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Abstract

This thesis reports the use of Rheo-NMR, that is, a class of techniques within the

realm of magnetic resonance which are both confirmatory and complementary

to rheometric experiments on materials which can best be classified as complex

fluids. The physical properties of such fluids are both hybrid and, in general,

vaguely defined. In displaying characteristics attributable to both ideal fluids

and elastic solids, the term ‘complex fluid’, in a very real sense, epitomises all

the fluids with which every human deals with (and is comprised of) daily.

With a multitude of potential candidates for further research then, here we

confine ourselves to fluids of molecules and aggregates which are either linear

polymers or at least maintain the curvilinear one-dimensional topology of linear

polymers. Magnetic resonance is an ideal research tool in this regard, as it is in

many respects a rather statistical and insensitive tool from a signal-to-sample-

volume perspective, precisely the regime in which the dynamics of a macroscopic

collection of macromolecules is relevant.

Material deformation is the mechanism upon which rheological measurement

depends, and the first research presented here reports on a numerical simulation

of the NMR signal of sheared polymer melts. Proton NMR relaxation times of

such melts have previously been measured experimentally and found to depend

on the shear rate applied by a horizontal Couette geometry, presumably due to

the alignment of the mean-field boundaries of the space in which the polymer

may reside, known as the polymer tube. The restrictions forming the tube are

the other polymers in the bulk, around which an exemplar polymer molecule

must meander. In diffusing through this tube, whose direction between entan-

glements is random in equilibrium, at any time, the return-to-origin correlation

for a single spin returning to its locally anisotropic environment generates the

least NMR transverse relaxation, as the sum contribution from all tube seg-

ments is random. When a deformation-related transformation matrix is applied

to the coordinates of entanglements in the polymer, tube segments are no longer

isotropically distributed, and an enhanced relaxation process results. Here we

present the results of a numerical simulation of this procedure, based on the



earlier model of Ball, Callaghan and Samulski, in addition to measurements of

the transverse NMR relaxation by Cormier. Not only does it demonstrate qual-

itative agreement, the NMR signal can be simulated quantitavely or conversely,

the size of several key polymer physics parameters can be found through fitting

to the NMR signal.

Proton NMR spectroscopy is inherently simpler than deuteron NMR spec-

troscopy, in which the nucleus of interest is quadrupolar. However, a large sec-

tion of this thesis deals with the structures and response of worm-like micellar

structures in solution, for which alignment data cannot reasonably be measured

with the proton alone. The most used sample in this thesis is that of the BASF

nonionic block copolymer Pluronic P105 in aqueous solution (5% w/w), and

a small amount of 1-phenylethanol is required to stabilise cylindrical micellar

structures. 1-phenylethanol is a small molecule perfectly suited to act also as

a deuterated probe molecule to observe alignment, as it resides in the core of

the micelle. By using a variety of Rheo-NMR techniques, such as velocime-

try, spatially resolved spectroscopy, and diffusometry, many different flow and

alignment behaviours were observed for this solution in Couette flow. Follow-

ing the measured temperature-dependent viscosity of the P105 solution, which

shows an elevated viscosity in a temperature region ∼15 K wide centred at

∼297 K, we use temperature and applied shear rate as independent variables

in our experiments, first identifying spectral features through diffusometry, and

then observing a range of behaviours including shear-banding and quadrupolar

splitting indicating alignment.

Finally we present some experimental work performed in the extensional

flow geometry known as the semi-hyperbolic converging die. Extensional flow,

inherently, is a transient and finite procedure, and such a geometry is designed to

produce a constant extension rate along the axis of its constricting pipe, which,

compared to the mill geometries, improves the volume and time over which

extension occurs. We investigate the flow and alignment measuring capabilities

of Rheo-NMR in this geometry.
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Chapter 1

Introduction

1.1 Complex Fluids

This thesis concerns itself with the investigation of the properties of complex

fluids, those which display non-Newtonian, visco-elastic behaviours under flow

conditions. Rheology is the branch of science dealing with the complex mechani-

cal properties of such materials; in particular when they are taken together with

microscopic properties and molecular modelling of the origins of such behaviour,

the field of soft condensed matter physics is formed.

While not all complex fluids are of a polymeric nature, they are of primary

interest to us here. The composition of those materials range from dilute solu-

tions - relatively isolated macromolecules in solvents such as water, through to

entangled and cross-linked molecules that are almost solids, yet have a modulus

so low as to appear fluid in some regards.

As polymers are able to take on an enormous range of internal conforma-

tional arrangements, due to their flexibility, dynamical properties of polymers

are determined primarily by their largely one-dimensional topological nature

(internally, connectivity between segments dominates) and the presence of re-

strictions formed by neighbours in the material (externally, molecules can not

pass through one another). Given this, the physics of complex fluids takes as-

pects from many fields, including statistical mechanics, thermodynamics and

fluid mechanics. In this thesis, we will handle the rheology of polymeric fluids

as given rise to by the ‘tube’ model and the dynamical notion of ‘reptation’
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proposed by De Gennes [1], and expounded further in the text by Doi and Ed-

wards [2]. We set out to examine the rheology of complex fluids [3] from the

molecular standpoint, and in particular, nuclear magnetic resonance spectro-

copy will be used as our primary investigative tool.

1.2 Magnetic Resonance in Materials

The invention of nuclear magnetic resonance was the discovery that radio-

frequency electromagnetic radiation interacts with the nuclei in materials in

ways that are dominated by the intrinsic properties of the species of nucleus in-

volved - mass, charge and spin. More than this though, there is finer structure

to this interaction arising from the environment in which those nuclei reside,

which yields an astonishing amount of new information, valuable in particular

to the chemist and in medicinal areas.

Upon application of a ‘strong’ polarising magnetic field, the nuclear magnetic

moment interacts by precessing about this imposed axis - all the information

that can be gleaned is a result of detecting the frequencies of this precession.

The detailed structure that comes about through various mechanisms: electrons

in molecular orbitals are driven by the external field and hence perturb the field

felt by the nucleus; through space, one nuclear magnetic moment influences

another; the response of two paired nuclei can be decided by the orientation of

the internuclear vector with respect to the external field.

All of these effects contribute to the power of nuclear magnetic resonance to

be of use in determining complicated chemical structures, but the real selling

point for magnetic resonance in the wider community is that experiments can

be designed that can specify where the nuclei are within the sample, and what

they are doing while located there. Techniques that incorporate these spatially

selective abilities are termed microscopic or imaging techniques, as opposed to

spectroscopic techniques, though this does not prevent the combination of the

two into an area unsurprisingly called spectroscopic imaging.

In conjunction with other aspects of magnetic resonance such as imaging

and velocimetry, we aim to measure statistical molecular properties such as

alignment under flow, in correlation with macroscopic observables such as the

measured flow field itself. By doing so this thesis contributes to knowledge bridg-
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ing the gap between macroscopic rheological phenomena and the microscopic

mechanisms from which such phenomena emerge.

1.3 Introduction to this Thesis

This thesis looks at a spectrum of complex fluids, ranging from cross-linked

polymers (elastomers) and polymer melts, through to semi-dilute solutions of

polymers and micellar structures, under flow. Using proton spin-spin relax-

ation as well as deuteron quadrupole spectroscopy, this thesis adds to previous

research to demonstrate the degree to which molecular alignment occurs, un-

der both shear and extensional flow arrangements, in a variety of interesting

materials.

Chapter 2 provides a survey of soft condensed matter physics, a rich and

marvellous field which primarily revolves around rheology, a hybrid topic util-

ising fluid mechanics, thermodynamics and statistical mechanics. Rheology is

a large subject, with many fascinating aspects both in theory and experiment

currently under investigation, and due to its size, this chapter calls upon only

selected resources that are needed throughout the course of the thesis. These are

mainly concerned with describing experimental geometries which provide ide-

alised shear and extensional deformations of materials, in particular those ma-

terials which demonstrate non-Newtonian phenomena such as shear-thinning,

shear-thickening and shear-banding.

In Chapter 3, the fundamentals of magnetic resonance are described. Like

rheology, this field has a considerable history, yet remains in development both

experimentally and theoretically. This thesis covers the basics of magnetic res-

onance spectroscopy (describing the nuclear Hamiltonian and relaxation mech-

anisms), imaging (using magnetic field gradients to encode spatial information

into nuclear precession processes) and velocimetry (detecting displacement of

nuclei over the course of an experiment), but goes on to describe how each sub-

discipline of magnetic resonance can be incorporated into more complicated

experimental techniques using two or more simple classes of experiment in fu-

sion. As such, magnetic resonance becomes a crucial tool in the mechanically

non-invasive toolbox of the rheologist. One tool of note described in this chapter

which is used throughout this thesis is the Hankel transformation, of particular
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use in our work due to the cylindrically symmetric nature of the apparatuses

used.

Chapter 4 describes a work in numerical simulation of the transverse relax-

ation of proton magnetic resonance coherences in polymer melts under shear.

It uses as a foundation experimental work carried out by Cormier et al. which

reported such relaxation times in sheared (poly)dimethylsiloxane, and uses the

Ball-Callaghan-Samulski (BCS) model to numerically replicate the results. The

BCS theory relies on the probabilities of monomer segments to return to their

original region within the ‘polymer tube’, all-the-while undergoing diffusion.

Correlation of residual nuclear dipole interactions can only be guaranteed in

the case of return, and hence the known one-dimensional, curvilinear diffusion

characteristics of polymers in ‘tubes’ is shown to contribute to a successful model

of magnetic resonance tranverse relaxation. Such proton-based experiments are

therefore shown to provide an option to the more prevalent deuteron-based in-

vestigations into molecular alignment.

Chapter 5 sees this thesis move from research on the polymer-dense melt

phase into rheo-NMR investigations of polymer solutions, and in particular,

a solution of a Pluronic triblock copolymer (polyethylene oxide-polypropylene

oxide-polyethylene oxide) which self-assembles into wormlike micelles in a cer-

tain temperature range in the presence of a core-stabilising molecule. This

chapter uses a wide range of magnetic resonance pulse programs to provide

spectroscopic information, imaging, diffusometry and velocimetry to aid in the

understanding of shear-banding phenomena. This sample in particular high-

lights the non-universal correspondence between regions of aligned micelles, and

the zones of differing shear rate within the shear-banding phenomenon.

Where the bulk of rheology and rheo-NMR involves studies of the defor-

mation of fluids in shearing geometries, Chapter 6 of this thesis explores the

development of geometries that may be used to investigate the extensional as-

pects of the mechanics of fluids. The basic form of the apparatus used is the

semi-hyperbolically converging die (SHCD), which a deliberately designed con-

tracting pipe-flow device. The rate of contraction of the pipe is such that a

constant extension-rate is provided to the sample, and as such we again use

many rheo-NMR techniques to map out the flow field within the device, and in

general investigate the applicability and practicality of magnetic resonance to

12



demonstrate the complementary nature of shear and extensional deformations

to materials.
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Chapter 2

The Mechanics of Soft Materials

and Polymers

2.1 What are soft materials?

Soft condensed matter science is concerned with the investigation of the me-

chanical and molecular organisational properties of materials which lie in the

vast space between the heavily idealised (and rarely perfectly realised) cases of

inviscid fluids and immutable elastic crystal structures.

By covering such a wide range of conditions, the applicability of soft matter

physics is equally broad. Nearly all biological systems are soft, as are all food-

stuffs by corollary. Many soft materials are composed of multiple components

of differing structure and behave like fluids at some times, and more like solids

at others. Any material which will flow under certain conditions and maintain

a persistent structure for at least some timescale can loosely be termed a com-

plex fluid. Foams, emulsions, liquid crystals, micellar and colloidal materials

are all examples of complex fluids [1]. The range of materials and technolo-

gies using them which fall into one of these categories is enormous: cosmetics,

foodstuffs, petroleum products, pharmaceuticals, fire extinguishing materials,

graphical displays, and paints; to name a few. There are obviously distinct

specialist features in each application, though some common themes underpin

their material design. One particularly common feature is that of each mate-

rial’s delivery to its intended target, in that it is desirable in many cases that
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the material flows easily towards its destination, before performing its function.

Cosmetics and paints should, for example, be easy to distribute evenly over a

surface, before becoming more rigid, in this case highlighting the need for a

continual change of viscosity with the change in force applied by fingers, brush

or spray can.

Through theoretical understanding of the behaviours of complex fluids, which

are far from completely understood, new material properties are able to be

predicted, controlled and engineered. Experimentally, mechanical deformation

and response comes under the heading of rheology. A conventional mechanical

rheometer can impart deformation to a sample, in a variety of geometries, in a

variety of ways. A resultant stress can be found for a given deformational pro-

cedure, or a stress can be imposed which results in the observable deformation

of the material. Besides the use of the rheometer, however, many alternative

techniques are of immediate use to a soft matter scientist, largely due to the

diverse nature of such materials and the requirements they impose on experi-

mentalists. Magnetic resonance [2–4] has great potential for use in condensed

matter systems (and in particular fluids); spectroscopic methods and the mea-

surement of molecular motion provide insight regarding molecular organisation

and dynamics, both key determinants of complex rheological behaviour. Optical

methods [5] are very often of great assistance in the instance that the complex

fluid is relatively transparent, which is the case for many solutions of polymers

in water. Both of these alternatives incorporate the additional benefit of being

non-invasive to the structure of a sample to a very large degree.

2.2 Overview

Here we discuss the requisite background material for the investigation of the

response of soft materials when pushed or pulled. In the experiments to be seen

later, various geometries are used to impart the appropriate deformation, most

of which involve continuous flow.

For this reason, the following chapter discusses the ideas unifying the two

extremes of soft materials – fluids that are elastic and in some sense solid-like,

and soft solids that have such low bulk-modulus so as to appear liquid-like by

taking on the shape of a restricting ‘container’. We discuss soft materials often
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coming at the problem from two opposing points of view.

The ‘liquid vs. solid’ approach is one example of such a dichotomy. Another

is the difference between specifying mechanical and dynamical quantities within

materials as differential and continuous values such as tensors valid at a point,

yet in reality materials are composed of vast numbers of discrete molecular

components. In a similar vein, the description of the motions of fluids in a

region can be done in two ways [6]: a Lagrangian expression of a flow is made

by the specification of velocities of particular volume elements as they undergo

motion over time; the Eulerian method of flow description is to specify the

velocity of fluid as a function of space, no matter which fluid element may

reside at such a position.

The basics of rheology associated with driving our samples through and

around our experimental geometries will be discussed first in this chapter. This

consists predominantly of describing the Couette system and the constant-

extension-rate cell. This semi-hyperbolically converging die will often be ab-

breviated to SHCD from here onward. The second portion of the chapter will

investigate polymer-like structures, and how the microscopic dynamics of such

materials influences their macroscopic rheological properties.

2.3 Deformation of continuous media : stress

and strain; viscosity and elasticity

If a portion of material were to sit at rest at constant temperature for a ‘long

time’, say, on a bench or in a beaker, it would be said to be in thermal equi-

librium, once no further changes are observed. Any structural changes that

could occur after a temperature change have occurred already, and there are no

‘internal forces’ or internal stresses at work upsetting the balance.

2.3.1 Deformation and velocity gradient tensors

At this point, if the material is deformed, there are immediately various quan-

tities we can define without knowing anything about the chemistry or structure

of the material, except that the co-ordinates, {r} = {(x, y, z)} of each material

point at time, t, may have been shifted in a ‘smooth’ way to new co-ordinates,
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{r′} = {(x′, y′, z′)} at time, t′. The tensor representing this transformation, E,

such that r′ = E · r, defined at every point over the original volume, is known

as the deformation tensor. The deformation tensor’s components are defined as

a function of the two times, t and t′,

Eij(t, t
′) =

∂r′i
∂rj

(2.1)

E(t, t′) =




∂x′

∂x

∂x′

∂y

∂x′

∂z

∂y′

∂x

∂y′

∂y

∂y′

∂z

∂z′

∂x

∂z′

∂y

∂z′

∂z




(2.2)

The variation of the local velocity of sample in motion at points within the

material may be expressed by the velocity gradient tensor. As a function of the

location of the point, its nine components, ∂vi/∂rj, describe the variation of

three independent components of velocity, with respect to three basis coordi-

nates - given as follows in Cartesian space:

(∇v)ij =
∂vi
∂rj

(2.3)

∇v =




∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy
∂x

∂vy
∂y

∂vy
∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z




(2.4)

The symmetric part of the velocity gradient tensor, (∇v)ij, the rate-of-

deformation tensor, D, can be written as

2D = ∇v + (∇v)T (2.5)

or,

Dij =
1

2

(
∂vj
∂ri

+
∂vi
∂rj

)
(2.6)
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There is geometrical distinction between elements of E, ∇v and D that lie

on- and off-diagonal. Diagonal elements in each case represent deformations

or relative motions of two infinitesimally close points in materials which are

made along their separation vector, and known as extensional phenomena. In

complement to that, off-diagonal elements represent cases for which two points

are made to move relatively in directions normal to their separation vector, and

are collectively known as shearing phenomena.

In either case, it is not unsurprising that the total deformation achieved is an

integral of the velocity gradient history. By the chain rule and using definitions

2.2 and 2.4,

∂

∂t
E =

∂ṙ

∂r′
=
∂r

∂r′
· ∂ṙ

∂r
= E · ∇v (2.7)

2.3.2 Stress

The mechanical forces on the faces of a cubic volume element arising from its

surroundings can be broken into tangential and normal components, as shown

in fig.2.1.

These eighteen values are not independent [7]. In the infinitesimal volume

limit the normal force on one face must be exactly balanced by that normal

force on the opposing face, else infinite accelerations occur due to a force pro-

portional to d2 acting on a volume proportional to d3 - nullifying any difference

in force in an infinitessimally short time. A similar argument holds to show

that imbalances between σij and σji (i 6= j) are also eliminated. This symmetry

reduces the number of independent parameters of the stress tensor to six: in a

Cartesian system these are namely the three normal forces along the three axes

and three shear stresses acting parallel to the faces of an infinitesimal volume

under investigation.

Effects of deformations that cause uniform strain to be present throughout

the material give rise to the linear constitutive equation, relying on the additivity

of successive changes in strain (as is well explained in several texts [8, 9])

σij =

∫ t

−∞
G(t− t′)Dij(t

′)dt′ (2.8)
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Figure 2.1: The components of the stress tensor and their relation to the
forces on a unit volume.

where G(s) is the stress relaxation modulus, and represents the remanent stress

remaining at time s following a particular step strain.

2.3.3 Shear viscosity

Upon a deformation applied parallel to the surface of a material, matter within

the bulk, yet connected to the surface in some way - whether through loose or

strong bonds, or through molecular collisions - will respond through the transfer

of momentum. In a simple fluid the propensity of the material away from the

surface to follow the motion of the surface is known as its viscosity, and is

labelled η. Viscosity can conversely, and slightly more intuitively, be viewed as

the resistance of a material to flow and how much force is required to establish

a velocity gradient.

Consider that a uniform velocity gradient has been established in a parallel-

plate device in which one plate (whose normal lies in the y-direction) is moving

at uniform speed (in the x-direction); a plate at rest is bounding the opposite

surface (these might be considered the top and bottom faces of the volume

depicted in fig.(2.2)). The steady-shear viscosity is simply characterised by

dividing the shear stress σ within the sample (uniform in a simple fluid) by

the shear strain rate γ̇. It should be noted that γ̇ may be associated with the
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Figure 2.2: Visual representation of a shear deformation of a unit volume.
The distance that (for example) the y = 1 face of a cube of unit dimensions is
displaced in the x direction is called the strain component γyx

appropriate off-diagonal rate-of-deformation tensor component, γ̇ = 2Dyx. The

steady-state shear stress/strain relationship then reads

σyx = γ̇η0 (2.9)

where η0 is the steady-state shear viscosity corresponding to the experiment

carried out at a shear-rate arbitrarily close to zero. This value would, in practice,

be obtained by making an extrapolation to zero-shear after several non-zero

shear rates have been applied.

Rheology carried out in such a way as to extract this information would nor-

mally be performed within a cyclic geometry due to the practical constraints

imposed by the need for unbounded motion to ensure steady-state conditions.

In these geometries, experiments which obtain the steady-shear viscosity under

large, unbounded deformation, would be termed non-linear rheology. Samples

that retain the same measured viscosity no matter the strain rate applied are

known as Newtonian, and conversely those for which viscosity is strictly a func-

tion of strain rate are known as non-Newtonian.
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2.3.4 Linear viscoelasticity

By making small oscillatory deformations to a sample, linear rheology mea-

surements may be carried out. In such experiments two aspects of material

properties become apparent: their viscosity and their elasticity. Where viscos-

ity is the property related to the ease with which material will flow under a

shear strain, the elasticity can be associated with its shape memory, in other

words the degree to which the material would like to spring back to its original

form. For this reason, these two properties are called the loss and storage mod-

uli, respectively: viscous effects tend to dissipate energy (loss), while energy is

stored in elastic deformation, so the material can respond reversibly.

Substituting the shear strain rate determined by the time-derivative of the

oscillatory shear strain, γ = γ0 sinωt, into equation 2.8,

σ(t) =

∫
G(s)ωγ0 cos [ω(t− s)] ds

= γ0

[
ω

∫ ∞

0

G(s) sinωs ds

]
sinωt+ γ0

[
ω

∫ ∞

0

G(s) cosωs ds

]
cosωt

= γ0 [G′(ω) sin(ωt) +G′′(ω) cos(ωt)] (2.10)

that is to say that elastic effects quantified by G′ are in phase with the defor-

mation and viscous effects quantified by G′′ are out of phase with the strain.

In non-Newtonian fluids these quantities are intrinsically strain-frequency de-

pendent and reflect timescales over which structures within the material both

form and relax to equilibrium. The cross-over between G′-dominated stresses

and G′′-dominated stresses is located at an oscillation frequency commensurate

with the longest timescale over which structural relaxation occurs, and hence

the cross-over between the material being solid-like or liquid-like. This variabil-

ity of behaviour in materials demonstrates the “fuzziness” so important to soft

matter physics; all materials flow on some timescale.

G′(ω) and G′′(ω), as defined as functions of the frequency of oscillatory

shear give insight into the timescales over which structures relax (return to

minimal internal stresses). The Maxwell fluid forms the simplest model of vis-

coelastic behaviour, and does so by positing a single relaxation time at work
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in a material. It incorporates two distinct behaviours: one attributable to a

Hookean solid (perfectly elastic, storing energy) and a Newtonian liquid (per-

fectly viscous, dissipating energy). These two modes are often portrayed by the

simple resistor-capacitor (RC) electrical circuit, or analogously by the spring-

and-dashpot system, shown schematically in fig.(2.3).

The storage and loss moduli in this model, with single relaxation time, τ ,

are given by

G′(ω) =
G0ω

2τ 2

1 + ω2τ 2
G′′(ω) =

G0ωτ

1 + ω2τ 2
(2.11)

and it can be noted that
G′

G0

−
(
G′

G0

)2

=

(
G′′

G0

)2

. Completing the squares

appropriately, and using the frequency at which the moduli are measured as a

parameter, a plot of G′′ vs G′ gives a semi-circle

(
G′′

G0

)2

+

((
G′

G0

)
− 1

2

)2

=
1

4
(2.12)

as shown in fig.2.3. This so-called Cole-Cole plot (which depicts the two mod-

uli normalised by the plateau modulus G0) is useful in graphically indicating

the frequency for which linear rheology on a sample causes deviation from the

Maxwell model. To first order, many complex fluids (worm-like micelle solu-

tions, for example), exhibit Maxwellian behaviour. Deviations occur, however,

and are often seen through the appearance of multiple relaxation rates within

the material.

2.3.5 Simple examples of non-linear rheology in materi-

als

When complex fluids are subjected to continuous deformation, the mechani-

cal response may depend on applied strain rate, an effect known as non-linear

rheology. From common experience, several properties of non-Newtonian fluids

are evidently possible. A material which is seen to be a thick liquid or soft

solid in equilibrium may shear thin, in which the viscosity decreases with shear

rate. Conversely, some materials such as a cornstarch solution become more
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Figure 2.3: (left) A schematic Cole-Cole plot showing ideal Maxwellian be-
haviour (bold, red semicircle), along with the corresponding curves for five
different samples. This plot-type demonstrates quite clearly at which oscillating
shear frequency a sample deviates from ideal monoexponential behaviour. The
plateau modulus, G0, reached by G′ is used to normalise both G′ and G′′ in
this format, and (right) The spring-and-dashpot analog of the Maxwell fluid,
incorporating independent perfect storage and loss components, which generate
a monoexponential decay of oscillatory amplitude.

viscous with increasing shear rate. Figure (2.4) demonstrates some simple cases

of materials, incorporating intuitive ideas such as yield.

2.3.6 Dimensionless parameters

With complex materials displaying variable behaviours under different condi-

tions or at different times, the use of dimensionless numbers characterising the

experimental parameters, in relation to material properties becomes convenient.

In rheology one of the most important of these is the Deborah number, De, de-

fined as the quotient of the material’s terminal mechanical relaxation time (τR)

and a time constant characteristic of the flow (τexpt), such as the oscillation

period in linear rheology

De =
τR
τexpt

(2.13)

In special cases the appropriate dimensionless number characterising the flow

takes other names: the Weissenberg number uses the inverse of the shear rate

as the characteristic time of deformation in non-linear rheology,
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Figure 2.4: Examples of some of the simplest behaviours of fluids: shear
thickening (apparent viscosity increase with shear), Newtonian (constant vis-
cosity for all shear rates), shear thinning (apparent viscosity decrease with shear
rate), yield-stress fluid (requires stress in excess of some threshold before flow
occurs)

Wi = γ̇τR (2.14)

and the Peclet number concerns the advection of material, being formed by the

ratio of the rate of motion due to flow with the rate due to diffusion

Pe =
(v
a

)/(D
a2

)
=
va

D
(2.15)

where a is a characteristic distance to be travelled by either mechanism, v is the

average velocity due to flow, and D is the diffusion coefficient of the molecules

in motion.

The use of dimensionless parameters is of greatest use in delineating experi-

mental regimes. Situations in which a material appears to act in a solid-like or

liquid-like way are described by De � 1 and De � 1. Despite the variability

of relaxation dynamics in a wide range of materials, bulk material dynamics

under flow conditions can be treated similarly when such ratios are introduced,

as in the familiar cases of Mach number (ratio of flow velocity to the velocity of

sound within the material) and Reynolds number (ratio of the product of flow
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velocity and characteristic dimension to viscosity). In both cases the material

behaves in a qualitatively different way if these numbers vary either side of a

certain threshold, which is often unity (or can be made unity via scaling).

2.3.7 Typical shearing geometries

Cone-and-plate





Figure 2.5: A uniform shear rate field can be generated by a cone with incli-
nation angle α rotating at uniform angular frequency Ω

The cone-and-plate geometry in which a sample sits in the vacant space be-

tween an inverted cone above, and horizontal plate below, shown in fig. 2.5,

is well-known in the rheological community. Its main virtue is the presence

of a uniform shear rate at all positions within the sample volume, as well as

being able to detect normal stresses generated by deformed samples. While

the horizontal plate remains stationary, the upper conical surface is turned

about its axis in an oscillatory fashion such that the angular position satisfies

Ω(t) = Ω0 cosωt, generating oscillatory shear flow. With the shear rate being

proportional to the wall velocity and inversely proportional to the gap size, the

inclination of the cone face implies the gap size increase linearly with radial

displacement, which is just what is needed to balance the increasing wall veloc-

ity determined through elementary angular mechanics, maintaining a constant

shear rate of γ̇ = tanα, where α is the cone angle. At small strain ampli-

tudes, γ0 = Ω0/(ω tanα) ∼ 0.02, structural relaxations occur according to the

material’s linear response and corresponding stresses can be measured.

