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Abstract

This thesis describes the theory and implementation of a semi-analytical model for

gravitational microlensing. Gravitational microlensing is observed when a distant

background ‘source’ star comes into close alignment with an intermediate ‘lens’ star.

The gravitational field of the lens deflects the paths of light emitted from the source,

which causes an increase in its observed brightness. As the alignment of the two

stars changes with time, the apparent magnification of the source follows a well

defined ‘lightcurve’. A companion body (such as a planet) orbiting the lens star can

introduce large deviations from the standard lightcurve, which can be modelled to

determine a mass ratio and separation for the companion(s). This provides a means

to detect extrasolar planets orbiting the lens star.

We show, from basic principles, the development of the standard model of a mi-

crolensing event, including the effect of multiple lens masses and orbital motion.

We discuss the two, distinctly different, numerical approaches that are used to

calculate theoretical lightcurves using this model. The ‘ray shooting’ approaches

are discussed with reference to the previously developed modelling code (MLENS),

which implemented them. This is followed by a comprehensive description of the

‘semi-analytical’ approaches used in the new software (mlens2) developed during

this thesis programme; a key feature of these techniques is the determination of the

source magnification from the roots of a high order polynomial. We also discuss

the process of finding the best-fit model for an observed microlensing event, with

respect to the mlens2 software package. Finally, we demonstrate the capabilities of

our semi-analytical model by generating theoretical lightcurves for the microlensing

events OGLE-2005-BLG-390 and OGLE-2006-BLG-109 and comparing them to the

observational data and published models.
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Preface

My first introduction to microlensing was in the summer of 2007-2008, when I took

part in a university funded research project with my (now) supervisor, Prof. Denis

J Sullivan (DJS). At the time, the microlensing group at VUW consisted of DJS and

Dr Aarno Korpela, who had recently finished a PhD programme where he developed

a set of modelling codes called MLENS.

Massively parallel computing is an important part of modelling gravitational mi-

crolensing events. The huge parameter space involved requires many millions or bil-

lions of separate calculations to be made. If run sequentially on a single computer,

these calculations could easily take months or years. However, each calculation is

independent, which allows the workload to be divided into smaller chunks and run

in parallel over many computing nodes. This can reduce the overall calculation time

to the order of hours or days.

At the time, the microlensing group at VUW had access to three parallel comput-

ing facilities. The SGE grid (running the Sun Grid Engine software) was a ‘cycle

stealing’ grid within the School of Mathematics and Computer Science. Software

running in the background of (approximately) 100 NetBSD workstation computers

made them available for computations whenever a physical user is absent. Due to

restructuring, this grid is now known as the ECS grid, managed by the School of

Engineering and Computer Science. The second available facility was the Condor

grid, managed by the university’s Internet Technology Services. It is now known as

the SCS grid, also managed by the School of Engineering and Computer Science.

Condor is another cycle stealing grid, running on 1000 dual core student computers

running Windows XP. The third available facility was the Blue Fern supercomputer

at Canterbury University, consisting of a two rack Blue Gene/L system with 4096

cores, plus an additional IBM p575 cluster for testing and calculations in its own

right.

One goal of the summer project was to investigate whether MLENS (which was

designed to use the SGE grid exclusively) could be modified to make use of the

extra capabilities available with Blue Fern or Condor. We determined fairly quickly

vii
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that Blue Fern was unsuitable. Supercomputers like the IBM Blue Gene series

focus on fast communication between relatively weak computing nodes. This makes

them excellent for calculations that require frequent communication between the

nodes, such as distributed differential equations, but is unnecessary for our purposes.

MLENS would have required significant changes to efficiently use this architecture,

so we decided to focus our efforts on the Condor grid instead.

Condor operates similarly to SGE but with an order of magnitude more computers.

The main difference between Condor and SGE is in the operating systems and file

sharing. On SGE, every computer in the network is equivalent. Tasks can be issued

and run on any computer, with a common file system available across the network for

data and communication. Condor, on the other hand, has a master server running

Red Hat Linux, which sends a self contained task (including all the files required)

to the computation node running Windows XP. Communication back to the master

server only occurs once the task has been completed. We determined that with a

moderate amount of effort, MLENS could be modified to run well on Condor. The

work required would be far beyond the scope of the summer project, so the idea was

put on hold.

Over this summer period, the event OGLE-2006-BLG-109 was being actively mod-

elled by the international microlensing community. This event was particularly chal-

lenging to model and required capabilities that the MLENS code did not support:

three lens masses, plus orbital motion in the lens and observer. My own interest in

the underlying numerical techniques started with discussions of how the ray-tracing

code worked, and what would be required to make it support the third lens. By the

end of the project, Dr Korpela had added support for the third lens, and we were

able to run basic models of the event.

I followed my interest in the numerical ray-tracing technique by participating in

an Honours project with DJS, developing a simple ray-tracing model similar to

the one used in MLENS. This was used to illustrate how the individual images

changed during the OGLE-2006-BLG-109 event, causing the dramatic changes in

light intensity seen over the course of the event.

This was followed by a year long break from microlensing as I finished my BSc

Honours degree. My efforts in this endeavour were rewarded with a VUW Masters

by Thesis Scholarship, allowing me to embark on this thesis.

This thesis work started in July 2009. The original direction of the project was

to follow up on the work from the summer scholarship; changing the MLENS code

to run on the Condor grid and then to be involved with active modelling of new

microlensing events. The first 2 or 3 months were spent understanding the MLENS
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code, commenting and reorganising it to make it clearer to myself and others. This

turned into a restructuring of the entire MLENS code-base, which took several

months. While focusing on perfecting the code, I lost focus of the larger picture

which was to create something that worked and then to use it to model events.

During this time, it became increasingly obvious that we needed to be able to include

orbital motion effects in our models, particularly the parallax introduced by the

Earth’s motion around the Sun. These effects are being increasingly modelled on

new events, as they can provide the extra information required to constrain the mass

of the lens star and any planets that may be orbiting it. The theory that describes

these effects is tricky, and progress on understanding and developing this theory was

slow. Additionally, the MLENS code made several core assumptions on the source

motion which made it difficult to include these effects in the code. The central ray-

tracing calculations would have needed rewriting to include parallax, and so I was

reluctant to do this.

As such, when we attended the 14th workshop on Gravitational Microlensing held in

Auckland in late January 2010, our progress had essentially stalled and we had no

results of any significance to discuss. This conference marked a turning point in the

thesis. After discussions with other modelling groups, we decided to abandon our

existing ray-tracing approach in favour of the semi-analytical methods that several

modelling groups had used with great success. This approach is radically different

to ray-tracing, and required us to understand new theory that we had previously

avoided. The following months were spent furiously reading papers, understanding

the theory involved, and extending and developing it into the techniques discussed

within this thesis. This meant abandoning the original goal of modelling events; the

time and effort required to build a fully functional modelling code, and then to model

events with it, is more within the scope of a PhD than a Masters programme.

Now, sixteen months after embarking on this thesis, I have ended up at a far more

satisfying position than the original topic direction would have given. The new

modelling code (called mlens2) that I have built uses several new semi-analytical

techniques to model lightcurves for a set of model parameters, including the extra

parameters used to model orbital motion within the observer or lens. The func-

tionality from the original MLENS to search parameter space for the best set of

parameters has not yet been reimplemented. In the first stage of the project, I had

developed a general wrapper that allows the code to be run efficiently on SGE, Con-

dor, or a single computer with multiple processors. This needs to be integrated with

the new modelling code, plus new code to control the stochastic search of parameter

space, and would be within the scope of a summer or Honours project for a student

with a strong programming background.
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Introduction

Gravitational microlensing uses the slight deflection that light undergoes as it passes

near a massive body to probe for planets around distant stars within our galaxy.

The idea of being able to detect planets like this is recent, but the idea that gravity

itself can affect light is not.

The deflection of light by gravity was first proposed by Newton as one of the queries

at the conclusion of his treatise Opticks (Newton et al. [1718]). The very first of

these queries asks

“Do not Bodies act upon Light at a distance, and by their action bend

its Rays, and is not this action strongest at the least distance?”

The phrasing of this question (“Do not...”) reads as if this was the obvious conclu-

sion, and that Newton was daring someone to prove him wrong.

The first derivation of an equation for this deflection was a century later in 1804,

by Johann Soldner. Soldner used Newton’s corpuscular model of light to show that

a light ray grazing the limb of our Sun should undergo a deflection of

α =
2GM

c2R
≈ 0.87 arcseconds.

It was not long after this result that Young’s famous double slit experiment showed

that light acted, not as a particle, but as a wave. Newton’s corpuscular model for

light was discarded, and this idea of deflection was seemingly invalidated.

A further century passed before Einstein revisited this idea with his general theory of

relativity. His first attempt, based on his equivalence principle between gravity and

acceleration, predicted the same result that Soldner derived. Under his completed

theory, however, he predicted a deflection of twice the earlier result

α =
4GM

c2R
.

This prediction was confirmed by two separate expeditions to observe the 1919 solar

eclipse, and became one of the key confirmations of Einstein’s new theory.

xiii
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The idea that this bending could lead to a lens-like effect was begrudgingly published

by Einstein in 1936 (Einstein [1936]), at the request of R. W. Mandl. He showed

that a distant background star would appear as a “luminous ring” when perfectly

aligned with an intermediate star. He commented that

“Of course, there is no hope of observing this phenomenon directly”

and that, instead, the effect will manifest itself as an increase in the apparent bright-

ness of the background star.

This effect is now known as gravitational lensing, and the luminous ring that Einstein

describes is termed the Einstein ring. Einstein’s calculations, however, did not

account for the extremely large distances and masses involved with galaxies. At

the very large scale, entire galaxies can act as gravitational lenses, causing multiple

distorted, visible, images of the background to be seen. The position and size of

these images can be used to measure the mass of the intermediate galaxy and to

infer the presence of dark matter.

At the other end of the scale, gravitational microlensing occurs within our galaxy,

with individual stars like Einstein first described. In particular, when looking to-

wards the Galactic bulge (where the density of stars is greatest), these distant back-

ground stars are now routinely observed to be lensed by intermediate stars in the

Galactic disk, measured by their characteristic change in brightness with time. The

timescale of these variations is of the order of days to months, making it practical

to observe many events in parallel with wide angle surveys. The theory behind this

is discussed in detail in Chapter 1.

The first application of gravitational microlensing to a physical scenario was the

search for dark matter in the form of MACHOs (Massive Compact Halo Objects) in

the halo of our galaxy. By observing a large number of stars in the large and small

Magellanic clouds, these objects (should they exist) would act as gravitational lenses

when they come into alignment with the background stars, leading to a characteristic

change in brightness with time (Paczynski [1986]). The rate at which these events

occur will be proportional to the density of MACHOs in the Galactic halo. After

extensive observations, it was found that a significant proportion of the dark matter

in our galaxy cannot be attributed to MACHOs (see e.g. Alcock et al. [1997],

Tisserand et al. [2007]).

The idea of using microlensing to search for extrasolar planets was first suggested

by Mao and Paczynski [1991]. If the lens star has a planet near the Einstein ring

(typically 2− 4 AU for events within our galaxy) the gravitational influence of the

planet can cause significant deviations from the standard microlensing lightcurve

(the measure of brightness with time). These deviations can be very dramatic,
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causing the brightness to change by multiple orders of magnitude over a timescale

of a few hours, in a manner characteristic of the mass ratio and orbital radius of the

planet (among other parameters). The deviations can thus be modelled to extract

these parameters.

Current microlensing surveys continuously monitor large areas of the Galactic plane,

and hundreds of events are observed per year. For example, the MOA (Microlensing

Observations in Astrophysics) group observes 50 Million stars towards the Galactic

bulge, and a further 55 million towards the Magellanic clouds (Sumi [2010]). From

these observations, approximately 500 microlensing events are seen per year towards

the Galactic bulge, and two per year towards the Magellanic clouds.

To date, ten planets have been discovered from nine observed planetary events (Bond

et al. [2004], Udalski et al. [2005], Beaulieu et al. [2006], Gould et al. [2006], Gaudi

et al. [2008], Bennett et al. [2008], Sumi et al. [2010], Dong et al. [2009], Janczak

et al. [2010]).

Microlensing has several advantages as a planetary detection technique, which make

it complementary to other methods. In contrast to most other techniques, it doesn’t

rely on measuring light from the planet or its host star. This makes it possible to

detect planets around distant stars, and faint or non-luminous objects such as brown

dwarfs or even free-floating planets. It also provides an instantaneous snapshot of

the mass distribution within the lens system, which means it can be sensitive to

planets orbiting far from the host star without requiring observations over a full

orbital period.

The biggest downside of microlensing is that it is difficult to extract key physical

information from observed events. For example, a planet to star mass ratio can be

confidently deduced from an appropriately perturbed light curve, but the individual

masses can normally only be inferred from statistical values. Furthermore, the one-

off nature of events means that they cannot be verified with repeat observations.

This places a large emphasis on collecting as much high quality observational data

as possible over the course of the event.

This is achieved by the two-tier nature of the microlensing observing groups. Two

survey groups, MOA and OGLE (Optical Gravitational Lensing Experiment, re-

cently inactive), regularly survey a large number of stars, and have automated

systems in place to detect potential microlensing candidates. Candidate events

are alerted to the follow-up groups, µFUN-PLANET, Robonet-II and MiNDSTEp,

which have many ∼1m or smaller aperture telescopes to intensively monitor the

individual events.

The observed events must then be modelled. The simplest single lens models are very
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simple, and can be determined with simple automated algorithms. More complex

events, such as those with composite lenses with multiple bodies, are much more

complicated and require an intensive numerical search of the huge parameter space

involved. This is only feasible with the advent of readily available high performance

parallel computing resources.

This thesis is concerned with building a model that generates theoretical lightcurves

from a specified set of model parameters. This lightcurve is then compared with

the observed data as part of the process of identifying the optimum model to fit the

data. The higher level structure required to search the parameter space for the best

fitting model (using the χ2 fit statistic) has not been specifically included in this

thesis work, and remains as an element of required future work.

Chapter 1 describes the background theory required to model microlensing events.

The simplest single lens model is derived, and used as a basis for describing the

complex scenarios that arise for lenses with multiple components. The modifications

required to model stellar limb darkening in the source, and orbital motion of the

bodies involved are then worked through; orbital motion is a particular focus in this

thesis, as it was not available in the previous VUW modelling code (MLENS).

Chapter 2 focuses on the numerical techniques required to solve the models produced

in Chapter 1. A brief overview of the ray-shooting and magnification map techniques

as implemented in the original MLENS code is provided, and contrasted with the

semi-analytical techniques developed as part of this thesis programme.

Chapter 3 gives a brief overview of the new modelling code (mlens2). The cur-

rent state of the code is discussed with reference to the original goals, along with

the requirements to be a usable and useful addition to the VUW microlensing pro-

gramme.

Chapter 4 demonstrates the capabilities of the mlens2 modelling code. Lightcurves

and χ2 fits are calculated for the planetary events OGLE-2005-BLG-390 and OGLE-

2006-BLG-109. The results from mlens2 are compared with the original MLENS

results, and to the observational data.

The five appendices cover a collection of sub-topics which do not fit into the main

flow of the thesis, but provide useful information to those interested in understanding

the details of the mathematics or creating their own modelling code.

Appendix A gives a brief overview on the Jacobian matrix and its determinant,

which plays a key role in obtaining the source magnification in the semi-analytical

models.

Appendices B and C contain a list of analytical expressions for calculating the poly-
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nomial coefficients required to solve for the image and critical curve positions.

Appendix D gives a brief overview to the mljob executable within mlens2, which

calculate the model fits and lightcurves for a specified control file containing event

parameters.

Appendix E contains a selection of sample control files used to generate model

lightcurves from both mlens2 and the original MLENS.
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Chapter 1

Microlensing Theory

At first glance, the theory behind gravitational lensing may seem hopelessly com-

plex. A large number of directly unobservable parameters conspire to produce a

given lightcurve, with no guarantee that any given solution is correct or unique.

Thankfully, all this complex behaviour that can be related back to one simple fact:

the path that a ray of light follows through space is affected by a gravitational field

like a physical body with mass. After several appropriate approximations are made,

the underlying relationships can be understood with simple vector algebra. This

does not mean that the theory can be dismissed as trivial however; the fundamen-

tals may be simple, but the devil is in the details.

The purpose of this chapter is to give the reader an overview of the many layers

of detail involved. We start by introducing the Einstein ring, observed when a

background ‘source’ star is perfectly aligned with a foreground ‘lens’ object. This

forms a basis to discuss the consequences of the more common case, where the

source and lens are offset. A model for the relative motion of the source and lens

is introduced, which provides an explanation for how the observed magnification

changes with time.

Having covered the basic theory, the focus moves to the deviations that are of partic-

ular significance for modelling planetary microlensing events. First, the underlying

theory is expanded to cover lenses containing multiple bodies, such as a star with an

orbiting planet. This adds significant complexity to the theoretical and modelling

process. Next, we relax the assumption of the source as being a point source of

light. Finally, the effects of orbital motion within the source, lens, and the observer

are dealt with.

1
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1.1 The Einstein Ring

The strength of the gravitational field described by general relativity in the space

outside an object can be characterised by its Schwarzschild radius Rs. This radius

defines the event horizon of a (non-rotating, uncharged) black hole with the same

mass as the object being considered and depends only on the mass of the object,

providing a convenient scale with which to compare distances with mass.

The Schwarzschild radius for an object with mass M is

Rs =
2GM

c2
, (1.1)

where G is the Newtonian gravitational constant, and c is the speed of light.

Very dense objects like neutron stars can have a physical size comparable to its

Schwarzschild radius. The full general relativistic field equations are required to

describe the gravitational field immediately outside these sorts of objects. However,

far from these, the gravitational field is much weaker and the simpler weak-field

equations of general relativity can be used.

Typical stars have a much weaker gravitational field. The Schwarzschild radius of

the Sun, for example, is only 3 km, while its physical radius R� is approximately

106 km. This large difference means that the weak-field equations are valid every-

where outside it, and most other stars.

