TE WHARE WANANGA O TE UPOKO O TE IKA A MAUI

ZFBVICTORIA

Developing
the Fringe Routing Protocol

by
Deb Shepherd

a thesis submitted to Victoria University of Wellington
in fulfilment of the requirements for the degree of
Masters of Engineering
in
Network Engineering

2011

extending the work begun by
Don Stokes
Knossos Networks Ltd

supervised by
Andy Linton and lan Welch
Victoria University of Wellington

for ian

an engineer of the old—fashioned kind

wish you could read this

with thanks to

Andy Linton
Victoria University of Wellington
for your light hand of supervision

DonStokes
Knossos Networks

[an Welch
Victoria University of Wellington

Peter Komisarczuk
formerly of Victoria University of Wellington
now at Thames Valley University

John Rumsey
Knossos Networks

and

Stephen Marshall
husband extraordinaire
for much more than can be listed here

Developing the Fringe Routing Protocol

Table of Contents

AADSITACT .t 5

Chapter One

I OAUCTION e, 7

Chapter Two

BackGroundcoooiiiiiiiiiii e 11
Reference implementation...................cooooiiiiiiiiii i 12
The Quagga Software Routing Suite..................ccocooiiiiiiiiiinnin 12
TOOIS ..t 14
FRPSNIfEr. ... 15
Resources and documentationccoeeeiiiiiiiiiiiniieeiie e 16

Chapter Three

Specifying the Fringe Routing Protocolcc.cccoiiiiiiiiiiiiiee . 19
The goals of the Fringe Routing Protocol.....................c.coooeiiin. . 20
FRP GateWaysooiuuiiiiei e 21
FRP route forwarding.................ooooiiiiiiiiiiii e 24
FRP router configuration.................cooooiiiiiiiiiiiie i 29
FRP message formatscoooiiiiiiiiiiiiiie e
32
FRP packet exchangeccooooiiiiiiiiiiiii e 40

Chapter Four

Designing the Quagga FRP daemonccoooeiiiiiiiiiiiie e, 47
Quagga Architecture..............ooeiiiiiiiiiii e 48
INitial ProCeSSvvviiiiiie e 51
Code SEIUCTUTIE. ... 53
Program flow ... 57

Developing the Fringe Routing Protocol

Chapter Five

Implementing and testing the Quagga FRP daemoncccccceeeeeni 61
Daemon Start UPoouueiiiiieiie e 61
PReIS ... 66
BEVONES .. 69
POING ... 70
Triggered Updatesooeieeeiiiiiiiiie e 76
Incoming packets............ooeiiiiiiiiiii 77
Outgoing PACKetsouuiiiiiiiii e 94
TOSHING .. 102

Chapter Six

Conclusions and future WOorkuviiiiiiiiiiiiiiiiiiee e 105
Bibliographyuiiiiii 107
APPENdIX A ..o 113
Initial Fringe Routing Protocol specification from Don Stokes............. 113
Appendix B ... 119
Slides from the FRP presentation at the NZNOG conference 119
APPENndixX C ..o 123
Changes made to the Quagga code to hook in a new daemon............ 123
APPendixX Do 127
The Quagga FRP daemon implementation code...................c..eceeen. 127
The FRPsniffer implementationcccoooeiiiiiien . 129
The orignal implementation of FRP by Don Stokes............................ 131

4 Developing the Fringe Routing Protocol

Developing the Fringe Routing Protocol

Abstract

An ISP style network often has a particular traffic pattern not typically seen in other
networks and which is a direct result of the ISP’s purpose, to connect internal clients with a
high speed external link. Such a network is likely to consist of a backbone with the clients
on one ‘side’ and one or more external links on the other. Most traffic on the network

moves between an internal client and the external world via the backbone.

But what about traffic between two clients of the ISP? Typical routing protocols will find
the ‘best’ path between the two gateway routers at the edge of the client stub networks.
As these routers connect the stubs to the ISP core, this route should be entirely within the
ISP network. Ideally, from the ISP point of view, this traffic will go up to the backbone and

down again but it is possible that it may find another route along a redundant backup path.

Don Stokes of Knossos Networks has developed a protocol to sit on the client fringes of
this ISP style of network. It is based on the distance vector algorithm and is intended to
be subordinate to the existing interior gateway protocol running on the ISPs backbone. It
manipulates the route cost calculation so that paths towards the backbone become very
cheap and paths away from the backbone become expensive. This forces traffic in the
preferred direction unless the backup path ‘shortcut’ is very attractive or the backbone link

has disappeared.

It is the analysis and development of the fringe routing protocol that forms the content of
this ME thesis.

Developing the Fringe Routing Protocol 5

Developing the Fringe Routing Protocol

1. Introduction

The basic underlying architecture and protocols of the Internet have been developed and
successfully used for several decades. As the system evolves, it is inevitable that new ideas
and concepts emerge requiring new ways of doing things, and that better ways of handling
existing concepts appear. Such improvements are typically created in order to streamline
or change the behaviour of one small part of the larger system, often in fairly narrow

circumstances.

This project examines a new protocol that does exactly that. The Fringe Routing Protocol
(FRP) is designed by Don Stokes of Knossos Networks (knossos.net.nz), a commercial ISP in
downtown Wellington, New Zealand. Don devised FRP to solve a particular issue common
to ISP style networks — an ISP tends to want traffic between it's connected client stub
networks to move via the core backbone rather than via any alternative back routes added

in to the network for reliability and redundancy.

An ISP designs their network primarily to connect their customers to the outside world. The
core of the network is a highspeed, high capacity backbone capable of delivering traffic
for the ISP itself and for its customers, quickly and efficiently. The outer fringe will have
upstream (external) gateway connections to multiple layer—2 providers for redundancy
and robustness. The inner fringe holds a multitude of internal client gateways and routers

connecting layer—3 client stub networks to the backbone.

Developing the Fringe Routing Protocol 7

Introduction

Internet
exchange

Upstream
provider

outer fringe

backbone xG1 xG2

'
iG1 iG2 iG3 i

inner fringe Sl N loskr
/ T \ |FRP
R1
A n B o F

Figure 1.1
showing a simplified ISP network
ISP infrastructure is blue, client stub networks are grey
default routes are solid lines, backup routes are dotted
external gateway are labeled xG, internal (client) gateways are labeled iG,
routers are labeled R, client stub networks are labeled A-F

The nature of an ISP network — to provide connectivity to customers — means that the
main flow of customer generated traffic through the network core is either from the outside

world to the client’s network, or from the client to the outside world.

Internet
exchange

Internet Upstream
exchange provider

Upstream
provider

Figure 1.2
the main flow of client based network traffic through an ISP network

Considerably less traffic is likely to be generated between individual ISP customers and
the traffic that is generated stays entirely within the ISP’s network. This means that the
ISP is able to impose some level of control over the routing of that traffic. The left hand
diagram in figure 1.3 shows the preferred route for routing traffic between customer A and
customer B, but A and B are also connected by a backup link, allowing traffic to take that

path if it chooses.

8 Developing the Fringe Routing Protocol

Introduction

outerfinge .. ______________d, ___BG
backbone ___ XG1 x62 10SPF backbone ___ XG1 xG2 |OSPF
— ——— i61 i62 i63 N

inner fringe / , ,,,,,, al ‘, x____ ! g X ,,,,,,,,, fospr innerfringe g\ . ‘, y____ &N __________ OSPF
|FRP / \ |FRP
‘X [L] / \ a1 /
. B / \ = e / \ = T

' D C D

Figure 1.3
traffic between clients of the same ISP

This is the scenario that FRP is designed to address, a lightweight solution to routing traffic
at the inner fringe of the ISP network and an alternative to the commonly used but more
heavyweight protocols such as the Border Gateway Protocol (BGP) or Open Shortest Path
First (OSPF).

An initial implementation of the fringe routing protocol has been developed at Knossos
Networks as a proof of concept. That version was written, from scratch, specifically for the

Knossos network and is currently running successfully.

This ME project involved taking FRP and creating a new, independent, implementation
to complement the first, this time in a completely different development environment. Of
the number of possible choices, the Quagga software routing suite was mandated. The
process was to take the initial version as a reference and reverse engineer it with the aid
of the accompanying notes. A specification of the protocol was then developed, which

became the basis for the development of the Quagga FRP routing daemon.

In order to create a new Quagga protocol daemon, the intricate complexities of the Quagga
suite need to be understood. It was necessary to also reverse engineer a number of the

other Quagga daemons while building the new one as this process is not well documented.

Developing the Fringe Routing Protocol 9

10

Developing the Fringe Routing Protocol

2. Background

The project of developing a working version of the fringe routing protocol starts with
the provided reference implementation and accompanying notes (see Appendix A). The
brief set of notes provided is sparse but concise, the barest beginnings of a specification,
and although padded out with a couple of face-to—face sessions, initial lack of knowledge

limited the usefulness of these conferences.

The notes are essentially complete in that they address all the significant architectural
components of the protocol and contain all the necessary detail. But understanding needs to
be teased out, there being no explanation as to why elements are necessary or why certain
factors need to be handled in a certain way. It is very much an architectural description of
intent rather than an engineering framework for implementation. Included are a brief list of
goals, the basics of the route forwarding algorithm, a short explanation on the importance
of gateways, the message formats, a concise description of the batch processing, and an

example of how the sequence numbering works.

So the initial part of the project became the process of understanding the sources provided,
and an attempt at a first draft of a specification was written. The draft specification was
created by reverse engineering the prototype to the point where the new version could
be created from the specification alone, using it as a buffer between the code of the two
separate implementations.

Specification

.
2
Ee)
& s
£ & 2
2
%
S
(2
)
i

2
AN
& o

2.
Knossos testing > ImplQuagga

&
§

IS

(9
Implementation lementation

Figure 2.1
The ideal FRP development process

Developing the Fringe Routing Protocol 11

Background

Reference implementation

The Knossos Networks reference implementation (see Appendix B) is a stand-alone
system, combining the implementation of a basic, single threaded, Unix based router with
the implementation of the fringe routing protocol. The code generally tries to keep these
two functions separate but sometimes the two do become combined. At times the notes
and the code do not match and the implementation significantly expands on, or even

introduces new functionality.

The first step to understanding the workings of the system was to deconstruct it and fit
it to the description of the protocol provided. The code is spread across two header and
three code files. The main program loop plus supporting functions resides in a file named

main.c, which is in turn supported by route.c and parse.c.

One header contains all defines, variables and data structures for the router in general. The
other specifies those needed explicitly for the fringe routing protocol making it an invaluable
resource. It was used extensively to define and build the required message and packet
formats and many of the data structures. The main program loop is not multi-threaded
so everything happens in a linear sequence, repeated indefinitely. This is one of the major

differences between the implementations as the Quagga version is multi-threaded.

The essence of the FRP decision algorithm is in route.c. This only contains two functions,
one to add an IP route to the routing table and another labelled as the ‘main routing engine’
{58]. parse.c handles numerous additional functions including adding peers, handling

addresses, handling access control lists and parsing the configuration file.

The Quagga Software Routing Suite

One of the major outcomes of the FRP project is the development of a fringe routing
protocol routing daemon using the Quagga software routing suite. Quagga is a popular
open source alternative to Cisco or Juniper routers. The major difference, apart from
price, is that Cisco and Juniper produce highly optimised dedicated hardware routers
whereas Quagga is a software suite that allows a standard Unix based desktop machine to
operate as a router, using a very similar command structure to Cisco routers. As the ability

to hook an entirely new routing protocol seamlessly into the inner workings of the router

12 Developing the Fringe Routing Protocol

Background

was required, the open source route was an obvious choice — access to Cisco or Juniper

at that level is virtually impossible.

The selection of Quagga from among the available choices was mandated. This springs
from the fact that not only do Knossos Networks use Quagga in house, the Wellington
Internet exchange (WIX) and CityLink, the company that run it, utilise Quagga extensively

on small routers at the edge of their network.

The quagga (Equus quagga quagga) is an extinct subspecies of the plains zebra
— Wikipedia (http:/en.wikipedia.org/wiki/Quagga)
image is in the public domain

Quagga is (a very much alive) fork of the older (and now essentially extinct) GNU Zebra
project. Zebra began in 1996 under the auspices of Kunihiro Ishiguro [http://www.zebra.org/
history.html] with the intention of creating a modular, TCP/IP based software routing engine
made freely available under the GNU General Public License [http://www.zebra.org/what.html].
Zebra’s modularity is achieved by creating a distinct daemon for each of the supported
protocols — RIPv1, RIPv2 and OSPFvZ2 and BGP-4. This allows individual protocols to be
modified separately, taking down the affected process while leaving the rest of the system
on line. Likewise, the failure of any one daemon will only take out that individual process

[http://www.zebra.org/features.html].

In 2003, Zebra forked into two separate projects, the original Zebra and a new project
called Quagga |http://www.quagga.net/news2.php?y=2003&m=8]. The last Zebra release was
zebra-0.95a in late 2005 [http://www.zebra.org/index.html]. As of early 2011, the latest Quagga

release is quagga-0.99.17 [www.quagga.net].

Developing the Fringe Routing Protocol 13

Background

Quagga is written in the C programing language and is firmly based on the Zebra model.
It currently supports the BGP-4 (rfc1657, 1771, 1965, 1997, 2545, 2796, 2842, 2858),
ISIS, OSPFv2 & v3 (rfc1850, 2328, 2370, 3101), OSPF6 (rfc2740), RIPv] & v2 (rfc1058,
1724, 2082, 2453), and RIPng (rfc2080) routing protocols [http://www.quagga.net/docs/docs-
multi/Supported-RFC.html]. Quagga is available for various Unix and Linux operating systems
including FreeBSD, NetBSD, Debian, Ubuntu, Gentoo, and MacOSX. [www.quagga.net/about.

php]

Somewhat surprisingly given that it is an open source project, Quagga proved to be a
stable software platform with a well written development environment. The area in which
it failed to deliver was the one which became a defining factor for this project. Quagga
completely lacks clear, useful documentation. While the code is, on the whole, well written
and well commented, it is a large complex system which is extremely difficult to understand

sufficiently well to start to develop within it.

FRP in Quagga
Implementation started by experimenting with turning a copy of an existing Quagga
protocol daemon into something that pretended to be a FRP daemon. Although this was
useful, the next step was to start again and build an empty shell of a daemon that worked
correctly inside Quagga but did nothing beyond that. The FRP implementation was then
added to the shell.

As already mentioned, the intention was to develop the daemon entirely from the newly
written specification but this proved to be impossible and, eventually, reference to the code
of the prototype version became necessary in order to answer the many questions that
arose. However, only one small piece of the prototype code was included in the Quagga

daemon, the rest is written from scratch.

Tools

This project was conceived and developed entirely in a Unix operating system environment
and ideally FRP should run on any ‘flavour’ of Unix. In the development of the FRP protocol
to this point in time, a number of different Unix platforms have been used. The original
implementation was developed and currently runs on FreeBSD. In the scope of the current
project, this original version has been ported to NetBSD and to MacOSX, simply for

convenience.

14 Developing the Fringe Routing Protocol

Background

One of the problems with understanding and developing in a computer network
environment is the fact that it is not possible to actually see the data that is travelling
through the network. Tools are required to look at different parts of the environment at
different points in time to see what is actually happening. Unix supplies a good range of
useful command line tools including netstat, route, ip, and ifconfig, which are good for
looking up information on sockets, interfaces, addresses, protocols and the kernel routing
table. ping is useful for checking that machines acting as routers are up and visible and that
traffic is actually routing through the network. tcpdump |http://www.tcpdump.org] captures
network traffic over a period of time, printing out useful information and providing the

ability to trace packets and analyse the data they contain.

WireShark [http://www.wireshark.org] is similar to tcpdump but comes as a standalone
package with a graphical user interface and the ability to visually drill down through the
contents of a packet. WireShark helpfully sections up each packet into its component
headers and payload. It also makes traffic filtering easier than in tcpdump. WireShark
is a cross platform, Unix based open source application using tcpdump’s pcap library to

handle packet capture.

FRPsniffer

It became clear however, that it would be useful to have a packet sniffer tool that collected
only FRP packets and knew how to correctly extract data from them. From this idea,
FRPsniffer was designed and implemented — which also provided a useful first attempt at
understanding and working with the FRP message and packet structure. Although tcpdump
and especially WireShark are useful tools, this dedicated FRP traffic capture tool became
more useful still. It was extensively used to watch FRP behaviour and the traces shown later

in this document all come from FRPsniffer.

FRPsniffer is written in C and compiled with the MacOSX Xcode compiler. As this is
essentially a Unix GNU Compiler Collection (gcc) compiler, the code is portable to any
Unix based environment. The sniffer is written around the same library as tcpdump and
WireShark, tcpdump’s libcap [http://www.tcpdump.org]. This is an open source C/C**
library providing a packet capture application programming interface (API). FRPsniffer
is hardcoded to promiscuously collect all ethernet based UDP traffic on FRP’s port and to

display it broken down into FRP’s packet and message structure.

Developing the Fringe Routing Protocol 15

Background

Resources and documentation

To continue the theme of paucity in documentation, the standard technique of conducting a
literature search for academic, peer reviewed papers proved fruitless. The following is a brief
look at the sources that proved to be the most useful and the most regularly consulted during

the completion of this project. For a complete list, refer to the bibliography on page 107.

General background
In order to even start on this project, a good general knowledge of computer networks and
their architecture needed to be moved on to the next level and the inevitable gaps needed
to be plugged. A couple of general networking texts
Kurose, J. F. and Ross, K. 2002 Computer Networking: a Top-Down Approach
Featuring the Internet. 2nd. Addison-Wesley LLongman Publishing Co., Inc.
Tanenbaum, A. S. 1985 Computer Networks. Prentice Hall PTR.
provided the starting point, followed by several more detailed works including
Perlman, R. 2000 Interconnections (2nd Ed.): Bridges, Routers, Switches, and
Internetworking Protocols. Addison-Wesley LLongman Publishing Co., Inc.
Stallings, W. 1993 Data and Computer Communications. 4th. Prentice Hall PTR.

Routing
The purpose of this project is the development of a routing protocol. A number of books
provide good, general background reading on the topic of routing but the most useful was
Parkhurst, W. 2004 Routing First-Step. Cisco Press.
which provided a solid base to build on. The other useful volumes are
Beijnum, P. 1. and Beijnum, 1. V. 2002 BGP. O’Reilly & Associates, Inc.
Malhotra, Ravi. 2002. IP routing. O’Reilly Media, Inc.
Medhi, D. and Ramasamy, K. 2007 Network Routing: Algorithms, Protocols, and
Architectures. Morgan Kaufmann Publishers Inc
Moy, J. T. 1998 OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley
Longman Publishing Co., Inc.

The definitive source of information on routing protocols and the topics surrounding them
is the Internet Engineering Task Force (IETF) Request for Comments (RFC) series.
Carpenter, B., Ed., “Architectural Principles of the Internet”, RFC 1958, June
1996.
Bush, R. and D. Meyer, “Some Internet Architectural Guidelines and Philosophy”,
RFC 3439, December 2002.
provide general conceptual discussion on Internet design and Architecture, while
Hedrick, C., “Routing Information Protocol”, RFC 1058, June 1988.

16 Developing the Fringe Routing Protocol

Background

gives a very full and useful description of the distance vector algorithm and realities of
implementing it, and
Fuller, V. and T. Li, “Classless Inter-domain Routing (CIDR): The Internet Address
Assignment and Aggregation Plan”, BCP 122, RFC 4632, August 2006.
contains critical information on current IPv4 address space usage.
Bradner, S., “The Internet Standards Process -- Revision 3”7, BCP 9, RFC 2026,
October 1996.
Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14,
RFC 2119, March 1997.
Postel, J. and J. Reynolds, “Instructions to RFC Authors”, RFC 2223, October
1997.
has useful information on how to write and submit a RFC or any other documentation
and, although obsolete,
Hinden, R., “Internet Engineering Task Force Internet Routing Protocol
Standardization Criteria”, RFC 1264, October 1991.
is interesting in that it still has some useful insight into what should be in a RFC for a

routing protocol.

FRP

Specific information on the FRP protocol was obtained from the supplied specification
notes and the code of the original implementation, both written by Don Stokes of Knossos
Networks. Additional information came from talking to Don and from listening to him
present the FRP protocol at the New Zealand Network Operators Conference in Wellington,
February 2011 (see Appendix B).

Unix networking
The creation of a routing daemon for a Unix environment required a good working
knowledge of the Unix socket API and how it works. Two sources proved to be invaluable.
The book
W. R. Stevens et al, Unix network programming: the sockets networking API,
3 ed. Boston, MA: Addison-Wesley, 2004.
provided a good, in depth recap of the topic and filled in many gaps but it was the online
resource
B. J. Hall. (2009). Beej’s guide to network programming: using Internet sockets
(version 3.0.14). [Online]. Available: http://beej.us/guide/bgnet/
that proved the most valuable as it provided succinct descriptions of the different system
calls, functions and structures in a logical manner that made it a very easy to use reference

manual.

Developing the Fringe Routing Protocol 17

Quagga
The Quagga software routing suite package is complex and difficult to come to terms with.
The Quagga package comes with a manual

K. Ishiguro et al. (2006). Quagga: a routing software package for TCP/IP

networks (Quagga 0.99.4). [Online]. Available: http://www.quagga.net/docs.php
which concentrates on installing, building and configuring Quagga plus providing a list
of user commands. It also contains useful (if basic) sections on Quagga’s architecture,

supported RFCs and the Zebra protocol.

When it came to the Quagga daemon itself, the best resource was the actual program code
Available: http://www.quagga.net/download/
and the comments contain within it. The comments are generally adequate, although often
brief and sometimes incomplete Two additional documents, although unfinished and very
dated, provided invaluable background material and advice. The first,
Y. Uriarte. (2001). Zebra for dummies. [Online]. Available: http://www.quagga.
net/zhh.html
proved particularly useful as it provides a ‘how to’ guide to creating a new Quagga routing
daemon from scratch, including information on mandatory inclusions that is not available
from any other source. The second,
Pilot. Zebra hacking notes: for GNU Zebra 0.93b (rev 1.6). [Online]. Available:
http://quagga.net/faq/zebra-hacking-guide.txt

is more a list of notes, not as helpful as the Dummies guide but useful as an addendum to it.

Network packet sniffing
When writing the FRPsniffer support tool to collect and display traffic and packet contents
in order to watch FRP actually running, the following article was very useful
L. M. Garcia, “Programming with libpcap: sniffing the network from our own
application,” in Hackin9, vol. 3, no. 2, pp. 38-46, 2008.
as was this documentation from the tcpdump and libpcap website
T Carstens. Programming with pcap [Online]. Available: http://www.tcpdump.
org/pcap.html

18 Developing the Fringe Routing Protocol

3. Specifying the Fringe Routing Protocol

This chapter defines and specifies the fringe routing protocol. It looks at the goals

it is expected to achieve, and the network environment it is designed to work in. The

components of the protocol are specified: the importance of gateways; route forwarding;

router configuration; message formats; and packet exchange.

The fringe routing protocol aims to send client to client traffic in an ISP style network up to

the backbone and down again rather than across secondary backup links — that is from A

to iG1 to B, rather than directly from A to B. To understand FRP however, it is necessary

to move from looking at traffic delivery in the forwarding plane — how actual traffic is

directed around the network — to studying the advertisement of preferred, or ‘best’ routes

between routers in the control plane.

Upstream
provider

Internet
exchange

outer fringe L. 1BPG
backbone xG1 xG2 |OSPF
iG1 iG2 iG3 ,TQS,PF,

inner fringe / ,,,,,,, 4 T e _ _ _ _ N \ ,,,,,,,,
R1

Figure 3.1
showing a simplified ISP network
ISP infrastructure is blue, client stub networks are grey
default routes are solid lines, backup routes are dotted
external gateway are labeled xG, internal (client) gateways are labeled iG,
routers are labeled R, client stub networks are labeled A-F

Developing the Fringe Routing Protocol

19

Specifying the Fringe Routing Protocol

A primary concept of FRP is that of gateways. A FRP gateway is one that connects a
customer stub network to the ISP backbone, so iG1, iG2 and iG3 are all potential FRP

gateways. Each FRP router must have a single designated gateway and prefers to only

advertise routes it has discovered if they lead towards its gateway. The only exception is if

a link has gone down or if an alternative route is extremely cheap. The result of this carried

through to the forwarding plane is that traffic is generally delivered up to the backbone, via

the FRP gateway, and back down again.

The goals of the Fringe Routing Protocol

The primary goal of the fringe routing protocol is to simplify the management of an ISP

style public network. The protocol achieves this by having the following characteristics:

1.

Traffic is routed, by preference, towards the backbone via a designated gateway.
Traffic is only routed away from the backbone in exceptional circumstances.

FRP is intended to be subordinate to the existing IGP, which is still used at the
network core. FRP supplies reduced routing complexity at the network’s inner fringe.
FRP attains reduced complexity by operating as a lightweight protocol. It achieves
this by:

a. remaining quiescent until an FRP gateway route to the backbone is established;
b. and therefore only updating the kernel routing table or advertising routes if there
is a path to a gateway;

c. keeping routing table sizes to a minimum;

d. keeping traffic down to keepalives if there are no route updates to be exchanged.
FRP must work on public access networks and so therefore must be secure. This

security is based on a configured peer relationship.

20

Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

FRP gateways

A key part of FRP is the use of gateways. FRP is designed to forward traffic up on to the
ISP backbone for delivery — to destinations beyond the ISP network, to the ISP itself, or to
another client of the ISP. FRP facilitates this delivery by utilising FRP designated gateways

sitting on the backbone.

Every router using the fringe routing protocol needs to discover the ‘best’ path to one
of the FRP backbone gateways. This becomes the router’s designated gateway. It shares
knowledge of this gateway, including the path to it, with its peers using special gateway
messages. In the context of FRP, a peer is any directly connected router designated as such

in the host’s configuration.

Establishing gateway routes

FRP specifies that if a router has no gateway, then it is quiescent. However routers are
only told if they themselves are a gateway, not what their ‘nearest” or ‘best’ gateway is.
Therefore any router that is designated as a FRP gateway needs to tell its peers that they
can use it as such. This allows any connected peer on the FRP network to eventually
compile a path to gateway for themselves. The newly discovered gateway and its path are

then shared with peers and the propagation continues.

G1 G2

/N /N

A B c D

Figure 3.2
A and B gateway via G1
C and D gateway via G2

In figure 3.2, two FRP routers, G1 and G2, come on line and discover that they are

gateways. They do not acknowledge each other as potential gateways because their own

gateway route, being 0, is cheaper.

G1 and G2 duly inform each of their peers, A, B, C, and D, of this status so that each
peer now has a path to gateway set. A and B set their gateway route via G1. C and D set
theirs via G2.

Developing the Fringe Routing Protocol 21

Specifying the Fringe Routing Protocol

N
Ve
N
T >0

Figure 3.3
B advertises G1 to E and F
C advertises G2 to F
D advertises G2 to H
E gateway via G1, nexthop B
F chooses say G1, nexthop B over G2, nexthop C
H gateway via G2, nexthop D

In figure 3.3, B now advertises G1 to E and F, while C advertises G2 to D and F, and D
advertises G2 to C and H. Consequently, E has a gateway route via G1 with a nexthop of
B and H has a gateway route via G2 with a nexthop of D.

Both C and D ignore the advertisements from each other as they already have a cheaper

route to G2.

F is given two gateway routes to choose from, one via G1, nexthop B and another via G2,

nexthop C. F needs to pick the cheapest of these two — let’s say F, B, G1.

= =X
p— }
1 f

Figure 3.4
F advertises G1 to |
H advertises G2 to J
I gateway via G1, nexthop F
J gateway via G2, nexthop H

Next F advertises G1 to I, because it is cheaper than G2, and H advertises G2 to J.

[now has a gateway route via G1, nexthop F, and J now has a gateway route via G2,

nexthop H.

Convergence is reached, leaving the setting of gateways complete, until a change in

network topology forces a node to re—advertise and the process begins again.

22 Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

—_— G2

X I
ja
|

D

|

H

|

1 J

Figure 3.5
F to D via B, G1, G2, D rather than via C, D

FRP traffic is weighted to prefer gateway routes over other routes, so F will prefer to send
traffic for D via F, B, G1, G2, D rather than F, C, D. In this example, route F, C, D will be
seen as a redundant or back route because FRP prefers to pass traffic towards the gateway

and F’s gateway nexthop is B.

Figure 3.6
F to D via B, G1, G2, D rather than via C, D unless C, D is very cheap

There are only two reasons that F will route traffic to D via C. One is if the route from F to
C to D is very cheap, an unlikely occurrence because then the cheapest gateway is more
likely to be G2. The second is if the gateway weighting changes so that G2, nexthop C,

becomes F’s gateway route. The route from F to D then becomes F, C, G2, D.

Exchanging gateway routes

An FRP router is told in its configuration if it is a gateway or not. On start up, it works
through the list of peers it is provided with and communicates with each one. If the router
is a gateway, it uses this initial exchange to inform its peers of its gateway status and they
adjust their path to gateway appropriately, sharing any new gateway routes with all their

peers.

This interaction results in all ‘alive’ peers exchanging their current path to gateway. Routers

that are not a gateway use these to reassess the cheapest gateway path for themselves,

Developing the Fringe Routing Protocol 23

Specifying the Fringe Routing Protocol

then sharing this with all their peers. Gateway route exchanges are triggered whenever a

router changes their gateway status or recomputes a new path to gateway.

Avoiding loops in gateway paths

A common problem experienced by routing protocols is the creation of loops in the route
paths discovered. This same issue can potentially occur in FRPs path to gateway discovery.
It is to avoid this problem that a FRP host sends its entire gateway path to its peers. On
receiving a path to gateway message, each router checks to see if its own IP address is in
the path list. If it is, then the gateway path is excluded as a “router will not learn a path
that contains itself” [58]. This avoids counting to infinity by ensuring that loops are not

formed.

FRP route forwarding

The primary function of any router, or host, is to develop a forwarding table to facilitate
the correct and efficient delivery of network traffic at the forwarding plane level. The
forwarding plane encompasses the ‘front end’ of the router, the mechanism by which
it accepts a packet for delivery and decides, by consulting its forwarding table, which of
its peers is the ‘nexthop’ in the chain of routers the packet will pass through to reach its

destination.

The primary function of any routing protocol is to provide the host with a routing table
containing the ‘best’ routes according to that routing protocol. A host may employ more
than one routing protocol, so the forwarding table is built by combining all the routing
tables submitted by all the different protocols, and choosing the ‘best’ of ‘the best’ routes.

This ‘back end’ of the router is the control plane.

FRP is designed to be subordinate to the existing interior gateway protocol (IGP) (goal 2,
see page 20), typically OSPF or IS-IS, with the intention of simplifying route advertisement
at the inner fringe of the network. The core of the network still requires the heavyweight
complexity of the existing well-known, well-understood and well-tested protocols. However,
the potentially large number of routes produced by these protocols do not necessarily need
to be passed on to the client stub networks at the fringe when a single default route may be
all that is necessary. So FRP takes over from OSPF et al, establishing a single gateway and

telling the relevant client network to push all traffic towards it (goal 1, see page 20).

24 Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

An issue that has not yet been addressed is where the FRP should sit in the table of
administrative distance that is utilised to allow a router to decide between different routes
to the same destination provided by different routing protocols. For the purposes of testing,
FRP was given an arbitrarily high rank so that it automatically trumped every other protocol.
On reflection, it seems that a high position on the list is perhaps the correct answer, given
that FRP is designed to simplify the number of routes at the fringe. This does, however,

stand out against the idea of FRP being subordinate to the core network IGP.

Protocol Administrative distance
Directly connected route 0
Static route 1
External BGP 20
OSPF 110
IS-IS 115
RIP 120
Internal BGP 200
Figure 3.7

An abbreviated look at the administrative distance table [18]

In common with many other routing protocols, FRP builds a routing table, or routing
information base (RIB), by selecting the ‘best’ route to each known destination from among
all the routes provided by all its neighbours, or peers. This table of ‘best’ routes is then
shared with all peers, excluding in each case any routes that the peer is nexthop for.
Meanwhile, the host’s peers are still passing on their ‘best’ routes, triggering changes in the
host’s RIB as new and ‘better’ routes are supplied until convergence is reached — that is all
hosts have completed their RIBs and no more routing information is passed on. From this
point, routes are only exchanged when changes to the network topology are discovered

and shared.

Where FRP differs to other protocols is in the mechanisms it employs to build the RIB and

in how it distributes routes to peers, in order to achieve the goals specified in its design.

Quiescence

A FRP router remains quiescent until it is able to determine a path to a FRP gateway (goal 3a,
see page 20). A quiescent router exchanges configuration information and receives gateway
path and route update information from other peers but does not send out routing updates
until a gateway path is established. Should a node lose its gateway path and not be able to

establish a new one, it returns to a quiescent state.

Developing the Fringe Routing Protocol 25

Specifying the Fringe Routing Protocol

Establishing routes to destinations

FRP employs a distance vector algorithm to decide which route to a destination is the
‘best’. Distance vector is iterative, distributed and self terminating. It is also asynchronous
in that peers to not have to synchronously exchange data, although FRP overrides this in its
message exchange process. A distance vector based protocol receives routing information
from directly attached peers and then redistributes new routing information back to its

peers.

The distance vector algorithm specifies that a node establish a route for each known peer,
setting the cost to the cost of the link between them and setting the nexthop as that peer.
This information is shared with all peers. Using the similar information delivered from
those peers, identify any new destinations and create a route to them, specifying the
peer that supplied the route as the nexthop. The cost of the route is calculated by added
the cost of the link to the nexthop peer to the cost of the route as advertised. If more
than one peer offers a route to a destination, select the one with the lowest cost. Share
this new information with all peers. Continue to update and share whenever new routing

information is received or whenever the network topology changes.

FRP modifies the behavior of the algorithm by adding the criteria that traffic should be
preferentially forwarded towards the host’s gateway. This creates the need for a more
complex check to determine the ‘best’ route and brings the FRP decision algorithm in to
play. FRP peers exchange information on the cost of the link between them, using this to
assign a cost to each hop and so building up a metric for each route, as per the normal
distance vector method. Additional to this is the metric associated with the host’s gateway

route and a flag that is added to each route that leads towards that gateway.

For a route to be included in the host’s forwarding table, and therefore to be used as a
route for delivering traffic, it must be cheaper than the combined gateway costs of the
two nodes. FRP prefers to route traffic via the gateways and the backbone rather than
over routes between peers. As a consequence, very few routes will be included in the FRP
forwarding table as the FRP algorithm ensures that the gateway costs are almost always

lower. Therefore, most traffic is directed towards the host’s gateway and the backbone.

26 Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

Upstream Internet Upstream Internet
provider exchange provider exchange

backbone ___ XG |OSPF backbone ___ XG1 xG2

iG1 iG2 iG3

1 - xG2 |
inner fringe / 0 ,‘Gf, ,,,,,, 63 X ,,,,,,,,, foser imnerfringe L\ - ‘, s ___e= fospr
|FRP / \ |FRP
A R AL R F A - .- - F
g - [N / \ R G TR 7 \ B R

C D C D

Figure 3.8
The example below illustrated

For example:

B’s gateway is iG1, C’s gateway is iG2 via R1. Should B route traffic for C via its designated
gateway, across the backbone, and down to C (B, iG1, iG2, R1, C); or is it cheaper to send
it via the backroute (B, R1, C). FRP prefers the first.

The FRP algorithm
A route leading away from the gateway is included in the RIB if:
route-cost + link-cost < route-gw-cost + target-gw-cost + is-gw-route

where:

> route-cost is the accumulated sum of the costs of intervening links

> link-cost is the cost of the link to remote-node

> route-gw-cost is the cost from the route’s originating node to its gateway, as expressed
in the routing update

> target-gw-cost is the cost from the remote-node to its gateway, as expressed in its link
advertisements

> is-gwroute equals 1 if the route is being passed toward the gateway, 0 otherwise

(57]

Note that the cost of traversing the backbone is 0.

This same algorithm is also used to determine if a route should be advertised.

Split horizon

Having placed a route in the RIB, when should a FRP router advertise that route to its
peers? The first caveat is that a route is never advertised back to the peer that provided it.
This is the standard distance vector technique of avoiding counting to infinity — two peers

each specifying that the other is the nexthop of a particular route.

Developing the Fringe Routing Protocol 27

Specifying the Fringe Routing Protocol

Advertising routes

The second caveat is that the FRP algorithm is applied using the host’s knowledge of the
peers gateway cost. The route is only forwarded to the peer if the calculation indicates that
it is cheaper for the peer to use that route than it is to send traffic via its own designated

gateway.

Upstream Internet
provider exchange

outer fringe !\ . ___ . IBre

backbone XG1 XG2 |
iG1 iG2 iG3 t

inner fringe L ___ & N __________loskr
/ T \ |FRP
R1
A , / \ \ F

Figure 3.9
The example below illustrated

For example:

R1 is a router on the ISP fringe. It is not a gateway — its gateway is iG2 and its peers are
B,C,D, E.

B’s gateway is iG1, C&D’s gateway is iG2 via R1, E’s gateway is iG3.

Does B pass the route B,A to R1?
route-cost + link-cost < route-gw-cost + target-gw-cost + is-gw-route
B,A + B,R1 < A,iGl + R1,iG2 + not-a-gateway
The hop count only scenario, assume all links = 1.
1+1<1+1+0
The weighted links scenario, assume solid (preferred) routes = 1 and dotted (redundant)
routes = 2.
2+2<1+1+0

Does R1 pass route R1,B,A to C?
R1,B,A + R1,C < A,iGl + C,R1,1G2 + not-a-gateway
The hop count only scenario, assume all links = 1.
2+1<1+2+0

28 Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

The weighted links scenario, assume solid (preferred) routes = 1 and dotted (redundant)
routes = 2.
4 +1<1+2+0

In both cases, the hop count comes out equal so the backbone route is the favoured one,
although another hop between R1 and its gateway would mean that the redundant route
was preferred. With the link weighting, the backbone route is clearly favoured over the

alternative.

FRP router configuration

A router requires a certain amount of data available to initially get up and running. Typically
this might include address, interface and network information; the rules for accessing
and communicating with neighbours or peers; output locations for debugging, status and

logging data; and in the case of FRP, gateway information.

Configuration file

Each FRP router needs a configuration file. It stores the information required during the
start up process and is where the mandatory and default operating values are set. Although
each individual implementation of FRP will need to handle configuration differently in line
with the system being developed for, the file that came with the prototype implementation
provides an indication of what is important to FRP. It is clear that this example is a work in
progress as different methods, some of which are commented out (#), are used to specify
the same data. The original prototype of FRP sets all configurable values in this file, these

values can not be changed once the router is up and running.
gateway always
debug 2
pidfile frpd.pid
#secret fred
statusfile frpd.status
#acl peers permit ip 192.168.151.0/24
#acl accepts permit ip 192.168.0.0/16-24
#listen 192.168.151.110 secret fred poll 0.5 retry 0.1 fail 2
#listen 192.168.151.110 accept-connect peers
#listen 192.168.151.110 accept accepts
listen 192.168.151.110
#peer 192.168.151.91 secret fred
#peer 1.1.1.2
override static [57]

Developing the Fringe Routing Protocol 29

Specifying the Fringe Routing Protocol

In this example, the basic FRP information is
> gateway always, indicating that this router is a gateway
> secret fred, setting the secret used by this router
> Tlisten 192.168.151.110 secret fred poll 0.5 retry 0.1 fail 2, setting the local
address, secret, poll time, retry time and fail time
> listen 192.168.151.110, the address of this router
> peer 192.168.151.91 secret fred, a peer known to this router — its address and
secret
The configuration file lines
#acl peers permit ip 192.168.151.0/24
#acl accepts permit ip 192.168.0.0/16-24

#listen 192.168.151.110 accept-connect peers
#listen 192.168.151.110 accept accepts

indicate that the original implementation allowed the use of access lists to control which
peers a router can communicate with. Given that the use of ‘secrets’ mandates the explicit
setting up of peers by an administrator (see Peers and Secrets below), this may not actually be

necessary.

Some output information is also specified to support multiple levels of debugging and the
creation of two output files, one is used to store the process id and the other a complete

copy of the entire FRP routing table.

User commands

The original prototype of FRP sets all configurable values in the configuration file. The
Quagga implementation requires the mandatory basics to be set there but other mandatory
and optional values are pre—set as defaults in the daemon code. These values may be reset
either within the configuration file or via a user command line tool while the router is up

and running.

Consequently, the Quagga implementation of FRP needs to identify the list of configuration
settings required, the default value for each setting, and whether the setting is to be turned

in to a command to allow an administrator to live change the setting.

30 Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

Peers and secrets

FRP peers need to be known and set up in advance. An access control list can be set up to
specify which addresses are acceptable as peers but the real restraint is the need to know
each individual peer’s specific security information before any messages can be exchanged.
Therefore each peer requires a secret to be stored in the configuration file and loaded on
start up, or provided via the command line with all the other information if a peer is added

while the router is up and running.

The only way to achieve this is for the secret to be set manually at each end. Consequently
the secret is never sent via the network except as part of the security hash used to encode
and decode packets, a good security feature if the secrets are exchanged via some trusted
and secure means. This is helped by the fact that FRP is designed to be used in isolated
pockets within confines of an ISP network so it may often be the case that one administrator
is setting all the secrets anyway, and even if there are more than one, then they probably

still work for the same organisation.

Other information also needs to be stored for each peer — the peer’s address, the cost of

the link between router and peer, and the poll and retry times to be set for that peer.

Sequence numbers

Each FRP router contains a random number generator that provides a sequence number
each time a new conversation is started. A router keeps track of the sequence currently
in use with each peer (lseq), incrementing the previously used number by one before

embedding it in a new packet.

Each host also maintains a copy of the peer’s current sequence number (rseq), and the
two are used in tandem to catch gaps where packets have gone missing and to ensure
that packets are processed in the correct order. When a packet arrives from a peer, the
sequence numbers are checked to ensure that the expected number is in fact the one
used. If this is not the case, then a problem has obviously occurred and the packet is not

processed.

A packet arriving from a peer stating that the host’s latest sequence number is O indicates
the start of a new conversation with that peer. Consequently, if a sequence number ever

naturally wraps to 0, it is automatically reset to 1.

Developing the Fringe Routing Protocol 31

Specifying the Fringe Routing Protocol

FRP message formats

Often the concept of a ‘packet’ and a ‘message’ is essentially the same but FRP clearly
differentiates between the two. This is a direct result of the fact that FRP allows multiple
messages to be sent in a single packet, potentially reducing the amount of traffic flowing

between FRP routers but increasing the complexity of building and processing packets.

A single FRP message begins with a message header providing the length of the entire
message in bytes and a code indicating what type of message this is. The header is followed
by the fields specific to that message. A FRP packet consists of a packet header containing
security and sequencing information followed by zero or more messages in the above
format. Packets containing just the packet header and no messages are only used in two
special circumstances; generally at least one message is attached. Some message types

may occur more than once in a packet.

packet header
message header
message
message header

| message

message header
| | message

Figure 3.10
A representation of a packet containing multiple messages

Although there is no requirement for most messages to be sent in any particular order,
the reality is that the linear execution of code tends to ensure that they are. Each message
is however a complete and self-sufficient bundle and once extracted, can be processed

independently.

32 Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

The FRP packet header
The packet header sits at the beginning of each packet sent by an FRP router to one of
its peers. There is exactly one packet header per packet sent, regardless of how many

messages the packet contains.

Size: 128 bits / 16 bytes

0 7 15 23 31

security hash

sender’s sequence number
recipient’s acknowledgement number

Figure 3.11
Specification of a packet header

security hash 64 bits /8 bytes
a hash of the local router’s secret plus the contents entire packet
sender’s sequence number 32 bits /4 bytes
the current sequence number of the local (sending) router
recipient’s acknowledgement number 32 bits /4 bytes
the latest received sequence number from the remote router that is at

the other end of the current conversation

FRP message headers
A FRP packet can contain multiple messages. Each message must be prefixed with exactly

one message header specifying the type and length of the message.

Size: 16 bits / 2 bytes

0 7 15 23 31
‘ message length ‘ message type ‘

Figure 3.12
Specification of a message header

message length 8 bits/ 1 byte
the actual length of this message, including the message header, in
bytes

message type 8 bits/ 1 byte

the type of the message that follows specified in one of the following
hexadecimal codes:
@x0@1 control message
0x41 IPv4 configuration message
@x42 1Pv4 path to gateway message
0x43 IPv4 route update message
0@x61 IPv6 configuration message
0x62 IPv6 path to gateway message
@x63 IPv6 route update message

Developing the Fringe Routing Protocol 33

Specifying the Fringe Routing Protocol

Session control messages

Control messages inform the receiving peer about the type of conversation in progress.

Size: 32 bits / 4 bytes

0 7 15 23 31
‘ message length ‘ message type ‘ control type control parameters

Figure 3.13
Specification of a control message

message header: message length 4
message header: message type ~ 0x01
control type the type of this control message is specified using one of the

following numerical codes:

1 POLL
2 ACK
3 NAK

POLL is used to send a message checking that a peer that has not
been heard from for a period of time is still alive

ACK is used to indicate that the local router received the last
message of a conversation from the remote peer and is now closing
the conversation down

NAK is used to indicate receipt of a malformed packet

control parameters not currently used

34 Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

Static configuration messages

Configuration messages tell other peers about the state of the sending router. One is always

sent at start up and then again at any other time that the router state changes.

Size: 96 bits / 12 bytes

0 7 15 23 31
message length message type cost of the link
poll time retry time
router-ID of peer

Figure 3.14

Specification of an IPv4 configuration message

message header: message length
message header: message type

cost of link

poll time

retry time

router-ID of peer

Size: 192 bits / 24 bytes

12

0x41

16 bits / 2 bytes

the cost of the link between the local router and the remote peer
16 bits / 2 bytes

the amount of time to wait without hearing from the remote peer
before sending a POLL control message to see if the peer is still
alive

16 bits / 2 bytes

the amount of time to wait for an acknowledgement from the remote
peer before resending the last packet

32 bits / 4 bytes

the unique id of the remote peer, typically it's [Pv4 address

0 7 15 23 31
message length message type cost of the link
poll time retry time

gateway address for upstream routes

Figure 3.15

Specification of an IPv6 configuration message

message header: message length
message header: message type

cost of link

poll time

retry time

gateway address to use

24

0x61

16 bits / 2 bytes

the cost of the link between the local router and the remote peer

16 bits / 2 bytes

the amount of time to wait without hearing from the remote peer
before sending a POLL control message to see if the peer is still alive
16 bits/ 2 bytes

the amount of time to wait for an acknowledgement from the remote
peer before resending the last packet

128 bits / 16 bytes

the unique id of the remote peer, typically it's IPv6 address

Developing the Fringe Routing Protocol

35

Specifying the Fringe Routing Protocol

Path to gateway messages

If a FRP router is not told that it is a designated gateway router, it needs to find out the path
to its nearest gateway. The peers of the router pass it ‘path to gateway’ messages telling it
of the best path currently known by that peer. The local router can use this to choose the
best gateway path for itself, which is then passed on to all its own peers (except the one

who originally told it about the gateway path).

Size: from 64 to 2016 bits / from 8 to 252 bytes

0 7 15 23 31
message length ‘ message type ‘ cost from peer to gateway

path from peer to gateway [1]

path from peer to gateway [n] (1 <n<62)

Figure 3.16
Specification of an IPv4 path to gateway message

message header: message length 1+1+2+4 + @ to 244 in 4 byte increments
(ie: between @ and 61 additional IPv4 addresses)
message header: message type ~ 0x42

cost from peer to gateway 16 bits/ 2 bytes
cost of the link between the advertising router and it's gateway
if the advertising router is a gateway, the cost is 0
if the advertising router does not know of a gateway, the cost is
infinity
(which is @xffff in FRP)

path from peer to gateway 32 bits/ 4 bytes x n (1 <n <62)
a list of 1 to 62 IPv4 addresses specifying the path taken by this
router to reach it’s designated gateway

the first address in the list is always this router’s address

36 Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

Size: from 160 to 7968 bits / from 20 to 996 bytes

0 7

15 23 31

message length ‘

message type ‘ cost from peer to gateway

path from peer to gateway [1]

path from peer to gateway [n] (1 <n<62)

Figure 3.17

Specification of an IPv6 path to gateway message

message header: message length

message header: message type

cost from peer to gateway

path from peer to gateway

1+1+2+16 + O to 980 in 16 byte increments

(ie: between @ and 61 additional IPv6 addresses)

0x62

16 bits / 2 bytes

cost of the link between the advertising router and it's gateway
if the advertising router is a gateway, the cost is @

if the advertising router does not know of a gateway, the cost is
infinity

(which is @xffff in FRP)

128 bits/ 16 bytes x n (1 <n<62)

a list of 1 to 62 IPv6 addresses specifying the path taken by this
router to reach it’s designated gateway

the first address in the list is always this router’s address

Developing the Fringe Routing Protocol

37

Specifying the Fringe Routing Protocol

Route update messages

Once the local router establishes a path to a gateway, it starts to exchange routing

information with other FRP peers using route update messages. It utilises the information

provided by peers via these messages to build and rebuild its own routing table, selecting

the best route to each known destination to store and to share with its peers.

Size: 96 bits / 12 bytes

0 7

15 23 31

message length

message type update type flag prefix length

route cost cost from originator to gateway

IP prefix

Figure 3.18

Specification of an IPv4 route update message

message header: message length
message header: message type

update type flags

prefix length

route cost

cost from originator to gateway

IP prefix

12

0x43

8 bits / 1 byte

the update flags are specified by setting one or more of the following
bits:

0x01 begin

0x02 commit

0x04 null

0x08 update

0x10 delete

0x80 gateway

8 bits / 1 byte

length of the prefix mask (a number between 0 and 32)

16 bits/ 2 bytes

cost of the new route being advertised

16 bits/ 2 bytes

cost of the link between the advertising router and it's gateway
32 bits / 4 bytes

destination address or prefix

38

Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

Size: 96 bits / 12 bytes

0 7 15 23 31
message length message type update type flag ‘ prefix length
route cost cost from originator to gateway
IPv6 prefix (truncated)

Figure 3.19
Specification of an IPv6 route update message

message header: message length 12
message header: message type ~ 0x63
update type flags 8 bits/ 1 byte
the update flags are specified by setting one or more of the following
hexadecimal codes:
0x0@1 begin
0x02 commit
0x04 null
0x08 update
0x10 delete
0x80 gateway
prefix length 8 bits/ 1 byte
length of the prefix mask (a number between 0 and 128)
route cost 16 bits/ 2 bytes
cost of the new route being advertised
cost from originator to gateway 16 bits / 2 bytes
cost of the link between the advertising router and it's gateway
prefix 32 bits /4 bytes

destination prefix

Batch processing of update messages

Updates typically happen in batches as a router sends its current routing table to all peers,
one update message at a time. The first message of an update batch carries a BEGIN flag
and the final message of the batch carries a COMMIT flag. Messages in between the BEGIN
and the COMMIT are assumed to belong to the same batch. Any individual route that is also
a gateway route carries a GATEWAY flag as well.

There are instances where update messages do not occur as a batch. A router can tell a
peer that it has nothing to share by sending a single update carrying the BEGIN + NULLRT
+ COMMIT flags. Modification to or deletion of an individual entry in the routing table carry
BEGIN + UPDATE + COMMIT or BEGIN + DELETE + COMMIT.

To avoid processing out-of—date routes, each time a new BEGIN is received, any previously
unCOMMITed batches are discarded in favour of the new arrival. If the batch sequencing is

interrupted or lost for any reason, the current batch is likewise discarded.

Developing the Fringe Routing Protocol 39

Specifying the Fringe Routing Protocol

FRP packet exchange

In common with any other routing protocol, FRP has a set of rules for the exchange of
packets between FRP routers to ensure the secure delivery of messages in the correct order.
The diagrams show only the packet header and the message headers. The colour coding

for the different message types is used consistently throughout this document.

The packet header

The packet header holds the information that is unique to the entire packet — the sender’s
sequence number (or local sequence number or 1seq), the recipient’s acknowledgement
number (or remote sequence number or rseq), and a security code created by using the
SHA library to create a hash of the entire packet plus the sender’s secret. The hash is
duplicated by the recipient on receipt of the message. If the two do not match, the packet

is discarded. This process is followed every time two FRP routers exchange packets.

A new header and the subsequent hash are produced each time a packet is constructed,
although the hash is actually the last element to be generated as it requires the packet

contents to be in place before it can be created.

Initial handshake
When a router comes online for the first time, it works through the list of peers provided in
the configuration file. By sending a SYN packet to each one, the router determines which

peers are ‘alive’ and lets each one know that it also is now ‘alive’.

To start the initial conversation with a new peer, the initiating router creates a packet
header setting the sequence number to the randomly generated starting sequence number
for this peer and the acknowledgement number to 0, as the peer’s current sequence is not

yet known. The 0 indicates to the remote peer that this is the start of a new conversation.

