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Abstract 

A Kinetic Monte Carlo (KMC) method was developed to model homoepi­

taxy and grain boundary propagation on a (111) surface. Barrier energies 

were calculated using the Nudged Elastic Band (NEB) technique. A re­

cently reported inertial relaxation technique named FIRE (the Fast Inertial 

Relaxation Engine) was used to relax the NEB images. Both the Lennard­

Janes potential and a Sutton-Chen Iridium potential were used and com­

pared. 

A doubly-refined lattice mesh was developed to incorporate atoms in 

Face-Centred-Cubic (FCC) and Hexagonal-Close-Packed (HCP) sites as 

well as atoms in decorated row sites (i.e. supported by 4 atoms). A look­

up table was developed to identify hops in the KMC algorithm. 

The KMC results show that a small difference in energy barriers be­

tween FCC and HCP sites on the substrate can cause a substantial bias in 

the direction of grain boundary propagation. We also investigated the ef­

fect of the geometry of the grain boundary on its propagation, as well as 

the atomistic processes involved in grain boundary propagation and the 

merger of grain boundaries. 

Our deposition simulations produced islands with loosely triangular 

envelopes, where FCC islands are rotated 180° vvith respect to HCP is­

lands. The results are similar to scanning tunneling microscopy (STM) 

images of Iridium deposition, although lack of computing power forced 

us to use a high deposition rate and this caused some differences. 
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Chapter 1 

Introduction 

1.1 Epitaxial Growth 

Epitaxial growth is the ordered crystalline growth of a substance deposited 

on a substrate [1]. It is a method of growing very high quality films, and 

is useful in any situation where a thin well-ordered film of material is im­

portant, such as in the fabrication of microstructures [2] and high tem­

perature superconducting wires [3]. Epitaxy is a slow process - in some 

circumstances GO nm/min is considered a "high deposition rate" [4]- so it 

is highly controllable and a complex structure of many very thin layers of 

different materials can be constructed. This is useful in the semiconductor 

industry, particularly for optical and microwave frequency electronic de­

vices [5], such as laser diodes [6]. The deposited substance may consist of 

the same material as the substrate (homoepitaxy) or it may be a different 

material (heteroepitaxy). Heteroepitaxy can form complex structures, as 

the stacking type and lattice constants for the substrate may differ from 

those of the deposited material, while homoepitaxy tends to produce neat 

layers [1]. The atoms that are absorbed to the surface but are able to move 

across the surface are called adatoms. The surface and all the layers below 

the surface is called the substrate. Common methods for epitaxy include 

chemical vapour deposition (CVD), molecular beam epitaxy (MBE) and 

5 
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pulsed laser deposition (PLD). 

In CVD, epitaxial layers are formed from chemical reactions with a 

gas [1]. As the boiling points of most metals and semiconductors are 

very high, the gas used is some compound which is gaseous at a more 

convenient temperature. For example, silicon is deposited using gases 

such as silicon tetrachloride (SiCl1), dichlorosilane (SiH2Cb), trichlorosi­

lane (SiHCh) or silane (SiH1). The reactant gases and dopants are trans­

ported into a reaction chamber, where they react with the substrate, de­

positing material. The products are then vented out of the chamber. Typi­

cal temperatures for CVD may be in the range 900- 1500 K. 

In MBE, the epitaxial layers are formed by the reaction of one or more 

thermal beams of atoms or molecules with the substrate. MBE gives more 

precise control of chemical compositions and doping profiles than CVD. 

Growth rates tend to range from 0.001 to 0.03 11 /min [1]. The substrate 

temperature is typically about 700 1200 K. The reactants and dopants 

are housed in effusion ovens within an ultra high vacuum chamber ("" 

10~8 Pa). As the material heats, some of it evaporates, and some of the 

evaporated material will hit the target and be deposited. The very low 

pressure causes the mean free paths of the evaporated atoms to be larger 

than geometrical size of the chamber [7]. This means the atoms that hit the 

target have travelled in a straight line from the source -hence a molecular 

"beam". 

PLD is a relatively new process, only becoming well known in the late 

80s [8]. A target is hit by high-powered pulsed laser, vaporising material 

on the surface to form a plume consisting of a mixture of atoms, molecules, 

electrons, ions, clusters, micron-sized solid particulates and molten glob­

ules. This material moves through the chamber until it encounters the 

substrate and is deposited. As the plume is highly directional, the cham­

ber may contain a relatively high pressure ( rv 100 Pa) gas atmosphere -

such as 0 2 - for the vaporised material to react with, without reducing 

the deposition rate significantly, which gives more flexibility in the type of 
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materials that can be deposited. For example, a zinc source can be placed 

in an oxygen atmosphere to cause Zn02 to be deposited on the substrate. 

The highly directional plume can cause difficulties with the uniformity of 

deposition over a large area, which can be reduced through methods such 

as moving the substrate during the process. The main difficulty with PLD 

is the phenomenon of "splashing", where the laser causes micron-sized 

molten globules to emerge from the target which do not stack in a neat 

epitaxial layer when they strike the substrate. The major advantages of 

PLD include its simplicity and flexibility. 

1.2 Grain Boundaries 

When epitaxy is performed on the (111) plane of a face-centred-cubic (FCC) 

substrate, the atoms can be deposited into two major types of site. If only 

a single layer of close-packed atoms is present, these two sites are equiv­

alent, and differ only by a rotation (Fig. 1.1). If two or more layers are 

present, these sites are not equivalent. When atoms land in a regular site, 

they form a pattern that repeats every three (111) layers- referred to as 

an ABC pattern (see Fig. 1.2). This is a regular FCC structure. There is an 

alternate class of deposition site, where atoms land in sites directly above 

the atoms two layers below i.e the structure repeats every second layer -

an ABAB pattern (again see Fig. 1.2). These are stacking fault sites, and 

locally they form a hexagonal-close-packed (HCP) structure. Our simula­

tions focus on an FCC substrate, where deposited atoms may land in HCP 

or FCC sites. Sometimes the top layer was initially partially HCP, to help 

us investigate the grain boundaries between HCP and FCC islands. 

An adatom placed on the surface of a (111) FCC plane will diffuse 

over the surface, hopping between stacking fault and regular sites. When 

ada toms meet, they can aggregate into a small island. If the island is below 

some critical size it may dissociate, or it may form the fixed nucleus of a 

stacking fault or regular island [9]. Experiment has shown that for Iridium 
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Figure 1.1: Two adatoms on an FCC surface. With respect to the layer 

beneath the adatoms, both are equivalent, although rotated by 1 0°. How­

ever, the lower atom is directly on top of an atom two layers below (which 

therefore can not be seen) and so is in an HCP site. The upper atom is not 

on top of an atom two layers below, and so it is in an FCC site. 
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Figure 1.2: Top: 3 layers of (111) planes of an FCC/HCP structure. The 

dark atoms in the centre are an ABAB HCP pattern, while the lighter atoms 

on the left and right have an ABCABC FCC pattern. Below: If we shrink 

the size of the spheres representing atoms and view the lattice from above, 

the difference between HCP (centre) and FCC (left and right) structures are 

clearly visible. The appearance of "gaps" in the HCP structure is because 

it consists of a pattern that repeats every two layers, instead of every three. 
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at 300 K, a group of 4 or more atoms will not diffuse [10]. During epitaxy, 

a large number of stacking fault and regular islands are nucleated. 

Scanning tunnelling microscopy experiments and other KMC simula­

tions [12] show that in Iridium at above ·no K, most of the islands are 

regular islands, but there are a number of stacking fault islands. Any new 

atoms that are deposited are more likely to meet and bond to one of these 

islands than to form a new nucleus, and so the islands grow. Islands "grow 

true" - that is, an adatom that joins a regular island must take up an FCC 

site, and adatom that joins a stacking fault island must fill an HCP site. 

When placing atoms on the surface of a regular FCC slab, it is not possible 

for an atom in an FCC site to be one nearest neighbour distance from an 

atom in an HCP site. 

These islands generally form dendritic triangular shapes (Fig. 1.3), with 

stacking fault islands pointing the opposite direction to regular islands. 

New ada toms may land on top of these islands, and must penetrate a large 

barrier known as the Ehrlich-Schwoebel barrier [13, 14] to hop down the 

step. Whether adatoms pile on top of islands or have time to hop off to 

form a flat layer depends on the size of this barrier and the rate of deposi­

tion. 

As these islands grow, they eventually meet each other. Two islands 

of the same stacking type that meet will simply amalgamate, but when an 

HCP (stacking fault) and an FCC (regular) island meet, a grain boundary 

forms between them, as there is less than a lattice site between the islands 

- i.e. there is not enough room for an atom to fit. Grain boundaries consist 

of A-gap and B-gaps (Fig. 1.4). Atoms in an A-gap are so close to each 

other that there are no valid sites between them and so they are unable 

to move (with the exception of corner atoms), while atoms on either side 

of a B-gap have enough room to hop between islands. Where an A-gap 

meets a B-gap is called a "kink" (Fig. 1.4), and these kinks are important 

in the movement of grain boundaries. A kink-flip hop (Fig. 1.5, top) gives 

a mechanism for propagating a grain boundary through A-gaps by mov-
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Figure 1.3: A series of STM topographs over a period of ~ 70s of Ir on 

Ir(111) at a temperature of :350 K. The picture size is 1100 Ax 1100 A. Ar­

rows indicate atoms in decorated (4-fold) sites. Image courtesy of Or. 

Carsten Busse at UniversWit zu Ki::Hn. 
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ing the A-gap until it encounters another A-gap. Then we are left with 

an exposed atom which hops quickly through a pocket-fill move (Fig. 1.5, 

stepping from bottom left to bottom right). Other more complex processes 

involving concerted movements of several atoms are possible. As a result 

of these processes, the grain boundary can propagate. It has been observed 

in scanning tunnelling microscopy (STM) topography of Iridium [15] that 

the grain boundary tends to propagate in the direction of stacking fault 

islands, assimilating the HCP islands into FCC and converting the entire 

surface into an FCC layer, while it has been calculated and shown in exper­

iment [10] that at lower temperatures ( < :230 K) HCP is preferred instead. 

The grain boundary allows another type of site, the decorated site [16]. 

An atom can sit on an A-gap, supported by four atoms (Fig. 1.3 for STM 

pictures, Fig. 3.8 (right) for a more schematic view). Atoms in these sites 

can impede grain boundary movement. 

Studying grain boundaries is of interest because it has a significant ef­

fect on the quality of thin films. These defects affect the mechanical proper­

ties of metals (not only Iridium), making them less malleable by disrupting 

the motion of dislocations, making deformation more difficult [17]. They 

also affect the electronic properties - grain boundaries present a barrier 

that electrons must move around or tunnel through. 

1.3 Atomistic simulations 

It is important to investigate the atomistic processes that occur during epi­

taxy. However, the wide range of length scales - from small scale inter­

atomic interactions to the formation of many islands on a slab - and the 

wide range of time scales - from the rapid diffusion of an adatom to the 

slow growth of a layer- makes analysis difficult. It is difficult for an ana­

lytical approach to take into account all the different processes, including 

deposition, diffusion, island nucleation, island growth and grain bound­

ary propagation. 
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Figure 1.4: A section of a grain boundary containing both A-gaps and B­

gaps, and a kink. 
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Figure 1.5: The capital "A" indicates the locations of A-gaps. Above: A 

kink-flip move. The A-gap moves to the left. The kink-flip can be reversed, 

moving the A-gap to the right again. Below: A pocket-fill move. Kink-flips 

have moved A-gaps such that they have merged to form a small pocket. 

It is a low barrier hop for the atom to hop into this pocket (removing the 

A-gaps), but a large barrier hop for it to hop out, so it is likely to remain 

within the pocket. 
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Nevertheless, analytical approaches have been attempted - in partic­

ular, involving some form of the Burton-Cabrera-Frank (BCF) equations 

[18]. The original BCF theory describes crystal growth in terms of only a 

few processes: absorption of adatoms onto terraces and evaporation back 

into the atmosphere, diffusion of adatoms, and capture of adatoms at step 

edges. Interactions between ada toms are neglected, although this is an im­

portant factor in normal MBE conditions [19]. Later advances have gener­

aLised BCF theory to take into account adatom interaction and island nu­

cleation and other complications [20], such as deviations from equilibrium 

at step edges and the effect of movement of steps. These improvements 

have renewed interest in the BCF model as a method for describing epi­

taxy techniques. The disadvantage of an analytical approach such as BCF 

is that all different processes must be taken into account by the theorist, 

and each additional process adds complexity to the equations. A simula­

tion technique allows a wider range of behaviour, particularly behaviour 

that was not expected, and adding additional complexity- such as types of 

atom hop- is often simple or if the simulation is sufficiently fundamental, 

not necessary. 

