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Abstract

Molecular dynamics (MD) is a computational tool used to study physical sys-

tems by modeling the atomic-scale interactions between atoms. MD can accu-

rately predict the properties of materials where models are well developed. For

new materials, models may be in their early stages and may lack the ability to

produce accurate results; however, MD can still provide insight into the physical

properties of these new materials. This thesis will use MD to study two dif-

ferent systems. First, the Lennard-Jones (L-J) liquid is used to study how the

intrinsic slip lengths of atomic sized surfaces add to produce an effective slip of

a larger surface made up of these atomic constituents. The results show that

the effective slip of a surface is dominated by its smallest slip, and these results

show good agreement with a theory that predicts effective slip given the intrinsic

slip and roughness of a surface. The L-J model is also used to investigate the

rolling and sliding motion of viscous drops on super-hydrophobic surfaces. The

effects of drop size, slip length, and gravity on drop velocities are investigated,

and a model that predicts drop speed given the characteristics of a drop and a

surface is proposed. The model shows good agreement with simulation results,

especially for certain regimes. Second, graphene is studied with MD using vari-

ous atomistic models. The energies of layers of graphene are reproduced using an

Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential,

and the energies required to exfoliate graphene from crystal graphite and nickel

nano-particles are calculated. The calculations from MD show good agreement

with literature and experiment, and these results demonstrate how simple mod-

els in MD can produce useful results to aid research and experiment. Finally,

the formation of nano-bubbles in graphene grown on platinum is studied using

the AIREBO and L-J potentials. The basic formation of graphene nano-bubbles

is demonstrated by compressing the edges of graphene flakes. The simulations

highlight the importance of proper boundary conditions, such as atom pinning,

in order to produce tall, smooth nano-bubbles. The results also suggest that

accurate models will be required to effectively demonstrate bubble formation.
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Chapter 1

Introduction

There may well be an infinite number of questions to ask of the physical world,

but at any point in time only a finite number of those questions can be answered;

however, as new technologies are developed, that finite number continues to grow–

perhaps exponentially. The computer allows scientists and engineers to solve

problems that cannot be solved without a computer (numerical solutions where

solutions don’t exist), that are beyond the scope of humankind (modeling the

formation of solar systems), or that would be too risky to implement in real

life (studying how wind currents carry nuclear fallout). As computers become

more powerful, researchers not only answer more questions, but also they ask

increasingly complex questions and questions that would previously take too long

to answer.

Micro-scale and nano-scale systems are one particular area in which computer

simulations aid researchers. Studying these smalls systems via experiment may

require costly labs and equipment, or sometimes certain questions cannot be

answered with today’s technologies. Molecular dynamics (MD) is one of the

many tools developed in order to probe the physical properties of these systems.

MD can either mimic systems like fluids through simple models, or MD can

accurately calculate properties of real systems. In this thesis, MD is used to

explore the properties of two very different systems, liquids and graphene, showing

the versatility of MD.

The flow of liquids along a surface is hindered by the atomistic interactions

between a liquid and a solid as well as the roughness of the surface. Typically,

surfaces are considered to completely stop fluid motion at the liquid-surface in-

terface. This assumption is very accurate for most materials, and even with zero

speed at the liquid-solid interface, we still have water flowing through our pipes!

In micro-fluidics, however, the liquid-solid interactions have large effects. At the
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Chapter 1: Introduction

micro-scale, molecules do not come to a complete halt when they encounter a

surface; in fact, they bounce around and even move opposite the direction of

flow. In certain cases, if you measured the average molecular flow of a liquid

along a solid, you could find that that liquid does indeed slip along the surface

(the average velocity is non-zero) [1]. Slip can be a good thing. It means we can

use less pressure to move liquids through pipes. It is also a parameter engineers

can tune in order to produce certain types of surfaces, for example, a surface

that might use slip to mix different types of liquids. An atomistically flat surface

will have an intrinsic slip that is characteristic of the properties of the solid. If

you combined surfaces with different intrinsic slips and even added roughness to

the surfaces, would it be possible to predict some effective slip of this composite

surface? Certainly one could measure the slip, but it would also be valuable to

predict it given the surface characteristics. A model was recently proposed that

does just this, but does it work? In Chapter 3 Section 3.3, we will test this theory

using MD.

The study of small, liquid drops was initially motivated by a paper on the

lotus effect [2]. This effect stands for the ability of certain plants, such as the

lotus and the taro, to keep their leaves clean. These leaves exhibit hydrophobic

properties, allowing water to repel from rather than stick to the surface of the

leaves. One such result of these properties is the formation of liquid drops on the

leaves’ surfaces. How drops move on these leaves may dictate a plant’s ability to

self clean. It was suggested that drops which roll off leaves have a higher tendency

to clean a leaf compared with drops that slide off leaves. Chapter 3 Section 3.4

will investigate the rolling and slipping motion of drops on super-hydrophobic

surfaces, and it will propose a scaling law that aims to predict drop speed given

drop and surface characteristics. The theory will be compared with results from

MD.

The 2010 Nobel Prize in Physics was awarded to Novoselov and Geim for their

groundbreaking work [3] in graphene. Graphene, a honeycomb lattice of carbon

atoms only a single atom thick, is strong, flexible, transparent to visible light,

and electrically conductive. It has numerous applications in a number of indus-

tries, and it will eventually replace expensive materials like indium tin-dioxide

(a transparent conductor) and lead to carbon-based electronics. Manufacturing

pristine graphene as well as engineering certain features into graphene are some

of the hurdles to overcome before graphene is seen in mainstream products. Un-

derstanding basic properties of graphene will help scientists find better ways to

manufacture graphene. In Chapter 4, MD is used to understand the energies
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Introduction

required to exfoliate graphene from graphite, and it is also used to understand

the formation of nano-bubbles in graphene.

In the next Chapter, we will explain some basics on how molecular dynamics

works so that the reader may have a better understanding of the simulations to

follow.
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Chapter 2

Molecular Dynamics

In its simplest form, Molecular dynamics deterministically calculates a particle’s

trajectory using Newton’s Second Law, F = ma. Particles interact with each

other via forces, be it gravitational, chemical, or quantum mechanical, and MD

allows scientists to use a number of force models to simulate and study physical

systems.

The real value in MD, however, comes from the many tools available to a sim-

ulated system. For example, researchers can study systems at high temperatures

and pressures, which may be costly compared with real experiments. MD also

allows scientists to interact with simulations by moving particles or collections of

particles, by applying external forces, or by adding or subtracting particles using

boolean criteria. At the end of the day, a researcher’s creativity will limit the

number of things possible in MD.

In this thesis, MD is used to study two specific systems. This thesis does not

attempt to develop any new tools, such as force models, in order to carry out its

research; instead, it uses tools already developed in the literature. This Chapter

will briefly cover some basic principles of MD so that the reader may understand

the methods and simulations in the Chapters to follow.

2.1 How MD Works

Here we will briefly outline how MD works. For a proper introduction to MD,

see Ercolessi [4].

The bulk properties of a system result from the molecular interactions within

the system, and statistical mechanics allows us to relate the bulk, or macro state,

to the molecular, or micro state. Molecular dynamics works in this way – by sim-

ulating many micro states of a system, MD can predict the bulk characteristics.
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Chapter 2: Molecular Dynamics

In MD, we start with an energy potential that governs the interactions between

particles. In a simple model, the potential is a function of particle position and

arises from pair-wise interactions,

Vi =
N∑
j 6=i

φ(ri ,j ), (2.1)

where the total potential for particle i, Vi, is the sum of the pair-wise interactions

with all other particles j, and ri ,j is the distance between i and j. For this

simple model and N particles, there are (N − 1)! pairs to consider. It would

be computationally expensive to consider all pairs, so typically in MD a cut-off

distance, rc, is used where we ignore interactions for ri ,j > rc.

The force acting on particle i arises from the spacial gradient of the potential,

Fi = −∇Vi , (2.2)

and with this force we can calculate the trajectory and particle position where

Fi = miai . MD numerically integrates the equations of motion for all particles

with respect to time. There is obvious room for numerical error when performing

these types of integrations, so a typical algorithm used in MD that mitigates error

is the velocity Verlet algorithm. The basis of this algorithm was developed by

Verlet [5], where the particle position at a time t+ ∆t is,

ri(t+ ∆t) = −ri(t−∆t) + 2ri(t) + ai(t)∆t
2, (2.3)

and ∆t is the time increment.1 The error from this algorithm is on the order of

∆t4, which makes it very accurate even for long simulations. The velocity Verlet

algorithm improves on Eq. 2.3 by implicitly calculating particle velocities and

by not depending on t−∆t. Equations 2.1 - 2.3 allow MD to calculate the time

evolution of the positions of particles.

The state of a simulation is simply the positions and velocities of the particles

in the system at any point in time. The state of the particles will evolve until

the system reaches a stable equilibrium, a point where the potential energy is at

a minimum. To obtain properties of a macro state, one needs to take averages of

all possible micro states for a given configuration. This is done by taking time

averages, where each snap shot in time of a simulation is a representation of one

of the possible micro states for a given macro state. The assumption that time

1In MD, the time increment is called the time step
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2.3 Software

averages are consistent with statistical ensemble averages is known as the ergodic

hypothesis [6], and this hypothesis is the key link between MD and real systems.

2.2 Software

Large-scale Atomic/Molecular Massively Parallel Simulator2 or LAMMPS [7] is

used in this thesis to perform classical MD calculations. LAMMPS is a freely

available software package and it comes with a number of tools to help design

simulations and experiments. One advantage of LAMMPS is that it can simulate

large systems using many processors, as its names suggests. LAMMPS does this

by dividing a simulation box into a number of grids proportional to the number

of processors being used; in effect, it is using each processor to compute smaller

MD simulations.

We also used the Visual Molecular Dynamics3 (VMD) package [8] in our re-

search. VMD allows us to visualize the spacial positions of atoms in a simulation,

and it is also freely available online.

2.3 Important Considerations in MD

Here we highlight a few aspects of MD that are important to consider when

conducting a simulation.

Boundary Conditions

A common boundary condition (BC) in MD is the periodic boundary. This

BC provides a good way to mimic large systems by only considering a smaller

portion. When a particle moves across a periodic boundary, it is mapped back

into the simulation box opposite the boundary. When using periodic boundaries,

it is important that the box dimensions are consistent with the periodicity of

the structure (e.g. a lattice) and that the simulation box is bigger than any

characteristic length scales of the system (e.g. the cut-off radius of a potential or

the size of a unit cell). The other common BC is the fixed BC. In this instance

atoms are not mapped back into the simulation box, but they can be reflected or

even ignored depending on the type of system you wish to create.

2http://lammps.sandia.gov/.
3http://www.ks.uiuc.edu/Research/vmd/.
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Chapter 2: Molecular Dynamics

Thermostatting

Proper management of the temperature of a simulation is very important. For

example, you may want to study the interaction of a liquid with a surface. To

improve the efficiency of your simulation and decrease computation time, you

can keep the surface fixed and simply compute the trajectories of the liquid.

Unfortunately, this means that the temperature of your surface is zero and the

liquid will lose heat to the surface. To overcome this, you can artificially manage

the temperature of the liquid, and there are a number of methods to do this.

The velocity of atoms determines their temperature, and MD simply calculates

temperature by adding up the velocities of a system. If, for example, you have a

moving liquid, it may appear hotter as the flow velocity will affect the temperature

calculation. One could bias this calculation by removing flow energy in order to

calculate the proper liquid temperature.

Data Collection

To get good data, one has to take sufficient averages until the estimates converge

to their expected value. This includes time averages and spacial average. Let’s

say you wanted to look at the velocity of liquid along the axis orthogonal to

the flow. First, you should find spacial averages of the particle velocities along

the axis. These spacial averages give you a representation of the actual speed of

the liquid at a point in space rather than considering the speed of every single

atom. Spacial averaging is usually referred to as binning, where atoms are placed

into spacial boxes and their averaged characteristics are recorded (e.g. velocity,

density, energy). These spacial averages give you a representation of the flow

profile at an instance of time. Then, by taking time averages over sufficient

amounts time, the spacial averages will converge to the expected flow profile of

the liquid. The reliance on time averages to produce thermodynamic quantities

is a primary reason why an accurate time integration algorithm is required.

8



Chapter 3

Modeling Liquids

The ability to study fluids is aided by the fact that fluids obey scaling laws; that

is, one can build a model sized propeller, study how water flows through the

propeller, and scale the data up to predict precisely how the real system will

perform. Likewise, the results from studies of fluids in MD on small systems are

easily scalable to real systems. Although the particle spacing (mean free path)

in an MD model may be vastly different than the spacing in a real-world liquid,

the MD models often predict real properties of fluids with good accuracy.

In this Chapter, we use the well studied Lennard-Jones (L-J) potential to

model a liquid. L-J liquids are scalable and provide accurate descriptions of real

liquids. Furthermore, the properties of L-J liquids, given a set of parameters, are

readily available in the literature.

First we demonstrate how to calculate various properties of L-J liquids in

Section 3.2. Then, in Section 3.3 we study slip at the liquid-surface interface and

demonstrate how effective slip is dependent on the intrinsic slips and geometries

of a surface. Finally, we will study the dynamics of liquid drops moving on super-

hydrophobic surfaces in Section 3.4, and we will propose a theory that will predict

the behavior of drop speed.

3.1 The Lennard-Jones Liquid

The Lennard-Jones (L-J) 6-12 potential provides a reasonable representation for

the interaction between atoms,

V (r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
. (3.1)
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Chapter 3: Modeling Liquids

Here, the depth of the well is ε, the characteristic length between two atoms is σ,

where σ is the zero-potential distance and 21/6σ is the equilibrium distance, and

the distance between two atoms is r. r−12 is the repulsive term of the potential

and r−6 is the attractive term. The simplicity of the L-J potential makes it

computationally fast, and it allows the researcher to explore the parameter space

by changing only a few values. The L-J potential also provides an accurate

description of noble elements, and Argon is often used as a model to compare

results from MD with experiment.

For the simulations to follow, we work in reduced L-J units, where all quanti-

ties are dimensionless. This is achieved by setting the fundamental quantities ε,

σ, mass m, and the Boltzmann constant kB to 1. This implies that the following

dimensionless quantities, denoted by an asterisk, are as follows,

distance: x∗ = x/σ density: ρ∗ = ρσ3/m

time: τ∗ = τ(ε/m/σ2)1/2 surface tension: γ∗ = γσ2/ε

energy: E∗ = E/ε viscosity: η∗ = η(σ4/ε/m)1/2

temperature: T ∗ = TkB/ε force: f∗ = fσ/ε

To convert between dimensionless and dimensional quantities, you choose values

of ε, σ, and m for a particular material and use those values in the equations

above. In LAMMPS, when the user specifies values for ε, σ, and m, those values

are multiples of the fundamental quantities. For example, we will study a liquid

with εll = 1.75, where ll denotes liquid-liquid interactions. This implies that the

energies in our system will be higher, 1.75E∗, and for some value of ε, our model

is the equivalent of a system with 1.75ε.

