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Abstract 

Abstract 

The decorator crab Notomithra.x minor is common on Greenshell mussel (Perna 

canaliculus) farms in the Marlborough Sounds, New Zealand. Individuals in the 

Greenshell mussel industry have suggested that the presence of N. minor, found on 

mussel lines, is related to substantial losses of Greenshell mussel spat. 

Laboratory and field investigations were used to assess the effect of N. minor 

presence on the retention and productivity of Greenshell mussel™ spat. Specific 

consideration was given to predation pressure and induced anti-predator defenses, both 

of which can cause financial losses to mussel farmers. High (12 crabs/cage-1
) and low (3 

crabs/cage- 1
) densities of large (males: >20mm, females: >15mm TCW) and medium 

(males: 15-20mm, females: l0-15mm TCW) decorator crabs were placed in cages on 

commercial Greenshell mussel farm droppers at two sites in the Pelorus Sound. The 

byssal characteristics, spat retention rate and spat shell length were assessed at 8 and 11 

weeks after trial initiation. 

Greenshell mussel density on the experimental droppers decreased significantly 

when medium and high densities of the decorator crabs (N. minor) were introduced. N. 

minor presence induced the remaining Greenshell mussel spat to produce more and 

thicker byssus threads which consequently lead to increased mussel attachment. The 

decrease in retention rate and the increase in mussel attachment strength were more 

pronounced in small recently seeded spat. 

Laboratory experiments to assess the consumption rate of small (S::5mm) 

Greenshell mussel spat by decorator crabs showed that mussel consumption by N. minor 

peaked at 56.43 (± 13.02 (95% C.l.)) crab-1 h(1
, however the rate of consumption 

3 



Abstract 

decreased significantly over the duration of the three day trial. N. minor prey size 

preference was also assessed using Laboratory trials; crabs were offered 4 size classes of 

mussels (small (<5 mm), small-medium (5-I 0 mm), medium-large (l 0-15 mm), large 

(> 15 mm) simultaneously. Female crabs consumed more mussels in the <5 mm and 5-10 

mm size classes than in the two larger mussel size classes (I 0-15 mm and > 15 mm), 

whereas the male crabs showed a numerical preference for mussel spat in the small­

medium and medium-large size classes. 

This study provides preliminary evidence that the decorator crab N. minor is a 

previously overlooked and under-estimated threat to the Greenshell Mussel industry in 

the Marlborough Sounds that deserves closer scrutiny and experimental testing. 
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1: Genera/Introduction 

Chapter 1: General Introduction 

1.1 GENERAL INTRODUCTION 

Predation can have significant effects on the structure, distribution and 

abundance of prey populations (Krebs, 1985). For example, Menge ( 1979) found that 

invertebrate predators contribute to the production of free space in the rocky inter-tidal 

zone in New England by limiting the abundance of the dominant space occupier, the 

blue mussel, Mytilus edulis. The availability of free space is a fundamental determinant 

of species diversity in this system; consequently the predator indirectly int1uences 

community structure. 

Because crabs are common predators in many marine ecosystems their behavior 

and feeding activities often seriously affect not only prey species, but also non-target co­

existing organisms (Woods 1993). Direct and in-direct effects of predator behavior 

(which can include the stimulation of defense or escape strategies among the prey 

species) may disrupt the fitness of prey individuals and subsequently the persistence of 

prey species (Leonard et al. 1999, Mistri 2004 ). Brachyuran crabs are voracious 

predators and prey heavily on marine bivalves, including many mussel species (Mistri 

2004 ). Due to their prolific nature and cosmopolitan distribution, it is important to 

understand crab prey preferences and how the predator int1uences the behavior and 

morphology of prey species, particularly when the crabs or their prey are commercially 

exploited (Woods 1993). 

In this study the focal prey species, the endemic New Zealand GSM Perna 

canaliculus, is one of the most extensively farmed marine species in New Zealand 
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1: Genera/introduction 

waters, and the focal predator species, the camouflage crab Notomithrax minor, has no 

direct commercial value. However, this predator may have important indirect 

commercial values due to the possible loss of mussels resulting from direct predation 

and/or indirect dislodgement from aquaculture farms. Therefore this study aims to assess 

the impact N. minor presence has on the growth, attachment rate and survival of farmed 

GSMs in the Marlborough Sounds and the resulting economic and ecological 

implications. 

1.2 NOTOMITHRAX MINOR: LIFE HISTORY AND TAXONOMY 

Globally the majidae family (spider crabs) is represented by at least 19 species 

from 12 genera and 4 subfamilies. The subfamily Majinae includes the genus 

Notomithrax, of which three species occur in New Zealand waters, Notomithrax minor, 

Notomithrax peronii and Notomithrcn ursus. N. minor is the smallest species with 

females reaching a maximum carapace width of 24 mm and males 31.5 mm. The species 

was first described as Paramithrax minor (Filhol 1885), but this taxonomic classification 

has been revised many times before the most recent designation as N. minor in 1966 

(Griffin). 

In New Zealand N. minor is distributed from Cape Maria van Diemen to Stewart 

Island, and throughout southeast Australia including Tasmania (Griffin 1966). It has a 

bathymetric range generally extending from the inter-tidal to 40 m and only rarely to 90 

m (Wear and Webber 1981 ). 