It can be shown using these weak-field equations that a photon travelling past a

spherically symmetric body with a Schwarzschild radius Rs will be deflected from

its original path by an angle

α =
2Rs

b
, (1.2)

where b is the impact parameter of the photon passing the body. The Schwarzschild

radius is many orders of magnitude smaller than the inter-solar distances we are

interested in, so we can assume that this bending occurs at a single point, when the

photon is closest to the deflecting body. This is known as the thin-lens approxima-

tion.

Figure 1.1 shows this bending from a side-on view. A distant source star S a distance

DS from the observer O emits a photon at some angle ψ. An intermediate body

L lies on the line between O and S, a distance DL from the observer. The photon

passes L with an impact parameter b, and is deflected by an angle α towards O

by the gravitational field of L. The observer thus sees the photon arriving from an

angle θ, apparently emitted from the offset position I.

Because O, L and S lie on the same line, the deflection behaviour will be symmetric

around this common axis. The observer will see the source as a ring made up of
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α

ψ

DL

DS

b

O L S

I

Figure 1.1: In the simplest microlensing geometry the observer, lens, and source are

perfectly aligned. Photons emitted (red arrow) from the source at an angle

ψ are deflected by the gravitational field of the lens, causing the observer

to see a displaced and distorted image at an angle θ from the true source

position. Unlike a true lens geometry, photons emitted at slightly different

angles (light grey arrows) are not focused towards the observer.

the points I rotated around the line of sight. This action (shown in Figure 1.2)

is similar to a lens focusing diverging light paths of an object at its focus, so L is

commonly called the lens. This is a cute analogy, but a misnomer. A true lens

would focus all light from the source impacting it, not just the rays passing with an

impact parameter b.

The values of ψ, b, and θ for which a photon is deflected towards the observer are

determined by the distances DL, DS, and the mass of L. Photons emitted from the

source at any other angle will still be deflected by the lens, but not towards the

observer.

The size of θ is found by relating the angles and distances in Figure 1.1 to give the

relationships

θDL = (DS −DL)ψ

α =
2Rs

DLθ
ψ = α− θ .

(1.3)

Additionally, a photon emitted from the source at an angle ψ will pass the lens with

an impact parameter b = (DS −DL)ψ. By Equation 1.2, this produces a deflection

of

α =
2Rs

(DS −DL)ψ
.

The maximum possible deflection α will occur for a photon with an impact parameter
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α

DL

DS

O

Source

Plane

Lens

Plane

E

rE
rE^

ψ

Figure 1.2: A lens object in perfect alignment with a background source focuses light

emitted at an angle ψ towards the observer. The observer sees an Einstein

ring of angular size θE .

equal to the physical radius of the lens. For the Sun, a typical star, the ratio of

Schwarzschild radius to physical radius is approximately 10−6. This corresponds to

a deflection of α ≈ 2 arcseconds.

Combining the above equations gives an expression for θ

θ2 = 2Rs
DS −DL

DSDL

.

This result was first published by Einstein [1936], so the solution θE is known as the

Einstein angle

θE =

√
2Rs

DS −DL

DSDL

. (1.4)

Similarly, the resulting image is known as an Einstein ring.

For a typical event within our galaxy, we can assume a source in the Galactic bulge,

DS ≈ 8 kpc, with an intermediate lens at DL ≈ 4 kpc. Assuming a lens like our

Sun, RS ≈ 3 km gives an Einstein angle of θE ≈ 1 milliarcseconds.

The Rayleigh criterion gives the (diffraction limited) minimum aperture size required

to resolve the Einstein ring as

D =
1.22λ

sin (2θE)
. (1.5)

For visible light (λ ≈ 550 nm), this yields an aperture size of D ≈ 60 m, which is

too large to feasibly observe the Einstein ring. The only (potentially) detectable
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result of this microlensing effect will be the change in brightness of the source due

to the focusing of light by the lens.

The angular size of the Einstein ring is not observable, therefore angular units are

not directly useful. We will see in the following sections that projected distances

or vectors are much more convenient. We obtain the Einstein radius by projecting

the Einstein angle towards the source, into a plane perpendicular to the line of

sight

rE = θEDL (Lens plane) (1.6)

r̂E = θEDS (Source plane) .

The lens plane is located at the position of the lens. Under the thin lens approx-

imation, all bending occurs when the photons pass through this plane. Similarly,

the source plane is located at the position of the source. Any apparent motion of

the source will occur within this plane. Angles projected into these planes will have

different physical lengths, but can be considered equivalent if they are measured

relative to the Einstein radius within the respective plane.

1.2 Single Lens Microlensing

The continual motion of stars in the sky means that, even if two stars are perfectly

aligned at one time, they will not remain so. We should therefore consider what

happens when the lens and source are misaligned by some angle β, as shown in

Figure 1.3. For the photons from the source to be significantly affected by the

gravity of the lens, β is necessarily small.

We saw earlier that α is also small, so we can apply the paraxial (small angle)

approximation to the geometry in Figure 1.3 to produce a modified form of Equations

1.3.

(θ − β)DL ≈ (DS −DL)ψ

α =
2Rs

θDL

ψ = α− θ + β .

Combining these relationships gives a new expression for θ

θ (θ − β) = 2Rs
DS −DL

DSDL

.

Applying the definition of the Einstein angle and rearranging gives the lens equa-

tion

β = θ − θ2
E

θ
. (1.7)
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Source

Plane

Lens
Plane

r

s

-

+

r
rE

β

DL

DS

+

-

Figure 1.3: A source offset from the lens by an angle β will be seen as two distorted

images on opposite sides of the lens. The relative positions of the source

and images can be measured by angles β, θ+, θ−, or as positions s, r+, r−

relative to the Einstein ring.

There are two distinct solutions for the image positions, given by

θ± =
β

2
± θE

√
β2

4θ2
E

+ 1 . (1.8)

The ‘+’ image appears on the same side of the lens as the source, outside the Einstein

ring. The ‘–’ image appears on the opposite side of the lens as the source, inside

the Einstein ring. As the symmetry from the perfect alignment is broken, these two

images are distinct.

The angular positions can be projected into the lens or source plane, measured

relative to the Einstein radius in their respective planes. If we define s to be the

source position

s =
β

θE
=
βDL

rE
=
βDS

r̂E
,

and r to be an image position

r =
θ

θE
=
θDL

rE
=
θDS

r̂E
,

these values will remain constant when moving between coordinate systems.

Applying these definitions to Equation 1.7 produces a simpler form of the lens

equation

s = r − 1

r
. (1.9)
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The image positions r± for a given source position s are thus

r± =
1

2

[
s±
√
s2 + 4

]
. (1.10)

These positions are shown in the inset of Figure 1.3, where they can be compared

to the related angular quantities θ and β.

The two images contribute differently to the total amount of light received by the

observer, proportional to their relative area. The deflection of photons by the grav-

itational field of the lens does not change the intrinsic brightness of the source, and

so the intensity per unit area in each image is the same as in the source. The de-

flection of source photons instead causes the size of each ‘unit area’ to vary with

position.

The magnification, M , defines the ratio of observed light to the amount of light we

would see if there was no lensing. If the source disk is uniformly bright, this will be

equal to the ratio of image area to source area. If the source disk shows significant

stellar limb darkening (discussed in Section 1.5), then each element of area in the

source must first be weighted by the relative flux at that point.

The contribution of each image to the total magnification is calculated as follows:

In polar coordinates, an elemental area unit is an arc. An arc at a radius r will have

an infinitesimal width dr, and an infinitesimal angular width rdθ. Its area is thus

dA = rdrdθ. Likewise, the elemental source area is given by sdsdθ, shown in Figure

1.4.

d

r

s

- +r

ds

dr+
dr-

Figure 1.4: The magnification of a point source is given by the ratio of areas of infinites-

imal arcs. The red arc at s is an element of area inside the source, the black

arcs at r± are the corresponding elements of area in the two images.

The magnification of the each elemental image is thus

M± =
r±dr±dθ

sdsdθ
=
r±
s

dr±
ds

.

The ratio dr±/ds is found by differentiating Equation 1.10. Substituting for r± and
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its derivative gives the expression

M± =
r±
s

dr±
ds

=
1

4

[
1±
√
s2 + 4

s

][
1± s√

s2 + 4

]
=

1

2

[
1± s2 + 2

s
√
s2 + 4

]
.

The second term is always greater than 1, which implies that M+ > 1 and M− < 0

always. This negative magnification occurs due to the mirroring of the ‘–’ image

relative to the source. The magnitude of this magnification is correct, so the absolute

value is taken. The significance of the sign of each magnification term is discussed

in Section 1.4.3.

The total magnification of the elemental area is thus given by the sum

M = |M+|+ |M−|

= M+ −M−

=
s2 + 2

s
√
s2 + 4

. (1.11)

If the source can be treated as a point-source of light, then this also describes the

total magnification of the source. This point-source approximation will be valid

whenever the elemental unit-area magnification varies linearly across the source

disk, as the average magnification will be equal to the magnification at the centre.

The finite source effects that become important when the source comes into close

alignment with the lens are discussed in Section 1.5.

1.3 Source Motion

As previously discussed, the observational data for a microlensing event comes in

the form of a lightcurve, which is a measure of intensity with time. In order to model

a theoretical lightcurve, we need a model for the source position as a function of

time.

The simplest model for describing the relative motion of the observer, lens, and

source is depicted in Figure 1.5. The observer sees the source move along a straight

track (red) at a constant speed past the lens at the centre of the Einstein ring. The

time parameter t0 defines when the source is closest to the lens, where the separation

between the lens and source is given by the impact parameter u0. The crossing time

tE (in days) is a convenient measure of the relative velocity, and is the time it takes

for the source to move one Einstein radius.
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As time increases, the vector position s(t) of the source will sweep around the lens

in a clockwise or anti-clockwise sense. This is shown in Figure 1.5 for s(t0 − tE)

and s(t0 + tE). To remove ambiguity between clockwise and anti-clockwise motion,

we define positive u0 to signify anti-clockwise motion, and negative u0 to define

clockwise motion.

A single lens system is circularly symmetric, so the source track orientation has no

impact on the light curve. However, more complicated lens geometries can break this

symmetry (e.g. via multiple lens components or a curved source track), requiring

at least one additional parameter to unambiguously define the track origination.

Typically, the angle φ is used to define the source track angle relative to the binary

lens axis.

rE

s(t0+tE)

u0

s(t0–tE)

s(t0)

v(t0+tE)

v(t0–tE)

u

v

Figure 1.5: Relative motion between the observer, lens, and source is modelled by moving

the source along a straight line past the (fixed) lens. This motion is described

by the parameters u0, t0 and tE .

For the vertical track shown in Figure 1.5, the position s(t) of the source is defined

by its components

u(t) = u0

v(t) =
t− t0
tE

.
(1.12)

The source-lens separation is given by the magnitude of this vector, unaffected by

any rotation about the lens

s(t) = |s(t)| =

√
u2

0 +

[
t− t0
tE

]2

. (1.13)
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This model defines a standard analytical lightcurve (Paczynski [1986]) which ac-

curately models many observed microlensing events. Figure 1.6 shows one such

example.

Figure 1.6: An example of one of the hundreds of microlensing events that are observed

each year. The Paczynski model, with a point-source moving along a straight

track, is a good model for most of these events. Data and model parameters

obtained from (moa)

These simple events hide the physically interesting characteristics (the lens mass,

relative velocities, and distances between observer lens and source) degenerately

within the crossing time tE. It is not possible to uniquely determine any of these

parameters without additional information; they must be inferred from statistical

models.
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1.4 Compound Lenses

The primary goal of modelling microlensing events is to discover lens systems that

contain planets. This necessarily requires a model that can describe a lens con-

taining multiple discrete masses. The gravitational field of these compound lenses

can be derived simply, but determining the subsequent magnification of a source

star involves a difficult mathematical inversion. The resulting lightcurves can show

dramatic deviations from the single-lens lightcurves we saw previously; Figure 1.7

shows one such example.

Figure 1.7: Lightcurve of the binary-lens microlensing event MOA-2009-BLG-387 (un-

published VUW model).

The nature of these deviations strongly depend on the internal structure of the

lens, and so we can probe the internal lens details by fitting model lightcurves

to the observed data. In particular, the presence of companion bodies near the

Einstein ring of the primary lens can strongly perturb the light deflection. This

makes it very likely (and in many cases, guaranteed) that their presence will cause a

noticeable deviation from the standard single lens lightcurve. This has an interesting

consequence; not only can microlensing confirm the presence of planets around a

star, it can also confirm the absence of planets.

1.4.1 Lens Equation

A general form of the lens equation must be developed before we can understand

the deflection of a photon by the gravitational field of a composite lens. The sim-

ple symmetry of the single lens meant that the deflection could be considered as



12 CHAPTER 1. MICROLENSING THEORY

a 1-dimensional problem, and concisely described using angles or distances. The

addition of extra lens components breaks this symmetry, and so requires the use of

2-dimensional vectors within the lens or source planes.

The lens equation for a single mass (Equation 1.9) can be generalised by defining s

and r to be the vector positions of the source and images. For a lens at the origin of

the lens plane, the source-lens separation defines the direction of s. The deflection

occurs along the line between the source and lens, and so r will be parallel to s.

We can define the unit vector r̂ = r/ |r| = r/r to be the direction of this deflection,

giving

s = r− 1

r
r̂

= r− r

|r|2
. (1.14)

The deflection depends only on the source-lens separation, and so it should be clear

that the equivalent statement for a lens mass at an arbitrary position ri is just

s = r− r− ri

|r− ri|2
.

Using the thin lens approximation, we can treat all of the lens components as if

they lie within the lens plane. The additive nature of gravity means that the total

deflection due to the lens will be given by the (vector) sum of deflections produced

by each component separately. The lens equation for a lens with N components

therefore has N deflection terms

s = r−
N∑
i=1

εi
r− ri

|r− ri|2
. (1.15)

The deflection of each component must be scaled by a factor εi which depends

on its mass. Keeping definitions similar to those introduced with the single lens

description, the Einstein ring radius is determined by the total mass of the lens, while

the light deflection produced by a particular component depends on the Einstein

radius, rEi
, corresponding to that component. By comparing this situation with

the original lens equation (Equation 1.7), we see that this factor is equal to the

squared ratio of Einstein ring radii, which corresponds to the mass fraction of the

component

εi =
r2
Ei

r2
E

=
θ2
Ei

θ2
E

=
Mi

N∑
j=1

Mj

. (1.16)

Equation 1.15 is the general lens equation that applies to an arbitrary number and

distribution of point masses within the lens. It relates a given (point) source position
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to multiple image positions. It looks simple enough but, in general, it cannot be

solved analytically to give an expression for each image position r as a function of

source position s.

There are two basic approaches to the inversion of Equation 1.15. The first is a ‘brute

force’ technique called inverse ray-tracing which involves substituting ‘all’ potential

image positions r in Equation 1.15 to see which ones correspond to the given source

position s. Thus, all of the lens plane’s possible positions are searched in order to

find the actual images. Given that fitting procedures require the generation of many

light curves, the practicality of this method depends on the availability of significant

computing resources, such as those provided by grid computing configurations. It

should be clear that any actual implementation of this method will involve searching

for images corresponding to sources with a finite area. The image to source area

ratio, and therefore the magnification of each image can be estimated as part of the

procedure. This method and algorithms to improve the efficiency of the search are

discussed in the next chapter.

The second approach to solving Equation 1.15 is to perform the actual inversion,

which produces (with mounting difficulty as the number of lenses increase) an

(N2 + 1)
th

order polynomial in complex numbers for the multiple image positions.

Unfortunately, even the simplest multiple lens system (two point mass lenses) re-

sults in a 5th order complex polynomial which can only be solved numerically to give

the five possible image positions. This technique is discussed at length in the next

chapter and forms the basis of the techniques implemented in the mlens2 modelling

code produced during this thesis work.

1.4.2 Image Magnification

It is relatively straightforward to obtain an expression for the infinitesimal area

change introduced by Equation 1.15. This gives an analytic expression for a com-

posite lens that defines the point-source magnification for a given set of image po-

sitions. When combined with the lens polynomial (discussed in Section 2.2.1) for

determining image positions, we have a method we will refer to as semi-analytical for

calculating magnification. It is not fully analytical, as the polynomial roots (image

positions) must be found numerically.

This semi-analytical approach is not only more satisfying from a theoretical stand-

point; in many cases is computationally faster than a purely numerical calculation

via the inverse ray-tracing method.

The geometric argument of ‘arc areas’ applied earlier to the single lens was an
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example of a Jacobian calculation. The Jacobian is the determinant of the matrix

of partial derivatives, the Jacobian matrix, of an equation. A brief background to

the Jacobian is given in Appendix A.

The Jacobian specifies the change in an infinitesimal area unit introduced by a trans-

formation. This is exactly the quantity that we wish to derive. The magnification

of an elemental area at some point in the source is simply the Jacobian of the source

plane to lens plane transformation, evaluated at the point of interest in the source.

Of course, this cannot be evaluated directly because we lack an analytic expression

that links a point in the source plane to points in the lens plane (if we did, we

could use that expression to find the images directly, and this approach would be

unnecessary!).

Our interpretation of the Jacobian as the ratio of areas gives a simple alternative.

We can evaluate the Jacobian of the inverse problem, which gives the area change

in going from the lens plane into the source plane. The area change of the reverse

transformation is simply the inverse of this value.

The magnification can thus be found from the Jacobian of the lens equation (Equa-

tion 1.15) evaluated at each image position rj,

M =
∑
j

1

|J(rj)|
. (1.17)

The parity of an image is given by the sign of the Jacobian at the image position,

and is related to the topology of the images. As for the single-lens, the absolute

value of the Jacobian is taken to ensure that the correct (positive) magnification is

obtained when summing over the images.

As discussed in Appendix A, the Jacobian is evaluated from the partial derivatives

of the lens equation

J =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
(1.18)

where x and y are the components of r, and u and v are the components of s.

Recall, that because r and s are measured relative to the Einstein ring, the values

are independent of the plane they are considered in.