26



Cylindrical Couette geometry

Where there are advantages to the cone-and-plate rheological geometry, the few

weaknesses that exist are adequately taken care of at very little cost by the

Couette (or concentric cylinders) geometry, schematically shown in fig. 2.6.

By placing sample within the gap formed in the intervening space between

two closed-bottomed tubes, with one of the two tubes (usually the inner) to be

rotated continuously, a shear field is generated. By controlling the rate at which

the cylinders are rotated with respect to one another, a strain-rate controlled

experiment is carried out at strain rates γ̇ ∼ V/d, where V is the relative velocity

of the walls, and d is the distance between them. The relationship is only exact

in the limit of infinite parallel plate Couette geometry, however if the no-slip

boundary condition holds (fluid velocity at the wall is precisely the velocity of

the wall), then the average strain rate may be written

γ̇av =
V

d
(2.16)

Stress measurement (and stress controlled experiments) are mechanically

possible in conventional rheometers, however in the case of the magnetic reso-

nance measurements carried out later in this thesis, internal stress can only be

indicated indirectly through molecular properties such as alignment.

The main advantages to this geometry are that the containment of the sam-

ple is much greater, especially for low viscosity fluids such as water, but also for

all fluids being deformed at reasonably high Deborah number; and the greater

volume able to be actively investigated under shear. Conversely, the main dis-

advantage is the slight lack of uniformity of the local stress within the sample,

dictated by the conservation of angular momentum at differing radii. Minimis-

ing the gap size will obviously reduce this variance, as will increasing the Couette

cell radius, i.e. making the gap look more and more like the ideal ‘infinite par-

allel plates’ geometry. The stress values between the walls is non-uniform, and

may be written

σyx(r) = σow
r2

ow

r2
(2.17)

where σow and row are the stress and radial position at the outer wall, respec-
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Figure 2.6: A cylindrical Couette geometry, generating a shear field on a fluid
lying between two cylinders. The shear rate is determined by the diameters
of the tubes and the rotation frequency of the inner tube. The stress is non-
uniform, being inversely proportional to the square of radial position, though
this effect can be reduced through the appropriate choice of cylinder radii.

2.3.8 Extensional deformation

As seen in the previous section, the behaviour of polymers and other complex

fluids can be explored in a routine way by conventional rheometers equipped

with well-described geometries. In characterising materials, however, it should

be kept in mind that such geometries are, to various degrees, idealised to mea-

sure the shear stresses and strains. Via processes such as extrusion or film blow-

ing, very different mechanical properties may be observed than those expected

purely through shear flow mechanical responses [10, 11]. Such phenomena indi-

cate that conventional rheology, while giving a near total description of material

properties, is insufficient to completely characterise complex fluids.

Extensional studies of viscoelastic materials are complementary in nature to

those which focus on pure (or close to pure) shearing flow properties. Exten-

sional deformation involves applying stresses to a sample in which the forces

acting on infinitesimal volumes are normal to all of the faces of that volume,

and as such they have a stretching or compressing effect on the sample.
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Figure 2.7: The components of the stress tensor and their relation to the
forces on a unit volume.

Figure 2.8: The flow field for an extensional flow is usually established in
either an “opposed jet” type geometry (left) or a “filament stretching” type
geometry (right). While the former allows continual flow (in mill apparatuses),
a molecule following a streamline will not experience the pure extension that
only the stagnation point offers. The converging streamlines of the latter make
for a nearly global extension field, and a molecule moving along a streamline
has a more well-defined strain history. The Lagrangian approach of imposing
flow conditions on individual molecules rather than the flow field applies only in
the second case.

Practically, an extensional flow experiment may only be constructed with

one of either Eulerian (specify a velocity field as a function of fixed sample
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co-ordinates) or Lagrangian (specify the velocity of particles over the course of

their travels) flow descriptions in mind - see section 2.2. From the viewpoint of

this thesis it would be preferable to generate flows which are purely extensional

after taking a Lagrangian viewpoint, as the dimensionless parameter formed by

the product of the extension rate of a polymer and its tube disengagement time,

no matter its position, should be constant. There are two main aspects of im-

portance in the design of practical geometries to perform such experiments, and

compromise in either one can make analysis and the validity of results question-

able, however these problems may not be inhibitory to determining quantities

that reflect a material’s extensional properties akin to those found under shear.

Firstly, it is rather more difficult to produce a local environment which is pure

in extensional deformation than it is to produce an arbitrarily uniform shear

field as in the Couette cell. Secondly, even where producing a finite region of

pure extension is achieved, such extension cannot possibly continue indefinitely:

with the assumption of affine deformation (and even without it in all but ex-

treme cases) one dimension of the sample being monitored must very quickly

(exponentially) increase and exceed the apparatus size in order to maintain a

constant extension rate. Correspondingly, another independent dimension must

diminish, and perpetual “steady state” extensional flow can not be achieved

due to this. As such extensional rheology in a Lagrangian sense is a necessarily

transient technique macroscopically, and is necessarily transient microscopically

in an Eulerian sense. Whichever approach is taken, some measure of consistency

and convention is required to enable comparison of results between experiments.

2.3.9 Extensional viscosity

Extensional viscosity is a material parameter that was largely unquantified be-

fore flow experiments in the early 20th century. It was first made clear by the

independent works of both Fano [12] and Trouton [13]; Trouton investigated

a property of materials he called “the coefficient of viscous traction”. Under-

standing of the fundamentals of the field was largely auxiliary to both of their

original investigations, though: Trouton aimed to obtain the viscosity of New-

tonian fluids, while Fano was interested in their spinnability, or thread-forming

capabilities.
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Extensional flow of materials undergoing steady rate-of-strain can be de-

scribed by a diagonal rate-of-strain tensor (which is equal to the velocity gradi-

ent tensor in this case). In the uniaxial extensional deformation case for which

the velocity gradient condition
∂vz
∂z

= ε̇ holds, this results in the following rate-

of-deformation tensor, D, in the Cartesian frame (extension in the z-direction):

2D = ∇v + (∇v)T =



−ε̇ 0 0

0 −ε̇ 0

0 0 2ε̇


 (2.18)

We may recall equation 2.7, showing the evolution of the deformation matrix

as the result of a known imposed velocity gradient,

The deformation tensor, E, being the time-integral of itself multiplied by

the velocity gradient tensor (see eqn. 2.7) may be written

∂

∂t
E = E · ∇v (2.19)

and, if the deformation tensor at time zero is Eij(0, 0) = δij, in the case of

purely extensional flow (D and ∇v are diagonal and therefore equal), it remains

diagonal for all times, t. The time-dependence of the deformation tensor as

calculated via equation 2.19 therefore provides three equations expressing co-

ordinates of the sample. In particular, with the use of the velocity gradient

tensor derived from equations 2.18,

∂Exx
∂t

= − ε̇
2
Exx (2.20)

∂Eyy
∂t

= − ε̇
2
Eyy (2.21)

∂Ezz
∂t

= ε̇Ezz (2.22)

which dictates that for steady extensional flow, the z-coordinate of a point

within the sample must increase exponentially in time, while any transverse co-

ordinate must decrease correspondingly at half the rate. The change in length

of a characteristic piece of the sample is known as the Hencky strain, and we

may identify ε̇ as the Hencky strain rate.
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Where the steady-state shear viscosity is generally written as the long-time

limit of the quotient of shear stress and shear rate, it has an “extensional vis-

cosity” equivalent, ηE,

ηE(ε̇) = lim
t→∞

[
σE(t, ε̇)

ε̇

]
= lim

t→∞

[
σzz − σxx

ε̇

]
(2.23)

where ηE(ε̇) is a (potentially) extension-rate dependent extensional viscosity,

and σE is the “net tensile stress”, σzz − σyy. As a long-time limit property, the

extensional viscosity intrinsically and experimentally generates difficulties. As

equation 2.20 shows, the Hencky strain must be generated by a change in sample

length which is exponential, to keep the extension rate constant over the course

of an experiment. In following sections we shall see how this condition leads to

fundamental geometrical restrictions in particular experimental apparatuses.

For a Newtonian fluid under deformational flow, and for non-Newtonian

flows at rates of deformation low enough that to first order the constitutive

relation between stress and strain is simply [14]:

σ = 2ηD (2.24)

where η is the conventionally measured shear viscosity. Inserting values for σzz

and σxx as calculated by equation 2.24, using the uniaxial deformation rate

tensor of equation 2.18,

ηE =
σzz − σxx

ε̇

=
2ε̇η − (−ε̇η)

ε̇
= 3η (2.25)

The proportionality constant between the shear and extensional viscosities

is known as the Trouton ratio, and takes the value 3 for the Newtonian constitu-

tive relation under the assumption of uniaxial deformation; biaxial deformation

will generate different values. Trouton ratios have been measured up to four

orders of magnitude higher than this, though the transient nature of the ex-

tensional deformation and characteristics of various experimental geometries
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preclude exact and agreed values of extensional viscosity universally.

In non-Newtonian flow experiments of larger deformations, the relation be-

tween shear and extensional properties of materials will require not only the

constitutive equation, but also the strain history - further complicating the

lack of agreement between rheologists in the field using different experimental

arrangements. Studies of materials undergoing extensional flow are complemen-

tary, however, to the bulk of rheological studies which investigate the effects of

shear forces in complex fluids, and are vital in understanding the fluid mechan-

ics taking place during modern polymer processing techniques, amongst other

things.

2.3.10 Conventional extensional rheometry

The transient nature of extensional rheology makes extensional rheometry much

more technically difficult than shear rheometry, and in particular, due to the

arguments of Trouton, extensional rheometry is important in the regime far re-

moved from linear viscoelastic behaviour. In samples solid enough to be clamped

and stretched, upper limits on the possible strains imposed are dictated by the

size of the rheometer, necking and other instabilities of the sample, and the ad-

hesion to the extensional mechanism. In less viscous samples which rely on the

flow field as the generator of deformation, turbulence and strain history play a

large role in experimental design [15].

Sample stretching rheometers and the four-roll mill

Most techniques available for use in experiments revealing extensional prop-

erties are limited to only providing the uniaxial deformation scenario. One

apparatus designed to do this is the Sentmanat extensional rheometer, which

uses two adjacent, counter-rotating rollers to stretch a sample attached to both

surfaces. Fitted to a rheometer designed primarily to measure shear behaviour,

the torque on the drive-shaft corresponds to the extensional stress within the

sample. A second common method, again restricted heavily by the dimensions

of the apparatus, is the Münstedt tensile rheometer, which is typical of most ex-

tensional apparatuses that rely on a linear actuator type transducer rather than

measuring a torque. This device works on the principle that at all times only
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Figure 2.9: Schematic illustration of the four-roll mill. A stagnation point in
the central volume is the location of a region of pure extension (for this con-
figuration of rotating cylinders). Very high extension rates are made unrealistic
by the inverse nature of the residence time of the sample within this volume.
Strain history is also poorly defined as sample may follow a non-trivial route to
the region of interest.

the ends of the material are being separated, though this means the technique

relies slightly more on the quality of the clamping or gluing of sample to the

two moving plates. Both these stretching devices, and other devices like them,

have rather limited upper ranges in terms of extensional strain rate (typically

between 5 and 10 s−1). By being applicable to samples which may be considered

reasonably solid, however, the dimensionless parameter formed by the product

of extension rate and terminal relaxation time can still be significant. Investiga-

tions of materials of lower bulk moduli can benefit from alternative geometries.

Complex fluids at the lower end of the viscosity spectrum may need to be

contained in order to be meaningfully researched. A flow cell of some description

can be used to generate extensional stresses in the same way that a Couette cell is

designed to generate shear stresses purely via fluid mechanical mechanisms. The

most ubiquitous of these is the four-roll mill (see fig.2.9), whereby a material

can be locally deformed by four rotating cylinders which are located at the

corners of a square. By making these cylinders rotate - alternating senses from

roll to roll around the square - a region of local extension can be generated,

stretching the sample in one direction, compressing in another. Such a geometry
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Figure 2.10: The semi-hyperbolic converging die, in which extensional stresses
are overwhelmingly dominant along the centre of the pipe. Note that the
direction of flow is collinear with the stretching direction, allowing a transient
extensional experiment of longer duration

is versatile in the sense that regions of both nearly perfect extension and shear

can be established in the same geometry. The main disadvantage to the design

is that all portions of the sample spend only a relatively short time within the

pure extension region, and that the geometry is not built from a Lagrangian

standpoint, meaning that in a polymer sample, one molecule “passes through”

an extensional region, rather than an extensional force “tracking” the molecule.

Semi-hyperbolic converging die

One solution to the demand for such a geometry is shown in fig. 2.10, and

is known as the semi-hyperbolically converging die [16–19]. It is essentially a

pressure-driven flow through a pipe of carefully varying radius, such that the

extension rate is a constant, at least in a considerable region down the axis of the

pipe, away from the walls. In the same way as the shear rate is constructed from

knowing the relative motions of two fluid elements in the direction perpendicular

to their relative displacements, the extension rate can be seen to be generated

by the relative motions of two fluid elements in the same direction as their

separation.

We explain the explicit form of this geometry in chapter 6, in which we
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explore the SHCD as a viable geometry for Rheo-NMR experiments.

2.4 Polymer Dynamics

We now turn our attention to two examples of soft matter of specific relevance

to this thesis. In this section we deal with the case of entangled linear poly-

mer melts and semidilute solutions, and in the next, a closely related class of

entangled “living” polymers formed from wormlike-micelle solutions.

Polymers are large, heavy molecules built up of small component parts

known as monomers. In general, when we refer to polymers, they are tree-

like, in the sense that there are few or no loops, and the bulk of their mass

lies in the carbon (or sometimes carbon/oxygen or silicon/oxygen) backbone.

While it is possible to produce a plethora of topologies of polymers which are

not curvilinear and one-dimensional, in this thesis we shall almost exclusively

deal with polymers and polymer structures which are both highly flexible and

pseudo-linear in nature. As such, much physical modelling and parametrisation

can be done to simplify their description in many phases, whether isolated in a

solution of choice, whether they are closely packed enough to weakly interact,

or are packed more densely so as to entangle and become individually indis-

tinguishable. In the first place we need to describe the freedoms of monomers

segments in general, the results of which determine the expected size of the

polymer and the timescale over which the fastest variations in conformation al-

low the shape of the polymer to change. At the other end of the dynamics scale

is centre of mass motion, which is of little consequence in dilute solutions, but

becomes vital when we investigate the diffusion of the polymer throughout a

network as the mechanism for the longest stress relaxation characteristic time.

2.4.1 End-to-end vector distribution

As a polymer is comprised of much smaller linear components chemically joined,

the position and orientation of one monomer is somewhat dependent on its

neighbour. The range of freedom belonging to a monomer may be influential

in the description of the overall macromolecule, but first we imagine that such

bonds may be completely randomly directed. If we assume that monomers
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are identical in length, considering the end-to-end vector representing the dis-

placement of the last monomer unit with respect to the first is the same as

the classical stochastic problem of the random walk in three dimensions. With

this in mind, a first guess at a distribution of end-to-end vectors {R} of widely

separated polymers might bear the following signature:

< R >= 0, < R2 >= Nb2 (2.26)

where N is the number of monomers in the chain, and b is the length of the

monomer. This is called the freely-jointed chain model, and as it turns out,

it is of the same form as the statistical distribution even when short-range

interactions preventing total monomer freedom are included. Hence we can for

the time being ignore limitations in flexibility, or even assume a distribution in

monomer length, and write the probability of finding an end-to-end vector, R,

as

p(R) =

(
3

2πb2

)3/2

exp

(
−3R2

2b2

)
(2.27)

where we have just assumed that there is some effective step length, b. Long-

range interactions, such as the excluded-volume effect [20–22], disallowing con-

formations for which one section of an ideal chain would overlap with another,

are important in determining the radius of gyration of the polymer. This radius

is the average size of the polymer, and is an important parameter, particularly

for the case in which the polymer is in solution. The interactions between sol-

vent molecules and the polymer’s constituent monomers determine whether the

solvent plays a role in modifying the radius of gyration. A “good” solvent max-

imises the surface-to-volume ratio of the polymer and therefore swells it, while

a “poor” solvent does the opposite by introducing a less favourable energy state

to large polymer end-to-end vectors, thereby shrinking it. In this thesis much

of the work carried out is either in the melt phase, or in polymer solutions in

which molecular aggregation occurs, and the polymer end-to-end vector is more

strongly determined by such effects than the excluded volume effect, so these

long-range interactions are kept in mind, but are largely not influential in our

analysis.
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primitive chain
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Figure 2.11: The polymer tube.

2.4.2 Polymer melts and the tube model

A material consisting entirely of free polymer molecules, and existing above its

glass transition temperature is called a polymer melt. In such a fluid, a polymer

molecule is more restricted in conformation that it otherwise might be, being

confined to arrangements which trace paths around entanglement points (see

fig. 2.11) generated by cohabitant polymers [23–26]. Edwards proposed [27] that

the polymers doing the confining may be treated in a mean-field way, producing

a tube in which a target polymer may freely diffuse due to thermal motions.

The statistics of monomers in a given tube step of length, a, is then roughly

Gaussian in the same way as we saw for the freely-jointed chain, however with

the residual condition that at any given time, the local end-to-end vector is from

one entanglement to the next. By expanding the view of the polymer in this way,

or “zooming out”, we may treat the step length, a, as a new length parameter

in a random walk model, and statistically the distribution of overall end-to-end

vectors would remain of the same form as if the polymer were free [28].

2.4.3 Reptation and the tube model

When polymers are packed densely enough, that is, the number of segments

per unit volume c∗, the number of monomers N , and the radius of gyration (at

infinite dilution) R
(0)
g , satisfy the relation
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c∗ ≈ N
(
R

(0)
g

)3 (2.28)

entanglement effects make themselves felt. In such a material of entangled

polymers, normal diffusion statistics due to Brownian motion no longer apply

to a molecule as a whole. The major mechanism for diffusion of a single polymer

in a network of others is now one-dimensional and curvilinear in nature: it may

diffuse along its own path. This process is known as reptation, a term coined by

de Gennes [29] for its similarity to the propulsion mode of snakes. The tube in

which a select polymer is located at some reference time will gradually disappear

as the polymer diffuses back and forth, losing history of its location, beginning

at the ends and eventually having the original tube disappear completely.

Abstracting the single, selected polymer away momentarily, the system can

be modelled as a tube formed by restrictions, along with an idealised path along

the centre of the tube, known as the primitive chain. As an idealised entity,

the primitive chain maintains a constant length throughout its life, and is free

to diffuse only along its own length, L =
Nb2

a
with a diffusion coefficient Dc,

which is provided by the Rouse model

Dc =
kBT

Nζ
(2.29)

where ζ is a friction constant of polymer monomers. A schematic of this pro-

cess is shown in fig. 2.12, showing the continual diminishment of the original

tube. Once an end of the primitive chain has passed a given point, all the tube

“outside” that point is lost irrecoverably. An analysis of this process, involving

the probability that an end has not reached a given point given a diffusion co-

efficient yields [30] the probability that the central point of the tube still exists

at all, as a function of time,

ψtube(t) =
∑

p odd

8

π2p2
exp

(−p2t

τd

)
(2.30)

where τd is the characteristic time of the decay of the original tube. It is a

highly important parameter in the description of polymer dynamics, known as

the tube disengagement time, and represents the longest timescale for structural
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tube, t = 0

primitive chain

Figure 2.12: As time passes after a reference “snapshot”, the tube in which
a polymer resides is lost. Diffusion in one direction implies loss of tube at the
other end, for if the polymer were to diffuse back, the end is free to take on
any conformation, rather than be restricted to its original path.
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realignment in a polymer melt, and can be expressed in terms of the physical

characteristics of the polymer as

τd =
L2

Dcπ2
=

1

π2

ζN3b4

kBTa2
(2.31)

2.4.4 Refinements to the Doi-Edwards model of polymer

dynamics

The Doi and Edwards model of polymer dynamics is a highly successful descrip-

tor of the stresses and relaxation of stresses in an entangled network, and does

so by using the various length- and time-scales (from Rouse motion up to 1D

curvilinear diffusion/reptation) over which memory of the state of the sample is

lost. There do exist factors that cause deviation from the simplest form of the

Doi-Edwards model, though. One example is the convected constraint release

(CCR) [31] phenomenon in which some account for the tube dissipation for one

polymer may release an entanglement point for another polymer, and vice-versa.

Contour length fluctuation [32] is another important correction to the simplest

models, and is a result of the natural time-variability in some characteristic

length-scales due to random thermal motions. Both these effects induce alter-

ations in the dynamics of polymer melts, though being only considerable large

as stress-relaxation mechanisms in certain regimes, will only be described as

immediately necessary in later chapters.

2.5 Surfactants and Worm-like Micelles

2.5.1 Molecular aggregation

Molecules composed of sections which differ in their affinity for being close to

water are known as amphiphilic. Those parts that shy away from water are called

hydrophobic and those which seem attracted to water are called hydrophilic. In

a material made up of water and a molecule which has both hydrophilic and

hydrophobic parts, aggregation of the solute will occur due to minimisation of

the free energy of the system. The hydrophobic portion will tend to be driven

away from the water, and yet it remains physically attached to the hydrophilic.
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Figure 2.13: An incomplete survey of typical structures of aggregate of surfac-
tants in solution (see [1] for more details). Depending on the effective areas of
head and tail groups (packing geometry shown at top), and the concentration
of the surfactants in solution, a full spectrum of possible phases arise (lower
figures). Worm-like micelles solutions may lie somewhere between short cylinder
micelles and lamellae.

With the hydrophobic components having only affinity for themselves, it is not

hard to imagine that under some circumstances small clusters of amphiphilic

molecules will form in water. Other such structures are possible, and these

aggregations are collectively known as micelles. Some micellar structures are

shown in fig. 2.13.

The tendency of an amphiphilic molecule as described above to aggregate

into a larger structure is determined by the usual arguments between free energy

and the entropy of mixing. Major determining factors are the concentration of

molecules in the solvent, the system temperature, as well as - perhaps most

importantly - the solvent-amphiphile electrochemistry [33]. The ionicity of the

hydrophilic group plays the strongest role, and four general classes of system are

outlined due to this ionicity: anionic, cationic, zwitterionic, or nonionic; where

each refers to the charge on the surface-active portion of the molecule: negative,

positive, both, or no charge at all. In many cases the hydrophobic parts of the

molecule are alkyl chain hydrocarbons or similar, while the hydrophilic (and

possibly ionic) ends may be made of carboxylic acid groups, or components
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such as sulphonates or amine salts.

No matter the system, micellar systems invariably do not exhibit molecular

aggregation below a lower limit of concentration, known as the critical micelle

concentration (cmc) [34]. Below the cmc, the free energy of micelle forma-

tion is insufficient to overcome entropic random mixing effects, while above it

amphiphilic molecules can begin to lower the free energy sufficiently to form a

spectrum of structures. At this limit many colligative properties change sharply

due to aggregation: suddenly the effective number of “particles” is strongly re-

duced, and hence the cmc can be reasonably accurately determined from basic

measurement of any one of these colligative properties as a function of concen-

tration. In general, the cmc of nonionic micelles is lower than that of the ionic

micelles, due to lower electrostatic repulsion between head groups.

In a similar vein, there exists a temperature below which micelles may not

form at any concentration, due to lack of solubility. This temperature is known

as the Krafft temperature [34], and at this point the solubility is in fact equal

to the critical micelle concentration.

Once aggregation has been made possible through suitable conditions, the

form of micellar structures is governed by free energy considerations, which

are generally geometric in nature. The surface-to-volume ratio determines a

surfactant parameter, Ns = v/(la0), where v and l are the volume and length

of the hydrophobic tail, respectively, and a0 is a characteristic surface area of

the hydrophilic head group. This parameter influences the curvature of the

micelles, which may turn out to be spherical, cylindrical, planar, or inverted

forms of these.

2.5.2 Nonionic worm-like structure formation

One additional structure which resemble long, flexible cylinders, or worms, are

used by us as a model system in the soft condensed matter research in this

thesis. They are most similar to the cylindrical structure shown in fig. 2.13,

though are supposed to grow many times longer than their diameter. When

such structures are formed, by the shielding of the hydrophobic components of

the amphiphile by the hydrophilic parts (fig. ??), they are persistent structures

which are reminiscent of linear polymers, though without the covalent bond-
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Figure 2.14: Simplified view of the way in which triblock copolymer segments
demonstrate their dispositions towards the solvent, leading to micellar structures

ing seen in polymers, they are relatively easy to break apart and rejoin, these

wormlike micelles are termed ‘living polymers’ [35].

In comparison to the qualitative properties of polymers, they can to first

order be treated in certain concentrations by the tube model used previously

for regular polymers, and hence the worms can be oriented under shear or

extension. The main difference, however, is that the weaker intermolecular

bonds and free energy minimisation that maintain the integrity of the structure

are much weaker than the strong covalent bonds holding a polymer together

- leading to a propensity for the worms to break up and recombine continu-

ously, and a dissociation-recombination process has been described, largely by

Cates [35, 36], which allows for a characteristic time over which a worm-like

micelle may break apart and consequently recombine with other micelles in a

Poisson renewal model of micellar kinetics. The effect of this is to introduce an

alternative stress-relaxation mechanism which may be of shorter timescale than

the tube disengagement time previously described for linear polymers, and this

behaviour becomes apparent in the linear rheology of such fluids. Following the

discussion of Maxwellian fluids of section 2.3.5, such short timescale effects are

able to be quantitatively investigated at their correspondingly high character-
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istic frequencies, and are responsible for the deviations in the simple Maxwell

fluid Cole-Cole diagram. Stress relaxation in polymer melts is associated with

the dissipation of the polymer tube. With one-dimensional curvilinear diffusion

being the dominant mode of stress relaxation, the ends of the primitive path

have a large role to play in the rate of tube loss. As such, breakage and recombi-

nation of micelles generates additional opportunities for loss of time correlation

of this mean field. The reptation-reaction model of Cates takes such timescales

into account, and notes that the terminal relaxation time must be shorter than

that determined by pure reptation alone. Bond interchange, in which two mi-

celles collide in a fashion akin to the chromosomal crossover process in genetics

(see figure 2.15), is responsible for a minor contribution to relaxation; however,

reversible scission and end interchange are more dominant in accelerating stress

relaxation. Selecting the shorter of the characteristic timescales for breakage

and recombination and labelling it τbr, the new terminal relaxation time can be

written as a geometric average of the standard relaxation time due to curvilinear

diffusion and the breakage time,

τ = (τreptationτbr)
1
2 (2.32)

With such a wide range of processes occurring in micellar systems, it is not

surprising that they respond to deformation both viscously and elastically, and

can show highly non-linear behaviours, the most important of which for this

research is shear banding.