N. minor is cryptic by nature and like many other spider crabs its movement is 

relatively sluggish: these crabs generally rely on masking ability for camouflage, rather 

than on speed for predator avoidance. The carapace of N. minor is commonly adorned 
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1: General Introduction 

with sponges and branching algae, but crabs will mask with other materials including 

mussel rope filaments and the moults of con-specifics (pers. obs.). Using their chelae, 

the crabs generally tear pieces of sponge or algae to a certain size. One side of the 

selected item is then manipulated with the mouthparts before it is brushed against the 

hooked setae on the carapace so that the item adheres (Wicksten 1980, Sato and Wada 

2000). Due to this masking ability and the cryptic nature of the crab, the species 

distribution and density is frequently underestimated (Bennett 1964 ). 

N. minor is commonly found in association with the larger Notomithrax peronii 

on sand, mud and coarse shell reefs in sheltered areas such as bays and harbours (Wear 

and Webber 1981 ). Both N. minor and N. peronii are also found in high densities on and 

around artificial substrates such as wharf pilings and mussel aquaculture structures (pers. 

obs.). 

Reproduction is aseasonal with ovigerous females observed from September to 

April, although at Leigh (north of Auckland, and now the site of the Cape Rodney to 

Okakari Point Marine Reserve) ovigerous females have been found in June and July 

(Griffin 1966). Newly spawned eggs are bright orange, but when ready to hatch the eggs 

fade to light orange or are transparent (Griffin 1966). Once eggs hatch they go through 4 

larval stages: a pre-zoeal stage, 2 zoeal stages and a megalopa larva. Each of the zoeal 

stages lasts approximately 9 days and all stages are most abundant during spring and 

summer (Wear and Webber 1981 ). 
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I: Gene rat introduction 

Figure 1.1: The three species of Notomithrax found in New Zealand waters; I )Notomithrax minor the 
smallest of the three (TCW >32mm) and most common Notomithrax spp. on mussel lines in the 
Marlborough Sounds, 2) Notomithrax peronii is the largest species (TCW> 65mm) and is occasionally 
found on old mussel lines and 3) Notomithrax ursus commonly known as the hairy seaweed crab is 
relatively rare on mussel lines in the Marlborough Sounds. N. minor and N. peronii are often confused for 
large or small individuals of the other species. Figure adapted from Griffin 1966. 

The majority of published data regarding N. minor and other spider crab species 

describes the crabs masking ability and use of the camout1aging items as a food source 

(Wicksten 1980, Kilar and Lou 1986, Woods and McLay 1994, Sato and Wada 2000, 

Cruz-Rivera 200 l ). Very little published data are available regarding the diet, behavior 

and growth of N. minor, although other species of Notomithrax have been described as 
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I: General Introduction 

omnivorous. Woods ( 1993) researched the natural diet of N. ursus and found that it 

consisted of a wide range of items including: algae, gastropods, isopods, amphipods, 

bryozoans, sponges, bivalves and small decapods. Omnivorous feeding patterns have 

been observed in other species of spider crabs, with algae often constituting a large part 

of the diet. For example, the spider crab Loxorhynchus crispatus is an omnivore that is 

found off the central Californian coast. Hines (1982) established that it feeds in a variety 

of items including: algae, sipunculids, sponges, polychaetes, gastropods and other 

crustaceans. Current evidence suggests that bivalves only constitute a small portion of 

the diet of spider crabs. This may be due to the morphology of the chelae which are 

generally elongate and slender (Wicksten 1980, Woods 1993) and are not well adapted 

to the crushing behaviour required to break the bivalves relatively thick shells (Woods 

1993). When N. ursus and N. minor do prey on bivalves they generally use one of two 

techniques: l) chipping or biting the shell margin using chelae or mandibles, or 2) 

forcing the valves of the bivalve apart using the chelae or legs (Woods 1993); pers. 

obs.). 

The settlement of both N. minor and P. canaliculus is highly irregular however 

N. minor megalopa larvae settle slightly later in the year (October to March (Griffin 

1966)) than GSM spat (August to February (Jeffs et al. 1999)). Therefore N. minor may 

settle onto the mussel lines soon after the mussel spat has been seeded and grow along 

side the mussel spat. When the spat gets stripped from the spat lines for reseeding (refer 

to 1.3.4) the crabs also get removed and either a second wave of settlement may occur, 

or older crabs may migrate from adjacent lines or floats. There is little data regarding 

how the settlement patterns of N. minor onto the GSM farms and their adaptations to this 
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1: General introduction 

relatively instable environment. To make any concrete assumptions regarding these 

issues will require further investigation. 

1.3 PERNA CANALICULUS 

1.3.1 Taxonomy 
The GSM, Perna canaliculus, is endemic to New Zealand and is one of at least 

mne different species of Mytilid found in New Zealand waters (Powell 1979). P. 

canaliculus has often been referred to as the green-lipped mussel because of its 

characteristic green shell margin (Jeffs et al. 1999). It is now more commonly known by 

its trade-name, the GSM. 

The species was first described as Mytilus canaliculus by Martyn in 1784, but 

not recognized until 1791 (Gmelin) (Siddall 1980, Jeffs et al. 1999). It was proposed that 

the species be placed in the genus Perna (Retzius 1788) in 1959. Other members of the 

genus Perna are found in South America, Africa (Perna perna Linneaus 1758) and the 

Indo Pacific (Perna viridis Linneaus 1758) (Jeffs et al. 1999). For the purpose of this 

study I will refer toP. canaliculus as GSM (GreensheJITM mussel). 

