434). The mean 
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RT for ‗old‘ decisions was significantly faster for the short RSI condition (M = 354.60, 

SD = 109.15) than that for the long RSI condition (M = 399.86, SD = 144.61). By 

contrast, the mean RT for ‗new‘ decisions was similar for the short (M = 420.04, SD = 

102.67) and long (M = 434.23, SD = 135.58) RSI conditions. The slower ‗old‘ mean RT 

for the long RSI test block was quite counterintuitive. One possible explanation is that 

the average delay between encoding and retrieval of ‗old‘ words was longer in the long 

RSI test block. Correctly identifying ‗old‘ words may have required a more time-

consuming search of memory in the long RSI test block than that in the short RSI test 

block. No other effects or interactions were significant (Fs < 0.07). 

Magnitude task. 

The effects of transition and test block on correct magnitude RTs were analysed 

using a 2 (test block) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. 

Again, the main effects and interactions of item type are not reported as response key 

allocation was not balanced. The main effect of transition was significant, F(1, 30) = 

8.50, MSE = 10454.61, p = 0.007, ηp
2
 = 0.22. The mean correct magnitude RT was 

significantly slower for switch trials (M = 779.43, SD = 153.82) than that for repetition 

trials (M = 742.18, SD = 142.32), demonstrating a RT switch effect. The main effect of 

test block was also significant, F(1, 30) = 27.05, MSE = 20046.11, p < 0.001, ηp
2
 = 0.47. 

The mean magnitude RT was slower in the first test (M = 806.82, SD = 173.08) than 

that in the second test (M = 714.79, SD = 127.88). Experience with the magnitude task 

allowed participants to correctly respond more quickly.  

The effect of RSI length on correct magnitude judgement RTs was analysed 

using a 2 (RSI) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. The 

main effect of RSI on correct dot RTs was not significant (F = 1.81, p = 0.189). The 

length of the RSI had no impact on the speed of participants‘ correct magnitude 

judgements. No other effects or interactions were significant (Fs < 0.04). 

RT switch costs. 

The mean RT switch costs (switch RT – repetition RT) are reported in Table 8.7 

as a function of test block, RSI, task and item type. The RT switch costs were highly 

variable, particularly for the first test. Furthermore, the reported standard deviations 

were very large—in some cases over double the size of the mean. The extent to which a 

task switch negatively affected participants‘ performance varied dramatically. The size 

of the RT switch cost was generally smaller for the magnitude task than that for the  
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Table 8.7 

Means and Standard Deviations for the RT Switch Costs in Experiment 4B as a 

Function of RSI, Test Block, Task and Decision.   

Task and Decision 

Long RSI (1300 ms)   Short RSI (200 ms) 

Test 1 
 

Test 2 

 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Recognition New 86 88 
 

74 76 

 

100 78 
 

71 64 

 

Old 129 164 
 

81 57 

 

98 80 
 

59 101 

Magnitude More 78 159 
 

70 72 

 

43 148 
 

8 64 

  Less 16 96   -4 95   51 138   38 73 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 

 

recognition task. The order of RSI presentation had no effect on the RT switch costs (F 

= 0.05, p = 0.818). 

Effects of test block. 

As can be seen in Table 8.7, the size of the RT switch cost generally decreased 

from the first to second test block, suggesting that practice reduced the effect of a task 

switch. The effect of test block was analysed using a 2 (test block) x 4 (item type) x 2 

(RSI order) mixed ANOVA. A Greenhouse-Geisser correction was used for all analyses 

of item type as the assumption of sphericity was violated. There was a significant main 

effect of item type, F(3, 90) = 4.73, MSE = 16568.51, p = 0.009, ηp
2
 = 0.14. Pairwise 

comparisons using Bonferroni corrections showed that the mean RT switch cost for 

correct ‗old‘ recognition decisions (M = 91.63, SD = 65.19) was significantly larger 

than that for correct ‗less‘ dot decisions (M = 25.06, SD = 93.13), but did not differ from 

correct ‗new‘ recognition decisions (M = 81.54, SD = 62.21) or correct ‗more‘ dot 

decisions (M = 49.46, SD = 98.72). No other item types differed significantly from each 

other. The mean RT switch cost for Test 1 (M = 74.93, SD = 68.54) was significantly 

larger than that for Test 2 (M = 49.41, SD = 37.99), F(1, 30) = 4.32, MSE = 9645, p = 

0.050, ηp
2
 = 0.13. As can be seen in Figure 8.4, practice with the tasks and switching 

between them in the first test block (regardless of RSI) produced a decrease in RT 

switch costs for the second test block. That is, there was a significant practice effect.  
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Figure 8.4. Mean RT switch costs for Experiment 4B as a function of RSI and test 

block. Each test block used a single RSI, and order of RSI presentation was balanced 

across participants. Error bars represent S.E. 

 

Effects of RSI. 

Table 8.7 showed no consistent pattern across RSIs, suggesting that there was 

limited evidence of a preparation effect. A 2 (RSI) x 2 (RSI order) x 4 (item type) mixed 

ANOVA was conducted on RT switch costs for recognition and magnitude tasks. 

Although the main effect of RSI was not significant (F = 0.40, p = 0.532), there was a 

significant interaction of RSI and trial type, F(3, 90) = 3.18, MSE = 9685.14, p = 0.042, 

ηp
2 

= 0.10. The interaction was followed up by conducting paired sample t-tests for RT 

switch costs at the short and long RSIs for each item type. As can be seen in Figure 8.5, 

RSI had no significant effect on RT switch cost for ‗new‘ recognition memory decisions 

(t = -0.34, p = 0.739) or ‗old‘ recognition memory decisions (t = 0.87, p = 0.391). The 

effect of RSI on magnitude judgements was less clear. For ‗less‘ magnitude judgements, 

the mean RT switch cost was larger for the short RSI condition (M = 44.47, SD = 94.69) 

than that for the long RSI condition (M = 5.64, SD = 109.22), t(31) = -2.43, MSE = 

16.01, p = 0.021. By contrast, for ‗more‘ magnitude judgements, the mean RT switch 

cost was smaller for the short RSI condition (M = 25.23, SD = 113.14) than that for the 

long RSI condition (M = 73.69, SD = 121.46), t(31) = 2.09, MSE = 23.17, p = 0.045. 

Given that key allocation for magnitude judgements was not balanced across 

participants and that there was no theoretical reason to hypothesise this interaction, it is  
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Figure 8.5. Mean RT switch costs for Experiment 4B as a function of RSI, task and item 

type. Error bars represent S.E. 

 

difficult to interpret these findings as support for preparation effects. No other effects or 

interactions were significant (Fs < 0.32). Finally, the main effect of RSI on the RT 

switch cost was not significant when Test 1 (F = 0.03, p = 0.863) and Test 2 (F = 0.71, 

p = 0.407) were analysed separately. Thus there was no consistent evidence of a 

preparation effect on RT switch costs for either task.  

Cumulative RT distributions. 

The cumulative distribution functions for correct repetition and switch decisions 

at the short (600 ms) and long (1300 ms) RSIs are presented in Figure 8.6. The 

repetition trial functions were positioned to the left and the switch trial functions were 

positioned to the right. However, the displacement of repetition and switch functions 

(regardless of RSI) was not large, particularly at the earliest deciles. For both 

transitions, the long and short RSI functions were very close (if not overlapping) for the 

first few deciles of the distribution. There was a larger spread between the two RSIs at 

later deciles, but still less so than represented in the prototypical preparation effect 

distribution illustrated in Figure 8.2 (p. 109). Inconsistent with the predicted pattern for 

preparation effects, the data points for the short RSI functions were positioned to the left 
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Figure 8.6. Cumulative RT distributions of correct recognition memory trials for Experiment 4B as a function of RSI and task transition.  
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of the long RSI functions, particularly at the later deciles. Finally, repetition and switch 

functions for the long RSI condition did not overlap at the first deciles as would be 

expected in a typical preparation effect distribution. Considered together, the features of 

the cumulative RT distributions provided no evidence of preparation effects.  

Conclusions for Experiments 4A and 4B 

In Experiments 4A and 4B, the length of the RSI used at test was manipulated 

between test blocks (200 ms vs 600 ms; 600 ms vs 1300 ms) to test for evidence of 

preparation effects—a decrease in the size of switch effects with longer RSIs. 

Additionally, switch effects were compared between test blocks (Test 1, Test 2) to test 

for evidence of practice effects—a decrease in the size of switch effects as participants 

gain experience with the experiment.  Both experiments reported significant RT switch 

effects for the recognition and magnitude tasks. Participants took significantly longer to 

make correct decisions when they had switched tasks compared to when they had 

repeated tasks. While both tasks produced means suggestive of an accuracy switch 

effect, this effect was only significant in Experiment 4A. This result was not wholly 

unexpected because switch effects on accuracy are less consistently observed than 

switch effects on RT, which are astoundingly robust (see Monsell, 2003; 

Vandierendonck, 2010). Considered together, the results of Experiment 4A and 4B 

showed that switching tasks produced slower and (sometimes) less accurate 

performance on the recognition and magnitude tasks.  

Although the mean RT switch costs were smaller in the second test for both 

experiments, only Experiment 4B produced a significant practice effect. The 

inconsistency between the two experiments may be a consequence of the highly variable 

performance, particularly when switching tasks. The range in the size of RT switch 

costs clearly shows that there were large differences in participants‘ ability to switch 

tasks. At least with regard to Experiment 4B, the results were consistent with previous 

findings (Jersild, 1927; Rogers & Monsell, 1995; Koch, 2005; Minear & Shah, 2008). 

The RT switch costs decreased as participants‘ became more experienced with the tasks 

and with switching between them, reflecting a strengthening of associations between 

task cues (in this case, internally produced) and task sets. 

Neither Experiment 4A nor Experiment 4B produced a significant main effect of 

RSI (that is, a preparation effect) on RT switch costs. However, Experiment 4B 

produced significant interaction of RSI and item type, driven by differences in the RT 
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switch cost for the magnitude task. One decision (‗less‘) produced results consistent 

with a preparation effect and one decision (‗more‘) produced results inconsistent with a 

preparation effect. Given that the response keys were not balanced for the magnitude 

task and that there is no theoretical reason to predict such an interaction, it is difficult to 

consider this result as support for the hypothesised preparation effect. Thus, 

Experiments 4A and 4B produced little evidence that participants used long RSIs to 

prepare for task switches in advance of stimulus onset. 

These experiments covered a typical choice in RSIs (4A: 200 ms vs 600 ms) 

with an extension to longer RSIs (4B: 600 ms vs 1300 ms). However, preparation 

effects were not observed. The results of Experiments 4A and 4B suggest either that 

participants chose not use the RSIs (regardless of length) to prepare or that the long 

RSIs used in these experiments were not sufficiently long for participants to reconfigure 

or activate these specific task sets in advance of stimulus onset. Regardless of 

explanation, this failure to observe preparation effects may be the consequence of the 

novel (and arguably more naturalistic) experimental characteristics used in these 

experiments. The tasks used in these experiments had very different task sets and the 

size of each task set (i.e., the number of items) was considerably larger than is typical of 

the task switching literature. Furthermore, in the absence of external task cues, 

participants needed to monitor and generate task cues internally—a process that may 

take considerably longer than interpreting a visually presented task cue. In light of these 

and other less-typical characteristics of the current experiments, it may be valuable to 

extend the length of the long RSI beyond those previously used in order to definitively 

determine if (and when) participants use an RSI to prepare for known switches between 

the recognition and magnitude tasks.
10

  

Experiment 5A and 5B 

Experiment 5A and 5B used a short RSI of 200 ms and a long RSI of 2600 ms. 

As such, the short RSI was well below Rogers and Monsell‘s (1995) preparation effect 

asymptote (600 ms), and the long RSI provided plenty of time for participants to 

anticipate and prepare for upcoming task switches. There was one critical difference 

between Experiment 5A and 5B. To address Altmann‘s (2004b) claim that multiple  

                                                 
10

 Meiran et al. (2000) used CSIs of up to 3032 ms when examining the role of advanced preparation and 

task set decay on task switching performance with simple spatial orientation tasks. It seems reasonable to 

be equally thorough when investigating evidence for preparation effects for the current recognition and 

magnitude tasks.  
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Table 8.8 

Means and Standard Deviations for Corrected Recognition Accuracy in 

Experiment 5A as a Function of RSI, Test Block, and Transition. 

Transition 

Long RSI (2600 ms)   Short RSI (200 ms) 

Test 1 
 

Test 2 

 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Repetition 0.73 0.19 
 

0.61 0.22 

 

0.73 0.20 
 

0.80 0.14 

Switch   0.69 0.21   0.64 0.26   0.66 0.25   0.74 0.13 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 

 

RSIs need to be experienced in order to observe preparation effects, the practice tests in  

Experiment 5B used both RSIs. Thus, while participants in Experiment 5A experienced 

only one RSI in each study-test block, participants in Experiment 5B were experienced 

both RSIs in the practice test prior to each actual test.   

Experiment 5A 

Results and Discussion 

Thirty-two participants met the performance requirements and were included in 

the final data analysis.
11

 The use of only correct responses for RT and Switch cost 

analyses led to the exclusion of 16% of recognition trials and 15% of magnitude trials. 

The percentage of timeouts for the recognition task (1%) and the magnitude task (2%) 

were slightly higher than those for Experiments 4A and 4B but still quite low.  

Accuracy 

Recognition task. 

Table 8.8 shows the mean corrected accuracy (hit rate – false alarm rate) for 

recognition decisions as a function of RSI, transition, and test block. Mean corrected 

accuracy across all conditions was moderate (M = 0.70, SD = 0.18) and there was no 

difference in overall accuracy between the two RSI order groups (F = 1.63, p = 0.211). 

Effects of transition and test block. 

                                                 
11

 Two participants had clearly reversed the response keys for dot decisions in the first test block. These 

accuracy and RT data were corrected before being included in the analysis. 
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As can be seen in Table 8.8, the mean corrected recognition accuracies were 

generally lower for switch conditions than those for repetition conditions, except for the 

Test 2, long RSI condition where corrected accuracy was slightly higher for the switch 

trial than that for the repetition trial. That is, the evidence for an accuracy switch effect 

was mixed. Neither the overall corrected accuracy nor the difference between repetition 

and switch trial accuracy showed a consistent pattern of improvement from the first to 

second test blocks. There was no evidence of preparation effects on corrected accuracy. 

The effects of transition and test block on corrected recognition accuracy were analysed 

using a 2 (test block) x 2 (transition) x 2 (RSI order) mixed ANOVA. Although the 

mean corrected accuracy for repetition trials (M = 0.72, SD = 0.17) was higher than that 

for switch trials (M = 0.68, SD = 0.20), the main effect of transition was not significant 

(F = 3.69, p = 0.064). Performance on the Test 2, long RSI condition likely played a 

large role in producing the non-significant accuracy switch effect. While the main effect 

of test block was not significant (F = 0.05, p = 0.830), there was a significant interaction 

of test block and RSI order, F(1, 30) = 9.18, MSE = 0.01, p = 0.005, ηp
2
 = 0.23. When 

the long RSI was used in the first test, the increase in accuracy from Test 1 (M = 0.71, 

SD = 0.18) to Test 2 (M = 0.77, SD = 0.12) was not significant (F = 3.69, p = 0.074). 

Most unusually, when the short RSI was used in the first test, the corrected accuracy of 

recognition decisions decreased significantly from Test 1 (M = 0.69, SD = 0.21) to Test 

2 (M = 0.62, SD = 0.22), F(1,15) = 5.67, MSD = 0.01, p = 0.031, ηp
2
 = 0.27. The low 

corrected accuracy of the Test 2, long RSI condition likely produced this interaction. 

Neither RSI order condition showed a significant benefit of experience with the 

recognition task to overall accuracy of recognition decisions. The interaction of test 

block and transition was not significant (F = 0.64, p = 0.431), indicating that there was 

no practice effect on recognition accuracy.  

Effects of RSI. 

Table 8.8 shows that, for the first test block, the mean corrected accuracy of 

recognition decisions was very similar for the short and long RSI conditions. However, 

for the second test block the mean corrected accuracy was slightly higher for the short 

RSI condition than that for the long RSI condition. The difference between repetition 

and switch trial corrected accuracy was slightly larger for the short RSI conditions than 

that for the long RSI conditions, suggestive of a preparation effect for recognition 

accuracy. The effect of RSI on corrected recognition accuracy was analysed using a 2 

(RSI) x 2 (transition) x 2 (RSI order) mixed ANOVA. The main effect of RSI was  
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Table 8.9 

Means and Standard Deviations for Magnitude Judgement Accuracy in 

Experiment 5A as a Function of RSI, Test Block, Transition, and Decision. 

Transition  

and Decision 

Long RSI (2600 ms)   Short RSI (200 ms) 

1st 
 

2nd 

 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Repetition More 0.92 0.13 
 

0.97 0.03 

 

0.79 0.24 
 

0.92 0.07 

 

Less 0.89 0.13 
 

0.92 0.10 

 

0.79 0.14 
 

0.90 0.06 

Switch More 0.86 0.16 
 

0.86 0.15 

 

0.71 0.20 

 

0.89 0.11 

  Less 0.92 0.11   0.91 0.11   0.74 0.25   0.85 0.15 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 

 

significant, F(1, 30) = 9.18, MSE = 0.01, p = 0.005, ηp
2
 = 0.23. The mean corrected 

accuracy for the long RSI conditions (M = 0.67, SD = 0.21) was significantly lower than 

that for short RSI conditions (M = 0.73, SD = 0.17). As was suggested in Experiment 

4B, this may reflect the cost of the additional time delay between study and test in the 

long RSI block. Critically, the interaction of RSI and transition was not statistically 

significant (F = 2.29, p = 0.141). The size of the accuracy switch effect showed no 

difference between long and short RSI conditions. The corrected recognition accuracy 

data provided no evidence of a preparation effect. No other effects or interactions were 

significant (Fs < 0.64). 