This is a SYN packet and is specified as a null packet, so no messages are added to the
packet header. Packet creation is now complete so the security hash can be computed and

the packet sent to the remote peer.

initiating router recipient peer
initial sequence number = 1 initial sequence number = 101

SYN Iseg=1 rseq=0

Figure 3.20
The start of a new conversation

40 Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

The remote peer takes receipt of the packet, checking both the security hash and that the
initiating router is one of its peers. It responds with a null ACK packet, setting the sequence
number to the next available sequence number for this router and the acknowledgement

number to the sequence number sent in the SYN packet.

initiating router recipient peer
initial sequence number = 1 initial sequence number = 101

SYN Iseg=1 rseq=0

ACK Iseq=101 rseq=1

Figure 3.21
Handshake is complete

Batches of messages

The initiating router receives the ACK packet from the peer and replies, incrementing the
sequence number and building a new packet setting the acknowledgement number to the
one sent by the peer in the ACK packet. This response packet may contain more than one
message, as the host router will scan through the information held on this peer creating

messages for each of the ‘send message’ flags currently set.

Following the initial handshake, a configuration message is added to the packet header,
sending the peer the initiating router’s poll and retry times, address, and the cost of the link
between them. A path to gateway message is also added, sending the peer information
about the router’s gateway, which, at this point, will be either “I have no gateway” or “I

am a gateway”.

initiating router recipient peer
initial sequence number = 1 initial sequence number = 101

SYN Iseg=1 rseq=0

ACK Iseq=101 rseq=1

Iseq=2 rseq=101
CONFIG len=12 type=0x41
GATE len=8 type=0x42

Figure 3.22
Sending more than one message in a packet

The responding peer receives the configuration and gateway messages and replies in kind
by adding a configuration message and then a gateway message to the return packet.
Incidentally, it is at this point that a router can begin to build a path to gateway if it needs

to, using the path to gateway information it has just received.

Developing the Fringe Routing Protocol 41

Specifying the Fringe Routing Protocol

Triggered updates

In addition to the configuration and gateway messages, the remote peer may have route

updates to send the initiating router. Initially these updates are a complete exchange

of routing tables. Subsequent information exchanges are triggered by one of the hosts

receiving an update from elsewhere and propagating the route information on to all its

peers.

The remote peer can add a batch of update messages, with the appropriate flags set, to

the packet at this point.

initiating router
initial sequence number = 1

SYN Iseg=1 rseq=0

recipient peer
initial sequence number = 101

ACK Iseq=101 rseq=1

Iseq=2 rseq=101

CONFIG len=12 type=0x41
GATE len=8 type=0x42

Iseq=102 rseq=2

Figure X 3.23

CONFIG len=12 type=0x41
GATE len=8 type=0x42
UPDATE len=32+ type=0x43
UPDATE len=32+ type=0x43
UPDATE len=32+ type=0x43

Sending config, gateway and update messages
in response to receiving a config and a gateway message

Closing the conversation

The initiating router receives and processes the messages. If it has nothing to send in

return, it closes the conversation by sending a packet header plus a control message with

the type field set to ACK, letting the peer know that this exchange is over.

initiating router
initial sequence number = 1

SYN Iseg=1 rseq=0

recipient peer
initial sequence number = 101

ACK Iseq=101 rseq=1

Iseq=2 rseq=101

CONFIG len=12 type=0x41
GATE len=8 type=0x42

Iseq=102 rseq=2

ACK Iseq=3 rseq=102

CONFIG len=12 type=0x41
GATE len=8 type=0x42

UPDATE len=32+ type=0x43
UPDATE len=32+ type=0x43
UPDATE len=32+ type=0x43

CONTROL len=4 type=2

Figure X 3.24
Closing a conversation

42

Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

Alternatively, if the initiating router also has route information to share, it may send its

own batch of route update messages back to the remote peer. The peer is then the one to

conclude the conversation by sending a packet header plus a control message with the type

field set to ACK, letting the router know that this exchange is over.

initiating router
initial sequence number = 1

SYN Iseg=1 rseq=0

recipient peer
initial sequence number = 101

ACK Iseq=101 rseq=1

Iseq=2 rseq=101

CONFIG len=12 type=0x41
GATE len=8 type=0x42

Iseq=102 rseq=2

Iseq=3 rseq=102

CONFIG len=12 type=0x41
GATE len=8 type=0x42
UPDATE len=32+ type=0x43
UPDATE len=32+ type=0x43
UPDATE len=32+ type=0x43

UPDATE len=32+ type=0x43
UPDATE len=32+ type=0x43

ACK Iseq=103 rseq=3

Figure X 3.25

CONTROL len=4 type=2

A complete conversation

Starting a subsequent conversation

Next time the router needs to communicate with this peer, it starts the conversation process

again by sending a SYN packet with the next number in the sequence used for this peer and

the acknowledgement number set to 0, indicating the start of a new exchange. The peer

ACKs this SYN, providing it’s next sequence number. The initiating router then proceeds to

send a packet of messages. The peer may respond with messages of it’s own but eventually

one or the other will send a final ACK to close the conversation again.

initiating router

SYN Iseg=4 rseq=0

recipient peer

ACK Iseq=104 rseq=4

Iseq=5 rseq=104

messages go here

ACK Iseq=105 rseq=5

Figure X 3.26

CONTROL len=4 type=2

Starting a subsequent conversation

Developing the Fringe Routing Protocol

43

Specifying the Fringe Routing Protocol

Polling

If a peer has not been heard from for a pre—specified period of time (set as a configuration
variable), then a host sends a poll message, essentially saying “Are you still there?”. The
host still needs to conduct the standard SYN/ACK handshake before sending a control
message with the POLL control type (1) set. The correct response is a control message with
the ACK control type (2) set.

initiating router recipient peer
initial sequence number = 10 initial sequence number = 110

SYN Iseg=10 rseq=0

ACK Iseq=110 rseq=10

POLL Iseg=11 rseq=110
CONTROL len=4 type=1

ACK Iseq=111 rseq=11
CONTROL len=4 type=2

Figure X 3.27
A poll conversation

Dealing with failure

A common delivery issue in many protocols is the problem of packets arriving out of
order, especially when relying on UDP as the transport protocol as UDP has no delivery
guarantees. The synchronous nature of the FRP message exchange provides it with the
robustness it needs by insisting on a TCP style requirement that a host pause to receive an
acknowledgement from the peer before sending the next packet. The synchronicity rises
from FRP sending multiple messages in one packet rather than each individual message on

its own.

A potential failure occurs when a router disappears and so stops replying to messages.
This particular failure cannot be recovered from unless the peer reappears sometime in the
future. All that can be done in the interim is to make sure the peer really has disappeared,
rather than just becoming slow to respond, and then note the fact that it has gone. If a host
does not receive a response to any sent packet within a pre—specified (configurable) period
of time, the packet is resent and then resent again until the retry time runs out. At this point

the peer is declared ‘dead’.

44 Developing the Fringe Routing Protocol

Specifying the Fringe Routing Protocol

initiating router recipient peer
initial sequence number = 12 initial sequence number = 112

SYN Iseg=12 rseq=0
SYN Iseg=12 rseq=0
SYN Iseg=12 rseq=0

abort

Figure X 3.28
The peer has ‘died’

When the peer reappears, an initial handshake exchange updates the information held in

the host’s list of peers and conversations continue as usual.

Other common problems in packet delivery are detected as sequence number mismatches.
In a similar situation to the one above for example, if the peer was merely having network
issues causing it to slow down, it may get a message from the initiating router more than
once. If the message is a SYN packet, each new one will be treated as a new conversation
request, so the previous conversation request is dropped. Hopefully an ACK will get through
before the host declares the peer ‘dead’ but if it doesn’t an initial handshake will take place

next time the peer has a communication for the host.

Alternatively, the host’s repeated message could occur in the middle of a conversation.
In this case, the first message received by the peer is replied to and any subsequent ones
dropped as having the incorrect ‘rseq’. This is because the peer is expecting an incremented
sequence number but the host is still ACKing the original until the peer’s reply arrives — at

which point a normal conversation continues.

Another possible cause of failure is a corrupt packet, either by damage to the packet in transit
or by more malignant means. In this case the problem is detected when the receiving router
attempts to validate the packet. As the initial security hash performed by the sending host
utilises both its secret and the contents of the packet, any deliberate attempt to modify the
packet will only succeed if the third party knows the secret. Otherwise, the recomputation

of the hash by the recipient fails and the packet is ignored and discarded.

Developing the Fringe Routing Protocol 45

46

Developing the Fringe Routing Protocol

4. Designing the Quagga FRP daemon

This chapter covers the architecture of the Quagga system, the initial process of designing
and building the Quagga FRP daemon, the architecture and structure of the daemon and
the program flows necessary for the correct application of the FRP algorithm and associated

operational requirements.

The design problem is to, within the confines of the Quagga software routing suite, create
a fringe routing protocol daemon that:
> can bootstrap itself, — ie: get up and running using a configuration file and
can inject any routes in that configuration into the kernel;
> can be told a set of peers via the configuration file or via a terminal, can send
messages to those peers, and can receive messages from those peers;
> can extract information from the received peer messages, can make the
correct decisions about building a routing table using the data in those
messages, and can distribute changes in the routing table back to the peers;

> can use the routing table to correctly route traffic.

Developing the Fringe Routing Protocol 47

Designing the Quagga FRP daemon

Quagga Architecture

Quagga is not a router in the physical sense of the word, in that it is not a dedicated piece
of hardware, optimised to perform one specific task as quickly and efficiently as possible.
It is instead, a modular, open source software suite for Unix and Linux platforms. In place
of the specialist hardware, the package allows a standard Unix OS desktop to operate as a

router using Quagga to facilitate the routing functions.

The Quagga command set and the syntax it uses is very similar to that used by Cisco for
their routers and so is familiar to most users, although Quagga does not have the same

extent of functionality provided by Cisco routers [http://sourceforge.net/apps/mediawiki/quagga/].

At Quagga’s core is the Zebra daemon providing an abstraction layer using a client/server
model to interface between the individual protocol daemons and the Unix kernel [www.
quagga.net/about.php]. Each protocol daemon is a standalone process, maintaining its own
state and routing table consistent with its protocol’s algorithm. Zebra is responsible for
handling the injection of routes from each individual daemon into the kernel routing table
and for the redistribution of routes between the individual protocol daemons. The Zebra
daemon also manages other shared functions that rely on cooperation with the kernel,

such as using interfaces and sockets.

Each Quagga daemon is run as a separate and independent process on the host operating
system. The Zebra process must be running before any of the protocol processes will run
correctly. Individual protocol daemons may be taken up and down without affecting any

other Quagga process.

Figure 4.1 shows the way Quagga separates the two major functions of a router, that of
routing traffic from that of creating and maintaining a table of destinations and the directly
connected nexthops. The top part of the diagram shows Quagga enabling the Unix system
at the forwarding plane level where incoming traffic is accepted, the destination address
consulted, and the nexthop determined. The underlying Unix kernel’s routing table is used
as the forwarding information base (FIB) and is consulted to determine which interface is

used to send outgoing traffic on its way.

48 Developing the Fringe Routing Protocol

Designing the Quagga FRP daemon

—t——

incoming trafic —fF—> consult FIB
—f—>
- 4/% ——
outgoing traffic <—f—
-]

Forwarding Plane

— Quagga router kernel —|———
Control Plane

BGP BGP RIB
RIP RIP RIB Zebra A K:;el
RIPng RIPng RIB —

OSPF OSPF RIB

ISIS ISIS RIB
FRP FRP RIB
static/connected routes
Figure 4.1

The architecture of a Quagga software router

The control plane part of the diagram shows the modular approach of Quagga. The
individual protocol daemons, each with their own individual routing table, are clients of the
Zebra server daemon that facilitates access to the Unix kernel. Protocol daemons provide
their chosen ‘best’ routes to the kernel and to each other via the Zebra daemon. Zebra
also allows user defined static and connected routes to be defined, duplicating some of the

functions that can also be performed directly via the Unix OS.

Communicating with Zebra

Communication between Zebra and the protocol daemons is provided by Quagga’s Zserv
API running over a TCP or Unix stream to the client daemons [www.quagga.net/about.php].
Knowledge of the message protocol used for this communication is not required in order

to create a new routing daemon to add to the suite.

Zserv supplies zclient functions to the client daemons, allowing them to make calls to API
functions that provide access to standard kernel mechanisms. Each new protocol daemon
must also implement the callback functions necessary to allow Zebra to communicate with
that daemon, as Zebra makes these calls to the daemon assuming that they have been
implemented. These API and callback functions handle updating the router id, detecting,
adding and deleting interfaces, taking interfaces up and down, adding and deleting addresses
to interfaces, discovering addresses attached to interfaces, and adding and deleting routes

in the kernel’s routing table [60].

Developing the Fringe Routing Protocol 49

Designing the Quagga FRP daemon

Configuration and commands

Like any other router, Quagga daemons cater to the custom needs of the network they
are running on and consequently need to be configured. This can happen in one of two
different ways. A minimal amount of information is required for loading at start up and
this is stored in a simple, text based configuration file. Additional data may be added either
to the configuration file or entered by an administrator while the daemon is running. The

current running configuration may be written out to the configuration file at any point.

Re-configuring the daemon while running is facilitated by the built in virtual teletype terminal
(VTY), which provides a command line interface (CLI) for issuing daemon commands. The
Zebra command set provides the standard settings for the routing system — setting static
and connected routes for example. A basic set is provided for each new daemon and these
are fully expandable and customisable to fit the needs of the protocol. The VTY commands

are loaded during daemon initialisation.

Quagga has an elegant solution for handling these configuration commands. A macro has
been defined which makes adding new commands reasonably straightforward by providing
a standardised framework. The format in which a command is executed is identical whether
it is issued by a user or comes from the configuration file, so both methods use the same
piece of code. Commands can be created anywhere in the code base and so are typically

defined in the same file as the feature they relate to.

Threads and events

Quagga is a multi-threaded, event driven system. On initialisation, a daemon spawns a
master thread within an infinite while loop which responds to events. Each daemon has its
own list of events, typically the arrival of a packet, a change to the routing table, and the

triggering of a poll timer but there is scope for other events to be included.

Within the main daemon engine, the initialisation sequence triggers the first instance of
each event. The event thread is created and the appropriate function attached. The thread
then sleeps until that event is triggered at which point the thread wakes and the code is
executed. The first action within the function is to create a new event thread, attach the

function to it, and set to wait for the next trigger.

50 Developing the Fringe Routing Protocol

Designing the Quagga FRP daemon

Library support

The Quagga suite supplies a good set of library files to provide support for protocol daemon
development [www.quagga.net/about.php]. These include zclient.h/c, which provides the Zserv
API mentioned above and zebra.h with the global defines, macros, external variables and

prototypes made available by the Zebra daemon.

Other library files provide support for:

> the management of memory, signal handling, threads, logs, and privileges;

> creating user commands, extracting them from the configuration file, and
executing them in the VTY

> working with networks, interfaces, and sockets;

> all manner of routing related functions like route filtering and distribution, and
working with prefixes, routemaps and tables;

> the standard program requirements of buffers, hash tables, linked lists, strings,

vectors and the network.

Initial process

The first step towards building a FRP daemon was to get to grips with the Quagga code and
see how a protocol daemon hooked in to the Zebra daemon and the associated libraries.
RIPng is the smallest of the existing Quagga protocol daemons and the name also supplies
a good, unique search string. So RIPng was duplicated and turned in to an instant ‘FRP’
daemon simply by running a global find/replace of ‘ripng’ with ‘frp’ within the duplicated

directory, then recompiling and working through the errors generated.

Once the new ‘FRP’ daemon compiled in isolation, the next step was to get the Zebra
daemon to recognise it. This became an extensive hunt through the Zebra and library code
looking for every instance of RIPng, duplicating the necessary code and updating it for
the new daemon — which at this point mainly meant changing RIPng to FRP. Later on, it
required analysing what was happening at that point and deciding what modifications were
required for the real FRP daemon. It also became apparent that looking at more than one
protocol was necessary, so RIP and BGP searches were conducted as well. Once again, this
method eventually came down to constantly recompiling and working through the errors
generated. The overall technique vielded a good indication of where the Zebra daemon,
the library code, and the make and configure files need to be modified, adjusted and added

to in order to support a new protocol daemon.

Developing the Fringe Routing Protocol 51

Designing the Quagga FRP daemon

The other major unknown was how a Quagga daemon behaved at the basic level before
any routing protocol specific code was added. The initial idea was to take the RIPng version
of FRP and remove all the RIPng specific code, leaving a basic daemon shell for the FRP
protocol to be built on top of. However, the fact that RIPng is an IPv6 only protocol started
to cause problems. This left a choice between RIP, which as it is IPv4 only, was also not
ideal but easier to work with than RIPng, and BGP, which was considerably more complex.
RIP was the obvious choice and a new ‘FRP/RIP’ daemon was created and compiled. The
technique ultimately failed however, as it became too difficult to separate the RIP protocol

specific code from the generic daemon code.

Going through the above process was necessary but had left the code base in an irreparable
mess. A clean start was required. This time the modifications to the Zebra daemon and the
libraries were systematically worked through (see Appendix C) before a new daemon was built
from the ground up using the Zebra for dummies [60] document as a guide and referring
to the RIP, RIPng and BGP code as necessary. The daemon was created in two stages, the

first being the creation of a shell and the second being the addition of the FRP protocol.

In the creation of the shell, the RIP, RIPng and BGP code base became an extremely useful
resource and in many cases, code for basic functionality was lifted directly from one or
another of them. The RIP/RIPng combination was invaluable as a guide to the differences

between IPv4 and [Pv6 whereas BGP showed how to combine IPv4 and 6 in one daemon.

When reading the FRP daemon code included in this document, note that as Quagga only
uses the /*comment*/ style of comments, /*comment*/ denotes code taken directly from an

existing daemon and //comment indicates new code.

52 Developing the Fringe Routing Protocol

Designing the Quagga FRP daemon

Code structure

The Quagga protocol daemons mostly adhere to a common code file structure, although
there is some diversity between them. Inside the main Quagga directory, a lib directory
holds shared code and a zebra directory stores the implementation of the Zebra daemon.
Each individual Quagga protocol daemon has its own directory called protocol. The initial
code file is called protocol_main.c that calls protocold.c, and it is this file that contains the
core daemon code. Both files use the same header, protocold.h, which holds all the core
datastructures and declarations. Other files are created as necessary using a protocol_ prefix.
Interaction with Zebra happens inside protocol_zebra.c and other common suffixes appear
in multiple daemons — _debug, _interface, _peer, _route and _routemap for example. The FRP

daemon was designed to fit in to this structure.

Delivery
. .
incoming traffic —f— consult FIB
1 5 I
FIB

| nexthop S
outgoing traffic <—f— 4//
-

Forwarding Plane

— Quagga router kernel ————
l Control Plane

FRP daemon
Kernel

frpd.h/c RIB

main.c gateway
initialisation

- config file networks

- terminal config —
- authentication

peer.c route.c
cers route
-+
P selection
FRP RIB
-
(distributicﬂ) Zebra
packet.h/c zebra.c daemon
messages > socket <= interfaces = L
interface.c '
Figure 4.2

The FRP daemon architecture
(note that the file name frp_ prefixes have been dropped)

Developing the Fringe Routing Protocol 53

Designing the Quagga FRP daemon

frp_main.c
The protocol_main.c files are not only common to all Quagga daemons but the code is very
similar in each case. It is here that the set up and initialisation of the system occurs. The
main program:
> ‘includes’ the frpd.h file that sets up many of the data structures and global
variables

> sets the daemon’s privileges

Y

initialises debug logging

> extracts and executes the command line arguments used when the daemon

was booted

> creates and sets up the master thread

> calls the system level initialisation functions — zebra privileges, signal handlers,
commands, VTY, memory

> calls the FRP and Zebra (zclient) daemon initialisation functions

> installs and sorts the VTY commands

> reads the config file and executes the commands

> changes to running in daemon mode

> creates VTY socket and starts the socket listeners

> creates the pid file

> starts up the main program loop, an infinite while loop in which the master

thread continuously fetches and executes the next thread

54 Developing the Fringe Routing Protocol

Designing the Quagga FRP daemon

frp_zebra.c
The primary function of the frp_zebra.c file is to initialise zclient and to set up the callback
functions for the Zserv API. This file is present in all the Quagga protocol daemons. The

callback functions implemented in FRP are the following:
int (*interface_add) (int, struct zclient *, uintlo_t);
int (*interface_delete) (int, struct zclient *, uintl6_t);
int (*interface_up) (int, struct zclient *, uintle_t);
int (*interface_down) (int, struct zclient *, uintle_t);
int (*interface_address_add) (int, struct zclient *, uintle_t);
int (*interface_address_delete) (int, struct zclient *, uintle6_t);
int (*ipv4_route_add) (int, struct zclient *, uintlo_t);
int (*ipv4_route_delete) (int, struct zclient *, uintl6_t);

which need to be mapped to the functions that actually implement them in the appropriate

files. Two are implemented here in the function frp_zebra_read_ipv4.
zclient->ipv4_route_add = frp_zebra_read_ipv4;
zclient->ipv4_route_delete = frp_zebra_read_ipv4;

Two more callbacks need to be added to complete the daemon:
int (*ipv6_route_add) (int, struct zclient *, uintlo_t);
int (*ipv6_route_delete) (int, struct zclient *, uintl6_t);

frp_interface.c
Much of the interface code is common to all Quagga daemons and handles anything to
do with network interfaces. The interface initialisation function is defined here, as is the
VTY enable FRP network command. The rest of the functions define the many requirements
of using interfaces including bringing them up and down, creating, enabling and checking
them, attaching addresses, networks and peers to them, and looking up information about
them.
The interface callback functions are implemented and linked to the Zebra daemon here:

zclient->interface_add = frp_interface_add;

zclient->interface_delete = frp_interface_delete;

zclient->interface_up = frp_interface_up;

zclient->interface_down = frp_interface_down;

zclient->interface_address_add = frp_interface_address_add;
zclient->interface_address_delete = frp_interface_address_delete;

Developing the Fringe Routing Protocol 55

Designing the Quagga FRP daemon

frp_debug.h and frp_debug.c

The Zebra daemon and the Quagga libraries handle a wide range of debugging options
that can be hooked into as necessary. Output to screen, terminal or log file is handled by
embedding zlog_debug statements into the daemon code. Individual protocol daemons can
also specify their own custom debug statements to be called and displayed via the zlog_debug
system. FRPs small amount of debugging code resides here and consists predominantly of

VTY commands used to turn various debug levels on and off.

frpd.h

In common with other Quagga prototype daemons, the main repository of FRPs external
and global includes, #defines, variables, data structures, and function prototypes. One of
the key structures is struct frp which holds information about the FRP router including its
routing table and its gateway status. Another is struct frp_peer which stores data on a single
peer, each one being held in a linked list called frp_peers. There is only one struct frp and only

one list frp_peers. Both are specified as prototypes here.

Also defined here is struct frp_route which stores a single route given by a peer, a collection
of which makes up the stored copy of that peer’s forwarding table, and struct frp_info which
holds meta data about the router’s routing table and is used to handle access to it via the

systems set up by Quagga.

frpd.c

This is the main daemon file containing much of the code specific to running the daemon.
frpd.c handles the daemon'’s internal setup and configuration including creating the struct frp
instance, creating and setting up the socket for FRP to run on, and adding the FRP specific
commands to the VTY interface. This file also manages re—writing the configuration file on

demand, once gain via the VTY interface.

The bulk of the code stored here however, controls the mechanics of running the fringe
routing protocol. FRP’s implementation of Quagga’s triggered event driven system is

defined here, as are the functions that handle each individual event.

frp_packet.h

The repository of all information relating to FRP messages and packets. This file defines
all the different sizes, types and flags required, and creates all the data structures needed to
build a FRP packet. Data structures are defined for a packet header, a message header, and

for each of the different message types.

56 Developing the Fringe Routing Protocol

Designing the Quagga FRP daemon

frp_packet.c

Drawing on the data defined in frp_packet.h, frp_packet.c defines the specific message and
packet handling functions. These are called on to make up individual messages dependent
on the message type provided and to build FRP packets out of one or more messages and
a packet header. The frp_send_packet function, which is mostly made up of code taken from

other protocol daemons, also resides here.

frp_peer.c

Functions for the creation, initialisation, handling and support of peers, including the
associated VTY commands. Where overlaps occur, code has been lifted from other protocol
daemons. Of particular interest are the two security functions, dohash and checksecure,

which are taken directly from the original Knossos implementation of FRP.

frp_route.c

Quagga supplies many of the mechanisms required to handle the FRP routing table. The
FRP daemon only needs to set up the necessary data structures and make calls to the
relevant library functions. frp_route.c holds the functions that address the specific FRP routing

mechanisms and apply the FRP decision algorithm.

Program flow

Once the empty daemon shell was working correctly, the fringe routing protocol itself
could be built into it, necessitating a complete change of direction in the development
phase. The Quagga system is a framework providing an API for basic or common router
functionality — the mechanics of building the routing table for example. Any FRP specific
functionality — deciding what actually goes into the routing table for instance — needed
to be written from scratch. The design for this functionality is shown over the page. It
shows the program flows necessary for the correct application of the FRP algorithm and
associated operational requirements. The implementation of this FRP daemon design is

described in the following section.

Developing the Fringe Routing Protocol 57

Designing the Quagga FRP daemon

Figure 4.3
FRP daemon program flows

START UP

read config
| or user command

interface setup

debug & logs
link cost N address
_— router setup
poll time 7 secret
T
retry time poll time
—— | peer setup T
gate cost + V retry time
T T
is gateway POLL link cost
—
c//
‘ la
POLL
clear timer

for each peer

aliva check peer state dead
waiting| for ack do nothing

are flags set?

— - within
within poll period? response
- period? es

set POLL flag

ni
dead — set status resend last packet

send SYN delete peer RIB

| delete peer from our
RIB, rebuild our RIB

. OUTGOING PACKET

for each msg to be sent

TRIGGER UPDATE

TRIGGERED UPDATE
clear timer

for each peer

quiescent?

build new message

gateway flag set?

build new
) 'l am gateway"
quiescent? ’ 9 Y
message
ye: no
build new build new
null gateway path to gate
message message

_—

send flag set?

build new message
—

quiescent?
S

counter = 0

foreachrouteinourRB

is this peer
the nexthop?

0

get nexthop peer

is
route cost + link cost
< route gateway cost
+ target gateway cost
+ is gateway cos
?

is counter = 07

n es

copy msg to buffer
build new message

set commit flag

build new message
\/

is route a gateway?

set is-gateway flag

counter ++

v

is counter < 17
Y€ o

build new message

set begin, nullrt and set commit flag

commit flags
copy msg to buffer

set gateway flag

tri d by?
gateway update riggered by route update
set config flag set update flag

send SYN

build packet
_P-

send packet

Developing the Fringe Routing Protocol

58

Designing the Quagga FRP daemon

INCOMING PACKET

valid interface,
pkt length, IP address
?

update state

passes security?

rseq > 07
P N
null packet? rseq = our
sequence no?
yes n es
send null packet ACK
" — increment our
send NAK sequence number

v

null packet?

is ACKing my SYN
~————— send flagged messages

reset flags for each message in

/ the packet ;

i CONFIG — extract message type

| update peer CONTROL
ROUTE UPDATE

extract type
extract flags

ACK

—— send ACK resend last pkt

have a BEGIN? do nothing
n es

“
have existing batch? have existing batch?

0

extract route kill existing batch ~——m«————————» have NULLRT?

\
add to temp RIB kil existing RIB for

have a COMMIT?
. M — was peer RIB
S populated?
replace peer RIB with create new temp RIB update peer RIB is this . -
temp RIB | and begin new batch | peer nexthop for this

delete all of peer's
routes from RIB

destination in
our RIB?,
yes

/

recompute our RIB

for each new route

1 we have stored

is route in our RIB?

no yes

\

is
yes route cost + link cost
< route gateway cost
flag that RIB has
| changed

+ target gateway cost
| WW

has RIB changed?

add to RIB

TRIGGER UPDATE

have a DELETE?
Oy peer '
— E——
have an UPDATE? | delete from peer RIB

PATH TO GATEWAY

valid msg?
S
is cost = 007
S

extract path

are we in path?

{

is this
path better than our

current one?
es

update router setup

TRIGGER UPDATE

Developing the Fringe Routing Protocol

59

60

Developing the Fringe Routing Protocol

5. Implementing and testing the Quagga FRP daemon

This chapter describes in detail the implementation and testing of the fringe routing
protocol as a Quagga routing daemon. It covers the daemon start up, peers, events, polling
and triggered updates. It describes how an incoming packet can trigger the sending of the
different types of FRP messages — control, configuration, gateway, and route updates —
and describes how route updates force a recomputation of the routing table. Finally, the
process of building outgoing messages and packets is explains. The IPv4 version of the

daemon is used as the example throughout the section.

Daemon start up

On start up, the FRP daemon, like all the other Quagga protocol daemons, is either
launched from a startup script or from the Unix command line using the standard Unix
launch command plus any of the additional arguments built in to the FRP implementation.

For example:
sudo ./frpd -d -f /opt/local/etc/quagga/frpd.conf

Here, -d is specifying that the daemon should be launched in daemon mode and -f is
providing the path to the configuration file. The start up arguments are implemented in
frp_main.c and allow customisation of various settings including the VTY port and address,

and the user and group names.
struct option longopts[] =

{ { “daemon”, no_argument, NULL, “d’},
{ “config_file”, required_argument, NULL, °‘f’},
{ “pid_file”, required_argument, NULL, °‘i’},
{ “dryrun”, no_argument, NULL, ‘C’}%,
{ “help”, no_argument, NULL, ‘h’},
{ “vty_addr”, required_argument, NULL, °‘A’},
{ “vty_port”, required_argument, NULL, °‘P’},
{ “retain”, no_argument, NULL, ‘r’},
{ “user”, required_argument, NULL, ‘u’},
{ “group”, required_argument, NULL, °‘g’},
{ “version”, no_argument, NULL, ‘v’},
{0}

s

Developing the Fringe Routing Protocol 61

Implementing and testing the Fringe Routing Protocol

The header file frpd.h contains most of the daemon’s external function prototypes and
global variables. It also specifies a number of defines to hold various initialisation values

required to set up the daemon as a FRP router.
#define FRP_VERSION 1
#define FRP_DEFAULT_CONFIG “frpd.conf”

#define FRP_PORT_DEFAULT 343
#define FRP_VTY_PORT 2609

#define FRP_DEFAULT_COST 1
#define FRP_DEFAULT_POLL 5
#define FRP_DEFAULT_RETRY 1
#define FRP_INFINITY 0

#define FRP_PEER_DEAD 5
The version number is for compatibility with other Quagga daemons but is not really used
in FRP at present. The name of the configuration file follows existing Quagga convention
and is stored in the default directory set by Quagga. This is different on each platform and

is configurable in Quagga itself.

The FRP port and the VTY port are necessary settings. 343 is the port number chosen by
Don and used in his implementation of FRP. Quagga is currently using ports 2600 to 2608
for Zebra and other protocol demons so port 2609 was chosen for FRP. It needs to be noted

that neither of these port choices are official IANA assigned numbers.

There are a number of parameters required to set up a FRP router and these are stored in

the data structure frp defined in frpd.h.

struct frp

{ int version;
struct stream* obuf;
int sock;
const char* secret;
u_short cost;
u_short poll;
u_short retry;
struct route_table* rib;
struct route_table* routes;

62 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

struct route_table* neighbors;
#define FRP_GATEWAY_ALWAYS 0
#define FRP_GATEWAY_YES 1
#define FRP_GATEWAY_NO 2
enum flag is_gateway_flag;
struct list* gateway_path;
struct frp_peer* gateway_nexthop;
int gateway_cost;
struct thread* t_read;
struct thread* t_poll;
struct thread* t_update;
struct thread* t_update_interval;
int update_trigger;
unsigned long update_time;
unsigned long timeout_time;
unsigned long garbage_time;

s
This data structure stores the basic information the router needs to interact with peers; the
secret to be exchanged; the poll interval for contacting peers to check they are still there
and the retry interval for contacting peers that have not responded for a period of time.
It stores gateway information; if this router is a gateway, the current path to the currently
designated gateway (if there is one), the nexthop peer in that path and the cost to reach
it. The threads and the timers are used to handle events. Note that struct route_table*
routes is required so that Zebra can handle static routes and that struct route_table*
neighbors has been left in at present because it is not clear whether Zebra also requires it

to be here, despite the fact that the FRP daemon is handling peers in a different manner.

The main function in frp_main.c initialises the daemon and sets many of it’s defaults,
setting up the basic router configuration by reading and executing the commands written
in the configuration files. The basic, non—FRP router configuration requirements are set via
the Zebra daemon.

For example:
! Zebra configuration
hostname sapphire
password zebra
enable password zebra
log file zebra.log
|
interface end@
ip address 10.0.1.20/24

Developing the Fringe Routing Protocol 63

Implementing and testing the Fringe Routing Protocol

At the barest minimum, the FRP configuration file must contain a host name for the router
and a password for accesses that host. Zebra typically encrypts passwords but the ones
shown here are in clear text. A destination for logging output (typically stdout) is likewise
usually specified. To set up the FRP router, specify the network range(s) it can route traffic
to, state whether it is it a gateway (default is no) and set the gateway cost to 1 if it is (default
is infinity, or @xffff if it isn’t). State what secret this router will it share with its peers. If the
linkcost (1), poll (60sec) and retry (60sec) times are different to the defaults, set them

here as well. Finally, set up any known peers in the format:
neighbor address secret theirsecret

For example:
! FRPd configuration
hostname sapphire
password zebra
log file frp.log
log stdout
!
router frp
network 10.0.1.0/24
network en@
gateway yes
gatecost 0
secret sapphire
cost 2
poll 30
retry 30
neighbor 10.0.1.50 secret artemis
neighbor 10.0.1.60 secret emerald

Note that the American spelling of ‘neighbor’ has been used to stay consistent with Quagga

usage.

START UP
read ionﬁg
or user command
debug &(/ me setup
 linkcost - address

7‘—*/\ router setup i
poll time secret
retry time poll time
— peer setup <77
gate cost L \ retry time

is gateway POLL link cost

Figure 5.1
Start up flow

64 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

The main function also calls the functions that initialise the FRP zclient and set up the
Zebra callback functions, as well as installing all the FRP specific commands in the VTY.
Debugging is initialised via a call to a function in the frp_debug.c file, as is interface
initialisation via frp_interface.c. In both these cases, the code is essentially the same
as all the other Quagga protocol daemons, suitably modified for FRP. Peer initialisation,
beyond that handled by the configuration file, is simply setting up data structures, including
the struct frp_peer that holds the list of peers, and VTY commands at this point in
the process. Additional information about peers is gathered immediately after start up is

complete by triggering a POLL event that works through the peer list contacting each one.

The following commands were modified or added to the daemon menu system (highlighted

in red):

frpd(config)#
banner Set banner string
debug Debugging functions (see also ‘undebug’)
enable Modify enable password parameters
end End current mode and change to enable mode.
exit Exit current mode and down to previous mode
help Description of the interactive help system
hostname Set system’s network name
line Configure a terminal line
list Print command list
log Logging control
no Negate a command or set its defaults
password Assign the terminal connection password
quit Exit current mode and down to previous mode
router Enable a routing process
service Set up miscellaneous service
show Show running system information
write Write running configuration to memory, network, or terminal

frpd(config)# router frp
frpd(config-router)#

cost Cost of 1link

end End current mode and change to enable mode.
exit Exit current mode and down to previous mode
gateway Is this router a FRP gateway? (yeslno)

help Description of the interactive help system
list Print command list

neighbor Specify a neighbor router
network Enable routing on an IP network

no Negate a command or set its defaults

poll Poll / keepalive frequency

quit Exit current mode and down to previous mode

retry Timeout to failure after acked packet

secret Specify secret

show Show running system information

write Write running configuration to memory, network, or terminal

frpd(config-router)#

Developing the Fringe Routing Protocol 65

Implementing and testing the Fringe Routing Protocol

Peers

Peers (or neighbours) are other FRP routers directly connected to the host router. Therefore
peers are known not only by their network address but also by the interface they are
connected on. Due to the security of the shared secrets, peers are only ever set up by

manual means — there is no automated polling required.

Two pieces of information about a peer are required: the address (which must be matched
to an interface) and the secret, which is to be shared for the security hashes during packet
exchange. A peer must be specified in either the start up configuration or via the command
line, as the secret cannot be entered in any other way. Any additional information is sent
by the peer during the first communication exchange and then stored.
A list of all peers known to a host is stored in the linked list

struct list* frp_peers = NULL;

which is created in frp_peer.c and initialised
frp_peers = list_new);

in the function frp_peer_init in the same file. A prototype
extern struct list* frp_peers;

is listed in frpd.h to ensure there is only one list in existence.

frp_peers holds a list of peer records, one for each peer known. These records are data

structures containing all the information held on the peer.
struct frp_peer

{
struct in_addr address;
const char* secret;
u_short cost;
u_short poll;
u_short retry;
u_int32_t 1seq;
u_int32_t rseq;
struct list* gateway_path;
int gateway_cost;
struct list* rib;
struct list* temp_rib;
u_char* packet_latest;
u_int8_t packet_latest_length;
u_int32_t packet_latest_lseq;

66 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

time_t time_latest_packet;
time_t time_last_heard;
time_t time_sent_config;
struct thread* t_timeout;

enum flag flag_alive;

enum flag flag_send_syn;
enum flag flag_send_pol1l;
enum flag flag_send_config;
enum flag flag_send_gateway;
enum flag flag_send_update;
enum flag flag_awaiting_ack;

s
Many of the variable names make it obvious what information is being stored. Of particular
interest is the use of 1seq and rseq. These are the terms used in the initial FRP specification
and stand for ‘local sequence’ and ‘remote sequence’. Local always equates to the router
whose perspective is current, the host or ‘me’ or ‘us’; and remote equates to the peers
of this router, or ‘them’. Thus, 1seq is ‘our’ sequence and rseq is ‘their’ sequence. This
perspective shifts as the focus shifts to another router or host. Each host maintains a

separate local sequence, or 1seq, with each individual peer.

The linked list rib is the routing table as supplied by the peer. temp_rib is the temporary
storage used when changes to that routing table are received from the peer. The new
routing table is built piece by piece in temp_rib and then copied into rib when confirmed

as complete and correct.

Thelatest packet sent to a peer is stored so that it can be easily resent if a ‘no acknowledgement’
(NAK) is received indicating that the packet has not arrived at the peer, or if the peer does

not acknowledge (ACK) the packet within a specified period of time.

The timers are required to implement polling and keepalives and the timeout thread is part
of Quagga’s thread management system.
The flags are an enumerated boolean

enum flag

{ OFF,

ON,

s
which is turn ON to indicate which message types are ready to be sent the next time a
packet is put together, except for flag_alive which is turned OFF to indicate that a peer

has not been heard from for a certain period of time and subsequently pronounced ‘dead’.

Developing the Fringe Routing Protocol 67

Implementing and testing the Fringe Routing Protocol

The FRP daemon in action

On start up, a FRP host works through its list of peers passing the necessary configuration

information. The following FRPsniffer trace shows a standard configuration exchange

between two Quagga FRP daemons, 10.0.1.20 and 10.0.1.50. Both peers are quiescent

so no route information is exchanged.

20 starts the sequence with the initial handshake by
sending a SYN packet header with no message (a null
packet), telling 50 what 20’s current sequence number is
and indicating that is a new conversation by setting the
recipient’s sequence number to 0. Note the security hash

which 20 has created using its secret.

50 continues the initial handshake by sending a null ACK
packet header saying “acking your 1, my next sequence
number is 2”. Note that for 50 to reach the point of
sending this response, the initial packet security hash must
has been successfully reversed using 50’s stored copy of

20’s secret. This new packet is encrypted with 50’s secret.

The initial handshake is now complete so 20 can send the
configuration message that triggered this conversation.
First comes the packet header — note the incremented
sequence number; “acking your 2, my next sequence
number is 2”. Then comes the config message (type 0x41)
providing the cost, poll and rety values, plus 20’s id which

in this case is its address.

50 receives the message and discovers that their ‘send
config’ flag is set for 20. The packet is constructed —

header plus config message containing data — and sent.

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
--SYN Packet

Waiting for incoming

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
Null Message:

--ACK Packet

Waiting for incoming

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:

IPV4 Config message:
cost:
poll:

retry:
router-id:

Waiting for incoming

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:

IPV4 Config message:
cost:
poll:

retry:
router-id:

Waiting for incoming

10.0.1.20 (a.0.1.14)
10.0.1.50 (a.0.1.32)
??;7?

1 (ox1)

0 (0x0)

FRP packet

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)
??’°L7q

2 (0x2)

1 (ox1)

ox0

FRP packet

10.0.1.20 (a.0.1.14)
10.9.1.50 (a.0.1.32)
2 (0x2)
2 (0x2)

0x41
3
60
60
10.0.1.20

FRP packet

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)

q>??r???

3 (0x3)

2 (0x2)
0x41

10

60

60
10.0.1.50
FRP packet

68

Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

20’s response contains a packet header and a control FRP PACKET HEADER
source address: 10.0.1.20 (a.0.1.14)
destination address: 10.0.1.50 (a.0.1.32)
security hash: ??!?7H?
sender’s seq no: 3 (0x3)
recipient’s ack no: 3 (0x3)

message of type ‘ack’ indicating that, as far as 20 is

concerned, this conversation is over.

Control message: Ox1
--Control ACK, param = 0

Events

FRP’s event handler, function frp_event in frpd.c, recognises three different events: a
poll, an update triggered by a change to the routing table and an incoming packet. These

are defined in frpd.h as an enumerated list.
enum frp_event
{ FRP_EVENT_INCOMING,
FRP_EVENT_UPDATE,
FRP_EVENT_POLL,

}
Outgoing packets are not handled as an frp_event because they are created as required in

response to one of the three listed events.

As in the other Quagga protocol daemons, a call to each event is triggered during
initialisation and an event thread is created and packaged up with the appropriate function
code and data. Subsequent event calls create a new thread for the next event of that type
to use. This process starts in frp_event where, to use FRP_EVENT_INCOMING as an example,
a new read thread is created and given all the necessary data required to run independently

— the thread that spawned it, the code it will run and the current socket.
void frp_event (enum frp_event event, int sock)
{ switch (event)
{ case FRP_EVENT_INCOMING:

frp->t_read = thread_add_read (master, frp_incoming_packet,
NULL, sock);
break;
case FRP_EVENT_UPDATE:

case FRP_EVENT_POLL:

default:

Developing the Fringe Routing Protocol 69

Implementing and testing the Fringe Routing Protocol

Consequently, frp_incoming_packet is required to be an independent piece of code, the
only parameter taken being the thread. The first thing these thread called functions must
do is create a new thread which immediately blocks and sits waiting for the next event of
the correct type to trigger, at which point the process starts again. The original thread

meanwhile executes the code in the function passed to it, thus completing the current

event.
int frp_incoming_packet (struct thread* t)
{
sock = THREAD_FD (t);
frp->t_read = NULL;
frp_event (FRP_EVENT_INCOMING, sock);
}
Polling

The FRP daemon keeps a single poll timer that activates on a regular basis triggering a
POLL event. Each time this happens, the list of peers is traversed and each one individually
checked to see if a POLL message needs to be sent. The criteria to be met are that the peer
is alive, it is not waiting for other messages to be received or sent, and it has been silent for

more than the individual poll period for that peer.

The original FRP specification states

Keep traffic down to keepalives (5 sec?) if no updates.
and

Poll / keepalive frequency in tenths of seconds. Minimise received value with

local configuration.
The current is 60 seconds as this is the most convenient frequency for debugging
purposes. Quagga uses seconds so this FRP daemon also uses seconds. At present, the
implementation only uses the host router’s poll period, this needs to be changed to compare
the two potentially different values and choose the lowest one as per the specification. The
modification requires the router to store a little more state on each individual peer than

happens at the moment. Both the router and the peer poll settings are customisable.

70 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

Polls are triggered within the FRP event handler. If there is already a POLL event active, it

is cancelled and a new POLL thread is created.
case FRP_EVENT_POLL:
if (frp->t_poll)
{ thread_cancel (frp->t_poll);
frp->t_poll = NULL;
}
frp->t_poll = thread_add_timer (master, frp_poll_peers, NULL,
(Cunsigned long)frp->poll);
break;

When a POLL event is issued, the function frp_poll_peers in frpd.c is executed. First a
new POLL thread is created and set to wait for the next POLL to occur. Then the poll timer
is cleared and reset. The list of peers in frp_peers is iterated through and the state of each
peer is checked. This information is held in two flags, flag_alive and flag_awaiting_ack.

Flags are boolean types that can be either ON or OFF.

POLL

!

clear timer

for each peer

!

alive Cﬁ?Ck peer stﬁt_e dead
are flags set? waiting|for ack do nothing
e

within
response
o

dead — set status resend last packet

within poll period?
‘\ /‘
T yes

set POLL flag

send SYN delete peer RIB

:

delete peer from our
RIB, rebuild our RIB

TRIGGER UPDATE

Figure 5.2
Polling flow

If flag_alive is OFF, then the peer has not responded for the specified number of retries

and has been declared dead. So do nothing.

If flag_alive is ON and flag_awaiting_ack is OFF, then the peer has simply not had any
information to share within the last poll period and this router’s poll timer has triggered

before the peer’s has. The first thing to do is determine if any outgoing messages are

Developing the Fringe Routing Protocol 71

Implementing and testing the Fringe Routing Protocol

waiting to be sent by checking the flag_send_xxx flags. If none of these are currently set,
check that the poll period for this peer has expired and, if it has, turn on flag_send_pol1.
Finally, send a SYN packet to start the outgoing packet sequence. The outgoing packet will

be made up of messages corresponding to any of the flags that were set.

If flag_alive is ON and flag_awaiting_ack is ON, check to see if the retry timer is still within
the retry time. If it is, resend the last packet — which will be the one that the outstanding
ACK is for. To facilitate this, the last sent packet is stored in packet_latest. Send it exactly

as is with the same sequence number as previously.

If the retry time has over-run the specified retry period, then declare the peer dead and
clean up. Leave the peer record in the peers list (it may return) but set flag_alive to OFF.
Delete the peer’s routing table — if the peer does return, it will send a new set of routes at
that point. Work through the router’s RIB and delete every route that uses the dead peer
as a nexthop, then re-compute the table. Finally, trigger an UPDATE event to indicate that

the routing table has changed.

The FRP daemon in action

The following FRPsniffer trace shows a standard poll exchange between two Quagga FRP

daemons, 10.0.1.20 and 10.0.1.50.

50 starts the sequence with the initial handshake by sending
a SYN packet.

20 responds with a null packet ACK.

The initial handshake is now complete so 50 can send the

poll message that triggered this conversation. First comes

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
--SYN Packet

Waiting for incoming

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
Null Message:

--ACK Packet

Waiting for incoming
FRP PACKET HEADER

source address:
destination address:

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)
1277 {yk
4 (0x4)
0 (0x0)

FRP packet

10.0.1.20 (a.0.1.14)
10.0.1.50 (a.0.1.32)
\?7?7?7]77x

4 (0x4)

4 (0x4)

0x0

FRP packet

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)

the packet header, followed by the control message of type security hash: q?G??N??
ol sender’s seq no: 5 (@x5)
poil-. recipient’s ack no: 4 (0x4)
Control message: 0x1
--Poll, param = 0
72 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

Waiting for incoming FRP packet

The response from 20 contains a packet header and a FRP PACKET HEADER

source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:

10.0.1.20 (a.0.1.14)
10.0.1.50 (a.0.1.32)
?207)77?

5 (0x5)

5 (0x5)

control message of type ‘ack’ indicating that, as far as 20 is

concerned, this conversation is over.

Control message: Ox1
--Control ACK, param = 0

Some times when a host polls a peer, that peer has disappeared for some reason. The
configuration information provided to each host at start up specifies how long that host will

wait before re—polling and how many polls will be sent before declaring the peer ‘dead’.

The following trace shows 10.0.1.50 polling 10.0.1.20 after 20 has been shut down.

50’s poll timer triggers and so sends a SYN to 20. A copy
of the packet is placed in the latest packet storage for peer
20. 50 waits.

No reply is received from 20 within the retry time so 50

retrieves and sends the same packet again. 50 waits

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
--SYN Packet

Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
--SYN Packet

Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)
84[177?

24 (0x18)

0 (0x0)

FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)
&4[17277

24 (0x18)

0 (0x0)

FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet

Developing the Fringe Routing Protocol

73

Implementing and testing the Fringe Routing Protocol

No reply is received from 20 within the retry time so 50

retrieves and sends the same packet a third time. 50 waits.

In this example, the number of retries was set to 3, so
when no reply is received from 20 within the retry time, 50
declares 20 to be dead.

Time passes and 20 is brought back up again.

20 starts the usual configuration handshake with a SYN
packet.

50 ACKs.

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
--SYN Packet

Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
Waiting for incoming
20 Restarted

Waiting for incoming
Waiting for incoming

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
--SYN Packet

Waiting for incoming

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
Null Message:

--ACK Packet

Waiting for incoming

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)
&4[17277

24 (0x18)

0 (0x0)

FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet
FRP packet

FRP packet
FRP packet

10.0.1.20 (a.0.1.14)
10.0.1.50 (a.0.1.32)
77,77

1 (0x1)

0 (0x0)

FRP packet

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)
?NT:Q??7?

25 (0x19)

1 (0x1)

0x0

FRP packet

74

Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

20 sends a configuration message.

50 responds in kind with its own configuration message

and 20 closes the conversation with a control ACK.

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:

IPV4 Config message:
cost:
poll:

retry:
router-id:

Waiting for incoming

FRP MESSAGE
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:

IPV4 Config message:
cost:
poll:

retry:
router-id:

Waiting for incoming

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:

Control message: Ox1
--Control ACK, param

10.0.1.20 (a.0.1.14)
10.0.1.50 (a.0.1.32)
?23772¢?

2 (0x2)

25 (0x19)

o0x41

3

60

60
10.0.1.20

FRP packet

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)
S807f

26 (0x1a)

2 (0x2)

o0x41

10
60
60
10.0.1.50

FRP packet

10.0.1.20 (a.0.1.14)
10.0.1.50 (a.0.1.32)
$222/7

3 (@0x3)

26 (0x1a)

-0

Developing the Fringe Routing Protocol

75

Implementing and testing the Fringe Routing Protocol

Triggered updates

An UPDATE event is triggered within the FRP event handler to indicate that a change has
been made to the hosts routing table, path to gateway, or configuration and this new
information needs to be propagated out to Zebra and to the host’s peers. Quagga uses
an update timer to try to batch updates to a certain extent — “after a triggered update
is sent, a timer should be set for a random interval between 1 and 5 seconds. If other
changes that would trigger updates occur before the timer expires, a single update is

triggered when the timer expires” [35] and this has been retained in the FRP daemon.
case FRP_EVENT_UPDATE:
if (frp->t_update_interval)
frp->update_trigger = 1;
else if (! frp->t_update)
frp->t_update = thread_add_event (master, frp_update_peers,
NULL, @);
break;

TRIGGERED UPDATE

v

clear timer

for each peer

quiescent?

e
‘]"‘n‘o

triggered by?

gateway update _ route update
ﬂ upda/t\‘

set gateway flag set config flag set update flag

e et

send SYN

Figure 5.3
Triggered updates flow

When a UPDATE event is issued, the function frp_update_peers in frpd.c is executed.
First a new UPDATE thread is created and set to wait for the next UPDATE to occur. Then
the update timer is cleared and reset. The list of peers in frp_peers is iterated through,
checking to see if the peer is quiescent. If it is, then no path to gateway currently exists for
that peer and consequently, no update is needed. Otherwise, the correct flag is set for the
type of update triggered, Quagga waits it’s random period, then a SYN packet is created

and sent.

76 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

Incoming packets

Dealing with an incoming packet is the most complex part of the FRP demon, mainly
because of the many decisions to be made at each step. It is within this sequence that the

different types of message are dealt with and the correct responding message sent in reply.

FRP packets

Note that the terms ‘packet’ and ‘message’ have different meanings in relation to FRP
communications. A message is a single announcement of a set of data in a rigid, pre—
specified format. A packet is the unit of transfer of data across the network and consists of

0 or more messages plus a packet header.

Quagga uses a union to store the contents of an incoming packet in a buffer. When
combined with pointers to mark how much of the data has been extracted, this provides
the flexibility to use the one buffer type for each incoming packet and to decide what
underlying structure to give those contents based on what is extracted.

union frp_pkt_buf
{ char buf[FRP_PKT_MAXSIZE];

struct frp_pkt_hdr frp_pkt_hdr;

struct frp_msg_hdr frp_msg_hdr;

struct frp_msg_control frp_msg_control;
struct frp_msg_ipvé4config frp_msg_ip4config;
struct frp_msg_ipvé4gateway frp_msg_ip4gateway;
struct frp_msg_ipv4update frp_msg_ip4update;

s
Initially, the contents are treated as a frp_pkt_hdr. If dealing with a null packet, the process
ends here. Otherwise the first message header is extracted with provides the length type of
that message, allowing it to be extracted using the correct underlying structure once again.

This process is repeated until the buffer is empty.

Incoming packet events

The frp_incoming_packet function in frpd.c is triggered by a packet arriving via the
socket set up by the daemon during initialisation. The function code is divided in to three
sequential parts, the mechanics of receiving a packet, extracting data and validity and
security checking, and determining what type of messages have arrived and where they fit
in the current conversation. frp_incoming_packet calls on an appropriate separate function
(frp_incoming_xxx_msg) to handle each of the different types of incoming message. The

diagram below concentrates on the second and third of these three parts.

