
 

 

 

 

 

 

Natural buffer placement and downstream 

flood mitigation in rural Hawkes Bay,       

New Zealand 

 

 

 

 

 

 

 

John Ballinger 

 

 

A thesis submitted in fulfilment of the requirements for the degree of Masters of Science in  

Physical Geography, at Victoria University of Wellington, New Zealand 

 

 School of Geography, Environment and Earth Sciences  

Victoria University of Wellington 

 

March 2011 

  



 
 

ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

“If you're going to live by the river, make friends with the crocodile” Indian proverb 



 
 

iii 
 

Abstract 

Small scale field studies from around the world have shown that agricultural land management has a 

significant effect on the timing and magnitude of flood peaks. One land management technique 

called ‘soft’ engineering utilises strategically planted trees, wetlands, and other natural buffers to 

temporarily store flood water in upland catchments. This helps mitigate lowland flooding by delaying 

the release of water into the river system which dampens the peaky response and therefore reduces 

the pressure on urban areas downstream. With these issues in mind, this MSc thesis examines the 

landscape benefits arising from both existing and optimally located natural buffers within the 

Hawkes Bay region of New Zealand, quantifying their capacity to mitigate flooding under varying soil 

and climatic conditions through; 

a) Collating existing data and knowledge; 

b) Collecting further targeted data on buffer impacts; and 

c) Using this data to inform and apply a flood mitigation model to examine options for buffer 

placement and simulate flow response times under different land management scenarios. 

The ability of any model to make practical predictions is largely dependent on the quality of data 

input. This research established that the nationally available 25m Digital Elevation Models (DEMs) 

are not suitable for detailed hydrological modelling at the farm scale. A 10m DEM was the coarsest 

resolution considered appropriate. In addition, the nationally available soil information while 

generally appropriate benefited from moderate “ground truthing” to better represent the soils 

“true” hydraulic properties. Further targeted data relating to the influence of trees on soil infiltration 

and storage capacity was collected. Measurements of hydraulic conductivity found that soil under 

individual populous spp. trees and a Cupresses macrocarpa shelterbelt were 3.1 and 5.5 times as 

conductive respectively as soil under pasture at 10m from the trees. The soil was also less 

compacted near the trees when the livestock were excluded. This improved the structure and thus 

water storage capacity of soil. These results informed the buffer assumptions when simulating 

rainfall-runoff under the different land management scenarios. 

The modelling results suggest that the capacity of natural buffers to reduce quickflow is strongly 

influenced by soil antecedent conditions. Under very wet soil conditions the buffers had little extra 

capacity to store water when subjected to large rainfall events. In drier soil conditions large rainfall 

events were absorbed by the buffers with considerable reductions in quickflow. This suggests that 

buffers occupying a relatively small amount of land but sited in areas of high flow accumulation 

could prove very effective at mitigating intense rainfall, especially in drier summer months e.g. sub-

tropical storms. Although the results from the modelling are speculative, the outcome is never the 

less encouraging. Results from both the model simulations and field measurements of hydraulic 

conductivity suggest that strategically placed ponds and small scale planting can be used to improve 

the infiltration and water storage capacity of extensive areas of grazed pasture. This will likely 

reduce runoff and erosion rates and thereby improve stream water quality and farm productivity at 

both the farm and wider catchment scale. Considering that flooding is the most frequent and costly 

natural hazard worldwide, natural buffers with their low maintenance costs and recognized 

ecosystem co-benefits could offer a cost effective and sustainable solution as part of future flood 

management planning.  
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Chapter 1 - Introduction 

Flooding is the most frequent and costly natural hazard worldwide (Morris et al. 2010). In the future, 

the frequency and magnitude of floods can be expected to increase due to the influence of climate 

change, land management, and further development of flood plains and coastal lowlands (Smith and 

Ward 1998). It is estimated that extreme rainfall in the period 1985 to 2008 has been responsible for 

USD 700 billion of damages including indirect costs (Morris et al. 2010). Although the largest share of 

economic loss is borne by urban communities, agricultural land represents large proportions of flood 

producing areas (Morris et al. 2010). Small scale field studies from around the world have shown 

that agricultural land management has a significant effect on the timing and magnitude of flood 

peaks (see Chapter 2). This is because agricultural practises influence soil hydraulic properties 

(storage capacity and hydraulic conductivity) and therefore strongly affect the local generation of 

surface and subsurface runoff (O'Connell et al. 2006). One land management technique called ‘soft’ 

engineering utilises strategically planted trees, wetlands, and other natural buffers to temporarily 

store flood water in upland catchments. This helps mitigate lowland flooding by delaying the release 

of water into the river system. In turn, this dampens the peaky response and therefore reduces the 

pressure on urban areas downstream. With this in mind this thesis applies a flood mitigation model 

from the POLYSCAPE toolbox (described in Chapter 6 section 6.3) to an upland farm in central 

Hawkes Bay to predict rainfall-runoff under nine different land use and rainfall scenarios. Particular 

emphasis was given to the placement of natural buffers within the landscape when quantifying their 

flood mitigation effectiveness. 

1.1 Aim 

The aim of this research is to examine the landscape benefits arising from both existing and 

optimally located natural buffers within the Hawkes Bay region of New Zealand, quantifying their 

capacity to mitigate flooding under varying soil and climatic conditions through; 

a) Collating existing data and knowledge; 

b) Collecting further targeted data on buffer impacts; and 

c) Using this data to inform and apply a flood mitigation model to examine options for buffer 

placement and simulate flow response times under different land management scenarios. 

The flood mitigation tool is a semi-distributed, spatially explicit model which requires data describing 

catchment elevation, rainfall, evaporation, discharge, land use and soil type to accurately model 

rainfall-runoff. Field work measuring soil hydraulic conductivity, texture, and bulk density 

augmented nationally available land and soil information. One important factor in the wide scale 
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application of the flood mitigation tool, or indeed any flood risk prediction model is the cost 

associated with obtaining the necessary data to accurately apply the model. This is especially 

difficult for local authorities who manage large areas but have limited financial resources. In New 

Zealand the national scale data is of coarse resolution. The cost of obtaining finer resolution data can 

be significant. Therefore an important question is to what degree and in what environments can the 

national scale data (notably DEM and land and soil information) be relied upon to produce 

sufficiently accurate output for the flood management process? Furthermore, if the data is 

unreliable or not reliable in all environments, then what would be required to address this issue, and 

is this feasible? Hence, a fourth sub-aim is to provide guidance on what might be required for future 

applications. 

1.2 Objectives 

To achieve the aim this research was broken into the following objectives:    

1. Ground truth the national scale land and soil information held in the New Zealand Land 

Resource Inventory (NZLRI) and National Soil Database (NSD) by digging soil pits and 

collecting samples from selected sites within the Ruataniwha Plains in Hawkes Bay based on 

land type, topography, soil and geology. Measure the hydraulic conductivity, soil texture, 

bulk density, and the depth to slowly permeable layer at each sample location and compare 

to the national data. This data is used to assess the extent to which the national data can be 

used for detailed flood modelling and management at the farm scale.  

2. As tree shelterbelts are proposed as natural flood buffers, measure the changes in soil 

hydraulic properties at a distance of 1, 5 and 10 metres from the trunk of two commonly 

found species of trees on New Zealand farms: a Cupressus macrocarpa shelterbelt and 

individual Populus spp. trees.  

3. Collect elevation, rainfall, evaporation, and soil moisture data from Hawkes Bay Regional 

Council and NIWA’s National Climate Database (Cliflo).  

4. To maximise flood mitigation benefits, calculate the optimal or near optimal locations for 

natural buffer placement using the flood mitigation tool within POLYSCAPE. Compare model 

output using six Digital Elevation Models (DEMs) of differing resolutions. These include two 

national scale DEMs (25m) created by GeographX and Landcare Research, and four DEMs 

(25m, 10m, 5m, 1m) created from Light Detection and Ranging (LiDAR) data. This is to 

determine both the limits of DEM resolution appropriate for effective prediction of flood 
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buffering effects at the farm scale, and to show the differences between the same resolution 

DEMs from different data sources. 

5. Explore the flood mitigating effectiveness of natural buffers by simulating runoff response 

for nine different land use and rainfall scenarios. The land use layers include the farm under 

current land use (existing buffers); the farm with existing buffers removed; and the farm 

with additional strategically placed buffers. The rainfall simulations include a representative 

“wet” and “dry” record and the same records modified for a 1°C and 2°C change following 

national guidance (MfE 2010) to reflect potential climate change impacts.   

1.3 Scope 

This thesis is broken down into the following chapters. The remainder of this chapter briefly 

discusses historical floods and future flood frequency trends before considering Natural Flood 

Management (NFM) as a complimentary approach to traditional engineered solutions. It concludes 

with a description of the study areas. In Chapter 2, a literature review looks for evidence from peer-

reviewed studies for changes in flood risk caused by changes in vegetation and open water storage 

basins. In Chapter 3, the fundamental principles of soil water movement are explained before the 

challenges associated with measuring hydraulic conductivity and other hydraulic properties are 

discussed. This is followed by a brief overview of different measurement methods with a detailed 

description of the field based constant head Guelph Permeameter method. A detailed description of 

the experimental methodology is presented in Chapter 4, with the results and discussion in Chapter 

5. For the rainfall-runoff modelling, a spatially explicit physically based hydrological model is applied 

and the results from the different land management and rainfall scenarios discussed in Chapter 6. 

Chapter 7 concludes the thesis with a discussion of main findings and recommendations for future 

research.  

1.4 Background and context 

Floods are a natural landscape forming process responsible for the development of river valleys, 

floodplains, and a rich diversity of aquatic and riparian habitats (Meissner 2003). Towns and cities 

have developed on floodplains because they provide flat, fertile land with access to fresh water, and 

historically provided inexpensive transport via the river. However, with floodplain exploitation 

comes the risk of destructive flooding to homes, infrastructure and livelihood, and in extreme events 

the loss of life. Despite advances in technology and investment in flood control works, flood 

occurrence and the resulting hardship have been steadily increasing (Kundzewicz 2002). Indeed, 
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flooding is the most frequent and costly natural hazard worldwide and leads all other natural 

disasters in the number of people affected and in resultant economic losses (Morris et al. 2010).  

 

How vulnerable a society is to flooding is a function of the exposure to the hazard and their adaptive 

capacity (Hennessy et al. 2007). Both have increased through time but exposure is increasing faster 

than adaptive capacity and therefore society’s vulnerability is increasing also. Loster’s (1999) analysis 

of the world’s great flood disasters found that the number of flood disasters over the period 1990 to 

1998 were three times greater than the previous three and a half decades from 1950 to 1985. Since 

then, many more damaging floods have occurred including wide spread flooding across Europe in 

2002, the inundation of New Orleans by Hurricane Katrina in 2005, the heavy monsoonal rains in 

Pakistan in 2010, and most recently the suffering caused by river flooding in Queensland, Australia 

2011. Between 1920 and 1983, New Zealand experienced 935 damaging floods with total flood 

damage costs averaging NZ $120 million/yr from 1968 to 1998 (NZIER 2004).  

 

A paper published recently in Nature has proven the link between anthropogenic climate change 

and rainfall intensification in the Northern Hemisphere (Min et al. 2011). This is because a warmer 

atmosphere can hold more water causing the intensity and/or duration of rainfall to increase. To 

date the contribution of climate change to flood events in the Southern Hemisphere has been hard 

to distinguish given other sources of climatic variability such as El Nino-Southern Oscillation (ENSO) 

(Hennessy et al. 2007), but since the world shares one atmosphere it is likely this effect is occurring 

in the Southern Hemisphere also.  

 

Perhaps a more significant factor contributing to flood exposure is human management of rivers and 

their catchments. It is generally thought that agricultural intensification over the last five decades 

has led to more frequent and intense floods following heavy rainfall (Morris et al. 2010). This is 

attributed to the “improvement” of drainage systems by draining wetlands so water can be 

discharged quickly from agricultural land, and clearing of natural vegetation from floodplains and hill 

country. This has reduced the capacity of catchments to store and slowly release water producing 

flashy flow regimes (Kundzewicz 2002). Furthermore, continued floodplain development has 

straightened and confined rivers within narrow channels, disconnecting them from their floodplains. 

Now water has nowhere to go in times of flood and will either overtop local flood defences, or be 

transmitted downstream as a wave increasing flood risk in lower catchments (Johnson et al. 2008). 

In industrialized countries the traditional approach to this problem has been to build higher flood 

defences, but as McConchie (2000) notes, it is usually economically impossible to provide protection 
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against the maximum possible flood1. The issue of engineering failure was demonstrated in the USA 

(one of the wealthiest nations on earth) when the levees containing the Mississippi River failed to 

protect New Orleans from Hurricane Katrina and the resultant storm surge in 2005. In most 

industrialized countries natural flow regimes have been replaced by engineered solutions whereas 

developing countries lack the financial resources to build and maintain them. Instead, they rely on 

more basic approaches using traditional knowledge to cope with flood waters (Johnson et al. 2008). 

For an in-depth discussion of this fundamental dichotomy in flood management see Ogtrop et 

al.(2005). 

1.4.1 Sustainable Flood Management (SFM) 

The combination of engineered projects, degradation of natural buffering systems, and development 

on floodplains coupled with greater consideration for the environment has meant a more 

sustainable approach to flood management is required (Johnson et al. 2008). Hard engineering is 

appropriate in some cases, but it often only deals with the symptoms and not the causes of the 

flood. General “Sustainable Flood Management” (SFM) works with the entire river catchment and 

deals with flooding at the source in the upper catchment (WWF 2007). The paradigm shift from hard 

engineering to a more sustainable approach began to gain momentum in the 1990s e.g. Adams and 

Perrow (1999). There are many approaches to SFM which generally embrace economic, 

environmental, and social objectives. One of these approaches is cited by Johnson et al.(2008:2) who 

suggests that SFM include the following eight components: 

 

1. Floods legislation driven by good science, policy and planning;  

2. Flood monitoring networks and warning systems;  

3. Flood data for trend analysis and investigating flood generation processes;  

4. Protecting, benefiting and involving communities;  

5. Engineered flood protection schemes;  

6. Economics including capital costs, maintenance costs, environmental and social benefits;  

7. Protecting, restoring and enhancing the natural environment; and 

8. Natural flood management in functional flood control areas, involving restoration of natural 

features and natural processes, and catchment land use planning.  

                                                             
1 Derived from the upper end of flood frequency curves. The upper end can be evaluated by the recorded 
maximum floods in the region. If a frequency curve shows a flood in excess of anything experienced in the 
region and the frequency is not supported by data near that level, then the upper end of the curve is 
questionable (Riggs 1985). 
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1.4.2 Natural Flood Management (NFM) 

SFM is an approach with an integrated set of procedures covering an entire physical catchment from 

the upland source areas down to the lowland depositional areas. Of interest to this project is 

component 8, Natural Flood Management (NFM), which aims to reduce run-off rates in the uplands 

by restoring or enhancing natural buffers in key flood control areas to reduce downstream flooding. 

Many of the recommended management procedures are already part of best practices in farming, 

forestry, river and natural habitat management. The key components of NFM encompasses the set 

of techniques used, their location within the landscape, and their effectiveness in both the short and 

long term (Johnson et al. 2008). The set of techniques used in NFM are described in (WWF 2007) and 

include: 

 

 Reforestation of hillslopes; 

 Planting dense woodlands in gulleys;  

 Modifying agricultural practices;  

 Restoring upland wetlands, lowland wetlands and flood plains;  

 Restoring river channel meanders; 

 Controlling excessive erosion; and 

 Management of large woody material in watercourses.  

 
National initiatives such as “Making Space for Water” (England and Wales) and “Room for Rivers” 

(Netherlands) are investigating these techniques for floodplain management (Morris et al. 2010). 

These techniques offer opportunities for multiple benefits which include improved flood mitigation, 

amenity, protection against soil erosion, and increased bio-diversity and habitat connectivity. Such 

areas might also provide alternative sources of income for landowners through compensation for 

lost agricultural productivity, or by selective harvesting of timber/flood buffering trees. Before such 

programs are established, it is important to quantify the effectiveness of natural buffers under 

varying soil and climatic conditions. This is because vegetation affects soil water storage capacity, 

which in turn is sensitive to soil antecedent moisture levels. If the soil is near saturated (such as in 

winter) then its water storage capacity is less. If the soil is very dry (as in summer) then its water 

storage capacity is greater. With this in mind, this research utilises the flood mitigation tool within 

POLYSCAPE (described in Chapter 6 section 6.3) to explore how vegetated buffer areas affect soil 

storage and thus runoff under varying antecedent conditions.  
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1.5 Study area 

The combination of lithology, relief and climate make Hawkes Bay susceptible to periodic flooding.  

This research is being assisted by Hawkes Bay Regional Council (HBRC) and therefore the objective 

was to find a suitable catchment within Hawkes Bay whose land owners would permit research to be 

carried out over the period of the project. The criterion for catchment selection was that it must be 

within rural Hawkes Bay, be readily accessible by vehicle, and have sufficient capacity to generate 

flow to downstream areas. Of critical importance was the availability of high resolution LiDAR 

elevation data. While the Ruataniwha Plains have good coverage, the surrounding hill country which 

is the source area for downstream flooding is poorly represented. Despite this, two areas (Takapau 

farms and Mananui farm) bordering the Ruataniwha Plains in central Hawkes Bay satisfied all criteria 

and hence were selected.  

1.5.1 Overview of the Ruataniwha Plains 

The Ruataniwha Plains lie in an inter-montane basin between the Ruahine range in the west and the 

Ruakawa Range in the east. The western ranges create a rain shadow over the plains producing an 

average yearly rainfall of 800mm increasing to 1000mm moving east to west (Pollock 2010). Four 

large rivers, the Waipawa, Tukituki, Makaretu, and Tukipo Rivers as well as minor streams have 

gradually filled the basin with sediment over the last 200,000 years. The Ruataniwha Plains is an 

important horticultural region for the Hawkes Bay. There are a wide diversity of soils ranging from 

heavy clays to gravels, from shallow to deep, and from waterlogged to well drained (Griffiths 2004). 

Traditional agriculture is giving way to widespread intensification with large water storage and 

irrigation schemes proposed for the future (Tonkin & Taylor Ltd 2009). 
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Flood protection for the Ruataniwha Plains is provided by the ‘Upper Tukituki Flood Control Scheme’ 

which is designed to contain a 1 in 100 year flood. The scheme protects approximately 130,000ha of 

potentially floodable land including some 200ha of urban land in Waipawa and Waipukurau 

(Woodward-Clyde 1998). 

1.5.2 Takapau farms 

Site one is located on the southern border of the Ruantaniwha Plains near Takapau and extends 

across two farming properties (covering a combined area of 12.6km2); the first belonging to William 

Foley, and the second to Graeme Chapman. HBRC undertook extensive soil mapping in the area 

culminating in the Griffiths (2004) “Soils of the Ruataniwha Plains” management guide. This 

information is included in the National Soils Database (NSD). On Mr Foley’s farm these maps were 

further improved by Stokes (2006) as part of an environmental plan for the Foley Bros properties. 

The farms have a variety of features within the landscape. To the north is Ruataniwha Plains 

alluvium sitting on intermediate and low-lying terraces. South of the alluvium is limestone hill 

country which trends in a north-east/south-west direction. At the southern part of the study area is 

mudstone hill country, and to the south east, a steep greywacke outcrop. The limestone, mudstone 

and greywacke hill country surround rolling loess downlands with a basin drained by the Awanui 

Stream. The three predominant soil types are silt loams (Matapiro, Mangapakeha and Atua) whose 

extent has been defined by the underlying geology. A further three soils (Okawa sandy loam, 

Figure 1 Ruataniwha Plains showing the Takapau and Mananui study areas (dark grey). Two 
major rivers, the Waipawa and Tukituki join and then drain to the northwest 
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Taihape silt loam, and Takapau stony loam) are present in small quantities on the farm boundaries. 

The soils are termed ‘pallic’ which means they occur where there is a water deficit in summer and 

surplus in winter. They are all derived from Tongariro ash on loess and are typically shallow with 

20cm ash on gleyed silt loam (loess) on a fragipan at 35-60cm. The pan layers are cemented to a 

greater or lesser extent by silica weathered from volcanic ash which can be exacerbated by 

ploughing which can cause finer silts and clays to clog the coarse pores creating slow rates of 

drainage.  Griffiths (2004) notes that although the infiltration rate is moderate, permeability is very 

slow with water perching on the pan. Land use is primarily pastoral with winter cropping on the 

downlands. The livestock are sheep and cattle. The only wooded regions of note are a macrocarpa 

shelterbelt (Cupressus macrocarpa) dividing the two farms and a pine plantation (Pinus radiata) 

located on the greywacke outcrop on Mr Chapman’s property. Throughout the two properties are a 

number of farm dams with the largest reservoir located at the northern end of Mr Foley’s property. 

Of note on Mr Foley’s property is an old Maori pa site located at the summit of one of the limestone 

hills. This area is fenced off and local iwi must be consulted before any work is undertaken here. The 

relative complexity of the Takapau landscape led to the bulk of the field work (47 study sites) and all 

of the hydrological modelling being carried out here.  
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Figure 2 Takapau farms displaying sample points. Map was created from property data and satellite 
photography supplied by HBRC. 
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Figure 3 Soil type, geology, and land use for Takapau farms. Map was created with data from the New 
Zealand Land Resource Inventory (NZLRI) although the data for the land use section was improved through 
field investigations and digitizing from aerial photography. 



 
 

12 
 

1.5.3 Mananui farm 

Site 2 is located on the north-eastern boundary of the Ruataniwha Plains and is owned and farmed 

by Neville Twist. The farm area is 4km2 and consists of rolling land on an eroded high terrace. At the 

northern end of the farm is a neighbouring property which includes a large wetland/reservoir. The 

western boundary is Argyll Road and to the south an adjacent farm. Three small tributaries, one 

named Karawa Stream, drain to the plains on the eastern border where the Mangaonuka Stream 

flows south to the Waipawa River. The high terrace consists of red gravels with a small amount of 

limestone and sandstone at the eastern edge of the farm. Overlying the red gravels is the pallic 

Mangatahi sandy loam. The sandy loam is quite shallow in places with typical depths ranging 

between 7 and 50cm. In addition, a small amount of Matapiro silt loam overlays the limestone and 

sandstone. The land use is exclusively pastoral with few trees on the property apart from some 

poplars (Poplar spp.) in the gullies to provide shade for stock. The livestock are sheep and cattle. Due 

to similar geology, soil type, and land use throughout the farm fewer field measurements (30) were 

carried out here. However, this relative homogeneity made it possible to investigate how changes in 

slope angle might affect soil hydraulic properties. Furthermore, the national soil data for Mananui 

was “ground truthed” and the influence of poplar trees on hydraulic conductivity was measured 

which helped answer some of the objectives of the wider study.  Time constraints, more buffers and 

greater farmer interest at Takapau farms led to the decision to run POLYSCAPE at Takapau only. 

However, with more time Mananui could be modelled also. 
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Figure 4 Mananui farm displaying sample points. Map was created from property data and aerial and 
satellite photography supplied by HBRC. 
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Figure 5 Soil type, geology, and land use for Mananui farm. Map was created with data from the New 
Zealand Land Resource Inventory (NZLRI). 
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Chapter 2 – Literature review 

This chapter summarizes studies investigating the impacts of vegetation (trees, scrub, pasture) and 

upland water retention (ponds, small dams, wetlands) on the hydraulic and sediment regime of 

upland watersheds. Although this study is paying particular attention to flooding, the effect of land 

use on sediment erosion and deposition is also considered as it has important implications for 

landscape flood capacity (discussed in section 2.1.4). When compiling this review an emphasis was 

given to New Zealand studies but where there was a lack of information from New Zealand 

international examples were used.   

2.1 Vegetation 

2.1.1 Effects of vegetation on hydrological processes 

The physical effects of planting or clearing forests have been studied by water resource managers, 

foresters and hydrologists around the world. Vegetation affects streamflow primarily through 

interception, evapotranspiration and infiltration processes. Fahey, et al. (2004) describe the effects 

of land use change on streamflow within the context of the water balance equation: 

Equation 1  Q = P – E – ∆S,  

where Q is runoff, P is precipitation, E is evapotranspiration, and ∆S is change in water stored within 

the soil profile and as groundwater. Over a year the changes in soil moisture and groundwater 

storage are likely to be small and therefore changes in total annual runoff associated with land use 

conversion are usually caused by changes in evaporation (Fahey and Rowe 1992).  Therefore, the 

annual water balance equation can be rewritten as: 

Equation 2  Q = P – (Ei + Et + Eu), 

where Ei is rain which is intercepted on leaves and branches before it hits the ground and is 

evaporated back into the atmosphere (wet canopy evaporation), Et is water extracted from the soil 

and transpired (dry canopy evaporation), and Eu is transpiration from the understory vegetation and 

evaporation from the soil (Fahey et al. 2004). Increasing the vegetation canopy cover increases 

interception and therefore wet canopy evaporation.  

Dry canopy evaporation loss (transpiration) is very similar between pasture and plantation forestry 

with pasture loss typically greater if water supply is unlimited (Davie and Fahey 2005). The main 

difference between the two vegetation types is greater wet canopy evaporation losses (interception) 

experienced by the taller vegetation. This is due to two factors. Firstly, the larger leaf/needle area is 
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more capable of intercepting and evaporating rainfall compared to grass leaf area. The second and 

more important reason is increased canopy roughness and faster wind speed at height which results 

in greater turbulence above the canopy. This helps the evaporated water mix easily with the drier air 

above leading to higher wet canopy evaporation (see Figure 6) (Davie and Fahey 2005).  

 

 

 

Rowe et al. (2002) used maximum values from New Zealand and international studies to summarize 

the effects of native vegetation and plantation forests on streamflow. They found that kanuka and 

manuka scrub was able to intercept as much as 42% of rainfall, beech-podocarp forests up to 30%, 

Douglas fir plantations up to 29%, and radiata pine plantations as much as 23%.  In areas with lower 

annual rainfall transpiration losses (dry canopy evaporation) can be greater than interception losses 

(wet canopy evaporation). For example, a study by Fahey et al. (2001) found transpiration losses 

from young Douglas fir, old Douglas fir, and mature radiata pine plantations on the Canterbury Plains 

were 47%, 58% and 42% of gross rainfall respectively, compared with interception losses of between 

20% and 29%. Kelliher et al. (1986) have shown that understory transpiration can also contribute 

substantially to total water loss from a forest.  In areas where canopy is frequently wet then Ei can be 

as high as 70% of total evaporative loss for forests. For this reason, changes in streamflow are often 

associated with changes in interception loss following afforestation or harvesting (Fahey et al. 2004). 

Although interception is a very significant part of the overall water balance, it is usually less 

significant in large floods due to intensive rainfall overwhelming canopy storage (Nisbet and Thomas 

2006). However, it should be noted that between rainfall events increased wet canopy evaporation 

can increase available storage before the next event. 

Figure 6 Interception process. The capacity of leaves to 
intercept rainfall and efficient mixing of water vapour with 
drier air above lead to high evaoprative, or interception loss. 
Source (Davie and Fahey 2005) 
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In terms of flood buffering capacity, a more significant effect than evaporation loss is vegetations 

ability to increase water infiltration into the soil through cracks around the stem, trunk, and roots, as 

well as protecting the soil against rainsplash and direct sunlight. In the long term, increased organic 

matter from vegetation can improve soil structure which increases storage capacity. All these 

processes  help dampen peak flow as water is either extracted and transpired by plants or moves as 

slower subsurface flow rather than quickflow. By increasing surface roughness and delaying the 

movement of water, vegetation and leaf litter can increase the total amount of infiltration; and by 

transpiring and drying the soil, can increase initial infiltration rates (Jones 1997). Infiltration and 

permeability rates are highly influenced by rooting depth with a worldwide review by Schenk and 

Jackson (2002) showing that average rooting depth for grassland in a forest zone is 40cm compared 

to 121cm for warm temperate forest. Trees can also improve infiltration through compacted subsoils 

in urban environments as part of stormwater management. Experiments by Bartens et al. (2008) 

showed that black oak (Quercus velutina Lam.) and red maple (Acer rubrum L.) tree roots penetrated 

compacted subsoil increasing infiltration rates by an average of 153% compared to an unplanted 

control. All these processes can slow or decrease the movement of water through the catchment 

system. However, the overall impact on the flood peak depends on the interaction of the processes 

mentioned above with the greatest effect in source areas such as headwater catchments. 

2.1.2 The effects of trees on hydraulic conductivity 

Many studies look for the hydrological effect of trees by measuring streamflow at the catchment 

outlet. As there is a lack of historical streamflow data from the study area this research will assess 

the impact of trees by comparing hydraulic conductivity at trees (Cupressus macrocarpa, populous 

spp.) with pasture located 5m and 10m from the base of the trunk (Objective 2). While having 

localised flow data is helpful for model calibration, measuring hydraulic conductivity at trees directly 

has its advantages. This is because it is difficult to untangle the effects of trees from other influences 

on streamflow data. Therefore measuring hydraulic conductivity directly means the differences in 

infiltration between trees and pasture can be isolated.  

Hydraulic conductivity (K) represents the ease of water movement through the soil relative to a 

potential gradient and depends on the permeability of the soil and the degree of saturation. 

Hydraulic conductivity together with the sorptivity of the soil (capacity of the soil to absorb water) 

controls the soil infiltration rate (McLaren and Cameron 1996). Although it is generally accepted that 

saturated hydraulic conductivity (Ks) of forest soils is higher than soils under other vegetation types 

(Pritchett and Fisher 1987; McCulloch and Robinson 1993), there are few published studies 

investigating how safe this assumption is. A review by Chandler and Chappell (2008) found that the 
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majority of research supported the hypothesis that trees increase Ks relative to other vegetation 

types. Table 1 displays the ratio of Ks between different species of trees and pasture in particular 

soils. The wide variety of results shows that soil condition plays a dominant role in determining 

hydraulic conductivity. For example, separate studies investigating the same species of tree in 

different soil types found that Eucalyptus spp. were between 2.5 (Burch et al. 1987), and 140 (Wood 

1977) times as conductive as pasture in the same areas. However, some studies have found that the 

assumption of greater hydraulic conductivity under forest soils is not always true. For example, a 

study of reforestation on degraded land in Nigeria found that out of 6 plantations, only one had 

significant increase in Ks compared to pasture (Jaiyeoba 2001). Furthermore, three studies found 

that Ks was actually greater under pasture than forest soils (Yeates and Boag 1995; Giertz et al. 2005; 

Chappell and Franks 1996). As stated in Chandler and Chappell (2008), these conflicting results 

clearly show a need for further research into how trees affect Ks, including consideration of the 

possible mechanisms which allow them to influence soils. Some of these characteristics include 

rooting depth and abundance, the chemistry of their leaves, and whether they are evergreen or 

deciduous. These traits themselves are influenced by such things as climate (e.g. temperate versus 

tropical) and geomorphic regime (e.g. underlying sediment and depth to hardpan). 