A typical cutoff of 2.5σ is used in our simulations. This value provides accurate

atomistic descriptions as well as reasonable computation speeds. There are a

number of papers that look into the effects of the cutoff radius, and it is well

know that changing the cutoff will certainly change the phase diagram of a system

[9, 10]. Fortunately, this only means that we must use the same cutoff distance

throughout our simulations so that our calculated properties are consistent and

relevant to our system. Finally, all boundary conditions used in this Chapter are

periodic unless otherwise noted.

3.2 Liquid Properties

The L-J parameters and temperature for the liquid used in this Chapter are

provided in Table 3.1 in addition to calculated values for density, surface tension,

and viscosity. These parameters were chosen because the theory in Section 3.4

10



3.2 Liquid Properties

Parameters Properties

Potential ε 1.75 Density ρ∗ 0.85

Distance σ 1 Surface Tension γ∗ 1.6

Temperature T ∗ 1±0.02 Viscosity η∗ 3.5

Table 3.1: Liquid parameters and properties.

Figure 3.1: A Lennard-Jones liquid. A snap shot of a liquid, L-J drop shows the existence
of both vapor (red) and liquid (blue) phases, a consequence of the L-J potential.

requires liquids with high viscosity. These three parameters alone define the

characteristics of a L-J liquid.

There are a few challenges in obtaining good data in order to calculate some

properties of a L-J liquid. First off, a simulation of a L-J liquid will contain

a liquid phase and a vapor phase, as demonstrated in Figure 3.1. During a

simulation, a vapor atom may condense onto the liquid and vise versa. These

vapor atoms must be removed or ignored when estimating properties such as

atom energies. Secondly, when considering a liquid drop, the shape and size

of a drop will fluctuate, and this makes finding a drop’s radius tricky. Both

fluctuations in drop energies and radius will make calculations of various liquid

properties difficult. By performing simulations with large amounts of atoms and

over a sufficient number of time steps, the predictions of the liquid properties

should converge.

The following sections will demonstrate how to separate liquid from vapor and

how to calculate density, surface tension, and viscosity for a L-J liquid. Details

of the simulations used for these calculations are provided in Appendix A.

3.2.1 Separating Liquid from Vapor

The simplest method to separate a L-J vapor from a L-J liquid is to look at

the potential energies of the atoms. All atoms with zero potential energy are

11



Chapter 3: Modeling Liquids

beyond the cutoff radius of the L-J potential and are therefore not a part of the

liquid; still, atoms in the vapor phase will interact with other vapor atoms thereby

creating a non-zero potential. One could create a potential energy threshold, Vt,

such that all atoms that do not meet this threshold are considered vapor atoms,

but caution must be taken for atoms near the surface of the liquid which may

not meet such criteria even though they may be a part of the liquid.

Our technique used to separate vapor from liquid consists of two parts. First,

an energy threshold is chosen by considering the largest potential energy an atom

would have at the surface of a liquid. For the case of the L-J potential with a

cutoff of 2.5σ and assuming a simple cubic structure, the highest potential energy

is 5V (2.5), where an atom on the surface of the drop has 5 nearest neighbors and

the L-J potential, V , is evaluated at the cutoff radius. For the liquid chosen here,

V ∗t = −0.143.

The next step is to look at the location of the atoms. Visual inspection is

a simple method to decide which atoms do not belong to the liquid drop. The

computational equivalent to this is to look at each atom’s distance from other

atoms, particularly those atoms pertaining to the liquid; however, at worst this

computation requires NN computations for N number of atoms.1 Instead, we will

create an ordered list of the radial distances from the center of mass of all atoms

in the simulation box. The center of mass of the drop is the average location of

all atoms in the simulation, including vapor atoms that don’t meet the energy

threshold since they have a negligible effect.

If the simulation contained no vapor atoms and the drop were a perfect sphere,

then the radius at Rn would simply be related to the volume of a sphere, where

n = 0 and n = N are the atoms closest to and furthest from the center of mass,2

such that,

Rn =

(
3

4π

n

ρ

)1/3

. (3.2)

Now consider n� 1, then the change in radius, ∆Rn, from one atom to the next

within the drop is Rn − Rn−1 ≈ 0. Therefore, atom n is certainly not a part of

the liquid drop if ∆Rn � 0. Assuming the liquid drop is relatively spherical,

we can find the first instance where ∆Rn � 0 and reject all atoms from n and

above. Figure 3.2 shows the behavior of this relationship for a set of data (blue –).

Notice that for atoms with radii larger than 5, ∆R∗ is nearly zero. Then at around

1LAMMPS avoids large amounts of computations by using a cut-off distance to generate a
list of atom neighbors. Using this neighbor list may provide an efficient way to determine the
phase of an atom on-the-fly, but that list may not be readily available through the LAMMPS
software.

2Rn is an ordered list of the radial positions of all atoms from the center of mass.

12



3.2 Liquid Properties

R∗ = 15, ∆R∗ increases and fluctuates, indicating that the radius of this drop is

around 15. The requirement that ∆Rn be large is ambiguous when considering

Figure 3.2, and atoms near the center of the drop meet this criteria though they

are definitely a part of the liquid. To alleviate this uncertainty, we bias the data

by multiplying ∆R by R. Figure 3.2 (red –) shows that fluctuations in the vapor

phase are larger than unity, even close to the liquid. We could therefore define

our drop radius as the first instance where Rn∆Rn > 1. This criterion is similar

to looking at the change in surface area between spherical shells. The choice of

unity may still be an ambiguous requirement, but this criterion worked very well

for the viscous liquid chosen here. It is possible that unity arises from our σ

parameter in the L-J potential, and it would make sense that a larger value of σ

would increase ∆R since the characteristic distance between particles is σ.

The downside of using a radial cutoff is that it may include vapor and exclude

liquid atoms near the surface of the drop for instances where the drop diverges

from its spherical shape; but, this method will provide a fast and good approxi-

mation for separating liquid and vapor. Furthermore, taking time averages will

increase the accuracy of this method. Figure 3.3 provides an example of this

routine in action.

Another method to find the radius is to simply use the number of atoms and

the densities [11],

N = ρl
4

3
πR3

e + ρv(L
3 − 4

3
πR3

e), (3.3)

where ρv and ρl are the vapor and liquid densities, L3 is the simulation box

volume, and Re is the equimolar radius of the drop. Re is the radius which divides

the liquid and the vapor assuming that the size of this liquid-solid interface is

nil. For a L-J liquid, this may not be the case and this method will result radii

smaller than our method above. This smaller cutoff radius will exclude liquid

atoms and may possibly lead to errors in estimating energies. For our purposes,

we use our method as the way in which we calculate surface tension requires

accurate estimates of drop energy.

3.2.2 Density

Having successfully isolated a liquid drop, the simplest method to calculate den-

sity is to use Equation 3.2 and to fit this curve to the data for Rn. To improve

the quality of the fit, we can exclude atoms for small values of n and exclude

atoms near the surface of the drop. If we included these atoms, we would find a

decrease in the density because the atom count near the center is too small to give
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Figure 3.2: Radial behavior of drop atoms. The change in radius, ∆R, is plotted as a
function of R (blue). ∆R∗ ≈ 0 within the drop except near the center and near the surface.
The graph indicates that ∆R∗ � 0 near R∗ = 15. Biasing the data by R (red) provides a
higher certainty that the drop’s radius is approximately 15 because R∆R is typically greater
than unity in the vapor region.

a reasonable estimate of the density and atoms near the surface of a L-J liquid

tend to evaporate. For our purposes, we considered data where 0.1N < n < 0.5N

to ensure that we were within a well behaved region of the drop. We calculated

the density for drops over a large number of sizes, and we averaged the data over

large time steps. Calculated densities are provided in Table A.1, and we used an

average of the density over all simulation sizes, such that ρ∗ = 0.85.

3.2.3 Surface Tension

Finding the surface tension of a liquid drop is not trivial. Many methods require

finding the radius of the drop, which is not necessarily clear and consistent for

a L-J liquid. Surface tension, γ, as defined by Laplace, is proportional to the

difference in pressure between the liquid and the vapor,

∆P =
γ

R
. (3.4)

We could use Equation 3.4 to find γ, but our estimate of R will also affect our

estimate of ∆P since this pressure is dependent on the volume of the liquid and

the vapor. Another method to find γ relates a drop size to its energy [12],

V = AN +BN2/3 + CN1/3 +D, (3.5)

where V is the potential energy of the drop, N is the number of atoms in the

drop, AN is a bulk binding energy, BN2/3 is the surface energy contribution, and

CN1/3 and D account for non-sphericity. Since our drops are relatively spherical,

C and D will be negligible, and surface tension can be approximated as,
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3.2 Liquid Properties

Figure 3.3: Method for separating vapor from liquid. Vapor atoms are initially selected
using a potential energy threshold (red, top left), but some clumps of vapor atoms remain
as they have potential energies larger than the threshold (top right). Next, a radial cutoff is
calculated by looking at the differential change in each atom’s radial position (middle left).
Finally, a liquid drop is isolated from the vapor phase (middle right). This method works well
for large simulations, even when smaller drops may coalesce in the vapor region (bottom).
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Figure 3.4: Potential energy of a drop versus drop size. A drop’s potential energy
has a surface energy contribution proportional to BN2/3. Here, we plot log(∆B) versus the
log of the number of atoms. The data (◦) agree very well with the relationship V = ∆BN2/3

(–). Fitting this relationship to the data provides an estimate of the surface tension. Note the
convergence of ∆B at large N .

γ =
∆BN2/3

4πR2
, (3.6)

where R is the radius of a drop of N atoms, and ∆B is the free surface energy.

Obtaining the potential energy of the drop is straight forward. To find ∆B,

we recalculate the potential of the drop after removing the vapor phase. This

recalculated potential represents the bulk liquid energies exclusive of the vapor

regime near the drop’s surface. The difference between the energies of a drop

with the vapor phase and the same drop without the vapor phase represents

the additional surface energy that gives the drop its shape. To improve our

calculation of γ, we substitute N for R using our calculated density, such that

γ = ∆B(4π)−1/3(ρ/3)2/3.

Figure 3.4 shows the dependency of ∆B on the number of atoms. We fit the

data to the curve V = ∆BN2/3, and the data (◦) fit this curve very well (–)

especially as N increases. Given ∆B∗ = 8.5, we find γ∗ = 1.6. Values for γ in the

literature are primarily for systems where εll = 1, in which case γ ≈ 0.4 [13]. The

state of our system with εll = 1.75 and T ∗ = 1 is equivalent to a system where

εll = 1 and T ∗ = 1/1.75 = 0.57. The surface tension of Argon as a function of

temperature is,

γ = γ0(1− T/Tc)p, (3.7)

where p = 1.281, Tc = 150.7K, and γ0 = 2.376meV/Å2 [14]. For Ar where ε =

10.03meV and σ = 3.370Å, the dimensionless temperatures scale to T = 66.52K

for εll = 1.75 and T = 116.4K for εll = 1. Using Eq. 3.7 and scaling back to

dimensionless units, we find γ∗(εll = 1) = 0.404, consistent with experiments and
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MD simulations, and we find γ∗(εll = 1.75) = 1.276. This value is in reasonable

agreement with our calculated value. We will use 1.6 in our analyses to follow.

3.2.4 Viscosity

There are a few ways to calculate a liquid’s viscosity in MD [15]. Here, the

Green-Kubo equation is used,

η =
VL
kBT

∫ ∞
0

< Pij(t0)Pij(t0 + t) >t0 dt, (3.8)

where η is the viscosity, VL is the volume, kB is the Boltzmann constant, T is tem-

perature, and Pij is the off-diagonal term of the pressure tensor for ij = xy, xz, yz.

Code from the work of Schebarchov [16] was used to compute the autocorrelation

of the pressure tensors as well as the integral of the autocorrelation function. The

computed result for viscosity, η = 3.5, is similar to that of other work with similar

density and temperature (η ≈ 3) [17–19].
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Liquid 

Surface 

Air 

low intrinsic slip high intrinsic slip 

Figure 3.5: A super hydrophobic surface with posts. The intrinsic slip between a liquid
and a surface (blue and gray) is low compared to the intrinsic slip between a liquid and a vapor
(blue and white). The effect of these two intrinsic slips give rise to an effective slip for the
surface.

3.3 Estimating Slip of Mixed Surfaces

In this section, we estimate the slip length of a substrate that contains regions

of large slip and low slip. This type of system is analogous to a hydrophobic leaf

with a rough, waxy surface. The wax provides the hydrophobic properties (the

lower slip region) and the surface roughness creates areas where liquid does not

touch the leaf but rather touches a small layer of vapor that separates the liquid

from the leaf (a region of high slip). Figure 3.5 provides an example of this type

of surface. The liquid (blue) only touches a fraction of the surface (gray) while

pockets of air (white) help to give the surface its super-hydrophobicity.

The intrinsic slip is a slip that arises from the molecular interactions between

two substances, and in Figure 3.5 the interactions between the liquid and the

surface will have a lower intrinsic slip than the interactions between the air and

the liquid. From a macroscopic view, however, the surface in this Figure may

appear smooth; in fact, if we measure the slip between the liquid and the surface,

then we would measure an effective slip length. This effective slip length arises

from the combination of intrinsic slip lengths.

Nat Lund et al. have proposed a theory that aims to calculate the effective

slip of a surface given the geometry and the intrinsic slips [20]. We will use MD

in this Section to test the validity of this theory.

3.3.1 Theory

The slip boundary condition

The no-slip boundary condition states that the fluid at a liquid-solid interface

moves at the same speed as the solid. In most situations and on a macro-scale, this

boundary condition provides an accurate description of the interaction; however,
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Figure 3.6: No-slip versus slip. If the top of a liquid moves at a constant speed along the
x-direction, then the speed of the liquid at the liquid-surface interface will be zero (no-slip) or
Us (slip), and the gradient of the liquid’s velocity, ∂ux/∂y, will be U/h (no-slip) or (U −Us)/h
(slip). b is the slip length.

at the micro and nano scales, molecules and atoms of a liquid may not necessarily

share the same speed as the solid.