Expressions for u and v in terms of x and y can be found by separating the lens

equation into its components

u(x, y) = x−
∑
i

εi
x− xi
|r − ri|2

(1.19)

v(x, y) = y −
∑
i

εi
y − yi
|r − ri|2
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where |r − ri| is the distance between the lens and source,

|r − ri| =
√

(x− xi)2 + (y − yi)2 . (1.20)

The partial derivatives are thus

∂u

∂x
= 1 +

∑
i

εi

|r − ri|2

[
2 (x− xi)2

|r − ri|2
− 1

]
∂v

∂y
= 1 +

∑
i

εi

|r − ri|2

[
2 (y − yi)2

|r − ri|2
− 1

]
∂u

∂y
=
∂v

∂x
= 2

∑
i

εi (x− xi) (y − yi)
|r − ri|4

.

The values obtained from these expressions can then be substituted back into Equa-

tions 1.18 and 1.17 to obtain the point-source magnification.

1.4.3 Image Topology

We can understand some of the results that we derived earlier by looking at the

topology that the lens system imposes on the lens and source planes. The gross fea-

tures of an observed lightcurve can be linked back to this topology, which can allow

an experienced eye to make an educated guess towards potential lensing geometries

from the observed lightcurve data alone.

The lens equation allows us to trace the path of a photon through a point r in the

lens plane back to its origin s in the source plane. Recall that for a single lens

s = r− r

|r|2
.

Notice that there is a degeneracy between r and 1/r in this equation, which essen-

tially divides the lens plane into two regions. Every point r outside the Einstein

ring has a corresponding point 1/r inside the Einstein ring that maps to the same

point in the source plane. The Einstein ring defines the boundary between the two

regions, with all points on the ring mapping to the projected lens position at the

origin of the source plane. The lens plane is thus mapped twice over the source

plane, leading to the two distinct images of the source (except when the lens and

source are perfectly aligned, where there is only one).

Now consider the Jacobian of the lens equation. Appendix A shows that the Jacobian

for a single lens is given by

J = 1− 1

|r|4
. (1.21)
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From this, we can see that all points outside the Einstein ring have positive parity,

and that all inside the Einstein ring have negative parity. The Einstein ring itself is

defined by the points J = 0 and so have an undefined parity.

These so far are just a restatement of what we saw earlier. Together however, they

motivate a useful graphical representation.

Figure 1.8: The topology of the single lens is visualised by mapping points in the lens

plane (left panel) into the source plane (right panel), plotted with a height

proportional to the value of the Jacobian (using an arbitrary negative log

scale). The topology of the single lens is a double-cone structure where the

Einstein ring (orange) in the lens plane is transformed to a single point at

the origin of the source plane. The images (black) are found by project-

ing the source disk (red) vertically and finding where it intersects with the

transformed lens plane. See text for details.

Figure 1.8 plots the Jacobian of points in the lens plane (using an arbitrary log scale,

flipped vertically for the sake of visual clarity) against the 2-dimensional position of

the corresponding source-plane points. The images occur wherever the transformed

lens plane overlaps the source, and so the total number of images at a given point

is equal to the number of times that a vertical line through that point intersects

the lens-plane structure. We can also immediately see which images will contribute

significantly to the overall magnification based on their height; Equation 1.17 states

that images with smaller Jacobian (ignoring sign), |J |, are magnified more than
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those with larger |J |.

Figure 1.8 contains enough information to qualitatively describe the behavior of the

images for any source position. Far from the lens, the lower plane is flat with J ≈ 1

and the upper cone has an extremely large value of |J |. This tells us that a source

far from the lens will have a dominant image that closely approximates the source

outside the Einstein ring, and a vanishingly small image inside the Einstein ring.

The flat nature of the lower plane tells us that this outer image will vary little as

the source approaches the lens. The upper cone shape (plotted with a log scale)

tells us that the inner image will increase exponentially in size. When the source

comes into closer alignment with the lens, r < 1rE, the lower plane begins to curve

towards |J | = 0 and the upper cone has a comparable |J | to the lower plane. This

indicates that the outer image will begin to increase in size, while the inner image

now contributes significantly to the total magnification. When the source overlaps

the projected lens position, we can see that the two images will appear to merge

across the Einstein ring, as shown in Figure 1.9.

Figure 1.9: When the source covers the point where the two planes meet, the resulting

images merge together at the Einstein ring, appearing as a single image. See

text for details.

In general, the lens plane is divided into regions with opposite parity by critical

curves, defined by J = 0. These curves map into caustics in the source plane.

The critical curves and caustics are central provide a powerful tool for qualitatively
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understanding the behavior of the images and corresponding magnification behav-

ior.

The 3-dimensional visualisations are more interesting when applied to composite

lenses, which have more complex mappings. As one might expect, each additional

lens component introduces a feature where photons passing near the lens component

are deflected by a large amount. What may be surprising is that this will not

necessarily be located at the lens position, due to the gravitational influence of the

other lens components. This causes a much more complex mapping from the lens

plane into the source plane, shown for a specific binary lens in Figure 1.10.

Figure 1.10: Topology of a binary lens as the source (red) crosses a caustic (left panel,

grey curve). An extra pair of images of the source region within the caustic

(black in the left panel, orange in the right) appear in the lens plane, joined

at the critical curve (left panel, orange curve). The right panel shows that

this is due to the source intersecting an extra pair of layers twisted within

the shape defined by the caustic. See text for details.

Like the single-lens case, far from the lenses (more correctly, far from the caustics),

there is a flat plane (with positive parity) plus a cone structure (with negative parity)

for each lens component. In general, a source outside of the caustics will have N + 1

images, with a total parity of 1−N . This result was first shown mathematically by
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Witt [1990].

The transformed lens plane twists around itself, overlapping additional times in the

regions bounded by the caustics. This leads to the source having an additional pair

of images when it lies inside one of these caustic regions. If the source lies partially

over a caustic, these two images will appear to merge into a single image across

a critical curve, like we saw with the single lens case. These merging images will

usually dominate the overall magnification, as they necessarily have |J | ≈ 0. This

can be seen for two of the images in Figure 1.10.

When the source passes inside a caustic, the two additional images that form have

opposite parity, and so the total parity remains fixed, independent of the source

position. This provides a useful method for algorithmically checking the correctness

in any numerical calculation of the images.
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1.5 Finite Source Effects

We saw in the previous section that the Jacobian (and thus the magnification)

behaves smoothly far away from the caustics. A source in this region can be treated

as an infinitesimal point, as any variation over the source disk will be linear and

the total magnification will average to its central value. This assumptions allows

much of the observed lightcurve to be efficiently modelled, but breaks down when

the source is near a caustic where the non-linear changes in magnification causes

the total magnification to differ from the magnification at the center of the source

disk. The finite size of the source becomes important. It is important to have an

accurate model for the source magnification near caustics, because the sharp changes

in magnification that occur in these regions place a strong constraint on the source

size.

The first step in correctly modelling these finite-source effects is to treat the source

as a uniformly bright disk. The magnification can be calculated numerically by

evaluating the image and source areas separately and taking the ratio, or semi-

analytically by considering a 2D expansion of the magnification across the disk.

Figure 1.11: The magnification of a source near a caustic strongly depends on the size

of the source. Total magnification for a point-source and two finite source

sizes are shown for a range of source-lens separations.

Figure 1.11 shows how the calculated magnification differs near a caustic for a point-

source and two finite sources with different radii (calculated using the ‘polygon

method’ discussed in Section 2.4).
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As the source approaches the caustic, we see that larger sources has a broader and

flatter magnification change than small sources. This should be intuitive, as since a

larger source covers a greater range of magnifications, the contribution of any single

point contributes less to the whole. It is apparent that the that the peak value of

the magnification and, to a lesser extent, the width of the peak strongly depend on

the source size. Observational data of a caustic crossing can thus provide a strong

constraint on the source size.

The next step is to consider the effect of non-uniform source brightness: limb dark-

ening. The photons that we receive from a star originate from some average depth

below its surface, governed by the optical depth of the stellar material. The tem-

perature within the star increases with depth, and the apparent brightness increases

with temperature via the Stefan-Boltzmann law. The apparent brightness of a point

on the stellar disk thus depends on the depth from which the photons were emit-

ted. Figure 1.12 demonstrates how changing the line of sight across the spherical

star changes the depth from which the visible photons originate. This leads to the

center of the disk appearing brighter than the outer limb, hence the term ‘limb

darkening’.

ra

rb Toward 
Observer

d

d

Figure 1.12: The photons that are received by an observer originate from some constant

depth, d, along the line of sight within a star. When looking at the outer

limb of the stellar disk, this depth corresponds to a radius ra, which is

closer to the surface (and thus cooler) than when looking at the center of

the stellar disk, where photons are visible from a deeper (hotter) radius rb.

Limb darkening is a relatively minor effect in microlensing and is sufficiently de-

scribed by a simple linear model. To ensure compatibility between numerical meth-

ods, we take the definition used by Gould [2008], which is integrated into the hex-
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adecapole approximation model described in Section 2.3

I (r)

I0

= 1− Γ

1− 3

2

√
1−

(
r

rs

)2
 . (1.22)

Here, I0 defines the average flux per unit area across the source, rs the source radius,

and Γ the shape of the intensity profile (which may be wavelength dependent).

Figure 1.13 shows the range of intensity profiles that can be achieved.

Figure 1.13: The limb darkening parameter Γ defines the radial intensity profile I(r) for

a limb darkened source, as defined by Equation 1.22.

The value for Γ can be calculated from standard stellar models using colour-magnitude

relationships. The specific implementation of these finite source effects limb darken-

ing into each numerical model is covered in the relevant sections of Chapter 2.
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1.6 Orbital Motion

An observer on Earth orbits around the Sun once per year. Likewise, the source

star may be a part of a binary star system, or the lens star may have orbiting

planets. These orbital motion effects introduce additional non-rectilinear relative

motion between the observer, lens, and source.

In Section 1.3 we modelled this relative motion by moving the source along a straight

track past the lens. Orbital motion in the observer or source will change this track,

while motion of the lens changes the underlying magnification pattern that the source

travels over. These effects have the potential to significantly alter the resulting

lightcurve, but in most cases they will provide a minor perturbation that becomes

apparent when comparing the χ2 fit of different models.

1.6.1 Orbital Parallax

Parallax is a geometric phenomenon seen when an observer moves relative to two

stationary bodies. The apparent shift of the background object when the observer

moves a known distance can be related to the ratio of distances between the observer

and the two bodies. This is shown in Figure 1.14.

L

s1

s2

1

S

O

2O

1 AU

Figure 1.14: The apparent position, s, of the source relative to the lens changes as the

observer moves from O1 to O2. The ratio of distances between the bodies

can be calculated by measuring the ratio of the offsets.

This is particularly useful in the case of microlensing because knowledge of the

relative distances between the observer, lens, and source can allow the mass of the

lens to be extracted unambiguously from a measurement of the Einstein angle.

Parallax can have significant effects on the lightcurve of events that occur over a

period of months, where the Earth moves through a significant fraction of its orbit.

No significant effects will be visible for short timescale events, and so the straight

track model will be sufficient for these events. The first observed microlensing event



24 CHAPTER 1. MICROLENSING THEORY

that required a parallax model was observed in 1995 (Alcock et al. [1995]); it is now

routinely included in the modelling of new events.

Figure 1.15 relates the motion of the observer to the apparent motion of the source.

If the observer is offset from its original position by a vector ∆o, perpendicular to

the observer-lens line, the origin of the source plane will be offset in the opposite

direction by

∆s = −DS −DL

DL

∆o . (1.23)

We see that the source position in this new coordinate system is just

s′ = s−∆s . (1.24)

Source Plane
Lens
Plane

Δs

s

s'

Δo

DS

DL

Figure 1.15: Motion of the observer changes the origin of the source plane by ∆s. The

physical position of the source is unchanged; its position in the new coor-

dinate system (dotted red Einstein ring) is found by subtracting ∆s from

the original position (grey Einstein ring).

The distances DS and DL can be eliminated by introducing the observer plane,

shown in Figure 1.16.

The Einstein radius in the observer plane, r̃E, is found by projecting the rE in the

lens plane back towards the observer

r̃E = DSψ

=
DS

DS −DL

rE (1.25)

=
DL

DS −DL

r̂E .

Equation 1.23 thus simplifies to

∆s

r̂E
= −DS −DL

DL

∆o

r̂E

= −∆o

r̃E
.
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ψ

Figure 1.16: The size of the Einstein ring in each plane is related to the distances DL

and DS between the planes by finding the angles θE and ψ.

If we define ∆s and ∆o to be measured relative to the Einstein radius in the

appropriate plane, the relationship simplifies further to

∆s = −∆o . (1.26)

Substituting this relationship into Equation 1.12 gives the source position

u(t) = u0 + ∆o(t) · û

v(t) =
t− t0
tE

+ ∆o(t) · v̂ .
(1.27)

The Microlensing Parallax, πE, relates distances in the observer plane (measured

relative to the Einstein ring) to physical distances (measured in AU)

πE =
1 AU

r̃E
. (1.28)

The main motivation of modelling parallax comes from the ability to determine this

parameter. If an independent measurement of the source size can be made (e.g.

by comparing the angular source size with a stellar radius found from a colour-

magnitude relationship), a physical value for the lens mass can be calculated by

combining Equations 1.25 and 1.6 to produce

θEπE =
DS −DL

DSDL

,

which can be substituted back into the definition of the Einstein angle (Equation

1.4) to reveal the Schwarzschild radius of the combined lens mass as

Rs =
θE

2πE
.



26 CHAPTER 1. MICROLENSING THEORY

In this thesis, we are concerned only with the orbital parallax due to the orbit of

the Earth. There are other types of parallax documented in the literature which are

(currently) of less practical use. For example, if an event was observed in tandem

from the Earth and from a satellite in solar orbit, the differences in observed mag-

nification between the two measured lightcurves could be used to determine a lens

mass in a similar manner to orbital parallax. Some discussion of this can be seen in

Gould [1994] and Graff and Gould [2002].

For very high magnification events, such as those caused by a star crossing a central

caustic close to the primary lens, a similar effect can be observed between telescopes

on opposite sides of the Earth. This terrestrial parallax is discussed in Gould [1997]

and Yee et al. [2009].

Calculating the Earth Offset

The vector ∆o gives the positional offset of the Earth within the observer plane.

Calculating this offset is a two step process: first the Earth’s position, ∆p, must be

calculated within its orbital plane, and then this offset must be projected into the

observer plane. This depends on the choice of coordinate system where we specify

∆p = ∆o = 0.

Early models for orbital parallax (e.g. Alcock et al. [1995], Dominik [1998]) chose

to specify ∆p relative to the Sun. This is an obvious choice, but means that the

parallax offset will always be large. The more sensible choice, used in more recent

models (e.g. Gould [2004]) and described here is to define ∆p = 0 as the position

of the Earth at t = t0. This choice minimises the effect of parallax over the peak

of the event and means that parallax can be added to a model without requiring

significant changes in other parameters.

The angular position of the Earth within its orbit can be described by its true

anomaly or its eccentric anomaly, illustrated in Figure 1.17. The true anomaly is

measured with respect to the sun (S), and defines the ‘true’ angular position in

the orbit relative to the orbit perihelion (P). An ellipse can be thought of as a

circle whose plane has been rotated away from the observer; the eccentric anomaly

describes the position of the Earth on this circle. The true elliptical orbit is obtained

by scaling the ‘x’ and ‘y’ axes by different factors a and b, corresponding to the semi-

major and semi-minor axes of the orbit:

p(t)x = a cos (E(t))

p(t)y = b sin (E(t)) .

If we define the origin to be the position of the sun and substitute the orbital eccen-
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Figure 1.17: The position p of a body in an elliptical orbit can be described using the

true anomaly, ν, or eccentric anomaly, E.

tricity ε for the semi-minor axis, we obtain equivalent but more useful expressions

for the earth’s orbit

p(t)x = a (cos (E(t))− ε)

p(t)y = a
√

1− ε2 sin (E(t)) .
(1.29)

In order to calculate the eccentric anomaly, we need to introduce a third angle, the

mean anomaly, M. The mean anomaly increases linearly from 0 to 2π in one orbital

period T

M(t) =
2π

T
(t− τ) .

The reference time τ defines when the Earth is at the perihelion. It can be shown

(see e.g. Green [1985]) that the eccentric and mean anomalies are related using

Kepler’s equation

M(t) = E(t)− ε sin (E(t)) . (1.30)

Kepler’s equation cannot be solved analytically for E. However, because the Earth’s

orbit is nearly circular (ε ≈ 0.017) the approximation ε sinE ≈ ε sinM is sufficiently

accurate for our purposes, so

E ≈M + ε sinM . (1.31)

To calculate the offset vector ∆p(t), we take the difference in position between

times t and t0. An extra term is required to account for the constant velocity of the
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coordinate system (given by the instantaneous velocity at t0)

∆p(t) = p(t)− p(t0)− (t− t0)
dp

dt

∣∣∣∣
t=t0

(1.32)

where the velocity is calculated from the derivatives of Equations 1.29 and 1.31

dE

dt
=

2π

T

[
1 + 2ε cos

(
2π (t− tp)

T

)]
dp

dt x
= −a sin (E)

dE

dt

dp

dt y
= a

√
1− ε2 cos (E)

dE

dt
.

Calculating the Observer Plane

The offset ∆o in the observer plane is found by projecting ∆p in the direction of

the lens. We thus need to find the relative orientation of the orbital plane and the

observer plane (which is normal to the vector pointing towards the lens). Figure

1.18 shows the three angles defining this relationship. ϕ and χ are fixed by the

known position of the lens in the sky, while φE is an unknown parameter that is

varied during the modelling process to find the best fit.

χ

φ

To

Lens

x

y

u

v

Figure 1.18: The relative orientation of the observer plane (red) and orbital plane (dark

grey) is defined by the known angles ϕ and χ, and the unknown angle φE .

The standard coordinates for giving the position of a star are its right ascension,

α, and declination, δ. These coordinates follow the same lines as the latitude and

longitude of the Earth, with the zero of right ascension defined by the position

of the sun in the sky at the vernal equinox near mid March. A more useful set of
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coordinates are the ecliptic latitude, β, and ecliptic longitude, λ, which are measured

relative to the orbital plane.