Magnitude task. 

Table 8.9 shows the mean accuracy of magnitude judgements as a function of 

RSI, transition, decision and test block. Overall accuracy was high (M = 0.87, SD = 

0.08) and similar to previous experiments. Although the overall magnitude task 

accuracy was numerically lower for the short-long RSI order condition, the difference 

was not significant (F = 3.64, p = 0.066).
 12

  

Effects of transition and test block. 

                                                 
12

 This was likely driven by poor overall performance in the first test block of the short-long RSI 

condition that was not isolated to any individual participant.  
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Table 8.9 shows an overall trend towards an accuracy switch effect, with the 

exception of ‗less‘ decisions for the long RSI condition in Test 1. The accuracy of 

magnitude judgements showed evidence of improvement from the first to second tests. 

However, the size of the accuracy switch effect showed no consistent improvement 

from the first to the second test blocks, indicating that there was no practice effect for 

magnitude accuracy. The effects of transition and test block were analysed using a 2 

(test block) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. As with 

earlier experiments in this chapter, the effects and interactions of item type are not 

reported. The main effect of transition was significant, F(1, 30) = 15.80, MSE = 0.01, p 

< 0.001, ηp
2
 = 0.35. Magnitude judgement accuracy was significantly higher for 

repetition trials (M = 0.89, SD = 0.08) than that for switch trials (M = 0.84, SD = 0.11), 

demonstrating an accuracy switch effect. A significant main effect of test block [F(1, 

30) = 16.25, MSE = 0.02, p < 0.001, ηp
2
 = 0.35] showed that the accuracy of 

participants‘ magnitude judgements improved from Test 1 (M = 0.83, SD = 0.13) to 

Test 2 (M = 0.90, SD = 0.06). This main effect of test block was qualified by a 

significant interaction with RSI order, F(1, 30) = 18.37, MSE = 0.02, p < 0.001, ηp
2
 = 

0.35. When the long RSI was used in the first test, the increase in accuracy from Test 1 

(M = 0.90, SD = 0.09) to Test 2 (M = 0.89, SD = 0.05) was not significant (F = 0.04, p = 

0.836). However, when the short RSI was used in the first test, the increase in accuracy 

from Test 1 (M = 0.76, SD = 0.16) to Test 2 (M = 0.92, SD = 0.08) was significant, 

F(1,15) = 27.20, MSD = 0.03, p < 0.001, ηp
2
 = 0.65. The high mean accuracy of 

magnitude judgements in the long RSI conditions (and the low accuracy of the short 

RSI, Test 1 condition) likely drove the interaction of test block and RSI order. With 

regard to evidence of practice effects on magnitude judgement accuracy, the interaction 

of test block and transition was not significant (F = 0.19, p = 0.664). 

Effects of RSI. 

Although magnitude judgements were more accurate for the long RSI condition 

than that for the short RSI condition, the data reported in Table 8.9 did not show any 

difference consistent with a preparation effect. If anything, the accuracy switch effects 

were smaller for the short RSI conditions than those for the long RSI conditions. The 

effect of RSI on magnitude task accuracy was analysed using a 2 (RSI) x 2 (transition) x 

2 (item type) x 2 (RSI order) mixed ANOVA. The mean magnitude judgement accuracy 

for the long RSI condition (M = 0.91, SD = 0.08) were significantly higher than that for 

the short RSI condition (M = 0.83, SD = 0.12), F(1, 30) = 18.37, MSE = 0.02, p < 0.001, 
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ηp
2
 = 0.38. Long RSIs produced more accurate magnitude task performance. However, 

the interaction of RSI and transition was not significant (F = 0.58, SD = 0.451). Thus, 

there was no evidence of a preparation effects on magnitude accuracy. No other effects 

or interactions were significant (Fs < 1.89). 

Reaction Times 

As with Experiments 4A and 4B, RT data will be reported in several 

subsections: (1) analyses of correct recognition RTs, (2) analyses of correct magnitude 

RTs, and (3) analyses of RT switch costs (switch RTs – repetition RTs). A 

comprehensive table of RTs for both tasks can be found in Appendix D. The overall RT 

for correct recognition decisions (M = 481.84, SD = 121.41) was slightly longer and 

more variable than previous experiments in this chapter. When the 400-ms RSD is taken 

into account, the recognition RT remained similar to that for the magnitude task (M = 

821.74, SD = 141.21). The order of RSI presentation had no effect on the overall mean 

correct RTs for the recognition task (F = 1.29, p = 0.265). However, the overall mean 

correct RT for the magnitude task was significantly longer when the short RSI was used 

in the first test (M = 872.64, SD = 245.12) than that when the long RSI was used in the 

first test (M = 770.85, SD = 140.26), F(1, 15) = 0.12, MSE = 159513.21, p = 0.050, ηp
2
 

= 0.12. Critically, this slower performance in the short-long RSI order condition was not 

limited to their first test block, where participants‘ accuracy was also relatively poor. 

Thus, participants who completed the short RSI test block first consistently struggled to 

make correct magnitude judgements quickly. 

Recognition task. 

The effects of transition and test block on correct recognition RTs were analysed 

using a 2 (test block) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. 

The main effect of transition was significant, F(1,30) = 70.69, MSE = 13370.71, p < 

0.001, ηp
2
 = 0.70. Correct recognition RTs were significantly slower on switch trials (M 

= 541.60, SD = 146.36) than those on repetition trials (M = 420.07, SD = 106.14), 

demonstrating an RT switch effect. Correctly identifying ‗new‘ words (M = 501.98, SD 

= 121.60) took significantly longer than correctly identifying ‗old‘ words (M = 459.70, 

SD = 127.42), F(1,30) = 17.05, MSE = 6713.83, p < 0.001, ηp
2
 = 0.36. The mean correct 

RT for the recognition task was slower for Test 1 (M = 531.94, SD = 152.90) than that 

for Test 2 (M = 429.73, SD = 113.34), F(1,30) = 24.30, MSE = 27518.80, p < 0.001, ηp
2
 

= 0.45. Experience with the recognition task sped correct responses regardless of task 
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transition. The main effect was qualified by a significant interaction with RSI order, 

F(1,30) = 8.28, MSE = 27518.80, p = 0.007, ηp
2
 = 0.22. When the short RSI was used in 

the first test, the decrease in mean RT from Test 1 (M = 526.44, SD = 209.28) to Test 2 

(M = 483.42, SD = 160.78) was not significant (F = 1.79, p = 0.201). However, when 

the long RSI was used in the first test, the decrease in mean RT from Test 1 (M = 

537.45, SD = 222.96) to Test 2 (M = 375.59, SD = 159.79) was significant, F(1, 15) = 

37.09, MSE = 22603.24, p < 0.001, ηp
2
 = 0.71. Slower performance for the long RSI 

condition could have driven the interaction of test block and RSI order by inflating the 

observed practice effect when the long RSI was presented first. Alternatively, the slower 

overall performance of participants who completed short RSI test block first may have 

masked any general improvement due to experience. 

The effect of RSI length on correct recognition RTs was analysed using a 2 

(RSI) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. Inconsistent with 

earlier experiments in this chapter, the main effect of RSI was significant, F(1, 30) = 

8.28, MSE = 27518.80, p = 0.007, ηp
2
 = 0.22. The mean correct recognition RT was 

slower for the long RSI condition (M = 510.66, SD = 137.44) than that for the short RSI 

condition (M = 451.01, SD = 131.66). However, the main effect was qualified by an 

interaction with item type, F(1, 30) = 7.66, MSE = 5109.86, p = 0.010, ηp
2
 = 0.20. 

Follow-up analyses showed that correct recognition RTs for ‗old‘ words were slower 

for the long RSI conditions (M = 501.89, SD = 149.69) than those for the short RSI 

conditions (M = 417.50, SD = 137.22), F(1, 30) = 13.00, MSE = 17530.60,  p < 0.001, 

ηp
2
 = 0.30. By contrast, correct recognition RTs for ‗new‘ words were no different for 

the long RSI (M = 519.44, SD = 135.40) and the short RSI (M = 484.52, SD = 137.07) 

conditions (F = 2.58, p = 0.12). Contrary to what is normally observed in experiments 

that manipulate RSI (e.g., Altmann, 2002) and Experiments 4A and 4B, the long RSI 

actually slowed recognition memory responses, particularly for ‗old‘ decisions. No 

other effects or interactions were significant (Fs < 0.64). 

Magnitude task. 

The effects of transition and test block on correct magnitude RTs were analysed 

using a 2 (test block) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. 

Again, the main effects and interactions of item type are not reported. The main effect 

of transition was significant, F(1, 30) = 18.14, MSE = 8681.86, p < 0.001, ηp
2
 = 0.38. 

Typical of a RT switch effect, the mean RT for correct magnitude judgements was 
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faster for repetition trials (M = 796.94, SD = 132.89) than that for switch trials (M = 

846.55, SD = 156.17). Participants‘ mean correct RT decreased from Test 1 (M = 

864.12, SD = 170.08) to Test 2 (M = 779.37, SD = 139.55) as they gained experience 

with the task, F(1, 30) = 13.49, MSE = 34068.03, p = 0.001, ηp
2
 = 0.31. The interaction 

of test block and order of RSI was also significant, F(1, 30) = 4.18, MSE = 34068.03, p 

= 0.050, ηp
2
 = 0.12. When the short RSI was used in the first test, the decrease in mean 

RT from Test 1 (M = 891.43, SD = 197.70) to Test 2 (M = 853.84, SD = 183.82) was 

not significant (F = 1.05, p = 0.32). However, when the long RSI was used in the first 

test, the decrease in mean RT from Test 1 (M = 836.81, SD = 138.00) to Test 2 (M = 

704.89, SD = 71.84) was significant, F(1, 15) = 30.725, MSE = 18125.45, p < 0.01, ηp
2
 

= 0.67. Consistent with the recognition task RTs in this experiment, slow performance 

for the long RSIs (and particularly poor performance in the short-long RSI order 

condition) contributed to the interaction of test block and RSI order. 

The effect of RSI length on correct magnitude judgement RTs was analysed 

using a 2 (RSI) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. The 

main effect of RSI was significant, F(1, 30) = 4.18, MSE = 34068.03, p = 0.050, ηp
2
 = 

0.12. Consistent with the recognition memory data, the mean RTs were slower for long 

RSI conditions (M = 845.33, SD = 162.52) than those for short RSI conditions (M = 

798.16, SD = 148.25). Given that the mean accuracy of magnitude judgements was 

lower in short RSI condition, this result may in part reflect a speed-accuracy trade-off. 

No other effects or interactions were significant (Fs < 1.26). 

RT switch costs. 

The mean RT switch costs (switch RT – repetition RT) are reported in Table 

8.10 as a function of test block, RSI, task and item type. The standard deviations of the 

RT switch costs, for the magnitude task in particular, were very large. There was a large 

range in participants‘ ability to quickly switch tasks. The size of the RT switch cost was 

generally smaller for the magnitude task than that for the recognition task. Finally, the 

order of RSI presentation had no effect on the RT switch costs (F = 0.18, p = 0.672). 

Effects of test block. 

The RT switch costs reported in Table 8.10 generally decreased in size from the 

first to second tests, providing evidence of a practice effect. This decrease was 

particularly salient for the recognition memory task. The effect of test block on RT 

switch costs was analysed using a 2 (test block) x 4 (item type) x 2 (RSI order) mixed 
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Table 8.10 

Means and Standard Deviations for the RT Switch Costs in Experiment 5A as a 

Function of RSI, Test Block, Task and Decision.   

Task and Decision 

Long RSI (2600 ms)   Short RSI (200 ms) 

1st 
 

2nd 

 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Recognition New 135 115 
 

68 111 

 

155 96 
 

117 117 

 

Old 152 125 
 

84 100 

 

167 175 
 

95 84 

Magnitude More 71 153 
 

58 125 

 

48 93 
 

20 98 

  Less 15 110   44 143   100 120   48 78 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 

 

ANOVA. The main effect of item type was significant, F(3, 90) = 10.48, MSE = 

10618.33, p < 0.001, ηp
2
 = 0.26. Pairwise comparisons using Bonferroni corrections 

showed that the RT switch cost for ‗new‘ recognition decisions (M = 118.59, SD = 

90.32) was no different to that for ‗old‘ recognition decisions (M = 124.47, SD = 

102.53). Both recognition RT switch costs were significantly larger than those for ‗less‘ 

magnitude judgements (M = 53.22, SD = 91.12) and ‗more‘ magnitude judgements (M 

= 45.99, SD = 78.62). The RT switch costs for both magnitude judgements did not 

differ significantly from each other. The significant main effect of test block [F(1,30) = 

7.98, MSE = 12717.13, p = 0.008, ηp
2
 = 0.21] is illustrated in Figure 8.7. The size of the 

RT switch cost decreased from Test 1 (M = 105.48, SD = 85.46) to Test 2 (M =66.71, 

SD = 67.43), producing evidence of a RT practice effect.  

Effects of RSI. 

As can be seen in Table 8.10, the RT switch costs showed no pattern 

representative of a preparation effect when comparisons were made within participants. 

However, within each test block, the size of the RT switch cost was slightly smaller for 

the long RSI condition than that for the short RSI condition, which is suggestive of a 

preparation effect. The effect of RSI on RT switch cost was analysed using a 2 (RSI) x 

2 (RSI order) x 4 (item type) mixed ANOVA. Although the mean RT switch cost for the  



130 

 

Figure 8.7. Mean RT switch costs for Experiment 5A as a function of RSI and test 

block.  Each test block used a single RSI, and order of RSI presentation was balanced 

across participants. Error bars represent S.E.  

 

long RSI condition (M = 78.22, SD = 84.84) was numerically smaller than that for the 

short RSI condition (M = 92.91, SD = 67.79), this difference was not significant (F = 

1.09, p = 0.306). No other effects or interactions were significant (Fs < 2.19). 

Furthermore, when the effect of RSI was analysed for each test block separately, neither 

the first (F = 0.66, p = 0.421) nor the second (F = 0.04, p = 0.842) test block produced 

significant evidence of a preparation effect. The length of the RSI had no significant 

impact on the size of the RT switch cost—participants did not use the additional time 

prior to stimulus onset to prepare.  

Cumulative RT distributions. 

The cumulative distribution functions for correct repetition and switch trial 

recognition decisions at the short (200 ms) and long (2600 ms) RSIs are presented in 

Figure 8.8. The repetition functions were positioned further to the left of the plot and 

showed steeper gradients than the switch functions. The two repetition functions did not 

overlap, and contrary to the expected superiority of long RSIs, the short RSI functions 

were positioned left-most on the plot. Interestingly, and quite counter to the expected 

preparation effect distributions, the long RSI repetition function overlapped with the 

short RSI switch function at early deciles. de Jong‘s (2000) failure to engage hypothesis 

predicts that long RSIs shift the earliest deciles of the switch trial functions to the left, 

so that they overlap with the repetition trial function. The functions for Experiment 5B 
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Figure 8.8. Cumulative RT distributions of correct recognition memory trials for Experiment 5A as a function of RSI and task transition.  
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showed the opposite pattern and thus did not show any evidence of the hypothesised 

preparation effect.  

Experiment 5B 

Results and Discussion 

Sixty-four participants met the performance requirements and were included in 

the final data analysis. The use of only correct responses for RT and Switch Cost 

analyses led to the exclusion of 17% of recognition memory trials and 11% of 

magnitude judgement trials. The percentage of timeouts for both tasks was low (< 1%).  

Accuracy 

Recognition task. 

Table 8.11 shows the mean corrected accuracy (hit rate – false alarm rate) for 

recognition decisions as a function of RSI, transition, and test block. The mean 

corrected accuracy across all conditions (M = 0.66, SD = 0.18) was lower than previous 

experiments in this chapter but not overly concerning. There was no difference in 

overall accuracy between the two RSI order groups (F = 1.12, p = 0.294). 

Effects of transition and test block. 

Table 8.11 shows that the corrected accuracies were lower for switch conditions 

than those for repetition conditions, particularly for the short RSI tests. There was 

evidence of an accuracy switch effect. Although overall accuracy tended to increase 

from the first to second tests, the difference between repetition and switch accuracy 

 

Table 8.11. 

Means and Standard Deviations for Corrected Recognition Accuracy in 

Experiment 5B as a Function of RSI, Test Block, and Transition. 

Transition 

Long RSI (2600 ms)   Short RSI (200 ms) 

Test 1 
 

Test 2 

 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Repetition 0.69 0.19 
 

0.67 0.16 

 

0.65 0.25 
 

0.73 0.20 

Switch   0.66 0.26   0.64 0.20   0.59 0.33   0.68 0.26 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 
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remained relatively stable. Thus there was little evidence of practice effects for 

recognition accuracy data. The effects of transition and test block on corrected 

recognition accuracy were analysed using a 2 (test block) x 2 (transition) x 2 (RSI 

order) mixed ANOVA. The mean corrected accuracy of repetition trials (M = 0.69, SD 

= 0.16) was significantly higher than that for switch trials (M = 0.64, SD = 0.24), F(1, 

62) = 5.58, MSE = 0.02, p = 0.021, ηp
2
 = 0.08. The recognition data showed a typical 

accuracy switch effect. Neither the main effect of test block (F = 1.03, p = 0.313) nor 

the interaction of test block and transition (F = 0.05, p = 0.829) were significant. 

