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Abstract

This thesis uses the kinetic Monte Carlo (KMC) algorithm to examine the

growth morphology and structure of nanocrystals. Crystal growth in a

supersaturated gas of atoms and in an undercooled binary melt is investi-

gated. First, in the gas phase, the interplay of the deposition and surface

diffusion rates is studied. Then, the KMC algorithm is refined by includ-

ing solidification events and finally, by adding diffusion in the surround-

ing liquid.

A new algorithm is developed for modelling solidification from an un-

dercooled melt. This algorithm combines the KMC method, which models

the change in shape of the crystal during growth, with a macroscopic con-

tinuum method that tracks the diffusion of material through solution to-

wards the crystal. For small length and time scales, this approach provides

simple, effective front tracking with fully resolved atomistic detail of the

crystal-melt interface. Anisotropy is included in the model as a surface

diffusion process and the growth rate of the crystal is found to increase

monotonically with increase in the surface anisotropy value. The method

allows for the study of multiple crystal nuclei and Ostwald ripening. This

method will aid researchers to explain why certain crystal shapes form

under particular conditions during growth, and may enable nanotechnol-

ogists to design techniques for growing nanocrystals with specific shapes

for a variety of applications, from catalysis to the medicine field and elec-

tronics industry. This will lead to a better understanding of the atomistic

process of crystal growth at the nanoscale.
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Chapter 1

Introduction

The purpose of nanoscience and nanotechnology is to understand, control,

and manipulate objects of a few nano-meters in size (say, 1-100nm). These

nano-objects are thus intermediate between single atoms and molecules

and bulk matter. Their properties are often peculiar, being qualitatively

different from those of their constituent parts (either atoms or molecules)

and from those of macroscopic pieces of matter. In particular, nano-objects

can present properties that vary dramatically with size. This opens the

possibility of controlling these properties by precisely controlling their for-

mation process.

Among nano-objects, nanoclusters or nanocrystals occupy a very im-

portant place, since they are the building blocks of nanoscience. Nanocrys-

tals are aggregates of atoms or molecules of nanometric size, containing a

number of constituent particles ranging in number from approximately 10

to 106. Nanocrystals exhibit a variety of size- and shape-dependent phys-

ical and chemical properties that present a unique opportunity for creat-

ing materials with tailored characteristics [1]. Controlling the nanocrys-

tal shape is a real challenge and more data is now needed to ascertain

the general principles that determine this shape. The variation of crystal

shape over different time scales is probably due to the fact that anisotropic

materials are not in their thermodynamically stable state.

1
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A number of techniques (phase-fields method [2], level-set method [3],

Monte Carlo method, adaptive mesh techniques [4], random walks with

adaptive step sizes [5] and so forth) have been reported for modelling

nanocrystal growth. The current study uses the kinetic Monte Carlo (KMC)

algorithm to examine the growth morphology and structure of nanocrys-

tals. It does so by examining the crystal growth in a gas of atoms and

in an undercooled binary melt. The exploration included in the thesis is

divided into three major parts, the Deposition and Growth KMC method,

the Continuum-KMC Method, and the Diffusion and Growth KMC method.

In the initial stage of the current study, the broad focus was to simply study

a straight forward approach to developing a multiscale simulation method

for the growth of nanocrystals in solution that couples a KMC description

of the crystal relaxation process to solute reaction diffusion equations. In

the course of the study, the findings reveal how the KMC technique has

proven its significant contribution to the mathematical modelling of crys-

tal growth. This has led to a better understanding of the atomistic process

of crystal growth as one area of interest in applied mathematics, physics

and materials science.

The purpose of this chapter is to provide an overview of the current

study. It begins by considering the core goal and objectives. It then de-

scribes the rationale for researching this topic. The significance and method-

ology of this study are discussed, and the thesis structure is outlined.

1.1 The main research goal and objectives

Over the last decade the KMC method has been widely applied to study

epitaxial crystal growth with much success [6, 7, 8, 9]. However KMC

has yet to be widely applied to solution phase crystal growth, especially

for nanocrystal growth. Therefore, it is necessary to couple the theory of

crystal relaxation with the mathematical understanding of solute diffusion

fields. The main goal that guided the present research was: To develop a
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multiscale simulation method for the growth of nanocrystals in solution

that couples a KMC description of the crystal relaxation process to solute

reaction diffusion equations. This goal was developed to collect in-depth

information for a better understanding of the phase crystal growth using

the KMC method, one of the most powerful techniques for studying crys-

tal growth. To achieve the main research goal, three research objectives

were established:

1. to understand the process of a solidification event (the process of

how an atom solidifies, that is, changing from a liquid atom into a

solid atom) in order to extend the understanding of the suitability of

the KMC algorithm for exploring the evolution and morphology of

crystal structure;

2. to apply a numerical finite difference method by using an explicit

discretization to solve the continuum model for heat and diffusion

equations at the solid-liquid interface, and

3. to calculate the solidification and hopping rates and consider how

the surface anisotropy effect could be included in our model.

1.2 The rationale for researching this topic

The presence of the computational challenge in this work was one of the

primary factors that attracted the researcher’s interest to this field. As

in many areas of materials science, modern computational science is be-

coming a key contributor in the quest to quantitatively understand the

molecular level mechanisms underlying the macroscopic phenomena in

chemical processing. It is envisioned that this study will contribute to the

rational design of crystal growth and to improve production strategies. Of

particular relevance are hierarchical approaches that link the insights that

modelling and simulation can provide across all relevant length and time
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scales [10]. The computer simulations allow the scientist to model events

at the nanoscale that are difficult to observe experimentally. It is believed

that some of the critical events in crystal growth occur at the nanoscale,

which naturally motivates a simulation based approach. The simulation

approach provides atomic scale precision data on the surface morphol-

ogy and shows the detailed atom-based behaviours that are hard to be

observed by experiments [11].

1.3 The significance of this study

Crystal growth involves a variety of research fields ranging from surface

physics, crystallography, and material sciences to condensed matter physics.

Although significant efforts have been made over the last few decades to

predict the growth morphology of crystals, it remains a challenging task

to date.

The various shapes of crystals are of great technological importance.

This study will deal with the natural shapes of crystals, such as dendritic

shapes. From a practical point of view, it is important to understand how

crystals tend to grow in order to devise processes to control how they do

so. For example, gemstones, for which nature has produced crystal mor-

phologies and a degree of perfection, have yet to be duplicated by artifi-

cial processes. Another such example is the snowflake that decorates our

world with beautiful different patterns whose artistic and scientific value

alone is worth understanding. Also the morphological evolution and the

growth mechanism provides crucial experimental input as a guide for fab-

rication of high-performance crystalline alloys for application in automo-

biles, aerospace and biomedicine [12]

Some particular facets are usable for industries such as the pharma-

ceutical industry. Crystals reveal a large variety of shapes, depending on

the chemical composition, the structure of crystals, and the growth con-

ditions. The shape of the crystals has a direct impact on the separation
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efficiency and the stability of crystalline chemicals, the bioavailability and

the effective delivery of drugs. Knowledge of the growth habits and mor-

phological properties of the molecular crystals is of crucial importance in

understanding and exploiting many of their physico-chemical properties.

Calculating the crystal growth morphology has diverse applications rang-

ing from drug design [13] to explosives [14] and inverse gas chromatogra-

phy data [15].

Controlling the morphology of nanoparticles is of key importance for

exploiting their properties in several emerging technologies. For exam-

ple, the applications such as electronic and optical devices [16], and bio-

sensors [17]. These applications use optical properties of gold nanoparti-

cles related to surface plasmon resonances, which depend strongly on the

anisotropy of the particle shape, larger shapes produce greater plasmon

losses [18]. Another example is the application of magnetic nanoparticles

in data storage which is limited by superparamagnetism that precludes

their use at room temperature [19]. One way to avoid this problem is to

increase the magnetic anisotropy, by growing very anisotropic shapes for

example [20]. In catalysis the shape of the catalyst particles often plays an

important role [21, 22, 23]. The ability to precisely predict and control the

morphology of nanoparticles that terminates with the desired crystallo-

graphic planes remains one of the main outstanding synthetic challenges.

The study of the diffusion, adsorption, deposition and solidification of

atoms on a growing surface has been an active field in the past decade,

because of both experimental and theoretical advances. Experiments can

give detailed images of patterns formed on growing surfaces. An impor-

tant challenge to the theoretical studies is the identification of dynamic

processes controlling the pattern formation and overall surface morphol-

ogy. This can be achieved by accurately modelling the atomic interactions,

a thorough search for active-scale processes, and simulation of the growth

on an experimental timescale to allow for detailed comparison with the ex-

perimental measurements. This study adopts a discrete, atomistic model
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in the spirit of the KMC simulations to examine the growth morphology

and evolution of nanocrystals. It is apparent that the KMC algorithm has

yet to be widely applied to solution phase crystal growth, especially to

nanocrystal growth, in research. Taking into account this gap in the crystal

growth literature, this study emphasises the value of the KMC technique

in the understanding of nanocrystal growth. This makes the research of

crystal growth in the current study different from that in the academic re-

search of crystal growth processes in the past.

1.4 Methodology

This thesis is essentially a series of computer simulations with the aim

of understanding nanocrystal growth. The two main components in this

approach are: atomistic simulation and mathematical modelling.

The difficulty in understanding the crystal growth phenomena arises

due to complex relationships between different processes, which take place

on very large time and length scales, particularly in the case of industrial

processes. The processes involved during the crystal growth are highly

complex because they involve many-body interactions for accurate de-

scription of the problem. Nanocrystal growth is a nanoscale process and it

is best understood in microscopic variables. That is, their properties have

great potential in application and can be understood only with the knowl-

edge of structures at the atomic level. The microscopic theory of crystal

growth is a detailed understanding of the mechanisms of growth and of

the effects arising from the change of physical quantities and material pa-

rameters. The main theoretical tools of microscopic theory are numerical

simulations involving the application of the two basic methods: Molecular

Dynamics (MD) and kinetic Monte Carlo (KMC). This study will make use

of the KMC method. A broad overview of this well established technique

can be found in [24, 25, 26] but some of the relevant details will be outlined

in Chapter 3.
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Computer simulations have become a useful part of mathematical mod-

elling for a better understanding of the atomistic process of crystal growth.

The modelling of crystal growth process in this study is via a mathematical

model, which attempts to find analytical solutions to problems, and enable

the prediction of the patterning of crystal growth from a set of convenient

parameters and initial conditions. In the simulation process, if all relevant

processes in the system have been identified, and the rate of each process

has been estimated, the time evolution of the system can be described by

a set of coupled rate equations (mathematical model) that can be solved

using a Monte Carlo approach. This is the so-called kinetic Monte Carlo

procedure. In conclusion, the advantage of modelling is that it often al-

lows us to see a path through the complexity inherent in nanoscience and

nanotechnology.

1.5 The thesis structure

This thesis comprises seven chapters, including this introductory chapter.

Chapter Two presents a review of the concept of crystal growth including

the following: crystal structure of a Face Centred Cubic (FCC) crystal, mor-

phology of crystal structure, theoretical aspects of crystal growth. Chapter

Three explains the kinetic Monte Carlo (KMC) methods and studies rele-

vant to the current study. Chapter Four describes the details of examining

the crystal growth in the situation where there is a nanocrystal sitting in a

gas of atoms and introduces deposition events. Chapter Four also presents

the first part of how the KMC code was reviewed and used as a guide for

the entire computation in the current study.

Chapter Five describes the use of the KMC algorithm to examine the

growth morphology and structure of the nanocrystals in an undercooled

binary melt. The main research methods provide an explanation of how

we solved the continuum model for heat and solute equations at the solid-

liquid interface. Chapter Five presents the research findings, and Chapter
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Six explains the case where the KMC algorithms in Chapter Four and Five

are extended to model diffusion in the solute. Chapter Seven concludes

this thesis with an overall review of the research’s main goals and objec-

tives in response to the general findings, reflections on the current study,

and suggestions for future action and research. The digital diagram of

’crystal growth in 3-dimensions’ can be viewed on a DVD attached to this

thesis.



Chapter 2

Crystal Growth

This chapter aims to provide a background understanding of crystal growth

appropriate for the current study. The chapter begins with what theo-

rists and researchers say about the concept of crystal growth and in or-

der to lay the foundation for subsequent chapters, it also describes the

evolution and morphology of crystal growth under equilibrium and non-

equilibrium conditions. It then carries on to give a general discussion of

the structure of the Face Centred Cubic (FCC) crystal, and the theoretical

aspects of crystal growth. The chapter concludes with an explanation of

nanostructure growth.

2.1 The concept of crystal growth

The topic of crystal growth has played a very important role in modern

technology and much research has been published on the theory of crystal

growth. Interest in studying the concept of crystal growth can be traced

back to studies in the 17th century. In his book Crystal Growth, Morphol-

ogy and Perfection, Sunagawa [27] recalled the concepts of crystal growth

from the 17th to the 20th century. In the 17th century, Sunagawa [27] ex-

plained, the growth rates of crystal related to crystallographic direction.

This means that the growth rates of crystals are different depending on

9
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the different crystal faces (Steno, 1638 - 1687), for example, the hexagonal

prismatic forms can be seen by six faces at the tip, and sometimes show

tapering prismatic or platy forms. Hence the natural morphology of crys-

tals arises in part from crystalline anisotropy, the fact that crystallographic

properties depend on orientation. These concepts of crystal growth and

growth rate anisotropy provide a basis for the present-day science of crys-

tal growth including the current study.

In the 18th century, the study of crystal growth was moving from the

crystallographic direction to how it grows in aqueous solution or in wa-

ter [27]. Hooke [28] found that the shape of crystals different as they grew

on the tip of the string immersed in aqueous solution and at the bottom

of a beaker but both shapes bounded by the same faces. In relation to

the growth of crystals in the water, Hooke’s [28] and Holden and Mari-

son’s [29] findings on crystal growth are similar in nature. Holden and

Marison [29] noted that in the growing of alum crystal, alum such as sul-

phate and potassium sulphate diffuse through the water and when they

reach the surface of the crystal, they join with each other and with some

of the water. They adopt positions on the surface that are forced on them

by the kind of orderliness confronting them. Settling into those positions,

they extend the orderliness outward, and thus the crystal grows.

The idea of crystal growth in the 19th century was centred around the

understanding of crystals as unit cells [27] and much of the work on crystal

growth in the 20th century has been largely based on the growth on crystal

surfaces with both stable and unstable growth scenarios [29, 30, 31, 32, 33,

24, 34]. This has now advanced to a state to be understood from a unique

viewpoint, the atomistic process of crystal growth. It is now possible to

explain at the atomistic level why and how the same crystal can take a

variety of forms, from dendritic (branching like a tree), hopper (the edges

of hoppered crystal are fully developed, but the interior spaces are not

filled in), to polyhedral forms, and why different crystal species exhibit

different characteristic form. How our understanding of morphology and
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growth mechanism of crystals has developed since the time of Steno has

recently been summarized by Sunagawa [27], Holden and Morrison [29],

and Byrappa and Ohachi [35].

Kittel [31] noted that when a crystal grows in a constant environment,

the form develops as if identical building blocks (atoms, molecules, or

ions) were arranged in an orderly repeating pattern extending in all three

spatial dimensions. For better understanding of surface growth, the cur-

rent study recalls the two basic and related questions: what is the growth

mode and what is the growth kinetics? The growth kinetics and the dif-

ferent modes of crystal growth are well described in an article by Levi

and Kotrla [24] in their review of crystal growth simulation in relation to

KMC methods. This study is concentrated on three-dimensional growth,

in which many crystal layers grow at the same time, which is in contrast to

the two-dimensional growth mode. In this mode, the atoms are depositing

at relatively high rates that cause the surface to form hillocks and cavities

and the mode of growth can change with the strength of the disequilib-

rium.

2.2 Crystal Structure

In order to understand the crystal growth, it is useful to discuss the struc-

ture of crystals. A crystal structure is defined as the particular repeat-

ing arrangement of atoms (molecules or ions) throughout a crystal. It is

composed of a pattern, a set of atoms arranged in a particular way, and a

lattice exhibiting long-range order and symmetry. This section examines

the structure of a Face Centred Cubic (FCC) crystal, central to the current

study.

Crystals are solid materials having regular arrangement of atoms, molecules,

or ions. Crystal forms are determined by structure and the factors in-

volved in growth. The structure of all crystals can be described in terms

of a lattice, with a group of atoms attached repeating periodically to ev-
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ery lattice point in three dimensions. That is, these lattice points are of

fundamental importance in describing crystals for they may be the posi-

tions occupied by individual atoms in crystals or they may be points about

which several atoms are clustered. An important characteristic of a space

lattice is that every point has identical surroundings: the grouping of lat-

tice points about any given point is identical to the grouping about any

other point in the lattice.

The lattice is defined by three fundamental translation vectors a1, a2,

a3 such that the atomic arrangement looks the same in every respect when

viewed from the point r. When viewed from the point r′ = r+ xijk where

xijk = ia1 + ja2 + ka3 is the integer combinations of three basis vectors for

the FCC lattice. The primitive translation vectors a1, a2, and a3 connect

the lattice point at the origin with lattice points at the face centers. The

primitive translation vectors of the FCC lattice of Figure 2.1 are

a1 = a

(
î+ ĵ√

2

)
; a2 = a

(
î+ k̂√

2

)
; a3 = a

(
k̂+ ĵ√

2

)
,

that are themselves formed by combinations of the equilibrium distance

between two atoms a and the Cartesian unit vectors î, ĵ and k̂. The primi-

tive translation vectors a1, a2, and a3 connect the lattice point at the origin

with lattice points at the face centers. The black circles are the lattice points

at the corners and the red circles are the lattice points at the face centers.

The angles between the axes are 600. Upon scaling, {a1, a2, a3} become

unit vectors and it is useful to expand this set to the twelve vectors

{e}12i=1 = {±a1,±a2,±a3,±(a1 − a2),±(a2 − a3),±(a3 − a1)}

that point to the nearest neighbours of a given lattice site. Most solids are

crystalline, meaning that their particles (atoms, molecules, or ions) are ar-

ranged in a repetitive lattice structure extending over significant distances

in atomic terms. In this context atoms may be regarded as spheres of di-
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ameter 2 to 6 Angstroms ( 1 Angstrom=10−10 meters).

a

y

x

a3

a1

a2

aa2 a3

a1

z

Figure 2.1: The rhombohedral primitive cell of the two face-centered cubic
unit cells. The primitive translation vectors a1, a2, and a3 connect the
lattice point at the origin with lattice points at the face centers. The black
circles are the lattice points at the corners and the red circles are the lattice
points at the face centers. The angles between the axes are 600.

2.3 Morphology of Crystals

Since the morphology of crystal structure is one of the objectives of the cur-

rent study, it is therefore important to discuss the morphology of crystals.

Our intention is to present systematically the fundamental concepts that

allow us to analyze the factors that determine the various forms of crys-

tals. Crystals are polyhedral objects which can have flat surfaces of more

than one kind. These surfaces are called faces and each kind is character-

ized by a distinct arrangement of atoms, molecules or ions, which leads to

a specific growth rate. The faces that have identical arrangements of atoms

grow at the same velocity, while the faces that have different arrangements
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of atoms grow at different rates. This difference in growth rates leads to

morphological evolution of the crystal. Sometimes the crystalline shapes

are more complicated figures, dendritic, spherulitic, or fractal, but they all

are polyhedral, that is, figures bounded by a finite number of plane faces.

The morphology of a crystal is determined by the crystal structure (the

internal factors), the crystal growth conditions and the process of that

growth (the external factors) [27]. The internal factors will lead to equi-

librium crystal forms with minimum total surface free energy. Different

external factors normally influence crystal forms and force the crystal to

deviate from the equilibrium form to develop into various morphologies.

The crystal shape is derived from the competition of these internal and

external factors, and its growth is related to the growth kinetics, such as

interface property, capillarity, and heat and mass transfer [36].

Growth and dissolution processes of crystals uniquely take place on

the surfaces of a crystal, that is on the solid-liquid (ambient phase) inter-

face. The processes depend on the structure of the interface, whether it is

rough or smooth, the growth mechanism, and thus the relations between

the driving force and growth rate are different. The growth rate and the

driving force are related as follows:

R = A(∆µ/kT )2,

where A is a constant, ∆µ is the difference of chemical potentials between

the two phases, k is the Boltzmann constant, and T is the absolute tem-

perature. The expression of the driving force in terms of the generalized

driving force is ∆µ/kT .

The growth of interface is different depending on crystallographic di-

rections (growth rates), which are related to the crystal structure. This

leads to different shapes of crystal where the interface structure transforms

from smooth to rough with increasing growth temperature (thermody-

namic roughening transition) and driving force (kinetic roughening tran-

sition) [35]. Summarizing these, the relations among the different shapes
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is shown in Figure 2.2, which represents only a section of events but can be

utilized as a standard [27]. Figure 2.2 shows the growth rate R against the

driving force ∆µ/kT for three models of growth mechanism. This figure

illustrates the following two points:

1. the interface becomes rougher, as the driving force increases, and

2. two bending points (critical points) appearing at ∆µ/kT ∗ and ∆µ/kT ∗∗

are the points where the predominant growth mechanism changes [27].

The relation of the curves R against the ∆µ/kT is expected to be

different for the three models of growth mechanisms. The growth

mechanism will be adhesive-type above ∆µ/kT ∗∗ and the interface

becomes rough. Below ∆µ/kT ∗ the growth will be principally con-

trolled by the spiral growth mechanism and the interface will be

smooth. In between ∆µ/kT ∗ and ∆µ/kT ∗∗, the growth mechanism

will be principally two-dimensional nucleation and the interface is

still smooth.

Depending on phases, materials, and sizes, the positions of ∆µ/kT ∗ and

∆µ/kT ∗∗ may change. In the following sections, we discuss some basic

ideas on how to control the shapes of particles by controlling their growth.

2.4 Theoretical Aspects of Crystal Growth

2.4.1 Thermodynamic Considerations

The equilibrium morphology of crystals, as determined by thermodynam-

ics, can be obtained by minimizing the total free surface energy of the crys-

tal at a constant volume and temperature [37, 38]. For isotropic surface

free energies (as for a liquid), the crystal morphology will be spherical in

shape and the chemical potential constant everywhere on the surface. The



16 CHAPTER 2. CRYSTAL GROWTH

∆µ/kT ∗ ∆µ/kT ∗∗
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Figure 2.2: Schematic diagram showing the growth rate R against the
driving force ∆µ/kT , morphologies of single crystals (polyhedral, hop-
per, dendritic) and polycrystalline aggregates (spherulitic and fractal)
in relation to growth rate R, driving force, interface roughness (smooth
and rough) and growth mechanisms. Curve A represents the spiral
growth, curve B the two-dimensional nucleation growth, and curve C the
adhesive-type growth mechanisms.

calculation of the chemical potential is given by [37]

µ = µ0 −
V

N

[
∂

∂x

(
∂φ

∂zx

)
+

∂

∂y

(
∂φ

∂zy

)]
, (2.1)

where µ0 is the chemical potential inside the crystal, V is the volume of the

crystal, N is the number of atoms in the crystal, and zx = ∂z
∂x

and zy = ∂z
∂y

are the partial derivatives of the height, z, over the coordinates of the (x, y)

plane respectively. It is convenient for a closed surface if the surface is cut

into a few pieces and different projection planes are used for the various

pieces (e.g. xy, yz, and zx, each twice). For a given piece, the projected
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surface free energy φ is written as φ(zx, zy) = σ(zx, zy)
√

1 + z2x + z2y . Thus,

the surface free energy, Fsurf , is defined as follows:

Fsurf =

∫ ∫
σ(zx, zy)dS, (2.2)

where σ(zx, zy) is the local surface tension of the partial derivatives zx =

∂z/∂x and zy = ∂z/∂y. The integration is made over the surface and dS

is the surface element. The constant chemical potential implies that the

surface free energy (given by Equation (2.2)) is at a minimum at equilib-

rium. Equivalently, if one takes an atom from a position where µ = µ1 to

a position where µ = µ2, the corresponding surface free energy, ∆F , at a

constant temperature and volume is given by ∆F = µ2 − µ1 = 0.