The relationship between these angles is given by Green [1985]

β = arcsin (sin(δ) cos(23.5◦)− cos(δ) sin(α) sin(23.5◦))

λ = arctan

(
sin(δ) sin(23.5◦) + cos(δ) sin(α) cos(23.5◦)

cos(δ) cos(α)

)
.

The relationship between these ecliptic coordinates and the angles ϕ and χ toward

the lens are given by

χ = β

ϕ = λ+ γ

where ϕ and λ measure the same physical angle, but relative to different origins, as

shown in Figure 1.19. ϕ is measured relative to the perihelion, while λ is measured

relative to the Sun’s position at the vernal equinox.

Toward

Lens

Toward 
Perihelion

Toward 

Perihelion

Figure 1.19: The Earth (red circle), and Sun (red star) at the vernal equinox. The angle

ϕ between the perihelion and and lens can be constructed from the true

anomaly νγ and ecliptic longitude λ.

The angle νγ is defined as the true anomaly of the Earth at the vernal equinox. It

can be calculated from the eccentric anomaly of the Earth, Eγ, using the relationship

(given by Green [1985])

νγ = 2 arctan

[√
1 + ε

1− ε
tan

(
Eγ
2

)]
. (1.33)
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Thus γ = νγ + π, and so

ϕ = λ+ νγ + π . (1.34)

The simplest relationship between ∆p and ∆o occurs when ϕ = χ = φE = 0.

Figure 1.18 shows that in this case the coordinate vectors are related by

u = −y

v = 0

and so

∆ou = −∆py

∆ov = 0 .

If ϕ 6= 0, the orbital plane can always be rotated to align the u and −y coordinate

directions. This is achieved by rotating ∆p by −ϕ.

When χ 6= 0, the x component of ∆p is projected into the −v component of −∆o

so that

∆ou = −∆py

∆ov = −∆px sin(−χ) .
(1.35)

After this projection, a rotation about the lens direction by −φE followed by a

scaling by πE gives the final ∆o vector. The composition of these operations gives

the general relationship between the two vectors (using matrix notation)

∆o(t) = πE

[
cosφE sinφE

− sinφE cosφE

][
0 −1

sinχ 0

][
cosϕ sinϕ

− sinϕ cosϕ

]
∆p(t) . (1.36)

Many published models combine πE and φE into a single Microlensing parallax

vector, πE. This vector takes the obvious definition

πE = πE

[
cos(φE)

sin(φE)

]
. (1.37)

Effects of Parallax

For t close to t0, the effects of parallax on the source track can be approximated

as a constant acceleration. We can thus characterise the general effects of parallax

on a lightcurve by applying a constant acceleration to the source, which defines a

parabolic source track

u(t) = u0 +
a sin θ

2

(
t− t0
tE

)2

v(t) =
t− t0
tE

+
a cos θ

2

(
t− t0
tE

)2

.
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An acceleration of a = 0.2 rE/day2 is applied to the source in parallel and per-

pendicular directions. The resulting single lens lightcurves are shown in Figure

1.20.

Figure 1.20: An acceleration parallel to the source velocity causes the lightcurve to be-

come asymmetric (left panel). An acceleration perpendicular to the source

velocity changes the lightcurve shape symmetrically about the peak of the

event (right panel). The differences between the acceleration and non-

acceleration models are shown in the lower panels of each plot.

An acceleration parallel to the source track (θ = 0
◦
, 180

◦
) leaves the track unmod-

ified, but changes the speed of the source with time. This produces a long-term

systematic asymmetry in the lightcurve, which is easy to detect in the observational

data.

An acceleration perpendicular to the source track (θ = 90
◦
, 270

◦
) curves the source

symmetrically away from its original path. This subtly changes the shape of the

lightcurve, and is much more difficult to constrain from the observational data. For

further details on parameter degeneracies and modelling implications for parallax,

see Smith et al. [2003], Gould [2004], Poindexter et al. [2005].

1.6.2 Xallarap

A similar effect to parallax can occur in the source if it is part of a binary system.

This ‘backwards parallax’ effect has been termed Xallarap in the microlensing lit-

erature. The geometry behind this effect is identical to parallax, but is relative to

the source, instead of the observer.

Xallarap differs from parallax in that none of the orbital parameters of the source are

known, and so there are many more free parameters that can be varied to model a

wider range of curved source tracks. Further perturbations can arise if the source is
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orbiting around a luminous companion, as both bodies can contribute light towards

the observed lightcurve.

1.6.3 Lens Motion

Orbital motion of the components within the lens affects the lightcurve in a com-

pletely different way than observer or source motion. The origin of the microlens-

ing coordinate system is defined as the centre of mass of the lens. True orbital

motion within the lens does not change the centre of mass, and so the apparent

position of the source is unaffected. Instead, this motion changes the underlying

caustics and magnification pattern the source passes over, thus affecting the final

light curve.

Like with Xallarap, there is little physical information that can be used to constrain

orbital motion within the lens. Attempting to model a general orbit for the lens

components adds too many free parameters to reasonably model, so a simpler model

of linear or circular motion is adopted for each component.

The position vector ri of the i’th component defines the position at t = t0. For linear

lens motion, the position is given by defining a velocity vector vi,

ri(t) = ri + (t− t0)vi . (1.38)

Circular motion can be modelled by adding an extra parameter for the period of the

orbit, T .

The instantaneous velocity of a body undergoing circular motion with a known

radius r and period T is tangential to the circular motion, with magnitude

v =
2πr

T
.

The radius of this circle (denoted a to avoid confusion with the lens position) is

thus

a =
T |vi|

2π
.

The geometry of this orbit is shown in Figure 1.21.

We see that the position of the lens at some time t is given by

ri(t) = ri − a + a(t) (1.39)

where a and a(t) are lens positions relative to the origin of motion, o at t0 and t

respectively.
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Figure 1.21: A lens moving in a circular orbit has a position ri(t), calculated from a

reference position ri, velocity vi, and period T .

The vector a has length a, and is perpendicular to v, so

a =
T

2π

[
0 1

−1 0

]
vi .

The vector a(t) is found by rotating a by an angle corresponding to the time dif-

ference between t and t0. This angle can be positive for anticlockwise orbits, or

negative for clockwise orbits

θ = ±2π (t− t0)

T
. (1.40)

Equation 1.39 can thus be written as

ri(t) = ri +

([
cos θ − sin θ

sin θ cos θ

]
− 1

)
a

= ri +
T

2π

[
sin θ cos θ − 1

1− cos θ sin θ

]
vi . (1.41)

This formulation assumes that the relative velocities are chosen for each component

such that the centre of mass does not change with time.
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Chapter 2

Numerical Techniques

Chapter 1 presented the analytical theory required to develop microlensing models.

We saw that only the simplest case involving a single lens and a point source yielded

a straight-forward analytical model. More complex systems, containing composite

lenses or finite sources necessitated the introduction of numerical techniques. This

chapter discusses two quite different approaches to modelling these more complex

cases.

The first is the inverse ray-tracing method, which takes the brute force approach

of repeatedly solving the lens equation (Equation 1.15) to directly find the images

and critical curves for a given source-lens configuration. The ray shooting and

magnification map techniques as implemented by Korpela [2007] in the original

MLENS software are variations of this basic approach, and they are summarised in

Section 2.1.

The second method, which we refer to as a semi-analytical technique, inverts the

lens equation to form a complex polynomial, whose solutions for a given source

position gives the image positions directly. We will show that this ‘lens polynomial’

is of degree N2 + 1, which means that even for a binary lens, the image positions

must be solved numerically. These resulting image positions can then be used with

the theory from Section 1.4.2 to find the magnification of a point source, and the

critical curves. The new MLENS software (mlens2) developed as part of this thesis

work implements these semi-analytical techniques.

Two techniques to extend this polynomial method to include finite sources are then

developed.

The polygon method represents the finite source using a network of m points around

the source perimeter. The lens polynomial is then solved m times to yield the

corresponding points in the images, which are grouped into separate polygons. The

35
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effective image and source areas can then be estimated using standard geometrical

techniques to produce a magnification. This approach can be further extended to

handle source disk non-uniformity (limb-darkening) by using multiple concentric

polygons to cover the source disk.

The hexadecapole approximation provides a faster approximation for finite source

corrections by combining multiple point-source magnifications to represent a two-

dimensional expansion of the source magnification around a particular point.

2.1 Inverse Ray-Tracing

Inverse ray-tracing techniques avoid the complication of inverting the lens equation

by solving the inverse problem. Instead of trying to solve for the image positions

for a given source position, the source position is calculated for a large number of

potential image positions (using Equation 1.15), and those that correspond to the

specified source position(s) are recorded.

This process works because the path of light is reversible. Any photon path from

the source to the observer is an equally valid path from the observer to the source.

By directing inverse light rays towards a point in the lens plane (which is then the

direction of a potential image point) and determining if they are deflected towards

the source position(s), one can build up a picture of the image positions in relation

to various source positions.

The ray shooting and magnification map techniques are two implementations of

this approach, applying different optimisations to make the process computationally

feasible.

2.1.1 Ray Shooting

Ray shooting is a direct implementation of the method above. The lens plane is

divided into a grid of square pixels with some defined size, and the lens equation

is evaluated at the centre of each. If the resulting source plane position is inside

the source disk, the pixel in the lens plane is marked as being contained within an

image. This is shown in Figure 2.1.

Limb darkening can be modelled by weighting each pixel with an intensity given

by Equation 1.22. The brightness, I, of a pixel which traces to a position x in the
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Source
Plane

Lens
Plane

Figure 2.1: Ray shooting tiles the lens plane with pixels (shown here projected into the

source plane for visibility) and calculates the source plane position of each

using the lens equation. Pixels that are mapped inside the source disk (red)

are marked as being in an image (black).

source plane, is thus

I(r) =


0 |x− s| > rs

1− Γ

(
1− 3

2

√
1−

(
|x−s|
rs

)2
)
|x− s| ≤ rs

. (2.1)

After evaluating each pixel in the lens plane, the source plane is likewise divided

into pixels, and the source brightness evaluated directly in each. The magnification

is then given as the ratio of the summed image pixel brightness to summed source

pixel brightness.

The numerical accuracy of the technique depends strongly on the number and size of

the pixels covering the images and source. An accurate calculation of magnification

requires a pixel size much smaller than the source, such that the finite source is

represented by many pixels. Without knowing where to search for images, the

entire lens plane must be covered with these pixels. Consequently, the number of

pixels involved in the calculation (and thus the total calculation time) increases

quadratically with increasing resolution. It is impractical and very inefficient to

perform the calculation for every pixel in the lens plane for each source position,

even if the search is restricted to a few Einstein radii.

The core idea in the ray shooting technique is thus to minimise the number of pixels

that must be evaluated using Equation 2.1. The implementation in MLENS had

two distinct methods for doing this.
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The first and most obvious technique, also used in the magnification map method,

is to calculate all times in the lightcurve simultaneously. By making the assumption

that the lens is static, the mapping between the lens and source plane becomes

independent of time. Multiple source ‘targets’ are then placed in the source plane,

and the destinations of the directed rays for all pixels are compared with these source

positions.

This assumption cannot be made if there is orbital motion within the lens, which

makes these techniques a poor choice for modelling events that include lens mo-

tion.

The second technique is more subtle and makes use of the lens plane topology

discussed in Section 1.4.3. We saw that, provided it does not contain a lens or critical

curve, an arbitrary bounded region R in the lens plane is transformed continuously

into the bounded region S in the source plane where the boundary of S is given by

the transformation of the boundary of R.

If the boundary of S is approximated by a polygon, we can determine whether the

source lies inside or outside S using the even-odd rule (e.g. Foley [1990]), shown in

Figure 2.2.

Figure 2.2: A simple method for determining whether a point is inside a (non self-

intersecting) polygon is to project a line from infinity to the point. The

point is inside the polygon if and only if the line crosses an odd number of

edges.

This is complicated slightly by the finite source size; in practice one also needs to

check for any edges passing within rs of the source centre.

This test allows an arbitrarily large region to be checked for the presence of images

without having to calculate every pixel within the region. Only a subset of points

around the border of the region need to be examined.

Hence regions of the lens plane that do not contain images can be rapidly discarded

using an appropriate iterative algorithm; a list of regions to search is maintained,

and this initially consists of a single square region that covers the lens plane out to

a few rE.
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(a) Lens plane showing the iteration

that each region was discarded.

(b) Area (black, left axis) and cumulative number of

calculations (red, right axis) for each iteration of

the algorithm.

Figure 2.3: The pixel reduction algorithm is applied to a binary lens configuration. The

search quickly converges to the regions containing images, lenses, or critical

curves with relatively few calculations. Efficiency decreases after covering

90% of the lens plane due to the many small regions to be tested.

Each region is then compared with the lens positions to make sure that none are

contained within. Critical curves are searched for by calculating the Jacobian at

points around the border. A sign change in the Jacobian indicates that a critical

curve has been crossed. If the region contains a lens or critical curve, it is divided

into four smaller regions which replace the original region.

A number (dependent on the size of the region, and desired resolution) of points

around the edge of the region are selected, and transformed into the source plane.

These form a polygon, that is checked for the presence of the source using the

even-odd rule. If the source is outside the polygon, and sufficiently far from every

vertex, the region is discarded. Otherwise, it is divided into smaller regions to be

reevaluated. This is continued until the regions reach a suitable threshold size, where

they are marked as requiring ray shooting and then discarded.

This algorithm quickly converges to find the critical curves and image locations,

with orders of magnitude less pixels to evaluate. Figure 2.3 shows an example

of the algorithm applied to a binary lens. A similar algorithm is also used by

the GRAVLENS software (Keeton [2001]) to calculate the critical curves for large

distributed gravitational lenses.

Further improvements to the ray shooting method are possible, but were not used in

the original MLENS software. For example the lens plane can be tiled with hexago-

nal pixels, or polar-coordinates (Bennett [2010]), to provide a better representation
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of the curved images than square pixels.

2.1.2 Magnification Maps

The ray shooting method is optimised in order to minimise the number of calcu-

lations required to evaluate a single model light curve. The magnification map

technique takes a different approach. While searching parameter space for the best-

fit model light curve, a vast number of lightcurves need to be calculated. The

magnification map technique aims to reduce the overall calculation time for the

computation of multiple model light curves, so in spite of being less efficient than

ray shooting for a single model light curve, it is more efficient when one considers

the entire modelling process.

A magnification map provides a numerical approximation to the point-source magni-

fication at each point in the source plane. Thus, the source can be placed anywhere

on the map, and its magnification found by averaging the pixels that it overlaps.

Limb darkening can be included by weighting each of these pixels by an appropriate

intensity.

The map is calculated by directing rays from the observer with a fixed (area) density

over a large region of the lens plane. Each ray is traced into the source plane using

the lens equation, and binned into the nearest pixel. The magnification associated

with a given pixel is simply the ratio of the number of rays that impact that pixel

to the number that would hit it if there was no lens system (which is proportional

to the density of rays directed towards the lens plane). An example magnification

map is shown in Figure 2.4.

The calculation of the map itself can take tens of minutes, and each map applies

only to a single combination of mass ratio and lens separation. This requires many

different maps to be created. Once the map is generated however, the calculation of

lightcurves corresponding to the remaining parameters is extremely fast. The maps

can also be stored for future use, but there is obviously a trade-off here between

storage capacity and computation time.

The effects of parallax and xallarap can be included by using a curved source track,

but lens motion would require a new map to be created for each time within the

calculation. This makes it prohibitive to use magnification maps for modelling such

events.
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Figure 2.4: Magnification map of an unpublished VUW model for the MOA-2009-BLG-

387 event. The resulting lightcurve, shown in Figure 1.7, is produced by

moving the source from left to right along the (red) track, averaging the

pixel intensities below the source.
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2.2 Semi-analytical techniques

Semi-analytical techniques make use of the fact that it is possible to invert the lens

equation (Equation 1.15) and produce an equation whose solutions directly yield

the image positions for a given source-lens configuration. This is most easily accom-

plished by using complex variables to represent the two-dimensional vector positions

in the image and source planes. The inversion procedure for an N component lens

then yields a complex polynomial of degree N2 + 1. There is no general analytical

formula for solving the roots of a degree five or higher polynomial, which means

that even the simplest multiple lens system must be solved numerically. However,

polynomial root finding is a mature area of numerical mathematics so algorithms

exist to perform the task. A subset of the polynomial roots then give the image

positions in the lens plane.

Having found the image locations, the point-source magnification can be calculated

using Equation 1.17. This procedure can be extended to cover finite sources by using

algorithms that utilise a selection of nearby multiple point-source magnification

values.

Although the lens equation looks relatively simple, the inversion procedure becomes

increasingly complex as the number of lens components increases. For this reason,

a number of modellers continue to use the ‘brute force’ inverse ray-tracing tech-

niques.

2.2.1 The Lens Polynomial

The first step in converting the lens equation (Equation 1.15) into a polynomial

is to represent the vector positions using complex numbers. This reduces the lens

equation from a system of two linearly independent equations to a single equation.

Making the substitution of u, x → real axes, v, y → imaginary axes, we define the

complex positions z and w by

r(x, y) → z = x+ iy; z = x− iy
s(u, v) → w = u+ iv; w = u− iv

(2.2)

where z or z define a position in the lens plane, and w or w define a position in the

source plane.

Substituting these definitions into Equation 1.15 gives an equation relating the com-

plex number coordinates of the source (w) to the complex number coordinates of
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the images (z and z); that is, the lens equation using complex numbers

w = z −
N∑
i=1

εi
z − zi
|z − zi|2

= z −
N∑
i=1

εi
z̄ − z̄i

. (2.3)

Here, N defines the number of components in the lens, and zi defines the position

of each component using complex number coordinates.