Overall corrected recognition accuracy did not increase with experience. More 

importantly, the size of the accuracy switch effect did not decrease with experience—

there was no evidence of a practice effect.  

Effects of RSI. 

The mean corrected accuracies reported in Table 8.11 showed no consistent 

difference between the long and short RSI. The difference between repetition and 

switch accuracy was slightly smaller for the long RSI conditions than that for the short 

RSI conditions, suggesting that recognition accuracy may show a preparation effect. 

However, when the effect of RSI on recognition corrected accuracy was analysed using 

a 2 (RSI) x 2 (transition) x 2 (RSI order) mixed ANOVA, neither the main effect of RSI 

(F = 0.01, p = 0.930), nor the interaction of RSI and transition (F = 0.40, p = 0.532) 

were significant. The length of the RSI had no significant effect on the overall accuracy 

of recognition decisions and the size of the accuracy switch effect was not decreased by 

the long RSI. That is, there was no preparation effect for recognition accuracy. No other 

effects or interactions were significant (F = 0.00). 

Magnitude task. 

Table 8.12 shows the mean accuracy of magnitude judgements as a function of 

RSI, transition, decision, and test block. The mean accuracy across conditions was high 

(M = 0.89, SD = 0.07) and there was no difference in overall accuracy for the two RSI 

order groups (F = 0.43, p = 0.516).  

Effects of transition and test block. 

The magnitude data reported in Table 8.12 showed a typical accuracy switch 

effect. The mean accuracy of magnitude judgements was generally higher for repetition 

conditions than that for switch conditions. Overall accuracy showed a moderate increase 

from the first to second test blocks, indicating that experience with the magnitude task  
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Table 8.12. 

Means and Standard Deviations for Magnitude Judgement Accuracy in 

Experiment 5B as a Function of RSI, Test Block, Transition, and Decision. 

Transition  

and Decision 

Long RSI (2600 ms)   Short RSI (200 ms) 

Test 1 
 

Test 2 

 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Repetition More 0.93 0.11 
 

0.98 0.03 

 

0.90 0.11 
 

0.93 0.11 

 

Less 0.89 0.10 
 

0.91 0.12 

 

0.82 0.18 
 

0.91 0.11 

Switch More 0.87 0.12 
 

0.96 0.06 

 

0.87 0.14 

 

0.91 0.12 

  Less 0.88 0.13   0.92 0.10   0.73 0.21   0.85 0.12 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 

 

improved participants‘ ability to accurately judge the number of dots displayed on the 

screen. There was also evidence of practice effects on magnitude accuracy—the 

difference between repetition and switch trial accuracy was generally smaller in the 

second test block. The effects of transition and test block were analysed using a 2 (test 

block) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. Again, the 

effects of item type are not reported as response keys were not balanced. There was a 

significant accuracy switch effect. The mean accuracy of repetition trials (M = 0.91, SD 

= 0.07) was significantly higher than that for switch trials (M = 0.88, SD = 0.08), F(1, 

62) = 17.25, MSE = 0.01, p < 0.001, ηp
2
 = 0.22. The overall accuracy of magnitude 

judgements increased from the first (M = 0.86, SD = 0.10) to second (M = 0.92, SD = 

0.06) test block, [F(1, 62) = 28.56, p < 0.001, MSE = 0.02, ηp
2
 = 0.32], illustrating the 

general benefit of experience to magnitude judgement accuracy. The main effect of test 

block was qualified by a significant interaction with RSI order, F(1, 62) = 22.01, MSE = 

0.02, ηp
2
 = 0.26, p < 0.001. When the long RSI was used in the first test, the increase in 

accuracy from Test 1 (M = 0.89, SD = 0.11) to Test 2 (M = 0.90, SD = 0.10) was not 

significant (F = 0.31, p = 0.579). However, when the short RSI was used in the first test, 

the increase from Test 1 (M = 0.83, SD = 0.16) to Test 2 (M = 0.94, SD = 0.07) was 
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significant, F(1, 31) = 38.16, MSE = 0.02, p < 0.001, ηp
2
 = 0.55.  Highly accurate 

performance in the Long RSI block likely inflated the effect of test block when the short 

RSI was presented first, but suppressed the effect of test block when the long RSI was 

presented first. Critically, the interaction of test block and transition failed to reach 

statistical significance (F = 2.71, p = 0.105). The decrease in accuracy switch effect was 

not significant—there was no evidence of a practice effect for magnitude task accuracy. 

Effects of RSI. 

Table 8.12 shows that the mean magnitude task accuracies were higher for the 

long RSI conditions than those for the short RSI conditions. Furthermore, the accuracy 

switch effects were generally smaller for the long RSI conditions than those for the 

short RSI conditions. Thus there was evidence of a preparation effect on magnitude 

accuracy. The effect of RSI on magnitude task accuracy was analysed using a 2 (RSI) x 

2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. The mean accuracy of 

magnitude judgements was significantly higher for the long RSI condition (M = 0.92, 

SD = 0.06) than that for the short RSI condition (M = 0.87, SD = 0.10), F(1, 62) = 

22.01, MSE = 0.02, p < 0.001, ηp
2
 = 0.26. Critically, the interaction of RSI and 

transition was significant, F(1,62) = 4.78, MSE = 0.01, p = 0.033, ηp
2
 = 0.07. As can be 

seen in Figure 8.9, the main effect of transition was significant at short RSIs [F(1, 62) = 

4.78, MSE = 0.01, p = 0.048, ηp
2
 = 0.06] and at long RSIs [F(1, 62) = 15.91, MSE = 

 

 

Figure 8.9. Mean accuracy of magnitude judgements in Experiment 5B as a function of 

RSI and transition. Error bars represent S.E. 
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0.01, p < 0.001, ηp
2
 = 0.20]. However, the size of the accuracy switch effect was 

considerably larger for the short RSI condition than that for the long RSI condition. 

There was a significant preparation effect on magnitude judgement accuracy. No other 

effects or interactions were significant (F = 0.00). 

Reaction Times 

The RT data are reported in the same format as earlier experiments in this  

chapter: (1) analyses of correct recognition RTs, (2) analyses of correct magnitude RTs, 

and (3) analyses of RT switch costs (switch RTs – repetition RTs). A comprehensive 

table of RTs for both tasks can be found in Appendix D. The mean overall RT for the 

recognition task (M = 479.50, SD = 119.83) was similar Experiment 5A and, when the 

400-ms RSD is added, was slightly slower than that for the magnitude task (M = 802.76, 

SD = 102.14). The main effect of RSI order was not significant for the recognition (F = 

1.93, p = 0.170) or magnitude (F = 0.01, p = 0.932) tasks. 

Recognition task. 

The effects of transition and test block on correct recognition RTs were analysed 

using a 2 (test block) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. An 

RT switch effect was confirmed by the significant main effect of transition, F(1, 62) = 

120.95, MSE = 14030.62, p < 0.001, ηp
2
 = 0.66. The mean correct recognition RT for 

repetition trials (M = 422.13, SD = 96.71) was significantly faster than that for switch 

trials (M = 537.27, SD = 151.24). Correct responses were longer for ‗new‘ words (M = 

504.86, SD = 131.92) than those for ‗old‘ words (M = 454.54, SD = 120.77), F(1, 62) = 

24.80, MSE = 13069.59, p < 0.001, ηp
2
 = 0.29. Experience with the tasks allowed 

participants to make correct recognition decisions more quickly. Compared to 

performance on Test 1 (M = 503.36, SD = 153.00), correct recognition RTs were faster 

in Test 2 (M = 456.03, SD = 106.42), F(1,62) = 11.92, MSE = 24063.66, p = 0.001, ηp
2
 

= 0.16. Consistent with Experiment 5A, the interaction of test block and RSI order was 

also significant, F(1,62) = 27.45, MSE = 24063.66, p < 0.001, ηp
2
 = 0.31. When the long 

RSI was used in the first test, the decrease in mean correct RT from Test 1 (M = 518.47, 

SD = 213.82) to Test 2 (M = 399.31, SD = 149.49) was significant, F(1,31) = 39.56, 

MSE = 22970.99, p < 0.001, ηp
2
 = 0.56. By contrast, when the short RSI was used in the 

first test, the mean correct RTs for Test 1 (M = 488.26, SD = 218.90) and Test 2 (M = 

512.75, SD = 151.52) were not significantly different (F = 1.53, p = 0.226). Slow RTs 

for the long RSI conditions (which were not the product of a speed-accuracy trade-off) 
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inflated the main effect of test block when Test 1 used a long RSI and suppressed the 

main effect of test block when Test 1 used the short RSI. 

The effect of RSI length on correct recognition RTs was analysed using a 2 

(RSI) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. Contrary to what 

would be expected in the preparation effect literature but consistent with Experiment 

5A, the mean correct RT was slower for the long RSI condition (M = 515.61, SD = 

131.02) than that for the short RSI condition (M = 443.78, SD = 132.54), F(1, 62) = 

27.45, MSE = 24063.66, p < 0.001, ηp
2
 = 0.31. This effect of RSI was qualified by an 

interaction with item type, F(1, 62) = 19.91, MSE = 5280.36, p < 0.001, ηp
2
 = 0.24. At 

long RSIs, the mean correct RT for ‗new‘ decisions (M = 526.44, SD = 141.40) was no 

different to that for ‗old‘ decisions (M = 504.78, SD = 138.18), F = 3.16, p = 0.080. By 

contrast, at short RSIs the mean correct RT for ‗new‘ decisions (M = 483.27, SD = 

153.43) was significantly slower than that for ‗old‘ decisions (M = 404.29, SD = 

126.55), F(1, 62) = 45.13, MSE = 8846.80, p < 0.001, ηp
2
 = 0.42. Long RSIs were 

particularly damaging when a recognition trial required an ‗old‘ response, to the point 

that they eliminated the RT advantage of a self-terminating search of memory that was 

observed at short RSIs. No other effects or interactions were significant (Fs < 1.57). 

Magnitude task. 

The effects of transition and test block on correct magnitude RTs were analysed 

using a 2 (test block) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. 

Again, the main effects and interactions of item type are not reported as response key 

allocation was not balanced. The RT switch effect was confirmed by the significant 

main effect of transition, F(1, 62) = 25.77, MSE = 14751.80, p < 0.001, ηp
2
 = 0.29. The 

mean correct RT for the magnitude task was significantly faster for repetition trials (M 

= 775.51, SD = 101.29) than that for switch trials (M = 830.00, SD = 119.95). The main 

effect of test block was also significant, F(1, 62) = 22.63, MSE = 38635.53, p < 0.001, 

ηp
2
 = 0.27. Participants‘ mean correct RTs decreased from Test 1 (M = 884.08, SD = 

134.75) to Test 2 (M = 761.43, SD = 111.20), suggesting that experience with the 

magnitude task allowed participants to make correct decisions more quickly.  

The effect RSI length on correct RTs for the magnitude task was analysed using 

a 2 (RSI) x 2 (transition) x 2 (item type) x 2 (RSI order) mixed ANOVA. Contrary to 

the recognition RT data, the main effect of RSI was not significant (F = 0.93, p = 

0.339). The length of the RSI had no impact on the speed of participants‘ correct  
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Table 8.13. 

Means and Standard Deviations for the RT Switch Costs in Experiment 5B as a 

Function of RSI, Test Block, Task and Decision.  

Task and Decision 

Long RSI (2600 ms)   Short RSI (200 ms) 

1st 
 

2nd 

 

Test 1 
 

Test 2 

M SD   M SD   M SD   M SD 

Recognition New 119 141 
 

65 75 

 

147 182 
 

122 111 

 

Old 130 126 
 

138 116 

 

103 121 
 

98 90 

Magnitude More 135 162 
 

46 85 

 

47 85 
 

-4 117 

  Less 50 127   -2 104   93 113   70 126 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made across RSIs from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 

 

magnitude judgements. No other effects or interactions were significant (Fs < 0.60). 

RT switch costs. 

RT switch costs (switch RT – repetition RT) are reported in Table 8.13 as a 

function of test block, RSI, task and item type. As with the earlier experiments in this 

chapter, there was large variation in the size of the RT switch costs. Interestingly, two 

of the magnitude task RT switch costs were less than zero (i.e., no RT switch cost), 

suggesting that the cost of switching tasks could be eliminated. The large standard 

deviations indicated that there was a fair amount of individual difference in people‘s 

ability to quickly switch tasks. The mean RT switch costs were generally smaller for the 

magnitude task than those for the recognition task. The order of RSI presentation had no 

effect on the RT switch costs (F = 0.33, p = 0.567). 

Effects of test block. 

The mean RT switch costs reported in Table 8.14 generally decreased from the 

first to the second test block, illustrating a practice effect. However, this decrease was 

inconsistent across different task and item types.  The effect of test block on RT switch 

cost was examined using a 2 (test block) x 4 (item type) x 2 (RSI order) mixed 

ANOVA. A Greenhouse-Geisser correction was used for the item type main effect as 

the assumption of sphericity was violated. The main effect of item type was significant, 
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F(2.61, 161.73) = 13.53, MSE = 12578.99, p < 0.001, ηp
2
 = 0.18. Pairwise comparisons 

using Bonferroni corrections showed that the mean RT switch cost for ‗new‘ decisions 

(M = 113.06, SD = 103.74) and ‗old‘ decisions (M = 117.23, SD = 92.49) did not differ 

from each other. However, both recognition task RT switch costs were significantly 

larger than those for ‗more‘ (M = 56.07, SD = 90.51) and ‗less‘ (M = 52.92, SD = 

100.78) magnitude RT switch costs (which did not differ from each other). The cost of 

switching to the recognition task was larger than that of switching to the magnitude 

task.  

A practice effect was confirmed by a significant main effect of test block, F(1, 

62) = 12.64, MSE = 13357.18, p = 0.001, ηp
2
 = 0.17. Collapsed across tasks, the size of 

the RT switch cost decreased from Test 1 (M = 102.98, SD = 95.42) to Test 2 (M = 

66.66, SD = 65.80). However, this main effect of test block was qualified by an 

interaction with item type [F(3,186) = 2.94, MSE = 9250.46, p = 0.038, ηp
2
 = 0.05], 

illustrated in Figure 8.10. Paired sample t-tests showed that the interaction was driven 

by a non-significant effect of test block for ‗old‘ (t = -0.07, p = 0.943) and ‗new‘ (t = 

1.83, p = 0.071) recognition decisions. By contrast, the decrease in RT switch cost from 

the first to the second test block was significant for both ‗less‘ [t(63) = 2.23, MSE = 

16.76, p = 0.029] and ‗more‘ [t(63) = 3.45, MSE = 20.25, p = 0.001] magnitude 

judgements. That is, while the magnitude task showed evidence of practice effects, the 

recognition task did not. 

 

 

Figure 8.10. Mean RT switch costs for Experiment 5B as a function of test block and 

item type. Error bars represent S.E. 
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Effects of RSI. 

The size of the RT switch costs reported in Table 8.14 (p. 138) did not show a 

pattern across RSIs representative of a preparation effect, despite the fact that 

participants were exposed to both RSIs during each practice test. The effect of RSI on 

RT switch costs was analysed using a 2 (RSI) x 2 (RSI order) x 4 (item type) mixed 

ANOVA. While the main effect of RSI was not significant (F = 0.00, p = 0.951), there 

was a significant interaction of RSI and item type [F(3, 186) = 12.71, MSE = 9274.90, p 

< 0.001, ηp
2
 = 0.17], illustrated in Figure 8.11. Paired sample t-tests were used to follow 

up this interaction. Effects of RSI consistent with a preparation effect (long RSI RT 

switch cost < short RSI RT switch cost) were found for ‗new‘ RT switch costs [t(63) = -

1.99, MSE = 21.30, p = 0.050] and ‗less‘ RT switch costs [t(63) = -3.63, MSE = 15.83, p 

= 0.001]. By contrast, RSI effects in the opposite direction (long RSI RT switch cost > 

short RSI RT switch cost) were found for ‗old‘ RT switch costs [t(63) = 2.00, MSE = 

16.53, p = 0.050] and ‗more‘ RT switch costs [t(63) = 3.42, MSE = 20.28, p = 0.001]. 

While it is worth noting that the interaction of RSI and item type was consistent with 

that observed in Experiment 4B for the magnitude task, this difference in RSI effect 

should be treated cautiously as the response keys for the magnitude task were not 

balanced. However, even considering only the recognition data, it is difficult to produce 

a theoretically driven explanation for the opposing direction of RSI effects for ‗old‘ and 

‗new‘ recognition responses. Thus it is difficult to consider this result as strong  

 

 

Figure 8.11. Mean RT switch costs for Experiment 5B as a function of RSI and item 

type. Error bars represent S.E. 
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evidence of a preparation effect. No other effects or interactions were significant (Fs < 

0.37).  

Cumulative RT distributions. 

On account of the significant interaction of RSI and item type for recognition 

RT switch costs, separate cumulative RT distributions were constructed for each 

recognition item type. Figures 8.12 and 8.13 show the cumulative distribution functions 

for correct ‗old‘ and ‗new‘ decisions as a function of RSI (200 ms vs. 2600 ms) and 

transition. For ‗new‘ words (Figure 8.12), task switch functions were positioned to the 

right of task repetition functions. For the earliest deciles, short and long RSI functions 

overlapped for each transition but began to separate at around the third decile. 