Simulation techniques are more capable of taking into account all the 

details of the problem. Molecular dynamics [21] is one common compu­

tational technique for atomistic simulations. Molecular dynamics (MD) is 

the process of following the trajectories of a collection of atoms by numeri­

cal integration of Newton's equations of motion. The forces in these equa­

tions are described by some potential function. MD has the advantage 

that it can simulate a wide variety of processes without them being explic­

itly prescribed. The main disadvantage is it is inefficient in simulations 

where the processes have very different rates, or where a large number 

of atoms are almost stationary. For example, the rate at which an adatom 

hops into an adjacent site can be many orders of magnitude faster than the 

rate at which adatoms cross the Ehrlich-Schwoebel barrier. Hence during 

an epitaxy simulation, an MD algorithm may waste a large amount of time 
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integrating the positions of the almost stationary atoms in a substrate in 

order to diffuse a single adatom over the surface. This will be explained 

in more detail in Chapter 2. 

Kinetic Monte-Carlo (KMC) sacrifices some of the flexibility of MD for 

a large increase in speed. Many simulations perform KMC on a lattice 

[22], but off-lattice KMC is also used [23]. In the lattice KMC algorithm, 

all atoms must be at fixed points on a lattice. The allowed "moves" are 

hops between these points. Skipping the unstable in-between positions 

gives a large speed increase over MD, which integrates an atom all the 

way through a hop. The KMC algorithm determines the rates of all pos­

sible hops for each atom, and each iteration randomly selects one of these 

hops (weighted according to its rate) and performs it. The time step is 

determined according to the number of possible hops, and so will appro­

priately increase if there are not many processes occurring and decrease if 

there are many fast processes. This makes KMC much more efficient than 

MD. 

The main disadvantage of lattice KMC is that all possible types of hop 

must be predetermined. An MD simulation may perform some unex­

pected rare move, but unless the particular implementation of KMC has 

this move coded into it, KMC can not perform it. For example, true dimer 

diffusion is not possible if the KMC code can only perform single atom 

hops. Nevertheless, lattice KMC can perform complex behaviour based 

on a small number of relevant moves. 

Off-lattice KMC permits atoms to take any position over a continuous 

space. The possible hops (to nearby energy minima) and their energy bar­

riers (at energy saddle points) are calculated using a method such as the 

dimer method [24] during the KMC simulation. Off-lattice KMC is more 

flexible than on-lattice KMC, as it permits a wider variety of hops as they 

do not need to be calculated beforehand. However, calculating the hops 

during the process slows down the algorithm. Hence off-lattice KMC lies 

between MD and on-lattice KMC in terms of speed and flexibility. 
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Hybrid processes involving a combination of KMC or MD have been 

developed [25]. In this approach, the regions around the grain bound­

aries are simulated by MD to capture the details of the process occurring 

there, while the rest of the slab is simulated with KMC. The boundaries 

of these regions dynamically change as the system evolves, to follow the 

grain boundaries. This gives a compromise between the two methods 

used- trading some speed for a large gain in accuracy. We use a straight 

KMC method as our main algorithm, as its speed allows us to achieve a 

large number of varied simulations. We use the Nudged Elastic Band tech­

nique (NEB) combined with MD to calculate the barrier energies we need 

as input for KMC, but no MD simulations are performed during the KMC 

simulation. 

1.4 Outline of the following chapters 

1.4.1 Chapter 2: Methodology 

Chapter 2 describes the general techniques used - namely, Molecular Dy­

namics (Section 2.1), Nudged Elastic Band (Section 2.2) (including relax­

aticm algorithms (Section 2.2.1) such as FIRE, the Fast Inertial Relaxation 

Engine [26]) and Kinetic Monte-Carlo (Section 2.3). It includes discussions 

on the merits and disadvantages of these methods. 

1.4.2 Chapter 3: Implementation 

Chapter 3 contains a more detailed explanation of the particular methods 

used. 

Section 3.1 explains the Molecular Dynamics implementation, such as 

the Velocity Verlet integration technique (subsection 3.1.1), our choice of 

intermolecular potentials, Lennard-Jones and Iridium Sutton-Chen (sub­

section 3.1.2) and our experience with the FIRE [26] relaxation algorithm 
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(subsection 3.1.3). It also contains details of our implementation of the 

Nudged Elastic Band technique (subsection 3.1.4), including the config­

uration of the systems we examined, and the results and analysis of the 

energy barriers calculated with the Nudged Elastic Band technique (sub­

section 3.1.5). The NEB technique is found to be consistent to a level of 

about O.Olf or 0.01 eV, larger than the energy difference between FCC and 

HCP hops that we calculated. 

Section 3.2 explains details of the Kinetic Monte-Carlo implementa­

tion. Subsection 3.2.1 explains our particular representation of the lattice 

in the Kinetic Monte-Carlo algorithm, section 3.2.2 explains our "look-up 

table" method of identifying hops according to the location of their near­

est neighbours, subsection 3.2.3 describes the particular data structures 

and algorithms used to make our code efficient, and subsection 3.2.4 lists 

other details, including how deposition is handled. Section 3.3 describes 

the test cases of adatom diffusion used to determine the KMC pre-factor. 

1.4.3 Chapter 4: Results and Analysis 

Chapter 4 gives the results of our Kinetic Monte-Carlo simulations. 

Section 4.1 describes our simulations on the propagation of grain bound­

aries in systems with a zero or near-zero deposition rate. The merger of 

grain boundaries and the sensitivity of the direction of grain boundary 

propagation to small differences in energy between HCP to FCC and FCC 

to HCP hops is described. Also, the effect of adatoms on the surface (to 

simulate a non-zero deposition rate) is examined. 

Section 4.2 describes the results of deposition simulations, particularly 

concerning the structure of islands formed. 

1.4.4 Chapter 5: Conclusions 

Chapter 5 summarises and discusses the results and methods of the previ­

ous sections. 
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1.4.5 Appendix A 

This appendix gives diagrams of all the important hops referred to in the 

main body of the dissertation, for reference. 



Chapter 2 

Methodologies 

This chapter describes the methodologies we used and justification for our 

decisions to use these methodologies. 

There is a large variety of techniques that can be used to model atomic 

systems. Our method is based on the on-lattice Kinetic Monte-Carlo (KMC) 

algorithm. This algorithm requires fore-knowledge of the rates of all pos­

sible processes (hops or depositions). These can be calculated through 

transition state theory, provided the activation energies for the processes 

are known. We calculated these using the Nudged Elastic Band (NEB) 

method, a technique for finding the minimum energy path (and hence the 

barrier energy) for a process. NEB requires a series of duplicates (or "im­

ages") of the system interpolated between the start and endpoints of the 

hop to be relaxed under the constraint of an" elastic band" force. We simu­

lated these images using Molecular Dynamics, and relaxed them with the 

recently-developed FIRE (Fast Inertial Relaxation Engine) [26] algorithm. 

In section 2.1 we describe the principles behind Molecular Dynamics 

(MD) and what we used it for. MD is a method of evolving a system of 

particles by integrating Newton's equations of motion. The forces on the 

particles are calculated using empirical potentials. MD permits a large 

variety of behaviour, but is too slow for simulating very large numbers 

of particles (See section 1.3). We used MD as part of the NEB method to 

20 
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calculate the barrier energies of hops, but not to simulate the entire system. 

In section 2.2 we describe the NEB technique and corresponding re­

laxation techniques. These are methodologies for finding the minimum 

energy path for a transition, and hence the barrier energy for that transi­

tion. It involves setting up a system of "images" interpolated between the 

initial and final configuration, and relaxing these images while subject to 

a spring force to keep them in a line. We also describe the FIRE algorithm 

for relaxing the images. 

In section 2.3 we describe the general KMC algorithm. KMC is based 

on knowing the rates for all events in a system. One of these events is 

randomly selected (weighted according to its rate) and performed each 

time-step. This is a very efficient method of evolving a system, but is not 

as generic as MD. However, it is fast enough to simulate large numbers of 

atoms, and this is the method we use to simulate grain boundary propa­

gation and epitaxial growth. 

2.1 Molecular Dynamics 

The background information in this section is largely based on [27]. The 

principles behind Molecular Dynamics (MD) are simple. We set up a sys­

tem of particles which are treated classically, with each having a definite 

mass, position, velocity and acceleration. The acceleration is given by a po­

tential function. The potential function determines how particles interact, 

and so its exact form will depend on what elements are being simulated. 

A simple potential function is the Lennard-Jones (LJ) potential function, 

where the energy of the system is equal to 

(} (} -±fl:::L:: -. - -. 
[ 

12 (jl 
i.j#i (,J (,J (2.1) 

where is the distance between particles i and j and cr and f are length 

and energy scales respectively. The LJ potential is an approximation, and 
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is most accurate for noble gases, but is not generally considered appro­

priate for modelling metals. It contains a long-range attractive part (the 

van der Waals force) and a short range repulsive potential (Pauli repul­

sion). The LJ potential is called a two-body potential as is it the sum 

of interactions between all combinations of two particles. More sophisti­

cated potentials take into account many-body interactions due to electrons 

forming bonds and other important behaviour, and predict more realistic 

behaviour for metals and other materials. 

The force on a particle is evaluated by taking the gradient of the poten­

tial function with respect to that particle's position. In practice, the gra­

dient as a function of particle position is usually worked out by hand or 

with symbolic manipulation software such as Maple, and numerical val­

ues for particle position are inserted when the simulation is run. However 

sometimes - such as when the potential is a spline fit to empirical data -

the derivative may be entirely numerically evaluated. 

With this force we can calculate the acceleration. Then, given an ini­

tial configuration of positions and velocities of the particles, we can use 

numerical integration techniques to estimate their positions and velocities 

after a small time step dt has elapsed. This process is repeated to evaluate 

the evolution of the system over some period of time. 

Numerical integration techniques are always approximations, and so 

numerical errors will always be present in an MD simulation. By keeping 

the time step small enough, we can reduce the magnitude of these errors. 

However, the smaller the time step is, the more calculations are necessary 

to evolve the system over a certain period of simulated time, and thus the 

more computer time is required. So an optimal time step is a compromise 

between efficiency and accuracy. 

Typically, the strength of interaction described by a inter-atomic poten­

tials drops off rapidly with distance, such as the tail of the LJ potential. 

Hence the interactions between particles beyond some distance is negligi­

ble and can be ignored to speed up computation time. Beyond a certain 
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distance known as the "cut-off distance", all interactions are ignored. This 

cut-off distance needs to be large enough that it does not change the be­

haviour of the system, but small enough to cut out enough interactions to 

speed up the calculation sufficiently. Typical values for LJ are 31J. This cut­

off can cause a small discontinuity in the potential function which may 

cause energy to not be conserved in the simulation. To prevent this, the 

potential can be modified to ensure it and at least its first derivative are 

continuous over the cut-off. 

Molecular dynamics simulations can typically simulate systems for a 

time-scale of nanoseconds with current computing power. Simulating 

slow processes such as deposition are computationally expensive. For ex­

ample the computer may spend many iterations calculating the effect that 

a single adatom diffusing over a surface has on all the nearby atoms in the 

substrate. The processor time for a simple MD algorithm with a two-body 

interaction scales as O(S2
), where X is the number of particles in the sys­

tem. Sophisticated improvements, including Verlet lists, and cell methods 

[21] can improve this up to O(S). We use MD as part of the NEB method 

to simulate individual hops to find out the barrier energies that we use for 

kinetic Monte-Carlo (Section ), but not to simulate the entire system. 

2.2 Nudged Elastic Band 

Much of this section is based on the review article [28]. The Nudged Elastic 

Band technique is a method for finding the minimum energy path (MEP) 

between two states of a system. This is the path the system will take be­

tween these two states. The difference between the point with the highest 

energy along this path (the highest saddle point) and the energy of the 

initial configuration is the barrier energy or activation energy, the energy 

required for the system to make the transition from the first state to the 

second. In our case, this transition is the hop of a single atom. 