These equations contain both z and z. In order to directly relate an image position to

a source position without separating the equation into real and imaginary parts, one

of these must be eliminated. Rearranging to find an expression for z and conjugating

produces

z̄ = w̄ +
N∑
i=1

εi
z − zi

. (2.4)

On substituting back into Equation 2.3, we obtain an equation in one unknown,

z.

w = z −
N∑
i=1

εi

w̄ − z̄i +
N∑
j=1

εj
z − zj

.

This equation is not a polynomial, as it contains both positive and negative powers

of z. To form a polynomial, we multiply both sides of the expression by factors of

z, and rearrange to produce a polynomial in z.

∏
i

[
(w − zi)

∏
j

(z − zj) +
∑
j

εj
∏
k 6=j

(z − zk)

]
(z − w)−

∑
l

εl
∏
i 6=l

[
(w − zi)

∏
j 6=i

(z − zj) +
∑
j

εj
∏
k 6=j

(z − zk)

]
= 0 .

(2.5)

The terms in each sum or product vary over each component in the lens, except

where specified.

This equation, while technically a polynomial, is not useful in this form. It must

be rearranged into the form p(z) =
∑

i aiz
i before it can be solved by a numerical

algorithm. The coefficients ai uniquely determine the polynomial, and thus its

roots.

The highest order term in the polynomial can be determined from a direct exami-

nation of Equation 2.5, and is given by

aN2+1 =
∏
i

(w − zi) .
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The lower order terms, however, become rapidly more complicated with increasing

N , making symbolic manipulation tools like Maple extremely useful (even essen-

tial). All the coefficients for the polynomials corresponding to N up to 4 have been

determined by a combination of Maple manipulations with subsequent manual rear-

rangement and are provided in Appendix B. It is worth noting that the N = 3 and

N = 4 cases required extensive manual manipulation to obtain efficient expressions

for the resulting polynomial coefficients.

The polynomial coefficients are calculated for the particular source-lens configura-

tion, and then these are passed to a two-stage root finding algorithm. The first stage

uses the Jenkins-Traub algorithm (ACM Algorithm 419. Jenkins and Traub [1972,

1970]), which converges rapidly on the roots. Occasional large numerical errors were

found to cause problems, such as placing images on the wrong side of a critical curve.

This required the addition of a second stage, in which each root is ‘polished’ using

the Laguerre method (Riley et al. [2006]) to determine a more accurate result.

The fundamental theorem of algebra states that the number of complex roots of

any polynomial is equal to its degree. The lens polynomial is degree N2 + 1, but

we saw in Section 1.4.3 that far from the lens there are only N + 1 images; only

a subset of the determined roots correspond to physical images. The non-physical

roots are identified by substituting all root values in the complex number lens equa-

tion (Equation 2.3). Those that do not recover the original source position do not

correspond to physical images and are discarded.

The remaining complex roots are converted back to 2D image positions by applying

the inverse substitution to Equation 2.2. These points can then be substituted

directly into Equation 1.17 to produce the point-source magnification.

2.2.2 Critical Curves

A similar approach can be applied to calculate the critical curves. Appendix A

shows that the Jacobian in complex coordinates is given by

J =
∂(u, v)

∂(x, y)
=
∂(w,w)

∂(z, z)
.

Using the symmetry between Equations 2.3 and 2.4, the Jacobian can be written

as

J =
∂w

∂z

∂w

∂z
− ∂w

∂z

∂w

∂z

= 1−
∣∣∣∣∂w∂z

∣∣∣∣2 .
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The critical curves (given by J = 0) are thus the solutions to

∂w

∂z
=

N∑
i=1

εi

(zi − z)2 = eiϕ

where eiϕ (ϕ ∈ [0, 2π)) defines the unit circle on the complex plane.

As before, we can convert this into a polynomial by multiplying through by the

denominator of each term to produce

∑
i

[
εi
∏
j 6=i

(zj − z)2

]
− e−iϕ

∏
i

(zi − z)2 = 0 . (2.6)

This result was first published by Witt [1990].

Examining the second term, we see that the polynomial is of order 2N , with the

highest coefficient given by a2N = −e−iϕ. All 2N roots for each ϕ correspond to

valid points in the critical curve.

The remaining coefficients for N up to 4 are given in Appendix C.

2.3 Hexadecapole Approximation

Finite source effects are often important in modelling microlensing light curves, par-

ticularly when the source is near a caustic where the magnification changes rapidly

with source position. We saw in Section 1.5 that the point-source approximation

behaves poorly in these regions, making it inappropriate by itself.

The Hexadecapole approximation (Gould [2008]) employs multiple point-source val-

ues to estimate the magnification resulting from a finite source, including limb dark-

ening effects if required. While this approximation provides an accurate model over

a much larger region than the point-source model, it fails when the source crosses

a caustic. The technique is computationally much faster than the polygon method

discussed next, so this method provides a useful bridge between the polygon and

point-source techniques.

The point-source magnification is evaluated at 13 points on the source disk, and

used to interpolate (up to the hexadecapole term) the underlying magnification

field covered by the source. The magnification is then found by using these values

to approximate the analytical integral of the magnification field over the source disk,

weighted by the specified limb darkening profile. The spacing of these 13 points are

shown in Figure 2.5.
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rE

Figure 2.5: The hexadecapole approximation is constructed from 13 point-source mag-

nifications sampled across the source disk.

Gould shows that this technique provides a simple approximation for the magnifi-

cation,

Afinite = A0 +
A2r

2
s

2

(
1− 1

5
Γ

)
+
A4r

4
s

3

(
1− 11

35
Γ

)
. (2.7)

The three terms correspond to the monopole, quadrupole, and hexadecapole terms

in the expansion, and rs gives the radius of the source disk.

The monopole term A0 is simply the point-source magnification evaluated at the

centre of the source disk. A2 and A4 are defined by

A2r
2
s =

16Ars/2,+ − Ars,+
3

A4r
4
s =

Ars,+ + Ars,×
2

− A2r
2
s .

where Ars,+ and Ars,× are the average magnifications calculated at four points on

the edge of the source disk, in a ‘+’ and ‘×’ configuration. Similarly, Ars/2,+ is the

average of the four ‘+’ points located at half the radius of the source disk.

The approximation fails near caustics, where the magnification field cannot be accu-

rately represented by the hexadecapole expansion. This is demonstrated in Figure

2.6, where a 0.005 rE source approaches crossing a ‘fold’ caustic (far from any

cusps). The hexadecapole approximation remains within 0.01% to within 1.5 rs of

the caustic, far better than the point-source approximation. The sharp changes in

magnification occur as each of the point-sources that are used in the hexadecapole

calculation cross the caustic.

2.4 Polygon Method

The large changes in magnification that occur when the source crosses a caustic

provide a strong constraint on model parameters. This also makes them difficult to

model; the diverging Jacobian means that neither the point-source nor hexadecapole

approximations can be applied. An entirely different approach is needed.
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Figure 2.6: Magnification of a 0.005 rE source with varying distance from the caustic

(measured in source radii). The hexadecapole approximation provides a

more accurate magnification than the point-source approximation close to

the caustic. Both approximations provide an incorrect magnification when

the source is within 1 rs of the caustic.
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The polygon method is based on the ‘Stokes theorem’ algorithm by Gould and

Gaucherel [1997], extended to support any number of lenses for which the lens

polynomial can be solved.

In summary, the source disk is approximated by a polygon with N vertices around its

perimeter. The lens polynomial is then solved for each of these vertices to produce

corresponding polygons, also with N vertices, for each of the images. The areas of

these polygons can be evaluated analytically, and therefore the total magnification

can be estimated from the ratio of image area to source area. Limb darkening effects

can be included by using multiple concentric polygons to represent the source disk

and weighting the annular areas accordingly.

Area of a Polygon

A polygon is defined by an ordered list of vertices, connected by edges. The area

enclosed within a polygon can be found by considering the signed area beneath each

edge.

=
+

––

(x  
0 0),y 

(x  
1 1),y 

(x  
3 3),y 

(x  
2 2),y 

y = c  
A12

A01

A23

A30

A

Figure 2.7: The area inside by a (non self-intersecting) polygon is given by the sum of

(signed) areas below each edge. A = A01 −A12 −A23 +A30.

Consider the 4-sided polygon in Figure 2.7. A01 defines the area of the the par-

allelogram formed between the edge connecting the first two vertices, and the line

y = c

A01 =
1

2
(x0 − x1) (y0 + y1 − 2c)

=
1

2
(x0y1 − x1y0) +

x0 (y0 − 2c)

2
− x1 (y1 − 2c)

2
.

Similarly, A12 is found by considering the edge between the second and third ver-

tices

A12 =
1

2
(x1y2 − x2y1) +

x1 (y1 − 2c)

2
− x0 (y0 − 2c)

2
.

Notice that the second term of A12 cancels the third term of A01. When all edges

are considered, all terms containing c cancel. Notice that x2 > x1 and y2 = y1,
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making A12 negative. Provided the vertices are ordered in an anticlockwise fashion,

the resulting areas will have the required sign for the sum to give the enclosed area

directly.

It is important to include the final edge connecting the last vertex back to the first.

This is achieved by inserting an extra vertex, (xM , yM) = (x0, y0), which allows the

area to be calculated by

A =
1

2

M∑
i=1

(xi−1yi − xiyi−1) .

The sign of the area for a given image will depend on its parity (discussed in Section

1.4.3). Images with negative parity can be thought of as a mirrored image of the

source, which reverses the order of the vertices and gives a negative area.

A more subtle effect occurs when the source entirely covers a caustic, producing an

image with holes. The simplest example of this is shown in Figure 2.8, where a

(single) lens and source are aligned.

Figure 2.8: The two images of a source that transits behind the lens merge across the

Einstein ring to form a single continuous ring. The ring area is given by the

difference between the two image polygon areas.

The vertices in the two polygons are ordered in the same sense, and so both have

positive area. The inner polygon (with negative parity) should define the hole in the

image, and so its sign is again reversed from its desired value. Gould and Gaucherel

[1997] showed that these incorrect signs can always be corrected by multiplying each

polygon’s area by its parity. This is extremely fortunate, as it allows the global area

to be calculated by considering each polygon locally, without any information of the

overall image topology.
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Polygon Construction

The vertices in the image polygons are calculated by first choosing points around

the edge of the source disk and then solving the lens polynomial roots for each

position. These image points must then be grouped into the corresponding physical

images.

The position of a vertex on the edge of the source disk can be parametrised using

an angle θ. For a source centred at (x, y) with radius rs, the vertex at angle θ is

given by

v(θ) =

[
x

y

]
+ rs

[
cos(θ)

sin(θ)

]
.

The task then involves determining the set of angles θ ∈ {θi} that give the best

distribution of vertices around the images, which in high magnification situations

are extremely distorted from the circular source disk shape. If the image vertices

are spaced too far apart, the numerical accuracy of the method will degrade; if

they’re spaced too closely then computing time is wasted calculating unnecessary

vertices.

As a first approximation, we can space N vertices evenly around the source disk

θi =
2πi

N
for i = 0.. (N − 1) . (2.8)

The resulting distribution of vertices in the images (shown for a single lens in Figure

2.9a) can be highly irregular. The high magnification region close to the lens spreads

adjacent vertices far apart leading to inadequate numerical accuracy, while those in

lower magnification regions are close enough to yield good accuracy.

A better approach is to dynamically space the vertices around the source such that

spacing of vertices around the images remains roughly constant. An algorithm

was created to obtain this result, which required the introduction of two resolution

parameters

Nmin Minimum number of source vertices.

dmax Maximum allowed spacing between image vertices,

where Nmin defines the maximum angular separation of two vertices by

∆θmax =
2π

Nmin

. (2.9)

The first source vertex is placed at θ0 = 0, and the corresponding image vertices

calculated. The next vertex is chosen as θ1 = θ0 + ∆θ, where ∆θ is initially set

to ∆θmax. The corresponding image vertices are calculated and compared with the

vertices from the previous step. If the maximum distance si between vertices in any
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(a) Equal spacing around source. (b) Dynamic spacing.

Figure 2.9: Two algorithms for vertex placement. Filled circles represent vertices in the

source (red) and images (black). Solid curves represent the actual image and

source borders.

image exceeds dmax, the current vertices are discarded and the calculation repeated

with ∆θ halved.

Once the step is successful, the ∆θ for the next step is calculated by linearly esti-

mating the source-plane spacing required for a lens plane spacing of 0.75dmax

∆θi+1 = min

(
∆θmax,

3dmax

4si
∆θi

)
. (2.10)

These steps are repeated until the entire source has been covered (θ ≥ 2π). An

extra vertex is calculated with θ > 2π, and then discarded, in order to ensure that

the distance between the last and first vertex in each polygon are within dmax. The

improved distribution of image vertices that this method produces are shown in

Figure 2.9b.

Vertices are grouped into polygons incrementally by matching the vertices obtained

at each step with those from the previous step. For a single lens, the analytical

expression for the image vertices makes this assignment simple. All of the ‘–’ vertices

go together, and all of the ‘+’ vertices go together.

In the general case, the matching must be done numerically. The separation of

vertices within the same image are (with one exception) much smaller than the

separation between different images. The matching vertex from the previous step

is thus the closest. This may not hold if the source is near a caustic, due to a pair

of images elongating towards the critical curve. In this case, the opposite parity of

the images is sufficient to distinguish vertices between the two. The most complex
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case occurs when the source straddles a caustic, as the region inside the caustic

appears in more images than the region outside. When stepping around the edge of

the source, and crossing a caustic, a pair of vertices will appear or disappear in the

images. Special care must be taken to ensure that they are combined into a polygon

that correctly crosses the critical curve.

The approach taken here is to group the vertices first into curves. Each curve records

its parity, a reference to adjacent curves at either end (initially undefined), and a list

of vertices. Only after the entire source has been evaluated are these curves merged

into a set of polygons.

An initial set of curves are created for the first set of image vertices. At each step,

vertices are matched against the set of curves that do not have an end-neighbour

defined. When a caustic is entered, the matching procedure will leave two vertices

unpaired. The vertices will be on opposite sides of a critical curve, with opposite

parity. If necessary, the step size is adjusted so that their separation is less than

dmax, then two new curves are created, one for each vertex, with each start-neighbour

set to the other curve. This assignment allows the curve to be followed across the

critical curve in order to create a composite polygon for the two partial images. On

stepping out of a caustic, two curves will be left with unpaired vertices. The final

vertices in the curves again lie on opposite sides of a critical curve, with opposite

parity. The step size is adjusted if necessary so that these final vertices are within

dmax, and the end neighbour of each curve set to the other.

An example of the resulting curve segments are shown in Figure 2.10a. The segments

will all start and and at a critical curve, except for those truncated by the calculation

starting and finishing at θ = 0. The curves that have neither a start-neighbour or

end-neighbour defined specify an image that doesn’t cross a critical curve. The first

and last vertices are checked to ensure that they are within dmax, and polygons

created for these images. The remaining curves are joined to form polygons that

span multiple partial images. The curves that form these polygons will have at least

one of the start-neighbour or end-neighbour curves defined. Any curve with a single

neighbour must start or end at θ = 0, and is matched with the closest unmatched

end of the remaining curves with equal parity.

These remaining curves (if any) define at least one polygon that spans a critical

curve. The curve segments on opposite sides of the critical curve have opposite

parity, and thus an opposite vertex ordering. This can be seen in Figure 2.11, where

the vertices converge or diverge at the critical curve. Swapping the vertex ordering of

one of these creates a consistent ordering within the grouping. An ‘effective parity’

is chosen for the polygon, and the vertex ordering flipped for the curves that have

the opposite parity. The curves are then combined to form the polygon.
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(a) Image curve segments. (b) Closed polygons.

Figure 2.10: The polygon algorithm first finds a series of curve segments defining the

edges of the images. They are then connected into a set of closed polygons.
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Figure 2.11: Two image curves meeting at a critical curve have opposite parity and

vertex ordering. Reversing the vertex ordering of one of the curves changes

its effective parity, and allows the curves to be joined to form a single

polygon that covers both images. The ‘+’ and ‘–’ show the effective parity

of the two curves at each step.
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The end result of this curve matching is a set of closed polygons that define the

spatially distinct images, shown in Figure 2.10b.

Limb Darkening

Using the polygon areas as above to determine the magnification is fundamentally

incompatible with any limb darkening model, as it effectively considers the source

and image brightness to be constant. However, limb darkening effects can be in-

cluded by dividing the source disk into concentric polygons, each of which can then

be treated as having a constant brightness. The individual images corresponding to

each region are found, and then added together with a weighting determined from

Equation 1.22 to construct a composite image containing relative brightness infor-

mation. Given the (normally assumed) circular symmetry of the source, the natural

choice is to divide the source into a series of successively larger annuli, which produce

approximately radial contours in the resulting images, as shown in Figure 2.12.

Figure 2.12: Limb darkening effects are modelled by dividing the source into a set of

annuli and finding the images of each. The area of each partial image is

weighted by a brightness factor and added to find the total image flux.

The radial width of each annulus can be made constant, or chosen so that the change

in intensity is constant across the width of each.

For a constant radius, the outer edge of the i’th annulus is simply

ri =
iI(rs)

N
. (2.11)



2.4. POLYGON METHOD 55

The spacing for a constant intensity change is found by inverting Equation 1.22

ri
rs

=

√
1− 4

9

(
1− 1− Ii

Γ

)2

. (2.12)

The intensity at the outer edge of the i’th annulus is found by interpolating the

intensity at the centre and edge of the source disk (found using Equation 1.22)

across the N annuli

Ii =
I(0)

I0

+
i

N

(
I(rs)

I0

− I(0)

I0

)
. (2.13)

Substituting Ii into Equation 2.12 then gives the outer radius.

The spacing of the resulting annuli for the two methods are shown in Figure 2.13.

More analysis on the numerical accuracy of the two methods when applied to real

models is required before a decision can be made as to which method is the better.

Figure 2.13: The intensity profile of a limb-darkened source can be approximated by

annuli with uniform changes in radius or uniform changes in intensity.

The image polygon for an annulus requires roughly twice the number of vertices

(and thus, calculations) as a solid disk of the same size. Half of these vertices

will be redundant, as the outer edge of one annulus is shared with the inner edge

of the next. It is more efficient, therefore, to calculate the image polygons for a

collection of increasingly larger disks, and to find the area of each annulus by taking

differences.