Table 1 Ratio of saturated hydraulic conductivity of the A-horizon under trees to that under adjacent 

pasture. Adapted from Chandler and Chappell (2008) 

F/G Soil typeb Tree typec Reference 

2.5 nk Eucalyptus spp. Burch et al. (1987) 
1.1-3.1a Alfisol Populus spp. This study 
3.4d Gleysoil Quercus robur Chandler and Chappell (2008) 
4.8 nk Pinus insularis Costalles (1979) 
5.2 nk Pinus halepensis Berglund et al. (1981) 
4.5-5.5a Alfisol Cupressus macrocarpa This study 
4.5-7.2 Cambisol Quercus robur Burt et al. (1983) 
2.3-12 Ferralsol Eucalyptus/Gravillea spp. Wood (1977) 
14 Nitisol Hibiscus elatus Ternan et al. (1987) 
20 Andosol Podocarp Jackson (1973) 
23-41 nk Quercus spp. Molchanov (1960) 
50 Ultisol Quercus spp. Hoover (1949) 
60 Mollisol Betula spp./Frangula alnus/Prunus spinosa  Carroll et al. (2004) 
17-140 Cambisol Eucalyptus spp. Wood (1977) 
F/G = ratio of the topsoil saturated hydraulic conductivity under trees to that under pasture (ranked by 
magnitude).  
(nk) not known.    a At 5 and 10m from Tree  b FAO-UNESCO classification 
c Dominant or representative tree species. d Reported as ‘dark grey soils’.    
   

The review by Chandler and Chappell (2008:1226) cites several studies describing the mechanisms 

that might increase or decrease Ks near trees. These include: 
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a) Positive effects of trees on Ks 

 Macroflow around the roots which can increase flow through the soil matrix by many orders 

of magnitude (Aubertin 1971; Beven and Germann 1982). In this way Ks can be very sensitive 

to small changes in the abundance of macropores (Aubertin 1971; Buttle and House 1997). 

As many root systems extend beyond the crown radius (Florence 2004; Friend et al. 1990; 

Fogel 1983), macroflow might account for increased Ks many metres beyond the tree 

(Chandler and Chappell 2008). 

 Compared to pasture, the topsoil under trees is generally drier due to wet canopy 

evaporation (David et al. 2006) and root abstraction to support transpiration (Katul et al. 

1997). In very dry periods soil cracks can open which either do not close, or close very slowly 

with subsequent rewetting and as a consequence maintain elevated levels of Ks (Holden and 

Burt 2003).    

 The accumulation of leaf litter and other organic material beneath trees can positively affect 

aggregate structure (Chaney and Swift 1984; Graham et al. 1995; Chappell et al. 1999) 

thereby increasing Ks (Wood 1977).  

b) Negative effects of trees on Ks 

 The weight of the tree along with the movement of roots during windy conditions can 

compress the soil over centimetre-scales to reduce Ks (Campbell et al. 1996). 

 The soil can become more acidic under some species of trees due to increased dissolution of 

soil minerals (Augusto et al. 2000), acidic leaf-litter (Muys et al. 1992), or acidic sap (Nilsson 

et al. 1982). This can reduce soil structure stability and therefore pore space as aggregates 

collapse reducing Ks (Baumgartl and Horn 1991). The acidity of soils can also negatively affect 

soil fauna such as worms (Neirynck et al. 2000) whose activity improves soil stability and 

creates macropores through worm holes (Beven and Germann 1982). A reduction in worms 

would negatively affect Ks (Chandler and Chappell 2008). 

 Isolated trees can have an indirect influence on Ks due to livestock sheltering beneath them 

from rain, wind or sun. The congregation of animals, particularly during wet conditions can 

lead to surface compaction of soil which reduces Ks (Drewry et al. 2000). 

2.1.3 The effects of trees on streamflow 

a) Small catchment studies  

Internationally and within New Zealand, the links between land use change and streamflow have 

mostly been studied at the small catchment scale. Data on the effect of vegetation clearance has 
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been gathered from around the world, often through paired catchment studies. International 

reviews by Bosch and Hewlett (1982), Hornbeck et al. (1993),  Sahin and Hall (1996), Stednick (1996), 

Robinson et al. (2003), and Brown et al. (2005) present general relationships between decreased 

forest cover and increased annual runoff although the proportional change in runoff is catchment, 

vegetation and climate specific.   

New Zealand studies have been summarised by Waugh (1980), Fahey and Rowe (1992), Maclaren 

(1996), Fahey et al. (2004) and most recently Blaschke et al. (2008).  Blaschke’s et al. (2008) report 

offers a very good summary of the previous four New Zealand reviews with the key findings 

presented in tables for floods, water yield, and low flows. It is important to note that these studies 

have been undertaken in small catchments that have either been entirely forested, allowed to revert 

to scrub, or have been completely cleared. These studies have not considered strategically planted 

or mixed vegetation catchments. The following section presents results for afforestation affects on 

flooding only.  

Table 2 is compiled from the review by Blaschke et al. (2008) of small catchment studies in New 

Zealand and suggests large decreases in flood peaks after afforestation although there is 

considerable variation in the magnitude of decreases from different parts of the country. Blaschke et 

al. (2008:7) found that flood peak reductions are in the range 30% to >90%  for small floods; 50% to 

70% for annual floods; and 20% to 50% for large floods. A point to note about Table 2 is that there is 

no consistency in the nature of published flood reduction values.  While some figures are for annual 

floods, others are for small frequent floods that occur each year while others again are for large 

floods that occur infrequently. In addition, record lengths range between 2 to 10+ years, but with 

the exception of Purukohukohu and Moutere, are too short for statistically reliable flood frequency 

analyses. Hence, although all the authors have considered a time series of flood peaks they have 

analysed them differently making comparisons difficult. Blaschke et al. (2008) also draw attention to 

the fact that reduced flood peaks do not necessarily imply a reduced volume of flow. They note that 

some publications indicate afforested catchments discharge the same volume of water but over 

longer periods of time creating broader, lower flood peaks, while other publications make no 

reference to the issue. 

Table 2 Effects of land use on flood flows. Source (Blaschke et al. 2008) 

Catchments Regions Comparison % 
change 

Source Comments 

Purukohukohu Volcanic 
plateau 

Pines vs pasture -50 (Rowe et al. 2002) 
- based on (Dons 
1987) 

Small floods (less than 
annual) 

Purukohukohu Volcanic 
plateau 

Bush vs pasture >90 (Rowe et al. 2002) 
- based on (Dons 

Large floods (greater 
than annual) 
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1987) 

Purukohukohu Volcanic 
plateau 

Bush vs pasture -89 (Dons 1987) Averaged peak flows 

Taita Wellington Pines vs pasture -35 to      
-80 

(Claridge 1980; 
Jackson 1973) 

Averaged peak flows, 
all floods each year 

Taita Wellington Bush vs pasture    -7 (Claridge 1980; 
Jackson 1973) 

Averaged peak flows, 
all floods each year 

Moutere Nelson Pines vs pasture -80 (Duncan 1995) Small floods (less than 
annual) 

Moutere Nelson Scrub vs pasture -65 (Duncan 1995) Averaged peak flow, 
annual floods 

Moutere Nelson Pines vs pasture -50 (Duncan 1995) 50 year flood 
 

Kikiwa  Nelson Pines vs pasture 40 (McKerchar 1980) Averaged peak flows, 
record length one 
year 

Kikiwa Nelson Bush vs pasture 12 (McKerchar 1980) Averaged peak flows, 
record length one 
year 

Berwick Otago Pines vs pasture -67 (Smith 1987) Averaged peak flow, 
annual floods 

Glendhu Otago Pines vs tussock -50 (Fahey and 
Jackson 1997) 

Averaged peak flow, 
annual floods 

Maimai West Coast Bush -37 (Rowe and Pearce 
1994) 

Pre vs post clearance, 
small floods* 

Maimai West Coast Bush -23 (Rowe and Pearce 
1994) 

Pre vs post clearance, 
large floods* 

Big Bush Nelson Bush -34 to      
-44 

(Fahey and 
Jackson 1997) 

Pre vs post clearance, 
small floods* 

Big Bush Nelson Bush marked (Fahey and 
Jackson 1997) 

Pre vs post clearance, 
large floods* 

* Expressed as reversal of authors % flood peak increase 
 

Overall, New Zealand research suggests that afforestation has a considerable effect on reducing 

flood peaks. Although it is generally thought that this effect is greatest for small floods, Duncan’s 

(1995) study found floods with a 50-year return period are reduced by half under pine forest 

compared to pasture. He attributes this to interception during storms and reduced soil moisture 

underneath the forest canopy. Davie and Fahey (2005) use soil and rainfall data from Duncan (1995) 

to illustrate why different soil moisture levels under pine and pasture, combined with the timing of a 

peak flood is important. The main difference in soil moisture storage occurs in late autumn and early 

winter when interception and greater rooting depth by pines causes a delay in refilling the soil 

moisture store. If a storm event occurs its effect will be lessened underneath the forested 

catchment. In the modelled scenarios (Figure 7) up to 60mm of rain falling in the May-June period 

could be absorbed by the forest covered soil that is not available under the cover of pasture. Later in 

winter when soil moisture storage is similar under both vegetation types, the difference in 

stormflow is likely to be significantly less. 
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Davie (1996), through the amalgamation of several models investigating land use and forest growth 

suggested that the greatest changes in storm runoff occurred during the period of canopy closure. 

This suggests that forest growth can cause a rapid change within a short period of time (Davie 1996). 

Once the forest canopy is closed the response under different aged forests is relatively consistent 

(Davie and Fahey 2005). 

Figure 7 Modelled soil moisture storage beneath pasture and pine forest canopy using soil and rainfall data 

from Moutere gravels in Motueka catchment, Nelson. Note, the modelled values of soil storage agree well 

with measured values using neutron probes. Source (Davie and Fahey 2005:6). 

Blaschke et al. (2008) state the findings of the New Zealand research suggest that afforestation or 

reversion from pasture or deforested land will result in a large reduction in flood peaks. However, 

they quote Maclaren (1996) who, after discussing several New Zealand extrapolations of research 

data to large, partly forested catchments, states:  

 “Vegetation may have a trivial influence on hydrological characteristics, compared with 

 topography, the extent and influence of precipitation, and the structure of the soil and 

 parent rock. Certainly, considerable caution needs to be exercised when extrapolating 

 findings from one catchment to another...  

 To summarise: the benefit of forests in mitigating floods should not be overstated. Floods are 

 common even in catchments of undisturbed native vegetation. Forests clearly can provide 

 some smoothing of flood peaks in certain situations, but only in relatively small storm events 

 and generally for small catchments and in areas close to afforested sub-catchments. Their 

 main benefit lies in their ability to reduce sedimentation, if appropriate management 

 practices are used”. 
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b) Large catchment studies 

Small catchment studies have shown that different land use types can either amplify or dampen the 

effects of extreme flood events. However, there is little evidence of the cumulative effects of 

watershed flood peaks as they converge downstream at the broader catchment scale. This does not 

mean there is no effect, but rather that the evidence has been hard to distinguish given other 

sources of natural variability e.g. climate and landscape heterogeneity (O'Connell et al. 2006). 

Despite this, there have been a few large-catchment studies into the effects of afforestation on river 

flow in New Zealand. Don (1986) measured a 13% decrease in annual water yield from the 900km2 

Tarawera catchment after 28% was converted from scrub and bush to pine between 1964 and 1981. 

Don (1986) attributed only 5% of the decrease to deforestation and the other 8% to decreased 

rainfall. In the Mangatu and Waipaoa sub-catchments on the East coast, Pearce et al. (1987) 

estimated a 30% reduction in yield from a partly afforested catchment (36% of total 120km2). Pearce 

et al. (1987) method involved subtracting evapotranspiration rates from rainfall records. 

Mulholland (2006) forecast changes in flood flows under proposed deforestation of 225km2 in 

Waikato sub-catchments between Wairakei and Atiamuri. He used two methods (flood frequency 

curves and runoff modelling) to predict increases in peak discharge resulting from a 100% and 57% 

conversion from forest to pasture. Under the 100% scenario, method 1 forecast a 550% increase in 

flood runoff while method 2 predicted a rise of 900%.  Under a scenario where 57% of the forest was 

removed, an increase in flood runoff of 230% (method 1) and 228% (method 2) was predicted. For 

the second scenario this is equivalent to an increase of 110-131m3s-1  in a 20-year flood, and 222-

239m3s-1 in a 100-year flood into the Waikato River. Mulholland’s (2006) predictions were made by 

applying changes in flood runoff from the Purukohukohu experimental basins and applying them to 

flow records from the Mangakara and Waiotapu catchments. Blaschke et al. (2008:12) claim “the 

forecast flood results appear substantial (an additional 1 cumec per km2 of deforested area in a 100-

year flood), but need to be scaled back (in proportion to the ratio of surface to subsurface 

floodwater contributions) before that can be applied to larger Waikato sub-catchments.”  

Blaschke et al. (2008:13) explain why it would be unwise to extrapolate absolute flows or percentage 

reductions in flows from small research catchments which have been entirely afforested or allowed 

to revert, to the entire area of a medium or large catchments. They use a hypothetical example 

where:  

“one-fifth of the sub-catchment is afforested, and the flood peak out of the afforested area 

reduces by 50% then flood peak from the farmed four-fifths of the sub-catchment remains at 

100% at the sub-catchment’s outlet reduces by 10% overall. What actually happens to a flood 
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wave passing down a large river is somewhat more complex, because its catchment’s flood 

response is not uniform. Quite apart from any vegetation effect, how fast a flood wave 

accumulates in the main channel, is influenced by: 

 Catchment shape (rounded, narrow, or regular); 

 Flow network topology (tributary branches numerous or sparse; long or short; junctions at 

wide or closely-spaced intervals); 

 Rainfall pattern (heavy rain falling on some sub-catchments but not others); and 

 Hydro-geology (infiltration and storage of rainfall by soil and underlying rock, enabling either 

slow release of sub-surface runoff to channels, or fast surficial runoff).” 

In addition, whether the partially afforested sub-catchment affects flood peaks in the main channel 

is dependent on whether: 

 “The sub-catchment is a large or a small part of the total catchment area; 

 Its water enters the main channel close to other tributary junctions or tens of kilometres 

apart; 

 Rain in the sub-catchment is heavy or light relative to what falls elsewhere; and 

 The sub-catchment geology delays runoff to a greater degree than in other tributaries.” 

(Blaschke et al. 2008:13) 

Rowe et al. (2003) and Blaschke et al. (2008) draw attention to the spatial placement of 

afforestation within a catchment. In small to medium size floods rainfall is usually concentrated in 

the mountainous headwaters due to orographic effects. In this situation targeted planting of 

headwater sub-catchments could significantly diminish flood peaks as they pass down the main 

channel of a large catchment in small to medium events (1 to 10-year flood).  In larger floods 

however (>10 year return period), rainfall is often associated with large, moisture laden storms 

which drop heavy rain on the middle-catchment, downstream locations, as well as headwater areas. 

In this situation afforestation in the middle-catchment or downstream areas should have a similar 

effect. But as Blaschke et al. (2008:13) comment: 

“Regrettably, because of the other factors that determine passage of a large floodwave 

down a main channel, the vegetation effect will be quite small. This is so even where a 

significant proportion of the catchment is afforested.”  
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2.1.4 The effects of vegetation on sediment yield and erosion 

Terrestrial erosion reduces water storage within the landscape by removing soil from the slopes 

which reduces soil depth and thus storage capacity. The eroded material can then fill natural storage 

basins such as valley bottoms, ponds or wetlands which further exacerbate flood risk. Sediment yield 

measures the amount of material eroded from the land that is delivered to waterways. High yields 

affect the level of rivers through sediment deposition which reduces channel flood capacity (Ghosh 

2006; Blaschke et al. 2008). 

A rivers sediment yield includes measurements of coarse sediment (gravel and sand particles 

bouncing along its bed) called bedload, and fine sediment (silts and clays) which float within the 

water called suspended load. Bedload typically accounts for 10-20% of total sediment yield but is 

particularly hard to measure and therefore suspended load is discussed in most studies (Blaschke et 

al. 2008). 

As with the hydrology section, Blaschke et al. (2008) have reviewed New Zealand investigations and 

summarised the differences in sediment yield from paired catchment studies between pine, scrub 

and bush versus pasture in Tables 3, 4 and 5. 

Table 3 Effects of Pines versus pasture on sediment yield. Source (Blaschke et al. 2008) 

Catchments Region Comparison % 
change 

Author Comments 

Glenbervie vs 
Scotsman 

Northland-
Waikato 

Pines vs pasture -51 (Hicks 1990) Average annual yield 
difference* 

Topuni vs 
Kokopu 

Northland Pines vs pasture -59 (Hicks 1990) Average annual yield 
difference* 

Upper 
Waitemata 

North Auckland Pines vs pasture -27 to -96 (Van Roon 
1983) 

Annual yield differences 

Tairua Coromandel Pines vs logged 466 (Lowe 1998) Annual yield differences 

Purkohukohu Volcanic 
Plateau 

Pines vs pasture -93 (Hicks 1990) Average annual yield 
difference 

Pakuratahi Hawkes Bay Pines vs pasture -68 to -87 (Black 1998) Annual yield differences 

Pakuratahi Hawkes Bay Pines vs pasture -55 (Fahey 1999) Average annual yield 
difference 

Moutere Nelson Pines vs pasture -95 (Hicks 1990) Average annual yield 
difference 

Pigeon Nelson Pines vs logged 2 (Hicks 1990) Average annual yield 
difference 

Ashley North 
Canterbury 

Pines vs logged 0 (Jackson 1998)  Annual yield differences 

Berwick Otago Pines vs pasture -36 (Hicks 1990) Average annual yield 
difference 

* Re-calculated from author’s Glenbervie-Kokopu comparison 
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Notes: Record lengths vary from 2 to 20+ years. Most catchments were either adjacent or had similar terrain 

and were generally less than 5 km2. For 8 out of the 11 catchment studies, sediment yields were measured for 

standing forest vs pasture or tussock.  

Table 4 Effects of scrub versus pasture on sediment yield. Source (Blaschke et al. 2008) 

Catchments Region Comparison % 
change 

Author Comments 

Puketurua Northland Scrub vs 
pasture 

-39 to -65 (Schouten 
1976) 

Annual yield 
differences* 

Tairua Coromandel Scrub vs cleared 
for forestry 

-40 (Swales and 
Hume 1998) 

Average annual yield 
differences 

Otutira Volcanic 
Plateau 

Scrub vs 
pasture 

-51 (Selby 1972; 
Selby and 
Hosking 1973) 

Event yields, runoff 
plots 

Tararua Manawatu Scrub vs 
pasture 

-70 (Reenes 1976) Annual yield 
difference** 

Moutere Nelson Scrub vs 
pasture 

-98 to -
100 

(Scarf 1970) Annual yield 
differences, runoff plots 

*Scrub cleared for pasture conversion. **Record for one year only 

 

Table 5 Effects of bush versus pasture on sediment yield. Source (Blaschke et al. 2008) 

Catchments Region Comparison % 
change 

Author Comments 

Upper 
Waitemata 

North Auckland Bush vs pasture -86 to -88 (Van Roon 
1983) 

Annual yield differences 

Hapuakohe Waikato Bush vs pasture -50 to -75 (Selby 1976) Event yield differences 

Whatawhata Waikato Bush vs pasture -90 (Quinn and 
Stroud 2002) 

Annual yield differences 

Purukohukohu Volcanic 
Plateau 

Bush vs pasture -63 (Dons 1987) Average annual yield 
difference 

Tararua Manawatu Bush vs pasture -91 (Bargh 1977, 
1978) 

Annual yield difference 
(record length one 
year) 

 

Results from small-catchment studies suggest afforesting or reverting close to 100% of small 

catchments can reduce average sediment yields by at least 50% and in most cases greater than 80%. 

However, Blaschke et al. (2008) make the following points when comparing the variable sediment 

yields from different catchment studies. First, as both annual and average sediment yields are 

influenced by the frequency of storms, short records may not include the extreme events that 

produce a lot of a catchments sediment yield. Second, catchments with low mean annual rainfall 

also have fewer storms and thus less erosion. Geology is a third factor because hard stratum is more 

resistant to erosion which restricts sediment supply to streams. Despite these limitations, the 

studies confirm a general principle, that sediment yield reductions are substantial, though variable 

when comparing pine, scrub and bush against pasture (Blaschke et al. 2008). 
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Reducing sediment yields will eventually lead to greater capacity within river channels and surface 

storage areas. This has a positive effect on floods as the bank is higher relative to water level 

reducing the likelihood of overtopping; and tributaries can discharge during large flows if the water 

in the main channel is lower. This stops water backing up behind stoρbanks. However, increasing 

channel capacity can also increase flood risk if a degrading river undermines and breaches a 

stoρbank (Blaschke et al. 2008). 

The benefits of reduced sediment yield are not restricted to reduced flood risk alone. Blaschke et al. 

(2008:32) list other benefits as including: 

 Improved water quality (fewer occasions when high suspended sediment prevents water 

take for irrigation, stockwater, industrial or urban supply);  

 Improved aquatic habitat (more suitable for recreation and fisheries); 

 Less sediment in reservoirs storage (maintains storage capacity); and 

 Less sediment in estuaries and harbours (maintains navigation). 

For a detailed classification of erosion and sedimentation effects see Krausse et al. (2001), Parkyn 

and Wilcock (1992), and Buchan et al. (2006). 

New Zealand studies of sediment yields in medium to large catchments were reviewed by Hicks, et 

al. (1996). They concluded that high sediment loads in rivers are associated with high rainfall and 

unstable geology. In addition, relative reductions in yields greater than 50% can only be achieved if 

afforestation occurs in areas with historically high sediment loads. Blaschke et al. (2008) claim where 

high rainfall and unstable geology exists:  

 “Afforesting or reverting fairly small percentages of a catchment’s area can result in 

 proportionately much larger percentage reductions in the catchment’s sediment yield.”  

2.1.5 Spatial positioning of trees 

There is evidence suggesting trees can lower peak flows substantially at the smaller sub-catchment 

scale. Although numerous studies have investigated the hydrological implications of large scale 

afforestation within single catchments, there is a lack of quantitative data on the spatial positioning 

of vegetation within the landscape and its effect on runoff. What evidence exists is mainly 

concerned with either riparian vegetation, or contoured hedgerows comprising grasses, shrubs and 

trees designed to limit nutrient and sediment loss from agricultural areas. The following is a 

summary of those studies. 
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a) Riparian vegetation and floodplain forest 

Riparian vegetation and forest can delay the progression of flood flows down a river. This is due to 

increases in hydrological roughness created by woody debris dams within stream channels and the 

resistance from trees, shrubs and deadwood on the floodplain (Nisbet and Thomas 2006). Table 6 

lists the hydraulic roughness values (Manning’s coefficient) of different vegetation types found on 

floodplains. It shows that trees create more of a physical barrier than other vegetation types mostly 

because the later flatten down during high flows whereas trees generally do not. Shah et al. 

(2009:11) lists other factors which influence the hydraulic roughness of trees. These include “the 

spacing and layout of trees, smoothness of trunks, presence of lower branches, and level of 

undergrowth and amount of dead wood on the forest floor.” The combination of these factors slows 

flow velocities and enhances out of bank flow, thereby increasing water storage on the floodplain 

and thus lowering downstream flood peaks (Shah et al. 2009).  

Table 6 Guide for selecting manning’s roughness coefficients for natural channels and flood plains. Source 
(Arcement and Schneider 1990) 

Channel Hydraulic Roughness (Manning’s n) 

Pasture (no scrub) – short grass (long grass) 0.030 (0.035) 

Mature field crops 0.040 

Scattered scrub, heavy weeds  0.050 

Medium to dense scrub in winter (summer)  0.070 (0.100) 

Heavy stand of timber, a few down trees, little 

undergrowth, flood stage below branches 

0.100 

As above but with flood stage reaching branches 0.120 

Dense willows, straight, summer  0.150 

Hydraulic modelling in Southwest England indicated that floodplain forest reduces water velocities 

by 50% or more and increased local upland flood waters in a 1 in 100 year flood event. This created 

additional flood storage of 71% and decreased and delayed the downstream progression of the flood 

peak by 2 hours and 20 minutes (Thomas and Nisbet 2006). Darby (1999) modelled flow resistance 

from flexible and non-flexible vegetation. When parameters such as wetted perimeter, vegetation 

height and density were increased, flood flows were delayed at the locality. However, hydraulic 

modelling by Anderson et al. (2006) showed the vegetative resistance effect of delaying flood peaks 

is moderated by the size of the flood with smaller floods more sensitive to vegetation roughness 

than larger floods. While riparian and floodplain vegetation can hold back water, it can also enhance 

the risk of upstream flooding due to backing up of flood waters. In relation to this is the potential for 

washouts of debris dams which can damage bridges and other important infrastructure in 

downstream towns and cities (Robb 1992). On balance however it appears the risks associated with 
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these methods are outweighed by the additional downstream protection provided and greater time 

for flood warnings. In summary, riparian vegetation can increase local flood water storage, but there 

is a need for greater understanding of the role of vegetation over a floodplain and its ability to 

temporarily hold back water (Johnson et al. 2008). 

b) Vegetative filter strips 

Filter strips are areas of vegetated land situated between a potential pollutant source area and a 

surface water body that receives runoff (Figure 8). Contoured filter strips (sometimes called 

contoured hedgerows) are positioned in areas of runoff accumulation and are used to intercept 

pollutants as mitigation in cropping systems. There are few published studies from New Zealand 

investigating the effects of vegetative filter strips on flooding and soil erosion. One study by 

McKergow et al. (2008) assessed the effectiveness of grass filter strips for nutrient interception from 

agricultural areas in the Rotorua Lakes catchment. The study found grass filter strips intercepted 

nitrogen (N) and phosphorus (P) attached to suspended sediment within surface runoff. The main 

removal processes including deposition, physical filtering, and infiltration. Although reductions in 

surface runoff were not directly mentioned, the reductions in nutrient runoff through increased 

infiltration would mean smaller volumes of overland flow were reaching the flow gauges.  

 

Figure 8 Vegetative filter strips have the potential for integrated runoff control to reduce flood risk, 
pollution and erosion. Source (Leeds et al. 2010). 

An earlier study near Hamilton found riparian zones were a net sink for P and N, except under storm 

conditions which scoured out nutrient rich sediment (Cooke and Cooper 1988; Cooke 1988). This 

suggests that to increase the effectiveness of filter strips during larger floods might require 

vegetative placement further from the stream in less saturated areas. A similar study from the USA 
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also measured reductions in P (50%), N (20-50%) and sediment (50-89%) although like the New 

Zealand studies, actual runoff volumes were not measured directly (Daniels and Gilliam 1996). 

The majority of studies directly measuring runoff volumes from vegetative filter strips have been 

situated in the humid tropical regions. In the Philippines, a series of experiments measured overland 

and subsurface runoff to quantify surface hydrologic response under different land types (forested, 

tilled, slash/mulch, pasture). Forest had the highest rainfall threshold and lowest annual runoff 

response at 3%. In contrast pasture had the greatest runoff response at 76% of annual rainfall with 

the lowest thresholds. A modified version of the pasture field was pasture with contour-filter strips 

which demonstrated greater infiltration and rainfall thresholds with runoff accounting for 31% of 

annual rainfall (Chandler and Walter 1998).  

Hedgerow intercropping systems were introduced to China in the early 1990’s.  Sun et al. (2008) 

reviewed their effectiveness in water and soil conservation from studies across China. They found 

decreases in surface flow and soil loss ranging between 26-60% and 97% respectively in the Jinsha 

Basin (Sun et al. 1999; Sun et al. 2001; He et al. 2000; He et al. 2001). Runoff was reduced by 18% 

and soil loss by 90% in Guizhou compared with slopelands without hedgerows (Yin et al. 1996; Yin et 

al. 2001). Xu et al. (2000) reported that runoff and soil loss from contour hedgerow intercropping 

were only 24.8% and 16.9% of that from agriculture slopelands under traditional management in the 

Three Gorges area. In the loess slopelands in temperate mountains (Wang 2000) found that contour 

hedges can reduce runoff by more than 30% and soil loss by more than 50%. In addition, runoff and 

soil loss were reduced by 66.2% and 77.2% in the Loess Plateau of Shanxi by planting hedgerows 

(Zhou et al. 1997). 

A six year study in the humid tropics of Peru found contour cropping hedgerows conserved 83% and 

93% more water and soil than from sole cropping alone. In addition hedgerow plots maintained 

higher soil nutrients and the soil physical properties were improved compared to sole cropping 

(Alegre and Rao 1996). McDonald et al. (2002) compared changes in runoff and erosion after 

secondary forest removal under three different land types (bare soil, agriculture, agroforestry) and 

compared it to a forest plot in the Blue Mountains of Jamaica. As expected, forest provided good 

protection against surface runoff and erosion. Agriculture caused a seven-fold increase in surface 

runoff and 21-fold increase in soil erosion. However, agroforestry, which contained crops and 

contoured hedgerows, was effective in conserving water with a 45% reduction in runoff and 35% 

reduction in soil erosion compared to agriculture. McDonald et al.  (2002:1) concluded that: 
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 “This low-input, contour-tree-hedgerow technology is effective at soil and water 

 conservation through the sieve-barrier effect and increased water infiltration and has the 

 potential to enhance the sustainability of this land-use system at a plot scale.” 