In this research the majority of work undertaken is on the nonionic worm-

like micelle system formed by the triblock copolymer P105 in solution, with

the presence of the hydrophobic alcohol 1-phenylethanol providing a stabilising

influence to the worms. Nonionic worm-like micelles do not require the presence

of a counterion to generate the desired structure. The blocks of the copolymer

are not in any way at the extremes of hydrophilicity or hydrophobicity, but the

difference in solubility is enough to generate the worm-like micelle structure.

Once structures are seen to form under their corresponding required condi-

tions, it is important to ask how the imposition of a shear field could possibly

affect the state of the sample. In the most extreme case, a structureless ho-

mogeneous sample may obtain structure under shear, but more often it is the
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Figure 2.15: Three predominant mechanisms of micellar rearrangement (a)
reversible scission (b) end interchange (c) bond interchange

transitions from exisiting structures that are of most relevance. In the case of

lamellar phases, this may mean the transition to so-called onion phases [37, 38],

or in the case of worm-like micelles which are known to have formed at rest, the

isotropic-nematic transition is important. The level to which worm-like micelles

will align under shear strain, and the possibility of an upper limit on the rate

of strain which may be applied before micellar disintegration occurs, contribute

to the non-linearity of the viscoelastic behaviour of such samples. Secondary

effects such as the potential for micelles to grow longer under shear are not well

explained, but mechanisms which diminish the relative rate of dissociation to

combination seem plausible.

The geometric average of tube disengagement and breakage time of micelles,

leading to an decrease in terminal relaxation time and non-monoexponential

relaxation, is best shown up in the so-called Cole-Cole plot, which depicts the

storage and loss modulus of the sample as a parametric curve with parameter ω,

the frequency of the linear rheology being performed. The expected behaviour

for a perfect Maxwellian fluid is a semi-circle (see section 2.3.5), the frequency

at which the curve for a given sample deviates from this behaviour is significant,
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and leads to knowledge of the ratio of breakage and disengagement times.

2.5.3 Shear banding in worm-like micelles

One of the most counter-intuitive phenomena displayed by worm-like micellar

solutions under shear flow is that of shear-banding [1, 39], in which two or more

distinct spatial regions are seen to sustain different local strain rates, despite

(nominally) maintaining a uniform stress - a variable viscosity.

Shear thinning is a well accepted and intuitively encountered phenomenon

in which a lowered gradient in the shear-stress/strain function occurs with in-

creasing shear rate. It is also a feature of many worm-like micelle solutions: one

description of this phenomenon may be that more energy must be deposited

into the system in order to cause the isotropic-to-nematic transition, aligning

micelles, while subsequent shear deformation on aligned micelles is less force-

intensive. In addition to shear thinning, however, it is been proposed that a

non-monotonic constitutive relationship between stress and strain rate char-

acterises the shear-banding phenomenon, as shown in fig 2.16. Materials de-

veloping a shear-banded flow behaviour within some range of imposed stresses

demonstrate shear thinning behaviour in rheometric experiments, followed by

a stress-plateau. The dissociation-recombination kinetics of micelles led Cates

[36] to propose a constitutive equation incorporating birth- and death-rates of

micelles; this was subsequently solved in non-linear rheological cases, demon-

strating the stress/strain non-monotonicity previously described. While the

addition of a declining stress regime in the tube model of Doi and Edwards

[30] is thought to be the main instigator of such shear banding behaviour, al-

ternative microscopic mechanisms have been suggested, for example, the local

variation of some parameters of the solute such as concentration fluctuations or

shear-induced structural changes [40]. Isotropic-to-nematic transitions induced

by shear are apparent in worm-like micelle solutions, and the correlation of

potential structural changes and regions of differing viscosity under a common

stress is an important experimental area. Following Fischer and Callaghan [41],

we will take on the investigation of the question of whether regions of differ-

ing birefringence (differing nematicity) are correlated with regions of differing

viscosity. In the case that such correlation exists, it is interesting to ask the
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Figure 2.16: The non-monotonic nature of the flow curve is shown here.
The negatively-sloped portions of the stress vs. strain function are inherently
unstable, causing the fluid to shear-band. The bands take on the values of
strain appropriate to the stress within the sample, as shown, and the band sizes
satisfy a lever rule.

question: the phase of which ordered state corresponds to which of the high-

and low-shear-rate bands?

Theory and experiment continue to overlap in the area of shear-banding,

whether in worm-like micellar solutions or not. In particular, shear bands have

been experimentally shown to fluctuate across the gap of a rheometrical device,

both in time and space, in both periodic and seemingly chaotic fashions. With

such a wide variety of behaviours, worm-like micelles have become something

of an ideal test-bed for investigating non-linear fluid mechanics [42], with their

rich and diverse range of mechanical responses, despite being composed of rel-

atively simple ingredients, which in many cases allow experiments that would
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possibly destroy the integrity of another sample. Trustworthy regeneration of

initial conditions through self-assembly following a vigorous experiment is also

a benefit. To add more drama to to the story of micellar materials, recently

several groups have reported on materials which exhibit a stress plateau asso-

ciated with shear-banded flow, followed by shear-thickening behaviour [43] and

vorticity banding at even higher shear strain rates.
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Chapter 3

Magnetic Resonance

Spectroscopy, Imaging and

Velocimetry

In 1945, two research groups headed by Bloch and Purcell [1, 2] discovered

that nuclei in a magnetic field absorb and re-radiate radio-frequency electro-

magnetic radiation. The fact that the radiation frequency coincided with that

described by the Larmor relationship between magnetic field strength and the

nuclear spin precession frequency led the field to be called Nuclear Magnetic

Resonance (NMR). Since that time a great number of innovations have con-

tributed to this technique’s applicability in modern research and technology as

a molecular-level probe, most noteworthy of which is the use of magnetic field

gradients to extend the capabilities of magnetic resonance out to spatial (and

correspondingly velocity) resolution, a realisation which resulted in the Nobel

Prize in Medicine being awarded to Lauterbur and Mansfield in 2003. Adding to

these two major discoveries many incremental and quantitative enhancements,

NMR has become the rich and varied field it is today, not least of all due to its

usefulness in medicine and other non-invasive diagnostic applications.

In this thesis we use the subtle changes in the nuclear precessional frequency

that arise due to the environment of the nucleus - determining the spectroscopic

response of a magnetic resonance experiment - as well as the mapping of such

spectroscopic data spatially - magnetic resonance imaging. As NMR is such a
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large field of research, a complete survey is not attempted here; instead, a short

introduction is given with the intention of building the requisite tools for our

investigations into the detection of various levels of ordering and flow in soft

materials which arise due to macroscopic deformation. For further information

and in-depth details on magnetic resonance in materials physics, the works of

Abragam [3], Callaghan [4], Kimmich [5] and Blümich [6] are recommended

references.

3.1 Nuclear Spin

Spin is an intrinsic property of elementary particles not known to have a classical

analogue. While spin behaves as a contribution to the total angular momentum

of a particle, it is known that particles have angular momentum about a point

different from that expected due solely to orbital motion. In the formalism of

quantum mechanics, every elementary particle has a spin angular momentum I,

with a magnetic or azimuthal quantum number associated with it which may run

from −I to I in the discrete spectrum {−I,−I+1,−I+2, ..., I−1, I}. The spin

angular momentum of a particle also generates an intrinsic magnetic moment

which is a vector collinear and proportional in magnitude to the observed spin

component [7]

µ = γS (3.1)

where µ and S are the quantum mechanical operators for magnetic moment

and spin respectively, and γ is called the gyromagnetic ratio of the particle.

We will be primarily interested in examining the properties of two nuclei: the

single proton of hydrogen (1H), with gyromagnetic ratio 26.75×107s−1T−1; and

the bound proton-neutron nucleus of deuterium (2H), with gyromagnetic ratio

4.11 × 107s−1T−1. The proton is spin-1
2

and has two observable values for the

magnetic quantum number {−1
2
, 1

2
}, while the deuteron is spin-1 and has three

{−1, 0, 1}.
According to the matrix representation of quantum mechanics, these observ-

able values for the spin angular momentum component are the eigenvalues of

that operator, and the corresponding eigenvectors form a basis of the spin state
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space for a spin i.

3.2 Spin and the Density Matrix

Vast numbers of nuclear spins present in a real sample make it impossible to

perform an experiment which keeps track of each spin as well as its observed

orientation. For this reason a very useful mathematical device called a density

matrix is used to describe the spin system to great accuracy.

In an ensemble of N spins, the state of each spin is described by its spinor,

|ψi〉, which for the spin-1/2 can be expressed as a linear combination of the

standard basis with coefficients α and β

|ψi〉 =

(
αi

βi

)
= αi

(
1

0

)
+ βi

(
0

1

)
(3.2)

and one can create a matrix operator

ρ̂ = N−1 (|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ ...) (3.3)

which, it can be seen, is an arrangement of averages of the spins’ components

ρ̂ =

(
αiα∗i αiβ∗i
βiα∗i βiβ∗i

)
(3.4)

The diagonal components of this density operator can be identified as the

average “up-ness” and “down-ness” of the spin ensemble, or the expected popu-

lations of the two observable spin orientations. The sum of these remains unity

(|αi|2 + |βi|2 = 1 = |αi|2 + |βi|2) and the difference is in some way comparable

to a spin excess. After a ‘long’ time left alone, the distribution of states of the

spins in an ensemble of spins-1/2 (just the two eigenstates) will be governed

by the Boltzmann statistics. As such in thermal equilibrium the value of the

population difference will depend on the energy difference, E, between the two

levels, and the temperature, such that in the high temperature approximation

E � kBT ,

|αi|2 − |βi|2 =
E

kBT
(3.5)
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Elements of the density matrix not lying on the diagonal are called coher-

ences. In thermal equilibrium, there will be zero transverse spin polarisation

of the system. The αβ∗ coherence in the density matrix is directly correlated

to the magnitude and phase of observed net transverse spin. We see later that

it is only this component that is detected through induction in the conducting

coil used in the magnetic resonance experiment. In this sense it is our job as

experiment operators to use some recipe of manipulations to take the density

matrix describing the initial state of the system and transform it by generating

coherences that yield the information we would like.

3.3 Spins in Magnetic Fields

Should a particle with a magnetic moment such as that generated by the spin

angular momentum be located within a magnetic field B0, it will experience the

Zeeman interaction, and the system will have a potential energy

H = −µ ·B0 (3.6)

associated with which are two observable energy levels

Em = −γ~mIB0 (3.7)

corresponding to the spin being ‘up’ (nuclear magnetic moment aligned with the

B0 field) or ‘down’ (magnetic field and nuclear magnetic moment anti-parallel).

By absorbing and radiating radio-frequency photons of matching energy, the

expectation of the magnetic moment can be modified: to change the expectation

to zero would be to negate the Boltzmann population difference, and generate

coherences in the density matrix.

The time-dependent Schrödinger equation governing the behaviour of the

nucleus can be written

d

dt
ψ(t) = −iĤψ(t) (3.8)

and in the frame of the magnetic field the Hamiltonian operator is diagonal

and proportional to the Iz operator. Solving the Schrödinger equation is then
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relatively simple, and

ψ(t) = exp{−iωtIz}ψ(0) (3.9)

The exponentiation of the Iz operator is equivalent to a rotation operator,

and hence we have found that if the nuclear spin feels only a stationary magnetic

field, it precesses about it. This constant rotation about the z-axis encourages

us to move to an observation frame which rotates with the spin about the z-axis

with frequency ω. The spin appears stationary in this frame, and we can deduce

that the effective magnetic field is zero. In general, our rotating frame may be

characterised by frequency Ω and the effective field written

Beff = B0 +
Ω

γ
(3.10)

3.4 Relaxation

3.4.1 Phenomenological Relaxation

Following excitation of the spins by the applied radio-frequency field, the density

matrix may differ significantly from its thermal equilibrium state. Coherences

(off-diagonal) elements will in general be non-zero, and the populations (diag-

onal) elements will not be determined by simple Boltzmann thermal statistics.

With no thought as to the physical processes that drive these elements back to

their thermal equilibrium values over the subsequent time, the so-called Bloch

equations give simple insight into the semi-classical evolution of the magnetisa-

tion vector. In particular they separate two subclasses of relaxation - longitudi-

nal and transverse relaxation, often called spin-lattice and spin-spin relaxation

respectively. Longitudinal relaxation is best described by the rate at which the

populations of the density matrix decay back to thermal equilibrium, the time

constant associated with this decay is called T1. There exist several related

characteristic times depending on the frame of reference, but in the simplest

case, the populations refer to the field-aligned z-component of the magnetisa-

tion, and as a guide, protons in aqueous solutions at room temperature often

have T1 values within an order of magnitude of 1 s. Mz is governed by the
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following phenomenological differential equation as follows

dMz

dt
= −(Mz −M0)

T1

(3.11)

The other aspect of directly observable relaxation, at least for simple spin

species (I = 1/2), is transverse relaxation, in which the elements belonging

to the first superdiagonal of the density matrix (single quantum coherences)

relax to zero. This is generally driven by spins dephasing, a process in which

small additional precessional frequencies govern individual spin dynamics. The

characteristic time taken for this to occur is known as T2, and the transverse

(NMR signal inducing) magnetisation follows the rule

dMx,y

dt
= −Mx,y

T2

(3.12)

Combining these two relationships and a potential intrinsic inhomogeneity

in the polarising magnetic field, one arrives at the Bloch equations [3], a triplet

of differential equations governing Mx,My and Mz. Transverse relaxation is of

primary interest in this thesis, although the level to which we wish to describe

the effect of alignment of polymers on the transverse relaxation time requires a

greater level of understanding of relaxation mechanisms

3.4.2 Dependence of transverse relaxation on dynamics

In 1948, Bloembergen, Purcell and Pound (BPP) proposed a model of relax-

ation which relied on the tumbling motions of internal components of materials.

Both longitudinal and tranverse relaxation are determined by fluctuations in

the precessional frequency (nuclear Hamiltonian) felt by individual nuclei in ac-

cordance with their variable position and orientation with respect to each other.

Molecular dynamics such as rotation and Brownian motion in general make for

stochastic variations in spin couplings. Much like the Hamiltonian itself, there

is a hierarchy of strengths of mechanisms by which relaxation can occur, and

the quadrupolar interaction is certainly significant, if the sample permits; dipole

interactions follow closely.

The temporal variation of the dipolar coupling between two nuclei within

some proximity can be represented by a spectral density function, J(ω), which is
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an even, real and normalised function, and is derived from the auto-correlation

function of a ‘structure function’ detailing the relative positions of neighbouring

dipoles. Analysis of the relevant functions is highly sample-specific, and several

regimes based on the amount of motional averaging possible on the NMR ex-

perimental timescale are treated independently. The BPP theory is particularly

effective in homogeneous systems, though several other approximations exist

that are more or less suitable for use in particular cases.

An important case for our work is that in which complete motional averaging

is not achieved, and the Anderson-Weiss approach to the analysis of relaxation

is appropriate. This method assumes that additional precessional frequencies

(both positive and negative) cause the transverse dephasing of isochromats lead-

ing to relaxation of the normalised signal, S(t),

S(t) = 〈exp(iφ(t))〉 (3.13)

where φ(t) is the time integral of additional phase acquired by random ma-

terial influences relative to the central precessional frequency of the nuclear

species

φ(t) =

∫ t

0

ω(t′)dt′ (3.14)

In evaluating the ensemble average of eqn. 3.13, it is then useful to take

the cumulant expansion and retain only the second term, by virtue of other

contributions being zero: those of odd order are automatically for our case, or

not being consistent with an assumption of ω being distributed in a Gaussian

way. Therefore,

S(t) = exp

(
−1

2

∫ t

0

dt′
∫ t

0

dt′′ 〈ω(t′)ω(t′′)〉
)

(3.15)

which, in the case we represent and calculate a correlation function C(t) =

〈ω(t)ω(0)〉, following Abragam [3] is

S(t) = exp

(
−
∫ t

0

dt′(t− t′)C(t′)

)
(3.16)

This method is useful in polymeric systems for which we can calculate the
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correlation function depending on known system parameters, and in Chapter

4, we see that the residual dipolar coupling generated by incomplete motional

averaging of a nucleus bound to a polymer residing within the ‘polymer tube’

(for some residence time, or with a probability of return following diffusion) is a

critical determinant of shear-dependent transverse relaxation in polymer melts.

3.5 The nuclear spin Hamiltonian

The nuclear spin Hamiltonian is overwhelmingly dominated by the Zeeman in-

teraction between the nuclear magnetic moment and the strong B0 field - but

magnetic resonance spectroscopy and imaging also exploits the contribution of

other interactions to the nuclear spin Hamiltonian.

The interaction between magnetic moments of nuclei, the chemical shift,

and the scalar J-coupling are all examples of interactions generated by nuclear

effects either between nuclei, or that are intrinsic to a nucleus, while the elec-

tric quadrupole coupling is a fascinating example of a nucleus of non-spherical

charge distribution interacting with an electric field gradient like those existing

in molecular orbitals.

These are the only interactions relevant to this work, and in order of strength

in frequency units, the interaction hierarchy is as shown in fig.(3.1) (though it

must be stressed that some of these quantities depend on the field strength, and

the order presented here may not apply in other situations very much different

than our experimental scenarios provide)

Figure 3.1: The hierarchy of the most common nuclear magnetic moment
interaction strengths. In order, they are the Zeeman interaction (shown here
for a proton in a modern high-field magnet) with the polarising field, the electric
quadrupole interaction (for spins I ≥ 1), the radio-frequency field, the dipole
interaction, the chemical shift and the scalar J-coupling.

The strength of these various interactions is not, however, the only major

player in the behaviour of spins once the collection of spins has been made
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to reside in a non-equilibrium condition through a change in populations and

generation of coherences by a radio-frequency pulse. Molecular motion, and for

the most-part irreversible molecular motion, leads to fluctuations of interactions

between inter- or intramolecular spins, and it is these processes which form the

majority of mechanisms for nuclear spin relaxation, which can be simplified in

terms of the phenomenological approach already seen, or analysed in terms of the

spectral density function. The spectral density appears as the Fourier transform

of the autocorrelation function of the fluctuations in the spin interactions, and is

a field of research unto itself. A simplified approach to the mechanism of proton

transverse relaxation in polymer melts due to to dipolar interaction fluctuations

shall be treated independently in Chapter 4. In all other cases we shall simply

refer to T1 and T2 as properties of a material or material component without

further insight.

3.5.1 The dipole interaction

As objects with intrinsic magnetic moments, nuclei with spin influence (and

are influenced by) other similar magnetic moments. While the effects these

interactions have are much reduced from that of the overwhelming Zeeman

interaction, they play an important part in the relaxation characteristics of

spins and can affect the NMR lineshape heavily. The through-space dipole-

dipole interaction depends on their magnitudes, orientation and their relative

positions within the sample. The expression for the interaction between two

magnetic moments µi = γi~Ii and µj = γj~Ij is

HD =
µ0γiγj~

4π

∑

i,j

1

r3

[
I · I− 3(Ii · rij)(Ij · rij)

r2
ij

]
(3.17)

The small field due to one spin with dipole moment felt by another spin

can be considered an inhomogeneity in the desirably homogeneous polarising

magnetic field. However, fluctuations in HD due to molecular motion make for

a different set of influences. Rapid isotropic motion, as in a small molecule in

a liquid, leads to HD being averaged to zero, whereas static or slowly varying

dipolar interactions broaden the NMR resonance and lead to more rapid T2

relaxation.
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3.5.2 The quadrupole interaction and the spin-1 deuteron

A large part of experimental magnetic resonance, both in research and medical

use, lies in the evolution and detection of ensemble nuclear paramagnetism of

spin-1/2 protons. This is largely due to the proton’s high gyromagnetic ratio as

well as its overwhelming abundance in nature. However there are considerable

benefits arising from the use of magnetic resonance of particles with spin greater

than 1/2. In particular, the deuteron’s chemical similarity to the proton makes

it a prime candidate for use as a proton substitute in experiment, despite minor

isotopic effects such as reaction kinetics. While the deuteron has a gyromagnetic

ratio only one-seventh of the magnitude of the proton’s, its nuclear properties

generate additional terms in the nuclear spin Hamiltonian that can produce

information about the nuclear environment otherwise unattainable, such as the

orientation of the carbon-deuteron bond within a molecule.

The quantisation of the spin-1 deuteron is such that if the angular momen-

tum about a certain axis is measured, the potential outcomes are −~, 0, and

~. It follows that the spinor representing an arbitrary spin is three-dimensional

and can be written as

|ψi〉 =




αi

βi

γi


 = αi




1

0

0


+ βi




0

1

0


+ γi




0

0

1


 (3.18)

Accordingly, the density matrix for this three-dimensional spin-space is 3×3,

and in thermal equilibrium is equal to

ρ̂ =




1
3

+B 0 0

0 1
3

0

0 0 1
3
−B


 (3.19)

where B is a factor directly related to the Boltzmann thermal distribution of

quantum states. Following this expression of the density matrix, we can note

that the deuteron is the lightest nucleus to afford the possibility of multiple

quantum coherences through single-spin interactions alone. Such coherences are

not directly visible through electromotive induction in the r.f. coil, though mul-

tiple quantum filter techniques can be made to manipulate the density matrix
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to the point of transferring this information from the second superdiagonal to

the first.

The non-spherical charge distribution located within the deuteron nucleus

interacts with the surrounding electron clouds of the molecular orbital. The

energy of the electric quadrupole interaction between the nucleus and orbital

can be written

HQ =
eQVzz

4I(2I − 1)

[
3I2
z − I(I + 1)

]
(3.20)

where Vzz = ∂2V
∂z2

is the second derivative of the electric potential due to the

molecular orbital in its natural frame of reference (along the bond direction, in

general). e is the unit charge on an electron, and Q is the quadrupole moment

of the nucleus. Asymmetry between the two other directions Vxx and Vyy is

rare and may be taken to be negligible for carbon-deuteron bonds, the almost

exclusive location of deuterons in this research.

As mentioned, the natural frame of reference in this research for the deuteron

quadrupole interaction is along the carbon-deuteron bond, though assuming

that such a bond is oriented at an angle θ to the main polarising field, the

Hamiltonian contribution can be rewritten as the scaled quantity

HQ =
eQVzz

4I(2I − 1)

[
3I2
z − I(I + 1)

(
3 cos2 θ − 1

2

)]
(3.21)

which in the case of the deuteron, of spin-1, produces a doublet spectrum, with

splitting

∆ν =

(
3eVzzQ

2h

)
P2(cos θ) (3.22)

In the case of fixed angle bonds this split signal can be averaged over for

the bond angle distribution present within the sample. Molecules which are

free to roam the entire sample in a short space of time, however, and undergo

rapid anisotropic interactions with an aligning influence, should be effectively

pre-averaged over the bond angle distribution, thereby reducing the splitting

which is measured. The pre-averaging can be described by a scaling factor

expressed through the spherical harmonic addition theorem, written here in

terms of associated Legendre functions [8]

65



Pn(cos γ) = Pn(cos θ1)Pn(cos θ2)+

2
n∑

m=1

(n−m)!

(n+m)!
Pm
n (cos θ1)Pm

n (cos θ2) cosm(ϕ1 − ϕ2) (3.23)

which for our purposes allows for the intermixing of two separate order pa-

rameters involving a degree of order within an environment aligned along (θ1, ϕ1)

and that environment itself having a degree of orientation along (θ2, ϕ2), sepa-

rated by an angle γ. In the case of fluctuating azimuthal angles, and with the

appropriate averaging and angles relevant to whichever director we are referring

to, this leads to

P2(cos θ) = 〈P2(cos Θu)〉P2(cos Θ) (3.24)

where θ is the angle a particular segment of directed media makes with the

polarising field, and Θu is the angle between the molecular bond axis and the

director of the domain causing the alignment. Θ is the angle between the domain

director and B0. For this reason, there arises a difference in the information

gained in the spectroscopy of aligned materials. If the C-D bond is physically

attached to a polymer which is aligned, any pre-averaging will arise from local

segmental motion, with respect to one alignment axis. On the other hand, If the

C-D bond is part of a small probe molecule free to take a sampling of alignment

within the material (which forms the basis of the use of deuteron spectroscopy

in this thesis), then pre-averaging involves not only the segmental motion but

also the tumbling of the probe molecule, and therefore the splitting is much

reduced.

3.5.3 The chemical shift interaction

Upon being placed in a strong polarising magnetic field, currents in the electron

clouds of a molecule are spontaneously induced. Molecular orbitals are slightly

modified so as to change the local field and hence the Larmor frequency at which

the enclosed nuclei precess, and this change in Larmor frequency is dependent

on the chemical environment. This shift is know as the chemical shift, and while
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it is on the whole weaker than either of the dipolar or quadrupolar Hamiltonian

contributions, forms the basis of NMR spectroscopy as a tool for elucidating

chemical structure.

In our work, the chemical shift is used in conjuction with diffusometry in

order to identify peaks in the NMR spectrum and associate distinct nuclear

species with different diffusion coefficients in an experiment known as the DOSY.

3.6 Signal detection

If the bulk magnetisation has a component in the xy-plane perpendicular to the

B0 field, electrons in a wire coil sitting around a sample volume will experience

an electromotive force due to its precession. The alternating current generated

will be the Fourier sum of all the Larmor frequencies being exhibited by the

nuclei within the sample. This sum is referred to as the NMR signal, which is

then mixed with an oscillatory function close to the Larmor frequency, a process

called heterodyne mixing, the result of which is an audio-frequency signal.

In the practice of Fourier transform NMR, this process is duplicated by

another receiver which mixes the signal with an oscillating function of identical

frequency, though 90◦ out of phase. By this route, values for the transverse

magnetisation can be obtained along two directions in the xy-plane, and the

magnetisation is said to have been detected in quadrature [9].

For the simplest NMR experiment, that of the spectroscopy of water located

in a suitably homogeneous polarising magnetic field, all protons within the sam-

ple will nominally precess at the same rate ω, and their magnetisation as seen

by the receiving coil may be written

M(cosωt+ i sinωt) = M exp(iwt) (3.25)

In more complicated examples - and in general all experiments of interest

- this expression will be converted into something multiexponential due to the

contribution of different spins precessing at different rates. The form of the

signal resulting from a single r.f. field pulse, which is characteristically enveloped

by a decay curve due to spin-spin relaxation is called the free induction decay.

Many other more complicated scenarios can be envisioned, for example signals
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Figure 3.2: Following a 90◦ radio-frequency pulse, transverse magnetisation is
generated, the x and y projections of which may be considered the real and
imaginary parts of a complex signal. Fourier transformation of such a signal
yields its (complex) frequency decomposition.

can be detected by turning on the receiver at the appropriate time, the classic

example of which is detecting the Hahn spin echo generated at a time 2τ after a

90◦ pulse by applying a 180◦ pulse at time τ . This is the basis of pulse program

design.

3.7 Signal averaging and phase cycling

In any experiment, the signal-to-noise ratio is important. For practical mag-

netic resonance experiment at the fields and ambient conditions we are likely
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to encounter, the spin excess generated due to Boltzmann statistics is a very

small fraction of the total number of spins. It is therefore beneficial to repeat

an NMR experiment and co-add the signals obtained.

Many sources of noise may encroach on an experiment, but due to their

random nature, when N successive signals are combined, they add with ran-

dom phase, languishing where the desired signal grows proportionally to N .