If Ai describes the area of the i’th disk image polygons, the weighted flux of the

composite image is obtained via

F =
I (0)

I0

A0 +
N−1∑
i=1

[
I
( ri+ri−1

2

)
I0

(Ai − Ai−1)

]
. (2.14)
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The same procedure is applied to calculate the source flux from the source annulus

areas.

The annulus image areas can in principle be stored and reused to efficiently calculate

the magnification for a range of increasing source sizes with limb darkening. If the

image and source areas are calculated for a source of a given size, only a single,

larger, annulus area needs calculated in order to efficiently find the magnification of

a larger source.

2.5 Hybrid techniques

A third class of methods exists, which combines elements of both inverse raytracing

and semi-analytical techniques. Typically, the lens polynomial is solved to find the

location of the images, which restricts the regions which must be targeted with rays.

The ‘loop linking’ approach of Dong et al. [2006] is similar to the polygon method,

but the resulting polygon is ray traced which avoids the difficulty involved with

modelling limb darkening. Bennett [2010] gives a summary of different ‘flood-fill’

approaches, where the image positions found from the lens polynomial are used as

seeds for an algorithm that expands outward to cover the images with rays. Due to

time constraints, these techniques were not studied in any further detail during this

thesis programme.



Chapter 3

Modelling Procedures

Generating theoretical lightcurves for a specified set of model parameters is an in-

teresting theoretical task in itself, but only really becomes useful once these models

are applied to real observational data. There is no simple direct relationship be-

tween the model parameters and the resulting theoretical lightcurve, which means

that there is no straightforward method for extracting parameters from any obser-

vational data.

The task of generating a theoretical model to match the observed data thus becomes

one of searching for a needle in an N dimensional haystack. This haystack contains a

wide range of models with different parameters, each producing a different theoret-

ical lightcurve which must be compared with the observed data. Those that do not

match the data to within a specified fit criteria are discarded, and new models are

generated. This is repeated over many iterations until the best fitting theoretical

lightcurve is found.

The two common methods for searching parameter space for models are to regularly

sample the space with a lattice of points, iteratively honing in on the best fitting

region, or to apply stochastic techniques based on Monte Carlo Markov Chains.

These searching algorithms are beyond the scope of this thesis, but many references

are available in the literature, e.g. Bennett [2010]. Likewise, the relationships

between model parameters and physical quantities are not discussed.

A point to note about these searches is that a huge number of theoretical lightcurves

must be generated before the best fitting model is found. This necessitates the use

of massively parallel computing grids, and requires the lightcurve generation to be

as efficient as possible.

The quality of fit between the theoretical lightcurve and observed data is quantified
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via the χ2 fit

χ2 =
∑
i

(
Oi −M(ti)

σi

)2

(3.1)

where Oi and σi are the observed magnification and uncertainty at the time ti, and

M(ti) is the theoretical magnification at that time. If the uncertainties are correctly

estimated and the model curve describes the data well, we should expect that each

term of the sum is of the order of 1. It can be shown that χ2/DOF ∼ 1 for a good

model, where DOF is the number of degrees of freedom (the number of data points

minus the number of model parameters). After a ‘good’ model has been found for

an event, the errors in each data set are often rescaled to give χ2/DOF = 1. This

allows comparable models to be compared by their relative ∆χ2. In any case, a

smaller χ2 indicates a better fit. For further discussion on comparing and fitting the

model and observational data, see Korpela [2007].

3.1 mlens2

The creation of a new software tool that uses the semi-analytical models developed

and presented in this thesis was a significant effort, and the main output of this

thesis programme. Despite its beginnings as an incremental update to the origi-

nal MLENS code developed by Korpela [2007], the replacement of the inverse ray

shooting calculation techniques with the semi-analytical approach means that little

of the original code remains and that mlens2 stands alone as a distinctly different

code.

The original software used the magnification map and ray shooting techniques dis-

cussed in Chapter 2, and was tightly integrated with the ECS grid for searching pa-

rameter space. The new software features an entirely new set of calculation routines,

and a general parallel computing layer which allows it to run on both computing

grids available at VUW, as well as on a standard workstation computer (at a much

reduced capacity).

The core software tasks in mlens2 are assembled into two executables, mljob and

mlserver, which overall involved approximately 13000 lines of C++ code. It has

been tested to run on Mac OS X, Windows, NetBSD, and several distributions of

Linux using the gcc compiler. Several utility scripts also exist for converting raw

observational data into the format required by mlens2.

The mlserver executable controls the global parameter space search to determine

the best model for an observed event. Given an appropriate set of initial conditions,

it divides the initial calculation workload into batches that are submitted to the un-
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derlying grid software to be calculated in parallel. The server will track the returned

results and assign further calculations until the best fitting model is obtained. At

the culmination of the thesis work, the server is able to communicate with the ECS

and SCS grids, or emulate a small grid when running on a single computer, and read

the returned χ2 values from each job. It currently lacks the logic required to gener-

ate the jobs to be calculated and to interpret the returned χ2 values to determine

the best fit. An important element of future work will be to complete this logic,

which will enable mlens2 to be used for searching parameter space for models for

new events.

The mljob executable contains the semi-analytical methods presented in this thesis,

plus the logic required to compare the model lightcurve with observational data to

calculate a χ2 fit value. It also contains routines to plot model lightcurves with

fitted data, plus an interactive visualisation mode which was used to generate many

of the figures in this thesis. A brief overview on the structure and operation of mljob

is provided in Appendix D.

3.2 Algorithm Selection

The lightcurve calculation has two requirements. The first is to be accurate, the

second to be efficient. The numerical root finding of the lens polynomial is a major

computational bottleneck, and so the best way to reduce the calculation time is to

minimise the number of times these roots must be found, while retaining numerical

accuracy to an acceptable level.

Of the three semi-analytical techniques, the point-source approximation requires

only one set of roots to be found. Far from the caustics, where the approximation

is valid, this is the best choice. Closer to the caustics where the single-lens approx-

imation does not apply, the hexadecapole approximation requires an additional 12

sets of roots to be found. This is an order of magnitude slower than the point-source

approximation, but still much faster than the polygon method, which can require

thousands of sets of roots to be found for a high magnification event with limb

darkening. Thus, a mechanism is needed in which to specify which calculation to

use for each magnification calculation.

The simplest method is to allow the user to specify the calculation regions manually,

by generating a lightcurve using each technique and noting the regions where the

approximations provide accurate results. Provided the gross lightcurve features are

well constrained, these regions can be applied to subsequent model calculations.

This provides a sufficient solution that works well when refining an already good
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model, which forms a significant fraction of the overall modelling.

This will not work for general parameter space searches, as the model lightcurve

features will not be in any way constrained. An algorithm is needed to calculate

these regions automatically for each individual model. Gould [2008] suggests that

with current-generation telescopes, an accuracy of 0.1% in the data is possible. This

sets a limit on the acceptable numerical error for the model lightcurve.

In the following analysis, the numerical error of the polygon technique is assumed to

be zero, justified by specifying that a large number of vertices should be calculated

per polygon. The numerical error in the hexadecapole and point-source approxima-

tions are then given as the difference in calculated magnification with respect to the

polygon calculation.

3.2.1 Caustic Distance Algorithm

Gould [2008] states that an upper bound on the error in the hexadecapole approxi-

mation is given by
∆A(z)

A
=

25

210
z−6

where z is the tangential distance between the source and caustic. This suggests that

distance to nearest caustic may be an effective means of separating the calculation

regions.

A simple algorithm was created that calculated the caustics for the event (using the

method in Section 2.2.2), and the distance between each source position and the

nearest caustic found. Sources closer than 5 rs to a caustic were calculated with the

polygon method, those between 5rs and 10rs were calculated with the hexadecapole

approximation, otherwise the point-source approximation was used.

Figure 3.1 shows a magnification map and caustics for the OGLE-2005-BLG-390

event, superimposed with the source track and calculation regions.

This algorithm worked well on several events that were tested, but major problems

were encountered with the event OGLE-2006-BLG-109, which is discussed in more

detail in Chapter 4.

The first problem arises when there is significant orbital motion, which cause the

caustics to change with time. The basic algorithm required the caustics to be recal-

culated for each unique time, and as the caustics are found by finding the roots of

a polynomial, this adds a significant calculation overhead across the thousands of

points that were calculated. In practise, this will not be a large problem as orbital

motion is generally not modelled until the gross lightcurve features have been well
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Figure 3.1: Caustic distance calculation regions for OGLE-2005-BLG-390. The caustic

(orange) that the source passes over is much smaller than the source itself

(red disk, track).

constrained. This means that the calculation type regions can be specified manually,

but is still a limitation of the method.

The second problem occurs when the source track passes outside a caustic cusp,

where a long extension of high magnification can extend beyond the point of the

cusp, into the point-source approximation region. This was an issue with OGLE-

2006-BLG-109, as one of the lightcurve features is caused by one of these cusp

passages. Figure 3.2 shows the calculation regions near the cusp, while Figure 3.3

shows the error that the incorrect use of the point-source approximation introduces

into the lightcurve.

Although this problem could be worked around by adding a special check for caustic

cusps, it was decided to abandon this method in favour of an approach that treated

the cause of the failures directly.

3.2.2 Magnification Curvature Algorithm

A more intuitive approach is to target the cause of the approximation failure; large

nonlinear changes in the magnification field across the source disk. This non-linearity

can be approximated analytically by considering the derivatives of the point-source

magnification, calculated from derivatives of the Jacobian.

Consider the point-source magnification, M , calculated at the centre of the source

using Equation 1.17. The maximum rate of magnification change at this point is
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Figure 3.2: A magnification map of the the source plane around the final OGLE-2006-

BLG-109 cusp crossing, showing the calculation type regions. A long finger

of high magnification extends beyond the point of the cusp into the point-

source calculation region.

Figure 3.3: The calculated magnification (using the point-source approximation) pro-

duces an error of up to 20% from the true magnification as the source crosses

the extension of high magnification from the caustic cusp.
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given by the length of the gradient vector

G = |∇M | =

√(
∂J

∂x

)2

+

(
∂J

∂y

)2

J2
.

This gradient approximates the linear change in magnification, which does not affect

the accuracy of the approximations. To find the nonlinear changes, we must consider

the gradient of this gradient, which can be thought of as a curvature

C = |∇G| =

√(
∂G

∂x

)2

+

(
∂G

∂y

)2

.

The full expression for the curvature involves the 12 unique first, second, and third

order derivatives of the lens equation, making it too long to present here. Despite

its apparent complexity, the curvature can be constructed efficiently at a known

image position. As discussed earlier, the time consuming calculation is in solving

these image positions from the lens polynomial. A different value for curvature will

be obtained at each image position, of which the maximum is taken. The curvature

gives a value in terms of magnification/r2
E, so multiplying by the squared radius

of the source gives an estimate of the nonlinear change in magnification across the

source disk.

The calculation type is chosen by comparing this value to the central magnification

by

δ =
r2
sC

M
.

Numerical investigation of OGLE-2006-BLG-109 found that the point-source ap-

proximation was suitably accurate for δ < 10−3, and the hexadecapole approxima-

tion for 10−3 < δ < 10−2. The polygon method is used otherwise.

Figure 3.4 shows the results of applying this algorithm to the region presented in

Figure 3.2. The region covering the magnification extension is (correctly) selected as

requiring the polygon method, while the majority of the remaining area is calculated

using the hexadecapole approximation.

A problem was encountered with sharp changes in the magnification curvature itself

near caustics. It was possible for the centre of the source to have C small enough to

select the point-source or hexadecapole approximation, while the edge of the source

lay over a caustic, giving an incorrect magnification calculation. This was solved

by calculating the curvature at the 8 points on the edge of the source used for the

hexadecapole magnification calculation, and then falling back to the point-source

approximation if the curvature is low. This causes the overall calculation to be at
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Figure 3.4: The curvature algorithm correctly selects the polygon method calculation in

the region around the magnification extension.

best 9 times slower than the normal point-source calculation, but ensures that the

correct calculation type is chosen.

The resulting lightcurve for the entire OGLE-2006-BLG-109 event is shown in Figure

3.5. The error remains below 0.1% as required. The δ threshold values can be

adjusted if necessary to suit the desired trade-off between calculation speed and

accuracy.

Figure 3.5: The OGLE-2006-BLG-109 lightcurve shows the calculation methods selected

by the magnification curvature algorithm at each time.



Chapter 4

Modelling Selected Events

As discussed in the previous chapter, the current version of the mlens2 software

package does not include code to efficiently search model parameter space in order

to find the “best” model for any given data set. This higher level of coding is not

conceptually difficult, and a framework for doing so has been partially completed.

This remaining coding will need to be completed in order to make mlens2 a general

purpose package for modelling microlensing events, but was considered beyond the

scope of the thesis programme primarily due to time constraints. This was deemed

acceptable as all the interesting physics is contained in the lightcurve modelling; the

remaining effort is mostly related to effectively using the parallel computing facilities

we have access to at VUW.

This chapter demonstrates the capabilities of the new mlens2 code by comparing

models generated from published parameters with the published results, and results

produced by the previous MLENS code.

4.1 OGLE-2005-BLG-390

OGLE-2005-BLG-390 was the third published microlensing event with a planetary

companion (Beaulieu et al. [2006]), and contains one of the least massive planets that

has been discovered to date. The event was announced by OGLE as a microlens-

ing candidate on July 11, 2005. Following the alert, it was intensely monitored by

OGLE, MOA, and PLANET. A deviation from the standard single-lens lightcurve

was observed on August 9 and lasted for approximately a day. Subsequent mod-

elling showed that this deviation was caused by a companion with a mass ratio of

7.6 × 10−5 at a distance of 1.61 rE from the primary lens. It was determined by

applying Bayesian analysis that this corresponded to a ∼ 5.5 Earth mass planet

orbiting at ∼ 2.6 AU around a ∼ 0.22 solar mass M-dwarf star.
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The lightcurve shows an anomaly when the source crosses a small star shaped caustic

induced by the companion planet. An interesting feature of the model is the fact that

the source is much larger than this planetary caustic, and covers the entire caustic

as it passes over. This results in the potentially sharp caustic crossing features

being smoothed out into the small subsidiary peak observed at ∼ 3593 days. The

resulting lightcurve, shown in Figure 4.1, agrees well with the data and published

model fit.

Figure 4.1: Lightcurve for the planetary event OGLE-2005-BLG-390, using parameters

specified in Beaulieu et al. [2006]. The mlens2 control file for this lightcurve

is included as an example in Appendix E.

A χ2 fit of 568 for 650 data points was calculated in 3 seconds using mlens2. This is

close to the published fit value of 562. The original MLENS software required 194

seconds to calculate a χ2 of 569 for the same data. This is particularly (and unfairly)

slow; the full data set contains a large number of baseline observations which do not

strongly constrain the model parameters. These baseline points span a range of

1500 days, which requires a significant area of the lens plane to be populated with

rays, and so causes the MLENS ray shooting calculation to be particularly slow.

A restricted fit was calculated using the data points between 3560 and 3610 days,

producing a χ2 of 264.5 in 20 seconds for MLENS, compared with 263.7 in 2 seconds

using mlens2. Even with this restricted data set, mlens2 is significantly more efficient

than MLENS for this calculation. This can be attributed to the efficiency of the

point-source approximation, which can be applied to the majority of the lightcurve

(the calculation method regions were show earlier in Figure 3.1).

A comparison of the model lightcurves generated using MLENS and mlens2 is shown
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in Figure 4.2.

Figure 4.2: A comparison of the ray shooting lightcurve generated by MLENS, and the

semi-analytical lightcurve generated by mlens2 for OGLE-2005-BLG-390.

The two curves are in good agreement, but show elements of numerical error.

The ‘chi by eye’ fit is very good, but calculation of the percentage difference shows

a systematic difference of 0.2% between the two models. This can be explained by

a numerical error in the MLENS ray shooting code. The ray shooting magnification

is calculated by taking the ratio of the total image flux to the unlensed source flux.

The source flux remains constant (ignoring numerical errors) over the event, so any

systematic error in its calculation will introduce a constant-percentage error such as

the one seen in Figure 4.2. This type of error will have no impact on the calculated

χ2, as each data set is scaled to the model before the fit value is calculated. This

negates any constant multiplicative or additive errors in the model.

The ‘s’ shaped difference across the planetary perturbation is caused by a small

change in the calculated position of the planetary mass due to different coordinate

system definitions. This shifts the caustic, causing the source to cross it slightly

earlier in the mlens2 calculation. The (relatively) large magnitude of the difference

is caused by the rapid change in magnification when the source hits the caustic.

Ignoring these two effects, the two model lightcurves agree to within 0.05%, which

is smaller than the required numerical accuracy of 0.1%. This indicates that both

models are accurate representations of the correct theoretical lightcurve, or that
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both are consistently wrong (which is unlikely, given that they employ completely

different methods to obtain their respective lightcurves).

4.2 OGLE-2006-BLG-109

OGLE-2006-BLG-109 was the 5th published planetary microlensing event, and re-

mains the most complex event to be successfully modelled to date. The details of

the event are given by Gaudi et al. [2008]

“On 28 March 2006 (HJD ∼ 3822), the OGLE Early Warning System

(EWS) announced OGLE-2006-BLG-109 as a non-standard microlens-

ing event possibly indicative of a planet. This immediately triggered fol-

lowup observations by µFUN and RoboNet, which gained intensity as the

event approached high-magnification. On 5 April, the event underwent

a deviation from the single-lens form indicative of a binary lens. Within

12 hours of this deviation, a preliminary model indicated a jovian-class

planet, which was predicted to generate an additional peak on 8 April.

The 8 April peak occurred as predicted, but in the meantime, there was

an additional peak on 5/6 April, which turned out to be due to a second

Jovian-class planet.”

The model parameters of the published model were taken from a subsequent, more

detailed, paper (Bennett et al. [2010]), but required converting into the coordinate

system used by mlens2.