In the United Kingdom a highly instrumented, multi-scale experimental programme was established 

in mid-Wales to investigate the effectiveness of strategically placed trees in reducing flood peaks on 

undulating farmland. The modelled and measured results, summarised in Carroll et al. (2004), 

Jackson et al. (2008) and Marshall et al. (2009), found that strategically placed tree shelter belts 

established on grazed permanent pastures can greatly increase water infiltration (Figure 9a) thereby 

reducing flood peaks by as much as 40% at the field scale.  They found infiltration rates can change 

very quickly with significant increases in infiltration within just 2 years (Figure 9b). This led Carroll et 

al. (2004) to suggests that:  

 “Strategically placed, small scale planting of trees for shelter can be used to improve the 

 infiltration capacity of extensive areas of grazed permanent pasture. This is likely to have 

 positive impacts on runoff rates, erosion and stream water quality at both farm and 

 landscape scales.”  

These results are particularly relevant for New Zealand as Wales has both a similar climate and 

pastoral hill farming. 

 

 

Figure 9 (a) Measured infiltration rates for different transect positions for the grazed (G) and planted (P) 

areas. Bars give one standard error of the mean. (b) Infiltration rate at the 5m position for shelterbelts of 

different ages. Bars give one standard error of the mean. Source (Carroll et al. 2004). 
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2.2 Livestock and surface compaction of soil 

A further consequence of forest conversion to pasture is soil compaction from livestock treading. 

The degree of compaction is a function of the state of the soil and the weight of the animal. 

Intensive grazing of livestock can change soil hydraulic properties by decreasing soil infiltration rates, 

porosity, hydraulic conductivity, and bulk density (Marshall et al. 2009). Treading is most 

pronounced in wet conditions and has been shown to be more severe on cattle farms compared to 

sheep farms (Drewry et al. 2000). Studies from New Zealand include work by Mulholland and Fullen 

(1991) who reported 21% greater bulk density on areas heavily trampled by cattle compared to 

areas less trampled. Climo and Richardson (1984) found that reductions in macroporosity from 

sheep treading depended on soil texture, soil drainage, and stocking rate. Singleton and Addison 

(1999) measured soil properties from three Waikato dairy farms and found a decline in hydraulic 

conductivity, proportion of pores, and aggregate size in normally grazed and previously pugged 

areas compared to never trodden areas. Other studies from New Zealand reporting similar trends 

include work by Brown (1968); Drewry et al. (2000); Edmond (1974, 1958); Gradwell (1968); 

Greenwood and McNamara (1992); Nguyen et al. (1998); Scott (1963); Zegwaard et al. (1998). 

Marshall et al. (2009) cites studies from around the world which have linked intensive grazing and 

soil degradation to increased runoff rates at the plot scale (Elliot et al. 2002; Heathwaite et al. 1990; 

James and Roulet 2007; Nguyen et al. 1998). Heathwaite et al. (1990) measured surface runoff rates 

between plots of heavily grazed hillslope, ungrazed temporary grassland and cereal plots, with 

runoff rates of 53%, 5%, and 7% respectively. Furthermore, the reduction in vegetation from grazing 

can lead to decreases in interception, rooting depth, and soil porosity which further exacerbates 

runoff rates (Marshall et al. 2009). 

2.3 Upland water retention  

2.3.1 Open water storage 

A lake can be defined as a “body of standing water occupying a basin and lacking continuity with the 

sea” (Lowe and Green 1987). A pond is similar but is usually smaller than a lake. Often small farm 

dams are constructed for irrigation and stock drinking water or detention dams for the control of 

short intense rainfall events in catchments vulnerable to flooding and erosion. Detention dams are 

usually only full for 24 hours or so and are used together with other methods of soil conservation 

such as land retirement and re-vegetation (Everitt 2006).  If an artificial pond or lake were carefully 

positioned to intercept runoff with sufficient storage then a number of co-benefits could result. 

These include:  
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 Holding back runoff during intense rainfall to buffer floods; 

 Storage of water for irrigation, or stock drinking water; 

 Maintaining ecological low flows during dry periods;  

 Recreation opportunities (boating, shooting, fishing); 

 Capturing nutrients and sediment from farm runoff (improved water quality downstream);  

 Potential ecosystem improvement (If stock excluded and riparian planting established). 

However, small dams can also have negative impacts such as:  

 Decreased water quality (especially if stock have access); 

 Decreased water quantity (especially with many small dams);  

 Flow regime change (can effect ecological integrity of stream); 

 Restricting sediment supply (creates erosion downstream);  

 Cumulative impacts of many dams at larger catchment scale (affects wider hydraulic regime 

and ecological integrity). 

Beavis and Howden (1996) reviewed studies from both Australia and abroad and provide detailed 

information on the impacts of farm dams. Few studies from New Zealand exist on the impacts from 

small dams. One by Maxted et al. (2005) compared six small constructed ponds in the Auckland 

region and found they had poorer water quality than the streams they replaced. The degree of water 

quality decline was related to pond size, retention time, and catchment land use with the most 

degraded conditions found in rural ponds with large surface areas and long retention times. 

2.3.2 Wetlands  

Definitions of a ‘wetland’ are as wide and varied as the different wetland types themselves. 

Generally, wetlands are considered as the interface between dry land and a readily identified water 

body such as a lake, pond or the ocean. In other cases they may be solely linked to groundwater and 

appear quite isolated, such as a freshwater spring. Typically a wetland area is either permanently or 

intermittently wet with fluctuating land-water margins. These areas include bogs, swamps, seeps, 

lagoons, fens, and wet margins of a lake, river, stream or drain (TRC 2010). 

There has been considerable debate within the literature regarding the role of wetlands in 

attenuating floods or acting as source areas for runoff (Fahey et al. 1998). A long standing 

generalization is that wetlands reduce floods, promote groundwater recharge, and regulate river 

flows (Bullock and Acreman 2003). Certainly in lowland areas extensive wetlands can act like spill 

areas for flood waters given enough storage thereby reducing the hazard from large floods 
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(Campbell and Jackson 2004). In this way they are similar to lakes or ponds. As an example, the Lake 

Waikare-Whangamarino Wetland flood control scheme located in the Waikato region can store up 

to 94.8 million cubic metres of water and is worth $917,189 annually for its flood mitigation role 

alone (Schuyt and Brander 2004; DOC 2007). Johnson et al. (2008) and WWF (2002) cite many more 

examples where wetland and floodplain restoration has significantly reduced flood damages in 

Europe. 

In headwater catchments wetlands have traditionally been thought of as important for attenuating 

flood peaks and sustaining baseflows in dry periods by absorbing water like a sponge and slowly 

releasing it into the stream. Early work by Davoren (1978) and Bonnell et al. (1990) investigating 

hillslope runoff processes in a headwater catchment in Glendhu, Otago supported this hypotheses. 

Fahey et al. (1998) and Bowden et al. (2001) studied the same area and concluded that the bog and 

hillslope responded as a unit during storm events making it unlikely they attenuated flood peaks. 

They also reported that during post storm recessions, “unsaturated flow from the surrounding 

hillslopes may contribute as much water to baseflow as the bog itself”(Fahey et al. 1998:157). This 

means that wetlands, rather than storing and releasing water, could simply link the hillslopes and 

streams that drain them. Another study in the Pakihi wetlands near Reefton found that the water 

table rose very quickly in response to rainfall with runoff dominated by quickflow (70% of 1600mm 

annual runoff). It was also reported that Pakihi was incapable of maintaining substantial baseflows 

with only 10mm of water yield over a 20 day dry period (Jackson 1987). Camρell and Jackson 

(2004:20.8) used these studies to claim that:  

 “In reality wetlands remain wet because their soils generally have such low hydraulic 

 conductivity that they release water only slowly, or because they receive water inputs from 

 surrounding hillslopes or aquifers. Because they remain close to saturation for much of the 

 time, wetland soils have a very limited capacity to store additional water from rainfall, let 

 alone flood waters flowing in from outside.” 

Bullock and Acreman (2003) undertook a comprehensive worldwide review of 439 published 

statements from 169 wetland hydrology studies. They found that only 83 of the 439 statements 

(19%) concluded that a wetland’s influence on the water cycle was neutral or insignificant. The 

majority concluded that wetlands either increase or decrease a component of the hydrological cycle. 

When assessing impacts on flooding most studies (23 of 28) showed that lowland wetlands reduced 

or delayed floods. This relationship was also seen in headwater wetlands, but to a much lesser 

degree (30 of 66). A considerable number (27 of 66) of headwater wetlands increased flood peaks. 

The outcome of this study led Bullock and Acreman (2003:368) to conclude that:  
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 “There is no simple relationship between wetland types and the hydrological functions they 

 perform... almost invariably; some data needs to be collected at a site to identify its 

 functional role. Consequently, generalised and simplified statements of wetland  function are 

 discouraged because they demonstrably have little practical value”.  

The ability of a wetland to buffer runoff is largely controlled by the amount of available water 

storage. If the water table rises above the ground surface and is still contained within the boundaries 

of the surrounding topography then the wetland can hold water back before releasing it into the 

stream. To this extent it behaves like a pond. But if the wetland has little vertical storage and the soil 

becomes saturated, then overland flow will occur turning the wetland into a runoff source. With this 

in mind, careful positioning of a wetland to maximise storage could create an effective buffer. 

2.4 Summary of main findings from this literature review 

 Studies comparing hydraulic conductivity between trees and pasture show that in general, 

forest soils are significantly more conductive than pasture soils. However, some conflicting 

results show there is a need for further research into how trees affect hydraulic conductivity, 

including consideration of the possible mechanisms which allow them to influence soils. The 

significance of the tree effect is influenced by such things as species characteristics, climate, 

and geomorphic regime. 

 Evidence suggests that targeted afforestation in smaller upland catchments can significantly 

decrease and delay flood peaks as they pass downstream in small to medium size events (1 

to 10-year flood).   

 There is debate in the literature surrounding the significance of forest on flood peaks in 

larger catchments. The predominant thinking is that in larger floods (>10-year), when heavy 

rain falls in the lower, middle and upper catchments, the cumulative effect of vegetation is 

small. However, every catchment is unique with the propagation of flood waves through 

large catchments moderated by a complex interaction of factors. These include: catchment 

geometry, channel network, rainfall pattern, hydraulic properties of soil/geology, area of 

contributing sub-catchments, and the timing and distance apart of tributaries. To better 

understand how local scale flood effects combine to affect flooding at larger scales new 

multiscale monitoring and modelling research is required. 

 Sediment and erosion studies of upland forestry catchments report significant decreases in 

erosion rates and sediment yield when compared to deforested catchments. This helps 
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maintain upland storage areas by restricting the supply of sediment to river channels and 

flood plains. 

 Although there are few studies from temperate areas, results from tropical and sub-tropical 

regions have shown strategically placed contoured vegetative filter strips can greatly reduce 

surface runoff and sediment loss at the plot scale. Further work quantifying changes in 

runoff quantity and timing are required to better assess their effectiveness for flood 

mitigation. 

 Riparian and floodplain vegetation have been shown to delay flood peaks through increased 

surface roughness and thus resistance to flow creating more water storage in upper 

catchments. More research is required into the degree of resistance created by different 

vegetation types and their location and density on the floodplain.  

 Surface treading by stock decreases infiltration which increases runoff. Treading is greatest 

with heavy stock and wet soil conditions and therefore excluding stock from shelterbelts 

should help maximize their flood buffering capacity.   

 Some quantitative data exists to support the restoration of wetlands and the reconnection 

of floodplains for managing flood waters. However, the effectiveness of wetlands can vary 

significantly so some data must be collected to identify a wetlands functional role before it is 

used for flood mitigation. 

 Open water storage such as dams or ponds can significantly lower surface and sediment 

runoff if positioned carefully within the landscape to maximize storage. However, open 

water storage can also have negative environmental effects which need to be carefully 

considered before a pond or dam is installed. 
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Chapter 3 - Characterising soil hydraulic properties 

Characterising the soil hydraulic properties at Takapau and Mananui farms is an important step 

when developing an understanding of the runoff generation processes and parameterising the 

POLYSCAPE hydrological model. In particular, most studies using physically-based hydrological 

models identified saturated hydraulic conductivity as an especially sensitive input parameter (Davies 

et al. 1999). This chapter introduces some fundamental principles of water transport in soil including 

movement in saturated and unsaturated conditions. An objective of this study is to analyse the 

hydrological response of different soils to rainfall at various spatial and temporal scales. For this 

reason the issues of scale and variability are briefly discussed, including the important topic of matrix 

versus macroflow (preferential flow paths). The remainder (and bulk) of this chapter provides an 

overview of different techniques for measuring hydraulic conductivity in preparation for the 

following chapter (Chapter 4, Experimental design and methodology).  

3.1 Saturated flow and Darcy’s equation 

A soil is saturated when all available pore space is filled with water and negligible air is present. This 

usually occurs after prolonged rainfall or irrigation. In reality, soils normally have some air trapped 

within them and rarely reach a fully saturated state. For most soils “saturation’ is usually a 

temporary state as drainage allows air back into the soil through the largest spaces called 

macropores. The matric potential of the soil at saturation is zero. Once the application of water has 

stopped then the macropores rapidly drain (usually within 48 hours) leaving the soil at field capacity 

(McLaren and Cameron 1996). Field capacity can be loosely described as “the state of the soil after 

rapid drainage has effectively ceased and the soil water content has become relatively stable” 

(McLaren and Cameron 1996:82). Some soils such as clays can take longer than 48 hours to reach 

field capacity due to low permeability and adhesive and osmotic binding which gives clays a greater 

ability to hold water (Or and Wraith 2000).  

Soils have different textures and structures with varying amounts of pore sizes. How well these are 

connected, the range of sizes, and the water content have dominant influences on the rate of 

drainage through the soil. Gardiner and Miller (2004:84) list some factors that control the rate of 

infiltration through the soil: 

 Percentage of sand, silt, and clay: Sands generally permit rapid infiltration when saturated, 

or close to saturation. Clays have slow infiltration, especially after swelling in response to 

added water. 
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 Soil structure: Fine-textured soils with granular structure have greater infiltration rates than 

massive structureless soils. 

 Organic matter: In general, the greater the amount of organic material and the coarser it is, 

the more readily water enters the soil. 

 Depth of soil to hardpan, bedrock, or other impervious layer: Shallow soils have less storage 

capacity and therefore cannot absorb as much water as deep soils. 

 Amount of water in the soil: Infiltration rates are generally highest when soils are dry and 

decrease through time as the soil wets up eventually reaching a constant minimum 

infiltration rate. This is because pores or cracks are fewer and smaller as clays become moist 

and swollen. Also, as dry underlying soil becomes wet, the matric potential gradient from 

top to lower layers disappears. 

 Soil temperature: Warm soils take in water faster than cool soils. Also, frozen soils may or 

may not take in water depending on porosity and water content when freezing took place. 

 Compaction: Soil compaction can occur due to vehicles or heavy grazing and reduces pore 

space and slows infiltration. A measure of soil compactness is bulk density i.e. mass to 

volume ratio. 

Collectively these characteristics define how easily water percolates through a soil, a property called 

soil permeability. The most commonly used indicator of soil permeability is hydraulic conductivity. 

The hydraulic conductivity (K) of a soil is a measure of the soil’s ability to transmit water when 

subjected to a hydraulic gradient and is the constant proportionality in Darcy’s equation (1856). 

Henry Darcy was a French hydraulic engineer who conducted experiments to determine the flow 

rate of water through sand filters. His experiments calculated the rate of discharge Q [m3] through a 

sand filled column with a bulk cross-sectional area A [m2] maintained at constant hydraulic head   

[m2]. Hydraulic head is the driving force made from gravitational and pressure potential. When 

these are expressed per unit weight, they are known as elevation head z [m], and pressure head   

[m] respectively. Therefore, total hydraulic head h [m] is the sum of both components, 

Equation 3           

Consequently, for any one soil, the quantity of water flowing through an area over a given time is 

directly proportional to the driving force (hydraulic head) and inversely proportional to the 

resistance to flow (soil and fluid properties). Thus, Darcy’s equation can be written as: 

Equation 4         
  

 
 , 
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where Q is the volume of discharge [m3] through a cross sectional area A [m2]; Ks is the hydraulic 

conductivity of the saturated porous medium; and    
 
  is the change in hydraulic head ( h) with 

distance along the direction of flow ( ). The negative sign indicates flow from high to low hydraulic 

head (McLaren and Cameron 1996; White 2006; Youngs 2001). Darcy found that the amount of 

discharge changed when he used different types of sand. This was related to the hydraulic 

conductivities of the sands which were influenced by the amount of water in their pores and its 

viscosity, as well as the porosity, pore size distribution, tortuosity and surface roughness (White 

2006). For this reason, saturated hydraulic conductivity Ks is an important measure of the drainage 

capacity of a soil. Typical values of Ks are found in numerous texts such as Brassington (2007), 

Gardiner and Miller (2004) and McLaren and Cameron (1996). The US Department of Agriculture 

(2010) collated results from a number of studies to define typical Ks values which range between 

very rapid (>250mm/h-1) in coarse sandy soils down to very slow, or near impermeable rates 

(<1mm/h-1) in some compacted soils (Table 7). Darcy’s equation is most valid when both hydraulic 

head and resistance to flow are constant over time. This occurs in laminar flow conditions through a 

homogenous non-swelling soil. Table 7 displays Ks values based on soil structure and texture 

however the presence of macropores or fissures (discussed in section 3.3.1) can significantly 

increase bulk Ks. Furthermore, the swelling and shrinking of clays can cause cracks within the soil 

which can also increase hydraulic conductivity (Batey 2001). Methods for measuring Ks are reviewed 

in section 3.5.  

Table 7 Indicative hydraulic conductivities based on texture and other soil properties. Source (USDA 2010; 
McLaren and Cameron 1996) 

Texture Textural class General Ks class Ks rate (mm/h-1) 

Coarse sand Coarse Sandy Very rapid >250 

Sands 

Loamy sands 

Coarse 

 

Sandy 

Loamy 

Rapid 125-250 

Sandy loam 

Fine sandy loam 

Moderately coarse Loamy Moderately rapid 60-125 

Very fine sandy loam 

Loam 

Silt loam 

Silt 

Medium Loamy Moderate 20-60 

Clay loam 

Sandy clay loam 

Silt clay loam 

Moderately fine Loamy Moderately slow 5-20 

Sandy clay 

Silty clay 

Clay 

Fine and very fine Clayey Slow 1-5 

Cd horizon Natric   Very slow or <1 
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horizon, fragipan, 

orstein 

impermeable 

3.2 Unsaturated flow and Richards equation 

In unsaturated conditions K is dependent on soil water content ( ) with water movement controlled 

by unsaturated hydraulic conductivity K( ). In these conditions, except when very close to 

saturation, matric forces or tension dominate. Tension refers to negative pressure and is a measure 

of how much suction the soil pore exerts on water. As suction increases large pores empty and fill 

with air as water is confined to progressively smaller pores. Water columns within the soil become 

more tortuous as pathways between pores are disconnected. Eventually water is held very tightly as 

hydroscopic, or residual water within micropores (<30µm diameter) making it unavailable to plants. 

The overall result is that K decreases considerably from its maximum at Ks (Gardiner and Miller 

2004). In an unsaturated soil water will always try and equalise by moving from areas of high 

potential to low potential (wetter to dry areas). Sometimes this driving force is greater than the 

gravitational force so water, as well as moving downwards, can also flow upwards or sideways 

depending on matric potential (McLaren and Cameron 1996).    

Most studies describing water movement through unsaturated porous media are based on Richards 

equation. To solve this equation a water retention curve (WRC) is required which describes the 

relationship between pressure head ( ) and water content        Soils release water at different 

suctions depending on the pore size distribution with the relationship defined by the WRC. Figure 10 

shows typical WRCs for soils of different textures. One commonly employed empirical equation for 

determining K in unsaturated soil is the van Genuchten (1980) WRC curve combined with the 

Mualem (1986a) hydraulic conductivity function. The van Genuchten (1980) WRC relationship is 

given by: 

Equation 5     
    

     
  

 

          
 

Where, 

Se = Effective saturation (=1 at saturation) 

 r = Residual water content at which K is negligibly small (volumetric, % or fraction)  

 s = Saturated water content (volumetric, % or fraction) 

  = pressure head [m] 
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 , n, m are empirical fitting parameters (values obtained using the measured water release 

characteristic). Usually, m is set to be dependent on n where,  

      
 

 
  

When combined with a hydraulic conductivity function proposed by Mualem (1986a), the hydraulic 

conductivity relationship becomes: 

 K = Ks Se 
L (1-(1-Se1/m)m)2 

Where, 

Ks = Saturated hydraulic conductivity [m/s-1] 

L is a dimensionless parameter, which accounts for pore tortuosity and connectivity (usually taken to 

be 0.5). 

 

Figure 10 Water release characteristics for soils of different textures. Source (Townend et al. 2000) 

This process is complicated by a phenomenon called hysteresis where the curves are different for a 

drying soil compared to a rewetted soil.  Townend et al. (2000) cites models that attempt to account 

for hysteresis (Haverkamp and Parlange 1986; Tietje and Tapkenhinrichs 1993; Viaene et al. 1994). 

Generally in practice however, only the drying rate is measured and hysteresis is ignored. Although 

hysteresis affects both the WRC and K curves, the most important control on the shape of the curves 
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is soil composition (Townend et al. 2000). Further information on flow within unsaturated soil can be 

found in Dirksen (2001), Gardiner and Miller (2004), and White (2006).  

To describe water movement in unsaturated non-swelling soils, Richards (1931) applied a continuity 

requirement to Darcy’s equation. This gave the following non-linear equation which for one-

dimensional vertical flow, can be expressed as: 

Equation 6       
 

  
      

  

  
     

Where t is time [s] and z is vertical distance [m].  

Richards equation is highly non-linear and is usually solved using numerical methods (Phoon et al. 

2007). Unsaturated hydraulic conductivity is very difficult to measure accurately because it can vary 

over many orders of magnitude, both between soils and for the same soil due to different water 

contents (Dirksen 2001). This variability occurs over a range of spatial and temporal scales and is not 

confined to hydraulic conductivity alone. Indeed, all hydrological information has some degree of 

variability which must be recognised when attempting to understand or solve a hydrological 

problem. 

3.3 Spatial and temporal variability  

The use of physically-based distributed hydrological models to predict the effects of change has 

highlighted the need to improve the representation of variability. Spatially distributed models are 

becoming increasingly sophisticated and require higher resolution data to improve their 

performance. Scale in this context is the spatial measure over which a hydrological variable is being 

measured. In this case, it could be at a point, a field, or a catchment. The treatment of spatial 

variability in hydrology is becoming more sophisticated but is being held back by the difficulties of 

obtaining data at suitable scales and covering large enough areas (Woods 2005). While spatial 

variability relates to changes over distance, temporal variation in hydrological phenomena (e.g. soil 

moisture, river flow, groundwater levels) is usually caused by weather and climate variability. 

Although hydrological systems can dampen or amplify hydrological phenomena the predominant 

driver is usually changes in precipitation and evaporation. The other main source of temporal 

variability is human management of land and water. Temporal variability occurs over a wide range of 

rhythmic scales ranging from seconds, minutes, and hours, up to daily, monthly, and inter-annual 

cycles. Variability at fine time scales is often accounted for using high resolution data. Where this is 

impractical or inappropriate, a longer timescale is chosen for analysis (Woods 2005). An example of 

this is calculating return periods for extreme events such as floods. Although flow and rainfall data 
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are often recorded at the minute timescale, the year to year change in flood magnitude is often 

represented statistically where the maximum annual flood record from a few decades worth of data 

is extrapolated to calculate return periods for over a century (Woods 2005). 

This research addresses the variability issue in two ways. The first assesses the spatial accuracy of 

nationally available input data by ground truthing soil and land use information and comparing 

model output between different resolution DEMs. The second assesses the temporal variability in 

soil moisture (which affects quickflow generation) by using time-varying rainfall and evaporation 

data as boundary conditions. 

3.3.1 Variability in soil properties 

Soils are developed by the interaction between climate, geology, topography, vegetation and 

biological processes. Soils can also be affected by human agricultural activity such as ploughing or 

stocking rates (McLaren and Cameron 1996). Because of the numerous factors that affect soil 

formation, soils typically have complex spatial patterns. Within the soil profile soil layers (horizons) 

are distinguished by (amongst other things) changes in porosity and permeability with depth with 

the boundaries between horizons varied in distinctness and shape. The horizons are an important 

control on hydrology because they can slow or limit vertical flow and redirect water downslope. In 

hill country the soils on upper slopes are generally lighter and shallower than those found at the 

bottom, which are usually deeper, heavier and wetter. After descending a few centimetres or metres 

through the soil the layers become thicker and eventually form a hardpan or connect with the 

underlying bedrock (McLaren and Cameron 1996). A hardpan is a dense impervious layer usually 

found under the uppermost topsoil. Some hardpans are formed by deposits in the soil which fuse 

and bind soil particles together, while others can be formed by compaction from repeated ploughing 

(Gibbs 1980). Shallow impervious soil layers can create areas of rapid flow and transport with the 

locations and extent of these areas important for runoff intensity (Woods 2005).  

One complicating factor in the measurement of hydraulic conductivity is preferential flow through 

macropores. Preferential flow (sometimes called macroflow) refers to the rapid flow of water 

through pathways such as worm holes, root channels, and cracks, thereby bypassing the soil matrix. 

This results in uneven wetting of the soil profile. Their influence on hydrology is determined by their 

size and connectivity, as well as capillary tension. Under preferential flow conditions Darcy’s 

equation for laminar flow through a homogenous porous soil does not apply. The importance of 

macroflow on storm discharge has been a cause of debate in the literature. Noguchi et al. (1999) 

cites studies from the Maimai research catchment in New Zealand with an initial study concluding 

that macroflow through the subsurface was the main contributor to storm runoff (Mosley 1979). 
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Following this, Sklash et al. (1986) evaluated the roles of old and new water using natural isotopes to 

claim that old water was the main contributor and that macroflow was not significant. A later study 

by McDonnell (1990) concluded that new invading water mixed with the older stored water and that 

both were discharged from macropores during storm events. The significance of macroflow varies in 

time. When clay swells in response to water, pore spaces become blocked. This decreases infiltration 

and increases runoff. With this in mind one might assume that a stream would be more responsive 

during winter when soils are wetter than in summer when soils are drier. However, Robinson and 

Beven (1983) discovered that a pasture with mole drains became more responsive in summer due to 

clay cracking which created quicker flow paths to the mole drains. Similarly, when Ks was measured 

in a cracking clay soil in Sicily, the mean Ks values were 1 to 3 orders of magnitude greater than 

might be expected for a clayey texture (Bagarello et al. 1999). Alternatively, the development of 

macroflow can sometimes stimulate deep percolation to groundwater storage which can help buffer 

storm flow (Marshall et al. 2009). The influence of macroflow is greatest under saturated conditions 

and rapidly decreases with less water content. It is difficult to determine the spatial occurrence and 

connectivity of macropores which is a major impediment for hydrological modelling (Bonell 1993).  

Woods (2005) claims that trying to define soil properties using core or point measurements as a 

method of obtaining highly resolved soil data is rarely practical. While acknowledging remote 

sensing he claims hydrologists usually use generalized soil maps to define soil within a region. Of 

importance to this study is the varying hydraulic conductivity and capacity for water storage of soils 

within the Takapau and Mananui sub-catchments. The soil properties for these areas were 

downloaded from the National Soils Database (NSD) and had varying levels of reliability which 

depended on how the information was collected. This varying level of reliability prompted the 

ground truthing of the soil data (for results see Chapter 5). 

3.3.2 Variability in vegetation effects 

As discussed in Chapter 2, vegetation significantly affects the hydrological system and notably the 

spatial distribution of soil water. Vegetation can affect soil properties and soil water at scales ranging 

from a centimetre up to kilometres. At finer scales vegetation influences infiltration through flow 

paths around the roots and improves soil structure by adding organic matter which increases storage 

capacity. A trees canopy intercepts rainfall which gets evaporated back into the atmosphere, while 

the roots extract soil water for evapotranspiration which reduces moisture levels between rainfall 

events (see Chapter 2 section 2.1.1). Vegetation can also affect soil properties up to kilometres by 

forming communities of particular species which create unique environments. At larger scales plant 

composition tends to reflect the climate and physiography which they live in (Woods 2005). The 
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degree to which trees affect the above processes can alter with the seasons. For example, trees in 

spring and summer are rapidly growing and draw significant amounts of water and nutrients from 

the soil to maintain photosynthesis (Wullschleger et al. 1998). By winter, the production of new 

growth slows dramatically and deciduous trees drop their leaves which decreases the interception 

and evapotranspiration effect (Xiao and McPherson 2002). Of particular interest for this study is to 

what degree can trees, occupying a relatively small land area, influence soil properties and thus be 

used as a flood mitigation measure (for results see Chapters 5 and 6). 

3.3.3 Variation in topography  

Water flows downhill under the influence of gravity and pressure head with the sum of both parts 

equalling hydraulic head (see section 3.1). With higher elevation comes greater hydraulic head 

leading to increased discharge. Hydrology interacts with topography at scales ranging from 

“microtopography (1-1000mm depressions and rills), hillslopes (10-1000m wide), and stream 

environments (0.1-1000km wide), up to extensive channel networks (1-10,000km long).” Each has 

unique hydrological processes and spatial complexity (Woods 2005:12). Today’s topographical data 

is usually in the form of topographical maps or Digital Elevation Models (DEMs). The later combined 

with GIS software has vastly improved our ability to investigate spatial detail in some areas and has 

been used to predict the spatial patterns of other variables which are more difficult to measure e.g. 

precipitation (Chell 2007; Woods 2005). This research compares model output using six DEMs of 

differing resolutions. This is to determine both the limits of DEM resolution appropriate for effective 

prediction of flood buffering effects at the farm scale, and to show the differences between the 

same resolution DEMs from different data sources (for results see Chapter 6 section 6.4.2). 

3.4 Measuring variability 

Hydrological measurements are usually made to improve the understanding of hydrological 

processes, quantify a resource such as stream gauging, or for compliance reasons such as water 

quality measurement (Western et al. 2005). Another reason is to constrain parameters in models 

used for prediction and for hypothesis testing. Woods (2005) provides some examples of the 

approaches taken to conceptualize and quantify hydrological processes in space and time. 

Table 8 Examples of deterministic and random views of hydrological variability. Source (Woods 2005) 

 Deterministic Random/statistical 

Temporal  Time series (for many variables) 

 Constant value (e.g. temperature of 
deep groundwater) 

 Diurnal cycle (e.g. solar radiation, 
evaporation, snowmelt) 

 Sudden, intense & localised rainfall 
(rain bursts)  

 Occurrence and magnitude of storm 
events. 