2.4.2 Equilibrium Shape

In particular, the equilibrium shape of any macroscopic object is deter-

mined by the requirement that the chemical potential µ be a constant. The

crystal surface can consequently be described by Equation (2.1), provided

that the function F(zx, zy) or φ(zx, zy) are known. Assuming, that the units

are selected in such a way that the molar volume v = V/N = 1, and µ0 = 0,

the equation for the crystal surface can be written as

∂

∂x

(
∂φ

∂zx

)
+

∂

∂y

(
∂φ

∂zy

)
= −µ = Constant. (2.3)

Equation (2.3) can only be applied to crystal morphologies if the deriva-

tives of µ exist. This will be the case for rounded crystals since µ for faceted

crystals is only defined in a discrete set of orientations corresponding to

the facets in the equilibrium morphology (see Figure 2.3). For a faceted

crystal (Figure 2.3), the surface free energy can be written as a sum of the



18 CHAPTER 2. CRYSTAL GROWTH

contributions from the various facets

Fsurf =
∑

f

σfAf ,

where σf is the value of σ(n) at n = nf , and Af is the area of the corre-

sponding facet. The equilibrium morphology can be found by minimising

Fsurf at a fixed volume V = 1
2

∑
f Afhf , where hf = maxR{R · nf}, and R

being any point on the crystal surface. A constrained minimisation with a

Lagrange multiplier λ [39] can be performed to enforce the fixed volume

condition

δ(λV + Fsurf ) =
∑

f

(
λ

2
hf + σf

)
δAf = 0. (2.4)

This minimization yields

σf

hf

= −λ

2
. (2.5)

nf

R
hf

O

Af

Figure 2.3: The equilibrium shape of a two-dimensional faceted crystal.
The ’area’ of the f -th facet is Af and hf = R · nf is the distance from the
center of symmetry with R being any point on the crystal surface.

For each facet, the ratio of the surface energy to the distance hf from
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the origin is a constant. The expression for the set of {hf} gives the equilib-

rium morphology. At this stage, λ is still unknown and it can be calculated

by rewriting the variation in free energy at fixed volume as δFsurf = µδN ,

where δN is the variation in particle quantity N . According to Equa-

tion (2.4), δ(λV + Fsurf ) = 0, therefore

δFsurf = µδN = −δV λ = −vδNλ,

with v = V/N the volume per particle. It follows that λ = −µ
v
, where the

Lagrange multiplier λ appears to be proportional to the chemical potential,

which is thus responsible for setting the overall size of the crystal. So

Equation (2.5) can be written in the form

µ =
2vσf

hf

.

In crystalline solids the surface energy is anisotropic and the energy-

minimizing shape is found using the limiting planes of the lowest possible

surface energy. Wulff found this solution for the equilibrium shape of a

crystal which is expressed by Wulff’s theorem

γi
hi

= constant,

where γi is the surface energy and hi is the central distance to the facet

of index i. An example of equilibrium morphologies for FCC structure

are the truncated octahedron containing eight hexagonal (111) facets and

six square (100) facets. For a BCC structure it is a rhombic-dodecahedron

presenting twelve lozenge (110) faces respectively, as shown in Figure 2.4.

These regular polyhedron shapes are only valid at 0 K where the surface

energy anisotropy is maximal. At high temperatures, the surface energy

anisotropy decreases, and the crystal equilibrium morphology is more

round [40] and eventually becomes completely spherical at the melting

point [37, 38]. In addition to the above methodology, a geometric construc-
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tion, namely the Wulff theorem [37], can be used to find the equilibrium

crystal morphology.

Figure 2.4: Equilibrium shape at 0 K of a (a) FCC truncated octahedron
and a (b) BCC rhombic dodecahedron (from Henry [38]).

In this study we are interested in particles with nanometer dimensions.

This emphasis on nanostructures brings into question the validity of the

Wulff theorem in this size range. In order to examine its validity for study-

ing nanostructures, several factors that can change the equilibrium shape

when scaling down from macro to nanoscale should be considered. These

include:

• both the surface energy and the surface stress increase [41];

• different structures such as icosahedral, as an example, can become

more stable [42], and

• the proportion of edge atoms of different facets can no longer be ne-

glected. Even if the crystal structure remains bulk-like, the equilib-

rium shape can change. This can be seen using the simple first neigh-

bour two-body interaction [43]. For example, consider a Wulff shape
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limited by (111) and (100) facets with n and m respectively the num-

ber of atoms along the edges of these facets. The anisotropy of the

surface energy is given by [44]

γ(100)
γ(111)

=
√
3 · n+m

n+ 2m
. (2.6)

For a given number of atoms one can calculate the value of n/m that

minimises the surface energy. In a macroscopic crystal, n = m, and

the anisotropy factor is 2/
√
3 ≈ 1.15. In a nanometer sized structure,

the (100) facets disappear which means that m → 0; consequently

n/m → ∞. Under these conditions the anisotropy factor tends to√
3. Applying an anisotropic factor of

√
3 and using the Wulff con-

struction [37], an octahedral shape is obtained. This is indeed the

morphology for a nanostructure in which (100) facets are absent.

2.4.3 Equilibrium shape of a supported crystal

The above discussion is valid for crystal growth in free space, in which the

current study is undertaken. However, nanoparticles are usually grown

on supports and the equilibrium shape of a supported crystal is expressed

by the Wulff-Kaischew theorem:

∆h

hi

=
Eadh

γi
, (2.7)

with ∆h being the amount by which the crystal shape is truncated. hi and

γi are the central distance to the facet parallel to the interface and the cor-

responding surface energy. Eadh is the work of adhesion which equals the

work necessary to separate the crystal from the support by an infinite dis-

tance (see Figure 2.5). It is useful to combine the Wulff-Kaischew theorem

(Equation 2.7) with Young’s equation for mechanical equilibrium. This re-

lationship provides a means of using the adhesion energy to determine

whether or not a supported crystal will wet a surface. More details of
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γi

γjhi

hj

∆hs

Figure 2.5: Schematic representation of the equilibrium shape of a sup-
ported polyhedron crystal. The shape of the free crystal is truncated at the
interface by an amount ∆hs which is proportional to the adhesion energy.
The h′s represent the distance from the centre of the crystal to the different
facets and γ′s illustrate the surface free energies.

the equilibrium shape of a supported crystal and the relationship between

the Young equation and the Wulff -Kaischew theorem are described by

Pimpinelli et al. [37] and Henry [38].

2.4.4 Kinetic considerations

In the preceding sections, crystal morphology and growth were discussed

at thermodynamic equilibrium. However, in practice, crystal growth rarely

occurs under equilibrium conditions. This happens due to the supersat-

uration, S, which is the ratio of the pressure around the growing crystal

and the equilibrium pressure at the same temperature when S is typically

larger than one. In general the shape of the crystal depends on the growth

rate of different faces as shown in Figure 2.6. Crystal faces are classified

into three different types:

1. flat or F -faces which are parallel to at least two dense atomic rows;

2. stepped or S-faces which are parallel to at least one dense atomic

row, and

3. kinked or K-faces which are not parallel to any dense atomic rows.
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Figure 2.6: Schematic illustration of the various kinds of facets S, F and K
on a growing crystal.

A K-face corresponds to a rough interface, an F -face to a smooth in-

terface, and an S-face to a face having an intermediate nature between

that of the K and F faces. Further, an F -face is mostly atomically flat.

Growth on this face is thus only possible if (i) the supersaturation is large

enough or (ii) the growth temperature exceeds the roughening tempera-

ture. The roughening temperature indicates the threshold above which

surface roughening of an F-face occurs. The S and K faces, on the other

hand, are atomically rough, as shown in Figure 2.6, and grow sponta-

neously. A K-face grows by the adhesive-type growth mechanism, an F -

face grows either by a layer-by-layer or a spiral growth mechanism, and an

S-face appears by the pilling up of growth layers advancing on the neigh-

bouring F -face. Therefore, an F -face develops to a large size in order to

control crystal habit in a real crystal (the term crystal habit is sometimes

used in a broader sense to describe the characteristic forms shown by poly-

crystalline aggregates, such as spherulitic, botryoidal, or reniform) [27],

the K-face will disappear from the crystal surface, and the S-face will be

characterized by striations only, if it appears on a crystal.

The growth rate of a crystal face depends primarily on the supersat-

uration but also on other factors that we will discuss later. The F -faces
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clearly grow much slower than the S-faces and K-faces. Hence, a grow-

ing crystal will be limited only by F -faces that correspond to the lowest

surface energy. However, the kinetically limited shape is not necessarily

the equilibrium shape [37], for instance, a FCC structure, assuming that

the growing crystal is limited, at a given time interval, by (100) and (111)

facets. The (111) facets seem to grow more slowly than the (100) facets

for particular conditions. The final shape of the crystal will end up as an

octahedron.

The existence of facetted (or anisotropic) growth morphologies can pri-

marily be attributed to the anisotropy in the flow of material to the differ-

ent facets. Several factors can contribute to this source of anisotropy:

• Deposition flux and surface diffusion: In the case of vapour growth on

a substrate, if the main flux comes from diffusion on the substrate,

and if the surface diffusion is anisotropic, the growth shape will also

be anisotropic;

• Presence of defects: Defects also lead to the growth of anisotropic crys-

tals. For example, circular forms occur due to the presence of screw

dislocations that increase the growth rate in one direction;

• Presence of impurities: Impurities can significantly influence the growth

shape of a crystal. Impurity ions absorb preferentially on the (111)

faces and drastically reduce the growth rate in this direction;

• Twinning: Twinning generates reentrant corners that are repeatable

growth sites. Twinned crystals are elongated in one direction or

flat [45]. Successive twinning in a < 111 > direction gives rise to

platelet triangular FCC nanocrystals [46], and

• Coalescence: If two growing crystals touch one another, they will pro-

duce an anisotropic form that will persist unless the temperature is

elevated so as to increase surface diffusion to the extent that matter

is redistributed between the different facets [45].
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2.5 Nanostructure Growth

Studying the equilibrium morphology and size of nanostructures and crys-

tals is an essential step to understand how these are influenced by various

factors. Examples mentioned in the previous section include surface dif-

fusion, defects, impurities and so forth. Naturally, precise control of these

factors can eventually satisfy the need to tailor the morphology and size

of nanostructures. However, the critical significant event is first determin-

ing the processes that contribute to the growth of the equilibrium or non-

equilibrium morphologies in crystal growth. The current study is focused

into three major parts:

1. In Chapter 4, we consider a supersaturated vapour of atoms con-

densing into a cluster. Deposition is considered to be equally likely

to occur at any part of the crystal surface. As we consider an FCC

crystal structure, the vapour could be considered to be that of an in-

ert gas, or an FCC metal.

2. In Chapter 5, we consider the growth of a dendrite in a cooling bi-

nary alloy. The model allows for both phase change and exchange

between liquid and solid atoms (that is, solidification processes) on

the surface of the crystal and is coupled to a continuum model for

heat and solute transport.

3. In Chapter 6, we consider growth from a supersaturated solution.

Diffusion in the solute and surface diffusion on the crystal surface

are handled completely by the KMC algorithm without the use of a

continuum description of the solute.

The relevant processes that lead to nanostructure formation in the above

situations can therefore be addressed as follows:

a. deposition of atoms (now termed adatoms) on the surface of the clus-

ter;
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b. surface diffusion of an adatom ;

c. surface diffusion of an adatom along the edge;

d. dissociation of an adatom from the surface of the cluster;

e. melting of an adatom;

f. solidification of an adatom;

g. desorption from the surface, and

h. single atom diffusion.

All of these processes have a certain energy barrier before can occur and

they have different time scales. The difference in the time scales can be

problematic when simulation studies for nanostructure and surface growth

are conducted. An overview of the time scales related to the current study

is given in the next Chapter.

2.6 Summary

In general, the overview of crystal growth presented in this chapter builds

a picture of crystal growth processes which are appropriate for the current

study. What also emerges is that all research on crystal growth processes

is based on the atomic construction which is the most commonly encoun-

tered state of solid materials. The present study therefore incorporates

an investigation of the crystal growth processes for the purpose of under-

standing the structure and evolution of face centred cubic (FCC) crystals.

In the present study, we have chosen to examine the surface growth with

both stable and unstable growth scenarios as is commonly discussed in

relevant literature. The study also attempts to investigate the effects of

surface anisotropy, and the basis for the atomistic simulation process in

this study involves the KMC algorithm.



Chapter 3

Kinetic Monte Carlo Methods

Kinetic Monte Carlo (KMC) methods are used to model non-equilibrium

systems using Monte Carlo (MC) simulation techniques. A typical exam-

ple of such a problem is in crystal growth, where the adatom configura-

tion on the surface is a complex function of temperature, flux, and micro-

scopic energetics. To understand the analytic solution of the dynamics of

the crystal morphology, KMC methods have been developed that simu-

late crystal growth by applying the physical rules to a simplified model of

the system. From a comparison of these models with experimental results,

insight into crystal growth process can be obtained.

This chapter describes the modelling methodologies used in this study.

The background of KMC algorithms and their importance to the current

study are discussed. Next, the motivation for using the KMC method with

the time-scale problem is presented and the basic principles of KMC are

explained. The explanation of the KMC scheme for crystal growth and

the implementation of the KMC algorithm are discussed. The theoretical

aspects of crystal growth and nanostructure growth are also discussed.

27



28 CHAPTER 3. KINETIC MONTE CARLO METHODS

3.1 Background of the KMC

Monte Carlo (MC) algorithms have been used in a wide variety of science

and non-science disciplines, including materials science, nuclear physics,

economics, and traffic flow. Monte Carlo refers to a broad class of algo-

rithms that solve problems through the use of random numbers [47, 48].

They first emerged in the late 1940s and 1950s as electronic computers

came into use [49], and the name reflects the statistical properties of ran-

dom events which can be seen in the gaming in the casinos of Monte Carlo.

The most widespread application of MC algorithm in materials science

is determining the equilibrium structure or thermodynamic properties of

materials [50]. These applications are based on the idea that the probabil-

ity of different configurations occurring in a system depends both on the

relative energies of those configurations and on their relative abundance

in the phase space.

In early 1970s researchers began to develop a different kind of Monte

Carlo algorithms for systems evolving dynamically from state to state.

The earliest application of this approach for an atomistic system of crystal

growth and evolution using probabilistic rules to govern deposition, dif-

fusion and other transition processes was first adopted by Abraham and

White [51] and Gilmer and Bennema [52]. Over the next 20 years, there

were developments and applications in this area (for example, see [53, 54,

55, 56, 57, 58]). In the 1990s the terminology for this approach settled in as

kinetic Monte Carlo, though the early and even some recent papers typi-

cally do not use this term and it can be found under various names includ-

ing ”dynamic Monte Carlo” [59, 60], ”time-dependent Monte Carlo” [61],

and ”simple Monte Carlo”. The different names are used because they

have different origins. They were specifically developed for surface reac-

tions and are based on a dynamic interpretation of equilibrium MC sim-

ulations [60, 62, 63]. The popularity and range of applications of KMC

has continued to grow and offers an elegant and powerful tool for ex-
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ploring the evolution and properties of a wide range of problems and sys-

tems with the aim of faithfully reproducing non-equilibrium, or relaxation

processes [6, 64]. These techniques have been successfully applied to the

simulation of the thin film growth [65, 66, 67], irradiation[26, 68], chem-

ical reactions [69], the kinetics of colloidal aggregation [70], phase sepa-

ration [71, 72], adsorption and desorption processes [71], diffusive trans-

port [73, 74], heterogeneous catalysis [75], and growth and dissolution of

materials.

The kinetic Monte Carlo (KMC) method is generally used to simulate

the evolution of a physical system through numerical sampling of (Marko-

vian) stochastic processes (briefly outlined in Appendix A). While the

traditional Monte Carlo (MC) method is applied to sample in or close

to the thermal equilibrium, KMC has a kinetic character, in that it also

evolves the system in real physical time making it possible to study non-

equilibrium processes [59, 76]. A connection between MC time-step and

real physical time has been discussed within the theory of Poisson pro-

cesses [60]. The appeal of the KMC method is that it can treat large length

and long time-scale kinetic responses while incorporating atomistic infor-

mation, through appropriately determined transition rates. For example,

it is widely used to simulate surface diffusion and growth processes [77],

in which the energy barriers for the atomic mechanisms are obtained from

atomistic calculations.

3.2 Motivation: the time-scale problem

Our focus is on simulating the dynamical evolution of systems of atoms.

The premiere tool in this class of atomistic simulation methods is Molecu-

lar Dynamics (MD), which corresponds to a numerical integration of New-

ton’s equations of motion [78]. The technique makes it possible to carry

out computational and theoretical studies of a range of surface phenom-

ena. MD simulations in particular are capable of revealing the essential
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details of microscopic phenomena as they unfold as a function of temper-

ature, pressure, and other global variables but the application is limited

in time and length scales [26, 79]. Since most thermally activated atom-

istic processes occur in the range of picoseconds, they are best captured

with time steps in femtoseconds which limit the total simulation time to

a few microseconds. These times are many orders of magnitude smaller

than processes happening in the laboratory. For example, epitaxial growth

and surface morphological changes take place in minutes and hours and

are controlled by atomic processes which are infrequent compared to the

atomic vibrational times of picoseconds. Also the applications of MD

methodology are especially limited for dissolution processes that occur on

much longer timescales [80]. This is the time-scale limitation where MD

methods are clearly inadequate for simulating such long time scales [81].

The challenge in molecular dynamics simulations is to find reliable ways

to capture infrequent processes and extend them to longer time scales with

reasonable computational resources.

A possible alternative is to employ the KMC scheme to overcome this

limitation for examining surface phenomena. In such phenomena, the

rates of various eligible atomic processes are provided as input by exploit-

ing the fact that the long-time dynamics of this kind of system typically

consist of diffusive jumps from state to state. Rather than following the

trajectory through every vibrational period, these state-to-state transitions

are treated directly, as explained in state-to-state dynamics [26, 79]. The

result is that KMC can reach vastly longer time scales, typically seconds

and often well beyond. Consequently, the KMC can be used to study state-

to-state kinetics much more efficiently than molecular dynamics without

significant loss in accuracy by using an accurate list of process rates [82].

Although molecular dynamics simulation can be useful for a much shorter

time scale, down to nanoseconds or microseconds [83], the properties of

the KMC method make it a powerful and realistic approach at present for

the simulation of crystal growth at practical size and time scales.
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3.3 Basic Principles of KMC

The KMC simulation algorithm is based on existing computer algorithms

used for the simulation of the growth on crystal surfaces [32, 33]. These

programs carry out elementary jumps on a virtual grid, to represent real

atomic jumps on a crystal surface. The basic steps of all KMC algorithms

are the following:

1. random selection of a process with the use of transition probabilities

for all possible processes,

2. simulation of the selected transition and the corresponding change

of the state vector of the system, and

3. upgrade of the time counter and transition probabilities.

From the mathematical standpoint, the kinetic algorithm of the Monte

Carlo method realizes a discrete Markovian model of the evolution of a

given physical or chemical system with a continuous time determined

from an exponential law for the time elapsed between successive transi-

tions in the system. To model dynamic processes, the KMC methodology

must solve the Master Equation. The details of this derivation are briefly

presented in Appendix C.

3.3.1 Master Equation

The KMC technique can be viewed as a method of solving the Master

Equation [24, 76, 84, 85] associated with the transition probabilities W ,

∂pn(t)

∂t
= −

∑

n′

Wn′npn(t) +
∑

n′

Wnn′pn′(t), (3.1)

which describes a stochastic process in the Markovian approximation [84].

pn(t) is the probability of the surface being in configuration n at time t.

Wnn′ is a matrix of transition probability per unit time that specifies the rate
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of the process going from configuration n to configuration n′ or connecting

the two states. A configuration is a distribution of particles on a grid,

which models the surface and the adsorbed particles. The first term on

the right hand side of the Master Equation (3.1) represents all processes

where one moves away from the considered state n at the moment in time

t and hence its probability is decreased, while the second term contains

all reverse processes which hence lead to an increase of the probability of

finding n. Two very important criteria have to be satisfied when using

the Master Equation, namely detailed balance [86] and steady state. The

steady state occurs when the time derivative of the Master Equation is

zero, that is,∂pn(t)
∂t

= 0. This implies that the sum of all the transitions into

a particular state n equals the sum of all the transitions out of a particular

state n′. Thus the steady state condition can be written as:

∑

n′

Wn′npn(t) =
∑

n′

Wnn′pn′(t). (3.2)

The transition probability contains the details of the microscopic processes,

and the usual way to calculate Wnn′ is by using the detailed balance prin-

ciple. The condition of detailed balance is

Wnn′peq n′ = Wn′npeq n =⇒ Wnn′

Wn′n

=
peq n

peq n′

. (3.3)

Equation (3.3) implies that the ratio of the transition probabilities for a

move n′ → n and the inverse move n → n′ depends only on the en-

ergy change. It is important to impose detailed balances to ensure that the

Monte Carlo transition probabilities peq are consistent with the Boltzmann

distribution [64, 87, 88, 89]

peq n = Z−1exp

[−H(n)

kBT

]
,
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where H is the Hamiltonian of the system, T is the temperature, Z is the

partition function of the system, and peq n is the probability distribution

of configuration at equilibrium. In Figure 3.1 the difference between the

steady state condition property and detailed balance is illustrated. The

lengths of the arrows are proportional to the transition rate. Figure 3.1

(a), the anticlockwise transition proceeds at twice the rate of the clockwise

transition; therefore the steady state condition holds but the detailed bal-

ance is not given. In comparing this to Figure 3.1 (b), both transitions occur

at the same rate, thus the detailed balance is satisfied as well as the steady

state. Note that detailed balance is a necessary but not sufficient condition

for thermodynamic equilibrium.

2 2

D validD violated
(b).(a).

1

33

1

Figure 3.1: The difference between the steady state condition property and
detailed balance. The lengths of the arrows are proportional to the transi-
tion rate. In (a), the steady state is satisfied but the detailed balance is not,
whereas in (b), they are both satisfied.