Over many experiments, the signal-to-noise ratio increases at a rate propor-

tional to
√
N . Unfortunately consecutive experiments are not, in general, able

to be stitched together contiguously without delay. The evolution of the density

matrix is heavily dependent on the initial conditions; without being able to en-

sure what the initial conditions of the sample are, analysis is made considerably

more difficult. By waiting an appropriate time to allow all sub-systems within

the sample to relax (generally we need wait several spin-lattice relaxation times)

we have re-attained thermal equilibrium and are free to execute the experiment

again and co-add the signals.

Given the necessity of repeating acquisitions to obtain attractive and com-

pelling data, there is no loss involved in employing the technique of ‘phase

cycling’, although phase cycling is indeed important even should the signal be

strong and signal averaging is not required.

To demonstrate the use of phase cycling, consider the result of an r.f. pulse

designed to tip the bulk magnetisation from the B0 direction down into the

plane perpendicular to it. If the experimenter chooses a pulse time slightly mis-

matched to that required, the signal generated will not be exactly that required.

While in the case of a simple free induction decay method this results only in a

slight loss of signal, in more complicated experiments involving many pulses it

becomes vital [10].

By choosing a different axis lying in the xy-plane about which to rotate

the magnetisation by way of r.f. field application, small errors in pulse time,

errors due to phase and amplitude mismatch in receivers, as well as undesirable

baseline artefacts can be removed from the NMR experiment. Many different

phase cycling techniques exist, they shall be outlined relative to the specific

pulse programs as required.
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3.8 Magnetic Resonance Imaging

Though the quality of a finely tuned, homogeneous magnetic field has been

shown to be of high priority in magnetic resonance hardware design and im-

plementation, a deliberate and systematic field inhomogeneity was proposed by

Lauterbur and Mansfield [11, 12] to obtain spatial resolution. This technique

has turned magnetic resonance imaging into a highly worthwhile pursuit, es-

pecially in medicine where MRI magnets have become part of the furniture of

every hospital.

By applying a linear magnetic field gradient to the sample volume, nuclear

precession frequency correspondingly varies spatially

ω(r) = γB0 + γG · r (3.26)

where G is the field gradient

G = ∇B0 =
∂B0

∂x
î +

∂B0

∂y
ĵ +

∂B0

∂z
k̂ (3.27)

The NMR signal, dS, arising from a small sample volume, dV , is proportional

to the spin density at that point as well as being dependent on the local Larmor

frequency.

dS ∝ ρ(r)dV exp(iω(r)t) = ρ(r)dV exp[i(γB0 + γG · r)]t (3.28)

Ignoring the γB0 term, due to an arbitrary reference phase being able to be

chosen in practice, the signal can therefore be expressed as the integral

S =

∫

V

ρ(r) exp[iγG · rt]dr (3.29)

and hence by the substitution of the wave vector k = γGt/2π, we arrive at a

Fourier relationship between the two conjugate spaces k and r. It is apparent

we can obtain an image of the nuclear spin distribution by acquiring the NMR

signal while applying a magnetic field gradient to the sample, varying the field

gradient adequately so as to cover k-space to a desirable degree.
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3.8.1 The Hahn spin echo

While spectroscopy can gainfully be employed by the application of a single

90◦ radio-frequency pulse, the advantages in applying a 180◦ pulse at a time τ

after the generation of transverse magnetisation by the 90◦ r.f. pulse are so

numerous that echo-based experiments are ubiqitous. Inhomogeneities both

in composition of the sample and of the B0 field generate additional precession

frequencies, the result of which is a dephasing of the ensemble NMR signal. This

de-phasing can be greatly reduced by applying the 180◦ pulse about an axis lying

in the xy-plane (see fig. 3.3), such that any spin sub-species precessing faster

than the average Larmor frequency, and has thus gained an extra phase φ(τ)

now lags the central frequency by an angle φ(τ) and so at time 2τ it once

again in phase with the central frequency species, at which time the receiver is

activated, and the echo is acquired [13].

The underlying assumption with this rephasing is that the additional fre-

quencies imparted to a sub-species remain constant throughout the experiment,

a condition applicable to single-spin interactions such as chemical shift effects

and (in the absence of long-range motion) inhomogeneous broadening caused by

macroscopic magnetic field variations. Conversely, perfect rephasing of signal

is not achievable as there is always a contribution from homogeneous broaden-

ing: a process which is not limited to, but characterised well by, the example of

non-reversible motion (like diffusion) carrying a molecule to a region of slightly

differing magnetic field over the course of the experiment.

3.8.2 Volume selection with field gradients

Following the imposition of a known systematic field inhomogeneity, a position-

dependent field strength and hence position-dependent precession frequency pre-

vails. By using a shaped pulse (slice selective or soft pulse) of radio-frequency

radiation, it is possible to screen the NMR signal such that the only contribu-

tions originate from a select volume within the sample.

This can be achieved by only irradiating the sample with the radio-frequencies

corresponding to the precession frequencies in that volume. In the simplest case

of volume selection, a gradient in magnetic field strength is imposed on the sam-

ple in a polarising field. The envelope of radio-frequency radiation is known as
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Figure 3.3: The Hahn echo pulse program, consisting of 90◦ and 180◦ pulses.
Below is shown the result of refocussing the effects of inhomogeneous broaden-
ing. The blue line shows the phase of a spin precessing slightly faster than the
average, while the red line corresponds to one precessing slower. Because these
differences are due to reversible effects, the slope dφ/dt is the same before and
after the 180◦ pulse, leading to refocussing at time 2τ .
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Figure 3.4: The restriction of signal to a selected volume shown schematically

the soft pulse shape, and is the Fourier inverse of the distribution of frequencies

being excited. Typically in our research an envelope of (sin t)/t (or similar)

envelope is used, truncated to a small number of nodes, which has as Fourier

inverse a standard hat function with inevitable small oscillations due to the

truncation. This characteristic “on or off” form of the hat function implies that

only spins precessing within this bandwidth (and hence localised spatial region

in case of applied gradient) are excited. We have gained a way of effectively

excluding the effects of spins outside this region to a high degree. The relation-

ship determining the “slice thickness” and gradient strength is ∆ω = γG∆z, the

schematic effects of simple implementation of this principle is shown in fig.3.4

3.8.3 The projection profile

As an example of a simple NMR experiment incorporating several of the basic

components described previously, and required for rheo-NMR, the projection

profile pulse program is outlined; its pulse program is shown schematically in

fig.3.5. By incorporating a 180◦ soft pulse of r.f. radiation, at the same time

as a magnetic field gradient is induced across the sample, the acquired signal is

preferentially received only from a restricted quasi-two-dimensional volume (i.e.

the two-dimensional region still retains “thickness”, yet each particular point

within the volume contributes to the experiment as though it can be located

with only two co-ordinates). As we have seen the thickness of the slice may be
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Figure 3.5: The projection profile imaging pulse program. The soft 180◦ pulse
is applied during a slice gradient to perform refocussing on a selected volume,
while a phase gradient is applied in steps (incremented after each scan) to
traverse a single line of k-space. In fact a 1D image could be obtained through
the use of a gradient applied during acquisition (read gradient), however this
sequence retains spectroscopic information in addition to spatial information
and is used in radial spectroscopic imaging experiments.

written ∆ω = γG∆z, where ∆ω is the r.f. pulse bandwidth, and the gradient

is made to lie in the z direction.

In the case of the projection profile, we have been given time through the

use of the echo to apply a gradient pulse in the absence of r.f.radiation so as to

impart the phase required to traverse k-space along a line in incremental steps.

In the instance that only one line of k-space (passing through the origin) is

acquired, the Fourier transform of the projection profile has been obtained. It

is effectively an integral of spin density in one direction as shown in fig.3.6.

3.8.4 Radial spectroscopic imaging

A particularly common experiment in magnetic resonance imaging is that of

traversing k-space in two dimensions, that is, imaging the spin density in a plane

following a slice selection procedure in one direction. Most objects imaged in

magnets around the world are not cylindrically symmetric within this plane,

and hence k-space must be fully explored in both dimensions to fully map this

image.
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Figure 3.6: An ideal cylindrical Couette geometry, along with the result of
performing the projection profile experiment described previously. The triangular
relationship between Fourier, Hankel and Abel transformations is shown.

A technique known to the signal processing community, and in particular

analysts of astronomical data, is the expression of the two-dimensional Fourier

transformation of a function of r = x2 +y2 only in polar co-ordinates, which has

the result of producing the Hankel transformation. It is an integral transfor-

mation similar to the Fourier in which the zeroth-order Bessel function replaces

the exponential function as kernel

ρ(r) = H[S(k)] = 2π

∫ ∞

0

S(k)J0(kr)kdk (3.30)

This transformation forms a triangle along with those of Fourier and Inverse

Abel, in which it can be shown that the result of the Fourier transformation

followed by Inverse Abel transformation is equivalent to the Hankel transform

of the original function (fig. 3.6). In practice, a two-step transformation method

is used as opposed to the Hankel alone, for the main purpose of providing an

intervening step in which signal processing can occur in a domain which is well

known - the Fourier domain. That the Hankel transformation corresponds with

the 2D FT is heavily reliant on centring of the data in both conjugate spaces. As

such, being able to shift an image in Fourier space and remove baseline artefacts

is necessary before inverting the Fourier transformation and finally applying the

Hankel transformation is an economic process [14].
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By using this technique, we reduce the number of variables over which the

signal varies by one, turning the two-dimensional imaging effort into a one-

dimensional experiment, or a three-dimensional undertaking - whether this is

a 3D image, or 1D spectroscopic information resolved over a 2D region - into

a two-dimensional experiment. This can obviously lead to huge conservations

in the duration of an experiment, as well an increasing signal per voxel: the

signal received originates over a whole extra dimension! These experimental

benefits will be of most use to us in the detection of deuteron NMR spectra,

where signals are weak due to gyromagnetic ratio reduction and sparseness of

probe molecules in our samples relative to protonated experiments.

3.8.5 Diffusometry

Magnetic field gradients may also be used to obtain diffusion information through

magnetic resonance. In particular the use of pulsed-gradient spin-echo (PGSE)

techniques allow measurement of signal attenuation associated with the displace-

ment of an ensemble of sample nuclei over a well-defined time period. With this

technique a pair of magnetic field gradient pulses surrounding a simple Hahn

echo 180◦ r.f. pulse causes the phase acquired by a spin ensemble prior to the

pulse to be negated during the field gradient pulse afterwards. Should the en-

semble experience diffusive motion in the interim, dephasing will occur resulting

in an attneuated NMR signal.

Three parameters characterise a PGSE pair of field gradient pulses: their

individual duration δ, amplitude g and the time (the observation time) between

them ∆, see fig.3.7. The degree of signal attenuation directly correlates with

the r.m.s. distance travelled by the molecules. The residual phase acquired by

the spins in a time t can be denoted φ(t) and the attenuation of the normalised

echo signal will then be the average over the whole spin ensemble, given by

E(t) = 〈exp[iφ(t)]〉 (3.31)

which in the case of ordinary unrestricted diffusion is equal to the Stejskal-

Tanner equation [15]
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E (g, δ,∆) = exp

{
−γ2g2Dδ3

(
∆

δ
− 1

3

)}
(3.32)

By fitting such attenuation factor data at varying values of those crucial

parameters, a diffusion coefficient D may be extracted. In this research when

diffusion techniques are used we vary only the gradient strength g at fixed δ and

∆.

Figure 3.7: The PGSE experiment pulse program, using a soft refocussing
pulse for spatial selectivity.

Attenuation data can be recorded for each spectral component of an NMR

spectrum, creating a two-dimensional dataset (a DOSY spectrum [16]) from

which unique diffusion coefficients can be extracted for different molecular com-

ponents of the sample. This can be of particular use to us in helping identify

molecular species within a standard 1D NMR spectrum, as the Stokes-Einstein

relation of kinetic theory relates diffusion coefficient and molecular size (or sub-

domain size, e.g. in an emulsion).

3.8.6 Magnetic Resonance Velocimetry

In a very similar way to the discovery that the “real” space covered by position

vectors r and “reciprocal” space covered by wave vectors k are Fourier conju-

gates, we can show that there is a space Fourier conjugate to displacements in

spins: it is termed q-space. This is unsurprising, as a displacement vector is just

another “real”-space vector R = r′ − r, given a starting and ending position,
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and experimentally controlled time-of-flight. Implemented in the same spirit

as the covering of k-space to obtain spatial spin density resolution, to perform

basic velocimetry we need to cover q-space by using two field gradient pulses,

the second is made to have the opposite sense of the first, which has the effect

of “somewhat undoing” the effect of the first. In the instance where the effect

is not completely negated, the spins have undergone such flow as to be located

in a region of differing precessional frequency than in its original location. The

spins have moved.

One respect which makes velocimetry different from imaging is the lack of

uniqueness amongst spins as to the zero-point of this displacement-space. Spins

at different locations can undergo the same displacement within the observa-

tion time and contribute the same effect to the signal. Because of this we need

to introduce an average propagator, Ps(R, t), a device specifying the propor-

tion of spins that underwent a certain diplacement, expressed as a normalised

probability distribution function,

Ps(R, t) =

∫
Ps(r|r + R, t)ρ(r)dr (3.33)

The average propagator describes the probability that any molecule will have

a displacement R at time t. It is a probability function common to all spins

within the active volume, and through the integral shown, calculated through

the propagator of each individual spin Ps(r|r + R, t) and the spin density ρ(r)

at the reference time t = 0.

3.8.7 The standard pulsed-gradient spin-echo velocime-

try experiment

The standard method of obtaining a two-dimensional velocity map is to utilise

a pulse sequence incorporating a pulsed-gradient spin-echo technique combined

with a two-dimensional imaging technique. As we have seen in the previous

section, the application of two magnetic field gradient pulses in opposite senses

based around an echo-forming pulse (either “hard” or “soft”) results in a average

propagator being generated. This propagator is in fact a sum of all contribu-

tions from spins undergoing motion within a certain volume, and in the case
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of velocimetry imaging, only from within a certain voxel. As such the aver-

age propagator has characteristics relating to the pure, homogeneous flow of

the spins in the fluid, as well as the random Brownian motions arising from

diffusion. With such a three-dimensional configuration (two spatial dimensions

conjugate to k-space, one velocity dimension conjugate to q-space) it is rare to

inspect the signal at a great number of q-gradient values. The simplest reason

for this is that in the convolution of the propagators from flow and diffusive

components, the maximal value of the average propagator should occur at the

very same position in the velocity spectrum as for flow, owing to the symmet-

ric nature of diffusive mechanisms. It is often of more interest (particularly in

complex fluids research) to produce the most spatially resolved image displaying

velocity information, than to compromise in this respect. In the analysis of the

q-space data, zero-filling data points located past the limited number of q-steps

is done for resolution reasons.

A simple pulse program is shown in fig. 3.8, demonstrating the PGSE and

imaging gradient components commonly used. It is important to note than any

two modular components of pulse programs which yield a propagator and an

imaging sequence can be used, as we shall see in section 3.8.8.

Figure 3.8: A simple velocity mapping pulse program, incorporating a q-
encoding gradient in a single direction, and two k-encoding gradients in two
different spatial directions.

Automation of the analysis process following this experiment is a procedure

which takes the average propagator for each voxel, and extracts the modal ve-
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locity value in each, for display as a colour map. As a final note, it should be

remembered that the direction in which the magnitude of the velocity is mea-

sured in this experiment may be selected independently of the orientation of the

imaging plane. It is therefore possible in principle to map a three-dimensional

velocity vector field over the volume of interest, by using three collaborative

experiments.

3.8.8 Fast imaging of velocimetry with RARE

By incorporating a string of rf echo pulses into a pulse sequence, known as the

CPMG (Carr-Purcell, Meiboom-Gill) train [17–19], signal that would normally

decay following the acquisition period and be lost, can be refocussed, albeit

modified through further normal relaxation processes. In using such a technique,

rather than traversing through k-space one line per excitation, the whole plane

of k-space may be covered in a single shot through intelligent placement of

incremental phase gradients in the time between echoes. This technique is

known as RARE imaging (Rapid Acquisition with Relaxation Enhancement).

Combining velocimetry techniques with the RARE sequence, the flexibility and

the potential of combining magnetic resonance techniques becomes apparent.

In fig.3.9, a CPMG train being used as the basis of RARE imaging is set in

place following a velocity encoding pair of gradient pulses sandwiching another

echo pulse.

Figure 3.9: A PGSE-type velocity encoding step follows the initial 90◦ r.f.pulse,
where the gradient pulses may actually be placed on any of the three gradient
directions to encode as desired. The dotted line encloses the RARE imaging
sequence, which is looped over to traverse k-space.
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The major benefits of this pulse sequence for this research, besides saving

experimental time, is the potential to begin to achieve realistic temporal reso-

lution in observing velocity fluctuations in materials under flow conditions. To

achieve this, however, a given sample must have magnetic resonance T2 relax-

ation times such that the signal lasts adequately far through the CPMG train.

Imaging artefacts such as ghosting are also more readily apparent in such ex-

periments, although the use of only every second echo is certainly some help in

this regard, negating the so-called ‘even-odd echo effect’.

It should be noted that while the imaging sequence is much reduced in

duration thanks to the echo train, the q-space encoding performed by the PGSE

component of the experiment is still carried out in the normal way, i.e. q-space is

still traversed through successive scans incrementing the integral of the gradient

strength during the pulse through the variation of g, δ and ∆.

3.9 The Relevance of Magnetic Resonance Tech-

niques in Rheology

Most importantly, we have seen that magnetic resonance is a rich field providing

flexible techniques to the experimenter. By applying radio-frequency oscillating

magnetic fields to a sample bathed in a polarising magnetic field, we can per-

form countless experiments. These vary from the simple pulse-acquire sequence

required to obtain spectral properties determined by the nuclear spin Hamilto-

nian in place, through to imaging experiments designed to highlight how fast a

material is moving within a certain region, and beyond.

From the perspective of conjoining magnetic resonance and rheology - the

field known as Rheo-NMR - it is the superposition of many techniques within a

single experiment that yields the most valuable information. The non-invasive

nature of NMR facilitates progress towards understanding the mechanical prop-

erties of materials by correlating the controlled deformation of the sample with

experimentally observed local strain rate (velocimetry) and molecular alignment

(spectroscopy) over the entire volume (imaging). This understanding is exciting

whether the material under investigation be homogeneous and Newtonian, or

be a complex fluid that at first glance seems pathological.
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Chapter 4

Transverse Relaxation in

Sheared Polymer Melts

4.1 Introduction

As we have seen in Chapter 2, polymers are macromolecules which are the con-

nected sum of many small, simple chemical components. While not always the

case, they very often have the topology of a flexible one-dimensional object,

i.e., by moving from one end of a polymer to another through chemical bonds

(usually carbon-to-carbon bonds), one does not come across loops or major

branches. To a great degree the one-dimensional nature of these linear poly-

mers outweighs the chemical functionality of sub-units along the length of the

polymer, and as such the dynamics of polymers in general can be modelled in

much simpler and generic ways. Despite the omission of chemical properties

from many physical models of polymers, the breadth of parameters which affect

polymers behaviours is large: concentration, temperature, solvent effects and

chain flexibility are important variables in their description.

In this chapter the timescales over which dynamics occur within linear poly-

mers in the so-called melt phase (concentrated polymers which, while being

highly viscous, are fluid without the presence of a solvent) are explored. It will

be seen that their effect on the transverse relaxation of spin coherence is suffi-

ciently large that very simple proton NMR experiments may be used to extract

orientational information in sheared polymer melts.
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4.1.1 Motivation

In the first instance, deuteron NMR is the gold standard in studying orienta-

tional and ordering phenomena, as we shall see in all aspects of ordering in the

remainder of this thesis. However, proton magnetic resonance is not totally a

lost cause in this regard. Nakatani et al. [1] set out to observe changes in the

proton NMR line shape for a polysiloxane melt undergoing steady shear flow,

explaining that this effect may arise due to incomplete directional averaging in

segmental reorientation, leading to a residual dipolar proton-proton interaction

for protons in the mean-field of the polymer tube. While this experiment failed

for various reasons, the field of Rheo-NMR came into being, in a spectroscopic

sense. In the interim, deuteron NMR has held sway in spectroscopic investi-

gations of alignment in materials, through the use of the direction-dependent

electric quadrupole interaction, which in experiment may be experienced by

deuterons bound and native to the aligned phase, or through the presence of

a (potentially plasticising) deuterated probe molecule. The first scenario is in

general expensive to arrange; the second may be detrimental to the rheology

for both chemical and physical reasons. So as to show that Rheo-NMR can be

used successfully without deuterons, we numerically validate an approach to the

analysis of proton-proton spin correlations in entangled polymer fluids [2], by

using previously gained experimental relaxation data from Dr. Ryan Cormier

[3], and by tuning the parameters appropriate to the sample, which is being

sheared continuously in a cylindrical Couette flow.

By calculating the expected proton-proton dipolar interactions generated

through such residual anisotropy, in conjunction with polymer dynamics as de-

scribed by the Doi-Edwards [4] approach to polymers based on the tube model

and reptation, the model predicts transverse relaxation which can be matched

with the experimental results of a simple spin-echo NMR pulse sequence.

4.1.2 Approach and Method

By first assuming an average dipolar interaction strength common to all pro-

tons undergoing equilibrium dynamics, given by the second moment, ω2
d, of the

dipolar frequency distribution experienced by these protons, we arrive at the

first of the three main tunable parameters we shall see are so important to the
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numerical fitting of model to data. However, with the expectation that local

fluctuations in stretching and bunching of the polymer in accordance with the

standard Gaussian distribution of end-to-end distances, we shall allow a distri-

bution of ω2
d, appropriately summing contributions.

Secondly, we use the Doi-Edwards properties of reptating polymers existing

within a network of topological constraints to determine the probabilities of a

certain proton bound to the polymer returning to the same segment of tube at

time, t. This is the only section of the polymer tube we know to be correlated

with the original host segment in direction at such a time. This return-to-

origin (RTO) probability is vital in the calculation of the correlation function

for residual dipole interactions, and depends on the tube disengagement time,

τd, and the number of tube steps, Z, typically encountered along the contour

length of the polymer (being the molecular mass of the polymer divided by the

mass of polymer located between two entanglements). The Doi-Edwards model

is then also used to determine the angular distribution of tube-step orientations

for a polymer undergoing shear, in order to project each tube-step contribution

into the laboratory Zeeman frame, this distribution is obtained following the

assumption of the zero-shear standard isotropic distribution governed by the

second rank Legendre polynomial 1
2
(3 cos2 θ − 1), with θ being the polar angle

between tube segment and magnetic field.

Finally, we sum all contributions to the NMR signal coming from protons

residing in individual steps, a fundamental point of difference to deuterated

probe molecule experiments, in which the probe molecule experiences a time-

averaged contribution to its fleeting interactions with the whole sample nearly

ergodically.

4.2 Theory

Nuclear spins attached to a polymer undergo rapid reorientational motions in

accordance with the Rouse dynamics seen previously, and as such it is our job

first to describe the nuclear interactions that such a spin species is subject to.

The Rouse dynamics involved here are constrained by the tube, a mean-field

generated by the envelope of the encapsulated step-like space found by weaving

a path through a network of (for now, at least) fixed obstructions through which
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the polymer may not pass. As the polymer reptates back and forth in a one-

dimensional, curvilinear mode of diffusion through this envelope, orientational

coherence is lost for a particular spin, in all cases except for the one in which it

returns to the identical segment in which it was located when observation began.

The characteristic length, a, of a tube step before encountering an entanglement

is our basic unit of measurement.

As such, there are three clearly delineated characteristic times which will be

important in applying a model of dipolar correlation to polymers: (a) the time

for a proton to diffuse somewhat freely before encountering the tube wall, at

which point its diffusion becomes restricted. This is known as the equilibration

time, τe, (b) the time associated with a balancing of the equilibration modes

of motion and the curvilinear motion of the polymer as a whole is called the

Rouse time, τR, and (c) the time taken for a polymer to diffuse (on average,

with curvilinear diffusion coefficient D1 = kBT/Nζ) a sufficient distance such

that the original tube is largely lost, the tube disengagement time, τd. It is this

final relaxation time associated with tube dissipation which is truly detrimental

to the return-to-origin probability of a proton.

Strictly following the Doi and Edwards theory, these three times are given

by

τe = τR/Z
2 (4.1)

τR = R2/3π2D1 (4.2)

τd = 3ZτR (4.3)

4.2.1 Dipolar relaxation function for reptating polymer

segments in zero shear

As we have seen, the dipolar contribution to the nuclear Hamiltonian by the

interaction between one proton and another is vastly outweighed by the Zee-

man term arising from the external magnetic field. As such the off-diagonal

components of the internuclear, homonuclear dipolar interaction operator are
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completely ignored in this model, themselves only contributing to longitudinal

spin-lattice relaxation. It is the diagonal terms in the sum of all the through-

space interactions which will determine the precessional phase distribution of

the nuclear spins and hence will play a dominant role in determining the spin-

spin relaxation in the polymer melt.

Formed by the inner product of rank-2 spatial and spin operators, the Hamil-

tonian contribution of the interaction between two spins labelled 1 and 2, sep-

arated by an internuclear distance r12 can be written as

HD(t) =
−µ0γ

2~
4πr3

12

∑

m

(−1)m
(

24π

5

)1/2

Y m
2 (Θ(t),Φ(t))Tm2 (4.4)

where Y m
2 are the spherical harmonics of order 2 and component m, and the Tm2

are bilinear products of spin operators [5] which transform as spherical tensors.

The angles Θ and Φ refer to the orientation of the internuclear vector with

respect to the referential main polarising field, and as such will fluctuate as the

spins diffuse about throughout all the characteristic timescales.

The secular components of this dipolar perturbation to the Hamiltonian

influence the precessional frequencies of spin coherences, contributing to the

transverse relaxation associated with dephasing. This secular part of the inter-

action can be written as

HD0(t) =
−µ0γ

2~
4πr3

12

P2[cos Θ(t)][3I1zI2z − I1 · I2] (4.5)

where P2(cos Θ) is the second order Legendre polynomial 3
2
(cos2 Θ− 1

3
). Dipolar

perturbations such as these induce additional precession, ω(t), with respect to

the Larmor frequency, ω0. It is only this additional relative precession that will

be considered in the following work.

Through equilibration motion, the conformation of a polymer within a tube

lying naturally between entanglements may be freely chosen. In addition, the

contiguous tube steps of length, a, of which the tube is comprised, are randomly

oriented in thermal equilibrium. Each of these steps may be labelled with a

normalised vector indicating its direction (see fig. (4.1))
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û =




sin θ cosφ

sin θ sinφ

cos θ


 (4.6)

where the spherical polar angles are measured with reference to the magnetic

field frame as the z-axis, and some arbitrary perpendicular direction as the

x-axis, a reference frame we shall later refer to as the {x, y, z} or simply the

laboratory frame. Ultimately it is against this frame that any projections will

be made in our simulations and experiments.

Equilibration modes allow monomers to tumble at much faster rates than the

dipole interaction strength, and as such the dipolar interaction is “pre-averaged”

within the local constraining tube step. It is these residual dipolar interactions

that will allow investigation into slow polymer dynamics by NMR. Let the angles

(θ, φ) denote the orientation of the tube step vector, u, with respect to the

magnetic field and (Θu,Φu) the orientation of the fluctuating internuclear vector

with respect to u. Then, under motional averaging conditions, and by the

spherical harmonic addition theorem, it may be shown that

P2(cos Θ(t)) = 〈P2(cos Θu(t))〉P2(cos θ(t)). (4.7)

Pre-averaging results in 〈P2(cos Θu(t))〉 being small but finite, leading to an

effectively scaled dipolar interaction strength determined by the local value of

P2(cos θ(t)), where we note that cos θ(t) = ûz(t). Allowing for this scaling effect

we may write

ω(t) = ωd(û
2
z(t)−

1

3
) (4.8)

where ωd represents the strength of the pre-averaged dipolar interaction.