 Occurrence and magnitude of floods 
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 Annual cycle (e.g. soil moisture, 
snowmelt, streamflow) 

and droughts 

 Interannual variability 

Spatial  Map (where possible, e.g. vegetation 
type, topographic elevation) 

 Constant value 

 Transect along hillslope catena 

 Transect across mountain range 
(orographic uplift and rain shadow) 

 Climate statistics 
 

 Soil 

 Geology 

 Microtopography 

 
When designing a measurement program one must consider the phenomena to be measured, the 

key spatial and temporal scales of interest, the required accuracy, and the available resources 

(Western et al. 2005). Once the objectives have been defined a sampling strategy can be designed. 

Thompson (2002) provides guidance on how to establish statistically sound sampling techniques 

which are based on some prior knowledge of the variables behaviour. Blöschl and Sivapalan (1995) 

recognized that changing the scale of observation can result in a change in perceived variability. This 

is relevant when drawing conclusions from model output obtained using discrete times and 

locations. For this reason Blöschl and Sivapalan (1995) defined a ‘scale-triplet’ sampling method. The 

scale triplet consists of the spacing (distance between samples), the extent (total coverage of data in 

space and time), and the support (size of sample). All three components are needed to define the 

unique spatial and temporal extent of measurement. The representative elementary volume (REV) is 

the smallest volume from which a measurement can be made to represent a larger whole. To 

establish the hydraulic properties of a particular soil requires measurements taken from samples of 

that soil. If the sample size is too small then the readings tend to fluctuate. As sample size increases 

the fluctuations dampen and eventually when the sample size is large enough, the readings become 

consistent. This sample size is the representative elementary volume. Iwata et al. (1995) compiled a 

list of studies which investigate the number of sample sizes required to determine REV in various 

porous media.  

Determining the REV for a soils hydraulic conductivity is made difficult by the presence of 

preferential flow. As previously noted, the hydraulic conductivity of soils can vary by several orders 

of magnitude, even in areas of the same geological formation (Oosterbaan and Nijland 1994). 

Therefore, many measurements are required in order to determine accurate estimates of K for an 

area. These measurements themselves are also subject to uncertainty through potential 

methodological error and indeed, Chappell and Ternan (1997) claim that this uncertainty can be 

greater than the spatial variability itself. Uncertainty in measurements of K relate to both: (i) 

precision errors, and (ii) systematic (or technique) errors (Chappell and Ternan 1997). Precision 

errors relate to the level of exactness (e.g. number of decimal points), and in the case of measuring K 

on soil cores would include timing and dimensional errors (Zhang 2010). Systematic errors are much 
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harder to quantify and might include such things as disturbance of the soil core, artificial 

compaction, or soil loss from the core (Chell 2007).  

Due to time, cost, and equipment constraints there is often a trade off between great accuracy and a 

few points, and less accuracy and many points. Western et al. (2005) suggests an optimum strategy 

would involve some combination of a few highly accurate point measurements to test surrogate 

relationships and calibrations, and many points of lower accuracy to measure spatial and temporal 

variability.  

An important part of the error checking process is the validation of Ks measurements. This is difficult 

because there is no set standard to compare against. Rather there exists a variety of allegedly 

“representative” Ks values in the literature as cited in section 3.1. In addition to representative Ks 

values, laboratory methods on soil cores (section 3.5.1) are often used as a standard to compare 

other methods by. Comparative studies have shown that there can be significant differences in Ks 

estimates between measurement techniques (Lauren et al. 1988; Lee et al. 1985; Munoz-Carpena et 

al. 2002; Paige and Hillel 1993). The differences in results between each technique are a function of 

both the theoretical basis of the various methods, and the scale that the method is applied to (Davis 

et al. 1999). Durner and Lipsius (2005) cite Jury’s (1985) extensive review of published field 

measurement data which found large disparities in hydraulic conductivity between studies. He 

attributed this in part to apparent variability caused by the fitting of oversimplified functions to the 

data. However, Durner and Lipsius (2005) provide multiple reasons including soil disturbance, 

biological, chemical and physical processes to the pore matrix, and temporal and spatial variability, 

as reasons why absolute comparisons of accuracy between different techniques is not possible. 

3.5 Methods to determine hydraulic conductivity  

Multiple techniques for measuring hydraulic conductivity exist. These can be carried out in the 

laboratory or in-situ within the field. Although accurate measurement of hydraulic conductivity is 

important when predicting water movement in soil, in practice substantial error is associated with all 

measurement techniques. The following section provides a brief overview of the methodologies 

commonly used and includes an in-depth discussion on the field based constant head technique. For 

additional methods and more detailed introductions to these techniques see, Dirkson (2001), Youngs 

(2001), and Durner and Lipsius (2005).  
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3.5.1 Saturated hydraulic conductivity (Ks) 

a) Laboratory methods 

These methods involve taking a relatively “undisturbed” soil core from 

the field and essentially repeating Darcy’s experiments where the core 

is saturated in the laboratory and flow and pressure head are 

measured over time. In these experiments Ks is defined by “the rate of 

flow per unit-cross section area per unit hydraulic head gradient” 

(Youngs 2001:9). The most commonly used tool for measuring Ks is 

called a permeameter. The two main methods are the constant head, 

and falling head permeameters. In addition to these methods there 

are others which involve wetting an unsaturated sample to zero soil 

water pressure (saturation).  These methods apply infiltration theory 

to achieve Ks from measurements on the rate of uptake of water by 

the soil (Youngs 2001). For more information see Clothier (2001). 

Additionally, Durner and Lipsius (2005), and Youngs (2001) list a 

collection of less common techniques for determining soil hydraulic 

properties.   

i. Constant head permeameter 

The constant head permeameter uses the same arrangement as Darcy’s experiment in 1856 

(depicted in Figure 11). Water percolates through the column from a constant head of water on the 

surface, and is collected for measurement at the outlet at the base (Youngs 2001). The hydraulic 

conductivity is given from the measurements by: 

Equation 7   
  

   
 

Where, 

Q = flow rate [m3s-1]   A = cross sectional area [m2] 

L = length of the column ∆h = head difference causing flow [m] 

Durner and Lipsius (2005) note the limitations to this method are related to small or inadequate 

sample size, soil disturbance during core collection, and preferential boundary flow through 

macropores along the core wall. In addition, the commonly used smaller soil cores (6.3cm x 7.3cm) 

are often too small to adequately represent macropore extent within a profile (Davis et al. 1999). 

Figure 11 Darcy's 

experimental arrangement. 

Source (Youngs 2001) 
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That said however, the method is simple, inexpensive, and convenient, and despite these limitations 

remains one of the most popular methods for measuring Ks. In addition, it is often used as a 

reference point for evaluating other methods (Durner and Lipsius 2005).    

ii.  Falling head permeameter 

This technique is often used to determine Ks for samples with low 

permeability because it utilizes a high hydraulic gradient when 

compared to the constant head method (Durner and Lipsius 2005). 

The falling head method is similar to the constant head except that 

once water is applied it is not held constant, but rather allowed to 

drain and the changing level of head observed (Figure 12). To read 

the rate of fall it is magnified within a manometer tube of smaller 

diameter than the soil sample. Thus, the hydraulic conductivity (K) 

equation can be expressed as:  

Equation 8   
  

  
  

  

  
 

Where, 

A = cross sectional area of sample [m2] 

a = cross sectional area of manometer [m2]   

L = length of soil sample    h0 = initial head difference [m]        

h1 = final height of water = h0 - ∆h [m]  t   = time required to get head drop of ∆h (        

The falling head method is subject to the same conditions as the constant head method however 

care must also be taken when applying head gradients well in excess of those experienced in the 

field as large gradients can disturb the soil structure. 

b) Field methods 

Although laboratory methods have the advantage of being quick and precise, collection and 

transport to the laboratory can alter a soil’s physical properties making results unrepresentative for 

field conditions. Field methods have the advantage of measuring soil under natural conditions 

leading Durner and Lipsius (2005:11) to claim that “direct in-situ measurements of hydraulic and 

retention properties still provides perhaps the most reliable, and often, the only means of 

determining hydraulic properties, despite their high costs and extreme time demands.” However, 

Figure 12 Falling head permeameter. 

Source (Youngs 2001) 
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field as well as laboratory measurements are subject to small scale heterogeneity between samples. 

Therefore a large number of measurements are required in order to get an adequate evaluation of 

hydraulic conductivity at any given site (Durner and Lipsius 2005). Field methods can broadly be 

divided into those above the water table, and those below the water table. Those below the water 

table are typically used when estimating groundwater flow into or out of wells (Youngs 2001). 

Methods above the water table are most relevant to this study and are described here. 

i. Borehole permeameter 

The Guelph Permeameter (GP) is a constant head well permeameter that measures in-situ hydraulic 

conductivity. The GP was developed using the theory of borehole permeability (Hooghoudt 1934) 

and was the chosen method for measuring Ks (see section 4.2.2 for the rationale for choosing the 

GP). For this reason, a relatively detailed account of the theory is explained in order to provide 

background for the results and discussion of GP results in Chapter 5.  

The GP uses a Mariotte bottle to maintain a constant water 

level inside a hole augured to a selected depth in an 

unsaturated soil. First, the hole is augured and the GP placed. 

Then the water from the permeameter slowly fills the hole to 

a set height and infiltrates the soil. Flow migrates quasi-

spherically from the infiltration surface creating a saturated 

bulb and wetting zone (Figure 13). Once the saturated bulb 

has formed and remains constant, out-flow is at steady state 

while the wetting front continues to percolate. The steady-

state flow is measured and together with the diameter and 

water level within the auger hole, is used to determine field 

saturated hydraulic conductivity Ks (Durner and Lipsius 2005).   

Early work by Glover (1953) modelled steady state flow from a 

well into unsaturated soil. Glover’s solution is based on 

Laplace’s equation which ignores capillarity and assumes the 

surrounding soil is saturated and draining at the rate of Ks. 

This assumes that it is purely pressure head H that generates 

flow Q. Thus, Glover’s solution for hydraulic conductivity can 

be written as:  

Equation 9   
  

    
 

Figure 13 Guelph Permeameter, 

principle of the method. Adapted from 

(Beims et al. 2007; Soilmoisture 2008) 
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Where the geometric factor of C (dimensionless shape factor) is given by: 

Equation 10          
 

 
    

 

 
 
 

   
 

 
 

Thus, by auguring a small hole of radius a, and using a Mariotte bottle to maintain constant head H, 

it is possible to measure Q and ascertain field saturated hydraulic conductivity Ks (Clothier 2001). 

Some advantages to this technique are the ease in which the equipment can be transported, 

assembled, and operated by one person. Measurements typically take 0.5 to 2 hours depending on 

the soil type, and the GP only requires about 2.5Ltr of water (Beims et al. 2007). However, Clothier 

(2001) warns that care must be taken when creating the hole to ensure no smearing or sealing of the 

walls occurs. This is because the surface of the walls in the well strongly affects Q, and any smearing 

will retard flow. 

Later work by Phillip (1985) showed that ignoring capillarity when calculating Ks can lead to results 

which are an order of magnitude higher, especially in fine textured soils where the matrix flux 

potential is large. Capillarity controls the size of the saturated bulb around the well and in part 

determines flow Q (Clothier 2001). For this reason, first Stephens and Neuman (1982) and then both 

Phillip (1985), and Reynolds et al. (1985) developed independent theories for the role of capillarity in 

determining steady flow Q from a well. Stephens and Neuman (1982) based their empirical analysis 

on the unsaturated-saturated flow regime of Richards equation rather than Laplace’s equation 

(Clothier 2001; Elrick and Reynolds 1992). Later, Phillip (1985) and Reynolds et al. (1985) developed 

different but comparable, approximate analytical solutions based on Richards equation for 

measuring flow from a well above the water table. Elrick and Reynolds (1992) claim that subsequent 

investigations of all three methods (i.e. Stephens and Neuman 1982; Phillip 1985; Reynolds et al. 

1985) give comparable results when predicting the steady state flow from a well.  

The Reynolds et al. (1985) solution uses the GP and two consecutive pressure head measurements, 

H1 and H2 (typically 5 and 10cm). Their solution separates the gravity (saturated) and capillarity 

(unsaturated) components of flow using Richards equation. The two measurements of flow from the 

well allowed for simultaneous equations to calculate field saturated hydraulic conductivity (Ks) and 

matrix flux potential (Фm) [m2s-1]. As an alternative to Ks, matrix flux potential Фm can be used to 

describe unsaturated flow in soil and offers some advantages under certain conditions. These are 

water transport under steep potential gradients, and when determining analytical solutions for 

steady-state multidimensional flow problems. Matrix flux potential is a direct function of the soil 

water content, but is only indirectly related to pressure head (Dirksen 2001).  
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The Reynolds et al. (1985) method can give unrealistic negative Ks or Фm values when significant soil 

heterogeneity such as large macropores or a continuous layer boundary is encountered in the 

change in saturated bulb between the two H levels. If the heterogeneity is caused by a boundary 

layer Reynolds and Elrick (1986) suggest altering the H-levels so that it does not fall between them. If 

only an approximate K value is required, then they suggest substituting the two-ponded height 

(simultaneous equation) for the simpler and less labour intensive one-ponded height (fixed  *) 

method which requires only one H-level.  

Numerous field studies have experienced repeated problems with negative Ks and Фm values when 

using the GP and the two-ponded head method (Amoozegar 1989; Chell 2007; Elrick et al. 1989; Lilly 

1994; Salverda and Dane 1993; Vieira et al. 1988; Wilson and Jardine 1989). Elrick’s et al. (1989) 

solution was to use the one-ponded height method suggested by Reynolds and Elrick (1986) to 

calculate Ks using Richard’s equation, and the parameter  * (unsaturated slope) to represent 

capillarity. To derive  * Elrick’s et al. (1989) evaluated the soil texture and structure and assigned 

the following values: for coarse sands and highly structured soils they considered  * to be 35m-1, 

most structured soils and medium to fine sands 12m-1, unstructured fine-textured soils 4m-1, and 

compacted clays 1m-1. Thus, the one-ponded height (fixed  *) method can calculate Ks by the 

following relationship (Elrick and Reynolds 1992): 

Equation 11     
  

              
   

  
 
  

Where,  

Ks   = Field saturated hydraulic conductivity  Q = Steady state recharge [m3s-1] 

A     = well radius [m]     h = steady depth of water in well [m] 

C     = dimensionless shape factor (see Glover’s solution above) 

a*   = measure of soils capillarity (ability to absorb water) [m-1] 

As an alternative to applying  * in the one-ponded technique, Elrick et al. (1989) suggests using the 

Laplace analysis, which assumes all flow from an unlined well to be saturated. However, Lilly (1994) 

notes that Ks values calculated by this method are generally greater than those calculated by 

Richards equation.  

Lilly (1994) used the GP to look for relationships between land use and hydraulic conductivity at 

various locations across Scotland. Of the 210 measurements made using the two-ponded head 

technique, only 72 (34%) met the validity criteria set in Reynolds et al. (1992) i.e. positive values for 
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Ks and Фm, and a calculated   value between 1 and 100m. For this reason, Lilly (1994) used the one-

ponded technique. Elrick and Reynolds (1989) reported that 75% of their two-ponded head 

measurements were positive, while Vieira et al. (1988),  Chell (2007), and Salverda and Dane (1993) 

had far less positive values with a mere 27%, 20% and 60% respectively. Salverda and Dane (1993) 

found that the simultaneous approach worked best in coarser homogenous soils, and on finer 

homogenous soils if smearing during well preparation was kept to a minimum. These conditions are 

not found in soils whose physical properties vary with depth, or soils overlaying an impervious layer, 

such as a clay pan, bedrock, or permafrost (Hayashi and Quinton 2004). Thus, the aforementioned 

soil heterogeneity commonly found in nature led Salverda and Dane (1993:420) to conclude: 

 “Since it has been shown theoretically and experimentally that GP results, obtained by the 

 multiple head analysis, are often unreliable, this method should not be recommended as a 

 standard procedure to measure the soil’s hydraulic properties. A possible alternative to the 

 multiple head analysis of the GP could be the single head analysis”.  

ii.  Ring infiltrometer 

Ring infiltrometers are probably the most commonly used instrument for measuring field infiltration 

rates. Like the Guelph Permeameter, infiltrometers are used in-situ to estimate field-saturated 

hydraulic conductivity Ks and matrix flux potential Фm. Water can be applied at either falling or 

constant head conditions, but the constant head method is usually preferred due to the ease of 

analysis and setup (Durner and Lipsius 2005). In the constant head method water is ponded at 

positive pressure head h0 using a Mariotte bottle which allows for a wide range of h0 values (Durner 

and Lipsius 2005). Both single and double rings can be used. In the single ring method, a ring is 

driven into the soil to a selected depth, being careful to minimize disturbance to the soil. The ring 

confines the flow to the vertical thereby minimising lateral flow caused by capillary action.  For extra 

assurance, a double ring system can be used to attempt to eliminate lateral flow. Under this system 

flow through the outer ring should guarantee one-dimensional vertical flow through the inner ring 

with measurements of Ks taken from the inner ring only (Durner and Lipsius 2005). In saturated 

conditions flow from the ring is at positive pressure head. This is controlled by Ks, which allows for 

gravity and matric flux potential. Common size ratios of the inner and outer rings is 20cm for the 

inner and 30cm for the outer (Radcliffe and Rasmussen 2000). 

Applying to the same ring two positive hydraulic heads enables the simultaneous solving of the 

resulting equations for Ks and Фm (Durner and Lipsius 2005). As with the Guelph Permeameter, this 

method can cause a large percentage of negative or unrealistic results for Ks and Фm, particularly in 

highly heterogeneous and/or low permeability soils. In this situation, Durner and Lipsius (2005) 
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suggest replacing the one dimensional steady state flow analysis with a transient analysis using a  

nonlinear least-squares inversion method. Another method employed by Parkin et al. (1999) uses 

the constant head experiment as before, but once steady state flow is achieved the head is allowed 

to fall and the rate measured as a function of time. Other suggestions for characterizing hydraulic 

properties within slowly permeable soils include the methods listed in Fallow et al. (1994) which 

involves measuring early-time infiltration under both falling and constant head. Further methods 

have been developed which combine TDR and ring infiltrometers to measure hydraulic properties in 

unsaturated soils (Parkin et al. 1995). 

Since both the ring infiltration and Guelph Permeameter methods are based on infiltration theory 

the sources of error are similar, and often caused by soil heterogeneity. Effects that often 

compromise analysis include impeding layers either at the surface, such as compaction from animals 

or farm equipment, or in the sub-surface such as a clay pan or bedrock. Restricting layers at the 

surface impede infiltration through to the underlying layer which consequently will not be fully 

wetted up and so the infiltration rate can only be related to unsaturated hydraulic conductivity. 

These restricting layers can be expressed in terms of hydraulic impedance (Rr) which consists of the 

layers thickness (Lr) divided by its hydraulic conductivity (Kr). In contrast, impeding layers at depth 

can cause lateral flow creating higher Ks value than would occur if the entire surface was saturated 

and water had to flow through the impeding layer (Figures 14 and 15). Additionally, the presence of 

macropores and cracks can create preferential flow creating a non-uniform wetting pattern thereby 

increasing Ks values (see section 3.3.1). The effect of the impeding layer is greatest when the ring 

size is small with errors of several hundred percent possible. If Ks is being measured in the upper soil 

profile (above the restricting layer) then an underestimate of Ks can occur (Bouwer 1986). 

 

 

Figure 14 Infiltration through a ring infiltrometer onto a restricting layer creating a perched water table. 

Adapted from Bouwer (1986). 
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Figure 15 Infiltration over a large inundated area into a soil with a restricting layer. Reproduced from 

Bouwer (1986). 

To counter ring size error a ring should be chosen that is adequately sized to represent the soil. 

Obviously, the larger the ring the better, however practicality often dictates which size is used. Other 

sources of error include disturbance during ring insertion which can either decrease Ks by 

compacting the soil, or increase Ks by fracturing the soil and creating preferential flow paths down 

the sides of the ring. Another significant measurement error is blocked flow paths associated with 

entrapped air beneath the advancing wetting front. If air cannot escape to the surface then pressure 

head increases at the wetting front thereby decreasing infiltration rates. Further error can result 

from fingered flow where the wetting front infiltration is uneven due to water repellancy, a process 

created by decaying organic matter plus humic and fulvic acids. Soils in such a condition are said to 

be hydrophobic; this is most commonly observed in dry soils (Clothier 2001). In reality it is rare that 

soil becomes fully saturated. Bouwer (1986) claims that measured Ks might be as low as half of real 

Ks (noting that K can vary by several orders of magnitude depending on water content).  

iii. Pressure Infiltrometer 

The Pressure Infiltrometer (PI) method was developed by Reynolds and Elrick (1990) especially for 

the measurement of Ks in low permeability soils. It is a variant of the Guelph Permeameter and uses 

a single ring which is driven into the soil to a depth of about one radius. Positive pressure head is 

maintained in the head space of the ring with water fed into the soil through a sealed top lid 

connected to a capillary tube which is also used as a measuring device (Youngs 2001). The PI was 

designed to mitigate the problem of achieving two, sufficiently separated H-levels in heterogeneous 

soils. Either the single head method (using the a* parameter to represent capillarity), or a double 

head method which measures both Ks an a*, can be used.  In the later case, the heads should be 

sufficiently different to avoid the problems of negative values as commonly experienced with the 

Guelph Permeameter method (Chell 2007). Reynolds et al. (2000) adds that the PI method has 

relatively simple and rapid measurements, allows larger heads for less permeable soils, and the 

absence of an augerhole means the dangers of smearing are eliminated. Possible sources of error 
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are the same as those experienced with the ring infiltrometer. An additional error is the small 

diameter of the ring (100 mm), which raises the issue of whether the sample size is sufficient to be a 

fair representative of the soil (Chell 2007; Reynolds et al. 2000). Reynolds et al. (2000) claims that 

the pressure infiltrometer is well suited for measuring Ks but it has received little field testing or 

comparison with other methods.    

iv. Disk permeameters (Tension infiltrometers) 

Methods for measuring in-situ infiltration such as ring infiltrometers only measure flow under 

ponded saturated conditions. In soils with distinct macropores preferential flow will dominate 

thereby bypassing the soil matrix. For this reason disk permeameters (or tension infiltrometers in 

the USA) were developed to create negative potential (tension) on water flow. This excludes 

macropores from the flow process and measures soil matrix flow only. The modern disk 

permeameter was developed by Perroux and White (1988), and evolved from the sorptivity tube of 

Clothier and White (1981). The disk permeameter is set at head h0 on a smooth surface of contact 

sand and the unconfined infiltration is observed by the drop in water level in the reservoir, or 

automatically using pressure transducers. The relative effects of macropores can be measured by 

altering the pressure head with a sudden drop in conductivity observed with a drop in head (Clothier 

2001).   

3.5.2 Unsaturated hydraulic conductivity K( ) 

Unsaturated flow (introduced in section 3.2) can be very difficult to measure and indeed, no single 

method is best suited to all conditions (Dirksen 2001). There are many papers reviewing techniques 

for determining K( ) including (Klute and Dirksen 1986; Kool et al. 1987; Mualem 1986a; Van 

Genuchten et al. 1992, 1999). Methods for measuring unsaturated flow can be divided into steady 

state and transient. Steady state methods are more accurate than transient and usually use less 

sophisticated equipment.  Their main disadvantage is they can take much more time. These methods 

are further divided into laboratory and field measurements. The following section briefly reviews 

steady state methods. Further information on a variety of techniques can be found in Dirksen (2001) 

and Klute and Dirksen (1986). 

a) Steady-state laboratory methods 

i. Head controlled 

This method uses Darcy’s head controlled method (defined in section 3.5.1) to make measurements 

on a soil column at a range of hydraulic heads. Soil water content can be measured non-
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destructively by weighing or using sensors for dielectric measurements, and tensiometers for matric 

potential measurements. The experimental setup can give a high degree of accuracy and therefore 

Dirksen (2001) suggests it should be used as the standard method for measuring K(Ѳ). 

ii. Flux controlled 

Rather than controlling hydraulic head, this method controls the flux density at the input end of a 

soil column by using a device that can deliver small, uniform, steady state water flux densities over 

an extended time period (Dirksen 2001). Dirksen and Matula (1994) have developed a device that 

can deliver steady average fluxes down to 0.1mm d-1. Unfortunately, this method can take several 

days to reach steady state making it an unattractive option if time constraints are an issue.  

iii. Regulated evaporation  

The regulated evaporation method achieves steady state when soil water supplied at constant 

negative pressure head is evaporated at a constant rate at the soil surface. The flux density 

throughout the soil is steady while the water content and thus hydraulic conductivity decrease 

towards the surface. The hydraulic conductivity gained will be some form of average for the range of 

water contents (Dirksen 2001). 

b) Steady-state field method 

i. Sprinkling infiltrometer 

The sprinkling infiltrometer is the field version of the laboratory based flux controlled experiment. 

This method is often used in erosion studies where the impacts of rain splash can be simulated. 

Measurements can extend over days, or even weeks depending on the range of water contents 

covered. Over these periods temperature can fluctuate significantly which affects water transport 

processes. For this reason, all field measurements should minimize temperature changes as much as 

possible (Dirksen 2001). 

ii. Disk permeameters (Tension infiltrometers) 

This method uses the same setup as described in the saturated flow version. The disk supplies water 

at constant pressure head to the surface of an unconfined homogeneous soil. Initially, flow is one 

dimensional and is controlled by sorptivity. Once steady state is reached (usually a few hours) 

capillary and gravity forces can be separated and hydraulic conductivity measured (Dirksen 2001).   



 
 

58 
 

3.6 Indirect estimation by pedotransfer functions 

As a result of the cost and difficulty of measuring hydraulic properties, other more easily analysed 

soil properties have been used to obtain these relationships indirectly. These estimation methods 

are called pedo-transfer functions (ptfs). Tietje and Tapkenhinrichs (1993) divides ptfs into three 

categories: 

i. Point regression models 

Water content is estimated over a range of matric potentials using regression analysis on large data 

sets of soil samples which contain information on soil texture, organic content, and bulk density. The 

regression equations estimate water content at different matric potentials depending on the 

structural makeup of the other soil properties (Townend et al. 2000). 

ii. Physical model methods 

The water release curve is estimated from particle size distribution. Assumptions are made about 

the shape of particles, packing, and capillary attraction of water in different size pores to estimate 

hydraulic conductivity (Townend et al. 2000). This approach has developed over the last decade due 

to advances in instrumental techniques and computer technology (Blunt and Hilpert 2001), however 

these techniques are currently used more for research into process rather than practical 

determination of hydraulic properties (Durner and Lipsius 2005).   

iii. Functional parameter regression methods 

An equation describing the water release curve is formulated and the parameters of the curve are 

determined for a particular soil using regression analysis with measured values on a water release 

curve (Townend et al. 2000). A commonly used empirical equation for determining K in unsaturated 

soil is the van Genuchten (1980) WRC curve combined with the Mualem (1986a) hydraulic 

conductivity function (section 3.2).  

There are a large number of reviews that compare the various pedo-transfer functions (Danalatos et 

al. 1994; Felton and Nieber 1991; Haverkamp and Parlange 1986; Nandagiri and Prasad 1997; Rawls 

et al. 1991; Schaap 2005; Tietje and Tapkenhinrichs 1993; Vereecken et al. 1989; Viaene et al. 1994; 

Wagner et al. 2001; Wosten et al. 2001). In many of these studies the van Genuchten (1980) and 

Mualem (1986a) model appears to give accurate results, but this method does require at least five 

measurements to fit it (Townend et al. 2000). 
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Chapter 4 – Experimental design and methodology 

For this MSc thesis saturated hydraulic conductivity (Ks), bulk density (ρ) and soil texture (described 

in sections 4.2.4 and 4.2.5) were measured on soils at two locations (Takapau farms and Mananui 

farm) bordering the Ruataniwha Plains in Central Hawkes Bay. The constant head Guelph 

Permeameter was used for measuring Ks, the driving hammer for ρ, and laser diffraction and sieve 

techniques for soil texture. This chapter outlines the experimental design and site selection followed 

by the rationale for choosing the field based constant head permeameter. This is followed by the 

methodologies and principal sources of error. 

4.1 Experimental design 

Western et al. (2005:1) states that before designing any measurement program it is important to 

ascertain the objectives of the data collection. This provides the basics for a sampling strategy which 

includes the objectives of the research; key spatial and temporal scales of interest; required 

accuracy, and available resources. The aim of chapter 4 is to design a methodology for achieving 

objectives 1 and 2, which as stated in the introduction are:   

1. Ground truth the national scale land and soil information held in the New Zealand Land 

Resource Inventory (NZLRI) and National Soil Database (NSD) by digging soil pits and 

collecting samples from selected sites within the Ruataniwha Plains in Hawkes Bay based on 

land type, topography, soil and geology. Measure the hydraulic conductivity, soil texture, 

bulk density, and the depth to slowly permeable layer at each sample location and compare 

to the national data. This will be used to assess the extent to which the national data can be 

used for detailed flood modelling and management at the farm scale.  

2. As tree shelterbelts are proposed as natural flood buffers, measure the changes in soil 

hydraulic properties at a distance of 1, 5 and 10 metres from the trunk of two commonly 

found species of trees on New Zealand farms: a Cupressus macrocarpa shelterbelt and 

individual Populus spp. trees.  

4.1.1 Site and sample selection 

For objective 1, evidence was sought to test whether there were any differences in soil texture, bulk 

density, and Ks values between sample sites. It was recognised that only a limited study of spatial 

variability would be possible due to the limited time available. A comprehensive analysis of spatial 

variability would require many more measurements. Despite this, it was thought that an indicative 
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assessment of the influence of elevation, geology, soil type, and land use were obtainable objectives 

given available time.  

To represent Takapau farms the area was divided into 7 landscape units and at least 3 

measurements taken for each unit. The landscape units included pine forest and pasture overlaying 

greywacke, pasture and macrocarpa on loess downlands, pasture on mudstone, and pasture on loess 

basin and limestone. Unlike Takapau farms, Mananui farm has similar geology, soil type and land use 

throughout (gravels, sandy loam, pasture). The reduced number of variables provided an 

opportunity to compare Ks at different slope angles along a transect. Each transect had 3 points 

corresponding to head slope, mid-slope and foot slope (see Milne et al. (1991) for a definition) with 

a total of 5 transects (16 Ks points) measured overall.  