Slip is usually characterized by a slip length. This slip length, b, arises from

the Navier slip boundary condition, which states that the tangential velocity of

a liquid at the liquid-solid boundary is proportional to the shear rate at the

surface [21],

Us = b
∂u

∂y
, (3.9)

where ∂u/∂y is the shear rate normal to the surface and Us is the speed of the

liquid at the liquid-surface interface (slip speed). Figure 3.6 demonstrates the

comparison between no-slip and slip. Assuming a Couette flow where the top of

the liquid (blue) moves at a constant speed parallel to the surface (green), the

change in speed of the liquid along the height of the liquid is constant. In the case

of no-slip, that gradient is U/h where U is the speed of the liquid at the top and

h is the liquid height. In the case of slip, the gradient is (U−Us)/h, and together

with Eq. 3.9, this is equivalent to U/(h− b). Slip length is sometimes refered to

as an imaginary length below a surface where an extrapolated slip speed is zero.

If we consider the slip case in Fig. 3.6 along with U/(h− b), then we can see from

where this “imaginary length” arises. Note that a slip length of zero is equivalent

to no-slip as Us is zero. If b =∞, then there is perfect slip since this implies that

∂u/∂y = 0. Perfect slip is a case where the speed in the liquid is constant along

the liquid’s height in the case of a Couette flow.

20
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Effective slip

Consider Figure 3.5 where the intrinsic slip lengths are bsurf and bair. The area frac-

tions of the liquid touching the air and surface are βair and βsurf . The normalized

arc lengths of the surface and the air3 are ssurf and sair, where the normalization

is taken over the interval of the arc. With these parameters, the effective slip

length is shown to be [20],

beff =

[
βairsair

bair

+
βsurfssurf

bsurf

]−1

. (3.10)

This theory predicts beff using weak convergence methods for partial differential

equations. The Navier-Stokes equations along with their intrinsic slip boundary

conditions (e.g. bair and bsurf) and geometries are solved to find beff .

3.3.2 Simulation

Surfaces

The intrinsic and effective slip lengths are estimated for three homogenous sur-

faces and five binary surfaces, respectively, as shown in Figure 3.7. The color

coding in this Figure represents the value of the liquid-surface interaction pa-

rameter εls. The green surface in A is used for the outer ends of the surfaces

in D-H. The cyan surfaces in B and C have the same energy parameter, and

they are used for the center of the surfaces in D-H. All surfaces have a simple

cubic lattice structures with a lattice parameter of a = 1. The surface in C has

the (111) lattice plane normal to the y-axis and all other surfaces have the (010)

plane normal to the y-axis. Surfaces D-H are combinations of surfaces A-C, where

surface C represents the steps (or cuts) in the lattice of surfaces E-F. Details of

the dimensions of the surfaces and the lattice planes are provided at the bottom

of Figure 3.7. All surfaces share the same dimensions except for a variation in

depth for surfaces E-H. The 3-atom depth of the surfaces is sufficient for a radial

cutoff of rc = 2.5. Since surfaces A-C are atomically flat, estimates of the slip

length for these surfaces will give us the intrinsic slip. All other estimates will be

of the effective slip length.

3The arc length of the air is the arc length of the liquid suspended over the air
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Figure 3.7: Slip surfaces. The above surfaces are of a simple cubic lattice structure with
lattice parameter a = 1σ. Surfaces A and B are used to estimate the intrinsic slip lengths of flat
surfaces with different liquid-solid interaction parameters. Green represents one value for the
liquid-solid interaction parameter, εls, and cyan represents a different value. Surface C is used
to estimate the slip length along the (111) lattice plane as this surface represents the steps (or
cuts) of surface B in surfaces E-H. Surfaces D-H are used to estimate the effective slip lengths
of a mixture of surfaces A-C, and the ratio of the mix varies for D-H, with D containing none
of B and H containing the most of C. The bottom of the Figure provides the dimensions of the
surfaces, which are the same for all except for a varying depth in E-H. Note that since the L-J
radial cut off is 2.5σ, the depth of these surfaces (3) is sufficient for our simulations. These
surfaces are periodic in x and z.
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Figure 3.8: Simulation set up. All atoms in the liquid and the driving regions feel an
acceleration of g. Atoms in the driving region move at a constant speed of ux and have 2
degrees of freedom (y, z), and atoms in the liquid region have 3 degrees of freedom (x, y,
z). These simulations were periodic in x and z and fixed in y. Notice that some atoms from
the driving region enter the liquid region during a simulation (black circles). This effect is
negligible to the Couette flow of the system, and we update the driving region atoms every
100τ to accommodate for this effect. The simulation box was 60x100x9 (xyz) atom lengths in
size, periodic in x and z, and fixed in y. The time step was 1×10−3, and a thermostat was used
in the z-direction only with T ∗ = 1± 0.1

Estimating Slip

Both slip speed and shear rate are measurable quantities of a fluid flowing over

a substrate, and by measuring these we can estimate the slip length of a surface.

For the case of a smooth, homogenous surface, there will only exist one inherent

slip length. Any estimate of a slip length between a liquid and this surface will

be an estimate of the intrinsic slip. For the case of a surface with more than one

intrinsic slip and with some surface roughness, any estimate of slip length will be

the effective slip length.

To estimate the slip length, we will set up a Couette flow in our simulation so

that we may produce velocity profiles similar to those in Figure 3.6. In order to

do this we move the top portion of our liquid at a constant speed, and we also

move the liquid slow enough so that we have laminar flow, especially near the

liquid-surface boundary.

A typical method to create a Couette flow in MD is to move a driving plate (a

solid surface) along the top of a liquid; however, if the liquid has a high viscosity,

the driving plate could potentially cause the liquid to freeze depending on the

system parameters. This occurs because the solid surface creates local ordering4

4Local ordering is when atoms in a liquid begin to arrange in the lattice structure of the
solid with which it interacts. When liquid atoms assume a lattice structure, they freeze and
become a solid.
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in the liquid near the surface, and that ordering can cause all liquid atoms to

freeze.

We developed a different method to move our viscous liquid. Rather than

moving a solid plate, we moved the liquid at the top at a constant speed. A

diagram of this set up is shown in Figure 3.8. The liquid at the top is denoted

as the driving region.5 Atoms in the driving region were fixed in the x-plane and

allowed to move in the z and y-planes. The degrees of freedom for an atom are

decreased when preventing it from moving in a certain direction, and this loss of

freedom implies that an atom is “frozen” in that dimension. By allowing atoms

to move in y and z, we prevent the driving region from creating order in the liquid

region. This freedom also meant that some atoms in the top region moved along

the y-axis and into the liquid region (see the circles in Figure 3.8), so atoms in

the driving region changed over time. To accommodate for this brownian motion,

the driving region was updated every 1×105 time steps to include a new set of

atoms at the top of the liquid.

The soft boundary conditions used in our method required a force to prevent

the liquid from floating away from the surface, so we added a gravity component

acting normal to the surface. This gravity creates a pressure which will affect the

estimated slip length [1], and increasing pressure also increases the ordering of

liquid near the surface. We used a small enough force so as to prevent additional

ordering of the liquid, and we used the same force throughout all simulations on

surfaces A-H for consistency.

We will use Equation 3.9 to calculate the slip length by fitting a line to the

velocity profiles of the liquid. This profile is obtained by recording the velocity of

the liquid along the height of the liquid so that we produce the curve y = ux(y).

This creates a Couette profile like that in Figure 3.6. The y-intercept of the fitted

curve provides an estimate for the slip length.

3.3.3 Results

We conducted three sets of simulations (each set called a Run) to estimate the

slip lengths of our surfaces while varying gravity as well as the liquid-surface

interaction. Results from these simulations are presented in Figure 3.9, and

details of simulation parameters can be found in Appendix B. The graphs in

Figure 3.9 show the slip lengths for the primary surfaces A-C (--) and surfaces D-H

(•). The left and center graphs (blue and red, respectively) represent simulations

with g∗ = 0.05 while the right graph (green) represents a simulation with g∗ =

5Atoms in the driving region are liquid atoms with the same εls as the other liquid atoms.
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Figure 3.9: Slip lengths of surfaces A-H. Slip lengths are plotted as against the ratio of
the length of the curved region to the flat region. Dashed lines are the slip lengths of surfaces
A-C and circles are D-H. Run 1: g∗ = 0.05, εls,A = 0.05, εls,B = 0.1. Run 2: g∗ = 0.05,
εls,A = 0.01 , εls,B = 0.001. Run 3: g∗ = 0.035, εls,A = 0.18, εls,B = 0.08. Run 1 (blue) does
not have an estimate for surface H as the liquid in that simulation froze. The theory (Eq. 3.10)
is plotted (black line) to compare with the data.

0.035. The εls values of the simulations, from left to right, for the green surfaces

were 0.5, 0.01, 0.18 and for the cyan surfaces, 0.1, 0.001, 0.08. Our choices for εls

may appear arbitrary. The reason for this was that creating large slip lengths

for our viscous liquid was not trivial, and we had to experiment with different

values of εls. The fact that a smaller εls does not necessarily imply a larger slip

was part of the challenge in finding good values of εls. The other challenge was

that the energy parameter also affected the average distance between the liquid

and the surface, and this affected our ability to properly estimate slip for surface

C. Nonetheless, our chosen values provided satisfactory results with which to test

the theory.

We also plot the theory in Figure 3.9 for comparison. Note that our surface

is actually a tertiary surface, so Eq. 3.10 becomes,

beff,i =

[
βA,isA

bA

+
βB,isB

bB

+
βC,isC,i

bC

]−1

, (3.11)

where the indices A, B, and C represent their surfaces, and the index i is for the
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D E F G H

sA,i 1 1 1 1 1

sB,i 1 1 1 1 1

sC,i 0 2 2 2 2

βA,i 0.50 0.47 0.44 0.42 0.39

βB,i 0.50 0.41 0.32 0.25 0.18

βC,i 0 0.13 0.24 0.33 0.42

Table 3.2: Parameters for calculating effective slip. Normalized arc lengths, s, and
area fractions, β, for surfaces D-H. The i index takes surfaces D-H. For example, sC,D is the
normalized arc length of the C surfaces within the D surface.

mixed surfaces D-H. The normalized arc lengths for surfaces A and B are always

1 because the arc length and interval for these two surfaces are always the same

(the interval length is length of the arc in the x-direction, see Figure 3.7). sC,i is

always 2 (except for i =D) since each cut in the lattice results in an arc length

of 2 atoms (1 atom in both x and y, where an additional C surface atom is taken

from a B surface atom) while the interval is 1 atom in length. The normalized

arc lengths as well as the area fractions of each surface are presented in Table 3.2.

The data in the table and the estimated slip lengths for surfaces A-C are used to

generate the curves for beff in Figure 3.9.

3.3.4 Discussion

The most prominent feature of the results in Figure 3.9 is the large drop in slip

length from surface D to E. Surface D is only made up of surfaces A and B, which

always have higher slip lengths than C. Surfaces E-H are mixes of surfaces A-C,

so the low slip length of C greatly affects the effective slip length. According to

the model proposed by Nat Lund et al. [20], the effective slip length of a system

made up of smaller inherent slip lengths is dominated by the smallest inherent

slip. In our case, the (111) surface has the lowest slip length and it causes the

effective slips of surfaces E-H to be much smaller. This is evident in the computed

effective slip lengths from Eq. 3.11 plotted in Figure 3.9. For Run 1 we see very

good agreement of the theory with our results. The theory captures the proper

behavior of the data in Runs 2 and 3, but the model appears to underestimate

slip in Run 2 and overestimate slip in Run 3.

In Run 3, we see that surfaces E-H are estimated to have smaller slip lengths

than C. This may be caused by an improper estimate of the slip length of C. In

Figure 3.10 we compare the snap shots of simulations of surface C from Runs 1,

2, and 3. In Run 2 (middle), liquid atoms are much closer to the surface than
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Figure 3.10: Comparing the C surfaces. Snapshots of simulations of surface C near the
liquid-surface region are provided for Run 1 (left), Run 2 (center), and Run 3 (right). The liquid
in Run 2 is much closer to the surface as a result of the small εls. The similarities between Run
1 and Run 3 cannot elucidate the cause for the high slip seen for surface C in Run 3.

in the other runs. This is due to the small εls which lowers the strength of the

repulsive potential of the surface. Runs 1 and 3 appear very similar except for

the slight increase in distance between liquid and surface in Run 3, which in this

case is caused by a lower gravity component. Perhaps this separation distance

changes when mixing surfaces, and this prevents us from recording the proper

slip.

In MD, ordering of the liquid near the surface is an indication of wetting.

Figure 3.11 shows the density profiles of the liquid for simulations of surface C.

Oscillations of the density near the surface (height≈0) is an indication of ordering,

so the liquid is partially wetting surface C for all runs. It is worth noting the

change in density along the height profile. This is not the best case scenario for

estimating the slip of the surface as the liquid is not uniform in density along

the height. This gradient in the liquid density is a result of ordering caused

by the surface, where the density tends towards the liquid density away from

the surface (large height) and tends towards the surface density near the surface

(small height). The important part is that these density profiles are consistent

for the simulations of all surfaces for each run.

Figure 3.11 also shows that a higher gravity term (Runs 1 and 2) causes the

density of the liquid to be larger near the surface, which indicates more ordering

at higher pressures. Also, the choice of g will cause the density to slightly increase

if g is larger than the force fluctuations within the liquid, and this is the case in

our simulations as we see the density at the top of the liquid is slightly larger

than 0.85. There is little difference in the fluctuations near the surface between all

runs. Run 2 has a slightly larger fluctuation which is expected since its separation

distance is much smaller.

Perhaps the (111) surface alone is not a good representation of the steps in sur-

27



Chapter 3: Modeling Liquids

0.8 0.85 0.9 0.95 1
0

20

40

60

80

Density*

H
e
i
g
h
t
*

 

 
Run 1
Run 2
Run 3

Figure 3.11: Density profiles of surface C. These density profiles confirm that the liquid
partially wets surface C in all runs. The lower density in Run 3 is a result of a lower gravity.
Perhaps the smaller ordering in Run 3 is a cause for the high slip of surface C.

faces E-H, especially considering the fact that surface C is flat. The change from

the (010) to the (111) may represent a surface with a slightly larger roughness,

thus resulting in a smaller slip length.