The NEB method works by producing several copies or "images" of 
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the system, interpolated between the final and initial states. Each of these 

images is then relaxed, possibly using an MD-based technique such as 

Simulated Annealing [29] or FIRE [26], while an "elastic band" force is 

applied to prevent all the images falling into the initial or final states and 

to compel each image to stay between its two adjacent images and form a 

smooth path. The simplest form of this force is 

~ 

vt·(iJi) + ft (2.2) F l 

where 

fs 
I 

k ] (i? ] R·)- k·(R·- fl. l I I. 1 J) (2.3) 

where fi the global force vector for image i, v(i'?i) is the potential energy 

vector for image i for position global position vector R;, calculated in the 

normal way (e.g. by interactions between particles in the same image), 

ft is the global spring force vector on image i, which is determined by the 

positions vectors of images i + 1, i and i 1 - R1+1, R; and R1_ 1 respectively, 

and the spring constants for image i, k 1 and image i + l, k;+ 1• 

Relaxing the images with this simple elastic band force gives an ap­

proximation to the MEP. In our case, the MEP corresponds to the paths 

of the atoms when one atom makes a hop. The difference between the 

energy of the image with the greatest energy and the energy of the end 

points gives an estimate for the barrier energy for this hop in each direc­

tion. However, this simple method does not converge well on the MEP -

it tends to cut corners. Also, it is quite possible that the maximum energy 

will occur between images, so a large number of images are required to 

measure the barrier energy with any precision. There are various modi­

fications that fix these problems. The first improvement is replacing the 

elastic band force with the Nudged Elastic Band (NEB) force, 

F I (2.4) 
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where f is the unit tangent to the path and V1/( Ri) 1-L VV(Ri )-(V\T(Ri )• 

f)f. f can be determined by the normalised line segment between the 

previous and following image, 

] I 
(2.6) 

but it is slightly better to bisect the two unit vectors [30] 

(2.7) 

and then to normalise f . This splitting into parallel and perpendicu-

lar components is what is referred to by "nudging". This prevents the true 

force and the spring force from competing. At all points along the mini­

mum energy path V1/(Ri))-L 0, and the NEB images converge towards 

this. 

Unfortunately, in conditions where the force parallel to the MEP is 

large compared to the force perpendicular to the MEP and many images 

are used, oscillating kinks can develop in the elastic band. To illustrate the 

origin of kinks, we examine the simple situation illustrated in Fig. 2.1. We 

assume there is a constant force F in the "down" direction, as well as a 

restoring force of -d.rC perpendicular to the MEP, which we assume to be 

straight, where d.r is the perpendicular distance from the MEP and C is 

the curvature of the potential energy surface. 

The atom in the middle image in Fig. 2.1 has been displaced a small 

distance dJ· and hence experiences a restoring force d.rC. However, using 

the tangent estimate above (Eq. 2.7), the tangent for the neighbouring im­

age with higher energy is no longer along the MEP, and the force F gives 

it a small perpendicular force d.rF/217, where R is the spacing between the 

images. The band is only stable if the destabilising force rhF /2R is smaller 

than the restoring force d.rC, that is 
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Figure 2.1: A segment of an elastic band, demonstrating the origin of 

kinks. The dots indicate the locations in each image of a particular atom of 

interest. There is a constant "downwards" force F. An image is displaced 

a small distance d.r and experiences a force drC. This causes the higher­

up image to experience a force d.rF2R, where R is the spacing between 

images. 
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F 2CR. (2.8) 

As this is dependent on the number of images in the band, the band will 

always become unstable if it consists of enough images. 

One suggestion to alleviate this instability is to use a smooth switch­

ing function that gradually turns on the perpendicular component of the 

spring force when the path becomes kinky. The force on an image is then 

given by 

F'• I 
(2.9) 

where f(o) is some function which goes from 0 for a straight path up to 1 

for a right angle, e.g. 

f(o) 
1 2 ( 1 + cos ( 7T ('()C) ( 0) ) ) (2.10) 

for lol < rr /2 and 1 elsewhere. 

Another suggestion is to use an improved tangent estimate [30]. Here 

{ if1' I > ~i. > ~ f-1. 
Tj 

ifF ~~ ~ j -1 I < 
(2.11) 

where fli+l fl; and = R; R;~t· However, this leads to an 

abrupt change in tangents at extrema along the MEP which may cause 

convergence problems. Hence if image i is at a maximum ~~+I < ~~ 1' 1 

or a minimum 1i+ 1 > 1; < 1· 1, the tangent estimate becomes 

;' 1 ·rnox + ~.~ ''\'rntn 1·t· 1· > l' 
u~ 1. 1 z ......l. z • I i-1· 

·'l'lrnin + •'l·lnlo.r·. 'f l' ...- 1' ......). ......). l i+l <..___ i~ 1· 

(2.12) 

where 

6\'IIWJ' 
I rn o.r( ll · 1 \fl. ll i 1 1·1 I I ; (2.13) 

and 
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,, l-.m w _ . ( ll - _ 1 .
1 

ll -
LH i - l/1/ fl ~ 1 ~ 1 • ~ l l i I). (2.14) 

The tangent is weighted according to the energies of the adjacent images, 

providing a smooth transition. Henkelman [30] also suggests changing 

the spring force to 

(2.15) 

instead of equation 2.3. Provided k is constant, this ensures equal spacing 

of the images even when the angle between Ri+ 1 fl 1 and R1 Ri~ 1 is 

large. 

The climbing image nudged elastic band method [31] is an improve­

ment to ensure one of the images is directly on top of the maximum energy 

along the MEP, and so the value we record is indeed the barrier energy. 

After a certain number of iterations, or after the barrier energy has suffi­

ciently converged, one (or more) image is designated the climbing image. 

The force on this one image is determined by 

T lrnax 
(2.16) 

instead of the normal combination of spring force and true force. This 

is the full regular force with the part parallel to the elastic band reversed. 

The unchanged perpendicular part of the force ensures the image still con­

verges on the MEP, while the reversed parallel part lets the image climb 

up to the highest energy along the MEP. As the highest energy along the 

path is what we are generally most interested in, typically it is preferable 

to have a higher resolution in the MEP around this point. This can be 

achieved with variable spring "constants". For each image i we set the 

spring constant to 

{ knw.r 6k( ) . if E; > Enf· k' (2.17) 
1 

kmn.c 6k. if < Ercf· 
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where Ei ma.r( Ei. t). Eref is chosen to be the energy of the higher 

energy endpoint of the MEP. 

2.2.1 Relaxation Methods 

Simulated Annealing and the Fast Inertial Relaxation Engine (FIRE) are 

both MD based methods for relaxing a system to its minimum energy 

state. Simulated Annealing starts the system at some fixed temperature, 

and then reduces this temperature, scaling the velocities of the particles 

in the system to match. The process is "annealing" rather than "quench­

ing" as the system is cooled slowly enough for it to explore the energy 

landscape and find the absolute minimum instead of going straight down 

to the closest minimum. As the temperature approaches zero, the system 

approaches its most relaxed state [29]. 

FIRE acts by applying an artificial "friction force" in the direction of 

motion of the atoms, and applying an acceleration in the "downhill" di­

rection of the energy landscape. It also freezes the system (i.e. c = 0 for all 

atoms) when the system goes "uphill" (i.e. the total energy increases), and 

takes advantage of variable time-steps [26]. 

This is implemented mathematically by the statement that a /'blind 

skier" searching for the fastest way to the minimum in an unknown po­

tential landscape should follow the following equation of motion: 

v F/m ;(t)fv(t)f[v(t) ~ F(t)]. (2.18) 

Given initial values for C:..t. n = o 81011 , for global vectors x and v 0 and 

for parameters Smiu· fine· .h·c· n,1art and f(\, this is implemented discretely 

with the following algorithm: 

MD: calculate x. F \7 E(x), and v using any common MD integrator; 

check for convergence. 

Fl: calculate P F · v. 
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F2: set v ~ (1 n )v + nFfvf. 

F3: if P > 0 and the number of steps since P was negative is larger 

than Smiru increase the time step ut ~ rnin(0.tfinc· utrnar) and decrease 

n ~ n.f;}. That is, if the system is evolving in the right direction (towards 

lower energy), and has been doing so for the last few iterations, increase 

the time step and lower the friction force to reduce the number of iterations 

before a turning point is encountered. 

F4: if P < 0, decrease the time step tlt ~ utfrtco freeze the system 

v ~ 0 and set n back to nstart· In other words, if the system is evolving 

in the wrong direction - trying to go "uphill" - stop all atoms, and lower 

the time step and increase the friction force to ensure any nearby turning 

points are not skipped over. 

FS: return to MD. 

As FIRE is essentially a quenching method, taking the fastest downhill 

path to to a local minimum, we would expect it to be more likely to find a 

local minimum than Simulated Annealing, which explores the parameter 

space more fully is more likely to reach the global minimum [36]. Hence 

Simulated Annealing should give a better estimate of the MEP. After per­

forming NEB runs under both Simulated Annealing and FIRE, we noticed 

the difference in energy barriers between the two methods was too small 

to be significant for our purposes- less than O.Olf or 0.01 eV, the variation 

of our NEB code on initial conditions. FIRE was much faster than Simu­

lated Annealing so we selected FIRE as the relaxation algorithm for our 

NEB code. 
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2.3 Kinetic Monte-Carlo and transition state the-

ory 

Kinetic Monte-Carlo is a fast stochastic simulation technique. It is com­

monly used in simulations of deposition and crystal growth [34, 35], as 

well as various forms of diffusion [37, 38, 39]. 

According to transition state theory [32], the rate law for a process with 

barrier (or "activation") energy EIJ, 

I' (2.19) 

where A is a pre-factor, S is the number of possible ways this process 

could occur (i.e. from different orientations and different atoms), kr5 is 

Boltzmann's constant and T is the temperature, which we assume to be 

constant throughout the system. The pre-factor A is largely an "attempt 

frequency" for the hop, and so should be of the order of the atomic vibra­

tion frequency (""' 1 W 13 Hz [18]), but also includes entropy considerations. 

The energy barrier Eb can be calculated using a method such as the dimer 

[24] method or NEB, or by assuming it is proportional to the number of 

initial neighbours [33]. 

This is assuming classical Boltzmann statistics [40], a low temperature 

approximation, assuming that kHT « E1). If knT "" Eb then the simple 

cxp( Eb/ k B T) factor is no longer valid, and we have to take into account 

Fermi-Dirac or Bose-Einstein statistics to achieve realistic results. For sys­

tems at 1000 K, the greatest temperature we used, this means we need Eb 

to be greater than 0.08 eV. 

In our case, the processes are either single atom hops between nearby 

sites or deposition events. 

The Kinetic Monte-Carlo (KMC) algorithm is based on knowing the 

rates of all relevant hops, whether calculated from transition state theory 

or otherwise, and is as follows: 
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1. Calculate all the possible transitions and their rates. 

2. Randomly select a transition, where the probability of each transition 

is proportional to its rate. 

3. Perform this transition and increment the time by the time-step 

4. Repeat 1-3 

The time-step must be determined every iteration. It can be simply 

dt = 
Li~'i 

1 
(2.20) 

where ri is the rate of process i, and the sum is over every process every 

atom can perform. This intuitively makes sense- if we have a process with 

a rate of 1 Hz, and another process with a rate of-! Hz, we would expect on 

average over a long period of time the rate of any event occurring to be 5 

Hz, i.e. every 0.2 s. An approach more faithful to KMC's stochastic 

nature is to generate a uniform random number :r E (0. 1] and use the 

formula 

dt 
ln .r (2.21) 

which has the same average value over a large enough number of itera­

tions. For large values of :\', In J' tends to :V and we generally save a 

copy of the system on the order of at least 10' or 10 1 iterations (or more de­

pending on the situation being simulated). The save frequency was chosen 

to save about 20-100 copies of the system over the simulation run, spaced 

evenly by simulation time (not by number of iterations). As the number 

of iterations between saves is not large, we do not expect a major differ­

ence between these approaches. Hence we use the simpler non-stochastic 

method. 
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Implementation 

The methods detailed in the previous chapter are quite general methods 

that can model a variety of situations in a variety of ways. In this chap­

ter we explains our particular implementations that we found useful for 

modelling grain boundary propagation and epitaxy. Although most of 

our choices of implementation are based on previous work, doubling the 

KMC mesh resolution to allow decorated sites, and our particular KMC 

look-up table are novel to our approach. The FIRE relaxation algorithm 

[26] and the Schulze KMC algorithm [41] have only been reported recently 

and have not been widely implemented yet. 