4.2 Methodology 

4.2.1 Site description 

Once a sample site was selected the soils and site location were described as per the methodology 

defined in the ‘Soil Description Handbook’ by Milne et al. (1991). The location was calculated by the 

average of three GPS points taken using a handheld Garmin GPS.  Soil texture samples were 

collected by digging pits down to the slowly permeable layer. This layer was usually a fragipan (A 

dense, subsurface layer of hard soil with relatively slow permeability to water, mostly because of its 

extreme density or compactness rather than its high clay content or cementation), but in a few cases 

samples were obtained down to bedrock or underlying gravels. Bulk density cores and sediment 

samples were collected at different soil layers and boundaries. Hydraulic conductivity measurements 

were made in the A horizon at approximately 12 to 20cm depth. 

4.2.2 Rationale for choosing the field based Guelph Permeameter 

The best technique for measuring soil hydraulic properties is not always clear. Some authors such as 

Dirksen (2001) proclaim the multiple benefits of carrying out measurements in the laboratory stating 

it is good practice unless there are overriding reasons to perform them in-situ. In contrast, Durner 

and Lipsius (2005) claim that field measurements offer the most reliable, and often, only means of 

determining hydraulic properties. The major disadvantage of using laboratory methods was the 

practical difficulties in successfully obtaining an “undisturbed” soil core and safely transporting it 

back to the laboratory, some 250km away. The low soil moisture levels during the first collection 

period (late summer) made the soil less likely to hold together, and when combined with the steep 

and undulating nature of the field sites coupled with the long distance back to laboratory facilities 
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back in Wellington, it was feared that the cores would be disturbed in transit. Even if collection was 

delayed until soil moisture levels were higher, disturbance was still likely to occur. This was the 

primary reason why it was decided that in-situ field measurements would be most appropriate for 

this study. 

The major limiting factor when choosing a field technique was the available equipment. The field 

based equipment belonging to Victoria University of Wellington were ring infiltrators and a Guelph 

Permeameter (GP). Clothier (2001) provides a table that ranks the relative merits of eight different 

field infiltration devices via a usefulness score. Overall the ring infiltrometer scored the highest due 

to its low cost, ease of use and data analysis, and lack of technical skills required by the operator. 

However, it scored poorly in the disturbance category due to ring insertion. The Guelph 

Permeameter also rated highly coming second behind the ring infiltrometer. It scored slightly less 

because it costs more and requires greater operator experience. However, the GP outscored the 

rings due to fewer disturbances to the soil and greater information able to be obtained from the 

measurements. These benefits prompted its selection for this project. The standard equation for the 

GP measures Ks using Reynolds et al. (1985) two-ponded head method. However, negative values 

obtained using this method prompted the use of the one-ponded head technique (Elrick et al. 1989) 

outlined in section 3.6.1. 

4.2.3 Measuring saturated hydraulic conductivity with the Guelph Permeameter  

Saturated hydraulic conductivity was measured on site using the Guelph Permeameter (GP). The GP 

was operated in accordance with the operating instructions (Soilmoisture 2008). What follows is the 

step by step procedure employed when using the GP. 

1) Site preparation 

Upon arrival at the site an evaluation of the topography and general soil appearance was made in 

order to select a representative point for the study area.  

2) Well preparation 

The well was prepared by auguring a borehole to a selected depth (typically 15-20 cm). The Soil 

Auger was used to remove the bulk of the soil while the Sizing Auger was used as a finishing tool to 

produce a well hole of uniform geometry and to clean debris from the bottom of the well hole. In 

moist soils and fine or medium textured soils the process of auguring a well hole can create a smear 

layer on the wall of the well blocking the natural flow of water into the surrounding soil. In this 

situation the Well Prep Brush was used to remove the smear layer.   
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3) Placement of permeameter 

The GP was assembled and mounted within the tripod and the stopper in the reservoir cap removed 

and both reservoirs filled with water using the plastic water container. Once filled, the stopper was 

replaced in the fill hole and the neoprene tube from the vacuum port checked to make sure it was 

folded over and closed with the clamping ring. Then the tripod was centred over the well hole and 

the GP lowered being careful not to knock any debris off the sides of the well into the hole. The 

flexibility of the tripod base allowed the legs to be adjusted to accommodate variation in slope. 

When the slope angle was particularly steep the adjustable ‘Heavy Duty Guelph Stand’ was used to 

stabilise the GP. 

4) Making a reading 

After the GP was assembled, filled and placed within the well measurements were taken using the 

following procedure. 

Step 1 – First, to verify that both reservoirs were connected, the notch on the reservoir valve was 

turned up. Then the well height indicator and well head scale were checked to make sure they were 

down flush against the reservoir cap.  

Step 2 – The well head height (H1) was established by raising the air tube either 5 or 10cm being 

careful to raise it slowly thereby reducing turbulence and erosion as well as potential overflow from 

the surge effect. The combination reservoir was used and the rate of fall (R) observed at 2 minute 

intervals. If it was too slow to easily distinguish the rate of fall between consecutive readings then 

the inner reservoir only was used.  Additionally, the time between readings could be made longer for 

slowly permeable soils (e.g. 5 min), or shorter for faster permeable soils (e.g. 1 min).  

Step 3 – Outflow was measured at the chosen time interval from the rate of fall (R) as read against 

the scale stamped on the selected reservoir. R was monitored until a steady rate of fall is reached. A 

steady rate is achieved when R is the same for three consecutive readings (R1). The rate of fall for 

each interval is determined by dividing the change in water level within the reservoir in centimetres 

by the time interval in seconds.  

Step 4 - The field saturated hydraulic conductivity (Ks), was then calculated using Elrick and Reynolds 

(1992) equation listed in Chapter 3 section 3.5.1 (i). 
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Figure 16 Measuring Ks with the Guelph Permeameter at Takapau farms 

4.2.4 Measuring dry bulk density using the driving hammer technique 

The bulk density (ρ) of soil is the ratio of the soil mass to its volume and is inversely related to the 

porosity of the same soil, i.e. the more space in the soil, the lower the value of bulk density (Gerrard 

2003). Values of ρ generally range from <1g/cm3 for highly organic soils, 1.0-1.4g/cm3 for well-

aggregated loamy soils, and 1.2-1.8g/cm3 for sands and compacted horizons in clay soils (White 

2006). The first stage in measuring bulk density involved obtaining a soil core while trying to 

minimise disturbance to the soil during the process. This was achieved through driving a stainless 

steel cylinder containing a core into the ground to selected depths and horizons. A hammer was 

used to carefully drive the cylinder into the ground, which was made easier by the cutting edge of 

the cylinder. Once the cylinder was extracted and the core removed, the usual procedure 

recommends leaving approximately 2cm of soil protruding from the base and trimming it off in the 

lab. However, in mid-march 2010 when most of the samples were collected the soil was very dry 

which caused some of the ends to break off during transport. For this reason ends were trimmed in 

the field and then the core tapped up within a plastic bag. This way if any soil fell out in transit, it 

could still be included with the core when calculating bulk densities in the lab.  
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Figure 17 Bulk density core, stainless steel cylinder and hammer used for extracting soil cores 

Once in the laboratory the core volume was calculated (60mm length; 40.5mm diameter) then both 

the tube and soil were weighed in grams. The core was oven dried at 105°C for 24 hours then 

removed and cooled in a desiccator. The oven dried core was weighed and then the soil removed 

and the empty core weighed again. From this process bulk density (ρ) [g/cm3] was calculated by 

dividing the weight of the soil alone (Ms) [g] by the volume of the core (Vt) [g].  

Equation 12    
                    

                  
 

In addition the soil volumetric water content (Wv) [g] was calculated by the difference in core weight 

[g] between dry and wet sample using the equation defined in (USDA 2010): 

Equation 13         
                                           

                   

 

                                   
        

             
  

  Volumetric water content [g/cm3] =    x ρ 

                     
 

    
  

4.2.5 Soil texture analysis using the laser diffraction and sieve method 

Soil samples are composed of various proportions of fine (<0.5mm; sands, silts and clays) and coarse 

sediment (>0.5mm; gravel). The distribution of particles is a significant determiner of the hydraulic 

characteristics within a soil. To establish the distribution of particle size for each sample two 
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methods were used. For those samples with fine sediment only, a Laser Particle Size Analyzer (LPSA) 

was used. For samples with both fine and coarse material both the LPSA and sieving were used.  

a) Laser particle size analyser  

Particle size of soil samples <0.5 mm were calculated using the LS 13 320 Laser Particle Size Analyser 

made by Beckman Coulter. The laser diffraction method relies on analysis of the ‘halo’ of diffracted 

light when the laser beam passes through a dispersion of particles within water. The angle of 

diffraction increases as particle size decreases (Wedd 2003). Operation of the LPSA was followed 

using the methodology outlined in the LPSA manual (Beckman Coulter 2003). Only a small part of 

each soil sample is required to run through the LPSA. This was selected in part by the coning and 

quartering method outlined by Pitard (1993). Although this approach is not a highly accurate 

representation of the sample, it is deemed accurate enough where site variation, such as soils, is 

high (Pitard 1993). After the sample was cut into four, one quarter was randomly selected and 

ground gently in calgon using a pestle and mortar to separate the particles. This was then sonicated 

within a test tube and a sub-sample extracted with a pipette and run through the LPSA. However, 

early results showed a bias for selecting sands when using the pipette due to the settling process. 

Soils that were known silt loams were coming out as sand loams. This issue was overcome by 

randomly selecting a small sub-sample from the original quartered sample and separating the 

aggregates as before. Then the entire sub-sample was run through the LPSA thereby removing any 

bias from using the pipette. This method gave results more in line with expectations.  

b) Sieve analysis    

Out of the 147 samples collected, 30 contained coarse aggregates (>1.5 mm in diameter). While the 

finer aggregates were run through the LPSA, the coarser gravels required sieving. This method 

involved drying and weighing the entire sample to give total weight, then ‘wet sieving’ to remove the 

finer particles and drying the remainder and weighing again. This gave relative proportions of fine 

versus coarse material within the total sample. The remaining coarse sediment was sieved through 

different size mesh and weighed at each stage. The results from the sieving were combined with 

results from the laser diffraction and the distribution of particle size established via a percentage 

breakdown.   
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Chapter 5 – Experimental results 

Chapter 5 presents the results and discussion from the experimental methodology in Chapter 4. The 

aim of this chapter is to complete objectives 1 and 2 by breaking it down into 3 sections. The first 

section lists the soil properties as found in the National Soil Database (NSD) so they can be compared 

with the measured values. The second section compares the measured values (soil texture, hydraulic 

conductivity, bulk density, depth to slowly permeable layer) against the NSD at Takapau and 

Mananui farms using confidence intervals and statistical tests where appropriate. The third section 

presents results from a study into the changes in soil hydraulic properties at a macrocarpa 

shelterbelt on Takapau farms and poplars at Mananui at a distance of 1, 5 and 10 metres from the 

trees. In total, 70 Ks readings, 114 bulk density cores, and 145 soil texture distributions were 

measured and analysed.  

5.1 National Soil Database values 

Table 9 displays the properties of the soils in both study areas as listed in the NSD. Within the NSD is 

a field “EST_values”. These describe the origin of the value and to what extent they can be relied 

upon for accuracy. The NSD Matapiro silt loam values are derived from actual measurements of the 

soil (class m). The Takapau, Taihape, and Mangatahi loams have NSD values estimated from 

relationships with other soils (class r) but the estimate is considered reliable. The Maungapakeha silt 

loam values were also estimated from relationships with other soils but with an unknown level of 

accuracy (class u). The NSD values for the Atua silt loam were estimated from General Soil Survey 

Data (scale 1:253,440) (class uf), which in general is considered less reliable than the ‘u’ class above. 

Three soils on Takapau farms (Takapau, Taihape, Okawa) were present in small quantities and for 

this reason the field studies were restricted to the Atua, Mangapakeha, and Matipiro silt loams only.  

No statistical test was suitable for comparing the data measured in the field with the NSD. This is 

because the NSD values are classified in classes which encompass a range of values e.g. Ks classes 

(slow = 1 to 4mm/h-1, moderate = 4-71mm/h-1 etc, see Table 9). Therefore the field data was 

analysed using 95% confidence intervals and then compared to see if it matched the classes assigned 

to the same area in the NSD. 

 

 

 



 
 

67 
 

Table 9 Soil information as defined in the NSD. The moderate class = 4 to 71mm/h
-1

. 

Farm Soil type Hydraulic conductivity 

(mm/h-1) 

Depth to slowly permeable 

layer (m) 

Takapau Atua silt loam 

Mangapakeha silt loam 

Matapiro silt loam 

Takapau stony loam 

Taihape silt loam 

Okawa sandy loam 

moderate 

moderate 

moderate 

moderate 

moderate 

moderate 

min 1.5,  max 3.0, mid 2.25 

min 1.5,  max 3.0, mid 2.25 

min 0, max 0.44, mid 0.22 

min 1.5, max 3.0, mid 2,25 

min 0.45, max 0.89, mid 0.67 

min 0.45, max 0.59, mid 0.52 

Mananui Mangatahi sandy loam moderate min 1.5,  max 3.0, mid 2.25 

5.2 Soil texture 

The method for measuring soil texture distributions is described in detail in Chapter 4 (section 4.2.5). 

Particle size was classified using the United States Department of Agriculture (USDA) scheme (Table 

10). The measured soil textures were very similar to those held in the NSD. The NSD classes the soil 

at Takapau farms as silt loam. Of the 88 samples analysed from Takapau farms, 69 (78.4%) were 

classed as silt loams with 8 of those samples also containing some gravels. The remaining 19 samples 

(21.6%) were classed silt and were located at depths ranging from 20 to 70cm (Figure 18). At 

Mananui farm the NSD defines the soil as sandy loam. Of the 57 samples collected 48 (84.2%) were 

classed sandy loams, with 17 of those samples also containing some gravels. The remaining samples 

were either loamy sand 6 (10.5%), or silt loam 3 (5.3%) (Figure 19).  

In summary, 78.4% of the samples at Takapau were silt loam which matched the values held in NSD. 

The remaining 21% was silt which came from the Mudstone hill country at depth. At Mananui 84.2% 

were sandy loam which matched the values held in the NSD. The remainder were closely related as 

either loamy sand or silt loam. When dealing with a highly variable substance such as soil it is 

common to find large differences in soil properties (Elkateb et al. 2003), even at the hillslope scale 

(Sivapalan 2003). The slight variation in soil textures found across both study sites is consistent with 

this and it can be concluded that the NSD is suitable for predicting soil texture at the study sites. 

Table 10 Particle size classification by USDA scheme. Note: samples with gravels >15% and <50% are termed 

gravelly. Samples with >50% gravels are termed very gravelly. 

Sediment size clay silt sand gravel 

µm 2 2-50 50-2000 2000-315,000 
mm <0.002 0.002-0.05 0.05-2.0 2.0-31.5 
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Figure 18 Soil texture triangle displaying soils from Takapau farms classified by % sand, silt and clay. Of the 

88 samples, 69 are silt loams and 19 are silt. 

 

Figure 19 Soil texture triangle displaying soils from Mananui farm classified by % sand, silt and clay. Of the 
57 samples, 48 are either sandy loams, or gravelly sandy loams. The remaining 9 are loamy sand and silt 
loam. 
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5.3 Hydraulic conductivity 

Saturated hydraulic conductivity (Ks) was measured using the field based Guelph Permeameter. The 

presence of a fragipan (see section 4.2.1 for a definition) at reasonably shallow depths (section 

5.4.2), and the limited time available for field work meant that all 70 Ks measurements were taken in 

the A-horizon only. Forty three of these were distributed throughout the landscape to provide some 

idea of spatial variability. The remaining 27 were used to determine whether Ks is greater near trees 

(specifically a macrocarpa shelterbelt and poplars) compared to the same soil in pasture. The initial 

calculation method for inferring Ks from the measurements was the standard two-ponded head 

technique (Reynolds et al. 1985), however this method gave negative values. As an alternative the 

one-ponded height method (Reynolds et al. 1992) was applied to calculate Ks. This used the average 

of the two separate calculations of Ks obtained using two hydraulic heads (50 and 100mm) from the 

two-ponded technique. For a detailed description of the negative value problem and both the one 

and two-ponded head techniques see Chapter 3 section 3.5.1. (b). The NSD categorizes Ks using the 

classes listed in Griffiths (2004) which for comparison are displayed below the USDA classes (Table 

11).  

Table 11 Ks classes as defined by USDA and Griffiths (2004). 

Class Hydraulic conductivity (mm/h-1) 

USDA very 
slow 
<1 

slow 
 

1-5 

moderately 
slow 
5-20 

moderate 
 

20-60 

moderately 
rapid 

60-125 

rapid 
 

125-250 

very rapid 
 

>250 

(Griffiths 
2004) 

very 
slow 
<1 

slow 
 

1-4 

moderate 
 

4-71 

rapid 
 

72-288 

very 
rapid 
>288 

5.3.1 Takapau farms 

As discussed in Chapter 4, section 4.1.1, at Takapau farms the landscape was divided into units 

based on geology, soil type, and land use. Table 12 displays measured Ks values for each landscape 

unit with their associated class, with Table 13 displaying the summary statistics. The pasture on 

limestone had the highest mean Ks (11.4mm/h-1) and the slowest was the pasture on loess basin 

(3.2mm/h-1). Interestingly, the pasture on greywacke had higher Ks (8.1mm/h-1) than the adjacent 

pines on greywacke (4.3mm/h-1). In both locations the soil overlaying the bedrock was very shallow 

(6-30cm) but in the pasture the greywacke was more fractured with large cracks. These cracks can 

create macroflow which could explain the higher hydraulic conductivity at the pasture. The mean 

values for all landscape units fell within the moderate category as defined in Griffiths (2004), apart 

from pasture on loess basin which was classed as slow. When sorting Ks by soil type the high and low 

values were reduced with mean values for the Atua silt loam 5.5mm/h-1, Matapiro silt loam 
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6.9mm/h-1, and Mangapakeha silt loam 6.2mm/h-1 (Table 13). Mean Ks for the entire Takapau farm is 

8.46mm/h-1 (moderate) which is consistent with the classification it is given in the NSD.   

Table 12 Ks values from Takapau farms in mm/h-1 

Takapau farms 
Sample 

id. 
Depth of 

well (mm) 
Ks (mm/h-1) 

Ks Class  

(USDA) (Griffiths 2004) 

Pasture on loess 
basin 

1/A1 
1/A2 
1/A3 

170 
170 
180 

2.9 
2.5 
4.1 

slow 
slow 
slow 

slow 
slow 
moderate 

Pine on 
greywacke 

1/B1 
1/B2 
1/B3 

200 
120 
160 

5.8 
4.5 
2.5 

moderately slow 
slow 
slow 

moderate 
moderate 
slow 

Pasture on 
limestone  

1/C1 
1/C2 
1/C3 

150 
170 
190 

7.6 
19.9 
6.6 

moderately slow 
moderately slow 
moderately slow 

moderate 
moderate 
moderate 

Pasture on 
greywacke 

1/D1 
1/D2 
1/D3 

130 
130 
150 

3.3 
13.0 
8.1 

slow 
moderately slow 
moderately slow 

slow 
moderate 
moderate 

Pasture on loess 
downland 

1/E1 
1/E2 
1/E3 

150 
170 
160 

2.1 
5.2 
7.0 

slow 
moderately slow 
moderately slow 

slow 
moderate 
moderate 

Macrocarpa on 
loess downland 

1/F1 
1/F2 
1/F3 
1/M1 
1/M2 
1/M3 
1/M4 
1/M5 

150 
180 
150 
160 
160 
170 
150 
160 

3.1 
9.5 
6.9 
7.1 
6.7 
9.2 

10.4 
7.1 

slow 
moderately slow 
moderately slow 
moderately slow 
moderately slow 
moderately slow 
moderately slow 
moderately slow 

slow 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 
moderate 

Pasture on 
mudstone rolling 
hill 

1/G1 
1/G2 
1/G3 
1/H1 
1/H2 
1/H3 
1/I1 
1/I2 
1/I3 

150 
150 
160 
170 
160 
160 
150 
150 
170 

3.5 
6.1 
4.6 
7.9 
4.5 
1.9 

10.7 
4.3 
6.0 

slow 
moderately slow 
slow 
moderately slow 
slow 
slow 
moderately slow 
slow 
moderately slow 

slow 
moderate 
moderate 
moderate 
moderate 
slow 
moderate 
moderate 
moderate 

 
Table 13 Summary statistics of Ks for Takapau samples. Note, values for areas (G, H, I) have been averaged 

together to represent pasture on mudstone rolling hill. 

Ks mm/h-1 id n mean Ks class SD SE 95% CI of 
Mean 

Pasture on loess basin 1A 3 3.2 slow 0.83 1.09 1.14 to 5.26 
Pine on greywacke 1B 3 4.3 moderate 1.66 1.31 0.18 to 8.42 
Pasture on limestone  1C 3 11.4 moderate 7.41 3.90 -7.01 to 29.81 
Pasture on greywacke 1D 3 8.1 moderate 4.85 2.87 -3.95 to 20.15 
Pasture on loess downland 1E 3 4.8 moderate 1.88 0.52 1.22 to 3.5 
Macrocarpa on loess downland 1F 8 7.5 moderate 2.27 1.20 5.6 to 9.40 
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Pasture on mudstone rolling hill 1G 9 5.5 moderate 2.59 0.86 3.51 to 7.49 
Takapau sub-catchment  - 32 6.4 moderate 3.67 0.65 5.07 to 7.72 

Figure 20 Mean Ks at Takapau farms by landscape unit. Box and whisker plot shows the distribution of 
values (min, LQR, Med, UQR, Max) and where they lie in relation to the Ks classes as defined in Griffiths 
(2004). The small circle shows any outliers. The second plot displays the mean for each landscape unit at the 
95% CI. 

Table 14 Summary statistics at Takapau farms for Ks by soil type 

Soil series/type n mean Ks  Ks class SD SE 95% CI of Mean 
Atua silt loam 9 5.5 moderate 2.59 0.86 3.51 to 7.49 
Matapiro silt loam 17 6.9 moderate 4.17 1.01 4.80 to 9.08 
Mangapakeha silt loam 6 6.2 moderate 3.87 1.58 2.14 to 10.26 
 

 

Figure 21 Mean Ks at Takapau farms by soil type displayed as a box and whisker plot and 95% CI. 
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Figure 22 Mean Ks over the entire Takapau farm displayed as a box and whisker plot and 95% CI.  

5.3.2 Mananui farm 

Mananui farm had the same soil type, underlying geology, and land use throughout and so provided 

an opportunity to compare Ks between slope angles. This was achieved by measuring Ks along 5 

transects which were divided into three sections (footslope, mid-slope, headslope) based on slope 

definitions in Milne et al. (1991) (Table 15). Table 16 displays the summary statistics with the head 

slope having the lowest mean (4.86mm/h-1) which was probably due to the shallow soil depth (low 

storage) and low slope angle (elevation head). While the mid-slope had the shallowest soil depth, its 

steep slope angle resulted in the highest mean Ks (11.84mm/h-1). The mean Ks at the foot slope 

(8.67mm/h-1) fell between the first two due to a deeper soil profile which had more storage, but 

shallower slope angle which had less pressure potential. However, when comparing mean Ks 

between slope angles using the one-way ANOVA test, a P-value of 0.164 was calculated indicating 

the differences were not significant at the 5% significance level. The mean values for all three slope 

units fell into the moderate category as did mean Ks for the entire Mannaui farm (8.4mm/h-1). This 

range of values associated with the moderate class matched those listed in the NSD. 

Table 15 Ks values from Mananui farm in mm/h-1 

Mananui 
farm  

Sample 
no. 

Depth of 
well (mm) 

Ks (mm/h-1) 
Ks Class  

(USDA 2010) (Griffiths 2004) 

Foot slope 2/A1 
2/A2 
2/A3 
2/A4 
2/A5 
2/A6 

160 
160 
180 
170 
150 
150 

8.5 
3.0 
0.3 

15.7 
11.7 
12.8 

moderately slow 
slow 
very slow 
moderately slow 
moderately slow 
moderately slow 

moderate 
slow 
very slow 
moderate 
moderate 
moderate 

Mid-slope 2/B1 
2/B2 
2/B3 
2/B4 

160 
150 
150 
160 

3.9 
9.5 

19.1 
9.7 

slow 
moderately slow 
moderately slow 
moderately slow 

slow 
moderate 
moderate 
moderate 
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2/B5 140 17.0 moderately slow moderate 

Head slope 2/C1 
2/C2 
2/C3 
2/C4 
2/C5 

200 
160 
170 
160 
140 

5.2 
1.2 
2.7 
4.6 

10.6 

moderately slow 
slow 
slow 
slow 
moderately slow 

moderate 
slow 
slow 
slow 
moderate 

 
Table 16 Summary statistics of Ks for Mananui samples.  

Ks mm/h-1 id n mean Ks class SD SE 95% CI of Mean 

Foot slope 2A 6 8.67 moderate 5.96 2.43 2.41 to 14.93 
Mid-slope 2B 5 11.84 moderate 6.17 3.02 4.18 to 19.51 
Head slope 2C 5 4.86 moderate 3.58 1.69 0.42 to 9.30 
Mananui - 16 8.46 moderate 5.79 1.45 5.38 to 11.56 

 

 

Figure 23 Mean Ks at Mananui farm by landscape unit. Box and whisker plot shows the distribution of values 

and where they lay in relation to the Ks classes. The second plot displays the mean for each landscape unit at 

the 95% CI. 

 

Figure 24 Mean Ks over the entire Mananui farm displayed as a box and whisker plot and 95% CI. 
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5.4 Bulk density and depth to slowly permeable layer 

5.4.1 Bulk density 

The general trend at both study areas is an increase in bulk density (ρ) with depth. At Takapau farms 

the first 6cm of the A horizon had a mean ρ of 1.10g/cm3, at 10-20cm 1.42g/cm3, and at 40-90cm 

(fragipan) 1.56g/cm3. The mean ρ at Mananui farm was similar with 1.10g/cm3, 1.37g/cm3, and 

1.54g/cm3 respectively. Each bulk density core was extracted using the driving hammer technique 

(Chapter 4, section 4.2.4). As the carving method is considered more accurate due to less 

disturbance of the soil a correction factor of +6% for the A-horizon samples and +3.5% for the 

fragipan was used to adjust the data to an equivalent obtained by carving as suggested by Parfitt et 

al. (2010). The original bulk density data can be found in appendix A. 

Table 17 Summary statistics for bulk density at Takapau farms 

Depth (cm) n mean (g/cm3) SD SE 95% CI of Mean 

0-6 (A-horizon) 30 1.10 0.12 0.02 1.06 to 1.14 
10-40 (A-horizon) 18 1.42 0.22 0.05 1.31 to 1.53 
40-90 (fragipan) 9 1.56 0.15 0.05 1.44 to 1.68 

      

 

Figure 25 Box-and-whisker plot and 95% confidence interval for mean bulk density at Takapau farms at 

different soil horizons. 

Table 18 Summary statistics for bulk density at Mananui farm 

Depth (cm) n mean (g/cm3) SD SE 95% CI of Mean 

0-6 (A-horizon) 16 1.10 0.08 0.02 1.06 to 1.14 
10-40 (A-horizon) 11 1.37 0.16 0.05 1.26 to 1.48 
40-90 (fragipan) 3 1.54 0.17 0.10 1.12 to 1.96 
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Figure 26 Box-and-whisker plot and 95% confidence interval for mean bulk density at Mananui farm at 

different soil horizons. 

5.4.2 Depth to slowly permeable layer  

The NSD lists ‘depth to slowly permeable layer’ (DSLO). At Takapau farms it lists the DSLO as min 

150cm, max 300cm, mid 225cm for the Atua and Mangapakeha silt loam. However, bulk density and 

field pits have shown that in places the Atua and Mangapakeha pan can be as shallow as 17cm and 

10cm respectively. The NSD lists the DSLO for the Matapiro silt loam as min 0cm, max 44cm, mid 

22cm, which is generally consistent with the values recorded in the field. At Mananui farm the DSLO 

for Mangatahi sandy loam is min 150cm, max 300cm, mid 225cm. Again, the bulk density and field 

observations have shown that in places the Mangatahi pan can be as shallow as 12cm. For this 

reason the observations made in the field will be used to add greater detail to the values held in the 

NSD. The original DSLO data can be found in appendix B. 

Table 19 Summary statistics for DSLO by soil series 

Depth (cm) n min 
(cm) 

max 
(cm) 

med 
(cm) 

mean 
(cm) 

SD SE 95% CI of Mean 

Atua 
Mangatahi 

9 
16 

17 
12 

60 
46 

28 
25 

35.0 
24.6 

16.8 
8.6 

5.59 
2.14 

22.11 to 47.89 
20.00 to 29.12 

Matapiro 12 20 35 30 28.9 5.6 1.61 25.21 to 22.29 
Maungapakeha 6 10 30 22.5 22.0 7.9 3.22 13.74 to 30.26 
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Figure 27 Box-and-whisker plot and 95% confidence interval for DSLO by soil series 

5.5 The effects of trees 

This section displays the results and statistical analysis from the macrocarpa shelterbelt and isolated 

poplar trees followed by a discussion of the likely reasons for such results. The data sets in this 

section were examined for normality using the Shapiro-Wilk test together with a visual inspection of 

the histogram. All data was assessed as normally distributed (Tables 20 and 21) and the ANOVA and 

parametric t-tests were used to examine whether there were any significant differences in mean 

hydraulic conductivity and bulk density values at 1, 5, and 10m. Note that the data for this 

experiment was gathered during a wet spring period (Sep 2010). The extremely wet conditions on 

both farms caused problems with the Guelph Permeameter (discussed below) which might have 

resulted in underestimates of hydraulic conductivity. 

5.5.1 Macrocarpa (Cupressus macrocarpa) shelterbelt 

a) Results and statistical analysis  

The macrocarpa shelterbelt was planted along the boundry between Mr Folley’s and Mr Chapman’s 

farms. It runs in a northeast-southwest direction for approximately 1.2km through the loess 

downland area and varies in height between 12 to 15 metres (Figure 30). Hydraulic conductivity and 

bulk density measurements were taken in the A-horizon at 1, 5 and 10m from the base of the trees. 