As the polymer reptates within the tube, the segments experience stochas-

tic fluctuations which arise from different projections, ûz(t) of the local tube

directors. This leads us to describe ω(t) in terms of its two-point correlation

function

C(t) = 〈ω(t)ω(0)〉 (4.9)
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and its initial value, ω2
d.

Up to this point we have considered only a local spin pair experiencing dipo-

lar interactions. Despite this, ωd can encompass multiple dipolar interactions,

whether intra- or inter-molecular, so that ωd represents the r.m.s. intensity of

the combined set of dipolar interactions. It seems reasonable to assume that

reptation will cause similar fluctuations in both intra- and inter-molecular com-

ponents. It is important to note that motional averaging, expressed through

eqn.(4.7), causes the effective direction of the dipolar interaction to be succes-

sively projected. This means that all fluctuations faster than the strength of

the dipolar interaction (i.e., all internal segmental motion of the polymer) cause

the effective inter-nuclear axis to be the tube step direction (4.1)).

It is important to note that even allowing for multiple spin interactions, the

scaled interaction strength ωd will not be identical in each tube step because the

distribution of lengths of sub-chains in each tube step will be Gaussian. It may

be shown [6] that the dipolar interaction strength for a random coil sub-chain

of K Kuhn segments of length, b, and end-to-end length, rK , is given by

ωd =
r2
K

Kb2
ωd0 (4.10)

where ωd0 is the root mean square ω2
d

1/2
of the distribution of dipolar interaction

strengths.

The probability distribution P (rK) ∼ r2
K exp(− 3r2K

2Kb2
) fully determines the

probability distribution P (ωd) of dipolar interaction strengths, whether arising

from intra- or inter-molecular interactions. This effect will need to be accounted

for in our theory of dipolar interaction fluctuations.

Dipolar correlation and transverse relaxation in the Doi-Edwards, De

Gennes model

The NMR transverse relaxation experiment to be described here was carried

out using a spin echo sequence which has the effect of refocussing all unwanted

magnetic field inhomogeneities whose Hamiltonian terms are all linear in the

spin operators, while leaving unaffected the bilinear dipole-dipole interaction.

What is measured therefore is
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Figure 4.1: (a) Polymers are free to diffuse within a tube formed by the
surrounding network. Characteristic steps pointing in the directions {u} are
randomly oriented under zero shear, though when the material is deformed (eg.
by a shear stress) the tubes are much more likely to have greater alignment
with some preferred direction.
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R(τ) =

〈
exp

{
i

∫ τ

0

dt′ω(t′)

}〉
(4.11)

Following the work of Anderson and Weiss, in which it is assumed that

the distribution of frequencies that have arisen due to dipolar fluctuations is

Gaussian for certain classes of experiment the normalised transverse relaxation

function for a single proton located in a tube segment which provides a certain

remnant dipolar interaction strength may be written as [5]

R(τ ;ωd) = exp

(
−
∫ τ

0

dt′(τ − t′)C(t′)

)
(4.12)

Now the NMR signal enveloped by the total relaxation can be determined

by summing the signals from all protons, which experience a range of dipolar

interaction strengths

S(τ) =

∫ ∞

0

dωdR(τ ;ωd)P (ωd) (4.13)

Clearly evaluation of C(t′) is the crucial step for any model of the dynamics.

In the present case we may combine eqns.(4.8) and (4.9) to write

C(t′) = ω2
d

[
〈û2

z(t
′)û2

z(0)〉 − 2

3
〈û2

z(0)〉+
1

9

]
(4.14)

where we have assumed stationarity, 〈û2
z(t
′)〉 = 〈û2

z(0)〉, and also that the lo-

cal interaction strength, ωd, is unchanged from time 0 to t. Strictly, ωd will

change over a Rouse time, as local polymer segments reptate, though through

the following reasoning we found this effect to be of minor significance.

A distribution of monomers located in neighbouring polymer tube segments

may lead to a different number of Kuhn segments K and K ′ being resident

in each, which will lead to a variable local flexibility of the polymer. The

total contribution from each tube step must be found, and so each tube step’s

contribution would need to be weighted appropriately. Alternatively we could

simply choose an equal number, K, of Kuhn segments to lie in each segment,

and assume that the mean orientation of these Kuhn segments is along the tube

step director.

The end-to-end length of the K segments is given by the Gaussian function
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Φ(rK) ∼ r2
K exp(−3r2

K/2Kb
2) and the mean dipolar interaction strength felt by

each would be ωd(rK) =
r2K
Kb2

ωd0. Calculating the NMR signal arising from a

given segment with dipolar interaction strength ωd(rK) involves a correlation

function 〈ω(0)ω(t)〉, where following equation 4.8, is ω(t) = ωd(rK(t))[u2
z(t) −

1/3]. In considering what to do about the time dependence of the dipolar in-

teraction strength, we assume it is uncorrelated to uz(t). Also ωd(rK(0)) and

ωd(rK(t)) are uncorrelated due to local fluctuations in rK(t) being of the Rouse

timescale, which is longer than the segmental diffusion yet much longer than

the NMR timescale. Despite this, each local tube segment dipolar interaction

strength is well-defined before decorrelation due to diffusion. The discrepancy

we therefore might face is the potential difference between the correlation func-

tions

〈ω(0)ω(t)〉 = ωd(rK)ωd(r
′
K)
〈
[u2
x(0)− 1/3][u2

x(t)− 1/3]
〉

(4.15)

and

〈ω(0)ω(t)〉 = ωd(rK)2
〈
[u2
x(0)− 1/3][u2

x(t)− 1/3]
〉

(4.16)

A numerical algorithm was implemented to discover the magnitude of this

difference, and indeed the differences were extremely small, and as such, we

make allowance for this factor by incorporating it into the overall distribution

of ωd values.

Ball, Callaghan and Samulski [2] adopted the Anderson-Weiss [7] approach

to defining the relevant correlation function for the reptating polymer chains in

terms of a Return-To-Origin probability. For the case where segments return to

origin, 〈û2
z(t
′)û2

z(0)〉 = 〈û4
z(0)〉 while otherwise 〈û2

z(t
′)û2

z(0)〉 = 〈û2
z(t
′)〉〈û2

z(0)〉 =

〈û2
z(0)〉2. The Doi-Edwards model gives us the means by which the RTO prob-

ability may be estimated for entangled high molecular mass polymers. We may

estimate the chance that by curvilinear diffusion a certain monomer will return

after a time delay, t, to exactly the same tube step it originally occupied at

time t = 0, provided that tube step is not yet annihilated due to reptation.

This probability, denoted ΨRTO(t), can be approximated by the values [2]
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ΨRTO(t) =

{
(t/τe)

−1/4 τe < t < τR

(t/τe)
−1/4 (t/τR)−1/4 τR < t < τd

(4.17)

These t−
1
4 and t−

1
2 scaling regimes are related to well-known power law signa-

tures for reptation [8].

Clearly, any estimation of C(t′) concerns two probabilities, the RTO prob-

ability and the probability that a tube for a given polymer as seen from the

reference state still exists. For a polymer segment to return to the initial tube

step with the same director, the probability is ψtubeΨRTO and u2
z(t) = u2

z(0).

Note the need for ψtube in the product, the requirement that the tube survives.

Conversely the probability that the monomer ends up in a different environment

step is 1 − ψtubeΨRTO. This complementary probability allows for correlation

loss due to either tube decay or to a failure for a monomer to return-to-origin,

and should either of these two negative results occur, û2
z(t) will be uncorrelated

with û2
z(0), causing 〈û2

z(t)〉 = 〈û2
z(0)〉.

The correlation can hence be written as the weighted sum

C(t) = ω2
dAψtube(t)ΨRTO(t) + ω2

dB(1− ψtube(t)ΨRTO(t)) (4.18)

= ω2
d [(A−B)ψtube(t)ΨRTO(t) +B] (4.19)

where, following eqn.(4.14)

A = 〈û4
z(0)〉 − 2

3
〈û2

z(0)〉+
1

9
(4.20)

B = 〈û2
z(0)〉2 − 2

3
〈û2

z(0)〉+
1

9
(4.21)

In thermal equilibrium the distribution of u vectors is isotropic, 〈û2
z(0)〉 = 1

3

and B = 0. Note the probability that the tube existing at time zero has survived

until time t is denoted ψtube(t), which, as we saw in section 2.4.3, is a well-known,

multi-exponential function of time [4]

ψtube(t) =
∑

p odd

8

π2p2
exp

(−p2t

τd

)
(4.22)
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where τd is the tube disengagement time.

4.2.2 Dipolar relaxation function for reptating polymer

segments in the presence of shear

Shear deformation tensor in the hydrodynamic frame

To handle the case where the polymer melt is continuously deformed, we make

the assumption that the tube segments in the original melt hold a one-to-one

correspondence with the tube segments in the resultant state. Typically the

directions of the vectors along the tube segments are modified, though we still

require that the new directors {û′} be normalised. It is important to note

that we assume that only the tube segments enveloping the actual polymer are

deformed and biased in direction, and that no modification of local polymer

dynamics occurs.

In a prototypical situation which can be related in the laboratory to a Cou-

ette shearing cell, for example, we can associate the X- (or velocity) direction

with the shear direction, where the Y - and Z-directions are the velocity gradi-

ent and vorticity directions respectively. In this hydrodynamic frame {X, Y, Z},
arbitrary displacements and velocities are transformed from their static counter-

parts through the application of the deformation tensor (which, in steady-state,

is no longer a function of the time of observation)

E(γ) =




1 γ 0

0 1 0

0 0 1


 (4.23)

We shall be particularly interested in applying this tensor to the unit vectors

representing tube segment directors. These directors, {u}, must be expressed

in the {X, Y, Z} frame, which for the three cases in which one of the three

hydrodynamic axes are aligned with the z-direction (the NMR B0 field direction)

can be obtained by a simple cyclical interchange of components.

In the deformed material, we need to express the degree to which the newly

transformed tube steps project onto the magnetic field axis. This is done simply

by applying the deformation tensor to the unit vectors representing the tube
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step directors, and renormalising the resultant vector:

û′2z = û′2{X,Y,Z} =
(E · û)2

{X,Y,Z}

‖E · û‖2 ≡ h{X,Y,Z}(γ, θ, φ) (4.24)

Here we are defining three functions hX , hY and hZ , the subscript of which

refers to the specific hydrodynamic axis aligned with the laboratory magnetic

field direction. These functions express the component along the magnetic field

direction of the new, transformed tube step director. Section 4.2.3 explicitly

details their calculation and effect.

Following Doi and Edwards [4] we assign the effective strain, γ, to the Weis-

senberg number, γ̇τd, owing to the competition between the aligning influence

of overall strain rate γ̇, and relaxation of the polymer disengaging from its orig-

inal tube over the timescale, τd. We do not incorporate the effect of convected

constraint release (CCR) [4], but its possible required inclusion in future work

will be discussed as needed throughout this chapter. It is a modification to the

basic Doi-Edwards theory of polymer relaxation, in which the rate of disappear-

ance of the tube restrictions themselves is taken into account, as the polymers

from which they are formed disengage themselves. The value of the modified

(shortened) terminal relaxation time is given by

1

τCCR

=
1

τd
+ γ̇ 〈uXuY 〉 (4.25)

The correlation function under shear

Should a shear field (or other deformational flow) be imposed upon the poly-

mer, the transformed and renormalised directors are substituted with no further

modification to this expression, due to the one-to-one correspondence between

tube steps in the thermal equilibrium and flow deformed distributions. We may

now use this expression for h in the equations for A and B

A(γ) =
〈
h2(γ, θ, φ)

〉
− 2

3
〈h(γ, θ, φ)〉+

1

9
(4.26)

B(γ) = 〈h(γ, θ, φ)〉2 − 2

3
〈h(γ, θ, φ)〉+

1

9
(4.27)
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though, unlike the zero shear case, B 6= 0. From eqn.(4.18),

R(τ ;ωd) = exp

{
−ω2

d

∫ τ

0

dt(τ − t) [(A−B)ψtube(t)ΨRTO(t) +B]

}
(4.28)

This is an expression involving an integral which we expect to be simple

to evaluate numerically in the case that we have calculated A and B for an

experiment conducted at a given shear rate previously. The γ̇τd-dependence

inherited from A and B is implicit in the calculation.

4.2.3 Predictions for magnetic field along the velocity

and velocity gradient directions

In the NMR experiment, the z-axis is defined by the magnetic field direction.

In Doi-Edwards theory the {X, Y, Z} axes refer to the hydrodynamic frame.

In practice we may select different axes in this frame via the magnetic field,

by simply choosing our sample geometry appropriately. For example, we may

choose z ≡ Z by using a Couette cell geometry which is aligned with the NMR

B0 field (the ‘vertical’ Couette). In this case the relevant projection of h is

hZ . Through the use of a “slice-selection” technique in which a signal may be

acquired from a pre-determined segment of the sample, a horizontal Couette

can be used as shown in fig.(4.2) so that the NMR B0 field is projected along

X or Y for the chosen segment. We now undertake to find expressions for hX

and hY .

Velocity direction = B0 direction

Focussing now on the case where the shear direction is coincident with the

B0 field direction, we should note that we will still use the same deformation

tensor (i.e. the one that produces the transformation X → X + γY in the

hydrodynamic frame), but the components of û will be cyclicly interchanged in

correspondence with the axes. In this geometry (X ≡ z, Y ≡ x, Z ≡ y), then,

uz → uz + γux, and the deformation tensor equation reads
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Figure 4.2: Simulating the NMR signal where the velocity direction X is
aligned with the magnetic field is equivalent to restricting the active volume a
horizontal Couette cell to lie in the horizontal plane (left of figure), and (right
of figure) vertical slice selection on a Couette cell is matched by the simulation
z ≡ Y .

E · û =




1 γ 0

0 1 0

0 0 1







cos θ

sin θ cosφ

sin θ sinφ


 (4.29)

(E · û)2
z = (E · û)2

X = (cos θ + γ sin θ cosφ)2

‖E · û‖2 = 1 + γ cosφ sin 2θ + γ2 sin2 θ cos2 φ

and hence from eqn.(4.24)

hX(γ, θ, φ) =
(cos θ + γ sin θ cosφ)2

1 + γ cosφ sin 2θ + γ2 sin2 θ cos2 φ
(4.30)

We are now free to use this expression in the spherical averages of eqns 4.26

and 4.27 to find A(γ) and B(γ), and hence continue to find R(τ), the modulation

function of the NMR signal indicating transverse relaxation.

Velocity gradient direction = B0 direction

We turn now to the final case which is orthogonal to the NMR frame, that in

which the velocity gradient direction is coincident with the B0 field. Although
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no numerically calculated relaxation data will be presented in this case, it is

informative and interesting to investigate this geometry, in particular in the

limiting cases of zero and infinite shear rates. Again we use the same deforma-

tion tensor (X → X + γY in the hydrodynamic frame), and the components of

û will be cyclicly interchanged once more, such that uy → uy + γuz, and the

deformation tensor equation now reads

E · û =




1 γ 0

0 1 0

0 0 1







sin θ sinφ

cos θ

sin θ cosφ


 (4.31)

and similarly

(E · û)2
z = (E · û)2

Y = cos2 θ

‖E · û‖2 = 1 + γ sinφ sin 2θ + γ2 cos2 θ

and hence from eqn.(4.24)

hY (γ, θ, φ) =
cos2 θ

1 + γ sinφ sin 2θ + γ2 cos2 θ
(4.32)

4.3 Experimental

4.3.1 Horizontal Couette Measurement of T2 in Polymer

Melts

As explained in the introduction, the purpose of the present work is to use proton

NMR transverse relaxation to measure segmental alignment under shear, thus

circumventing the need for a deuterated probe molecule and the consequently

lower signal-to-noise ratio. The through-space dipolar interactions between pro-

tons are analogous to the deuteron’s electric quadrupolar interaction with the

molecular bond electron cloud, so that the physics expressed by eqn.(4.5) apply

in each case. The distribution of dipolar interaction strengths leads to a loss of

phase coherence of the spin system and a damping of the signal, the so-called
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T2 relaxation. To remove unwanted damping effects due to local field inhomo-

geneity, we utilise a spin echo to measure T2. Under the spin echo, magnetic

terms in the spin Hamiltonian are refocussed, while dipolar terms remain.

Figure 4.3: The chemical structure of poly(dimethylsiloxane).

NMR spectra and the extracted values for the characteristic transverse re-

laxation time T2 were all obtained through the use of a horizontal Couette

cell (see fig.(4.6)) located within the bore of a Bruker AMX 300 MHz wide

bore magnet. The sample used was a high molecular weight (Mp = 494 kDa)

poly(dimethylsiloxane) (or PDMS) (see fig.(4.3)) with a polydispersity index

Mw/Mn = 1.84, obtained from American Polymer Standards Corporation.

PDMS has a glass transition temperature of approximately −150 ◦ C [9], well

below room temperature, and its structure (see figure 4.3) is such that both

intra- and inter-molecular proton dipolar interactions play a role in the melt.

The molecular weight located between entanglements Me in such a PDMS melt

is ∼ 10 kDa [9] and hence the number of entanglements Z along the length of

the polymer is simply M/Me ∼ 49. The flow curve of this polymer is shown in

fig.(4.4) with both shear stress and normal stresses indicated.

The poly(dimethylsiloxane) is enclosed in a 0.5 mm gap between concentric

MACOR machinable glass tubes. By using slice-selective gradients, only specific

volumes within the sample that highlight the regions of interest (e.g., velocity

direction aligned with the NMR B0 field) are active in the experiment. This

was achieved through the use of a sequence (90◦ x − τ − 180◦ y − τ − acquire),

shown schematically in fig.(4.5). The selective excitation pulse sequence used

was specially devised to minimise exposure of selected nuclear spins to any

relaxation, so that high quality NMR spectroscopy can be performed in the
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Figure 4.4: Flow curve for the PDMS sample used in all experiments.

Figure 4.5: The Hahn echo pulse program, which consists of a preliminary pulse
sandwich which leaves only longitudinal signal from a desired slice (achieved by
applying a slice gradient Gs, followed by a transverse magnetisation-destroying
homospoil gradient Gh), followed by a standard echo sequence of varying echo
time. The signal strength as a function of echo time yields T2.
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Figure 4.6: (From the thesis of R.J. Cormier) The horizontal Couette cell

Figure 4.7: (From the thesis of R.J. Cormier) (a) Slice of active volume
produced in a horizontal Couette cell (viewed along the cell vorticity axis) by
applying a z-gradient in the pulse program, and (b) an alternate active vol-
ume produced by applying a gradient perpendicular to the z-direction and the
vorticity axis of the cell
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desired region. This method was described by Kilfoil [10], however the essential

details are shown in fig.(4.5). The technique employs a selective precursor pulse

sandwich which destroys magnetisation outside the desired region but which

stores along the z-axis for later recall, the magnetisation from the region of

interest. Using a variant of the pulse sequence of fig.(4.5) this magnetisation

can be used to obtain a confirmatory image (see fig.(4.7)). Experiments were

carried out with an acquisition bandwidth of 50 kHz and 102 different delay

times τ were used between 0.1 ms and 300 ms. The duration of the slice selective

pulse is of the order of 1 ms so that insignificant slice distortion occurs due to

shear. Furthermore, motion during the spin-echo does not significantly perturb

the shear-dependent dipolar interactions due to the small proportion of fluid

experiencing high velocity near the inner wall [11].

4.3.2 Numerical Computation of T2 in Polymer Melts

Our numerical calculations based on the theory described previously were all

performed by software hand-coded in C++. The horizontal Couette with ver-

tical slice selection (the X ≡ z case) configuration is assumed as the basis of

calculations. The ‘experimenter’ is required to be able to specify the shear rate

applied, and the software created allows the choice of the two tunable param-

eters particularly relevant to the sample being investigated, namely the tube

disengagement time, τd, the average dipole interaction strength, ωd0, and Z, the

number of tube segments the polymer is divided into by entanglements.

Given the orientation and shear rate, it is a simple matter to evaluate the rel-

evant h{X,Y,Z} function, and hence find A and B. The modification of eqn.(4.12)

is appropriate at this stage so as to accommodate our expectation that the dis-

tribution of dipolar interaction strengths is not unimodal, but is spread broadly

due to the end-to-end vector of local sub-chains in each tube being Gaussian.

The double integral over ωd and t can now be evaluated to determine the nor-

malised transverse relaxation function desired.
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4.4 Results and Discussion

4.4.1 Experimental measurement of T2 in polymer melts,

and fitting model parameters

Using the Hahn echo pulse sequence previously described, the echo signal ac-

quired is modulated by the transverse relaxation envelope. Plotted on a log-

arithmic scale, all echo signal intensities acquired at shear rates ranging from

0 to 100 s−1 are closer to Lorentzian (S(t) ∼ exp(−kt)) than Gaussian ((S(t) ∼
exp(−kt2)), as seen in fig.(4.8). By making a Taylor expansion of the return-

to-origin probabilities in eqn.(4.12), it can be seen that if the problem were

treated with a unique value of the pre-averaged dipolar interaction strength,

a Gaussian lineshape might be expected. However, by performing the integral

over the correct weighting of ωd values, a lineshape closer to Lorentzian results.

Note however that for very short times, the theory (see fig.(4.9)) does predict

an opposite curvature to that seen in the measurements. One possible expla-

nation for the initial rapid decay of the measured signal is the settling of the

spin echo to steady state under the action of a less-than-perfect 180◦ refocussing

radio-frequency pulse.

Fig.(4.10) shows the extraction of 1/e points from these acquired curves as

a function of shear rate. From this data, T2 appears to be heavily shear-rate-

dependent at low (γ̇ < 20) shear rates before finding an ultimate T2 at higher

shear rates, where little or no further decrease is seen.

In fitting the three tunable parameters: Z, ωd0 and τd; three characteristic

reference conditions were used, namely the transverse relaxation times at γ̇ =

0 s−1, γ̇ = 10 s−1and γ̇ = 100 s−1. With the preliminary values of Z = 50,

τd = 210 ms, chosen from earlier work [12], the ratio of the transverse relaxation

time at low and high shear rates was found to be disproportionately large and

hence these values were adjusted to give a best fit between experimental values

of T2 and numerical simulation. We obtain
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Figure 4.8: (a) Experimentally measured echo signals, having obtained a hori-
zontal slice within the horizontal Couette geometry (z ≡ X) for different shear
values, and (b) those signals obtained through the use of a vertical slice
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Figure 4.9: Simulated echo signals for the horizontal Couette geometry (z ≡
X) for different shear values

Figure 4.10: Simulated transverse relaxation time as a function of shear rate,
in the case where the hydrodynamic X-axis is aligned with the magnetic field
B0. The data points correspond to 1/e times obtained for the echo attenuation
at different shear rates.
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Z = 35± 10

ωd0 = (3900± 200) Hz

τd = (600± 300) ms

We note immediately that the value of ωd0 obtained here is consistent with

that found in earlier equilibrium studies [13], noting that in that reference,

M2 = Aω2
d0, where in equilibrium, A = 4/45. By contrast the values of Z and

τd differ somewhat from values obtained using deuterium NMR (Z ∼ 49, τd =

210 ms) [12]. This is perhaps not surprising given the very different nature of

the averaging processes relevant to deuterium NMR (where the probe molecule

motionally averages the segment ensemble) and proton NMR (in which a sum

of signals arising from different segments is averaged). We note that the sample

has finite polydispersity (Mw

Mn
= 1.84) and no distribution of molecular weights

has been allowed for in our simulation, nor was it considered in the earlier

deuterium NMR work.

With our best-fit values, the signals generated for the horizontal Couette

cell experiment (i.e., using the hX expression in the AB(γ) function) are shown

in fig.(4.9) below for shear rates varying between 0 and 100 s−1. The curve

corresponding to a shear rate of 100 s−1 is essentially the ‘infinite’ shear case:

increasing shear does not modify the curve further.

4.4.2 Differences between the velocity and velocity gra-

dient scenarios

To the eye, the experimental data recorded in prior work by Cormier indicate

that the shear-rate dependence of the transverse relaxation in the two cases we

have looked at (X ≡ z and Y ≡ z) is extraordinarily similar. We may take a

step back from numerical calculation and ask whether this is reasonable or not,

expected or surprising, through some limiting case analysis.

Equation 4.30 and equation 4.32 are the keys in differentiating the shear-rate-

dependent behaviour of the distribution of unit vectors indicating the direction

of the polymer tube in the tow cases, and it can be seen that when γ is set to
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zero, both hX and hY evaluate to cos2 θ for all θ and φ over the surface of the

unit sphere. This result is in no way surprising, as the polymer undergoing no

shear whatever is expected to be isotropic in tube director distribution, and no

discrepancy in behaviour in the two directions can occur.

Moving then to the case where the shear applied is effectively infinite, differ-

ences can be made out. The function hX to be spherically averaged in this case

tends to the asymptotic value of 1, no matter what θ and φ are, while when

the Y ≡ z geometry is used, hY tends to zero. These values directly impact

the calculation of A and B in eqns. 4.26 and 4.27; the relaxation consequently

calculated via eqn. 4.28 is clearly going to differ between the two cases. Notably,

A−B will be zero for both cases at infinite shear, leaving only a B dependence

in the relaxation function. B is equal to
4

9
in the hX case, and only

1

9
for hY .

This factor of four in an effectively scaled ω2
d in eqn. 4.28 leads to a character-

istic relaxation time difference of a factor of two. We now must decide whether

this difference can be rationalised by known modifications to the Doi-Edwards

theory, as it is important to retain in mind that, the experimental data (and

our target data set) appear to be qualitatively the same, or at least similar.

One known modification to the basic Doi-Edwards model of polymer re-

laxation is “convected constraint release (CCR)”. It involves incorporating the

dissipation of the constrictions around which the mean-field polymer tube is

formed, and lead to an decrease in the terminal relaxation time. A second

demonstrated (by Cormier) implication of this modification is that the “extinc-

tion angle” of the system is non-zero as shear rate increases (this is the angle

that the longest axis of the deformed spheroid of the polymer shape makes with

the velocity axis in the steady-state competition between strain and relaxation),

whereas it is seen to be zero without CCR. By not dropping to zero, this extinc-

tion angle behaviour implies that the polymer can never be “totally” aligned at

arbitrarily high shear rates, and that the difference in the transverse relaxation

for the two cases will not be as large as one might otherwise have calculated.

This is the most promising possible mechanism to enable the calculated mag-

netic resonance relaxation rates to merge at high shear rates.
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4.4.3 Discussion

The Doi-Edwards model of polymer melts (being fluids of polymeric molecules

which are packed as densely as allowed through internal motions yet retaining

freedom to diffuse) is such that, as seen by a representative polymer, all the

strands of polymer in the material temporarily form a maze of restrictions that

our representative cannot slice through as it evolves in conformation. Of course,

as the state of the background strands evolve themselves, each point in the

grid of restrictions may fade out and new ones come into existence in other

places. This particular process occurs on the largest timescale important in the

description of polymer melts, known as the tube disengagement time, τd.