Section 3.1 explains our MD based methods for finding the barrier en­

ergies, as required by KMC. Subsection 3.1.1 derives our choice of integra­

tion algorithm, Velocity Verlet. Subsection 3.1.2 describes the potentials 

we used - both the traditional Lennard-Jones potential, and the Sutton­

Chen potential, a simple Embedded Atom Method potential with param­

eters for Iridium. Subsection 3.1.3 gives the parameters we used for the 

FIRE algorithm, and our experiences with this recently developed method. 

A more detailed description of the FIRE algorithm is in section 2.2.1 in 

the previous chapter. Subsection 3.1.4 gives details about the overall NEB 

method, including the configuration of atoms used in the hops, conver­

gence checks, and dealing with hops to or from unstable sites. Subsection 

33 



CHAPTER 3. IMPLEMENTATION 34 

3.1.5 gives a description of the barrier energies determined by NEB, and 

we show that a simple neighbour-counting method for determining bar­

rier energies in KMC is not sufficient, and that a method such as a look-up 

table is necessary. 

Section 3.2 details our particular implementation of KMC and the lat­

tice it is performed on. Subsection 3.2.1 gives an argument for doubling 

the triangular mesh size to allow atoms to sit in a decorated row, and 

gives details on the lattice geometry and the four classes of possible hop 

- small hops, drop hops, entering/ exiting a decorated site, and moving 

from one decorated site to another. Subsection 3.2.2 explains our look­

up table method for matching potential KMC moves with energy barri­

ers calculated with NEB. Subsection 3.2.3 gives our implementation of the 

Schulze algorithm for KMC [41]. Subsection 3.2.4 gives other details in 

the KMC implementation, including the pre-factor and how deposition is 

treated and evaporation is ignored. In subsection 3.3 we determine the 

KMC pre-factors by comparing KMC adatom diffusion with experimental 

and calculated data. 

3.1 Molecular Dynamics 

3.1.1 Integration with Velocity Verlet 

We used Velocity Verlet [27] as our integration technique. The simple Ver­

let scheme is derived by taking 3rd order Taylor expansions about position 

at timet, 

?(t + ~t) ?(t) + i'(t)~t + (l/2)(/(t)~t2 + (1/6)) )L!.{l + O(~t 1 ) (3.1) 

t(t L!.t) f:'(t)- i'(t)L!.t + (l/2)a(t)L!.t 2 (1/GJ](t)L!.{l + o(~t1 )(3.2) 

where ? is the position, i' is the velocity, a is the acceleration and ] is the 

jerk of the particle. Adding the two expressions gives 
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r(t+!:it) 2?(t) r(t !:it)+ t)6.(~+0(6.t 1 ) (3.3) 

which is the basic equation behind the Verlet algorithm. However, this 

method does not explicitly give velocity at time f +!:it, which is necessary 

for FIRE, so we use the Velocity Verlet scheme instead, where 

r(t +!:it) r(t) + r(t)6.t + (l/2)r7(t)6.t2 

F'(t +!:it /2) r(t) + ( 1/2)(/(t )!:it 

r1 u + 6. t) ( 1 1 rn l v \ · ( r(t + 6. t l l 

r(t +!:it) F'(t + 6.t/2) + (1/2)(/(t + 6.t)6.t 

which gives equivalent trajectories to the Verlet algorithm to 0(6.12
). 

3.1.2 Potentials 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

We used two potentials to describe the interactions between atoms, the 

Lennard-Jones (LJ) potential [42] and an Iridium Sutton-Chen (IrSC) po­

tential [43]. A comparison of the two potentials is plotted in Fig. 3.1. The 

IrSC potential has a longer ranged effect than the LJ potential. 

The LJ potential is of the form 

f',,,,, ~ 4t ~ 11, [ ( ~~, ) 
12 

( ,~, ) '] . 
(3.8) 

where CJ is a distance scale and f is an energy scale. It is common practice 

[27] to use reduced units where CJ l. f l for computational calculations 

and only to convert to "real" units at the end, and then only if necessary. 

We used a cut-off distance of tiCJ, instead of the more common'"'-' 3CJ as we 

wanted to ensure each atom "felt" the difference between FCC and HCP 

structure. 

The Sutton-Chen potential is of the Embedded-atom (EAM) [44] class 

of potentials, of the form 
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Figure 3.1: A comparison between the interaction energies for the LJ and 

IrSC potentials for a two-body interaction. For the LJ potential we are 

using CJ 1 and f 1 and we have normalised the IrSC potential to set 

the well depth and equilibrium distance to 2~. With both potential wells 

normalised to the same depth, LJ has a noticeably shorter ranged attractive 

component. 
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Etotol (3.9) 

EAM potentials split the energy into two parts, a two body term ~ · and a 

many body term o. The two-body term is a repulsive core-core potential. 

The many body term comes from concepts in density-functional theory 

[45]. The basic idea is that the energy to place an atom at a site is purely 

determined by the electron density at that site, and not on the source of 

the electron density [46]. This particularly makes sense in metals, where 

atoms are embedded in a "sea" of valence electrons that are not strongly 

bound to any particular atom. The Sutton-Chen forms for these terms are 

and 

Pi= L !j-( )

m 

1 I) 

( ) 

n 
a 

f -
r I) 

(3.10) 

(3.11) 

(3.12) 

where m. n. f. c are fitting parameters that are particular to each materiaL 

We used the values for Iridium given in [43] for bulk Iridium, which are 

(// 6. II 1-t f = 2.4-±89 X w-:3• (' 334.9-±. See Table 3.1 for a comparison 

of the properties of Sutton-Chen Iridium with experimental Iridium. The 

agreement is decent for such a simple potential, but a more sophisticated 

potential could be much more precise. We used a cut-off distance of 20 A, 
which was determined by increasing it until the barrier energy converged 

within the precision of the NEB algorithm. 

3.1.3 Relaxation 

To relax the images we used the FIRE algorithm [26] as described in section 

2.2.1. Our results converged reasonably quickly with the parameters set to 

Srnin 5. fine 1.1. .fdec 0.5. n,1art 0.1 and fn 0.99, the values 
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IrSC Experimental 

Bulk modulus nf (eVA -:l) 2.28 2.~n 

Elastic constants ( e V A -:l) (' ll 2.97 3.T1 

cu 1.9~ 1.60 

('! I 1.~~2 1.68 

Cohesive energy per atom (eV) 6.94 6.94 

Lattice parameter (A) 3.84 3.tq 

Table 3.1: Comparison of IrSC properties with experimental Ir properties. 

The lattice parameter of and cohesive energy per atom (E/) are fitted ex­

actly. Values taken from [43]. 

suggested in [26]. We set !:::,.tmru 10-2 and the initial time-step L::,.t = 
10-:l in Lennard-Janes (LJ) time units. Varying these parameters did not 

noticeably alter the calculated barrier energy, but only affected the time 

taken to reach the minimum. 

The FIRE algorithm is easy to implement within existing molecular dy­

namics code. We found it converges faster than simulated annealing, and 

is very robust. 

3.1.4 Nudged Elastic Band 

The NEB calculations were performed on hemispherical clusters, "" 13 

atoms in diameter as shown in Fig. 3.2. Different clusters were produced 

for each type of hop, as well as for each combination of neighbours in each 

hop, as described in section 3.2.2. The hopping atom and the relevant com­

bination of neighbours were placed on the top (the flat surface) of the clus­

ter. Barriers were determined for several thousand different types of hop 

including many permutations of nearest neighbour positions. We found 

it was necessary to add a shell of atoms around the atom's neighbours, 

as otherwise these neighbour atoms were often in unstable positions and 

would lose their configuration during the initial relaxation. Any atom that 
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Figure 3.2: An example of the initial configuration used for NEB calcula­

tions (view from above and from side). The moving atom is marked as 

black, and in this instance moves one site to the right, from having two 

neighbours in the (111) plane to having four. 

was too far away from the moving atom was frozen (i.e. ~'otom 0) to retain 

the structure. The distance was 4a for LJ and 12 A for IrSC. 

The initial and final states were relaxed using FIRE first for 12000 it­

erations, without the NEB force, to converge on stable start/ end points. 

Then the final and initial states were fixed and the in-between states were 

relaxed with the NEB force. The climbing image was activated when the 

average of the total sum of the forces over all moveable atoms in each 

moveable image was less than lo~> in LJ force units (or the equivalent 

in real units) or after 1600 iterations, whichever came first, and the final 

barrier energy was outputted when the summed force was less than 10~ 1 

in LJ force units (or the equivalent in real units) or after 8000 iterations, 

whichever came first. We examined the force convergence rather than the 

energy barrier convergence because the force converged more slowly. 

For a number of hops, either the initial or final configuration was found 
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to be unstable. During the initial relaxation phase, the unstable endpoint 

would fall into the other endpoint. Two examples are shown in Fig 3.3. We 

interpreted this as an "instantaneous move". That is, any atom that moves 

into the unstable position immediately performs the move, and any atom 

that attempts to move from the stable position to the unstable position is 

prohibited from doing so. Hence the move was given a very large rate to 

simulate an "instantaneous move" that would give a time-step of effec­

tively zero, when we take into account rounding errors. The reverse move 

was given a rate of 0 - that is, the reverse move was impossible as it was 

not moving into a stable site. 

3.1.5 Barrier Calculations 

Using the NEB method, as expected we found the barrier energy of a 

hop increased with the number of initial neighbours (on the same (111) 

plane). Where S 1 and .Vi are the number of final and initial neighbours 

respectively, and with the LJ potential, a fit to the data (Fig. 3.4) gives 

E6 0.2lf Si + 0. Hk. A plot of barrier energy against number of final 

neighbours (Also Fig. 3.4) has a shallower slope (Eb -0.11f.V1 + 0.7lf). 

Similarly for the IrSC potential, fitting the data (Fig. 3.5) gives us Eb 

0.13:\'i + 0.11 (in eV) and Eb -0.081:tVf + 0.-18 (in eV). Some KMC studies 

[33] use a model where the barrier energy of a hop is proportional to the 

number of initial neighbours the atom had. While our data confirms that 

initial neighbours are more important in determining the barrier energy 

than final neighbours, the non-zero intercepts suggest in our fits that a 

simple proportionality is not suitable. The wide spread suggests that using 

a look-up table rather than a formula based on number of initial or final 

neighbours would be a better approach. 

For the LJ case, the barrier energy for an adatom diffusion step was 

determined to be 0.3135f for hops from HCP to FCC sites and 0.3109f for 

hops from FCC to HCP sites. This agrees with Agrawal et al's [47] range 
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Figure 3.3: Top: In this hop, the initial state is unstable. The atom is easily 

pulled into the pocket. Bottom: The initial state is unstable as it initially 

has no neighbours. 
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Figure 3.4: Above: A plot of initial neighbours versus barrier energy. Be­

low: A plot of final neighbours versus barrier energy. There are obvious 

tendencies in each graph, but the fit is very poor. 
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Figure 3.5: Above: A plot of initial neighbours versus barrier energy. Be­

low: A plot of final neighbours versus barrier energy. As in the LJ case, 

there are obvious tendencies in each graph, but the fit is very poor. 
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of 0.26f - 0.~)2f using Monte-Carlo variational transition state theory and 

Zoontjens' [48] value of 0.305f using a slightly different method of NEB 

calculations. We also confirmed the existence of the Ehrlich-Schwoebel 

barrier, with a hop off a ledge having a barrier energy of l.-±6(k, almost 

5 times more than simple diffusion. For IrSC, the diffusion barriers were 

determined to be 0.2223 eV for HCP to FCC and 0.222-t eV for FCC to HCP, 

which is in agreement with Agrawal et al's value of 0.2~) eV for diffusion in 

LJ MD simulations, just outside the error range for the value of 0.27±0.-± eV 

determined by field ion microscope observations [49], and under the value 

of 0.30 ± 0.01 eV from STM. The IrSC potential appears to underestimate 

the diffusion hop barrier energy. A hop off a ledge has a barrier energy of 

(UH 70 eV, almost 4 times more than simple diffusion, again confirming the 

existence of the Ehrlich-Schwoebel barrier. 