3.3.5 Conclusion

In this section, we demonstrated how to estimate the slip lengths of surfaces

using MD. This was a simple task, and it has been done a number of times in

the literature; however, we used MD to conduct a simulation to test the validity

of a theory. Though estimating slip lengths is trivial, we were surprised with the

results that we found, mainly the fact that simple cuts in an atomistic surface

would greatly decrease the slip length. This makes sense with regard to surface

roughness and even the theory; but, we did not expect to see these effects at such

a small scale. These results reiterate the fact that fluid dynamics and the models

developed are very scalable even down to the atomistic level.
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Figure 3.12: A liquid drop on an inclined, super-hydrophobic surface.

3.4 Drop Dynamics on Slippery Surfaces

The motion of liquid drops moving down a super-hydrophobic surface is well

studied, and general scaling laws are shown to match well with experimental

results [22,23]. Thus far theory and experiments have verified that drops can roll

or slide down an incline, but few consider the case of drops rolling and sliding

down an incline.

Observing and measuring rolling and slipping motion in drop experiments is

difficult since these drops tend to be on the scale of millimeters. Previous work

used pigmentation and high speed cameras in order to record rolling motion of

viscous, liquid drops; however, the resolution of these methods makes it difficult

to observe slip if it were present. Furthermore, experiments and theory have

measured and predicted lengths of up to tens of microns (in some instances,

hundreds of microns) [21] for fluids moving along a surface. This could imply

that drops would need to be on the order of microns in size if slip is to play an

important role in the drop dynamics.

One paper used MD to study sliding drops [24], and they found drop speed

to increase with increasing size and slip length. Their surfaces were not super-

hydrophobic and they found the drop dynamics to be dominated by shearing due

to slip. Another paper conducted simulations of drops moving along superhy-

drophobic surfaces [25], and they include details on the velocity profiles within

the drop; however, they did not study the effects of drop size and slip length on

drop dynamics.

Recently, Mark Hunter et al. [26] have proposed a method to measure velocity

gradients inside of a moving drop of water by using nuclear magnetic resonance

imaging techniques. They hope to conduct experiments on super-hydrophobic

surfaces, and this research will hopefully produce experimental results on slipping

and rolling of liquid drops.

In this section, we will use MD to study the motion of liquid drops on super-
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γsv l 
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Figure 3.13: A drop on a hydrophobic surface. The angle of contact between a liquid
drop and a surface is θ, and this angle arises from a balance in surface tension between the
liquid, surface, and vapor. For θ < 180◦ the drop will wet the surface (left) with a contact size
of radius l. For θ = 180◦, the drop is in a non-wetting state, but gravity, g, still causes the drop
to have a finite contact size l with the surface (right).

hydrophobic surfaces. We will study the effect of slip length and drop size on

drop speed, and we will attempt to develop a simple theory for drop speed that

takes into account these parameters. The surface we will use to create super-

hydrophobicity will have a geometry similar to Figure 3.5

3.4.1 Theory

Here, we will develop a scaling law that aims to predict the behavior of a drop

moving down an inclined, super-hydrophobic surface. Scaling laws tell us, for

example, how drop speed is affected by drop size, and these types of laws are

typically valid at certain extrema when a particular function dominates. We will

use the “∼” to mean “scales as” in the theories to follow. We will start with

theory developed thus far, and then move to develop our own theory.

Static drops

A drop of liquid resting on a surface makes a contact angle θ with a surface given

by,

cos θ = (γsv − γls)/γll, (3.12)

where γ is the surface tension between the solid-vapor, liquid-solid, and liquid-

liquid interfaces (see left diagram in Figure 3.13). Drops are said to wet a surface

if they make a contact angle less than 90◦ and partially wet a surface for angles

between 90◦ and 180◦. Non-wetting is the case where θ = 180◦. A surface is

hydrophobic for angles greater than 90◦ and super-hydrophobic for angles greater

than 160◦. The shape of a drop will be nearly spherical if the drop radius is smaller

than the capillary length [23],

κ−1 =

√
γ

ρg
. (3.13)
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where ρ is the density of the liquid and g is gravity. For the case of drops smaller

than κ−1, the contact size that the drop makes with a surface can be approximated

as a function of the contact angle and the drop radius R [23],

l ∼ 41/3 sin θ

(2 + cos θ)1/3(1− cos θ)2/3
R. (3.14)

In the limit as θ → π, the contact size tends to zero; however, gravity will cause

the drop shape to deform slightly, thus giving rise to a finite contact size. For

non-wetting drops smaller than the capillary length [23],

l ∼ R2/κ−1. (3.15)

This relation arises from a balance between gravity and surface tension. The

right diagram in Figure 3.13 provides an example of a non-wetting drop with a

small contact size l.

Dynamic drops

When a spherical drop is initially placed on a surface, its instantaneous contact

angle will be 180◦. Then, depending on the liquid-solid interactions, the contact

angle will relax to an equilibrium as given by Eq. 3.12. The dynamics of this

contact angle relaxation determines how quickly a liquid will wet a substrate, and

molecular kinetic theory explains these macroscopic dynamics using microscopic

techniques. The contact line of a liquid with a solid is motivated by the out-of-

balance surface tension forces. By considering the frequency at which molecules

in a liquid hop between atom sites on a surface, Blake showed that the speed of

the contact line as a function of contact angle is given by [27],

v = 2K0λ sinh

[
γll(cos θ0 − cos θ)

2nkBT

]
, (3.16)

where K0 is the frequency at which the contact line jumps, λ is a molecular

hopping distance, n is the number of absorption sites per unit area, θ0 is the

equilibrium contact angle, and kBT is the Boltzmann constant times temperature.

The evolution of the contact line can also be calculated by considering the contact

size, l. For small drops, R� κ−1 [28],

∂l

∂t
= −∂θ

∂t

(1− cos θ)2

(2− 3 cos θ + cos3 θ)4/3
. (3.17)
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Using Equations 3.16 and 3.17, one can compute K0λ and n by finding the evo-

lution of θ. By relating the contact angle velocity to a driving force proportional

to γll(cos θ0 − cos θ), one can define a coefficient of friction as [29],

ζ =
ηm

ρλ3
, (3.18)

where η, m, and ρ are the liquid viscosity, mass, and density, respectively, and

we assume an equilibrium contact angle of 180◦.

Drops moving down an incline

We want to find the steady-state speed of drops moving down an incline. In

order to do this, we will need to make a few assumptions. First, we must have

a liquid drop sufficiently viscous such that its spherical shape is not deformed

by its speed and such that viscous effects dominate inertia. Thus we require

a capillary and Reynolds number much less than unity, Ca = ηU/γ � 1 and

Re = ρlU/η � 1 [30]. From the properties of our L-J liquid (Table 3.1)6, we

require speeds U∗ � 0.46 for small Ca. For small Re, we require U∗ � 4/l. We

will only consider angles of inclination α � 1 so that the force motivating drop

speed is low, allowing us to maintain our low speed requirements.

A drop moving down an incline will reach a terminal speed related to a balance

between the change in potential energy and dissipation,

ρR3gUcmα ∼ D, (3.19)

where density, gravity, drop radius, speed, and dissipation are ρ, g, R, Ucm, and D

respectively, and Ucmα represents the rate of change of the gravitational potential.

Here we define the speed of the center of mass as the drop speed, and we also

take the approximation sinα ≈ α.

Purely rolling drops

Consider Figure 3.14. Assume there is a small volume in the drop where energy

is lost to viscosity (dark blue region), and assume that the velocity gradient

throughout the drop is similar to that of a rigid body rolling down an incline

(right diagram, shown as a superposition of rotation and translation). Viscous

dissipation in the drop will be confined to the contact region, and the volume

of this region is Vd ∼ l3. The velocity gradient in the contact region is |∇u| ∼
6Both Ca and Re are dimensionless quantities, so Re∗ = Re and Ca∗ = Ca
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α

l 
g 

R

U

Figure 3.14: Diagram of a rolling drop. A drop of radius R rolling down an incline of angle
α (left) is motivated by gravity g, and viscous dissipation (shaded region) acting on a volume
proportional to the contact size, l, causes the drop to reach a terminal velocity of U . The
velocity profile of the drop is shown (right) and has a gradient of U/R. Note that translation
is included in this velocity profile, hence the zero velocity at y = 0.

Ucm/R, and the viscous dissipation is defined as,

D ∼ η

∫
V

|∇u|2dV (3.20)

Solving Equation 3.19 together with Equations 3.13, 3.20, and 3.15, we find that

these drops reach a terminal speed,

Ucm ∼
γ

η
α
κ−1

R
, (3.21)

indicating that rolling drops increase in speed as their size decreases. This scaling

law was shown to match experiments quite well even for drops where R = κ−1 [30].

Note that since there is only rolling motion, the rolling speed Ur = Ucm.

For puddles, drops larger than κ−1, the drop will flatten out and the height of

the drop will tend to 2κ−1 [23]. This means that we can assume the radius, height,

and contact size of the drop scale as κ−1. The viscous forces in these puddles

will be ηκ−2Ucm/κ
−1, where friction acts on a contact area κ−2 and Ucm/κ

−1 is

the shear rate in the drop. The gravitational force is ρκ−3gα, and the balance

between viscous and gravitational forces predict a terminal speed of [23],

Ucm ∼
γ

η
α, (3.22)

which is consistent with Eq. 3.21 for R = κ−1.
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Figure 3.15: Diagram of a sliding drop. A drop of radius R sliding down an incline of
angle α (left) is motivated by gravity g, and the velocity profile of the drop (right) results from
the Navier-Stokes equation of a liquid motivated by a force. The drop slips with speed Us, and
the drop’s speed, Ucm, is the flow at the height of the center of mass of the drop.

Purely sliding drops

For the case of a drop sliding down an incline, we can use the Navier-Stokes

equation for a fluid flow motivated by a force [24],

∂2ux
∂y2

= −ρgα
η
, (3.23)

where gα is the component of gravity parallel to the surface. Figure 3.15 provides

a diagram of a drop sliding down an incline. Us is the slip speed at the liquid-solid

interface, and the drop speed is Ucm at the center of mass of the drop. In the case

of slip, there is a non-zero shear rate at the liquid-surface boundary (the dark

blue region). The Navier slip boundary condition (Eq. 3.9) along with Eq. 3.23

results in,

ux(y) ∼ −γ
η

y2

κ−2
+
Us
b
y + Us. (3.24)

We can estimate the slip speed by balancing the force of gravity with the frictional

forces arising from slip. There are two types of friction that we predict will be

important at the contact zone. First is the force of friction due to shear, Us/b,

acting on an area l2, fA ∼ ηl2Us/b. Second is a frictional force acting on the

perimeter of the contact zone, fC ∼ ζlUs, where ζ is a coefficient of friction.

Balancing these forces with gravity, we find,

Us ∼
γαRb

ηR2 + ζκ−1b
. (3.25)

For the case of small drops and large slip, R � κ−1 and R � b, we expect

Ucm ∼ Us.
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Rolling and slipping drops

At the heart of the models for purely rolling or sliding drops, as well as other

models that attempt to predict drop speed [24], is the idea of balancing energy

dissipation; that is, if a moving drop is to reach a steady-state, then the total

energy of the system must remain constant. The observation that drops do indeed

reach a steady-state was made in experiments [31,32].

We define the total energy dissipation in a drop moving down an incline as,

Dt = Dv +Da +Dc, (3.26)

where Dv is viscous dissipation due to rolling, Da is the dynamic friction caused

by slip at the liquid-surface interface, and Dc is dissipation due to contact line

dynamics. We have shown what these dissipation terms look like, and we will

summarize them here. A drop will begin to roll because viscous dissipation within

the contact zone will induce a torque on the drop. This dissipation is,

Dv ∼
∫
V

η

(
Ur
R

)2

dV ∼ ηl3
(
Ur
R

)2

, (3.27)

where we take the volume integral in the contact region. The force of dynamic

friction aries from shear at the liquid surface interface acting on the contact zone,

which has an area ∼ l2. The dissipation at the surface of the contact zone is,

Da ∼ Us

∫
A

η
Us
b
dA ∼ ηl2

U2
s

b
, (3.28)

where we assume the rate of dissipation is proportional to Us, and we take the

area integral at the liquid-surface contact zone. Contact line dynamics predicts

a friction force, F = ζu. Assuming this friction acts along the perimeter of the

contact zone and that the rate of dissipation is proportional to Us, we find,

Dc ∼ Us

∫
C

ζUsdC ∼ ζlU2
s , (3.29)

where the integral is taken along the contact line.

We expect the total dissipation of the drop to be balanced by the change in

gravitational potential energy. From this energy balance, along with the above
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equations, we find the relation,

U0Ucm ∼
R

κ−1
U2
r +

R

b
U2
s +

ζ

η

κ−1

R
U2
s , (3.30)

where we have used the puddle speed U0 = γα/η and we assume the relation

3.15, which requires non-wetting drops where R < κ−1. Note that all parameters

are accounted for except ζ, which we will cover in the results below. Finally,

we expect Ucm ∼ Us + Ur. Since we are interested in steady-state solutions,

we can take the derivative of Eq. 3.30 with respect to Ur and Us, noting that

∂Us/∂Ur = ∂Ur/∂Us = 0. From this, we could solve Eq. 3.30; however, we

will keep our scaling law as dependent on Ur and Us. This makes the law more

convenient for comparison with our results. Alternatively, we could assume rolling

dynamics and slipping dynamics are independent of each other, in which case

Ucm would be the sum of Equations 3.21 and 3.25. We will test both of these

possibilities with the results below.

3.4.2 Simulation

Snap shots of the simulation set up are provided in Figure 3.16. We simulated

an incline by varying forces parallel and perpendicular (fx and fy) to the surface.

For small inclinations, α ∼ fx/fy, and fy is the gravity term g. We vary the

interaction potential between the liquid and the surface (εls = 0.15, 0.2) in order

to vary the slip length of the surface, and we also used rough surfaces in order

to achieve large contact angles and super-hydrophobicity. The rough surface

consists of equally spaced posts in three dimensions (Figure 3.16). Slip lengths

were calculated as in Section 3.3, and they were also estimated directly from our

drop simulations. These two estimates were relatively consistent.

Drop temperature was thermostatted by scaling atom velocities while ignor-

ing the atom velocities in the plane of rotation (this meant that drop velocities

were scaled in the z-direction only). The temperature was T ∗ = 1 ± .02 and it

was checked every 100 units of time. Proper thermostatting is important in our

simulations as we expect the drop to lose energy through dissipation. Since we

expect the drop’s motion to be primarily within the xy-plane, we can safely ther-

mostat in the z-plane without affecting drop dynamics. The main requirement

for our thermostat is that our surface has a temperature of zero because it is

fixed. Fixing the surface while thermostatting the liquid is more computationally

efficient.