1.3.2 Ecology and biology 

The GSM is widely distributed throughout New Zealand from -35°S to -47°S 

(Jeffs et al. 1999, Apte et al. 2003), and is typically found from the midlittoral to depths 

of over 50 m (Powell 1979). The GSM can often form dense beds of up to I OOm -2 (Jeffs 

et al. 1999) that filter significant quantities of suspended organic matter and plankton out 

of the water. The distribution of the GSM is restricted in the inter-tidal zone at the upper 

limit by desiccation stress and in the shallow sub-tidal region at the lower limit by 

predation pressure (Paine 1969). Although GSMs are susceptible to desiccation stress it 
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1: General Introduction 

does tolerate a wide range of water salinities, from 25 ppt to 35 ppt (Flaws 1975, Jeffs et 

al. 1999), and temperatures, from 5.3°C to 27°C (Hickman et al. 1991 b, Jeffs et al. 1999) 

1.3.3 Life history 

Because of its ecological, cultural and economic importance, the life history of 

the GSM has been studied intensively. The following is a brief overview. GSMs are 

dioecious broadcast spawners. Gonadal development and spawning are temperature and 

food dependant, with most spawning occurring from late spring to early autumn (Jeffs et 

al. 1999). Females can produce up to 100 million eggs, and once fertilized the eggs 

develop into lecitotrophic trochophore larvae, followed by early veliger development at 

24-48 hr (Hayden 1994 ). The planktotrophic larval veliger stage feeds on a range of 

microalgae for 3-5 wk, during which time the prodissoconch II forms and grows to 100-

250 flm. Pediveligers (220-350 ~tm) develop at 4-6 wk and settle preferentially on fine 

filamentous substrata, including hydroids and filamentous algae (Manning 1985a,b, 

Buchanan l994a). Primary settlement of the larvae is complete at byssogenesis, at which 

stage the mussels recruit into beds of adult mussels during secondary settlement through 

byssopelagic movement, or mucus drifting (Buchanan 1994). The ability for 

byssopelagic movement is lost once the spat reach 6 mm in length (Jeffs et al. 1999). 

Post settlement growth rates vary due to differences in phytoplankton supply and water 

temperature, but averages around 110-115 mm pa (Jeffs et al !999). 

1.3.4 GSM aquaculture 

GSMs have been cultured in New Zealand since the late 1960s, with the 

Marlborough Sounds being the center of the industry (Dawber 2004). The Marlborough 

Sounds are located in the northeast of the South Island (from 40°53'S to 41°18'S and 

15 



1: Genera/Introduction 

from l73°45'E to 174°23'E) and consist of two major Sounds, the Pelorus and the 

Queen Charlotte (Fig. 1.2) (Jenkins 1979). 

The GSM industry in New Zealand evolved through a successiOn of steps 

inspired by mussel farming patterns and practices in Spain, Japan and America (Dawber 

2004 ). Initial attempts at culture were based on Spanish raft techniques and were 

generally unsuccessful due to unwieldy, hazardous and unstable rafts (Jenkins 1979, 

Jeffs et al. 1999, Dawber 2004). 

450$ 

Figure 1.2. The Marlborough Sounds, the primary area for aquaculture of the New Zealand Greenshell 
mussel. Also pictured is Ninety Mile Beach, the most prominent GSM spat harvest area in New Zealand. 

Following failed trials of raft culture, development of the Japanese long-line 

cultivation system started to take place. This system made more efficient use of water 

space, was flexible, and had the option of adding more buoyancy as the mussels grew 

heavier (Dawber 2004). Consequently the first considerable mussel harvest of 300 

tonnes was produced in 1977 using a modified version of the Japanese long-line system. 
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Expansion, refinement and increased mechanization have led to constant 

increases in production of mussels and the value of the industry. Currently, GSM 

production accounts for ~5% of global mussel production (Carton et al. 2007) with an 

export market revenue of more than NZ$ 188 M. GSM production is now New 

Zealand's most valuable seafood export, having surpassed other exported species such 

as hoki, orange roughy and rock lobsters (SeaFIC 2007). 

The main problem faced by the industry is the very considerable reliance on wild 

caught spat (seed mussels). Approximately 80% of the spat comes ashore attached to 

macro-algae that are washed up on Ninety Mile Beach (Northland, New Zealand 

(Fig.1.1) ). Following collection of the seed mussels from Ninety Mile Beach they are 

transferred and held on cultivation ropes in the Marlborough Sounds with a 

biodegradable stocking. The New Zealand GSM industry is acutely aware that it is in 

large part reliant on an unpredictable source of wild-collected spat, a supply which may 

or may not continue into the future. The remaining 20% of spat are caught on fibrous 

ropes suspended near existing mussel farms in the Marlborough Sounds and Golden Bay 

(Fig. 1.1) (Jeffs et al. 1999, Carton et al. 2007). Spat catching can be difficult due to the 

variable nature of larval settlement and because there is also high predation, mortality 

and secondary settlement among newly settled mussels. 

Competition for space and nutrients by fouling organisms such as the blue 

mussel Mytilus galloprovincialis, and algae such as Ulva spp., Undaria pinnat(flda and 

various ascidians also leads to losses in spat number and quality (Hickman 1979, 

Hayden 1984 ). Environmental factors including significant variation in water 

temperature and salinity may also cause variations in the viability and retention of spat 

(Sim-Smith 2006). These and other issues contribute to only about 2% of all mussel spat 
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applied to grow-out ropes remain and grow to a harvestable size (Webb and Heasman 

2006). 