Developing the Fringe Routing Protocol 77

Implementing and testing the Fringe Routing Protocol

INCOMING PACKET

valid interface,
pkt length, IP address
?

yes
update state
passes security?
yes
rseq > 07
M

null packet? rseq = our
~ sequence no?

\T‘Y‘e;l IO 2 ™Y €S
send null packet ACK / \

increment our
send NAK sequence number

v

null packet?

is ACKing my SYN

send flagged messages

reset flags for each message in
the packet N
CONFIG / extract message type \\> PATH TO GATEWAY
CONTROL
ROUTE UPDATE I
Figure 5.4

Incoming packet flow

When an INCOMING PACKET event is triggered by the arrival of a packet, a new INCOMING
PACKET thread is created and set to wait for the next INCOMING PACKET event to occur. The
daemon initialises a buffer of the correct size and reads in the contents of the packet as a
continuous stream. It then checks that
> the packet comes from a known interface with a legitimate address
> FRP is running on this interface and the address belongs to a known FRP peer
> the packet length fits within the minimum and maximum size range pre—
defined in frp_packet.h
The buffer is discarded if any of the checks fail.

Using the pre—defined sizes, types and flags specified in the file frp_packet.h, the daemon
can now decode the single sequence of data into the correctly sized pieces of information

contained in each individual message.

78 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

First the packet header

0 7 15 23 31

security hash

sender’s sequence number
recipient’s acknowledgement number

Figure 5.5
Packet header

#define FRP_PKT_HDRSIZE 16 // (128 bits)
#define FRP_PKT_MINSIZE 16 // (128 bits)
#define FRP_PKT_MAXSIZE 1400 // as specified by Don
struct frp_pkt_hdr
{ u_int8_t hash[8];
u_int32_t sendSeq;
u_int32_t recipAck;
s

is extracted and the peer address confirmed. The peer flag_alive is turned ON and the
time_last_heard flag time stamped. The function checksecure, which has been lifted
directly from the original implementation of FRP, is run against the security hash using
extracted peer address, the host router’s local address and the secret stored in frp_peers

for this particular peer. checksecure must succeed for processing of the packet to continue.

The peer’s sequence number (the sender’s sequence number in this instance) is checked
to see whether this is the start of a new conversation or whether this packet is the next
instalment in an on—going one. If it is equal to 0 and the entire packet consists only of the
packet header with no messages attached (a null packet), then the peer is initiating a new
conversation and the outgoing packet is a null packet ACK. Otherwise, check the peer’s
acknowledgement of the host’s current sequence number (the recipient’s acknowledgement
number in this instance) against the actual sequence number stored by the host for that
peer to see if they match. If they do not, then there has been a problem in the exchange
of messages — a lost packet perhaps — and the host indicates this to the peer by sending

a control NAK packet, essentially asking the peer to start the conversation again.

It has now been established that this is part of an on—going exchange, that the initial
handshake is complete, and that the packet and the sequence numbers are valid. If the
packet is a null packet, then the peer is ACKing a SYN sent by this host to start a new
conversation. As communication has been established, the out—going packet will contain

all flagged messages for that peer.

Developing the Fringe Routing Protocol 79

Implementing and testing the Fringe Routing Protocol

The only remaining possibility is that the packet contains one or messages in an on—going
conversation, so the final section of the incoming_packet function contains a while loop

that iterates to the end of the buffer holding the packet data extracting individual messages.
Within the while, the message header is extracted

0 7 15 23 31
‘ message length ‘ message type ‘

Figure 5.6
Message header

struct frp_msg_hdr

{ u_int8_t length;

u_int8_t type;
5
#define FRP_MSG_CONTROL 0x01
#define FRP_MSG_IPV4CONFIG 0x41
#define FRP_MSG_IPV4GATEWAY 0x42
#define FRP_MSG_IPV4UPDATE 0x43

and the length checked, allowing the full message to be pulled from the buffer and stored.
Pointers keep track of the start of the buffer and the current position within it. The type is
then used to consult a switch statement which ensures the message is passed to the correct

message handling function.

80 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

Control messages

0 7 15 23 31
‘ message length message type ‘ control type control parameters

Figure 5.7
Control message

struct frp_msg_control

{ struct frp_msg_hdr msg_hdr;
u_int8_t type;
u_int8_t param;

s

#define FRP_CTRL_POLL 1

#define FRP_CTRL_ACK 2

#define FRP_CTRL_NAK 3
Control messages are used to indicate that a has reached it’s natural end (type 2, ACK),
that there has been a problem in the exchange of messages so the conversation is being
prematurely terminated and should begin again (type 3, NAK), and to check that a peer

who has not been heard from for a period of time is still alive (type 1, POLL).

CONTROL

'

extract type

POLEZZ A Ak

send ACK resend last pkt
do nothing
Figure 5.8
Control flow
A control ACK is different to a null ACK. The null ACK occurs when a router is responding
to an initial SYN with an empty packet (header only) accepting the communication and
establishing sequence numbers.

initiating router recipient peer
initial sequence number = 1 initial sequence number = 101

SYN Iseg=1 rseq=0

ACK Iseq=101 rseq=1

Figure 5.9
Null ACK

Developing the Fringe Routing Protocol 81

Implementing and testing the Fringe Routing Protocol

The control ACK follows a successful exchange of message(s) specifying that the conversation

is at an end and no further communication is expected.

initiating router recipient peer

SYN Iseg=x rseq=0

ACK Iseq=y rseq=x

... [message exchange(s)] ...

ACK Iseq=xx rseq=yy
CONTROL len=4 type=2

Figure 5.10
Control ACK

Consequently, the correct response to a control ACK is to do nothing except clear the

awaiting_ack flag for that peer.

A control NAK is used when the sequence number the peer acknowledges is not the same
as the one the host knows was the latest one sent. The most likely cause of this is lost or
delayed messages. In response to a control NAK, a host retrieves the last message sent to
that peer, strips the packet header from it. A new header is generated with a new sequence

number and the security hash is re-generated before the packet is sent again.

A POLL is received because the sender wishes to know that the recipient is still alive so all

that is required in response is a control ACK.

The FRP daemon in action
The standard poll exchange illustrates the use of control messages and the difference between null packet ACKs
and control ACKs.

FRP PACKET HEADER
source address: 10.0.1.50 (a.0.1.32)
destination address: 10.0.1.20 (a.0.1.14)
security hash: I?77? {yk
sender’s seq no: 4 (0x4)
recipient’s ack no: @ (0x0)
--SYN Packet

Waiting for incoming FRP packet

The second packet in the trace below shows 10.0.1.20 FRP PACKET HEADER
. . source address: 10.0.1.20 (a.0.1.14)
responding to a SYN with a null packet ACK. destination address: 10.0.1.50 (a.0.1.32)
security hash: \?77?7J7?x
sender’s seq no: 4 (0x4)
recipient’s ack no: 4 (0x4)
Null Message: 0x@
--ACK Packet

Waiting for incoming FRP packet

82 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

The third packet shows 10.0.1.50 using a control message FRP PACKET HEADER
source address: 10.0.1.50 (a.0.1.32)
destination address: 10.0.1.20 (a.0.1.14)
security hash: q?G??N??
sender’s seq no: 5 (@x5)
recipient’s ack no: 4 (0x4)

to send a poll

Control message: Ox1
--Poll, param = @

Waiting for incoming FRP packet

and in the fourth 20 responds with a control message FRP PACKET HEADER

containing an ACK. source address: 10.0.1.20 (a.0.1.14)

destination address: 10.0.1.50 (a.0.1.32)
security hash: ?707)7?
sender’s seq no: 5 (@x5)
recipient’s ack no: 5 (@x5)

Control message: Ox1
--Control ACK, param = @

Configuration messages

0 7 15 23 31
message length ‘ message type cost of the link
poll time retry time
router-ID of peer

Figure 5.11
Configuration message

struct frp_msg_ipv4config

{ struct frp_msg_hdr msg_hdr;
u_short cost;
u_short poll;
u_short retry;
struct in_addr id;

s

The easiest of the message types: copy the new cost, poll, retry and id values into the

correct places in frp_peers.

CONFIG

oo

update peer

Figure 5.12
Configuration flow

Developing the Fringe Routing Protocol 83

Implementing and testing the Fringe Routing Protocol

Path to gateway messages

Gateway path messages are used to exchange gateway routes among peers. The decision

making tree is relatively straightforward but the messages have a unique complication in

that it is unknown how many addresses will make up the path. Consequently the message

length must be used to iterate through the addresses, storing each one in a list. The only

other piece of information that needs extracting and storing is the cost of the path from

the peer to the gateway. If this is infinity (@xffff), then the peer has no gateway and is

quiescent.

0 7 15

23 31

message length message type ‘

cost from peer to gateway

path from peer to gateway [1]

path from peer to gateway [n] (1 £n<62)

Figure 5.13
Path to gateway message

struct frp_msg_ipvé4gateway

{ struct frp_msg_hdr msg_hdr;
u_short cost;
struct in_addr path[62];

s

First the message is checked to ensure that length falls within the maximum (252 bytes)

and minimum (8 bytes) message size, and that the length of the path section is a multiple

of 4 bytes. If it fails either of these tests, the peer’s gateway cost is set to infinity (0xffff)

and the message is discarded.

PATH TO GATEWAY

valid msg?
g
T yes
is cost = 007
: g
yes
extract path
are we in path?
»\ /‘7
T no
is this

path better than our
»._current one? _

. ! ‘yes
update router setup

TRIGGER UPDATE

Figure 5.14
Path to gateway flow

84

Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

Next the gateway cost is examined. If it is infinity (@xffff), then the peer record is updated
and the message is discarded. Otherwise, the path is extracted stored in a linked list, which

in turn is stored in frp_peers.

Finally, check to see if the host’s local address is in the path. If it is not, add the cost of the
link between the peer and the host is to the gateway cost just provided by the peer. This
is matched against the cost of the current gateway for the host. If the new path is lower,
and therefore ‘better’, update the router’s data so that the gateway_cost is this peer’s new
gateway cost plus the link cost, gateway_nexthop is this peer, and gateway_path is this
peer’s new path. Iterate through the list of peers and set the send_gateway flag to ON and

trigger an UPDATE event to send out new path to gateway messages to all peers.

The FRP daemon in action
This trace shows the conversation between 10.0.1.20 and 10.0.1.50 once 20 is told that

it is now a gateway.

Following the standard SYN/ACK exchange,
FRP PACKET

source address: 10.0.1.20 (a.0.1.14)
destination address: 10.0.1.50 (a.0.1.32)
security hash: ??7%W?]
sender’s seq no: 10 (@xa)
recipient’s ack no: @ (0x0)
--SYN Packet

20 builds a path to gateway message, setting the cost to
0 as 20 is the gateway and the path length to 1 as 20’s
address is the only address in the path.

Waiting for incoming

FRP PACKET

source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
Null Message:

--ACK Packet

Waiting for incoming

FRP PACKET
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:

IPV4 path to gateway

FRP message

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)
10 (Oxa)

10 (@xa)

0x0

FRP message

10.0.1.20 (a.0.1.14)
10.0.1.50 (a.0.1.32)
1S<@Y?

11 (oxb)

10 (@xa)

message: 0x42

cost: 0@
of nodes in path: 1
path[0]: 10.0.1.20

Waiting for incoming FRP message

Developing the Fringe Routing Protocol 85

Implementing and testing the Fringe Routing Protocol

50 ACKs receipt. FRP PACKET
source address: 10.0.1.50 (a.0.1.32)

destination address: 10.0.1.20 (a.0.1.14)
security hash: ?MD?E0?
sender’s seq no: 11 (@xb)
recipient’s ack no: 11 (@xb)

Control Message: 0Ox1
--Control ACK, param = 0

Route update messages

Route updates are the most intricate of the messages as they potentially trigger changes
to the routing table and thus bring the FRP decision algorithm into play. They also have
the added complexity of the message flag system that handles batching of multiple route

updates over multiple messages, and potentially multiple packets.

] 7 15 23 31
message length ‘ message type update type flag ‘ prefix length
route cost cost from originator to gateway
IP prefix
Figure 5.15

Route update message

struct frp_msg_ipv4update

{ struct frp_msg_hdr msg_hdr;
u_int8_t flags;
u_int8_t length;
u_short routecost;
u_short gatecost;
struct in_addr prefix;

s

#define FRP_FLAG_BEGIN 0x01

#define FRP_FLAG_COMMIT 0x02

#define FRP_FLAG_NULLRT 0x04

#define FRP_FLAG_UPDATE 0x08

#define FRP_FLAG_DELETE 0x10

#define FRP_FLAG_GATEWAY 0x80
The important piece of information is the update type flag, which specifies where the
current route update lies in the potential chain of messages. The six flags, defined in
frp_packet.h, are stored as single pre—specified bits in a byte of memory and a message

may have more than one flag set. A bitwise AND is used to extract each of the flagged bits.

86 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

0x01] FRP_FLAG_BEGIN

0x02 - FRP_FLAG_COMMIT

0x04 - FRP_FLAG_NULLRT

0x08 | | FRP_FLAG_UPDATE

0x10] FRP_FLAG_DELETE

ox20 | |

x40 | |

0x80 - FRP_FLAG_GATEWAY
Figure 5.16

Route update message flags

Each FRP router shares all the routes it knows about that pass the FRP algorithm test as
a batch of update messages. There should not be a great many of them as FRP explicitly
tries ‘to keep routing table sizes to a minimum’ [57]. The first message in the batch has
the BEGIN flag set and the final message has the COMMIT flag set. It is assumed that all
the routes between the BEGIN and the COMMIT belong to that batch. Any route within the
batch may be flagged as a GATEWAY route.

If flags are not encountered in the correct sequence, it is assumed that a mistake has
occurred and the entire batch is aborted. So if a second BEGIN appears before the first is
closed by a COMMIT, the entire chain of routes arriving after the first BEGIN but before
the second is decreed out—of-date. The arrival of the second BEGIN starts a new batch
replacing the first one, as the peer has obviously updated it’s routing table again in the time

it has taken for the messages to be delivered.

There are three alternatives to sending a batch of FRP routes. The first is to indicate that
no routes are present in the message by using the NULLRT flag. The specification says “If
there are no routes in the update, send route message with length=1, flags=BEGIN +
COMMIT + NULLRT”, so when NULLRT is used, BEGIN and COMMIT flags must also be
present. The “length=1" refers to the prefix length (as the message length must be 12)
but the specification also says, “if NULLRT is specified, fields beyond the flags field may
be omitted”. So the FRP Quagga implementation reads in the entire message but if the
NULLRT flag is set, then it does not use any data beyond the 3" byte. For compatibility, it

sets the prefix length to 1 when creating a message but makes no use of it when processing.

The second and third alternatives allow a single route to be deleted or updated using the
DELETE or UPDATE flag in combination with a BEGIN and a COMMIT in the same single
message. The original specification is unclear about the use of BEGIN and COMMIT flags
with DELETEs and UPDATEs and as the original version of FRP did not implement these

Developing the Fringe Routing Protocol 87

Implementing and testing the Fringe Routing Protocol

functions, the code does not provide addition information. Therefore, an independent
decision had to be made when adding these two options to the Quagga daemon. The
specification does state “Update: single route add/change (abort batch update)” and
“Delete: delete specified route (abort batch update)”, and also uses BEGIN and COMMIT
with the NULLRT flag. Consequently, it was decided that these two should include a BEGIN
as this makes processing route updates easier; all three of the alternatives can be treated as
a new batch of one. Although a COMMIT is not actually needed from a processing point of
view, it seems cleaner to match the batch updates. So in the FRP Quagga daemon, BEGINs
with DELETEs and UPDATEs are required and COMMITs are optional.

ROUTE UPDATE

ST

extract flags

ol

have a BEGIN?

O __egEs ———

have existing batch? have existing batch?

5 e

extract route kill existing batch - have NULLRT?
WN

have a DELETE? kill existing RIB for

add to temp RIB

I «— NO S peer
have a COMMIT? have an UPDATE? delete from peer RIB ¢
es no €S v was peer RIB
2 a s . populated? _
replace peer RIB with create new temp RIB update peer RIB is this _ —, yés
temp RIB and begin new batch peer nexthop for this L
destmauon |n

\\.QEF RIB7 -~ delete all of peer's
\ routes from RIB

recompute our RIB

Fzgure 517
Route update flow
(note that DELETE and UPDATE not fully implemented in FRP Quagga daemon)

The diagram above shows the route update message decision tree. Having extracted the
flags belonging to the message, the first aspect to check is the presence of a BEGIN and,
no matter what the result, the next is to check for the presence of an existing batch. When
distributing a batched route update, a peer sends it’s entire table of all acceptable FRP
routes. In the FRP Quagga daemon, the recipient creates a temporary RIB (temp_rib) for
that peer when a new batch is begun and builds the new routing table for the peer in it.
When a COMMIT is received, the currently stored routing table for that peer is replaced
with the new one. So the presence of an existing batch can be determined by seeing if a

temporary RIB has been set up for the peer.

88 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

If both a BEGIN and a temporary RIB are present, a now out-of-date batch already exists
so this is aborted and a new one started. The next steps involve checking for the NULLRT,
DELETE and UPDATE flags. Only one of the three can be present, so the process ends once
one has been found and dealt with. If none of the three exist, then a new multi-message

batch begins.

The presence of a BEGIN and a NULLRT means that the peer is sending an empty update
message — that is, it has no FRP routes to share — so it is necessary to delete the RIB
currently stored for that peer. Before this can happen, it is necessary to work through the
host’s routing table checking for routes using the peer as a next hop and deleting them.
This in turn triggers the recomputation of the hosts routing table to see if other viable

routes are available to replace the deleted ones.

If both a BEGIN and a DELETE appear, the host needs to first remove the route from the
RIB stored for the peer and then check the host RIB to see if the route used the current
peer as the nexthop for that route. If it does, delete the route from the host RIB and

recompute in case another peer has provided an alternative.

In the case of receiving a BEGIN and an UPDATE, modify the affected route appropriately
in the stored peer RIB, then recompute the host’s RIB.

If there is no BEGIN, then a current batch should already exist and this message is an
addition to the chain. Extract the route, add it to the temporary RIB for the peer, and check
for a COMMIT. If one is not present, start the loop again with the next message, otherwise

replace the old stored peer RIB with the new temporary RIB and recompute the host RIB.

The FRP daemon in action

The first trace below shows 10.0.1.20 initiating a null route exchange.

FRP PACKET HEADER

source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
--SYN Packet

Waiting for incoming

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
Null Message:

--ACK Packet

Waiting for incoming

10.0.1.20 (a.
10.0.1.50 (a.

27%W?]
10 (0xa)
0 (0x0)

FRP packet

Q

B
ISES)
SIS
o
N Ul
[SIS
~
(<)
SIS
e
=W
AW

10 (@xa)
10 (0xa)
0x0

FRP packet

[SIRS)
e

w =

A

Developing the Fringe Routing Protocol

89

Implementing and testing the Fringe Routing Protocol

The third packet of the exchange shows the single route
update message with the BEGIN, NULLRT and COMMIT

flags turned on and everything else set to 0.

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq ho:
recipient’s ack no:

10.0.1.20 (a.0.1.14)
10.0.1.50 (a.0.1.32)
7C:w?

11 (@xb)

10 (0xa)

IPV4 Route Update Message: 0x43

flags: 1792

FRP_FLAG_BEGIN flag:
FRP_FLAG_NULLRT flag:
FRP_FLAG_DELETE flag:
FRP_FLAG_COMMIT flag:
FRP_FLAG_UPDATE flag:

256
1024

512

FRP_FLAG_GATEWAY flag: 0

length:
routecost:
gatecost:
prefix:

Waiting for incoming

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:

Control message: 0Ox1
--Control ACK, param

[SESE SIS

.0.0.0

FRP packet

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)
7MD??

11 (@xb)

11 (@xb)

-0

In this second example, 10.0.1.20 is a gateway and 10.0.1.50 is not. Both hosts have

the ‘backbone’ network, 10.0.1.0/24, set as static routes. Just before the trace begins,
the VTY terminal is used to tell 20 to start advertising the network 10.0.20.0/24 via its

interface address 10.0.20.1.

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
--SYN Packet

Waiting for incoming

FRP PACKET HEADER
source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:
Null Message:

--ACK Packet

Waiting for incoming

10.0.1.20 (
10.0.1.50 (a.
x44M?

8 (0x8)

0 (0x0)

a.0.1.14)
0.1.32)

FRP packet

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)
?7K?h??

9 (0x9)

8 (0x8)

0x0

FRP packet

90

Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

Following the expected SYN and ACK, 20 builds a series of FRP PACKET HEADER
source address: 10.0.1.20 (a.0.1.14)
destination address: 10.0.1.50 (a.0.1.32)
the network 10.0.20.0/24. In this case the route is only security hash: ?7P?7]7U
sender’s seq no: 9 (0x9)
recipient’s ack no: 9 (0x9)

routes messages to hold the route it is now advertising to

two hops long.

IPV4 Route Update Message: 0x43
flags: 256
FRP_FLAG_BEGIN flag: YES
FRP_FLAG_NULLRT flag: NO
FRP_FLAG_DELETE flag: NO
FRP_FLAG_COMMIT flag: NO
FRP_FLAG_UPDATE flag: NO
FRP_FLAG_GATEWAY flag: NO
length: 24
routecost: @
gatecost: 0
prefix: 10.0.1.0

IPV4 Route Update Message: 0x43
flags: 512
FRP_FLAG_BEGIN flag: NO
FRP_FLAG_NULLRT flag: NO
FRP_FLAG_DELETE flag: NO
FRP_FLAG_COMMIT flag: YES
FRP_FLAG_UPDATE flag: NO
FRP_FLAG_GATEWAY flag: NO
length: 24
routecost: @
gatecost: 0
prefix: 10.0.20.0

Waiting for incoming FRP packet

FRP PACKET HEADER

source address:
destination address:
security hash:
sender’s seq no:
recipient’s ack no:

Control message: Ox1
--Control ACK, param

10.0.1.50 (a.0.1.32)
10.0.1.20 (a.0.1.14)
7722772
10 (0xa)
9 (0x9)

=0

Developing the Fringe Routing Protocol

91

Implementing and testing the Fringe Routing Protocol

The following trace shows the FRP daemon routing table after the route update message

has been received and processed on 50. the F prefix (here highlighted in red) denotes a

route passed to Zebra from the FRP daemon. The first is the default route. The second is

the statically set backbone route, which is inactive because the directly connected version is
favoured. The third is a route that 50 has received form 20. Note that 50 has the network

10.0.50.0/24 set but as it is not a gateway, it is quiescent and therefore does not advertise

the route.
frp5@router# sh ip ro
Codes: K - kernel route, C - connected, S - static, R - RIP, F - FRP, O - OSPF,
I - ISIS, B - BGP, > - selected route, * - FIB route
F 0.0.0.0/0 [184/3] via 10.0.1.20, en@, 00:00:39
K>* 0.0.0.0/0 via 10.0.1.1, en@
F 10.0.1.0/24 [184/3] via 10.0.1.20 inactive, 00:02:17
S 10.0.1.0/24 [1/@] is directly connected, en@
C * 10.0.1.0/24 is directly connected, enl
C>* 10.0.1.0/24 is directly connected, en@
F>* 10.0.20.0/24 [184/3] via 10.0.1.20, en0, 00:10:20
S 10.0.50.0/24 [1/0] is directly connected, enl
C>* 10.0.50.0/24 is directly connected, enl
C>* 127.0.0.0/8 is directly connected, 100
frp50router#

The corresponding kernel routing table on 50. The route from 20 has been received from

Quagga and inserted (highlighted in red).

Artemis:~ deb$ netstat -nrf inet

Routing tables

Internet:

Destination Gateway Flags Refs Use
default 10.0.1.1 UGSc 2 0
10.0.1/24 link#4 ucs 4 Q
10.0.1.1 0:3:93:e3:fc:92 UHLW 6 191
10.0.1.20 0:25:4b:ca:7b:b2 UHLW 3 13223
10.0.1.50 127.0.0.1 UHS 0 Q
10.0.1.254 34:15:9€:18:d0:28 UHLW 0 571
10.0.1.255 ff:ff:ff:ff:ff:ff UHLWb (7] 3
10.0.20/24 10.0.1.20 UGlc 0 0
10.0.50/24 1ink#5 uc 1 Q
10.0.50.1 Q:1f:5b:c6:a4:da UHLW (4] 0
127 127.0.0.1 ucs 0 Q
127.0.0.1 127.0.0.1 UH 0 Q
169.254 link#4 ucs (7] 0
Artemis:~ deb$

Netif Expire
end
end
en®d 1130
en@ 1147
100
enod 104
end
end
enl
100
100
100
end

92

Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

Re-computing the RIB

Once the processing of the packet containing the route updates is complete, the frp_
recompute_rib function is called. This steps through the routes stored for a peer, which
will be the ones newly deposited in what was the temp_rib and is now the stored RIB for
that peer. Each stored route is checked against the host’s RIB. If the host does not currently
have a route to that destination, the route is added with the current peer as the nexthop. If
the route is already in the host’s RIB, the FRP algorithm is applied and if the new route is
‘better’ than the old one, an exchange is made. In each case, the RIB is flagged as having
changed so that once the loop through the peer’s routes is complete an update can be

triggered so that all the newly acquired routes can be passed on to other peers.

recompute our RIB

'

for each new route
we have stored

y

is route in our RIB?

no yes

add to RIB v\ is
l route cost + link cost

yes
< route gateway cost
flag that RIB has ..+ target gateway cost
changed "+ is gateway cost_

T 7

has RIB changed?
— :
yes

TRIGGER UPDATE

Figure 5.18
Recomputing the routing table flow

The FRP algorithm is used when the ‘new’ route has the same destination as a route
already in the host’s RIB. A comparison is made between the existing and the new route

to determine which one belongs in the table of ‘best’ routes.

In the case of receiving a BEGIN and an UPDATE, modify the affected route appropriately
in the stored peer RIB and check to see if the current peer is the nexthop for the route in
the host’s RIB. If it is, check to see if the new route is ‘better’ than the old one, changing
it in the host RIB if it is — no other peer can have a better route or it would already be in
there — and forcing a recompute if it is not in case another peer has a better one. If the

current peer is not the nexthop, nothing more needs to be done.

Developing the Fringe Routing Protocol 93

Implementing and testing the Fringe Routing Protocol

Outgoing packets

There is no one outgoing packet function but rather a series of individual ones, each
handling one specific message or packet creation task. These functions are all gathered
together in frp_packet. c and draw heavily on the packet and message structures defined in
frp_packet.h. When building a new packet, a buffer is created and the various parts of the
packet’s contents are ‘memcopied’ in to the correct place as they are created. Pointers are
used to keep track of the beginning and end of the buffer, as well as the current insertion

point.

The exact specification for each of the different message types can be found chapter 3.

Building a message

Each individual message within a packet begins with a message header. These are 2 bytes
in length and contain the length and the type of the message. The function make_frp_msg_
header uses a switch to create a message header with the correct values in each of the
two fields.

The FRP control message is 4 bytes in length including the message header. The only useful
data carried by the message is the control type — POLL, ACK or NAK — as the parameters
field is not currently used. So the make_frp_msg_control function creates a control message

header, sets the type appropriately, and sets the parameters to O.

!‘ frp_msg_hdr
frp_msg_control

Figure 5.19
Control message buffer

make_frp_msg_ipv4_config sets up a 12 byte message to carry the configuration settings
of a router. It creates a configuration message header, then extracts the cost, poll and
retry settings from the current router configuration to fill out these fields of a configuration
message. The final field is filled in with the host’s address of the interface that the peer

communicates with the host on.

frp_msg_hdr
frp_msg_config

Figure 5.20
Configuration message buffer

94 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

When it comes to gateway messages, things get a little more complex because a ‘path
to gateway’ length varies. The make_frp_msg_ipv4_gateway function has two strands
governed by the is_gateway_flag. If the flag is set, the host router is a gateway so the path
to gateway contains one address — that of the router’s gateway interface — and the cost
equals 0. Otherwise, a check is made to see if the host is quiescent. If it is, the cost is set

to infinity (@xffff) and the path to 0. At 8 bytes, these are the smallest gateway messages.

E frp_msg_hdr
frp_msg_gateway

Figure 5.21
Path to gateway message with no path buffer

If the flag is not set and the host is not quiescent, cost is set to the current gateway cost
and the entire path to gateway is appended with a further 4 bytes added to accommodate

each additional address.

frp_msg_hdr
frp_msg_gateway

Figure 5.22
Path to gateway message with a path buffer

The make_frp_msg_ipv4_update function is more complex still. Called whenever the host’s
routing table is modified, this works through the RIB putting together a routing update for
each peer, excluding routes that have that peer as the nexthop. Each route update message

handles a single destination so a separate message is created for each entry in the table.
fro_msg_hdr

frp_msg_gateway

Figure 5.23
Single route update message buffer

Developing the Fringe Routing Protocol 95

Implementing and testing the Fringe Routing Protocol

All the messages required to send the RIB are sent as a batch using flags to provide the

information necessary to interpret the entire table.

[frp_msg_hdr
|| frp_msg_update

0 frp_msg_hdr
|| frp_msg_update

0 frp_msg_hdr
|| frp_msg_update

Figure 5.24
Batch of route update messages buffer

The function starts by setting a counter to O to indicate that there are no messages in the
batch and then enters a loop that steps through each route stored in the host RIB. The
nexthop for the route is checked to make sure that the route does not originate form
the current peer before the peer record for the nexthop is retrieved. This provides the
necessary information to make a test of the FRP decision algorithm between the route from
the RIB and the route to the same destination in the peer record. If the new route is ‘better’

then a message containing the route is created to send to the peer as an update.

counter = 0

for each route in our RIB

is this peer
_ the nexthop?_
: flo

get nexthop peer

is
route cost + link cost
< route gateway cost
. +target gateway cost
.+ is gateway co%/
M 7 -~

e Ve
is counter = 07
. _(Yes

copy msg to buffer
build new message
build new message set commit flag

is route a gateway?
L
fio

set is-gateway flag

counter ++

v

is counter < 17
yes fio

build new message
set begin, nullrt and set commit flag
commit flags

copy msg to buffer

Figure 5.25
Building a batch of route update messages flow

96 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

If the counter equals @, then this is the first route in a new batch so a new message is
created and the BEGIN update flag is set. If the counter is greater than @, then there is a
previous message to be ‘memcopied’ to the buffer before creating a new message for the

current route. The BEGIN flag is obviously not used in this case.

The next check is to see if the current route is flagged by the host as a gateway route and,
if so, the GATEWAY update flag is set. The message length, route cost, gateway cost, and
destination prefix are then filled in appropriately and the counter is incremented. The loop

ends when all routes in the RIB have been considered.

The final part of the function tidies up the batch ready to send. The counter is again
checked. If it is greater than @, then there are legitimate messages in the batch, the last one

of which needs have the COMMIT update flag set before being copied to the buffer.

If the counter is still equal to @ however, no routes are being passed to the peer so a null
route packet needs to be sent. A new message is created, the message length is added
appropriately, and the BEGIN, NULLRT and COMMIT update flags are set. The message is

copied to the buffer and is ready to be turned into a completed packet.

Building a packet

A packet is one or more messages, each one complete with its message header, chained
together with a packet header attached to the beginning. Although it is the first data in the
packet, the 16 byte packet header is actually the last part of the packet to be created. The
function make_frp_pkt_hdr fills out the sender’s sequence number field by adding 1 to the
last sequence number used for that peer and then replacing the stored one with the new
one. The recipient’s acknowledgement number is either set to the last received sequence

number stored for the peer or to @ depending on context.

It is the security hash that requires this part of the packet to be created last as the hash uses
the entire packet as a parameter. The actual hash is performed in the function dohash in
frp_peer.c. This function is one of only two pieces of code lifted directly from the original
FRP implementation. This is because unless the hash is performed in exactly the same way
in every implementation, the reverse hash when the packet is received invariably fails. As
the code is essentially a series of library calls, it seemed entirely reasonable just to use the

original dohash and checksecure functions.

Developing the Fringe Routing Protocol 97

Implementing and testing the Fringe Routing Protocol

First a hash is formed using the contents of the packet, minus the 16 bytes of the header.
This is then rehashed with the host’s address, rehashed again with the peer’s address, and
finally again with the host’s secret. The first 64 bits of the final hash form the security hash
for the packet.
dohash (Cu_char* buf, int len, const char* secret, IPADDR sa, IPADDR da)
{ static u_int8_t hash[SHA_DIGEST_LENGTH];

SHA_CTX shctx;

SHA_Init(&shctx);

SHA_Update(&shctx, buf, len);

SHA_Update(&shctx, (u_char*)&sa, sizeof(IPADDR));

SHA_Update(&shctx, (u_char*)&da, sizeof(IPADDR));

SHA_Update(&shctx, secret, strlen(secret));

SHA_Final(Chash, &shctx);
return hash;

pkt_hdr

Figure 5.26
Packet header buffer

SYN packets and the initial response ACK packets are just packet headers with no additional
messages attached and so are straightforward to create. The function build_syn_pt finds
the address of the interface the peer is attached to, creates a SYN packet (ie: a packet
header), opens a socket to use and calls frp_send_packet to send the packet to the peer. If
the packet is successfully sent, a complete copy is stored in the packet_latest variable in
the host’s peer record, along with the packet length and the sequence number used — this
enables the host to resend the packet should a NAK be received. The awaiting ACK flag is

also set for this peer.

pkt_hdr

frp_msg_hdr
frp_msg_control

Figure 5.27
Packet header plus control message buffer

98 Developing the Fringe Routing Protocol

Implementing and testing the Fringe Routing Protocol

Control messages (POLL, ACK and NAK) consist of a packet header and a single control
message with the correct flag set. In this implementation, there are currently two functions
— build_ack_pkt and build_nak_pkt — that are virtually identical. It would be neater and
more efficient to have a single build_control_pkt that handled all three in one function.
These two functions create a buffer to build the packet in and then call make_frp_msg_
control, setting the type field appropriately, before calling make_frp_pkt_hdr to create the
packet header. The packet is sent, and as in the SYN packet, a copy is stored in the peer
record and the awaiting ACK flag is set.

pkt_hdr

0 frp_msg_hdr
| frp_msg_config

frp_msg_hdr
fro_msg_gateway

0 frp_msg_hdr
|| fro_msg_update

frp_msg_hdr
|| frp_msg_update

frp_msg_hdr
|| frp_msg_update

Figure 5.28
Multiple messages in one packet buffer

SYN, ACK and control messages are sent with a single message per packet. All the other
messages types can be assembled into batches and sent with multiple messages carried by
a single packet. The complete flow for an outgoing packet is shown below. It can be seen
that most of the complexity is inside the loop sending flagged messages triggered by an

update to a router configuration, a gateway route or a routing table.

Developing the Fringe Routing Protocol 99

Implementing and testing the Fringe Routing Protocol

for each msg to be sent

build new message

build new
'l am gateway'
quiescent? ’ g Y
message
ye no
build new build new
null gateway path to gate
message message

send flag set?

gateway flag set?

e

copy msg to buffer

build new message

OUTGOING PACKET

quiescent?
S

counter = 0

for each routeinourRB. ———————

is this peer
the nexthop?

(o]

get nexthop peer

is
route cost + link cost
< route gateway cost
+ target gateway cost
+ is gateway cost
?

is counter = 0?7
n es

build new message
| set commit flag

set is-gateway flag

\/

is route a gateway?

counter ++

b

set begin, nullrt and

v
is counter < 17

ye [¢]

uild new message
set commit flag

commit flags

copy msg to buffer

! \/
build packet
*

send packet

Figure 5.29

build new message
p—

Outgoing packet flow

Developing the Fringe Routing Protocol

100

Implementing and testing the Fringe Routing Protocol

The build_batch_pkt function handles creating packets that potentially carry more than
one message — specifically, all the messages currently flagged as needing to be sent to a
single peer. The first step is to create the buffer that will store the data while the packet
is being built. Next a local flag is created and turned OFF, and each of the peer flags —
flag_send_pol1, flag_send_config, flag_send_gateway, flag_send_update — are checked to
see if any have been activated. For each of these that are set, a message of the appropriate
type is created and sent. A check is made to ensure that the new message, when added to
the packet buffer, will not cause the packet to exceed the specified maximum size of 1400

bytes.

The poll flag, the configuration flag and the gateway flag are all handled in the same way.
In each case, the code segment calls the appropriate message function, the message and
message header is created and ‘memcopied’ to the buffer, the packet length is adjusted and
the local flag is switched ON. The update flag is only checked if the host is not quiescent (ie:
it has a gateway) as update messages are not sent when the host has no gateway.

If there is no path to a gateway, the routing updates enter into a quiescent

state, where link state and path information is still exchanged, but no changes

are made to the routing table, and no routing updates are issued. [57]
The make_frp_msg_1ipv4_update function must be passed a calculation of how much packet
space is left as it is potentially creating a batch of more than one update message. It
must also return the amount of space it has actually used to allow the packet length to be

accurately tallied. Upon completion, the update segment turns ON the local flag.

Once build_batch_pkt has worked through the flags and created messages as necessary
for each one set, the next step is the check the local flag. If this is ON, messages have indeed
been created so a packet header is created and added to the front of the buffer, and the
packet is sent. The peer record is updated by turning all the send flags OFF, storing a copy
of the latest sent packet plus its length and sequence number, and turning on the awaiting
ACK flag. If the local flag is OFF, no messages have been created so build_batch_pkt
checks the awaiting ACK flag and if it is ON, creates and sends a control ACK message to

indicate that the current conversation is over.

The final function in frp_packet.c is frp_send_packet. This function is essentially the
relevant code copied and pasted from the RIP and RIPng daemons. At present, this FRP
implementation does minimal checking for error conditions. The next version will need
to augment this function. The send routine essentially sets up the necessary addressing,
socket and port issues, opens the socket, sends the packet to the peer, and closes the

socket, passing the success or failure of the send back to the calling function.

Developing the Fringe Routing Protocol 101

Implementing and testing the Fringe Routing Protocol

Testing

Testing the Quagga FRP daemon did not happen as a single stage in the development but
as a continuous process throughout the project. This testing was to ensure the correctness
of the Quagga implementation — to make sure that the daemon worked as specified.
Testing the design of the protocol itself to see if it resolves the problems it sets out to solve

was beyond the scope of this project.

The first major round of testing occurred at the point where the shell demon was complete.
It needed to successfully accomplish a number of tasks before the FRP additions where added
in. The testing regime included loading the daemon from the configuration file, making sure
the menu system in the VTY interface worked properly and that new commands could not

only be added but also executed correctly. These are all things that could be tested directly.

It was vital that the shell daemon talked to the Zebra daemon via the zserv client and that
routing information was passed through to Zebra and on to the kernel. This was tested by
setting static routes (which also tested the VTY commands system) and then checking the
Zebra and kernel routing tables to see that the routes appeared (see examples earlier in this

section on page 92).

A useful testing and debugging tool is the frp.log file. Quagga provides the basic setup
and support for these logs but it is possible to extend on those basics. The frp_debug files
handle these extensions, adding in additional, FRP specific #ifdef statements that appear
interlaced with all the other Quagga debug and status output in the log and in the terminal
console. The bonus of tapping in to this system is that the various levels of debugging
support can be live switched on and off via the VTY system without taking the daemon

down.

Implementation of the fringe routing protocol into the shell daemon created a whole new
range of issues and problems to be tested. The problem is that conversations between
routers are silent and invisible. A major hurdle was the exchange of packets once the
security was in place. The first iteration produced a very secure protocol that wouldn’t even
talk to itself. Running the Quagga implementation against the Knossos implementation

was the only way to ensure that this stage was operating correctly.

Wireshark was invaluable for watching traffic move between routers and for drilling down
into the packet to see the raw data. FRPsniffer was even more useful as it showed the
interpreted data in an instantly readable form. Once again, keeping an eye on the routing

tables via the standard Unix tools was necessary to ensure routes were passed through

102 Developing the Fringe Routing Protocol

correctly. Setting FRPs administrative distance ridiculously high was another useful testing

technique for ensuring route changes could be traced through the process.

One area where testing was not required was in the realm of the router, as opposed to the

realm of FRP. It was simply assumed that Quagga was successfully handling these functions.

Finally, general protocol testing was carried out and the results of this are shown at the end
of each of the earlier sections of this chapter where they illustrate that the implementation

of that section does in fact work.

Developing the Fringe Routing Protocol 103

104 Developing the Fringe Routing Protocol

6. Conclusions and future work

This project set out to achieve two distinct goals: to understand and specify the new fringe
routing protocol; and to create an independent, standalone implementation of the protocol
in the Quagga software routing suite. Achieving the first goal required the development
of a detailed knowledge of routing and routing protocols. The second generated a new

challenge, that of becoming familiar with all aspects of the Quagga environment.

The first outcome has been achieved in chapter 3 in the expansion of the initial concepts
and notes provided by Don Stokes into a detailed description of the fringe routing protocol.
This has addressed a number of ambiguities and assumptions of knowledge, both implicit
and explicit, in the supplied material. A future goal is to expand this description further into
a formal specification to be submitted to the Internet Engineering Task Force (IETF) as an

Internet Draft.

The second goal is realised as described in chapters 4 and 5. Achieving this required
extending the Quagga suite to add FRP to the set of supported routing protocols. The
new Quagga FRP daemon is able to bootstrap itself using a supplied configuration file and
communicate with other FRP peers. It can apply the FRP routing algorithms to correctly
process routing information and inject routes into the kernel. A future goal is to extend this

daemon to support [Pv6.

The work on this project was presented, in conjunction with Don Stokes of Knossos
Networks, at the NZ Network Operators Group (NZNOG) conference in Wellington in
February 2011 where it was well received by the professional networking community.

Slides from the presentation are available in Appendix B.

Developing the Fringe Routing Protocol 105

106 Developing the Fringe Routing Protocol

Bibliography

(1] Anon, 2008, Quagga: the easy tutorial, viewed 18 March 2011 < http://
openmaniak.com/quagga.php>.

2] Ascigil, O., Yuan, S., Griffioen, J. and Ken Calvert, K., 2008, “Deconstructing
the Network Layer”, Proceedings of the 17 International Conference on Computer
Communications and Networks, 2008, ICCCN 2008, St. Thomas, US Virgin Islands,
pp. 1-6.

[3] van Beijnum, P. I. and van Beijnum, 1. V., 2002, BGP, O’Reilly & Associates,
Inc., Sebastopol, Canada.

(4] van Beijnum, 1., 2006, “IPv6 Internals”, The Internet Protocol Journal, vol.

9, no. 3, viewed 18 March 2011, <http://www.cisco.com/web/about/ac123/ac147/
archived_issues/ipj_9-3/ipv6_internals.html>

(5] van Beijnum, 1., 2007, Everything you need to know about IPv6, viewed 18
March 2011 <http://arstechnica.com/hardware/news/2007/03/IPv6.ars>.

(6] van Beijnum, 1., 2010, There is no Plan B: why the IPv4-to-IPv6 transition will
be ugly, viewed 18 March 2011 <http://arstechnica.com/business/news/2010/09/
there-is-no-plan-b-why-the-ipv4-to-ipv6-transition-will-be-ugly.ars/>.

(7] Bhargavan, K., Obradovic, D. and Gunter, C.A., 2002, “Formal Verification of
Standards for Distance Vector Routing Protocols”, Journal of the ACM., vol. 49, no. 4,
pp. 538-576.

(8] Bradner, S., “The Internet Standards Process -- Revision 37, BCP 9, RFC 2026,
Harvard University, October 1996.

(9] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
14, RFC 2119, Harvard University, March 1997.

(10] Bush, R. and D. Meyer, “Some Internet Architectural Guidelines and Philosophy”,
RFC 3439, The Internet Society, December 2002.

[11] Caesar, M. and Rexford, J., 2005, “BGP Routing Policies in ISP Networks”,
IEEE Network, vol. 19, no. 6, pp. 5-11.

[12] Carpenter, B., Ed., “Architectural Principles of the Internet”, RFC 1958, IAB,
June 1996.

Developing the Fringe Routing Protocol 107

Bibliography

[13] Cisco, 2009, Border Gateway Protocol, viewed 18 March 2011

< http://docwiki.cisco.com/wiki/Border_Gateway_Protocol>.

[14] Cisco, n.d., Basic Router Configuration viewed 18 March 2011 < http://
www.cisco.com/en/US/docs/routers/access/800/850/software/configuration/guide/
routconf.pdf>.

[15] Cisco, n.d., Cisco IOS IP Routing Protocols Configuration Guide. Viewed 18
March 2011 < http://www.cisco.com/en/US/docs/ios/12_3 /featlist/ip_vcg.html>

[16] Cisco, n.d., Route Selection in Cisco Routers, viewed 18 March 2011 < http://
www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094823.
shtml>.

(17] Cisco, n.d., IP Addressing and Subnetting for New Users, viewed 18

March 2011 < http://www.cisco.com/en/US/tech/tk365/technologies_tech_
note09186a00800a67{5.shtml>.

(18] Cisco, n.d., Routing Basics, viewed 18 March 2011 < http://docwiki.cisco.com/
wiki/Routing_Basics>.

[19] Cisco, n.d., What Is Administrative Distance?, viewed 18 March 2011 < http://
www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094195.
shtml>.

[20] Deering, S. and Hinden, R., “Internet Protocol, Version 6 (IPv6)”, RFC 2460,
Cisco/Nokia, December 1998.

[21] Feldmann, A. and Rexford, J. 2001, “IP Network Configuration for Intradomain
Traffic Engineering”, IEEE Network, vol. 15, no. 5, pp. 46-57.

[22] Fuller, V. and T. Li, “Classless Inter-domain Routing (CIDR): The Internet Address
Assignment and Aggregation Plan”, BCP 122, RFC 4632, Cisco Systems/Tropos
Networks, August 2006.

[23] Griffin, T.G. and Sobrinho, J.L., 2005, “Metarouting”, Proceedings of the 2005
conference on Applications, technologies, architectures, and protocols for computer
communications, SIGCOMM ’05, Philadelphia, Pennsylvannia, USA, pp. 1-12.

(24] Hagen, S., 2006, IPv6 essentials, 2nd ed., O’Reilly Media, Sebastopol, Canada.

(25] Hall, B. J., 2009, Beej’s guide to network programming: using Internet sockets
(version 3.0.14). [Online]. Available: http://beej.us/guide/bgnet/

[26] He, L., 2005, “A Verified Distance Vector Routing Protocol for Protection of
Internet Infrastructure”, Lecture Notes in Computer Science, vol. 3421, pp. 463-470.

108 Developing the Fringe Routing Protocol

Bibliography

[27] He, J., Rexford, J. and Chiang, M., 2007, “Don’t Optimize Existing Protocols,
Design Optimizable Protocols”, ACM SIGCOMM Computer Communication Review,
vol. 37, no.3, pp. 53-58.

[28] Hedrick, C., “Routing Information Protocol”, RFC 1058, Rutgers University, June
1988.

[29] Hinden, R., “Internet Engineering Task Force Internet Routing Protocol
Standardization Criteria”, RFC 1264, BBN, October 1991.

[30] Hinden, R. and Deering, S., “IP Version 6 Addressing Architecture”, Nokia/Cisco,
February 2006.

[31] Huitema, C., 1995, Routing in the Internet, Prentice-Hall, Inc., Harlow, United
Kingdom.

[32] Huitema, C., Postel, J. and Crocker, S., “Not All RFCs are Standards”, RFC 1796,
INRIA/ISI/CyberCash, April 1995

[33] Hulse, R., 2005, “WIX: a distributed internet exchange”, Linux Journal, vol. 135,
no. July, pp. 2.

[34] Hunt, C., 2002, TCP/P network administration, O’Reilly Media, Inc., Sebastopol,

Canada.

[35] Ishiguro, K. etal., 2005, Quagga: a routing software package for TCP/IP networks,
viewed 18 March 2011 <http://wenku.baidu.com/view/fae88{74146527d3240ce003.
html>.

[36] Kurose, J. F. and Ross, K., 2002, Computer Networking: a Top-Down Approach
Featuring the Internet, 2nd. Ed, Addison-Wesley Longman Publishing Co., Inc., Harlow,
United Kingdom.

[37] Le, F, Xie, G.G., Pei, D., Wang, J. and Zhang, H., 2008, “Shedding Light
on the Glue Logic of the Internet Routing Architecture”, ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4, pp. 39-50.

[38] Le, F, Xie, G.G. and Zhang, H., 2007, “Understanding route redistribution”,
proceedings of the IEEE International Conference on Network Protocols, Beijing,

China, pp. 81-92.

Developing the Fringe Routing Protocol 109

[39] Le, F, Xie, G.G. and Zhang, H., 2010, “Understanding route aggregation”,
Carnegie Mellon University Computer Science Report CS-10-106, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA.

[40] Little, M., “Goals and functional requirements for inter-autonomous system
routing”, RFC 1126, SAIC, October 1989.

[41] Malhotra, R., 2002, IP routing, O’Reilly Media, Inc., Sebastopol, Canada.

[42] Malkin, G., “RIPng Protocol Applicability Statement”, RFC 2081, Xylogics,
January 1997.

[43] Malkin, G., “RIP Version 2”7, RFC 2453, Bay Networks, November 1998.

[44] Malkin, G. and Minnear, R., “RIPng for IPv6”, RFC 2080, Xylogics/Ipsilon
Networks, January 1997.

[45] Medhi, D. and Ramasamy, K., 2007, Network Routing: Algorithms, Protocols,

and Architectures, Morgan Kaufmann Publishers Inc., Burlington, Massachusetts, USA.

[46] Moy, J. T., 1998, OSPF: Anatomy of an Internet Routing Protocol, Addison-
Wesley Longman Publishing Co., Inc., Harlow, United Kingdom.

[47] Nucci, A., Bhattacharyya, S., Taft, N. and Diot, C., 2007, “IGP Link Weight
Assignment for Operational Tier-1 Backbones”, [IEEE/ACM Transactions on Networking,
vol. 15, no. 4, pp. 789-802.

[48] Parkhurst, W., 2004, Routing First-Step, Cisco Press, Indianapolis, Indiana, USA.

[49] Partridge, C., Snoeren, A.C., Strayer, W.T., Schwartz, B., Condell, M. and
Castifieyra, 1., 2000, “FIRE: Flexible Intra-AS Routing Environment”, ACM SIGCOMM
Computer Communication Review, vol. 30, no. 4, pp. 191-203.

[50] Perlman, R., 2000, Interconnections: Bridges, Routers, Switches, and
Internetworking Protocols, 2nd Ed., Addison-Wesley Longman Publishing Co., Inc.,
Harlow, United Kingdom.

[51] Pilot, n.d., Zebra hacking notes, viewed 18 March 2011 <http://quagga.net/faq/
zebra-hacking-guide.txt>.

[52] Postel, J. and J. Reynolds, “Instructions to RFC Authors”, RFC 2223, ISI, October
1997.

110 Developing the Fringe Routing Protocol

[53] Raghavan, B., Verkaik, P. and Snoeren, A.C., 2009, “Secure and Policy-Compliant
Source Routing”, IEEE/ACM Transactions on Networking, vol. 17, no. 3, pp. 764-777.

[54] Rekhter, Y., Li, T. and Hares, S., “A Border Gateway Protocol 4 (BGP-4)”, The
Internet Society, January 2006.

[55] Stallings, W., 1993, Data and Computer Communications, 4™ Ed., Prentice Hall,
Harlow, United Kingdom.

[56] Stevens, W. R. et al, Unix network programming: the sockets networking API,
3 ed. Boston, MA: Addison-Wesley, 2004.

[57] Stokes, D., 2010, Notes on FRP, personal communication.
[58] Stokes, D., 2010, FRP router implementation code, personal communication.

[59] Tanenbaum, A. S., 1985, Computer Networks, Prentice Hall, Harlow, United
Kingdom.

[60] Uriarte, Y., 2001, Zebra for dummies, aka Zebra hacking how to, viewed 18
March 2011 < http://www.quagga.net/zhh.html>.

[61] Walrand, J. and Parekh, S., 2010, “Communication networks: a concise
introduction”, Synthesis Lectures on Communication Networks, vol. 3, no. 1, pp.
1-192.

[60] Wang, Y. and Wang, Z., 1999, “Explicit Routing Algorithms for Internet Traffic
Engineering”, proceedings of the eighth international conference on Commuter
Communications and Networks, Boston, Massachusetts, USA, pp. 582-588.

[61] White, R., 2005, “Caveats in Testing Routing Protocol Convergence”, The Internet
Protocol Journal, vol. 8, no. 4, pp. 20-27.

Developing the Fringe Routing Protocol 111

112 Developing the Fringe Routing Protocol

Appendix A

Initial Fringe Routing Protocol specification from Don Stokes

Goals
Unicast, configured neighbor relationship
Secure, must work on public access networks

Intended to be subordinate to IGP; routes gatewayed at one location only

Y YV VY

Nodes forward routes toward their designated gateway, Nodes forward routes
away from the gateway if link cost < sum of gateway cost of originated route +

gateway cost of local node (i.e. it’s closer to route direct than via the gateways)

Y

Try to keep routing table sizes to a minimum

Y

Keep traffic down to keepalives (5 sec?) if no updates
> Only update kernel routing table or transmit routing information if there is a

path to a gateway. Activity is quiescent until gateway route is established.