Relatively slow motions of the centre of mass of the polymer determine

the longest time over which we expect a polymer undergoing one-dimensional,

curvilinear diffusion to have a remote possibilty of return-to-origin, in which

a proton bound to its polymer and located in a particular tube segment may

be found in that precise tube segment a time t later. This return-to-origin

origin probability is of vital importance to the conservation of correlation in the

residual dipolar interaction generated by incomplete directional averaging of the

through-space internuclear homonuclear dipole interaction with the many other

protons surrounding our test nucleus.

Following the observation of NMR transverse relaxation time (T2) variation

with shear rate, which saw the effects of shear induced alignment in a 494kDa

melt of poly(dimethylsiloxane) [3], using it as a real example on which to tune

parameters, a numerical simulation based on the simplified approach to nuclear

spin correlation analysis of Ball, Callaghan and Samulski [2] was created. By

incrementing this approach to include the angular distribution of tube segments

following a standard affine deformation matrix approach common in rheology

and Rheo-NMR, the change to the line shape of the NMR signal has been found

to be of use in quantifying alignment of tube segments.

Our simulated variation in NMR signals with shear broadly match the time-

dependence of the experimental echo decays, in particular dependence of T2 on

shear rate. A fit to the shear-dependent T2 data available yielded the values

τd = 600ms, Z = 35 and ωd0 = 3900Hz. The Z and τd values are consistent

with earlier measurements made using deuterium NMR under shear, while the
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fitted value for ωd0 is consistent with proton dipolar relaxation measurements

under zero shear. Future work incorporating convected constraint release may

aid in refining the tunable parameters in the X ≡ z case, and enable the Y ≡ z

case to become qualitatively accurate.
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Chapter 5

Complex Fluids in Shear Flow

5.1 Overview

Simple fluids under steady-state shear exhibit a velocity gradient, and the mag-

nitude of the continuous force needed to be applied to achieve this state is pro-

portional to the material’s viscosity. However, with more complex fluids whose

components can be characterised by more than one lengthscale (and correspond-

ingly more than one timescale given the relevant dynamics of the components)

and as such, regimes of behaviour are delineated by the critical rates of external

deformation which correspond to these.

A single-valued velocity gradient across a sample might be expected to have

some aligning influence on structures within the fluid, to a degree determined by

the interplay of the absolute strain rate and any possible relaxation mechanisms

the structures may have available to them. The magnetic resonance response

of deuterons located in an anisotropic global distribution of carbon-deuteron

bonds (whether incorporated in the main structural molecules or in some small

probe molecule) is well known to split the Zeeman deuteron spectral line; the

separation of the split peaks is an indicator of the degree of alignment. Mag-

netic resonance velocimetry is another well-established field, and can be used in

conjunction with alignment-visualisation experiments, along with molecular dif-

fusion measurements in the combination we have seen previously: Rheo-NMR.

Using Rheo-NMR to investigate truly complex fluids in this chapter means

using all the available Rheo-NMR techniques to correlate velocity fields, local
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diffusion coefficients and local order parameters to aid in the investigation of

worm-like micellar structures, how they form, and what their response to shear

is. The most fascinating and least fundamentally understood phenomenon that

worm-like micelles demonstrate is that of shear-banding, a state of affairs in

which the sample is subjected to a uniform (or nearly uniform) shear stress,

and in which two (or more) contiguous regions of differing shear rate are seen,

while maintaining the average shear rate determined by the geometry.

Shear-banding is only a relatively recently known phenomenon, and is now

established as being caused by non-monotonicity in the stress-strain relation-

ship. In the first instance it may perhaps be understandable if shear-banding

arises purely through some structural change which effectively creates two sep-

arate, de-mixed sub-samples. For some time the question of whether a shear

band is in fact a birefringent band [1] has been debated. Magnetic resonance

has long been held as demonstrating correlation between birefringence and an

order parameter in the alignment of carbon-deuteron bonds within molecules,

and much of the work presented in this chapter aims to investigate the validity

of certain statements in this respect.

5.2 Apparatus

5.2.1 The Rheometer

As the basis for investigations into the correlation of various mechanical and

pseudo-optical properties of materials under deformational conditions, basic rhe-

ological measurements guide us more easily towards materials that are of inter-

est when they have the right composition, concentration and temperature. We

have seen what macroscopically observable phenomena these “interesting” ma-

terials might demonstrate to qualify as ‘complex’ already in Chapter 2, namely

shear thinning, shear thickening, and shear banding, and all these properties are

easily observed in the rheometer as a codependence of stress and strain. Our

rheometer used to do this is a stress-controlled TA Instruments AR2000. This

instrument can also be operated in a strain-controlled manner via an internal

feedback loop. Both modes are used to verify the validity of obtained data

and to extend the angular frequency and shear rate ranges over which data are
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acquired. In particular, creep measurments (constant applied stress) is used in

place of extremely low angular frequencies. Various geometries are available for

this system, such as the Couette geometry and the cone-and-plate geometry.

Several logistical constraints limit the range of frequency and shear rates

studied. Two primary considerations are the minimum measurable torque,

which restricts measurements at low frequency and low shear rate, and sam-

ple ejection and/or inertial effects at high shear rates which can be problematic,

especially in the more “open” (less contained) geometries such as that of the

cone-and-plate. The shear-rate range covered in this work is from 0.01 s−1 up

to a maximum of 10 s−1.

Temperature is controlled via the flow of water past a Peltier element lo-

cated at the base of the rheometer cell used. A Type T thermocouple in ther-

mal contact with the plate surface is also installed to calibrate with the NMR

experimental temperature, as described in the next section.

5.2.2 Rheo-NMR

Magnetic resonance measurements reported here are made on a Bruker 9.4

Tesla, wide-bore superconducting magnet, being controlled by a Bruker Avance

400 MHz spectrometer. With our configuration, protons precess about this field

at a nominal 400.130 MHz (disregarding small changes possibly made by the

user); deuterons precess at 61.422 MHz.

For all NMR experiments specifically aimed at investigating the response of

materials to shear in this research, the Couette geometry (see section 2.3.7) is

exclusively used. Comprising two concentric cylinders, with the sample located

in the intervening gap, the sample can be sheared through rotation of the inner

cylinder. In the limit of small gap spacing relative to cell radius, this approxi-

mates infinite planes sheared relative to each other. The maximum shear rate

in the cell gap, seen at the inner wall of the gap, is given by the linear speed of

the inner cylinder wall divided by the gap spacing. Experiments reported here

predominantly use two concentric glass NMR tubes - a 10.0 mm OD, 9.0 mm ID

tube enclosing a 7.5 mm OD tube - separated by Teflon spacers to maintain a

fixed gap between the tubes. When imaging the velocity of samples in the gap,

vibration and non-concentricity of the tubes become a critical issue. Thus, we
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use spacers near the top and in the middle of the tube gap, and ensure that the

outer tube is held rigidly in the r.f. coil using Teflon spacers, o-rings, and often

a thin layer of Teflon tape wound around the outer tube.

Other construction methods may be utilised: amongst these the fabrication

of cells made of concentric PEEK (polyetheretherketone) tubes is most popular

for us, with the outer surface of the inner cylinder being knurled or hatched in

an effort to reduce slippage at the shearing plane.

5.3 Worm-like micelles

Worm-like micelles are one of many self-assembled micellar morphologies avail-

able to amphiphilic surfactants, and are long, thread-like agglomerates of sur-

factant molecules in solution [2–4], forming at concentrations above the critical

micelle concentration (cmc). That they form over other micellar forms such as

spherical or cylindrical micelles, or other complicated assemblies such as lamel-

lar and sponge-like phases, depends on the details of the surface curvature and

the associated free energy [5–7]. Those systems of surfactants that form worm-

like micelles require a surface free energy condition which favours cylindrical

curvature over other possible states. A wide range of worm-like micelle sys-

tems require the presence of a cosurfactant or counter-ion: canonical examples

are the surfactant micellar systems CTAB (cetyltrimethylammonium bromide)

in water [8] and CPyCl/NaSal (cetylpyridinium chloride/sodium salicylate) in

water [9, 10].

The region of declining stress with increasing shear rate in the flow curve

of such materials is inherently unstable and leads to coexistence of flow of ma-

terial following separate stress branches, in a proportion satisfying the overall

rate of strain condition. Shear banding in the stress plateau region has been

convincingly demonstrated by techniques as diverse as NMR velocimetry [11–

13], LASER Doppler velocimetry (LDV) [14], dynamic light scattering [15–18]

and ultrasonic velocimetry [19–21]. That shear banding, in systems close to the

isotropic-to-nematic (I-N) phase transition, may be associated with coexisting

states of different orientational order, is suggested by birefringence [8, 22, 23],

NMR spectroscopy [24] and small-angle neutron scattering (SANS) [25]. In

many of these studies, shear-banded flow has been associated with shear-induced
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phase transitions, wall slip, and shear stress fluctuations.

5.4 Rheology of worm-like micelles

Surfactant/cosurfactant systems exhibiting worm-like micellar behaviour have

three principal rheological characteristics. Firstly, there exists a region of the

phase diagram (in which the proportions of surfactant and cosurfactant are

adjusted), where a significant increase in zero shear (or low shear) viscosity

occurs. This viscous phase is generally associated with the formation of long

thread-like micelles whose dynamics are dominated by the interplay between

reptation and dissociation-recombination; these are worm-like micelles in the

semi-dilute regime. Secondly, the linear rheology of such semi-dilute worm-like

micelles [26] is characteristic of a Maxwell fluid, exhibiting a semi-circular Cole-

Cole plot. At high frequencies, deviation from simple Maxwell behaviour is

associated with dissociation-recombination processes. A characteristic feature

of worm-like micellar non-linear rheology is the presence of a plateau on the flow

curve, generally associated with the sub-division of the material into coexisting

low and high shear rate phases, a manifestation of shear banding. Furthermore,

this shear-banded state is often associated with strong fluctuations. Stress os-

cillations have been found for a variety of micelle systems [1, 24, 25, 27–33] and

are sometimes associated with the growth and destruction of the shear-induced

structures, in shear thickening systems. Stress fluctuations may be purely pe-

riodical or suggestive of chaos [30–32]. Recently Fielding and Olmsted have

shown that such instability may be a consequence either of coupling of the hy-

drodynamics to a strain-rate dependent micellar variable, such as micelle length

or concentration [34, 35]. Experiments have been unable to elucidate the origin

of instabilities, although in velocimetry studies, fluctuating wall slip has been

shown to play a significant role [21, 31, 32].

In the following section, we first present the phenomenological rheology data

on Pluronic P105 / phenylethanol worm-like micelles exhibiting some unusual

behaviour, including two maxima in the temperature dependence of apparent

viscosity at high shear rates. We then show how rheo-NMR, specifically 2H

NMR splittings indicative of alignment, can be used to help understand the

rheological observations.
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5.5 Pluronic P105

We follow the strategy of comparing rheometric and rheo-NMR properties of

a particular Pluronic/phenylethanol phase, specifically one which has been se-

lected due to its exhibition of a significantly enhanced low shear viscosity, and

because neutron diffraction data is consistent with scattering from threadlike

objects. The existence of this viscous phase is highly temperature dependent, so

that temperature is an important parameter of the study. We examine both the

linear viscoelastic behaviour, as well as the flow curve, taking care to elucidate

time dependence in the stress. This is of particular importance in the present

system because of the existence of slow (e.g. ∼ 100− 1000 s) time scales in the

rheological behaviour. Finding that fluctuations play a role in this system, and

that dynamics depend sensitively on both shear rate and temperature, we focus

on shear rate and temperature as the primary variables.

5.5.1 Sample details

The nonionic worm-like micelle solution used in this study is composed of a

solution of 5% w/w of the BASF Pluronic P105 in H2O, to which, per 5 mL

of Pluronic solution, 0.213 g of 1-phenylethanol-d5 (Cambridge Isotopes) was

added.

P105 is a tiblock copolymer comprised of polyethylene oxide “PEO” (A) and

polypropylene oxide “PPO” (B) in an A-B-A configuration. These groups nor-

mally exhibit very little difference in chemical functionality, but the slight differ-

ence in their affinities for water drives their micellar formation. This structure

formation is enhanced, and the exact curvature of the structure determined,

by the presence of the phenylethanol molecules. The preferential location of

these molecules is to be determined, but initial thinking is that, as so-called

hydrophobic alcohols, will act as a core-stabiliser for cylindrical micelles. In

particular, the sample on hand has deuteron substitution only on the aromatic

ring portion of the molecule. This anisotropic component of the molecule is the

intended signalling mechanism of micellar alignment.
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5.5.2 Rheometry

Bearing in mind that Rheo-NMR experiments are strictly strain-rate controlled

(no torques are measured in the use of a Rheo-NMR drive shaft), most rheometry

in conventional rheometers is also carried out in a strain-controlled mode (that

is, choose a strain rate, and measure the stress response of the sample). Stress-

controlled methods are also briefly used (in which specified torques are applied

to the surface of a sample, and the correspondingly allowed strain is measured).

To first come to terms with the phase behaviour of the P105 solution, both

linear and non-linear rheological measurements were performed. In particular

these showed that there are indeed conditions in which the sample will show

stress plateau characteristics, and that shear-banding would occur in a very

select temperature range.

Fig.5.1(a) shows the temperature dependence of the viscosity of the Pluronic

micellar solution, at a range of low shear rates. As the low-shear-rate viscosity

is amplified by a factor of ∼ 104, we can only deduce that we have formed worms

long enough to entangle at this concentration. Remarkably, the region of high

viscosity is rather small, covering a temperature range of only 15 degrees (from

∼ 290 K to ∼ 305 K), although this is extended a small amount with increasing

shear rate. At shear rates > 0.1 s−1, a local minimum in the temperature

dependence of viscosity is seen, at 294 K, in the midst of the worm-like micelle

temperature regime! This might arise from our worms becoming sufficiently

long to either form a nematic phase at high rates or break at high rates. We

find that this local minimum is mirrored in shear-dependent NMR spectroscopic

properties of the micelle solution.

The linear viscoelastic response of the micelle solution is shown in Fig.5.1(b).

These data are also indicative of a highly entangled solution of worm-like mi-

celles. At low frequencies, behaviour typical of a Maxwell fluid is found, while

at higher frequencies strong deviations from Maxwell behaviour are observed.

Note, however, that the angular frequency ∼ 5 × 10−3 s−1 at which this break

from Maxwellian behaviour is found is relatively low when compared with other

worm-like micelle solutions, and may thus be consistent with a very slow mi-

cellar dissociation rate. This immediately raises the question of thixotropy

and the need to allow for time dependence in rheological measurements of the
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nonlinear viscosity. Thus, we show in Fig.5.1(c) time dependent stress measure-

ments over a range of shear rates. Here, characteristic relaxation times of up to

∼ 500 s are found before a stress plateau is reached, and consequently we take

special care in establishing the flow curve for this material. Fig.5.1(d) shows

a flow curve composed of a strain-rate-controlled measurement, in addition to

a stress-controlled creep measurement made to measure sufficiently low strain

rates to demonstrate the Newtonian region of the material. Of particular note

is the coincidence of the lowest shear rate showing temporal stress fluctuations

at 1.58 s−1(Fig.5.1(c)), and the shift of the flow curve into the high-shear-rate

branch (Fig.5.1(d)).

5.5.3 1H spectroscopy and diffusometry

An important step in the detective process of studying worm-like micelle solu-

tions of P105 is the identification of NMR spectral lines. Besides a very good

guess at identifying individual spectral lines being possible through standard

chemical shift-based positions of functional groups, diffusometry can give in-

sight by demonstrating whether certain functional groups are diffusing through

the material at the expected rate, usually based on the mass of the structure

diffusing. Fig.5.2 shows the 400 MHz proton NMR spectra obtained from the

Pluronic worm-like micelle system in D2O at three different temperatures, 282 K,

293 K and 307 K. Note the temperature dependence of the HDO/OH peak in

the vicinity of 4.7 ppm, superposed on a temperature independent CH group

from the phenylethanol. The upper part of the figure shows the correspondence

between chemical species and the diffusion coefficient which each experiences,

obtained by acquiring spectra as a function of field gradient strength in a PGSE

experiment. The most rapid decay in intensity corresponds to the fastest dif-

fusing molecules. The HDO peak exhibits the fastest molecular diffusion rate,

while the phenyl alcohol aromatic ring and methyl groups are also easily iden-

tified at -3.625 ppm and +2.625 ppm respectively, with respect to the Pluronic

O-CH2 line. At 0 ppm and +2.625 ppm we observe peaks associated with ex-

tremely small diffusion rates, which we assign respectively to the polyethylene

oxide and polypropylene oxide CH2 and polypropylene oxide methyl groups on

the Pluronic surfactant chains of the micelles.
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Figure 5.1: (a) The shear viscosity of the Pluronic worm-like micelle solution,
obtained at various shear rates, including close to zero shear (b) The linear
rheology of the P105 solution shows a crossover of G′ and G′′ at 1.6×10−4 s−1

or lower, indicating a terminal relaxation time of ∼ 1000 s. The upturn of
G′′ at 297 K occurs at ∼ 5 × 10−3 s−1, potentially indicating a breakage /
recombination time for the micelle of around 200 s, and hence (via eqn. 2.32)
a reptation time of ∼ 5000 s (c) Transient stress response to shear startup,
at 297 K. Stress fluctuations are visible between 1.6 and 6.3 s−1(d) The non-
linear rheological flow curve of the material at 297 K, using both stress- and
strain-controlled modes of rheometry.
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Figure 5.2: The proton NMR spectrum of the Pluronic worm-like micelle
solution (below) and the DOSY spectrum resolving the diffusion properties of
each spectral line (above). These lead to the following peak assignments :
(a) C6H5 (phenylethanol) (b) CH (phenylethanol) in addition to HDO at three
temperatures (i) 282 K, (ii) 293 K, and (iii) 307 K (c) O-CH2 (PEO, PPO) (d)
CH3 (phenylethanol) (e) CH3 (PPO).
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When we inspect the deuterium NMR spectrum for samples of the Pluronic

worm-like micelle system in H2O, we observe a weak signal at 4.6 ppm upfield

of the aromatic deuterons of the phenylethanol. We thus attribute this weak

signal to HDO deuterons at natural abundance, an identification confirmed by

the intensity ratio of this peak to that of the aromatic deuterons. Second, the

temperature dependence of the HDO peak provides a useful internal calibration

for temperature.

5.5.4 Deuteron NMR spectroscopy

Our first NMR examination of shear-dependent behaviour consists of a deu-

terium NMR study of molecular ordering, probed via splittings of the phenyl-

ethanol deuterium peaks. Their signal results from all fluid in the gap, and

thus represents the average degree of order in the cell. We show in Fig.5.3 a

series of temperature and shear-rate regimes, in which a finite order parameter

is demonstrated. That this is a quadrupolar interaction, was indicated by both

supplementary double-quantum filter and 2D Hahn echo experiments in which

the bilinear nature of the quadrupolar interaction was apparent.

The existence of two splittings is a curious aspect of this work and a fea-

ture seen through much of this study. We discuss our interpretation of this

phenomenon in Section 5.5.7. Here we present the range of observed spectral

behaviours. Fig.5.3 shows 2H NMR spectra obtained over a range of tempera-

tures (279 K to 308 K) and shear rates 3.1 s−1to 157.1 s−1. These are presented

as two-dimensional colour plots with the colour representing the intensity of

the 2H NMR peaks. As small spectral features are hard to discern on the

figures, also shown are selected spectral slices at various temperatures. Some

particular features of the spectra are noteworthy. First, we note that the dom-

inant peak, centred at 0 Hz corresponds to the deuterated aromatic ring of the

phenylethanol. At 4.6 ppm upfield can be found a weak 2H NMR peak associ-

ated with the residual natural abundance deuterons in the water solvent. Note

that the frequency of this peak is strongly temperature dependent, as described

in Section 5.5.3. Second, we note that the aromatic peak is split, indicating

molecular ordering, over particular bands of temperature, and that the splitting

is dual in nature, with the greatest peak intensity associated with a narrow split-
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Figure 5.3: Deuterium NMR spectra as functions of temperature at five shear
rates are shown in the five left panes. We show 1D spectra at three demonstra-
tive temperatures for each shear rate on the right. These 1D spectra are shown
at full intensity range (green), as well as blown up by a factor of 20 (blue), to
show less intense features. Not shown are spectra in the vicinity of 294 K, as a
single spectral line results.
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ting of around 20 Hz, and a much weaker component whose splitting is much

larger, varying strongly with temperature to values up to 200 Hz. This outer

peak splitting is well defined at the higher end of the temperature range when

the shear rate is low and even at the lowest shear rate of 3.1 s−1, but changes

become well defined at lower temperatures only when the shear rate increases

above 40 s−1.

In the vicinity of 294 K, the dominant peak splitting disappears for all shear

rates. This null in the dominant peak splitting is not clearly mirrored in the

weak outer splitting, which instead seems to exhibit a state in which the order

parameter is ill-defined. We note that a similar inflection is seen in the low

shear viscosity data, also at 294 K.

5.5.5 Spatially resolved velocimetry

We now turn to rheo-NMR measurements in which imaging is used to spatially

localise the properties of the fluid across the gap. First we focus on NMR

velocimetry. At flow startup the velocity profile exhibits a near-Newtonian

profile, evolving over a period of a few minutes to a steady state in which

strongly non-Newtonian behaviours are apparent. This effect is illustrated in

Fig.5.4, where we show a succession of velocity profiles, separated in time by

60 s, at an exemplary temperature of 304 K and shear rate of 6.2 s−1. Note that

steady state behaviour in this case is achieved after a period of approximately

10 minutes, or slightly longer, which is in excellent agreement with the transient

stress response for the shear rate of 6.3 s−1shown in 5.1(c). In all subsequent

data, the fluid was driven in steady shear for a time sufficient (> 10 min) for

the fluid velocity to reach such a steady state.

The NMR pulse sequence used here was a combination of the projection

profile technique (single imaging gradient pulse in the phase direction), though

with a PGSE q-encoding gradient wrapped around one of two slice-selective 180

degree pulses. Two slice selections were required to only receive signal from two

well defined columns in the gap of the cylindrical Couette cell.

Similar to the above 2H NMR measurements of molecular ordering, the fluid

velocity profiles shown in figs. 5.5 and 5.6 are strongly temperature and shear-

rate dependent. We present, for simplicity, two canonical examples, in which
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Figure 5.4: A time series of velocity maps is shown for a single shear rate,
6.2 s−1, at a single temperature, 304 K. The times indicated are relative to the
time at which the shear rate was stepped from zero, a terminal shear rate profile
can be seen after 600 - 700 s.
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shear rates are swept over the entire range of interest, at temperatures of 293 K

and 304 K. In each case we measure a pre-selected diametral slice of width 1 mm

(along the velocity direction) and depth 5 mm (along the cell axis) taken across

the Couette cell. The signal data are shown as two-dimensional greyscale maps

in which the horizontal dimension is the radial position across the Couette cell,

while the vertical dimension is the fluid velocity, calculated from the measured

displacement over the encoding times ∆ used in each case, ranging from 9 ms

up to 48 ms. There is an expected broadening of displacements resulting from

diffusion alone, however this is not a major cause of spread in the propagator,

especially at the higher shear rates. Broadening in most cases here therefore

corresponds to a velocity distribution and/or fluctuations.

Fig. 5.5 shows the case of 293 K, in which a range of different shear profile

behaviours is exhibited. At the lowest shear rate, 3.1 s−1, shear banded flow is

apparent. At higher rates, in the range 6.3 to 62.8 s−1, fluctuations are seen,

and banding consists of a high shear region both at the inner wall and the outer

wall of the gap. Above 62.8 s−1, the banding disappears and the flow returns

to near-Newtonian character, although fluctuations still play a role. Fig. 5.6

shows shear rate profiles for the case of 304 K. Here, a well-defined shear band

is demonstrated at low shear rates (up to 12.6 s−1), then a transition through

unstable flow to near-Newtonian behaviour above 25 s−1. The inward curvature

at highest shear rates results from azimuthal movement of the fluid near the

inner wall, over the times taken (between 1.6 and 5 ms) to encode for transverse

spatial position.

5.5.6 Spatially resolved spectroscopy

We now turn our attention to the spatial localisation of molecular ordering. In

this case we use the Hankel transformation method, described in Chapter 3, to

produce a radial image of the 2H NMR spectrum. Figs.5.7 and 5.8 compare the

spectral and velocity profile images. Spectroscopic images are presented as two

dimensional greyscale plots with the horizontal dimension the radial dimension

and the vertical dimension the 2H NMR frequency, with spectra from the radial

slices nearest the inner and outer walls shown above. The results are quite

remarkable and counterintuitive, given the common presumptions about shear-
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Figure 5.5: (a) The velocity profiles are shown here at a range of average shear
rates at 293 K. The inner wall velocity at corresponding shear rate is indicated.
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Figure 5.6: (a) The velocity profiles are shown here at a range of average shear
rates at 304 K. The inner wall velocity at corresponding shear rate is indicated.
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banded flow. Several researchers have argued that shear banding in worm-like

micelle solutions is associated with nematic ordering. However the rheo-NMR

experiments of Figs.5.7 and 5.8 show that such a simple correspondence does

not exist.

Indeed, those cases where shear banding occurs, as evidenced by velocimetry,

are associated with lack of observed molecular ordering. By contrast, where

apparent Newtonian flow is present, strong ordering effects also appear, clouding

any possible conclusions concerning spatial correlation between birefringence

and shear rate bands.

5.5.7 Possible models for phase behaviour

Clearly, more than one physical feature of our micellar system is driving the

observations in our array of rheo-NMR experiments. Indeed, this is precisely

why the term ‘complex fluid’ applies to worm-like micelle solutions. In con-

trast to simple linear polymer solutions, they form a “living” system where

these supramolecular worms can break and can recombine with each other.

They might also form more complex phases such as branched micelles, vesi-

cles, lyotropic lamellar phases, spherical micelles or some combination of these

possibilities. Similar to linear polymers, worm-like micelles can entangle and

can align with each other, and might form a nematic phase in a shear field.

Anisotropic alignment may also act in a different way on these materials due to

the different nature of stiffness along their axes. The concept of entanglement

may differ substantially from that in linear, covalently bound, polymers in that

when a worm tube encounters a topological constraint (another tube) it may

join with it, or break, or pass through it with some characteristic timescale, pos-

sibly depending on shear rate. Our data show several phenomena that narrow

the scope of possibilities for the phase behaviour of these systems.

The local minima in the temperature dependence of apparent viscosity at

high rates (Fig.5.1(a)) is highly unexpected, as the worms likely grow the longest

at these intermediate temperatures. With very long worms, two possible mech-

anisms come to mind for explaining the viscosity reduction at high shear rates.