At 1m the sample area lay inside a boundary fence which excluded livestock (cattle and sheep). At 5 

and 10m the same measurements were taken again although these fell outside the fence and were 

thus affected by animal treading (surface compaction) and grazing. The results showed mean Ks 

decreased with distance from the trees. There was a 78% decrease in mean Ks between 1 and 5m, 

and an 81% reduction between 1 and 10m. This means the soil beneath the trees were 4.5 and 5.5 

times more conductive than the pasture soil at 5 and 10m respectively (Table 20). Comparing mean 
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Ks between samples at 1, 5 and 10m using the ANOVA test gave a P-value of 0.00 indicating the 

differences are highly significant at the 5% significance level. Mean bulk density increased by 9.4% 

between 1 and 5m, and 12% between 1 and 10m (Table 21). Comparing the ρ values using ANOVA 

gave a P-value of 0.068 indicating the differences are not significant at the 5% significance level. 

However, at the 10% level the differences become significant indicating there is a trend in the data 

suggesting a slight increase in surface compaction away from the trees. 

Table 20 Summary statistics and test of normality of mean hydraulic conductivity at 1, 5 and 10m from 

macrocarpa shelterbelt and poplars. 

Tree 
Distance 
from tree  

n 
mean Ks 
(mm/h-1) 

SD SE 
95% CI of 

Mean 
Shapiro-Wilk 

(Sig.) 

Macrocarpa 

1m 5 8.10 1.62 0.72 6.09 to 10.11 0.286 

5m 5 1.80 1.06 0.47 0.49 to 3.11 0.287 

10m 5 1.46 1.05 0.47 0.16 to 2.76 0.062 

Poplar 

1m 4 3.53 3.96 1.98 -2.78 to 9.83 0.135 

5m 4 3.10 3.75 1.88 -2.87 to 9.07 0.103 

10m 4 1.13 0.43 0.21 0.45 to 1.80 0.260 

 

Table 21 Summary statistics and test of normality for mean bulk density at 1, 5 and 10m from macrocarpa 

shelterbelt and poplars. 

Tree 
Distance 
from tree  

n 
mean ρ 
(g/cm3) 

SD SE 
95% CI of 

Mean 
Shapiro-Wilk 

(Sig.) 

Macrocarpa 

1m 5 0.96 0.03 0.02 0.88 to 1.03 0.637 

5m 5 1.06 0.10 0.04 0.94 to 1.18 0.890 

10m 5 1.09 0.05 0.02 1.03 to 1.15 0.563 

Poplar 

1m 4 0.95 0.36 0.18 0.37 to 1.52 0.135 

5m 4 1.08 0.10 0.05 0.92 to 1.23 0.103 

10m 4 0.99 0.11 0.05 0.81 to 1.16 0.260 
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Figure 28 Box-and-whisker plot and 95% confidence interval for mean hydraulic conductivity at 1, 5 and 10m 

spacing from macrocarpa shelterbelt. 

 

Figure 29 Box-and-whisker plot and 95% confidence interval for mean bulk density at 1, 5 and 10m spacing 

from macrocarpa shelterbelt. 

b) Discussion of macrocarpa results 

The differences between 1 and 10m can be attributed to the positive effects of trees (increased 

macroflow, protection against erosion, drying of the soil) and negative effects of livestock (grazing, 

soil compaction and erosion).  This field work was undertaken during a particularly wet period when 

the soil on the farm was either saturated, or near saturated. This made vehicle access to most of the 

farm difficult. Through the processes of wet-canopy evaporation, root abstraction and leaf 

transpiration trees are able to dry the soil and indeed, under the trees (Figure 30) the soil was 

noticeably drier when compared to the same soil 5 and 10m away. Unfortunately the soil moisture 

probe being used malfunctioned so soil moisture was not measured directly. As an alternative, soil 
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moisture was derived indirectly through bulk density calculations based on USDA (2010) (outlined in 

Chapter 4 section 4.2.4).   

Using this method, calculations implied at 1m from the tree 23% of available pore space was filled 

with water. This contrasted with 80% and 85% water content at 5m and 10m respectively. In 

addition, increased macroflow around the roots would further increase the hydraulic conductivity of 

the soil. The decreasing Ks at distance from the trees was exacerbated by livestock accumulating near 

the fence for shelter. Livestock can compact the soil decreasing permeability and graze and trample 

any vegetation which might increase infiltration and protect against erosion (Chapter 2, section 2.2). 

This effect can be clearly seen in Figure 31 which shows a loss in soil height of 6 to 12cm which has 

exposed the tree roots outside the fence. The lack of grassy vegetation until about 6m from the 

trees is probably a combination of livestock effects and competition for water from the shelterbelt 

itself.  

 

     

Figure 30 Measuring Ks at 1m from trunk of tree (left); height of trees at southern end of shelterbelt (right). 
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Figure 31 Measuring Ks and bulk density at 5m from the base of the macrocarpa shelterbelt. Note soil 

erosion and exposed roots outside of fence, and lack of vegetation until approximately 6m from the fence. 

5.5.2 Poplars (Populus spp.) 

a) Results and statistical analysis 

At Mananui farm 15 to 16 year old poplars had been planted in the gullies for stock shelter and 

aesthetic reasons. As at Takapau, measurements were taken at 1, 5 and 10m from the base of the 

trees. The results were an overall 69% decrease in mean Ks between 1 and 10m, meaning the soil at 

1m from the poplars was 3.1 times more conductive than the soil in pasture at 10m (Table 20). The 

mean bulk density increased by 9% between 1 and 10m (Table 21). However, the ANOVA test found 

no statistical difference at the 5% significance level between Ks and ρ values at 1, 5 and 10m (P-value 

0.542, 0.709 respectively). A visual inspection of the data found there was little difference in mean Ks 

values between 1 and 5m which could indicate that roots still have a significant effect at 5m. The 

Populus genus is characterised by wide reaching horizontal roots which can reach up to 30m from 

the trunk (Pregitzer and Friend 1996). Therefore, the 1 and 5m values were grouped together and 

then compared to the mean value at 10m using the parametric t-test. At the 5% significance this 

produced a Ks P-value of 0.031 meaning there was a statistical difference in hydraulic conductivity 

between the 1 to 5m grouped data and 10m values. For bulk density it produced a P-value of 0.274 
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which is not significant meaning there is no statistical difference in surface compaction between 

sites. The similar bulk densities at all three distances can be attributed to livestock access to all 

areas. 

 

Figure 32 Box-and-whisker plot and 95% confidence interval for mean hydraulic conductivity at 1, 5 and 10m 

spacing from poplar trees. 

Figure 33 Box-and-whisker plot and 95% confidence interval for mean bulk density at 1, 5 and 10m spacing 

from poplar trees. 

b) Discussion of poplar results 

Like Takapau, these measurements were taken during the wet spring period when the soils available 

pore space was filled on average to 82% capacity (compared to 36% during the dry period). Unlike 

Takapau, cattle and sheep were free to congregate underneath the trees which had resulted in 

extensive pugging around the base (Figure 35). Finding an appropriate tree to sample from was 

difficult due to the very wet conditions at the farm. The poplars were positioned within gullies which 

are natural drainage areas and in many places water was pooling at the base of the trees because 
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the water table was high. This caused an artefact in the measurement as water would fill the 

borehole from the surrounding soil as well as the Guelph Permeameter reservoir. To mitigate the 

problem transects were positioned to extend slightly uphill where there was better drainage to 

avoid the water logged soil. The greater slope angle (elevation head) at 5 and 10m, coupled with the 

heavy treading at 1m could explain why the differences in hydraulic conductivity between 1 and 10m 

were not as high as observed at the macrocarpa shelterbelt. Another reason is the macrocarpas 

were planted close together creating a dense root network whereas the poplars were planted 15 to 

20m apart and thus could be assumed to have a less extensive root network. Due to wetness which 

created farm access issues, the only measurements taken during the spring were those at the 

poplars. Overall, mean Ks during the wet period was 2.59mm/h-1 (slow) when compared to the mean 

Ks over the drier summer period 8.46mm/h-1 (moderate). The summer period measured Ks at hill 

slopes only with no values recorded at trees. Considering that in general, trees have higher 

conductivity rates than pasture (Table 1), one could assume that the tree values recorded during the 

spring are an underestimate due to the borehole problem mentioned above. A search of the 

literature found no reference to the borehole problem. However, during wet conditions a smear 

layer can increase the wall resistance to water flow in fine texture soils (Salverda and Dane 1993). As 

the sample sites had tiny proportions of clay and the well prep brush was used to remove the smear 

layer, it is likely that the error associated with the GP was due to invading water from the 

surrounding soil rather than the smear layer itself. For this reason as well as vehicle access to the 

farm further field work is recommended during drier antecedent soil conditions.   

Figure 34 Saturated hydraulic conductivity near a macrocarpa shelterbelt and poplars at distances of 1, 5, 

and 10m from the base of the trees. Bars give one standard error of the mean. 
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Figure 35 Extensive pugging at the base of a poplar. Note water pooling at surface. 

 

Figure 36 Measuring Ks at 10m mark from the trunk of a poplar 
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5.5.3 Summary of tree results 

The magnitude of increases in Ks near trees at the study sites lie towards the lower end of the 

published values for forest versus pasture topsoil (Table 1). The lower values may be due to lower 

density of trees at the study sites compared to the published findings. Also, many species of tree 

have roots that extend horizontally beyond 10m, which includes the Macrocarpa and Populus 

genus’s (Pregitzer and Friend 1996). Therefore their roots may have been affecting Ks at both 5 and 

10m. Furthermore, the wet conditions and resultant borehole problems as well as surface 

compaction from livestock will have also contributed to the lower values. The sample size in this 

study was small and further research with more replicates of trees of different ages, species, and 

density, as well as stock in/exclusion is merited. Additional sampling of soil pH, structure, and worm 

abundance may also offer insights into the affects of soil acidity on Ks.  

5.6 Main findings from the experimental results 

Achieving objectives 1 and 2 formed the basis of the experimental design (Chapter 4). The following 

points summarise the main findings from the experimental results.   

 Objective 1 - The National Soil Database information with the classes (m = measured 

directly) and (r = estimated from other soil properties) compared well with the measured 

field data and are suitable to inform modelling at the farm scale. The soils with these classes 

are the Matapiro, Takapau, Tukituki, and Mangatahi loams. The classes (u = unknown level 

of accuracy) and (uf = estimated from General Soil Survey Data) compared poorly to the 

measured field data. The soils with these classes were the Atua and Mangapakeha silt loams. 

Any soil information from these classes would need to be ground truthed and corrected 

before they were used for reliable hydrological modelling at the farm scale. For this reason 

the additional soil Ks and depth measurements taken in the field will be used to better 

represent both study areas. 

 The land use data from the NZLRI broadly matched the land use classes observed on site. 

However, for greater accuracy additional digitizing to better represent the spatial position of 

landscape features was undertaken for the POLYSCAPE modelling in Chapter 6. 

 Objective 2 - A limited study into the effects of tree shelter belts showed mean Ks decreased 

with distance from the trees. At Takapau farms the macrocarpa shelterbelt had the greatest 

difference in conductivity with mean Ks reduced by 86% between 1 and 10m (8.1mm/h-1, 

1.5mm/h-1) and 13% increase in mean bulk density respectively (0.96g/cm3, 1.09g/cm3). The 

high Ks values at 1m can be attributed to greater infiltration around the roots and stock 
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exclusion from the shelterbelt. At Mananui farm poplar trees were positioned in gullies for 

aesthetics and stock shade. In these areas there was a 69% decrease in mean Ks between 1 

and 10m (3.5mm/h-1, 1.1mm/ h-1). However, there was no statistical difference in mean bulk 

density at the 95% CI due to livestock congregating underneath the trees. These results were 

used to set tree buffer assumptions in the POLYSCAPE modelling. 

 In theory the field saturated technique using the Guelph Permeameter should not be 

affected by antecedent soil moisture; however near saturated soils appeared to retard Ks 

values when comparing results obtained during drier soil conditions (see section 5.5.2). For 

this reason it is advisable to take these measurements during drier antecedent conditions.  

 Further research with more replicates of trees of different ages, species, and density, as well 

as stock in/exclusion is merited. Additional sampling of soil pH, structure, and worm 

abundance may also offer insights into the affects of soil acidity on Ks.  
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Chapter 6 – Flood modelling and POLYSCAPE 

The aim of Chapter 6 is to complete objectives 3, 4 and 5 as listed in Chapter 1: 

3. Collect elevation, rainfall, evaporation, and soil moisture data from Hawkes Bay Regional 

Council and NIWA’s National Climate Database (Cliflo).  

4. To maximise flood mitigation benefits, calculate the optimal or near optimal locations for 

natural buffer placement using the flood mitigation tool within POLYSCAPE. Compare model 

output using six Digital Elevation Models (DEMs) of differing resolutions. These include two 

national scale DEMs (25m) created by GeographX and Landcare Research, and four DEMs 

(25m, 10m, 5m, 1m) created from Light Detection and Ranging (LiDAR) data. This is to 

determine both the limits of DEM resolution appropriate for effective prediction of flood 

buffering effects at the farm scale, and to show the differences between the same resolution 

DEMs from different data sources. 

5. Explore the flood mitigating effectiveness of natural buffers by simulating runoff response 

for nine different land use and rainfall scenarios. The land use layers include the farm under 

current land use (existing buffers); the farm with existing buffers removed; and the farm 

with additional strategically placed buffers. The rainfall simulations include a representative 

“wet” and “dry” record and the same records modified for a 1°C and 2°C change following 

national guidance (MfE 2010) to reflect potential climate change impacts.   

First, as background for this chapter some fundamental concepts of rainfall-runoff modelling are 

briefly introduced (section 6.1) followed by commonly used flood and inundation models in New 

Zealand (section 6.2); Second, the POLYSCAPE toolbox is described with an emphasis on the flood 

mitigation tool (section 6.3); Third, the optimum locations for natural buffers are determined using 

different resolution DEMs with an assessment of DEM accuracy; and finally the chapter concludes by 

predicting runoff response under three rainfall scenarios and three land use scenarios giving a total 

of nine combinations using the flood mitigation tool within POLYSCAPE.  

6.1 General principles of hydrological modelling 

6.1.1 Classifying rainfall-runoff models 

The two main purposes of hydrological modelling are to increase system understanding and to 

inform a number of hydrological management issues such as flood forecasting and inundation, 

integrated basin management, and prediction of the effects of change (Ibbitt et al. 2004). Although 
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there is a need for good quantitative rainfall-runoff predictions for these problems, the degree to 

which current models can satisfy this demand is limited. This is because many of the processes that 

influence catchment runoff occur under the ground. Therefore, the application of hydrological 

models is constrained by the available measurement techniques and resulting data accuracy (Beven 

2005). As a consequence, Beven (2005) states it is hard to predict hydrological response in any 

arbitrary catchment using data on topography, soils, and land use alone and refers to the “prediction 

in ungauged catchments problem” as outlined in Blöschl (2005). Many models rely on local 

calibration using measured rainfall input to compare both predicted and measured flow output in 

order to improve predictions. While in the past it was considered adequate to use an “optimised” 

model to make predictions, current approaches recognize the inherent uncertainties associated with 

model input, definition, and calibration. These issues are especially important when making 

hydrological predictions during more extreme conditions (e.g. floods and drought), and when trying 

to model flow response due to land use change (Beven 2005). For this reason, a number of 

techniques are in development for assessing model uncertainty including fuzzy modelling techniques 

(Bardossy 2005), “top down” approaches to modelling (Bai et al. 2009) and assessment in 

uncertainty in model calibration and prediction (Gupta et al. 2005). As mentioned above, part of this 

uncertainty arises from the model definition itself. A model by nature is a conception of reality. It 

represents a simplification of a complex system where only the components thought to be most 

significant to a problem are represented within the model. In general, the best models are 

considered to be those that achieve the greatest realism with the least amount of parameter and 

model complexity (Mulligan and Wainwright 2004). Hydrological models can broadly be classified by 

their degree of spatial representation. The most fundamental distinction in such a classification is 

between lumped and distributed models. 

a) Lumped versus distributed models 

Lumped hydrological models simplify a catchment into a single unit and relate precipitation input 

into flow output without explicitly considering the spatial patterns of the processes and 

characteristics of the catchment (Beven 2005). Early lumped models related flow output to rainfall 

input, catchment area, and a runoff coefficient (effectively a model parameter, see section 6.1.2). 

The main difficulty in applying this method was choosing the value of the coefficient, which 

represented local conditions within a catchment. This is especially difficult considering that 

catchment characteristics change depending on antecedent conditions. The effect of antecedent 

conditions on flow output is a non-linear problem in that rainfall under wet antecedent conditions 

will produce considerably greater flow than the same total rainfall under drier antecedent conditions 

(Beven 2005). This non-linearity problem is solved in part by the use of “lumped continuous 
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simulation models” such as the Explicit Soil Moisture Accounting models (ESMA) e.g. the Stanford 

Watershed Model (Crawford and Lindsay 1966). ESMA models have several storage elements to 

represent different processes within a catchment (e.g. interception, upper & lower soil moisture, 

groundwater etc) which are controlled by different parameters. The parameters must be estimated 

or calibrated for each area. The temporal changes in antecedent conditions are accounted for by 

continuously calculating the changes in storage in the model, but at the expense of introducing a 

considerable number of parameters (Beven 2005). This style of model can be made “semi-

distributed” by applying it within the study area’s sub-catchments. Flow outputs from each sub-

catchment are then added together via a river routing algorithm to derive outflow for the entire 

catchment. This helps account for areas where spatial characteristics might be important e.g. large 

changes in rainfall with elevation, or extensive forest versus pasture cover (Beven 2005).  

A “fully distributed” model attempts to predict the response from all the elements in a spatial 

discretisation of a catchment area. One common way of discretising is to break the catchment into 

grid cells based on raster digital elevation data and control volumes (Peckham 2009). Each element 

can have its own inputs and parameters. The more complex models include the prediction of flux in 

four dimensions (3 spatial and the temporal) and can potentially have thousands of parameters that 

must be defined (Beven 2005). In order to define all these parameters, some quantification of the 

variability in soil water, flow, and evapotranspiration rates for each element is required. In this way 

even the most complex models are effectively “lumped” at the sub-catchment element scale and 

therefore no model is ever “fully” distributed (Beven 2005). A further way to categorise hydrological 

models is to the degree in which they describe process.  

b) Empirical versus physically based models 

Empirical models are based on analysing observed data such as rainfall and flow output. They are 

usually based on the simplest mathematical function that best fits the observed relationships 

between variables. Empirical models are generally characterised by high predictive power but low 

descriptive depth and for this reason are only valid for the catchment where data was collected from 

(Mulligan and Wainwright 2004). Furthermore, if the length of record used for the calibration does 

not contain any data from extreme events then any predictions made during such events should be 

treated with caution. This is a particular problem in ungauged catchments and those that have short 

hydrological records (Beven 2001). The SCS method is an example of an empirical model that is 

frequently used for runoff prediction (AghaKouchak 2011). 

Physically based models represent the physical processes in a catchment as observed in the real 

world. Typically, they contain representations of surface and subsurface flow, evapotranspiration, 
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and channel flow, but can be much more complicated. Although distributed models have good 

descriptive depth, they are often characterized by poor predictive power i.e. they don’t agree with 

observations (Mulligan and Wainwright 2004). This is because representing more complexity 

introduces more parameters that cannot be easily measured directly, or are calibrated on indirect 

information. Thus, distributed models generally have more degrees of freedom when representing a 

catchment, but this can result in greater prediction uncertainty. In practice there is a continuum of 

models that can be broadly defined as physically based, but are calibrated to observed data to 

provide greater predictive power (Beven 2005). A simple example of a physically based model is the 

application of Richards equation for soil moisture dynamics (AghaKouchak 2011).  

c) Deterministic versus stochastic models 

A final classification of rainfall-runoff models is into models that are either deterministic or 

stochastic. In deterministic models a single set of input data will produce a single prediction for all its 

output. The majority of hydrological models are deterministic even though the uncertainties 

associated with such predictions are now well understood. Stochastic models allow for the 

uncertainties in the input by creating some variance at different time steps for the output (Beven 

2005).  

6.1.2 Assumptions and boundary conditions 

To conceptualise a model from reality a set of assumptions have to be made. Some assumptions will 

be wrong but are necessary for the process of modelling. Mulligan and Wainwright (2004) claim the 

key is to know which assumptions are wrong and to make sure they are not important for the 

purpose of the modelling. Furthermore, any assumptions must be well understood and clearly stated 

in reference to the conditions in which they are valid, and more importantly, the conditions in which 

they are invalidated (Mulligan and Wainwright 2004). 

In any model spatial and temporal boundaries must be set to identify the times and spaces of 

interest and the associated data required to support the modelling process. The ‘boundary 

conditions’ for data represents processes outside the spatial extent of the model (e.g. catchment, or 

sub-catchment) while the ‘initial conditions’ for data represents processes within the spatial extent 

but before the temporal, or time period of interest (Mulligan and Wainwright 2004). Rainfall and 

evaporation data typically falls outside the spatial area of interest and so are boundary conditions. 

Antecedent soil moisture is a result of earlier rainfall events but is still within the spatial confines of 

the catchment so are initial conditions. In addition to initial and boundary conditions are 

‘parameters’ which are the numbers assigned to a model that make it specific to a particular 
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catchment. These can range from the amount of water able to be stored in the soil and vegetation, 

to the hydraulic conductivity of soils (see chapter 3). These parameters are often best guesses based 

where possible on quantified measurements (Ibbitt et al. 2004).   

6.1.3 Calibration  

Model calibration is the process where the input parameters are modified so the output matches an 

observed set of data. There is no general “best way” to calibrate a model because there are many 

different sources of error which cannot be easily separated. Often there is no way of estimating the 

different sources of error independently. One common method attempts to lump all sources of error 

into a single “modelling” error, and then applies a statistical approach to calibrate the model 

(Krzysztofowicz and Kelly 2000; Young 2002). This statistical approach requires a “likelihood 

function” whose form is derived from the assumptions made about the sources of error. This is an 

objective approach in that the validity of the likelihood function can be tested (at least 

approximately) by comparing the results with the likelihood function against the actual modelled 

results to see if the error assumptions are justified (Beven 2005). This method is just one of the 

many available. For more information and techniques see Beven (2001, 2005) and Gupta et al. 

(2005). 

6.2 Rainfall-runoff models in New Zealand 

In New Zealand the most commonly used flood and inundation models are TOPNET, MIKE 11 and 

MIKE 21. TOPNET was developed by the National Institute of Water and Atmospheric Research 

(NIWA) and is a semi-distributed, physically-based catchment model which is used to produce flood 

maps in association with flood risk zones. Flood return periods are derived from representative 

hydrographs which are calculated on the basis of extreme value analysis (e.g. Gumbel and EV1). 

TOPNET models a catchment as a series of sub-catchments connected by a branched river network 

and was developed by combining TOPMODEL (Beven et al. 1995) which represents small 

catchments, with a kinematic wave channel routing algorithm (Goring 1994). TOPNET drapes soil and 

land use data over a DEM and then assigns rainfall interception and soil moisture values for each 

vegetation and soil type from look up tables. Then an area weighted sum of these properties is 

assigned to each sub-catchment (Ibbitt et al. 2004). TOPMODEL assumes that soil water storage 

within the catchment is affected by topography. It utilises a topographical index, which measures 

the tendency for water to accumulate in valley bottoms rather than ridge tops, and the level of 

storage within the saturated zone (which varies with time) to help simulate subsurface and overland 

flow (Ibbitt et al. 2004). For more information see Ibbitt et al.(2004) and Bandaragoda et al.(2004). 
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MIKE 11 and MIKE 21 are modelling packages developed by the Danish Hydraulic Institute (DHI) for 

simulating surface runoff, flow, floodplains, sediment transport and water quality in rivers and tidally 

influenced estuaries. The hydrodynamic module, MIKE 11 simulates unsteady flow within branched 

and looped river networks, and quasi two dimensional (2-D) flow on floodplains using one 

dimensional (1-D) implicit, dynamic wave routing based on the St. Venant equations for unsteady 

flow (Kamel 2008). It is usually used in conjunction with a GIS system, Digital Elevation Model (DEM), 

and river cross sections. MIKE 21 is two dimensional and can simulate the development of river bed 

and channel morphology due to changes in the hydraulic regime. Some of the simulated processes 

include bank erosion, scouring and shoaling brought about by human activities such as engineered 

structures and dredging or seasonal fluctuations in flow (DHI 2011). One dimensional models like 

MIKE 11 are computationally efficient for modelling large complex river channel systems, but are 

less accurate when simulating floodplain flows due to their assumption of 1-D flow. Two dimensional 

models like MIKE 21 are better suited to floodplain modelling but have higher requirements for 

hardware, data and computational time (Lawrence 2009). A common tactic is to combine both 1-D 

and 2-D models into one package where the 1-D component is used to model channel flow and the 

2-D component the floodplain inundation such as the MIKE FLOOD toolbox (DHI 2011).  

The reason POLYSCAPE was chosen over the TOPNET and MIKE modelling packages is because 

POLYSCAPE explicitly recognises the spatial placement of vegetation at the farm scale whereas 

TOPNET does not, and the MIKE packages are for river/floodplain modelling which is not an 

objective of this research. However, either modelling system could be combined with POLYSCAPE or 

similar approaches as part of a multi-scale modelling project. An additional reason for choosing 

POLYSCAPE is because it is being developed at Victoria University and so this research is also part of 

testing and refining it.   

6.3 POLYSCAPE 

POLYSCAPE is a semi-distributed, physically based land management toolbox that was developed to 

assist users to improve ecosystem services such as carbon sequestration, water quality, habitat 

connectivity, farm productivity, flood alleviation, and erosion reduction through targeted land 

management. The impact of land use changes on ecosystem services depends on their position 

within the landscape. As a rule, land use features should be sited in locations where they have the 

greatest benefit or highest value. However, changing the landscape to achieve a particular outcome, 

for example increasing agricultural productivity through conversion of forest to high yielding 

grassland, can have implications for other ecosystem services such as increased erosion and 

biodiversity loss. For this reason POLYSCAPE was developed to examine spatially explicit synergies 
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and tradeoffs between ecosystem services and help users to decide whether they add, remove, or 

protect an existing feature in the landscape. Furthermore, local stakeholders often have detailed 

knowledge and landscape requirements which should be integrated into planning decisions. With 

this in mind, POLYSCAPE was designed as a negotiation tool, rather than a prescriptive tool, so local 

stakeholders can trial their own plans and build in their knowledge and landscape restrictions. 

POLYSCAPE can be applied at a range of scales from the farm scale up to catchments 10,000km in 

size. 

6.3.1 Tool descriptions 

POLYSCAPE is a toolbox that operates within ESRI’s ArcGIS versions 9.2 and above. Currently, 

POLYSCAPE (version 1.1) has 5 tools (algorithms) for investigating the effects of land use change on 

1) flood risk; 2) erosion/sediment delivery; 3) habitat connectivity; 4) carbon sequestration; and 5) 

agricultural productivity. Further tools in development include water quality, amenity, and cultural 

valuation. In addition there is 6) a synergies and trade-off tool between the five ecosystem services, 

7) a pre-processing tool, and 8) an editing tool for stakeholders to make their own adjustments to 

both input and output. All algorithm calculations and valuations are produced at the resolution of a 

raster based Digital Elevation Model (DEM). This research utilises the flood mitigation and pre-

processing tools only and compares model output between six DEMs of varying resolution (1, 5, 10, 

25m). The flood mitigation algorithm is based on recent research results from Carroll et al. (2004), 

Jackson et al. (2008), Marshall et al. (2009), and Wheater (2005). 

POLYSCAPE can identify areas which have high potential for change. For example, when considering 

flood mitigation one might consider installing a pond or tree buffer strip in areas where large 

amounts of flow accumulate to reduce runoff. Furthermore, POLYSCAPE identifies areas of high 

existing value such as highly productive pasture, or wetlands with high biodiversity and flood 

alleviation benefits, and colours them as worthy for protection. This is achieved through the 

production of colour-coded “traffic-light” impact maps. The default colour system uses green to 

show areas where change is considered desirable, amber zones are marginal areas, and red 

highlights areas of existing high value where there is a high risk associated with any change. Bright 

red/green suggests high existing value, or opportunity for change respectively, whereas duller 

red/green indicates still significant, but less pronounced value or opportunity (Jackson et al. 2011). 

The flood mitigation algorithm works as follows. Features within the landscape that have high 

storage and/or permeability are assumed to mitigate flooding by acting as “sinks” for overland flow 

and slower near-surface flow; either storing the water, or slowing it down by routing through sub-

surface pathways. How effective these features are for controlling runoff depends on their position 
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within the landscape with areas with negligible upland contributing area far less effective than 

locations with large amounts of low permeability upland contributing area. The flood mitigation 

layer accordingly characterises features within the landscape by their permeability and storage 

capacity as defined by soil and land use data (Jackson et al. 2011). Then “using a novel algorithm 

based on modifying flow accumulation according to permeability/storage, it then discretises units 

within the landscape according to similarity of their hydraulic properties and spatially explicit 

topographical routing” (Jackson et al. 2011).  

The flood mitigation algorithm can be used in two ways. The simplest ignores temporal effects by 

removing flow that enters “sink” areas from the flow accumulation data. Jackson et al. (2011) writes 

that “all land use or soil types that provide this mitigation are treated as of high existing value. Areas 

where a large amount of unmitigated flow routes directly to waterways are treated as priority areas 

for change”. The default parameters for defining high accumulation flow thresholds can also be 

changed to represent the characteristics of a particular catchment. The results from this modeling 

are contained in section 6.4. 

The second way to apply the algorithm is more complex in that it can value land under different 

rainfall events (e.g. design flood rainfall input, known return period rainfall events) and antecedant 

soil conditions. It does this by routing water through hydrological response units within the 

landscape (i.e. cells with defined storage and hydraulic conductivity values) through a cascading ‘fill 

and spill’ approach. This requires more data (or assumptions) on soil water holding capacity and 

hydraulic conductivity (Jackson et al. 2011). This research utilises both the ground truthed national 

soil data and results from field studies. Results can be found in section 6.5.  