Route forwarding
Forward route from local-node to remote-node if:

route-cost + link-cost < route-gw-cost + target-gw-cost + is-gw-route
where:
route-cost is the accumulated sum of the costs of intervening links;
link-cost is the cost of the link to remote-node;

route-gw-cost is the cost from the route’s originating node to its gateway, as expressed in
the routing update;

target-gw-cost is the cost from the remote-node to its gateway, as expressed in its link
advertisements;

is-gw-route is 1 if the route is being passed toward the gateway, O otherwise. The is-gw
flag is only set to 1 on a route at the originator, and set to 0 any time the route is passed
to a peer rather than a gateway.

This algorithm means that routes are only passed across the network if they are “better”
than going up to the backbone and back -- in many cases this will be preferable to using

backup paths.

Developing the Fringe Routing Protocol 113

Appendices

Gateway paths
Each host expresses to all its peers the path to its gateway. This allows a host to exclude
paths that include itself from being considered as potential gateway routes, and avoids

counting to infinity.

Quiescence

If there is no path to a gateway, the routing updates enter into a quiescent state, where
link state and path information is still exchanged, but no changes are made to the routing
table, and no routing updates are issued. Without this, routes quickly count to inifity when

the last gateway path disappears.

Split Horizon

A route should not be advertised back up the link it was learned from.

Messages

Message header

hash (64): SHA1(secret, Iseq, rseq, message ...)
Iseq (32): Local (sent) sequence number

rseq (32): Receive (acknowledge) sequence number

Each packet is one message

Messages sent as UDP packets < 1400 data bytes long.
mlen: 8 bits length of message in longwords including type/len

mtype: 8 bits. Note: mtype is in form <proto><type>; IPv4-specific messages are 0x4n,
[Pv6 messages are Ox6n.

Message type 41: [Pv4 configuration
linkcost(16): link cost. Maximise received value with local configuratio.

polltime(16): Poll/keepalive frequency in tenths of seconds. Minimise received value with
local configurtion.

failtime(15): Timeout to failure after last acked packet, in tenths of seconds. Minimise
received value with local configuration.

routerid(32): Unique ID (usually IP address) of peer router, used to avoid loops.

114 Developing the Fringe Routing Protocol

Appendices

Message type 42: Path change (path to gateway),
gwecost(16) Distance to gateway. 0 = is gateway, Oxffff = gateway unknown,

path(32 x n): Path to gateway, list of 32 bit node IDs, used to prevent counting to
infinity. Router will not learn a path that contains itself. Path length defined by message
length, limited to 62 entries.

Message type 0x43: Add/change/delete [Pv4 route
flags(8): Flags, see below

prefixlen(8) prefix length (0-32)

rcost(16) route cost (distance vector)

rgwcost(16) distance of original route from gateway
prefix(32) IPv4 or IPv6 address

Message type 61: IPv6 configuration
linkcost(16): link cost

gw(128): Gateway address for upstream routes. Note, may be overridden by local
configuration.

Message type 0x63: Add/change/delete IPv6 route

flags(8): see below

prefixlen(8) prefix length (0-32 for IPv4, 0-128 for IPv6)

rcost(16) route cost (distance vector)

rgwcost(16) distance of original route from gateway

prefix(32-128) IPv6 address, truncated to 32 bit boundary following prefix length.

Routing flags

BEGIN (0x01): This is the first route of a batch update. Begin the update transaction,
abort any already in progress.

COMMIT (0x02): Last route of batch update, commit the update.

NULLRT (0x04): Only interpret flags; no route exists in message. Note, if NULLRT is
specified, fields beyond the flags field may be omitted.

UPDATE (0x08): Single route add/change. (Abort batch update.) *
DELETE (0x10): Delete specified route. (Abort batch update.) *
GATEWAY (0x80): Route is a gateway route

* UPDATE and DELETE are not implemented in frpd.

Developing the Fringe Routing Protocol 115

Batch updates
Batch processing is handles as follows:

If a route message is received with the BEGIN flag set, any existing batch update is
flushed, and a new one started. The route should be added to the new batch.

If a route message is received with the COMMIT flag set, the route should be added to
the batch, and the whole batch processed as a complete update.

If a route message with all flags (except the GATEWAY flag) clear is received, the route
should be added to the inbound batch.

If any other type of message is received, the batch should be flushed and the message
processed as if the batch never started.

If there are no routes in the update, send route message with length=1, flags=BEGIN +
COMMIT + NULLRT.

Initial handshake procedure
Assume isn & rsn, isn = initiator’s initial sequence number, rsn = responder’s initial

sequence number.
Initiator sends null packet, Iseq = isn, rseq = 0.
Responder replies with null packet, Iseq = rsn, rseq = isn.

Initiator sends IP config packet plus path len (both messages must be present), Iseq =

isn+1, rseq=rsn.

Responder replies in kind, Iseq = rsn+1, rseq = Isn+1. Responder may send routing

information in the same packet.

Intiator replies, Iseq = Isn+2, rseq = rsn+1, optionally with updated path and with routing

information.

Responder acks, Iseq = rsn + 1, rseq = Isn + 2.

116 Developing the Fringe Routing Protocol

Sequence numbers
Given state variables, locseq (Local sequence number), ackseq (acknowledged local sequence

number) & remseq (remote sequence number):

If a packet is received with rseq = 0: Discard packet if not null. Set remseq = Isec. Send

reply Isec = locseq, rseq = remseq.
All other packets, check rseq = locseq. If not, discard. Update ackseq.

If Iseq != remseq, set remseq = Iseq, process packet, reply Iseq = locseq, rseq = remseq.

(locseq may be incremented by update if data is sent that needs to be acknowledged.)

Sent packets should increment locseq prior to constructing packet. If locseq wraps to 0,

set locseq to 1.
Periodically resend last packet if ackseq != locseq.

Example, n1 -> n2
nl ip=10.0.0.1: Iseq = 100
n2 ip=10.0.0.2: Iseq = 200
10.0.0.1 -> 10.0.0.2 Iseq=100 rseq=0 n2 xseq=101
10.0.0.2 -> 10.0.0.1 rseq=100 lseq=200
10.0.0.1 -> 10.0.0.2 Iseq=101 rseq=200 config, path vaidate xseq
10.0.0.2 -> 10.0.0.1 rseq=101 Iseq=201 config, path, routes
10.0.0.1 > 10.0.0.2 Iseq=102 rseq=201 routes
10.0.0.2 -> 10.0.0.1 rseq=102 Iseq=201
10.0.0.1 > 10.0.0.2 Iseq=103 rseq=201 poll
10.0.0.2 -> 10.0.0.1 rseq=103 Iseq=202 response
10.0.0.1 > 10.0.0.2 Isec=103 rseq=202
10.0.0.1 -> 10.0.0.2 Iseq=103 rseq=202 Repeat packet

Developing the Fringe Routing Protocol 117

118 Developing the Fringe Routing Protocol

Appendix B

Slides from the FRP presentation in conjunction with Don Stokes
of Knossos Networks, at the NZ Network Operators Group (NZNOG)
conference in Wellington in February 2011.

Developing the

Fringe Routing Protocol The Fringe Routing Protocol

Don Stokes
Knossos Networks Ltd
Don Stokes
Knossos Networks Ltd
Deb Shepherd
Victoria University of Wellington
Catch 22
A new routing protocol! A new routing protocol!
Don, are you insane? Don, are you insane?
Probably.

But | had some problems
with existing protocols.

Developing the Fringe Routing Protocol 119

Appendices

FRP design goals

Subservient to primary IGP;
Routing table minimisation;
Unicast traffic;

Asymmetric route avoidance;
Security;

IPv6 support in single session (v4 or v6).

Backbone Path Computation

Each router finds the shortest path to the backbone. This path
forms the default route.

Paths can only be formed via routers that are a gateway or
have a path to a gateway, thus:

- routing updates not processed unless a gateway path is established;
~ paths propagate outwards from the backbone to the leaves.

Each router announces its gateway path to all its peers. This
provides loop detection.

Routes announced toward the backbone retain the gateway
flag (if set). Announcements to other peers clear the flag.

Only routes with the gateway flag set are announced to the
backbone.

Routing Metrics and Propagation

Each route has two metrics:

~ The path cost of the route from the origin (c)

- The path cost to the designated gateway (gc), learned
at routes origin.

~ Plus a flag to indicate if the route has only been
announced toward the backbone.

Routes are only propagated to peers if the cost of getting
to the remote peer is less than that of going via the
backbone, i.e:

c(route) + c(link) < gc(route) + gc(remote_peer)

Protocol (1)

Unicast UDP, Multiple messages per packet. TTL set to 1.

64bit checksum, based on agreed secure hash and shared
secret (currently SHA1).

Sequence numbers prevent replay attacks and detect
restarts.

Separate message types for IPv4 and IPv6 actions,
common link control message.

Regular Poll/ACK keeps link alive.

Protocol (2)

Packet header: sum(64), loc-seq(32), rem-seq(32).

Message header: length(8), type(8). Note length is
count of 32 bit words; max message is 1024 octets.

Message types:

- Session control (1), Subtypes: Poll, ACK, NACK

~ Configuration (0x41, 0x61): cost, poll & fail times, router-ID.
- Gateway path (0x42, 0x62): Gateway cost, path

~ Route announcement (0x43, 0x63): flags, prefix length, cost,

gateway cost.
~ Flags: Begin, commit, null, update, delete, is gateway

Example Network (1)

Aannounces X (c=2) & Y (c=1)
B announces Z (c=1)

D sees:

- X (via C, c=1, gw=1 gc=2)
= Y (local, gw=1, gc=1)

- Z(viaE, c=1, gw=0, gc=1)

E sees:

Backbone (OSPF) ~ X (via D, c=2, gc=0 gc=2)
- Y (via D, c=1, gw=0, gc=1)
= Z(local, gw=1, gc=1)

Example Network (2)

Note cost of D-E link now set to 3
Aannounces X (c=2) & Y (c=1)
B announces Z (c=1)

D sees:
> X(via C, c=1, gw=1 gc=2)
= Y (local, gw=1, gc=1)

Routes for X & 'Y not announced

fromDto E:
c(X) + ¢(D-E) > gc(X) + gc(E)
1+ 3> 2+ 1

Backbone (OSPF)

|.e. backbone path is lower cost.

Ditto announcements from E to D.

Example Network (3)

E now chooses D as its gateway
Aannounces all routes via D

D sees:

= X (via C, c=1, gw=1 gc=2)

> Y (local, gw=1, gc=1)

- Z(viaE, c=3, gw=1, gc=4)

E announces routes to D.

Backbone (OSPF)

120

Developing the Fringe Routing Protocol

Appendices

Implementations

Knossos implementation:
~ FreeBSD based (also run on NetBSD)

~ Porting would require rewrite of routing table
interface.

= IPv4 only.

= Used in anger (i.e. paying customers) on Knossos
FreeBSD routing platform.

Deb Shepherd's implementation:

- Portable, Quagga process;

- IPv6 capable (Deb note: eventually).

FRP as a Quagga daemon:
edited highlights

Deb Shepherd
Victoria University of Wellington
Catch 22

What is Quagga?

~ software routing suite

~ open source

~ Unix / Linux platforms

~ fork of earlier GNU Zebra project

T e 2
The quagga Equus quagga quagga)
is an extinct subspecies of the plans
zebra— Wikipedia

Code and documentation (of sorts)

How Quagga works

consult FIB

FIB
nexthop

BGP RIB

Developing in Quagga

User view
~ ‘vty’ terminal front end with Cisco style commands

Developer view
= modular (mostly)
~ core Zebra daemon
~ library
~ call back functions
~ independent protocol daemons
- bgpd, isisd, ospfd, ospfé6d, ripd, ripngd & frpd
~ various makefiles, install & config scripts, and platform
specific additions

| | Kemel
. I . ’ RP RPRB RIB

http:// quagga.net/ \ Riprg wenaris S
= Manual (of user commands, a selection) \\Y OSPF 0sPF RiB

. \

~ Zebra for Dummies aka Zebra How-To \\\ ISIS _[1sis Ri8 /

N , . - st cormectedoutes

http:/ / quagga.net/zhh.html \'rrp CrrrEE

~ Zebra hacking notes

> http://quagga.net/fag/zebra-hacking-guide.txt

ing the Fring outing Protocol ing the Fring iting Protocol

FRP in Quagga — getting started

- FRP is distance vector, as are RIP and BGP
- FRP needs to be both IPv4 and IPv6

Ripped the RIP, RIPng and BGP daemons apart
~ using RIP to look at IPv4 and RIPng to look at IPv6
~ and BGP to look at an integrated Ipv4/6 daemon

Took ripd and used find/replace to turn it into £rpd
~ then started to pull out all the RIP specific code
-~ the intention was to develop a daemon shell

> then threw everything away & wrote shell from scratch

FRP in Quagga — the daemon

frp_main.c
~ set up and initialisation

frp_zebra.c/frp_interface.c/ frp_debug.c

~ hooks into Zebra including zclient & call back functions

frpd.h

= FRP daemon includes, defines, external variables,
macros, prototypes

frpd.c

= main FRP daemon code

- config changes, sockets, events, incoming packets, polls

FRP in Quagga — the daemon

frp_packet.h

~ packet and message includes, defines, external
variables, macros, prototypes

frp_packet.c
- FRP daemon code specific to packet handling

frp peer.c
- FRP daemon code specific to peers and secrets

frp_route.c
- FRP daemon code specific to routing

~ the FRP decision algorithm, the FRP RIB, injection of
routes into the kernel via Zebra

Developing the Fringe Routing Protocol

121

loping the Fringe Routing Protoc

FRP in Quagga — events & threads

case FRP_EVENT_INCOMING:
frp->t_read = thread_add_read (master,
frp_incoming_packet, NULL, sock);
case FRP_EVENT UPDATE:
if (frp->t_update_interval)
frp->update_trigger = 1;
else if (! frp->t_update)
frp->t_update = thread_add_event (master,
frp_update_peers, NULL, 0);
case FRP_EVENT POLL:
if (frp->t_poll)
{ thread_cancel (frp->t_poll);
frp->t_poll=NULL; }
frp->t_poll = thread_add_timer (master,
frp_poll peers, NULL, frp->poll);
NZNO

Developing the Fringe Routing Protoc

FRP in Quagga — events & threads

int frp_incoming_packet (struct thread* t)

{ variables etc

/* fetch socket then register myself */
sock = THREAD _FD (t);

frp->t_read = NULL;

/* add myself to tne next event */
frp_event (FRP_EVENT_INCOMING, sock);

read the packet from the so

developing the Fringe Routing Protoc

FRP in Quagga — Don’s code

Code re-use?
~ why yes! — two whole functions worth in fact

- Quagga is multi threaded, Don’s code is not
>~ so no real scope for re—use

Secrets

~ FRP peers exchange secrets

~ the diplomatic etiquette involved is exacting

~ so | lifted Don’s security hash creation and checking
functions and used them as black boxes

veloping the Fringe Routing Protocol

FRP in Quagga — configuration

Live configuration of Quagga
~ commands are executed via the ‘vty’ terminal
~ obviously these need to be built in to the daemon

Config file
~ loaded on startup (main.c)
~ calls & executes the same functions as the ‘vty’ terminal

router frp

network 10.0.1.0/24

secret sapphire

cost 3

poll 60

gateway yes

neighbor 10.0.1.50 secret artemis

Developing the Fringe Routing Prot

FRP quirk — batched messages

initiating router recipient peer

. SYNIseq=1 rseq=0
ACK Iseq=101 rseq=1

Iseq=2 rseq=101
CONFIG len=12 type=0x41
GATE len=8+ type=0x42

Iseq=102 rseq=2

CONFIG len=12 type=0x41
GATE len=8+ type=0x42
[UPDATE len=12 type=0x43]

Iseq=3 rseq=102

UPDATE len=12 type=0x43

ACK Iseq=103 rseq=3
CONTROL len=4 type=0x01

Developing the Fringe Routing Protocol

Questions ...

122

Developing the Fringe Routing Protocol

Appendix C

Changes made to the Quagga code to hook in a new routing daemon

Quagga code changes

quagga/
config.h (actually auto generated so will need more
work)
'PATH_FRPD_PID' undeclared 647 add #define PATH_FRPD_PID
"/var/run/frpd.pid"
'FRP_VTYSH_PATH' undeclared 647 add #define FRP_VTYSH_PATH
"/var/run/frpd.vty"
quagga/lib/
command.h
'FRP_NODE' undeclared 63 add FRP_NODE, to enum node_type
RIP search 275 Is FRP needed here?
command. c
RIPNG_NODE search 2386 add case FRP_NODE: to switch (vty->node)
RIPNG_NODE search 2445 add case FRP_NODE: to switch (vty->node)
distribute.c
RIP search 762 seems to be rip/ripng specific
if_rmap.c
RIP search 329 seems to be rip/ripng specific
log.h
'ZLOG_FRP' undeclared 46 add ZLOG_FRP, to enum
log.c
RIP search 42 add "FRP", to char *zlog_proto_names[]
RIP search 298 seems to be ripng specific
note in zebra.h [449] 826 add DESC_ENTRY (ZEBRA_ROUTE_FRP, "frp", '"F'), to
struct zebra_desc_table
memory.c
RIP search 485 add DEFUN
RIP search 498 add 3 install_element's

Developing the Fringe Routing Protocol 123

memtypes.h

'MTYPE_FRP_ROUTE' undeclared 7 /* Auto-generated from memtypes.c by gawk. Do not

memtypes.c
note in memtypes.h
note in memtypes.h

route_types.h
RIP search

route_types.txt

RIP search

RIP search
routemap.h

'RMAP_FRP' undeclared
vty.c

RIPNG_NODE search

RIPNG_NODE search
zebra.h

edit! */
memtypes.h produced from memtypes.c by memtypes.awk

247 add memory_list memory_list_frp[]

265 add { memory_list_frp, "FRP" }, to struct mlist
mlists
only added structure, route info, interface and peer to
begin with
check this all works next time compiled

/* Auto-generated from route_types.txt by gawk. Do
not edit! */

route_types.h produced from route_types.txt by
route_types.awk

43 add ZEBRA_ROUTE_FRP, frp, frpd, 'F', 1, 1, "FRP"
65 add ZEBRA_ROUTE_FRP, "Fringe Routing Protocol (FRP)"

42 add RMAP_FRP, to enum

690 add case FRP_NODE: to switch (vty->node)
1101 add case FRP_NODE: to switch (vty->node)

'ZEBRA_ROUTE_FRP' undeclared 432 add #define ZEBRA_ROUTE_FRP 11

change #define ZEBRA_ROUTE_MAX 12

'ZEBRA_FRP_DISTANCE_DEFAULT' 519 add #define ZEBRA_EBGP_DISTANCE_DEFAULT 10

undeclared

quagga/vtysh/
vtysh.c
RIPNG_NODE search

RIPNG_NODE search

RIPNG_NODE search

RIPNG_NODE search
vtysh_config.c

RIPNG_NODE search

quagga/zebra/
redistribute.c

RIP search 248

RIP search 279
rib.h

RIP search 86

zebra_rib.c

RIP search 59

RIP search 1222
zebra_snmp.c

RIP search 231
zebra_vty.c

RIP search 556

RIP search 778

RIP search 811

RIP search 931

RIP search 954

(used 10 because smaller than all other protocols - want FRP to have priority

for now)
715 add static struct cmd_node frp_node = { FRP_NODE,
"%s(config-router)# ", };
1032 add new DEFUNSH
currently based on RIPng but as other protocols have difference styles, may need more

work
potential for different v4/v6 setups in FRP
1107 add case FRP_NODE: to switch (vty->node)
2264+ variety of install_element stuff (probably needs more work)

160 (207) add else if (strncmp (line, "router frp", strlen ("router
frp")) == @) config = config_get (FRP_NODE, line); to
switch (c)

add case ZEBRA_ROUTE_FRP: to switch (type)
add case ZEBRA_ROUTE_FRP: to switch (type)

add FRP to other interior protocols * sub-queue 2: RIP, RIPng, OSPF, OSPF6,
IS-IS, FRP

add FRP admin distance {ZEBRA_ROUTE_FRP, 10},
using 10 because smaller than all other protocols - want FRP to have priority for now
add [ZEBRA_ROUTE_FRP] = 2, to u_char meta_queue_map

not doing snmp therefore use default - no change

add || rib->type == ZEBRA_ROUTE_FRP to ONE_WEEK_SECOND
add || rib->type == ZEBRA_ROUTE_FRP to if

add R - RIP, to SHOW_ROUTE_V4_HEADER

add "Fringe Routing Protocol (FRP)\n" to DEFUN

add else if (strncmp (argv[@], "f", 1) == @) type =
ZEBRA_ROUTE_FRP;

124

Developing the Fringe Routing Protocol

Appendix D

Code
The Quagga FRP daemon implementation
The FRPsniffer implementation

The original implementation of FRP by Don Stokes

Developing the Fringe Routing Protocol 125

126 Developing the Fringe Routing Protocol

Appendix D

The Quagga FRP daemon implementation code

Developing the Fringe Routing Protocol 127

128 Developing the Fringe Routing Protocol

frp_main.c
Printed: Friday, 18 March 2011 10:38:11 AM

Page 1 of 5 frp_main.c
Printed: Friday, 18 March 2011 10:38:11 AM

Page 2 of 5

CoNOOUThWwWN =

#include "frpd.h"

struct option longopts[] =

{ {"daemon", no_argument, NULL, 'd'},
{ "config_file", required_argument, NULL, 'f'},
{ "pid_file", required_argument, NULL, 'i'},
{ "dryrun", no_argument, NULL, 'C'},
{ "help", no_argument, NULL, 'h'},
{"vty_addr", required_argument, NULL, 'A'},
{"vty_port", required_argument, NULL, 'P'},
{ "retain", no_argument, NULL, 'r'},
{ "user", required_argument, NULL, 'u'},
{ "group", required_argument, NULL, 'g'},
{ "version", no_argument, NULL, 'v'},
{0}

b

char config_default[] = SYSCONFDIR FRP_DEFAULT_CONFIG;

char *config_file;
const char *pid_file;
char *vty_addr;

int vty_port;

int retain_mode;

zebra_capabilities_t _caps_p [] =
{ ZCAP_NET_RAW,

ZCAP_BIND
b

struct zebra_privs_t frpd_privs =

{

#if defined(QUAGGA_USER)
.user = QUAGGA_USER,

#endif

#if defined QUAGGA_GROUP
.group = QUAGGA_GROUP,

#endif

#ifdef VTY_GROUP
.vty_group = VTY_GROUP,

#endif
.caps_p = _caps_p,
.cap_num_p = 2,
.cap_num_i =0

b

62
63
64
65
66
67
68
69
70

struct thread_master *master;

static void
usage (char *progname, int status)
{ if (status !=0)

fprintf (stderr, "Try “%s —-help' for more information.\n", progname);

else
{
printf ("Usage : %s [OPTION...]\n\

Daemon which manages FRP.\n\n\

-d, --daemon Runs in daemon mode\n\
-f, --config_file Set configuration file name\n\
-i, --pid_file Set process identifier file name\n\

-A, --vty_addr Set vty's bind address\n\
-P, --vty_port Set vty's port number\n\

-r, --retain When program terminates, retain added route by frpd.\n\
-u, --user User to run as\n\
-g, --group Group to run as\n\
-v, --version Print program version\n\
-C, --dryrun Check configuration for validity and exit\n\
-h, --help Display this help and exit\n\
\n\
Report bugs to %s\n", progname, ZEBRA_BUG_ADDRESS);
}

exit (status);
}
static void

sighup (void)

{ zlog_info ("SIGHUP received");
frp_clean ();
frp_reset ();

vty_read_config (config_file, config_default);
vty_serv_sock (vty_addr, vty_port, FRP_VTYSH_PATH);
}
static void
sigint (void)
{ zlog_notice ("Terminating on signal");

if (! retain_mode)
frp_clean ();

exit (0);
}

static void
sigusr1 (void)

frp_main.c Page 3 of 5 frp_main.c Page 4 of 5

Printed: Friday, 18 March 2011 10:38:11 AM Printed: Friday, 18 March 2011 10:38:11 AM
123 | { zlog_rotate (NULL); 184 opt = getopt_long (argc, argv, "df:i:hA:P:u:g:vC", longopts, 0);
124 |} 185 if (opt == EOF)

125 186 break;

126 |struct quagga_signal_t frp_signals[] = 187 switch (opt)

127 | { { .signal = SIGHUP, 188 {

128 .handler = &sighup, 189 case O:

129 1, 190 break;

130 { .signal = SIGUSR1, 191 case 'd":

131 .handler = &sigusr1, 192 daemon_mode = 1;

132 1, 193 break;

133 { .signal = SIGINT, 194 case 'f':

134 .handler = &sigint, 195 config_file = optarg;

135 }, 196 break;

136 { .signal = SIGTERM, 197 case 'A":

137 .handler = &sigint, 198 vty_addr = optarg;

138 }, 199 break;

139 k 200 case 'i":

140 201 pid_file = optarg;

141 202 break;

142 203 case 'P":

143 204

144 205 if (strcmp(optarg, "0") ==0)
145 206 { vty_port = 0;

146 207 break;

147 |int 208 }

148 | main (int argc, char **argv) 209 vty_port = atoi (optarg);

149 || { 210 if (vty_port <=0 Il vty_port > Oxffff)
150 #ifdef DEB_DEBUG 211 vty_port = FRP_VTY_PORT;
151 fprintf (stderr, "DEB DEBUG: entering frp_main.c - main\n"); 212 break;

152 #endif 213 case 'r":

153 214 retain_mode = 1;

154 int daemon_mode = 0; 215 break;

155 216 case 'u":

156 config_file = NULL; 217 frpd_privs.user = optarg;
157 218 break;

158 pid_file = PATH_FRPD_PID; 219 case 'g":

159 int dryrun = 0; 220 frpd_privs.group = optarg;
160 221 break;

161 vty_addr = NULL; 222 case 'v":

162 223 print_version (progname);
163 vty_port = FRP_VTY_PORT; 224 exit (0);

164 225 break;

165 retain_mode = 0; 226 case 'C":

166 227 dryrun =1;

167 char *p; 228 break;

168 char *progname; 229 case 'h":

169 struct thread thread; 230 usage (progname, 0);

170 231 break;

171 232 default:

172 umask (0027); 233 usage (progname, 1);

173 234 break;

174 235 }

175 progname = ((p = strrchr (argv[0], '/')) ? ++p : argv[0]); 236 }

176 237

177 238

178 zlog_default = openzlog(progname, ZLOG_FRP, LOG_CONSILOG_NDELAYILOG_PID, LOG_DAEMON); 239 master = thread_master_create ();
179 240

180 241

181 while (1) 242 zprivs_init (&frpd_privs);

182 { 243 signal_init (master, Q_SIGC(frp_signals), frp_signals);
183 int opt; 244 cmd_init (1);

frp_main.c Page 5 of 5
Printed: Friday, 18 March 2011 10:38:11 AM

245 vty_init (master);
246 memory_init ();
247
248
249 frp_init ();

250 frp_zclient_init ();
251
252
253 sort_node ();

256 vty_read_config (config_file, config_default);

259 if(dryrun)
260 return(0);

263 if (daemon_mode && daemon (0, 0) <0)

264 { zlog_err("FRPd daemon failed: %s", strerror(errno));
265 exit (1);

266 }

269 vty_serv_sock (vty_addr, vty_port, FRP_VTYSH_PATH);

272 pid_output (pid_file);

275 zlog_notice ("FRPd %s starting: vty@%d", QUAGGA_VERSION, vty_port);

278 while (thread_fetch (master, &thread))
279 thread_call (&thread);

282 return 0;

frpd.h
Printed: Friday, 18 March 2011 10:36:13 AM

Page 1 of 6

#ifndef _QUAGGA_FRPD_H
#define _QUAGGA_FRPD_H

#define DEB_DEBUG

CoNOOUThWwWN =

#define DEB_DEBUG_PKT

15 ||#include <sys/types.h>
16 |#include <stdlib.h>

17 | #include <stdio.h>

18 || #include <stdint.h>

19 |#include <stddef.h>

20 | #include <netinet/in.h>

22 | #include "zebra.h"

23 | #include "command.h"
24 | #include "getopt.h"
25 | #include "if.h"

26 | #include "log.h"

27 | #include "memory.h"
28 | #include "privs.h"

29 | #include "sigevent.h"
30 | #include "thread.h"
31 | #include "version.h"
32 | #include "vty.h"

33 | #include "prefix.h"
34 | #include "zclient.h"
35 | #include "table.h"

36 | #include "sockopt.h"
37 | #include "sockunion.h"
38 | #include "stream.h"

40 || #include "frp_packet.h"

49 | #define FRP_VERSION 1
52 | #define FRP_DEFAULT_CONFIG "frpd.conf"

55 | #define FRP_PORT_DEFAULT 343
56 | #define FRP_VTY_PORT 2609

59 | #define FRP_DEFAULT_COST 1
60 | #define FRP_DEFAULT_POLL 5
61 | #define FRP_DEFAULT_RETRY 1

frpd.h
Printed: Friday, 18 March 2011 10:36:13 AM

Page 2 of 6

62
63
64
65
66
67
68
69
70

#define FRP_METRIC

#define FRP_INFINITY Oxffff
#define FRP_ROUTE_RTE 0
#define FRP_ROUTE_STATIC 1

#define FRP_READ_REQUEST 1
#define FRP_READ_RESPONSE 2
#define FRP_WRITE_UPDATE 3
#define FRP_WRITE_KEEPALIVE 4
#define NEW_SEQ_NO 0
#define FRP_PEER_DEAD 5
#define IPADDR u_int32_t
#define FRP_HASHSIZE 8

#define RANDOM_SEED() srandom(time(NULL))
#define RANDOM_INT(__MIN

enum frp_event
{ FRP_EVENT_INCOMING,

FRP_EVENT_UPDATE,
FRP_EVENT_POLL,

b

enum flag

{ OFF,
ON,

b

struct frp

{
int version;
struct stream* obuf;
int sock;
struct thread* t_read;
struct thread* t_poll;
struct thread* t_update;
struct thread* t_update_interval;
int update_trigger;
unsigned long update_time;

__MAX__) ((__MIN__) + random() % ((__MAX__+1) - (__MIN__)))

frpd.h

Printed: Friday, 18 March 2011 10:36:13 AM

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

unsigned long timeout_time;
unsigned long garbage_time;

struct route_table* rib;
struct route_table* routes;
struct route_table* neighbors;

struct list* gateway_path;

enum flag is_gateway_flag;

struct frp_peer* gateway_nexthop;

int gateway_cost;

#define FRP_GATEWAY_ALWAYS 0O

#define FRP_GATEWAY_YES 1

#define FRP_GATEWAY_NO 2
const char* secret;
u_short cost;
u_short poll;
u_short retry;

b

struct frp_interface

{
int enable_network;
int enable_interface;

int running;
#define FRP_FILTER_IN 0

#define FRP_FILTER_OUT 1
#define FRP_FILTER_MAX 2

struct access_list* list[FRP_FILTER_MAX];
struct prefix_list* prefix[FRP_FILTER_MAX];

struct route_map* routemap[FRP_FILTER_MAX];

struct thread* t_wakeup;
int recv_badpackets;

int recv_badroutes;

int sent_updates;

int passive;

struct frp_peer
{ struct frp_peer* next;

frpd.h

Printed: Friday,

18 March 2011 10:36:13 AM

Page 4 of 6

184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221

222
223
224

struct frp_peer* prev;

struct in_addr
const char*
u_short
u_short
u_short

u_int32_t
u_int32_t
struct list*
int

struct list*
struct list*

u_char*
u_int8_t
u_int32_t

time_t
time_t
time_t

struct thread*

enum flag
enum flag
enum flag
enum flag
enum flag
enum flag
enum flag

int
int

struct frp_rte

{ u_int8_t
u_int8_t
u_short
u_short

address;
secret;
cost;
poll;
retry;

Iseq;
rseq;
gateway_path;
gateway_cost;

rib;
temp_rib;

packet_latest;
packet_latest_length;
packet_latest_lIseq;

time_latest_packet;
time_last_heard;
time_sent_config;

t_timeout;

flag_alive;
flag_send_syn;
flag_send_poll;
flag_send_config;
flag_send_gateway;
flag_send_update;
flag_awaiting_ack;

recv_badpackets;
recv_badroutes;

flags;
length;
routecost;
gatecost;

struct prefix_ipv4 prefix;

struct frp_info

{ structin_addr
u_int32_t
enum flag

int type;

int sub_type;

nexthop;
cost;
is_gateway_flag;

struct route_node* rte_node;

frpd.h
Printed: Friday, 18 March 2011

Page 5 of 6
10:36:13 AM

245
246
247
248
249
250
251
252
253

unsigned int ifindex;

b

union frp_pkt_buf

{ char buf[FRP_PKT_MAXSIZE];
struct frp_pkt_hdr
struct frp_msg_hdr
struct frp_msg_control frp_msg_control;
struct frp_msg_ipv4config frp_msg_ip4config;
struct frp_msg_ipv4gateway frp_msg_ip4gateway;
struct frp_msg_ipv4update frp_msg_ip4update;
struct frp_msg_ipv6config frp_msg_ip6config;
struct frp_msg_ipv6gateway frp_msg_ip6gateway;
struct frp_msg_ipv6update frp_msg_ip6update;

b

frp_pkt_hdr;
frp_msg_hdr;

extern struct zebra_privs_t frpd_privs;

extern struct frp* frp;

extern struct list* frp_peers;

extern struct thread_master* master;

extern void frp_init (void);

extern void frp_clean (void);

extern void frp_reset (void);

extern void frp_event (enum frp_event, int);

extern void frp_recompute_rib (struct frp_peer* peer);
extern void frp_delete_peer_from_rib (struct frp_peer* peer);

extern int frp_send_packet (u_char * buf, int size, struct sockaddr_in *to);

extern struct frp_pkt_hdr make_frp_pkt_hdr (struct in_addr local, struct frp_peer* peer, int flag, int len, u_char*
buf);

extern struct fro_msg_hdr make_frp_msg_hdr (int type);

extern struct fro_msg_control make_frp_msg_control (int type);

extern struct frp_msg_ipv4config make_frp_msg_ipv4config (struct in_addr peer);

extern int make_frp_msg_ipv4gateway (struct in_addr peer, struct frp_msg_ipv4gateway* msg);
extern int make_frp_msg_ipv4update (struct frp_peer* peer, int available_length, u_char* buf);
extern int build_syn_pkt (struct frp_peer* peer);

extern int build_ack_pkt (struct frp_peer* peer, struct sockaddr_in* from, struct in_addr local);
extern int build_nak_pkt (struct frp_peer* peer, struct sockaddr_in* from, struct in_addr local);
extern int build_batch_pkt (struct frp_peer* peer, struct sockaddr_in* from, struct in_addr local);

extern void frp_peer_init (void);
extern int frp_neighbor_add (struct vty* vty, const char* ip_str, const char* secret);
extern struct frp_peer* frp_peer_lookup (struct in_addr *addr);

frpd.h
Printed: Friday, 18 March 2011

Page 6 of 6
10:36:13 AM

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331

332
333

extern u_int8_t* dohash(u_char* buf, int len, const char* secret, IPADDR sa, IPADDR da);
extern int checksecure(u_char* pkt, int len, struct fro_peer* peer, struct in_addr local);

extern void secure(struct frp_peer* peer, struct in_addr local, struct frp_pkt_hdr* pkt, int len);
extern struct prefix* find_local_address_for_peer(struct in_addr dest);

extern struct route_table *frp_enable_network;

extern void frp_interface_init (void);

extern void frp_config_write_network (struct vty* vty);

extern int frp_neighbor_lookup (struct sockaddr_in*);

extern struct in_addr frp_get_interface_address (struct in_addr peer);

extern void frp_zclient_init (void);
extern void frp_zebra_ipv4_add (struct prefix_ipv4 *p, struct in_addr *nexthop, u_int32_t metric, u_char distance
extern void frp_zebra_ipv4_delete (struct prefix_ipv4 *p, struct in_addr *nexthop, u_int32_t metric);

extern int frp_interface_add (int command, struct zclient *zclient, zebra_size_t length);

extern int frp_interface_delete (int command, struct zclient *zclient, zebra_size_t length);

extern int frp_interface_up (int command, struct zclient *zclient, zebra_size_t length);

extern int frp_interface_down (int command, struct zclient *zclient, zebra_size_t length);

extern int frp_interface_address_add (int command, struct zclient *zclient, zebra_size_t length);
extern int frp_interface_address_delete (int command, struct zclient *zclient, zebra_size_t length);

#endif

frpd.c

Page 1 of 19

Printed: Friday, 18 March 2011 10:36:29 AM

CoNOOUThWwWN =

#include "frpd.h"
#include "frp_debug.h"

static struct cmd_node frp_node =
{ FRP_NODE, "%s(config-router)# ", 1};

struct frp* frp = NULL;

static int frp_config_write (struct vty* vty);

static int frp_create (void);

static int frp_create_socket (struct sockaddr_in* from);

static int frp_incoming_packet (struct thread* t);

static int16_t frp_incoming_control_msg (struct frp_msg_control* msg, struct frp_peer* peer, struct sockaddr_in*
from, struct in_addr local);

static int16_t frp_incoming_config_msg (struct frp_msg_ipv4config* msg, struct frp_peer* peer, struct sockaddr_in
from, struct in_addr local);

static int16_t frp_incoming_gateway_msg (struct frp_msg_ipv4gateway* msg, struct frp_peer* peer, struct
sockaddr_in* from, struct in_addr local);

static int16_t frp_incoming_update_msg (struct frp_msg_ipv4update* msg, struct frp_peer* peer, struct sockaddr_i
from, struct in_addr local);

static int frp_update_peers (struct thread *t);
static int frp_update_interval (struct thread *t);
static int frp_poll_peers (struct thread *t);

int
frp_create (void)

#ifdef DEB_DEBUG

fprintf (stderr, "DEB DEBUG: entering frpd.c - frp_create\n");
#endif
frp = XCALLOC (MTYPE_FRP, sizeof (struct frp));

frp->version = FRP_VERSION;
frp->cost = FRP_DEFAULT_COST;
frp->poll = FRP_DEFAULT_POLL;
frp->retry = FRP_DEFAULT_RETRY;
frp->is_gateway_flag = OFF;

frpd.c

Printed: Friday, 18 March 2011 10:36:29 AM

Page 2 of

62
63
64
65
66
67
68
69
70

int

frp->gateway_cost = FRP_INFINITY;

frp->rib = route_table_init ();
frp->routes = route_table_init ();
frp->neighbors = route_table_init ();

frp->obuf = stream_new (FRP_PKT_MAXSIZE);

frp->sock = frp_create_socket (NULL);
if (frp->sock <0)

#ifdef DEB_DEBUG

fprintf (stderr, "DEB DEBUG: -- frp_create, failed to create socket\n");
#endif
return frp->sock;

}
#ifdef DEB_DEBUG

fprintf (stderr, "DEB DEBUG: -- frp_create, created socket: %d\n", frp->sock);
#endif

frp_event (FRP_EVENT_INCOMING, frp->sock);
frp_event (FRP_EVENT_UPDATE, 1);
frp_event (FRP_EVENT_POLL, 1);
#ifdef DEB_DEBUG
fprintf (stderr, "DEB DEBUG: -- frp_create, finished events\n");
#endif
return O;

frp_create_socket (struct sockaddr_in* from)

{

int ret;
int sock;
struct sockaddr_in addr;

#ifdef DEB_DEBUG
fprintf (stderr, "DEB DEBUG: entering frpd.c - frp_create_socket\n");
#endif

memset (&addr, 0, sizeof (struct sockaddr_in));

if (ffrom)

{ addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY;
#ifdef HAVE_STRUCT_SOCKADDR_IN_SIN_LEN

addr.sin_len = sizeof (struct sockaddr_in);

#endif

} else

{ memcpy(&addr, from, sizeof(addr));

}

addr.sin_port = htons (FRP_PORT_DEFAULT);

sock = socket (AF_INET, SOCK_DGRAM, 0);

if (sock <0)

{ zlog_err("Cannot create UDP socket: %s", safe_strerror(errno));
exit (1);

frpd.c

Printed: Friday,

Page 3 of 19

18 March 2011 10:36:29 AM

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

}

sockopt_reuseaddr (sock);
sockopt_reuseport (sock);
setsockopt_so_recvbuf (sock, FRP_PKT_MAXSIZE);

#ifdef DEB_DEBUG

fprintf (stderr, "DEB DEBUG: -- frp_create_socket, after make socket, port: %d\n", (int) ntohs(addr.sin_port)

#endif

if (frpd_privs.change (ZPRIVS_RAISE))

{
}

zlog_err ("frp_create_socket: could not raise privs");

if ((ret = bind (sock, (struct sockaddr *) & addr, sizeof (addr))) <0)

{

int save_errno = errno;

if (frpd_privs.change (ZPRIVS_LOWER))

{ zlog_err ("frp_create_socket: could not lower privs");
}
zlog_err("%s: Can't bind socket %d to %s port %d: %s", __func__, sock, inet_ntoa(addr.sin_addr),

(int)

ntohs(addr.sin_port), safe_strerror(save_errno));

}

int

}

close (sock);
#ifdef DEB_DEBUG
fprintf (stderr, "DEB DEBUG:
#endif
return ret;

-- frp_create_socket, after bind %d\n", ret);

if (frpd_privs.change (ZPRIVS_LOWER))

{
}

zlog_err ("frp_create_socket: could not lower privs");

return sock;

frp_config_write (struct vty* vty)
int write = 0;

struct route_node* rn;

#ifdef DEB_DEBUG

{

zlog_debug ("DEB DEBUG: entering frpd.c - frp_config_write");

#endif
if (frp)

{

vty_out (vty, "router frp%s", VTY_NEWLINE);
frp_config_write_network (vty);

if (frp->is_gateway_flag == ON)
{ vty_out (vty, " gateway yes %s", VTY_NEWLINE);

}

vty_out (vty, " secret %s %s", frp->secret, VTY_NEWLINE);
if (frp->cost != FRP_DEFAULT_COST)

{ vty_out (vty, " cost %d %s", frp->cost, VTY_NEWLINE);
}

if (frp->poll !'= FRP_DEFAULT_POLL)

frpd.c
Printed: Friday,

Page 4 of 19

18 March 2011 10:36:29 AM

184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

244

{ vty_out (vty, " poll %d %s", frp->poll, VTY_NEWLINE);

}
if (frp->retry = FRP_DEFAULT_RETRY)
{ vty_out (vty, "retry %d %s", frp->retry, VTY_NEWLINE);

}

for (rn = route_top (frp->neighbors); rn; rn = route_next (rn))
{ if (rn->info)
{ struct prefix* rn_p = (struct prefix*)&rn->p;
struct in_addr address;
int addr = inet_pton (AF_INET, inet_ntoa (rn_p->u.prefix4),
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG:
#endif
struct frp_peer* peer = frp_peer_lookup (&address);
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG:
(peer->address), peer->secret);
#endif
if (peer == NULL)
{ vty_out (vty, " neighbor %s peer is null %s", inet_ntoa (rn_p->u.prefix4),
}
else
{ vty_out (vty,
}

&address);

-- frp_config_write - address=%s", inet_ntoa (address));

-- frp_config_write - peer->addr=%s, peer->secret=%s", inet_ntoa

VTY_NEWLINE);

neighbor %s secret %s %s", inet_ntoa (rn_p->u.prefix4), peer->secret, VTY_NEWLINE)

}
}
write++;
}
return write;

}

void
frp_clean ()

#ifdef DEB_DEBUG

fprintf (stderr, "DEB DEBUG: entering frpd.c - frp_clean\n");
#endif
return;

}

void
frp_reset ()

#ifdef DEB_DEBUG

fprintf (stderr, "DEB DEBUG: entering frpd.c - frp_reset\n");
#endif
return;

}

void
frp_event (enum frp_event event, int sock)

#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: entering frpd.c - frp_event");
#endif

frpd.c
Printed: Friday, 18 March 2011 10:36:29 AM

Page 5 of 19

245
246
247
248
249
250
251
252
253

int

switch (event)
{
case FRP_EVENT_INCOMING:
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_event, case: FRP_EVENT_INCOMING");
#endif

frp->t_read = thread_add_read (master, frp_incoming_packet, NULL, sock);
break;
case FRP_EVENT_UPDATE:
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_event, case: FRP_EVENT_UPDATE");
#endif
if (frp->t_update_interval)
frp->update_trigger = 1;
else if (! frp->t_update)
frp->t_update = thread_add_event (master, frp_update_peers, NULL, 0);
break;
case FRP_EVENT_POLL:
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_event, case: FRP_EVENT_POLL");
#endif
if (frp->t_poll)
{ thread_cancel (frp->t_poll);
frp->t_poll = NULL;
}

frp->t_poll = thread_add_timer (master, frp_poll_peers, NULL, (unsigned long)frp->poll);

break;
default:
#ifdef DEB_DEBUG
fprintf (stderr, "DEB DEBUG: -- frp_event, case: default\n");
#endif

zlog_info ("Unknown FRP event %d received", event);
break;

frp_incoming_packet (struct thread* t)

{

#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: entering frpd.c - frp_incoming_packet");
#endif

int sock;

socklen_t fromlen;

int pkt_length;
struct sockaddr_in from;
struct in_addr local;
struct interface* ifp;
struct connected* ifc;

struct frp_interface* ri;

union frp_pkt_buf in_pkt_buf;
struct frp_peer* peer;
int secure;

frpd.c

Page 6 of 19

Printed: Friday, 18 March 2011 10:36:29 AM

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331

332
333
334
335
336

struct frp_pkt_hdr* pkt_hdr;
struct frp_pkt_hdr ack_pkt;
int sent;

sock = THREAD_FD (t);
frp->t_read = NULL;

frp_event (FRP_EVENT_INCOMING, sock);

memset (&from, 0, sizeof (struct sockaddr_in));
fromlen = sizeof (struct sockaddr_in);

pkt_length = recvfrom (sock, (char *)&in_pkt_buf.buf, FRP_PKT_MAXSIZE, O, (struct sockaddr *) &from, &froml
if (pkt_length <0)
{ zlog_info ("recvfrom failed: %s", safe_strerror (errno));

return pkt_length;

}
ifp = if_lookup_address (from.sin_addr);

if (IS_FRP_DEBUG_EVENT)
zlog_debug ("RECV packet from %s port %d on %s", inet_ntoa (from.sin_addr), ntohs (from.sin_port), ifp ?
ifp->name : "unknown");

if (ifp == NULL)
{ zlog_info ("frp_incoming_packet: cannot find interface for packet from %s port %d", inet_ntoa(from.sin_addr),
(from.sin_port));
return -1;
}
ifc = connected_lookup_address (ifp, from.sin_addr);
if (ifc == NULL)
{ zlog_info ("frp_incoming_packet: cannot find connected address for packet from %s
inet_ntoa(from.sin_addr), ntohs (from.sin_port), ifp->name);
return -1;

"o

port %d on interface %s"

}

if (pkt_length < FRP_PKT_MINSIZE)

{ zlog_warn ("packet size %d is smaller than minimum size %d", pkt_length, FRP_PKT_MINSIZE);
return pkt_length;

}

if (pkt_length > FRP_PKT_MAXSIZE)

{ zlog_warn ("packet size %d is larger than max size %d", pkt_length, FRP_PKT_MAXSIZE);
return pkt_length;

}

ri = ifp->info;
if (! ri->running && ! frp_neighbor_lookup (&from))
{ if (IS_LFRP_DEBUG_EVENT)
{ zlog_debug ("FRP is not enabled on interface %s.", ifp->name);

return -1;

}

frpd.c
Printed: Friday, 18 March 2011

Page 7 of 19
10:36:29 AM

pkt_hdr = &in_pkt_buf.frp_pkt_hdr;

peer = frp_peer_lookup (&from.sin_addr);

peer->flag_alive = ON;
peer->time_last_heard = time (NULL);
local = frp_get_interface_address (peer->address);

secure = 0;
if (peer->secret != NULL)
{
secure = checksecure((u_char *)&in_pkt_buf.buf, pkt_length, peer, local);
} else
{ secure =1;
}
if (Isecure)
{ zlog_info ("secure check failed");
return -1;

}
#ifdef DEB_DEBUG_D
zlog_debug ("DEB DEBUG: -- frp_incoming_packet - passed security check, SYN=%d (0x%x), ACK=%d (0x%x)"
ntohl(pkt_hdr->sendSeq), ntohl(pkt_hdr->sendSeq), ntohl(pkt_hdr->recipAck), ntohl(pkt_hdr->recipAck));
#endif

peer->rseq = ntohl(pkt_hdr->sendSeq);
if (pkt_hdr->recipAck ==0)

{
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_packet - have a SYN packet, SYN=%d (0x%x), ACK=%d (0x%x)",
ntohl(pkt_hdr->sendSeq), ntohl(pkt_hdr->sendSeq), ntohl(pkt_hdr->recipAck), ntohl(pkt_hdr->recipAck));
#endif

if (pkt_length!= FRP_PKT_HDRSIZE)
{ zlog_info ("packet size check failed");
return -1;

}
ack_pkt = make_frp_pkt_hdr (local, peer, FRP_ACK, FRP_PKT_HDRSIZE, NULL);

sent = frp_send_packet ((u_char*)&ack_pkt, FRP_PKT_HDRSIZE, &from);

if (sent)

{ memcpy (peer->packet_latest, (u_char*)&ack_pkt, FRP_PKT_HDRSIZE);
peer->packet_latest_length = FRP_PKT_HDRSIZE;
peer->packet_latest_Iseq = ntohl(pkt_hdr->sendSeq);
peer->flag_awaiting_ack = ON;

#ifdef DEB_DEBUG_D
zlog_debug ("DEB DEBUG: -- frp_incoming_packet - packet_latest_lseq=%d", peer->packet_latest_Iseq);
#endif

} else

{ zlog_debug ("packet number %d not sent", ack_pkt.sendSeq);

}

} else if (pkt_hdr->recipAck > 0)

{

frpd.c
Printed: Friday, 18 March 2011

Page 8 of 19
10:36:29 AM

428
429
430
431
432
433
434
435
436

#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_packet - have an ACK packet, SYN=%d (0x%x), ACK=%d (0x%x)"
ntohl(pkt_hdr->sendSeq), ntohl(pkt_hdr->sendSeq), ntohl(pkt_hdr->recipAck), ntohl(pkt_hdr->recipAck));
#endif

if (ntohl(pkt_hdr->recipAck) == peer->Iseq)
if (pkt_length == FRP_PKT_HDRSIZE)

{
#ifdef DEB_DEBUG

zlog_debug ("DEB DEBUG: -- frp_incoming_packet - is acking my syn so send flagged message(s), about
build_batch_pkt");
#endif
build_batch_pkt (peer, &from, local);
} else
{ char* start_pos;
char* current_pos;
struct frp_msg_hdr* current_msg;

int16_t msg_length;

start_pos = (char*)&in_pkt_buf.buf;

current_pos = start_pos + FRP_PKT_HDRSIZE;
current_msg = NULL;

msg_length = 0;

current_msg = (struct frp_msg_hdr*)current_pos;

int nak_response_sent = 0O;
while ((current_msg != NULL) && (current_pos < (start_pos + pkt_length)))
{

#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_packet - length=%d, type=0x%x", current_msg->length,
current_msg->type);
#endif
switch (current_msg->type)
{ case FRP_MSG_CONTROL:
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_packet - SWITCH control");
#endif
current_msg = (struct frp_msg_control*)current_pos;
msg_length = frp_incoming_control_msg ((struct frp_msg_control*)current_msg, peer, &from, Ic
if (msg_length ==-1)
{ nak_response_sent = 1;
current_pos += FRP_MSG_CONTROL_SIZE;
} else
{ current_pos += msg_length;
}
current_msg = (struct frp_msg_hdr*)current_pos;
break;
case FRP_MSG_IPV4CONFIG:
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_packet - SWITCH config");
#endif
current_msg = (struct frp_msg_ipv4config*)current_pos;
msg_length = frp_incoming_config_msg ((struct frp_msg_ipv4config*)current_msg,
current_pos += msg_length;
current_msg = (struct frp_msg_hdr*)current_pos;
break;
case FRP_MSG_IPV4GATEWAY:
#ifdef DEB_DEBUG

peer, &from,

frpd.c
Printed: Friday, 18 March 2011

Page 9 of 19
10:36:29 AM

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

zlog_debug ("DEB DEBUG: -- frp_incoming_packet - SWITCH gateway");
#endif
current_msg = (struct frp_msg_ipv4gateway*)current_pos;
msg_length = frp_incoming_gateway_msg ((struct frp_msg_ipv4gateway*)current_msg, peer, &fi
local);
current_pos += msg_length;
current_msg = (struct frp_msg_hdr*)current_pos;
break;
case FRP_MSG_IPV4UPDATE:
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_packet - SWITCH update");
#endif
current_msg = (struct frp_msg_ipv4update*)current_pos;
msg_length = frp_incoming_update_msg ((struct frp_msg_ipv4update*)current_msg,
current_pos += msg_length;
current_msg = (struct frp_msg_hdr*)current_pos;
break;
case FRP_MSG_IPV6CONFIG:

peer, &from,

break;
case FRP_MSG_IPV6GATEWAY:

break;
case FRP_MSG_IPV6UPDATE:

break;
default:
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_packet - SWITCH default");
#endif
break;
}
}

if (Inak_response_sent)