Consistent with Experiment 5A and contrary to what would be expected for preparation 

effect functions, the short RSI repetition and switch functions were positioned to the left 

of their respective long RSI functions. The switch and repetition functions were 

positioned close together at the first deciles, but this closeness was equally so for both 

RSIs. Thus while the main effect of RSI on ‗new‘ RT switch costs was consistent with a 

preparation effect, the cumulative RT functions did not show the typical preparation 

effect characteristics.  

For ‗old‘ words (Figure 8.13), the cumulative distribution functions were more 

spread across the plot. Unlike distributions usually seen for preparation effects, the two 

repetition functions did not overlap. Interestingly, the long RSI switch condition was 

more similar to the short RSI switch condition than the short RSI repetition condition. 

There was little overlap at the first decile for repetition and switch functions of the same 

RSI. The cumulative RT functions produced for old words in Experiment 5B showed 

none of the characteristics typical of preparation effect distributions, and if anything 

suggested that long RSIs were particularly damaging to performance when an ‗old‘ 

recognition decision was required. 

Conclusions for Experiments 5A and 5B 

In Experiments 5A and 5B, the length of the RSI was manipulated between test 

blocks (200 ms vs 2600 ms) to test for evidence of preparation effects. Additionally, 

switch effects were compared between test blocks (Test 1, Test 2) to test for evidence of 

practice effects. Experiment 5B differed from Experiment 5A in that the practice tests 

completed prior to each actual test used both RSIs to ensure recent exposure to both 

RSIs. Regardless of this difference, the general findings of both experiments were
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Figure 8.12. Cumulative RT distributions of correct ‘new’ recognition memory trials for Experiment 5B as a function of RSI and task transition.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400

C
u

m
u

la
ti

v
e
 P

ro
p

o
rt

io
n

 

Reaction Time (ms) 

200 ms, repetition

200 ms, switch

2600 ms, repetition

2600 ms, switch

1
4
2
 



143 

 

 

 

Figure 8.13. Cumulative RT distributions of correct ‘old’ recognition memory trials for Experiment 5B as a function of RSI and task transition.  
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quite similar and are therefore discussed together. Consistent with Experiments 4A and 

4B, significant RT switch effects were reported for both tasks. Participants‘ correct 

recognition and magnitude responses were slower and when they had switched tasks 

relative to when they had repeated tasks. Both experiments reported significant accuracy 

switch effects for the magnitude task. However, while both experiments reported 

numerically lower recognition accuracy for switch trials than that for repetition trials, 

this difference was only significant for Experiment 5B. The current results are fairly 

consistent with previous literature, given that accuracy switch effects are less robust 

than RT switch effects.   

Both experiments showed a significant main effect of test block (i.e., a practice 

effect) on RT switch costs. However, the interaction of item type and test block in 

Experiment 5B showed that this practice effect did not reach statistical significance for 

the recognition task. In balance, the results of Experiments 5A and 5B supported the 

hypothesised practice effect but showed that the presence (or extent) of the effect may 

depend on the task or other experimental factors.   

 While Experiment 5A showed no evidence of preparation effects, Experiment 

5B produced a peculiar interaction of RSI and item type. The interaction of RSI and 

item type observed for recognition task RT switch costs is problematic. The cumulative 

RT distributions for ‗new‘ recognition decisions in Experiment 5B showed none of the 

key characteristics of a preparation effect distribution and visually illustrated the rather 

counterintuitive slowing of recognition decisions (particularly ‗old‘) decisions at the 

long RSI. There is no theoretically-based reason to expect preparation effects for one 

task decision and not another, particularly as participants did not know what type of 

recognition decision would occur on any given trial. As such, it is difficult to interpret 

these results as support for the hypothesised RT preparation effect. This curious 

interaction of RSI and item type will be discussed in greater detail in the discussion 

section of this chapter. 

Interestingly, Experiment 5B also reported an accuracy preparation effect—the 

size of the accuracy switch effect for the magnitude task was larger in the short RSI 

condition than that in the long RSI condition. However, given the one-off nature of this 

finding and that the RT switch cost analyses provided little corroborating evidence of 

preparation effects, it is likely unwise to assign too much weight to this finding. In 

balance, neither Experiment 5A nor Experiment 5B produced convincing evidence of 

preparation effects. Using two RSIs that were noticeably different from each other 
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(Experiment 5A and 5B) and providing recent exposure to both RSIs (Experiment 5B) 

did not change task switching and preparation performance.  

Vandierendonck (personal communication, November 2009) suggested that 

Experiments 5A and 5B may have failed to show preparation effects because of the 

length of the long RSI. That is, the 2600-ms long RSI may have been so long that 

participants did not use the RSI to prepare for the upcoming task switch, but rather 

allowed the time to pass passively. The mean RTs for the recognition task were slower 

at the long RSI than at the short RSI, which does provide some support for 

Vandierendonck‘s suggestion. However, given that Experiments 4A and 4B—which 

used less extreme long RSIs—also failed to observe preparation effects, I would argue 

that the length of the RSI is not the main issue driving the null effect. Indeed, the work 

of Meiran et al. (2001) used a CSI of 3032 ms and reported a smaller RT switch effect 

for this extremely long CSI than those for shorter CSIs. Clearly, there must be other 

reasons for the lack of significant preparation effect.  

Discussion 

With regard to accuracy switch effects, the overall difference between the 

accuracy of repetition and switch transitions was statistically significant for both tasks 

in Experiments 4A and 5B, and significant for the magnitude task in Experiment 5A. 

With the exception of Experiment 4A, accuracy switch effects were smaller than 

reported in Experiments 2 and 3. These smaller costs, combined with the large variance 

in performance, likely contributed to the non-significant switch effects in Experiment 

4B and 5A. However, it is worth noting that, as task switching effects have a predicted 

direction (switch accuracy < repetition accuracy), a one-tailed test of significance could 

be applied (i.e., p < 0.10). Using this alpha level, all of the accuracy switch effects 

reported in Chapter 7 were statistically significant. Furthermore, a Wilcoxon signed 

ranks test conducted on overall accuracy for each task and experiment produced a 

significant difference between repetition and switch transitions (Z = -3.35, p = 0.001), 

which is unsurprising given 15 of the 16 cells showed numerically higher accuracy for 

repetition trials than that for switch trials. The experiments reported in this chapter 

consistently produced evidence that the accuracy of participants‘ recognition and 

magnitude responses was impaired by a recent change in tasks.   

Significant RT switch effects were consistently reported across both tasks. 

Participants were slower to make (correct) recognition and magnitude responses when 
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they had switched tasks compared to when they had repeated tasks. When expressed as 

RT switch costs (switch RTs – repetition RTs), the size of the RT cost varied across 

tasks and conditions. The standard deviations for RT switch costs were large, 

particularly for the magnitude task. Rather than reflecting unstable data, it is likely this 

variance was the product of large individual differences in performance. Indeed, some 

participants showed very small RT switch costs or even switch advantages. Clearly 

some people were very able task switchers (by natural ability or the strategies they 

utilised) while others had difficulty quickly switching tasks.  

Experiments 5A and 5B showed equivalent RT switch costs for both decisions 

within the recognition and magnitude tasks but significantly larger RT switch costs for 

recognition decisions than for magnitude judgements. Experiments 4A and 4B showed 

similar trends, however only the differences between ‗old‘ and ‗less‘ decisions and ‗old‘ 

and ‗more‘ decisions were statistically significant for Experiments 4A and 4B, 

respectively. These results provided convergent evidence that the size of the RT switch 

cost to performance was larger for the recognition task than that for the magnitude task. 

This is consistent with Mayr and Kliegl‘s (2000) long term memory retrieval demand 

hypothesis. Switching to a new task requires that the relevant task set be selected from 

long term memory and installed in working memory (c.f., Rubinstein et al. 2001). When 

the task proper also requires retrieval from long term memory—as is the case for the 

recognition task but not the magnitude task—responses are slowed even further on 

switch trials. Retrieving a task set and searching episodic memory for a response to a 

task stimulus must occur sequentially. Subsequent processes are halted until the earlier 

processes are completed—there is a bottleneck (see Pashler, 1994). When a long RSI is 

used to retrieve a task set in advance (i.e., a participant has ‗prepared‘) there should be 

no slowing at the bottleneck and thus no difference in RT switch costs for tasks with 

different long term memory retrieval demands. However, differences in RT switch cost 

for the recognition and magnitude tasks were observed at both short and long RSIs. This 

persistence in task differences suggests that participants did not use the long RTIs to 

prepare for tasks switches, a topic which will be revisited later in this discussion. 

Practice Effects 

With regard to practice effects—the decrease in the size of the RT switch cost 

from the first to the second test block—the main effect of test block (collapsed across 

tasks) was significant in all experiments except Experiment 4A. Nevertheless, the mean 
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RT switch costs for the first test block were numerically larger than those for the second 

test block in all but one condition (‗more‘ decisions at Long RSIs) of Experiment 4A. In 

balance, the evidence for practice effects in the current experiments was fairly 

convincing. Consistent with previous research (Jersild, 1927; Koch, 2005; Kramer et 

al.,1999; Kray & Lindenberger, 2000; Meiran, 1996; Minear & Shah, 2008; Monsell et 

al. 2003; Rogers & Monsell, 1995), task switching performance generally showed a 

reliable improvement from the first to the second test block. Although the size of the RT 

switch costs reported in this chapter are somewhat smaller than are generally reported in 

experiments utilising a 2-trial alternating runs procedure, the benefits of practice to task 

switching performance were similar. Across all four experiments, the RT switch cost 

decreased between 20 – 38% from the first to second test. This percentage decrease in 

switch cost was roughly equivalent to those reported by Koch (2005) and Meiran (1996) 

across a similar number of trials. Interestingly, they were also similar to the decreases 

reported by Rogers and Monsell (1995) across two days.   

As detailed in the introduction, the benefit of practice to task switching 

performance can be conceptualised as the product of faster task set reconfiguration 

(Meiran, 1996). Through repeated exposure (i.e., practice) the association between a 

task cue and a task set is strengthened, and consequentially the task set can be retrieved 

from long term memory more quickly. In the case of the current experiments, this task 

cue could be the product of internal monitoring of the predictable pattern of tasks (e.g., 

Baddeley et al., 2001; Kray & Lindenberger, 2000) or, as each task used different 

stimulus sets, the stimulus itself. While Meiran (1996) reported that practice effects 

were observed at short CSIs but not at long CSIs, the current research observed no such 

difference between short and long RSIs. Participants showed little evidence of using 

long RSIs to prepare and as a consequence the practice effect remained intact. These 

results suggest that the practice effects reported in this chapter likely represented the 

strengthening of associations between stimuli (or stimulus sets) and task sets over the 

course of the experiment, making task switching processes more efficient. 

Preparation Effects 

As has been noted, the persistence of task differences for RT switch costs and 

practice effects at long RSIs suggests that participants did not prepare for task switches 

in advance of stimulus presentation. Direct comparisons of task switching performance 

at short and long RSIs produced similar conclusions across the experiments reported in 
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this chapter. The most basic test of the RT preparation effect—a main effect of RSI on 

mean RT switch cost—was not significant for any of the experiments in the chapter.
13

 

Given that exposure to both RSIs may be considered essential to producing preparation 

effects (Altmann, 2004), a stronger test for preparation effects in Experiments 4A – 5A 

was the between-subjects comparison of RT switch cost at Test 2. However, this test 

also failed to produce a significant effect of RSI. Even when each practice test utilised 

both RSIs (Experiment 5B) the main effect of RSI remained non-significant. However, 

there was a significant interaction of RSI and item type for Experiment 5B, which posed 

a challenge to interpret within task switching theory. In Experiment 5B, the mean RT 

switch costs for ‗new‘ recognition decisions and ‗less‘ magnitude judgements showed a 

significant effect of RSI that was consistent with a preparation effect (long RSI switch 

cost < short RSI switch cost). By contrast, mean RT switch costs for ‗old‘ recognition 

decisions and ‗more‘ magnitude judgements showed a main effect of RSI that was in 

the opposite direction (long RSI switch cost > short RSI switch cost). It is interesting to 

note that this interaction of RSI and item type occurred for the magnitude task in 

Experiment 4B. The remaining experiments showed the same pattern of performance, 

but the interactions did not reach statistical significance. However, the consistency of 

this curious pattern across experiments with different RSIs suggests that something 

systematic was driving the interaction.  

Although the pattern of RT switch costs was consistent with a preparation effect 

for ‗new‘ and ‗less‘ decisions, there are reasons to discount this interaction of RSI and 

item type as evidence for preparation effects. First, as participants had no way of 

knowing the status of an upcoming recognition (‗old‘ or ‗new) or magnitude (‗less‘ or 

‗more‘) task, proposing that the interaction was driven by different amounts of 

preparation prior to the presentation of a word is problematic. Second, as task sets are 

considered to contain general information and rules about how to process stimuli and 

respond in a task-appropriate manner (Monsell, 2003; Rubinstein et al., 2001), there is 

no reason to anticipate that any preparation of a task set (be that through activation, 

encoding, or reconfiguration) would be biased toward a particular response.  

Finally, there was no converging evidence from other sources of information 

about preparation effects. In Experiment 5B (where the interaction of item type and RSI 

was significant) the RT switch cost for ‗new‘ recognition decisions remained larger than 

                                                 
13

 When RT switch costs were calculated as a proportion of the repetition RT, the data provided no 

evidence consistent with preparation effects.  
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that for ‗less‘ magnitude judgements at the long RSI. Likewise, the cumulative RT 

functions produced for the recognition task were not consistent with those observed 

when preparation effects are present. In Experiment 5B, despite the main effect of RSI 

for ‗new‘ recognition decisions that was consistent with a preparation effect, the 

functions for ‗new‘ decisions lacked several of the key characteristics of preparation 

functions. Although switch and repetition functions were close to overlapping at the 

first decile, this outcome was found for short and long RSIs. Also, the two repetition 

functions deviated at the fourth decile, at which point the short RSI functions were to 

the left (instead of to the right) of long RSI functions. Thus the cumulative distribution 

functions do not support a preparation effect interpretation of the RSI effect for ‗new‘ 

recognition decisions. In balance, evidence from the experiments reported in this 

chapter strongly suggest that participants did not prepare for upcoming task switches 

any more with long RSIs than they did with short RSIs. Thus, the hypothesis that a long 

RSI would produce smaller switch effects than those for a short RSI was not supported.   

If the interaction of RSI and item type does not reflect preparation for some 

items and not others, what does it reflect? The interaction does not reflect bias for a 

particular response-to-key allocation in the recognition task. When key mapping is 

added as a factor to the mixed ANOVA for RT switch cost in Experiment 5B (the 

strongest example of the RSI by item type interaction), it does not interact with item 

type and RSI (Experiment 5B: F = 0.73, p = 0.396). Likewise, comparisons of hit and 

false alarm rates (see Appendix B) showed no consistent pattern that would explain the 

interaction of RSI and item type for RT switch costs.
14

 Experiments that showed (or 

trended toward showing) the interaction of item type and RSI for RT switch costs 

(Experiments 4B, 5A, and 5B) also reported slower RTs at the long RSI than at the 

short RSI. By contrast, the experiment that showed the least indication of an item type 

and RSI interaction (Experiment 4A) reported faster RTs at the long RSI than at the 

short RSI. It is interesting to note that both the ‗new‘ decisions and the ‗less‘ decisions 

were generally the slower of the responses for each task. That is, when the RSI was long 

and the response was relatively slow, a main effect of RSI consistent with a preparation 

effect was observed. However, when the RSI was long and the response was relatively 

fast (e.g., ‗old‘ and ‗more‘ decisions), the main effect of RSI showed the reverse 

                                                 
14

 Recognition performance in Experiment 5B does show a bias toward responding ‗old‘ at short RSIs. 

However, it is unclear how this would translate to the observed interaction, and none of the other 

experiments show any hint of bias.  
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pattern. Determining if (and how) the time needed to respond plays a role in producing 

patterns of performance consistent with preparation effects in Experiment 4B and 5B 

will require additional research.  

The experiments in this chapter were designed to examine preparation effects in 

a more naturalistic manner than is typical in the task switching literature. That is, they 

shifted away from using simple tasks that shared stimulus sets (with sizeable stimulus-

response overlap) towards using a more complex task (i.e., the recognition memory 

task) that used a different stimulus set than the secondary magnitude task. Likewise, 

instead of investigating how participants can be encouraged to prepare in advance of a 

task switch, the critical question was whether participants naturally and independently 

prepared in advance of a task switch when presented with conditions that would support 

this strategy. External task cues were not provided, both to maintain the naturalistic 

goals of the experiments and to encourage participants to monitor the task sequence 

internally. There is evidence in the literature that these types of changes can be made 

without eliminating preparation effects. For example, Kray and Lindenberger (2000) 

observed preparation effects without the use of task cues or explicit instructions to use 

RSIs to prepare. Likewise, Rogers and Monsell (1995) observed preparation effects 

when using stimuli that were constructed to contain elements relevant to only one task 

(e.g., ‗A#‘ was used for the letter task and ‗&9‘ was used for the parity task), in essence 

producing different stimulus sets for each task. However, these changes have never been 

made in concert, which could explain why evidence of advanced preparation was not 

found in Experiments 4A – 5B. 