6.4 Using POLYSCAPE to determine the optimum locations for flood 

mitigation 

The flood mitigation benefits of natural buffers are strongly influenced by their location within the 

landscape. Using the flow accumulation algorthm mentioned above, optimum and near optimum 

locations for natural buffers were determined. As input, the algorithm requires a stream network, a 

hydrologically consistent DEM (consistent with the stream network and with sinks removed) and 

land use data. The soil data such as hydraulic conductivity can be estimated from land use although 

in this case the field measurements and national data (NSD) were used. The land use information 

was drawn from the national land use data (NZLRI) and improved by manual digitization in GIS from 

field studies. The pre-processing tool generated the hydrologically consistent DEM from a “standard” 

DEM (Jackson et al. 2011). To test how the resolution of the underlying DEM affects the accuracy of 

the model output, six DEMs of differing resolutions were used (Objective 5). These included two 
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national scale DEMs (25m) created by GeographX and Landcare Research, and four DEMs (25m, 

10m, 5m, 1m) created from Light Detection and Ranging (LiDAR) data. This is to determine the 

required DEM resolution for effective prediction of flood buffering effects at the farm scale. The 

following section describes the origins of each DEM (section 6.4.1) before displaying the modelled 

results from the comparisons (section 6.4.2). 

6.4.1 DEM origins and information 

a) GeographX 25m DEM – version 2  

The GeographX 25m DEM was first created in 2000 and then edited and re-released as version 2 in 

2003. The source data came from the Land Information New Zealand (LINZ) NZMS260 1:50k 

topographical database. The accuracy of cell values in the DEM is only as accurate as the source data 

used to create it. The horizontal and vertical accuracy cited for NZMS260 is +/- 22m for the 

horizontal points and +/- 10m for the vertical points (GeographX 2003). There are four known issues 

with the GeographX 25m DEM. The first is localized sinks and spikes caused by spot height errors in 

the original LINZ source data. The second is unconstrained bathymetry with enclosed water surfaces 

such as lakes appearing as shallow concave surfaces. The third is surface ripples on steep slopes such 

as Mt Taranaki when hill-shading is applied. The fourth and most important issue in regards to this 

research is explained by GeographX (2003): 

 “The 25m elevation model is not suitable for detailed hydrological analysis. The cell 

 resolution is not fine enough, nor is the vertical accuracy sufficient to accurately define 

 drainage patterns on areas of low relief. In order to adapt this dataset for such analysis, it 

 would first be necessary to “burn” known hydrology into the elevation model surface.” 

b) Landcare Research 25m DEM – version 2  

The Landcare Research 25m DEM version 2 was created by Barringer et al. (2002), and like the 

GeographX DEM, the source data was the LINZ topographical database. The second version of the 

Landcare DEM improved on the first version by changing the interpolation algorithm to interpolate 

from up to four contour or spot heights instead of two. Additional changes include assigning pixel 

height based on interpolation within the pixel, tracking distances from the nearest contours using 

float point precision and allowing diagonal steps, and using float point precision for elevations within 

the DEM. Barringer et al. (2002) states the aim when producing this DEM was minimisation of 

absolute elevation error and speed of interpolation rather than hydrological correctness, slope 

continuity, or some other performance goal which suggests that like the GeographX DEM, it is not 

suitable for detailed hydrological analysis. Barringer et al. (2002) tested the DEM against a high 
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resolution reference DEM (2.5m) created from LiDAR data in a small area of the Southern Alps. They 

found on average, their 25m DEM overestimated elevation by approximately 6m. Errors in the DEM 

are most likely to be found at the local scale in valley bottoms (Barringer et al. 2002). 

c) LiDAR derived DEMs (25m, 10m, 5m, 1m) 

Four DEMs were created from LiDAR data supplied by Hawkes Bay Regional Council. The Airbourne 

Laser Scanning (ALS) data covers the Ruataniwha Plains and was acquired from a fixed wing aircraft 

in October 2006 and January 2010 by AAM Pty Limited. The vertical accuracy of the data set is +/-

0.15m, and the horizontal accuracy is +/-0.30m, however the definition of ground underneath trees 

may be less accurate than this. 

The DEMs were created in ArcMap using the Spatial Analyst extension. The DEMs were produced by 

Inverse Distance Weighting (IDW) interpolation using 12 points with a variable search radius of 40m. 

The DEMs produced from the 40m search radius produced a coverage that contained values for 

every cell within the extent apart from a small area within the large reservoir dam at the northern 

end of Takapau farms. 

6.4.2 Comparing output between different resolution DEMs   

Figure 37 compares output from the flood mitigation tool using an improved land use layer and 

hydrological DEMs of differing resolutions. As explained in section 6.4, the map is colour coded via a 

flow accumulation algorithm. The lower and upper area thresholds for high and very high 

prioritisation of change vary depending on cell size with the 1m and 5m DEMs having a lower 

threshold of 100 cells contributing flow, and an upper threshold of 600 cells.  All DEMs of greater 

resolution (10m, 25m) have a lower threshold of 5 contributing cells and an upper threshold of 20 

cells. How accurately the DEMs represent flow pathways within the Takapau landscape is shown in 

Figure 37. At 1m and 5m both major and minor pathways including the main stream channels are 

represented in high detail. At 10m the stream channels along with the major and minor pathways 

are represented in reasonable detail suggesting that a 10m DEM is still appropriate within the study 

area. However, at 25m resolution the drainage patterns are represented poorly as the grid size is too 

coarse. When visually comparing output between all three 25m DEMs the LiDAR derived DEM 

performed considerably better than the DEMs created from LINZ topographic data. This is probably 

due to methodological error and/or inaccuracies within the underlying LINZ source data such as 

localised spot height error. Overall, the Landcare DEM performed marginally better than the 

GeographX DEM however both are unsuitable for defining drainage patterns at the farm scale. 
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Although there are recognised errors associated with LiDAR data (mostly due to vegetation cover), it 

is the most accurate dataset available for the study area. For this reason the 1m high resolution DEM 

was used as a reference to quantify the differences in elevation between the other five DEMs (Figure 

38). The maps in Figure 38 were calculated using the raster calculator in ESRI’s ArcGIS with Table 22 

displaying the summary statistics. As expected the 5m and 10m DEMs closely matched the elevation 

values at 1m with a mean difference of +0.04m and +0.005m respectively. At 25m the LiDAR derived 

DEM had a very slight bias of -0.09m compared to the Landcare and GeographX DEMs which had a 

positive bias of +12.3m and +12.9m respectively.  

Table 22 Differences in elevation between a high resolution reference DEM (1m) and five DEMs of varying 
resolution. Calculations were made using the raster calculator in  ArcGIS. 

DEM resolution Count (n) Minimum Maximum Mean SD 

5m LiDAR 479048 -6.0 17.2 0.04 0.86 
10m LiDAR 119644 -8.6 2.6 0.005 0.39 
25m LiDAR 19173 -12.7 16.0 -0.09 3.26 
25m Landcare 19152 -17.7 47.4 12.3 7.24 
25m GeographX 19173 -11.7 45.5 12.9 6.65 
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Figure 37 Comparison of output from the POLYSCAPE flood mitigation layer using a variety of digital elevation data. The drainage pattern is defined by a flow accumulation algorithm accounting for differing subsurface permeability and storage 
characteristics with the output colour coded on a traffic light system. Green to show areas where change is considered desirable, amber zones are marginal areas, and red highlights areas of high existing value. Bright red/green suggests high existing 
value, or opportunity for change respectively, whereas duller red/green indicates still significant, but less pronounced value or opportunity. 
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Figure 38 Differences in elevation between a high resolution (1m) reference DEM and DEMs of varying resolution and source data. Blue and red areas show where elevation values are lower or higher respectively, and cream areas show values that are 
within -/+1.5m 
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6.5 Predicting the impacts of land use change using POLYSCAPE 

The flood mitigation tool within POLYSCAPE was used to test the flood mitigating effectiveness of 

natural buffers by simulating quickflow generation for nine different land use and rainfall scenarios. 

The land use layers include the farm under current land use (existing buffers); the farm with existing 

buffers removed; and the farm with additional strategically placed buffers. The rainfall simulations 

include a representative “wet” and “dry” record and the same records modified for a 1°C and 2°C 

change following national guidance (MfE 2010) to reflect potential climate change impacts. The 

following section describes the approach taken to make the predictions (section 6.5.1) followed by a 

description of the soil parameters (section 6.5.2) and different land use/rainfall scenarios used for 

the simulations (section 6.5.3). The chapter concludes with the predicted effects from the 

simulations including stated uncertainties and level of reliability (section 6.5.4). 

6.5.1 Defining model parameters 

This section defines the hydraulic conductivity, depth to slowly permeable layer (DSLO), and profile 

total available water (PAW) values to be used for the modelling at Takapau farms. The values were 

either taken from the “_MOD” class within the National Soil Database (NSD), or from the values 

calculated from field measurements (Table 23). The _MOD values within the NSD are the estimated 

modal value for a particular class and are calculated using class range (_CLASS) and variability (_VAR) 

and are considered to approximate the most common value. 

a) Hydraulic conductivity 

For all soils within the study area hydraulic conductivity values were assigned from field 

measurements. This is because the NSD simply assigns a Ks class which covers a range of rates (e.g. 

moderate= 4 to 71mm/h-1) whereas the field measurements are at finer resolution showing variation 

within that moderate class. As the Takapau, Okawa, and Taihape loams were not measured directly, 

mean Ks for the entire Takapau farm sub-catchment was used to define their hydraulic conductivity. 

Additional assumptions include percolation through the B-horizon (slowly permeable layer). The 

values chosen were 0.05mm/h-1 for pasture, 0.5mm/h-1 for trees, and 1mm/h-1 for ponds, and were 

based on the experience and recommendations of B.M Jackson (personal communication). However, 

these are only “best guesses” and the winter month results were found to be somewhat sensitive to 

these parameters. The lack of data for B-horizon percolation rates is an issue that should be 

addressed in future research. 
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b) Depth to slowly permeable layer (DSLO) 

The depth to slowly permeable layer (DSLO) values were assigned to soils and ponds from both NSD 

and field measurements. To decide which value to use the NSD and field values were compared to 

see if they were significantly different. If the two values varied significantly then the field value was 

chosen. If the two were similar (+/-10cm) then the NSD value was chosen. The degree of accuracy 

within the NSD can be determined by a field called “EST_values”. These describe the origin of the 

value and to what extent they can be relied upon for accuracy. The NSD Matapiro silt loam values 

are derived from direct measurements of the soil (class m) which explains why they compared well 

with the values measured for this research. The Takapau and Taihape loams have NSD values 

estimated from relationships with other soils (class r) but the estimate is considered reliable. As 

mentioned above, these soils were not measured during the field period and so the NSD values were 

used. The Maungapakeha silt loam values were also estimated from relationships with other soils 

but with an unknown level of accuracy (class u). This could explain why the field measurements were 

significantly different and thus were favoured to best represent DSLO. Furthermore, the NSD values 

for the Atua silt loam were estimated from General Soil Survey Data (scale 1:253,440) (class uf), 

which in general is considered less reliable than the ‘u’ class above. The unreliability of this class was 

reflected in the field DSLO values being significantly shallower than those listed in the NSD. The 

depth of the ponds was set at 1m and was derived from visual assessments from the field studies. 

c) Profile total available water (PAW) 

Profile total available water (PAW) is the minimum and maximum values of profile total available 

water for the soil profile to a depth of 0.9m, or to the potential rooting depth (whichever is the 

lesser) and, expressed as mm of water. The PAW values for all but the Atua and Maungapakeha silt 

loams were taken from the NSD. PAW for the aforementioned soils was recalculated using mean 

DSLO values from the field investigations. 

Table 23 Hydraulic conductivity, depth to slowly permeable layer, profile total available water values 
assigned to soil types. 

Soil series/type Ks (mm/h-1) DSLO (m) PAW (mm) 

Matapiro silt loam 7b 0.22a 45a 
Atua silt loam 6b 0.35b 39b 
Maungapakeha silt loam 6b 0.22b 16 b 
Takapau stony loam 9b 2.25a 75a 
Okawa sandy loam 9b 0.52a 120a 
Taihape silt loam 9b 0.67a 120a 

a - value assigned from NSD b - value assigned from field study 
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6.5.2 Rainfall simulations 

a) Rainfall under current conditions (rainfall simulation 1) 

The rainfall and evaporation data used for the simulations was downloaded from NIWA’s ‘National 

Climate Database’ (Cliflo). The simulations were based on two representative time periods: a “wet” 

period (May 92 to Jun 93), and a “dry” period (Sep 08 to Sep 09). The two climate records were 

selected by examining monthly and annual rainfall records from the Ruataniwha Plains over the 

period 1983-2010. The nearest climate station with the necessary data for the wet period was 

Waipukurau Aero located 12.6km to the east, and for the dry period Waipawa Ews located 30km 

away to the north-west. The highest rainfall peak during the dry period was 15.7mm which fell 

within one hour in March 2009. The highest rainfall event in the wet period was 109.4mm recorded 

over 32 hours in July 1992. The wet period was characterised by wet antecedent soil conditions 

while the dry period had high soil moisture deficit. Each was used to explore the amount of 

quickflow generated under the different land use scenarios. 

b) Climate change and rainfall intensity (rainfall simulations 2 & 3) 

The IPCC in its Fourth Assessment (Christensen et al. 2007) declared more intense rainfall due to 

climate change is “very likely over most areas” of Australia and New Zealand. This is because a 

warmer atmosphere can hold more moisture (about 8% more for every 1°C increase in 

temperature). MfE (2008) state this value is widely accepted as a reasonable upper limit for heavy 

rainfall changes. To calculate mean temperature changes over New Zealand NIWA (2008) 

downscaled global projections and calculated an average increase of 1°C by 2040, and 2°C by 2090. 

This equates to an increase in maximum rainfall intensity of 8% and 16% respectively. These values 

were used in conjunction with an equation (listed on the following page) for the present day rainfall 

record giving a total of three rainfall simulations of varying intensity. 

With an increase in heavy rainfall, overall low rainfall events decrease. This is because the available 

atmospheric water has already fallen during the heavy events leaving less moisture behind for low 

intensity rainfall. Ultimately this results in heavier rainfall, but overall fewer rain days. The rainfall 

records were modified2 using the methodology outlined in MfE (2010). First, the number of rain days 

(i.e. daily total at least 0.1mm) was reduced by decreasing the probability of a rain-day by 1.75% per 

1°C increase in annual-average temperature. This reduction in low rainfall days helps to balance the 

increased rainfall extremes mentioned above.  

 

                                                             
2
 This modification utilised an existing code at Victoria University. 
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Thus, if:  

 NW = number of rain days 

 NT = total number of days in a year (i.e. 365.25) 

 ∆T = warming 

Then the number of rain days will change from NW to NW – 0.0175 * ΔT * NT. 

This corresponds to about six fewer rain days per year for a 1°C warming. This reduction is done by 

ranking all rain-days and setting the calculated number (0.0175 * ΔT * NT) of lowest rainfall days to 

zero rainfall. After applying these steps the rainfall percentiles (P) were calculated from the adjusted 

daily data. Note that the percentiles were calculated over rain days only; i.e., ignoring dry days. The 

percentile values were then changed according to the formula: 

Equation 14 Change in daily rainfall (in % per °C) = 6.15 * [1. – ln (100–P)/2.3] 

This formula gives zero change at percentile P=90, +8% per °C change at P=99.5, and about -6% per 

°C change at P=0. For P>99.5, the change is capped at +8% per degree Celsius of local warming 

(taken as the change in annual-average temperature). As stated above, the 8% per °C value is widely 

recognised as the rate at which the water vapour saturation level increases in the atmosphere (the 

Clausius-Clapeyron relationship), and is the upper limit recommended in the MfE (2008) Guidance 

Manual for adjusting return periods of extreme rainfall. Lastly, these % changes in rainfall were 

applied to the original rainfall record. 

The results from this modelling show a general increase in rainfall intensity in moderate to large 

rainfall events with Table 24 displaying results from the largest events from both wet and dry 

records. While intensity increased during the larger events, there were fewer small events with total 

rainfall throughout the year actually lower due to the lack of atmospheric moisture issue mentioned 

above. This is illustrated below in Table 25 and Figures 39 to 42.  

Table 24 Change in rainfall quantities for the largest event in both wet and dry periods, and % change 
between the original record, and a 1°C and 2°C increase in atmospheric temperature. 

Largest rainfall event Original rainfall 

(mm) 

1°C rainfall  

(mm) 

2°C rainfall  

(mm) 

Wet period (over 30 hrs) 109.4 113.8 (3.9%) 117.4 (6.8%) 

Dry period (over 1hr) 15.7  17 (7.6%) 18.2 (13.7%) 
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Table 25 Total cumulative rainfall for the wet and dry periods and % change between the original record, 
and a 1°C and 2°C increase in atmospheric temperature.  

Total cumulative rainfall Original rainfall  

(mm) 

1°C rainfall  

(mm) 

2°C rainfall  

(mm) 

Wet period 1164 1143 (-1.8%) 1107 (-4.9%) 

Dry period 640 622 (-2.8%) 586 (-8.4%) 

 

 

 

Figure 39 Original “wet” rainfall followed by the differences in rainfall quantity between the original record 
and the 1°C and 2°C record. 
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Figure 40 Cumulative “wet” rainfall for the original record and the 1°C and 2°C increase in atmospheric 
temperature. 

 

 

 

Figure 41 Original “dry” rainfall followed by the differences in rainfall quantity between the original and the 
1°C and 2°C record. 
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Figure 42 Cumulative “dry” rainfall for the original record and the 1°C and 2°C increase in atmospheric 
temperature. 

6.5.3 Land use scenarios 

The total area of Takapau farms is 12.6km2.Three different land use scenarios were created with 

varying ratios of buffers (ponds and trees) to pasture (Figure 43). Scenario 1 represents Takapau 

farms under current land use conditions where existing natural buffers cover 0.9km2 (7.1%) of 

available land area. Scenario 2 removes all existing buffers apart from the large reservoir (0.05 

km2/0.4%) at the northern end of the farm with the remaining land covered entirely in pasture. 

Scenario 3 includes the existing buffers plus an additional 0.4km2 (3.2%) of targeted planting to give 

a total buffer area of 1.3km2 (10.3%). Trees were chosen rather than ponds as the landscape already 

had a large number of constructed farm ponds (n33). The locations for the trees were determined 

using the flow accumulation algorithm in order to maximize flood mitigation benefits.  

The model was run using the 5m DEM. This means the landscape was broken into 5m cells and so 

the influence of an individual tree was 5m2. The tree cells had hydraulic conductivity values 5 times 

greater than the same soil in pasture. It also assumes that the tree areas are fenced off from stock. 

The 1/5 ratio was taken from the results gained from the macrocarpa shelterbelt. These are 

conservative values in that these results are at the lower end of published values and the influence 

of trees on soil properties is likely to extend beyond the 5m mark. 
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Figure 43 The three land use scenarios used in the POLYSCAPE modelling. Scenario 1 is the farm under 
current land use. Scenario 2 is with buffers removed and Scenario 3 is with strategically positioned buffers 
added. 
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6.5.4 Prediction methodology 

The predictions were made using a common six-step approach as outlined in O'Connell et al. 

(2006:100): 

1. Select an appropriate model to represent the changes in hydrological functioning due to 

the proposed land use management. The flood mitigation tool within POLYSCAPE. 

2. Calibrate POLYSCAPE and run simulations in its state to prior to change. Land use scenario 

1 simulates flow using the existing buffers under present day conditions. 

3. Alter the model’s parameters to reflect the change. Land use scenario 2 removes all 

existing buffers (trees and ponds); and land use scenario 3 adds new strategically placed 

buffers (trees).  

4. Run simulations using the altered parameters. All three land use scenarios were run using a 

representative ‘wet and dry’ rainfall record, followed by the same records forced by a 1°C 

and 2°C increase in atmospheric warming to reflect potential climate change impacts. 

5. Estimate the effects of the change on the discharge hydrograph, based on the differences 

between the runoff responses in the step 4 ‘changed’ simulations and the step 2 

‘unchanged’ simulations. For results see section 6.6. 

6. Estimate uncertainty bounds, with a stated reliability level, for the predicted effects. As 

there are no flow records to validate the model, the quickflow generated is a simulation 

and therefore should be treated as indicative only. Any future modelling would benefit 

greatly from continuous flow gauging in smaller farm catchments. Trying to disentangle 

flow from farms out of flow records from larger catchments can be difficult and time 

consuming, if not impossible without supplementary information.  

6.6 Experimental results  

The flood mitigation tool identified sinks/buffers within the landscape that have high storage or 

permeability. Under current land use conditions (scenario 1) 7% of the farm area is classified as 

providing mitigation and protects 56.4% of the landscape. In scenario 2 the existing sinks are 

removed (apart from the large reservoir in the north of the property) and the area of land protected 

falls to 2.2%. Scenario 3 includes the current land use with an extra 3.2% of flood prone land planted 

in trees for a total of 10.3% buffer cover. This scenario mitigated/protected 85.8% of flood prone 

land which is an encouraging result for a relatively small increase in planted area (Table 26). 
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Table 26 Ratio of pasture versus buffer cover resulting in amount of flood prone land protected/mitigated. 

Land use scenarios 

(total land area 12.6km2) 

Pasture cover Buffer cover 

 

Flood prone land 

protected/mitigated 

Scenario 1 (current land use) 11.7 Km2 (92.9%) 0.9 Km2 (7.1%) 6.6 Km2 (56.4%) 

Scenario 2 (buffers removed) 12.6 Km2 (99.6%) 0.05 Km2 (0.4%) 0.5 Km2 (2.2%) 

Scenario 3 (buffers added) 11.3 Km2 (89.7%) 1.3 Km2 (10.3%) 10.8 Km2 (85.8%) 

The cumulative amount of quickflow (overland and rapid subsurface flow) from the three land use 

scenarios was modelled using the three rainfall simulations creating a total of 9 model runs for each 

rainfall record (wet and dry). For each rainfall record the top three rainfall events are graphed with 

an accompanying table displaying the total amount of quickflow generated under the various land 

use scenarios. 

6.6.1 Wet period  

The highest rainfall event (22nd Jul 92) produced the most quickflow in all 9 model runs with runoff 

greatest under the 2°C simulation. As expected, total quickflow was highest when all existing natural 

buffers were removed and smallest with the addition of strategically placed trees. The largest rainfall 

events occurred in winter and spring with the amount of quickflow generated dependent on 

antecedent soil moisture. In the largest event it rained for 32 hrs with a peak of 13mm at 19 hrs. By 

this time the soil had become saturated and the additional water was discharged as quickflow (Table 

27, Figure 44). During the second largest event peak rainfall (13.4mm) occurred close to the start 

and was absorbed by the buffers. Although the subsequent rainfall was lighter, it soon overwhelmed 

the remaining storage resulting in quickflow (Table 28, Figure 45). The third largest rainfall lasted for 

4 hrs with a total of 13.4mm falling. In this event the buffers were able to temporarily store water as 

soil antecedent levels were low and thus quickflow was kept to a minimum (Table 29, Figure 46). 

When averaging quickflow generation from the three largest events using all three rainfall 

simulations then scenarios 1 and 3 reduced quickflow by 30% and 44% compared to the landscape 

with buffers removed (scenario 2). 

Although the buffers were overwhelmed during the large rainfall events, total cumulative quickflow 

for the entire ‘wet’ period was still considerably lower under scenarios 1 and 3. When averaging the 

results from all three rainfall simulations, scenario 1 reduced total quickflow by 36% compared to 

scenario 2. Scenario 3 performed best with a 51% reduction in total quickflow compared to scenario 

2 (Table 30, Figure 47). Although the reductions in quickflow were not huge during the wet period, 

any reduction is still beneficial as it lowers overall soil erosion and runoff quantities which helps to 

improve farm productivity and water quality. 
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Table 27 Total quickflow generated by the different land use scenarios over 32hrs during the largest 'wet' 
rainfall event 

Largest rainfall event 

(21/07/92) 

Total quickflow during event (mm) 

Original rainfall  With 1°C increase With 2°C increase 

Scenario 1 (current land use) 80.3 84.7 88.0 

Scenario 2 (buffers removed) 104.5 108.9 112.3 

Scenario 3 (buffers added) 71.6 75.8 78.8 
 
 
 

 

Figure 44 Hydrograph showing ‘original’ rainfall and quickflow response from the different land use 
scenarios during the largest ‘wet’ rainfall event. 
 
 
Table 28 Total quickflow generated by the different land use scenarios over 42hrs during the 2

nd
 largest 'wet' 

rainfall event 

2nd largest rainfall event 

(14/10/92) 

Total quickflow during event (mm) 

Original rainfall  With 1°C increase  With 2°C increase 

Scenario 1 (current land use) 41.9 25.2 21.8 

Scenario 2 (buffers removed) 58.5 50.3 46.6 

Scenario 3 (buffers added) 23.5 16.3 13.1 
 
 

 
Figure 45 Hydrograph showing ‘original’ rainfall and quickflow response from the different land use 
scenarios during the 2nd largest ‘wet’ rainfall event. 
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Table 29 Total quickflow generated by the different land use scenarios over 4hrs during the 3rd largest 'wet' 
rainfall event 

3rd largest rainfall event 

(19/06/92) 

Total quickflow during event (mm) 

Original rainfall  With 1°C increase  With 2°C increase 

Scenario 1 (current land use) 4.2 2.4 0.0 

Scenario 2 (buffers removed) 11.2 6.4 0.0 

Scenario 3 (buffers added) 0.5 0.3 0.0 
 

 

Figure 46 Hydrograph showing ‘original’ rainfall and quickflow response from the different land use 
scenarios during the 3rd largest ‘wet’ rainfall event. 

 

Table 30 Cumulative ‘wet’ quickflow under various land use scenarios and rainfall simulations for the entire 
‘wet’ period. 

 
Cumulative quickflow (mm) 

Original rainfall  With 1°C increase With 2°C increase 

Scenario 1 (current land use) 144 136 129 

Scenario 2 (buffers removed) 227 213 196 

Scenario 3 (buffers added) 108 103 101 
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Figure 47 Cumulative quickflow from the different land use and rainfall scenarios over the entire ‘wet’ 
rainfall period. 
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6.6.2 Dry period 

Like the wet period, the highest rainfall event during the dry period (7th Mar 09) produced the most 

quickflow in all 9 model runs with runoff greatest under the 2°C simulation. Again, total quickflow 

was highest when all existing natural buffers were removed and smallest with the addition of 

strategically placed trees (Table 31, Figure 48). The largest rainfall events occurred in summer when 

soil moisture levels were low with the bulk of the rain (15.7mm, 12mm, 11.8mm) falling within one 

hour. This characteristic is typical of convective rainfall which is quite common in Hawkes Bay during 

the summer months. The dry soil conditions at the time of the rainfall had a dramatic effect on the 

impact of the natural buffers. In all three events scenario 3 performed very well with the majority of 

rainfall absorbed by the soil or stored in the ponds. Very little quickflow was generated with the sum 

of all three events equalling 0.8mm. The current land use (scenario 1) generated more quickflow 

with a total of 3.2mm. When the buffers were removed (scenario 2) the amount of total quickflow 

increased significantly to 8.5mm. When averaging quickflow generation from the three largest 

events using all three rainfall simulations then scenarios 1 and 3 reduced quickflow by 87.3% and 

95.6%. This is an important outcome as most of the damage caused by flooding occurs during the 

largest events.  

A similar trend was observed with total cumulative quickflow for the entire ‘dry’ period much lower 

under scenarios 1 and 3. When averaging the results from all three rainfall simulations, scenarios 1 

and 3 reduced total quickflow by 55% and 82% respectively compared to scenario 2. What is 

particularly interesting is the extra 27% reduction between scenarios 1 and 3 for a relatively small 

increase in planted area (3.1%) (Table 34 and Figure 50). 
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Table 31 Total quickflow generated by the different land use scenarios during the largest 'dry' rainfall event 

Largest rainfall event 

(7/03/09) 

Total quickflow during event (mm) 

Original rainfall  1°C  2°C 

Scenario 1 (current land use) 3.2 3.7 4.2 

Scenario 2 (buffers removed) 8.5 9.7 10.9 

Scenario 3 (buffers added) 0.4 0.4 0.6 

 

 

Figure 48 Hydrograph showing ‘original’ rainfall and quickflow response from the different land use 
scenarios during the largest ‘dry’ rainfall event. 

 

Table 32 Total quickflow generated by the different land use scenarios during the 2nd largest 'dry' rainfall 
event 

2nd largest rainfall event 

(10/02/09) 

Total quickflow during event (mm) 

Original rainfall  With 1°C increase  With 2°C increase 

Scenario 1 (current land use) 1.9 2.2 2.6 

Scenario 2 (buffers removed) 4.9 5.8 6.7 

Scenario 3 (buffers added) 0.2 0.3 0.3 

 

 

Figure 49 Hydrograph showing ‘original’ rainfall and quickflow response from the different land use 
scenarios during the 2nd largest ‘dry’ rainfall event. 
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Table 33 Total quickflow generated by the different land use scenarios during the 3
rd

 largest 'dry' rainfall 
event 

3rd largest rainfall event 

(1/12/08) 

Total quickflow during event (mm) 

Original rainfall  With 1°C increase  With 2°C increase 

Scenario 1 (current land use) 1.8 2.1 2.5 

Scenario 2 (buffers removed) 4.7 5.6 6.5 

Scenario 3 (buffers added) 0.2 0.3 0.3 

 

 

Figure 50 Hydrograph showing ‘original’ rainfall and quickflow response from the different land use 
scenarios during the 3rd largest ‘dry’ rainfall event. 

 

Table 34 Cumulative ‘dry’ quickflow under various land use scenarios and rainfall simulations for the entire 
‘dry’ period. 

 
Cumulative quickflow (mm) 

Original rainfall  With 1°C increase With 2°C increase 

Scenario 1 (current land use) 43 48 39 

Scenario 2 (buffers removed) 101 100 89 

Scenario 3 (buffers added) 22 19 11 
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Figure 51 Cumulative quickflow from the different land use and rainfall scenarios over the entire ‘wet’ 
rainfall period. 
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6.7 Model uncertainty 

Modelling results are always subject to a degree of uncertainty. These include uncertainty in the 

model structure and the data used to force, calibrate and validate the model (O'Connell et al. 2006). 

Apart from the well-known general problems associated with rainfall-runoff modelling (see section 

6.1.3), POLYSCAPE and indeed all other catchment models, have not fully represented all the 

mechanisms that effect runoff generation. Some of these include: 

 Macroflow created by worm holes or soil cracking under very dry soil conditions; 

 Diurnal and seasonal thermal/moisture cycling, including freeze thaw and shrinking/ 

swelling soil;  

 Compacted soil caused by farm animals and vehicles; 

 Natural vertical preferential flow path development; 

 Rainfall impact and crust formation and degradation; and 

 Artificial drainage such as tile and mole drains.  