3.3.2 Solution of the Master Equation

Equations (3.2, 3.3) do not uniquely specify transition probabilities. Kang

and Weinberg [88, 62] have shown different sets of transition probabilities

that would eventually lead to the same equilibrium state via different tra-

jectories. The appropriate choice of transition probabilities is important

because it is possible to have systems, described by different paths toward

equilibrium, even though the equilibrium distribution of configurations is
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the same. The physical trajectory, the one that corresponds to the physi-

cal changes in the system, is needed to model dynamic, non equilibrium

processes. Kang and Weinberg [87] show that the Master Equation is fre-

quently solved stochastically with algorithms such as Metropolis [90] or

Kawasaki dynamics [91, 92, 93]. Either of these approaches provides solu-

tions to the Master Equation that can generate the equilibrium configura-

tion, however neither correspond to the physics of the system during the

path to equilibrium. Thus, the transition probabilities must be constructed

from rates that have physical meaning.

Fichthorn and Weinberg [60] show that the transition probabilities must

be formulated to correspond to the physical rates of the microscopic pro-

cesses to arrive at the physical trajectory. They also show how the theory of

Poisson processes can be used to obtain a relationship between the rates of

the transitions and the real time step taken in between the MC step. These

processes can be grouped together by certain distinctive events,

E = {e1, e2, ..., en}, (3.4)

which can be characterized by average transition rates

R = {r1, r2, ..., rn}. (3.5)

From Equations (3.4) and (3.5), it can now be assumed that any particular

transition which is possible at time t, can potentially occur at any later

time t + ∆t with a uniform probability based on its rate and independent

of any previous events. This is, by definition, a Poisson process [85].

One-Step Process

The Poisson process is part of a family of Markov processes that are called

one-step processes. These processes are continuous in time, their range

consists of integers n, and only jump between adjacent states. Figure 3.2
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helps to visualize a one-step process. The Master Equation for such pro-

n− 1n− 2 n n + 1 n + 2

hn+1 hn+2hnhn−1

gn−2 gn−1 gn gn+1

Figure 3.2: Schematic illustration of a one-step process. Only jumps be-
tween adjacent states (labelled n) are allowed. The probability per unit
time for jumps in the forward and reverse direction is denoted by gn and
hn respectively.

cesses is written as

ṗn = hn+1pn+1 + gn−1pn−1 − (hn + gn)pn, (3.6)

where hn is the probability per unit time for a jump from state n to state

n−1 and gn is the probability per unit time for a jump from n to n+1. One

step processes occur at:

• generation and recombination processes of a charge carrier;

• single-electron tunneling, and

• surface growth of atoms.

Based on the coefficients hn and gn, one-step processes can be subdivided

into the following categories:

• linear for coefficients that are linear functions of n;

• nonlinear for coefficients that are nonlinear functions of n, and

• random walks for coefficients that are constant.

An example of a random walk is the Poisson process which calculates

the probability of n events occurring at time t > 0. This event could be for
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example the tunneling of electrons through a single barrier. The Poisson

process is defined by setting

hn = 0, gn = q, pn(0) = δn,0, (3.7)

where q is a constant. The Kronecker delta indicates that the probability for

no events to occur after time zero equals one, and the probability of more

than one event occurring after time zero equals zero. Figure 3.3 shows this

Poisson process. For the Poisson process where events are independent,

n− 1 n+ 1n
q q

Figure 3.3: Schematic illustration of a Poisson process.

the probability of n events happenening depends only on the time interval.

Thus, the probability for one event happening in the time interval ∆t is

P (n = 1,∆t) = P (1,∆t) = q∆t. Based on these definitions

P (n, t+∆t) = P (n, t; 0,∆t) + P (n− 1, t; 1,∆t)

= P (n, t)(1− q∆t) + P (n− 1, t)q∆t

P (n, t+∆t)− P (n, t) = q∆t(pn−1 − pn).

Thus, the Master Equation for the Poisson process has the form:

ṗn(t) = q(pn−1 − pn) (3.8)

which has the following solution (the proof of this solution is presented in

Appendix D) given by Fichthorn et al. [60]:

pn(t) =
(qt)n

n!
e−qt. (3.9)
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In the context of transition rates, q can be set to R, thus

pn(t) =
(Rt)n

n!
e−Rt. (3.10)

In Equation (3.10), it can be seen that a mathematical adaption of these

very basic assumptions leads to the characterisation of a stationary series

of random, independent events occurring with an average transition rate

R in terms of a Poisson process [94, 95]. It can be shown that a Poisson

process is consistent with the Master Equation [84]. Thus, the probability

density between successive events is given by

p(t) = Re−Rt. (3.11)

From the probability density, the mean time between successive events is

calculated as < t >= 1/R. However, it may also be of interest to know the

real time it takes for an event to occur. This can be deduced by integrating

Equation (3.11) with respect to t′. Since e−Rt′ > 0 for all t′, the probability

for an event to occur within time τ is given by

T (τ) =

∫ τ

0

Re−Rt′dt′ = 1− e−Rτ (3.12)

This probability lies in the interval [0,1]. The probability for an event not to

occur within time τ is expressed as T ∗(τ) = 1−T (τ), which implies T ∗(τ) =

e−Rτ . Thus, ln(T (τ)) = −Rτ . Therefore, it follows that one can relate time

to sampling distribution. Since T ∗(τ) can be any number (random) in the

interval [0, 1], the real time,τ , between successive events is calculated as:

τ = − lnU

R
,
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with U = e−Rτ a random number uniformly distributed between [0,1]. The

overall rate R to determine all processes i of the system is further given by

R =
n∑

i=1

Ri (3.13)

where Ri = niri is the macroscopic rate associated with process type i and

ri is the microscopic rate associated with process i, while ni is the number

of particles in the system that are candidates for this process type.

Using the above theory, the KMC simulation can be created that mod-

els the evolution of surface morphology of crystal growth. KMC has a

direct relation to real time rather than the steps of MC. It can consequently

be used to study dynamic processes, in particular those where energy bar-

riers govern the transition between subsequent states. Having laid the

conceptual foundation, it is now necessary to discuss the KMC scheme for

crystal growth and the implementation of the KMC simulation.

3.4 KMC Scheme for Crystal Growth

KMC limits our model to a molecular length scale, but allows us to employ

a much bigger time step than could be afforded in MD. In this research,

KMC is used to simulate crystal growth of a face-centered cubic (FCC)

crystal. Each discrete lattice site can either be unoccupied, or occupied by

a single atom. Starting from a given initial configuration, each time step

consists of choosing a particle at random and moving it to a randomly

chosen nearest neighbour site. If the chosen site is already occupied, one

of the eleven neighboring sites is chosen at random. If this site is occupied,

one of its neighbours is chosen at random and so forth until an empty site

is found.

The KMC is a powerful method to describe the crystal growth, pro-

vided that all relevant processes contributing to growth are considered.

It can be very difficult to determine all the relevant processes for some
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situations, particularly if concerted multiple atom rearrangements are in-

volved. Omission of some processes will result in unreliable informa-

tion about size distribution and morphological behaviour of the crystal

growth. The relevant processes that can occur during the crystal growth

related to the current study were pointed out in Chapter 2. In addition,

an adatom diffusing along a cluster edge or tip can occupy a certain site

at a particular time. Specific nomenclature can be assigned to these sites

which can be used to distinguish between the different diffusion processes

that can occur along a cluster edge or tip, also called edge diffusion (see

Figure 3.4). Following this nomenclature, Figure 3.5 illustrates different

steps of diffusion processes.

(d)

(c)

(a)

(b)

Figure 3.4: Various types of atom structures that are attached to cluster
edges and special sites the adatoms can occupy (a) corner site, (b) kink
site, (c) step adatom and (d) step dimer.

The movement of each adatom along the surface is determined by its

immediate surroundings (nearest neighbour sites). The adatom on the sur-

face of the cluster is allowed to move (by randomly selecting a direction)

into any of the nearest neighbour positions not already occupied by an

atom. Once the direction is selected, hop is performed. The hopping rate,

p (briefly discussed in the next Chapter), is defined according to transition

state theory:

p = v0 exp[−∆E/kBT ], (3.14)
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(c)

(d)

(e)

(a)

(f)

(b)

Figure 3.5: Various edge diffusion processes: (a) corner diffusion, (b) cor-
ner crossing, (c) step diffusion, (d) kink association, (e) kink dissociation
and (f) dimer dissociation.

where v0 is the prefactor that is usually modeled as a constant, kB is the

Boltzmann’s constant, T is the absolute temperature, and ∆E is an energy

barrier that must be overcome in moving from a local energy minimum to

an adjacent one in the system’s configuration space. The motion of indi-

vidual atoms takes place instantaneously and the motions are completely

independent. With respect to the rare jumps between the basins, the sys-

tem thus performs nothing but a simple Markov walk [84].

3.5 Implementation of the KMC Algorithm

The principal KMC algorithm is based on the method of Bortz, Kalos, and

Lebowitz (BKL) [96], with the implementation of an efficient binary search

described by Blue, Beichl, and Sullivan (BBS) [97]. A review of KMC stud-

ies and algorithms is given by Levi and Kotrla [24]. The basic idea of the

BKL algorithm is that, at each MC step, one process is selected with its

corresponding probability and then realized, to circumvent the problem

of small acceptance probabilities. The BKL algorithm builds on the as-

sumption that the model features M independent Poisson processes with

rates rm that sum up to give an overall rate R which can be used to:

1. decide which event to execute, and
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2. randomly select the time it takes for that event to occur from a Pois-

son distribution.

After generating a random number r ∈ [0, R), a linear search is used and

the required time is O(M), whereas the binary searching time requires

O(log M). Maksym [98] proposed a faster algorithm based on using con-

ditional probabilities to select the sites at which events occur, considering

groups of events instead of individual events. He grouped the M rates

into N subsets, performing a linear search on the smaller sets. The binary

search algorithm is a generalization of Maksym’s method which repeat-

edly subdivides the subsets. To estimate computer time demands, both

Levi and Kotrla [24] and Blue et al. [97] give the computation time for

Maksym’s algorithm as O(M1/2). As previously implemented, this is cor-

rect, but the development presented by Schulze [99] shows that Maksym’s

method can be further adapted, reducing the computation time to a fixed

cost per simulated event.

The basic algorithm must be combined with a scheme to determine

the rates. One of the most common approaches is to use bond counting al-

though there are other schemes that can be used. The rates can be specified

in a look up table for example, but in this study we are focusing only on

bond counting scheme because of its simplicity. The rates in bond count-

ing models depend only on the bond count. Typical schemes are depen-

dent on the definition of nearest neighbour interactions and, as a result,

only a relatively small number of distinct rates can be found. This result

can be used to improve the basic algorithm by initially sorting the possible

events according to their rates and then doing some efficient bookkeeping

as the simulation proceeds. In KMC, the linear searching scheme agglom-

erates all the transitions into one large list that is referenced by the partial

sum of the rates from the first transition to the transition at a given spot

in the list. This methodology solves the problem of sampling and reject-

ing transitions, as a transition is picked for every random number chosen.

Another efficient searching scheme is to utilize a binary tree to keep track
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of all transitions on the surface of the crystal. The binary tree approach

has the advantage of both efficient searching and efficient updating. The

final step in the implementation procedure is to combine the principles

of the KMC method with the assumptions, identified processes and data

structures in an algorithm which is capable of simulating crystal growth.

Different approaches can be followed to simulate growth, ranging from

conceptually very simple to more complex.

In this study we follow closely the version developed by Schulze [99,

100, 101]. The algorithm is described in a general context. In KMC simu-

lations the rates rm are a function of the surface configuration which con-

sists of a set of integer height values. The nearest-neighbour models can

assume only a relatively small number of local configurations that affect a

given rate. Let this number, which is a constant determined by the specific

bond-counting scheme, be N , relabeling the much smaller set (N << M)

of distinct rates Rn. As the simulation proceeds, we maintain N lists in an

array Lbk that contains the event indices m of events which occur with rate

Rn. We also maintain an address list Am which directs us where event m

is currently listed in the array Lnk and count Cn of the number of events in

each of the N lists. A simple description of the KMC algorithm proceeds

as follows:

1. Determine all processes n that could possibly take place based on the

current configuration of the system.

2. Calculate the overall rate R =
∑N

n=1 RnCn, with a uniform distribu-

tion. Deposition or solidification can be one of these processes.

3. Compute the partial sum Sk =
∑k

n=1 RnCn.

4. Select a random number r1 ∈ [0, R).

5. Search and compare r1 with the list of partial sums Sn until Sn−1 <

r1 < Sn.
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6. Select an event from the set of events that occur at this rate by com-

puting

m = Int

(
Sn − r1
Rn

)
+ 1.

7. Execute that event and update the system configuration and any

data structure being used.

8. Select a new random number r2 ∈ [0, R).

9. Update the time with t = t+∆t where ∆t = −[1/R]log(r2).

10. Return to step 2 until the present target simulation time has been

reached.

The search in step 5 is necessary to ensure that the process allows the

random choice of an event from the event list for each calculation in the

simulation. It is also necessary to determine the time step in the simu-

lation. In KMC simulation, we need to somehow introduce the physi-

cal time, so that all physical processes are separated and at any time in-

stance, only one event takes place, and all the events are Poisson pro-

cesses [84]. The time interval τ between two successive events is a ran-

dom variable with the distribution P (τ) = R exp(−Rτ), and the average

value < τ >= 1/R. This consideration allows us to generate a time in-

crement between two events in KMC [6]. During the execution of the

processes, we generate another random number r2 and calculate a time

interval ∆t = −[1/R] log(r2), and this allows us to produce a number of

time steps.

3.6 Summary

Kinetic Monte Carlo is a powerful method that can be used to study dy-

namic systems. The evolution of crystal morphology, the physical transi-

tions on the surface, such as adsorbtion, reaction, diffusion and desorption
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and so forth (mentioned earlier) can be studied using KMC simulations.

An exact correspondence between real time and simulation time enables

the use of KMC simulations to understand experimental surface science

and growth. While the focus of KMC techniques in simulations of surface

reactions has mainly been in their generic critical and kinetic behaviour,

the method is a potentially powerful tool in detailed studies of complex

reaction systems. When combined with experimental studies, the tech-

niques can uncover the key microscopic factors controlling the overall re-

activity and product distributions.



Chapter 4

Deposition and Growth KMC

The dynamics of the deposition process are complex, measurements are

noisy and slow, and disturbances due to contamination and drift limits

the repeatability of the material properties that determine device perfor-

mance [102]. Simultaneous deposition of different types of atoms is widely

encountered in experiments and practical applications [103, 104, 105, 106,

107]. The deposition processes can control the structural evolution of the

growth surface and can be modelled using the KMC method. The KMC

method can be used to simulate the growth processes involving a large

number of atoms over a broad time scale [71, 108, 109] at various tem-

peratures. This makes it ideal for calculating the process of deposition

which occurs over a long time (min) on a large surface (mm2). KMC has

been used to model various deposition processes including metal deposi-

tion [110, 111], and thin film deposition [112, 113, 109]. The basic processes

included in the current model are deposition of atoms and subsequent sur-

face diffusion.

This chapter thus commences with a discussion of what is to be ex-

pected for the growth of the nanoparticles in the gas of atoms when the

deposition event is included in the KMC algorithm. We focus on an FCC

nanoparticle, incorporating the basic assumption that atoms arrive onto

the surface of the nanoparticle in a stochastic manner as the result of the

45
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deposition process. Experiments have shown that the final cluster struc-

ture depends on the growth rate [114, 115]. The rates are applied in the

KMC algorithm under conditions similar to those found in the previous

work of Combe et al. [116], where KMC was used to examine the evolu-

tion of an FCC nanoparticle toward its equilibrium Wulff shape, and the

computationally efficient event selection method of Schulze [99]. It is of in-

terest then to study the nanocrystals growth under conditions that might

occur in an inert-gas aggregation (IGA) source.

4.1 Calculating the Hopping Rate

Most of the deposition simulations of interest are conducted under condi-

tions where thermally activated diffusion processes are occurring. There-

fore, along with the deposition events, surface diffusion by all available

surface atoms must be taken into account during a time interval. The clas-

sical dynamics of the hopping atom and its environment can be described

by a classical transition state theory approach [117, 118] (briefly outlined

in Appendix E), wherein the motion of the atom is assumed to consist

of independent, randomly oriented hops between adjacent binding sites.

In this case, the KMC simulation utilizes a standard bond counting al-

gorithm [116, 119, 120] and the computationally efficient event selection

method of Schulze [99]. The number of initial neighbours, i, determines

the possible events and rates of these events with the configuration after

the hop having no influence on the diffusion. The activation barrier an

atom must overcome in order to move is ∆E = E0 · i, where E0 is the en-

ergy of a single bond. We adopt the simple model in Reference [116] with

∆E proportional to the coordination number. The rate rhopi of a hop in an



4.1. CALCULATING THE HOPPING RATE 47

FCC lattice is given as:

rhopi =





v0 exp[−∆E/kBT ], if i < 12,

0, otherwise,

(4.1)

where v0 =
kBT
h

≈ 1013 s−1 at 500 K is a prefactor that corresponds approx-

imately to an atomic vibrational frequency and can be thought of as an

attempt rate for barrier crossing and h is Planck’s constant. Atoms with

many neighbours have smaller hopping rates than atoms with only one

or two neighbours, hence they diffuse more slowly. This follows the prin-

ciple that atoms in regions of positive curvature (that is, high chemical

potential) have fewer bonds and diffuse to regions of negative curvature

(lower chemical potential). In the current simulation it is assumed that

E0 = 0.1 eV, which is an average value garnered from calculations of dif-

fusion barriers for the Al(111) surface and which is used extensively in

previous works [101, 116, 119, 120]. The motivation for choosing the value

of the bond energy E0 came from noticing that our one-barrier assumption

gives a good order of magnitude of the relative jump frequencies for the

different hopping process of interest in this simulation.

The rate of different possible events can be influenced by varying the

absolute temperature T . For example, from Equation (4.1), raising the

value of T reduces the difference in the rates of diffusion of an atom with

three neighbours relative to that of an atom with four neighbours. Addi-

tionally, increasing the value of T from low to high values activates other

particular events. For example, atoms with at least seven neighbours have

negligibly small rates at T = 400 K, contributing little to the growth but

are relatively free to move at T = 500 K. Simulating crystal growth at

different temperatures allows investigations of kinetic effects which affect

the relaxation time scale.
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4.2 Deposition Process and Calculating the De-

position Rate

A kinetic model of deposition requires quantitative information about the

deposition and hopping rates. These rates are required in units of reactions

per second i.e., s−1, for all the viable chemical processes pertinent to the

deposition system of interest.

The simulation is based on the situation where we have a nanoparticle

sitting in a gas of atoms. The gas of atoms can collide with the surface of

the nanoparticle and at the same time, the atoms are able to hop around

on the surface of the nanoparticle. Some basic calculations show how of-

ten the nanoparticle gets hit by the gas of atoms for given gas pressures

and temperatures. The deposition rate is related to the surface area of the

particle which means that when the nanoparticle becomes bigger, more

atoms are expected to deposit on the surface of the nanoparticle. For the

purposes of the simulation, we assume that after an atom lands on the

surface of the nanoparticle, the atoms then stick and desorption events are

forbidden.

Actually, here we are imagining that we have a supersaturated vapour

of atoms condensing into a cluster. They could be inert gas atoms but

could also be a vapour of metal atoms. The first step is trying to figure

out how often to deposit an atom on the surface of a spherical cluster. To

calculate the average time τg,c between two collisions of inert gas atoms

with the cluster, we use the formula given by Hendy et al. [114],

τg,c ∼
1

PR2
clus

√
mgkBT

8π
. (4.2)

Here Rclus is the cluster radius, which is assumed to be roughly spherical,

P and T are, respectively, the pressure and the temperature of the inert

gas of atomic mass mg, and kB is the Boltzmann constant. For a 2 nm ra-

dius lead cluster in a helium with a pressure of 5 mbar and a temperature
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of 500 K, the time between collisions is approximately 1ns [114]. This ap-

proximate time corresponds to the deposition rate, rdep ∼ 1
τg

∼ 109 s−1.

Equation (4.2) can be re-written as

τg,c ∼
1

N2/3
τ0, where τ0 =

√
2πmgkBT

4πP ( 3
4πρ

)
2

3

, (4.3)

where N is the number of atoms in the cluster and ρ is the numerical den-

sity of the cluster. Equation (4.3) assumes that the cluster is spherical.

In the current model, we consider the deposition rate is uniform over

the surface of the cluster as opposed to varying from place to place. The

deposition rate can be handled separately from the diffusion process. At

each KMC step, a process is chosen at random from a list of all possible re-

action mechanisms, including the inert gas atoms deposition event. If the

deposition event is chosen, an inert gas atom is added to an unoccupied

lattice site on the surface of the cluster and must satisfy the deposition

conditions.

The second step is how we should include the process of deposition

in the KMC algorithm described in Section 3.5. In addition, we develop a

simple, straightforward way to implement the KMC algorithm as follows:

1. add the deposition event,

2. decide how to pick an atom to deposit,

3. decide how to choose the location for the deposition atom, and

4. make sure to update the new set of events and any data structure

being used.

In the KMC algorithm, we include the deposition events with the de-

position rate rdep, which is computed from the inverse of Equation (4.2)

into the event list. This event list contains atoms from one up to eleven

neighbours as well as the diposition event with the overall rate R. The de-

position and hopping rates play an important role in the process of crystal
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growth determing whether the atoms are hopping or are being deposited.

The number of possible deposits or hops is fixed by the number of sites

available on the surface of the cluster. Let us assume the selected random

number r1 ∈ [0, R] lands in the partial sum Sn of the deposition event list.

An event is then selected from the deposition events that occur at this rate

by computing

m = Int (r1 × s) + 1,

where s is the number of possible deposition sites on the surface of the

cluster. Note, if the selected random number r1 lands in the partial sum Sn

of the hopping event lists, then we select an event from the set of events

that occur at this rate by computing

m = Int

(
Sn − r1
Rn

)
+ 1.

The next step is to figure out how to choose the location for the de-

position of atoms. Obviously this requires observation of the surface of

the cluster and a record being kept of all the sites that are available. In a

condition for deposition, the sites must be empty and the number of neigh-

bours of the site must be greater than or equal to three. This condition is

applied to prevent the evaporation and collision of the atoms and to help

to maintain the spherical shape of the cluster. We could say that the proba-

bility of being deposited on the site chosen is dependent on the number of

neighbours, but in this current simulation we assume that all the sites are

equally likely. After finding a suitable site for deposition, we execute the

event and update the system configuration and any data structure being

used because the neighbours of the deposition site have gained one more

neighbour.

The algorithm is illustrated in Figure 4.1, the procedures are described

above and in Section 3.5.
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t > target time

Calculate overall rate R =
∑

N

n=1
RnCn

Generate two random numbers: (r1, r2) ∈ [0, R]

Determine the associated event
type using Sk and r1

WHICH TYPE?
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) + 1
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more neighbours to deposit by

Start (t = 0)

Make initial cluster
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Choose random location with 3 or

Execute process

Update the system configuration

Execute process

Update time (using r2)

Select an event with n neighbours by

Update the system configuration

Surface diffusionDeposition

Compute the partial sum Sk

Figure 4.1: The flow chart of the KMC algorithm which includes the depo-
sition event. r1 and r2 are two random numbers in [0,R].