Simulations took about 5×106 time steps for drops to reach steady state, and
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fy*=3×10-3 
fx*=5×10-4 

fy*=3×10-4 
fx*=5×10-5 

Figure 3.16: Snap shots of liquid drops. A snap shot of a liquid drop on a rough, super-
hydrophobic surface for g∗ = 3 × 10−4 (left) and g∗ = 3 × 10−3 (right). The surface consists
of evenly spaced posts in three dimensions, and the surface is periodic in x and z while the
simulation had a fixed boundary condition in y. The posts create a super-hydrophobic surface
as evidenced by the high contact angle between the liquid (blue) and the surface (black). The
drops above have radii of R∗ = 13.
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Figure 3.17: Contact size. Estimated drop contact sizes (•) are plotted against drop size.
The theory for non-wetting drops says that the contact size should increase as R2, and the
theory matches our data reasonably well.

data were collected and averaged over another 25 × 106 time steps. Every 103

time steps represents 1 unit of time, τ ∗.

3.4.3 Results and Analysis

Contact Size

Details on how we estimated a drop’s contact size are provided in Appendix C.

We present our estimated contact sizes along with the theory (Eq. 3.15) in Figure

3.17. We conducted simulations with two different gravities, g∗, of 3×10−4 and

3×10−3, resulting in two capillary lengths of 79 and 25. Our estimates for the

contact size, l, are in good agreement with the theory for the data with low g

(blue) and high g (black). Since Eq. 3.15 is valid for drops smaller than κ−1, we

see better agreement at smaller radii for the high gravity case.
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Figure 3.18: Posts of a super-hydrophobic surface. Here we show the surface used in
our simulations. The unit cell (red box) is a square of length 3.17, and each cell contains one
post (green). Each post is made of 8 atoms, and we calculated a molecular hopping distance of
λ∗ ≈ 1.25 for our surface.

Contact Line Friction

We need the hopping distance, λ, and the number of absorption sites per unit

area, n, in order to estimate ζ from Eq. 3.18. For evenly distributed surfaces,

λ = 1/
√
n. Figure 3.18 provides a close look at the posts of the surface used

in our simulations, and we see that we have at the least 2 absorption sites per

unit cell, where the unit cell is a square of length 3.17. This value results in a

molecular hopping distance of 2.24, and we find ζ∗ = 0.37.

We can improve upon this estimate by finding n using the methods of Blake

et al. [28, 33] and Equations 3.16 and 3.17. A drop was placed on surfaces with

varying εls, and the contact angles were recorded over time.7 Figure 3.19 shows

the time evolution of drop contact angles for different εls parameters (–), and a

fit of the time evolution of θ is also plotted (--). The theory fits the data well

especially for larger εls where the data are less noisy and estimates of the contact

size improve.8 Notice that at εls = 0.2, the value used for one of our surfaces

in the drop simulations, the contact angle is very close to 180◦, an indication

that there is little wetting and a requirement for our theory. Note that our

results presented in Figure 3.19 are consistent with Figure 2 of Blake et al. [28].

We found ζ∗ = 2.1 for our surface, indicating a molecular hopping distance of

λ∗ = 1.25 and 0.64 absorption sites per unit area (roughly 6.5 atoms). With each

post having 8 atoms, this value of ζ seems reasonable. Note that ζ is related to

the geometry of the surface, so regardless of the chemical potential of a surface

(or the εls parameter we use in our simulations) ζ will be the same.

7Contact angles were difficult to estimate, so we used Equation 3.14 to determine θ from l.
8Noise in contact angle estimates increases for larger contact angles because our methods

for estimating contact size do not work well as contact size approaches zero.
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Figure 3.19: Contact angle. The time evolution of the contact angles for a drop of R∗ = 16.7
placed on the surface in Fig. 3.18 for different values of εls. The fits given by the dashed lines
allow us to estimate the hopping distance, λ, and the number of absorptions sites per unit area,
n. For clarity, some data points in the Figure were removed.

Drop Velocity

Parameters of the various simulation runs and results are presented in Figure

3.20. We plot the speed of the drop scaled by the angle of inclination versus the

radius of the drop scaled by the capillary length. The speed of the drop, Ucm,

is the time averaged speed of the center of mass of all atoms in the simulation.9

Since there are a small number of atoms in the vapor phase, this method provides

a good estimate of the drop’s total speed. Note that data were averaged after an

initial transient state, which took around 5× 106 time steps.

In Figure 3.20 we see a 1/R trend similar to Eq. 3.21, the pure rolling model.

We also see that Ucm scales relatively proportionately with α as indicated by

the similarities between simulations 1 and 3 and between simulations 2 and 4.

The data clearly show an increase in drop speed with increasing slip length.

Simulations 5 and 6 appear to have a behavior much different from the other

simulations – drop speeds are increasing with size. It may be difficult to compare

these two sets of data with simulations 1 through 4 as the different capillary

length indicates drops in a different regime.

9Though a force is applied in the x-direction only (fx), drops, especially small ones, tend
to move in the z-plane. This effect may be attributed to the post structure of the surface (the
post spacing is on the order of the drop size for small drops) as well as contact line dynamics.
Though Ux � Uz, we record U =

√
U2
x + U2

z as the velocity.
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Figure 3.20: Drop results. Drop speed scaled by the angle of inclination, U∗/α, versus drop
size scaled by the capillary length, R∗/κ−1. α is in radians.

Velocity Profiles

Here we present some figures of the velocity profiles of the drops. These profiles

will allow us to identify rolling and slipping motion. These profiles were recorded

by slicing the simulation box along the y-direction and recording the averaged

spacial velocities, orthogonal to y, in each slice. These spacial averages were

then averaged over a large number of time steps. The result, U(y), is the speed

(parallel to the surface) inside the drop and along the height of the drop.

Our method of recording the velocity profiles makes sense for fluid flow, but

it may not be clear that this method will give us the correct profile of a rolling,

sliding drop. To prove that these spacial averages give us a proper estimate of

the drop profile, consider two cases, a drop purely sliding in x and a drop purely

rolling in x and y with translation in x. In the case of pure slip, a drop’s speed

along its height is constant, ux = us, so spacial averages of ux along y will give us

the correct profile. If a drop is purely rolling, the velocity components in radial

coordinates are ux = rω sin θ + ut and uy = −rω cos θ, where ω is the angular

velocity of the drop, θ is the angular position of a point in the drop, and ut is some

translational speed. Converting ux to cartesian coordinates, we find ux = yω+ut,

which implies that the velocity inside the drop and parallel to the surface is the

same throughout the drop at height y. Whether a drop slides, rolls, or both, the

spacial average of ux at some height y′ is,

ux,avg(y′) = y′ω + ut, (3.31)
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Figure 3.21: Velocity profiles versus size. The speed within the drop is plotted along the
height of the drop for simulations 2 and 5 (left and right). Rκ is the scaled radius, R/κ−1, and
the dotted line is an estimate of the height of the contact size, l, within the drop.

where ut may include slip in addition to center of mass translation. Note that Eq.

3.31 is consistent with the velocity profile of a solid sphere rolling and translating.

This method of recording rolling drop profiles is also consistent with others [24].

Figure 3.21 contains velocity profiles from simulations 2 and 5, and the graphs

demonstrate the effect of drop size on the velocity of the drop. The linear region

in the velocity profiles are consistent with rolling motion, and the increase in

slope indicates that rolling motion decreases as drop size increases. Prominent

in simulation 5 (right) is an increase in slip speed as drop size increases. Slip

speed is roughly the velocity of the drop near y = 0. The estimated contact size

is shown (dotted line) as an indication of the height of the viscous dissipation

region within the drop. The noisy tails at the top of the drop profiles are atoms

in the vapor phase, and they can be ignored.

Figure 3.22 compares the profiles of drops with different angles of inclination

(left) and with different slip lengths (right). We see very little effect of α and

slip length on the slope of the velocity profiles, indicating little effect on rolling

speed; however, we do see an effect of these parameters on slip. When comparing

velocities from drops with different α, we would expect that the scaled velocities

would be identical. On the contrary, we see a slight difference in the profiles from

simulations 1 and 3. This may be error or noise in the data, and it is small enough

that we may ignore it. When comparing the effect of slip length in simulations 2

and 3, we see that a higher slip length shifts the velocity profiles. This indicates

a change in Us while Ur remains relatively constant.
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Figure 3.22: Comparing velocity profiles. In the left graph we plot drop profiles from
simulations 1 and 3 which contain different angles of inclinations. Note that the velocity is
scaled by α, so we would expect to see similar profiles for each simulation. On the right we
present profiles from simulations 2 and 3, which contain surfaces of different slip lengths.

Extracting Rolling and Slipping Speeds

Velocity profiles like the ones in Figures 3.21 and 3.22 allow us to estimate rolling

speed and slipping speed. It may not be clear at first what slipping speed ought

to be – the criteria Us = U(0) doesn’t necessarily apply – so we must create a

model for the velocity profiles that is consistent with our results.

Considering Eq. 3.31 and the results indicating that our drops are both rolling

and slipping, we can find the linear component of the velocity profile, yω, by

fitting a line to the drop profiles. We can improve the accuracy of that fit by

ignoring data in the contact zone, y < l, and by estimating the drop height. It

turns out that ω = Ur/R, where Ur is the rolling speed and R is the drop radius.

We can now obtain a slip component by subtracting yUr/R from the drop profile,

U(y).

Figure 3.23 shows a velocity profile of a drop with its rolling and slipping

velocity profiles extracted. The resulting slip profile is quadratic, and we can fit

a quadratic profile (Eq. 3.23) to the slip profile to find an estimate for the slip

speed. In computing that fit, we ignore data where y ≤ 1 since data in this region

are a known artifact of MD [1], where 1 represents one atomic distance.10 How

we calculate the slip profile here is consistent with our theory and Eq. 3.23 for a

drop purely sliding.

10This phenomenon arises from the L-J parameter σ, which is the characteristic spacing
between atoms. In our case, the liquid and solid have σLS = 1.
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Figure 3.23: Extracting roll and slip. The drop’s velocity profile can be broken down
into its constituents, a linear roll profile and a quadratic slip profile. These profiles allow us to
estimate U∗

r /R and U∗
s . h is the height of the drop and h∗cm is the height of its center of mass.

We estimate the slip speed, Us, by evaluating the quadratic flow profile at

y = 0. Using the velocities recorded for the center of mass of the drop (Fig. 3.20)

and Eq. 3.31, we find,

Ucm = Us +
Ur
R
hcm, (3.32)

where Ucm is the speed of the drop and hcm is the height of the center of mass.

For R� κ−1 we expect R = hcm. We included an estimation of the slip length in

Figure 3.23 by taking the slope of the slip profile at zero. Slip lengths estimated

from these flow profiles were consistent with estimates from Couette geometries.

The slip lengths recorded in Fig. 3.20 are the averaged slip lengths from the drop

profiles. A full analysis of all drop profiles is provided in Appendix C.

In Figure 3.24 we show Ur/α versus R/κ−1 (left) and Us/α versus R/κ−1

(right) for all simulations. The data clearly show a 1/R dependence for Ur for

simulations 1 to 4. It is not clear to what the behavior in simulations 5 and 6

may be attributed; in these two simulations, gravity is much lower so it may be

possible that rolling motion is being affected by the contact line dynamics. Also

shown in the plot of Ur is Eq. 3.21, which shows good agreement for drops with

higher gravity. The results also reiterate the fact that rolling speed does not

appear to be affected by the slip length.

On the right of Figure 3.24 we see Us approaching some limit. The data

also verify the dependence of Us on slip length. The dashed lines represent Eq.

3.25 (color represents simulation number), and we see that this model predicts

the the dependence of slip speed on drop size quite well; however, our model
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Figure 3.24: Rolling and slipping velocities. Estimated rolling and slipping speeds are
plotted against scaled drop size (left and right, respectively). Ur behaves as 1/R and Us
increases with drop size, approaching some limit. We plot Eq. 3.21 on the left and Eq. 3.25 on
the right (--). The color of the dashed line represents the simulation number.

underestimates the slip speed by a factor of roughly 2.5. The model also fails

to capture proper dependence on slip length as indicated by the closeness of the

dashed lines.

Comparing Rolling + Slipping Theory and Results

Using Eq. 3.30 we can check our theory against our recorded values for Ucm, Ur,

and Us. On the left of Figure 3.25 we plot Ucm scaled by α for the data (•) and for

our theory (--), where we substitute our estimated rolling and slip speeds into our

theory. We see that our model for dissipation compares decently with the data.

For all simulations we more or less get the proper size dependence, increasing

speed for Sims 5 and 6 and decreasing speed for Sims 1-4. On the right, we plot

Ur+Us as given by Equations 3.21 and 3.25. We see that for Sims 1-4, our theory

predicts the proper behavior of drop speed versus drop size. The theory doesn’t

seem to capture the effect of slip speed quite well as indicated by the closeness of

the dashed lines. Seeing how our theory applied well in Figure 3.24 for Sims 1-4,

it is no surprise that Ur + Us predicts similar behavior. Because our theory for

Ur didn’t work well for Sims 5 and 6, we don’t get the proper behavior for drops

at lower gravity.
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Figure 3.25: Theory versus data. This figure demonstrates the effectiveness of Eq. 3.30
in reproducing Ucm given Ur and Us (left). On the right we compare Ur + Us (Equations 3.21
and 3.25) with the data. The dashed line represents the theory, and the color of the dashed
line represents the simulation number.

3.4.4 Conclusion

Through an extensive amount of simulations, we have shown the dependence of

slip length and drop size on drop dynamics. As expected, larger slip lengths result

in faster drops. In Sims 1-4 where viscous dissipation dominates, we see that drop

speed decreases with R; however, as contact line friction becomes important, as

in Sims 5 and 6, we can see drop speed increase with R. We found very little

effect of slip length on rolling speeds, which is expected; in fact, this lack of slip

length dependence suggests that shearing due to slip acts locally at the contact

surface and does not extend up into the drop.

One of the most important results were the drop flow profiles. These profiles

provided an indication of what was happening inside the drop, thereby providing

insight on the types of dissipation that these drops encountered. More impor-

tantly, they showed how drops simultaneously slide and roll, and they allowed us

to extract the contributions of these two types of motions.