#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_packet - send packet, unless have responded to a NAK, ab:
call build_batch_pkt");
#endif
build_batch_pkt (peer, &from, local);
}
}
} else

{

sent = build_nak_pkt (peer, &from, local);
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- 4 - pkt_hdr->recipAck != peer->Iseq - STOP");
#endif
}
} else
{ zlog_info ("invalid incoming packet");
return -1;

return pkt_length;
}

int16_t
frp_incoming_control_msg (struct frp_msg_control* msg, struct frp_peer* peer, struct sockaddr_in* from, struct

frpd.c
Printed: Friday, 18 March 2011

Page 10 of 19
10:36:29 AM

601
602
603
604
605
606
607
608
609
610

in_addr local)
{ int sent;
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: entering frpd.c - frp_incoming_control_msg");
#endif
switch (msg->type)
{ case FRP_CTRL_POLL:
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_control_msg - FRP_CTRL_POLL");
#endif

break;
case FRP_CTRL_ACK:
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_control_msg - FRP_CTRL_ACK");
#endif

peer->flag_awaiting_ack = OFF;
#ifdef DEB_DEBUG_D
zlog_debug ("DEB DEBUG: -- frp_incoming_control_msg - packet_latest_Iseq=%d", peer->packet_latest_|
#endif
break;
case FRP_CTRL_NAK:
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_control_msg - FRP_CTRL_NAK");
#endif

struct frp_pkt_hdr new_pkt_hdr = make_frp_pkt_hdr (local, peer, FRP_ACK, peer->packet_latest_length,
(u_char*)peer->packet_latest);
memcpy((u_char*)peer->packet_latest, &new_pkt_hdr, FRP_PKT_HDRSIZE);

sent = frp_send_packet ((u_char*)&peer->packet_latest,
if (Isent)

{ zlog_debug ("packet not sent");

}

return -1;

break;

peer->packet_latest_length, from);

}

return msg->msg_hdr.length;

}

int16_t
frp_incoming_config_msg (struct frp_msg_ipv4config* msg, struct frp_peer* peer, struct sockaddr_in* from, struc
in_addr local)
{
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: entering frpd.c - frp_incoming_config_msg");
#endif

peer->cost = ntohs(msg->cost);
peer->poll = ntohs(msg->poll);
peer->retry = ntohs(msg->retry);
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_control_msg - msg cost=%d, poll=%d, retry=%d", ntohs(msg->cosi
ntohs(msg->poll), ntohs(msg->retry));
zlog_debug ("DEB DEBUG: -- frp_incoming_control_msg - peer cost=%d, poll=%d, retry=%d", peer->cost,
peer->poll, peer->retry);
#endif
return msg->msg_hdr.length;

}

frpd.c
Printed: Friday, 18 March 2011

Page 11 of 19
10:36:29 AM

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

int16_t
frp_incoming_gateway_msg (struct frp_msg_ipv4gateway* msg, struct frp_peer* peer, struct sockaddr_in* from,
struct in_addr local)
{
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: entering frpd.c - frp_incoming_gateway_msg");
#endif

int msg_length = msg->msg_hdr.length;

int path_length = (msg_length - 32) / 32;
int remainder = (msg_length - 32) % 32;
struct in_addr* current_pos = (struct in_addr*)((char*)msg + 32);

if ((path_length == 0) Il (remainder != 0))
{
peer->gateway_cost = FRP_INFINITY;
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_control_msg - invalid path length - msg cost=%d", ntohs(msg->c¢
#endif
return msg->msg_hdr.length;
} else
{

struct list* gate_path = list_new ();

for (int i =1; i <= path_length; i++)
{
struct in_addr* current_addr = XCALLOC (MTYPE_FRP_PEER, sizeof (struct in_addr));
memcpy (current_addr, current_pos, sizeof (struct in_addr));
if (current_addr->s_addr == local.s_addr)
{
peer->gateway_cost = FRP_INFINITY;

list_free (gate_path);
XFREE (MTYPE_FRP_PEER, current_addr);
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_control_msg - we are in list - msg cost=%d", ntohs(msg->c
#endif
return msg->msg_hdr.length;
} else
{
listnode_add (gate_path, current_addr);
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_control_msg - path address=%d", current_addr->s_addr);
#endif
}
current_pos++;

}

peer->gateway_path = gate_path;
peer->gateway_cost = ntohs(msg->cost);

if ((peer->gateway_cost + peer->cost) < frp->gateway_cost)
{ frp->gateway_cost = peer->gateway_cost + peer->cost;
frp->gateway_nexthop = peer;
frp->gateway_path = peer->gateway_path;

struct listnode *node, *nnode;
for (ALL_LIST_ELEMENTS (frp_peers, node, nnode, peer))
{ peer->flag_send_gateway = ON;

frpd.c
Printed: Friday, 18 March 2011

Page 12 of 19
10:36:29 AM

672
673
674
675
676
677
678
679
680
681

682
683
684
685
686
687
688
689
690
691

692
693
694
695
696
697

b
}

}
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_incoming_control_msg - msg cost=%d", ntohs(msg->cost));
zlog_debug ("DEB DEBUG: -- frp_incoming_control_msg - peer cost=%d", peer->cost);
#endif
return msg->msg_hdr.length;

}

int16_t
frp_incoming_update_msg (struct frp_msg_ipv4update* msg, struct frp_peer* peer, struct sockaddr_in* from, stri
in_addr local)
{
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: entering frpd.c - frp_incoming_update_msg");
#endif

struct frp_rte* new_route;
new_route = XCALLOC (MTYPE_FRP_PEER, sizeof(struct frp_rte));
struct frp_rte* existing_route;

if (msg->flags & FRP_FLAG_BEGIN)
{
if (peer->temp_rib !'= NULL)
{
list_delete (peer->temp_rib);
peer->temp_rib = NULL;
}

if (msg->flags & FRP_FLAG_NULLRT)
{ int peer_rib_size = peer->rib->count;

list_delete_all_node (peer->rib);

if (peer_rib_size >0)

{ frp_recompute_rib (peer);
}

return msg->msg_hdr.length;

}

new_route->flags = msg->flags;
new_route->length = msg->length;
new_route->routecost = ntohs(msg->routecost);
new_route->gatecost = ntohs(msg->gatecost);

struct prefix_ipv4 address;

memset (&address, 0, sizeof (address));
address.family = AF_INET;
address.prefix = msg->prefix;
address.prefixlen = msg->length;
apply_mask_ipv4(&address);
new_route->prefix = address;

if (msg->flags & FRP_FLAG_DELETE)
{
struct listnode* node;
struct listnode* delete_node = NULL;
for (ALL_LIST_ELEMENTS_RO (peer->rib, node, existing_route))

frpd.c
Printed: Friday, 18 March 2011 10:36:29 AM

Page 13 of 19

733
734 { if (prefix_same (&new_route->prefix, &existing_route->prefix))
735 { delete_node = node;

736 break;

737 }

738 }

739 if (delete_node != NULL)

740 { list_delete_node (peer->rib, delete_node);

741 }

742 return msg->msg_hdr.length;

743 }

746 if (msg->flags & FRP_FLAG_UPDATE)

747 {

748 struct listnode* node;

749 struct listnode* update_node = NULL;

750 for (ALL_LIST_ELEMENTS_RO (peer->rib, node, existing_route))

752 { if (prefix_same (&new_route->prefix, &existing_route->prefix))
753 { update_node = node;

754 break;

755 }

756 }

757 if (update_node != NULL)

758 { list_delete_node (peer->rib, update_node);
759 listnode_add (peer->rib, new_route);

760 }

761 return msg->msg_hdr.length;

762 }

765 peer->temp_rib = list_new ();

767 } else
768 {

770 if (peer->temp_rib == NULL)

771 { zlog_info ("invalid route update packet");
772 return msg->msg_hdr.length;

773 }

778 listnode_add (peer->temp_rib, new_route);

781 if (msg->flags & FRP_FLAG_COMMIT)
782 {

783 list_delete (peer->rib);

784 peer->rib = peer->temp_rib;

785 peer->temp_rib = NULL;

786 frp_recompute_rib (peer);

787 }

789 return msg->msg_hdr.length;

frpd.c

Printed: Friday, 18 March 2011 10:36:29 AM

Page 14 of 19

794
795
796
797
798
799
800
801

802
803
804
805
806
807
808
809
810
811

812
813
814
815
816
817
818
819
820
821

822
823
824
825
826
827
828
829
830
831

832
833
834
835
836
837
838
839

841
842

844
845
846
847
848
849
850
851

852
853
854

static int
frp_update_peers (struct thread *t)

{

#ifdef DEB_DEBUG

zlog_debug ("DEB DEBUG: entering frpd.c - frp_update_peers");
#endif
int interval;

frp->t_update = NULL;

if (frp->t_update_interval)

{ thread_cancel (frp->t_update_interval);
frp->t_update_interval = NULL;

}

frp->update_trigger = 0;

if (IS_FRP_DEBUG_EVENT)
{ zlog_debug ("update triggered");
}

if ((frp->gateway_cost == FRP_INFINITY) Il (frp->gateway_cost == 0))
{

struct frp_peer* peer;

struct listnode *node, *nnode;

for (ALL_LIST_ELEMENTS (frp_peers, node, nnode, peer))

{

peer->flag_send_update = ON;

if (peer->flag_awaiting_ack == OFF)
{

int sent = build_syn_pkt (peer);
if (sent)
{ zlog_debug ("sent SYN packet to %s", inet_ntoa (peer->address));

interval = (random () % 5) + 1;
frp->t_update_interval = thread_add_timer (master, frp_update_interval, NULL, interval);
return 0;

static int
frp_update_interval (struct thread *t)

{

int frp_update_peers (struct thread *);
frp->t_update_interval = NULL;

frpd.c Page 15 of 19
Printed: Friday, 18 March 2011 10:36:29 AM

855
856
857
858
859
860
861

if (frp->update_trigger)

{ frp->update_trigger = 0;
frp_update_peers (t);

}

return 0;

}

static int
frp_poll_peers (struct thread *t)
{
frp->t_poll = NULL;
if (IS_FRP_DEBUG_EVENT)
{ zlog_debug ("poll timer fired");
}

int sent;
struct frp_peer* peer;
struct listnode *node, *nnode;
for (ALL_LIST_ELEMENTS (frp_peers, node, nnode, peer))
{
if ((peer->flag_alive == OFF) Il (peer->flag_awaiting_ack > FRP_PEER_DEAD))
{ peer->flag_alive = OFF;
peer->flag_awaiting_ack = OFF;
peer->flag_send_poll = OFF;
peer->flag_send_syn = OFF;
peer->flag_send_config = ON;
peer->flag_send_update = ON;
peer->flag_awaiting_ack = ON;
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_poll_peers - %s is dead", inet_ntoa (peer->address));
#endif
} else
{ if (peer->flag_awaiting_ack ==1)
{ peer->flag_awaiting_ack ++;
} else if (peer->flag_awaiting_ack > 1)
{
struct sockaddr_in socket;
socket.sin_family = AF_INET;
socket.sin_port = htons(FRP_PORT_DEFAULT);
socket.sin_addr = peer-> address;
sent = frp_send_packet (peer->packet_latest, peer->packet_latest_length, &socket);
if (sent)
{ peer->flag_awaiting_ack ++;
} else
{ zlog_debug ("packet not sent");

}
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_poll_peers - awaiting ACK %d from %s", peer->packet_latest_Iseq, ir
(peer->address));
#endif
} else if ((peer->flag_send_syn) Il (peer->flag_send_config) Il (peer->flag_send_gateway) I
(peer->flag_send_update))
{
sent = build_syn_pkt (peer);

frpd.c
Printed: Friday, 18 March 2011 10:36:29 AM

Page 16 of 19

916 if (sent)

917 { peer->flag_send_syn = OFF;

918 zlog_debug ("sent SYN packet to %s", inet_ntoa (peer->address));
919 }

920 } else

921 {

922 time_t now = time (NULL);

923 double test = difftime (now, peer->time_last_heard);

924 if (test > frp->poll)

925 { peer->flag_send_poll = ON;

926 sent = build_syn_pkt (peer);

927 if (sent)

928 { peer->flag_send_syn = OFF;

929 zlog_debug ("sent SYN packet to %s", inet_ntoa (peer->address));
930 }

931 }

932 }

933 }

934 }

935

936 if (frp->t_update_interval)
937 { thread_cancel (frp->t_update_interval);

938 frp->t_update_interval = NULL;
939 }

940 frp->update_trigger = 0;

941

942 frp_event (FRP_EVENT_POLL, 0);
943 return O;

944 |}
945
946
947
948
949
950
951
952
953
954

958 | DEFUN (router_frp,
959 router_frp_cmd,
960 "router frp",

961 "Enable a routing process\n"

962 "Fringe Routing Protocol (FRP)\n")
963 | {

964 int ret;

965

966 if (! frp)

967 {

968 #ifdef DEB_DEBUG

969 fprintf (stderr, "DEB DEBUG: entering frpd.c - router_frp\n");
970 #endif

971 ret = frp_create ();

972 if (ret <0)

973 { zlog_info ("Can't create FRP");
974 return CMD_WARNING;

975 }

976 }

frpd.c

Printed: Friday,

18 March 2011 10:36:29 AM

Page 17 of 19

977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

vty->node = FRP_NODE;
vty->index = frp;
return CMD_SUCCESS;
}
DEFUN (no_router_frp,
no_router_frp_cmd,
"no router frp",
NO_STR
"Enable a routing process\n"
"Routing Information Protocol (FRP)\n")
{
if (frp)
frp_clean ();
return CMD_SUCCESS;
}

DEFUN (frp_gateway,
frp_gateway_cmd,
"gateway (yeslno)",
"Is this router a FRP gateway? (yeslno)\n"
npt
"\n")

const char* testl = "yes";

const char* test2 = argv[0];

int result = strcmp(test1, test2);

if (result == 0 Il (*argv[0] =="y"))

{ frp->is_gateway_flag = ON;
frp->gateway_cost = 0;

} else

{ frp->is_gateway_flag = OFF;
frp->gateway_cost = FRP_INFINITY;

}

struct frp_peer* peer;
struct listnode *node, *nnode;
for (ALL_LIST_ELEMENTS (frp_peers, node, nnode, peer))
{ frp_recompute_rib (peer);
peer->flag_send_gateway = ON;
peer->flag_send_update = ON;

}
#ifdef DEB_DEBUG
vty_out (vty, "DEB DEBUG: -- frp_gateway_cmd - result=%d, frp->is_gateway_flag=%d
frp->is_gateway_flag, VTY_NEWLINE);
#endif
return CMD_SUCCESS;
}

DEFUN (frp_secret,
frp_secret_cmd,
"secret WORD",
ot
"“n")

{

if (Istrcmp(argv[0], ""))
{ vty_out (vty, "Please specify address and secret A.B.C.D secret WORD%s", VTY_NEWLINE);
return CMD_WARNING;

%s", result,

frpd.c

Printed: Friday,

Page 18 of 19

18 March 2011 10:36:29 AM

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

}
char* secret = (char*)argv[0];
frp->secret = (char*) XCALLOC (MTYPE_FRP, strlen(secret) + 1);
memcpy (frp->secret, secret, strlen(secret));
#ifdef DEB_DEBUG
vty_out (vty, "DEB DEBUG:
#endif
return CMD_SUCCESS;

-- frp_secret_cmd - frp->secret = %s %s", frp->secret, VTY_NEWLINE);

DEFUN (frp_cost,
frp_cost_cmd,
"cost INT",
"Cost of link\n"
"Set cost of link as an integer\n")

frp->cost = atoi(argv[0]);

struct frp_peer* peer;

struct listnode *node, *nnode;

for (ALL_LIST_ELEMENTS (frp_peers, node, nnode, peer))
{ peer->flag_send_config = ON;

}
#ifdef DEB_DEBUG
vty_out (vty, "DEB DEBUG:
#endif
return CMD_SUCCESS;

-- frp_cost_cmd - frp->cost = %d %s", frp->cost, VTY_NEWLINE);

DEFUN (frp_poll,
frp_poll_cmd,
"poll INT",
"Poll / keepalive frequency\n"
"Set the poll time in seconds as an integer\n")

frp->poll = atoi(argv[0]);

struct frp_peer* peer;

struct listnode *node, *nnode;

for (ALL_LIST_ELEMENTS (frp_peers, node, nnode, peer))
{ peer->flag_send_poll = ON;

}
#ifdef DEB_DEBUG
vty_out (vty, "DEB DEBUG:
#endif
return CMD_SUCCESS;

-- frp_poll_cmd - frp->poll = %d %s", frp->poll, VTY_NEWLINE);

DEFUN (frp_retry,

1092 frp_retry_cmd,

1093 "retry INT",

1094 "Timeout to failure after acked packet\n"

1095 "Set the retry time in seconds as an integer\n")
1096 | {

1097

1098 frp->retry = atoi(argv[0]);

frpd.c Page 19 of
Printed: Friday, 18 March 2011 10:36:29 AM

-

1099
1100 struct frp_peer* peer;

1101 struct listnode *node, *nnode;

1102 for (ALL_LIST_ELEMENTS (frp_peers, node, nnode, peer))
1103 { peer->flag_send_config = ON;

1104 }
1105 #ifdef DEB_DEBUG
1106 vty_out (vty, "DEB DEBUG: -- frp_retry_cmd - frp->retry = %d %s", frp->retry, VTY_NEWLINE);

1107 #endif
1108 return CMD_SUCCESS;

1118 | void

1119 | frp_init (void)
1120 {
1121 #ifdef DEB_DEBUG

1122 fprintf (stderr, "DEB DEBUG: entering frpd.c - frp_init\n");
1123 #endif

1127 install_node (&frp_node, frp_config_write);

1130 install_default (FRP_NODE);

1134 install_element (CONFIG_NODE, &router_frp_cmd);
1135 install_element (CONFIG_NODE, &no_router_frp_cmd);

1138 install_element (FRP_NODE, &frp_secret_cmd);
1139 install_element (FRP_NODE, &frp_cost_cmd);
1140 install_element (FRP_NODE, &frp_poll_cmd);
1141 install_element (FRP_NODE, &frp_retry_cmd);
1142 install_element (FRP_NODE, &frp_gateway_cmd);

1145 frp_debug_init ();

1148 frp_interface_init ();

1151 frp_peer_init ();

1153 #ifdef DEB_DEBUG

1154 fprintf (stderr, "DEB DEBUG: -- leaving frp_init\n");
1155 #endif

1157 return;

frp_peer.c
Printed: Friday, 18 March 2011 10:37:23 AM

Page 1 of 7

CoNOOUThWwWN =

#include "frpd.h"
#include "frp_debug.h"
#include "linklist.h"

#include <openssl/sha.h>

#define IPADDR u_int32_t

struct list* frp_peers = NULL;

static int frp_neighbor_delete (struct prefix_ipv4 *p);

static void frp_peer_free (struct frp_peer *peer);

static int frp_frp_peers_cmp (struct frp_peer *p1, struct frp_peer *p2);

static struct frp_peer* frp_peer_add (struct in_addr* addr, const char* secret);
static struct frp_peer* frp_peer_new (void);

struct frp_peer* frp_peer_lookup (struct in_addr *addr);
struct frp_peer* frp_peer_lookup_next (struct in_addr *addr);

struct frp_peer*

frp_peer_new (void)

{ return XCALLOC (MTYPE_FRP_PEER, sizeof (struct frp_peer));
}

void

frp_peer_free (struct frp_peer *peer)
{ XFREE (MTYPE_FRP_PEER, peer);

}

struct frp_peer*
frp_peer_lookup (struct in_addr *addr)
{ struct frp_peer *peer;
struct listnode *node, *nnode;
for (ALL_LIST_ELEMENTS (frp_peers, node, nnode, peer))
{ if (IPV4_ADDR_SAME (&peer->address, addr))
return peer;

frp_peer.c
Printed: Friday, 18 March 2011 10:37:23 AM

Page 2 of 7

62
63
64
65
66
67
68
69
70

}
return NULL;

}

struct frp_peer*
frp_peer_lookup_next (struct in_addr *addr)
{ struct frp_peer *peer;
struct listnode *node, *nnode;
for (ALL_LIST_ELEMENTS (frp_peers, node, nnode, peer))
{ if (htonl (peer->address.s_addr) > htonl (addr->s_addr))
return peer;
}
return NULL;
}

static struct frp_peer*
frp_peer_add (struct in_addr* addr, const char* secret)
{ struct frp_peer *peer;

peer = frp_peer_lookup (addr);
if (peer)
{ peer->secret = secret;
} else
{ peer = frp_peer_new ();
peer->address = *addr;
peer->secret = (char*) XCALLOC (MTYPE_FRP_PEER, strlen(secret) + 1);
memcpy (peer->secret, secret, strlen(secret));
peer->packet_latest = (u_char*) XCALLOC (MTYPE_FRP_PEER, FRP_PKT_MAXSIZE);
listnode_add_sort (frp_peers, peer);
peer->rib = list_new ();
peer->temp_rib = NULL;
}
return peer;
}
int
frpo_frp_peers_cmp (struct frp_peer *p1, struct frp_peer *p2)

{ return htonl (p1->address.s_addr) > htonl (p2->address.s_addr);
}

struct prefix*
find_local_address_for_peer(struct in_addr dest)
{ struct interface* ifp;
struct listnode* node;
if (iflist == NULL)
{
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- find_local_address_for_peer - iflist=null");
#endif
}

for (ALL_LIST_ELEMENTS_RO (iflist, node, ifp))
{ struct connected* conn = connected_lookup_address (ifp, dest);
if (conn != NULL)
{ return conn->address;
} else
{
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- find_local_address_for_peer - conn=null");
#endif

frp_peer.c
Printed: Friday, 18 March 2011

10:37:23 AM

Page 3 of 7

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

return NULL;
}

u_int8_t*
dohash(u_char* buf, int len, const char* secret, IPADDR sa, IPADDR da)
{ static u_int8_t hash[SHA_DIGEST_LENGTH];
SHA_CTX shctx;
SHA_Init(&shctx);
SHA_Update(&shctx, buf, len);
SHA_Update(&shctx, (u_char*)&sa, sizeof(IPADDR));
SHA_Update(&shctx, (u_char*)&da, sizeof(IPADDR));
SHA_Update(&shctx, secret, strlen(secret));
SHA_Final(hash, &shctx);
#ifdef DEB_DEBUG_PEER
zlog_debug ("DEB DEBUG: -- dohash - hash: %d",
hash[0],hash[1],hash[2],hash[3],hash[4],hash[5],hash[6],hash[7],hash[8],hash[9],
hash[10],hash[11],hash[12],hash[13],hash[14],hash[15],hash[16],hash[17],hash[18],hash[19]);
#endif
return hash;

int
checksecure(u_char* pkt, int len, struct frp_peer* peer, struct in_addr local)
{ u_int8_t *hash;
hash = dohash(pkt + FRP_HASHSIZE, len - FRP_HASHSIZE, peer->secret, peer->address.s_addr, local.s_addr);
#ifdef DEB_DEBUG_PEER
zlog_debug ("DEB DEBUG: -- checksecure - packet len: %d", len);

zlog_debug ("DEB DEBUG: -- checksecure - checking from: %s secret: %s", inet_ntoa (peer->address),
peer->secret);
zlog_debug ("DEB DEBUG: -- checksecure - checking to: %s secret: %s", inet_ntoa (local), peer->secret);
#endif
if('lmemcmp(hash, pkt, FRP_HASHSIZE))
{ return 1;

}
zlog_debug("packet security failure");
return 0;

void
secure(struct frp_peer* peer, struct in_addr local, struct frp_pkt_hdr* pkt, int len)
{ u_int8_t *hash;

if(\peer->secret)

{ memset(pkt->hash, 0, FRP_HASHSIZE);

frp_peer.c
Printed: Friday, 18 March 2011

Page 4 of 7
10:37:23 AM

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

}

return;

hash = dohash(&pkt->hash[FRP_HASHSIZE], len-FRP_HASHSIZE, peer->secret, local.s_addr, peer->address.s_addr)
memcpy(pkt->hash, hash, FRP_HASHSIZE);

}

int

frp_neighbor_add (struct vty *vty, const char* ip_str, const char* secret)

#ifdef DEB_DEBUG

vty_out (vty, "DEB DEBUG: entering frp_peer.c - frp_neighbor_add %s %s %s", ip_str, secret, VTY_NEWLINE);
zlog_debug ("DEB DEBUG: entering frp_peer.c - frp_neighbor_add %s secret %s", ip_str, secret);

#endif

struct prefix_ipv4 p;
int ret = str2prefix_ipv4 (ip_str, &p);

if (ret <=0)

{
#ifdef DEB_DEBUG

zlog_debug ("DEB DEBUG: -- frp_neighbor_add - invalid address");

#endif

}

vty_out (vty, "Please specify address as A.B.C.D%s", VTY_NEWLINE);
return CMD_WARNING;

if (Istrcmp(secret, ""))

#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_neighbor_add - invalid secret");
#endif
vty_out (vty, "Please specify address and secret as A.B.C.D secret WORD%s", VTY_NEWLINE);
return CMD_WARNING;

struct route_node* node;
node = route_node_get (frp->neighbors, (struct prefix *) &p);
if (node->info)

{

}

#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- frp_neighbor_add - peer already exists");
#endif
route_unlock_node (node);
return -1;

node->info = frp->neighbors;

struct prefix*

node_p;

struct in_addr address;
node_p = (struct prefix*)&node->p;
#ifdef DEB_DEBUG

zlog_debug ("DEB DEBUG: -- frp_neighbor_add - node_p=%s", inet_ntoa (node_p->u.prefix4));

#endif
int addr_test = inet_pton (AF_INET, inet_ntoa (node_p->u.prefix4), &address);

frp_peer.c
Printed: Friday, 18 March 2011 10:37:23 AM

245
246
247
248
249
250
251

struct frp_peer* peer;

if (addr_test)

{ peer = frp_peer_add (&address, secret);
#ifdef DEB_DEBUG

zlog_debug ("DEB DEBUG: -- frp_neighbor_add, %s, %s added to frp_peers", inet_ntoa (peer->address),

peer->secret);

#endif

} else

{
#ifdef DEB_DEBUG

zlog_debug ("DEB DEBUG: -- frp_neighbor_add, add to frp_peers failed");

#endif
route_unlock_node (node);
return -1;

peer->Iseq = RANDOM_INT(O,INT_MAX);

peer->rseq = 0;

peer->gateway_path = NULL;

peer->gateway_cost = FRP_INFINITY;

if ((frp->gateway_cost == FRP_INFINITY) Il (frp->gateway_cost == 0))

{ peer->flag_send_gateway = OFF;
peer->flag_send_update = OFF;

} else

{ peer->flag_send_gateway = ON;
peer->flag_send_update = ON;

}

peer->flag_alive = ON;

peer->flag_send_syn = ON;

peer->flag_send_config = ON;

return 0;

int
frp_neighbor_delete (struct prefix_ipv4 *p)
{ struct route_node *node;

node = route_node_lookup (frp->neighbors, (struct prefix *) p);
if (! node)

{ return -1;

}

node->info = NULL;

route_unlock_node (node);

route_unlock_node (node);
return 0;

frp_peer.c
Printed: Friday, 18 March 2011 10:37:23 AM

306
307
308
309
310
311

312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331

DEFUN (frp_neighbor,
frp_neighbor_cmd,
"neighbor A.B.C.D secret WORD",
"Specify a neighbor router\n"
"Neighbor address\n"
"Neighbor secret\n"
"the secret\n")

int ret = frp_neighbor_add (vty, argv[0], argv[1]);
if (ret ==0)
{

#ifdef DEB_DEBUG
vty_out (vty, "DEB DEBUG: -- successfully called frp_neighbor_add%s", VTY_NEWLINE);
#endif
return CMD_SUCCESS;
} else if (ret ==-1)

#ifdef DEB_DEBUG
vty_out (vty, "DEB DEBUG: -- frp_neighbor_add - address already exists%s", VTY_NEWLINE);
#endif
return ret;
}
return ret;

}

DEFUN (no_frp_neighbor,
no_frp_neighbor_cmd,
"no neighbor A.B.C.D",
NO_STR
"Specify a neighbor router\n"
"Neighbor address\n")
{ int ret;
struct prefix_ipv4 p;
ret = str2prefix_ipv4 (argv[0], &p);
if (ret <=0)
{ vty_out (vty, "Please specify address by A.B.C.D%s", VTY_NEWLINE);
return CMD_WARNING;
}
frp_neighbor_delete (&p);
return CMD_SUCCESS;

void
frp_peer_init (void)
{
#ifdef DEB_DEBUG
fprintf (stderr, "DEB DEBUG: entering frp_peer.c - frp_peer_init\n");
#endif

RANDOM_SEED();

frp_peers = list_new ();
frp_peers->cmp = (int (*)(void *, void *)) frp_frp_peers_cmp;

frp_peer.c Page 7 of 7
Printed: Friday, 18 March 2011 10:37:23 AM

369 install_element (FRP_NODE, &frp_neighbor_cmd);
370 install_element (FRP_NODE, &no_frp_neighbor_cmd);

371

372 #ifdef DEB_DEBUG

373 fprintf (stderr, "DEB DEBUG: -- leaving frp_peer_init\n");
374 #endif

375

376 return;

377}

frp_packet.h
Printed: Friday, 18 March 2011 10:37:45 AM

Page 1 of 2 frp_packet.h
Printed: Friday, 18 March 2011 10:37:45

AM

Page 2 of 2

CoNOOUThWwWN =

#define FRP_PKT_HDRSIZE

#define FRP_PKT_MINSIZE

#define FRP_PKT_MAXSIZE

#define FRP_MSG_CONTROL_SIZE

#define FRP_MSG_IPV4CONFIG_SIZE

#define FRP_MSG_IPV4GATEWAY_MINSIZE
#define FRP_MSG_IPV4UPDATE_SIZE

#define FRP_MSG_IPV6CONFIG_SIZE

#define FRP_MSG_IPV6GATEWAY_MINSIZE
#define FRP_MSG_IPV6UPDATE_SIZE

#define FRP_MSG_CONTROL 0x01
#define FRP_MSG_IPV4CONFIG 0x41
#define FRP_MSG_IPV4GATEWAY 0x42
#define FRP_MSG_IPV4UPDATE 0x43
#define FRP_MSG_IPV6CONFIG 0x61
#define FRP_MSG_IPV6GATEWAY 0x62
#define FRP_MSG_IPV6UPDATE 0x63
#define FRP_CTRL_POLL 1
#define FRP_CTRL_ACK 2
#define FRP_CTRL_NAK 3
#define FRP_FLAG_BEGIN 0x01
#define FRP_FLAG_COMMIT 0x02
#define FRP_FLAG_NULLRT 0x04
#define FRP_FLAG_UPDATE 0x08
#define FRP_FLAG_DELETE 0x10
#define FRP_FLAG_GATEWAY 0x80

struct frp_pkt_hdr

{ u_int8_t hash[8];
u_int32_t sendSeq;
u_int32_t recipAck;

b

struct frp_msg_hdr

{ u_int8_t length;
u_int8_t type;

b

struct frp_msg_control

{ struct frp_msg_hdr msg_hdr;
u_int8_t type;
u_int8_t param;

b

struct frp_msg_ipv4config
{ struct frp_msg_hdr msg_hdr;

u_short cost;
u_short poll;
u_short retry;
struct in_addr id;

16
16
1400
4

12

8

12
24
20
24

62
63
64
65
66
67
68
69
70

b

struct frp_msg_ipv4gateway

{ struct frp_msg_hdr msg_hdr;
u_short cost;
struct in_addr path[62];

b

struct frp_msg_ipv4update
{ struct fro_msg_hdr msg_hdr;

u_int8_t flags;
u_int8_t length;
u_short routecost;
u_short gatecost;
struct in_addr prefix;

struct frp_msg_ipv6config
{ struct frp_msg_hdr msg_hdr;

u_short cost;
u_short poll;
u_short retry;
struct in6_addr id;

b

struct frp_msg_ipv6gateway
{ struct fro_msg_hdr msg_hdr;

u_short
struct in6_addr
b

cost;
path[1];

struct frp_msg_ipv6update
{ struct frp_msg_hdr msg_hdr;

u_int8_t flags;
u_int8_t length;
u_short routecost;
u_short gatecost;
struct in6_addr prefix;

b

struct frp_pkt_hdr pkt_hdr;

struct frp_pkt_hdr* pkt_hdr_ptr;

enum frp_makepkthdr_flag

{ FRP_ACK,
FRP_SYN,
b

frp_packet.c
Printed: Friday, 18 March 2011 10:37:59 AM

CoNOOUThWwWN =

#include "frpd.h"
#include "frp_debug.h"

int

frp_send_packet (u_char* buf, int size, struct sockaddr_in *to)
{ int ret, send_sock;
struct sockaddr_in sin;
send_sock = frp->sock;
sin.sin_port = htons (FRP_PORT_DEFAULT);
sin.sin_addr.s_addr = htonl (0);

if (IS_FRP_DEBUG_PACKET)

{
#define ADDRESS_SIZE 20
char dst[ADDRESS_SIZE];
dst[ADDRESS_SIZE - 1] ="\0";
if (to)
{ strncpy (dst, inet_ntoa(to->sin_addr), ADDRESS_SIZE - 1);

}
#undef ADDRESS_SIZE

zlog_debug("frp_send_packet %s", dst);
}

memset (&sin, 0, sizeof (struct sockaddr_in));
sin.sin_family = AF_INET;
#ifdef HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
sin.sin_len = sizeof (struct sockaddr_in);
#endif

if (to)
{ sin.sin_port = to->sin_port;
#ifdef DEB_DEBUG

zlog_debug ("DEB DEBUG: -- frp_send_packet, port = %d", ntohs (sin.sin_port));

#endif
sin.sin_addr = to->sin_addr;
send_sock = frp->sock;
}
ret = sendto (send_sock, buf, size, 0, (struct sockaddr *)&sin,
sizeof (struct sockaddr_in));
if (IS_FRP_DEBUG_EVENT)

zlog_debug ("SEND to %s.%d", inet_ntoa(sin.sin_addr), ntohs (sin.sin_port));

if (ret <0)

zlog_warn ("can't send packet : %s", safe_strerror (errno));
if (to)
close(send_sock);

Page 1 of 10 frp_packet.c Page 2 of 10
Printed: Friday, 18 March 2011 10:37:59 AM
62 return ret;
63}
64
65 | struct frp_pkt_hdr
66 | make_frp_pkt_hdr (struct in_addr local, struct frp_peer* peer, int flag, int len, u_char* buf)
67| { struct frp_pkt_hdr pkt_hdr;
68 u_int8_t* hash;
69 u_int32_t seq_no;
70 u_int32_t ack_no;
71 #ifdef DEB_DEBUG
72 zlog_debug ("DEB DEBUG: entering frp_packet.c - make_frp_pkt_hdr - flag=%d", flag);
73 #endif
74
75 #ifdef DEB_DEBUG_PEER
76 zlog_debug ("DEB DEBUG: -- make_frp_pkt_hdr - peer->Iseq=%u, peer->rseq=%u,", peer->Iseq, peer->rseq);
77 #endif
78 seq_no = peer->lseq + 1;
79 pkt_hdr.sendSeq = htonl(seg_no);
80 peer->Iseq = seq_no;
81 #ifdef DEB_DEBUG_PEER
82 zlog_debug ("DEB DEBUG: -- C - peer->Iseq=%d, peer->rseq=%d,", peer->lseq, peer->rseq);
83 zlog_debug ("DEB DEBUG: -- C - sendSeg=%d", ntohl(pkt_hdr.sendSeq));
84 #endif
85 if (flag)
86 {
87 ack_no = 0;
88 pkt_hdr.recipAck = htonl(ack_no);
89 hash = dohash((u_char*)&pkt_hdr + FRP_HASHSIZE, FRP_PKT_HDRSIZE - FRP_HASHSIZE, frp->secret, local.s_a
90 | peer->address.s_addr);
91
92 memcpy(pkt_hdr.hash, hash, FRP_HASHSIZE);
93 #ifdef DEB_DEBUG_PEER
94 zlog_debug ("DEB DEBUG: -- make_frp_pkt_hdr - packet len: %d", len);
95 zlog_debug ("DEB DEBUG: -- make_frp_pkt_hdr - packet length: %d", FRP_PKT_HDRSIZE - FRP_HASHSIZE);
96 zlog_debug ("DEB DEBUG: -- B - peer->lseq=%d, peer->rseq=%d,", peer->lseq, peer->rseq);
97 zlog_debug ("DEB DEBUG: -- B - sendSeq=%d, recipAck=%d", ntohl(pkt_hdr.sendSeq), ntohl(pkt_hdr.recipAcl
98 #endif
99 #ifdef DEB_DEBUG
100 zlog_debug ("DEB DEBUG: -- make_frp_pkt_hdr - SYN from: %s secret: %s", inet_ntoa (local), frp->secret);
101 zlog_debug ("DEB DEBUG: -- make_frp_pkt_hdr - SYN to: %s secret: %s", inet_ntoa (peer->address),
102 | frp->secret);
103 zlog_debug ("DEB DEBUG: -- make_frp_pkt_hdr - SYN sendSeq=%d, recipAck=%d", ntohl(pkt_hdr.sendSeq),
104 | ntohl(pkt_hdr.recipAck));
105 #endif
106 } else
107 {
108 ack_no = peer->rseq;
109 pkt_hdr.recipAck = htonl(ack_no);
110 if (buf = NULL)
111 { memcpy(buf, &pkt_hdr, FRP_PKT_HDRSIZE);
112 hash = dohash(buf + FRP_HASHSIZE, len - FRP_HASHSIZE, frp->secret, local.s_addr, peer->address.s_addr);
113 } else
114 { hash = dohash((u_char*)&pkt_hdr + FRP_HASHSIZE, FRP_PKT_HDRSIZE - FRP_HASHSIZE, frp->secret,
115 | local.s_addr, peer->address.s_addr);
116 }
117 memcpy(pkt_hdr.hash, hash, FRP_HASHSIZE);
118 #ifdef DEB_DEBUG
119 zlog_debug ("DEB DEBUG: -- make_frp_pkt_hdr - ACK from: %s secret: %s", inet_ntoa (local), frp->secret)
120 zlog_debug ("DEB DEBUG: -- make_frp_pkt_hdr - ACK to: %s secret: %s", inet_ntoa (peer->address),
121 | frp->secret);
122 zlog_debug ("DEB DEBUG: -- make_frp_pkt_hdr - ACK sendSeq=%d, recipAck=%d", ntohl(pkt_hdr.sendSeq),

frp_packet.c
Printed: Friday, 18 March 2011 10:37:59 AM

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

ntohl(pkt_hdr.recipAck));
#endif
#ifdef DEB_DEBUG_PEER

zlog_debug ("DEB DEBUG: -- D - peer->Iseq=%d, peer->rseq=%d,", peer->lseq, peer->rseq);
zlog_debug ("DEB DEBUG: -- D - sendSeq=%d, recipAck=%d", ntohl(pkt_hdr.sendSeq), ntohl(pkt_hdr.recipAcl

#endif

return pkt_hdr;
}

struct frp_msg_hdr
make_frp_msg_hdr (int type)
{ struct frp_msg_hdr msg_hdr;
memset (&msg_hdr, 0, sizeof (msg_hdr));

switch (type)
{ case FRP_MSG_CONTROL:
msg_hdr.length = FRP_MSG_CONTROL_SIZE;
break;
case FRP_MSG_IPV4CONFIG:
msg_hdr.length = FRP_MSG_IPV4CONFIG_SIZE;
break;
case FRP_MSG_IPV4GATEWAY:
msg_hdr.length = FRP_MSG_IPV4GATEWAY_MINSIZE;
break;
case FRP_MSG_IPV4UPDATE:
msg_hdr.length = FRP_MSG_IPV4UPDATE_SIZE;
break;
default:
break;

t

msg_hdr.type = type;
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: -- make_frp_msg_hdr - type=0x%x", msg_hdr.type);
#endif
return msg_hdr;

struct frp_msg_control
make_frp_msg_control (int type)
{ struct frp_msg_control msg;
msg.msg_hdr = make_frp_msg_hdr (FRP_MSG_CONTROL);
msg.type = type;
msg.param = 0;
return msg;

}

struct frp_msg_ipv4config
make_frp_msg_ipv4config (struct in_addr peer)
{ struct frp_msg_ipv4config msg;
msg.msg_hdr = make_frp_msg_hdr (FRP_MSG_IPV4CONFIG);
msg.cost = htons(frp->cost);
msg.poll = htons(frp->poll);
msg.retry = htons(frp->retry);
msg.id = frp_get_interface_address (peer);
#ifdef DEB_DEBUG_PEER

zlog_debug ("DEB DEBUG: -- make_frp_msg_ipv4config - cost=%d, poll=%d, retry=%d,

ntohs(msg.poll), ntohs(msg.retry), inet_ntoa (peer));
#endif

id=%s", ntohs(msg.co

frp_packet.c
Printed: Friday, 18 March 2011 10:37:59 AM

Page 4 of 10

184
185
186
187
188
189
190
191

192
193
194
195
196
197

return msg;

}

int

make_frp_msg_ipv4gateway (struct in_addr peer, struct frp_msg_ipv4gateway* msg)

{ msg->msg_hdr = make_frp_msg_hdr (FRP_MSG_IPV4GATEWAY);
switch (frp->is_gateway_flag)
{
case FRP_GATEWAY_ALWAYS:
case FRP_GATEWAY_YES:
msg->cost = 0;
msg->path[0] = frp_get_interface_address (peer);
return FRP_MSG_IPV4GATEWAY _MINSIZE;
break;

case FRP_GATEWAY_NO:

if(frp->gateway_cost == 0)

{ msg->cost = htons(FRP_INFINITY);
msg->path[0].s_addr = O;
return FRP_MSG_IPV4GATEWAY _MINSIZE;

} else

{ msg->cost = htons(frp->gateway_cost);
struct listnode *node;
struct in_addr *path_step_addr;
msg->path[0] = frp_get_interface_address (peer);
inti=1;
for (ALL_LIST_ELEMENTS_RO (frp->gateway_path, node, path_step_addr))
{ msg->pathl[i] = *path_step_addr;

i++;

}

return FRP_MSG_IPVAGATEWAY_MINSIZE + ((i - 1) * sizeof (struct in_addr));

}

break;
default:

break;

}
return FRP_MSG_IPV4GATEWAY_MINSIZE;
}

int
make_frp_msg_ipv4update (struct frp_peer* peer, int available_length, u_char* buf)
{
int counter = 0;
int length = 0;
struct route_node* rn;
struct frp_info* route_info;
struct frp_peer* nexthop;
struct frp_msg_ipv4update msg;
msg.flags = 0;
msg.length = 0;
msg.routecost = 0;
msg.gatecost = 0;
struct in_addr nullPrefix;
nullPrefix.s_addr = 0;
msg.prefix = nullPrefix;

for (rn = route_top (frp->rib); rn; rn = route_next (rn))
{
if (rn->info)

{

frp_packet.c Page 5 of 10 frp_packet.c Page 6 of 10

Printed: Friday, 18 March 2011 10:37:59 AM Printed: Friday, 18 March 2011 10:37:59 AM

245 route_info = (struct frp_info*)(rn->info); 306 #ifdef DEB_DEBUG

246 307 zlog_debug ("DEB DEBUG: -- make_frp_msg_ipv4update %s/%d", inet_ntoa (rn->p.u.prefix4), rn->p.prefi
247 if (peer->address.s_addr != route_info->nexthop.s_addr) 308 #endif

248 { 309 if (counter == 0)

249 310 {

250 nexthop = frp_peer_lookup (&route_info->nexthop); 311

251 if (nexthop != NULL) 312 msg.msg_hdr = make_frp_msg_hdr (FRP_MSG_IPV4UPDATE);
252 { 313 msg.flags = FRP_FLAG_BEGIN;

253 314 msg.length = htons(rn->p.prefixlen);

254 if ((route_info->cost + nexthop->cost) < (nexthop->gateway_cost + peer->gateway_cost + 315 msg.routecost = 0;

255 | route_info->is_gateway_flag)) 316 msg.gatecost = htons(frp->gateway_cost);

256 { 317 msg.prefix = rn->p.u.prefix4;

257 if (counter == 0) 318

258 { 319 counter++;

259 320 } else

260 msg.msg_hdr = make_frp_msg_hdr (FRP_MSG_IPV4UPDATE); 321 {

261 if (route_info->is_gateway_flag) 322

262 { msg.flags = FRP_FLAG_BEGIN + FRP_FLAG_GATEWAY; 323 if ((length + FRP_MSG_IPV4UPDATE_SIZE) <= available_length)
263 } else 324 { memcpy(buf + length, &msg, FRP_MSG_IPV4UPDATE_SIZE);
264 { msg.flags = FRP_FLAG_BEGIN; 325 length += FRP_MSG_IPV4UPDATE_SIZE;

265 } 326

266 msg.length = htons(rn->p.prefixlen); 327 msg.msg_hdr = make_frp_msg_hdr (FRP_MSG_IPV4UPDATE);
267 328 msg.flags = 0;

268 msg.routecost = htons(route_info->cost + nexthop->cost); 329 msg.length = htons(rn->p.prefixlen);

269 msg.gatecost = htons(nexthop->gateway_cost); 330 msg.routecost = 0;

270 msg.prefix = rn->p.u.prefix4; 331 msg.gatecost = htons(frp->gateway_cost);

271 332 msg.prefix = rn->p.u.prefix4;

272 counter++; 333

273 } else 334 counter++;

274 { 335 }

275 336 }

276 if ((length + FRP_MSG_IPV4UPDATE_SIZE) <= available_length) 337 }

277 { memcpy(buf + length, &msg, FRP_MSG_IPV4UPDATE_SIZE); 338 }

278 length += FRP_MSG_IPV4UPDATE_SIZE; 339

279 340

280 msg.msg_hdr = make_frp_msg_hdr (FRP_MSG_IPV4UPDATE); 341

281 if (route_info->is_gateway_flag) 342 if (counter >0)

282 { msg.flags = FRP_FLAG_GATEWAY; 343 {

283 } else 344

284 { msg.flags = O; 345 msg.flags += FRP_FLAG_COMMIT;

285 } 346 } else

286 msg.length = htons(rn->p.prefixlen); 347 {

287 msg.routecost = htons(route_info->cost + nexthop->cost); 348

288 msg.gatecost = htons(nexthop->gateway_cost); 349 #ifdef DEB_DEBUG

289 msg.prefix = rn->p.u.prefix4; 350 zlog_debug ("DEB DEBUG: -- make_frp_msg_ipv4update, sending nullrt to this peer");
290 351 #endif

291 counter++; 352 msg.msg_hdr = make_frp_msg_hdr (FRP_MSG_IPV4UPDATE);

292 } 353 msg.flags = FRP_FLAG_BEGIN + FRP_FLAG_COMMIT + FRP_FLAG_NULLRT;
293 } 354 }

294 } 355

295 } else 356 if ((length + FRP_MSG_IPV4UPDATE_SIZE) <= available_length)

296 { 357 { memcpy(buf + length, &msg, FRP_MSG_IPV4UPDATE_SIZE);

297 358 length += FRP_MSG_IPV4UPDATE_SIZE;

298 } 359 }

299 } 360 return length;

300 } 361 |}

301 } 362

302 363

303 for (r = route_top (frp_enable_network); rn; rn = route_next (rn)) 364

304 { if (r->info) 365 | int

305 { 366 | build_syn_pkt (struct frp_peer* peer)

frp_packet.c Page 7 of 10
Printed: Friday, 18 March 2011 10:37:59 AM

367 | {

368 struct prefix* local_p;

369 struct in_addr local_a;

370 int sent;

371 local_p = find_local_address_for_peer(peer->address);

372 if (local_p != NULL)

373 { int local_p_test = inet_pton (AF_INET, inet_ntoa (local_p->u.prefix4), &local_a);

374 } else

375 {

376 #ifdef DEB_DEBUG

377 zlog_debug ("DEB DEBUG: -- build_syn_pkt, failed to get local interface address");
378 #endif

379 return 0;

380 }

381

382 struct frp_pkt_hdr syn_pkt;

383 syn_pkt = make_frp_pkt_hdr (local_a, peer, FRP_SYN, FRP_PKT_HDRSIZE, NULL);

384

385 struct sockaddr_in socket;

386 socket.sin_family = AF_INET;

387 socket.sin_port = htons(FRP_PORT_DEFAULT);

388 socket.sin_addr = peer-> address;

389 #ifdef DEB_DEBUG

390 zlog_debug ("DEB DEBUG: -- build_syn_pkt - SYN=%u (0x%x), ACK=%u (0x%x), addr=%s, port=%u",

391 | ntohl(syn_pkt.sendSeq), ntohl(syn_pkt.sendSeq), syn_pkt.recipAck, syn_pkt.recipAck, inet_ntoa(socket.sin_addr),

392 | ntohs(socket.sin_port));
393 #endif

395 sent = frp_send_packet ((u_char*)&syn_pkt, FRP_PKT_HDRSIZE, &socket);
396 if (sent)
397 { memcpy (peer->packet_latest, (u_char*)&syn_pkt, FRP_PKT_HDRSIZE);

398 peer->packet_latest_length = FRP_PKT_HDRSIZE;

399 peer->packet_latest_Iseq = ntohl(syn_pkt.sendSeq);

400 peer->flag_awaiting_ack = ON;

401 #ifdef DEB_DEBUG_PKT

402 zlog_debug ("DEB DEBUG: -- build_syn_pkt - packet_latest_lseq=%d", peer->packet_latest_Iseq);
403 #endif

404 } else

405 { zlog_debug ("packet number %d not sent", syn_pkt.sendSeq);
406 }

407 return sent;

408 |}

409

410

411 |/int

412 | build_ack_pkt (struct frp_peer* peer, struct sockaddr_in* from, struct in_addr local)
413 | { u_char* out_pkt_buf;

414 int out_pkt_len;

415 int sent;

416 struct frp_pkt_hdr out_pkt_hdr;

417 struct frp_msg_control out_pkt;

418

419 out_pkt_len = FRP_PKT_HDRSIZE + FRP_MSG_CONTROL_SIZE;

420 out_pkt_buf = XCALLOC (MTYPE_FRP, out_pkt_len);

421 out_pkt = make_frp_msg_control (FRP_CTRL_ACK);

422 memcpy(out_pkt_buf + FRP_PKT_HDRSIZE, &out_pkt, FRP_MSG_CONTROL_SIZE);

424 out_pkt_hdr = make_frp_pkt_hdr (local, peer, FRP_ACK, out_pkt_len, out_pkt_buf);
425 memcpy(out_pkt_buf, &out_pkt_hdr, FRP_PKT_HDRSIZE);

426 #ifdef DEB_DEBUG_PEER

427 zlog_debug ("DEB DEBUG: -- 7 - out_pkt_hdr size =%d", sizeof(out_pkt_hdr));

frp_packet.c Page 8 of
Printed: Friday, 18 March 2011 10:37:59 AM

428 zlog_debug ("DEB DEBUG: -- 7 - out_pkt_hdr sendSeq=%d", ntohl(out_pkt_hdr.sendSeq));
429 zlog_debug ("DEB DEBUG: -- 7 - out_pkt_hdr recipAck=%d", ntohl(out_pkt_hdr.recipAck));
430 zlog_debug ("DEB DEBUG: -- 7 - out_pkt_hdr length=%d, type=0x%x, type=%d, param=%d",
431 | out_pkt.msg_hdr.length, out_pkt.msg_hdr.type, out_pkt.type, out_pkt.param);

432 #endif

433

434 sent = frp_send_packet (out_pkt_buf, out_pkt_len, from);

435 if (sent)

436 { memcpy (peer->packet_latest, (u_char*)out_pkt_buf, out_pkt_len);

437 peer->packet_latest_length = out_pkt_len;

438 peer->packet_latest_Iseq = ntohl(out_pkt_hdr.sendSeq);

439 peer->flag_awaiting_ack = ON;

440 #ifdef DEB_DEBUG_PKT

441 zlog_debug ("DEB DEBUG: -- build_ack_pkt - packet_latest_lseq=%d", peer->packet_latest_Iseq);
442 #endif

443 } else

444 { zlog_debug ("packet number %d not sent", out_pkt_hdr.sendSeq);

445 }

446 return sent;

447 |}

448

449

450 | int

451 | build_nak_pkt (struct frp_peer* peer, struct sockaddr_in* from, struct in_addr local)
452 |{ u_char* out_pkt_buf;

453 int out_pkt_len;

454 int sent;

455 struct frp_pkt_hdr out_pkt_hdr;

456 struct frp_msg_control out_pkt;

457

458 out_pkt_len = FRP_PKT_HDRSIZE + FRP_MSG_CONTROL_SIZE;

459 out_pkt_buf = XCALLOC (MTYPE_FRP, out_pkt_len);

460 out_pkt = make_frp_msg_control (FRP_CTRL_NAK);

461 memcpy(out_pkt_buf + FRP_PKT_HDRSIZE, &out_pkt, FRP_MSG_CONTROL_SIZE);

462

463 out_pkt_hdr = make_frp_pkt_hdr (local, peer, FRP_ACK, out_pkt_len, out_pkt_buf);
464 memcpy (out_pkt_buf, &out_pkt_hdr, FRP_PKT_HDRSIZE);