4.3 Results and Discussion

We have studied the behaviour of nanocrystal structures in a gas of atoms

when the deposition event is included. To extend our understanding of

the suitability of the KMC algorithm for exploring the evolution of crystal

structure, it is necessary to compare the different values of hopping and

deposition rates. This comparison will also yield information on how the

two rates are controlling the morphology of nanocrystals at a particular

temperature. We consider the following three cases:

1. rhop << rdep,
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2. rhop >> rdep, and

3. rhop ∼ rdep.

To ensure that these conditions were satisfied, we varied the vapour den-

sity and calculated deposition rate rdep in each case. The result found from

case 1 is understandable by simply observing the values of the deposition

rates. For the system described in this chapter, a small spherical cluster

of initially about 141 atoms is allowed to grow. The development of the

nanoparticle is shown at different instants of time in Figure 4.2. We chose

rdep = 1014 s−1 and T = 400 K. Note, that the highest hopping rate of an

atom to hop to an unoccupied site is rhop1 = 1013 s−1 from Equation (4.1).

This unoccupied site has one nearest neighbour. The cluster growth is very

fast due to rdep dominating the movement of the atoms, and the number of

time steps required to reach the final update is therefore shorter.

Figure 4.3 (top) shows the morphologies of the clusters in case 2 when

rhop >> rdep. These images correspond to four different times in the sim-

ulation that also started from a spherical cluster of 141 atoms. We chose

rdep = 10−4 s−1 and T = 400 K. Note, the lowest hopping rate of an atom

to hop to an unoccupied site in this temperature is rhop11 = 4.6 × 10−1 s−1

from Equation (4.1). This unoccupied site has eleven nearest neighbours.

The hopping of atoms on the surface of the cluster dominates the random

movement of atoms, and, as this simulation progresses, the crystallite be-

comes fully faceted before growth has commenced.

We also examined the different morphologies of the clusters at low

(T = 300 K) and high (T = 700 K) temperatures in Figures 4.3 (a), and (b)

and still maintained the condition of case 2 that rhop >> rdep. We chose the

deposition rate, rdep = 10−5 s−1, to be the same for both temperatures. The

lowest hopping rate of an atom to hop to an unoccupied site in T = 300 K

is rhop11 = 1.033 × 10−5 s−1 and rhop11 = 5.24 × 105 s−1 in T = 700 K. This

unoccupied site has eleven nearest neighbours. The rhop was again domi-

nated by the random movement of atoms on the surface of the cluster. At
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Figure 4.2: Four surface images of a single simulation at four different
times and T = 400 K when (rhop) << (rdep). The first two images ((a) and
(b)) are from the early stages and correspond to the stage at which the
cluster contains about 141 and 2412 atoms. The last two images ((c) and
(d)) are taken from the late stages, showing the crystal containing about
73500 and 105 atoms.

low temperatures (see Figure 4.3 (a)), the crystallite is fully faceted, with

angular points and edges, making it difficult to define a chemical poten-

tial properly. This would make it difficult to describe using a continuum

method. Moreover, the transfer of atoms from the cluster tips or edges to

its central regions by simple atomic diffusion is impossible in the presence

of facets as the facets do not contain a trapping site. Therefore the atoms

eventually move back to kinks or steps at the tips or edges after they reach

the facetted regions.

On the other hand, at high temperatures (see Figure 4.3 (c) and (d))

many kinks and steps are present on the surface of the cluster, indicat-

ing that the continuous approximation for the curvature might be valid.

The number of defects in the core-shell structure is always high. These re-

sults indicate the influence of temperature in the process of crystal growth
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Figure 4.3: (Top). The sequence of the surface images of a single simulation
at four different times when T = 400 K. All the clusters contain 141 atoms
and the cluster is becoming facetted over time. (Bottom). Morphologies
of crystallites of 1728 atoms at two different temperatures: (Bottom left (a)
and (b)) fully facetted at 300 K. (Bottom right (c) and (d)) partially rough
at 700 K. The atoms that lie on the surface of the clusters are coloured
according to their coordination numbers. (b) and (d) were taken from the
work of Combe et al. [116].

structure. These simulations are in agreement with the predictions of

Combe et al. [116] where their simulations used only the hopping rates. At

high temperatures (see Figure 4.3 (d)), many kinks and steps are present

on the surface of the particle, and they act as sources of atoms or growth

sites for diffusing adatoms. On the contrary, at low temperatures (see Fig-

ure 4.3 (b)) the crystallite is fully faceted.
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Figure 4.4 illustrates the sequence of the snapshots of a single simula-

tion at 8 different times that satisfies the condition in case 3 when rhop ∼
rdep. We chose the value of the deposition rate, rdep = 109 s−1, to fall in

between the value of the hopping rates to sites with four (rhop4 = 1.595 ×
109 s−1) and five (rhop5 = 8.146 × 107 s−1) nearest neighbours. This condi-

tion can evenly distribute the random selected atoms either to deposit or

hop on the surface of the cluster. The growth of the cluster is not as fast as

in the first case, but leads to the same structure of spherical shape.

Figure 4.4: The sequence of the surface images of a single simulation at
8 different times when T = 400 K and rdep = 109 s−1. The cluster finally
takes on a spherical shape.

We compared the values of three different rdep in Figure 4.5 to show

that the cluster grows much faster when the value of rdep is increased. The

deposition and hopping rates satisfied the condition that rhop ∼ rdep. These

rdep were chosen to fall in between the value of the hopping rates to sites

which have four and five nearest neighbours at T = 400 K. The solid

line indicates the rdep = 109 s−1, the dashed line shows the result of using

rdep = 7.5 × 108 s−1, and the dashdotted line is the result obtained by us-

ing rdep = 5.0 × 108 s−1. It can be seen that more atoms were contained in

the cluster at any particular time in rdep = 109 s−1 compared to the other
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Figure 4.5: This figure shows results for simulations with three different
deposition rates. (a) shows the total number of atoms as a function of time.
(b) illustrates the log-log plot of the total number of atoms in the cluster
against time. (c) shows the number of surface atoms as a function of time.
(d) illustrates the ratio of the total number of atoms and surface atoms
against time.

two values for rdep (see Figure 4.5 (a)). Figure 4.5 (b) shows a log-log plot

of the number of atoms in the cluster as a function of time. The power

law has a similar exponent of about 2/3 for all three deposition rates after

fitting the graph in Figure 4.5 (b). As the rdep varies and the temperature

remains the same, the slope is approximately the same. Figure 4.5 (c) il-

lustrates that the number of surface atoms is higher when rdep increases.

To be more clear, we plotted the ratio of the total atoms and surface atoms

as a function of time in Figure 4.5 (d). Since at higher deposition rates the

cluster is rougher and total number of atoms is higher. Based on the above
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simulation results, we deduce that at low deposition rates the deposited

atoms would have enough time to rearrange on the surface of the cluster

and form a well-ordered cluster.

4.3.1 Multiple seeds

We intend to focus on the merging of two and three identical clusters, a

mechanism that can be important for cluster formation, especially in the

late stages of the growth process, when already formed clusters can collide

and join together. Most approaches have been used previously to study

the coalescence of the nanoclusters in favour of enhancing the surface dif-

fusion process [105, 121]. Hendy et al. [114] considered the coalescence of

two solid surfaces reconstructed icosahedral clusters. They pointed out

that a coalescence process of two solid particles is accelerated, if the tem-

perature of the newly formed particle rises above its melting temperature.

More recently, surface diffusion on faceted nanoparticles has been investi-

gated using KMC methods [122, 123]. McCarthy et al. [123] focused their

work on the growth of the neck region connecting the two nanoparticles.

Their work shows that in the late coalescence stages, when the nucleation

of new atomic layers on nanoparticle facets is required for further coa-

lescence, the nanoparticle size, temperature, and nanoparticle orientation

all influence the development of the neck. Lim et al. [122] observed the

rate growth of the neck that joins two particles during coalescence and

makes the comparison with both continuum theory and atomistic KMC

simulations. This study can be viewed as the first academic research of

coalescence during growth.

We simulate pairs of nanoparticles in a constant temperature environ-

ment and address the problems which involves deposition of atoms on

the surface of the nanoparticles. We chose rhop ∼ rdep due to its ability to

evenly distribute the atom to deposit or hop on the surface of the cluster.

The simulations are performed at T = 400 K and rdep = 109 s−1, by initially
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placing small spherical particles of 582 atoms and allowing them to grow.

The development of the change of shapes is shown at different instants of

time in Figure 4.6. Figures 4.6 (a) and (b) are the images after the merge be-

gins, showing the two particles coming into contact and many new bonds

forming. As the merge proceeds, the inert atoms and the nanoparticles

slowly align with the interface until the icosahedral structure completely

disappears in Figure 4.6 (c). Figure 4.6 (d) shows the newly formed struc-

ture is now completely spherical.

Figure 4.6: Four surface images of a single simulation at four different
times when rdep = 109 s−1 and T = 400 K. The first two images (a) and (b)
are from the early stages and correspond to the stage at which the nanopar-
ticles contains about 6734 and 12268 atoms. The last two images (c) and (d)
are taken from the late stages, showing the nanoparticles containing about
105 and 106 atoms.

An interesting feature is observed on analysing the neck radius of two

coalescing Face Centered Cubic (FCC) nanoparticles in Figure 4.7 with

R = 4.6 (the unit of R is the FCC lattice constant). These images were

taken from the simulation of Figure 4.6. The neck is marked by two ar-

rows at the neck’s apexes, and the distance between the arrows and the
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horizontal line at the center is the neck radius. Figure 4.7 (a) is an image

a very short time after the coalescence begins, showing the nanoparticles

have reordered from the initial spherical shapes into rough objects. Fig-

ures 4.7 (a), (b), and (c) show the neck region to be highly curved, the neck

therefore providing a sink for atoms. In Figure 4.7 (d) there are few sites of

high coordination available at the neck. Attachment to the neck is easier

for depositing atoms but it is more difficult for atoms diffusing on the sur-

face. As time passes, the neck radius increases, until eventually a plateau

in neck growth is reached and the two particles form a rod-like oblong

shape (see Figure 4.6 (c)).

Figure 4.7: Four images taken during the coalescence of two R = 4.6
nanoparticles when rdep = 109 s−1 and T = 400 K. Snapshots are taken
at (a) t = 2.05 × 10−4 s, (b) t = 305 × 10−4 s, (c) t = 405 × 10−4 s, and (d)
t = 605× 10−4 s.

Figure 4.8 (a) shows the plot of the neck radius against time and (b)

shows a double logarithmic plot of the neck radius as a function of time.

The dashed, solid and dotted lines in Figure 4.8 (b) indicate the slope of

the power law fit. Assuming a power law relationship r α ta, lines with



60 CHAPTER 4. DEPOSITION AND GROWTH KMC

slope are drawn for comparison with each approximately linear region of

the log[r(t)] plot. At early stages the neck region is highly curved (see Fig-

ures 4.7 (a) and (b)) providing a sink for deposition and surface diffusing

atoms with a ∼ 7
10

. During the intermediate stage, where a ∼ 2
5
, layers

are growing around the neck and at the ends of the intermediate phase

the volume between the two ends of the dumbell is filled in (see Figure 4.6

(e)). At late stages a ∼ 1
3
. The value of a in our model is different compared

to McCarthy et al [123]. This is probably because the deposition of atoms

is included in the current model, as both models use a similar approach to

describing surface diffusion processes. McCarthy et al.’s [123] result have

a ∼ 1
3

at early states, a ∼ 1
6

at intermediate states, and a ∼ 1
9

at late states.

Figure 4.8: (a) Plot of the neck radius against time. (b) double logarithmic
plot of the neck radius as a function of time. Power law fits is shown by
solid, dashed, and dotted lines in (b)

Figure 4.9 shows the shape changes of three identical seeds when rhop ∼
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rdep. The initial configuration of three seeds is shown in Figure 4.9 (a). The

rest of the images (Figure 4.9 (b), (c), (d), and (e)) represent the different

configurations of the merging nanocrystals at T = 400 K from a single

simulation. As the crystal becomes larger, the three clusters undergo sev-

eral different coalescence stages through atomic diffusion and deposition

process. Firstly, the three seeds become contacted through diffusion and

deposition. Afterward, initial neck regions form among the three clusters

and this indicates the beginning of the coalescence (see Figure 4.9 (b) and

(c)). Next the inherent icosahedral shapes deform and reorient. Finally,

the structure becomes again completely spherical in Figure 4.9 (e).

Figure 4.9: Five surface images of a single simulation at five different times
when rdep = 109 s−1 and T = 400 K. (Top) The top images ((a), (b), and
(c)) are from the early stages and the bottom images ((d),(e)) are taken
from the late stages. Snapshots are taken at (a) t = 0 s, (b) t = 10−5 s, (c)
t = 5× 10−5 s, (d) t = 5.5× 10−4 s, and (e) t = 4.47× 10−2 s.
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4.4 Summary

In summary, it emerges from our results that atom deposition on the sur-

faces provides a new step in the understanding of the chemical influence

on nanocrystal morphologies. We have identified and discussed the be-

haviour of nanocrystal growth for different deposition and diffusion sur-

face rates in three cases where rhop << rdep, rhop >> rdep, and rhop ∼ rdep.

The first case, where rhop << rdep, the cluster growth is very fast due to

rdep dominating the movement of the atoms and the number of time steps

required to reach the final time being shorter. The surface image from the

late stage is very close to spherical. The second case, where rhop >> rdep,

shows an interesting result in which the crystallite at high temperatures

has many visible kinks and steps, indicating that the continuous approxi-

mation for the curvature might be valid. This is quite important as it moti-

vates the studies of the next Chapter when the continuous approximation

is not valid (that is, at low temperature). We would need to use the type of

simulations developed here rather than continuous crystal growth mod-

els. On the contrary, at low temperatures, the crystallite is fully faceted,

with angular points and edges, making it difficult to define a chemical po-

tential properly. Moreover, the presence of facets makes it impossible to

transfer atoms from the cluster tips to its central region by simple atomic

diffusion. The final case shows the growth of the cluster is not as fast as in

the first case, but leads to the same spherical structure. Snapshots of the

nanocrystals station with multiple seeds during early periods (Figure 4.6

and 4.9) show the neck region to be highly curved, providing high coordi-

nation sites for material diffusion from the nanocrystal ends.
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Continuum-KMC Method

5.1 Introduction

The shape and form of crystal growth into the liquid during the solidifi-

cation of undercooled pure metals or supersaturated alloys is a topic of

interest in physics and materials science. It is typically modeled from a

macroscopic point of view as a Stefan problem, where the position of the

interface is determined as part of the solution. This is generally used for

heat transfer problems with phase-changes such as from liquid to solid.

The basic problem involves the free dendritic growth from a circular solid

seed placed in a two-dimensional cavity containing an undercooled melt

of a pure material. A more complicated problem is to consider free den-

dritic growth into an undercooled binary alloy [124, 125, 126, 127], where,

in addition to heat transfer, the transport of the solute component needs

to be considered. During the solidification of a pure substance the solid-

liquid interface is usually planar, unless severe thermal undercooling is

imposed. Such cooling can cause morphological instability, leading to

dendritic growth due to the interface growing into an environment that

is below the material’s melting temperature [128]. This instability leads to

the disordered growth of the interface, which causes the branched tree-like

solid spikes pattern. Solidification of alloys is more complex than solidi-

63
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fication of pure substances, as the solidification is limited by both heat

and solute diffusion. The heat and solute diffusion fields are coupled at

the solid-liquid interface by the relations for the interface temperature (for

example, phase diagram) and by heat and solute flux balances.

There are essentially two techniques for approximating the interface:

1. front capturing , and

2. front tracking.

Front-capturing techniques are characterized by treating the interface as a

high variation region with no explicit elements to represent the interface.

With this approach it is arguably easier to deal with topological changes

in the interfaces like merging and breaking. However, a major disadvan-

tage of this technique is the interface diffusion over several cells, resulting

in loss of precision. Front tracking methods can deform grids that evolve

with the solid-liquid interface [129]. Typically, however, they employ field

solutions on a fixed Eulerian background mesh and continuously recon-

struct a Lagrangian description of the solid-liquid interface. This interface

is tracked in time by explicitly satisfying suitable discrete forms of the

interface heat balance condition. The reconstructed interface cuts through

the elements of the background mesh and this information is used to mod-

ify the background field solution. This can be done by modification of the

finite difference [130, 131, 132], or finite element approximations [133, 134]

in the vicinity of the interface, or through the distribution of interface heat

sources [135].

Crystal growth is a classical example of phase transformations from the

liquid phase to the solid phase via heat and mass transfers. To understand

and simulate crystal growth, several methods have been developed in-

cluding phase-field [2, 136, 137, 138], level-set methods [3, 139, 140], adap-

tive mesh techniques [4], random walks with adaptive step sizes [5] and

boundary integral [141]. In this study we focus on the front-tracking prob-

lem, adopting a discrete, atomistic model in the spirit of the KMC simula-
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tions. This method has been applied recently to simulations of dendritic

growth into an undercooled melt [101] of a pure substance which is closely

related to the present study. However the current study also addresses

the problems which involve undercooling and solute transport. More

conventional approaches have been used previously to study the com-

putational modelling of pattern formation in solidification with coupled

heat and solute diffusion [131, 133, 142, 143]. Udaykumar and Mao [131]

used a mixed Eulerian-Lagrangian frame work that treats the immersed

phase boundary as a sharp solid-liquid interface. The spatial discretiza-

tion is performed using the finite volume method. Special care is required

for the treatment of the interface, including the numerical calculation of

its velocity and curvature. Zhao et al. [133] performed sharp-interface,

two-dimensional simulations of thermosolutal dendritic growth. The heat

and solute conservation equations were solved using the finite element

method. Echebarria et al. [142] used sharp-interface models for isother-

mal solidification by considering the solidification of a dilute binary alloy.

Yang et al. [143] recently adopted a sharp interface technique to study the

interaction of a solid-liquid interface in a solidifying binary alloy with a

ceramic particle in the melt. They obtained very realistic growth patterns

that captured the development, coarsening and coalescence of primary,

secondary and tertiary dendrite arms.

The current study aims to investigate and develop a multiscale sim-

ulation method for the growth of nanocrystals in solution. One of the

most powerful techniques for studying crystal growth is the KMC method.

Over the last decade it has been widely applied to study epitaxial crystal

growth with much success [6, 7, 8, 9]. However KMC has yet to be widely

applied to solution phase crystal growth as, especially with nanocrystal

growth, it is necessary to couple the crystal relaxation process with a so-

lute reaction diffusion equation in solution. Here, we consider the combi-

nation of growth, surface and solute diffusion for a Face Centered Cubic

(FCC) crystal. For convenience, a numerical finite difference method is
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applied, using an explicit discretization to solve heat and diffusion equa-

tions. The conservation equations for heat and solute are applied at the

solid-liquid interface to solve the interfacial temperature equation. Heat

flow is modeled in both phases, on the same FCC lattice, but solute diffu-

sion in the solid is neglected due to the solutal diffusivity being typically

two to four orders of magnitude smaller in the solid than in the liquid.

We begin this chapter by describing mass and heat transfer during

crystal growth. Next, we describe the mathematical formulation of the

heat and diffusion equations together with the boundary equations, then

continue to discuss the discrete form of the governing equations. The cal-

culation of solidification and hopping rates are derived, and we present

the results and discussion of the simulations which were carried out with-

out consideration of dissolution. Finally, we discuss the dissolution pro-

cess which is included in the KMC algorithm.

5.2 Mass and heat transfer during crystal growth

There are many problems and systems of interest in which heat and mass

transfer are accompanied by phase transformation (that is, melting and

freezing). Problems of this type are important in crystal growth from melts

and solutions. For example, when a crystal is grown by oriented pulling

[144] from a melt with alloyed impurities, then the impurity distribution

will affect the process of impurity diffusion in the melt as well as in the

solid. The contributions of both mass and heat transfer were significant

for most of the systems studied, these include aqueous solutions of organic

salts and binary organic mixtures. This is supported in most quantitative

evaluations which have been carried out in terms of the applications in-

volving crystallization from solution [145, 146, 147, 148]. In particular the

heat transfer step was found to be significant for systems having mod-

erate solubilities and heats of crystallization [145]. The effects of mass

transfer on the crystal growth from solution have been discussed previ-
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ously in [147, 148]. The overall solidification process is determined by heat

and mass transfer as well as interface kinetics; whether the slow process

is nucleation or growth depends on the particular system being consid-

ered [149]. The characteristic feature of freezing problems is the coupling

of the temperature and concentration fields with the rate of propagation

of the phase boundary between the liquid and solid phases.

The situation in studies like the current one is that of a nanocrystal

growing in a supersaturated solution or in a supercooled melt. Indeed, be-

fore the atoms or molecules pass over from a position in the fluid medium

(gas, melt or solution) to their place in the crystalline face they must be

transported in the fluid over macroscopic distances. Such mass transport

can proceed by diffusion and convection. Further, the heat carried by con-

ductive and convective transport must be dissipated in the solid phase by

thermal conduction and radiation to maintain a stable propagating inter-

face [150, 148]. Finally, latent heat of fusion is released when the crystal

building blocks dock with the solid phase and lose their fluid phase en-

thalpy. This heat must also be transported away from the interface. Fig-

ure 5.1 gives a more intuitive interpretation of these processes. In theory,
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Figure 5.1: Schematic mass and heat transfer situation at the fluid-solid
interface with crystallization velocity v along the normal n.

the concentration of the major crystallizing component will be lower in
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the liquid near the interface. The differences in the concentration and tem-

perature are the driving forces for mass and heat transfer, respectively.

Comprehensive reviews on heat and mass transport in crystal growth are

given in [151, 152], for example.

Heat and mass transfer play a vitally important role in all crystal growth

processes. The heat transfer problems with phase-changes such as from

the liquid to the solid has been mathematically solved by Stefan (”Stefan

problem”). In the mathematical formulation of Stefan problems, the cur-

vature effects and the kinetic condition are incorporated with the help of

the modified Gibbs-Thomson relation. The former then combines with

the mass conservation to calculate the interface temperature which is de-

scribed in the next section.