GSM spat costs mussel farmers NZ$0.80 (Kaitaia spat) and NZ$1.00 (locally 

caught and Golden Bay spat) per m of dropper (at a density of 200 per m) (personal 

communication, Aaron Pannell, Marlborough Mussels Ltd., 2007) so poor spat retention 

costs the aquaculture hundreds of thousands of dollars annually (Sim-Smith 2006). The 

mussel farmers must purchase and seed excessive amounts of spat to compensate for 

spat losses, the cost to the farmers also increases when hatchery spat is used to 

compensate for short comings in wild spat catches. The issue of spat retention is 

incredibly complex, and to make solving this issue possible it is important for the 

industry to identify and quantify the factors leading to spat losses. Predation has been 

identified by NIW A and Sealord Group Ltd. as one of the factors leading to decreases in 

spat retention. Therefore the current study into the effects of N. minor on GreensheJrfM 

spat could potentially be very valuable to the mussel aquaculture sector. 

1.3.5 Byssus production 

Mussels attach to the substratum by byssus threads which are extracellular, 

collagenous structures secreted by the mussel foot (Carrington 2002). A byssus consists 

of three different parts: the 'root', which is fixed to the base of the foot and connects the 

rest of the byssus to the byssus retractor muscles; the 'stem', which is an extension of 

the root outward and supports the separate byssal threads; and the 'byssal threads' which 

radiate from the stem and attach to the substrate via adhesive disks or plaques 

(Carrington 2002). 
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Byssus threads are not produced continuously but their production responds, with 

a lag time, to numerous environmental stimuli (Cote 1995). For example, there is 

evidence that factors such as wave action (Young 1985, Dohner 1998, Carrington 2002), 

salinity (Young 1985), temperature (Christophersen and Strand 2003, Carton et al. 

2007), and oxygen concentration (Alfaro 2005) may all cause an increase in the number 

of byssus threads produced, and that this thread number is the primary determinant of 

attachment strength (Bell and Gosline 1996). Increased byssus thread production has 

been attributed to anti-predator defense strategies particularly in relation to predatory 

decapods. By increasing the strength of byssal attachment the chance of being dislodged 

and consumed a crab is reduced. 

1.4 PREDATION 

1.4.1 Crab predation and inducible anti-predator defences 
Anecdotal evidence from individuals in the mussel industry in the Marlborough 

Sounds and at The Cawthron Institute (Nelson) suggests that the presence of N. minor 

found on mussel lines is related to substantial losses of GSM spat. The crabs may also 

affect the amount of fouling on the mussel ropes and mussel attachment strength. 

Because of the commercial nature of aquaculture practices, the effects of a 

predator are only investigated if they are known or are thought to have the potential to 

impact on the viability and economic value of the farmed product. Aquaculture practices 

usually create a monoculture of the farmed species. As a consequence, predation can 

cause direct losses due to mortality or by damaging large quantities of the farmed 'crop'. 

Predation can also indirectly lead to losses by causing the farmed animal to convert 

energy primarily allocated to growth into development of behavioral and physiological 

anti-predator defenses. Many of the bivalves that fall prey to crabs are relatively sessile 
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and hence lack the ability to flee the predator. Alternative methods of predator 

avoidance have evolved in many of these species, including increased shell thickness 

(Reimer and Tedengren 1996, Reimer and Harms-Ringdahl 2001, Cheung et al. 2004), 

variations in shell allometry (Reimer and Tedengren 1996), shell allometry (Cheung et 

al. 2004) and increased strength of attachment (Cote 1995, Leonard et al. 1999, Reimer 

and Harms-Ringdahl 200 l, Cheung 2004 ), all of which increase the handling time by 

crabs and which in turn decreases the 'profitability' of the prey item (Cote 1995). Under 

the energy maximization premise, the dietary value of a prey item is measured by the 

ratio of Ei/Ii, where Ei is the energy units prey item i yields and Ii is the 'involvement 

time' which incorporates recognition and handling of the prey item (Hughes 1979). In 

relation to the Ei/li ratio, inducible defenses decrease the 'profitability' of the prey by 

increasing the value of Ii, while Ei remains constant. A decrease in profitability is 

thought to enhance prey survival. However, some negative effects on growth can be 

incurred by the induction of anti-predator defenses. For example, growth rates and 

internal shell volume are generally inversely related to shell thickness (Hickman 1979, 

Cheung et al. 2004), and the allocation of energy to the production of more byssus, 

thicker adductor muscles and reduction of the gape of valves can negatively impact 

mussel growth rates(Hawkins and Bayne 1985). 

The vulnerability of an individual prey to crab predation at any point is not only 

dependant on the 'profitability' of the individual prey item but also on the density of the 

species population and the amount of protection afforded by its environment (Blundon 

and Kennedy 1982, Cote 1995). For example farmed mussels may attract predators by 

existing in high concentrations of profitable prey species particularly as spat. Conversely 

living in dense aggregations often supplies individual mussels with protection from 
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predators (Cote and Jelnikar 1999, Leonard et al. 1999). Farmed mussels experience 

more rapid growth than wild conspecifics because farms are located to optimize the 

environmental conditions required for mussel growth. As a result the shell thickness of a 

given farmed GSM is often significantly less than in a wild mussel of the same age. Thin 

shells will leave mussels more vulnerable to crab predation; however an increase in 

attachment strength and increased growth rates may counteract the vulnerability incurred 

by having thinner shells. Crab prey preferences are often set to some degree by prey 

size, at some point the prey item will become so large that the handling costs will start to 

outweigh the energetic benefits gained from the prey item. The rapid growth rate of 

farmed mussels could lead them to quickly reach a 'size refuge'; a size at which 

molluscivorous crabs prefer not to, or are not able to consume them (Brousseau et al. 

2001, Cheung et al. 2004). 