Figure 4.3 shows the model light curve generated by mlens2, with a calculated

χ2 fit of 2512 for 1193 observations. This χ2 value cannot be compared with the

published value, as the final data sets used by Gaudi et al. [2008] were not available.

The lightcurves and χ2 fits presented here use a preliminary data set from the initial

modelling in late 2007.

Without applying a direct comparison, Figure 4.3 qualitatively agrees well with the

observational data and published model. Some small systematic errors introduced

from the parameter conversions can be seen on the trailing edge of the lightcurve at

∼ 3832 days, and in the initial caustic cusp crossing at ∼ 3823 days. An optimised

fit to correct these small errors will be possible once the parameter search algorithms

are implemented in mlens2.

The combined effects of parallax and lens motion are visible in the source track,

shown in Figure 4.4. Parallax curves the track, causing the source (moving right

to left) to pass over the caustic cusp at ∼ 3823 days. The lens motion lengthens
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Figure 4.3: Lightcurve for the planetary event OGLE-2006-BLG-109 using model pa-

rameters from Bennett et al. [2010].

the caustic with time, so that the cusp is closer to the primary lens when the

source crosses it. Without these two effects, the first caustic crossing cannot be

modelled.

Figure 4.5 shows the effect of these orbital motion parameters on the lightcurve, by

comparing the model lightcurves with and without parallax and lens motion (keeping

the other parameters fixed). Without these effects, the first caustic crossing feature

is completely absent, and the timing of the last feature is delayed. There is only a

minimal effect on the lightcurve features near the peak of the event.

No attempt has been made to optimise the remaining parameters to produce the

best ‘static’ model, i.e. without orbital motion. Instead, we use an earlier model

produced by the VUW microlensing group in 2007 with the MLENS code. Figures

4.6 and 4.7 show the lightcurve and source track for the model, and its control file is

included in Appendix E. The χ2 fit for this model is 5744 for the 1193 observations.

This is significantly worse than model that includes orbital motion.

This event highlights the relatively poor performance of the polygon method for

calculating the source magnification. The χ2 calculation for the model presented in

Figure 4.3 took 88 seconds, which dropped to 28 seconds when the limb darkening

calculation was disabled. The event is very high magnification, and so requires

a large number of vertices to be calculated around the (relatively large) images.
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Figure 4.4: The source moves in a clockwise sense along its track (red), passing

over the moving caustics. The caustics are shown at 3822 days (green),

3828 days (blue), and 3834 days (orange).

Figure 4.5: Lightcurves with and without parallax and lens motion (leaving the other

parameters unchanged).
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Figure 4.6: An unpublished alternative model for OGLE-2006-BLG-109 produced using

MLENS. This model does not include parallax or lens motion effects.

Figure 4.7: Source track for the VUW OGLE-2006-BLG-109 model. The source travels

from right to left.
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Each of these vertex calculations is slower than the corresponding binary lens vertex

calculation, as twice the number of roots must be found for the three component lens

than for two. As such, this event presents a worst-case measure of the performance

of mlens2. These calculation times are an order of magnitude longer than what is

required to efficiently search the parameter space for the best-fit model for an event.

Further work is required to optimise or replace the polygon method to improve this

performance.



Chapter 5

Discussion and Conclusions

This thesis describes the development from first principles of a software package

(mlens2) that calculates model lightcurves and χ2 fits for analysing gravitational

microlensing events involving multiple point mass lenses and finite sources. Several

semi-analytical procedures were employed in this work, in contrast to the inverse

ray-tracing method used in the previous generation of modelling code at VUW

(MLENS) which was developed as part of an earlier PhD programme. The theo-

retical development presented in this thesis also serves as an introduction to future

researchers at VUW and elsewhere to the analytical and numerical techniques em-

ployed in modelling these events.

The semi-analytical methods used in mlens2 enable up to four lensing masses to be

included, whereas inverse ray-tracing, in theory, can handle any number of point

mass lenses. This is no real limitation, as the increasing dimensionality of the

parameter space makes it very unlikely that even a four mass lens (e.g. star plus

three planets) system, if discovered, could be usefully modelled.

The mlens2 code was found to be more efficient and robust than the previous MLENS

code. In particular, the point-source and hexadecapole approximations were found

to be extremely efficient in their regions of applicability. The results of this were

seen in the lightcurve and fit calculations for the OGLE-2005-BLG-390 event; mlens2

completes these calculations an order of magnitude faster than MLENS. Further-

more, the introduction of parallax and lens motion into the model allowed all of the

published model parameters for OGLE-2006-BLG-109 event to be used in the fit

calculations. This yielded a significantly improved fit to the data than the previous

static (without lens motion) model found using MLENS.

The major element of future work will be to complete the overlying parameter space

search that was only partially completed. This code will interact with the parallel

grid computing systems at VUW, running many candidate model calculations to
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determine the best fitting model for an observed event. Another area of interest with

potential future work is in investigating the hybrid techniques described in Section

2.5. One of these techniques may provide a more efficient, robust calculation to

supercede the polygon method implemented in this thesis work. This would make it

more feasible to model complex events such as OGLE-2006-BLG-109 in ‘real time’

as they are being observed in the future.



Appendix A

The Jacobian

The Jacobian matrix and its determinant (simply called the Jacobian for brevity)

generalise the concept of the gradient operator ∇, defining the tangent plane at

a point to a vector-valued function. It is particularly useful for microlensing as

the determinant of the Jacobian matrix can be related to the area change induced

on an element of area by the lens equation, and thus give an approximation of

magnification.

Consider an integral over an N-dimensional surface∫
S

f (x1, ..., xN) dx1...dxN (A.1)

If we want to change the coordinates that we integrate over, we apply a transfor-

mation to the coordinate basis of the function

x1 = g1 (u1, u2, ..., uN)
...

xN = gN (u1, u2, ..., uN) .

By differentiating the above, we find

dx1 =
∂g1

∂x1

du1 + ...+
∂g1

∂xN
duN

...

dxN =
∂gN
∂x1

du1 + ...+
∂gN
∂xN

duN .

Substituting these into Equation A.1 we see that it is equivalent to the integral∫
S

f (g1, ..., gN) Jdu1...duN (A.2)
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where J is the determinant of the matrix of partial derivatives

J =

∣∣∣∣∂(u1, ..., uN)

∂(x1, ..., xN)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

δu1

δx1

· · · δu1

δxN
...

. . .
...

δuN
δx1

· · · δuN
δxN

∣∣∣∣∣∣∣∣∣∣
Considering Equations A.1 and A.2, we see that J is simply the ratio of the new

unit area to old unit area

J =
dx1...dxN
du1...duN

.

Single-lens Jacobian calculation

As an example of the Jacobian calculation, we present the derivation of the single

lens Jacobian

J = 1− 1

|r|4
.

Following the method given in Section 1.4.2, the partial derivatives of the lens equa-

tion for the single lens are given by

∂u

∂x
= 1 +

2x2

|r|4
− 1

|r|2

∂v

∂y
= 1 +

2y2

|r|4
− 1

|r|2

∂u

∂y
=
∂v

∂x
= 2

xy

|r|4

where |r| is the source-lens separation.

The Jacobian is found by expanding Equation 1.18 for these terms

J =

[
1 +

2x2

|r|4
− 1

|r|2

] [
1 +

2y2

|r|4
− 1

|r|2

]
− 4

x2y2

|r|8

= 1− 2

|r|2
+

2 (x2 + y2) + 1

|r|4
− 2 (x2 + y2)

|r|6
.

Using the fact that (x2 + y2) = |r|2, this simplifies to the final result

J = 1− 1

|r|4
. (A.3)
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Complex Coordinates

In Section 2.2.2, we state that the Jacobian is unchanged by the move from vector

coordinates to complex coordinates

J =
∂(u, v)

∂(x, y)
=
∂(w,w)

∂(z, z)
. (A.4)

This is straightforward to show by applying the chain rule to the relationship be-

tween the two coordinate systems. Rearranging Equation 2.2, we obtain

u =
w + w

2
; v =

w − w
2i

z = x+ iy; z = x− iy

with partial derivatives

∂u

∂w
=
∂u

∂w
=

1

2

∂v

∂w
=

1

2i

∂v

∂w
= − 1

2i

∂z

∂x
=
∂z

∂x
= 1

∂z

∂y
= i

∂z

∂y
= −i

Applying the chain rule to the u, v coordinates of Equation A.4, we obtain

∂(u, v)

∂(x, y)
=

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

=

(
∂u

∂w

∂w

∂x
+
∂u

∂w

∂w

∂x

)(
∂v

∂w

∂w

∂y
+
∂v

∂w

∂w

∂y

)
−
(
∂u

∂w

∂w

∂y
+
∂u

∂w

∂w

∂y

)(
∂v

∂w

∂w

∂x
+
∂v

∂w

∂w

∂x

)
=

1

2i

(
∂w

∂x

∂w

∂y
− ∂w

∂x

∂w

∂y

)
.

Repeating for x, y

∂(u, v)

∂(x, y)
=

(
∂w

∂z

∂z

∂x
+
∂w

∂z

∂z

∂x

)(
∂w

∂z

∂z

∂y
+
∂w

∂z

∂z

∂y

)
−
(
∂w

∂z

∂z

∂x
+
∂w

∂z

∂z

∂x

)(
∂w

∂z

∂z

∂y
+
∂w

∂z

∂z

∂y

)
=

∂w

∂z

∂w

∂z
− ∂w

∂z

∂w

∂z

=
∂(w,w)

∂(z, z)

as required.
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Appendix B

Lens Polynomial Coefficients

Section 2.2.1 introduced the lens polynomial, and showed that a subset of its roots

are solutions to the inverse lens equation.

While analytical solutions exist for the roots of polynomials with degree ≤ 4, the

general lens equation results in a polynomial of degree N2 + 1. This corresponds to

a degree 5, 10, or 17 polynomial for lenses with 2, 3 or 4 components respectively.

This necessitates the use of a numerical algorithm. Many numerical techniques exist

for finding the roots of an arbitrary polynomial, each with different characteristics

for efficiency, convergence, and the types of roots that they can find.

The first numerical implementation used in mlens2 was the Laguerre algorithm (Ri-

ley et al. [2006]). This had the advantage of being a straightforward algorithm, and

allowed initial guesses to be inserted for the roots to speed up the computation, but

suffered sporadic problems where not all roots would converge on a solution.

The next implementation used the Jenkins-Traub algorithm (Jenkins and Traub

[1972, 1970]), which always converged on a solution, but had issues with successively

larger numerical error in each due to the deflation process used.

The current implementation used in mlens2 uses Jenkins-Traub to find the approx-

imate root positions, which are then given as initial guesses to the Laguerre algo-

rithm. This was found to overcome the convergence and numerical error problems

associated with each algorithm, at the expense of computational efficiency. A future

improvement could be to use Laguerre by default, falling back to Jenkins-Traub only

when a solution does not converge.

These numerical algorithms operate on a vector of the polynomial coefficients, which

are obtained by analytically rearranging Equation 2.5 into the form

N2+1∑
i

aiz
i = 0 .
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The expressions to calculate each ai for N ≤ 4 lens components are included below.

Note that they are transcribed from the mlens2 source code (available by request);

the reader is encouraged to verify the calculations themselves.

Two Lens Components

Starting with the standard definitions given in Section 2.2.1,

w = (complex) Source position.

εi = Mass fraction of i’th lens.

zi = (complex) Position of the i’th lens.

We define some intermediate factors

A = w̄ − z̄1 B = w̄ − z̄2

zs = z1 + z2 zp = z1z2

Ur = ε1z2 + ε2z1 Ue = Aε2 +Bε1

Ars = Azs − 1 Brs = Bzs − 1

Arp = Azp − Ur Brp = Bzp − Ur

The 6 coefficients are then given by

a5 = AB

a4 = −wAB − ABrs −BArs − Ue
a3 = (sA+ ε1)Brs + (wB + ε2)Ars + ArsBrs + ABrp +BArp + zsUe

a2 = −w (ABrp +BArp + ArsBrs)− ε2 (Arp + zsArs)− ε1 (Brp + zsBrs)

− (ArsBrp +BrsArp)− zpUe
a1 = w (ArpBrs +BrpArs) + ArpBrp + ε2 (zpArs + zsArp) + ε1 (zpBrs + zsBrp)

a0 = −sArpBrp − zp (Arpε2 +Brpε1)
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Three Lens Components

Like the two lens case, we start with the same basic model parameters, and define

a (much larger) set of intermediate factors

zs = z1 + z2 + z3

zq = z2z3 + z1z3 + z1z2

zp = z1z2z3

εq = ε1 (z2 + z3) + ε2 (z1 + z3) + ε3 (z1 + z2)

εp = ε1 (z2z3) + ε2 (z1z3) + ε3 (z1z2)

A = w̄ − z̄1 B = w̄ − z̄2 C = w̄ − z̄3

As = Azs − 1 Aq = Azq − εq Ap = Azp − εp
Bs = Bzs − 1 Bq = Bzq − εq Bp = Bzp − εp
Cs = Czs − 1 Cq = Czq − εq Cp = Czp − εp

t1 = ABCs + ABsC + AsBC t2 = ABCq + ABqC + AqBC

t3 = ABsCs + AsBCs + AsBsC t4 = ABCp + ABpC + ApBC

t5 = AsBsCq + AsBqCs + AqBsCs t6 = AsBsCp + AsBpCs + ApBsCs

t7 = ABqCq + AqBCq + AqBqC t8 = AsBqCq + AqBsCq + AqBqCs

t9 = ABpCp + ApBCp + ApBpC t10 = AqBqCp + AqBpCq + ApBqCq

t11 = ABpCp + ApBCp + ApBpC t12 = AsBpCp + ApBsCp + ApBpCs

o1 = ε1BC + ε2AC + ε3AB o2 = ε1BsCs + ε2AsCs + ε3AsBs

o3 = ε1BqCq + ε2AqCq + ε3AqBq o4 = ε1BpCp + ε2ApCp + ε3ApBp
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m1 = ε1 (BCq +BqC) + ε2 (ACq + AqC) + ε3 (ABq + AqB)

m2 = ε1 (BCp +BpC) + ε2 (ACp + ApC) + ε3 (ABp + ApB)

m3 = ε1 (BCs +BsC) + ε2 (ACs + AsC) + ε3 (ABs + AsB)

m4 = ε1 (BsCq +BqCs) + ε2 (AsCq + AqCs) + ε3 (AsBq + AqBs)

m5 = ε1 (BsCp +BpCs) + ε2 (AsCp + ApCs) + ε3 (AsBp + ApBs)

m6 = ε1 (BqCp +BpCq) + ε2 (AqCp + ApCq) + ε3 (AqBp + ApBq)

n1 = ABsCq + ABqCs + AsBCq + AqBCs + AsBqC + AqBsC

n2 = ABsCp + ABpCs + AsBCp + ApBCs + AsBpC + ApBsC

n3 = ABqCp + ABpCq + AqBCp + ApBCq + AqBpC + ApBqC

n4 = AsBqCp + AsBpCq + AqBsCp + ApBsCq + AqBpCs + ApBqCs

The 11 polynomial coefficients are then

c10 = ABC

c9 = −sABC − t1 − o1

c8 = st1 + t2 + t3 + zso1 +m3

c7 = −s (t2 + t3)− AsBsCs − zqo1 − zsm3 − t4 − n1 − o2 −m1

c6 = s (AsBsCs + t4 + n1) + zs (o2 +m1) + zpo1 + zqm3 + t5 + t7

+ n2 +m4 +m2

c5 = −s (t5 + t7 + n2)− zpm3 − zq (o2 +m1)

− zs (m4 +m2)− t6 − t8 − n3 − o3 −m5

c4 = AqBqCq + s (t6 + t8 + n3) + zp (o2 +m1) + zq (m4 +m2)

+ zs (o3 +m5) + n4 + t9 +m6

c3 = −s (AqBqCq + n4 + t11)− zp (m2 +m4)− zq (o3 +m5)

− zsm6 − t10 − t12 − o4

c2 = s (t10 + t12) + zp (o3 +m5) + zqm6 + zso4 + t13

c1 = −st13 − ApBpCp − zpm6 − zqo4

c0 = sApBpCp + zpo4

We note that these coefficients had previously been derived by Rhie [2002], but

our derivation was completed independently as an extension of the two-component

lens coefficients, for which there does not appear to be any published results in the

literature. The algebraic manipulation of these terms into the form presented here

was aided by Michael Miller.
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Four Lens Components

A similar procedure is applied to calculate the 18 coefficients for the 4 component

lens. The list of (approximately 130) intermediate factors is far too long to transcribe

here, but the source code to evaluate the final coefficients is available by request. The

algebraic manipulation and initial code implementation for this case was completed

by Michael Miller.
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Appendix C

Critical Curve Polynomial

Coefficients

Section 2.2.2 showed that, like the images, the critical curves of a given lensing

configuration can be found by solving the roots of a polynomial. The caveats from

Appendix B with respect to solving for these roots apply, but the situation is more

tractable due to the simpler form of the critical curve polynomial.

The critical curves are found by recasting Equation 2.6 into a set of coefficient

equations of the form

2N∑
i=0

ai (ϕ) zi = 0 . (C.1)

These ai are then given to the numerical root finder to find the critical curve points.

This is repeated for a range of ϕ ∈ (0, 2π] in order to define the entire curve.

The coefficient equations for N = 2, 3, 4 lenses are given below, using the same lens

parameters as Appendix B.

εi = Mass fraction of i’th lens.

zi = (complex) Position of the i’th lens.