The energies in the LJ potential are proportionally more strongly af­

fected by changing the number of initial and final neighbours than the 

energies in the IrSC potential. For example, an LJ kink-flip hop has an en­

ergy barrier about 2 times as high as an LJ diffusion step, while an IrSC 

kink-flip hop has an energy barrier about 1.5 times as high as an IrSC dif­

fusion step. This may be because IrSC is a longer ranged force, and so 

the potential energy of an atom is not as dramatically altered by atoms 

moving short distances. 

The energy difference between hops from HCP and FCC sites is small, 

and is likely to be strongly affected by truncation errors. An LJ lattice sum 

of a slab of 10?< FCC atoms shows an HCP adatom has an energy 0.008f 

lower than an FCC adatom, which is only roughly in agreement with our 

difference in barrier energies between an HCP to FCC and an FCC to HCP 

hop (0.002(5f). This suggests that our implementation of the NEB code does 

not accurately distinguish these small differences in energy. However, as 

we discuss below, a small difference in the barrier energies has a signif­

icant effect in the results of our KMC simulations, although the precise 

size of these small differences does not seem important for the qualitative 
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evolution of the system. 

Convergence tests (Fig. 3.6,3.7) confirm that the small differences are 

not a consequence of the cut-off distance, but other NEB kink-flip energy 

barrier calculations [48] with the LJ potential using a different initial slab 

set-up show HCP has a lower energy - the opposite to what we observed. 

Whether hops from HCP or FCC have lower barriers according to NEB 

calculations seems to be very sensitive to the configuration of atoms, even 

at some distance from the hopping atom. It appears that our NEB-based 

method can not determine energy barriers at the level of accuracy required 

to tell the difference between an HCP to FCC and an FCC to HCP hop with 

these potentials, so any preference we found should be interpreted with 

caution. The differences according to our potentials are of order w--l eV 

or 10~ 1 o- while our NEB code is only consistent to about 10~:2 eV or 1W-2o-. 

A summary of the barrier energies for several significant hops is given 

in Fig. 3.2. 

3.2 Kinetic Monte-Carlo 

3.2.1 Lattice Implementation 

The lattice was parameterised by a three-dimensional mesh, which is stored 

as a Boolean array. Simulations of this sort typically use a refined lattice 

which allows both HCP and FCC sites [10, 12]. The mesh is parameterised 

by three basis vectors- two in the (111) plane separated by 60°, and a third 

orthogonal to the others- which gives layers of triangular meshes. Atoms 

are forbidden from being adjacent to or directly on top of another atom -

i.e. the radius of an atom is the length of one basis vector "step". Hence 

the nearest neighbour distance is two steps, as shown in Fig. 3.8. 

The mesh is periodic in the lateral directions, but open in the vertical. 

The periodicity of the boundary made is necessary to use grain bound­

aries in our grain boundary propagation simulations, so that atoms that 
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Hop LJ Barrier (f) lrSC Barrier ( e V) 

Kink-flip to HCP 0.6505 0.3602 

Kink-flip to FCC 0.6490 0.3606 

Pocket-fill 0.4847 0.2140 

Reverse pocket-fill 0.7366 0.5042 

Diffusion step to HCP 0.3135 0.2223 

Diffusion step to FCC 0.3109 0.2224 

Pinch-plug (2 to 3) 0.8522 0.3191 

Reverse pinch-plug (2 to 3) 0.2329 0.2685 

Pinch-plug (1 to 3) 0.2610 0.0853 

Reverse Pinch-plug (1 to 3) 0.5232 0.4269 

2 to 3 pinch-plug forward 

versus backward ratio 3.6587 1.1884 

1 to 3 pinch-plug forward 

versus backward ratio 0.4990 0.1998 
--- -----·-· 

Kink-flip barrier to HCP 

versus barrier to FCC ratio 1.0023 0.9989 

Table 3.2: Important barrier energies. These hops are described in more 

detail in Section 4.1.1. For the pinch-plug hops, "2 to 3" and "1 to 3" refer 

to the number of initial neighbours (1 or 2) and final neighbours (3) in the 

hop. Note that IrSC atoms are more likely to enter and remain inside a 

pinch site than LJ atoms. This data also shows the slight preference for 

FCC in LJ (as the barrier to HCP is larger) and the preference for HCP in 

IrSC. 
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Figure 3.6: The ratio between the barrier energy of an FCC to HCP kink­

flip hop and an HCP to FCC kink-flip hop as a function of cut-off distance 

for LJ. The second set of data points is the barrier energy from a calcula­

tion performed on same hop flipped across the axis of the hop. This should 

give the same barrier energy, so the difference between them is the uncer­

tainty in our barrier. As it converges, the FCC to HCP hop has a slightly 

higher barrier than the HCP to FCC hop. The line is simply a spline to aid 

the eye. 
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Figure 3.7: The ratio between the barrier energy of an FCC to HCP kink­

flip hop and an HCP to FCC kink-flip hop as a function of cut-off distance 

for IrSC. The second set of data points is the barrier energy from a calcula­

tion performed on same hop flipped across the axis of the hop. This should 

give the same barrier energy, so the difference between them is the uncer­

tainty in our barrier. As it converges, the HCP to FCC hop has a slightly 

higher barrier than the FCC to HCP hop. The line is simply a spline to aid 

the eye. 
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Figure 3.8: Left: The regular refined lattice mesh. Crosses mark the loca­

tions of atoms, and circles mark the excluded area around atoms. Right: 

The doubly refined lattice mesh. The central atom is one mesh level above 

the other atoms: it is in a decorated row site 

were separated by a periodic boundary and hence were effectively adja­

cent were of the same stacking type. This meant we could not track grain 

boundary propagation over a long period of time, as the grain boundaries 

merge and stop propagating. The periodicity also effectively means we are 

simulating a grain boundary of infinite length. However, as noted in sec­

tion 4.1.1, we found that the rate of grain boundary propagation decreases 

with the width of the periodic cell. This may be a cause for concern. 

An atom in a decorated row site should be equidistant from the four 

supporting atoms (as our relaxation calculations confirm), but as the cen­

tre to centre distance across an A-gap is 3 steps and fractional steps are 

not permitted, we had to double the resolution of the mesh to allow atoms 

to enter decorated row sites, as shown in Fig. 3.8. This makes the nearest 

neighbour distance 4 steps. We called this mesh the "doubly refined lat­

tice". As both coordinate systems were used, we refer to the low resolution 

method as the "singly refined lattice". 

Hence the basis vectors are 
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(3.13) 

Every vector quoted from here uses these vectors as a basis, i.e. i ( L 0. 0), 

j (0. l. 0) and k (0. 0. 1 ). The vectors to an atom's nearest neighbours 

in the (111) plane are 

Atoms are prohibited from being within 3 steps of another atom, where a 

"step" is any of these six vectors: 

(3.15) 

Also, all atoms must either be properly supported. If it is in an FCC or 

HCP site, it must be supported by three atoms out of 

( ()) ( 2) ( 2) (()) (2) (2) = ~ . ~1 . 21 . \ . () 1 . ~ . ( 3.16) 

If it is in a decorated row site, it must be supported by four atoms out of 

( ~~) ( ~J ( ;]~) ( :) (3.17) 

or 

( 3; ) ( ;J: ) ( ~: ) ( I~ ) (3.18) 
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or 

(3.19) 

The matrix to rotate a vector by 60° about the k direction is 

[ 

1 1 0 1 
1 () 0 . 

0 () 1 

(3.20) 

This can be used to calculate the hops in all six possible orientations given 

the hop in one direction. 

Note that with this mesh, a mesh layer of size L x J/ can hold up to 

close-packed atoms. 

Several broad classes of hop were identified (illustrated in Fig. A.6 and 

on the mesh in Figs. 3.9-3.10). The principle hop is the "short hop", from 

an HCP to an FCC site or vice versa, given by some rotation of the vector 

(2. 0. 0). The "decorated slide" is a longer hop, from a decorated row site 

to another decorated row site, along some rotation of (:2. 2. 0). Downwards 

hops of the form (ct. 0. -1) are also permitted to allow atoms to hop down 

a terrace step. Upward hops (the reverse of the down hop, Fig. A.6, top 

right) are not permitted. Upward hops have large barriers because the 

atom moves from the side of a terrace, where it has at least 2 neighbours 

on the plane (i.e. the terrace wall) to sitting on top of the island, where 

it has at most 4 neighbours on the plane - the other two neighbouring 

positions can not be filled as they would have been resting on the atom that 

hopped. As well as generally reducing its number of neighbours (from 

5 11 to 3 7), it must penetrate the Ehrlich-Schwoebel barrier. Hence 

using the IrSC potential at ~H)() K the fastest upward hop that we calculated 

was rv 1027 times slower than the fastest downward hop. By comparison, 

the fastest downward hop was rv 10 11 times slower than adatom diffusion, 

one of the fastest processes. While downward hops were performed in our 
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simulations, they were comparatively infrequent, and so we do not expect 

the even rarer upward hops to have a significant effect. Finally, hops of the 

form (3. 0. 0) from an HCP /FCC site into a decorated row site or vice versa 

are allowed. Hops to HCP sites were allowed to have different energy 

levels than hops to FCC sites. 

Although an FCC to FCC or HCP to HCP "long hop" of the same form 

as the (2. 2. 0) decorated slide is necessary to model some processes such 

as "hole" diffusion, these processes are much slower than the processes 

we are studying. We calculated the rate of a hole diffusion hop using the 

IrSC potential at 300 K is "'"' 10 11 times slower than the kink-flip hop we 

describe later. By comparison, at 300 K the kink-flip hop is ~ 10'1 times 

slower than a diffusion hop. So the hole diffusion steps are "'"' 10w times 

slower than a diffusion hop and it can be assumed that these moves do 

not happen on the time scale of our simulations. Also, most long hops are 

not valid hops for KMC, as the atom moves through another stable site in 

the course of the hop -e.g. the atom moves from FCC to HCP to FCC. The 

barrier energy for these "double hops" is the same as the greatest barrier of 

the two individual hops- hence the double hop will have the same rate as 

a short hop, which will not correctly describe processes such as diffusion. 

3.2.2 The look-up table 

Each hop was parameterised with a twelve bit binary number according 

to its class, and the position of the moving atom's initial and final neigh­

bours. The first three bits are set by the class of the hop (i.e. whether 

long, short, into or out of a decorated site etc), and the 4th bit is set by 

whether the atom starts on an HCP or FCC site, although in the case of 

decorated sites this was ignored. Each of the initial and final neighbours 

has an unique ID from 0 to 7, giving 8 bits to specify which neighbours 

are present, for a total of 256 different combinations, although for some 

hops (decorated slide, decorated entrance) not all8 bits were assigned to a 
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Figure 3.9: Top left: Unit vectors one mesh space long in the i and j di­

rections, compared to the radius of an atom. Top right: The green atom is 

resting upon 3light blue atoms. There are six "small hop" vectors. Moving 

the atom along any of the three black vectors would move the green atom 

into a valid site supported by three blue atoms, while moving the atom 

along the three red vectors would not. If the orientation of the supporting 

blue atoms was reversed, the orientation of valid and invalid short hops 

would also reverse. Bottom left: The vectors from the central green atom 

to its six nearest neighbours (light blue) on the same (111) plane. Bottom 

right: The green atom is resting on the dark blue atoms, which are rest­

ing on the light blue atoms. The vectors indicate "down hops", where the 

green atom would move down to the same level as the dark blue atoms. 

Hops on to sites that are occupied or not supported by three atoms are 

invalid- e.g. the three red vectors shown here. 