5.3 Mathematical formulation

The process of crystal solidification, including the effects of undercool-

ing, surface energy, crystalline anisotropy and molecular kinetics, can be

described by the mathematical formulation known as the sharp-interface

model (see Schulze [101]). In the sharp-interface formulation of the contin-

uum model, the computational domain Ω ⊂ R3 is typically decomposed

into two subdomains. These two subdomains are the interior, solid region

ΩS , and the exterior, liquid region Ω \ΩS , separated by a sharp closed sur-

face ∂ΩS of zero thickness. The principal governing equations consist of

the heat and diffusion equations, with the exterior boundary ∂Ω represent-

ing an infinite reservoir with essentially constant concentration CB which

is held at a fixed temperature TB < TM . The condition of energy conserva-

tion on the moving interface results in a Stefan condition that balances the

heat flux away from the interface with the latent heat released. Then the

standard set of sharp-interface equation consists of

∂tT = αS,L∇2T, x ∈ Ω, (5.1)
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T = TB, x ∈ ∂Ω, (5.2)

ρLvn̂ = k (∇T · n̂ |S −∇T · n̂ |L) , x ∈ ∂Ωs. (5.3)

In the equations above, the subscripts S and L denote the solid and liquid

phases, respectively. ∇T · n̂ |S and ∇T · n̂ |L are the temperature gradients

normal to the solid and liquid sides of interface, n̂ is the unit vector normal

to the interface pointing into the liquid, vn̂ is the value of the normal veloc-

ity at which the interface grows locally in the direction of ~n and is positive

if the solid grows (that is, freezes). k = αρcp is the thermal conductivity

where the thermal diffusivity α and the density ρ have been assumed to

be the same in both phases and cp is the specific heat, L is the latent heat

released per unit mass and is independent of the solute concentration.

To describe the diffusion of a single component of a binary alloy, we

use the standard dilute-limit diffusion equation. In such situations, the

solute diffusion in the solid is several orders of magnitude smaller than

in the liquid [142], therefore solute diffusion in the solid is assumed to be

negligible. Then the solute concentration is solved for only in the liquid

and obeys the standard set of sharp-interface equations:

∂tC = DL∇2C, x ∈ Ω, (5.4)

C = CB, x ∈ ∂Ω, (5.5)

CL(1− h)vn̂ = −DL∇C · n̂ |L, x ∈ ∂Ωs. (5.6)

In Equation (5.4) and (5.6) DL is the solutal diffusion coefficient in the

liquid, h is the equilibrium partition ratio, which is assumed to be con-

stant, that is, the solidus and liquidus lines are both assumed to be straight

lines, and ∇C is the concentration gradient evaluated on the liquid side of

the interface. During solidification, the melting temperature varies due to

changes in solute concentration. With the assumption that phase change

takes place under local thermodynamic equilibrium, the temperature at

the solid-liquid interface of a binary alloy, that is, the melting temperature
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TM , can be expressed

TM = TM0 +mLCL,

where the liquidus on the phase diagram is assumed to be linear with a

slope mL, CL is the solute concentration in the liquid phase of the interface

and TM0 is the melting point of the major component of the alloy (i.e., the

solvent). There is a condition to be satisfied on the solid-liquid interface.

This is the generalized Gibbs-Thompson relation. This condition provides

the closure needed for the free boundary problem. The interface tempera-

ture is related to the interface species concentration via the phase-diagram

and is given by:

TI = TM0 +mLCL −
γTM0

ρL
∇ · n̂(x), x ∈ ∂Ωs (5.7)

where the subscript I denote the interface, γTM0

ρL
is the Gibbs-Thomson cap-

illary coefficient where γ is the surface energy along the interface line and

is usually anisotropic in real material systems and ∇ · n̂(x) is the local cur-

vature of the interface. The interfacial temperature is given by the equilib-

rium melting temperature for a flat interface TM0 modified by a curvature

term accounting for surface energy γ.

We choose dimensionless variables by using a as a reference length

scale with a being the distance between neighboring lattice sites, a2/α as

the time scale and ∆T = TM0−TB as the temperature scale. There are four

principal parameters in the absence of surface energy anisotropy. These

are surface energy parameter Γ̃, the Stefan number St, the Lewis number

Le, and the non-dimensional slope of the liquidus m as shown below:

Γ̃ =
γTM0

ρLa∆T
, St =

L

cp∆T
, Le = αL/DL, m = mLC0/∆T. (5.8)

The Lewis number characterizes the relative roles of the thermal and so-

lute diffusion in controlling the solid-liquid interface movement. The non-

dimensional slope (m) has a part in controlling the interface tempera-
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ture. Note that the velocity field vn̂ is measured in units of α/a where

(ṽn̂ → vn̂a/α).

5.4 The discrete form of the governing equations

The heat equation in Equation (5.1) is non-dimensionalized as

∂T

∂t̂
=

∂2T

∂x̂2
,

and solved numerically using an explicit Euler time discretization. Then

the updated temperature field discretized on the FCC lattice becomes

T n+1
ijk = T n

ijk +
∆t

2

(
12∑

m=1

T n(xijk + em)− 12T n
ijk

)
. (5.9)

Note in Section 2.2, we discussed that the Face Centered Cubic (FCC) lat-

tice can be defined using integer combinations xijk = ia1 + ja2 + ka3 of

three basis vectors a1, a2, and a3. In practice one needs only store and

manipulate integer triples (i, j, k), converting to Cartesian coordinates for

visualization. em denote the twelve vectors that point to the nearest neigh-

bours of a given lattice site. We solve the diffusion equation in the same

form as the heat equation by non-dimensionalizing Equation (5.4) as fol-

lows:
∂C

∂t̂
=

1

Le

∂2C

∂x̂2
.

The update of the concentration field discretized on the FCC lattice then

becomes

Cn+1
ijk = Cn

ijk +
∆t

2Le

(
12∑

m=1

Cn(xijk + em)− 12Cn
ijk

)
. (5.10)

The solidification model is analogous to the combination of the Gibbs-

Thomson equation, Stefan condition and solute conservation given in Equa-
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tion (5.7) and the equation is re-written as

TI(xijk) = 1 +mCL + Γ̃(Nijk − 3), (5.11)

where Nijk is the number of solid nearest neighbours and Nijk−3 is used to

measure the curvature of the flat surface on the FCC crystals. Note that an

adatom on an FCC surface has 3 neighbours so this definition effectively

assigns a ”zero” curvature to the (111) facet. In the discrete model, the sur-

face energy can be included by making the melting temperature depend

on the number of solid phase nearest neighbours. The melting tempera-

ture of pure solvent has been scaled and translated so that TM0 = 1 and

Γ̃ is the surface energy parameter given in Equation (5.8). This is then

multiplied by an unspecified geometric factor that translates coordination

numbers into a measure of curvature. Note that TM is taken to represent

the melting temperature of the (111) facet, as most atoms will solidify or

melt along such a facet when they have three nearest neighbours. This

temperature is susceptible to phase change when it is above the liquid site

and below the solid site. The problem of the solidification into an under-

cooled binary melt specified above is in this situation applied only in the

freezing condition.

It is necessary to note that Equations (5.9) and (5.10) come with the

severe time-step restriction of ∆t ≤ 1/6 for numerical stability. This time-

step restriction was selected to facilitate solving Equations (5.9) and (5.10).

Thus, we set the maximum value of the time step ∆t = 1/6. In practice

this is not problematic since the KMC typically runs on shorter time scale.

We apply an explicit finite-difference method to solve for CL by re-writing

Equation (5.6) in the form

CL(1− h)vn̂ = −DL
∂C|L
∂r̂

· n̂ = DL
∂C|L
∂n̂

, (5.12)
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where

(Cn(xijk + em)− Cn(xijk))|L
∆x

=
∂C|L
∂n̂

.

The non-dimensionalizing Equation (5.12) reduces to a simple average

over the twelve nearest neighbours and we set ∆x̂ = 1, then

Le(1− h)CL(xijk)ṽn̂ =
1

12

12∑

m=1

[Cn(xijk + em)− CL(xijk)] . (5.13)

We re-arrange the Equation (5.13) and solve for CL(xijk), then

CL(xijk) = (1 + Le(1− h)ṽn̂)
−1 × 1

12

12∑

m=1

Cn(xijk + em), (5.14)

where

ṽn̂ = St−1TI(xijk)− St−1 1

12

12∑

m=1

T n(xijk + em).

Equation (5.11) may then be rewritten incorporating Equation (5.14), which

gives the solution in the form of a quadratic equation

b1T
2
I (xijk) +

(
1− b1(1 + b2 + Γ̃(Nijk − 3))

)
TI(xijk)−

(
1 +mb3 − b1b2(1 + Γ̃(Nijk − 3)) + Γ̃(Nijk − 3)

)
= 0,

where

b1 = Le(1− h)St−1,

b2 =
1

12

12∑

m=1

T n(xijk + em),

b3 =
1

12

12∑

m=1

Cn(xijk + em).
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By solving this quadratic equation, the melting temperature associated

with each lattice site may be obtained. This is

TI(xijk) =
1

2b1

(
B1 +

√
B2 − 4B3

)
, (5.15)

where

B1 = −1 + b1(1− b2 + Γ̃(Nijk − 3)),

B2 =
(
1− b1(1 + b2 + Γ̃(Nijk − 3))

)2
,

B3 = −b1(1 +mb3 + Γ̃(Nijk − 3)− b1b2(1 + Γ̃(Nijk − 3))).

Note, we chose the positive root in Equation (5.15) so that the value of

the normal velocity is positive. The combination of the Gibbs Thompson

equation, Stefan condition and mass conservation allows us to calculate

the melting temperature given in Equation (5.15).

5.5 Calculating solidification and hopping rates

The current simulation applies the solidification rate and hopping rate

to examine the behaviour of the crystal structure using the KMC algo-

rithm under conditions similar to those found in the previous work of

Schulze [101]. Experiments have shown that the final cluster structure de-

pends on the growth rate [114, 115]. Before a solid can melt it must acquire

a certain amount of energy to overcome the binding forces that maintain

its solid structure. This energy is referred to as the latent heat of the ma-

terial and represents the difference in thermal energy levels between the

liquid and solid states. Of course, solidification of a liquid requires the re-

moval of this latent heat and the structuring of atoms into more stable lat-

tice positions. In this simulation, liquid sites with temperature T n+1
ijk < TI

have their temperature pinned at TI . Thus, these sites serve as sources of

latent heat. In the continuum model, the Stefan condition (5.3) governs
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the amount of heat needed to convert the phase of such atoms. This states

that the latent heat released due to the interface displacement equals the

net amount of heat delivered to (from) the interface per unit area per unit

time. This condition is enforced in the simulations presented below by

setting the solidification rate equal to

Sijk =





J(xijk), if σijk = 0 and Nijk > 0,

0, otherwise

where

J(xijk) = St−1 1

12

12∑

m=1

[TI(xijk)− T n(xijk + em)],

represents the net heat loss at site xijk measured in units of latent heat

released per atom upon solidification. We also need to determine how to

choose the location for the solidified atoms. This requires observation of

the surface of the solid and a record being kept of all the sites that are

available. In the condition for solidification, a site must be empty and

must have at least one solid neighbour. In that case, an order parameter

σijk ∈ {0, 1} is introduced, which is an indicator phase distinguishing the

liquid (0) and the solid (1) phase. In addition to this phase configuration,

we associate a temperature Tijk and a concentration Cijk with each lattice

site to specify the system state.

Anisotropy arises from the model through surface diffusion where solid

atoms are able to hop around on the surface when they are in contact with

at least one liquid site. These solid atoms are then able to occupy the liq-

uid sites which have one or more solid neighbors. This is similar to the

solid-on-solid (SOS) rule in the epitaxy literature which prevents the de-

tachment of the atoms [101]. The hopping atom and its environment can

be described by a classical transition state theory approach [118], wherein

the motion of the atom is assumed to consist of independent, randomly

oriented hops between adjacent binding sites. In this case, each hop to a
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neighbouring site will have a different probability determined by its ac-

tivation energy barrier ∆E , which in turn is assumed to depend on the

change in the local coordination number Nijk. Therefore, the rate of a hop

is given by

Hijk =





v0 exp[−∆E/kBT ], if σijk = 1 and Nijk < 12,

0, otherwise,

where v0 ≈ 1013Hz is a prefactor, kB is the Boltzmann constant and T is the

absolute temperature. We adopt the simple model of Combe et al. [116] as

mentioned in Section 4.1 that the activation energy barrier ∆E = EN ·Nijk

can be calculated by assuming it is proportional to the local coordination

number. This is also a common assumption with SOS models for simple

cubic growth because it is extremely fast and is easily reproduced by oth-

ers.

5.6 Results and Discussion

5.6.1 Time step and physical parameters

It is also necessary to determine the time step in the simulation. In KMC

all physical processes are separated so that in any time instance only one

event takes place, and the events are Poisson processes [84]. During the

execution processes, we calculate a time interval δt = −[1/R]log(r), and

this allows us to quantify the time step. Note, that r is a random num-

ber (r ∈ [0, R)) and R is the overall rate that determines all processes of

the system. At each KMC time step δtn, the solidification and hopping

rates play an important role in the process of crystal growth. A hopping

(exchange) or solidification (flip) event is selected with probability propor-

tional to its rate and a random waiting time is associated with the event.

The number of possible exchanges or flips is fixed by the number of sites
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available on the surface of the cluster. When the accumulated time step

δtn is greater or equal to ∆t, the temperature and concentration fields are

updated, using Equations (5.9) and (5.10).

The growth of crystals, coupled with the transport of heat and solute,

were computed for a range of physical parameters. The typical values

used in the calculations are given in Table 5.1. The inverse of the Stefan

Table 5.1: The parameters used in the present work.

Symbol Definition Value and units

DL Diffusion coefficient 1.35× 10−9m2s−1 [153]
αL Thermal diffusivity 1.0× 10−6 m2s−1 [153]
mLC0 Shift in melting temperature 2.0 K [153]
k Partition coefficient 0.3 [153]

Γ̃ Surface energy 0.01 [101]
K Surface diffusion prefactor 106 [101]

number St−1 was varied in order to study the merits of using the KMC

technique to track the free boundary and C0 is the initial concentration.

The computational domain is a sphere with a radius of 25 times the radius

of the initial solid region, a spherical cluster of about 400 atoms. The initial

temperature is set to TM0 = 1 in the solid and TB = 0 in the liquid while

the initial concentration has been scaled and set to Cs = 1 in the solid and

0 ≤ CB < 1 in the liquid. In order to produce realistic dendrite shapes (see

Figure 5.2) in this simulation. We found that we must also boost the hop-

ping rates, controlled by the nondimensional parameter K = v0a
2/α, by

a similar order of magnitude. We have briefly investigated the behaviour

of the growth as the remaining parameter, the surface diffusion prefactor

K, is varied (see Figure 5.3). When K is too small then the crystal mor-

phology is completely spherical. The major observation is that the size

of K relative to the growth rate controls the extent to which faceting and

anisotropy dominate the morphology.

The most relevant parameter in the solution (5.14)-(5.15) is the Lewis
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Figure 5.2: Image (a) shows 3D treelike dendrite of TiN microcrystals pre-
pared by combustion synthesis [36]. Image (b), a scanning-electron micro-
graph showing the development of dendrites in a nickel-based super alloy
single-crystal weld [154]. Image (c) shows photograph of 2D growth types;
(c1) tip-oscillating type, whose tip curvature oscillates in time; (c2) tip-
stable type whose tip is a parabola and steady in time [155]. Image (d), 3D
Ni-Cu dendrite simulation using a thermodynamically consistent phase-
field method [156]. Image (e), 3D dendrite crystal shape using a level set
simulation [139]. Image (f), 3D dendrite crystal shape using phase-field
models [157].

number Le (ratio of thermal diffusivity to solutal diffusivity). This dimen-

sionless parameter characterizes the relative roles of the thermal and so-

lute diffusion in controlling the solid-liquid interface movement. Voller [158]

investigated the influence of the Lewis number Le on solidification be-

haviour and identified the physical limit conditions for the problem. He

presented a similarity solution for the solidification of an under-cooled

binary alloy melt contained in a semi-infinite insulated slot. Ramirez et

al [159] investigated the effect of Le varied from Le = 1 to Le = 200.
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Figure 5.3: Four surface images from the late stages of four separate sim-
ulations when K = 1, 10, 100, 1000 and Lewis number Le = 1, showing
about 106 atoms coloured by temperature gradient.

Their work concerned the more general case where heat and solute dif-

fusion simultaneously limit the growth. Such thermosolutal growth is

important in solidification of relatively dilute binary alloys, even though

the thermal diffusivity may be much larger than the solutal diffusivity.

Ramirez et al’s [159] simulations were carried out in two dimensions using

a structured adaptive grid and nonlinear preconditioning of the phase-

field equation.

In the current model, we improve on Voller’s [158] one-dimensional

and Ramirez et al’s [159] two-dimensional models by providing a bet-

ter three-dimensional model of the interface. We also have an atomistic

model of surface relaxation that enhances the effect of the Lewis number.

Our model also provides quantitative insights into the effect of the Lewis

number and the relative roles of thermal and solute diffusion transports
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during solification.

5.6.2 Effect of Lewis number

For the system described above, a small spherical cluster of 531 atoms

initially is allowed to grow and the development of the unstable front is

shown at different instants of time when Lewis number Le = 1 in Fig-

ure 5.4 (a). The tip of the crystal assumes a parabolic shape that sub-

sequently becomes unstable and generates side-branches, which in turn

grow in the preferred direction. The effect of Le is further shown by the

series of predicted shapes in Figure 5.4 (b). In this figure the simulation

time t = 2400, is identical for each dendrite. The size and shape is con-

trolled by the Lewis number as expected, where the crystal grows faster

and the branching process occurs at earlier stages of the crystal growth

when the Lewis number approaches zero. It can be seen from Figure 5.4

(b) that when Le = 1 the arms of the crystal are bigger than for the other

two values of Le. This result illustrates that when the value of Le de-

creases, the number of solidifying atoms are increased. To be more clear,

we compared the surface images of three separate simulations taken at the

same time when t = 540 in Figure 5.5. It can be seen that the dendrite arms

are already appearing when Le = 1 and the number of solid atoms are also

higher than the other two Le. Note that only the values of Le and St−1 are

varied and the rest of the parameters remain the same in the simulations

reported in this section (see Table 5.1).

It was found that when the Lewis number Le was decreased it had an

effect on the number of solidified atoms, surface atoms and solid atoms

in the crystal. Hence the size and shape is controlled by the Le. This

was established by plotting the number of solid atoms against time and

by observing the relationship for different Le values. These graphs can be

found in Fig. 5.6 (a). It can be seen from the graphs in Fig. 5.6 (a), that

more solid atoms were contained in the crystal at any particular time in
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Figure 5.4: Growth of fourfold symmetric crystal for different Le with
EN = 0.1 eV. (a) Sequence of interface shapes shown at various time
instants when the Lewis number Le = 1. (b) The effect of Le on crystal
growth at time t = 2400.

Le = 1 compared to the other three values for Le. Fig. 5.6 (b) illustrates

the ratio of the number of solid atoms and surface atoms against time.

The result shows that the number of surface atoms increases when the

number of solid atoms is higher. The ratio of surface atoms to internal

atoms is higher for small Lewis numbers, that is, higher surface area to

volume ratio. It appears that the solute concentration becomes higher with

decreasing Lewis number and thus more atoms are able to solidify. This is

due to the diffusion of solute becoming faster.

In Figure 5.7 we show the development of the temperature fields ((a1),

(b1), (c1)), concentration fields ((a2), (b2), (c2)) and surface images ((a3),

(b3), (c3)) at three different times of the same simulation when Le = 25.

As might be expected, the thickness of the thermal boundary layer is seen

to be much wider than the solute boundary layer when Le is increased.

This is because the value of thermal diffusivity is larger than diffusivity of

the solute in both phases. Figures 5.7 (a3), (b3) and (c3) show the surface

images of the crystal at times t = 400, 1400, and 2600. Figure 5.7 (a3) corre-

sponds to 40049 atoms which are coloured according to their coordination
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Figure 5.5: Three surface images of three separate simulations taken from
the same time (t = 540) and coloured by their coordination number Nijk.
(a) for Le = 1, containing of 67903 atoms, (b) for Le = 50, containing of
55646 atoms, and (c) for Le = 100, containing of 43626 atoms.

number Nijk (blue colour for high values of Nijk = 1, 2 and red color for

low values of Nijk = 10, 11). Figure 5.7 (b3) and (c3), the solidifying atoms

(that is, liquid atoms on the surface) are coloured using the heat flux Jijk

and correspond to 304488 (b3) and 986291 (c3) atoms.

Figure 5.8 shows the temperature fields ((a1), (b1), (c1)), concentration

fields ((a2), (b2), (c2)) and surface images ((a3), (b3), (c3)) at the nondimen-

sional time of 2400 for the situations when Le = 1, 20, 50. The thickness of

the thermal and solute boundary layer are slightly similar when Le = 1 as

is indicated in Figure 5.8 (a1) and (a2). Note the thermal boundary layer

is similar to all values of the Lewis number at a particular time but the so-

lute boundary layer is different. If Le is decreased (see Fig. 5.8 (b2) where

Le = 20) the rate of the solute diffusion toward the interface increases and

the depletion of solute along the solid-liquid interface is reduced. On the

other hand, if Le is increased (see Fig. 5.8 (c2) where Le = 50) the rate of
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Figure 5.6: Comparison of the Lewis numbers when EN = 0.1 eV is the
same in all simulations. The first plot (a) shows the number of solid atoms
and the second plot (b) illustrates the ratio of the number of solid atoms
and surface atoms as a function of time. The solid line indicates the Le = 1
for dimensionless κ and D. The dashed line shows the result of using
Le = 20, the dashdotdotted and dotted lines are the results obtained by
using Le = 60, 100.

solute diffusion is reduced and the interface solute gradient increases.

As noted above, for Le → 0 the diffusion of solute toward the inter-

face is getting faster and produces a thicker solutal boundary layer in the

liquid. At the opposite extreme, as Le → ∞ the rate of solute diffusion

toward the interface is very slow and produces a thinner solutal bound-

ary layer in the liquid especially near the upstream tip. Figures 5.9 (b,c,d)

show the values of the contours indicated that the solute depletion in the

grooves between the arms is higher than at the tip of the dendrite. Thus,

the atoms located near the grooves are likely to find themselves in a pool of

lower attachment rate than those which are approached and engulfed by

the tip. Visual inspection of Figure 5.9 (a) identified the presence of ther-

mal gradients near the interfaces. As expected, the gradient between the

liquid and solid phases is strongest near the growing dendrite tips where

the velocity is greatest. It is weaker along the nearly stationary initial in-
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Figure 5.7: Temperature fields ((a1), (b1), (c1)), concentration fields ((a2),
(b2), (c2)) and surface images ((a3), (b3), (c3)) of a single simulation at three
different times, Le = 25. Images at row one (a1), (a2) and (a3) are taken
from the early stages at t = 400. At row two images (b1), (b2), and (b3) are
taken at t = 1400 and the snap shot images at row three (c1), (c2) and (c3)
are taken from the late stages when t = 2600.

terface.