Have the worms grown long enough to flow-align and form a nematic phase

at high rates? Or perhaps when long enough, they can break in shear flow to
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Figure 5.7: (a) Variation of the velocity profile with shear rate at 293 K.
The inner wall velocities for the gap-averaged shear rates of 3.1 s−1, 12.6 s−1,
157.1 s−1are 2.4 s−1, 9.4 s−1and 117.8 s−1respectively. The top three panes indi-
cate the NMR spectrum of the sample at the inner and outer walls, as obtained
through the radial spectroscopic technique described.
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Figure 5.8: (a) Variation of the velocity profile with shear rate at 304 K.
The inner wall velocities for the gap-averaged shear rates of 3.1 s−1, 12.6 s−1,
157.1 s−1are 2.4 s−1, 9.4 s−1and 117.8 s−1respectively. The top three panes in-
dicate the NMR spectrum of the sample at the inner and outer walls.
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lower their viscosity. The temperature dependent 2H NMR splitting in Fig.5.3

can distinguish between these two viscosity reduction mechanisms. If a nematic

phase formed at 294 K, we would expect to see an enhanced splitting. Instead

the inner splitting disappears completely, suggesting that shear simply breaks

the worms at high shear rates near 294 K.

On first inspection, we supposed that the two 2H NMR splittings seen in the

spectra of Fig.5.3 might be due to one of the following two hypotheses:

1. the two distinct 2H sites (in terms of CD bond angle with respect to B0)

on the phenylethanol molecule, if it were ordered along a well defined axis,

or

2. the probe molecule could be partitioning between two parts of the worms,

for example the core and corona.

On close inspection, hypothesis (1) does not fit the data in that if it were true,

the two pairs of lines would have exactly the same (proportional) dependence

of splitting on temperature, and their linewidths would also have the same

dependence. Hypothesis (2) seems far more likely. Indeed, SANS data suggest

that, while the phenylethanol prefers the core (hydrogen bonded to the ether

oxygen of PPO), it also exists in the corona [36] (hydrogen bonded to the ether

oxygen of PEO). The diffusion coefficient of the probe molecule (see Fig.5.2),

D ≈ 3 × 10−10 m2 s−1, means that the probe molecule diffuses approximately√
6Dt ≈ 10µm on the timescale of our 2H NMR spectroscopy experiment (∼

0.05 s). While this is considerably larger than the core diameter (7 nm) of the

worms [36], the diffusion of the probe in the core may be considerably more

facile along the worm direction, apparently with slow exchange between core

and corona states of the phenylethanol probe. We can only explain the Fig.5.3

data with the idea that the probe molecule must exist in two distinct phases

or domains of the system, which are stable at least on the ∼ 0.05 s timescale.

Furthermore, examining the Fig.5.3 data, it is clear that the relative amounts

of the two phase or domain types do not change over the observed temperature

range of 30 K.

Just as interesting is the complexity in the temporal character of shear rate

profiles, as revealed by the time-resolved and steady state NMR velocimetry.
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The thixotropy of this micellar system, as seen in the rheological measurements,

is also apparent in the time taken to reach a steady state velocity profile, as

evidenced in the data of Fig.5.4, where a time series of velocity maps for the

shear rate, 6.2 s−1at 304 K indicates an initially fluctuating profile, with a steady

shear-banded state formed after 600 s.

Remarkably, once this steady state is reached, there is no obvious relation-

ship between shear banding and a state of nematic order. In Figs.5.7 and 5.8,

obtained at two different temperatures of 293 K and 304 K respectively, no cor-

respondence can be ascertained. At 293 K and 3.1 s−1we see evidence of nematic

order through the split deuterium spectrum in conjunction with a shear banded

state, and yet there is no discontinuity of nematic order associated with the

discontinuous shear rate. At 304 K, at the same gap averaged rate of 3.1 s−1,

as well as at 12.4 s−1no nematic order is seen at all, despite manifestly shear-

banded states. The greatest degree of nematic order is found at 293 K, under

conditions where no shear banding is apparent at all. This nematic order varies

continuously across the gap, even though the shear rate appears homogeneous.

Finally, in relation to shear rate profiles, both fluctuating and steady profiles

are observed, the sweep at 301 K shown in Fig.5.6 exhibiting transitions from

fluctuating to steady to fluctuating as the gap-averaged strain rate is gradually

increased.

This bewildering array of phenomenology is more complex than is found

in the classical worm-like micellar systems based on ionic amphiphiles, exam-

ples being cetylpyridinium chloride/sodium salicylate in water [9] and cetyl

trimethylammonium bromide in water [24]. The most noteworthy difference is

the strong temperature dependence of and temperature inflection in the viscos-

ity at finite shear rate. Nonetheless there are some similarities in the lack of

clear correspondence between shear bands and nematic ordering [24], as well

as the diversity of fluctuation dynamics [32] which classical ionic surfactant

micelles exhibit. We present these data here in order to illustrate the rich diver-

sity of phenomenology that remains to be explained in the rheology of Pluronic

surfactant phases.
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5.6 Conclusions

The rheo-NMR methods presented here combine novel spatially resolved NMR

spectroscopy and velocimetry. The high resolution 2H NMR spectroscopic mea-

surements are made possible by the use of Hankel transformation methods which

utilise the entire signal from the entire Couette cell annulus. It depends on the

use of a deuterated probe molecule, in this case the phenylethanol needed for

the micelle formation. The velocimetry data was obtained using a rapid single

slice phase-encoding method which permitted velocity profiles at 1s repetition

times. The assignment of peaks in the NMR spectrum has been assisted by the

use of spectrally-resolved molecular diffusion (DOSY) measurements.

The most significant findings concern:

1. A flow curve exhibiting plateau-like properties in the stress with the lower

strain rate limit of the plateau at the remarkably small value of 10−2 s−1.

We attribute the very low strain rate at the onset of the plateau to slow

dissociation/recombination dynamics for these Pluronic micellar systems.

2. The thixotropy as seen in the time dependent stress at fixed shear rate

following startup

3. The inflected temperature dependence of the low shear rate viscosity, an

effect which correlates with the temperature dependence of the micellar

nematic order,

4. The dual order parameters of the nematic state, as sensed by the deuter-

ated phenylalcohol probe molecule. We attribute this duplicity to parti-

tioning between the micellar corona and core.

5. The bewildering array of spatially-dependent shear rates and associated

fluctuations. Fluctuations under shear banding conditions are not by

themselves remarkable effects and are now accepted as a fairly universal

property of shear banding dynamics in wormlike micelle systems, though

the variety we find exceeds expectations.

6. The lack of a simple correspondence between shear banding and the spa-

tially dependent order parameter. This discrepancy between nematic or-
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der and fluid properties (which had been pointed out for a previous differ-

ent system, and confirmed here), only serves to emphasise that our models

for shear banding and band dependence on molecular organisation, are far

from understood.
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Chapter 6

Extensional flow investigations

with magnetic resonance

6.1 Introduction

In complement to the capabilities of Rheo-NMR in the study of shear effects

in complex fluids, this chapter considers the potential for NMR to be used to

study extensional flow. In particular this shall be from the perspective of a

particular geometry, the semi-hyperbolic converging channel, though the four-

roll mill has been used previously to investigate liquid-crystalline polymers in

this laboratory. Extensional flow studies provide insight into material rheology

from a perspective that is rarely investigated routinely in great depth due to the

difficulty inherent in experimental techniques designed to do the job, but also

due to a fundamental confusion and lack of consistency between experimentalists

in the field [1, 2]. Newtonian fluids demonstrate a simple relationship between

the viscosity in both the shear and extensional geometries, namely the Trouton

relationship. For an extensional viscosity, ηE, of a material undergoing uniaxial

deformation, defined by the quotient of the first normal stress difference and the

extension rate, ε̇, the Trouton relationship states that this value will be simply

three times the shear viscosity [3] conventionally measured

ηE =
σzz − σyy

ε̇
= 3η (6.1)

Departure from this well-established result in which the Trouton ratio is 3
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(ηE/η = 3) occurs in instances where the extension and compressional defor-

mation is biaxial (though the Trouton ratio is well known in that situation)

and in viscoelastic, non-Newtonian fluids (although very small rates of strain

lead to the limiting case as presented for Newtonian fluids). For the simple

reason that extensional flow parameters are usually only anomalous or novel

for non-Newtonian fluids, the strain history, in the form of a full constitutive

equation for the material is necessary. This is rarely exactly provided in real

situations [4–6]. The lack of controllability of flows in apparatuses designed to

generate extensional flow is a crucial limiting factor, as none of the more com-

mon devices used are based on a predetermined flow field [7–13]. In the case of

the four-roll mill a stagnation point is the centre of region of extension, though

under the assumption the fluid is non-Newtonian, the flow field and hence strain

history for the sample is poorly known. Other dynamic problems detract from

other devices such as the opposed jet and filament stretching rheometers [14].

6.2 The semi-hyperbolic converging die

Compromise is everywhere in the study of extensional flow. Controllability and

stability are often played off against repeatability, though the more repeatable

or recyclable a geometry is in imparting deformation, the less analagous to

practical situations the process becomes. Flow geometries which minimise some

of the undesirable dynamical effects and allow increased knowledge of the strain

history are the axisymmetric contraction (with sharp step down in the radius

of the pipe [15]) and the semi-hyperbolically converging die [16]. In pumping

a fluid of interest through a specially designed contraction, the compression

required in the tranverse directions to flow are applied to achieve expansion

in the other. This process is highly repeatable (given enough time is allowed

for sample to relax fully) and the semi-hyperbolic converging die, in particular,

minimises turbulent effects in regions the sample traverses prior to entering a

critical experimental zone. Ambiguity and indecision in the literature indicate

that no authoritative method of extracting an extensional viscosity, ηE [8, 17],

has been settled on universally. Magnetic resonance investigations here, though,

are no different to shearing a sample in a Rheo-NMR cell: experiments are

macroscopically strain-rate controlled, rather than stress being the independent
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variable, and as such we do not extract an extensional viscosity. Despite this,

magnetic resonance can, as always, be of importance in measuring velocity

profiles and molecular alignment.

One other advantage of a flow cell, compared to other geometries, including

those which “grab” or physically stretch a sample, is reversibility. By the tenets

of fluid mechanics of non-turbulent flows of Newtonian fluids, flow should be

perfectly reversible through a pipe. Samples which we are likely to take interest

in, however, will be non-Newtonian, though it is conceivable that important

information, or at least another type of experiment, may be on offer in running

fluid through an “expanding” rather than contracting flow.

6.2.1 Design of a converging die

The design of a semi-hyperbolically converging die (SHCD) shall here be de-

scribed, with fluid mechanical principles outlined first, followed by the adap-

tation of a sufficient geometry to the specifications required by a magnetic

resonance experiment. The Venturi effect describes the properties of materi-

als flowing through a constriction in a pipe, observing that the fluid pressure

decreases with the radius of the pipe [18], and the velocity of the fluid increases

in order to satisfy the continuity equation.

Most critical in the design is the extension rate, ε̇, able to be generated by a

converging flow. Temporarily ignoring the no-slip boundary condition for fluid

velocity at the walls of the pipe, we would like to impose an extension rate

which is constant along the length, z, of the SHCD, in particular on its central

axis [19].

ε̇ =
∂vz
∂z

(6.2)

which, if able to be satisfied, results in a velocity profile of

vz = ε̇z + vi (6.3)

given that the inlet velocity is vi. This inlet velocity will therefore determine

the extension rate attained for a given experiment given an apparatus of fixed

inlet and outlet diameters. The volumetric flow rate, Q, which is constant at
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any plane transverse to the axis regardless of pipe radius, R, may be written as

an integral of axial velocities over that plane.

Q = 2π

∫ R

0

dr · vzr = πvzR
2

We are therefore able to reveal a functional form of the SHCD in order to

produce the desired extension rate

R2(z) =
Q

π(ε̇z + vi)
=

C

z + a
(6.4)

where

a =
vi
ε̇

; C =
Q

πε̇
(6.5)

For completeness, prior to determining the magnitude of parameters for a

particular realisation of the geometry, it is worth noting how much time will

be spent in the critical region of the pipe corresponding to constant extension.

This may be calculated by first determining the position of a fluid element as a

function of time

vz =
dz

dt
= ε̇z + vi (6.6)

dz

z + a
= ε̇dt (6.7)

log k(z + a) = ε̇t (6.8)

z = k−1 exp ε̇t− a (6.9)

= a[exp ε̇t− 1] (6.10)

where, in the final step, we have set the arbitrary constant of integration k =

a−1, so as to have the effect of setting the inlet position z = 0. By now inverting

this expression we can state that the time at which the time a fluid element

enters the constriction is t = 0, and leaves at time

tout =
1

ε̇
log
(zout

a
+ 1
)

(6.11)
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6.2.2 Realisation of a converging die for magnetic reso-

nance

Physical constraints shall dominate the determination of the functional form of

the SHCD for real experiments. After the magnetic field gradient coils typically

used are placed in the bore of a 400 MHz magnet, the remaining space available

for a probe and r.f. coil (see Chapter 3) is 39 mm, though this is further reduced

by the r.f. coil itself. The coil chosen has an inner diameter of 20 mm, and this

is therefore the maximum horizontal dimension of the SHCD, including pipe

wall materials. In other research on flow through contractions, an inlet-to-

outlet diameter of 3:1 has been prevalent, and for reasons that will be explained

in more detail in discussing construction and testing in section 6.2.2, the inner

diameter at the SHCD inlet was chosen to be 9 mm, the corresponding diameter

at the outlet was chosen to be 3 mm, over an axial distance of 10 mm. These two

co-ordinates (see fig. 6.1) lying on the curve, R2(z) = C/(z+a), fully determine

the two parameters C = 405/16 and a = 5/4 mm.
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Figure 6.1: A functional form for our semi-hyperbolically converging die. The
two points specified as being suitable dimensions for a magnetic resonance
experimental apparatus determine appropriate coefficients and offsets. The
shaded region shown is the shape needed for our die volume.
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Materials and construction

In the first instance, a converging pipe was designed and built from a potting

resin set around a negative of the prescribed shape, which was in turn inlaid

in a 20mm cylindrical acrylic block for centering and attaching of pipes leading

into and out of the device. A closed-cycle pump was employed to drive the fluid

around a loop passing through the magnet, though in subsequent incarnations,

this arrangement was replaced by a single-pass (though repeatable) pumping

system, for the main reason of sample conservation. A pumping system in

closed-cycle mode will find pumping the sample through wider pipes easier,

though this has the consequence of requiring more sample to fill the loop in the

first place. The resin SHCD was particularly prone to being a collection point

for bubbles that were particularly difficult to dislodge, and as such the device

was only used for preliminary proof-of-concept for degassed water, having been

doped to reduce surface tension.

Specially-made drill bits were constructed in order to generate a second-

generation SHCD device. By drilling and milling a hole “inside-out”, so to

speak, a converging pipe was gouged from a PEEK (polyetheretherketone) at

the prescribed radius, point-by-point along the axis of the pipe. As the impor-

tance of laminar flow prior to entry had been noted from the previous construc-

tion attempt, a long (L/D ∼ 30) teflon tube was affixed before the inlet. While

this design was temporarily successful, the problem of ensuring the flow con-

ditions and strain history of the sample were ideal remained a problem. Joins

at the interface of the lead-in tube and the SHCD had a non-negligble effect,

in addition to potential turbulence caused by a sharp change in pipe radius

at the join. Though no roughness could be felt by hand on the surface, in

all fabrication attempts, at least one imperfection in the channel surface was

visible through magnetic resonance imaging of the channel space, having been

filled with water. It was therefore perceived that an alternative to the milling

process was preferable in the long-term as visible striations were present inside

the SHCD. The primary suspected cause of the deformities in the inner surface

was non-homogeneous (or even outright) swelling and contraction of the pipe

material due to heat in the machining process, and the resultant cooling phase.

Another method of inside-out drilling was also investigated: blades were cut out
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of a stainless steel negative, which resulted in the shape being drilled out of a

block of material in one pass.

Final design

Glass is a suitable material for use in both magnetic-resonance- and rheology-

oriented experiments, due to its transparency, lack of electrical conductivity, and

lack of reactivity. The only relevant properties of glass which are unfavourable

for use in a device are its brittleness (easily negated with a little care) and the

difficulty it presents in crafting a precisely defined shape. Following attempts

at fabricating an SHCD in multiple parts, with multiple materials, a design

was devised which called for a monolithic glass piece. By lathing the correct

functional form for the radius of the end of a graphite rod (which it should

be noted may also suffer from non-homogenous thermal expansion), glass could

then be drawn down onto its surface. In addition to the negative only being

designed to provide the correct shape for the contraction segment of the pipe, a

small region leading up to the technical inlet was allowed for. This section was

rounded so as to reduce any effects due to any sudden change in pipe radius.

After shaping the glass constriction was fused with a long straight glass pipe

(L/D ∼ 15); the total profile of this object is shown in fig. 6.2, the form was

confirmed by imaging, a portion of which is seen in fig. 6.3.

With regards to the pumping system, a more efficient system in terms of

sample volume required was needed, in particular a move away from a closed-

loop flow system being preferable. The standard drive-shaft used in Rheo-NMR

experiments integrates into the design in a way that uses the Rheo-NMR system

motor to rotate the shaft, which couples to a screw-thread piston shunting

sample from a reservoir through the SHCD (see fig. 6.4). This arrangement

has the benefits of requiring a lower redundant-volume to sample-volume ratio,

meaning that the sample is not required to pass through any length of very

thin tubing, ensuring a strain history which is as gentle as can be practical.

Very simply, it also allows a reversal of the flow system with a reversal in

direction of the Rheo-NMR motor, which can be implemented in software rather

than requiring manual hardware switching. This ability makes the experimental

procedure considerably less error-prone, as well as requiring far less supervision
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than would otherwise be necessary. The number of hours of time and effort

saved are considerable.

To connect the glass tubing comprising the monolithic piece to the reservoir,

an acetal sheath houses the tube (which protrudes 1-2 mm from the top), with

a screw-down top capping it. Inset into the screw-top is an annulus of silicone

rubber, which when hard pressed against the glass tube end provides a seal and

connection with the outlet from the reservoir (or closed-cycle system tubing if

necessary). This housing for the glass pipe and constriction serves several pur-

poses (fig. 6.5), including providing stability, access, location and connection.

A small o-ring cushion between the SHCD and the step of the sheath on which

it rests provides adequate resistance when the screw top pushes the glass pipe

downwards, and protects the SHCD from any hard corners.

6.3 Basic flow issues through the glass SHCD

6.3.1 Limitations

Velocimetry

In the same vein as the variety of experiments involved in Rheo-NMR help

fill in the blanks for experiments involving shear deformation, we aim to get a

grounding in the use of such techniques in extensional flow geometries. With

the intrinsic increase in velocities as fluid traverses the pipe constriction in an

SHCD, the considerations are typical: in order to resolve differences in low

velocities near the tube inlet, the maximum available gradient is important;

once chosen however, the range of observable displacements (field-of-flow) is

determined by the division of the applied gradient into “q”-steps, though this

number of steps affects experimental time strongly.

Spectroscopy

In the spectroscopic category of experiments it is more important to ask the

required resolution to observe a spectral effect, for example the quadrupolar

splitting expected for an aligned fluid containing deuterium nuclei. However

small the required resolution, the acquisition time and hence the time spent
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Figure 6.2: Our final design for a converging die. A long (L/D & 20) straight
section of glass pipe is joined to the semi-hyperbolic constriction with a curve
comprising a circular arc.
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Figure 6.3: The shape of the converging die as seen by a simple magnetic
resonance density image
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Figure 6.4: The reservoir and piston of the extensional flow cell (not to scale).
The standard Rheo-NMR motor atop the magnet turns the screw shown; a bear-
ing between the rotating drive and piston allows the piston to simply move back
and forth; o-rings provide a seal between the piston and reservoir wall. Forward
and reverse modes are provided by the motor, allowing software resetting and
control.

by a nuclear species in a characteristic volume sensitive to the experiment

(cf. eqn(6.11)), must exceed its inverse.

Rheology

From a purely mechanical standpoint, however, the minimal inlet velocity avail-

able will be restricted by the extension rate range desired, and whether it pro-

vides an observable effect. The maximal inlet velocity will be restricted by the

velocity at which turbulence may creep in to the flow, whether it is due to fast

flow incident on the slightly curved constriction point of the pipe, or the more

sharp-edged outlet at the narrow end of the SHCD. An upper limit may present

itself indirectly owing to the reduction in experimental time available due to
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Figure 6.5: A glass SHCD, with a long uniform pipe inlet (not to scale). The
modular acetal sheath gives protection and access to the glasswork, as well as
connection to the reservoir above, and centring the device in the rf coil.

the finite extent of the reservoir - faster flow and higher throughput reduce this

available time drastically. Signal averaging of repeated experiments may help

in some cases, though if the observable is itself a result of some transient effect,

re-establishing the flow would be quite useless. In general, however, we hope

to be performing experiments at modest Reynolds numbers which help avoid

turbulence issues and prolong experimental time available, which in turn helps

guarantee we have established a steady flow profile where possible.

Apparatus, materials and samples

Besides flow-rate limitations, technical issues that are worth keeping in mind are

the nature of materials used, and the way in which they connect and directly

interact. The o-rings around the piston providing a seal between piston and

reservoir may be lubricated, where it can be expected that the very small amount

of lubricant applied will not slowly creep into the sample as the piston goes up-

and-down the reservoir wall repeatedly. A small screw-hole in the wall of the
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reservoir near its bottom also gradually degrades the o-ring through friction,

which means the o-ring must be replaced periodically to protect against leaks

up the side of the piston wall. Two main pipe connections are present in the

system described, being those between the reservoir and the sheath, and the

SHCD outlet and the drainage tubing. Teflon taping is generally applied to the

screw thread in the first instance, and depending on the drainage tube materials,

various ways are used to secure the second. The silicone rubber washer providing

a seal at the top of the glass pipe within the sheath could be considered a third

main connection, the seal is regularly replaced, in particular at the change of

sample to avoid contamination.

Sample volume requirements are most vital to bear in mind in experiment

design with this device. Steady-state flow (if possible) is the ideal experimental

regime, and to this end priming the entire assembly, at least to the bottom of

the SHCD, is desirable. Once filled, only the volume above the exit-point of

the reservoir is available as throughput for the experiment. The piston may act

upon this sample material for however long the screw-thread takes to drive this

head into the sheathed inlet glass pipe. As such the minimum sample needed,

in addition to that of the actual experimental volume is

Vmin = π (6 mm)2 · (160 mm) = 18× 103 mm3 = 18 mL (6.12)

Our SHCD design, incorporating an∼ 80 turns screw-thread piston of 0.5 mm

pitch, and having a maximum screw speed of 14 Hz, would exhaust its reservoir

in around 5 s at maximum rate. Knowing that, in general, at least one order

of magnitude more in experimental time will be required at a minimum, we re-

strict our preliminary investigations to a maximum rotation rate for the drive of

1 Hz, and hence (not wanting to reach the screw limits at any time) a minimum

experimental time of . 80 s.

Temperature control

The realm of temperature-controlled experiments is largely unavailable with

this apparatus, ambient conditions being the only control used. Besides there

being very little air-flow available around the shaft/sample reservoir region (see

fig. 6.6) The reason for this is that the fluid is passing through the apparatus
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having originated in the ambient conditions of the reservoir at the upper region

of the shim set of the NMR magnet system. With the wide range of locations

through which sample material passes on its course from the piston source to a

flask sink, maintenance of a uniform sample temperature in the case of artificial

heating or cooling would be extremely difficult. Even under ambient conditions

there is no guarantee of any extraordinary temperature homogeneity. While this

is less than ideal, in particular where comparisons are made between extensional

flows and those shear flows in the cylindrical Couette of chapter 5, as a proof-

of-concept the geometry is acceptable and many interesting phenomena are still

to be found.

Figure 6.6: (left) The glass SHCD device, which locates itself in the black
acetal housing shown at the bottom of (right) the custom-built Rheo-NMR
drive shaft with screw-thread piston, reservoir, SHCD housing, and outlet.

Having noted these difficulties, the temperature can be roughly estimated as

being around (21± 2)◦C, since this corresponds to the air-conditioner controlled
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room-temperature and the setting of the gradient coil cooling system.

6.4 SHCD contraction flows

As water is Newtonian, freely available and non-corrosive to any parts of our

apparatus, it is our test sample of choice. Following various numerical calcula-

tions performed by other groups [19, 20], the flow profiles we expect through the

SHCD will be similar, though perhaps not identical to, the schematic shown in

figure 6.7. In particular, it would be expected that the rounded wall at our inlet

would have an effect, and preliminary experiments will be required to determine

just to what degree this is the case. Such experiments will also give some indica-

tion as to the ease or difficulty the Rheo-NMR system and screw-thread piston

will have in pumping fluids, while bearing in mind that generally, samples of

interest will be orders of magnitude more viscous than water.

6.4.1 Expectations based on prior investigations

As the basis for the realisation of a shear-free, and hence purely extensional

flow, we require that the fluid velocity gradient at points lying on the central

axis of an SHCD should be zero with respect to all radial directions, and take

the value ε̇ with respect to the axial direction. The extent of the region that this

condition holds may not necessarily be cylindrical, though we might expect it to

be at least circular at any cross-section of the SHCD. Firstly, we try to establish

that our converging die does indeed generate a linearly increasing velocity profile

along the axis, and then establish the degree to which the new geometry extends

the shear-free region, compared to the infinitesimally thin axial line at which

shear disappears in a uniform pipe flow.

Figure 6.7 shows schematically typical profiles (quantitave variations occur

with both position in the SHCD and with input flow rate) as measured by

Shirakashi et al. [21] and as simulated by Feigl et al. [19, 22]. Their respective

works show quite convincingly that the flow profile over cross-sections within

the SHCD range flatten considerably near the pipe axis, and the exclusion of

shear is increased with increasing flow rate (which in turn is proportional to

extension rate). The data of Shirakashi suggests that a nearly totally shear-free
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Figure 6.7: [Schematics reproduced from Shirakashi (left), and Feigl (right)]
Two flow profiles for fluids in a converging channel. There are minor differences
in dimensions for the geometries. The work of Shirakashi et al. (left) is obtained
on water flow by laser Doppler velocimetry, and shows the flow profile changing
with flow rate at a fixed position. The profiles of Feigl et al. (right) shows
numerical simulation data of an LDPE melt at fixed flow rate at several points
along the SHCD.

region may be generated out to a normalised radius of between 0.4 (at lower

extension rates) and 0.6 (at higher extension rates), values which seem at least

amenable to our investigations. Their presented data are fit with a ‘power law’

relationship, with power law exponent, s, of

u

U
= 1−

( r
R

)s
(6.13)

Expected axial velocities along the centre-line of the ideal SHCD (showing a

linear increase in velocity between the inlet and outlet) are shown schematically

in figure 6.8.

6.4.2 Experimental velocimetry of flow through an SHCD

The degree to which our contraction approaches these ideals seen above remains

to be seen, however. Bruker Paravision software, and a spin-echo velocimetry

method was used to acquire velocity maps over a 1 mm thick slice in a plane

containing the flow axis and one transverse direction (a “vertical slice”). Using

a range of screw-thread driven piston rates between 0.08 rev/s and 0.56 rev/s

(linear piston speed range of 0.04 mm/s and 0.25 mm/s), velocity maps over the
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Figure 6.8: Between the inlet and outlet, the ideal behavior for fluid following
along the stream line lying on the central axis is to experience uniform accel-
eration (with position). Outside of this region, fluid is expected to maintain
constant velocity in the straight pipes leading in and out of the critical region.

vertical slice were obtained for a water sample (fig. 6.9) doped with gadolinium

chloride so as to minimise experimental repetition times. In fig. 6.11, the linear

progression of velocity with space is seen for seven equally spaced piston speeds

in the stated range, scaled in a way so as to show the velocity of the fluid as a

fraction of the field-of-flow provided by the experimental parameters (half the

field-of-flow being positive, half being negative). Immediately, it can be seen

that the velocity profile along the axial line is approximately linear in that co-

ordinate, precisely the constraint for extensional flow: vz ∝ z. The coincidence

of each velocity profile on such a scaled diagram is also reassuring. Finally, flow

profiles across the pipe are shown in fig. 6.13.