N. minor is a common crab that is often encountered on GSM farms in the 

Marlborough Sounds (pers. obs, pers. comm. Kevin Heasman, Cawthron Institute, 

Nelson (2007), pers comm. Dan McCall, Marlborough Mussels Ltd., Nelson (2007) pers 

comm. Aaron Pannell, Marlborough Mussels Ltd., Blenheim (2007), (Clarkson et a!. 

2003)). Although mussels may only constitute a small portion of the diet of these crabs, 

the feeding behaviour, movement and abundance of N. minor may significantly affect 

the survival and growth of individual GSMs on the farm lines. Any loss of individual 

mussels or reduction in mussel growth will have flow on effects to the mussel farmer 

due to changes in the value and economic viability of the mussels. Because the 

interaction between N. minor and farmed GSM has not been investigated previously and 

the potential for economic losses exists it is crucial to understand the relationship 

between N. minor abundance and behavior and GSM responses. 
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1.5 CURRENT STUDY: OUTLINE AND AIMS 
N. minor is a common fouling organism on GSM farms in the Marlborough 

Sounds. Anecdotal evidence from individuals working in the aquaculture sector suggests 

that these crabs can cause significant GSM spat losses and increase mussel attachment 

rates, however no published data are available to substantiate these claims. The focus of 

the present study is on the potential financial losses incurred by GSM farmers due to N. 

minor presence, however ecological implications will also be discussed. The indirect and 

direct effects of N. minor presence on GSM spat will be investigated; particular 

consideration will be given to the following points: 

I) The effect of N. minor presence on the retention and productivity of GSM spat 

in the field. Specific consideration is given to predation pressure and induced anti-

predator defenses, both of which can cause financial losses to mussel farmers; 

2) The effects of N. minor density, size and sex when feeding on GSM. The 

growth rates of GSMs were investigated in the presence of N. minor, and the possibility 

of the existence of size refuges for the prey species are discussed; and 

3) Whether the presence of N. minor can cause significant increases in the 

attachment strength of GSMs and whether N. minor presence has an effect on the 

thickness and number of byssus threads produced by GSM. The economic 

consequences of changes in byssus characteristics and GSM attachment strength are also 

discussed. 

This study incorporates field experimental assessment of predation and fouling 

rates on locally caught GSM spat and Kaitaia spat in Pelorus Sound, Marlborough 

Sounds, New Zealand. Crab size and sex effects were investigated in a laboratory setting 

using wild caught N. minor and hatchery raised GSM. 
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Due to the structure of this document there is some repetition of the core 

ecological theories and context, regarding the direct and indirect effects of the predator­

prey interaction between N. minor and GSM. 
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Chapter 2: Predator induced changes in Greenshell mussel 
byssal characteristics and attachment strength. 

2.1 INTRODUCTION 
An inducible defence can be defined as a phenotypical response to external cues 

that offers some protection from biotic selective agents such as predators (Adler and 

Harvell, 1990; Clark and Harvell, 1992; Freeman, 2007). Examples of induced defences 

in marine systems have been observed for bryozoans (Harvell 1984) barnacles (Lively, 

1986), gastropods (Trussell, 1996), algae (Lampert et al, 1994) and bivalves (Freeman, 

2007; Leonard et al., 1999; Reimer and Tedengren, 1996, Reimer and Harms-Ringdahl, 

2001; Smith and Jennings, 2000). Examples of induced defences include: the production 

of spines, keels, and helmets in marine and freshwater invertebrates, changes to shell 

allometry (Cote 1995), increases in the attachment strength in sessile bivalves (Lin, 

1991 ), and changes in the level of 'defence' chemicals in terrestrial plants (Baldwin 

1988). As outlined above, examples of the individual short -term benefits of inducible are 

numerous, however the relationship between induced defenses and long-term population 

dynamics has largely been overlooked. From an evolutionary perspective the benefits of 

inducible defenses have to be balanced by a fitness cost; if no costs were involved there 

would be no reason for a defense to be induced intermittently rather than be present 

constantly (Harvell 1990). The fitness costs can include reductions in growth, 

reproductive output and timing and reduced survivorship (Harvell 1990). 

The development of inducible defenses in marine bivalves occurs more often in 

small less mobile species that are particularly vulnerable to predation (Bertness and 

Cunningham 1981 ). Many mobile molluscs have also developed predator-specific 
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avoidance and escape mechanisms. For example, the New Zealand scallop (Pecten 

noveazelandiae) uses a swimming response to escape from invertebrate predators (Allen 

1997). The sea scallop Placopecten magellanicus (Gmelin) also uses swimming as an 

effective escape mechanism in response to sea stars, however this swimming response 

does not occur when the sea scallops are exposed to predatory crabs (Wong and 

Barbeau, 2004 ). 

Most bivalve molluscs are sessile, living attached to a solid substrate or semi­

buried in sandy substrata, and hence lack the ability to physically evade predation (Cote 

1995). Alternative methods of protection against predators have developed including: 

changes to shell allometry, increased shell thickness, living in dense aggregations, and 

gape reduction (Elner and Hughes 1978, Blundon and Kennedy 1982, Smallegange and 

van der Meer 2003, Cheung et al. 2004). These traits reduce predation mortality by 

increasing predator handling time which in turn reduces prey profitability and the energy 

gained from the prey item (Cote 1995). 