As one of the key interests of this thesis was task switching effects on 

recognition memory, it was important to work within the limitations of this task. The 

recognition task required that participants complete separate study phases prior to each 

test phase, thus limiting the number of study-test blocks that could be administered 

whilst maintaining an appropriate level of task difficulty and minimising fatigue. The 

length of each experiment (and number of trials completed) was substantially smaller 

than is typical for task switching and preparation effect experiments. Most task 

switching research also excludes the first few blocks from analysis. Thus the failure to 

observe preparation effects could be interpreted as the consequence of analysing 

relatively few trials—the very trials others might typically exclude. Indeed, the large 

variability in RT switch costs, particularly at Test 1, does suggest that excluding initial 

blocks and/or trials may have aided in the detection of more subtle effects. However, 
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Meiran‘s (1996) examination of preparation and practice effects excluded only 50 trials 

from the beginning of the experiment. Even for the first test block following these 

excluded trials a sizable preparation effect was reported. While Meiran‘s (1996) tasks 

were relatively simple, preparation effects clearly occurred without much practice with 

the tasks. Thus, it is unlikely that the absence of preparation effects in the current 

experiments can be wholly explained by the relatively small number of trials and 

limited practice.  

With regard to Rogers and Monsell‘s (1995) preparation effect with tasks using 

different stimulus sets, it is important to note that, compared to experiments where tasks 

used the same stimulus set (i.e., when ‗A9‘ was used for both the letter and parity 

tasks), the sizes of the RT switch costs were smaller and the subsequent decline with 

increasing RSI was comparatively subtle. Also important is that Rogers and Monsell 

very explicitly instructed their participants to prepare for upcoming task switches ―as 

quickly as possible following the previous response‖ (p. 217) and assessed performance 

over many blocks spread across two days. One could argue that the parameters of the 

experiment produced a relatively subtle effect in response to considerable effort to force 

advanced preparation. With this in mind, perhaps the method used for the current 

research lacked the necessary power and control over how participants switched tasks 

(via specific instructions to prepare) to produce preparation effects. 

For the current experiments, the hypothesis that preparation effects would be 

observed rested on the assumption that, as was the case in Kray and Lindenberger 

(2000), participants would use the predictability of task sequences to anticipate the 

identity of the upcoming task. That is, participants would generate an internal task cue 

during the RSI that could be used to prepare. However, Koch (2003) argued that 

internally generated cues are functionally different from and comparatively weaker to 

external cues with regard to the processes they can initiate. It may be that in the case of 

the current experiments these internal cues were either ineffective or, considering the 

cognitive effort required to monitor task sequences, not even produced. Instead, 

participants may have relied on the stimulus (a perfect predictor of the task to be 

performed) to prompt task switches. Using a task set reconfiguration model of task 

switching, this type of strategy would indicate that on switch trials both the general task 

processes and task set switching (reconfiguration) processes were engaged after 

stimulus presentation (Meiran, 2000a; Rubinstein et al., 2001). Participants did not take 

advantage of long RSIs to initiate reconfiguration processes in advance—the RSI was 
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wasted. This explanation sits well with Altmann‘s (2004b) claim that if the preparation 

effect was the product of controlled reconfiguration, this process was inherently ―lazy‖ 

(p. 160). 

 If, rather than using internally generated task cues based on the predictability of 

task sequences, participants used the stimuli themselves as task cues, the results 

reported in this chapter are consistent with what would be predicted using the Cognitive 

Control Model (CCM, Altmann & Gray, 2008). The CCM model posits that preparation 

effects occur because longer CSIs allow for more cycles of activation to be applied to 

the online task set prior to stimulus presentation, decreasing RTs (particularly on switch 

trials). Thus when stimuli are acting as cues, the length of the RSI has no impact on the 

time taken to activate a task set to a level where it can direct behaviour to produce 

appropriate responses. 

Summary 

Experiments 4A, 4B, 5A, and 5B produced evidence consistent with practice 

effects but not preparation effects with a recognition task and a magnitude task. The 

experiments used more naturalistic conditions—tasks with different stimulus sets and 

no external cues or explicit preparation instructions. The observation of similar sized 

practice effects for the short and long RSIs provided evidence that task set 

reconfiguration/activation was stimulus-driven as opposed to endogenously controlled. 

Likewise, the failure to observe significant preparation effects suggests that participants 

did not use the time between trials to prepare for upcoming task switches. Future 

research should attempt to determine what conditions must be met in order for 

participants to use a RSI to prepare in advance of stimulus presentation when tasks use 

different stimulus sets.  
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Chapter Nine 

General Discussion 

 

In his review of task switching, Logan (2003) noted that in order to advance task 

switching theory, new methods and new tasks needed to be used so as to gather ―many 

examples of how tasks are controlled to learn what is general and what is not‖ (p. 48). 

Toward achieving this goal, this thesis extended the work of Jones et al. (2011) by 

examining task switching effects with a recognition memory task. Seven experiments 

explored the costs associated with switching between a recognition task and a 

magnitude task. Beyond my interest in the costs to recognition memory performance, 

the recognition and magnitude tasks were selected because they had limited stimulus-

response (S-R) overlap and were trial unique (i.e., no stimulus repetition at test). The 

unique characteristics of the tasks and the methods used to examine task switching costs 

produced a series of novel experiments that tested the boundaries of task switching 

effects.  

Key Findings 

There were four key findings in this thesis. First, there were RT and accuracy 

switch effects. When participants switched from one task (e.g., the magnitude task) to 

another task (e.g., the recognition task) their responses were consistently slower and 

often less accurate relative to that when no task switch occurred. Second, the switch 

effect on recognition accuracy did not differ for deeply or shallowly encoded words, 

suggesting that the accuracy switch effects did not reflect a specific deficit to 

consciously controlled recollection processes. Third, characteristics of the switch effect 

changed as a function of experience within the experiment—there was evidence of 

practice effects. Finally, there was no evidence of advanced preparation. Providing long 

RSIs or sequence cues did not decrease the size of the RT switch effects.  

Task switching effects. 

Table 9.1 shows the RT switch costs (switch RT – repetition RT) and accuracy 

switch costs (repetition accuracy – switch accuracy) of Experiments 1 – 5B. RT switch 

effects were significant for all experiments. Switching from the recognition task to the 

magnitude task (or vice versa) required a change in the ‗online‘ task set, which took 
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time to complete. While this result might seem unsurprising to the reader based on their 

own ‗real life‘ experience and is consistent with some previous studies (Rogers & 

Monsell, 1995), it is important to acknowledge that the observation of switch effects in 

the absence of S-R overlap is inconsistent with some early experiments (e.g., Allport et 

al., 1994; Jersild, 1927; Spector & Biederman, 1976). Nonetheless, the finding is 

consistent with the related interruptions literature, where significant interruption effects 

have been reported for tasks that use different stimuli (e.g., Altmann & Trafton, 2007; 

Gillie & Broadbent, 1989, Trafton et al. 2003).  

The size of the RT switch cost ranged from 37 ms to 366 ms, and was generally 

larger for the recognition task than that for the magnitude task. With the exception of 

Experiment 1, the RT switch cost for each task remained fairly consistent across 

experiments. The larger RT switch cost for the recognition task in Experiment 1 likely  

 

Table 9.1. 

Summary of Accuracy and RT Switch Costs for the Recognition and Magnitude 

Tasks Across Experiments 1 – 5B.  

Experiment 
 

Recognition 
 

Magnitude 

 
N 

 
Accuracy RT 

 
Accuracy RT 

1 96 
 

0.02 
 

366 ** 
     

2 32 
 

0.07 * 132 ** 
     

3 120 
 

0.08 ** 137 ** 
 

0.06 ** 49 ** 

4A 32 
 

0.09 ** 104 ** 
 

0.05 * 37 ** 

4B 32 
 

0.04 # 
87 ** 

 
0.02 # 

60 ** 

5A 32 
 

0.04 # 
122 ** 

 
0.05 * 50 ** 

5B 64 
 

0.05 * 115 ** 
 

0.03 ** 54 ** 

Notes: #  p < 0.10. * p < 0.05.  ** p < 0.01. The RT switch effect is represented as a 

cost in ms. (switch RT – repetition RT). The accuracy switch effect is represented as a 

cost in proportion correct (Repetition – Switch). Experiments 1 and 2 did not analyse 

magnitude task performance, therefore these data were not included in this table. 

Experiment 1 is collapsed across all three run lengths as none of these conditions 

differed significantly. Likewise, Experiment 4 is collapsed across the visual cue 

conditions.  
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reflected that this experiment did not use a response delay or response deadline. The 

task differences in RT switch cost were consistent with a reconfiguration-based task 

switching account, with the relatively high long-term memory retrieval demands of the 

recognition task producing larger RT switch costs than that of the magnitude task (e.g., 

Mayr & Kliegl, 2000). Alternatively, the larger sized RT switch cost for the recognition 

task could reflect that word stimuli are encountered frequently in everyday life and are 

associated with other tasks such as reading. By contrast, the dot arrays were relatively 

novel and were unlikely to be associated with alternative tasks. The magnitude task may 

have required less activation than the recognition task to overcome any latent competing 

task sets, thus producing faster RTs on switch trials than that for the recognition task 

(see Altmann & Gray, 2008). 

Given that this thesis used relatively novel tasks with limited S-R overlap, it is 

difficult to make direct comparisons to earlier research regarding the size of the RT 

switch effect. One potential point of comparison in the literature is Rogers and 

Monsell‘s (1995) fourth experiment, which used stimuli with limited S-R overlap for 

each task (e.g., ‗#9‘ for parity and ‗A#‘ for consonant/vowel decisions).
 15

 The RT 

switch costs for the magnitude task used in the current experiments were similar to the 

costs reported in Rogers and Monsell (43 – 67 ms, depending on RSI). By contrast, the 

RT switch costs for the recognition task used in the current experiments were larger 

than the costs reported in Rogers and Monsell. This likely reflects the higher long term 

memory retrieval demands (and possibly latent interference) for the recognition task 

than that for the parity and letter tasks in Rogers and Monsell.  

With regard to the recognition RT switch effects, comparisons should also be 

made to previous task switching and interruptions literature that has utilised recognition 

memory tasks. The recognition task RT switch effects reported in this thesis were 

considerably smaller than those reported by Mayr and Kliegl (2000) when participants 

switched between two memory tasks using the same stimulus sets. By contrast, the 

recognition task RT switch effects reported in this thesis were very similar to those 

reported by Werkle-Bergner et al. (2005) who also used the same stimulus set for both 

tasks. When different stimulus sets were used for both tasks, as was the case in Jones et 

al. (2011), there was again some inconsistency. The recognition task RT switch effects 

                                                 
15

 The mean RTs for Rogers and Monsell‘s (1995) tasks were slightly faster (M = 630 ms for repetition 

trials) than that for the recognition and magnitude tasks in this thesis. As such, this direct comparison of 

RT switch cost is made cautiously. 
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reported in this thesis were similar (albeit slightly larger) in size to those reported in 

Experiments 1A and 1B, but considerably smaller than those reported in Experiment 2 

(~314 ms).  Clearly, additional factors beyond S-R overlap must contribute to the size of 

the RT switch effect.  

Switch effects on accuracy. 

Although significant accuracy switch effects were less consistently reported, 

repetition trial accuracy was numerically higher than that for switch trial accuracy for 

both tasks across all experiments. A Wilcoxon signed ranks test conducted on mean 

repetition and switch trial accuracy for the recognition task produced a significant 

difference consistent with a task switching effect (Z = -2.32, p = 0.020). Switching tasks 

had a negative effect on participants‘ ability to discriminate between ‗old‘ and ‗new‘ 

words. These task switch effects on recognition accuracy were similar in size to those 

reported in Mayr and Kliegl (2000). They were also similar (but much more reliable) 

than the stimulus switch effects reported in Kavcic et al. (1999). This difference in 

reliability between the current research and Kavcic et al. likely reflects the more 

extensive/demanding processes required when switching tasks as well as stimulus sets. 

With regard to the accuracy switch effect on the magnitude task, a Wilcoxon signed 

ranks test conducted on the mean magnitude task accuracy across Experiments 3 – 5 

showed a significant difference between repetition and switch accuracy (Z = -2.03, p = 

0.042). When asked to respond whether a dot array contained more or less than a 

specified number of dots, participants‘ were less accurate following a task switch than 

following a task repetition. An important property of this research was that accuracy 

switch effects could not be attributed to applying the incorrect task rules to a stimulus: it 

was impossible to make a recognition memory response to an array of dots, just as it 

was impossible to make a magnitude response to a word stimulus. Therefore the errors 

produced on a task switch reflected occasions where participants failed to process the 

stimulus and determine the correct response based on the task rules. 

Switch effects on recognition processes. 

One aim of this thesis was to determine if specific memory processes were 

impaired when participants switched tasks. In particular, it examined whether task 

switching had a similar effect on recognition memory as divided attention, which affects 

the controlled recollection process more than the automatic familiarity process (Hicks & 

Marsh, 2000; Jacoby, 1991; Jones & Jacoby, 2001; Knott & Dewhurst, 2007a). 
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However, although Experiment 2 reported a significant level-of-processing effect—

higher accuracy for deeply encoded words than that for shallowly encoded words—the 

size of the effect remained unchanged for repetition and switch trials. That is, there was 

no evidence that switching tasks differentially affected the controlled recollection 

processes of recognition memory. A survey of hit and false alarm rates across all 

experiments (see Appendix B) provided little evidence that switching tasks affected 

participants‘ preferences or strategies toward responding old or new. Combined, these 

results suggest that, at least for the experiments presented in this thesis, the accuracy 

switch effect on recognition memory performance was more general and reflected an 

impaired ability to discriminate between the latent familiarity of ‗new‘ words and the 

familiarity of studied ‗old‘ words. It is worth noting that the response signal delay 

(RSD) used in this thesis was at the short end of the range that Boldini et al. (2004) 

reported level of processing effects (and thus a larger role for recollection). Thus it may 

be valuable to lengthen the RSD in future research to further encourage the use of 

recollection. 

An alternative (albeit unlikely) explanation for the accuracy switch effects was 

that the decrease in accuracy reflected a failure of memory for response sets/rules 

(Meiran, 2000a, 2000b). That is, one could argue that the decrease in accuracy on 

switch trials reflected a systematic failure to retrieve the correct motor responses for 

each decision (e.g., pressing ‗j‘ for an old response instead of ‗f‘) that was 

spontaneously corrected on the following repetition trial. However, as no feedback was 

provided between trials, episodes of spontaneous self-correction were likely rare. 

Rather, participants who retrieved the wrong task rules probably applied these rules 

across both trials in the run, producing lower overall accuracy rather than larger 

differences between switch and repetition accuracy. As persistent cases of response-to-

key reversal produced accuracy well below chance, these participants would have been 

identified and excluded from the dataset based on the strict performance criteria used 

for these studies. Finally, Jones et al. (2011) reported significant accuracy switch effects 

of a similar (if slightly larger) size even though spatially congruent response cues were 

presented below each word stimulus. Based on these observations, an explanation that 

identifies the periodic retrieval of incorrect response sets as the source of the 

recognition accuracy switch effect is unlikely to adequately explain the data. A similar 

argument can be made in the case of magnitude task performance. 
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Switch effects and practice. 

For the experiments reported in this thesis, participants had limited experience 

with the recognition and magnitude tasks before the first actual test began (both 

individually and switching between them). Participants‘ performance changed as they 

developed the skills necessary to quickly and efficiently switch tasks over the course of 

the experiment. The role of practice was first highlighted in Experiment 1, where mean 

RTs were plotted as a function of experiment third (see Figure 5.3, p. 53). A visual 

comparision of the three experimental conditions (where critical trials were switch 

trials) showed a larger decrease from the first to last third than that of the control 

condition (where critical trials were repetition trials). Thus, in addition to practice 

improving the overall speed of responding, Experiment 1 suggested that this 

improvement was larger for switch trials than that for repetition trials. This trend was 

confirmed statistically in Experiment 3, where recognition task RTs changed from the 

first to second test block. There was a substantial decrease in the difference between 

Position 1 and Position 2 RTs; the cost of switching tasks decreased with practice. 

Practice effects were examined more purposefully in Experiments 4A – 5B, 

where task switching effects were compared across test blocks using different RSIs. 

Collapsed across both tasks, RT switch costs decreased from the first to the second test 

block (although this difference was not statistically significant in Experiment 4A). 

Consistent with research that has compared task switching performance across test 

blocks (Jersild, 1927; Koch, 2005; Kramer et al., 1999, Kray & Lindenberger, 2000; 

Meiran, 1996) or test days (Monsell et al., 2003; Rogers & Monsell, 1995), experience 

with tasks and with switching between them generally produced more efficient task 

switching performance. Practice strengthened the association between a task cue (in this 

case, the dots or words) and the task set/rules, resulting in the faster retrieval and 

engaging of the online task set on switch trials (Meiran, 1996). With a few exceptions 

(e.g., Koch, 2005; Minear & Shar, 2008), task switching research has focused on 

performance after the skill of switching tasks has been developed and performance has 

stabilised. The results of the current thesis showed that early task switching trials that 

are usually excluded from analysis provided valuable information about task switching 

effects and the development of task switching skills. The benefit of experience built up 

quickly and produced fairly consistent evidence of practice effects.    
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Switch effects and advanced preparation.  

There is an abundance of evidence in the task switching literature that when task 

switching processes are engaged before the presentation of a stimulus, the size of task 

switching effects are decreased (see Altmann, 2004b). However, in the experiments 

reported in this thesis the RT switch costs remained relatively consistent across a 

number of experimental manipulations conducive to advanced preparation. The absence 

of evidence for advanced preparation has been discussed in detail in Chapters 7 and 8, 

and thus this section will focus on critical findings and conclusions. Key experimental 

properties such as the use of recognition and magnitude tasks, the absence of external 

cues, and the absence of explicit instructions to prepare were purposefully selected to 

test the boundaries of the preparation effect in naturalistic conditions. No difference in 

the size of the RT switch cost was reported across a variety of RSIs from 200 ms to 

2600 ms. Even when two RSIs were used in the practice test prior to the actual test 

(ensuring recent exposure to both RSIs) there was no indication that participants used 

the RSIs to prepare for a known change in task.  