It can be seen that the simulation results in the present model give a

very good image of crystal growth compared to other images of past stud-

ies (see Figure 5.10). Fig. 5.11 shows the development of a dendrite and

its sidebranches when Le = 1. These images correspond to four differ-

ent times in the same simulation that started from a spherical cluster of

about 500 atoms. The first two images (top) were taken from the early

stages, showing the solid atoms that lie on the surface of the crystal and
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Figure 5.8: Temperature fields ((a1), (b1), (c1)), concentration fields ((a2),
(b2), (c2)) and surface images ((a3), (b3), (c3)) of three separate simulations
at identical time (t = 2400). The images at row one are taken when Le =
1 and correspond to 980935 atoms. At row two images are taken when
Le = 20 and corresponding to 842476 atoms. The last row images are
taken when Le = 50 and correspond to 638338 atoms. Images (a3), (b3),
and (c3) are coloured according to temperature gradient.

are coloured according to their coordination numbers. All the simulations

in the current chapter have used the value of K = 106, so that surface dif-

fusion dominates, especially during the early stages of growth when the

surface area being small. This early stages indicates the crystal grows close

to its equilibrium Wulff shape. But then at late-times surface diffusion is

less important as the shape is far from the Wulff shape.

Figure 5.11 (a) shows that the truncated octahedral shape can be under-

stood as a competition between the two slowest growing facets, the (100)
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Figure 5.9: (a, b) shows the temperature and concentration fields when
Le = 1 at t = 2200. (c, d) shows the concentration fields when Le = 20 and
Le = 100 at t = 2200.

and (111) facets, where the diffusing atoms have 4 and 3 nearest neigh-

bours, respectively. Note that for an equal number of displayed lattice

sites, there would be a net flux of atoms from a (111) facet to a (100) facet,

due to the faster hopping rate on the former. This result tends to favour

nucleation on the (100) facet rather than the (111) facet. During growth,

the surface is nearly isothermal, with T ≈ TM . The isotherms near pro-

truding regions of the surface become compressed as the crystal becomes

bigger. The compression is very noticeable at the vertices of the octahedral

structure [101]. This effect, which implies a steeper temperature gradient,

enhances nucleation, and we can see in Figure 5.11 (b) that there is a cas-

cade of steps that starts to flow away from the vertices. As the crystal be-
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Figure 5.10: Image (a), snapshot of a dendrite shape from the current
model. Image (b), snapshot of a dendrite shape using phase-field mod-
els [157]. Image (c). snapshots of a dendrite shape using multiscale
random-walk algorithm [5]. Image (d), snapshot of a dendrite shape using
phase-field model [139].

comes larger, this effect begins to change the morphology of the crystal. In

particular, note that the edges are no longer straight in Figure 5.11 (b). The

last two images (bottom (c) and (d)) in Figure 5.11 correspond to much

later stages of the simulation and show the liquid atoms on the surface

which are coloured according to the temperature gradient. These images

also show the morphological instability which leads to dendritic growth.

Figure 5.12 shows three surface images of two different simulations at the

same time step later in the simulation for a case where Le = 1 and 100.

The solute accumulation in the grooves between the arms is thicker in Fig-

ure 5.12 (b). This can be seen in the illustration by the fact that more facet

regions can be seen in the grooves of the structure (see Figure 5.12 (b))
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Figure 5.11: Four surface images of a single simulation at four different
times when Le = 1 and EN = 0.1 eV. The top images (a) and (b) are
from the early stages and correspond to the stage at which the crystal con-
tains about 103 (left) and 104 (right) atoms coloured according to coordi-
nation number Nijk. The bottom images (c) and (d) are taken from the
late stages, showing the crystal containing about 105 (left) and 106 (right)
atoms coloured according to the temperature gradient.

compared to the later stages in Figure 5.12 (a). The last image (Figure 5.12

(c)) shows what the crystal looks like in three dimensions.

5.6.3 Mass conservation

An additional means of checking that acceptable numerical solutions are

being obtained is to examine the overall conservation of heat or solute,

and therefore, in these initial calculations the global mass balance (that is,

the conservation of solute) was frequently examined. This implies that
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Figure 5.12: Three surface images of two different simulations at the same
time t=2600 from the late stages. Image (a) shows the surface image when
Le = 1 and images (b) and (c) illustrate the surface images when Le = 100.
Image (c) shows what the crystal look like in three dimensions. All images
are coloured by temperature gradient.

the number of atoms per unit time crossing into the simulation domain at

any given point in time should equal the difference between the number

of atoms per unit time at that specific point and that of the immediately

preceding time unit inside the simulation domain. This is necessary for

the solute to be conserved. We have introduced the boundary conditions

discussed in Section 5.3 so that mass is approximately conserved. The flux

is calculated as:
∆N

∆t
=

1

Le

∫ (
∂C

∂ŝ
· n̂
)
dS,

where N is the number of atoms, n̂ is the normal unit vector which is

perpendicular to the surface S, and dS is the differential surface element.
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The difference in the number of atoms at a particular time is given by

Atomti − Atomti−1
= (LAtomti

+ SAtomti
)− (LAtomti−1

+ SAtomti−1
),

where Atomti is the total number of atoms of the current time interval,

Atomti−1
is the total number of atoms of the previous time interval, LAtomti

and SAtomti
are the number of liquid and solid atoms of the current time

interval. Figure 5.13 shows the fitted graph of the values of flux with the

atom difference as a function of time. As it appears from Figure 5.13, the

fitted graph is still not apparent that mass is conserved on average on

longer timescales. The high fluctuation of the mass difference is due to

the influence of the random number and average velocity during the sim-

ulation.

Figure 5.13: Point of total flux (◦) and atom difference (4) as a function of
time. The dashed and solid lines indicate the best fitted lines of the total
flux and atom difference.
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5.6.4 Tip Velocity

The tip velocity is measured by identifying the average height of the max-

imum tip of the interface and its neighbors as a function of time, similar

to what was described in references [160, 161]. The dimensionless slope

of the liquidus is set to m = 0.0045 and the value of S−1 = 0.9 with

the Lewis number set to Le = 1. When Le is increased, the tip velocity

and the maximum height are expected to decrease due to the solute dif-

fusion rate decreasing. In this case, we varied the value of St−1 within a

realistic range of values, while staying under the hypercooling threshold

St−1 < 1 in order to boost the attachment rate of atoms for each value of

Le. Figure 5.14 (a) shows the tip velocity plotted against time for the up-

ward, downward and horizontal growing dendrite arms. The gradient of

solid, dashed and dash-dot-dot lines can be seen to approach a steady state

shown by the dotted line. The dotted line indicates that the tip velocity of

the dendrite arms decreases and approaches an asymptotic steady-state

velocity V = 0.044 in the later stages. The dendrite continues to grow and

coarsen until the end of the run where it reaches the far side of the sys-

tem. Figure 5.14 (b) shows the relationship between the tip velocity and

the maximum height of the branches of the growing dendrite arms. As

shown, the tip velocity is decreased when the maximum height of the in-

terface increases. It can be seen that the primary branches of an equiaxed

dendrite all begin growth close to one another and proceed to grow away

from each other. Figure 5.14 (c) illustrates that the tip velocity is decreased

when Le increases and also that the number of time steps required to reach

the final update is longer when Le increases.

To validate the simulation, a comparison of tip velocity as a function

of time with the predictions of other studies for crystal growth was car-

ried out. It can be seen in Figure 5.15 (a) that Schulze’s [101] and Tan et

al.’s [139] results are found to agree with the Continuum-KMC Method

when the Le = 1. Schulze [101] considered the growth of a single FCC

dendrite into an undercooled melt by adopting a discrete, atomistic model
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Figure 5.14: Plots (a) and (b) show tip velocity of the dendritic growth
when Le = 1 and EN = 0.1 eV. (a) Dimensionless tip velocity of the den-
dritic growth plotted against time. (b) Dimensionless tip velocity vs max-
imum height. Plot (c) shows tip velocity as a function of time of different
values of Le.

in the spirit of the kinetic Monte Carlo method. Tan et al.’s [139] method

combining features of front-tracking and fixed-domain methods based on

the level set method is presented to model dendritic solidification of pure

materials. Using a slightly higher undercooling of 0.65, the steady den-

drite tip velocity increases to about 0.047. Their result is very close to our

steady-state velocity of 0.044. We also found that our results (tip velocity

against time) when Le = 1000 agree with the predictions of Karma [162]

shown in Figure 5.15 (b). Karma considered a Phase-Field formation to
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Figure 5.15: Comparison of tip velocity with Schulze result. EN = 0.1 eV
is the same in all simulations.

simulate quantitatively microstructural pattern formations in an alloy.

5.6.5 Anisotropy

As described above, the crystalline anisotropy effect is included in the

model as a surface diffusion process. Note that EN is not anisotropy by

itself but it just leads to anisotropy with the help of the surface diffu-

sion parameter K which has been adjusted to exhibit different character-

istic morphologies. Therefore, surface anisotropy depends on EN . It can

be seen that the value of the maximum height increases faster when the

EN = 0.11 eV than the rest of the EN . Again, the growth proceeds from

an initial spherical cluster of 500 atoms and the sidebranches are expected

to grow along the principal crystalline directions. Figure 5.16 (a) shows

the maximum height plotted against time for growing dendrites in four

different values of surface anisotropy. Figure 5.16 (b) shows that when the

anisotropy is decreased, the interface velocity reduces and thus the com-

putational domain size and simulation time increase substantially. The

tip curvature for the high anisotropy crystal is much higher than the low

anisotropy crystal. Also the concentration and thermal boundary layers
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Figure 5.16: Tip velocity and maximum height of the dendritic growth
when Le = 1 for different values of EN . (a) Dimensionless maximum
height of the interface as a function of time. (b) Dimensionless tip velocity
of the dendritic growth plotted against time.

in the latter case are shallower than for the previous high anisotropy case.

When the anisotropy is lower than 0.1 eV, it can be seen that the tip region

is smooth and the crystallite becomes fully faceted. As the anisotropy be-

comes larger than 0.1 eV, discontinuity in the variation of interface orien-

tation occurs due to the presence of missing orientations, and therefore the

smooth parabolic dendrite becomes unstable, resulting in the formation of

corners at the tips of the main stem and sidebranches of the dendrite.

Figure 5.17 indicates the development of four surface images of a single

simulation at four different times when EN = 0.13 eV. The top images (a)

and (b) are taken from the early stage showing the solid atoms, coloured

by coordination number Nijk, that lie on the surface of the crystal. In the

first image (a), the crystal contains 5311 atoms and in the second (b), there

are 48693 atoms. The bottom images (c) and (d) are taken from the late

stages indicating the solidifying atoms (that is, liquid atoms on the sur-

face) are coloured using the heat flux. The images correspond to the stage

at which the crystal contains 315980 on the left (c) and 1026615 atoms on

the right (d). These images show clearly that the branching process occurs
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at earlier stages of growth if the surface diffusion is less active.

Figure 5.17: Four surface images of a single simulation at four different
times (t = 60, 260, 600, 940) when EN = 0.13 eV. The top images (a) and (b)
are from the early stages, showing 5311 (a) and 48693 (b) atoms coloured
according to coordination number Nijk. The bottom images (c) and (d)
are taken from the late stages, showing 315980 (c) and 1026615 (d) atoms
coloured according to the temperature gradient.

Figure 5.18 shows the images from the later stages of several different

simulations when the value of EN is varied to exhibit four characteris-

tic morphologies. The colours show the distribution of the heat flux Jijk

in the liquid atoms on the surface. When the surface anisotropy starts

to increase, the branching process occurs at an earlier stage of the crystal

growth due to surface diffusion being less active. The formation of sec-

ondary branches, their growth and competition, and finally their coarsen-

ing have already formed when the crystal is about the same size as that in
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the early state of Figure 5.11 (a). Most of the tertiary branches developed

only on the side of the secondary branch facing the primary dendrite tip,

which is consistent with the experimentally observed features. At about

EN = 0.15 eV, the dendrite loses its octehedral symmetry and takes on a

cauliflower-like appearance shown in Figure 5.18 (d).

Figure 5.18: Four surface images from the late stages of four separate
simulation, showing about 106 atoms coloured according to the temper-
ature gradient. EN = (0.095, 0.115) eV (top images (a) and (b)) and
EN = (0.125, 0.15) eV (bottom images (c) and (d)). Le = 1 is the same
in all simulations.

5.6.6 Multicrystal growth

The current method can also be used to model the growth of multiple

seeds. Note that this is something that is hard to do with front tracking
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methods such as those used by Tan et al. [139]. In Figure 5.19 we show

the development of the temperature fields ((a1), (b1), (c1)), concentration

fields ((a2), (b2), (c2)) and surface images ((a3), (b3), (c3)) at three differ-

ent times of the single simulation when Le = 1. As might be expected,

Figure 5.19: Temperature fields ((a1), (b1), (c1)), concentration fields ((a2),
(b2), (c2)) and surface images ((a3), (b3), (c3)) of a single simulation at
three different times using Le = 1. Images at row one (a1), (a2) and (a3)
are taken from the early stages when t = 400. At row two images (b1),
(b2), and (b3) are taken when t = 1400 and the snap shot images at row
three (c1), (c2) and (c3) are taken from the late stages when t = 2200.

the thickness of the thermal and solute boundary layers are slightly sim-

ilar as indicated in Figure 5.19 column one and two. This indicates that

the value of thermal diffusivity is similar to the value of the solute dif-

fusivity. Figures 5.19 (a3), (b3) and (c3) show the surface images of the

crystal at times t = 400, 1400, and 2200. Figure 5.19 (a3) correspond to
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Figure 5.20: Evolution of two identical seeds of a single simulation at four
different times (t = 100, 440, 1500, 2320) when EN = 0.1 eV. The top im-
ages (a) and (b) are taken from the early stages and coloured by coordina-
tion number. The bottom images (c) and (d) are taken from the late stages
and coloured according to temperature gradient.

66269 atoms and coloured according to the coordination number Nijk. Fig-

ure 5.19 (b3) and (c3), the solidifying atoms (that is, liquid atoms on the

surface) are coloured using the heat flux Jijk and correspond to 454223

(b3) and 1025363 (c3) atoms.

Figure 5.20 indicates the development of two identical seeds in a sin-

gle simulation at four different times when EN = 0.1 eV. It can be seen

that the growth of the main arms is suppressed by the nearby dendrite

especially for the main arms that are facing each other. The interfaces of

these arms were allowed to merge when they come in contact. As solidifi-

cation proceeds, growing and coarsening of the primary trunks occurs, to-
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Figure 5.21: Interactions in the solidification of several dendrites. (Top im-
ages (a) and (b)) Two surface images from the late stages of two separate
simulations of three and four identical seeds growing at the same time.
(Bottom images (c) and (d)) Two surface images of three seeds are grow-
ing in different times in a single simulation. All images were coloured
according to temperature gradient. Le = 1 and EN = 0.1 eV are the same
in all simulations.

gether with the branching and coarsening of the smaller secondary arms.

Figure 5.21 (top) shows three and four identical seeds with randomly as-

signed preferred growth orientations placed in the domain at the same

time. Note that the interfaces naturally merge when they come into con-

tact. Figure 5.21 (bottom) shows another case in which we place three

seeds in the domain at different times. The second seed is placed in at

a distance that allows the interfaces to merge when they come in contact

but the third seed is not. Note that the new seeds are growing at the tem-
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perature and concentration fields of the sites in which they are initially

placed. It can also be noted that when the seeds are placed further apart,

the merging that is observed when the seeds are placed close together does

not occur. There is a low attachment rate for the solidifying atoms as the

concentration is depletes between the surfaces at the two developing crys-

tals. This is because most of the regions on the surface between the two

crystals are fully faceted and it is therefore difficult for atoms to deposit

there. Note that these simulations were carried out without consideration

of the dissolution process. The next section will include the dissolution

process in the current KMC algorithm.

5.7 Dissolution

The change in crystal shape as a result of dissolution is a topic of inter-

est for a wide range of materials including organics such as pharmaceuti-

cals, proteins and specialty chemicals as well as inorganics in geology and

semiconductors. The dissolution process not only affects the crystal shape

but also plays a vital role in polymorphic phase transformations [163, 164].

Various works have previously discussed the possible end-shapes in crys-

tal dissolution [165, 166, 167]. Moore [167] suggested that the shapes of

mineralogical crystals result from faces becoming vertices and vertices be-

coming faces. Frank [165] proposed that crystals will disappear before

changes in shape have ceased, and Gibbs suggested that shapes in crystal

dissolution probably differ from that of theoretical equilibrium in a direc-

tion opposite to that of a growing crystal [168]. Despite these qualitative

descriptions, Snyder et al. [163] developed a model that could quantita-

tively predict the evolution of crystal shapes during dissolution. Snyder

et al.’s [164] findings present recently produced in situ experimental con-

firmation of the model’s predictions for the dynamics of dissolving crys-

tal shapes. Other works on crystal dissolution have traditionally been fo-

cused on the evolution of surface morphology in the immediate vicinity of
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isolated defects [169, 170, 171]. It is also necessary to include dissolution

in order to study Ostwald ripening, that is when smaller crystals dissolve

to the benefit of larger neighbouring crystals.

The potential occurrence of both dissolution and growth, can be a valu-

able mechanism for exposing crystal planes and generating crystal shapes

that are not easily obtained through either growth or dissolution alone.

The key difference between morphology evolution during growth and

dissolution is that growth shapes tend to be dominated by slow growing

planes, while dissolution shapes are dominated by fast moving planes [164].

A model for the shape evolution in dissolution is required in order to fully

understand the effects of dissolution on the crystal shape. Thus, the cur-

rent study aims to create a basic framework for such simulations using

a face centered cubic lattice as an example. To achieve this objective, it

is therefore necessary to develop kinetic Monte Carlo (KMC) models that

are efficient for lattices that are large enough to contain a large number of

atoms (defects) at realistic densities. The model developed in the current

study provides significant insight into obtainable crystal morphologies, as

well as demonstrating that crystals do not obtain immediate steady-state

when dissolution is included (whereas they do in growth alone [172]). The

model for shape evolution in growth and dissolution, in combination with

the mechanisms for the appearance and disappearance of faces, can be ap-

plied to any crystal system. This model can predict and track each of the

faces of a fully three-dimensional crystal during growth and dissolution. It

requires a set of physical properties for implementation (dissolution rates

and crystallographic information) as described in the following sections.

5.7.1 Calculating the dissolution rate

The present study examined the morphology of nanocrystal growth when

the dissolution process is included. The mechanism for growth and dis-

solution of crystals varies depending on the classification of the crystal
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face [173]. As suggested by Cabrera and Levine [174] for calcite, the disso-

lution can be simply described as the inverse of nucleation and growth.

For dissolution the same process occurs in reverse of our solidification

process, with the solid atom being flipped and dissolved back into the

melt as a liquid atom. The parameter values have been kept the same as

our solidification process except for the value of St−1 = 0.999, which is

increased within a realistic range of values while staying under the hyper-

cooling threshold St−1 < 1. The condition is enforced in the simulations

presented below by setting the dissolution rate equal to

Dqijk =





Jd(xijk), if σijk = 1 and Nijk ≤ 3,

0, otherwise

where

Jd(xijk) = St−1 1

12

12∑

m=1

[TI(xijk) + T n(xijk + em)],

represents the net heat gain at site xijk, measured in units of latent heat

which is absorbed per atom upon dissolution. At best, this formula makes

the stringent assumption that the dissolution involves very rough surfaces

and far from equilibrium conditions. In the current model, the condition

for dissolution is that a site must be occupied and must have less or equal

to three solid neighbours.

5.7.2 Comparing Growth and Dissolution

To investigate the physical and mathematical models between the simu-

lation using the growth and dissolution model and the growth model as

discussed before, a comparison of the number of atoms as a function of

time was carried out.

Figure 5.22 shows the comparison of the solid atoms and the tip veloc-

ity between two different simulations. The solid line indicates the growth
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alone and the dashed line shows the result of including the dissolution

event. It can be seen from the graphs in Figure 5.22 (a), that more solid

atoms were contained in the crystal at any particular time in the growth

alone than in the growth and dissolution situation. This occurs due to the

solid atoms being dissolved back into the melt as liquid atoms. The con-

dition is that solid atoms can only dissolve if they have less than or equal

to three solid neighbours. Many of the atoms having less than or equal

to three neighbours can appear at the roughened faces especially at the

edges and vertices, and roughened faces often have a curvature in direc-

tions without a strong bond chain. Figure 5.22 (b) shows the tip velocity

Figure 5.22: Comparison of the solid atoms and the tip velocity between
two different simulations. The first plot (a) shows the number of solid
atoms and the second plot (b) illustrates the tip velocity as a function of
time. The solid line indicates the growth alone and the dashed line shows
the result of including the dissolution event.

plotted against time for the horizontally growing dendrite arms in the sit-

uations of growth alone, and of growth and dissolution. The solid and

dashed lines can be seen to be getting slower and slower as the time in-

creased. The solid line indicates that the tip velocity of the dendrite arms

decreases and they eventually reach a steady state shown by the dotted

line. On the other hand, the dashed line demonstrates that the tip velocity
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does not obtain an immediate steady-state when dissolution is included.

This is happening due to the fact that the dissolution process seems active

at the edges and the tip. Note that most of the atoms on the rough surface

have three neighbours or less lying on the surface edge and tip regions.

Figure 5.23: Six surface images from two separate simulations at three dif-
ferent times (t = 500, 1480, 2480) when Le = 1 and EN = 0.1 eV. Sur-
face images ((a1), (a2) and (a3)) were taken from the growth alone simula-
tion and correspond to the stage at which the crystal contains 60511 (a1),
383333 (a2) and 1048293 (a3) atoms. (b1), (b2) and (b3) images were taken
from the growth and dissolution simulation, showing the crystal contain-
ing 47219 (b1), 276061 (b2) and 741015 (b3) atoms.

Figure 5.23 shows surface images from two separate simulations taken

from three different times (t = 500, 1480, 2480). The surface images (a1),

(a2), and (a3) were taken from the growth alone simulation and corre-

spond to the stage at which the crystal contains 60511 (a1), 383333 (a2)
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and 1048293 (a3) atoms. (b1), (b2) and (b3) images were taken from the

growth and dissolution simulation, showing the crystal containing 47219

(b1), 276061 (b2) and 741015 (b3) atoms. The number of atoms in growth

alone simulation are higher at any particular time than in the growth and

dissolution simulation. It can be seen from the surface image in the first

column that more rough surfaces appear on the dendrite arms (edges and

vertices) while the second column surface images show smoother surfaces.

Figure 5.23 (a3) shows the holes in the groove between the arms is much

deeper and the crystal has thinner arms compare to the image in (b3). The

thicker arms in Figure 5.23 (b3) image illustrate that most of the dissolu-

tion atoms occur at rough surfaces especially the edges and vertices. Thus,

the growth of the main stem of the arms is able to grow thicker due to the

dissolution process being less active.

5.8 Summary

In this Chapter we have developed a model for calculating the nanocrys-

tal growth into an undercooled binary melt. We used the front-tracking

method, adopting an atomistic growth model in the spirit of the kinetic

Monte Carlo simulations to track the free boundary. A numerical finite

difference method was applied, using an explicit discretization to solve

the continuum model for heat and diffusion equations at the solid-liquid

interface. We provided a simple and straight forward approaches of de-

veloping a multiscale simulation method for the growth of nanocrystals in

solution that couples a KMC description of the crystal relaxation process

to solute reaction-diffusion equations. This model is easy to implement

in the KMC code which allowed us to generate graphic representations in

three dimensions. Very interesting results on the influence of the ratios

of the rates of the different events on the occurrence of dendritic growth

are presented and discussed. Also the results for growth from multiple

seeds are impressive. Anisotropy is included in the model as a surface dif-
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fusion process and the growth rate of the dendrite was found to increase

monotonically with increase in the surface anisotropy value. We also have

developed a model that determines the shape of crystals as they grow and

dissolve. The current Chapter also demonstrated quantitatively that crys-

tals in the combined growth and dissolution situation obtain various re-

sults in terms of shape and growth rate compared to those in the growth

alone.