Sessile bivalves often also attach more securely to, or bury more deeply into, the 

substrate when predators are present (Blundon and Kennedy, 1982, Cote, 1995, Lin, 

1991 ). Like many other mussel species, the GreensheJJTM mussel, Perna canaliculus 

(hereafter GSM) uses byssus threads to attach to substrata (Carrington, 2002, Jeffs et al., 

1999). Byssus threads are not produced continuously but are produced, with a lag time, 

in response to various environmental stimuli (Cote 1995) including: wave action, 

(Young 1985, Dolmer 1998, Carrington 2002) changes in salinity (Young 1985)), 

temperature (Christophersen and Strand 2003, Carton et al. 2007) oxygen concentration 

(Alfaro 2005) and structural instability (Alfaro 2005). Bell and Gosline (1996) 

established that byssus thread number is the primary determinant of attachment strength. 
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B yssus thread number and diameter increase in the presence of predatory crabs 

and crab effluent (Cote 1995, Reimer and Tedengren 1996, Leonard et aL 1999). Crabs 

will generally need to manipulate a prey item extensively before consumption, and not 

being able to remove a prey item from the substrate will greatly reduce its attractiveness 

to crabs. Published data regarding the plasticity of byssus thread production support the 

hypothesis that mussels will produce more and thicker byssus threads in the presence of 

invertebrate predators, and that this is a valuable anti-predator response. 

In this study the focal bivalve species, the endemic New Zealand GSM, is one of 

the most extensively farmed marine species in New Zealand waters, and the potential 

predator, the camouflage crab Notomithrax minor, commonly occurs on GreenshellTM 

mussel farms in the Marlborough Sounds. This study will investigate GSM 

byssogenesis, attachment strength and changes to byssus thickness in the presence of the 

omnivorous crab Notomithrax minor, in the Marlborough Sounds, New Zealand. 

Anecdotal evidence from individuals working in the aquaculture sector suggest that N. 

minor could increase mussel attachment rates, however no published data are available 

to substantiate these claims. Increased mussel attachment strength could contribute to 

understanding and reducing one of the main problems faced by the industry, extremely 

low spat retention. Only about 2% of all mussel spat applied to grow-out ropes remain 

and grow to a harvestable size (Webb and Heasman 2006). Increased byssal attachment 

rates might increase the retention rates induce of newly seeded GSM spat; any factor 

that could lead to even a slight increase in spat retention levels could save the mussel 

industry hundreds of thousands of dollars annually. 
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2.2 METHODS 

2.2.1 Pelorus Sound 
Pelorus Sound is one of the longest in the Marlborough Sounds, stretching 35km 

from the Pelorus River at Havelock in the south ('inner' Sound), to the Cook Strait in the 

north ('outer' Sound). Pelorus Sound has several major arms including Tawhitinui 

Reach and Kenepuru Sound. 

Hickman et al. (1991) sampled 6 sites in Pelorus Sound for salinity, total 

particulates, Chi a and suspensoids on a bimonthly basis over two years ( 1983-1985). 

Salinity varied from 29-34 %o across the Sound with an increase in the inner and middle 

regions, and remaining relatively high and steady in the outer Sound. Water 

temperatures followed a similar trend with the outer Sounds being more stable; the water 

temperature in the outer Sounds was higher in the winter and lower in the summer with 

the inner sounds following an inverse trend (Fig 2.1 ). Chi a varied between sites in the 

Sound, however seasonal patterns within and between sites were not evident. Values 

varied between 0.3-3.2mg.m·-' with the highest values constrained to the inner Sound due 

to influx from the Pelorus River. 

Table 2.1: Means and ranges (in brackets) of suspended solids. Chi a and Particulate Carbon measured in 
Pelorus Sound. Jan. 19114-Apr. 19115. Current study sites Laverique Bay and Crail Bay fall into the 'Middle' 
region. (Achnted from (Gibbs ct al. 1992) 

REGION SUSPENDED SOLIDS (MG. M 3
) CHLORPHYLL A PARTICULATE CARBON 

(MG. M
3

) (MG. M 3
) 

__ ,_ --- -· --

INNER 1139 (372-3630) 1.81 (0.6-6.0) 327 (46-1472) 

MIDDLE 1002 (196-6320) 1.39 (0.16-4.4) 247 (67-600) 

OUTER 778 (129·2310) 1.31 (0.13-4.7) 213 (43-529) 
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Figure 2.1: Mean readings of salinity, water temperature, Chi a and suspensoids for an inner and an outer 
Sound (relative to the ocean) site in the Pelorus Sound, New Zealand. Modified from (Hickman ct al. 
l99la) 

(Gibbs et al. 1992) examined particulate and Chi a flux between sites in Pelorus 

Sound. Significant levels of particulate and Chl a variability were apparent (Table 2.1 ). 

These were attributed to the complex hydrodynamic regime that includes three major 

nutrient sources: sediment remineralisation, transfer from the ocean and river inflows. 

2.2.2 Laverique Bay and Crail Bay 

During the two study periods, winter 2006 (June-September) and summer 

2006/2007 (November-January), caging experiments were carried out on GSM spat 

farms in Pelorus Sound, the Marlborough Sounds, New Zealand. The farms were located 

at two discrete sites within Pelorus Sound (Laverique Bay and Crail Bay). The sites are 

common spat catching and grow-out sites, selected for their water quality, phytoplankton 
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concentrations and relatively low density of predatory fish. Both sites are located in 

Beatrix Bay, in eastern Pelorus Sound. 

Both study sites are situated in a large eastern branch of the Pelorus Sound. The 

branch contains three major bays: Beatrix, Crail and Clova Bay, all of which support a 

large number of marine farms (Fig. 2.2) Site I (Laverique Bay 41°01 'S, 174°02'E) is in 

the south eastern area of Beatrix bay and site 2 is on the north western shore of Crail 

Bay (4l 0 05'393S, 173°58'205E) (Fig. 2.2). 