VICTORIA UNIVERSITY OF WELLINGTON 
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Figure 3.10: Left: The green atom is resting on four light blue atoms, in a 

4-fold site along an A gap. The vectors indicate "decorated slide" hops, 

from one decorated site to another. Six different vectors are available, but 

in each orientation of the A gap only two vectors (black) move the atom 

onto a valid site. Red vectors are invalid hops. Right: The green atoms 

is resting on three blue atoms. The vectors indicate "decorated entrance" 

hops, from an HCP or FCC site to a decorated site. The hop is only valid 

if it is a hop on to a valid four-fold site (black vectors). These hops are 

reversible to allow atoms to hop from a decorated site onto an HCP /FCC 

site. Red vectors are invalid hops. 
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Figure 3.11: When all initial and final neighbours are switched on in a 

short hop NEB calculation, some of the initial and final neighbours overlap 

and are unstable. This situation is not permitted by our mesh rules, so the 

barrier energies for hops starting from this position were not calculated. 

neighbour. Which atoms are considered neighbours depends on the type 

of initial and final sites (see Fig. A.6). We generated lattices with all combi­

nations of final and initial neighbours for each hop class, and ran the NEB 

code to determine the energy barrier for each hop in the class. In this way 

we built up a 12 bit look-up table for the energy barriers for a large num­

ber of different types of hop. This would give 212 = 4096 possible different 

hops, but the actual value is somewhat lower as not all classes of hop con­

sidered 8 neighbours, and also because for certain combinations of bits, 

the neighbours of the initial site overlap with the neighbours of the final 

site (as shown in Fig. 3.11) so these situations are unphysical and were not 

calculated. 

To find the energy barrier of a particular hop during the KLMC routine, 

these 12 bits need to be determined. The first 4 are set by the type of hop 

and the type of sites involved (Fig. 3.3) . The other 8 bits are set by the 

neighbours (Fig. A.6), rotated to correspond with the orientation used in 

the NEB calculation. 

This method is more sophisticated than simple bond-counting meth­

ods. However, we observed that changing the geometry of the system to 

a flat rectangular slab while retaining the same neighbour configuration 
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Hop Type Binary Code 

Short hop from FCC 0000 

Short hop from HCP 0001 

Decorated slide 0010 or 0011 

Down hop from FCC 0100 

Down hop from HCP 0101 

Up hop from FCC (unused) 0110 

Up hop from HCP (unused) 0111 

Decorated entrance from FCC 1000 

Decorated entrance from HCP 1001 

Decorated exit to FCC 1010 

Decorated exit to HCP lOll 

Table 3.3: Parameterisation of classes of hop. The first three bits indicate 

the class of hop, the fourth bit indicates whether the hop is from an HCP 

or FCC site in most cases, except for the case of the hop out of a decorated 

site (a "decorated exit"), where it indicates where the hop is to an HCP of 

FCC site, and the decorated slide, where it is irrelevant. 
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altered the barrier energies by as much as"-' O.Olcr, suggesting that barrier 

energies of hops appear to be affected by atoms beyond their closest neigh­

bours. This effect is small, but is critical for determining subtle effects such 

as a preference for HCP or FCC so in the future it would be desirable to 

develop an even more sophisticated method involving more atoms which 

would be more accurate. 

3.2.3 Data structures and algorithms 

The lattice is represented by an array of Boolean (1 bit logical) variables. 

The possible moves for each iteration are stored in a collection of arrays. 

Each array corresponds to a particular rate, of which we have calculated 

several thousand. Each entry in the array contains the position of the atom 

to be moved, and the position it would move to. This arrangement allows 

us to implement the Schulze [41] algorithm for choosing the hop, which is 

as follows: 

1. Compute the overall rate Ss 1 rJ'i where ;Vis the total number 

of rates, and ei is the number of events with rate ri, together with 

partial sums si :L.i=t rici. 

2. Select a random number o E [0. 5.\) 

3. Search through the list of partial sums Si until u 

4. Select an event from the set of events that occur at this rate by com­

puting 

+1 (3.21) 

5. Execute the event and update the configuration 

This is a much faster method than performing a search through every 

atom or every hop, and is an 0( l) algorithm. This means the execution 
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time for a hop does not scale with system size, although in practice, there 

is a slight decrease in speed with lattice size due to increase memory usage. 

It is not necessary to loop over every atom to determine the list of 

possible hops every iteration as only the atoms close to the one that just 

moved would have their possible hops changed. So each iteration we only 

loop over the largest region that could have been affected by the hop -

12. ±12. . First, however, the previous hops from this region have to 

be removed from the table of hops, and to do this efficiently (i.e. without 

a linear search through every hop), each lattice point needs to keep track 

of where in the hop arrays the hops that come from that lattice point are 

located. This essentially means there is some doubling up of data- both 

the lattice and the hop list "know" which hop goes from which location 

to which location. This data structure uses extra memory, and some extra 

computational overhead, but we found the increase in speed to be worth 

it. Except for the first time-step, where all hops must be calculated, we 

found the time taken for lOc; adatom hops to be almost constant as we in­

creased the size of the lattice (Fig. 3.12), as expected for an 0( 1) algorithm. 

By comparison, checking over every mesh point and rebuilding the entire 

move list each time for a ~8 by ~8 mesh took about three times as long as 

our fast algorithm, and the time taken per iteration increased roughly lin­

early with S, the number of mesh points, instead of remaining constant, 

giving significant slowdown for larger meshes. 

3.2.4 Other details 

We have represented deposition as another KMC process, with a rate equal 

to the deposition rate in atoms/time unit. When a deposition event is 

chosen by the KMC algorithm, all possible landing sites are determined 

and one is randomly selected. We have assumed that all landing sites 

have the same probability of receiving an atom. We have also chosen to 

neglect evaporation, so once an atom has landed on the surface, it remains 
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Figure 3.12: Time taken for 1 (f' diffusion hops in milliseconds as a function 

of lattice size compared to time taken for the first time-step. The first time­

step increases with the mesh size, as every hop needs to be calculated 

initially. The time taken for the remaining steps is roughly constant, as 

the region that is looped over is independent of the lattice size. The mesh 

had :Y points, four layers high with each layer being "square" i.e. L by L, 

where L jS/3. The lattice of atoms filled ;) of these four layers with 

FCC. The fourth layer contained adatoms. 
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there. The condition for this to be a valid assumption is for the evaporation 

barrier energy to be much larger than the barrier energies of the important 

processes in the substrate. With NEB in LJ we calculated evaporation to 

have a barrier of l.55f, which is larger than the critical hops. 

We arbitrarily set the pre-factor mentioned in Eq. 2.19 to 107
, simply 

to ensure the numbers in the algorithm were large enough that round-off 

errors would not be a problem. This was divided out when data such as 

diffusion coefficients were extracted from the program, and later the real 

pre-factor is calculated. 

3.3 Ada tom diffusion and determining pre-factors 

We placed a single adatom on an FCC substrate, and observed its position 

as a function of time as it diffused over the surface for 100 KMC steps. 

This was repeated 1000 times and the results averaged in order to find 

the diffusion coefficient of an adatom on a (111) FCC surface at various 

temperatures, from the 2-D diffusion formula 

< >= -!Dt (3.22) 

The diffusion coefficient is related to temperature by the formula 

E* 
D* D(~ exp ( T*b) (3.23) 

where D* is the diffusion coefficient at a particular temperature, D(~ is the 

limit of the diffusion coefficient as temperature goes to infinity, £1~ is the 

energy barrier of a diffusion step and T* is the temperature. The star indi­

cates these are in LJ reduced units, e.g.. , where kb is Boltzmann's 

constant and Tis the absolute temperature. Plotting ln( D*) versus gives 

us D0 = 0.3098 and E1) = O.~H22f (Fig. 3.13). The calculated energy barrier 

is close to the average of the energy barriers for HCP to FCC and FCC to 

HCP diffusion steps from NEB - 0.3135f and (l.~H09f - as we should ex­

pect. However, D0 differs from the value of D0 0.077 given by Agrawal 
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Figure 3.13: Plotting the log of diffusion coefficient against 1/T* to deter-

mine D0 for LJ. Dis in reduced LJ units. The fit is ln(D*) = --"';7;=-= 1.17lt) 

(in LJ units). 

et al's calculations using Monte Carlo variational transition state theory 

and the Lennard-Jones (L-J) interactions [47]. This is because we haven't 

taken into account the pre-factor (effectively the "attempt frequency") in 

the KMC rate formula- essentially, after dividing out the arbitrary 107 fac­

tor, the pre-factor is l. Hence we can use the ratio between our D0 and 

the value given in Agrawal et al to determine our pre-factor for LJ, which 

comes to 0.2,19. 

To match our simulated results with experiment, we must convert the 

LJ reduced units into "real" units. If we take the LJ material as being Irid­

ium, we can use the values of a 2.-119 A and f 0.830 eV from [47] for 



CHAPTER 3. IMPLEMENTATION 62 

-20 

-25 
Q -.E 

-30 

-35 

-40 

1/kT 

Figure 3.14: Plotting the log of diffusion coefficient against 1/ k1J to deter-

mine D0 forlridium. D is in units of m 2 Is. The fit is ln (D) 15.406 

(in real units). As in the LJ case, the barrier energy is unsurprisingly in 

good agreement with our NEB-calculated diffusion step energies (0.2223 

and 0.2224 eV). 
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our distance and energy scales. Then we can use the formula 

T (3.24) 

from dimensional analysis to calculate the time scale, where (J and f and 

the LJ length and energy scales and m 192.217 amu is the mass of Irid­

ium [50]. The result is T 3. 75 x w- 1' s. This gives the pre-factor in real 

units as 0.(5 x 10 11 Hz. 

Distance and energy are already in real units in the IrSC potential, so 

the diffusion Arrhenius formula is now 

D (3.25) 

and only the pre-factor needs to be determined to determine the correct 

time-scale. If we assume a pre-factor of 1 Hz, our KMC calculations give 

a diffusion constant of D0 2./::l x 10- 1(5cm2 /s. The STM measurements in 

[51] gives D0 0.00092 cm2 /s. This gives a correct pre-factor of :3.26 x 10 12 

Hz. 



Chapter 4 

Results and Analysis 

Using the KMC method described in the previous chapter, we performed 

simulations of grain boundary propagation and film growth by deposi­

tion. In grain boundary simulations, we observed that a small energy 

difference between the barrier energies of HCP to FCC and FCC to HCP 

kink-flips caused one stacking type to quickly take over the entire slab. We 

also observed that when grain boundaries merge under the IrSC potential, 

they are more likely to form a series of "lakes" and "bridges" rather than 

a long channel, as is the case for the LJ potential. 

The deposition experiments grew triangular islands, as observed in ex­

periment. However, limited processor time forced us to set the deposition 

rate quite high, which caused islands to grow layers of terraces on top, 

rather than remaining flat. These terraces prevented self-healing of the 

layer. 

Section 4.1 gives the results for the grain boundary propagation simu­

lations. Subsection 4.1.1 gives the results for a simulation of two parallel 

periodic grain boundaries of infinite length, including details on atomistic 

processes involved in propagating the grain boundary, and the merger 

of grain boundaries. Subsection 4.1.2 gives the observations on a grain 

boundary enclosing a region. Here, the grain boundary shrunk to transfer 

all the enclosed region to the opposite stacking type. Subsection 4.1.3 ex-

64 
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plains the effect of adatoms on the surface, including their formation into 

island nuclei, their effect on the grain boundary, and the role of decorated 

sites. 

Section 4.2 gives the results for deposition simulations, including the 

island shape and terracing. 

When not explicitly specified, results using units of eV and A are from 

simulations using the IrSC potential, while results using units of a and f 

are from simulations using the LJ potential. 

4.1 Grain Boundary Propagation 

4.1.1 Propagation of Flat Boundaries 

Inspired by Zoontjens et al [25], for the simplest grain boundary case we 

set up a rectangular slab, 3 layers high, with the middle half of the up­

per layer HCP, and the outer quarters FCC. "Flat" grain boundaries lie 

between these regions. When we replaced the flat grain boundaries with 

chevrons (Fig. 4.12, bottom right), we found that very quickly the bound­

aries lost their chevron shape (see Fig. 4.2, top) and continued to evolve 

along the same lines as the flat boundary so we conclude that we can run 

simulations with only a flat boundary without loss of generality. The bot­

tom two layers were fixed and so was essentially a 20 simulation (Fig. 4.1 ). 