Chapter 6

Diffusion and Growth KMC

Here, we extend our KMC algorithms discussed in Chapters 4 and 5 to in-

clude the process of solute atom diffusion in a liquid environment. That is

to allow a number of solute atoms to hop and to ensure that creation atoms

are placed at the edge of the simulation cells so that they can diffuse in-

ward. The solute atom hopping rate can be set at any rate, but preferably

quite fast to mimic diffusion in the solvent. The diffusion processes can

control the structure evolution of the growth surface and can be modelled

using the KMC method. While the proposed technique can be applied to

any surface system, our interest is in the examination of the behaviour as

related to growth on nanocrystals structure when a solute atom diffusion

event is included. A great advantage of the Diffusion and Growth KMC

algorithm is that it allows for the possibility of nucleation and growth,

whereas the continuum KMC algorithm only allows for growth. We will

now turn our attention to using the Monte Carlo method to solve the dif-

fusion equation in the next section. The KMC algorithm is discussed, in-

cluding the creation of a single atom and its rate. Description of the surface

diffusion is provided, and this is followed by the results and discussion.

The introduction of dissolution events in the model is also discussed.

107
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6.1 Diffusion equation using the Monte Carlo

method

To solve the diffusion equation using the Monte Carlo method [175], in

some sense, is just an alternative method for solving the continuum equa-

tion in the previous Chapter. The diffusion equation in two dimensions is

written as

∂C

∂t
= D

(
∂2C

∂x2
+

∂2C

∂y2

)
. (6.1)

We replace the continuous derivatives of Equation (6.1) with their finite

difference approximations, and choose the forward finite difference ap-

proximation as

∂C

∂t
≈

Cn+1
i,j − Cn

i,j

tn+1 − tn
=

Cn+1
i,j − Cn

i,j

∆t
, (6.2)

where Cn represents the solute concentration at the current time tn whereas

Cn+1 represents the new solute concentration at tn+1 . The subscript (i, j)

refers to the location in the grid. The spatial derivatives of Equation (6.1)

are replaced by a central finite difference approximation

D

(
∂2C

∂x2
+

∂2C

∂y2

)
≈ D

(
Cn

i+1,j − 2Cn
i,j + Cn

i−1,j

∆x2
+

Cn
i,j+1 − 2Cn

i,j + Cn
i,j−1

∆y2

)
.(6.3)

Combining Equations (6.3) and (6.2) with Equation (6.1) gives

Cn+1
i,j = Cn

i,j +
D∆t

∆h2
(Cn

i−1,j + Cn
i+1,j + Cn

i,j−1 + Cn
i,j+1 − 4Cn

i,j), (6.4)

where ∆h = ∆x = ∆y. The Monte Carlo algorithm uses the idea that the

value of Cn+1
i,j is an average over random walks of the boundary values.

In the current model, it was decided that the Monte Carlo method was

too complex. Instead a simplified model was used in which newly cre-
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ated atom follow random walks from one empty lattice site to another

before eventually nucleating. Random walks are related to the diffusion

models and are a fundamental topic in discussions of Markov processes

(described in Appendix B). More details of our approaches are described

in the following sections.

6.2 KMC algorithm

The KMC algorithm used in the current Chapter assumes that single atom

hops correspond to diffusion of solute atoms in the solution. The algo-

rithm used here is based on the KMC algorithm developed in Chapter 4.

However, the gas phase deposition process modelled in Chapter 4 is re-

placed by a model of diffusion in a solvent, much like that considered in

Chapter 5, except that the diffusion equations are solved by explicit KMC

solute simulations of solute atoms as discussed above. The current imple-

mentation of the first KMC algorithm involved minor changes to our de-

position code by changing the process of deposition of a gas atom straight

to the cluster to create a single atom at the cell edge. The Diffusion and

Growth KMC model was initiated to enable us to conduct a compara-

tive analysis of crystal morphology with the Continuum KMC Method

in Chapter 5. There are two major types of events included in the current

model: solute diffusion, modeled by single atom hopping, and surface

diffusion. Other events are also included such as the dissolution process,

which is considered for the simulation of the two different seed sizes.

6.2.1 Creating a single atom at the cell edges

The simulation is based on the situation where we have a spherical cluster

of about 500 atoms placed in the middle of the simulation box. A single

atom is created at the edge of the simulation cells and allowed to diffuse

in by hopping randomly in towards a spherical cluster at a given temper-
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ature. The conditions for the placing of a single atom on the edge of the

cell are that the lattice site must be unoccupied and has no neighbour in

a fluid site. This condition is meant to minimise the chance of the single

atoms at the edge joining together easily in the earlier stages. The rate of

creating a single atom varies depending on the single atom hop, for exam-

ple, if two or more single atoms join and stick together, then we have to

decrease the creating rate to make sure there is no new nucleation formed

apart from the main cluster. If there is no new nucleation formed then we

have to increase the creating rate linearly. After placing a single atom on

the edge of the cell, the atom starts to diffuse inward at a uniform rate.

The single atom diffuses randomly from one empty lattice site to another

empty lattice site and this is repeated accordingly until it comes into con-

tact with atoms on the surface of the cluster. Note that the atoms on the

surface of the crystal are allowed to hop at the same time as determined

by their rates relative to solute diffusion in the KMC algorithm.

The hopping rate of a single atom in the fluid is set to be steady and

greater than the surface diffusion rate. This is to enable the single atom to

diffuse quite fast to mimic diffusion in the solute. It is assumed that each

single atom hops independently and is randomly oriented into an empty

lattice site. The rate of arrival of a single atom at the surface depends on

the concentration of single atoms near the surface.

6.2.2 Surface diffusion

Along with the solute atoms hopping event, surface diffusion by all avail-

able surface atoms must be taken into account during a time interval. The

diffusion rate of an atom is governed by the thermodynamic temperature

(T ) of the system and the activation energy EA as discussed in Chapter 4.

In this case, each jump to a neighbouring site will have a different prob-

ability determined by its activation energy, which in turn is assumed to

depend upon the change in coordination number during the jump. We
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adopt the simple model in Ref. [116] with the energy barrier EA = iE0 of

an atom proportional to its number i of neighbours and to do so, we have

employed again the energy E0 = 0.1 eV throughout the simulation. The

probability of a jump is given by Arrhenius law in Equation (4.1). The de-

tails of how to calculate the diffusion rate of an atom on the nanocrystal

surface were briefly presented in the previous Section 4.1. Note we keep

the temperature, T = 400 K, constant in all the simulations.

6.3 Results and Discussion

We have studied the behaviour of nanocrystal structure when the diffu-

sion event of a single atom originally placed at the edge of the simu-

lation cell is included. Figure 6.1 shows the development of a dendrite

and its sidebranches where the atoms that lie on the surface of the crystal

are coloured according to coordination number Nijk. These images cor-

respond to four different times in a single simulation beginning from a

spherical cluster of about 500 atoms. In the first image (a), the crystal

contains about 4 × 103 atoms at t = 139 and, in the second (b), there are

about 3 × 104 atoms at t = 4946. For this simulation a large value of the

prefactor v0 ≈ 1013 s−1 was chosen, so that surface diffusion dominates, es-

pecially during the early stages of growth when the surface area is small.

In this regime, the crystal grows close to its equilibrium Wulff shape, and

the results are similar to that in Combe et al. and Schulze [116, 101]. If

the crystal is seen to contain more facet regions and appears to grow very

slowly, we increase the creating rate of a single atom (no neighbours) so

that atoms are able to attach faster than the cluster can relax. The values

of the flux that we actually used lie in the ranges of (0.005× 10−4 − 0.13×
10−4) atoms/m−2s−1.

As discussed in our results in Chapter 5, the truncated octahedral shape

can be understood as a competition between the two slowest growing

facets, that is, the (100) and (111) facets. It can be seen that the nucleation is
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Figure 6.1: Four surface images of a single simulation at four different
times. The top images (a) and (b) are taken from the early stages (t =
139, 4946) and correspond to the stage at which the crystal contains about
4× 103 (a) and 3× 104 (b) atoms. The bottom images (c) and (d) are taken
from the late stages (t = 10415, 29986), showing the crystal containing
about 2×105 (c) and 6.5×105 (d) atoms. The images are coloured according
to coordination number.

favoured on the (100) facet. Due to the geometry, more single atoms seem

to attach to the (100) face compared to the (111) face. In addition, there is a

net flux of surface atoms from a (111) face diffusing to a (100) facet, due to

the availability of stable sites on the former. Figure 6.1 (c) and (d) indicate

the surface images from the late stages (t = 10415, 29986), showing the

crystal containing about 2 × 105 (c) and 6.5 × 105 (d) atoms. The images

show the surface instability leading to production of primary branches of

a dendrite.
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6.3.1 Multiple Seeds

We have also extended the current model to the growth of multiple seeds.

In the simulation presented, Figure 6.2 shows two identical seeds, spher-

ical clusters of about 500 atoms, each with a different preferred growth.

The results depict a simulation that was calculated in a 150 × 150 × 150

Figure 6.2: Evolution of two identical seeds of a single simulation at four
different times . The top images (a) and (b) are taken from the early stages
t = 173, 4645 and the bottom images (c) and (d) are taken from the late
stages t = 17933, 30022. All images were coloured according to coordina-
tion number.

mesh in which the domain is kept at a fixed temperature T = 400 K. The

interfaces were allowed to merge when they came into contact. Figures 6.2

(a) and (b) show the early stages when the crystals started to merge. The

last two images (c) and (d) correspond to much later stages of the sim-

ulation. There is less possibility of a single atom attaching between the
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surfaces of the two developing crystals because of a lack of open spaces

(see Figure 6.3 (a) and (b)). Thus, these regions grow by surface diffusion

rather than by solute attachment.

Figure 6.3: Two surface images from different view points of a single sim-
ulation at the same time. The images (a) and (b) are taken from the late
stages coloured according to coordination number. These images show
clearly the regions between the surfaces of the two crystals.

6.3.2 Nature of crystal shape in two models

Figure 6.4 shows four surface images of two separate simulations. Images

(a1) and (a2) are taken from our Continuum-KMC Method described in

Chapter 5 and images (b1) and (b2) from the Diffusion and Growth KMC

method without considering the dissolution process. It can be seen that the

two methods show the similar prediction of a dendrite shape. Figure 6.4

(a) and (b) show the solid atoms, coloured according to coordination, that

lie on the surface of the crystal. In Figure 6.4 (a2), the solidifying atoms are

coloured using the heat flux and in (b2) are coloured according to coordi-
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Figure 6.4: Images (a1) and (a2) are taken from our Continuum-KMC
Method described in Chapter 5 and images (b1) and (b2) are taken from
the Diffusion and Growth KMC method. Images (a1) and (b1) from the
early stages and coloured according to coordination number. Images (a2)
and (b2) from the late stages where (a) is coloured according to the tem-
perature gradient while (b) is coloured according to coordination number.

nation number. The images (a2) and (b2) shown are from the late stages of

two different simulations.

Note that we are not able to directly compare the two models for two

main reasons:

1. The solute diffusion rate is set to be faster in the Diffusion and Growth

KMC compared to the Continuum-KMC Method. This is to min-

imise the chance of new nucleation during the simulation, and

2. if there is a new nucleation apart from the main crystal then we have
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to disturb the simulation by decreasing the creating rate to avoid this.

6.4 Dissolution

In addition to the solute diffusion and surface diffusion processes, it is

also important to include the dissolution event in the crystal growth. As

discussed in Section 5.7, dissolution is a valuable mechanism for exposing

crystal planes and generating crystal shapes that are not easily obtained

through growth alone. Therefore we added the dissolution process in the

current model in order to observe the morphology of crystal growth. In

the next section the discussion of how we add the dissolution process to

the current model is provided. This is followed by a comparative analysis

of growth and dissolution. The dissolution and growth of two clusters is

also presented.

6.4.1 Dissolution Process

The dissolution process is simulated using the KMC algorithm, similar to

that used by Lasaga et al. [169], Lasaga et al. [170], and Meakin et al. [171].

Dissolution conditions are, the atom must be on the surface of the crystal

and must have three or less than three nearest neighbours. If there is an

atom which is able to dissolve back into the melt, then it must be dissolved

to an unoccupied lattice position in the fluid (the dissolved atom must

have at least one unoccupied site in the fluid site). A solid-on-solid model,

which restricts the dissolution to the highest occupied solid site in each

column of the lattice is also considered in our model. The solid-on solid

approximation, which prevents overhangs from forming and simplifies

the book keeping involved in the simulations, has been used extensively in

KMC models for dissolution and growth [171, 30, 176]. In the KMC model,

it is assumed that the rate of dissolution of an atom from the crystal
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surface into the fluid is given by

Rdiss =





v0 exp[−niEa/kBT ], if ni ≤ 3,

0, otherwise,

(6.5)

where Ea is the apparent dissolved activation energy. The activation en-

ergy that must be overcome to remove (dissolve) an atom is assumed to be

proportional to the number of nearest neighbours (the coordination num-

ber) ni. It is reasonable to use values of the activation energy for dissolu-

tion of typical minerals lying in the range of 30 < Ea < 75 kJ/mol [177,

178, 179].

6.4.2 Comparing Growth and Dissolution

When including dissolution we found that it is impossible to use the same

creation rates from our growth simulation. The main reason for using

different creation rates is that sometimes the dissolved atoms are in con-

tact with the single atoms especially in the early stages of the simula-

tion. We decrease the creation rates to minimize any new nucleation (note

that rest of the parameters remain unchanged). Figure 6.5 shows sur-

face images from two separate simulations taken at three different times

(t = 921, 16040, 28165). The surface images (a1), (a2), and (a3) were taken

from the growth alone simulation and (b1), (b2) and (b3) images were

taken from the growth and dissolution simulation. Both simulations were

started with a spherical cluster of about 500 atoms. It can be seen from

the surface image in the first column that the surfaces appearing on the

dendrite arms (edges and vertices) are rougher than when including the

dissolution process (second column). The thicker arms in Figure 6.5 (b3)

illustrate that most of the dissolution of atoms occur at rough surfaces es-

pecially the edges and vertices.
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Figure 6.5: Surface images of two different simulations (growth alone sim-
ulation and growth and dissolution simulation) at three different times.
The top images (a1) and (b1) are taken from the early stages at t = 921. The
middle images (a2) and (b2) are taken from the middle stages T t = 16040.
The bottom images (a3) and (b3) are taken from the late stages at t = 28165.
The images were coloured according to coordination number.

6.4.3 Ostwald ripening

Ostwald ripening is a crystal growth process where atoms detach from a

small crystal and attach to a larger crystal [180]. Small clusters disappear

and large clusters grow through the Ostwald ripening mechanism due to

the difference in chemical potential of different sized clusters [181]. The

present work indicates that the cluster growth is completed through dis-

solution, single atom hop and surface diffusion mechanism when the sep-

aration among two different size clusters is not very far apart from each

other. Figure 6.6 shows the six stages during the dissolute and growth of a
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Figure 6.6: Evolution of two different cluster sizes of a single simulation
at six different times. Images (a) and (b) show two surface images from
the early stages with two different seeds that grow and dissolve at two
different times (t = 7, 83). Image (c) illustrates that the smaller seed is
nearly dissolved and attached to the larger one at t = 145. Image (d)
indicates that the smaller seed is fully dissolved at t = 220. The last two
images (e) and (f) are taken from the late stages at t = 18415 and 30560. All
images were coloured according to coordination number.

pair of two different size clusters. The simulation is performed using two

spherically symmetric clusters which originally contained 600 and 1500

atoms. It can be seen that the larger crystal grows at the expense of the

smaller crystal as expected. This result is similar to most of the studies ex-

pecting that larger clusters melt or dissolve more slowly [182]. The larger

cluster requires more time to melt or dissolve, permitting more relaxation

to occur before reaching the smaller sizes. Figures 6.6 (a) and (b) depict

two surface images from the early stages, showing two different seeds that

grow and dissolve at two different times (t = 7, 83). Image (c) illustrates
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that the small seed is nearly dissolved and attached to the larger one at

t = 145. Image (d) indicates that smaller seed is fully dissolved at t = 220.

The last two images (e) and (f) are taken from the late stages at two differ-

ent time (t = 18415, 30560).

6.4.4 Two clusters of the same sizes dissolve and grow

Figure 6.7: Evolution of two clusters initially of same size of a single sim-
ulation at six different times. Image (a) shows the initial configuration of
the two clusters. Images (b), (c) and (d) show the clusters growing and dis-
solving at three different times (t = 50, 100, 146). Image (e) indicates that
one of the clusters is fully dissolved at t = 155. In the last image (f) arms
of the dendrite have started to grow. All images were coloured according
to coordination number.

The model extends the growth of two clusters of the same size, which

is completed through dissolution, single atom hop and surface diffusion

mechanisms. The simulation is performed using two spherically symmet-
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ric clusters which originally contained 87 atoms. The initial configuration

of the two clusters is shown in Figure 6.7 (a). Figure 6.7 (b), (c), and (d)

show that one of the clusters is dissolved and attached to the other clus-

ter. The last two images (e) and (f) illustrate that one of the clusters is

completely dissolved. Then the remaining crystal will grow and obtain a

similar shape as in Figure 6.6 (f).

6.5 Summary

We have constructed a KMC model to simulate the process of a single

atom diffusion event in a liquid environment. That is to allow a single

atom to hop and to ensure that creating atoms are placed at the edge of the

simulation cells so that they can diffuse inward. The single atom hopping

rate can be set at any rate, but preferably quite fast to mimic diffusion in

the solute. The dendrite shape of the crystal in the current model is similar

to our result in Chapter 5. The current model shows the ability to model

multiple seeds. We also discussed what happens if the dissolution event

is included in the current model. We demonstrated that crystals have a

similar crystal shape as we discussed in Chapter 5. The dissolution process

in two different size clusters shows that the atoms from the smaller cluster

dissolve and appear to join the larger cluster.
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Conclusion and Future Work

7.1 Conclusion

The current study explored this main goal: To develop a multiscale sim-

ulation method for the growth of nanocrystals in solution that couples a

KMC description of the crystal relaxation process to solute reaction dif-

fusion equations. This goal set out to collect in-depth information for a

better understanding of the phase crystal growth using the KMC method,

supported by a quantitative analysis of the results. Therefore, it was nec-

essary to couple the theory of crystal relaxation with the mathematical

understanding of solute diffusion fields.

The kinetic Monte Carlo model was developed to perform realistic sim-

ulations over a useful range of growth and dissolution conditions. The

emphasis of this work was to establish a model which can serve as a devel-

opment platform for other more advanced models. The main motivation

behind this work was to advance the current state of knowledge and un-

derstanding of crystal growth mechanisms. The thesis was divided into

three parts: the Deposition and Growth KMC method, the Continuum-

KMC Method, and the Diffusion and Growth KMC method. These phe-

nomena were discussed and analyzed by adopting a discrete, atomistic

model in the spirit of the KMC simulation which is popular in the growth
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and dissolution literature. This led to interesting results and valuable in-

sights. We will now summarize the findings, and review the main goals

of the research, and what we have achieved in terms of the research objec-

tives.

In Chapter 4 the interplay of the deposition and surface diffusion rates

were demonstrated in the gas phase. The first case, when deposition rate is

far greater than hopping rate, indicated that the cluster grows very fast. As

the simulation time increased, the shape of the crystal became completely

spherical. The physical picture of the crystallite above the roughening

temperatures has many visible kinks and steps, indicating that the contin-

uous approximation for the curvature might be valid; the mass transfer of

solute is via atomic diffusion from kinks or steps from the high curvature

regions to the existing kinks or steps of the low curvature regions. Below

this temperature, however, large facets do appear in the low curvature re-

gions and no kinks or steps are available, thus preventing the diffusing

atoms from sticking there. The final case showed the growth of the cluster

is not as fast as in the first case, but leads to the same structure. The solu-

tion in Chapter 4 has contributed to guide us to be able to respond to the

main goal of the research.

The most essential underlying finding in the current study is that the

KMC appears to be a promising model for the simulation of dendrite

growth on atomistic scales. We adopted an atomistic growth model that

uses a KMC technique to track the free boundary. The model allows for

both phase change and exchange between liquid and solid atoms on the

surface of the crystal and is coupled to a continuum model for heat and

diffusion equations at the solid-liquid interface. The present study has

demonstrated that the KMC algorithm is useful in contributing to our

understanding of solution phase crystal growth, especially of nanocrystal

growth. For small length and time scales, this approach provides a simple,

effective front tracking with fully resolved atomistic detail. The technique

was used to make realistic predictions regarding surface morphology of
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crystals.

We have achieved all the research objectives mentioned in Chapter 1.

Firstly we showed, that the KMC algorithm is suitable to study the process

of solidification in order to explore the evolution and morphology of crys-

tal structure. Secondly, the model was then applied to the numerical finite

difference method by using an explicit discretization to solve the heat and

diffusion equations. The solute concentration (CL) on the liquid site of the

interface was calculated. Finally, the solidification and hopping rates were

calculated. The anisotropy is included in the model as a surface diffusion

process, and the growth rate of a dendrite is found to increase monotoni-

cally with the surface anisotropy. Thus, the branching process (including

secondary and nascent tertiary branches) occurs at earlier stages of growth

when the value of the surface anisotropy is increased. On the contrary, at

low surface anisotropy the crystallite is fully faceted.

In Chapter 5, as expected from the large value of Lewis number, the

thickness of the thermal boundary layer is much larger than that of the

solutal boundary layer. Even though the Lewis number is large, the initial

melt concentration is made low enough that the interface temperature is

significantly different from the far-field value. The tip velocity when Lewis

number Le = 1 of the Continuum-KMC model is successfully compared

with the prediction by Schulze [101] and Tan et al. [139]. The prediction

of tip velocity by Karma [162] also agree well with our result when the

Le = 1000.

The kinetic Monte Carlo algorithm for the deposition code in Chap-

ter 4 was extended to include the process of a solute diffusion in the fluid

in Chapter 6. We placed a series of single atoms at the edge of the sim-

ulation cells and allowed them to diffuse inward. The uniform rate of a

single atom was set quite fast to imitate diffusion in the solute. The final

shape of the crystal in the two models, the Continuum-KMC model and

the Diffusion and Growth KMC model, is similar.

Although the numerical results show very complicated interface mor-
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phologies, topological changes can be simulated properly and efficiently.

The thesis may not completely solve the outstanding problem of selective

high quality crystal growth but it does provide the metrology by which

selective growth may be investigated further. This study has a lot of pre-

dictive capability however several issues have to be addressed before it

will be able to perform industrially relevant simulations.