Table 2.2: Site specific temperature, salinity and chlorophyll a measurements for Laverique Bay and Crail 
Bay. The data is from 2005-2006. for the summer and winter periods during which current testing took 
place. 

WEEK TEMPERATURE CC} SALINITY (PPM) CHL A (IJG. LITRE-
1

) 

LAVERIOUE CRAIL BAY LAVERIQUE CRAIL BAY LAVERIQUE CRAIL BAY 

BAY BAY BAY 
DEC 04-DEC 1 0 16 17.5 33.5 33.3 (l.l-1.2 0.1-1.3 

DEC 18-DEC 25 17.5 18 34 34 O.l-0.3 O.l-!.5 

JUN 12-JUN 18 12.5 12.7 33.2 33.8 0.8-1.2 0.9-1.2 

JUN 26-JUL 02 11.7 12.0 33.6 33.9 1.0-1.7 0.8-1.2 

Data adapted from NIW A 'Marlborough Sounds Environmental Monitoring Programme' (2005-2006). 

The Crail Bay study site is situated in relatively deep water (approx 30m), 

whereas the Laverique Bay study site is around 25m deep. Both sites are moderately 

exposed to wind and water movement, they also have similar salinity, temperature and 

Chi a characteristics (Table 2.2). 

2.2.3 Experimental design 

Cages were placed on droppers at both sites to retain experimental crabs within a 

specific area of spat line. The cages used were commercial shellfish grow-out apparatus 

called Aquapurses. The specific Aquapurses used were 0.8 m long with 8 mm mesh; a 

20x20 mm hole was cut in the top and bottom of each cage to allow the cage to be 
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attached around the mussel line. Aquapurses are manufactured by Tooltech Pty Ltd 

(Australia) and are used commercially in oyster culture in NZ. 

Long-lines in the interior of the farms were selected to minimize the variation of 

exposure among experimental droppers. On the target long-line, top and bottom 

locations were avoided: cages were placed at 4 m depth on randomly selected 8 m long 

single droppers, one cage per dropper. At Laverique Bay, the farm is set-up using single 

droppers which consist of 8 m lengths of commercial spat catching rope, commonly 

known as Christmas tree rope. Cages were placed on the northwest side of the backbone 

at 4m depth, but on one dropper the cage was placed shallower (3m), because of scuffing 

during earlier movement of the spat lines which had removed most of the mussels at the 

desired depth. At Crail Bay, continuous 12 m long droppers were used and single cages 

were placed on droppers on the east side of the backbone (Fig. 2.3). 

The droppers at Laverique Bay were placed in the water on the 8th of March 

2006 to allow mussel spat to settle naturally on the lines. The field trial commenced on 

the 25th of July 2006 and by this time the spat had an average total shell length (TSL 

measured across the anterior dorsal-posterior ventral axis) of 16.8 mm ± 0.79 (95% 

C.I.). GSM density was considerably higher in the uppermost 1 m of the droppers. Upon 

visual inspection at commencement of the field trial there was no substantial 'over­

settlement' of M. galloprovincialis, although numerous other species were also present 

on the lines, including various scallop species, bryozoans, algae and a small number of 

decorator crabs between I 0-20mm total carapace width (TCW measured at the widest 

point of carapace). 
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Cage 

Figure 2.2: schematic illustration of the construction of a GSM mussel farm in the Marlborough Sounds, 
outlining terms in the methodology (study site, backbone, dropper and cage) and the positioning of the 
experimental cages. 

The GSMs at Crail Bay were sourced from Kaitaia spat collected at Ninety Mile 

Beach and seeded mechanically onto the spat ropes 3 wks before commencement of the 

field trial (23rd November 2006). Due to the spat being seeded onto the line there was 

minimal over-settlement of other species; M. galloprovincialis were present in very low 

numbers. At the start of the field trial at Crail Bay the average size of the GSM spat was 

4.86 mm ± 0.56 (95% C.I.). Some cotton stocking, the material used to encase newly 

seeded spat until the mussels attach to the spat rope, was still visible but degraded to the 

extent that the mussels were readily accessible to predators. 
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MARLBOROUG SOUNDS 
MARINE FARMS 

Legend 
Existing mussel farm II!! 

Study s1te D 

Figure 2.3: The location of the study sites. Boxes indicate site locations within Pelorus Sound. Crail Bay 
to the south (2) and Lavcrique Bay to the north (I). Locations of existing mussel farms are from 
Marlborough District Council data (2003). 

The experimental crabs were collected from existing mussel farms in the 

Marlborough Sounds l 0 days before commencement of the field trials and held in large 

(1.3 m width x 1.3 m height x 0.75m depth) black plastic tanks in the laboratory at the 

Cawthron Aquaculture Facility, Nelson. Crabs were fed to excess 24 hr after collection 

with fresh GSM flesh. 24 hr before onset of the field trial the crabs were sorted into the 
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relevant treatments (detailed below) and weighed to 0.1 g, to allow estimation of crab 

growth over the experimental period. Crabs were transported to each site in a 90 L bin 

filled with fresh seawater with two battery powered air pumps oxygenating the water. 

The caged section of mussel rope was checked for any local crabs, which were removed 

before the experimental crabs were introduced. 

The effects of crab density and size on GSM byssus thickness, byssus number 

and attachment strength, in the presence of different crab treatments were tested. 

Previous visual assessments and anecdotal evidence from the GSM industry of N. minor 

density on existing GSM farms were used to define crab density and size treatments. 