465

466 sent = frp_send_packet (out_pkt_buf, out_pkt_len, from);

467 if (sent)

468 { memcpy (peer->packet_latest, (u_char*)out_pkt_buf, out_pkt_len);

469 peer->packet_latest_length = out_pkt_len;

470 peer->packet_latest_Iseq = ntohl(out_pkt_hdr.sendSeq);

471 peer->flag_awaiting_ack = ON;

472 #ifdef DEB_DEBUG_PKT

473 zlog_debug ("DEB DEBUG: -- build_nak_pkt - packet_latest_lseq=%d", peer->packet_latest_Iseq);
474 #endif

475 } else

476 { zlog_debug ("packet number %d not sent", out_pkt_hdr.sendSeq);

477 1}

478 return sent;

479 |}

480

481

482 | int

483 | build_batch_pkt (struct frp_peer* peer, struct sockaddr_in* from, struct in_addr local)
484 | {

485 #ifdef DEB_DEBUG

486 zlog_debug ("DEB DEBUG: entering frp_packet.c - build_batch_pkt");

487 #endif

488

frp_packet.c Page 9 of 10
Printed: Friday, 18 March 2011 10:37:59 AM

489 u_char* out_pkt_buf;

490 int out_pkt_len;

491 enum flag localflag;

492 int sent;

493 struct frp_pkt_hdr out_pkt_hdr;

494 struct frp_msg_control out_pkt_ctrl;

495 struct frp_msg_ipv4config out_pkt_conf;

496 struct frp_msg_ipv4gateway out_pkt_gate;

497

498 localflag = OFF;

499 out_pkt_buf = XCALLOC (MTYPE_FRP, FRP_PKT_MAXSIZE);

500 out_pkt_len = FRP_PKT_HDRSIZE;

501

502 if ((peer->flag_send_poll) && ((out_pkt_len + FRP_MSG_CONTROL_SIZE) <FRP_PKT_MAXSIZE))
503 { out_pkt_ctrl = make_frp_msg_control (FRP_CTRL_POLL);

504 memcpy(out_pkt_buf + out_pkt_len, &out_pkt_ctrl, FRP_MSG_CONTROL_SIZE);

505 out_pkt_len += FRP_MSG_CONTROL_SIZE;

506 localflag = ON;

507 }

508

509 if ((peer->flag_send_config) && ((out_pkt_len + FRP_MSG_IPV4CONFIG_SIZE) < FRP_PKT_MAXSIZE))
510 { out_pkt_conf = make_frp_msg_ipv4config (peer->address);

511 memcpy(out_pkt_buf + out_pkt_len, &out_pkt_conf, FRP_MSG_IPV4CONFIG_SIZE);

512 out_pkt_len += FRP_MSG_IPV4CONFIG_SIZE;

513 localflag = ON;

514 }

515

516 if (peer->flag_send_gateway)

517 { struct frp_msg_ipv4gateway out_pkt_gate;

518 int out_pkt_gate_length;

519 out_pkt_gate_length = make_frp_msg_ipv4gateway (peer->address, &out_pkt_gate);

520 if ((out_pkt_len + out_pkt_gate_length) < FRP_PKT_MAXSIZE)

521 { memcpy(out_pkt_buf + out_pkt_len, &out_pkt_gate, out_pkt_gate_length);

522 out_pkt_len += out_pkt_gate_length;

523 localflag = ON;

524 }

525 }

526

527 if (frp->is_gateway_flag == ON)

528 {

529 if ((peer->flag_send_update) && ((out_pkt_len + FRP_MSG_IPV4UPDATE_SIZE) < FRP_PKT_MAXSIZE))
530 { int available_length = 0;

531 int used_length = 0;

532

533 available_length = FRP_PKT_MAXSIZE - out_pkt_len;

534

535 used_length = make_frp_msg_ipv4update (peer, available_length, out_pkt_buf + out_pkt_len);
536 out_pkt_len += used_length;

537 localflag = ON;

538 }

539 }

540

541 if (localflag == ON)

542 {

543 out_pkt_hdr = make_frp_pkt_hdr (local, peer, FRP_ACK, out_pkt_len, out_pkt_buf);

544 #ifdef DEB_DEBUG_PEER

545 zlog_debug ("DEB DEBUG: -- 7 - out_pkt_hdr.sendSeq=%d", ntohl(out_pkt_hdr.sendSeq));
546 zlog_debug ("DEB DEBUG: -- 7 - out_pkt_hdr.recipAck=%d", ntohl(out_pkt_hdr.recipAck));
547 zlog_debug ("DEB DEBUG: -- 7 - out_pkt_hdr size =%d", sizeof(out_pkt_hdr));

548 #endif

549 memcpy(out_pkt_buf, &out_pkt_hdr, FRP_PKT_HDRSIZE);

frp_packet.c
Printed: Friday,

Page 10 of

18 March 2011 10:37:59 AM

}

#ifdef DEB_DEBUG_PEER
zlog_debug ("DEB DEBUG: -- 6 - out_pkt_len=%d", out_pkt_len);
struct frp_pkt_hdr* test_hdr = (struct frp_pkt_hdr*)out_pkt_buf;
zlog_debug ("DEB DEBUG: -- 6 - out_pkt_buf.sendSeq=%d", ntohl(test_hdr->sendSeq));
zlog_debug ("DEB DEBUG: -- 6 - out_pkt_buf.recipAck=%d", ntohl(test_hdr->recipAck));
#endif
sent = frp_send_packet (out_pkt_buf, out_pkt_len, from);

if (sent)

{ peer->flag_send_poll = OFF;
peer->flag_send_config = OFF;
peer->flag_send_gateway = OFF;
peer->flag_send_update = OFF;
memcpy (peer->packet_latest, (u_char*)out_pkt_buf, out_pkt_len);
peer->packet_latest_length = out_pkt_len;
peer->packet_latest_lseq = ntohl(out_pkt_hdr.sendSeq);
peer->flag_awaiting_ack = ON;
#ifdef DEB_DEBUG_PKT

zlog_debug ("DEB DEBUG:

#endif

} else

{ zlog_debug ("packet number %d not sent", out_pkt_hdr.sendSeq);

}

} else

{

-- build_batch_pkt - packet_latest_lseq=%d", peer->packet_latest_lseq);

if (peer->flag_awaiting_ack == ON)
{
#ifdef DEB_DEBUG_PKT
zlog_debug ("DEB DEBUG:
#endif
sent = build_ack_pkt (peer, from, local);
peer->flag_awaiting_ack = OFF;

}

-- build_batch_pkt - IF peer->flag_awaiting_ack == ON");

}

return sent;

frp_route.c
Printed: Friday, 18 March 2011 10:37:07 AM

Page 1 of 4

CoNOOUThWwWN =

#include "frpd.h"

void
frp_recompute_rib (struct frp_peer* peer)

#ifdef DEB_DEBUG

zlog_debug ("DEB DEBUG: entering route.c - frp_recompute_rib");
#endif
int flag = 0;

struct listnode* node;
struct frp_rte* rte;
struct interface* peer_if = if_lookup_address (peer->address);
for (ALL_LIST_ELEMENTS_RO (peer->rib, node, rte))
{
struct route_node* rib_rte_ptr;
rib_rte_ptr = route_node_get(frp->rib, (struct prefix*)&rte->prefix);

if (rib_rte_ptr->info != NULL)
{

struct frp_info* rte_info = (struct frp_info*)rib_rte_ptr->info;
u_int32_t old_cost = rte_info->cost;

u_int32_t new_cost = rte->routecost + peer->cost;

if (new_cost < old_cost)

{
frp_zebra_ipv4_delete ((struct prefix_ipv4*)&rte->prefix,

struct frp_info new_route_info;
new_route_info.nexthop = peer->address;
new_route_info.cost = new_cost;
new_route_info.rte_node = rib_rte_ptr;
new_route_info.type = ZEBRA_ROUTE_FRP;
new_route_info.sub_type = FRP_ROUTE_RTE;
new_route_info.ifindex = peer_if->ifindex;

memcpy (rte_info, &new_route_info, sizeof(struct frp_info));

frp_zebra_ipv4_add ((struct prefix_ipv4*)&rte->prefix,
ZEBRA_FRP_DISTANCE_DEFAULT);

&peer->address, new_cost,

flag = 1;
}

} else

&rte_info->nexthop, old_cost);

frp_route.c
Printed: Friday, 18 March 2011 10:37:07 AM

Page 2 of

62
63
64
65
66
67
68
69
70

u_int32_t new_cost = rte->routecost + peer->cost;

struct frp_info new_route_info;
new_route_info.nexthop = peer->address;
new_route_info.cost = new_cost;
new_route_info.rte_node = rib_rte_ptr;
new_route_info.type = ZEBRA_ROUTE_FRP;
new_route_info.sub_type = FRP_ROUTE_RTE;
new_route_info.ifindex = peer_if->ifindex;

struct frp_info* rte_info = XCALLOC (MTYPE_FRP, sizeof (struct frp_info));
memcpy (rte_info, &new_route_info, sizeof(struct frp_info));
rib_rte_ptr->info = rte_info;

frp_zebra_ipv4_add ((struct prefix_ipv4*)&rte->prefix,
ZEBRA_FRP_DISTANCE_DEFAULT);

&peer->address, new_cost,

flag = 1;
}

}
if (flag)
{

}
}

void
frp_delete_peer_from_rib (struct frp_peer* deleted_peer)
{
#ifdef DEB_DEBUG
zlog_debug ("DEB DEBUG: entering route.c - frp_delete_peer_from_rib");
#endif
struct route_node* rib_rte_ptr;
for (rib_rte_ptr = route_top (frp->rib); rib_rte_ptr; rib_rte_ptr =route_next (rib_rte_ptr))

{

struct frp_info* rte_info = (struct frp_info*)rib_rte_ptr->info;

if ((rte_info != NULL) && (rte_info->nexthop.s_addr == deleted_peer->address.s_addr))
{

int flag = O;

struct prefix_ipv4 deleted_dest;

memset (&deleted_dest, O, sizeof (struct prefix_ipv4));

deleted_dest.family = AF_INET;

deleted_dest.prefix = rib_rte_ptr->p.u.prefix4;

deleted_dest.prefixlen = IPV4_MAX_BITLEN;

frp_zebra_ipv4_delete (&deleted_dest, &rte_info->nexthop, rte_info->cost);

XFREE (MTYPE_FRP, rte_info);
rib_rte_ptr->info = NULL;

struct listnode* nodel;
struct frp_peer* list_peer;

frp_route.c
Printed: Friday,

18 March 2011 10:37:07 AM

Page 3 of 4

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

struct route_node* new_route_node = NULL;

for (ALL_LIST_ELEMENTS_RO (frp_peers, nodel, list_peer))

{

if (list_peer->address.s_addr != deleted_peer->address.s_addr)

{

struct listnode* node2;
struct frp_rte* rte;

for (ALL_LIST_ELEMENTS_RO (list_peer->rib, node2, rte))

{

if (prefix_same (&rte->prefix, &deleted_dest))

{

struct route_node* new_rte_ptr;
new_rte_ptr = route_node_get(frp->rib, (struct prefix*)&rte->prefix);
new_route_node = new_rte_ptr;

if (new_rte_ptr->info == NULL)

{

struct frp_info new_route_info;

struct interface* peer_if = if_lookup_address (list_peer->address);
new_route_info.nexthop = list_peer->address;

new_route_info.cost = rte->routecost;

new_route_info.is_gateway_flag = (rte->flags & FRP_FLAG_GATEWAY);
new_route_info.rte_node = new_rte_ptr;

new_route_info.type = ZEBRA_ROUTE_FRP;

new_route_info.sub_type = FRP_ROUTE_RTE;

new_route_info.ifindex = peer_if->ifindex;

struct frp_info* rte_info = XCALLOC (MTYPE_FRP, sizeof (struct frp_info));
memcpy (rte_info, &new_route_info, sizeof(struct frp_info));
new_rte_ptr->info = rte_info;

flag = 1;

} else

{

}

struct frp_info* rte_info = (struct frp_info*)new_rte_ptr->info;
u_int32_t old_cost = rte_info->cost;

u_int32_t new_cost = rte->routecost + list_peer->cost;

if (new_cost < old_cost)

{

struct frp_info new_route_info;
struct interface* peer_if = if_lookup_address (list_peer->address);
new_route_info.nexthop = list_peer->address;
new_route_info.cost = rte->routecost;
new_route_info.is_gateway_flag = (rte->flags & FRP_FLAG_GATEWAY);
new_route_info.rte_node = new_rte_ptr;
new_route_info.type = ZEBRA_ROUTE_FRP;
new_route_info.sub_type = FRP_ROUTE_RTE;
new_route_info.ifindex = peer_if->ifindex;
memcpy (rte_info, &new_route_info, sizeof(struct frp_info));
flag = 1;

}

route_unlock_node (new_rte_ptr);

frp_route.c

Page 4 of 4

Printed: Friday, 18 March 2011 10:37:07 AM

184
185
186
187
188
189
190
191

192
193
194
195
196
197

}
}
}

}
if ((flag)&&(new_route_node != NULL))
{ struct frp_info* rte_info = (struct frp_info*)new_route_node->info;

frp_zebra_ipv4_add (&deleted_dest, &rte_info->nexthop, rte_info->cost, ZEBRA_FRP_DISTANCE_DEFAUL1
flag = 0;
}

frp_zebra.c
Printed: Friday, 18 March 2011 10:36:50 AM

Page 1 of 3

CoNOOUThWwWN =

#include "frpd.h"

struct zclient *zclient = NULL;

static int frp_zebra_read_ipv4 (int command, struct zclient *zclient, zebra_size_t length);

int (*interface_add) (int, struct zclient *, uint16_t);

int (*interface_delete) (int, struct zclient *, uint16_t);

int (*interface_up) (int, struct zclient *, uint16_t);

int (*interface_down) (int, struct zclient *, uint16_t);

int (*interface_address_add) (int, struct zclient *, uint16_t);
int (*interface_address_delete) (int, struct zclient *, uint16_t);
int (*ipv4_route_add) (int, struct zclient *, uint16_t);

int (*ipv4_route_delete) (int, struct zclient *, uint16_t);

int
frp_zebra_read_ipv4 (int command, struct zclient *zclient, zebra_size_t length)
{ struct stream *s;

struct zapi_ipv4 api;

unsigned long ifindex;

struct in_addr nexthop;

struct prefix_ipv4 p;

#ifdef DEB_DEBUG

zlog_debug ("DEB DEBUG: entering frp_interface.c - frp_zebra_read_ipv4");

#endif

s = zclient->ibuf;

ifindex = 0;

nexthop.s_addr = 0;

api.type = stream_getc (s);
api.flags = stream_getc (s);
api.message = stream_getc (s);

memset (&p, O, sizeof (struct prefix_ipv4));
p.family = AF_INET;

p.prefixlen = stream_getc (s);

stream_get (&p.prefix, s, PSIZE (p.prefixlen));

frp_zebra.c

Printed: Friday, 18 March 2011 10:36:50 AM

62
63
64
65
66
67
68
69
70

if (CHECK_FLAG (api.message, ZAPI_MESSAGE_NEXTHOP))
{ api.nexthop_num = stream_getc (s);
nexthop.s_addr = stream_get_ipv4 (s);
}
if (CHECK_FLAG (api.message, ZAPI_MESSAGE_IFINDEX))
{ api.ifindex_num = stream_getc (s);
ifindex = stream_getl (s);
}
if (CHECK_FLAG (api.message, ZAPI_MESSAGE_DISTANCE))
{ api.distance = stream_getc (s);
} else
{ api.distance = 255;
}
if (CHECK_FLAG (api.message, ZAPI_MESSAGE_METRIC))
{ api.metric = stream_getl (s);
} else
{ api.metric =0;
}
return 0;
}
void
frp_zebra_ipv4_add (struct prefix_ipv4 *p, struct in_addr *nexthop, u_int32_t metric, u_char distance)

{ struct zapi_ipv4 api;
if (zclient->redist[ZEBRA_ROUTE_FRP])

{ api.type = ZEBRA_ROUTE_FRP;
api.flags = 0;
api.message = 0;
SET_FLAG (api.message, ZAPI_MESSAGE_NEXTHOP);
api.nexthop_num = 1;
api.nexthop = &nexthop;
api.ifindex_num = 0;
SET_FLAG (api.message, ZAPI_MESSAGE_METRIC);
api.metric = metric;
if (distance && distance != ZEBRA_FRP_DISTANCE_DEFAULT)
{ SET_FLAG (api.message, ZAPI_MESSAGE_DISTANCE);
api.distance = distance;
}
zapi_ipv4_route (ZEBRA_IPV4_ROUTE_ADD, zclient, p, &api);
}
}
void
frp_zebra_ipv4_delete (struct prefix_ipv4 *p, struct in_addr *nexthop, u_int32_t metric)

{ struct zapi_ipv4 api;

if (zclient->redist[ZEBRA_ROUTE_FRP])

{ api.type = ZEBRA_ROUTE_FRP;
api.flags = 0;
api.message = 0;
SET_FLAG (api.message, ZAPI_MESSAGE_NEXTHOP);
api.nexthop_num = 1;
api.nexthop = &nexthop;

Page 2 of 3

frp_zebra.c Page 3 of 3
Printed: Friday, 18 March 2011 10:36:50 AM

123 api.ifindex_num = 0;

124 SET_FLAG (api.message, ZAPI_MESSAGE_METRIC);

125 api.metric = metric;

126 zapi_ipv4_route (ZEBRA_IPV4_ROUTE_DELETE, zclient, p, &api);
127 }

128}

129
130
131
132
133
134
135
136
137 | void

138 | frp_zclient_init (void)

139 | {

140 #ifdef DEB_DEBUG

141 fprintf (stderr, "DEB DEBUG: entering frp_zebra.c - frp_zclient_init\n");
142 #endif

145 zclient = zclient_new ();
146 zclient_init (zclient, ZEBRA_ROUTE_FRP);

149 zclient->interface_add = frp_interface_add;

150 zclient->interface_delete = frp_interface_delete;

151 zclient->interface_up = frp_interface_up;

152 zclient->interface_down = frp_interface_down;

153 zclient->interface_address_add = frp_interface_address_add;

154 zclient->interface_address_delete = frp_interface_address_delete;
155 zclient->ipv4_route_add = frp_zebra_read_ipv4;

156 zclient->ipv4_route_delete = frp_zebra_read_ipv4;

160 #ifdef DEB_DEBUG
161 fprintf (stderr, "DEB DEBUG: -- leaving frp_zclient_init\n");
162 #endif

frp_interface.c Page 1 of 11 frp_interface.c Page 2 of 11

Printed: Friday, 18 March 2011 10:38:27 AM Printed: Friday, 18 March 2011 10:38:27 AM
1 62 | frp_interface_delete (int command, struct zclient *zclient, zebra_size_t length)
2 63| { struct interface *ifp;
3 64 struct stream *s;
4 || #include "frpd.h" 65 #ifdef DEB_DEBUG_IF
5 | #include "frp_debug.h" 66 zlog_debug ("DEB DEBUG: entering frp_interface.c - frp_interface_delete");
6 67 #endif
7 68 s = zclient->ibuf;
8 69
9 70 ifp = zebra_interface_state_read(s);
10 71 if (ifp == NULL)
1 72 { return O;
12 73 }
13 74 if (if_is_up (ifp))
14 ||struct route_table *frp_enable_network; 75 { frp_if_down(ifp);
15 76 }
16 77 zlog_info("interface delete %s index %d flags %#lIx metric %d mtu %d", ifp->name, ifp->ifindex, (unsigned long lc
17 ||vector frp_enable_interface; 78 | ifp->flags, ifp->metric, ifp->mtu);
18 79
19 80
20 | static void frp_apply_address_del (struct connected *ifc); 81 ifp->ifindex = IFINDEX_INTERNAL;
21 | static void frp_connect_set (struct interface *ifp, int set); 82 return O;
22 | static void frp_enable_apply (struct interface *); 83}
23 | static void frp_enable_apply_all (void); 84
24 | static int frp_enable_if_add (const char *ifname); 85 | int
25 | static int frp_enable_if_lookup (const char *ifname); 86 | frp_interface_up (int command, struct zclient *zclient, zebra_size_t length)
26 | static int frp_enable_network_add (struct prefix *p); 87| { struct interface *ifp;
27 | static int frp_enable_network_lookup_if (struct interface *ifp); 88 #ifdef DEB_DEBUG_IF
28 | static int frp_if_down(struct interface *ifp); 89 zlog_debug ("DEB DEBUG: entering frp_interface.c - frp_interface_up");
29 | static int frp_if_ipv4_address_check (struct interface *ifp); 90 #endif
30 | static struct frp_interface * frp_interface_new (void); 91
31 | static int frp_interface_delete_hook (struct interface *ifp); 92 ifo = zebra_interface_state_read (zclient->ibuf);
32 | static int frp_interface_new_hook (struct interface *ifp); 93 if (ifp == NULL)
33 | static int frp_interface_wakeup (struct thread *t); 94 { return 0;
34 95 }
35 96 if (IS_FRP_DEBUG_ZEBRA)
36 97 { zlog_debug ("interface %s index %d flags %#lIx metric %d mtu %d is up", ifp->name, ifp->ifindex, (unsigned loi
37 98| long) ifp->flags, ifp->metric, ifp->mtu);
38 929 }
39 100
40 101 frp_enable_apply (ifp);
41 102 return O;
42 103}
43 104
44 105 |int
45 |lint 106 | frp_interface_down (int command, struct zclient *zclient, zebra_size_t length)
46 | frp_interface_add (int command, struct zclient *zclient, zebra_size_t length) 107 | { struct interface *ifp;
47| { struct interface *ifp; 108 struct stream *s;
48 #ifdef DEB_DEBUG_IF 109 #ifdef DEB_DEBUG_IF
49 zlog_debug ("DEB DEBUG: entering frp_interface.c - frp_interface_add"); 110 zlog_debug ("DEB DEBUG: entering frp_interface.c - frp_interface_up");
50 #endif 1 #endif
51 ifp = zebra_interface_add_read (zclient->ibuf); 112 s = zclient->ibuf;
52 if (IS_FRP_DEBUG_ZEBRA) 113
53 { zlog_debug ("interface add %s index %d flags %#llx metric %d mtu %d", ifp->name, ifp->ifindex, (unsigned long 114 ifp = zebra_interface_state_read(s);
54 long) ifp->flags, ifp->metric, ifp->mtu); 115 if (ifp == NULL)
55 } 116 { return O;
56 17 }
57 frp_enable_apply (ifp); 118 frp_if _down(ifp);
58 return 0; 119 if (IS_FRP_DEBUG_ZEBRA)
59} 120 { zlog_debug ("interface %s index %d flags %llx metric %d mtu %d is down", ifp->name, ifp->ifindex, (unsigned |
60 121 |long)ifp->flags, ifp->metric, ifp->mtu);
61 int 122 }

frp_interface.c Page 3 of 11
Printed: Friday, 18 March 2011 10:38:27 AM

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

return 0;

}

int
frp_interface_address_add (int command, struct zclient *zclient, zebra_size_t length)
{ struct connected *ifc;
struct prefix *p;
#ifdef DEB_DEBUG_IF
zlog_debug ("DEB DEBUG: entering frp_interface.c - frp_interface_address_add");
#endif
ifc = zebra_interface_address_read (ZEBRA_INTERFACE_ADDRESS_ADD, zclient->ibuf);
if (ifc == NULL)
{ return 0;
}
p = ifc->address;
if (p->family == AF_INET)
{ if (IS_LFRP_DEBUG_ZEBRA)
{ zlog_debug ("connected address %s/%d is added", inet_ntoa (p->u.prefix4), p->prefixlen);

frp_enable_apply(ifc->ifp);
}
return 0;

}

int
frp_interface_address_delete (int command, struct zclient *zclient, zebra_size_t length)
{ struct connected *ifc;
struct prefix *p;
#ifdef DEB_DEBUG_IF
zlog_debug ("DEB DEBUG: entering frp_interface.c - frp_interface_address_delete");
#endif
ifc = zebra_interface_address_read (ZEBRA_INTERFACE_ADDRESS_DELETE, zclient->ibuf);
if (ifc)
{ p=ifc->address;
if (p->family == AF_INET)
{ if (IS_LFRP_DEBUG_ZEBRA)
{ zlog_debug ("connected address %s/%d is deleted", inet_ntoa (p->u.prefix4), p->prefixlen);

}

frp_apply_address_del(ifc);
}
connected_free (ifc);
}

return 0;

struct frp_interface*

frp_interface_new (void)

{ struct frp_interface *ri;
ri = XCALLOC (MTYPE_FRP_INTERFACE, sizeof (struct frp_interface));
return ri;

}

frp_interface.c
Printed: Friday, 18 March 2011 10:38:27 AM

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

int
frp_enable_network_add (struct prefix *p)
{
#ifdef DEB_DEBUG_IF
zlog_debug ("DEB DEBUG: entering frp_interface.c - frp_enable_network_add");
#endif
struct route_node *node;
node = route_node_get (frp_enable_network, p);
#ifdef DEB_DEBUG_IF
zlog_debug ("DEB DEBUG: -- frp_enable_network_add, after node =");
#endif
if (node->info)

#ifdef DEB_DEBUG_IF
zlog_debug ("DEB DEBUG: -- frp_enable_network_add, IF");
#endif
route_unlock_node (node);
return -1;
} else
{
#ifdef DEB_DEBUG_IF
zlog_debug ("DEB DEBUG: -- frp_enable_network_add, ELSE");
#endif
node->info = (char *) "enabled";

struct frp_peer* peer;

struct listnode *node, *nnode;

for (ALL_LIST_ELEMENTS (frp_peers, node, nnode, peer))

{

frp_recompute_rib (peer);

}
}
#ifdef DEB_DEBUG_IF

zlog_debug ("DEB DEBUG:
#endif
frp_enable_apply_all();
#ifdef DEB_DEBUG_IF

zlog_debug ("DEB DEBUG: -- frp_enable_network_add, after frp_enable_apply_all");
#endif

frp_enable_network_add, before frp_enable_apply_all");

#ifdef DEB_DEBUG_IF

zlog_debug ("DEB DEBUG: -- leaving frp_enable_network_add");
#endif
return 1;

int
frp_enable_if_add (const char *ifname)
{ int ret;
ret = frp_enable_if_lookup (ifname);
if (ret >=0)
{ return -1;
}
vector_set (frp_enable_interface, strdup (ifname));
frp_enable_apply_all();
return 1;

void

frp_interface.c
Printed: Friday, 18 March 2011 10:38:27 AM

Page 5 of 11

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291

292
293
294
295
296
297
298
299

frp_enable_apply_all ()
{ struct interface *ifp;
struct listnode *node, *nnode;

for (ALL_LIST_ELEMENTS (iflist, node, nnode, ifp))
{ frp_enable_apply (ifp);
}

}

void
frp_enable_apply (struct interface *ifp)
{ int ret;
struct frp_interface *ri = NULL;
#ifdef DEB_DEBUG_IF
zlog_debug ("DEB DEBUG: entering frp_interface.c - frp_enable_apply");
#endif

if (1if_is_operative (ifp))
{ return;

}

ri = ifp->info;

#ifdef DEB_DEBUG_IF

if (ri == NULL)
zlog_debug ("DEB DEBUG: -- frp_enable_apply - IF ifp->info = null");
else

zlog_debug ("DEB DEBUG: -- frp_enable_apply - ELSE ifp->info = %p", ifp->info);
#endif

ret = frp_enable_network_lookup_if (ifp);
#ifdef DEB_DEBUG_IF

zlog_debug ("DEB DEBUG: -- frp_enable_apply - ret = %d", ret);
#endif

if (ret >0)

{ ri->enable_network =1;
} else

{ ri->enable_network = 0;

}
#ifdef DEB_DEBUG_IF

zlog_debug ("DEB DEBUG: -- frp_enable_apply - ri->enable_network = %d", ri->enable_network);

#endif

ret = frp_enable_if_lookup (ifp->name);
#ifdef DEB_DEBUG_IF
zlog_debug ("DEB DEBUG: -- frp_enable_apply - ret = %d", ret);
#endif
if (ret >=0)
{ ri->enable_interface = 1;
} else
{ ri->enable_interface =0;

}
#ifdef DEB_DEBUG_IF

zlog_debug ("DEB DEBUG: -- frp_enable_apply - ri->enable_interface = %d", ri->enable_interface);

#endif

if (!frp_if_ipv4_address_check (ifp))
{ ri->enable_network = 0;
ri->enable_interface = 0;

}

frp_interface.c Page 6 of 11
Printed: Friday, 18 March 2011 10:38:27 AM

306
307
308
309
310
311

312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331

332
333
334
335
336
337

342

if (ri->enable_network |l ri->enable_interface)
{ if (IS_LFRP_DEBUG_EVENT)
{ zlog_debug ("turn on %s", ifp->name);

b

if (! ri->t_wakeup)
{ ri->t_wakeup = thread_add_timer (master, frp_interface_wakeup, ifp, 1);
frp_connect_set (ifp, 1);
}
} else
{ if (ri->running)
{
frp_if_down(ifp);
frp_connect_set (ifp, 0);
}
}
}

int
frp_enable_if_lookup (const char *ifname)
{ unsigned int i;
char *str;
for (i = 0; i <vector_active (frp_enable_interface); i++)
{ if ((str = vector_slot (frp_enable_interface, i)) != NULL)
{ if (strcmp (str, ifname) == 0)
{ return i;
}
}
}
return -1;

}

int
frp_enable_network_lookup_if (struct interface *ifp)
{ struct listnode *node, *nnode;
struct connected *connected;
struct prefix_ipv4 address;
#ifdef DEB_DEBUG_IF
zlog_debug ("DEB DEBUG: entering frp_interface.c - frp_enable_network_lookup_if");
zlog_debug ("DEB DEBUG: -- frp_enable_network_lookup_if - ifp->connected = %p", ifp->connected);
#endif
if (ifp->connected == NULL)
return -1;
for (ALL_LIST_ELEMENTS (ifp->connected, node, nnode, connected))
{
struct prefix *p;
struct route_node *node;
#ifdef DEB_DEBUG_IF
if (connected == NULL)
zlog_debug ("DEB DEBUG: -- frp_enable_network_lookup_if - IF connected = null");

else
zlog_debug ("DEB DEBUG: -- frp_enable_network_lookup_if - ELSE connected->address = %s",
inet_ntoa(connected->address->u.prefix4));
#endif

p = connected->address;

if (p->family == AF_INET)

{ address.family = AF_INET;
address.prefix = p->u.prefix4;

frp_interface.c
Printed: Friday, 18 March 2011 10:38:27 AM

Page 7 of 11

367 address.prefixlen = IPV4_MAX_BITLEN;
368 node = route_node_match (frp_enable_network, (struct prefix *)&address);
369 if (node)

370 { route_unlock_node (node);

371 return 1;

372 }

373 }

374 }

375 return -1;

376 |}

377

378

379 |int

380 | frp_if_ipv4_address_check (struct interface *ifp)

381 |{ struct listnode *nn;

382 struct connected *connected;

383 int count = 0;

384 if (ifp->connected == NULL)

385 return 0;

386 for (ALL_LIST_ELEMENTS_RO (ifp->connected, nn, connected))
387 { struct prefix *p;

388 p = connected->address;
389 if (p->family == AF_INET)
390 { count++;

391 }

392 }

393 return count;

394 |}

395

396

397 |lint

398 | frp_interface_wakeup (struct thread *t)
399 |{ struct interface *ifp;
400 struct frp_interface *ri;

402 ifp = THREAD_ARG (t);
403 ri = ifp->info;
404 ri->t_wakeup = NULL;

406 ri->running = 1;
407 return 0;
408 |}

410 void

411 | frp_connect_set (struct interface *ifp, int set)

412 | { struct listnode *node, *nnode;

413 struct connected *connected;

414 struct prefix_ipv4 address;

415 for (ALL_LIST_ELEMENTS (ifp->connected, node, nnode, connected))
416 { struct prefix *p;

417 p = connected->address;

418 if (p->family != AF_INET)
419 { continue;

420 }

421 address.family = AF_INET;
422 address.prefix = p->u.prefix4;
423 address.prefixlen = p->prefixlen;
424 apply_mask_ipv4 (&address);
425 }

426 |}

427

frp_interface.c

Printed: Friday, 18 March 2011 10:38:27 AM

Page 8 of

428
429
430
431

432
433
434
435
436
437
438
439
440
441

442
443
444
445
446
447
448

int
frp_if_down(struct interface *ifp)
{ struct route_node *rp;
struct frp_info *rinfo;
struct frp_interface *ri = NULL;
if (frp)
{ for (rp = route_top (frp->rib); rp; rp = route_next (rp))
{ if ((rinfo =rp->info) != NULL)

{
if (rinfo->ifindex == ifp->ifindex && rinfo->type == ZEBRA_ROUTE_FRP && rinfo->sub_type ==
FRP_ROUTE_RTE)
{ frp_zebra_ipv4_delete ((struct prefix_ipv4 *) &rp->p, &rinfo->nexthop, rinfo->cost);
}
}
}
}
ri = ifp->info;
if (ri->running)
{ if (IS_LFRP_DEBUG_EVENT)
zlog_debug ("turn off %s", ifp->name);
ri->running = 0;
}
return O;

}

void

frp_apply_address_del (struct connected *ifc)
struct prefix_ipv4 address;

struct prefix *p;

if (Mfrp)
return;

if (Vif_is_up(ifc->ifp))
return;

p = ifc->address;

memset (&address, 0, sizeof (address));
address.family = p->family;
address.prefix = p->u.prefix4;
address.prefixlen = p->prefixlen;
apply_mask_ipv4(&address);

struct in_addr
frp_get_interface_address (struct in_addr peer)
{ struct prefix* local_p;

struct in_addr local_a;

local_p = find_local_address_for_peer(peer);

if (local_p != NULL)

#ifdef DEB_DEBUG_IF
zlog_debug ("DEB DEBUG: -- frp_get_interface_address - got a valid interface address");
#endif
int local_p_test = inet_pton (AF_INET, inet_ntoa (local_p->u.prefix4), &local_a);
} else

#ifdef DEB_DEBUG_IF
zlog_debug ("DEB DEBUG: -- frp_get_interface_address - failed to get local interface address");

frp_interface.c Page 9 of 11
Printed: Friday, 18 March 2011 10:38:27 AM

489 #endif

490 }

491 return local_a;

492 |}

493

494 | int

495 | frp_neighbor_lookup (struct sockaddr_in* from)

496 | { struct prefix_ipv4 p;

497 struct route_node *node;

498 memset (&p, 0, sizeof (struct prefix_ipv4));

499 p.family = AF_INET;

500 p.prefix = from->sin_addr;

501 p.prefixlen = IPV4_MAX_BITLEN;

502 node = route_node_lookup (frp->neighbors, (struct prefix *) &p);
503 if (node)

504 { route_unlock_node (node);

505 return 1;

506 }

507 return 0;

508 |}

509

510

511

512 | void

513 || frp_config_write_network (struct vty *vty)

514 |{ unsigned int i

515 char *ifname;

516 struct route_node* rn;

517

518 for (rn = route_top (frp_enable_network); rn; rn = route_next (rn))
519 { if (rn->info)

520 { vty_out (vty, "%s%s/%d%s", " network ", inet_ntoa (rn->p.u.prefix4), rn->p.prefixlen, VTY_NEWLINE);
521 }

522 }

523

524 for (i = 0; i <vector_active (frp_enable_interface); i++)

525 { if ((ifname = vector_slot (frp_enable_interface, i)) !'= NULL)
526 { vty_out (vty, "%s%s%s", " network ", ifname, VTY_NEWLINE);
527 }

528 }

529 |}

530

531

532

533

534

535 |int

536 | frp_interface_new_hook (struct interface *ifp)

537 | {

538 #ifdef DEB_DEBUG_IF

539 zlog_debug ("DEB DEBUG: entering frp_interface_new_hook - interface->name = %s, interface->desc = %s, ",
540 | ifp->name, ifp->desc);

541 #endif

542 ifp->info = frp_interface_new ();

543 return 0;

544}

545

546

547 |int

548 | frp_interface_delete_hook (struct interface *ifp)

549 |{ XFREE (MTYPE_FRP_INTERFACE, ifp->info);

frp_interface.c Page 10 of 11
Printed: Friday, 18 March 2011 10:38:27 AM

550 ifp->info = NULL;
551 return O;
552 |}

561 | DEFUN (frp_network,

562 frp_network_cmd,

563 "network (A.B.C.D/MIWORD)",

564 "Enable routing on an IP network\n"

565 "IP prefix <network>/<length>, e.g., 35.0.0.0/8\n"
566 "Interface name\n")

567 || { intret;

568 struct prefix_ipv4 p;

569 #ifdef DEB_DEBUG_IF

570 vty_out (vty, "DEB DEBUG: entering frp_interface.c - frp_network_cmd %s", VTY_NEWLINE);
571 #endif

572 ret = str2prefix_ipv4 (argv[0], &p);

573 if (ret)

574 {

575 #ifdef DEB_DEBUG_IF

576 vty_out (vty, "DEB DEBUG: -- frp_network_cmd - inside IF %s", VTY_NEWLINE);

577 #endif

578 ret = frp_enable_network_add ((struct prefix *) &p);

579 #ifdef DEB_DEBUG_IF

580 vty_out (vty, "DEB DEBUG: -- frp_network_cmd - successfully called frp_enable_network_add %s",
581 | VTY_NEWLINE);

582 #endif

583 } else

584 {

585 #ifdef DEB_DEBUG_IF

586 vty_out (vty, "DEB DEBUG: -- frp_network_cmd - inside ELSE %s", VTY_NEWLINE);

587 #endif

588 ret = frp_enable_if_add (argv[0]);

589 #ifdef DEB_DEBUG_IF

590 vty_out (vty, "DEB DEBUG: -- frp_network_cmd - successfully called frp_enable_if_add %s", VTY_NEWLINI
591 #endif

592 }

593 if (ret <0)

594 { vty_out (vty, "There is a same network configuration %s%s", argv[0], VTY_NEWLINE);
595 return CMD_WARNING;

596 } else

597 { frp_event (FRP_EVENT_UPDATE, 1);

598 }

599 return CMD_SUCCESS;

607 || void
608 | frp_interface_init (void)

{
610 #ifdef DEB_DEBUG_IF

frp_interface.c
Printed: Friday, 18 March 2011 10:38:27 AM

Page 11 of 11

611
612
613
614
615
616
617
618
619
620
621

622
623
624
625
626
627
628
629
630
631

fprintf (stderr, "DEB DEBUG: entering frp_interface.c - frp_interface_init\n");
#endif

if _init();
if_add_hook (IF_NEW_HOOK, frp_interface_new_hook);
if_add_hook (IF_DELETE_HOOK, frp_interface_delete_hook);

frp_enable_interface = vector_init (1);
frp_enable_network = route_table_init ();

install_element (FRP_NODE, &frp_network_cmd);

return;

frp_debug.h
Printed: Friday, 18 March 2011 10:38:45 AM

Page 1 of 1

CoNOOUThWwWN =

#ifndef
#define

_ZEBRA_FRP_DEBUG_H

_ZEBRA_FRP_DEBUG_H

#include "frpd.h"

#define

#define

#define
#define
#define
#define

FRP_DEBUG_ZEBRA 0x01
FRP_DEBUG_EVENT 0x01

FRP_DEBUG_PACKET 0x01
FRP_DEBUG_SEND 0x20
FRP_DEBUG_RECV 0x40
FRP_DEBUG_DETAIL 0x80

extern unsigned long frp_debug_zebra;
extern unsigned long frp_debug_event;
extern unsigned long frp_debug_packet;

#define

#define

#define
#define
#define
#define

IS_FRP_DEBUG_ZEBRA (frp_debug_zebra & FRP_DEBUG_ZEBRA)
IS_FRP_DEBUG_EVENT (frp_debug_event & FRP_DEBUG_EVENT)

IS_FRP_DEBUG_PACKET (frp_debug_packet & FRP_DEBUG_PACKET)
IS_FRP_DEBUG_SEND (frp_debug_packet & FRP_DEBUG_SEND)
IS_FRP_DEBUG_RECV (frp_debug_packet & FRP_DEBUG_RECV)
IS_FRP_DEBUG_DETAIL (frp_debug_packet & FRP_DEBUG_DETAIL)

extern void frp_debug_init (void);
extern void frp_debug_reset (void);

#endif

frp_debug.c Page 1 of 6
Printed: Friday, 18 March 2011 10:35:57 AM
1
2
3
4 || #include <zebra.h>
5 || #include "command.h"
6
7 || #include "frpd.h"
8 | #include "frp_debug.h"
9
10
1
12
13
14 ||unsigned long frp_debug_zebra = 0O;
15 |unsigned long frp_debug_event = 0O;
16 |unsigned long frp_debug_packet = 0;
17
18
19 ||static struct cmd_node debug_node =
20 { DEBUG_NODE,
21 "
22 1
23}
24
25
26
27
28
29
30
31 | static int
32 | frp_config_write_debug (struct vty *vty)
33//{ int write =0;
34 if (IS_FRP_DEBUG_ZEBRA)
35 { vty_out (vty, "debug frp zebra%s", VTY_NEWLINE);
36 write++;
37 }
38 if (IS_FRP_DEBUG_EVENT)
39 { vty_out (vty, "debug frp events%s", VTY_NEWLINE);
40 write++;
41 }
42 if (IS_FRP_DEBUG_PACKET)
43 { if (IS_LFRP_DEBUG_SEND && IS_FRP_DEBUG_RECV)
44 { vty_out (vty, "debug frp packet%s%s", IS_FRP_DEBUG_DETAIL ? " detail" : "", VTY_NEWLINE);
45 write++;
46 } else
47 { if (IS_LFRP_DEBUG_SEND)
48 { vty_out (vty, "debug frp packet send%s%s", IS_FRP_DEBUG_DETAIL ? " detail" : "", VTY_NEWLINE);
49 } else
50 { vty_out (vty, "debug frp packet recv%s%s", IS_FRP_DEBUG_DETAIL ? " detail" : "", VTY_NEWLINE);
51 }
52 write++;
53 }
54 }
55 return write;
56 |}
57
58 void
59 | frp_debug_reset (void)
60 | { frp_debug_zebra =0;
61 frp_debug_event = 0;

frp_debug.c Page 2 of 6
Printed: Friday, 18 March 2011 10:35:57 AM

62
63
64
65
66
67
68

frp_debug_packet = 0;
}

DEFUN (show_debugging_frp,
show_debugging_frp_cmd,
"show debugging frp",
SHOW_STR
DEBUG_STR
FRP_STR)
{ vty_out (vty, "FRP debugging status:%s", VTY_NEWLINE);
if (IS_FRP_DEBUG_ZEBRA)
{ vty_out (vty, " FRP zebra debugging is on%s", VTY_NEWLINE);

}
if (IS_FRP_DEBUG_EVENT)
{ vty_out (vty, " FRP event debugging is on%s", VTY_NEWLINE);

}
if (IS_LFRP_DEBUG_PACKET)
{ if (IS_LFRP_DEBUG_SEND && IS_FRP_DEBUG_RECV)

{ vty_out (vty, " FRP packet%s debugging is on%s", IS_FRP_DEBUG_DETAIL ? " detail" : "", VTY_NEWLINE);

} else

{ if (IS_LFRP_DEBUG_SEND)
{ vty_out (vty, " FRP packet send%s debugging is on%s", IS_FRP_DEBUG_DETAIL ? " detail" : "", VTY_NEW
} else

{ vty_out (vty, " FRP packet receive%s debugging is on%s", IS_FRP_DEBUG_DETAIL ? " detail" : "",
VTY_NEWLINE);
}
}
t
return CMD_SUCCESS;
}

DEFUN (debug_frp_zebra,
debug_frp_zebra_cmd,
"debug frp zebra",
DEBUG_STR
FRP_STR
"FRP and ZEBRA communication\n")
{ frp_debug_zebra = FRP_DEBUG_ZEBRA;
return CMD_WARNING;
}
DEFUN (no_debug_frp_zebra,
no_debug_frp_zebra_cmd,
"no debug frp zebra",
NO_STR
DEBUG_STR
FRP_STR
"FRP and ZEBRA communication\n")
{ frp_debug_zebra = 0;
return CMD_WARNING;
}

DEFUN (debug_frp_events,
debug_frp_events_cmd,
"debug frp events",
DEBUG_STR

frp_debug.c
Printed: Friday, 18 March 2011 10:35:57 AM

Page 3 of 6

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

FRP_STR
"FRP events\n")

{
frp_debug_event = FRP_DEBUG_EVENT;
return CMD_WARNING;

}

DEFUN (no_debug_frp_events,

no_debug_frp_events_cmd,
"no debug frp events",
NO_STR

DEBUG_STR

FRP_STR

"FRP events\n")

{
frp_debug_event = 0;
return CMD_SUCCESS;

}

DEFUN (debug_frp_packet,
debug_frp_packet_cmd,
"debug frp packet",
DEBUG_STR
FRP_STR
"FRP packet\n")

{ frp_debug_packet = FRP_DEBUG_PACKET;
frp_debug_packet |= FRP_DEBUG_SEND;
frp_debug_packet |= FRP_DEBUG_RECV;
return CMD_SUCCESS;

}

DEFUN (no_debug_frp_packet,

no_debug_frp_packet_cmd,
"no debug frp packet",
NO_STR

DEBUG_STR

FRP_STR

"FRP packet\n")

{ frp_debug_packet = 0;
return CMD_SUCCESS;

}

DEFUN (debug_frp_packet_direct,
debug_frp_packet_direct_cmd,
"debug frp packet (recvisend)",
DEBUG_STR
FRP_STR
"FRP packet\n"
"FRP receive packet\n"
"FRP send packet\n")
{ frp_debug_packet |= FRP_DEBUG_PACKET;
if (strncmp ("send", argv[0], strlen (argv[0])) == 0)
{ frp_debug_packet |= FRP_DEBUG_SEND;
}
if (strncmp ("recv", argv[0], strlen (argv[0])) ==0)
{ frp_debug_packet |= FRP_DEBUG_RECV;
}
frp_debug_packet &= ~FRP_DEBUG_DETAIL;
return CMD_SUCCESS;
}
DEFUN (no_debug_frp_packet_direct,
no_debug_frp_packet_direct_cmd,
"no debug frp packet (recvisend)",

frp_debug.c
Printed: Friday, 18 March 2011 10:35:57 AM

Page 4 of 6

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

NO_STR
DEBUG_STR
FRP_STR
"FRP packet\n"
"FRP option set for receive packet\n"
"FRP option set for send packet\n")
{ if (strncmp ("send", argv[0], strlen (argv[0])) == 0)
{ if (IS_LFRP_DEBUG_RECV)
{ frp_debug_packet &= ~FRP_DEBUG_SEND;
} else
{ frp_debug_packet = 0;
}
} else if (strncmp ("recv", argv[0], strlen (argv[0])) ==0)
{ if (IS_FRP_DEBUG_SEND)
{ frp_debug_packet &= ~FRP_DEBUG_RECV;
} else
{ frp_debug_packet = 0;
}
}
return CMD_SUCCESS;
}

DEFUN (debug_frp_packet_detail,
debug_frp_packet_detail_cmd,
"debug frp packet (recvisend) detail",
DEBUG_STR
FRP_STR
"FRP packet\n"
"FRP receive packet\n"
"FRP send packet\n"
"Detailed information display\n")
{ frp_debug_packet |= FRP_DEBUG_PACKET;
if (strncmp ("send", argv[0], strlen (argv[0])) == 0)
{ frp_debug_packet |= FRP_DEBUG_SEND;
}
if (strncmp ("recv", argv[0], strlen (argv[0])) == 0)
{ frp_debug_packet |= FRP_DEBUG_RECV;
}
frp_debug_packet |= FRP_DEBUG_DETAIL;
return CMD_SUCCESS;
}

DEFUN (debug_write_peers,
debug_write_peers_cmd,
"debug peers",
"Display current peers\n"
"Detailed peer information display\n")

#ifdef DEB_DEBUG
fprintf (stderr, "DEB DEBUG: entering frp_debug.c - debug_write_peers\n");
#endif
struct frp_peer* peer;
struct listnode *node, *nnode;
for (ALL_LIST_ELEMENTS (frp_peers, node, nnode, peer))
{ vty_out (vty, "peer information %s", VTY_NEWLINE);
vty_out (vty, " address: %s %s", inet_ntoa (peer->address), VTY_NEWLINE);
vty_out (vty, " secret: %s %s", peer->secret, VTY_NEWLINE);
vty_out (vty, cost: %d %s", peer->cost, VTY_NEWLINE);
vty_out (vty, " poll: %d %s", peer->poll, VTY_NEWLINE);
vty_out (vty, " retry: %d %s", peer->retry, VTY_NEWLINE);
vty_out (vty, " Iseq: %d %s", peer->Iseq, VTY_NEWLINE);

frp_debug.c Page 5 of 6 frp_debug.c Page 6 of

Printed: Friday, 18 March 2011 10:35:57 AM Printed: Friday, 18 March 2011 10:35:57 AM

245 vty_out (vty, " rseq: %d %s", peer->rseq, VTY_NEWLINE); 306

246 vty_out (vty, " packet_latest_lIseq: %d %s", peer->packet_latest_Iseq, VTY_NEWLINE); 307 frp_debug_zebra = 0;

247 vty_out (vty, " gw cost:%d %s", peer->gateway_cost, VTY_NEWLINE); 308 frp_debug_event = 0;

248 vty_out (vty, " gateway path %s", VTY_NEWLINE); 309 frp_debug_packet = 0;

249 struct in_addr* gw_path_addr; 310

250 struct listnode *gw_node, *gw_nnode; 311 install_node (&debug_node, frp_config_write_debug);

251 for (ALL_LIST_ELEMENTS (peer->gateway_path, gw_node, gw_nnode, gw_path_addr)) 312

252 { vty_out (vty, " address: %s %s", inet_ntoa(*gw_path_addr), VTY_NEWLINE); 313 install_element (ENABLE_NODE, &show_debugging_frp_cmd);
253 } 314

254 vty_out (vty, " rib %s", VTY_NEWLINE); 315 install_element (ENABLE_NODE, &debug_frp_zebra_cmd);
255 struct frp_rte* rib_route; 316 install_element (CONFIG_NODE, &debug_frp_zebra_cmd);

256 struct listnode* rib_node; 317 install_element (ENABLE_NODE, &no_debug_frp_zebra_cmd);
257 for (ALL_LIST_ELEMENTS_RO (peer->rib, rib_node, rib_route)) 318 install_element (CONFIG_NODE, &no_debug_frp_zebra_cmd);
258 { vty_out (vty, " route %s", VTY_NEWLINE); 319

259 vty_out (vty, " length: %d %s", rib_route->length, VTY_NEWLINE); 320 install_element (ENABLE_NODE, &debug_frp_events_cmd);
260 vty_out (vty, " routecost: %d %s", rib_route->routecost, VTY_NEWLINE); 321 install_element (CONFIG_NODE, &debug_frp_events_cmd);
261 vty_out (vty, " gatecost: %d %s", rib_route->routecost, VTY_NEWLINE); 322 install_element (ENABLE_NODE, &no_debug_frp_events_cmd);
262 vty_out (vty, " prefix: %s %s", inet_ntoa(rib_route->prefix.prefix), ~VTY_NEWLINE); 323 install_element (CONFIG_NODE, &no_debug_frp_events_cmd);
263 } 324

264 325 install_element (ENABLE_NODE, &debug_frp_packet_cmd);
265 } 326 install_element (CONFIG_NODE, &debug_frp_packet_cmd);
266 return CMD_SUCCESS; 327 install_element (ENABLE_NODE, &no_debug_frp_packet_cmd);
267 |} 328 install_element (CONFIG_NODE, &no_debug_frp_packet_cmd);
268 329 install_element (ENABLE_NODE, &debug_frp_packet_direct_cmd);
269 | DEFUN (debug_write_frp_rib, 330 install_element (CONFIG_NODE, &debug_frp_packet_direct_cmd);
270 debug_write_frp_rib_cmd, 331 install_element (ENABLE_NODE, &no_debug_frp_packet_direct_cmd);
271 "debug rib", 332 install_element (CONFIG_NODE, &no_debug_frp_packet_direct_cmd);
272 "Display the current rib\n" 333 install_element (ENABLE_NODE, &debug_frp_packet_detail_cmd);
273 "Detailed rib information display\n") 334 install_element (CONFIG_NODE, &debug_frp_packet_detail_cmd);
274 | { 335

275 #ifdef DEB_DEBUG 336 install_element (CONFIG_NODE, &debug_write_peers_cmd);
276 fprintf (stderr, "DEB DEBUG: entering frp_debug.c - debug_write_frp_rib\n"); 337

277 #endif 338 install_element (CONFIG_NODE, &debug_write_frp_rib_cmd);
278 vty_out (vty, "frp rib %s", VTY_NEWLINE); 339

279 struct route_node* rib_rte_ptr; 340 || #ifdef DEB_DEBUG

280 for (rib_rte_ptr = route_top (frp->rib); rib_rte_ptr; rib_rte_ptr =route_next (rib_rte_ptr)) 341 fprintf (stderr, "DEB DEBUG: -- leaving frp_debug_init\n");
281 { 342 | #endif