7.2 Recommendations for future work

The model itself can be refined by considering the following:

• There is every reason to expect that the range of parameters address-

able by this technique can be greatly increased by coupling it to more

efficient methods for solving the heat and diffusion equations.

• The high fluctuation of the mass difference is due to the influence

of the random number and average velocity during the simulation.

This can be modified so that mass is strictly conserved by applying

the growth model to a discrete model for mass transfer.

• There is a need for the current model to simulate a specific element

like gold, silver or other metals by taking realistic parameters and

comparing the results to experimental data.

• This method will enable researchers to explain why certain crystal

shapes form under particular conditions during growth, and may

enable nanotechnologists to design techniques for growing nanocrys-

tals with specific shapes for a variety of applications, from catalysis

to the medicine field and electronics industry.



Appendix A

Stochastic processes

A stochastic process is the time evolution of a stochastic variable, Y . Thus

the stochastic process is described by its position Y (t) at time t ∈ [0, 1], t ∈
[0,∞], or t ∈ [0, 1, ..., n]. A stochastic variable is defined by specifying:

1. the set of possible values (called ”range”, ”set of states”, ”sample

state” or ”phase space”), and

2. the probability distribution over this set. The set can be discrete (e.g.

number of molecules of a component in a reacting mixture), contin-

uous (e.g. the velocity of a Brownian particle) or multidimensional.

In the latter case, the stochastic variable is a vector (e.g. the three

velocity components of a Brownian particle).

Example for stochastic processes are Brownian motion, random walks,

Poisson and Markov processes. Figure A.1 gives a more intuitive interpre-

tation of a stochastic process. At successive times, the most probable value

of Y have been drawn as heavy dots. The most probable trajectory can be

selected from such a picture. Two or more trajectory can occur with equal

probability.
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t
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Figure A.1: A schematic interpretation of a stochastic process, Y , as a func-
tion of time t. The heavy dots indicates the most probable values of Y .



Appendix B

Markov Processes

In order to understand the Markov processes, the conditional probability

should be defined.

B.1 The Conditional Probability

The conditional probability P1|1(y2, t2|y1, t1) is defined through the follow-

ing relation:

P2(y1, t1; y2, t2) = P1|1(y2, t2|y1, t1)P1(y1, t1) (B.1)

which means that the joint probability P2 of finding the system in config-

uration y1 at t1 and y2 at t2 is equaled to the probability of finding y2 at t2,

given y1 at t1 multiplied by the probability P1(y1, t1) of finding y1 at t1. In

general, the conditional probability is given as

P1|n(yn+1, tn+1; ...; yn+l, tn+l|y1, t1; ...; yn, tn) =
Pn+1(y1, t1; ...; yn, tn; yn+1, tn+1; ...; yn+l, tn+l)

Pn(y1, t1; ...; yn, tn)
(B.2)

where Pn(y1, t1; ...; yn, tn) is the probability that the stochastic variable, Y ,

assumes the value y1 at t1, y2 at t2 and up to yn at tn.
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B.2 Markov Property

The Markov process is defined by the following relation, which is called

the Markov property, for any set of n successive times (i.e., t1 < t2 < ... <

tn) [183]:

P1|n−1(yn, tn|yn−1, tn−1; ...; y1, t1) = P1|1(yn, tn|yn−1, tn−1). (B.3)

The Markov property merely expresses that, for a Markov process, the

probability of a transition from a value yn−1 at time tn−1 to a value yn

at time tn, depends only the value of y at the time tn−1, and not on the

previous history of the system. A Markov process is only dependent on

P1(y1, t1) and P1|1(y2, t2|y1, t1) and subsequently the whole hierarchy can

be reconstructed from them, where P1|1 is called the transition probability.

For example, if t1 < t2 < t3, it can be written as

P3(y1, t1; y2, t2; y3, t3) = P2(y1, t1; y2, t2)P1|2(y3, t3|y1, t1; y2, t2)
= P1(y1, t1)P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2) (B.4)

The above equation can be continued successively to find all the proba-

bilities Pn. The Markov property states that, to make predictions of the

behaviour of a system in the future, it suffices to consider only the present

state of the system and not the past history. The details of the Markov

processes can be found in [184, 185, 186].
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Derivation of the Master Equation

The derivation of the Master Equation presented here is significantly sim-

plified and a more complete derivation can be found in [76, 86, 185]. In

order to obtain such a Master Equation, one has to first introduce the con-

ditional probability described in B.1. The derivation starts by integrating

Equation (B.4) with respect to y2. Thus, for t1 < t2 < t3 it follows that

∫
P3(y1, t1; y2, t2; y3, t3)dy2 =

∫
P1(y1, t1)P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2)dy2

P2(y1, t1; y3, t3) = P1(y1, t1)

∫
P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2)dy2

P1|1(y3, t3|y1, t1)P1(y1, t1) = P1(y1, t1)

∫
P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2)dy2.

(C.1)

Dividing both sides of Equation C.1 by P1(y1, t1) gives the conditional

probability of Markov processes obeying the Chapman-Kolmogorov equa-

tion

P1|1(y3, t3|y1, t1) =
∫

P1|1(y3, t3|y2, t2)P1|1(y2, t2|y1, t1)dy2. (C.2)

This so-called Chapman-Kolmogorov equation states that a process start-

ing at t1,with value y1, reaches y3 at t3 via any one of the possible values y2
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at the intermediate time t2. If the Markov process is stationary, the transi-

tion probability P1|1 depends only on the time interval τ

P1|1(y2, t2|y1, t1) = Tτ (y2|y1), where τ = t2 − t1.

Here Tτ denotes the transitional probability within the time interval τ from

a state y1 to a state y2. Using the Chapman-Kolmogorov equation for Tτ

gives

Tτ+τ0(y3|y1) =
∫

Tτ0(y3|y2)Tτ (y2|y1)dy2.

The Master Equation can consequently be derived from the Chapman-

Kolmogorov equation. Taking the transition probability Tτ0 and expand

it in a Taylor series over zero, considering small τ0, then the transition

probability becomes

Tτ0(y3|y2) = δ(y2 − y3) + τ0W (y3|y2) +O(τ 20 ). (C.3)

This equation defines W (y3|y2) as the transition rate (transition probability

per unit time) to go from y2 to y3. The delta function expresses that the

probability to stay at the same state after time zero is one, whereas the

time to change after time zero equals zero. Equation C.3 must satisfy the

normalization property
∫
Tτ0(y3|y2)dy2 = 1. Therefore the integral over

y3 must equal one. In order for that to happen, the above form must be

corrected in the following sense:

Tτ0(y3|y2) = (1−Wtot(y2)τ0)δ(y3 − y2) + τ0W (y3|y2) +O(τ 20 ). (C.4)

In the first term, the factor (1−Wtot(y2)τ0) gives the probability to remain

in state y2 up to time τ0. That means that Wtot(y2) is the total probability to
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leave the state y2, defined as

Wtot(y2) =

∫
W (y3|y2)dy3. (C.5)

Inserting this into the Chapman-Kolmogorov equation results in

Tτ+τ0(y3|y1) = (1−Wtot(y3)τ0)Tτ (y3|y1) + τ0

∫
W (y3|y1)Tτ (y2|y1)dy2, (C.6)

and dividing it by τ0 gives

Tτ+τ0(y3|y1)− Tτ (y3|y1)
τ0

=

∫
W (y3|y2)Tτ (y2|y1)dy2 −

∫
W (y2|y3)Tτ (y3|y1)dy2,

in which we have use the definition of Wtot. In the limit τ0 → 0 yields the

differential version of the Chapman-Kolmogorov equation:

∂

∂τ
Tτ (y3|y1) =

∫
W (y3|y2)Tτ (y2|y1)dy2 −

∫
W (y2|y3)Tτ (y3|y1)dy2, (C.7)

This equation is valid for the transition probability of a stationary Markov

process obeying equation is called the Master Equation. Rewriting Equa-

tion (C.7) and suppressing redundant indices gives the

∂P (y, t)

∂t
=

∫
W (y|y′)P (y′, t)dy′ −

∫
W (y′|y)P (y, t)dy′.

If the range of Y is a discrete set of states with labels C, the equation re-

duces to

∂pn(t)

∂t
= −

∑

n′

Wn′npn(t) +
∑

n′

Wnn′pn′(t),

which is the Master Equation (3.1) given in Subsection 3.3.1.
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Proof of Equation (3.9)

If N is a discrete random variable taking values in the non-negative in-

tegers {0, 1, ...}, then the probability-generating function G(s, t) of N is

defined as

G(s, t) =
∞∑

n=0

snpn(t), (D.1)

where p is the probability mass function of N and s is independent of

time t. Note that the subscripted notation pn is often used to emphasize

that this pertains to a particular random variable N , and to its distribution.

Differentiating Equation (D.1) and substituting Equation (3.1) into it gives:

dG(s, t)

dt
=

∞∑

n=0

snṗn(t), where ṗn(t) is given in Equation (3.8)

=
∞∑

n=0

sn [q(pn−1 − pn)]

= qs

∞∑

n=1

sn−1pn−1(t)− q

∞∑

n=0

snpn(t)

dG(s, t) = q(s− 1)G(s, t)dt

G(s, t) = G(s, 0)eq(s−1)t (D.2)
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Note, that G(s, 0) =
∑∞

n=0 s
npn(0) = 1 and only the n = 0 term survives

due to the initial condition pn(0) = δn,0 given in Equation (3.7). Thus,

G(s, t) = eq(s−1)t

= eqste−qt

=
∞∑

n=0

(qst)n

n!
e−qt

=
∞∑

n=0

snpn(t)

pn(t) =
(qt)n

n!
e−qt,

which is Equation (3.9) given in Subsection 3.3.2.
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Transition State Theory (TST)

Transition state theory (TST) is a method for calculating the rate of oc-

currence of rare events. In the theory developed by Eyring [187], during

a chemical reaction the initial reactants, which are in a stable state with

low potential energy, interact to form an activated complex (a transition

state). This activated complex has high potential energy and is unstable.

The activated complex rapidly decays to the stabler (lower potential en-

ergy) products. Figure E.1 outlines the TST in which a two state prob-

lem is presented, consisting of the initial state i (reactant), the final state

j (product) and the activated complex (transition state) x0 separating the

two states. By assuming a canonical ensemble, it is possible to derive an

expression for the rate at which the infinite heat bath pushes the atom at

state i through the activated complex to state j. Let us assume that an

atom is at the position, ∆x, around the activated complex and it is moving

towards state j. The probability of finding the atom in this region around

the activated complex x0 is given by [188]

P (∆x) =
exp(−βV (x0))∫ x0

−∞
exp(−βV (x))dx

, (E.1)

where β = (kBT )
−1, kB is Boltzmann’s constant, T is the temperature of

the system, and V (x) is the potential energy at state x. The upper limit of
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∆x
Potential
Energy (V )

∆E

Ei

Ej

intial state final state

Reaction Coordinate

ji x0

Figure E.1: Schematic illustration of the lowest free energy path for a ther-
mally activated jump of an adatom from state i to state j over the saddle
point x0.

the normalization integral in Equation (E.1) indicates the assumption that

the atom resides at the initial state i. Thus, the probability density for the

atom having velocity v is written as:

P (v) =
exp(−1

2
βmv2)∫∞

−∞
exp(−1

2
βmv2)dv

, where V (x0) =
1

2
mv2,

=

(
mβ

2π

) 1

2

exp(−1

2
βmv2). (E.2)

The atom with positive velocity v will enter the final state j in a short

time interval ∆t, providing that ∆x is smaller than v∆t. Then the total

probability that the atom will jump from site i to site j is

Pi→j =

∫ ∞

0

P (v)P (∆x = v∆t)dv. (E.3)
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Equation (E.3) may then be rewritten incorporating Equation (E.2), which

gives the expression for the transition rate

vi→j =
exp(−βV (x0))

(2πmβ)
1

2

∫ x0

−∞
exp(−βV (x))dx

. (E.4)

It is thus clear that the problem reduces to solve the integral in Equa-

tion (E.4). We shall always assume the condition V (x0) >> kBT then V (x)

can be replaced with its expansion to the second order. The rate of a pro-

cess can therefore be expressed as:

vi→j = viexp(−∆E/kBT ),

where vi =
kBT
h

is the prefactor, h is Planck’s constant, and ∆E is the en-

ergy barrier. TST is described in more detail in references [189, 190].
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Supplementary Code

In this appendix, extracts from the programs written in this study are

given. The program was written in Fortran.

PART 1: Subroutine for clearing an atom and updating the

lattice site.

subroutine clear_site (i, j, k, lattice, neighbors, event

, ec, listloc,e)

implicit none

integer npmax,nmax

parameter (npmax=100000,nmax=150)

integer i,j,k

integer lattice(-nmax:nmax,-nmax:nmax,-nmax:nmax)

integer listloc(-nmax:nmax,-nmax:nmax,-nmax:nmax)

integer neighbors(-nmax:nmax,-nmax:nmax,-nmax:nmax)

integer ec(0:12),event(0:12,npmax,3)

integer e(12,3)

integer i2, j2, k2, i3, j3, k3, l, m, m2, n, n2, nwrap

if (lattice(i,j,k).ne.1) then

print *,’Attempt to clear an already empty location’

,i,j,k
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stop

end if

lattice(i,j,k)=0 !this site turns off

n=neighbors(i,j,k)

if (n .ne. 0) then

i3=event(n,ec(n),1) !this is last guy on that list

j3=event(n,ec(n),2)

k3=event(n,ec(n),3)

m=listloc(i,j,k)

listloc(i3,j3,k3)=m !last guy is moving down

event(n,m,1)=i3

event(n,m,2)=j3

event(n,m,3)=k3

ec(n)=ec(n)-1

else

print *,’Warning, clearing cell that has no

neighbors’

endif

! if cell has 3 or more neighbours, add it to event(0,,)

if (n .ge. 3) then

ec(0)=ec(0)+1 !add L to event(0,,) list

event(0,ec(0),1)=i

event(0,ec(0),2)=j

event(0,ec(0),3)=k

listloc(i,j,k)=ec(0)

endif

! each neighbor now has one less neighbour

! delete neighbour from event(n2,,) and add it to

event(n2-1,,)

do l=1,12

i2=nwrap(i+e(l,1))
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j2=nwrap(j+e(l,2))

k2=nwrap(k+e(l,3))

n2=neighbors(i2,j2,k2) !this is how many L had

neighbors(i2,j2,k2)=n2-1

if (lattice(i2,j2,k2).eq.1) then

m2=listloc(i2,j2,k2) !this is where he was on

list L

i3=event(n2,ec(n2),1) !this is last guy on that

list

j3=event(n2,ec(n2),2)

k3=event(n2,ec(n2),3)

listloc(i3,j3,k3)=m2 !last guy is moving down

event(n2,m2,1)=i3

event(n2,m2,2)=j3

event(n2,m2,3)=k3

ec(n2)=ec(n2)-1

n2=n2-1 !L now has one fewer neighbors

! event(0,,) is for empty cells with 3 or more

neighbors

! not for occupied cells with 0 neighbors

if (n2 .ne. 0) then

ec(n2)=ec(n2)+1 !add L to new list

event(n2,ec(n2),1)=i2

event(n2,ec(n2),2)=j2

event(n2,ec(n2),3)=k2

listloc(i2,j2,k2)=ec(n2)

endif

else !(lattice(i2,j2,k2).eq.0) then

if (n2 .eq. 3) then ! number of neighbors of

(i2,j2,k2) is going from 3 to 2

! so delete the empty cell
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(i2,j2,k2) from event(0,,)

m2=listloc(i2,j2,k2) !this is where he was

on list L

i3=event(0,ec(0),1) !this is last guy on

that list

j3=event(0,ec(0),2)

k3=event(0,ec(0),3)

listloc(i3,j3,k3)=m2 !last guy is moving

down

event(0,m2,1)=i3

event(0,m2,2)=j3

event(0,m2,3)=k3

ec(0)=ec(0)-1

end if

endif

enddo

return

end

PART 2: Subroutine for setting an atom and updating the

lattice site.

subroutine set_site (i4, j4, k4, lattice, neighbors,

event, ec, listloc,e)

implicit none

integer npmax,nmax

parameter (npmax=100000,nmax=150)

integer lattice(-nmax:nmax,-nmax:nmax,-nmax:nmax)

integer listloc(-nmax:nmax,-nmax:nmax,-nmax:nmax)

integer neighbors(-nmax:nmax,-nmax:nmax,-nmax:nmax)

integer ec(0:12),event(0:12,npmax,3)

integer e(12,3)
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integer i2, j2, k2, i3, j3, k3, l, m2, n2, n4

integer i4,j4,k4, nwrap

do l=1,12

i2=nwrap(i4+e(l,1))

j2=nwrap(j4+e(l,2))

k2=nwrap(k4+e(l,3))

n2=neighbors(i2,j2,k2) !this is how many L had

neighbors(i2,j2,k2)=n2+1

if (lattice(i2,j2,k2).eq.1) then

if (n2 .ne. 0) then

m2=listloc(i2,j2,k2) !this is where he was

on list L

i3=event(n2,ec(n2),1)!this is last guy on

that list

j3=event(n2,ec(n2),2)

k3=event(n2,ec(n2),3)

listloc(i3,j3,k3)=m2 !last guy is moving down

event(n2,m2,1)=i3

event(n2,m2,2)=j3

event(n2,m2,3)=k3

ec(n2)=ec(n2)-1

end if

n2=n2+1 !L now has one more neighbors

ec(n2)=ec(n2)+1 !add L to new list

event(n2,ec(n2),1)=i2

event(n2,ec(n2),2)=j2

event(n2,ec(n2),3)=k2

listloc(i2,j2,k2)=ec(n2)

else ! if (lattice(i2,j2,k2).eq.0) then
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if (n2 .eq. 2) then ! empty cell (i2,j2,k2) is

going from 2 to 3 neighbors

! so add it to event(0,,)

ec(0)=ec(0)+1 !add L to event(0,,) list

event(0,ec(0),1)=i2

event(0,ec(0),2)=j2

event(0,ec(0),3)=k2

listloc(i2,j2,k2)=ec(0)

end if

endif

enddo

if (lattice(i4,j4,k4) .ne. 0) then

print *,’Setting a cell thats already set!’,i4,j4,k4

stop

endif

lattice(i4,j4,k4)=1 !this site turned on

n4=neighbors(i4,j4,k4)

! if cell has 3 or more neighbors, delete it from

event(0,,)

if (n4 .ge. 3) then

m2=listloc(i4,j4,k4)!this is where he was on list L

i3=event(0,ec(0),1) !this is last guy on that list

j3=event(0,ec(0),2)

k3=event(0,ec(0),3)

listloc(i3,j3,k3)=m2 !last guy is moving down

event(0,m2,1)=i3

event(0,m2,2)=j3

event(0,m2,3)=k3

ec(0)=ec(0)-1

end if

if (n4 .ne. 0) then
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ec(n4)=ec(n4)+1 !add L to new list

event(n4,ec(n4),1)=i4

event(n4,ec(n4),2)=j4

event(n4,ec(n4),3)=k4

listloc(i4,j4,k4)=ec(n4)

end if

return

end

PART 3: Calculate the temperature interface TM and update

the temperature and concentration fields.

if(deltat.gt.cfl)then

time=time+deltat !deltat is time since last

temperature update

time2=time2+deltat !for printing

nntime=0

CALL DTIME(TARRAY, RESULT1)

print *, ’results ’, result1, result2

print *,’C’,time,result2-result1,deltat

call flush(6)

num_sld = 0

num_bnd = 0

do i=mini,maxi

do j=minj(i),maxj(i)

do k=mink(i,j),maxk(i,j)

if(lattice(i,j,k) .eq. 1)then

tsum=0.0d0

do m=1,12

tsum=tsum+temp(i+e(m,1),j+e(m,2),

k+e(m,3),nold)

enddo
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temp(i,j,k,new)=tsum*one12th

conc(i,j,k,new)=Cs

else

tsum=0.0d0

csum=0.0d0

do m=1,12

tsum=tsum+temp(i+e(m,1),j+e(m,2),

k+e(m,3),nold)

csum=csum+conc(i+e(m,1),j+e(m,2),

k+e(m,3),nold)

enddo

temp(i,j,k,new)=tsum*one12th

conc(i,j,k,new)=conc(i,j,k,nold)+

dtbyLe*(csum-12d0*conc(i,j,k,nold))

endif

enddo

enddo

enddo

call flush(6)

do mmm=1,sec

i=sevent(mm,1)

j=sevent(mm,2)

k=sevent(mm,3)

tsum=0.0d0

csum=0.0d0

do mmm=1,12

tsum=tsum+temp(i+e(mmm,1),j+e(mmm,2),

k+e(mmm,3),new)

csum=csum+conc(i+e(mmm,1),j+e(mmm,2),

k+e(mmm,3),new)

enddo
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nn = neighbors(i,j,k)

TI= (((-(1-(dgf*(tsum*one12th))-dgf-(dgf*

(Gamma*(dfloat(nn)-3.0d0)))))/(2*dgf))

+((sqrt(((1-(dgf*(tsum*one12th))-dgf-

(dgf*(Gamma*(dfloat(nn)-3.0d0))))**2)-

(4*dgf*(-1-(gl*(csum*one12th))+(dgf*

(tsum*one12th))-(Gamma*(dfloat(nn)-

3.0d0))+(dgf*(tsum*one12th)*(Gamma*

(dfloat(nn)-3.0d0)))))))/(2*dgf)))

ClI=(gl*((1+(dgf*(TI-(tsum*one12th))))**(-1)

*(csum*one12th)))

temp(i,j,k,new)=TI

conc(i,j,k,new)=ClI

enddo

CALL DTIME(TARRAY, RESULT2)

print *,’D’,time,result2-result1,deltat

deltat=deltat-cfl

call flush(6)

endif

PART 4: Calculate the maximum height and tip velocity in

-z face

! -z face

rtipmax2 = 0.0d0

do i=-nmax+1,nmax-1

do j=-nmax+1,nmax-1

do k=0,nmax-1

xx=dfloat(i+k)

yy=dfloat(j+k)

zz=dfloat(i+j)

if((lattice(i,j,k).eq.1).and.(neighbors(i,j,k).
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lt.12))then

rtip2=bond*dsqrt(xx**2+yy**2+zz**2)

if(rtip2 .gt. rtipmax2)then

rtipmax2 = rtip2

imax2 = i

jmax2 = j

kmax2 = k

endif

endif

enddo

enddo

enddo

vtip2=(rtipmax2-rmax)/time

rtipsum2 = rtipmax2

do l = 1,12

i2=imax2+e(l,1)

j2=jmax2+e(l,2)

k2=kmax2+e(l,3)

if(lattice(i2,j2,k2).eq.1)then

xx=dfloat(i2+k2)

yy=dfloat(j2+k2)

zz=dfloat(i2+j2)

rtip2=bond*dsqrt(xx**2+yy**2+zz**2)

rtipsum2 = rtipsum2 + rtip2

endif

enddo

rtipavg2 = rtipsum2/(neighbors(imax2,jmax2,kmax2)+1)

vtipavg2 = (rtipavg2-rmax)/time
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