The vertical slice velocity maps were repeated when Pluronic P105 solution

was pumped through the SHCD (fig. 6.10), the central velocity profiles for P105

are shown in fig. 6.12, and the cross-pipe flow profiles are shown in fig. 6.14.
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Figure 6.9: Velocity maps for water flows within the SHCD for a vertical,
central slice, for seven different pumping rates, labelled by the corresponding
inlet velocity respectively (left) for flow ‘down’ through the SHCD, (right) for
flow in the reverse, or ‘up’ direction. The colour map images are rescaled as
fractions of the observable field-of flow (FOF; the velocity space ‘field-of-view’
equivalent) for each to show the similarity of flow profiles in each instance.
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Figure 6.10: Velocity maps for Pluronic P105 solution flows within the SHCD
for a vertical, central slice, for seven different pumping rates, labelled by the cor-
responding inlet velocity respectively (left) for flow ‘down’ through the SHCD,
(right) for flow in the reverse, or ‘up’ direction. The colour map images are
rescaled as fractions of the observable field-of flow (FOF; the velocity space
‘field-of-view’ equivalent) for each to show the similarity of flow profiles in each
instance.
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Figure 6.11: Velocities of a water sample along the central line of the SHCD
are shown, as fractions of the field-of-flow. The acquired profiles are approx-
imately linear and, given the equal spacing of the linear piston speeds and
fields-of-flow chosen, are adequately collinear.

Clearly obvious is a difference in the level of fluctuation in the central (axial

profile) velocity data between the water and P105 cases. It could be that the

P105 sample shows more noisy data than the water due to a noise effect in the

phase difference obtained for creating the propagator data, conceivable due to

there only being two q-space data points being Fourier transformed, and hence

a very broad propagator (peak picking errors may be easier to make). However

the difference in raw signal-to-noise ratio between the water and P105 cases

should be very small, and hence it may be that this variability may indicate

some intrinsic flow fluctuations that are generated by extensional flow in this

complex fluid.

The second difference in these two data sets is that the supposed linear
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Figure 6.12: Velocities of our Pluronic P105 sample along the central line of
the SHCD are shown, as fractions of the field-of-flow. The acquired profiles are
approximately linear and, given the equal spacing of the linear piston speeds
and fields-of-flow chosen, are adequately collinear.

increase in velocity along the length of the SHCD is not reflected as truly for

the water as for the P105 central velocities. While the velocity profiles fall

roughly along the same curve upon scaling, that curve is rather gently trending

towards higher-than-expected velocities the further down the SHCD one moves.

Of course, the SHCD is designed with the plug-flow scenario in mind, but in the

case that the flow should be parabolic, we would still expect a linear increase in

central velocities down the pipe, seeing as the maximum velocity in a circular

parabolic flow is twice the average velocity of the flux over any plane. The

only way that the central velocities would not reflect a linear increase is if the

cross-pipe profiles take different functional forms as the flow progresses. The

fact that the P105 central velocities show a more linear increase is interesting as
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Figure 6.13: Axial velocities of water flow in transverse profile across the
SHCD cell are shown. Each panel corresponds to one of four positions, situated
at 0, 3, 6, and 9 mm from the inlet. For each position, the seven inlet flow rates
are shown, scaled to show similarity.

the shear-thinning properties dictate a more plug-like flow, and will be of note

in further analysis.

Near-parabolic velocity profiles are seen across-the-pipe in the case of water

flow, and this is consistent with our previous remarks regarding the non-plug-

flow-like behaviour attributable to a slightly non-linear increase in velocity with

axial position. Also consistent with the P105 flow, the cross-pipe velocity profiles

for the micellar solution flow are indeed flattened to some degree near the central

point, indicating that the design condition (that the pipe be semi-hyperbolic)

is more appropriate in this case. This reduction of the shear field in the central

region also gives us confidence that spectroscopy might be able to carried out

on “cylindrically symmetric” voxels, via the Hankel transformation technique.
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Figure 6.14: Axial velocities of our Pluronic P105 in transverse profile across
the SHCD cell are shown. Each panel corresponds to one of four positions,
situated at 0, 3, 6, and 9 mm from the inlet. For each position, the seven inlet
flow rates are shown, scaled to show similarity.

6.4.3 Magnetic Resonance Spectroscopy in an SHCD

Spectroscopic data is of vital importance in magnetic resonance investigations

of rheological properties of materials, whether proton-based or using alternative

nuclei such as deuterium. As ever, an experiment obtaining an image which

retains spectroscopic information requires a dimensionality one greater than

an density image alone. As a test-case, with water filling the SHCD, here we

confirm the validity of the use of the Hankel transformation (see section 3.8.4)

as being accurate qualitatively and consistent quantitatively for a scalar field

derived from an axially symmetric pipe. With the goal of such spectroscopy

being to use the shear-free core flowing through the SHCD as the interesting

voxel for spectroscopic imaging, at first glance it may be unclear as to whether
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the reconstruction from Cartesian to a radial space is legitimate. At a second

glance it seems a plausible procedure, and here some basic spectroscopic imaging

experiments confirm this.

Figure 6.15: (left) Obtaining a phase-encoded one-dimensional image ag-
gregates points into bins based on position as shown. Whether or not this
is appropriately symmetric for the SHCD and Hankel transformation is to be
shown, (centre) the alternative using two volume slice selections, generating a
clumsy cuboid sensitive volume in the SHCD, and (right) the ideal voxels for
the geometry and its intended use in extensional flow.

The benefits of being able to use such a technique are quite valuable. To

selectively obtain spectroscopic data from the central shear-free core by con-

ventional methods would require the imposition of at least two slice selective

rf pulses (a third would be required if the z-direction were restricted as well).

This in turn would mean that signal acquisition would occur at (a minimum of)

two echoes from the excitation pulse. While this may not ordinarily restrict the

type of experiments achievable, as we have seen in Chapter 5, the relaxation

times for some micellar systems can be extremely short, and the most must be

made of time in the pulse sequence. In any case, the circular effective voxel size

in Hankel transformed data is much more suited to our geometry (though not

quite as suited as in the case of the Couette geometry), and signal is obtained

from an efficiently shaped volume. The only negative aspect to the use of the

technique is that the signal-to-noise ratio for a particular voxel in radial space is

proportional to the radius at which the voxel lies. This means that noise over-

whelms the signal at the centre of the pipe, precisely the region of interest in our

extensional flow geometry, however there may be enough signal near to, but not

exactly on, the pipe axis. By judicious choice of voxel avergaging, however, it
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will be possible to offset some of these problems and obtain spectroscopic data

adequately close to the centre of the volume of interest.

6.4.4 Radial spectroscopic imaging of P105 in an SHCD

We now turn to the task of obtaining spectroscopic information from the P105

sample, containing deuterated 1-phenylethanol: the task is to measure the NMR

spectrum of deuterons present, which is an indicator of alignment of micelles in

the flow. In a similar fashion to the spatially resolved spectroscopy obtained in

chapter 5 a spin-echo, phase encoding pulse program was used to image in one

direction only, though in contrast to that work a CSI (chemical shift imaging)

routine built in Paravision, supplied by Bruker was used here. The spectra

imaged across one spatial dimension were obtained for the 10 mm-thick slice

corresponding to the previously described semi-hyperbolic functional form of the

contraction. The Hankel transformation was then used on this one-dimensional

“imaging” result, in order to obtain the spectral data as a function of “radial

voxel” (in the fashion of the right-hand schematic in fig. 6.15).

The results of this spatially resolved spectroscopic measurement can be seen

in fig. 6.16, and several features are worth noting.

• Firstly, it is clear that as the flow speed is increased, the apparent inten-

sity of the spectral features decreases, which maybe attributable to line

broadening, which we will investigate with further analysis.

• Secondly, the four spectra shown at each flow rate are of differing intensi-

ties. As apparent from fig. 6.15, once the axis on which the Hankel trans-

formation is chosen, locations corresponding to a particular co-ordinate

on that axis are treated indiscrimantly. As such the ‘outer’ voxels may

not contribute the same intensity signal as the ‘inner’ voxels, due to the

contracting shape of the SHCD. This, however, does not intuitively ex-

plain the near-identical heights of the two ‘inner’ spectra - though upon

further consideration it can be kept in mind that the Hankel transforma-

tion outputs signal as a function of radial position, which in our case is

hopefully uniform once the voxel lies almost completely within the ‘thin’

end of the SHCD.
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Figure 6.16: Here, the deuteron spectra of 1-phenylethanol in P105 are shown,
as a function of inlet velocity. In each case, four “radial voxels” are obtained
from the Hankel transformation, each centred 1 mm apart. The spectra corre-
spond to position as follows: (Dark blue) The outer-most (r = 4 mm) voxel;
(Green) The second outer-most (r = 3 mm) voxel; (Red) The second inner-most
(r = 2 mm) voxel; and (Light Blue) the inner-most (r = 1 mm) voxel.

• Thirdly, while a lowering of the peak with flow rate occurs, no easily

apparent qualitative change occurs in the line shape with either position

or flow rate, until the inlet flow rate reaches 6 mm/s. At that flow rate,

some flattening or splitting of the top of the spectral line becomes seen,

and is even more obvious at inlet speed of 7 mm/s.

6.4.5 Further analysis of the spatially resolved spectra

It is highly encouraging that at least some spectral features show some flow rate

and position dependence, in particular given that that positional dependence is,
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Figure 6.17: (Top) As a function of extension rate produced, the spectra cor-
responding to the “inner-most” voxel of the SHCD, the progression being from
zero extension (highest peak) to highest extension rate (lowest, split peak),
(middle) the measured full-width half-maxima of the spectra shown, as a func-
tion of the extension rate produced, and (bottom) by way of comparison at
reasonably small deformation rates, the increase in linewidth for shear flow (see
fig 5.3) of a P105 solution.
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by design, somehow related to the ‘purity’ of the extensional (relatively shear-

free) properties of the flow. Figure 6.17 shows some information extracted from

the data of figure 6.16, namely the linewidths. Analysis of these linewidths is

performed by taking the absolute full-width half-maximum, whether the feature

appears to be a single peak, or composed of two, split peaks.

We do not attempt to make definitive conclusions on this data, but make

some comments based on their analysis later in the chapter. It is, however,

interesting to note the evolution of the linewidth of the major spectral feature,

in a direct comparison between this data and the spectral measurements seen

in Chapter 5. In that chapter, changes in the deuteron NMR spectrum were

observed, and while those experiments were highly temperature dependent, and

not many low-valued shear rate data were obtained, reasonable initial com-

parisons lead to the observation of a variation in linewidth of approximately

. 0.6 Hz/ s−1(see fig. 6.17(bottom), before the linewidth plateaued at higher

strain (shear) rates. In contrast, the data of fig. 6.17(middle), being the ex-

tracted linewidths from deuterons passing through the SHCD, yield a strain

(extension) rate dependence of linewidth increase of 3.8 Hz/ s−1. The final

extension rate linewidth is very slightly less than a projected straight line con-

tinuation from lower extension rates, but whether this is a real sign that some

plateau has commenced or not is not able to be stated.

6.5 Conclusions

We have explored the potential for magnetic resonance to be applied to the

study of contraction flows in a semi-hyperbolic converging die (SHCD). In the

first case, the design process for construction of an SHCD suitable for use in our

Bruker micro-imaging magnet system was a step-wise process, the final imple-

mentation being a glass tube, shaped at one end by being drawn down onto a

graphite former, which was lathed to provide a precisely defined functional form

for the contraction flow. This functional form was determined by considering

the throughput or flux through any axial plane across the tube, and with the

choice of free parameters made, the radial profile for our glass SHCD was
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R2(z) =
405

16

(
z +

5

4

)
(6.14)

which results in an extension rate within the SHCD of ε̇ =
4

5
vi, where vi is the

inlet velocity.

Once flow-rate testing, leak prevention and simple characterisation of the

extensional flow system with the conventional Rheo-NMR setup was complete,

simple magnetic resonance imaging of the SHCD filled with water confirmed the

quality of the interior tube shape.

Velocimetry was then carried out on a water sample, in the forms of figs 6.9

and 6.10, which, being scaled (normalised) colormaps, in most cases showed

just how self-similar the flows were with changing flow-rate. From these maps,

some of the most important intermediate data was obtained, namely the central

axial velocity profiles. The SHCD’s primary design feature is that the extension

rate, or spatial rate-of-change of velocity, be linear. While the data obtained

for the water characterisation showed some curvature in this aspect, this may

possibly be rationalised by the consideration that the SHCD is designed based

on the premise we are looking for shear-free flow fields, and that the velocity

profile across-the-tube in some way becomes more plug-flow-like. Indeed, when

replaced by the Pluronic solution P105, which has already featured in shear

studies in Chapter 5, axial velocity profiles do indeed become more linear, how-

ever the velocity data does fluctuate more than in the water scenario. Hence

we conclude that the designed form for the SHCD has been successful enough

to be valuable in Rheo-NMR-based extensional flow studies of complex fluids.

A key indicator that Rheo-NMR can provide new information in such stud-

ies, however, is the use of techniques which can indicate molecular alignment.

Extensional flow’s transient nature, and the limited reservoir volume able to be

used in our non-cyclic flow system, means that spectroscopic imaging (spatially

resolved spectroscopy) is an ideal basis for carrying out interesting work in ex-

tensional Rheo-NMR on complex fluids. As such, we performed a spectroscopic

imaging experiment on P105, by way of the deuterons within 1-phenylethanol

stabilising molecules crucial for worm-like micelle formation, and the change in

these spectra with varying shear rate and positions is shown in fig 6.16. Sub-

stantive conclusions are hard to make based on these plots, but it is incredibly
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heartening to see spectral variations, considering the small volumes involved,

the residence time of relevant deuterons within that volume, and even the rel-

ative insensitivity of those deuterons. Quadrupolar interaction splitting of the

spectrum was really only seen at the highest flow rates (and hence extension

rates) used, which, upon reference to the literature, are not large extension rates

by any stretch, however reliable data was successfully obtained in this research

by compromise of fluid residence time and flow rate. The progression and de-

pendence of deuteron spectral linewidth with increasing extensional deformation

rate, and hence increasing spectral broadening and/or splitting, was measured

to be 3.8 Hz/ s−1, approximately 6 times the similar dependence extracted from

the shear deformation spectral data of chapter 5. We do not attempt to attribute

this to a certain extensional viscosity, however the fact that this ratio is greater

than the Trouton ratio for Newtonian fluids, Tr = 3, is consistent with basic

fluid mechanics theory. Hence, the conclusion we do make is that there is a

possible future in Rheo-NMR studies for extensional flow, particularly further

expanding the envelope of experimental capability. In our case we must provide

faster techniques that allow higher flow rate experiments, so as to compare with

other research on non-Newtonian fluids [23–27] to be able to make some sense

of the large discrepancies seen in the literature [1, 10, 28].
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Chapter 7

Conclusions

7.1 Review of aims

We set out in this thesis to explore ways in which magnetic resonance (MR) can

play a contributing role to furthering knowledge of the rheological properties

of complex fluids. Complex fluids are just so ubiquitous in everyday life that

a lot of their properties are taken as simple, yet for many examples the truth

dictates that we may not be so glib. Properties that interest us in this thesis

are generally derived from the statistical properties of linear and pseudo-linear

mesoscopic entities as they undergo motions within a matrix which is in itself

statistical in nature. The bulk of ideas we investigate are founded on the idea

of the tube model of polymers [1], the one-dimensional curvilinear diffusion

of those polymers within the network [2], and that when such a material is

deformed macroscopically and we treat a polymer molecule in isolation, we do

not apply a force to the molecule, but rather just statistically affect the matrix

in which it resides.

Flow constitutive equations relating the stress within a sample at some time

to the history of the strain, are the primary job of the theoretical rheologist. The

phenomenon of shear thinning has been worked on in theory and experiment

alike for some time, however the related yet more conceptually opaque idea of

shear banding does not have the same established foundation. Our major aim

and underlying theme for this thesis was to investigate the way in which align-

ment of mesoscopic-level features of a polymeric material affects macroscopic
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rheological properties, and conversely how material deformation might affect

microscopic structure. The method of expertise we bring to this investigation

is magnetic resonance; the amalgamation of MR to rheology has been dubbed

“Rheo-NMR” and, by inheritance from MR as a whole, it is a rich field. It in-

corporates MR spectroscopy, diffusometry, tomography, relaxation effects, and

combinations of any of these in concert, not only in the case of proton magnetic

resonance, but larger nuclei as well (particularly deuterons, in our case). As

we have seen, deuterons have an intrinsic worth as a probe of alignment, due

to their non-spherical nuclear charge distribution residing in the electric field

gradient provided by electronic molecular orbitals. What follows is a summary

of the way in which we have used deuterons to provide such information, though

to begin with we review Chapter 4 - “Transverse Relaxation in Sheared Polymer

Melts” as a way to explore the degree to which we may do away with deuteron

spectroscopy altogether. In Chapter 5 - “Complex Fluids in Shear Flow”, we

mounted a campaign to tie alignment measurements with macroscopic proper-

ties, and found that deuterons are too valuable to totally ignore, especially in

conjunction with the many other techniques at our disposal. In many senses,

Chapter 6 - “Extensional Flow” is entirely complementary to the previous shear

flow research, although there is far less extensive history to that field, though

it is just as fundamental, rich and practical; we port many of the techniques

employed in Chapter 5 to this chapter.

7.2 Alignment’s effect on proton spectroscopy

of polymer melts

The nucleus overwhelmingly recognised as being of most general utility, due

to its abundance and high gyromagnetic ratio, is the smallest possible nucleus,

the single proton of hydrogen. It does however lack some properties of the

deuteron such as an electric quadrupole moment, and is therefore not used as

much in molecular orientation-focussed research. Polymers, however, have sev-

eral distinct timescales over which reorientation occurs at different lengthscales,

and the through-space homonuclear internuclear dipole-dipole interaction that

a particular nucleus feels will bear some signature of the director of the polymer
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tube segment in which it lies.

Following the work of Ball, Callaghan and Samulski (BCS), which was in turn

based on the paper by Callaghan and Samulski, we set out to determine the form

of the probability-based correlation function dictating the chance that a single

proton nucleus would, after some time delay, be returned to the tube segment

to which it belonged at the initial reference time. The two main contributions

(and inhibitors) to the chances of being found as such are the one-dimensional

curvilinear diffusion of the polymer “reptating” throughout the matrix of en-

tanglements engendered by other polymers in the material, and the additional

probability that such a tube segment still even exists at the time in question.

These two probabilities, ΨRTO and ψtube, respectively, totally determine a two-

point time correlation function

C(t) = 〈ω(t)ω(0)〉 (7.1)

where the value of omega is a function of the projection of the director of the

tube segment along the Zeeman frame weighted by a sample-specific remanent

dipole interaction strength. Initial numerical simulations indicated inaccuracies

in the form of the magnetic resonance signal decay, and upon further reflection

and an addition to the numerical code, we determined that, most importantly, a

distribution of dipolar interaction strengths must be incorporated. This spread

can be attributed to random fluctuations in local equilibration times and/or

dissimilar diffusion rates locally within a macromolecule.

Comparison with the earlier experimental results of Dr. Ryan Cormier

was the qualitative test of this numerical evaluation of the BCS theory of

transverse relaxation. That experimental work was carried out on a 494 kDa

poly(dimethylsiloxane) melt, and the dependence of transverse relaxation time

of the melt on the shear rate, and also the orientation of a horizontal Couette

cell was measured. Correspondingly, our theory and simulation work contained

in-built a model by which the direction of shear, in the hydrodynamic frame,

could be re-oriented at will with respect to the magnetic resonance Zeeman

frame - which could be viewed as allowing confirmation of the technique, or as

an additional fitting parameter.

Three critical parameters of polymers in the melt phase were required to pro-
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duce the simulation relaxation data, those being the average number of polymer

tube segments experienced by a molecule, Z, the average residual dipolar inter-

action strength, ωd0, and the tube disengagement time, τd. Preliminary values

that were deduced by Cormier, and were hence used as initial guesses in our sim-

ulation were Z = 50 and τd = 210 ms. No residual dipole interaction strength

was proposed, however it was taken that this value should lie between 1 and

100 kHz.

Tuning these parameters and evaluating the quality of the fit to the experi-

mental data, we obtained the following values

Z = 35± 10

ωd0 = (3900± 200) Hz

τd = (600± 300) ms

and conclude that, with an appropriate model of polymer dynamics, proton

magnetic resonance can indeed be used to elucidate the degree of alignment,

although the most drastic variation in transverse relaxation time is confined

(for the polymer we investigated) to a shear rate range of ∼ 20 s−1.

7.3 Rheo-NMR observation of the effect of shear

on worm-like micelles

An ideal test-bed for the investigation of the rheology of non-Newtonian flu-

ids are worm-like micelles, being polymer-like in geometry, but in a loosely-

aggregated, self-assembled way. Cates and others have proposed constitutive

equations relating the internal stress and strain history based on rates of break-

age and recombination of such worm-like micelles, two mechanisms which allow

for the presence of a variety of characteristic dynamical times not available to

conventional polymers . The worm-like micelle used in our work was formed of

the triblock copolymer (polyethylene oxide–polypropylene oxide–polyethylene

oxide) material “Pluronic” P105, courtesy of BASF. Required to generate and

maintain the worm-like structure, 1-phenylethanol is added to aqueous solu-
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tion of the Pluronic, and in its perdeuterated form also provides us with a

mode of investigation of the alignment of the micelles, as the hydrophobic alco-

hol is presumed to reside in the core, provideed by the relatively hydrophobic

polypropylene component of the triblock copolymer.

In the first place, it was established that this micellar solution was of con-

siderable interest through conventional rheometry. In particular, the solution

shows a narrow band of high viscosity in the temperature region between ∼ 290

and∼ 305 K, but more than that, it shows an anomalous dip in viscosity at

∼ 295 K when sheared. Start-up stress measurements of the sample also indi-

cated that at shear rates in the range 1.6 to 10 s−1, a very long (up to 10 min)

equilibration time may be required to come to steady state, confirming the

unusual nature of this material.

Accordingly, a variety of key tools of Rheo-NMR were used to investigate

the effect of shear on the Pluronic P105 solution. These included:

• 1H spectroscopy and diffusometry, in order to determine the mobility of

each component of the solution, and hence gain insight into the location

of the phenylethanol, amongst other things,

• 2H spectroscopy of the fluid, as a function of both temperature and shear

rate. Such spectroscopy was immediately able to indicate that some inter-

nal structure of the fluid was indeed being modified within the temperature

range indicated, as the quadrupole splitting which was readily apparent

over that region was destroyed at specific temperatures within that region

depending on the shear rate,

• spatially resolved velocimetry, which was used to show the velocity profile

of the micelle material across-the-gap of the cylindrical Couette shear

device. Two experiment types were carried out: one being a transient

start-up view of the flow profile, which showed that, indeed, it took of

the order of 10 min for the flow to come to a steady state, at which time

the flow was clearly shear banded and; two, flow profiles across-the-gap

showing how the steady-state evolved with increasing shear, a view of

the material as one moves across the constitutive curve in a strain-rate

controlled fashion. This traversal of the strain-rate axis showed different
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qualitative states, namely shear banding and fluctuations of the shear-

band interface, which were of the most interest, and

• spatially resolved deuteron spectroscopy. The use of the Hankel transfor-

mation procedure was of particular use here, due to the reasonably low

abundance of deuterons and their inherently lower signal. Information

from these experiments were intended to aid in the investigation of just

whether a shear-band (a rheological concept) was correlated with a bire-

frigence band (as can be seen in a magnetic resonance experiment). In

keeping with previous research, the correlation is not apparent, and many

different combinations were observed: different alignment order parame-

ters in a supposedly Newtonian regime appeared right alongside the case

where no birefrigence banding occurred despite being abundantly shear-

banded. This issue remains unresolved in terms of the experiments carried

out here.

7.4 Extensional flow as measured with mag-

netic resonance

Extensional flow has a chequered history, largely due to the transient nature

of possible flow: one can only stretch something so far before some other ma-

terial dimension must become prohibitively narrow or breakage occurs. Many

different extensional rheometric devices have been designed and constructed,

and in various classes of device and on many different samples, there is massive

disagreement in quantitative results.

Magnetic resonance may be unable to clearly determine extensional viscosity,

which would require a calibrated measurement of internal stress, but we feel

it can still be of tremendous use in the field. The geometry chosen was the

semi-hyperbolically converging die, so called for the functional form of a pipe

constriction which supplies a flow field that, for plug-flow, dictates that the

extension rate (the gradient of axial velocity) increases linearly along the pipe

axis. This was eventually achieved using shaped glass, and successfully provided

the correct shape, as evidenced by basic magnetic resonance imaging.

Following this, characterisation of the pipe (in terms of flow) was carried
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out on water. Magnetic resonance velocimetry was carried out, which showed

near-linear increase of axial velocity with position along the pipe. What non-

ideality exists has been proposed to be an artifact of the non-globality of the

pure extension field, in fact, an extended central volume absent of shear did not

seem apparent for water at all.

In contrast, similar velocity mappings of the Pluronic solution containing

phenylethanol, a worm-like micellar material, showed a much more linear pro-

gression along the pipe. Transverse profiles did not show quite the same “flat”

region of plug-like flow within some radius from the axis, as had previosuly been

seen before in the literature (where SHCD investigations were carried out with

LASER Doppler Velocimetry). They were, though, certainly not qualitatively

the same as the profiles of water, and it must be noted that the extension rates

we explored up to are not nearly as large as those provided elsewhere, due to

experimental constraints mentioned previously. Despite this, deuteron spectro-

scopic imaging was carried out, again with the use of the Hankel transformation,

to determine whether the micelles in the Pluronic solution were being aligned

along the flow direction. A steady change in spectral features was noted with

both increasing extension rate, and as a function of radial position. Only four

voxels were able to be pulled out of the data, however the forms of the spectra

are not unreasonable, and in particular at the positions measured closest to the

axis, at the highest extension rates, we can observe not only broadening of the

deuteron peak, but some splitting as well.

Our research into the use of magnetic resonance in the assistance of rheolog-

ical measurements of complex fluids bears the most potential of this thesis for

future investigations. One area of note would be to improve the time resolution

of the velocity imaging, so as to be able to push the extension rates observable

by magnetic resonance higher. Another would be to design a pipe with not only

long lead-in (giving the material a knowable strain history) but a long narrow

end as well, so as to be able to investigate the reversibility properties of complex

fluids. Our dominant conclusion for the final part of this thesis is that magnetic

resonance can play an important part in the extensional rheology community,

owing to its (recurringly) obvious noninvasive properties, able to probe flows

without disruption.

181



Bibliography

[1] M.Doi & S.F.Edwards. The Theory of Polymer Dynamics. Oxford University

Press, 1986.

[2] P-G. DeGennes. The Theory of Polymer Dynamics. Oxford University Press,

1971.

182