Furthermore, the provision of a visual sequence cue in Experiment 3 had no 

effect on task switching performance or recovery from this task switch. In the Position 4 

sequence cue condition the visual sequence cue reminded participants that they would 

need to switch tasks on the next trial and there was sufficient time for this information 

to be used (Monsell, 2003; Rogers & Monsell, 1995). Regardless of these ‗ideal‘ 

conditions, the RT and accuracy switch effects were no different to the control condition 

where no sequence cue was provided. Considered together, the results of Experiments 3 

– 5B produced very convincing evidence that within the context of switching between a 

recognition task and a magnitude task, participants did not begin to switch tasks in 

advance of stimulus presentation. This lack of evidence for advanced preparation shows 

that task switching phenomena that have been established with simple tasks and highly 

controlled experimental settings may not generalise to less typical situations and tasks. 

In particular, the preparation effect may be as much (or more) a product of the tasks and 

methods we use to examine them as they are a product of natural task switching 

processes or strategies (see Altmann, 2004b for a similar suggestion).  

Interpreting the Findings: Task Set Reconfiguration  

The results of this thesis can be interpreted using established task switching 

theories. Of particular interest are reconfiguration-based accounts of task switching 
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(e.g., de Jong, 2000; Meiran, 2000a, 2000b; Rogers & Monsell, 1995; Rubinstein et al., 

2001; Sohn & Anderson, 2001). As was described in Chapter 3, there are a variety of 

different conceptual and computational reconfiguration models of task switching. For 

the sake of this discussion, the results will be interpreted within the model outlined by 

Rubinstein et al., where performance is modelled by two processes. The first—the 

executive control process—involves changing task goals and rules in working memory, 

which can be initiated (and sometimes completed) prior to stimulus presentation given 

suitable conditions. This process only occurs when the task switches. The second—the 

task process—involves identifying stimuli, selecting and executing a response, which 

can only be initiated after stimulus presentation. This process occurs on every trial, 

regardless of task transition. The absence of preparation effects and the null effect of the 

visual sequence cue suggests that in the case of the current experiments, at least the rule 

activation stage of the executive control process was engaged upon presentation of a 

stimulus—it was exogenously triggered. Over time, the rule activation stage was 

engaged more quickly as the association between task stimuli (or stimulus type) and 

task sets were strengthened, thus producing the practice effects reported in Experiments 

3 – 5B. 

Prior research has shown that when task switches are predictable and task cues 

are absent, participants monitor tasks covertly to produce internally generated task cues 

(Baddeley et al., 2001; Emerson & Miyake, 2003, Miyake et al., 2004). These types of 

monitoring and task cue generation could be interpreted as functions of the goal setting 

stage of the executive control process. Interestingly, researchers have suggested that 

these types of internally generated cues, although sufficient to engage the goal setting 

stage, fail to engage the subsequent rule activation stage of reconfiguration that is 

essential for producing preparation effects (Koch, 2003). With this in mind, the absence 

of preparation effects in this thesis is insufficient evidence to completely rule out a role 

for endogenous engaging of the executive control process. When switching between the 

recognition and magnitude tasks, participants may have engaged the goal setting stage 

via internally generated task cues, but not the rule activation stage.    

Alternatively, both stages of the executive control process may have been 

initiated after stimulus presentation. Indeed, the novel characteristics of tasks and 

stimuli in this thesis may have made internal monitoring of task sequences unnecessary 

or even counterproductive. When the same stimuli are used for both tasks (as is typical 

in task switching experiments), producing a task-appropriate response requires that a 
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stimulus be processed and interpreted in conjunction with information about the task 

(see Arrington & Logan, 2003). With the exception of occasions when participants 

make use of task sequence predictability—as is possible in the alternating runs 

paradigm—this information is generally conveyed through the use of an external task 

cue. In the experiments of this thesis, as the recognition and magnitude tasks used 

different stimulus sets (i.e., words for the recognition task and dots for the magnitude 

task) the stimuli themselves could be used as reliable task cues. Very soon after 

presentation the basic features of a given stimulus could be used to accurately decipher 

the task to be performed on that trial. By contrast, internally generated cues may have 

required substantially more cognitive resources (e.g., maintaining task sequence and 

position within a run) and when these internal cues prompted a task switch they had the 

potential to produce errors (e.g., initiating a task switch prematurely). Just as 

performance in Experiment 3 suggested that participants chose to not use the visual 

sequence cue to prepare for task switches, it may be that participants also chose not to 

monitored the predictable task sequence for similar reasons. At the prospect of applying 

additional cognitive effort for very little payoff, participants may have chosen 

(implicitly or otherwise) to instead rely on the stimuli to guide them to switch or repeat 

tasks.  

Interpreting the Findings: Cognitive Control Model 

Despite the absence of external cues and a lack of interference due to the limited 

S-R overlap in the current experiments, the Cognitive Control Model (CCM) of task 

switching (Altmann & Gray, 2008) provides an interesting framework for interpreting 

the results of this thesis. As has been noted previously, the stimuli (or stimulus sets) 

used in this thesis can perform the role of task cues. Therefore, the process of applying 

activation to the online task set through successive encoding cycles could be initiated by 

the presentation of the stimulus. Indeed, the results reported in this thesis are largely 

congruent with key concepts of the model. From a CCM perspective, the failure to 

produce preparation effects and visual sequence cue effects indicates that any internally 

generated task cues that were produced prior to stimulus onset were not sufficient to 

initiate cycles of encoding/activation. With the stimulus itself acting as an explicit task 

cue, the duration of the RSI had no impact on the time taken to activate a new task set. 

The RTs reflected the amount of time between stimulus onset and when task set 

activation met threshold and an appropriate response could be selected and executed. By 
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extension, the RT switch cost reflected the difference in the amount of time/activation 

required for repetition and switch trials to reach this threshold.  

Drawing from evidence of run-length effects (e.g., Altmann, 2002; Altmann & 

Gray, 2002), CCM posits that task sets decay when they are not being used (or 

sampled). With this in mind, one could hypothesise that the longer it has been since the 

online task set was used (i.e., the longer the ‗offline‘ run length was) the more 

activation/encoding cycles should be required to attain threshold levels of activation. 

Thus the size of RT switch effects should decrease as run length increases. However, 

Monsell et al. (2003) reported no significant differences in the size of RT switch effects 

for their predictable 2-, 4- , and 8-trial runs, perhaps reflecting the opposing effects of 

run length on levels of interference from the offline task set and the extent of decay for 

the online task set on switch trial RTs.
 16

 By contrast, this thesis represented a case 

where there would be little interference from the offline task set, thus theoretically 

allowing one to isolate the contribution of run length to the decay of a task set. Despite 

this, the main effect of run length in Experiment 1—although in the hypothesised 

direction—was not significant. Furthermore, a cursory comparison of the size of RT 

switch effects for Experiment 3 (4-trial runs) and Experiments 2, 4, and 5 (2-trial runs) 

showed no overwhelming differences. Any effect of run length on the size of the RT 

switch effect was too subtle to be observed within the experimental conditions 

(particularly the relatively few trials) used in this thesis. It is worth noting that a 4-trial 

run length is still considerably shorter than the long run-lengths used in prior research 

(Altmann, 2002; Altmann & Gray, 2002, 2008; Monsell et al., 2003). Consequentially, 

further research with the magnitude and recognition tasks using more trials and longer 

run lengths may increase the likelihood of producing significant run length effects.   

When the lack of run length effect is considered in conjunction with the limited 

evidence of within-run slowing in Experiment 3, one could posit that the rate of decay 

for task sets may be particularly shallow. Altmann and Gray (2008) have argued that 

when run-lengths are short, decay functions are adjusted upwards (i.e., decay occurs 

more quickly) to decrease levels of interference and produce optimal performance. The 

experiments reported in this thesis may represent cases where decay rates were adjusted 

in the opposite direction: in response to limited interference between the magnitude and 

recognition tasks, the rate of decay may have been slowed so as to optimise 
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 Research on run length effects by Altmann (2002) and Altmann and Gray (2002) did not report 

analyses of the size of the RT switch effect as a function of the length of the preceding run. 
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performance. As an additional benefit, a slower rate of decay would maintain a higher 

level of task set activation for longer, decreasing the potential for interference from 

latent task sets associated with a stimulus type. A higher level of activation (for Task B) 

going into a task switch (from Task A to Task B) would produce smaller RT switch 

effects. With this in mind, a slower decay rate may also provide a good theoretical 

explanation for the smaller (or absent) task switching effects typically reported in 

experiments where tasks have limited S-R overlap compared to when there is S-R 

overlap (Allport et al., 1994; Jersild, 1927; Rogers & Monsell, 1995; Spector & 

Biederman, 1976). However, this interpretation of task switching performance in the 

current experiments using CCM is clearly post hoc, and would require further evidence 

for confirmation. Examining performance over longer run lengths and comparing the 

gradient of slowing (if observed) to that reported when tasks share stimulus sets would 

be a first step toward confirming the role of changes in decay rates for experiments that 

use tasks that do not share stimulus sets. 

Alternative Sources of Switch Cost 

It was noted in the introduction that one of the advantages of using two tasks 

with little S-R overlap was that it limited interference from the offline task set. As such, 

any observed RT switch cost was likely to reflect the additional time required to 

reconfigure or activate a task set on switch trials relative to repetition trials. The 

contribution of time to resolve task conflicts and/or proactive interference was likely 

limited. However, the nature of the recognition memory task did create a potential 

(although unlikely) source of negative priming (see Allport & Wylie, 2000; Wylie & 

Allport, 2000). In Experiments 2 and 4A – 5B, participants made perceptual and/or 

semantic judgements to words during the study phases. These task sets (e.g., ‗does this 

word represent a living or non-living thing?‘) may have been un-intentionally elicited 

when words were presented during the test phase, producing longer RTs, particularly on 

switch trials. However, there are reasons to discount negative priming as a substantial 

source of RT switch cost in this thesis. Allport and Wylie (2000) have shown that this 

type of negative priming is largely item-specific on the switch trial, and therefore 

should have produced larger RT switch costs for old words than that for new words 

(which were not encountered during the study phase). However, there were no 

differences in the size of the RT switch cost for ‗old‘ and ‗new‘ words in any 

experiment reported in this thesis, suggesting that negative priming had no impact on 
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task switching performance for the recognition task. Finally, if negative priming 

contributed to recognition task RT switch costs, then one would expect that the RT 

switch cost would be smaller when semantic/perceptual judgements were not made in 

study phases (e.g., Experiments 1 and 3). This was not the case.  

Challenging Definitions of Task Switching     

Influenced by early reports that switching between simple tasks with different 

stimulus sets (and limited S-R overlap) did not produce task switching effects (Allport 

et al., 1994; Jersild, 1927; Spector & Biederman, 1976), many definitions of task 

switching (and task switching effects) have explicitly or implicitly stated that this 

phenomenon is limited to situations where tasks share a stimulus set (e.g., Altmann, 

2006; Arbuthnott & Frank, 2000; Dreisbach & Haider, 2008; Monsell, 2003; Wylie & 

Allport, 2000). As a consequence, some researchers may view the results of this thesis 

and challenge the applicability of the terms ‗task switching‘ and ‗task switching 

effects.‘ In response to this potential claim I present two arguments for the results 

reported in this thesis representing task switching effects. The first response appeals to 

the desire for parsimony in explanations of cognitive processes and suggests that the 

results reported in this thesis illustrate a key component of task switching effects. The 

second response highlights a contradiction in the literature between the ‗real life‘ and 

experimental definitions/examples of task switching effects, and shows how the current 

research provides a first step toward bridging these two definitions to produce 

consistent task switching effects.   

As has been established, in order to accurately perform a task, participants must 

use the appropriate task rules (i.e., a task set) to identify the relevant features of a 

stimulus and use them to formulate a task-appropriate response. When the task changes 

the rules used to direct behaviour must do so as well, regardless of whether tasks share 

stimulus sets. It seems logical (and parsimonious) to propose that the basic processes of 

changing task set would be the same regardless of S-R overlap. What may differ is the 

timing of these processes (pre- or post-stimulus) and whether additional mechanisms are 

needed to resolve instances of conflict or interference. Given the evidence that task 

switching processes were largely stimulus-driven, the current thesis provides a clear 

picture of the time and cognitive effort required to switch task sets without the influence 

of additional costs due to interference (e.g., Allport et al., 1994; Altmann, 2002; 

Altmann & Gray, 2002, 2008), inhibition (e.g., Arbuthnott & Franks, 2000; Mayr & 
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Keele, 2000), or negative priming (e.g., Allport & Wylie, 2000). The RT and accuracy 

performance costs of switching between tasks with limited S-R overlap should not be 

discounted simply because the contribution of additional components was negligible. 

Rather, their value as a relatively pure measure of an important component of task 

switching effects needs to be utilised to further our understanding of task switching. 

Indeed, the results produced by this type of experimental design may provide an 

excellent linking point between task switching theories and interruption theories (e.g., 

Altmann & Trafton, 2002, 2007) which arguably share many components.  

An interesting contradiction has developed in the field of task switching research 

between the ‗real life‘ descriptions of task switching used when introducing the concept, 

and the definitions (and limitations) of task switching as operationalized from an 

experimental perspective.  As noted previously, many definitions of task switching 

effects have emphasised the use of a single stimulus set (and thus, high S-R overlap) for 

all tasks in an experiment. Indeed, modern researchers have largely accepted the 

assumption that tasks that use different stimulus sets represent a ―boundary condition‖ – 

a point at which task switching effects will not be observed (Wylie & Allport, 2000, p. 

213). Yet despite this perceived limitation of the task switching effect, researchers 

continue to use examples such as switching between writing a manuscript and talking to 

a student who drops by the office to illustrate the everyday pervasiveness of task 

switching effects (see Altmann, 2004a; Logan, 2003; Monsell, 2003; Vandierendonck et 

al., 2010 for examples).
17

 Just as there are few people who would deny that this ‗real 

life‘ example describes two tasks with two different stimuli, there are few people that 

would deny the assertion that performance immediately after switching tasks is slower 

and often more error-prone. The results reported in this thesis provided convincing 

evidence that experimental methods of examining task switching can produce 

significant switching effects when two tasks do not share stimulus sets. With this (and 

early comments about parsimony) in mind, I argue that the experimental definition of 

task switching should not be limited to situations where there is S-R overlap. Rather, 

these definitions should be more expansive and reflexive, accepting that many 

experimental factors can influence the occurrence (and extent) of task switching effects.  

Alternative reasons for the null effects reported by early researchers using tasks 

with different stimulus sets (Jersild, 1927; Spector & Biederman, 1976) should be 
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 It is also worth noting that these types of examples bear more similarities with interruptions than they 

do with task switching, particularly from an experimental context.  
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considered. For example, both Jersild and Spector and Biederman used self-paced tests 

where participants progressed through mixed blocks of relatively simple tasks. It is 

worth considering that the complexity of the task set and the short run length (1-trial 

runs) may have made it possible to maintain both task sets in working memory. 

Furthermore, without control over RSIs (these tests were self-paced) the appropriate 

task set may have been fully engaged prior to stimulus onset, further reducing mixing 

costs. Some researchers have maintained that the residual component of the RT switch 

effect reflects the contribution of task set inhibition when switching away from a task 

that was likely to interfere with the performance of the next task (Mayr & Keele, 2000). 

In the absence of such potential interference (and thus, inhibition) and with sufficient 

time and information to prepare for a known change in tasks, it is not surprising that the 

size of mixing costs reported in Jersild and in Spector and Biederman were limited. 

Critically, this does not mean that a change in task sets did not occur or did not require 

some cognitive resources, but that this process was not effectively captured by the 

variable chosen to measure it (i.e., RTs and mixing costs). 

Future Directions 

A question that remains to be answered is whether the stimulus-driven nature of 

task switching in this thesis was the product of the experimental design, the choice of 

secondary task, or the unique qualities of the recognition memory task (or any 

combination of these factors). Clarifying this issue will require additional research 

focused not only on the tasks utilised, but also the method used to examine task 

switching effects. One line of enquiry would be to systematically manipulate the level 

of S-R overlap between the recognition task and the secondary task. A greater level of 

overlap could be achieved by presenting a word and dot compound for each trial and 

instructing participants to switch between responding to different elements within this 

compound stimulus (see Paulitzki, Risko, Oakman, & Stolz, 2008 for an example of this 

compound stimulus method). In this case, the two tasks (and task sets) will remain the 

same but the value of an individual stimulus as a task cue will be diminished, perhaps 

forcing participants to initiate the process(es) of switching tasks in advance of stimulus 

onset. However, it is worth noting that this type of change would introduce a level of 

interference that was not present in the experiments of this thesis that could impact not 

only the size of RT and accuracy switch effects, but the components that make up these 

effects. Alternatively, switch effects to recognition memory could be examined using an 
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explicit task cuing paradigm. With this change, the two tasks (and limited S-R overlap) 

could be maintained, but by removing the predictable task transitions and providing 

explicit external cues in advance of stimulus onset, participants may be more likely to 

prepare (Altmann, 2004b; Koch, 2003). Comparing the products of these two extensions 

would provide valuable insight into the relative roles of interference and strong cues in 

encouraging advanced preparation when switching tasks, while maintaining many of the 

novel characteristics of the experiments presented in this thesis.  