As well as these processes, a number of assumptions had to be made in regards to the data input 

(see section 6.5.1). Ideally for calibration purposes flow data from the study area would be used to 

help calibrate the model. Unfortunately the Takapau catchment is ungauged with the nearest flow 

gauging at the Tukituki River. This flow data was not suitable as the Tukituki River drains a very large 

catchment area. Although flow can be correlated for ungauged catchments, time constraints and the 

fact that the land use and buffers at Takapau farms were not representative of the broader area 

meant the rainfall was modelled as a simulation only. Any future research would benefit greatly 

from flow gauging in small catchments. A further source of error relates to the rain and evaporation 

data which was not measured at the farm with the gauges approximately 12.6km to the east (wet 

record) and 30kms to the northwest (dry record). Lastly, the soil properties were assigned from the 

NSD and point measurements from 47 sample sites. Additional sampling would better represent the 

study area. However, there is a lack of nationally available information on a number of variables 

which influence flow predictions. For this reason any further research should consider the hydraulic 

conductivity of various species of trees in different soils including their ability to modify the B-

horizon. In addition, there are no percolation rates for the B-horizon listed in the NSD. As a 

consequence of the issues mentioned above, these results are speculative and further data is 

needed to reliably estimate uncertainty.  
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6.8 Summary of modelling results 

 The results from the modelling indicate that the capacity of natural buffers to reduce 

quickflow and thus mitigate flooding is strongly influenced by soil antecedent conditions. 

The model was run using a representative ‘wet’ and ‘dry’ rainfall record. The ‘wet’ record 

was characterised by large amounts of rain which kept the soil relatively wet. In these 

conditions the buffers had little extra capacity to store water when subjected to large 

rainfall events. The buffers performed better in small to medium events with significant 

reductions in total cumulative quickflow equalling 35% for scenario 1, and 51% for scenario 

3. Any reduction in quickflow is beneficial as it lowers soil erosion and runoff quantities 

which improves farm productivity and water quality. 

 Although the ‘dry’ rainfall record had some large events, they were spaced far apart which 

kept the soil conditions drier. In these conditions rain from the three largest events was 

absorbed by the buffers with big reductions in quickflow of 87.3% for scenario 1, and 95.6% 

for scenario 3. Total cumulative quickflow during the ‘dry’ period saw reductions of 55% and 

82% for scenarios 1 and 3. This suggests that buffers occupying a relatively small area of land 

can have very significant benefits for flood mitigation, especially when sited in areas of high 

flow accumulation. 

 The current modelling results are speculative because they are based on many assumptions 

and incomplete data. Any future modelling would benefit from more specific vegetation and 

soil information, as well as direct flow gauging to help calibrate the model. 
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Chapter 7 – Discussion and conclusion 

7.1 Discussion 

The ongoing development of floodplains combined with an expected increase in rainfall intensity 

due to climate change is increasing society’s vulnerability to destructive flooding (Smith and Ward 

1998). Traditionally industrialized countries have utilised engineered solutions to keep flood waters 

away from existing development. In New Zealand a commonly used flood protection solution is 

stopbanks. For stopbanks to be effective they have to be protected from erosion by the river. This 

protection is provided by bank-edge works such as rock linings, willow trees, groynes, and river 

berms which maintain channel position. Protection is also provided by active channel management 

which includes bed re-contouring and gravel extraction. Finally, bridges have to be upgraded to 

reduce the risk of debris dams forming so they don’t restrict flow and therefore preserve the 

security of the flood protection system (WRC 2001). All of these measures incur significant and 

ongoing maintenance costs and may not be adequate to contain large floods on their own. An 

alternative ‘Sustainable Flood Management’ approach works in conjunction with engineered 

solutions. In particular ‘Natural Flood Management’ using trees and upland water retention such as 

wetlands has proven effective (see WWF (2002) for large scale examples). With this in mind, it might 

be cost effective in the long term to target flood producing land in the upper catchments rather than 

continually upgrade and maintain expensive engineered structures downstream. 

Before such strategies can be robustly implemented there needs to be quantifiable data collected on 

the flood attenuation effectiveness of natural buffers under varying soil and climatic conditions. It 

has been suggested that the best way to achieve this is through a combination of field studies and 

multiscale hydrological modelling (O'Connell et al. 2006). With this goal in mind this thesis first 

reviewed the existing literature for evidence of proven flood attenuation benefits from natural 

buffers (Chapter 2). Secondly, the national scale land, soil and elevation data to be used as input for 

the hydrological modelling was ‘ground truthed’ for accuracy (Chapters 3-5). Thirdly, as trees were 

proposed as flood buffers the soil hydraulic properties of two species of tree commonly found on 

New Zealand farms were measured and results compared to pasture from the same location 

(Chapter 5). Lastly, hydrological modelling was undertaken with two objectives in mind. The first 

sought to establish the minimum DEM resolution required to get useful output from the POLYSCAPE 

model and when this was defined, identify areas of strategic importance both for protection and 

change. The second sought to quantify the flood mitigating effectiveness of natural buffers using a 

rainfall/soil moisture record which contained both significant rainfall events and periods of high soil 
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moisture deficit. The remainder of this chapter summarises the main findings from each chapter and 

discusses directions for future research.  

7.1.1 Do natural buffers work? 

a) Flooding 

There is substantial evidence from both New Zealand and abroad that show that natural buffers such 

as trees and wetlands can significantly increase storage and reduce flood peaks at the small 

catchment scale. Studies (including this research) comparing hydraulic conductivity between trees 

and pasture show that in general, forest soils are significantly more conductive and have greater 

storage than pasture soils. Further studies measuring streamflow from New Zealand suggest that 

targeted afforestation in smaller upland catchments can significantly decrease and delay flood peaks 

as they pass downstream in small to medium size events. In general, the greatest changes in storm 

runoff occur during the period of canopy closure which suggests that forest growth can cause a rapid 

change within a short period of time. Further research into the degree of resistance and infiltration 

offered by different species of riparian and floodplain vegetation, including contoured filter strips, 

would help to optimise their placement for flood mitigation. 

Some quantitative data exists to support the restoration of wetlands and the reconnection of 

floodplains for managing flood waters. A worldwide review by Bullock and Acreman (2003) found 

that most lowland wetlands reduce or delayed floods by acting as spillways during peak rainfall 

events. However, just over half of the headwater wetlands mitigated floods with the remainder 

actually increasing flood peaks. Therefore, some data must be collected to identify a wetlands 

functional role before it is used for flood mitigation.  

Although small catchment studies have shown that different land use types can either amplify or 

dampen the effects of extreme flood events, there is little evidence of the cumulative effects of sub-

catchment flood peaks as they converge downstream at the broader catchment scale. This does not 

mean there is no effect, but rather that the evidence has been hard to distinguish given other 

sources of natural variability e.g. climate and landscape heterogeneity (O'Connell et al. 2006). 

Currently the predominant thinking is in larger flood events (>10-year) when heavy rain falls in the 

lower, middle and upper catchments, then the cumulative effect of natural buffers would normally 

be small. However, if rainfall is heavy but localised, then natural buffers can still be effective. 

Ultimately, generalizations about buffer effectiveness should be discouraged because every 

catchment is unique. The propagation of a flood wave downstream is moderated by a complex 

interaction of catchment characteristics. These include: catchment geometry, channel network, 
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rainfall pattern, hydraulic properties of soil/geology, area of contributing sub-catchments, and the 

timing and distance apart of tributaries. To better understand how local scale flood effects combine 

to affect flooding at larger scales new multiscale monitoring and modelling research is required. 

Disentangling land use flow signatures from large catchment flow data is difficult and time 

consuming because large catchment flow data is influenced by many other variables. Therefore, the 

multiscale modelling objective would benefit greatly from more continuous flow gauging in smaller 

contributing catchments along with gauging at the larger catchment scale. 

b) Erosion and sediment yield 

An associated benefit of decreasing rapid runoff is a significant reduction in erosion rates and 

sediment yield. By restricting the supply of sediment to river channels and flood plains, valuable 

topsoil and upland storage areas are maintained. Additional benefits include improved water quality, 

farm productivity, recreation and biodiversity. Results from New Zealand suggest afforesting or 

reverting close to 100% of small catchments can reduce average sediment yields by at least 50% and 

in most cases greater than 80%. Most of the results were from either completely forested or 

deforested catchments. However, evidence shows that targeting areas where flow accumulates can 

significantly reduce sediment and runoff quantities at the plot scale. International studies have 

shown that contoured vegetative filter strips can reduce surface runoff and sediment loss by 18-60% 

and 50-90% respectively. To optimize the effectiveness of filter strips, livestock (especially cattle) 

should be excluded as they compact the surface soil exacerbating runoff rates. 

c) Experimental results from this study 

Modelling results from this study suggest overland flow is generated when the A-horizon layer is 

saturated. At Takapau farms the A-horizon is shallow (mean depth 27cm) and overlies a much less 

permeable subsoil (fragipan). Consequently, this top layer provides limited storage during rainfall 

events and swiftly becomes saturated since water is unable to percolate quickly to lower depths. 

One of the aims of this research was to examine whether trees and ponds can be used effectively as 

a flood mitigation measure. There is now substantial evidence from the literature that indicates that 

hydraulic conductivity rates in tree areas are generally much higher than in grazed pasture areas, a 

conclusion supported by this research. Thus, strategically located trees are likely to be useful in 

reducing rapid runoff. However, these areas must be able to store water for a sufficiently long 

period of time to be effective at reducing flood risk. Therefore more detailed knowledge of water 

storage and transmission in tree areas is required. In particular, where A-horizons are shallow and 

hence storage capacity low, the effect of different species of trees on the B-horizon soil properties is 

of great importance.  
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Modelling results indicate that the capacity of natural buffers to reduce quickflow and thus mitigate 

flooding is strongly influenced by soil antecedent conditions. When the soil was relatively wet (as in 

winter) then the buffers had little extra capacity to store water when subjected to large rainfall 

events. When the soil was relatively dry (as in summer) then the buffers performed well during 

heavy rainfall with large decreases in quickflow. Future climate change projections for Hawkes Bay 

predict lower total rainfall yields, but higher rainfall intensity (NIWA 2008). These conditions will 

make the soil drier which could increase its storage capacity (albeit after an initial wetting up 

period). In this way natural buffers could be more effective for future flood mitigation, especially 

during sub-tropical storms which strike New Zealand during the summer. At the other extreme lower 

rainfall yield in the east of New Zealand might result in more frequent droughts. By increasing farm 

storage using natural buffers the water which would otherwise runoff can be utilised to help 

maintain farm productivity and other ecosystem services. Perhaps one of the biggest advantages 

when utilising natural buffers is the large amount of flood prone land that can be protected by a 

relatively small area in buffers. These areas are especially effective when sited in areas of high flow 

accumulation.  

7.1.2 Implementing Natural Flood Management techniques 

Now that it has been established that natural buffers work (although the extent of their 

effectiveness in large events is debatable and location specific), the challenge is to implement these 

techniques amongst land users. A large proportion of flood producing land is owned and managed 

by farmers with regulatory authority assigned to regional councils. Trying to convince a farmer to 

retire land in the interest of protecting downstream communities might not be a strong enough 

argument on its own. Demonstrating that such management has many co-benefits which can 

improve overall farm productivity provides a more convincing argument. Many of these benefits are 

well known with regional councils providing incentive schemes and information on farming best 

practice, especially in relation to riparian management. Riparian management includes fencing and 

planting around the margins of streams and wetlands. In addition to vast improvements in water 

quality, soil erosion, biodiversity, and amenity value, are increases in farm productivity. As farming is 

a business any opportunities that increase efficiency and profitability are seen as beneficial for 

farmers. Productivity is often improved by fencing out areas which are awkward to manage or 

hazardous to stock. The hazards to stock include exposure to liver fluke within streams, stock death 

by drowning, falling down steep banks, and getting bogged in mud. Stream bank fencing also 

provides cleaner water which causes less wear and tear on farm infrastructure such as irrigation and 

farm pumps. But perhaps the greatest benefit to farmers from clean water is the ability to produce a 

higher quality product because livestock are healthier when water is not contaminated by 
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pathogens. This provides a ‘clean green’ marketing advantage when selling produce from farms 

managed in a sustainable way. Additional benefits for land users include enhanced environment for 

recreational pursuits such as fishing, swimming, or shooting. Downstream neighbours also enjoy 

cleaner water as sediment, dissolved chemicals and organic pollutants into water is minimised (TRC 

2011; Stace 2004).  

An important consideration for farmers when retiring land is the loss of potentially productive 

pasture. However, TRC (2011) claims 1km of stream retired to a width of 5m on both banks amounts 

to 1ha of land, which is enough to support less than two dairy cows, or a dozen sheep. The problem 

with only fencing riparian areas is that once floodwaters reach the stream it is hard to delay its 

movement downstream unless it drains into a wetland/reservoir with significant storage. For 

vegetative strips to be effective they should ideally be set back from the stream so water can move 

as slower subsurface flow. This requires fencing and planting along ephemeral channels on hillsides 

which are source areas during flood events (Figure 52). If the cost of retiring this additional land does 

not match the productivity benefits of grazing it, communities or local government could 

compensate a farmer for any perceived losses in productivity. Indeed, such options are already being 

investigated in the UK by the Scottish Government (2011), and DEFRA (2003). Rather than 

abandoning the land totally, a compromise might include restricting stock access using temporary 

fencing during seasonally wet periods. Regrettably, such an approach would probably have little 

flood buffering benefit as plantings would be grazed leaving nothing but grasses, and soil would still 

be subject to surface compaction (albeit under drier soil conditions). Excluding stock during wet 

periods would still have other ecosystem benefits such as reducing soil erosion and improving water 

quality. The argument for establishing a “sustainable” style of farming could be improved if a multi-

disciplinary, highly instrumented ‘research’ farm was established (e.g. a Landcorp farm). In such a 

study changes in land use could be driven by ‘best practice’ principles and the results recorded over 

a long time scale (e.g. 20 years). The best practice principles and environmental indicators for 

measurement could include: 

i) Establishing tree filter strips in areas of flow accumulation. Measure changes in soil 

properties and have gauges set up to measure rainfall, evaporation, soil moisture, and 

overland flow. The gauges should be positioned both uphill and downhill from the filter 

strip so the effects from the trees can be isolated.  

ii) Measure changes in soil quality (structure, carbon and nutrient levels, worm abundance) 

and erosion rates throughout the farm.  
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iii) Measure changes in water quality (turbulence, pathogens, nutrient levels etc) and 

stream morphology (streambed sediment size, channel morphology). 

iv) Measure changes in terrestrial and aquatic biodiversity (species abundance, diversity, 

richness, habitat connectivity). 

v) Record and analyze farm productivity (grass growth, stocking rates, stock health, quality 

of product, overall farm return). 

 

Figure 52 (left) Vegetative buffer zone along an ephemeral stream channel (ECan 2005); (right) an example 
of a planting profile using endemic plants (WRC 2009) 

a) Land management models 

As part of the Motueka Integrated Catchment Management programme Davie (2004) reviewed 

different hydrological modelling frameworks for use in a multiscale and multidiscipline land 

management programme. Davie (2004) reviewed five models, or sets of models that have some 

capacity to assess the accumulative effects of incremental changes in land and water management. 

The models included NIWA’s TOPNET, the Catchment Modelling Toolkit developed in Australia, and 

the SWAT, DHVSM, PLM, and BASINS models from the USA. Davie (2004:21) concluded that “the five 

modelling systems were all capable of reproducing hydrological data to a certain extent... and that 

the ability of any model to accurately predict past events is largely dependent on the quality of data 

used as inputs”. Although flooding, erosion and drought are important, there are also other 

landscape functions which need to be considered in any land management decision. There are many 

approaches which assess the impacts of land use on different landscape functions. Some of these 

include land use effects on ecological integrity (Aalders 2008; HillPlan 2010; Jin et al. 2009; SERDP 

2011), agricultural productivity (Flach 2011; Smit et al. 2008; Tabeau et al. 2006; van Noordwijk 



 
 

124 
 

2002) soil erosion and water quality (Brunner et al. 2008; Gitas et al. 2009; Grismer 2011; Wigmosta 

et al. 2009), and flooding (Barredo and Engelen 2010; Friesecke 2005; Simonovic 2011). The 

POLYSCAPE toolbox falls within this set of approaches, including algorithms which can quantify the 

synergies and/or tradeoffs between many different land use scenarios. The current tools can assess 

how land use change affects flood risk, erosion/sediment delivery, habitat connectivity, carbon 

sequestration, and agricultural productivity. Further tools in development include water quality, 

amenity, and cultural valuation. While the modelling of land use effects still has a way to go, 

progress in this area is being made worldwide. 

7.1.3 Is the national scale land, soil and elevation data appropriate for 

hydrological modelling at the farm scale? 

Any output from a model is only as accurate as the data input. This research tested the accuracy of 

national datasets in elevation, land use and soil type. The National Soil Database information with 

the classes (m) and (r) compared well with the measured field data and are suitable for modelling at 

the farm scale. The classes (u) and (uf) compared poorly to the measured field data. Any soil 

information from the u and uf classes would need to be ground truthed and corrected before they 

were used for hydrological modelling at the farm scale. The land use data from the New Zealand 

Land Resource Inventory broadly matched the land use classes observed on site. However, for 

greater accuracy additional digitizing to better represent the spatial position of landscape features at 

Takapau farms was necessary. The coarsest resolution Digital Elevation Model deemed appropriate 

for hydrological modelling at the farm scale was 10m. Of the three 25m DEMs tested, one was 

created from LiDAR data while the other two were national DEMs created from LINZ topographic 

data. Although the LiDAR DEM performed marginally better than the Landcare and GeographX 

DEMs, all three are unsuitable for defining drainage patterns at the farm scale. 

An important factor in the wide scale application of POLYSCAPE or indeed any flood risk prediction 

model is the cost associated with obtaining the necessary data to accurately apply the model. 

Fortunately the Hawkes Bay region generally has good soil information and therefore the need for 

additional soil sampling is less. This is important because field work (such as measuring hydraulic 

conductivity) is time consuming and expensive. If financial resources are limited then there are 

techniques to infer soil properties indirectly from other more easily measured properties (e.g. 

pedotransfer functions to calculate hydraulic conductivity), which might prove appropriate. Perhaps 

the largest potential cost however, is creating a DEM of sufficient resolution to obtain meaningful 

results from any modelling. At Takapau farms the coarsest resolution deemed appropriate is 10m. 

The finest resolution DEM currently available for the entire country is the Landcare 25m DEM. 
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Clearly, there is a need to create a finer resolution DEM from methods other than the expensive (but 

highly accurate) LiDAR source data. As many regional authorities have high resolution aerial 

photographs one promising technique might be digital aerial photogrammetry. Photogrammetry can 

generate high resolution DEMs (e.g. 5m) by means of automated image matching procedures 

(Farrow and Murray 1992; Heipke 1995; Mitchell and Chadwick 1999; Schenk 1999; Fabris and Pesci 

2005). Other sources of data include the Shuttle Radar Topography Mission (SRTM) which obtained a 

near global scale DEM from data obtained by the space shuttle Endeavour in 2000. It used the same 

concept as photogrammetry but with satellite images to generate a global DEM of 90m, and a 

United States DEM of 30m (Keeratikasikorn and Trisirisatayawong 2008). This was succeeded by the 

ASTER project which is capable of producing a global DEM of 30m and a 15m DEM at the local scale 

(Hirano et al. 2003). The ASTER data and global DEM is a joint operation between NASA and Japan's 

Ministry of Economy, Trade and Industry (METI) and can be freely downloaded from the NASA 

website. Both the SRTM and ASTER DEMs are of coarse resolution at the global scale. However, 

these techniques can create finer DEMs at the local/national scale albeit subject to inherent errors 

(which for satellites is atmospheric interference). Currently, satellite imagery combined with 

photogrammetry techniques provides the most cost effective method for producing national scale 

DEMs of sufficient resolution for hydrological analysis (Hayakawa et al. 2008). 

7.2 Conclusion 

This research explored the flood mitigating effectiveness of natural buffers (trees and ponds) under 

varying rainfall and land use scenarios using a flood risk model from the POLYSCAPE toolbox. The 

modelling results suggest that the capacity of natural buffers to reduce quickflow is strongly 

influenced by soil antecedent conditions. In very wet soil conditions the buffers had little extra 

capacity to store water when subjected to large rainfall events. In contrast, the buffers were much 

more effective in drier soil conditions with the optimised buffer scenario able to absorb the majority 

of peak rainfall from the largest events. For this reason natural buffers could prove very effective at 

mitigating intense rainfall during drier summer periods e.g. sub-tropical storms. Although the buffers 

storage capacity was overwhelmed during a few peak events in wet soil conditions, the total amount 

of quickflow generated throughout the year was substantially less compared to the scenario where 

the buffers were removed. This is valuable because any reduction in quickflow will reduce soil 

erosion and therefore help maintain landscape storage capacity and other important ecosystem 

services. 

The ability of any model to make practical predictions is largely dependent on the quality of data 

input. This research has highlighted the need for further targeted data collection to reliably estimate 

http://en.wikipedia.org/wiki/Ministry_of_Economy,_Trade_and_Industry
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uncertainty. In particular, where A-horizons are shallow and hence storage capacity low, the effect 

of different species of trees on the B-horizon soil properties is of great importance. Furthermore, to 

improve predictions at the farm scale requires flow gauging in these catchments for calibration of 

the model, and to help isolate the effects of different land use at both the farm and wider catchment 

scale. Although the results from the modelling are speculative, the outcome is never the less 

encouraging. Results from both the model simulations and field measurements of hydraulic 

conductivity suggest that strategically placed ponds and small scale planting can be used to improve 

the infiltration and water storage capacity of extensive areas of grazed pasture. This will likely 

reduce runoff and erosion rates and thereby improve stream water quality and farm productivity at 

both the farm and wider catchment scale. Considering that flooding is the most frequent and costly 

natural hazard worldwide, natural buffers with their low maintenance costs and recognized 

ecosystem co-benefits could offer a cost effective and sustainable solution as part of future flood 

management planning.  
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Appendix A – Original and adjusted bulk density 

As the carving method is considered more accurate due to less disturbance of the soil a correction 

factor of +6% for the A-horizon samples and +3.5% for the fragipan was used to adjust the data to an 

equivalent obtained by carving as suggested by Parfitt et al. (2010). 

Table A1. Original and adjusted bulk density at Takapau farms. 

Takapau farms Depth (cm) Original bulk density 
(g/m3) 

Adjusted bulk density 
(g/m3) 

1/A1 

1/A1 

1/A1 

1/A2 

1/A2 

1/A3 

1/A3 

1/A3 

1/B1 

1/B1 

1/B2 

1/B3 

1/C1 

1/C1 

1/C1 

1/C2 

1/C2 

1/C2 

1/C3 

1/C3 

1/C3 

1/D1 

1/D2 

1/D3 

1/E1 

1/E1 

1/E1 

1/E2 

1/E2 

1/E3 

1/E3 

1/F1 

1/F2 

1/F2 

1/F3 

1/G1 

0-6 

20-25 

40-46 

0-6 

25-31 

0-6 

20-26 

40-46 

0-6 

30-36 

0-6 

0-6 

0-6 

15-20 

35-41 

0-6 

35-40 

80-86 

0-6 

35-41 

70-75 

0-6 

0-6 

0-6 

0-6 

20-26 

40-45 

0-6 

40-45 

0-6 

35-41 

2-7 

2-7 

40-46 

2-7 

0-6 

1.14 

1.48 

1.35 

0.99 

1.36 

1.06 

1.17 

1.68 

1.13 

1.36 

0.98 

0.79 

1.21 

1.33 

1.68 

1.10 

1.37 

1.71 

1.31 

1.40 

1.64 

0.93 

0.96 

1.08 

1.03 

1.41 

1.44 

1.16 

1.57 

1.11 

1.63 

0.99 

1.00 

1.32 

0.88 

1.17 

1.21 

1.57 

1.40 

1.05 

1.44 

1.12 

1.24 

1.73 

1.20 

1.44 

1.04 

0.84 

1.29 

1.41 

1.78 

1.16 

1.45 

1.77 

1.38 

1.48 

1.70 

0.99 

1.01 

1.14 

1.10 

1.49 

1.49 

1.23 

1.63 

1.17 

1.73 

1.05 

1.06 

1.37 

0.93 

1.24 
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1/G1 

1/G2 

1/G2 

1/G2 

1/G3 

1/G3 

1/H1 

1/H1 

1/H2 

1/H2 

1/H3 

1/H3 

1/I1 

1I/1 

1I/2 

1I/2 

1I/3 

1I/3 
 

20-26 

0-6 

22-28 

55-61 

0-6 

30-36 

0-6 

25-31 

0-6 

60-66 

0-6 

20-26 

0-6 

20-26 

0-6 

10-15 

0-6 

10-16 
 

0.74 

0.99 

1.38 

1.38 

1.13 

1.47 

1.02 

1.13 

1.00 

1.47 

1.02 

1.29 

1.14 

1.47 

1.02 

1.17 

1.08 

1.29 
 

0.79 

1.05 

1.46 

1.43 

1.20 

1.56 

1.08 

1.20 

1.06 

1.52 

1.08 

1.36 

1.20 

1.56 

1.08 

1.24 

1.15 

1.37 
 

 

Table A2 Original and adjusted bulk density at Manaui farms. 

Mananui farm Depth (cm) Original bulk density 
(g/m3) 

Adjusted bulk density 
(g/m3) 

2/A1 

2/A1 

2/A2 

2/A2 

2/A3 

2/A3 

2/A4 

2/A4 

2/A5 

2/A5 

2/A5 

2/A5 

2/A6 

2/A6 

2/B1 

2/B1 

2/B1 

2/B2 

2/B3 

2/B4 

2/B5 

2/B5 

2/B5 

2/C1 

0-5 

32-37 

0-5 

26-31 

0-5 

15-20 

0-5 

28-33 

0-5 

20-25 

46-51 

70-75 

2-7 

40-45 

0-5 

10-15 

25-30 

0-5 

0-5 

0-5 

0-6 

15-21 

35-41 

0-6 

1.06 

1.34 

1.08 

1.42 

0.99 

1.14 

1.01 

1.45 

0.94 

1.15 

1.36 

1.67 

1.02 

1.45 

0.96 

1.08 

1.32 

1.20 

1.02 

1.01 

1.01 

1.08 

1.45 

0.91 

1.12 

1.42 

1.15 

1.51 

1.05 

1.20 

1.07 

1.54 

1.00 

1.22 

1.40 

1.73 

1.08 

1.50 

1.02 

1.15 

1.40 

1.27 

1.08 

1.07 

1.08 

1.15 

1.54 

0.96 
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2/C1 

2/C2 

2/C3 

2/C4 

2/C5 

2/C5 
 

20-26 

0-5 

0-5 

0-6 

0-6 

28-34 
 

1.35 

1.16 

1.06 

1.10 

1.01 

1.41 
 

1.43 

1.23 

1.12 

1.17 

1.07 

1.50 
 

 

Table A3 Original and adjusted bulk density at the macrocarpa shelterbelt on Takapau farms. 

Takapau farms Distance from 
Macrocarpa (m) 

Original bulk density 
(g/m3) 

Adjusted bulk density 
(g/m3) 

1/M1 

1/M2 

1/M3 

1/J1 

1/J2 

1/J3 

1/J4 

1/J5 

1/K1 

1/K2 

1/K3 

1/K4 

1/K5 
 

1 

1 

1 

5 

5 

5 

5 

5 

10 

10 

10 

10 

10 
 

0.93 

0.90 

0.88 

1.02 

0.87 

0.97 

1.12 

1.03 

1.02 

0.98 

1.04 

1.10 

1.01 
 

0.98 

0.95 

0.94 

1.08 

0.92 

1.03 

1.18 

1.09 

1.08 

1.04 

1.10 

1.16 

1.08 
 

 

Table A4 Original and adjusted bulk density at the poplar trees on Mananui farm. 

Mananui farm Distance from Poplar 
(m) 

Original bulk density 
(g/m3) 

Adjusted bulk density 
(g/m3) 

2/P1 

2/P2 

2/P3 

2/P4 

2/E1 

2/E2 

2/E3 

2/E4 

2/D1 

2/D2 

2/D3 

2/D4 
 

1 

1 

1 

1 

5 

5 

5 

5 

10 

10 

10 

10 
 

0.86 

1.39 

0.65 

0.67 

1.15 

0.96 

0.95 

1.00 

1.02 

0.97 

0.95 

0.78 
 

0.92 

1.47 

0.69 

0.71 

1.22 

1.01 

1.00 

1.06 

1.08 

1.03 

1.00 

0.83 
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Appendix B – Depth to slowly permeable layer 

Table B1 Depth to slowly permeable layer (fragipan) as measured at Takapau and Mananui farms 

Farm ID Soil series Depth to slowly 
permeable layer (cm) 

Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Takapau 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 
Mananui 

1/A1 
1/A2 
1/A3 
1/B1 
1/B2 
1/B3 
1/C1 
1/C2 
1/C3 
1/D1 
1/D2 
1/D3 
1/E1 
1/E2 
1/E3 
1/F1 
1/F2 
1/F3 
1/G1 
1/G2 
1/G3 
1/H1 
1/H2 
1/H3 
1/I1 
1/I2 
1/I3 
2/A1 
2/A2 
2/A3 
2/A4 
2/A5 
2/A6 
2/B1 
2/B2 
2/B3 
2/B4 
2/B5 
2/C1 
2/C2 
2/C3 
2/C4 
2/C5 

Matapiro 
Matapiro 
Matapiro 

Maungapakeha 
Maungapakeha 
Maungapakeha 

Matapiro 
Matapiro 
Matapiro 

Maungapakeha 
Maungapakeha 
Maungapakeha 

Matapiro 
Matapiro 
Matapiro 
Matapiro 
Matapiro 
Matapiro 

Atua 
Atua 
Atua 
Atua 
Atua 
Atua 
Atua 
Atua 
Atua 

Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 
Mangatahi 

20 
25 
32 
17 
25 
20 
30 
33 
32 
5 

10 
10 
35 
23 
30 
35 
28 
20 
55 
30 
23 
60 
28 
25 
17 
30 
20 
33 
29 
20 
27 
18 
28 
26 
33 
25 
17 
20 
18 
11 
20 
10 
25 

 