A large number of simulations were performed, over which the dimen­

sions of the mesh ranged from 48x48 up to 192x96. This range of mesh 

sizes corresponds to a range from 192 to 1536 atoms per complete FCC 

or HCP layer. Incomplete layers (such as top layers with grain bound­

aries) have fewer atoms. The temperature in these runs varied from about 

0.5f l.lk for the LJ runs, or ~300 K-1000 K in the IrSC runs. We no­

ticed no major difference resulted from changing the temperature through 

these ranges, other than the grain boundary's diffusion coefficient increas­

ing with temperature, as the rates of the hops increased according to the 
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Figure 4.1: An example of the set-up for grain boundary propagation sim­

ulations. Mobile atoms are on the top level, and are shown as larger and 

lighter here. 

Arrhenius equation. 

It was observed in LJ material that the grain boundaries had a very 

strong tendency to move towards the HCP side- that is, FCC dominated, 

while with IrSC, HCP dominated. As there were two grain boundaries, 

they merged to form a channel or series of gaps (see Fig. 4.4). To test the 

strength of the FCC/HCP preference, we ran 100 simulation runs on large 

and small slabs (Fig 4.3). For LJ, FCC dominated every time. In IrSC, HCP 

was more dominant than FCC, but at the smaller mesh sizes this domi­

nance was not as strong - the final state of all atoms in the top layer was 

HCP only 66% of the time for a 48x-! mesh. This is consistent with grain 

boundary propagation being a biased 10 random walk. Every iteration, 

the average position of a grain boundary can move slightly into the HCP 

region or slightly into the FCC region. The direction of the move is ran­

dom but with a bias favouring the growth of FCC for LJ or HCP for IrSC. 

However, the random fluctuations are large enough that when the dis­

tance between grain boundaries is small, they can merge on the "wrong" 

side. If the distance between grain boundaries is sufficiently large, the bias 

is much more dominant and the system acts consistently. For LJ however, 

the bias was so strong that these fluctuations were too small to have an 

effect. 

If the grain boundaries propagate like a random walk, their movement 
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Figure 4.2: A chevron grain boundary quickly collapes into a zig-zag 

shape. The centre region is HCP and the outer region is FCC. 
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Figure 4.3: Fraction of runs where the entire layer healed to FCC as a func­

tion of the space between grain boundaries. Squares are IrSC data, circles 

are LJ data. The initial spacing between grain boundaries is half the mesh 

length. 
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Figure 4.4: Snapshots equally spaced in simulation time of the merger of 

two grain boundaries into a channel, using rates taken with the LJ poten­

tial 
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should obey the 1 D diffusion law, 

< > 2Dt (4.1) 

where< >is the mean-squared-distance the grain boundary has moved, 

tis the time elapsed and Dis a diffusion coefficient. The mean is an aver­

age of a very large number of grain boundary simulations. If the number 

of simulations is large enough, this will converge even with a fairly short 

simulation time. This diffusion coefficient should follow the Arrhenius 

formula, 

Do ( Eb) De.rp ~ . 
h!JT 

(4.2) 

We made Arrhenius plots of the relationship of the diffusion coefficient 

with temperature and confirmed this relationship (Fig. 4.5, 4.6). The fits 

give the barrier energies for the most important hops in grain boundary 

propagation: E~; 0.68t for LJ and E~; 0.37 eV for IrSC. These are slightly 

above the values for kink-flip hops (0.65f and 0.:36 eV), which suggests that 

the kink-flip hops are dominant, but not the sole hop involved in grain 

boundary propagation. We confirmed this by tracking hops in a dual grain 

boundary simulation. Out of 32000 hops, 2~3210 were kink-flips, and 8790 

were "pocket-fill" hops. Pocket-fill hops are explained in more detail later 

in this section. 

We also varied the mesh sizes (72x12, 72x24 and 72x36 in the singly 

refined lattice) and tracked the movement of a grain boundary over 1000 

runs, and averaged the results (Fig. 4.7). 

The good fits again confirm that grain boundaries propagate in a ran­

dom walk fashion. It is interesting to note that the diffusion rate appears 

to decrease as the width of the periodic cell is increased. Our explanation 

for this is as follows: First, we represent the grain boundary movement as 

a series of "steps" each with the same length, 1,1ep· In reality, different pro­

cesses move the grain boundary by different amounts, so this "step" rep­

resents an average step over all significant processes. After S,teps steps, we 
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Figure 4.6: Arrhenius plot of grain boundary propagation under the IrSC 

potential. The slope of the fit is -0.:37 eV 
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Figure 4.7: Diffusion of the grain boundary under the LJ potential for var­

ious lattice widths, averaged over 1000 simulations. The simulations rep­

resented by up-triangles have a width of 12, the down-triangles a width 

of 24 and the squares a width of 36. There are two lines for each width, as 

there are two grain boundaries. 
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should expect the mean-squared-distance the grain boundary has moved 

to be 

< .1''2 > r ') 

;\ stcpsl~tcp (4.3) 

as it is a random walk. We should expect the number of steps performed 

in some period of time is proportional to the width of grain boundary, i.e. 

(4.4) 

because if the grain boundary is twice as wide, there should be twice as 

many opportunities for kink-flip (or other) events. We should expect the 

contribution of each of these steps to be be similar to 

1 
lstr p :X ( 4.5) 

U' 

as each event only moves a portion of the grain boundary, and a grain 

boundary that is twice as wide will require twice as many events to move 

the same total distance. Putting these together into Eqn. 4.3 gives 

1 
(4.6) < >:x 

U' 

which decreases with the width of the periodic cell. 

Hops in Grain Boundary Propagation 

To explain the strong dominance of FCC or HCP, we examined the hops 

that were performed during the propagation (but not merger) of the grain 

boundaries. We found only two types of hop were performed in this simu­

lation of flat grain boundary propagation, illustrated in Fig. 1.5. These are 

the kink-flip hop and another hop we refer to as the pocket-fill hop. The 

kink-flip hops move A-gaps along the boundary. When two A-gaps meet, 

they set up the possibility for a pocket-fill hop. The exposed atom is very 

likely to hop across the grain boundary, dissolving the two A-gaps. 
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The main hop for differentiating between FCC and HCP is the kink-flip 

hop. The energy difference between the kink-flips in each direction is very 

small. This small difference is somewhat amplified by the exponential 

term in the rate equation, but it is nevertheless surprising that such a small 

difference can cause such a consistent effect. Although our NEB algorithm 

method is only consistent to~ 10~ 2 eV or~ w~2 iT, our KMC algorithm is 

sensitive to these small differences. So we did not truncate the barriers to 

smaller level of precision, as we wanted to show that if the barriers were 

accurately known, our method would show grain boundary movement in 

the correct direction. 

Hops in Grain Boundary Mergers 

Another difference between grain boundary healing for LJ and IrSC was 

that the LJ grain boundaries tended to merge into an almost continuous 

channel (with few if any "bridges"), while the IrSC boundaries tended to 

merge into a series of gaps (or "lakes") with a large number of bridges 

crossing them (as shown in Fig. 4.8). 

The critical event where the grain boundary must "decide" whether to 

form a channel or a lake is where the grain boundary "pinches", forming a 

small A-gap triangle as shown in Fig. 4.9, top. This is a similar situation to 

a pocket-fill move, except that the pinch site does not have 4 neighbours 

in the plane. If the atom closest to the pinch hops into the pinch (a "pinch­

plug" hop), then it forms a bridge between the outer terrace. If, instead, 

the atoms kink-flip onto the outer terrace, the channel remains as a gap. 

For IrSC, the pinch-plug hop has a barrier of 0.09 eV, with a barrier of 

0.4~3 eV to reverse the hop, if the atom initially has one neighbour. As the 

forward barrier is much smaller than the reverse barrier, this is almost a 

one-way process. The reverse barrier is also larger than the barrier for a 

kink-flip hop, so it is more likely that the atom's initial neighbour will join 

the outer terrace than for the pinch-plug to reverse. If the atom's initial 

neighbour kink-flips to the outer terrace, then it is not possible to reverse 
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Figure 4.8: Grain boundary shapes after merging. Above: LJ material 

forms an almost continuous channel after merging. Below: IrSC material 

forms a series of lakes and bridges. 
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the pinch-plug at all, as it would not take the atom to a stable site. This 

contrasts with the LJ case, where the pinch-plug hop has a barrier of 0.2Gf 

and the reverse pinch-plug hop has a barrier of 0.5f. These values are 

much closer together, so the hop is more likely to be reversed. Also, the 

reverse pinch-plug hop has a smaller barrier than the kink-flip, making it 

more likely that the pinch-hop will reverse before the atom's initial neigh­

bour can kink-flip into the outer terrace, preventing the reverse hop. 

If the atom initially has two neighbours (Fig. 4.9, bottom), it is less 

likely to perform a pinch-plug. However, it is still more likely for an IrSC 

atom to perform a pinch plug than LJ, (Table. 3.2). Furthermore, the atom 

closest to the pinch is wedged between two A-gaps, and so can not kink­

flip on to the outer terrace until one of its two neighbours has already 

kink-Hipped, putting it in the one neighbour situation described above. 

4.1.2 Enclosed Islands 

Another initial condition we investigated was a small island of FCC or 

HCP surrounded by material of the opposite stacking type - hence the 

grain boundary goes around the perimeter the island. We investigated 

square, triangular and hexagonal islands (Fig. 4.12). of various sizes. In­

variably, the enclosed material was assimilated onto the outer material 

(Fig. 4.13), regardless of which stacking type was enclosed. This demon­

strates that the geometry of the grain boundary (e.g. whether the bound­

ary encloses a region) has a stronger effect on the direction of grain bound­

ary propagation than the arrangement of stacking types. The corners al­

ways moved first, as shown in the example in Fig. 4.10. Atoms in an in­

ternal corner are more likely to move than an outer atom because they 

have fewer neighbours, and hence a smaller barrier energy to making a 

hop. Having fewer neighbours is a natural consequence of being part of 

an enclosed object, as demonstrated in Fig. 4.11. 

As the island shrinks, its perimeter size decreases. However, the grain 
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Figure 4.9: Possible mechanisms for the formation of a "bridge" across 

the grain boundary. Top: The corner atom has only one possible move, 

going from 2 neighbours on the corner to 3 neighbours in the pinch. It 

is likely that it will perform this move. Middle: Several atoms behind 

the corner atom have kink-flipped away, and now it has a choice between 

kink-flipping (growing the channel, bottom) and pinch-plugging (forming 

a bridge, middle-right). The atom is more likely to "choose" the pinch­

plug site under the IrSC potential than under the LJ potential. 



--------------------

CHAPTER 4. RESULTS AND ANALYSIS 79 

boundary can not shrink with the island, as there is no deposition in this 

simulation and the amount of free space must be conserved. This is per­

formed by converting A-gaps into B-gaps (which have twice the empty 

area), and by leaving behind channels. Each of these channels is formed 

by an A-gap. As atoms in A-gaps are fixed, a long A-gap is only mobile 

at the ends where there are B-gaps. The atoms at the ends can kink-flip 

across the grain boundary, but only in a direction away from the centre 

of the long A-gap (Fig. 4.10). Eventually, only one of the atoms that was 

on the internal side of the A-gap is left, and it has two possible outer sites 

to enter. Whichever one it enters, it will leave a one atom wide gap. The 

atoms in the next layer kink-flip to either side of this small gap. This pro­

cess continues and a channel is formed. 

During deposition, many HCP and FCC islands form, as will be seen 

in the next section. These islands then grow and meet and interact with 

each other. If islands of one stacking type grow faster than islands of the 

other stacking type, they will envelop the other islands. The surrounding 

material will assimilate the inner islands, even if the barrier energies of 

hops relevant to grain boundary propagation prefer the opposite stacking 

type. 

4.1.3 Effect of Coverage 

It was not possible to achieve realistic deposition rates within computa­

tionally convenient times, so in our deposition simulations, the rate of de­

position was much faster than the rate of grain boundary propagation. 

When islands meet, the grain boundaries are not able to propagate as they 

are blocked by the large numbers of atoms that have been deposited on 

the higher levels of the island. A more realistic scenario is one where the 

grain boundary is able to propagate a large amount before new atoms are 

deposited. To simulate the limit of slow deposition, we randomly placed 

a number of adatoms on the double grain boundary substrate described 
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Figure 4.10: An A-gap grain boundary heals, leaving behind a small gap 

that will become a channel 
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Figure 4.11: Any enclosed shape is taken over by the surrounding stacking 

type. The atoms in straight edges all have 4 neighbours, but the corner 

atoms on the inner island only have at most 3 neighbours while the outer 

corner atoms have 4 or 5. This makes the inner island less stable. 