We developed a model for sliding, rolling drops that compared reasonably well

with our data. The model predicted proper size dependence for our simulations

with higher gravity. When gravity was decreased by an order of magnitude, we

no longer saw the same rolling behavior even though we saw the same slipping

behavior. This could suggest that drop dynamics in the regime of a larger κ−1

are dominated by forces other than those arising from viscosity. The dynamics

of the contact line could be affecting rolling motion in this regime.
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Another possible cause for the poor agreement with data at higher κ−1 is the

fluctuations in the data recorded for these drops. Appendix C provides data on

the drop speeds as a function of time. We saw fluctuations in the drop speed that

had amplitudes larger than the difference between the averaged drops speeds at

different sizes. We suspect that these fluctuations result from a combination of

small gravity (small forces acting on the drop), surface geometry (post spacing

on order of drop size), and possibly contact line dynamics (forces on order of

g). Furthermore, for smaller drops as well as smaller angle of inclinations, drops

may sometimes stick to the surface due to contact angle hysteresis. This effect is

known to cause large fluctuations in drop speeds [22], and it would explain the

fluctuations seen for both the large and small gravity simulations.

Our results have shed light on a specific aspect of moving drops that has not

been well studied. The lack in data on rolling, slipping drops is primarily due

to the difficulty in estimating slip and velocity profiles within millimeter sized

droplets. Hopefully the data here will lead to further investigation.
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Graphene

In this chapter, we will use MD to probe some of the properties of graphene.

Whereas in the last chapter we detailed set up procedures and methods for cal-

culating properties of a system, in this chapter we will use well proven methods

so that we may focus on the simulation and results.

In Section 4.1, we will briefly introduce the potentials used to model graphene

in MD. Then in Section 4.2 we will look at the energies of graphene and graphite

using MD. These energies will provide an idea of the energies required to exfoliate

graphene, a technique used to produce large amounts of graphene. Finally, in

Section 4.3, we look at graphene nano-bubbles on platinum and try to reproduce

these bubbles using MD.

4.1 Graphene in MD

For our simulations of graphene energies, we will use the Adaptive Intermolecular

Reactive Empirical Bond Order (AIREBO) which is known to provide an accurate

description of carbon and hydrocarbon systems. Details of this potential can be

found in the literature [34,35], and it is easy to implement in LAMMPS. We use

the Embedded Atom Method (EAM) potential to model platinum and nickel in

our graphene on metal simulations. EAM is a semi empirical model for metals

and metal alloys, and it is computationally fast and accurate. Details on EAM

may also be found in the literature [36].

Unfortunately, not many fast and accurate models are available for the inter-

actions between graphene and metals. One group used the Modified Embedded

Atom Method (MEAM) potential to accurately reproduce the energies of car-

bon atoms at various lattice sites on nickel as well as Ni-Ni and C-C bonds [37].

The potential was also formulated to model graphene, but it did not provide an
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accurate description of graphene. Another paper studied nickel and carbon nan-

otube composites with a MEAM potential, but this potential also did not model

graphene well enough for our purposes [38] (graphene was not stable at high tem-

peratures for these two MEAM potentials). One potential that is suitable for our

study is the Reactive Force Field (ReaxFF), which is capable of producing mod-

els within accuracy of first principle calculations [39,40]. To formulate a ReaxFF

potential, one starts from calculating the first principles quantum mechanics of

a system and uses those results to train a reactive force field model. ReaxFF

potentials for a graphene-Ni and graphene-Pt system are available from the lit-

erature [41, 42]. The ReaxFF method is very computationally slow, so for our

purpose of conducting a basic study of graphene on platinum and on nickel, we

used Lennard-Jones potentials. The values for ε and σ are 23.05meV and 2.852Å

for Ni-C and 40.92meV and 2.936Å for Pt-C [43, 44]. We don’t expect the L-J

potential to provide a good description of the metal-carbon interactions, but it

will give us an indication of energies as well as a simplistic model of the effect of

a metal substrate.
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4.2 Graphene Energies

4.2.1 Motivation

Knowing the energies required to peel off layers of graphene from graphite may

help researchers looking to use the exfoliation technique. In chemical exfoliation

experiments, it was shown that when the surface energy of graphene was balanced

by the surface energy of a solvent, the enthalpy of mixing was low [45], making

the separation of graphene from graphite energetically favorable. The surface

energies of graphene were reported to be around 11 − 13meV. Also important

are the exfoliation energy, the energy required to peel graphene off of graphite,

and the interlayer binding energy of graphite. A number of researchers made

theoretical predictions for these values, but the predictions were not consistent.

Recently Liu et al. experimentally measured the binding energy in highly ori-

ented pyrolytic graphite (HOPG) to be around 44 ± 3meV/atom [46]. Though

precise measurements have yet to be made for these energy values, knowing their

approximate values offers insight into making graphene. We will show that MD

can reproduce with reasonable agreement the predictions and measurements of

graphene energies.

We were also interested in graphene energies because we wanted to test a

simple idea of using metal nano-particles in the exfoliation process of graphene.

By comparing the energies of graphene on graphite with graphene on metal nano-

particles, we can test whether our simple idea would work. Basic MD studies like

these demonstrate the value in using MD to help guide new ideas and experiments.

4.2.2 Simulation and Results

Graphene and Graphite

We simulated 1-5 and 9 layers of graphene using the AIREBO potential. Each

layer consisted of 15,240 atoms (100Å×100Å), and simulations were conducted

at 300K using a Nosé-Hoover thermostat. Each simulation ran for 25 picoseconds

until potential energies reached equilibrium. Simulations were periodic in x, y,

and z. Figure 4.1 provides snapshots of the six simulations as well as the recorded

energies for each, and Figure 4.2 shows a top view of one simulation demonstrating

the hexagonal close pack structure of multilayer graphene.

Figure 4.3 shows the convergence of the potential energies for each simulation

(left) and the potential energy as a function of the number of layers (right). The

data show that the energy per atom decreases as the reciprocal of the number of
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Layers PE [eV/atom] 

1 -7.333 

2 -7.352 

3 -7.359 

4 -7.363 

5 -7.365 

9 -7.369 

Figure 4.1: Graphene layers. Sheets of graphene from 1-5,9 layers were simulated, and the
energy per atom was estimated for each.

Figure 4.2: Stacking of graphene. A top view of a simulation with multiple layers indicating
stacking of graphene sheets.

50



4.2 Graphene Energies

0 5 10 15 20 25
−7.38

−7.37

−7.36

−7.35

−7.34

−7.33

−7.32

Time [ps]

P
E

 [
e

V
/a

to
m

]

 

 
1
2
3
4
5
9

10
0

10
2

−7.38

−7.37

−7.36

−7.35

−7.34

−7.33

−7.32

Number of Layers

P
E

 [
e

V
/a

to
m

]

Figure 4.3: Graphene energies. Potential energy as a function of time for layers 1-5 and
9 (left) demonstrating equilibrium is achieved around 5 picoseconds. Potential energy as a
function of the number of layers (right). Eq. 4.1 (—) is fitted against the data (•) with good
agreement. As the number of layers approach infinity, the energy approaches that of a graphite
crystal (---).

layers. We found the curve,

V = aL−1 + b, (4.1)

provides a good description of the data where L represents the number of layers

and a and b are fitted parameters. For our data we have a = 40meV and b =

−7.372eV. The parameter b should represent the energy per atom in HOPG

because as the number of graphene layers approaches infinity, the system becomes

more like graphite. If we consider the difference between V (L =∞) and V (L =

1), we get 40meV which represents the amount of energy required to remove a

single layer of graphene from HOPG (the exfoliation energy).

It is not possible to estimate an interlayer binding energy in HOPG given our

data and Eq. 4.1. We would need to conduct a simulation where we explicitly

separated two chunks of HOPG, which we did not do in this thesis.

Graphene on Nickel

We deposited graphene on the nickel (100) and (111) faces, where the nickel sur-

face measured 110Å×110Å in length and width. Cubical nickel nano-particles of

this size were synthesized [47] using particular reactants [48]. In our simulations,

we simply created the nickel surfaces with sufficient depth for the MD cut-off ra-

dius. The simulation boundaries were fixed in y. Temperature, thermostatting,

and graphene size were as above, and simulations ran for 115 picoseconds. Figure

4.4 shows snapshots of graphene on Ni(100) (left) and on Ni(111) (right). Notice

the near perfect lattice match of graphene (light gray) on Ni(111) (dark gray)

as expected [49–51]. The adhesion energies are 55meV and 61meV for (100) and

(111).
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Ni<010> 
Adhesion = 55meV 

Ni<111> 
Adhesion = 61meV 

Figure 4.4: Graphene on nickel. Snapshots of graphene deposited on Ni(100) (left) and on
Ni(111) (right) and corresponding adhesion energies. The lattice match between graphene and
Ni(111) is near perfect as indicated by the moiré pattern.

Estimation of the binding energy of graphene on nickel is not very consistent

[50], and depending on the lattice matching between graphene and Ni(111)1,

variations in binding energy can be around 60meV. The temperatures at which

graphene is grown via chemical vapor deposition on nickel ranges from 753K

to 1273K (65 − 110meV), providing some indication of the energies required to

achieve adhesion of graphene to Ni(111). In one DFT study of the adhesion

energies of graphene on Ni, the orientation with the strongest adhesion had an

adhesion energy of 133meV, while the lowest adhesion was 51meV [51]. Our

simulation result of 61meV is within agreement of the low-temperature CVD

experiments as well as the DFT study.

4.2.3 Discussion and Conclusion

Reported values for binding energy and exfoliation energy are around 24−50meV,

indicating that our relatively simple simulations produced energy values within

reasonable agreement; however, the inconsistency of these recorded values was the

motivation to accurately measure them [46]. One paper reports the exfoliation

energy to be 43 ± 5meV/atom with a binding energy roughly 18% larger [52],

showing good agreement with our estimation for exfoliation energy, but these

predictions contradict the experimental data unless the experimental data are

incorrect or the difference between exfoliation energy and binding energy is small.

The surface energy for graphite is defined as the energy to overcome the van

der Waals force when separating two sheets [45]. If we take the difference in the

energies for simulations of monolayer graphene and two layer graphene, we find a

surface energy of 20meV. This value is higher than that reported but still within

1There may exist 3-6 different stable orientations of graphene on Ni(111)
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reasonable agreement.

We found a simple model that represented the potential energy per atom as

a function of the number of layers of graphene (Eq. 4.1), and the model fit

the data very well. The model also allowed us to compute the estimated surface

energy, exfoliation energy, and graphite energy, the former two showing reasonable

agreement with the literature.

In our study of graphene on nickel, we found results consistent with the lit-

erature where graphene is more tightly bound to the (111) plane of the nickel

lattice. When we compared the binding energies of graphene on nickel with that

of graphene on graphite, we saw that graphene was more strongly bound to nickel.

From a purely energetic argument and using our simple models, our results in-

dicate that a nickel nano-particle could aide in the exfoliation of graphene from

graphite. Thermodynamically, it would take 470K to exfoliate graphene from

graphite, 640K to peel graphene from the Ni(100), and 710K to peel graphene

from Ni(111).

The simplicity of our simulations and the availability of the tools used in our

simulations highlight the applicability of MD to produce reasonable results to

guide researches in designing experiments and testing simple models.
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Figure 4.5: Graphene nano-bubble on platinum. [53]

4.3 Graphene Nano-Bubbles

4.3.1 Motivation

Of the many fascinating characteristics of graphene, nano-bubbles are one feature

which may promise novel nano-electronic devices. Levy et al. made an interesting

discovery when growing graphene on platinum [53]. They found nano-bubbles in

their graphene samples that were as tall as 2nm, and they also found that the

strain in these bubbles created local magnetic fields in excess of 300 Tesla as

well as local scalar potentials. These measurements were consistent with theory,

which predicts that strain will change the electronic structure of graphene. The

large magnetic fields confirmed in strained graphene could lead to new types

of research, and these experiments demonstrate the ability to strain-engineer

graphene devices.

Levy et al. were not certain on the direct cause of the nano-bubbles. Most

bubbles formed at the edges of the graphene substrate, though sometimes they

would find bubbles in the middle. They suggested that one possible cause was

the differing thermal expansion between platinum and graphene. In their exper-

iment, they grew graphene by exposing the platinum (111) face to ethylene gas

at 1170K, and then they quenched their samples down to 7.5K. Though plat-

inum will contract under these conditions, graphene is known to expand upon

cooling [54,55]. Graphene is also weakly coupled to platinum as opposed to other

transition metals, but the stability of the bubbles suggests that graphene must

be pinned to the platinum substrate along the perimeter of the bubbles.

In this section, we will use MD to create bubbles in graphene. These simula-

tions will hopefully provide some insight into the primary causes for the formation

of graphene nano-bubbles.
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Figure 4.6: Graphene on platinum. The moiré pattern of graphene on platinum demon-
strates the mismatch in the lattices, which is about 11%.

4.3.2 Cause for Bubbles

The thermal coefficient of expansion, α, of a material is measured as, α =

L−1dL/dT , where L is the linear dimension, and dL/dT is the differential change

in L per change in T . Typically, α varies for different temperatures, and one can

find the total percent expansion/contraction by integration. For our simulations,

we will be considering ∆T = 7.5K − 1000K, and from the literature we find

that this represents a 0.9% contraction of platinum [56] and a 0.3% expansion

of graphene [54]. If we assume graphene is pinned to platinum at 1000K, then

these differing thermal expansions can result in 1.2% total strain in the graphene

lattice.

The (111) face of the fcc lattice structure provides a template for graphene

growth. The platinum lattice constant is 3.92Å, and, on the (111) face, the nearest

neighbor atom distance is about 1.6Å, not much larger than 1.42Å for graphene.

This lattice mismatch could potentially produce 11% strain in graphene. That

additional strain could be the cause of bubble formation. Figure 4.6 shows a sheet

of graphene on Pt(111). The light colored regions are where the two lattices align.

4.3.3 Simulation

We conducted a series of simulations to try and understand the bubbling of

graphene on platinum. We use the AIREBO potential for the C-C interactions,

the EAM potential for the Pt-Pt interactions, and the L-J potential for the C-Pt

interactions.

If you simply compress a sheet of graphene, the out of plane shape that

emerges is dependent on the boundary conditions of the sheet. For example,

if you held a circular set of points on a graphene lattice fixed (in-plane) and

compressed that circle inwards, then you would end up with a nano-bowl [57].

The shapes found in nano-bubbles are therefore dependent on the type of pinning
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at the boundary. The bubbles produced by experiment were of triangular shape,

so we used a triangular shaped piece of graphene to mimic experiment.

In our first set of simulations, we compressed triangular sheets of graphene.

The edges of these sheets remained fixed in-plane while they were contracted

inwards. The rest of the graphene sheet was allowed to relax in all dimensions.