282 struct frp_info* rte_info = (struct frp_info*)rib_rte_ptr->info; 343 ||}

283 if (rte_info != NULL) 344

284 { vty_out (vty, " rib entry %s", VTY_NEWLINE);

285 vty_out (vty, " prefix: %s %s", inet_ntoa(rib_rte_ptr->p.u.prefix4), VTY_NEWLINE);

286 vty_out (vty, " nexthop: %s %s", inet_ntoa(rte_info->nexthop), VTY_NEWLINE);

287 vty_out (vty, " cost: %d %s", rte_info->cost, VTY_NEWLINE);

288 vty_out (vty, " is_gateway: %d %s", rte_info->is_gateway_flag, VTY_NEWLINE);

289 }

290 route_unlock_node (rib_rte_ptr);

291 }

292 return CMD_SUCCESS;

293 '}

294

295

296

297

298

299

300 || void

301 || frp_debug_init (void)

302 | {

303 | #ifdef DEB_DEBUG

304 fprintf (stderr, "DEB DEBUG: entering frp_debug.c - frp_debug_init\n");

305 || #endif

Appendix D

The FRPsniffer implementation

Developing the Fringe Routing Protocol 129

130 Developing the Fringe Routing Protocol

sniffer.h
Printed: Friday, 18 March 2011 10:07:50 AM

Page 1 of 2

CoNOOUThWwWN =

#include <stdio.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#include <arpa/inet.h>

#include <pcap.h>

#define SNAPLEN 65535

#define PROMISC 1

#define TO_MS 10000

#include <netinet/in.h>

#define EN_HEADER_LEN 14
#define EN_ADDRESS_LEN 6

struct ethernet

{ u_char enDestination[EN_ADDRESS_LEN];
u_char enSource[EN_ADDRESS_LEN];
u_short enType;

b

struct ip4
{ u_char ip4vhl;

#define IPAVERSION(ipv) (((ipv)->ip4vhl) >> 4)

#define IPAHEADER_LEN(iphl) (((iphl)->ip4vhl) & 0xOf)

u_char ip4service;
u_short ip4length;
u_short ip4id;

u_short ip4offset;

#define IPARESERVED 0x8000
#define IP4ADONT 0x4000
#define IPAMORE 0x2000
#define IPAMASK 0x1fff
u_char ip4ttl;
u_char ip4protocol;

u_short ip4checksum;
struct in_addr ip4source;

sniffer.h
Printed: Friday, 18 March 2011 10:07:50

AM

Page 2 of 2

62 struct in_addr ip4destination;
63 L

64
65
66 | #define UDP_HEADER_LEN 8
67
68 | struct udp

69 | { u_short udpSource;

70 u_short udpDestination;
71 u_short udpLength;

72 u_short udpChecksum;
73}

frp_packet.h

Printed: Friday, 18 March 2011 10:08:54 AM

Page 1 of 3 frp_packet.h

Printed: Friday,

18 March 2011 10:08:54

AM

Page 2 of 3

CoNOOUThWwWN =

#define FRP_PKT_HDRSIZE 16
#define FRP_PKT_MINSIZE 16
#define FRP_PKT_MAXSIZE 1400
#define FRP_MSG_CONTROL_SIZE 4
#define FRP_MSG_IPV4CONFIG_SIZE 12
#define FRP_MSG_IPVAGATEWAY_MINSIZE 8
#define FRP_MSG_IPV4UPDATE_SIZE 12
#define FRP_MSG_IPV6CONFIG_SIZE 24
#define FRP_MSG_IPV6GATEWAY_MINSIZE 20
#define FRP_MSG_IPV6UPDATE_SIZE 24
#define FRP_MSG_NULL 0x00
#define FRP_MSG_CONTROL 0x01
#define FRP_MSG_IPV4CONFIG 0x41
#define FRP_MSG_IPV4GATEWAY 0x42
#define FRP_MSG_IPV4UPDATE 0x43
#define FRP_MSG_IPV6CONFIG 0x61
#define FRP_MSG_IPV6GATEWAY 0x62
#define FRP_MSG_IPV6UPDATE 0x63

#define FRP_CTRL_POLL

#define FRP_CTRL_ACK 2

#define FRP_CTRL_NAK 3

#define FRP_FLAG_BEGIN 0x01
#define FRP_FLAG_COMMIT 0x02
#define FRP_FLAG_NULLRT 0x04
#define FRP_FLAG_UPDATE 0x08
#define FRP_FLAG_DELETE 0x10
#define FRP_FLAG_GATEWAY 0x80

struct frp_pkt_hdr

{ u_int8_t hash[8];
u_int32_t sendSeq;
u_int32_t recipAck;

b

struct frp_msg_hdr

{ u_int8_t length;
u_int8_t type;

b

struct frp_msg_control

{ struct frp_msg_hdr msg_hdr;
u_int8_t type;
u_int8_t param;

b

62
63
64
65
66
67
68
69
70

struct frp_msg_ipv4config
{ struct frp_msg_hdr msg_hdr;

u_short
u_short
u_short
struct in_addr

b

cost;
poll;
retry;
id;

struct frp_msg_ipv4gateway
{ struct frp_msg_hdr msg_hdr;

u_short
struct in_addr

b

cost;
path[62];

struct frp_msg_ipv4update
{ struct fro_msg_hdr msg_hdr;

u_int8_t
u_int8_t
u_short
u_short

struct in_addr

b

flags;
length;
routecost;
gatecost;
prefix;

struct frp_msg_ipv6config
{ struct frp_msg_hdr msg_hdr;

u_short

u_short

u_short

struct in6_addr
b

cost;
poll;
retry;
id;

struct frp_msg_ipv6gateway
{ struct fro_msg_hdr msg_hdr;

u_short
struct in6_addr
b

cost;
path[1];

struct frp_msg_ipv6update
{ struct frp_msg_hdr msg_hdr;

u_int8_t
u_int8_t
u_short
u_short

struct in6_addr

struct frp_pkt_hdr
struct frp_pkt_hdr*

flags;
length;
routecost;
gatecost;
prefix;

pkt_hdr;
pkt_hdr_ptr;

frp_packet.h Page 3 of 3
Printed: Friday, 18 March 2011 10:08:54 AM

123

124

125 | enum frp_makepkthdr_flag
126 |{ FRP_ACK,

127 FRP_SYN,

128 4

129

main.c
Printed: Friday, 18 March 2011 10:08:24 AM

Page 1 of 6

#include "sniffer.h"
#include "frp_packet.h"

CoNOOUThWwWN =

11 |u_short displayControlMessage (const struct frp_msg_control* frpControlMessage)
12 |{ switch (frpControlMessage->type) {

13 case FRP_CTRL_POLL:

14 printf("--Poll, param = %d \n", frpControlMessage->param);

15 break;

16 case FRP_CTRL_ACK:

17 printf("--Control ACK, param = %d \n", frpControlMessage->param);
18 break;

19 case FRP_CTRL_NAK:

20 printf("--Control NAK, param = %d \n", frpControlMessage->param);
21 break;

22 default:

23 break;

24 }

25 return frpControlMessage->msg_hdr.length;

26}

27

28 | u_short displaylP4ConfigMessage (const struct frp_msg_ipv4config* frpConfigMessage)
29 | { printf(" cost: %d\n", ntohs(frpConfigMessage->cost));

30 printf(" poll: %d\n", ntohs(frpConfigMessage->poll));

31 printf(" retry: %d\n", ntohs(frpConfigMessage->retry));

32 printf(" router-id: %s\n", inet_ntoa(frpConfigMessage->id));

33 return frpConfigMessage->msg_hdr.length;

34}

35

36 | u_short displaylP4GatewayMessage(const struct frp_msg_ipv4gateway* frpGatewayMessage)
37

38 printf(" cost: %d\n", ntohs(frpGatewayMessage->cost));

39 u_short numNodes = frpGatewayMessage->msg_hdr.length / 8;
40 printf(" # of nodes in path: %d\n", numNodes);

41 for (int i = 0; i <numNodes; i++)

42 {

43 printf(" path[%d]: %s\n", i, inet_ntoa(frpGatewayMessage->pathli]));

44 }

45 return frpGatewayMessage->msg_hdr.length;

46}

47

48 || u_short displaylP4UpdateMessage(const struct frp_msg_ipv4update* frpUpdateMessage)
49| { printf(" flags: %d\n", ntohs(frpUpdateMessage->flags));

50 if (ntohs(frpUpdateMessage->flags & FRP_FLAG_BEGIN)){

51 printf(" FRP_FLAG_BEGIN flag: YES\n");
52 }

53 else {

54 printf(" FRP_FLAG_BEGIN flag: NO\n");
55

}
56 if (ntohs(frpUpdateMessage->flags & FRP_FLAG_NULLRT)){

57 printf(" FRP_FLAG_NULLRT flag: YES\n");
58 }

59 else {

60 printf(" FRP_FLAG_NULLRT flag: NO\n");

61 }

main.c
Printed: Friday, 18 March 2011 10:08:24 AM

Page 2 of 6

62
63
64
65
66
67
68
69
70

119

if (ntohs(frpUpdateMessage->flags & FRP_FLAG_DELETE)){
printf(" FRP_FLAG_DELETE flag: YES\n");
}
else {
printf(" FRP_FLAG_DELETE flag: NO\n");
}
if (ntohs(frpUpdateMessage->flags & FRP_FLAG_COMMIT)){
printf(" FRP_FLAG_COMMIT flag: YES\n");
}
else {
printf(" FRP_FLAG_COMMIT flag: NO\n");
}
if (ntohs(frpUpdateMessage->flags & FRP_FLAG_UPDATE)){
printf(" FRP_FLAG_UPDATE flag: YES\n");
}
else {
printf(" FRP_FLAG_UPDATE flag: NO\n");
}
if (ntohs(frpUpdateMessage->flags & FRP_FLAG_GATEWAY)){
printf(" FRP_FLAG_GATEWAY flag: YES\n");
}
else {
printf(" FRP_FLAG_GATEWAY flag: NO\n");
}
printf(" length: %d\n", frpUpdateMessage->length);
printf(" routecost: %d\n", ntohs(frpUpdateMessage->routecost));
printf(" gatecost: %d\n", ntohs(frpUpdateMessage->gatecost));
printf(" prefix: %s\n", inet_ntoa(frpUpdateMessage->prefix));
return frpUpdateMessage->msg_hdr.length;
}

int main()

{
char* interface = "en0\0";
bpf_u_int32 netaddress;
bpf_u_int32 netmask;

char errorbuffer[PCAP_ERRBUF_SIZE];
pcap_t* handle = NULL;

char filterexpression[] = "udp port 343";
struct bpf_program filter;

struct pcap_pkthdr packetHeader;
const u_char* packet;

const struct ethernet* ethernetHeader;
const struct ip4* ip4Header;

u_int ip4HeaderSize;

const struct udp* udpHeader;

u_int udpHeaderSize;

const struct frp_pkt_hdr* frpHeader;
u_int frpHeaderSize;

printf("Interface: %s\n", interface);
if (pcap_lookupnet(interface, &netaddress, &netmask, errorbuffer) ==-1)
{ fprintf(stderr, "Can't get netmask for interface %s\n", interface);
netaddress = 0;
netmask = 0O;

}

main.c Page 3 of 6
Printed: Friday, 18 March 2011 10:08:24 AM

123

124

125 handle = pcap_open_live(interface, SNAPLEN, PROMISC, TO_MS, errorbuffer);
126 if (handle == NULL)

127 { fprintf(stderr, "Couldn't open interface %s: %s\n", interface, errorbuffer);
128 return(1);

129 }

130

131

132 if (pcap_compile(handle, &filter, filterexpression, 0, netmask) ==-1)
133 { fprintf(stderr, "Couldn't parse filter %s: %s\n", filterexpression, pcap_geterr(handle));
134 return(2);

135 }

136 if (pcap_setfilter(handle, &filter) ==-1)

137 { fprintf(stderr, "Couldn't install filter %s: %s\n", filterexpression, pcap_geterr(handle));
138 return(2);

139 }

140

141 while (1)

142 { printf("Waiting for incoming FRP packet\n");

143

144 packet = pcap_next(handle, &packetHeader);

145 if (packet == NULL)

146 {

147 } else

148 {

149 printf("\n");

150 printf("\nFRP PACKET HEADER\n");

151

152

153

154

155

156

157 ethernetHeader = (struct ethernet*)(packet);

158

159 u_short byte0O = ethernetHeader->enDestination[0];
160 u_short bytel = ethernetHeader->enDestination[1];
161 u_short byte2 = ethernetHeader->enDestination[2];
162 u_short byte3 = ethernetHeader->enDestination[3];
163 u_short byte4 = ethernetHeader->enDestination[4];
164 u_short byte5 = ethernetHeader->enDestination[5];
165

166 byteO = ethernetHeader->enSource[0];

167 byte1 = ethernetHeader->enSource[1];

168 byte2 = ethernetHeader->enSource[2];

169 byte3 = ethernetHeader->enSource[3];

170 byte4 = ethernetHeader->enSource[4];

171 byte5 = ethernetHeader->enSource[5];

172

173

174

175 ip4Header = (struct ip4*)(packet + EN_HEADER_LEN);
176 ip4HeaderSize = IPAHEADER_LEN(ip4Header)*4;

177

178 if (ip4HeaderSize <20)

179 {

180

181 return (2);

182 } else

183 {

main.c
Printed: Friday, 18 March 2011

10:08:24 AM

184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

byteO = (ip4Header->ip4offset & IPARESERVED);
byte1 = (ip4Header->ip4offset & IP4ADONT);
byte2 = (ip4Header->ip4offset & IPAMORE);
byte3 = (ip4Header->ip4offset & IP4AMASK);

byte0 = (ip4Header->ip4source.s_addr & OxFF);

byte1 = (ip4Header->ip4source.s_addr & OxFFOQ) >> 8;

byte2 = (ip4Header->ip4source.s_addr & OxFFO000) > 16;

byte3 = (ip4Header->ip4source.s_addr & OxFFO00000) > 24;

printf(" source address: %u.%u.%u.%u (%x.%x.%x.%x)\n",
byte2, byte3);

byteO = (ip4Header->ip4destination.s_addr & OxFF);

byte1 = (ip4Header->ip4destination.s_addr & OxFFO0) >> 8;

byte2 = (ip4Header->ip4destination.s_addr & OxFFO000) >> 16;

byte3 = (ip4Header->ip4destination.s_addr & O0xFFO00000) >> 24;

printf("destination address: %u.%u.%u.%u (%x.%x.%x.%x)\n",
byte2, byte3);

}

udpHeader = (struct udp*)(packet + EN_HEADER_LEN + ip4HeaderSize);

udpHeaderSize = UDP_HEADER_LEN;

frpHeader = (struct frp_pkt_hdr*)(packet + EN_HEADER_LEN + ip4HeaderSize + udpHeaderSize);

frpHeaderSize = FRP_PKT_HDRSIZE;

printf(" security hash: %s\n", frpHeader->hash);
printf(" sender's seq no: %d (0x%x)\n", ntohl(frpHeader->sendSeq), ntohl(frpHeader->sendSeq));
printf(" recipient's ack no: %d (0x%x)\n", ntohl(frpHeader->recipAck), ntohl(frpHeader->recipAck));
if (ntohl(frpHeader->recipAck) == 0)
{ printf("--SYN Packet\n\n");

continue;

}

u_long currentPos = EN_HEADER_LEN + ip4HeaderSize + udpHeaderSize + frpHeaderSize;
struct frp_msg_hdr* messageHeader = (struct frp_msg_hdr*)(packet + currentPos);

Page 4 of 6

byte0, bytel, byte2, byte3, byte0, bytel

byteO, bytel, byte2, byte3, byteO, byte’

main.c Page 5 of 6 main.c Page 6 of 6

Printed: Friday, 18 March 2011 10:08:24 AM Printed: Friday, 18 March 2011 10:08:24 AM
245 306 }
246 while ((messageHeader != 0)&&(currentPos < packetHeader.len)) 307
247 { switch (messageHeader->type) { 308
248 case FRP_MSG_CONTROL: 309 pcap_close(handle);
249 printf("\nControl message: 0x%x\n", messageHeader->type); 310 return(0);
250 currentPos += displayControlMessage((struct frp_msg_control*)messageHeader); 311 ||}
251 break; 312
252 case FRP_MSG_IPV4CONFIG:

253 printf("\nlPV4 Config message: 0x%x\n", messageHeader->type);

254 currentPos += displaylP4ConfigMessage((struct frp_msg_ipv4config*)messageHeader);

255 break;

256 case FRP_MSG_IPV4GATEWAY:

257 printf("\nlPV4 path to gateway message: 0x%x\n", messageHeader->type);

258 currentPos += displaylP4GatewayMessage((struct frp_msg_ipv4gateway*)messageHeader);

259 break;

260 case FRP_MSG_IPV4UPDATE:

261 printf("\nlPV4 route update message: 0x%x\n", messageHeader->type);

262 currentPos += displaylP4UpdateMessage((struct frp_msg_ipv4update*)messageHeader);

263 break;

264 case FRP_MSG_IPV6CONFIG:

265 printf(" IPV6 Config Message: Ox%x\n", messageHeader->type);

266 printf(" Not currently implemented\n");

267

268 break;

269 case FRP_MSG_IPVGGATEWAY:

270 printf(" IPV6 Path To Gateway Message: 0x%x\n", messageHeader->type);

271 printf(" Not currently implemented\n");

272

273 break;

274 case FRP_MSG_IPV6UPDATE:

275 printf(" IPV6 Route Update Message: 0x%x\n", messageHeader->type);

276 printf(" Not currently implemented\n");

277

278 break;

279 case FRP_MSG_NULL:

280 printf(" Null Message: 0x%x\n", messageHeader->type);

281 if ((ntohl(frpHeader->recipAck) != 0)&&(ntohl(frpHeader->sendSeq) != 0))

282 { printf("--ACK Packet\n\n");

283 }

284 messageHeader = 0;

285 continue;

286 break;

287 default:

288 printf(" INVALID MESSAGE TYPE: 0x%x\n", messageHeader->type);

289 printf(" CORRUPT MESSAGE STOPPING PARSE\n");

290 messageHeader = 0;

291 continue;

292 break;

293 }

294 printf("\n");

295

296 messageHeader = (struct frp_msg_hdr*)(packet + currentPos);

297

298

299

300

301

302

303

304 }

305 }

Appendix D

The orignal implementation of FRP by Don Stokes

Developing the Fringe Routing Protocol 131

132 Developing the Fringe Routing Protocol

frp.h
Printed: Friday, 18 March 2011

10:12:15 AM

Page 1 of 2

CoNOOUThWwWN =

#define FRP_HASHSIZE 8

struct frp_hdr {
u_int8_t hash[FRP_HASHSIZE];
u_int32_t Iseq;
u_int32_t rseq;

b

struct frp_mhdr {
u_int8_t len;
u_int8_t type;
b

#define FRP_CTRL 0x01

struct frp_ctrl {
struct frp_mhdr mh;
u_int8_t ctrl;
u_int8_t param;

#define FRP_CTRL_POLL 1
#define FRP_CTRL_ACK 2
#define FRP_CTRL_NAK 3

#define FRP_CONFIG 0x41
struct frp_config {
struct frp_mhdr mh;
u_int16_t cost;
u_int16_t poll;
u_int16_t fail;
IPADDR id;
b

#define FRP_PATH 0x42
struct frp_path {
struct frp_mhdr mh;
u_int16_t gwcost;
IPADDR path[];
b
#define FRP_NOGATEWAY Oxffff

#define FRP_ROUTE 0x43

struct frp_route {
struct frp_mhdr mh;
u_int8_t flags;
u_int8_t bits;
u_int16_t cost;
u_int16_t gwcost;
IPADDR ip;

frp.h
Printed: Friday, 18 March 2011

62
63
64
65
66
67
68
69
70

#define FRP_FLAG_BEGIN 1
#define FRP_FLAG_COMMIT 2
#define FRP_FLAG_NULL 4

#define FRP_FLAG_GATEWAY 128
#define FRP_NULLRT_SIZE 4

#define FRP_CONFIG6 0x61
struct frp_configb {
struct frp_mhdr mh;
u_int16_t cost;
struct in6_addr gw;

b

#define FRP_PATH6 0x62
struct frp_path6 {
struct frp_mhdr mh;
u_int16_t gwcost;
struct in6_addr path[];
b

#define FRP_ROUTE6 0x63

struct frp_route6 {
struct frp_mhdr mh;
u_int8_t flags;
u_int8_t bits;
u_int16_t cost;
u_int16_t gwcost;
struct in6_addr ip6;

frpd.h
Printed: Friday, 18 March 2011

10:12:01

AM

Page 1 of 4

CoNOOUThWwWN =

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <unistd.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/select.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <arpa/inet.h>
#include <sys/sysctl.h>
#include <fentlh>
#include <signal.h>
#include <ifaddrs.h>
#include <syslog.h>

#define IPADDR u_int32_t
#define TIMETEN u_int32_t

#define WHITESPACE (" \t\n\r")

struct ace {

struct ace *next;

int permit;

IPADDR ip;

int bits;

int maxbits;

int rtype;

struct acl *acl;

int ifindex;
b
#define RTYPE_ANY 0
#define RTYPE_LAYER2 1
#define RTYPE_STATIC 2
#define RTYPE_PROTOCOL 4
#define RTYPE_LOCAL 8
#define RTYPE_REMOTE 16

#define MAX_PACKET 1360
#define MAX_PATH 63
#define DEFAULT_POLL 50
#define DEFAULT_FAIL 150
#define DEFAULT_RETRY 20

struct acl {
struct acl *next;
char *name;
struct ace *head;
struct ace *tail;

b

struct peer {
struct peer *next;
int cloned;

frpd.h

Printed: Friday, 18 March 2011 10:12:01

AM

Page 2 of 4

62
63
64
65
66
67
68
69
70

int state;
int fd;

struct sockaddr_in Isa;
struct sockaddr_in rsa;

IPADDR routerid;
IPADDR nexthop;
int ttl;

char *secret;

int confcost;
TIMETEN confpoll;
TIMETEN conffail;
TIMETEN confretry;
int cost;

TIMETEN poll;
TIMETEN fail;
TIMETEN retry;

int ifindex;

IPADDR localroute;
int localbits;

int localannounce;

struct acl *remote;
struct acl *announce;
struct acl *accept;

u_int32_t Iseq;
u_int32_t aseq;
u_int32_t rseq;
u_int32_t xseq;

int pathlen;

IPADDR path[MAX_PATH];
int gwcost;

struct iproute *routes;
struct iproute *newrts;
struct iproute *annrts;

u_char *lastpacket;
int lastpktlen;
u_char *nextpacket;
int nextpktlen;

int ackreq;

TIMETEN lasttime;
TIMETEN nexttime;
int quickstart;

int synreq;

int configreq;

int pathreg;

int pollreq;

int respreq;

int sendack;

int shutdown;

struct iproute *nextrt;
int nullrt;

122 | #define LOCIP(peer) ((peer)->Isa.sin_addr.s_addr)

frpd.h
Printed: Friday, 18 March 2011

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

#define REMIP(peer) ((peer)->rsa.sin_addr.s_addr)

struct iproute {
struct iproute *next;
IPADDR ip;
int bits;
int isgw;
int cost;
int gwcost;
int rtype;
struct peer *peer;
int ifindex;
int inuse;

struct acl *acls;

IPADDR

maskbits[33];

struct iproute *freelist;
struct iproute *localroutes;

struct peer *peers;
struct peer *listens;
struct peer *gwpeer;
int gwcost;

int checkroutes;
int rtsocket;

int udpport;

int isgateway;
int gwalways;
TIMETEN now;
int routeflag;
int otherflag;
int overrflag;

IPADDR
IPADDR

IPADDR

defaultroute;
defgateway;

routerid;

char *statusfile;
char *pidfile;
pid_t pid;

int debug;

#define
#define
#define
#define
#define
#define
#define
#define
#define

LOGO msg

LOG1 if(debug) msg
LOG2 if(debug >= 2) msg
LOG3 if(debug >= 3) msg
LOG4 if(debug >= 4) dbg
LOGS5 if(debug >= 5) dbg
LOG6 if(debug >= 6) dbg
LOG? if(debug >= 7) dbg
LOGS8 if(debug >= 8) dbg

frpd.h
Printed: Friday, 18 March 2011 10:12:01 AM

Page 4 of 4

184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220

#define FOREACH(item, head) for((item) = (head); (item); (item) = (item)->next)
#define FREEROUTE(ipr) { (ipr)->next = freelist; freelist = (ipr); }
#define NEWROUTE(ipr) { if(((ipr) = freelist)) freelist = (ipr)->next; \
else (ipr) = malloc(sizeof(struct iproute)); }
#define ADDROUTEAFTER(ipr, table, after) { NEWROUTE(ipr) \
if(after) { (ipr)->next = (after)->next; \
(after)->next = (ipr); }\
else { (ipr)->next = (table); \
(table) = (ipr); } }
#define KILLROUTES(table) { struct iproute *ipr, *nipr; \
for(ipr=(table); ipr; ipr = nipr) { \
nipr = ipr->next; FREEROUTE(ipr) } \
(table) = 0O; }

#define NEXTSEQ(r) (((r) +1)==0?1:(r) +1)

char *formatip(IPADDR ip);
char *formattime(TIMETEN t);

struct iproute *findroute(struct iproute *ipr, IPADDR ip, int bits,
struct iproute **prev);

struct acl *findacl(char *name, int create);

int checkacl(struct acl *acl, IPADDR ip, int bits, int rtype, int ifindex);

void dumproutes(struct iproute *ipr);

int getroutes();

int parse_config(char *file);

void parse_acl_std(void);

char *parseip(char *s, IPADDR *ip_p, int *bits_p, int *maxbits_p);
char *getlocaladdr(struct peer *peer, IPADDR peerip, int listen);

void msg(char *fmt, ...);
void dbg(char *fmt, ...);

main.c
Printed: Friday, 18 March 2011 10:11:40 AM

Page 1 of 28

CoNOOUThWwWN =

#include "frpd.h"
#include "frp.h"

struct acl *acls = 0;
IPADDR maskbits[33];

struct iproute *freelist = 0O;
struct iproute *localroutes = O;

struct peer *peers = 0;
struct peer *listens = 0;

int gwcost =-1;
int rtsocket =-1;

int udpport = 343;

int isgateway = 0;

int gwalways = 0O;
IPADDR routerid = 0O;
struct peer *gwpeer = 0;
char *statusfile =0;

int checkroutes = 0;
TIMETEN now;

int debug = 1;

char *pidfile = 0;

void
msg(char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
vsyslog(LOG_INFO, fmt, ap);
va_end(ap);
}
void
dbg(char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
vsyslog(LOG_DEBUG, fmt, ap);
va_end(ap);

struct iproute *

findroute(struct iproute *ipr, IPADDR ip, int bits, struct iproute **prev)
if(prev) *prev =0;
IPADDR ri;

ip = ntohl(ip);

FOREACH(ipr, ipr) {
ri = ntohl(ipr->ip);
if(ri >ip)

main.c
Printed: Friday, 18 March 2011 10:11:40 AM

Page 2 of 28

62
63
64
65
66
67
68
69
70

return 0;
if(iip ==ri) {
if(bits == ipr->bits)
return ipr;
if(bits > ipr->bits)
return O;
}
if(prev) *prev = ipr;
return O;
}
static void
dumproute(FILE *file, struct iproute *ipr) {

char ib[IFNAMSIZ];
fprintf(file, "%715s/%-2d %1s%1s %-15s %-8s rc %-5d gc %d\n",
formatip(ipr->ip), ipr->bits,
(ipr->rtype & RTYPE_LAYER2) 7?7 "2":
(ipr->rtype & RTYPE_STATIC) ? "S":
(ipr->rtype & RTYPE_PROTOCOL) ? "P" :
(ipr->rtype & RTYPE_LOCAL) ? "L":"R",
ipr->isgw ? "G" : " ",
ipr->peer ? formatip(REMIP(ipr->peer)) : "local",
ipr->ifindex ? if_indextoname(ipr->ifindex, ib) : "-",
ipr->cost, ipr->gwcost);
}
void
dumproutes(struct iproute *ipr) {
char ib[IFNAMSIZ];
FOREACH(ipr, ipr)
dbg("%s/%d %s%s -> %s iface %s rc %d gc %d",
formatip(ipr->ip), ipr->bits,
(ipr->rtype & RTYPE_LAYER2) ? "2":
(ipr->rtype & RTYPE_STATIC) ? "S":
(ipr->rtype & RTYPE_PROTOCOL) ? "P" :
(ipr->rtype & RTYPE_LOCAL) ? "L":"R",
ipr->isgw ? "G" : "",
ipr->peer ? formatip(REMIP(ipr->peer)) : "local",
ipr->ifindex ? if_indextoname(ipr->ifindex, ib) : "-",
ipr->cost, ipr->gwcost);

static void
braindump(void) {
FILE *file;
struct peer *peer;
struct iproute *ipr;
int i;
static char *statustemp = 0O;

if(Istatusfile) return;
if(statustemp) {
statustemp = malloc(strlen(statusfile) + 5);

main.c Page 3 of 28
Printed: Friday, 18 March 2011 10:11:40 AM

123 sprintf(statustemp, "%s.tmp", statusfile);
124}

125 file = fopen(statustemp, "w");

126 if('file) {

127 LOG1("Could not write %s: %m", statusfile);
128 statusfile = 0;

129 return;

130}

131

132

133

134

135 fprintf(file, "RouterlD %s Gateway %s GWCost %d%s\nPath",
136 formatip(routerid),

137 defgateway ? formatip(defgateway) : "unset",
138 gwcost, isgateway ? " gateway" : "");

139 if(isgateway)

140 fprintf(file, " local\n");

141 else if(gwcost !=-1 && gwpeer) {

142 for(i = 0; i <gwpeer->pathlen; i++)

143 fprintf(file, " %s", formatip(gwpeer->pathli]));
144 putc("\n', file);

145 }

146 else fprintf(file, " none\n");

147

148

149

150

151 FOREACH(peer, listens)

152 fprintf(file, "Listening on %s\n", formatip(LOCIP(peer)));
153

154

155

156

157 fprintf(file, "\nRouting table:\n");
158 FOREACH(ipr, localroutes)

159 dumproute(file, ipr);

160

161

162

163

164 FOREACH(peer, peers) {

165 fprintf(file, "\nPeer %s Source %s NextHop %s\n",
166 formatip(REMIP(peer)), formatip(LOCIP(peer)),
167 formatip(peer->nexthop));

168 fprintf(file, "Cost %d GWCost %d Poll %s Retry %s Fail %s"
169 " Type %s Status %s\n",

170 peer->cost, peer->gwcost,

171 formattime(peer->poll),

172 formattime(peer->retry),

173 formattime(peer->fail),

174 (peer->cloned) ? "dynamic" : "static",

175 (peer == gwpeer) ? "up-gw" :

176 (peer->synreq) 7 "down" : "up");

177 fprintf(file, "Path");

178 if(peer->gwcost ==-1)

179 fprintf(file, " none\n");

180 else {

181 for(i = 0; i <peer->pathlen; i++)

182 fprintf(file, " %s", formatip(peer->path[i]));
183 putc('\n', file);

main.c
Printed: Friday, 18 March 2011 10:11:40 AM

Page 4 of 28

184 }

185 fprintf(file, "Received routes:\n");
186 FOREACH(ipr, peer->routes)

187 dumproute(file, ipr);

188 fprintf(file, "Announced routes:\n");
189 FOREACH(ipr, peer->annrts)

190 dumproute(file, ipr);

191 }

192 fclose(file);

193

194

195

196

197 if(rename(statustemp, statusfile) ==-1) {
198 LOG1("Could not write %s: %m", statusfile);
199 statusfile = 0;

200 unlink(statustemp);

201 }

202 |}

203

204

205

206

207

208 || #define DFP_S(pkt,len,peer) if(debug >= 6) dp(1, pkt, len, peer)
209 | #define DFP_R(pkt,len,peer) if(debug >= 6) dp(O, pkt, len, peer)
210 || static void

211 |dp(int outbound, void *p, int len, struct peer *peer) {

212 u_char *ptr =p;

213 u_char *end;

214 struct frp_hdr *hdr;

215 struct frp_mhdr *mh;

216 struct frp_ctrl *cml;

217 struct frp_config *cmc;

218 struct frp_path *cmp;

219 struct frp_route *cmr;

220 int i;

221 char *t;

222 char buf[16 * MAX_PATH];

223

224 if(len ==-1) {

225 dbg("From: %s error: %m", formatip(REMIP(peer)));
226 return;

227 }

228

229 end = ptr + len;
230 hdr = (struct frp_hdr *) ptr;
231 ptr += sizeof(struct frp_hdr);

232

233 if(outbound)

234 dbg("S %s -> %s Iseq=%08x rseq=%08x len=%d",
235 formatip(LOCIP(peer)), formatip(REMIP(peer)),
236 ntohl(hdr->Iseq), ntohl(hdr->rseq), len);

237 else dbg("R %s <- %s rseq=%08x Iseq=%08x",

238 formatip(LOCIP(peer)), formatip(REMIP(peer)),
239 ntohl(hdr->rseq), ntohl(hdr->Iseq), len);

240

241 while(ptr <end) {

242 mh = (struct frp_mhdr *) ptr;

243 ptr += mh->len * sizeof(u_int32_t);

244 if(Imh->len) return;

main.c Page 5 of 28
Printed: Friday, 18 March 2011 10:11:40 AM

245 if(ptr > end) return;

246

247 switch(mh->type) {

248 case FRP_CTRL:

249 cml = (struct frp_ctrl *) mh;

250 switch(cml->ctrl) {

251 case FRP_CTRL_POLL: t = "poll"; break;

252 case FRP_CTRL_ACK: t = "ack"; break;

253 case FRP_CTRL_NAK: t = "nak"; break;

254 default: t = "unknown"; break;

255 }

256 dbg("CTRL C=%d (%s) P=%x", cml->ctrl, t, cml->param);
257 break;

258 case FRP_CONFIG:

259 cmc = (struct frp_config *) mh;

260 dbg("CONFIG id=%s c=%d poll=%d fail=%d",

261 formatip(cmc->id), ntohs(cmc->cost),

262 ntohs(cmce->poll), ntohs(cmc->fail));

263 break;

264 case FRP_PATH:

265 cmp = (struct frp_path *) mh;

266 t = buf;

267 for(i = 0; i <mh->len - 1; i++) {

268 sprintf(t, "%s%s", i? """

269 formatip(cmp->path[i]));

270 t = strchr(t,0);

271 }

272 dbg("PATH gd=%d p=%s", ntohs(cmp->gwcost), buf);
273 break;

274 case FRP_ROUTE:

275 cmr = (struct frp_route *) mh;

276 if(cmr->flags & FRP_FLAG_NULL)

277 dbg("ROUTE NULL flags=%x", cmr->flags);
278 else dbg("ROUTE %s/%u c=%d gc=%d flags=%x (%s%s%s)",
279 formatip(cmr->ip), cmr->bits,

280 ntohs(cmr->cost), ntohs(cmr->gwcost),

281 cmr->flags,

282 cmr->flags & FRP_FLAG_GATEWAY ? "G" : ""
283 cmr->flags & FRP_FLAG_BEGIN ? "B" : "",
284 cmr->flags & FRP_FLAG_COMMIT ? "C" : "");
285 break;

286 case FRP_CONFIG6:

287 dbg("CONFIG6 unsupported");

288 break;

289 case FRP_PATH®6:

290 dbg("PATH6 unsupported");

291 break;

292 case FRP_ROUTE®6:

293 dbg("ROUTEG unsupported");

294 break;

295 default:

296 dbg("UNKNOWN T=%02x L=%d", mh->type, mh->len * 4);
297 }

298 }

299 |}

300

301

302

303

304

305 |int

main.c

Printed: Friday,

18 March 2011 10:11:40 AM

306
307
308
309
310
311

312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341

342

checkacl(struct acl *acl, IPADDR ip, int bits, int rtype, int ifindex) {
struct ace *ace;

FOREACH(ace, acl->head) {
if(ace->bits >0 && (ip & maskbits[ace->bits]) = ace->ip)
continue;
if(bits !=-1 && (bits <ace->bits Il bits > ace->maxbits))
continue;
if(rtype && ace->rtype && !(rtype & ace->rtype))
continue;
if(ifindex && ace->ifindex && ace->ifindex != ifindex)
continue;
if(ace->acl && !checkacl(ace->acl, ip, bits, rtype, ifindex))
continue;
return ace->permit;
}
return 0;

}

#include <sha.h>

static u_int8_t *

dohash(u_char *buf, int len, char *secret, IPADDR sa, IPADDR da) {
static u_int8_t hash[SHA_DIGEST_LENGTH];
SHA_CTX shctx;

SHA _Init(&shctx);
SHA_Update(&shctx,
SHA_Update(&shctx,

buf, len);

(u_char *)&sa, sizeof(IPADDR));
SHA_Update(&shctx, (u_char *)&da, sizeof(IPADDR));
SHA_Update(&shctx, secret, strlen(secret));
SHA_Final(hash, &shctx);

return hash;

static int
checksecure(u_char *pkt, int len, struct peer *peer) {
u_int8_t *hash;

hash = dohash(pkt + FRP_HASHSIZE, len - FRP_HASHSIZE,
REMIP(peer), LOCIP(peer));
if('memcmp(hash, pkt, FRP_HASHSIZE))
return 1;
LOG2("packet security failure");
return O;

peer->secret,

static void

main.c

Printed:

Friday, 18 March 2011 10:11:40 AM

367 |secure(struct peer *peer, struct frp_hdr *pkt, int len) {

368
369
370
371
372
373
374
375
376
377 |}
378
379
380
381
382

u_int8_t *hash;

if(lpeer->secret) {
memset(pkt->hash, 0, FRP_HASHSIZE);
return;

}
hash = dohash(&pkt->hash[FRP_HASHSIZE], len-FRP_HASHSIZE, peer->secret,

LOCIP(peer), REMIP(peer));
memcpy(pkt->hash, hash, FRP_HASHSIZE);

383 | static u_int32_t
384 | initseq(void) {

385

static u_int32_t r = Oxbabefeel;
int fd;
struct timeval tv;

do {
fd = open("/dev/urandom", O_RDONLY);
if(fd 1=-1) {
read(fd, &r, sizeof(r));
close(fd);
}
gettimeofday(&tv, 0);
r =r Arouterid Atv.tv_sec Atv.tv_usec A(getpid() << 16)
Agetppid();
}
while(r == 0);
return r;

407 | static void
408 | sendsyn(struct peer *peer) {

struct frp_hdr syn;

syn.Ilseq = htonl(peer->Iseq);
syn.rseq = 0;

secure(peer, &syn, sizeof(syn));
DFP_S(&syn, sizeof(syn), peer);
write(peer->fd, &syn, sizeof(syn));
return;

423 | static void

424 | sendnak(struct peer *peer, int fd, u_int32_t Iseq,

struct {
struct frp_hdr hdr;
struct frp_ctrl ctrl;

u_int32_t rseq) {

main.c
Printed: Friday, 18 March 2011 10:11:40

AM

Page 8 of 28

428
429
430
431
432
433
434

} nak;
static TIMETEN nextnak = O;

if(now < nextnak)
return;
nextnak = now + 10;

nak.hdr.Iseq = htonl(ntohl(rseq) + 1);
if(nak.hdr.Iseq == 0)

nak.hdr.Iseq = htonl(1);
nak.hdr.rseq = Iseq;
nak.ctrl.mh.type = FRP_CTRL;
nak.ctrl.mh.len = 1;
nak.ctrl.ctrl = FRP_CTRL_NAK;
nak.ctrl.param = 0;
secure(peer, &nak.hdr, sizeof(nak));
DFP_S(&nak, sizeof(nak), peer);
write(fd, &nak, sizeof(nak));

static void
resetpeer(struct peer *peer, int full) {

peer->lastpktlen = 0;
peer->nextpktlen = 0;

peer->lseq = initseq();
peer->aseq =0;
peer->rseq = 0;

peer->nextrt = 0;
peer->nullrt = 0;

peer->ackreq = 0;
peer->synreq =1;
peer->configreq =0;

peer->pathreq = 0;
peer->pollreq =0
peer->respreq = 0;
peer->sendack = 0;
peer->nexttime = 0;

peer->poll = peer->confpoll;
peer->fail = peer->conffail;
peer->cost = peer->confcost;
peer->retry = peer->confretry;
peer->quickstart = O;

main.c
Printed: Friday, 18 March 2011 10:11:40 AM

Page 9 of 28

489
490
491
492
493
494
495
496
497
498
499

if(full) {
peer->lasttime = 0;
peer->shutdown = 0;
peer->routerid
peer->gwcost
peer->pathlen
checkroutes = 1;

static void *

addmessage(struct peer *peer, int size, int type) {
u_char *ptr;
struct frp_mhdr *hdr;

if(Ipeer->nextpacket) {
peer->nextpacket = malloc(MAX_PACKET);
peer->nextpktlen = 0;
}
if('peer->nextpktlen)
peer->nextpktlen = sizeof(struct frp_hdr);
if(Isize Il peer->nextpktlen + size > MAX_PACKET)
return 0;
ptr = peer->nextpacket + peer->nextpktlen;
peer->nextpktlen += size;
peer->ackreq = 1;
hdr = (struct frp_mhdr *) ptr;
hdr->len = size / sizeof(u_int32_t);
hdr->type = type;
return ptr;

#define DROP(msg) { LOG3("dropping packet: %s", msg); return; }

static void
process_packet(u_char *ptr, int len, struct peer *peer) {
u_char *end;
struct frp_hdr *hdr;
struct frp_mhdr *mh;
struct frp_ctrl *cml;
struct frp_config *cmc;
struct frp_path *cmp;
struct frp_route *cmr;
int ¢;
int i;
struct frp_hdr ack;
u_int32_t Iseq, rseq, xseq;
struct iproute *ipr;

end = ptr + len;

hdr = (struct frp_hdr *) ptr;
Iseq = ntohl(hdr->Iseq);

rseq = ntohl(hdr->rseq);

ptr += sizeof(struct frp_hdr);

main.c

Printed: Friday, 18 March 2011 10:11:40 AM
550

551 LOG8("from=%s:%d to=%s:%d syn=%d conf=%d path=%d"
552 " Iseq=%x aseq=%x rseq=%x xseq=%x\n",
553 formatip(REMIP(peer)), ntohs(peer->rsa.sin_port),
554 formatip(LOCIP(peer)), ntohs(peer->Isa.sin_port),
555 peer->synreq, peer->configreq, peer->pathreq,
556 peer->lseq, peer->aseq, peer->rseq, peer->xseq);
557

558 if("hdr->Iseq)

559 DROP("zero in Iseq")

560

561

562

563

564

565

566

567

568 if("hdr->rseq) {

569 if(len != sizeof(struct frp_hdr))

570 DROP("null rseq with payload")

571 peer->xseq = NEXTSEQ(Iseq);

572 ack.Iseq = htonl(peer->Iseq);

573 ack.rseq = htonl(Iseq);

574 secure(peer, &ack, sizeof(ack));

575 DFP_S(&ack, sizeof(ack), peer);

576 write(peer->fd, &ack, sizeof(ack));

577 return;

578 }

579

580

581

582

583

584 if(rseq != peer->Iseq &&

585 rseq != peer->aseq) {

586 sendnak(peer, peer->fd, hdr->Iseq, hdr->rseq);
587 DROP("unexpected packet rseq")

588 }

589 Xseq = peer->rseq;

590 if(xseq) {

591 for(i =2;i>0; i—-) {

592 if(Ilseq == xseq)

593 break;

594 xseq = NEXTSEQ(xseq);

595

596 if(li && (!peer->xseq Il peer->xseq != Iseq))
597 DROP("unexpected packet Iseq")

598 }

599

600

601

602

603

604

605

606 if(rseq == peer->Iseq && peer->aseq != peer->Iseq) {
607 LOG8("ack received");

608 peer->aseq = peer->Iseq;

609 peer->lasttime = now;

610 peer->lastpktlen = 0;

main.c Page 11 of 28
Printed: Friday, 18 March 2011 10:11:40 AM
611 if(peer->synreq) {

612 LOG6("%s: SYN acknowledged", formatip(REMIP(peer)));
613 peer->synreq = 0;

614 peer->configreq = 1;

615 peer->pathreq = 1;

616 peer->nextrt = 0;

617 peer->nullrt = 0;

618 }

619 }

620

621

622

623

624

625

626

627 Xseq = peer->Xseq;

628 peer->xseq = 0;

629 if(Iseq != peer->rseq) {

630 peer->sendack = 1;

631 peer->rseq = Iseq;

632 LOG8("ACK flag set");

633 if(xseq) {

634 peer->synreq = 0;

635 peer->configreq = 1;

636 peer->pathreq = 1;

637 peer->pollreq = 0O;

638 peer->nextrt = 0;

639 peer->nullrt = 0;

640 }

641 }

642

643

644

645

646

647 else {

648 if(len > sizeof(struct frp_hdr))

649 peer->sendack = 1;

650 return;

651 }

652

653 while(ptr <end) {

654 mh = (struct frp_mhdr *) ptr;

655

656 ptr += mh->len * sizeof(u_int32_t);
657 if(Imh->len) DROP("bad mh->len")
658 if(ptr > end) DROP("mh->len past end")
659

660 switch(mh->type) {

661 case FRP_CTRL:

662 cml = (struct frp_ctrl *) mh;
663 if(cml->ctrl == FRP_CTRL_POLL)
664 peer->respreq = 1;

665 else if(cml->ctrl == FRP_CTRL_NAK) {
666 LOG3("%s: NAK received for peer",
667 formatip(REMIP(peer)));
668 resetpeer(peer, 0);

669 break;

670 }

671 break;

main.c

Printed: Friday, 18 March 2011 10:11:40 AM

Page 12 of 28

672
673
674
675
676
677
678
679
680
681

682
683
684
685
686
687
688
689
690
691

692
693
694
695
696
697
698

case FRP_CONFIG:
cmc = (struct frp_config *) mh;
LOG6("%s: router ID = %s cost = %d",
formatip(REMIP(peer)),
formatip(cmc->id), ntohs(cmc->cost));

if(peer->routerid != cmc->id) {
if(cmec->id == routerid) {
peer->shutdown = 1;
DROP("duplicate router ID")
}
peer->routerid = cmc->id;
checkroutes = 1;

¢ = ntohs(cmc->cost);

if(c <peer->confcost)
¢ = peer->confcost;

if(c != peer->cost) {
peer->cost = ¢;
checkroutes = 1;

b

¢ = ntohs(cmc->fail);

if(c >= 10 && c < peer->conffail)
peer->fail =c;

else peer->fail = peer->conffail;

¢ = ntohs(cmc->poll);

if(c >=1 && c < peer->confpoll)
peer->poll =c;

else peer->poll = peer->confpoll;

c = (peer->fail - peer->poll - 1)/ 3;
ifc <1)c=T1;
if(peer->confretry > c)
peer->retry =c;
else peer->retry = peer->confretry;

main.c Page 13 of 28
Printed: Friday, 18 March 2011 10:11:40 AM
733

734

735

736

737

738 if(ntohl(routerid) < ntohl(peer->routerid))
739 peer->poll++;

740

741 LOG1("%s: Configured: id=%s cost=%d poll=%d"
742 " retry=%d fail=%d",

743 formatip(REMIP(peer)),

744 formatip(peer->routerid), peer->cost,
745 peer->poll, peer->retry, peer->fail);
746 break;

747

748

749

750

751

752 case FRP_PATH:

753 cmp = (struct frp_path *) mh;

754 ¢ =mh->len - 1;

755 if(c >= MAX_PATH) {

756 peer->shutdown = 1;

757 break;

758 }

759 peer->pathlen = c;

760 for(i =0; i <c; i++)

761 peer->path[i] = cmp->pathli];

762

763 ¢ = ntohs(cmp->gwcost);

764 if(c == FRP_NOGATEWAY)

765 c=-1;

766 if(peer->gwcost != c)

767 peer->gwcost = ¢;

768 checkroutes = 1;

769 if(peer->annrts) {

770 peer->nullrt = 0;

771 peer->nextrt = peer->annrts;

772 }

773 else peer->nullrt = 1;

774 break;

775

776

777

778

779 case FRP_ROUTE:

780 cmr = (struct frp_route *) mh;

781

782

783

784

785 if(cmr->flags & FRP_FLAG_BEGIN)
786 KILLROUTES(peer->newrts)

787

788

789

790

791 if(cmr->flags & FRP_FLAG_NULL) {
792 LOG6("%s: Null route",formatip(REMIP(peer)));
793 }

main.c
Printed: Friday, 18 March 2011 10:11:40 AM

Page 14 of 28

794
795
796
797
798
799
800
801

802
803
804
805
806
807
808
809
810
811

812
813
814
815
816
817
818
819
820
821

822
823
824
825
826
827
828
829
830
831

832
833
834
835
836
837
838
839
840
841

842
843
844
845
846
847
848
849
850
851

852
853
854

else {

NEWROUTE((ipr)
ipr->ip = cmr->ip;
ipr->bits = cmr->bits;
ipr->isgw = !l(cmr->flags & FRP_FLAG_GATEWAY);
ipr->cost = ntohs(cmr->cost);
ipr->gwcost = ntohs(cmr->gwcost);
ipr->peer = peer;
ipr->ifindex = 0;
ipr->rtype = 0;
ipr->next = peer->newrts;
peer->newrts = ipr;
LOG6("%s: Route %s/%d flags=%x gw=%d c=%d"
" gc=%d",
formatip(REMIP(peer)),
formatip(cmr->ip), ipr->bits,
ipr->bits, ipr->isgw, ipr->cost,
ipr->gwcost);

if(cmr->flags & FRP_FLAG_COMMIT) {

}

KILLROUTES(peer->routes)
peer->routes = peer->newrts;
peer->newrts = 0;
checkroutes = 1;

break;

case FRP_CONFIG6:
case FRP_PATH®6:
case FRP_ROUTES6:
DROP("IPv6 not supported")

default:
DROP("bad msg type")

}
}
}

static int

connectpeer(struct peer *peer, int doconnect) {

int fd;
int i;

main.c Page 15 of 28 main.c Page 16 of 28

Printed: Friday, 18 March 2011 10:11:40 AM Printed: Friday, 18 March 2011 10:11:40 AM
855 916 struct timeval tv;

856 fd = socket(PF_INET, SOCK_DGRAM, 0); 917 u_char buf[65536];

857 if(fd <0) 918 struct rt_msghdr *rtm;

858 goto oops; 919 struct frp_hdr *hdr;

859 i=1; 920 TIMETEN lasttime;

860 if(setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &i, sizeof(int))) 921 int len;

861 goto oops; 922 struct peer *peer, *lastpeer, *nextpeer;
862 if(setsockopt(fd, IPPROTO_IP, IP_TTL, &peer->ttl, sizeof(int))) 923 struct peer *listen;

863 goto oops; 924 struct frp_ctrl *cml;

864 LOG8("bind %s:%d", formatip(LOCIP(peer)), ntohs(peer->Isa.sin_port)); 925 struct frp_config *cmc;

865 if(bind(fd, (struct sockaddr *)&peer->Isa, sizeof(struct sockaddr_in))) 926 struct frp_path *cmp;

866 goto oops; 927 struct frp_route *cmr;

867 if(doconnect) { 928 struct iproute *ipr, *pipr, *nipr;

868 LOG8("connect %s:%d", formatip(REMIP(peer)), 929 u_int32_t rseq;

869 ntohs(peer->rsa.sin_port)); 930 int pfd;

870 if(connect(fd, (struct sockaddr *) &peer->rsa, 931 FILE *pf;

871 sizeof(struct sockaddr_in))) 932 extern char *optarg;

872 goto oops; 933 char *configfile;

873 } 934 int foreground;

874 return fd; 935 int debuglvl;

875 936 int forceexit;

876 |oops: LOG1("Could not %s to %s: %m", doconnect ? "connect to" : "listen on", 937 time_t basetime;

877 formatip(doconnect ? REMIP(peer) : LOCIP(peer))); 938

878 if(fd '=-1) 939

879 close(fd); 940

880 return -1; 941

881} 942 configfile = "frpd.conf";

882 943 foreground = 0O;

883 944 debuglvl = -1;

884 945 forceexit = 0;

885 | static int restart = 0; 946 while((i = getopt(argc, argv, "c:d:fp:xX")) !=-1) switch(i) {
886 | static int shutdwn = 0O; 947 case 'c't configfile = optarg; break;
887 | static int exitnow = O; 948 case 'd": debuglvl = atoi(optarg); break;
888 949 case 'f': foreground = 1; break;
889 | static void 950 case 'p': pidfile = optarg; break;
890 | ouch(int sig) { 951 case 'x': forceexit = SIGINT; break;
891 switch(sig) { 952 case 'X": forceexit = SIGTERM; break;
892 case SIGUSR1: if(debug < 8) 953 default: return 1;

893 LOGO("Debug level raised to %d", ++debug); 954 }

894 break; 955

895 case SIGUSR2: if(debug > 0) 956

896 LOG1("Debug level lowered to %d", --debug); 957

897 break; 958

898 case SIGHUP: exitnow = restart = 1; 959 for(i = 0; i <= 32; i++)

899 LOG1("SIGHUP received, restarting ..."); 960 maskbits[i] = htonl(Oxffffffff << (32 - i));
900 break; 961 parse_acl_std();