The critical curve for a single lens is simply a circle of radius 1 rE, which does not

require any special calculations.
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Two Lens Components

The 5 coefficients for the two-component lens are

a4 = −e−iϕ

a3 = 2 (z1 + z2) e−iϕ

a2 = 1−
(
z2

1 + z2
2 + 4z1z2

)
e−iϕ

a1 = −2 (ε1z2 + ε2z1) + 2z1z2 (z1 + z2) e−iϕ

a0 = ε1z
2
2 + ε2z

2
1 − z2

1z
2
2e
−iϕ

Three Lens Components

Similarly, the 7 coefficients for the three-component lens are

a6 = −e−iϕ

a5 = 2 (z1 + z2 + z3) e−iϕ

a4 = 1−
(
z2

1 + z2
2 + z2

3 + 4 (z1z3 + z1z2 + z2z3)
)
e−iϕ

a3 = −2 [ε1 (z2 + z3) + ε2 (z1 + z3) + ε3 (z1 + z2)]

+ 2
[
z1

(
z2

2 + z2
3

)
+ z2

(
z2

1 + z2
3

)
+ z3

(
z2

1 + z2
2

)]
e−iϕ

+ 8z1z2z3e
−iϕ

a2 = 4 (ε1z2z3 + ε2z1z3 + ε3z1z2)

+ ε1

(
z2

2 + z2
3

)
+ ε2

(
z2

1 + z2
3

)
+ ε3

(
z2

1 + z2
2

)
−
[
z1z2

(
z1z2 + 4z2

3

)
+ z2z3

(
z2z3 + 4z2

1

)
+ z1z3

(
z1z3 + 4z2

2

)]
e−iϕ

a1 = −2
[
ε1

(
z2z

2
3 + z2

2z3

)
+ ε2

(
z1z

2
3 + z2

1z3

)
+ ε3

(
z1z

2
2 + z2

1z2

)]
+ 2

(
z1z

2
2z

2
3 + z2

1z2z
2
3 + z2

1z
2
2z3

)
e−iϕ

a0 = ε1z
2
2z

2
3 + ε2z

2
1z

2
3 + ε3z

2
1z

2
1 − z2

1z
2
2z

2
3e
−iϕ
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Four Lens Components

Finally, the 9 coefficients for the four-component lens are

a8 = −e−iϕ

a7 = 2 (z1 + z2 + z3 + z4) e−iϕ

a6 = 1−
((
z2

1 + z2
2 + z2

3 + z2
4

)
+ 4 (z1z2 + z1z3 + z2z3 + z1z4 + z2z4 + z3z4)

)
e−iϕ

a5 = −2 [ε1 (z2 + z3 + z4) + ε2 (z1 + z3 + z4) + ε3 (z1 + z2 + z4) + ε4 (z1 + z2 + z3)]

+ 2
[
(z2 + z3 + z4) z2

1 + (z1 + z3 + z4) z2
2 + (z1 + z2 + z4) z2

3 + (z1 + z2 + z3) z2
4

]
e−iϕ

+ 8 (z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4) e−iϕ

a4 = ε1

[
z2

2 + z2
3 + z2

4 + 4 (z2z3 + z2z4 + z3z4)
]

+ ε2

[
z2

1 + z2
3 + z2

4 + 4 (z1z3 + z1z4 + z3z4)
]

+ ε3

[
z2

1 + z2
2 + z2

4 + 4 (z1z2 + z1z4 + z2z4)
]

+ ε4

[
z2

1 + z2
2 + z2

3 + 4 (z1z2 + z1z3 + z2z3)
]

−
(
z2

1z
2
2 + z2

1z
2
3 + z2

1z
2
4 + z2

2z
2
3 + z2

2z
2
4 + z2

3z
2
4

)
e−iϕ

− 4
[
(z2z3 + z2z4z1 + z3z4) z2

1 + (z1z3 + z1z4 + z3z4) z2
2

]
e−iϕ

− 4
[
(z1z2 + z1z4 + z2z4) z2

3 + (z1z2 + z1z3 + z2z3) z2
4

]
e−iϕ

− 16z1z2z3z4e
−iϕ

a3 = −2ε1

[
z2

2 (z3 + z4) + z2
3 (z2 + z4) + z2

4 (z2 + z3) + 4z2z3z4

]
− 2ε2

[
z2

1 (z3 + z4) + z2
3 (z1 + z4) + z2

4 (z1 + z3) + 4z1z3z4

]
− 2ε3

[
z2

1 (z2 + z4) + z2
2 (z1 + z4) + z2

4 (z1 + z2) + 4z1z2z4

]
− 2ε4

[
z2

1 (z2 + z3) + z2
2 (z1 + z3) + z2

3 (z1 + z2) + 4z1z2z3

]
+ 2

[
z1

(
z2

2z
2
3 + z2

2z
2
4 + z2

3z
2
4

)
+ z2

(
z2

1z
2
3 + z2

1z
2
4 + z2

3z
2
4

)]
e−iϕ

+ 2
[
z3

(
z2

1z
2
2 + z2

1z
2
4 + z2

2z
2
4

)
+ z4

(
z2

1z
2
2 + z2

1z
2
3 + z2

2z
2
3

)]
e−iϕ

+ 8
(
z2

1z2z3z4 + z1z
2
2z3z4 + z1z2z

2
3z4 + z1z2z3z

2
4

)
e−iϕ

a2 = ε1

[
z2

2z
2
3 + z2

2z
2
4 + z2

3z
2
4 + 4

(
z2

2z3z4 + z2z
2
3z4 + z2z3z

2
4

)]
+ ε2

[
z2

1z
2
3 + z2

1z
2
4 + z2

3z
2
4 + 4

(
z2

1z3z4 + z1z
2
3z4 + z1z3z

2
4

)]
+ ε3

[
z2

1z
2
2 + z2

1z
2
4 + z2

2z
2
4 + 4

(
z2

1z2z4 + z1z
2
2z4 + z1z2z

2
4

)]
+ ε4

[
z2

1z
2
2 + z2

1z
2
3 + z2

2z
2
3 + 4

(
z2

1z2z3 + z1z
2
2z3 + z1z2z

2
3

)]
−
(
z2

1z
2
2z

2
3 + z2

1z
2
2z

2
4 + z2

2z
2
3z

2
4 + z2

1z
2
3z

2
4

)
e−iϕ

− 4
(
z2

1z
2
2z3z4 + z2

1z2z
2
3z4 + z1z

2
2z

2
3z4 + z2

1z2z3z
2
4 + z1z

2
2z3z

2
4 + z1z2z

2
3z

2
4

)
e−iϕ

a1 = −2
[
ε1

(
z2

2z
2
3z4 + z2

2z3z
2
4 + z2z

2
3z

2
4

)
+ ε2

(
z2

1z
2
3z4 + z2

1z3z
2
4 + z1z

2
3z

2
4

)]
− 2

[
ε3

(
z2

1z
2
2z4 + z2

1z2z
2
4 + z1z

2
2z

2
4

)
+ ε4

(
z2

1z
2
2z3 + z2

1z2z
2
3 + z1z

2
2z

2
3

)]
+ 2

(
z2

1z
2
2z

2
3z4 + z2

1z
2
2z3z

2
4 + z2

1z2z
2
3z

2
4 + z1z

2
2z

2
3z

2
4

)
e−iϕ

a0 = ε1z
2
2z

2
3z

2
4 + ε2z

2
1z

2
3z

2
4 + ε3z

2
1z

2
2z

2
4 + ε4z

2
1z

2
2z

2
3 − z2

1z
2
2z

2
3z

2
4e
−iϕ
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Appendix D

mljob Program Structure

The mljob application implements the microlensing model described in this thesis.

It is operated from the command line by passing arguments, one of which specifies

a control file which contains the details of the model to evaluate.

The command line arguments can include

-ctl Path to a control file specifying the model parameters.

Some example control files are presented in Appendix E.

-lightcurve Generate a lightcurve for the given model parameters.

-evaluate Evaluate the χ2 for the given model parameters.

-evaluategrid Evaluates the χ2 for a lattice of models evaluated

within the specified range of model parameters.

-interactive Run in an interactive graphical mode to visualise event

geometry and other figures.

-v, -vv, -vvv Print debug information with increasing verbosity.

The main calculation routines are contained within the GlobalMemory and Sourc-

eTarget classes, which are designed to be easily understandable and accessible to

future users who may want to understand and modify the code. GlobalMemory

defines the ‘global’ model information and actions, such as the lens components’

position and motion, loading and saving data files, etc. It also contains a collection

of the observational data, and a list of ‘source targets’. The SourceTarget class en-

capsulates a single magnification calculation, including the time and source position,

and the magnification calculation itself.

Some insight into the structure of these classes are given via their public interfaces,

included below.
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SourceTarget(Point position , double time , SourceType type , double radius=0, double limbCoefficient =0, \

int limbCount=1, LimbSpacingType limbType=LimbSpacingRadius );

void setObservationKey(std::pair <int ,int > observationKey );

std::pair <int ,int > getObservationKey () const;

SourceType getCalculationType ();

void calculateAmplification ();

double getAmplification () const throw (InvalidDataException );

double getChiSquaredContribution () const;

Point getPosition () const;

double getTime () const;

void PGDrawSource ();

void PGDrawImages ();

void PGDrawLimbImage(double radius );

std::vector <Curve > getImagePolygons ();

void getPointSourceImages(std::vector <Point > &images );

void getVertexImages(std::vector <Point > &images , double angle);

bool isValidMagnification ();

Figure D.1: Public interface for the SourceTarget class.
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// Initialization and observations

void SetModel(std:: string ctlFile );

void loadDataFiles ();

DataPoint* getObservation(std::pair <int ,int > observationKey );

void scaleDataToModel ();

// Source manipulation

void placeSourcesOnObservations ();

void placeSourcesEvenly(int number );

int placeSource(const SourceTarget &source );

void removeSources ();

SourceTarget* getSource(int sourceKey );

void calculateSourceAmplifications ();

double calculateChiSquared ();

void saveLightcurve(bool logScale , bool usingObservations );

void getCausticPoints(double t, double dx , std::vector <Point > &points );

void getCriticalCurves(double t, double dx, std::vector <Curve > &criticalPolys , \

std::vector <Curve > &causticPolys );

// Lens properties

double getLensDistance(int lensID );

void setLensDistance(int lensID , double value);

double getLensAngle(int lensID );

void setLensAngle(int lensID , const double value);

double getLensMassFraction(int lensID );

double getLensMass(int lensID );

void setLensMass(int lensID , const double value);

Point getLensPositionCOM(int lensID , double t);

Point getLensCOM ();

Point getLensCOM(double t);

int getLensCount ();

// Calculation routines

double JacobianDeterminantAtPoint(Point p, double t);

double JacobianDeterminantGradientAtPoint(Point p, double t);

Point MagnificationCurvatureAtPoint(Point p, double t);

Point InvRayTrace(Point pos , double t);

// Point -magnification calculations

double getPointMagnification(Point p, double t);

double getPointMagnificationGradient(Point p, double t);

double getPointMagnificationCurvature(Point p, double t);

// Image coefficients

void getOneLensPolynomialCoefficients(Point sp, double t, std::complex <double > c[]);

void getTwoLensPolynomialCoefficients(Point sp, double t, std::complex <double > c[]);

void getThreeLensPolynomialCoefficients(Point sp, double t, std::complex <double > c[]);

void getFourLensPolynomialCoefficients(Point sp, double t, std::complex <double > c[]);

// Critical curve coefficients

void getOneLensCriticalCurvePolynomial(double phi , double t, std::complex <double > coeff []);

void getTwoLensCriticalCurvePolynomial(double phi , double t, std::complex <double > coeff []);

void getThreeLensCriticalCurvePolynomial(double phi , double t, std::complex <double > coeff []);

void getFourLensCriticalCurvePolynomial(double phi , double t, std::complex <double > coeff []);

// Source position and Parallax calculations

Point getSourcePosition(double t);

Point projectTowardsLensPlane(Point p, double phi , double chi);

double getEccentricAnomaly(double t, double tp);

double getEccentricChange(double t, double tp);

Point getEarthPosition(double t, double tp);

Point getEarthVelocity(double t, double tp);

Point getParallaxOffset(double t);

Figure D.2: Public interface for the GlobalMemory class.
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Appendix E

Control Files

The control file specifies the model parameters and other factors that are used by

mlens2 to calculate a model lightcurve or χ2 fit. It consists of a plain text file

(generally with the file extension .ctl, but this is a convention, not a requirement)

beginning with the line #CTLFILEV3, followed by a list of parameters and values

grouped into sections, one parameter per line. There are 51 recognised parameters,

split into 6 categories

#CTLFILEV3 Denotes the start of the control file, and contains

non-model parameters such as event name, celestial

coordinates of the lens (for parallax calculations),

and numerical resolution parameters.

PARAMETERS Contains the model parameters describing the event.

PASSBANDS Defines the linear limb darkening parameters for each

wavelength range in the observational data.

OBSERVATIONS Defines a list of the observational data files

and the passband used for each.

INTERACTIVE Defines parameters specific to the interactive mode.

LIGHTCURVE Defines parameters specific to lightcurve generation,

including whether to display the data in magnitude or

magnification units, and the number of uniform steps

used to define the continuous model lightcurve.

Lens masses are specified as a mass ratio relative to the primary lens (which by

definition has a mass of 1). These mass ratios are internally converted into a mass

fraction. All separations and lengths are given in units of the total-mass Einstein

ring, different to the original MLENS software which measures these distances rel-

ative to the primary-mass Einstein ring.

Some example control files, used to generate figures in Chapter 4, are shown.
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#CTLFILE V3

EventName OGLE -2005 -BLG -390

MinVertexCount 50

MaxVertexSeparation 0.002

LimbRings 5

PARAMETERS

ImpactAngle 0

ImpactParameter -0.359

SourceRadius 0.02556663645

Companion1Angle 337.9071683

Companion1Distance 1.610

Companion1Mass 0.000076

PeakTime 3582.731

CrossingTime 11.03

StartTime 3560

EndTime 3610

LIGHTCURVE

UseObservations true

UniformSteps 1000

PASSBANDS

1 0.538

2 0.626

OBSERVATIONS

phot -ogle390 -dand 1

phot -ogle390 -moa2r 2

phot -ogle390 -oglem 1

phot -ogle390 -perth 1

phot -ogle390 -tas 1

phot -ogle390 -fham 2

Figure E.1: Control file used to generate Figure 4.1 for OGLE-2005-BLG-390.
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0

EventName OGLE390

LensCount 2

ChipRadius 1.2

ITresolution 0.01

IPresolution 0

PlaneRadius -99999

RequiredMag 2.5

PeakBase 0.5

ExpectedRays 25 0.001

ExtendTrack true

LimbDarken true

PARAMETERS

SecondaryA 337.9071683

SecondaryR 1.610122360

SecondaryM 0.000076

ImpactRadius -0.359027284

SourceRadius 0.02556857951

TrackPassing 3582.731

TrackCrossing 11.03

TrackStart 3560 0

TrackEnd 3610 0

PASSBANDS

1 0.538

2 0.626

OBSERVATIONS

phot -ogle390 -dand 1

phot -ogle390 -moa2r 2

phot -ogle390 -oglem 1

phot -ogle390 -perth 1

phot -ogle390 -tas 1

phot -ogle390 -fham 2

Figure E.2: Original MLENS control fileused to generate the OGLE-2005-BLG-390 com-

parison in Figure 4.2. This control file uses the original MLENS syntax, and

will not work with mlens2.
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#CTLFILE V3

EventName 06ob -109

MinVertexCount 50

LimbRings 5

LimbRingsSpaceRadius true

MaxVertexSeparation 0.001

RightAscention 17 52 34.51

Declination -30 05 16.0

PerihelionTime 3737.12

EquinoxTime 3815.27

PARAMETERS

ImpactParameter 0.003479

ImpactAngle 144.5555328

SourceRadius 0.0003120188531

Companion1Angle 180.0112307

Companion1Distance 0.6263753290

Companion1Mass 0.001358729084

Companion2Angle -13.49888565

Companion2Distance 1.04185

Companion2Orbit 0.00169 0.00181

Companion2OrbitPeriod 4901.960784

Companion2Mass 0.0005061020381

PeakTime 3831.0197

CrossingTime 127.300

StartTime 3820

EndTime 3840

ParallaxScale 0.3620

ParallaxAngle 156.3945597

INTERACTIVE

Viewport -0.06 0.18 -0.1 0.12

Steps 500

LIGHTCURVE

UseObservations true

LogScale false

UniformSteps 1000

UniformPassband 3

PASSBANDS

# V band

1 0.6630

# R band

2 0.5887

# I band

3 0.5090

# H band

4 0.3292

# Farm Cove , unfiltered

5 0.5413

# Auck , unfiltered

6 0.5490

OBSERVATIONS

06ob -109- auck 6

06ob -109- fcov 5

06ob -109-liv 2

06ob -109-mdm 3

06ob -109- mfun 3

06ob -109-moa 3

06ob -109- mtlem 3

06ob -109- ogle 3

06ob -109-tas 3

06ob -109- wise 2

Figure E.3: Control file used to generate Figure 4.3 for OGLE-2006-BLG-109.
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EventName 06ob -109

LensCount 3

AnomalyStart 3820

AnomalyEnd 3836

ChipRadius 0.25

ITresolution 0.0001

IPresolution 0.0001

LensPlaneU -99999 -99999

LensPlaneV -99999 -99999

ViewCenter 0 0

ViewRadius 0.03

RequiredMag 400

PeakBase 0.4

ExpectedRays 100 0.001

ExtendTrack true

ChiSquare 8634.324206

PARAMETERS

ImpactRadius -0.003341

SourceRadius 0.000303

LensA 326.69

LensS 0.632

LensQ 0.00124

LensA 158.24

LensS 1.0381

LensQ 0.00041

TrackPassing 3830.98696

TrackCrossing 134.1870411

TrackStart 3800

TrackEnd 3840

PASSBANDS

1 0.6630

2 0.5887

3 0.5090

4 0.3292

5 0.5413

6 0.5490

OBSERVATIONS

06ob -109- auck 6

06ob -109- fcov 5

06ob -109-liv 2

06ob -109-mdm 3

06ob -109- mfun 3

06ob -109-moa 3

06ob -109- mtlem 3

06ob -109- ogle 3

06ob -109-tas 3

06ob -109- wise 2

Figure E.4: Original MLENS control file used to generate the OGLE-2006-BLG-109

model and calculations in Figure 4.6. This control file uses the original

MLENS syntax, and will not work with mlens2.
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G. Pietrzyński, I. Soszyński, O. Szewczyk,  L. Wyrzykowski, B. Paczyński, F. Abe,
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