Figure 4.7 shows a graphene sheet with the fixed boundary highlighted in red. The

arrows indicate the direction of contraction for all carbon atoms in the boundary.

This boundary thickness remained constant at 7.1Å while the sheet size was

varied.

For our second set of simulations, we changed the boundary conditions of

the graphene sheets. Rather than having rigid edges, we attached each atom

in the boundary to springs. We looked at three different sheets sizes (676, 841,

and 1024 atoms) and three different spring strengths (1, 10, and 100 eV/Å). In

LAMMPS, we can apply a spring to an atom based on the atom’s initial position.

Any displacement of the atom from that position results in a repulsive force,

Fk = −kr, where r is the radial displacement of the atom from its origin. For

our simulations, we only allowed relaxation in the y plane, so r = y. The values

for k were chosen to cover a wide range of binding energies and are not indicative

of actual binding energies of atoms to the substrate.

Finally, we conducted two simulations where we contracted graphene as in our

first sets of simulations but placed the graphene on a platinum substrate. The

rigid boundary of the graphene flake was treated as a rigid body which was allowed

to move along the surface of the platinum substrate. This boundary condition

allowed the graphene flake to find an equilibrium location on the Pt(111) surface

relative to its current geometry. Figure 4.7 shows a snapshot of a graphene flake

(gray) on platinum (white).

All simulations were carried out at 7.5K to mimic conditions at which the

nano-bubbles were observed. Simulations ran for 30 picoseconds at each percent

contraction in order to allow bubbles to equilibrate. Simulations were periodic in

x, y, and z.

4.3.4 Results

Graphene with rigid boundaries

As expected, nano-bubbles were formed upon squishing sheets of graphene. Fig-

ure 4.8 shows the potential energy and the maximum bubble height of the sheets

of graphene versus the percent contraction of the boundary . Larger sheets are ca-
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Figure 4.7: Squishing graphene. A triangular graphene flake (gray) is squished by com-
pressing the boundary, highlighted in red, inwards, as indicated by the arrows. In some simu-
lations, the graphene was placed on a platinum substrate (white).
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Figure 4.8: Bubble results. The potential energy (left) and the maximum height (right)
of a bubble versus percent contraction of the boundary. The boundary is not included in the
atom counts or the potential energies.

pable of producing taller bubbles, which is geometrically expected, but the larger

surface area means that strain will be smaller within the sheet. This is evidenced

in the decreasing energy profiles with increasing sheet size. Interestingly, there is

a small decrease in energy upon contracting the boundary from 0-2%, and this

corresponds to the lack of bubbling up to 2%. Then, the graphene begins to

bubble above 2% and its potential energy starts to increase.

The energy minimum at roughly 2% indicated that our graphene sheets were

not initially relaxed. This makes sense because free standing graphene will ripple

(see Figure 4.1), indicating that the relaxed state of graphene is not a flat one.

This implies that we are actually creating strain in the graphene by holding its

edges flat, and by compressing the edges we relieve this initial strain.
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8nm 

9nm 

10nm 

2% Contraction 3% Contraction 1% Contraction 

Figure 4.9: Bubbles with rigid boundaries. Snapshots of graphene bubbles of size 400,
676, and 1024 atoms for 1-3% contraction. Short bubbles appear relatively smooth (center),
but the bubbles begin to ripple at larger contractions (right).

Snapshots of graphene sheets of size 400, 676, and 1024 atoms are shown in

Figure 4.9 for 1-3% contraction. At 3% we have a height of roughly 4Å for the

large sheet, similar to the heights of the bubbles seen by Levy et al. One primary

difference with our bubbles is the bubble shape. Whereas the experiments had

smooth bubbles, our bubbles appeared to have ripples.2 The ripples became more

prominent as we further contracted the substrate, and this effect was likely due

to our boundary conditions.

Graphene with soft boundaries

Turning the rigid boundary condition into a soft one made of springs had little

effect on the smoothness of our bubbles, as seen in Figure 4.10. Although we do

see a relatively smoother bubble for k = 10eV/Å, we still see a few ripples for

k = 1eV/Å. The boundaries also show signs of rippling, and the period of these

ripples is proportional to the atom spacing.

Figure 4.11 shows the energies (left) and heights (right) of the bubbles. The

2Theoretical calculation of the magnetic fields in the bubble compared extremely well with
experimental measurements, confirming the smooth geometry of the bubbles [46].
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k=100eV/Å k=1eV/Å k=10eV/Å 

Figure 4.10: Bubbles with soft boundaries. Snap shots of graphene bubbles with soft
boundaries, where k is the spring constant pinning the boundary atoms to the y-axis. The re-
sults show that there is little change in the bubble’s smoothness when we changed the boundary
conditions and that the springs on the boundary atoms induce ripples along the boundary.

solid line represents a rigid boundary, and the dash, dash-dot, and dotted lines

represent springs with k = 100, 10, and 1eV/Å, respectively. Energy curves were

shifted by 50meV and height curves were shifted by 1Å for clarity. In this figure

we see that softer boundaries lower the potential energy of the graphene sheets.

This makes sense as the springs would lower the local stress at the boundary. We

also see a slight increase in bubble height with decreasing spring strength.

Graphene on platinum

We placed graphene sheets consisting of 256 and 1722 atoms (not including

boundary atoms) on platinum substrates. Results of these simulations are shown

in Figure 4.12. Detailed data of graphene energies and height were not collected

for these simulations, so we provide visual results.

We noticed that the platinum substrate lowers the height of the bubbles.

Sheets of graphene on platinum must be contracted further in order to see com-

parable heights with the other graphene sheets. For example, for the smaller sheet

at 4% contraction we only see a maximum bubble height of about 1Å whereas

a comparable stand-alone sheet would have a bubble with a maximum height of

about 2.5Å (Fig. 4.8). We also noticed that the platinum substrate creates more

pronounced ripples in the graphene sheets, and these ripples are typically 10Å in

width.
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Figure 4.11: Bubble energies. Potential energy (left) and height (right) curves for bubbles
with springs on the boundary. Curves for sheet sizes of 841 and 1024 atoms are shifted by
50meV and 100meV on the right and by 1Å and 2Å on the left. Dash, dash-dot, and dotted
lines represent boundaries with springs of k = 100, 10, and 1eV/Å, respectively, and the solid
line represents the rigid boundary condition.

4.3.5 Discussion and Conclusion

Our results showed that bubble formation in free-standing graphene was not

prominent until the sheet was contracted by more than 2%; however, we noticed

that at 2% we had an energy minimum. This may imply that 0% contraction

is actually at 2%. If this is the case, then the differing thermal coefficients of

expansion between graphene and platinum, 1.2% strain, could potentially produce

bubbles as tall as the ones seen in experiment. It is important to note that when

a sheet of graphene is placed on a substrate, the graphene will flatten. This

flattening, in addition to any pinning around the edges, will create strain in these

graphene sheets. It may well be the case that graphene will initially relax when

contracted on a substrate until a point where strain begins to increase. We did

find that softer boundary conditions created taller bubbles, but they were only

significantly taller when the sheets were contracted by more than 5%. These

results suggest that other causes such as lattice mismatch and pinning must also

contribute to bubble formation.

When we placed graphene on platinum, we saw that bubble height decreased,

more contraction was required to create bubbles, and the sheets had more ripples.

These effects are certainly due to the Lennard-Jones interaction between the two

materials, and it may be possible that the C-Pt interaction is too strong. Another

aspect of our model that may affect results is the height of the graphene boundary

above the platinum substrate. A pinned C atom would sit more closely to the Pt
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4%, h = 0.8Å 7.5%, h = 2.3Å

14%, h = 5.1Å 22%, h = 7.0Å

2.5%, h = 0.7Å 5%, h = 3.0Å

10%, h = 5.2Å 18%, h = 9Å

Figure 4.12: Graphene on platinum. Above are simulation snapshots at various boundary
contractions. The top four snapshots have 256 atoms in the unconstrained portion of the sheet,
and the bottom four snap shots have 1722. h is the maximum bubble height.
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ReaxFF L-J 

10 Å 

Figure 4.13: ReaxFF potential. A simulation of graphene on Pt using the ReaxFF (left)
and the L-J (right). On the left we see pinning of C atoms at the edges of the graphene sheet,
and we see possible beginnings of bubble formation as evidence by the slight protrusion of the
graphene flake. The boundaries of the L-J simulation (right) do not allow pinning of C atoms
closer to Pt atoms; instead, these edge atoms sit at the equilibrium height of the L-J potential.

substrate, and this height differential could cause protrusions. This would explain

why bubbles were more commonly found at the edges of the graphene flakes. Our

models lacked this height differential at the boundary, and perhaps including this

in the model could possibly lead to better bubble formation and less ripples. Our

simulations with springs on the boundary support this conclusion. The springs

allowed the boundary atoms to move closer to the substrate, and we observed

one instance where this slightly improved bubble formation (k =10eV/Å).

We conducted a small simulation using the ReaxFF potential, and a snapshot

of a graphene sheet deposited on platinum is provided in Figure 4.13, where we

have the ReaxFF model on the left and the L-J model on the right. For the

ReaxFF potential, not only do we see pinning around the boundary as evidenced

by the spacing between C and Pt atoms, but also we see what could be the begin-

ning of bubbles. This bubbling may be due to the height differential, and it may

also be due to a weaker interaction between graphene and platinum. No artificial

strain was included in this ReaxFF model, and the simulation was performed at

300K while the platinum substrate was fixed.

Our work has shown that mimicking nano-bubble formation in MD is difficult.

It may well be that the potentials we used in our models are not satisfactory, and

if we want more informative results we may have to use more accurate models

such as the ReaxFF. Nevertheless, we can conclude that an MD model which

properly considers pinning of graphene to the substrate as well as the location of

the pinning with respect to the lattice mismatch between graphene and platinum

ought to produce bubbles more in line with experiment.
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Conclusion

We have demonstrated the power of MD to study systems as different as viscous

liquids and graphene. Theoretically, MD is capable of modeling any physical sys-

tem consisting of matter, but some systems may be difficult to study because their

force models may not be well understood or their models are too computationally

expensive.

The simple Lennard-Jones potential is an excellent model to test systems

in MD. It is computationally fast, and it even predicts properties of the noble

elements like Argon very well. The two parameters in the L-J potential, ε and

σ, allow us to easily scale between different systems, especially when we work in

dimensionless units.

We can also treat MD like an experimental tool where we conduct experiments

in simulation. We can use models that accurately represent real materials such

as the AIREBO and ReaxFF models. Though these models may not capture the

precise behavior of a system, they can provide good approximations. They give

us a general idea of the parameters we need to consider, and they can aid us in

designing new experiments, be it in the lab or in simulation.

5.1 Liquids

We started Chapter 3 by calculating properties of our L-J liquid. Because L-

J liquids are well studied, we had data with which to compare our calculations.

Using models found in the literature, we were able to estimate the density, surface

tension, and viscosity of our L-J liquid. One of the challenges of calculating

properties of L-J liquids was the existence of a vapor phase. We had to separate

vapor from liquid in order to get proper estimates, and we developed a method

that was successful in separating the two. Our method looked at the radial
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distances of atoms from the center of a liquid drop. We found that the criteria

R∆R > 1, which is analogous to looking at the number of atoms on a spherical

shell, provided an efficient way to determine which atoms were liquid and which

were vapor without having to bin atoms. With this method, we were able to

calculate density, surface tension, and viscosity, all within good agreement with

the literature.

5.1.1 Effective Slip

Our first task was to estimate the effective slip length of a mixed surface made up

of smaller surfaces. A recent theory was developed [20] that estimates effective

slip given the intrinsic slips and geometries of a surface, and we sought to confirm

this theory in simulation. We created our surfaces using a simple cubic lattice,

and we varied the slip length of the surface by changing the ε parameter in the L-J

potential between the liquid and the surface atoms. The surfaces for which we

wanted to estimate an effective slip were made up of two surfaces with different

εls. We also added roughness to our surfaces by simply scooping out atoms in the

lattice. Interestingly, our method of creating our atomic sized surface resulted in

a third surface, the (111) face of the simple cubic.

We had some difficulty in simulating Couette flows and estimating slip length

because our liquid sometimes froze as a result of high viscosity and ordering near

the liquid-surface interface. We were able to alleviate this issue by using smaller

gravitational forces and by creating a soft driving plate with which to move the

liquid. Our estimates of the effective slip length, beff , matched very well for the

theory for one set of simulations. For the other two sets of simulations, the theory

showed similar behavior with regard to the mixing of slip. Predominately evident

in both the theory and our simulations was the fact that the lowest intrinsic slip

length, arising from the (111) face, dominated the effective slip.

Some of the slip lengths we estimated in the mixed surfaces were not very

consistent with the intrinsic slip lengths. In one set of simulations, all the rough

surfaces had lower slip lengths than the (111) face. We assumed that this could

be an incorrect estimate of the (111) face. We investigated more closely the (111)

simulations by looking at snap shots and density profiles of the liquid-surface

interface, and we could not make any good conclusions as to why we may have

poorly estimated the slip length. Perhaps our estimates were accurate, so it may

be possible that surface roughness was dominating the slip and that the intrinsic

slip had little effect.
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5.1.2 Rolling, Slipping Drops

Our next simulation was to study the rolling and slipping motion of drops mov-

ing down a super-hydrophobic incline. We used a surface patterned with posts

to create super-hydrophobicity, and we varied the εls parameter to change slip

length. We considered different angles of inclinations for the surface, and we also

considered different forces of gravity. Changing gravity was mainly done to allow

us to study drops small enough such that R < κ−1.

We performed many simulations, and we investigated drop speeds in addi-

tion to the velocity profiles within the drops. We found results consistent with

our expectations: drop speeds increased with larger slip lengths and angles of

inclinations, and rolling speeds decreased with increasing drop sizes. The scaling

laws that we developed were meant to predict the behavior of drops with respect

to drop size, slip length, and the liquid properties (namely surface tension and

viscosity). We found that the theory for purely rolling drops matched our rolling

speeds well. Our theory for the purely sliding case gave the same dependence of

drop speed on size, but the theory underestimated speeds by a factor of about

2.5.

Viscous forces in the volume of the contact zone, shear at the surface of

the contact zone, and contact line friction on the perimeter of the contact zone

all serve as methods of energy dissipation. These dissipations, when balanced

with the change in gravitational potential energy, are the core of our theory for

predicting drop speed. Our theory for Ucm provided the proper behavior of drop

speed with drop size for our simulations where κ−1 was smaller. Even considering

dissipation and our extracted rolling and slipping velocities, our theory gave us

the correct size dependence for both large and small κ−1. Our theory did not

produce the rolling behavior we observed for Sims 5 and 6. We mentioned that

this abnormal behavior could possibly be due to the fluctuations arising from

our low gravity as well as contact line dynamics. One way to mitigate these

fluctuations would be to create a surface where post spacing is much smaller

than drop size.