901 case SIGTERM: exitnow = shutdwn = 1; 962

902 LOG1("SIGTERM received, full shutdown"); 963

903 break; 964

904 case SIGINT: exitnow = 1; 965

905 LOG1("SIGINT received, shutting down"); 966 if(forceexit) {

906 break; 967 if('pidfile)

907 } 968 parse_config(configfile);

908 |} 969 if(Ipidfile) {

909 970 fprintf(stderr, "No PID file defined\n");
910 |int 971 return 1;

911 | main(int argc, char **argv) { 972 }

912 inti, j; 973 pf = fopen(pidfile, "r");

913 socklen_t sal; 974 if(Ipf) {

914 fd_set fds; 975 fprintf(stderr, "Could not open PID file %s: %s\n",
915 int fdc; 976 pidfile, strerror(errno));

main.c

Printed: Friday, 18 March 2011 10:11:40 AM

Page 17 of 28

977
978
979
980
981
982
983
984
985
986

return 0;
}
i=-1;
fscanf(pf, "%d", &i);

if(i >1 && flock(fileno(pf), LOCK_EX | LOCK_NB) == -1
&& errno == EWOULDBLOCK) {

fclose(pf);
if(kill(i, forceexit) == 0)
return 0;
fprintf(stderr, "Could not kill PID %d: %s\n",

i, strerror(errno));

}

flock(fileno(pf), LOCK_UN);

fclose(pf);

fprintf(stderr, "Existing daemon not running\n");
return 1;

if(\parse_config(configfile))
return 1;

if(peers && llistens) {
fprintf(stderr, "No peers defined\n");
return 1;

}
if(debuglvl >= 0 && debuglvl <= 8)
debug = debuglvl;

if('foreground)
daemon(1, 1);
pid = getpid();

rtsocket = socket(PF_ROUTE, SOCK_RAW, AF_INET);
if(rtsocket ==-1) {
perror("routing socket");
return 1;
}
i=0;
if(setsockopt(rtsocket, SOL_SOCKET, SO_USELOOPBACK, &i, sizeof(i)) <0){
perror("setsockopt");
return 1;

}

openlog("frpd", (foreground ? LOG_PERROR : 0), LOG_DAEMON);

main.c
Printed:

Friday, 18 March 2011 10:11:40 AM

Page 18 of 28

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

signal(SIGHUP, ouch);
signal(SIGINT, ouch);
signal(SIGTERM, ouch);
signal(SIGUSR1, ouch);
signal(SIGUSR2, ouch);

pf =0;
if(pidfile) {
while((pf = fopen(pidfile, "r+"))) {
if(flock(fileno(pf), LOCK_EX | LOCK_NB) == -1
&& errno == EWOULDBLOCK) {
i=-1;
fscanf(pf, "%d", &i);
if(i >1) {
LOG1("Killing existing process %d", i);
if(kill(i, SIGINT) ==0) {
flock(fileno(pf), LOCK_EX);
flock(fileno(pf), LOCK_UN);
fclose(pf);
sleep(1);
pf =0;
continue;

}

}
LOGO("Could not lock PID file");
return 1;
}
rewind(pf);
fprintf(pf, "%d\n", (int) pid);
fflush(pf);
break;
}
if('pf) {
pf = fopen(pidfile, "w");
if(pf) {
flock(fileno(pf), LOCK_EX);
fprintf(pf, "%d\n", (int) pid);
fflush(pf);

}
else LOG1("Could not write PID file %s: %m",
pidfile);

gettimeofday(&tv, 0);
basetime = tv.tv_sec;

main.c

Printed:

Friday, 18 March 2011 10:11:40 AM

Page 19 of 28

1099
1100
1101
1102
1103
1104
1105

now = tv.tv_usec / 100000;

lastpeer = nextpeer = 0;
for(peer = peers; peer; peer = nextpeer) {
nextpeer= peer->next;
resetpeer(peer, 1);
peer->fd = connectpeer(peer, 1);
if(peer->fd ==-1) {
if(lastpeer)
lastpeer->next = nextpeer;
else peers = nextpeer;
free(peer);
}
else lastpeer = peer;
}
for(peer = listens; peer; peer = nextpeer) {
nextpeer = peer->next;
peer->fd = connectpeer(peer, 0);
if(peer->fd ==-1) {
if(lastpeer)
lastpeer->next = nextpeer;
else listens = nextpeer;
free(peer);
}

else lastpeer = peer;

if(peers && llistens) {
LOG1("No active peers/listens");
exitnow = 1;

}

if(Irouterid) {
if(listens)
routerid = LOCIP(listens);
else if(peers)
routerid = LOCIP(peers);
}

LOG1("Starting, routerid=%s, PID=%d", formatip(routerid),

checkroutes = 1;
lasttime = 0O;
while(lexitnow) {

if(now != lasttime) {
lasttime = now;

main.c

Printed: Friday, 18 March 2011 10:11:40 AM

Page 20 of 28

1160
1161
1162
1163
1164
1165
1166

FOREACH(peer, peers) {

if(peer->lasttime &&
now >= peer->lasttime + peer->fail) {
peer->shutdown = 1;
continue;

t

if(now < peer->nexttime)
continue;

if(peer->synreq) {
sendsyn(peer);
if(peer->quickstart < peer->poll)
peer->nexttime = now
+ (++peer->quickstart);
else peer->nexttime = now
+ peer->poll;

else if(peer->Iseq = peer->aseq
&& peer->lastpktlen) {
DFP_S(peer->lastpacket,peer->lastpktlen,
peer);
hdr = (struct frp_hdr *)
peer->lastpacket;
rseq = ntohl(peer->rseq);
if(hdr->rseq !=rseq) {
hdr->rseq = rseq;
secure(peer, hdr,
peer->lastpktlen);
}
write(peer->fd, peer->lastpacket,
peer->lastpktlen);
peer->nexttime = now + peer->retry;

else if(now >= peer->lasttime + peer->poll)

main.c
Printed:

Friday, 18 March 2011 10:11:40 AM

Page 21 of 28

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

peer->pollreq = 1;

if(checkroutes) {
i = gwcost;
checkroutes = getroutes();
if(isgateway && i != gwcost)
checkroutes = getroutes();
if(statusfile)
braindump();

lastpeer = nextpeer = 0;
for(peer = peers; peer; peer = nextpeer) {
nextpeer = peer->next;
if(peer->shutdown) {
LOG1("Peer %s shut down",
formatip(REMIP(peer)));

KILLROUTES(peer->routes);
KILLROUTES(peer->newrts);
KILLROUTES(peer->annrts);
checkroutes = 2;

if(peer->cloned) {
LOG8("Cloned peer deleted");
close(peer->fd);
if(peer == gwpeer)
gwpeer = 0;
pipr = nipr = 0;
for(ipr=localroutes; ipr; ipr = nipr) {
nipr = ipr->next;
if(ipr->peer == peer) {
if (pipr)
pipr->next = nipr;
else localroutes = nipr;
FREEROUTE(ipr)
}
else pipr =ipr;

}

main.c

Printed: Friday, 18 March 2011 10:11:40 AM

Page 22 of 28

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312

if(lastpeer)
lastpeer->next = nextpeer;
else peers = nextpeer;
if(peer->lastpacket)
free(peer->lastpacket);
if(peer->nextpacket)
free(peer->nextpacket);
free(peer);
continue;

resetpeer(peer, 1);
}
lastpeer = peer;

}

FOREACH(peer, peers) {

if(peer->Iseq != peer->aseq |l Ipeer->rseq
Il peer->synreq)
continue;

if(peer->configreq) {
cmc = addmessage(peer, sizeof(*cmc),
FRP_CONFIG);
if(cmce) {
cmc->cost = htons(peer->cost);
cme->id = routerid;
cmce->poll = htons(peer->confpoll);
cmce->fail = htons(peer->conffail);
peer->configreq = 0;
LOG6("%s: Added config",
formatip(REMIP(peer)));

if(peer->pathreq) {
if(gwpeer)
j = gwpeer->pathlen;
else j =0;

cmp = addmessage(peer, sizeof(*cmp)
+ sizeof(IPADDR) * (j+1),
FRP_PATH);
if(cmp) {
cmp->gwcost = htons(gwcost);

main.c Page 23 of 28 main.c Page 24 of 28

Printed: Friday, 18 March 2011 10:11:40 AM Printed: Friday, 18 March 2011 10:11:40 AM
1343 cmp->path[0] = routerid; 1404 }

1344 for(i =0; i <j; i++) 1405 }

1345 cmp->path[i+1] = gwpeer->pathlil; 1406

1346 peer->pathreq = O; 1407

1347 LOG6("%s: Added path gwcost=%d", 1408

1348 formatip(REMIP(peer)), 1409

1349 gwcost); 1410

1350 } 1411 if(peer->respreq) {

1351 } 1412 cml = addmessage(peer, sizeof(struct frp_ctrl),
1352 1413 FRP_CTRL);

1353 1414 if(cml) {

1354 1415 cml->ctrl = FRP_CTRL_ACK;
1355 1416 cml->param = 0;

1356 1417 }

1357 while(peer->nextrt) { 1418 peer->respreq = 0;

1358 cmr = addmessage(peer,sizeof(*cmr), FRP_ROUTE); 1419 }

1359 if(lcmr) break; 1420

1360 ipr = peer->nextrt; 1421

1361 cmr->flags = ((ipr == peer->annrts) ? 1422

1362 FRP_FLAG_BEGIN : 0) 1423

1363 | ((ipr->next == 0) ? 1424

1364 FRP_FLAG_COMMIT : 0) 1425 if(peer->sendack) {

1365 | ((ipr->isgw) ? 1426 addmessage(peer, 0, 0);

1366 FRP_FLAG_GATEWAY : 0); 1427 peer->sendack = 0;

1367 cmr->bits = ipr->bits; 1428 }

1368 cmr->cost = htons(ipr->cost); 1429

1369 cmr->gwcost = htons(ipr->gwcost); 1430

1370 cmr->ip = ipr->ip; 1431

1371 peer->nextrt = ipr->next; 1432

1372 LOG6("%s: Added route %s/%d", 1433

1373 formatip(REMIP(peer)), 1434

1374 formatip(ipr->ip), ipr->bits); 1435 if(peer->nextpktlen) {

1375 } 1436 if(peer->ackreq) {

1376 1437 peer->Iseq = NEXTSEQ(peer->Iseq);
1377 1438 peer->ackreq = 0;

1378 1439 }

1379 1440 hdr = (struct frp_hdr *)peer->nextpacket;
1380 if(peer->nullrt) { 1441 hdr->Iseq = htonl(peer->Iseq);

1381 cmr = addmessage(peer, FRP_NULLRT_SIZE, 1442 hdr->rseq = htonl(peer->rseq);

1382 FRP_ROUTE); 1443 secure(peer, hdr, peer->nextpktlen);
1383 if(cmr) { 1444 DFP_S(hdr, peer->nextpktlen, peer);
1384 cmr->flags = FRP_FLAG_NULL 1445 write(peer->fd, hdr, peer->nextpktlen);
1385 | FRP_FLAG_BEGIN 1446 peer->nextpacket = peer->lastpacket;
1386 | FRP_FLAG_COMMIT; 1447 peer->lastpacket = (u_char *) hdr;
1387 cmr->bits = 0; 1448 peer->lastpktlen = peer->nextpktlen;
1388 peer->nullrt = 0; 1449 peer->nextpktlen = 0;

1389 LOG6("%s: Added null route list", 1450 peer->nexttime = now + peer->retry;
1390 formatip(REMIP(peer))); 1451 }

1391 } 1452 }

1392 } 1453

1393 1454

1394 1455 fdc = rtsocket + 1;

1395 1456 FD_ZERO(&fds);

1396 1457 FD_SET(rtsocket, &fds);

1397 if(peer->polireq) { 1458

1398 cml = addmessage(peer, sizeof(struct frp_ctrl), 1459 FOREACH(peer, listens) {

1399 FRP_CTRL); 1460 if(peer->fd >= fdc)

1400 if(cml) { 1461 fdc = peer->fd + 1;

1401 cml->ctrl = FRP_CTRL_POLL; 1462 FD_SET(peer->fd, &fds);

1402 cml->param = 0; 1463 }

1403 peer->pollreq = 0; 1464 i=10;

main.c

Printed: Friday, 18 March 2011 10:11:40 AM

Page

25 of 28

1465
1466
1467
1468
1469
1470
1471

if(checkroutes)
i=1;
FOREACH(peer, peers) {
if(peer->fd >= fdc)
fdc = peer->fd + 1;
FD_SET(peer->fd, &fds);
if(peer->Iseq != peer->aseq) {
j = peer->nexttime - now;
if(G >=0&& j <i)
=
}
else {
j = peer->lasttime + peer->poll - now;
if(j >=0&& j <i)
i=j
}
LOG8("now=%d nexttime=%d lasttime=%d poll=%d"
" retry=%d fail=%d i=%d",
now, peer->nexttime, peer->lasttime,
peer->poll, peer->retry, peer->fail, i);
}
LOG8("Waiting %s seconds", formattime(i));
tv.tv_sec =i/ 10;
tv.tv_usec = (i % 10) * 100000;
if(!i) tv.tv_usec = 20000;
i = select(fdc, &fds, 0, 0, &tv);

gettimeofday(&tv, 0);
now = tv.tv_sec - basetime;
now = now * 10 + tv.tv_usec / 100000;

if(i <=0) {
if(i == 0 Il errno == EINTR)
continue;
perror("select");
return 1;

}

if(FD_ISSET (rtsocket, &fds)) {
len = read(rtsocket, buf, sizeof(buf));
rtm = (struct rt_msghdr *) buf;
if('checkroutes && len >= sizeof(struct rt_msghdr)
&& (rtm->rtm_type == RTM_ADD
Il rtm->rtm_type == RTM_DELETE
Il tm->rtm_type == RTM_CHANGE)
&& !(rtm->rtm_flags & (RTF_REJECT
| RTF_DYNAMIC
| RTF_MODIFIED
| RTF_WASCLONED
| RTF_BROADCAST
| RTF_MULTICAST)))
checkroutes = 1;
LOG8("Route message type %d flags %x check=%d",
rtm->rtm_type, rtm->rtm_flags, checkroutes);

main.c
Printed:

Friday, 18 March 2011 10:11:40 AM

Page 26 of 28

1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

FOREACH(listen, listens) if(FD_ISSET (listen->fd, &fds)) {
sal = sizeof(struct sockaddr_in);
len = recvfrom(listen->fd, buf, sizeof(buf), O,
(struct sockaddr *) &listen->rsa, &sal);
DFP_R(buf, len, listen);

if(listen->remote) {
if(checkacl(listen->remote,
REMIP(listen), -1, 0, 0)) {
LOG2("rejected packet from %s\n",
formatip(REMIP(listen)));
continue;
}
}

if(listen->secret && !checksecure(buf, len, listen))
continue;

pfd = connectpeer(listen, 1);
if(pfd ==-1)
continue;

hdr = (struct frp_hdr *) buf;

if(len != sizeof(struct frp_hdr) Il hdr->rseq !'= 0) {
LOG6("NAK %s", formatip(REMIP(listen)));
sendnak(listen, pfd, hdr->Iseq, hdr->rseq);
close(pfd);
continue;

main.c Page 27 of 28 main.c Page 28 of 28
Printed: Friday, 18 March 2011 10:11:40 AM Printed: Friday, 18 March 2011 10:11:40 AM

1587 peer = malloc(sizeof(struct peer)); 1648
1588 *peer = *listen; 1649
1589 peer->next = peers; 1650
1590 peers = peer; 1651
1591 1652
1592 getlocaladdr(peer, REMIP(listen), O0); 1653 if(pf) {

1593 peer->lsa = listen->lsa; 1654 unlink(pidfile);

1594 peer->rsa = listen->rsa; 1655 flock(fileno(pf), LOCK_UN);
1595 if('peer->nexthop) 1656 fclose(pf);

1596 peer->nexthop = REMIP(peer); 1657 }

1597 peer->cloned = 1; 1658 if(statusfile)

1598 peer->fd = pfd; 1659 unlink(statusfile);

1599 peer->shutdown = 0O; 1660
1600 resetpeer(peer, 1); 1661
1601 1662
1602 1663
1603 1664 if(restart)

1604 1665 execv(argv[0], argv);
1605 LOG1("Connect from %s established", 1666
1606 formatip(REMIP(peer))); 1667 return 0;
1607 process_packet(buf, len, peer); 1668 |}
1608 } 1669
1609 1670
1610 1671
1611
1612
1613
1614
1615 FOREACH(peer, peers) if(FD_ISSET(peer->fd, &fds)) {
1616 len = read(peer->fd, buf, sizeof(buf));

1617 DFP_R(buf, len, peer);

1618
1619 if(len < (int) sizeof(struct frp_hdr)) {

1620 if(len 1= -1)

1621 LOG3("%s: short packet",

1622 formatip(REMIP(peer)));

1623 continue;

1624 }

1625 if(lpeer->secret Il checksecure(buf, len, peer))
1626 process_packet(buf, len, peer);

1636 if(shutdwn) {
1637 peers = 0;
1638 getroutes();
1639 }

1646 FOREACH(peer, peers) if(!peer->synreq)
1647 sendnak(peer, peer->fd, htonl(peer->rseq), htonl(peer->Iseq));

parse.c Page 1 of 11 parse.c Page 2 of 11

Printed: Friday, 18 March 2011 10:11:25 AM Printed: Friday, 18 March 2011 10:11:25 AM
1 || #include "frpd.h" 62 union { u_int8_t b[4]; IPADDR a; } ipa;
2 63 int i, j;

3 64 char *t;

4 | static char *secret = 0; 65

5 66 ipa.a = 0;

6 67 for(i =0; i <4; i++) {

7 68 j = strtol(s, &t, 10);

8 || static char * 69 if(t ==s) return "Invalid IP address";
9 | gettmp(int size) { 70 s=t+1;

10 static char buf[64]; 71 ipa.b[i] = (unsigned) j;

1 static char *ptr = buf; 72 if(*t 1=".") break;

12 char *s; 73 }

13 if(ptr + size >= buf + sizeof(buf)) 74

14 ptr = buf; 75 if(*t =="/") {

15 s = ptr; 76 if(tbits_p) return "Invalid IP address";

16 ptr += size; 77 bits = strtol(s, &t, 10);

17 return s; 78 if(s ==t Il bits <0 Il bits > 32)

18 |} 79 return "Invalid prefix length";

19 80 if(*t =="") {

20 81 if('maxbits_p) return "Invalid prefix length";

21 ||char * 82 s=t+1;

22 | formatip(IPADDR ip) { 83 maxbits = strtol(s, &t, 10);

23 union { u_int8_t b[4]; IPADDR a; } ipa; 84 if(s ==t Il maxbits < bits Il maxbits > 32)

24 char *s; 85 return "Invalid prefix range";

25 86 }

26 s = gettmp(16); 87 else maxbits = bits;

27 ipa.a = ip; 88 }

28 sprintf(s, "%u.%u.%u.%u", ipa.b[0], ipa.b[1], ipa.b[2], ipa.b[3]); 89 else maxbits = bits = 32;

29 return s; 90 if(*t) return "Invalid IP address";

30|} 91 if((ipa.a & maskbits[bits]) != ipa.a)

31 92 return "IP address mask mismatch";

32|/ char * 93 *ip_p =ipa.a;

33| formattime(TIMETEN t) { 94 if(bits_p) *bits_p = bits;

34 char *s = gettmp(16); 95 if(maxbits_p) *maxbits_p = maxbits;

35 intd=t% 10; 96 return O;

36 sprintf(s, "%u%c%c", t/ 10,d?"'':0,d+"'0"); 97|}

37 return s; 98

38} 99

39 100 | struct acl *

40 || static char * 101 | findacl(char *name, int create) {

41 | parsetime(char *s, TIMETEN *tp) { 102 struct acl *acl;

42 TIMETEN t; 103 FOREACH(acl, acls)

43 char *p; 104 if(Istrcmp(acl->name, name))

44 105 return acl;

45 t = strtol(s, &p, 10); 106 if(\create) return O;

46 if(t > 1000000) 107 acl = calloc(1, sizeof(struct acl));

47 return "Invalid interval"; 108 acl->next = acls;

48 t*= 10; 109 acls = acl;

49 if(*p =="." && isdigit(p[1]) && p[2] == 0) 110 acl->name = strdup(name);

50 t+=p[1]- "0} 111 return acl;

51 else if(p ==s Il *p !=0) 12}

52 return "Invalid interval"; 113

53 *tp =t; 114

54 return 0; 115 | static char *

55/} 116 | parse_acl(char *name, char *expression) {

56 117 struct acl *acl;

57 118 struct ace *ace, proto;

58|/ char * 119 char *s;

59 | parseip(char *s, IPADDR *ip_p, int *bits_p, int *maxbits_p) { 120 char buf[4096];

60 int bits; 121

61 int maxbits; 122 if(expression) {

parse.c
Printed: Friday, 18 March 2011 10:11:25 AM

Page 3 of 11

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

strcpy(buf, expression);

s = strtok(buf, WHITESPACE);
}
else s = strtok(0, WHITESPACE);

if(!s) return "Expected 'permit' or 'deny';

memset(&proto, 0, sizeof(proto));
if(Istremp(s, "permit"))

proto.permit = 1;
else if(stremp(s, "deny"))

return "Expected 'permit' or 'deny';
proto.maxbits = 32;

while((s = strtok(0, WHITESPACE))) {
if(Istremp(s, "ip")) {
s = strtok(0, WHITESPACE);
if(Is) return "Expected IP prefix";
s = parseip(s, &proto.ip, &proto.bits, &proto.maxbits);
if(s) return s;

}
else if(Istremp(s, "default")) {
proto.ip = 0;
proto.maxbits = proto.bits = O;
}

else if(Istremp(s, "interface")) {
s = strtok(0, WHITESPACE);
if(Is) return "Expected interface name";
proto.ifindex = if_nametoindex(s);
if(Iproto.ifindex)

return "Unknown interface";

}

else if(stremp(s, "acl")) {
s = strtok(0, WHITESPACE);
if(!s) return "Expected ACL name";
proto.acl = findacl(s, 0);
if(proto.acl) return "ACL not found";

}

else if(stremp(s, "layer2"))
proto.rtype |= RTYPE_LAYERZ;

else if(!strcmp(s, "static"))
proto.rtype |= RTYPE_STATIC;

else if(!strcmp(s, "local"))
proto.rtype |= RTYPE_LOCAL;

else if(!strcmp(s, "protocol"))
proto.rtype |= RTYPE_PROTOCOL;

else if(!strcmp(s, "remote"))
proto.rtype |= RTYPE_REMOTE;

else return "Unrecognised keyword";

}

acl = findacl(name, 1);
ace = malloc(sizeof(struct ace));
*ace = proto;
if(tacl->head)

acl->head = ace;
else acl->tail->next = ace;
acl->tail = ace;

return 0;

parse.c
Printed: Friday, 18 March 2011 10:11:25 AM

184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
211

212

char *
getlocaladdr(struct peer *peer, IPADDR peerip, int listen) {

static struct ifaddrs *ifphdr = 0;
struct ifaddrs *ifp;

IPADDR a, m;

int b;

IPADDR localaddr;

static time_t lasttime = 0;
time_t t;

localaddr = 0;
peer->localbits = 0;

t = time(0);

if(ifphdr && t!= lasttime) {
freeifaddrs(ifphdr);
ifphdr = 0O;

}

if(lifphdr) if(getifaddrs(&ifphdr)) {
LOG1("Error getting interface addresses: %m");
return "Could not obtain interface addresses";

}

lasttime = t;

for(ifp = ifphdr; ifp; ifp = ifp->ifa_next)
if(ifp->ifa_addr->sa_family == AF_INET) {
a = ((struct sockaddr_in *)(ifp->ifa_addr))->sin_addr.s_addr;
m = ((struct sockaddr_in *)(ifp->ifa_netmask))->sin_addr.s_addr;
b=(m& 0x55555555) + ((m > 1) & 0x55555555);
b= (b & 0x33333333) + ((b > 2) & 0x33333333);
b = (b & 0xOfOfOfOf) + ((b >> 4) & OxOfOfOfOf);

Page 5 of 11

parse.c

Printed: Friday, 18 March 2011 10:11:25 AM
245 b = (b & 0x00ffO0ff) + ((b > 8) & Ox00ffO0ff);
246 b = (b & 0x0000ffff) + ((b >>16) & 0x0000ffff);
247 if((listen && a == peerip) Il

248 (llisten && (peerip & m) == (a & m)

249 && b > peer->localbits) |l

250 (llisten && peerip ==

251 ((struct sockaddr_in *)(ifp->ifa_dstaddr))->
252 sin_addr.s_addr)) {

253 localaddr = a;

254 peer->localroute = peerip & m;

255 peer->localbits = b;

256 peer->ifindex = if_nametoindex(ifp->ifa_name);
257 }

258 }

259 if(llocaladdr && listen)

260 return "Interface address not local";

261 else if(llocaladdr)

262 return "IP address is not directly connected";
263

264 if(listen)

265 LOCIP(peer) = peerip;

266 else {

267 REMIP(peer) = peerip;

268 LOCIP(peer) = localaddr;

269 }

270 return 0;

271}

272

273

274

275 || static char *
276 | addpeer(IPADDR peerip, int listen) {

char *s;

struct peer *peer;
int p;

int new;

if(listen) {
FOREACH(peer, listens)
if(LOCIP(peer) == peerip)
break;
}
else {
FOREACH(peer, peers)
if(REMIP(peer) == peerip)
break;
}
if(Ipeer) {
new = 1;
peer = calloc(1, sizeof(struct peer));
peer->lsa.sin_family = AF_INET;
peer->Isa.sin_port = htons(udpport);
peer->rsa.sin_family = AF_INET;
peer->rsa.sin_port = htons(udpport);

if(listen)

peer->nexthop = 0;
else peer->nexthop = peerip;
peer->ttl = 1;
peer->secret = secret;
peer->confcost = 1;

parse.c
Printed: Friday, 18 March 2011 10:11:25 AM

Page 6 of 11

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341

342

peer->confpoll = DEFAULT_POLL;
peer->conffail = DEFAULT_FAIL;
peer->confretry = DEFAULT_RETRY;
peer->localannounce = 2;

s = getlocaladdr(peer, peerip, listen);
if(s) return s;
}

else new = 0;

while((s = strtok(0, WHITESPACE))) {
if(Istremp(s, "port")) {
if(Inew) return "Port must be on first line";
s = strtok(0, WHITESPACE);
if(!s) return "Expected port number";
p = atoi(s);
if(p <1 lp>65535)
return "Invalid port number";
if(listen)
peer->lsa.sin_port = htons(p);
else peer->rsa.sin_port = htons(p);
}
else if(stremp(s, "source-port") && llisten) {
if('new) return "Source port must be on first line";
s = strtok(0, WHITESPACE);
if(!s) return "Expected port number";
p = atoi(s);
if(p <1 1lp>65535)
return "Invalid port number";
peer->lsa.sin_port = htons(p);

else if(!strcmp(s, "cost")) {
s = strtok(0, WHITESPACE);
if(!s) return "Expected cost";
peer->confcost = atoi(s);
if(peer->confcost <1 |l peer->confcost > 256)
return "Invalid cost";
peer->cost = peer->confcost;
}
else if(Istremp(s, "ttl")) {
if(Inew) return "TTL must be on first line";
s = strtok(0, WHITESPACE);
if(!s) return "Expected TTL";
peer->ttl = atoi(s);
if(peer->ttl <1 Il peer->ttl >254)
return "Invalid TTL";
}
else if(!stremp(s, "accept")) {
s = strtok(0, WHITESPACE);
if(Is) return "Expected ACL name";
peer->accept = findacl(s, 0);
if(peer->accept)
return "Unknown ACL";

else if(!stremp(s, "announce")) {
s = strtok(0, WHITESPACE);
if(Is) return "Expected ACL name";
peer->announce = findacl(s, 0);
if(peer->announce)
return "Unknown ACL";

parse.c
Printed: Friday, 18 March 2011 10:11:25 AM

Page 7 of 11

else if(!strcmp(s, "accept-connect") && listen) {
s = strtok(0, WHITESPACE);
if(!s) return "Expected ACL name";
peer->remote = findacl(s, 0);
if(peer->remote)
return "Unknown ACL";

else if(Istremp(s, "nexthop") && llisten) {
s = strtok(0, WHITESPACE);
if(Is) return "Expected IP address";
s = parseip(s, &peer->nexthop, 0, 0);
if(s) return s;
}
else if(Istremp(s, "source-ip") && llisten) {
if(Inew) return "Source IP must be on first line";
s = strtok(0, WHITESPACE);
if(Is) return "Expected IP address";
s = parseip(s, &LOCIP(peer), O, 0);
if(s) return s;
}
else if(!stremp(s, "secret")) {
s = strtok(0, WHITESPACE);
if(!s) return "Expected secret";
peer->secret = strdup(s);
}
else if(Istremp(s, "poll")) {
s = strtok(0, WHITESPACE);
if(Is) return "Expected poll interval";
s = parsetime(s, &peer->confpoll);
if(s) return s;
peer->poll = peer->confpoll;
}
else if(stremp(s, "fail")) {
s = strtok(0, WHITESPACE);
if(!s) return "Expected timeout";
s = parsetime(s, &peer->conffail);
if(s) return s;
peer->fail = peer->conffail;
}
else if(!stremp(s, "retry")) {
s = strtok(0, WHITESPACE);
if(Is) return "Expected retry interval";
s = parsetime(s, &peer->confretry);
if(s) return s;
peer->retry = peer->confretry;
}
else if(!strcmp(s, "announce-local")) {
s = strtok(0, WHITESPACE);
if(Is) return "Expected yes, no or choose";
if(Istrcmp(s, "choose"))
peer->localannounce = 0O;
else if(!strcmp(s, "yes"))
peer->localannounce = 1;
else if(!stremp(s, "no"))
peer->localannounce = 2;
else return "Expected yes, no or choose";
}
else return "Unknown keyword";

}

if(peer->confpoll + 3 * peer->confretry > peer->conffail)

parse.c
Printed: Friday, 18 March 2011 10:11:25 AM

Page 8 of

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

483

peer->conffail = peer->confpoll + 3 * peer->confretry;

if(new) {
if(listen) {
peer->next = listens;
listens = peer;
}
else {
peer->next = peers;
peers = peer;
}
}

return O;

void

parse_acl_std(void) {
parse_acl("rfc1918", "permit ip 10.0.0.0/8-32");
parse_acl("rfc1918", "permit ip 172.16.0.0/12-32");
parse_acl("rfc1918", "permit ip 192.168.0.0/16-32");

parse_acl("bogons", "permit ip 0.0.0.0/8-32");
parse_acl("bogons", "permit ip 127.0.0.0/8-32");
parse_acl("bogons", "permit ip 169.254.0.0/16-32");
parse_acl("bogons", "permit ip 224.0.0.0/3-32");

parse_acl("public", "deny acl bogons");
parse_acl("public", "deny acl rfc1918");
parse_acl("public", "permit");

parse_acl("any", "permit");
parse_acl("'none", "deny");

int
parse_config(char *file) {
FILE *cf;
char buf[4096];
char *s, *t;
int i;
IPADDR peerip;
int Ic, lcc;
int ok;

if(file) {
cf = fopen(file, "r");
if(lef) {
perror(file);
return 0;
}
}

else cf = stdin;

#define CFOOPS(msg) { printf("%s:%d: Error: %s\n", file, Ic,
ok = 0; goto next;}

lcc =1;
lc =0;
ok=1;

while(fgets(buf, sizeof(buf), cf)) {

msg); \

parse.c

Printed: Friday, 18 March 2011 10:11:25 AM

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

Ic +=Icc;
Icc =1;
t=0;
for(s = buf; *s;) {
if(*s =="#'1*s =="\n"ll*s) {
*s =0;
if(t) {
i = sizeof(buf) - (t - buf);
if(i >= sizeof(buf) Il 'fgets(t, i, cf))
break;

else break;
lcc++;

}

if(*s =="\\) t=s;

else if(lisspace(*s))
t=0;

S++;

t

s = strtok(buf, WHITESPACE);
if(!s) continue;

if(Istremp(s, "acl")) {
s = strtok(0, WHITESPACE);
if(!s) CFOOPS("Expected ACL name")
s = parse_acl(s, 0);
if(s) CFOOPS(s)

else if(stremp(s, "listen")) {
s = strtok(0, WHITESPACE);
if(!s) CFOOPS("Expected peer address")
s = parseip(s, &peerip, 0, 0);
if(s Il 'peerip)
CFOOPS(s);
s = addpeer(peerip, 1);
if(s) CFOOPS(s);
}
else if(stremp(s, "peer")) {
s = strtok(0, WHITESPACE);
if(!s) CFOOPS("Expected peer address")
s = parseip(s, &peerip, 0, 0);
if(s Il 'peerip)
CFOOPS(s);
s = addpeer(peerip, 0);
if(s) CFOOPS(s);
}
else if(!stremp(s, "id")) {
s = strtok(0, WHITESPACE);
if(!s) CFOOPS("Expected router ID")
s = parseip(s, &routerid, 0, 0);
if(s) CFOOPS(s)

else if(stremp(s, "port")) {
s = strtok(0, WHITESPACE);
if(ls) CFOOPS("Expected port number")
udpport = atoi(s);
if(udpport < 1 Il udpport >= 65535)
CFOOPS("Invalid port number")

parse.c

Printed: Friday, 18 March 2011 10:11:25 AM

Page 10 of 11

else if(Istrcmp(s, "gateway")) {
s = strtok(0, WHITESPACE);
if(!s) CFOOPS("Expected yes, no or always")
else if(!stremp(s, "always"))
gwalways = isgateway = 1;
else if(!stremp(s, "yes"))
isgateway =1;
else if(!strcmp(s, "no"))
isgateway =1;
else CFOOPS("Expected yes, no or always")
}
else if(!stremp(s, "statusfile")) {
s = strtok(0, WHITESPACE);
if(!s) CFOOPS("Expected status file")
statusfile = strdup(s);
}
else if(Istremp(s, "debug")) {
s = strtok(0, WHITESPACE);
if(Is) CFOOPS("Expected debug level");
debug = atoi(s);
if(debug <O Il debug > 8)
CFOOPS("Bad debug level");
}
else if(!stremp(s, "pidfile")) {
s = strtok(0, WHITESPACE);
if(!s) CFOOPS("Expected PID file")
pidfile = strdup(s);
}
else if(!stremp(s, "secret")) {
s = strtok(0, WHITESPACE);
if(!s) CFOOPS("Expected secret")
secret = strdup(s);
}
else if(Istrcmp(s, "route-flag")) {
s = strtok(0, WHITESPACE);
if(!s) CFOOPS("expected routing flag")
if(Istrcmp(s, "protol1"))
routeflag = RTF_PROTO1;
else if(!strcmp(s, "proto2"))
routeflag = RTF_PROTOZ2;
else if(Istrcmp(s, "proto3"))
routeflag = RTF_PROTO3;
else if(!strcmp(s, "static"))
otherflag |= RTF_STATIC;
else CFOOPS("invalid routing keyword")
}
else if(Istremp(s, "default-gateway")) {
s = strtok(0, WHITESPACE);
if(!s) CFOOPS("Expected default gateway address")
s = parseip(s, &defaultroute, 0, 0);
if(s) CFOOPS(s)
}
else if(!stremp(s, "override")) {
s = strtok(0, WHITESPACE);
if(ls) CFOOPS("expected routing override flag")
if(Istrcmp(s, "protol1"))
overrflag |= RTF_PROTO1;
else if(Istrcemp(s, "proto2"))
overrflag |= RTF_PROTOZ2;
else if(!strcmp(s, "proto3"))
overrflag |= RTF_PROTO3;

parse.c
Printed: Friday, 18 March 2011 10:11:25 AM

Page 11 of 11

611
612
613
614
615
616
617
618
619
620
621
622
623
624

else if(!stremp(s, "static"))
overrflag |= RTF_STATIC;
else CFOOPS("invalid routing override flag")
}

else CFOOPS("Unrecognised keyword")

next: continue;

}
if(cf != stdin) fclose(cf);
return ok;

route.c
Printed: Friday, 18 March 2011 10:10:25 AM

Page 1 of 13

1 || #include "frpd.h"

2

3 |int routeflag = RTF_PROTO2;
4 |/int otherflag = 0;

5 |int overrflag = O;

6

7 | IPADDR defaultroute = 0;
8 || IPADDR defgateway = 0;
9
10
1
12

13 || static void

14 || addroute(IPADDR ip, int bits, IPADDR gw) {
15 u_char buf[256];

16 u_char *saptr;

17 struct rt_msghdr *rtm;

18 struct sockaddr_in *ipsa;

19 struct sockaddr_in *gwsa;

20 struct sockaddr_in *mask;

21 int size;

26 LOG5("add route %s/%d -> %s routeflag=%x",
27 formatip(ip), bits, formatip(gw), routeflag);
28 if(gwcost ==-1 && ip)

29 return;

37 memset(buf, 0, sizeof(buf));

38 rtm = (struct rt_msghdr *)buf;

39 rtm->rtm_version = RTM_VERSION;
40 rtm->rtm_type = RTM_ADD;

41 rtm->rtm_pid = pid;

42 rtm->rtm_flags = RTF_GATEWAY | RTF_UP | routeflag | otherflag;

43 rtm->rtm_addrs = RTA_DST | RTA_GATEWAY;
44 saptr = buf + sizeof(struct rt_msghdr);

46

47

48

49 ipsa = (struct sockaddr_in *) saptr;

50 ipsa->sin_len = sizeof(struct sockaddr_in);

51 ipsa->sin_family = AF_INET;
52 ipsa->sin_addr.s_addr = ip;
53 saptr += SA_SIZE(saptr);

58 gwsa = (struct sockaddr_in *) saptr;

59 gwsa->sin_len = sizeof(struct sockaddr_in);
60 gwsa->sin_family = AF_INET;

61 gwsa->sin_addr.s_addr = gw;

route.c
Printed:

Friday, 18 March 2011 10:10:25 AM

Page 2 of 13

62
63
64
65
66
67
68
69
70

saptr += SA_SIZE(saptr);

if(bits > 0) {
mask = (struct sockaddr_in *) saptr;
mask->sin_len = (bits + 7) / 8 + 4;
mask->sin_addr.s_addr = maskbits[bits];

}

saptr += SA_SIZE(saptr);

rtm->rtm_addrs |= RTA_NETMASK;

size = saptr - buf;
rtm->rtm_msglen = size;
write(rtsocket, buf, size);

route.c
Printed: Friday, 18 March 2011 10:10:25 AM

Page 3 of 13

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

int

getroutes() {
int mib[6] = { CTL_NET, PF_ROUTE, 0, O, NET_RT_DUMP, 0 };
static size_t oldbufsiz = 0O;
static u_char *buf = 0;
static IPADDR oldpath[MAX_PATH];
static int oldpathlen = 0;
size_t bufsiz;
u_char *ptr, *end, *saptr;
struct rt_msghdr *rtm;
struct sockaddr *sa;
struct sockaddr_in *sin;
struct sockaddr_dl *sdl;
u_int u;
inti, j;
int valid;
IPADDR ip;
IPADDR gw;
int bits;
int ifindex;
int rtype;
struct iproute *ipr;
struct iproute *r;
struct iproute *pipr;
struct iproute *annh;
struct iproute *annt;
struct iproute *oldr;
struct peer *peer;
struct peer *gp;
int gc;
IPADDR defaultgw;
IPADDR oldgw;
int doann;
int newpath;

newpath = 0;
if(lisgateway) {

gp =0;
gc=-1;
FOREACH(peer, peers) {

if(peer->gwcost == -1)
continue;
for(i = 0; i <peer->pathlen; i++)

route.c

Printed: Friday, 18 March 2011 10:10:25 AM

Page 4 of

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

if(peer->path[i] == routerid)
break;
if(i < peer->pathlen)
continue;

i = peer->gwcost + peer->cost;

if(gc ==-1 lli <gcll (i == gc && peer == gwpeer)) {

9o = peer;
gc=i;
}
}

if(gp != gwpeer Il gc = gwcost) {

LOG1("Gateway changed from %s (cost %d)"

" to %s (cost %d)",

gwpeer ? formatip(gwpeer->nexthop)
defaultroute ? formatip(defaultroute) : "none",

gwcost,
[¢'d) ? formatip(gp->nexthop) :
defaultroute ? formatip(defaultroute) : "none",
gc);

gwpeer = gp;

gwcost = gc;

newpath = 1;

}

if(gwpeer) {

if(oldpathlen != gwpeer->pathlen)
newpath = 1;

else if('newpath) {
for(i = 0; i <gwpeer->pathlen; i++)

if(oldpathli] != gwpeer->path[i])
newpath = 1;
}
defaultgw = gwpeer->nexthop;

}

else defaultgw = 0;

if(newpath) {
FOREACH(peer, peers)
if(peer->synreq)
peer->pathreq = 1;

route.c
Printed: Friday, 18 March 2011 10:10:25 AM

Page 5 of 13

245
246
247
248
249
250
251
252
253

if(gwpeer) {

for(i = 0; i <= gwpeer->pathlen; i++)
oldpathl[i] = gwpeer->pathl[i];

oldpathlen = gwpeer->pathlen;

}

else oldpathlen = O;

}
}

else {
gwpeer = 0;
defaultgw = O;
oldpathlen = 0;

}

KILLROUTES(localroutes)

FOREACH(peer, peers) {
LOG8("Searching for routes from peer %s",
formatip(REMIP(peer)));

FOREACH(ipr, peer->routes) {

if(peer->accept && !checkacl(peer->accept,

ipr->ip, ipr->bits, ipr->rtype, 0))
continue;
r = findroute(localroutes, ipr->ip, ipr->bits, &pipr);

if(r) {

if(ipr->cost > r->cost |l
(ipr->cost == r->cost &&
ipr->isgw < r->isgw))
continue;

LOG8("Updated %s/%d -> %s c=%d",
formatip(ipr->ip), ipr->bits,
formatip(peer->nexthop), ipr->cost);

else {
ADDROUTEAFTER(r, localroutes, pipr)
LOG8("Added %s/%d -> %s c=%d",
formatip(ipr->ip), ipr->bits,
formatip(peer->nexthop), ipr->cost);

r->ip = ipr->ip;
r->bits = ipr->bits;
}
r->1sgw = Ipr->1sgw;
r->cost = ipr->cost;

r->gwcost = ipr->gwcost;
r->rtype = RTYPE_REMOTE;

route.c
Printed: Friday, 18 March 2011 10:10:25 AM

Page 6 of 13

306
307
308
309
310
311

312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341

342

r->peer = peer;
r->ifindex = peer->ifindex;
r->inuse = 0;
}
}

LOG8("Retrieving routing table");

if(sysctl(mib, 6, NULL, &bufsiz, NULL, 0) <0) {
LOG1("error obtaining routing table size: %m");
return 1;

}
if(loldbufsiz I bufsiz > oldbufsiz) {
if(buf) free(buf);
buf = malloc(bufsiz);
oldbufsiz = bufsiz;
}
i = sysctl(mib, 6, buf, &bufsiz, NULL, 0);
if(i ==-1 && errno == ENOMEM) {
LOG2("Routing table size error");
return 1;
}
else if(i ==-1) {
LOG1("Error retrieving routing table: %m");
return 1;

}

oldgw = defgateway;

defgateway = O;

ptr = buf;

for(end = buf + bufsiz; ptr <end; ptr += rtm->rtm_msglen)

rtm = (struct rt_msghdr *)ptr;
saptr = ptr + sizeof(struct rt_msghdr);
valid = 0;
ifindex = 0;
ip=0;
gw =0;
if(rtm->rtm_flags & RTF_HOST)
bits = 32;
else bits =-1;

rtype = 0;
if(!(rtm->rtm_flags & RTF_UP) Il
(rtm->rtm_flags & (RTF_DYNAMIC |
RTF_WASCLONED |
RTF_BROADCAST |
RTF_MULTICAST)))
continue;

route.c
Printed: Friday, 18 March 2011 10:10:25 AM

Page 7 of 13

372 if(rtm->rtm_flags & RTF_LLINFO)

373 rtype = RTYPE_LAYER2;

374 else if(rtm->rtm_flags & RTF_STATIC)
375 rtype = RTYPE_STATIC;

376 else if(rtm->rtm_flags & RTF_PROTO1)
377 rtype = RTYPE_PROTOCOL;

378 else rtype = RTYPE_LOCAL;

383 for(i = 0; i <RTAX_MAX; i++) if(rtm->rtm_addrs & (1 <« i)) {
384 sa = (struct sockaddr *) saptr;

392 if(i == RTAX_DST) {

393 if(sa->sa_family != AF_INET)

394 break;

395 sin = (struct sockaddr_in *) saptr;
396 ip = sin->sin_addr.s_addr;

397 if(ip == ntohl(INADDR_LOOPBACK))
398 break;

399 j =*((u_char *) &sin->sin_addr);
400 if(bits ==-1) {

401 if(j >=128) bits = 24;

402 else if(j >= 64) bits = 16;

403 else bits = 8;

404 }

405 valid = 1;

411 else if(i == RTAX_GATEWAY && sa->sa_family == AF_INET) {
412 sin = (struct sockaddr_in *) saptr;

413 gw = sin->sin_addr.s_addr;

414 }

421 else if(i == RTAX_NETMASK) {

422 bits = 0;

423 for(j =4; j <sa->sa_len; j++) {

424 u = saptr[j];

425 u=(u& 0x55) + ((u> 1) & 0x55);
426 u=(u& 0x33) + ((u> 2) & 0x33);
427 u=(u& 0x0f) + ((u> 4) & 0x0f);

route.c

Printed: Friday, 18 March 2011 10:10:25 AM

Page 8 of 13

428
429
430
431
432
433
434

bits += u;
}
}

else if(i == RTAX_IFP) {
sdl = (struct sockaddr_d| *) saptr;
ifindex = sdl->sdI_index;

}

saptr += SA_SIZE(saptr);

if(lvalid) continue;

LOG8("Kernel route %s/%d -> %s flags=%x ifindex=%d",
formatip(ip), bits, formatip(gw), rtm->rtm_flags,
ifindex);

if(ip != (ip & maskbits[bits]))
continue;

if(bits == 0) {

if(gw != defaultgw && (rtm->rtm_flags & routeflag)) {

LOG2("delete stale default route -> %s",
formatip(gw));

rtm->rtm_type = RTM_DELETE;
write(rtsocket, ptr, rtm->rtm_msglen);

}

else defgateway = gw;

continue;

}

if(rtm->rtm_flags & routeflag) {
ipr = findroute(localroutes, ip, bits, 0);
if(ipr I lipr->peer Il gw != ipr->peer->nexthop) {
if(gwcost ==-1)
continue;
LOG2("delete stale route %s/%d -> %s",
formatip(ip), bits, formatip(gw));
rtm->rtm_type = RTM_DELETE;
write(rtsocket, ptr, rtm->rtm_msglen);
}
else ipr->inuse = 1;
continue;

}

route.c Page 9 of 13 route.c Page 10 of 13

Printed: Friday, 18 March 2011 10:10:25 AM Printed: Friday, 18 March 2011 10:10:25 AM
489 550

490 551

491 552

492 553

493 554 else if(defgateway) {

494 555 if(gwpeer)

495 ipr = findroute(localroutes, ip, bits, &pipr); 556 defgateway = gwpeer->nexthop;
496 LOG8("Route %s/%d type=%d ifindex=%d %s", 557 else if(defaultroute)

497 formatip(ip), bits, rtype, ifindex, 558 defgateway = defaultroute;

498 ipr ? "found" : "new"); 559 if(defgateway)

499 if(tipr) { 560 addroute(0, O, defgateway);

500 ADDROUTEAFTER(ipr, localroutes, pipr) 561 if(defgateway != oldgw)

501 LOG2("Added %s/%d local", formatip(ip), bits); 562 FOREACH(peer, peers)

502 ipr->ip = ip; 563 peer->pathreq = 1;

503 ipr->bits = bits; 564 }

504 } 565

505 else if(rtm->rtm_flags & overrflag) { 566 LOG4("Local table:");

506 if(gwcost ==-1) 567 if(debug >= 4) dumproutes(localroutes);
507 continue; 568

508 LOG2("Overriding %s/%d", formatip(ip), bits); 569

509 rtm->rtm_type = RTM_DELETE; 570

510 write(rtsocket, ptr, rtm->rtm_msglen); 571

511 continue; 572 if(gwcost ==-1) {

512 } 573 LOG4("Gateway not reachable, not announcing routes");
513 574 FOREACH(peer, peers) {

514 575 KILLROUTES(peer->annrts);

515 576 peer->nextrt = 0O;

516 577 peer->nullrt = 0;

517 578 }

518 ipr->isgw = 1; 579 return 0;

519 ipr->cost = 0; 580 }

520 ipr->gwcost = gwcost; 581

521 ipr->rtype = rtype; 582

522 ipr->peer = 0; 583

523 ipr->ifindex = ifindex; 584

524 ipr->inuse = 1; 585

525 } 586

526 587

527 588

528 589

529 590

530 FOREACH(ipr, localroutes) if(lipr->inuse) 591

531 addroute(ipr->ip, ipr->bits, ipr->peer->nexthop); 592

532 593

533 594

534 595 FOREACH(ipr, localroutes) {

535 596 ipr->inuse = 1;

536 597 FOREACH(peer, peers) {

537 598 if(ipr->ip == peer->localroute &&
538 if(isgateway) { 599 ipr->bits == peer->localbits &&
539 if(defgateway Il gwalways) 600 peer->localannounce != 1 &&
540 gwcost = 0; 601 (peer->localannounce == 21|
541 else gwcost =-1; 602 peer->gwcost <gwcost |l
542 } 603 (peer->gwcost == gwcost &&
543 604 ntohl(LOCIP(peer)) > ntohl(REMIP(peer))))) {
544 605 LOG8("Route %s/%d is local loser",
545 606 formatip(ipr->ip), ipr->bits);
546 607 ipr->inuse = 0;

547 608 }

548 609 }

549 610 }

route.c
Printed: Friday, 18 March 2011 10:10:25 AM

Page 11 of 13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

FOREACH(peer, peers) {
if(peer->gwcost ==-1)
continue;
LOG4("Routing for %s", formatip(REMIP(peer)));

annh = annt = 0;

doann = 0;

if(peer->nextrt |l peer->nullrt)
doann = 1;

oldr = peer->annrts;

FOREACH(ipr, localroutes) {

if(lipr->inuse)

continue;

if(ipr->peer && ipr->peer->routerid == peer->routerid)
continue;

if(lipr->peer && ipr->ifindex == peer->ifindex)
continue;

if(peer->announce && !checkacl(peer->announce,
ipr->ip, ipr->bits,
ipr->rtype, ipr->ifindex))
continue;

LOG8("%s/%d rc=%d + lc=%d"
" <rge=%d + pgc=%d + isgw=%d",
formatip(ipr->ip), ipr->bits,
ipr->cost, peer->cost, ipr->gwcost,
peer->gwcost, (ipr->isgw && peer == gwpeer));
if(ipr->cost + peer->cost >=
ipr->gwcost + peer->gwcost
+ (ipr->isgw && peer == gwpeer))
continue;

route.c
Printed: Friday, 18 March 2011 10:10:25 AM

Page

12 of 13

672
673
674
675
676
677
678
679
680
681

682
683
684
685
686
687
688
689
690
691

692
693
694
695
696
697
698

}

}

ADDROUTEAFTER(r, annh, annt)

r->ip = ipr->ip;

r->bits = ipr->bits;

r->isgw = (ipr->isgw && (peer == gwpeer));
r->cost = ipr->cost + peer->cost;

r->gwcost = ipr->gwcost;

r->rtype = 0;

r->ifindex = 0;

r->peer =0;

annt =r;

LOG8("new: %s/%d gw=%d cost=%d gwcost=%d rtype=%d",
formatip(r->ip), r->bits, r->isgw,
r->cost, r->gwcost, r->rtype);

if(ldoann) {
if(foldr Il oldr->ip = r->ip
Il oldr->bits != r->bits
IIoldr->isgw = r->isgw
Il oldr->cost = r->cost

Il oldr->gwcost != r->gwcost
Il oldr->rtype != r->rtype)
doann = 1;

if(oldr) oldr = oldr->next;

if(oldr) doann = 1;

LOG4("Announcements for %s: (update %srequired)",

formatip(REMIP(peer)), doann? "" : "not");

if(debug >= 4) dumproutes(annh);
if(doann) {

}

KILLROUTES(peer->annrts)
peer->annrts = annh;
peer->nextrt = annh;
if(annh)

peer->nullrt = 0;
else peer->nullrt = 1;

else KILLROUTES(annh)

return 0O;

route.c
Printed: Friday, 18 March 2011 10:10:25 AM

Page 13 of 13

733
734
735

	thesis1
	frpd
	frp_main.c
	frpd.h
	frpd.c
	frp_peer.c
	frp_packet.h
	frp_packet.c
	frp_route.c
	frp_zebra.c
	frp_interface.c
	frp_debug.h
	frp_debug.c

	thesis2
	sniffer
	sniffer-h
	frp_packet-h
	main-c

	thesis3
	don
	frp.h
	frpd.h
	main.c
	parse.c
	route.c