On a related topic, the results of this thesis have also highlighted a need to 

clarify the role of internal monitoring of predictable sequences when switching tasks, 

both in general and when participants are switching between tasks with limited S-R 

overlap. The arguments for and against the proposal that participants actively monitored 

the predictable task sequence were presented earlier in this chapter, but remain 

unresolved. A starting point for clarifying the role of internally generated task cues 

produced by monitoring predictable task sequences would be to use articulatory 

suppression (e.g., Baddeley et al. 2001; Emerson & Miyake, 2003) during the RSI to 

deliberately limit the use of these internal task cues and to compare the size of task 

switching effects to those reported without articulatory suppression. These types of 

manipulations, administered across a variety of tasks and S-R mappings, may shed light 

on the role of internal monitoring and experimental conditions that mediate its use. 

Conclusions 

In the seven experiments reported in this thesis participants switched between a 

recognition and magnitude task in predictable 1-, 2-, or 4-trial runs. The use of tasks 

that do not share S-R overlap, and in particular the use of a recognition memory task, 

represents a considerable step toward the ‗real life‘ tasks used in the interruptions 

literature. Participants‘ performance on task switch trials was consistently slower and 

often less accurate than that for task repetition trials, illustrating typical task switching 

effects. Furthermore, the accuracy switch effects on recognition memory shows that 

frequent switching between tasks can have a negative effect on episodic memory in 

addition to the accepted negative effect on general productivity/speed.  

However, this cost of switching tasks was largely unaffected by run length, the 

use of sequence cues, or the length of the RSI. The results of this thesis provide strong 

evidence that significant task switching effects can be observed when two tasks do not 

share stimulus sets and have a limited S-R overlap. Participants‘ task switching 
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performance can be readily interpreted within established task switching theories, and 

represents an occasion where the processes involved in switching tasks were largely 

engaged after stimulus presentation (i.e., task switching was exogenously driven). The 

experiments reported in this thesis represent an important step towards expanding the 

scope of experimental research into task switching. They emphasise the importance of a 

variety of experimental characteristics (i.e., tasks, S-R overlap, practice) in determining 

how the processes involved in switching tasks are manifested in performance 

(particularly RTs). Future research will help clarify the roles of these and other 

experimental characteristics and will help develop more refined definitions of the 

mechanics and costs of switching tasks.   
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Appendix A 

Stimuli 

 

Table A.1 

Critical Words from Experiment 1. 

Word KF Letters Syll. 

 

Word KF Letters Syll. 

ADDRESS 77 7 2 

 

FAILURE 89 7 2 

ANGLE 51 5 2 

 

KITCHEN 90 7 2 

APPEAL 62 6 2 

 

LAGOONS 50 7 2 

BALANCE 90 7 2 

 

LEAGUE 69 6 1 

BOTTOM 88 6 2 

 

MESSAGE 64 7 2 

CAPTAIN 85 7 2 

 

MISSION 78 7 2 

CAREER 67 6 2 

 

PLEASURE 62 8 2 

COMMAND 72 7 2 

 

PROJECT 93 7 2 

COMPLEX 91 7 2 

 

RELIEF 66 6 2 

CONSTANT 71 8 2 

 

SESSION 80 7 2 

COVER 88 5 2 

 

SILENCE 52 7 2 

CREDIT 64 6 2 

 

STATUS 97 6 2 

DEAFEN 70 6 2 

 

SYMBOL 54 6 2 

DETAIL 72 6 2 

 

VALLEY 73 6 2 

DINNER 91 6 2   WINDOW 119 6 2 

Note. KF = Kucera and Francis (1967) word frequency. Syll. = Syllables 
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Table A.2 

Filler and Buffer Words from Experiment 1. 

Word KF Letters Syll.   Word KF Letters Syll. 

ACCOUNT 117 7 2 

 

MARKET 155 6 2 

AMOUNT 172 6 2 

 

MARRIAGE 95 8 2 

AMULETS 133 7 3 

 

MASTER 72 6 2 

ARGUMENT 63 8 3 

 

MATERIAL 174 8 4 

ARTICLE 68 7 3 

 

MEMBER 137 6 2 

AUDIENCE 115 8 3 

 

MINIMUM 64 7 3 

BENEFIT 63 7 3 

 

MISTED 63 6 2 

BREATH 53 6 1 

 

MORESEL 93 7 2 

BURLESQUE 97 9 2 

 

MOTION 55 6 2 

CAPITAL 85 7 3 

 

NATION 139 6 2 

CASHEWS 64 7 2 

 

NATURE 191 6 2 

CHANCE 131 6 1 

 

NOBODY 74 6 3 

CHECK 88 5 1 

 

NOVEL 59 5 2 

CONCERN 98 7 2 

 

OPINION 96 7 3 

CONFLICT 52 8 2 

 

PEACE 198 5 1 

CONSTRICT 93 9 2 

 

PERFECT 58 7 2 

CONTORT 69 7 2 

 

PICTURE 162 7 2 

CONTRACT 60 8 2 

 

PLANT 125 5 1 

CORNET 76 6 2 

 

PLAYER 51 6 2 

COUPLE 122 6 2 

 

PORTION 62 7 3 

CULTURE 58 7 2 

 

PRICE 108 5 1 

DANCE 90 5 1 

 

PROPERTY 156 8 3 

DANGER 70 6 2 

 

REACTION 124 8 2 

DEGREE 125 6 2 

 

RESPECT 125 7 2 

DESIGN 114 6 2 

 

RIVER 165 5 2 
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Word KF Letters Syll.   Word KF Letters Syll. 

DESIRE 79 6 2 

 

SCALE 60 5 1 

DISEASE 53 7 2 

 

SCAMPER 75 7 2 

DISTANCE 108 8 2 

 

SCENE 106 5 1 

DISTRICT 135 8 2 

 

SEASON 105 6 2 

DIVISION 107 8 3 

 

SECRET 78 6 2 

EFFORT 145 6 2 

 

SERIES 130 6 2 

ENGINE 50 6 2 

 

SHAPE 85 5 1 

ENTRENCH 63 8 2 

 

SLEEP 65 5 1 

EXPENSE 50 7 2 

 

SOURCE 94 6 1 

FLESH 52 5 1 

 

SPACE 184 5 1 

FLIGHT 46 6 1 

 

SPEED 83 5 1 

FORWARD 115 7 2 

 

STAFF 113 5 1 

FRAME 74 5 1 

 

STAPLER 76 7 3 

FRIEND 133 6 1 

 

STATION 105 7 2 

GARISH 117 6 2 

 

STEEPLE 86 7 2 

GROUND 186 6 1 

 

STORY 153 5 2 

GROWTH 155 6 1 

 

SUPPLY 102 6 2 

HALLOW 68 6 2 

 

SURFACE 200 7 2 

IMAGE 119 5 2 

 

TASTE 59 5 1 

INDUSTRY 171 8 3 

 

THEME 55 5 1 

INSTITUTE 50 9 3 

 

THEORY 129 6 2 

ISLAND 167 6 2 

 

TRADE 143 5 1 

KNIFE 76 5 1 

 

TRUCK 57 5 1 

LIBRARY 62 7 3 

 

VICTORY 61 7 3 

LINSEED 132 7 2 

 

WEIGHT 91 6 1 

MACHINE 103 7 2   WHEEL 56 5 1 

Note. KF = Kucera and Francis (1967) word frequency. Syll. = Syllables 
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Table A.3 

Critical Words from Experiment 2 and 4A – 5B. 

Word KF Syll. Letters Imagery Concrete 

ANCHOR 15 2 6 6.5 6.3 

ANGEL 18 2 5 5.9 4.0 

APPLE 9 2 5 6.7 6.9 

ARMOR 4 2 5 5.5 5.6 

ARROW 14 2 5 6.4 6.8 

AUTUMN 22 2 6 6.3 5.4 

BANNER 8 2 6 5.8 5.8 

BARGAIN 7 2 7 4.2 3.9 

BARREL 24 2 6 5.6 6.8 

BASIN 7 2 5 5.3 6.5 

BEAVER 3 2 6 6.4 6.9 

BEGGAR 2 2 6 6.1 5.8 

BERRY 9 2 5 5.5 6.6 

BOUNDARY 16 2 8 4.8 5.0 

BUBBLE 12 2 6 6.1 6.2 

BUSHEL 1 2 6 5.4 6.4 

BUTCHER 8 2 7 6.0 6.7 

BUTTON 10 2 6 6.3 6.8 

CABIN 23 2 5 6.5 6.5 

CABLE 7 2 5 5.0 6.4 

CANDY 16 2 5 6.3 6.7 

CANNON 7 2 6 6.5 6.4 

CANOE 7 2 5 6.4 6.8 

CANVAS 19 2 6 5.1 6.2 

CARBON 30 2 6 4.5 5.9 
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Word KF Syll. Letters Imagery Concrete 

CARRIAGE 11 2 8 6.2 6.3 

CASTLE 7 2 6 6.7 6.7 

CHERRY 6 2 6 6.3 6.8 

CHIMNEY 7 2 7 6.2 6.7 

CIRCUIT 23 2 7 3.8 4.7 

CLOTHING 20 2 8 6.2 6.4 

CLUSTER 13 2 7 4.3 4.5 

COLLAR 17 2 6 6.0 6.3 

COMPASS 13 2 7 5.8 6.6 

COMPOUND 11 2 8 2.7 3.3 

COMRADE 4 2 7 4.2 5.2 

CREATURE 15 2 8 4.4 5.0 

CRYSTAL 23 2 7 5.8 6.1 

DAYLIGHT 15 2 8 6.5 6.2 

DEALER 25 2 6 4.2 5.7 

DEVIL 25 2 5 5.8 3.9 

DOORWAY 15 2 7 5.8 6.7 

DRAGON 1 2 6 6.2 5.9 

EAGLE 5 2 5 6.3 6.9 

ELBOW 10 2 5 6.0 6.8 

ELDER 15 2 5 5.2 5.1 

FARMER 23 2 6 6.2 6.6 

FEATHER 6 2 7 6.2 6.5 

FLAVOUR 16 2 7 3.5 4.6 

FOREHEAD 16 2 8 6.3 6.9 

FOUNTAIN 18 2 8 6.4 6.6 
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Word KF Syll. Letters Imagery Concrete 

GARMENT 6 2 7 5.4 6.6 

GENIUS 23 2 6 4.9 3.8 

GODDESS 3 2 7 4.6 4.0 

HAMMER 9 2 6 6.5 6.8 

HELMET 1 2 6 5.9 6.8 

HUNTER 18 2 6 6.1 6.3 

INSECT 14 2 6 6.3 6.7 

KEEPER 3 2 6 3.3 5.3 

KINGDOM 26 2 7 4.8 4.8 

KITTEN 5 2 6 6.4 7.0 

LAYER 12 2 5 3.8 4.6 

LEMON 18 2 5 6.5 6.8 

LINEN 6 2 5 6.1 6.6 

MADAM 2 2 5 6.5 5.7 

MAIDEN 2 2 6 5.4 5.7 

MEADOW 17 2 6 6.1 5.9 

MERCHANT 20 2 8 5.1 6.2 

MIRROR 27 2 6 6.4 6.7 

MISTRESS 5 2 8 5.2 5.7 

MONARCH 3 2 7 5.1 5.9 

MONKEY 9 2 6 6.5 6.9 

MONSTER 6 2 7 6.0 5.3 

NEPHEW 9 2 6 5.0 6.4 

ODOUR 14 2 5 5.1 5.0 

OLIVE 5 2 5 6.1 6.8 

ONION 15 2 5 6.1 6.7 
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Word KF Syll. Letters Imagery Concrete 

ORANGE 23 2 6 6.6 6.1 

ORCHARD 3 2 7 6.4 6.4 

ORGAN 12 2 5 5.9 6.6 

OUTLINE 12 2 7 3.9 4.6 

OYSTER 6 2 6 5.8 6.8 

PAINTER 21 2 7 6.0 6.7 

PARCEL 1 2 6 6.3 6.5 

PARENT 15 2 6 6.3 6.2 

PEPPER 13 2 6 6.3 6.8 

PIGEON 3 2 6 6.4 6.9 

PILLOW 8 2 6 6.5 6.6 

PISTOL 27 2 6 6.1 3.8 

PLANET 21 2 6 6.1 6.1 

PRINCESS 10 2 8 6.0 6.0 

PUPIL 20 2 5 5.8 6.2 

PUZZLE 10 2 6 5.5 5.5 

RABBIT 11 2 6 6.6 7.0 

RAILWAY 12 2 7 6.5 6.5 

RECEIPT 4 2 7 4.9 6.0 

RIBBON 12 2 6 5.8 6.5 

RIDER 16 2 5 5.3 6.2 

ROBBER 2 2 6 5.8 6.0 

ROBIN 2 2 5 6.6 6.7 

SAILOR 5 2 6 6.3 6.6 

SALAD 9 2 5 6.3 6.5 

SANDWICH 10 2 8 6.7 6.7 
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Word KF Syll. Letters Imagery Concrete 

SCHOLAR 15 2 7 5.5 6.3 

SERVANT 19 2 7 5.2 6.0 

SHEPHERD 3 2 8 5.8 6.5 

SHERIFF 20 2 7 6.3 6.8 

SHIPPING 19 2 8 3.8 4.5 

SINGER 10 2 6 4.2 3.3 

SPARROW 0 2 7 5.9 6.8 

SPIDER 2 2 6 6.8 7.0 

SQUIRREL 1 2 8 6.3 6.9 

STANZA 0 2 6 3.6 5.4 

STATION 1.5 2 7 5.7 6.0 

STEAMER 1 2 7 5.0 6.4 

STOCKING 1 2 8 5.9 6.5 

SULPHUR 3 2 7 4.1 6.5 

TIGER 7 2 5 6.6 7.0 

TRAITOR 2 2 7 4.2 4.8 

TURKEY 9 2 6 6.6 6.8 

TWILIGHT 4 2 8 5.3 4.8 

VAPOR 12 2 5 5.0 4.6 

VELVET 4 2 6 6.2 6.3 

VICTIM 27 2 6 5.5 5.4 

WIDOW 26 2 5 5.4 6.3 

WILLOW 9 2 6 6.1 5.9 

WITNESS 28 2 7 4.4 5.1 

WORKER 30 2 6 5.4 6.3 

Note. KF = Kucera and Francis (1967) word frequency. Syll. = Syllables. Word imagery 

and concreteness from the Toronto Word Pool (Friendly et al., 1982) 
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Table A.4 

Buffer and Filler Words from Experiment 2 and 4A – 5B. 

Word KF Syll. Letters Imagery Concrete 

AFFAIR 33 2 6 5.3 3.7 

ARRAY 11 2 5 3.0 2.9 

CANAL 3 2 5 5.4 6.4 

COLONEL 37 2 7 4.5 6.4 

CONQUEST 9 2 8 4.6 4.7 

DIAMOND 8 2 7 6.6 6.6 

FINGER 40 2 6 6.3 6.9 

HARBOUR 37 2 7 6.2 6.4 

HARNESS 10 2 7 5.5 6.2 

INSTANT 38 2 7 3.0 3.0 

JEWEL 1 1 5 6.0 6.4 

MOISTURE 10 2 8 5.3 5.5 

OVEN 7 2 4 6.0 6.9 

PARTNER 32 2 7 5.4 5.7 

PATENT 35 2 6 2.3 4.7 

PROVINCE 15 2 8 4.5 5.3 

SISTER 38 2 6 1.6 2.5 

SLIPPER 3 2 7 4.8 5.3 

SOLDIER 39 2 7 4.4 4.6 

STOMACH 37 2 7 5.8 6.6 

TUNNEL 10 2 6 6.3 6.4 

WORSHIP 36 2 7 4.7 2.8 

Note. KF = Kucera and Francis (1967) word frequency. Syll. = Syllables. Word imagery 

and concreteness from the Toronto Word Pool (Friendly et al., 1982) 
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Table A.5 

Critical Words from Experiment 3. 

Word KF Letter Syll.   Word KF Letter Syll. 

ACCOUNT 117 7 2 

 

LIBRARY 62 7 3 

ADDITION 142 8 3 

 

LINSEED 132 7 2 

ADDRESS 77 7 2 

 

LOCATION 63 8 3 

AGENCY 56 6 3 

 

MACHINE 103 7 2 

AMOUNT 172 6 2 

 

MARKET 155 6 2 

AMULETS 133 7 3 

 

MARRIAGE 95 8 2 

APPEAL 62 6 2 

 

MASTER 72 6 2 

ARTICLE 68 7 3 

 

MATERIAL 174 8 4 

ARTISTS 55 7 2 

 

MEMBER 137 6 2 

AUDIENCE 115 8 3 

 

MESSAGE 64 7 2 

BALANCE 90 7 2 

 

METAL 61 5 2 

BENEFIT 63 7 3 

 

METHOD 142 6 2 

BOTTOM 88 6 2 

 

MISSION 78 7 2 

CAPITAL 85 7 3 

 

MISTED 63 6 2 

CAPTAIN 85 7 2 

 

MORSEL 93 6 2 

CAREER 67 6 2 

 

NATION 139 6 2 

CASHEWS 64 7 2 

 

NATURE 191 6 2 

CHAPTER 74 7 2 

 

NOBODY 74 6 3 

CHECK 88 5 1 

 

OFFICER 101 7 3 

COFFEE 78 6 2 

 

OPINION 96 7 3 

COMMAND 72 7 2 

 

PATTERN 113 7 2 

COMPLEX 91 7 2 

 

PERCENT 53 7 2 

CONCERN 98 7 2 

 

PICTURE 162 7 3 

CONGRESS 152 8 2 

 

PLANT 125 5 1 

CONSTANT 71 8 2 

 

PLEASURE 62 8 2 
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Word KF Letter Syll.   Word KF Letter Syll. 