CHAPTER 4. RESULTS AND ANALYSIS 82 

Figure 4.12: Examples of grain boundary shapes investigated. Clockwise 

from the top left, they are: enclosed hexagon island, enclosed square is­

land, double chevron grain boundary, and enclosed triangular island. 
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Figure 4.13: A triangular island of HCP (left) and a triangular island of 

FCC (right) are both taken over by the surrounding stacking type, leaving 

a triangular channel pattern. Note that the channels for when FCC has en­

closed are larger than for the HCP case. This is because in this particular 

case, the FCC triangle was surrounded by B-gaps while the HCP triangle 

was surrounded by A-gaps. B-gaps are larger than A-gaps, and the total 

gap area on the surface is conserved through the grain boundary prop­

agation (as we are ignoring deposition), so an initial configuration with 

B-gaps gives larger channels than an initial configuration with A-gaps. 
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Figure 4.14: Two examples of a random distribution of adatoms quickly 

forming into islands. 

in section 4.1.1, and did not drop any more atoms during the simulation. 

Simulations were run under the IrSC potential, at 300 K and 1000 K. 

Very quickly the adatoms collected into a number of small islands (Fig. 4.14), 

of about 3-10 atoms each, with roughly triangular or hexagonal shapes. 

Because a large number of adatoms were planted instantly on the sub­

strate, this differs to the behaviour observed during deposition where large 

triangular islands form. When placed one at a time the adatoms diffuse 

around until they meet an already nucleated island, and rarely will anum-

ber of adatoms meet to form a new island. When placed simultaneously, 

the odds that an adatom will encounter enough other adatoms to nucleate 

a new small island is much larger, simply because there are more adatoms 

that have not joined islands yet. 
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We noticed that groups of 3 atoms were the smallest that formed, and 

these triangular trimers were only metastable. Structures on (111) planes 

of an FCC/HCP substrate have A-edges orB-edges, in the same way that 

grain boundaries have A-gaps and B-gaps. When two A-edges meet, they 

form an A-gap and when two B-edges meet they form a B-gap. Trimers 

surrounded by B-edges (Fig. 4.15) were even able to diffuse over the sur­

face, even though only one atom moves at a time. Trimers surrounded by 

A-edges were more stable. This is because atoms in a B-edge are capable 

of moving to an adjacent site while still remaining fairly close to one of 

its neighbours from the island - J} ~ 1. 7 times the nearest neighbour dis­

tance (Fig. 4.15). Atoms in an A-edge trimer must completely break bonds 

with both neighbouring atoms in order to move (Fig. 4.15). Once an atom 

is only semibonded to only one other atom in the island, the barrier for it 

to completely break away is smaller, and this allows trimers to break up. 

Larger islands also break up, particularly at the higher temperature 

(i.e. 1000 K). Typically, the atoms that have left a smaller island will join 

another island, making it larger. This is similar to the process of Ostwald 

ripening [52]. Systems typically act to reduce their surface area and hence 

their surface energy. In KMC, surface energy can be represented by the 

barrier energies for the outer atoms of an island to step away from the 

island. Atoms in a straight edge have more neighbours than atoms in the 

corner of an island, and hence find it harder to leave the island. In fact, 

under the IrSC potential, atoms with 3 or more neighbours on the plane 

can not escape the island at all (Fig. 4.16). Smaller islands are less stable 

than larger islands as the ratio of corner atoms to edge atoms is larger. The 

act of reducing the surface area reduces the probability that an atom will 

leave the structure, increasing its stability. 

Many other metastable structures such as strings (Fig. 4.17) formed. 

These quickly reform to reduce their surface area in a similar manner to 

that mentioned above. 
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Figure 4.15: Top left: a B-gap trimer, showing all possible moves. Top 

right: an A-gap trimer, showing all possible moves. Bottom left: A B-gap 

trimer after a move. Note the small distance between the atom that moved 

and its closest atom. Bottom right: An A-gap trimer after a move. Note 

the larger distance between the atom that moved and its closest atoms. 
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0.97eV 

0.97eV 0.97eV 

Not stable 0.97eV Not stable Not stable 

0.97eV Not stable 0.97eV 

Not stable 

Figure 4.16: An illustration of the instability of small islands. Corner atoms 

have an escape energy of 0. 97 eV, but atoms with 3 or 4 neighbours can not 

escape, as the closes t site is unstable and they would immediately fall back 

into the island. 
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Figure 4.17: "String" structures form from a random distribution of 

adatoms within '""' 2ns and last for rv lOns . This behaviour was observed 

under both the LJ and IrSC potentials. 

Decorated Sites 

We also observed atoms moving into decorated sites. Decorated sites are 

surprisingly stable- 0.43 eV to hop in versus 0.94 eV to hop out, if there are 

no neighbours. This means that atoms sometimes hop out of the edge of an 

island on to a decorated site. We observed a pentamer island dissociating 

into decorated atoms in this way (Fig. 4.18). 

Adatoms or island-edge atoms that have hopped into a decorated site 

tend to remain in them. These decorated atoms can slide (barrier of 0.97 

eV if there are no neighbours) along the top of the A-gap, but not onto 

B-gaps. This means that the decorated atoms are localised within some 

region of the grain boundary. As we have not permitted atoms that are 

supporting other atoms to move, this means that the decorated atoms pin 

the grain boundary, preventing it from moving. 

Decorated atoms are more likely to hop back onto HCP or FCC sites 

if there are many neighbours in the FCC/ HCP site. This would suggest 

that the side of the grain boundary with a greater adatom coverage will 
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receive more adatoms from decorated sites than the other side would. We 

have not explored the significance of this for grain boundary propagation 

and self-healing. 

4.2 Deposition 

We set up large (mesh sizes up to 576 by 576) flat slabs 2 layers high and 

performed deposition simulations. We noticed no significant difference 

between the two potentials. We found that the deposited adatoms form 

triangular dendritic islands (Fig. 4.19), similar to those shown in STM im­

ages of island growth on (111) Iridium (Fig. 4.20). FCC and HCP islands 

face in opposite directions, also in agreement with experiment. However, 

the detailed shapes of the islands beyond the general triangular outline 

is quite different. It is possible that this is because our NEB calculations 

were generally performed in conditions most similar to an atom on a grain 

boundary- using this to simulate island growth processes is an extension 

beyond these conditions. Furthermore, we are not taking into account con­

certed movements of atoms, such as the diffusion of dimers, which may 

have an effect on island growth. 

Due to limited simulation time, it was necessary to use a very high de­

position rate ( rv 10 11 monolayers/s, rv 1013 times that of experiment [10]). 

This meant that many adatoms deposited on top of a growing island do 

not have time to make it over the Ehrlich-Schwoebel barrier and attach 

themselves to the edge of the island before they encounter enough other 

adatoms to form their own small island upon the larger island. This pro­

cess continues, and the islands turn into terrace structures (Fig. 4.21). The 

higher levels prevent grain boundary propagation when the islands meet, 

stopping the self-healing process. 

To confirm that the Ehrlich-Schwoebel barrier was causing this effect, 

we performed a deposition simulation with the Ehrlich-Schwoebel barrier 

"switched off"- we set the barrier energy for an atom to step off an island 
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Figure 4.18: A sequence of images demonstrating the dissociation of a 

pentamer island into decorated atoms. The whole process occurred over 

"' 50ns . 
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Figure 4.19: An example of deposition upon the (111) plane of a peri­

odic slab. Islands form roughly triangular shapes, with FCC islands ro­

tating 180° clockwise from HCP islands. The dominance of the Ehrlich­

Schwoebel barrier causes terraces to form. Although these terraces form 

in experiment, our high deposition rate increases their abundance. 
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Figure 4.20: STM images of deposition on (111) Iridium [11]. Left: An early 

stage of deposition at 350 K. HCP islands are rotated 1 oo with respect to 

FCC islands. The triangular envelope for an HCP island is shown in white, 

while the envelope for an FCC island is shown in black. Our simulation 

size is roughly the size of the inset. Right: A later stage of deposition at 

450 K. The islands are still triangular, but are larger. Also, some atoms are 

forming terraces on higher levels. 
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Figure 4.21: Left: An island containing triangular elements, with several 

layers of island on top. Right: When two terraced islands meet, they get 

stuck 

equal to the barrier energy for an adatom to diffuse to an adjacent site on 

a flat surface. In this artificial and unrealistic scenario, no islands were nu­

cleated on top of other islands. Instead, the atoms attached themselves to 

the edges of already nucleated islands, causing flat island growth. When 

regions of HCP met regions of FCC, grain boundaries formed. These prop­

agated until the entire neat FCC layer was formed. This "cheat" shows 

similar behaviour to what has been experimentally observed to occur at 

lower deposition rates, so we can conclude that the Ehrlich-Schwoebel 

barrier is what prevents self-healing at high deposition rates. 



Chapter 5 

Conclusions 

We found that KMC is a good method for simulating the processes of de­

position and grain boundary propagation. If the energy barriers are ac­

curate, it can demonstrate the effects of a preference for stacking fault or 

regular sites. Our NEB algorithm is a good method for finding barrier en­

ergies, but we found it so sensitive to the configuration of atoms a long 

distance from the hop that we must conclude it is only accurate to about 

"V O.Olf or '"'--' 0.01 eV. This is larger than the difference between FCC and 

HCP hops, so a different method will be necessary to find these details. 

Second-neighbours may have make a significant difference on the scale of 

the difference between FCC and HCP sites, so the look-up table may need 

to be extended to examine these hops in detail. 

The barrier energies calculated with the IrSC potential appear to be less 

sharply affected by changes in the number of initial and final neighbours 

of a hop than the barrier energies calculated with the LJ potential. We 

should expect real metals to act more like the IrSC potential. The quali­

tative differences we observed include a switch between a preference of 

HCP and a preference of FCC - and although the difference was smaller 

than the accuracy of our NEB algorithm (mentioned above), this does 

demonstrate some difference between the potentials. The most notable 

difference was a difference in the shape of the gaps formed when grain 
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boundaries merge- LJ preferred long channels, IrSC preferred "lakes" and 

"bridges". However, the differences were not large, and we can conclude 

that the LJ potential performs reasonably in modelling grain boundary 

propagation in Ir. 

We observed the propagation of grain boundaries and self-healing with 

a preference for a particular stacking type, as shown in experiment. De­

posited islands had a similar triangular shape to that shown by STM im­

ages of deposition, but the high deposition rate we used caused the islands 

to form terraces that prevented the self-healing process. 

Further work could include improving the efficiency of the KMC al­

gorithm, to allow longer simulation times, larger lattices and lower depo­

sition rates. This would give us a more realistic picture of the processes 

occurring in deposition. Adding additional processes - such as diffusion 

of dimers and trimers - could also increase agreement with experiment. A 

more consistent system for determining energy barriers is also necessary 

to correctly model the differences between FCC and HCP sites. A more 

accurate potential function than IrSC could also be implemented in the 

NEB code to more accurately model Iridium, or different potentials could 

be used to investigate different materials without major changes to the al­

gorithm, provided the material has an FCC or HCP structure in bulk. A 

major extension to this project would be to perform a full simulation of 

epitaxy using all these improvements, including deposition at a realistic 

rate, island growth, and grain boundary propagation as islands intersect 

and layers self-heal, so that the epitaxial growth of FCC Iridium can be 

better understood. 



Appendix A 

Critical hops 

For reference, all the important hops we mentioned in the text are illus­

trated in this appendix. 
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Figure A.l: A kink-flip hop 

Figure A.2: A pocket-fill hop 
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Figure A.3: A diffusion step 

Figure A.4: A pinch-plug, starting with 2 neighbours 
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Figure A.5: A pinch-plug, starting with 3 neighbours 
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Figure A.6: The ID numbers for the neighbours in the four classes of hop. 

Except for the drop hop, all of these hops are reversible, and the reverse 

energy barriers are calculated at the same time as the forward energy bar­

riers. Note that some of the neighbours can not be "switched on" at the 

same time, because they overlap. Top left: An FCC to HCP short hop. Top 

Right: A drop off a ledge. Bottom Left: A hop from a decorated site into 

an adjacent decorated site on the same A boundary. Bottom Right: A hop 

into a decorated site. The A boundary runs from left to right through the 

middle of this image. 
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