Though our models did not perform as well as we would have liked them

to, the data we’ve collected on rolling, slipping drops provided insight into drop

dynamics on super-hydrophobic surfaces.
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5.2 Graphene

We studied basic properties of graphene in Chapter 4 using models found in

the literature. We were interested in graphene energies because they provide

some insight into the manufacturing of graphene. We were also interested in

reproducing graphene nano-bubbles in MD to try and understand the causes of

the bubble formation.

Using the AIREBO potential, we simulated layers of graphene and calculated

their energies. We found that the per-atom energies of the graphene layers in-

creased as the inverse of the number of layers. With this simple behavior, we

were able to estimate the energy of graphite (HOPG to be specific). This then

allowed us to calculate the energy required to exfoliate a single sheet of graphene

from graphite. We found 40meV for the exfoliation energy, which was consistent

with other theoretical and numerical findings. We also looked at the energies

of graphene on nickel using a simple L-J potential, and our results allowed us

to estimate the types of energies that may be required to deposit and exfoliate

graphene from nickel nano-particles. Consistent with the literature was the fact

that the (111) face had a stronger binding energy to graphene than the (100)

face, indicating that the simple L-J potential can provide useful results.

Our last study looked at the formation of graphene nano-bubbles on platinum

substrates. For the sake of computation time, we had to use the L-J potential to

model the C-Pt interactions. We started our study by creating graphene flakes

that had a geometry similar to the bubbles in the experiment. We held the edges

of the flake fixed and we squished the edges inward. This method with rigid

boundary conditions produced bubbles similar to those found in experiment. We

noticed that the potential energy of the graphene flakes initially decreased upon

contraction. This trait is likely due to the pre-strain created in graphene by

flattening the sheet and giving it rigid edges – a free-standing graphene sheet is

rippled in its relaxed state.

To try and simulate a more realistic model of graphene nano-bubbles, we

changed our boundary conditions and attached the edges of the graphene sheets

to springs. This soft boundary condition helped to create slightly larger bubbles,

and it also provided a closer representation of pinning at the edges.

Finally, we placed sheets of graphene on Pt and contracted the sheets to

try and form bubbles. We found that the Pt substrate hindered bubbling, and

our graphene sheets required larger contractions in order to produce bubbles

with heights similar to our free-standing bubbles. We also found that the Pt

substrate created rippled bubbles, where the ripples were on order of 10Å in
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width. These effects were likely due to the strong L-J potential, whereas graphene

is known to bond relatively weakly with Pt. We conducted a small study of

graphene on Pt using the ReaxFF potential, and we found much better results.

We saw pinning at the edges as well as the beginnings of bubble formation prior

to any contractions. We concluded that properly modeling pinning and the weak

graphene-Pt interaction are important when trying to create nano-bubbles in MD.
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Liquid Calculations

Table A.1 provides drop atom counts along the various thresholds used to separate

liquid from vapor. The table also provides the estimated drop radius and density.

The data provided are averaged over 302 time units with a time step of 1 ×
10−3. Data were logged every 1 unit of time, so data are averaged over 302 points.

The size of the simulation box varied based on the number of atoms to improve

computation time. An NVE integration was used, and a simple velocity scaling

thermostat was used where T ∗ = 1±0.02. Velocities were rescaled every 103 time

steps if T ∗ > 1.02 or T ∗ < 1.02.
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Table A.1: Liquid drop calculations. N is the number of atoms in the simulation, NVT
is

the number of atoms that meet the potential energy threshold V ∗
t , NR is the number of atoms

that meet the energy threshold as well as the radial threshold, R∗ is the approximate radius of
the drop (radial threshold), V ∗ is the potential energy of the drop, V ∗

liq is the potential energy of
the drop after the energies of the vapor regions were removed, and ρ∗ is the estimated density.

N NVt NR R∗ V ∗ V ∗
liq ρ∗

43 42 3.4 39 -199 -180 0.790
55 52 3.8 50 -263 -234 0.816
87 83 4.2 80 -481 -418 0.832
141 137 4.8 134 -885 -766 0.840
201 194 5.2 190 -1330 -1153 0.853
249 242 5.6 238 -1716 -1500 0.856
369 359 6.0 355 -2697 -2368 0.862
459 445 6.6 440 -3417 -3033 0.861
603 588 6.9 584 -4655 -4138 0.862
683 660 7.3 656 -5287 -4731 0.863
935 908 7.9 900 -7458 -6745 0.864
1061 1028 8.1 1021 -8528 -7723 0.864
1289 1257 8.7 1250 -10597 -9678 0.863
1505 1470 9.0 1463 -12547 -11496 0.864
1865 1824 9.5 1816 -15801 -14522 0.862
2123 2073 9.9 2063 -18062 -16665 0.863
2491 2435 10.4 2424 -21410 -19837 0.862
2779 2703 10.8 2688 -23872 -22223 0.862
3151 3073 11.0 3060 -27382 -25443 0.862
3589 3494 11.5 3478 -31258 -29182 0.859
4093 3994 11.9 3977 -35993 -33751 0.860
4585 4461 12.3 4435 -40278 -37849 0.860
5233 5103 12.8 5075 -46404 -43647 0.861
5775 5615 13.2 5591 -51204 -48313 0.859
7011 6817 14.0 6781 -62509 -59292 0.857
8589 8373 14.9 8328 -77348 -73600 0.858
10185 9911 15.7 9863 -92073 -88023 0.857
12215 11875 16.6 11756 -110208 -105587 0.856
14363 13957 17.4 13856 -130337 -124983 0.854
16757 16253 18.2 16148 -152579 -146697 0.854
19381 18802 19.0 18678 -176929 -170500 0.853
22231 21536 19.8 21386 -203378 -196263 0.853
25315 24553 20.7 24357 -232126 -224329 0.853
28897 27993 21.6 27750 -264951 -256802 0.852
32565 31484 22.4 31209 -298795 -290163 0.852
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Slip Length Simulations

The data for measured slip lengths are provided in Table B.1. Slip lengths were

calculated using a Couette flow set up. The velocity profiles of the liquid were

spatially averaged along the height of the liquid in bins of 0.5 in height. These

profiles were averaged for 6×105 time steps. The liquid was thermostatted every

100 time steps with T ∗ = 1± 0.1. The NVE integration was used.

Snap shots of simulations are provided in Figures B.1 and B.2.

Table B.1: Data for slip simulations. Slip Measurements are provided (reduced units) for
Surfaces A-H and Runs 1-3. l∗f and l∗c are the lengths of the flat and curved portions of the
surfaces.

Surface l∗f (green) l∗c (cyan) Slip Length: Run 1 Run 2 Run3

A 60 33.9 52.6 72.7

B 60 73.2 13.1 112.7

C 60 10.8 3.5 30

D 30 30 56.4 24.3 100.5

E 30 34 13.7 11.8 23.8

F 30 38 10.6 10.3 19.5

G 30 42 8.2 8.6 14.4

H 30 46 7.4 12.4
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Figure B.1: Snap shots from slip simulations. The bottom and top right snap shots
demonstrate how the steps in the curved region affect the liquid as liquid atoms in these regions
appear to bunch up in the steps. This bunching up supports the value of 2 for the scaled arc
lengths (as opposed to

√
1, the hypotenuse).
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Figure B.2: Flow of slip simulations. A snapshot of one simulation showing a smooth
transition from the low slip region to the high slip region.
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Drop Simulations

C.1 Measuring Contact Size

To measure the contact size, we fitted an elliptical profile along the surface of

the drop. Figure C.1 shows the radial distances from the center of mass in the

xz-plane (x-axis) plotted along the height of the drop (y-axis). We consider atoms

below the height of the center of mass (blue), and take spacial averages along the

height of the drop to estimate the edge of the drop (light blue). An ellipse is

fitted to the data (red) and the contact size is where the drop height is zero.
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Figure C.1: Measuring contact size. The geometry of the drop is found using an elliptical
fit (red), and this geometry determines the contact size (�).

C.2 Results

We provide a summary of all data in Table C.1. Figures C.2 to C.7 provide

the velocity profile analyses for each set of simulations. The averaged and the

77



Appendix C

instantaneous drop center of mass velocities as a function of time are presented

in Figures C.8 to C.13.
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Drop Simulations

Sim R∗ b∗ f∗y κ−1∗ l∗ h∗ h∗cm α U∗
r /α U∗

s /α U∗
cm/α

1 10.0 38 3e-3 25 3.6 16.0 9.2 0.17 0.793 0.580 1.362±0.056

1 13.3 38 3e-3 25 5.9 20.5 11.0 0.17 0.620 0.690 1.282±0.031

1 16.7 38 3e-3 25 9.8 23.3 12.3 0.17 0.519 0.744 1.230±0.025

1 20.0 38 3e-3 25 13.8 25.9 13.3 0.17 0.478 0.763 1.211±0.017

1 23.3 38 3e-3 25 18.3 28.1 14.1 0.17 0.447 0.770 1.188±0.015

1 26.7 38 3e-3 25 22.9 30.3 14.7 0.17 0.420 0.771 1.176±0.011

2 10.0 48 3e-3 25 3.6 16.0 9.3 0.08 0.794 0.751 1.532±0.085

2 13.3 48 3e-3 25 5.9 20.5 11.0 0.08 0.602 0.892 1.486±0.066

2 16.7 48 3e-3 25 9.8 23.3 12.4 0.08 0.534 0.913 1.417±0.045

2 20.0 48 3e-3 25 13.8 25.9 13.4 0.08 0.456 0.936 1.370±0.030

3 10.0 38 3e-3 25 3.6 16.0 9.2 0.08 0.675 0.561 1.254±0.097

3 13.3 38 3e-3 25 5.9 20.5 11.1 0.08 0.577 0.691 1.241±0.085

3 16.7 38 3e-3 25 9.8 23.3 12.3 0.08 0.501 0.686 1.162±0.048

3 20.0 38 3e-3 25 13.8 25.9 13.3 0.08 0.444 0.743 1.160±0.036

4 10.0 48 3e-3 25 3.6 16.0 10.0 0.03 0.825 0.850 1.740±0.232

4 13.3 48 3e-3 25 5.9 20.5 11.7 0.03 0.614 0.831 1.456±0.191

4 16.7 48 3e-3 25 9.8 23.3 12.7 0.03 0.492 0.877 1.356±0.094

4 20.0 48 3e-3 25 13.8 25.9 13.9 0.03 0.429 0.897 1.331±0.088

4 23.3 48 3e-3 25 18.3 28.1 14.4 0.03 0.420 0.945 1.350±0.063

4 26.7 48 3e-3 25 22.9 30.3 14.9 0.03 0.419 0.866 1.266±0.060

5 13.3 115 3e-4 79 2.2 24.3 13.5 0.12 0.470 0.263 0.761±0.053

5 16.7 115 3e-4 79 3.5 29.7 16.2 0.12 0.476 0.316 0.805±0.030

5 20.0 115 3e-4 79 5.0 34.8 20.6 0.12 0.526 0.336 0.906±0.025

5 23.3 115 3e-4 79 6.9 39.5 21.9 0.12 0.519 0.388 0.908±0.020

5 26.7 115 3e-4 79 9.0 44.3 24.0 0.12 0.483 0.445 0.918±0.018

5 30.0 115 3e-4 79 11.4 48.4 26.1 0.12 0.474 0.470 0.926±0.017

6 13.3 158 3e-4 79 2.2 24.3 14.0 0.08 0.487 0.291 0.816±0.049

6 16.7 158 3e-4 79 3.5 29.7 16.7 0.08 0.522 0.462 0.992±0.039

6 20.0 158 3e-4 79 5.0 34.8 19.2 0.08 0.550 0.532 1.088±0.030

6 23.3 158 3e-4 79 6.9 39.5 21.7 0.08 0.555 0.557 1.111±0.019

6 26.7 158 3e-4 79 9.0 44.3 24.0 0.08 0.510 0.605 1.110±0.016

6 30.0 158 3e-4 79 11.4 48.4 26.2 0.08 0.521 0.633 1.140±0.014

Table C.1: Drop results. Radius R∗, slip length b∗, gravity term f∗y , capillary length κ−1∗,
contact size l∗, drop height h∗, height of center of mass h∗cm, angle of inclination α (radians),
scaled rolling velocity U∗

r /α, scaled slip velocity U∗
s /α, and scaled center of mass velocity U∗

cm/α
with error of 1 standard deviation from measured velocities.
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Figure C.2: Profile analysis - Simulation 1
g∗ = 3× 10−3, α = 9.5◦, κ−1∗ = 25, b∗ = 38
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Figure C.3: Profile analysis - Simulation 2
g∗ = 3× 10−3, α = 4.8◦, κ−1∗ = 25, b∗ = 48
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Figure C.4: Profile analysis - Simulation 3
g∗ = 3× 10−3, α = 4.8◦, κ−1∗ = 25, b∗ = 38
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Figure C.5: Profile analysis - Simulation 4
g∗ = 3× 10−3, α = 1.9◦, κ−1∗ = 25, b∗ = 48
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Figure C.6: Profile analysis - Simulation 5
g∗ = 3× 10−4, α = 6.7◦, κ−1∗ = 79, b∗ = 115
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Figure C.7: Profile analysis - Simulation 6
g∗ = 3× 10−4, α = 4.8◦, κ−1∗ = 79, b∗ = 158
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Figure C.8: Data - Simulation 1
g∗ = 3× 10−3, α = 9.5◦, κ−1∗ = 22, b∗ = 36
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Figure C.9: Data - Simulation 2
g∗ = 3× 10−3, α = 4.8◦, κ−1∗ = 22, b∗ = 49
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Figure C.10: Data - Simulation 3
g∗ = 3× 10−3, α = 4.8◦, κ−1∗ = 22, b∗ = 36
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Figure C.11: Data - Simulation 4
g∗ = 3× 10−3, α = 1.9◦, κ−1∗ = 22, b∗ = 49
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Figure C.12: Data - Simulation 5
g∗ = 3× 10−4, α = 6.7◦, κ−1∗ = 70, b∗ = 92
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Figure C.13: Data - Simulation 6
g∗ = 3× 10−4, α = 4.8◦, κ−1∗ = 70, b∗ = 118
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