CONSTRICT 93 9 2 

 

PLENTY 55 6 2 

CONTORT 69 7 2 

 

PROJECT 93 7 2 

CONTRACT 60 8 2 

 

PROPERTY 156 8 3 

CORNET 76 6 2 

 

RAILROAD 58 8 2 

COUPLE 122 6 2 

 

REACTION 124 8 3 

COVER 88 5 2 

 

RELIEF 66 6 2 

CREDIT 64 6 2 

 

RESPECT 125 7 2 

DANCE 90 5 1 

 

RIVER 165 5 2 

DANGER 70 6 2 

 

SCALE 60 5 1 

DEAFEN 70 6 2 

 

SCAMPER 75 7 2 

DECISION 119 8 3 

 

SEASON 105 6 2 

DEGREE 125 6 2 

 

SECRET 78 6 2 

DESIGN 114 6 2 

 

SERIES 130 6 2 

DESIRE 79 6 3 

 

SESSION 80 7 2 

DETAIL 72 6 2 

 

SHAPE 85 5 1 

DINNER 91 6 2 

 

SLEEP 65 5 1 

DISTANCE 108 8 2 

 

SPACE 184 5 1 

DISTRICT 135 8 2 

 

SPIRIT 182 6 2 

DIVISION 107 8 3 

 

STAPLER 76 7 3 

EFFORT 145 6 2 

 

STATION 105 7 2 

ENTRENCH 63 8 2 

 

STATUS 97 6 2 

EVENING 133 7 3 

 

STEEPLE 86 7 2 

EXTENT 110 6 2 

 

STORY 153 5 2 

FACULTY 74 7 3 

 

STYLE 98 5 2 

FAILURE 89 7 2 

 

SUCCESS 93 7 2 

FOREST 66 6 2 

 

SUPPLY 102 6 2 
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Word KF Letter Syll.   Word KF Letter Syll. 

FORWARD 115 7 2 

 

SUPREME 51 7 2 

FRAME 74 5 1 

 

SURFACE 200 7 2 

GOVERNOR 83 8 3 

 

TASTE 59 5 1 

HALLOW 68 6 2 

 

THEORY 129 6 2 

HOTEL 126 5 2 

 

UNCLE 57 5 2 

IMAGE 119 5 2 

 

VALLEY 73 6 2 

INDUSTRY 171 8 3 

 

VERSION 53 7 2 

ISLAND 167 6 2 

 

VILLAGE 72 7 2 

KITCHEN 90 7 2 

 

VOLUME 135 6 2 

KNIFE 76 5 1 

 

WARREN 51 6 2 

LANGUAGE 109 8 3 

 

WEAPONS 61 7 2 

LEAGUE 69 6 1 

 

WEIGHT 91 6 1 

LETTERS 115 7 2   WINDOW 119 6 2 

Note. KF = Kucera and Francis (1967) word frequency. Syll. = Syllables 
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Table A.6 

Buffer and Filler Words from Experiment 3. 

Word KF Letter Syll.   Word KF Letter Syll. 

ANSWER 152 6 2 

 

PARENTS 91 7 2 

COUSIN 51 6 2 

 

PRICE 108 5 1 

DEMAND 102 6 2 

 

PURPOSES 90 8 3 

DIRECTOR 101 8 3 

 

SCROLL 

 

6 1 

ENEMY 88 5 3 

 

STAFF 113 5 1 

ENERGY 100 6 3 

 

STUDENT 131 7 2 

FRIEND 133 6 1 

 

SYSTEMS 129 7 2 

GAMES 55 5 1 

 

UNIVERSE 71 8 3 

GROWTH 155 6 1 

 

WRITER 73 6 2 

LEADER 74 6 2       

  Note. KF = Kucera and Francis (1967) word frequency. Syll. = Syllables 
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Appendix B 

Hits and False Alarms for Experiments 1 – 5B 

 

Table B.1 

Means and Standard Deviations for Critical Recognition Hit and False Alarm 

Rates in Experiment 1 as a Function of Run Condition.  

Run Condition 
Hit   FA 

M SD   M SD 

     1-trial 0.75 0.14 
 

0.22 0.14 

     2-trial 0.73 0.14 
 

0.26 0.14 

     4-trial 0.69 0.12 
 

0.26 0.12 

     Control 0.75 0.15   0.26 0.16 

Note. Critical recognition decisions in the 1-, 2-, and 4-trial run conditions are switch 

trials. Critical recognition decisions in the control run condition is a repetition trial. FA = 

false alarm 
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Table B.2 

Means and Standard Deviations for Recognition Hit and False Alarm Rates in 

Experiment 2 as a Function of Test Block and Transition. 

    Test Block 

  
Test 1 

 
Test 2 

    M SD   M SD 

Hits (deep) 

          Repetition 0.81 0.17 
 

0.88 0.15 

     Switch 
 

0.81 0.16 
 

0.82 0.17 

Hits (shallow) 

          Repetition 0.67 0.22 
 

0.78 0.19 

     Switch 
 

0.67 0.22 
 

0.71 0.22 

False Alarms 

          Repetition 0.22 0.15 
 

0.21 0.15 

     Switch 

 

0.30 0.21 
 

0.22 0.14 

Note. Hit rates are reported as a function of level of processing at study.  
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Table B.3 

Means and Standard Deviations for Recognition Hit and False Alarm Rates in 

Experiment 3 as a Function of Run Position and Test Block.  

    Run Position 

  

1 

 

2 

 

3 

 

4 

    M SD   M SD   M SD   M SD 

Test 1 

               Hit 

 

0.69 0.23  0.79 0.17  0.78 0.16  0.79 0.16 

   FA 

 

0.26 0.21  0.32 0.22  0.29 0.20  0.27 0.19 

Test 2 

 

           

   Hit 

 

0.73 0.21   0.82 0.16   0.83 0.17   0.78 0.16 

   FA 

 

0.31 0.25  0.36 0.22  0.32 0.23  0.30 0.20 

Note. Hit and false alarm rates are collapsed across the three run conditions used in 

Experiment 3. FA = false alarm. 
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Table B.4 

Means and Standard Deviations for Recognition Hit and False Alarm Rates in 

Experiment 4A as a Function of RSI, Transition, and Test Block. 

  

Test Block 

Test 1 
 

Test 2 

M SD   M SD 

Long (600 ms) 

 
     

   Repetition Hit 0.92 0.08 
 

0.96 0.05 

 
FA 0.18 0.14 

 
0.15 0.12 

   Switch Hit 0.87 0.13 
 

0.88 0.10 

 
FA 0.25 0.19 

 
0.16 0.13 

Short (200 ms) 
      

   Repetition Hit 0.93 0.09 
 

0.94 0.07 

 
FA 0.19 0.12 

 
0.13 0.12 

   Switch Hit 0.90 0.08 
 

0.90 0.08 

  FA 0.20 0.11   0.20 0.18 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made diagonally from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI).  
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Table B.5 

Means and Standard Deviations for Recognition Hit and False Alarm Rates in 

Experiment 4B as a Function of RSI, Transition, and Test Block. 

  

Test Block 

Test 1 
 

Test 2 

M SD   M SD 

Long (1200 ms) 

 
     

     Repetition Hit 0.88 0.09 
 

0.90 0.08 

 
FA 0.18 0.16 

 
0.15 0.09 

     Switch Hit 0.85 0.13 
 

0.90 0.09 

 
FA 0.21 0.15 

 
0.18 0.10 

Short (600 ms) 

 
     

     Repetition Hit 0.86 0.17 
 

0.95 0.06 

 
FA 0.17 0.14 

 
0.21 0.14 

     Switch Hit 0.84 0.20 
 

0.87 0.13 

  FA 0.20 0.17   0.14 0.10 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made diagonally from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 
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Table B.6 

Means and Standard Deviations for Recognition Hit and False Alarm Rates in 

Experiment 5A as a Function of RSI, Transition, and Test Block. 

  

Test Block 

Test 1 
 

Test 2 

M SD   M SD 

Long (2600 ms) 
      

     Repetition Hit 0.85 0.13 
 

0.81 0.16 

 
FA 0.12 0.10 

 
0.20 0.14 

     Switch Hit 0.85 0.12 
 

0.85 0.12 

 
FA 0.16 0.12 

 
0.21 0.22 

Short (200 ms) 
      

     Repetition Hit 0.88 0.10 
 

0.91 0.09 

 
FA 0.15 0.14 

 
0.11 0.10 

     Switch Hit 0.85 0.12 
 

0.92 0.08 

  FA 0.19 0.14   0.18 0.13 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made diagonally from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 
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Table B.7 

Means and Standard Deviations for Recognition Hit and False Alarm Rates in 

Experiment 5B as a Function of RSI, Transition, and Test Block. 

  

Test Block 

Test 1 
 

Test 2 

M SD   M SD 

Long (2600 ms) 
      

     Repetition Hit 0.87 0.12 
 

0.84 0.12 

 
FA 0.18 0.12 

 
0.17 0.12 

     Switch Hit 0.84 0.12 
 

0.82 0.14 

 
FA 0.18 0.18 

 
0.18 0.14 

Short (200 ms) 
      

     Repetition Hit 0.88 0.13 
 

0.92 0.11 

 
FA 0.23 0.17 

 
0.20 0.17 

     Switch Hit 0.85 0.13 
 

0.86 0.15 

  FA 0.25 0.24   0.19 0.18 

Note. RSI = response-to-stimulus interval. Within-participant comparisons should be 

made diagonally from Test 1 to Test 2 (i.e., Test 1 Long RSI, Test 2 Short RSI). 
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Appendix C 

Signal Detection Analyses for Experiment 2 

 

Measures of discrimination and bias were calculated to provide further evidence 

for the impact of task switching on recognition memory processes. The measure A’ was 

selected over d’ because it does not rely on equal variance of old and new distributions 

and is capable of calculating a value for A’ when hit and/or false alarm rates are 0 and 1. 

This experiment used See, Warm, Dember and Howe‘s (1997) equations to calculate A’ 

and B”D values for individual participants. The current analysis focused on the A’ data.
18

 

As a reminder, A’ is a measure of participants‘ ability to discriminate between old and 

new words—it is a measure of sensitivity.  

The mean A’ values are reported in Table C.1 for each block, level of processing 

(LOP), and transition. All values are considerably above chance (0.5), indicating that 

participants were relatively good at discriminating between old and new words. 

Consistent with the corrected accuracy data, the mean A’ for switch trials were smaller  

 

Table C.1 

Means and Standard Deviations for A’ in Experiment 2 as a Function of Test 

Block, Level of Processing at Study, and Task Transition.   

    Test Block 

  

Test 1 

 

Test 2 

  

M SD 

 

M SD 

Deep             

   Repetition 0.86 0.12 

 

0.90 0.11 

   Switch 

 

0.82 0.16 

 

0.86 0.14 

Shallow 

         Repetition 0.78 0.19 

 

0.86 0.13 

   Switch   0.74 0.24   0.83 0.09 

                                                 
18

 For the sake of completeness, B”D data indicated a slight bias towards responding ‗old‘ which was not 

affected by task transition (F = 0.05, p = 0.821). 
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than that for repetition trials across all test block and LOP conditions. With regard to the 

LOP manipulation, the mean A’ was larger for deeply encoded words (living or non-

living?) than that for shallowly encoded words (‗e‘ or no ‗e‘?). Finally, A’ data showed 

similar overall improvement from the first to second test. Participants‘ ability to 

discriminate between old and new words improved with experience.   

A 2 (test block) x 2 (level of processing) x 2 (transition) repeated measures 

ANOVA was conducted on A’ scores replicated the findings of the corrected accuracy 

analyses. Critically, although main effects were observed for level of processing 

[F(1,31) = 16.74, MSE = 0.01, p < 0.001, ηp
2
 = 0.35], and task transition [F(1,31) = 

6.06, MSE = 0.01, p = 0.020, ηp
2
 = 0.16], the interaction of these manipulations was not 

significant (F = 0.02, p = 0.88). Consistent with the corrected accuracy data, analyses of 

A’ did not support the hypothesis that the level of processing effect would be reduced or 

eliminated when switching tasks. The significant main effect of test block [ F(1,31) = 

9.48, MSE = 0.03, p = 0.004, ηp
2
 = 0.23] and non-significant interaction of block and 

transition (F = 0.17, p = 0.681) were also consistent with corrected accuracy analyses. 
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Appendix D 

Supplementary Tables for Experiments 4A – 5B 

 

Table D.1 

Means and Standard Deviations for Correct RTs in Experiment 4A as a 

Function of Test Block, Transition, RSI, Task and Decision.  

    Test 1   Test 2 

  

Repetition 

 

Switch 

 

Repetition 

 

Switch 

    M SD   M SD   M SD   M SD 

Long (600 ms) 

              Recognition New 381 91 

 

492 154 

 

336 59 

 

410 84 

 

Old 329 95 

 

455 176 

 

270 44 

 

363 95 

   Magnitude More 740 123 

 

799 182 

 

638 77 

 

701 87 

 

Less 712 96 

 

774 118 

 

669 59 

 

721 94 

Short (200 ms) 

               Recognition New 390 66 

 

509 130 

 

361 70 

 

478 127 

 

Old 327 69 

 

444 139 

 

310 76 

 

392 108 

   Magnitude More 734 102 

 

775 102 

 

703 97 

 

740 125 

  Less 768 119   842 155   706 85   797 110 

Note. RSI = response-to-stimulus interval. Recognition RTs do not include the 400-ms 

RSD. Within-participant comparisons should be made diagonally from Test 1 to Test 2 

(i.e., Test 1 Long RSI, Test 2 Short RSI).  
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Table D.2 

Means and Standard Deviations for Correct RTs in Experiment 4B as a 

Function of Test Block, Transition, RSI, Task and Decision.  

  

Test 1 

 

Test 2 

  

Repetition 

 

Switch 

 

Repetition 

 

Switch 

    M SD   M SD   M SD   M SD 

Long (1300 ms) 

              Recognition New 405 145 

 

491 183 

 

384 98 

 

458 127 

 

Old 353 135 

 

482 226 

 

342 119 

 

423 123 

  Magnitude More 773 228 

 

850 257 

 

669 127 

 

739 152 

 

Less 840 230 

 

856 228 

 

730 91 

 

726 120 

Short (600 ms) 

               Recognition New 395 84 

 

495 110 

 

360 104 

 

431 132 

 

Old 340 87 

 

438 139 

 

291 132 

 

350 107 

   Magnitude More 743 98 

 

763 209 

 

680 137 

 

687 114 

  Less 778 98   830 161   725 170   786 160 

Note. RSI = response-to-stimulus interval. Recognition RTs do not include the 400-ms 

RSD. Within-participant comparisons should be made diagonally from Test 1 to Test 2 

(i.e., Test 1 Long RSI, Test 2 Short RSI).  
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Table D.3 

Means and Standard Deviations for Correct RTs in Experiment 5A as a 

Function of Test Block, Transition, RSI, Task and Decision.  

      Test 1   Test 2 

   

Repetition 

 

Switch 

 

Repetition 

 

Switch 

      M SD   M SD   M SD   M SD 

Long (2600 ms) 

               Recognition New 

 

484 146 

 

619 177 

 

454 103 

 

521 152 

 

Old 

 

447 153 

 

599 210 

 

439 127 

 

522 137 

   Dot More 

 

807 142 

 

878 184 

 

814 222 

 

873 228 

 

Less 

 

824 195 

 

838 160 

 

842 169 

 

886 256 

Short (200 ms) 

                Recognition New 

 

479 141 

 

635 168 

 

354 91 

 

470 174 

 

Old 

 

412 148 

 

579 214 

 

292 90 

 

387 137 

   Dot More 

 

834 180 

 

883 175 

 

695 84 

 

701 108 

  Less   874 244   975 277   685 75   739 97 

Note. RSI = response-to-stimulus interval. Recognition RTs do not include the 400-ms 

RSD. Within-participant comparisons should be made diagonally from Test 1 to Test 2 

(i.e., Test 1 Long RSI, Test 2 Short RSI).  
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Table D.4 

Means and Standard Deviations for Correct RTs in Experiment 5B as a 

Function of Test Block, Transition, RSI, Task and Decision.  

  

Test 1 

 

Test 2 

  

Repetition 

 

Switch 

 

Repetition 

 

Switch 

    M SD   M SD   M SD   M SD 

Long (2600 ms) 

              Recognition New 473 152 

 

591 196 

 

488 118 

 

553 130 

 

Old 440 133 

 

570 201 

 

436 101 

 

573 151 

   Magnitude More 760 149 

 

896 224 

 

702 132 

 

749 107 

 

Less 854 178 

 

904 206 

 

813 134 

 

811 120 

Short (200 ms) 

               Recognition New 470 137 

 

616 256 

 

363 94 

 

484 154 

 

Old 382 123 

 

485 175 

 

326 97 

 

424 142 

   Magnitude More 759 121 

 

806 132 

 

752 163 

 

748 142 

  Less 840 127   933 155   724 118   794 153 

Note. RSI = response-to-stimulus interval. Recognition RTs do not include the 400-ms 

RSD. Within-participant comparisons should be made diagonally from Test 1 to Test 2 

(i.e., Test 1 Long RSI, Test 2 Short RSI).  
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