Treatments included: high (H) (12 crabs) and average density (L) (3 crabs), of both large 

(La) and medium sized crabs (M). Large males had TCW >20mm, large females were 

> 15mm, medium males were 15-20mm, and medium females were I 0- I 5mm TCW. Sex 

ratio in the cages was haphazardly selected. A zero density caged treatment (CC) and an 

un-caged control (UC) were also included in the trails to assess caging effects. Only 

medium and large crabs were used because of the cryptic nature of these crabs and the 

logistic difficulty involved with the collection of small individuals. At Laverique Bay, 3 

replicates of each treatment were retrieved after 6 wk and again after 11 wk, At Crail 

Bay, 8 replicates of each treatment were retrieved after 8 wk (Table 3.2). The differences 

in methodology for the two study sites was due to the fact commercial GSM spat were 

used, thus experimental design was limited by the quantity and type of spat made 

available by commercial GSM farmers. Optimally the entire Laverique Bay trial would 

have been run for I 1 weeks due to it being run during the winter. Predation rates and 

GSM growth rates are generally lower during the winter months. However the GSM spat 

at Laverique Bay needed to be harvested for on growing after 6 weeks, only half of the 
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spat was made available for longer term experimentation (11 wk). The Crail Bay trial 

was run for a shorter period due to the fact it was run in the summer months and no 

limitations were placed on experimental design by the GSM farmers at this study site. 

T bl 3 2 D ·1 d r f a e : etm e out me o cxpenmenta I d . es1gn at -"avenque B ay an dC 'IB rat ay 

Treatment Crab Size i Crail Bay (Winter) Laverique Bay (Summer) 1 

i __ -··· -1 I Put out Retrieved 
1 

Put out Retrieved I 

i 
11/07/06 22/08/06 (6 wk) I j 

i 23/11/06 18/01/07 (8 wk) I Medium (M) 
11/07/06 22/10/06 (11wk) i I 

1 11/07/06 22/08/06 (6 wk) I I 
High (H) I 

I 23/11/06 18/01/07 (8 wk) 
I 

I 

Large (La) 11/07/06 22/1 0/06 ( 11 wk) 
i 

L I 

I I 

I 11/07/06 22/08/06 (6 wk) ! I I 23111to6 18/01/07 (8 wk) 
) I Medium(M) 11/07/06 22/10/06 (11wk) : 

11/07/06 22/08/06 (6 wk) I I 
I I Average (A) : 23/11/06 18/01/07 (8 wk) 

I 
,l 

Large(La) 11/07/06 22/10/06 ( 11 wk) I I 

I 11/07/06 22/08/06 (6 wk) 
I 

i I I 23/11/06 
Zero I Caged (CC) i 

18/01/07 (8 wk) i 
I 11/07/06 22/10/06 ( 11 wk) i 

I 

11/07/06 22/08/06 (6 wk) ! 23/11/06 18/01/07 (8 wk) I 
Uncaged Control (UC) 11/07/06 22/10/06 ( 11 wk) I I 

2.2.4 Data collection 

At each retrieval date (Table 3.2) the spat lines were lifted and the 0.8 m section 

inside the cage was removed. On uncaged control lines a 0.8 m section of line was cut at 

4 m depth. The top and bottom 10 em of the caged and uncaged samples were excluded 

due to clumping of mussels against the ends of the cages. At a randomly selected point 

on the caged (and un-caged control) section of line 20 mussels were removed with 

byssus threads intact. Once removed the mussels were placed in l 00 ml plastic 

containers containing freshwater, which causes GSM to seal their valves and hence 

production of additional byssus threads was avoided during transport. 

The byssus was dissected away from the foot of the mussel and stored in 

freshwater until byssus measurements and counts could take place. The byssus threads 
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were counted and measured using a compound microscope with an ocular micrometer. 

Two measurements and one count were performed for each byssus sample: I) 'stem 

diameter' across the base of the byssus root, 2) ' byssus diameter' three byssus threads 

were measured at the base, the average of the three measurements was recorded . 3) 

'byssus number' the total number of byssus threads were counted (Fig. 3.3). 

1 

Figure 2.4: An example of a Greenshell mussel byssus thread magnified 40x, indicating the location of 
measurements recorded for the analyses. I : 'stem' diameter, 2: ' byssus' diameter. 

Attachment strength was measured for I 0 mussels per dropper for all treatments 

for the second pick up date at Laverique Bay, and for all the droppers at the Crail Bay 

site. A spring loaded t-bar scale with a small hook attachment was used to assess 

attachment strength. The hook was placed between byssus threads at the base of the 

musse l, the mussel rope was held tightly and the scale drawn away from the mussel rope 

until the mussel detached. The weight in grams on the scale was read off and recorded at 

the time of detachment of the mussel from the rope. 
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2.2.5 Statistical analysis 
The statistical and data packages SPSS 14.0 for Windows (SPSS Incorporated, 

Chicago, Illinois) and SigmaPlot 9.01 for Windows (SyStat Software, Inc.) were used 

for graphing and analysis of the data. 

The total and average byssus thread number, average 'stem' diameter (mm) and 

'byssus' diameter (mm) were calculated for each sample. The averages for the three 

byssus variables (byssus number, 'stem' diameter and 'byssus' diameter) were also 

calculated for high and low crab density and for the two crab size classes (large and 

medium) at Laverique Bay and Crail Bay. 

Cochran's Q test was used to assess the equality of variances across the crab 

density, size and control treatments, and Normal Q-Q plots were constructed to test the 

normality of the data. Any outliers were checked against the raw data and if they were 

genuine outliers, the data points were deleted. Byssus thread number data were 

transformed (Log10) to meet the requirements of Analysis of Variance (ANOVA), 

'byssus' and 'stem' diameter data met the assumptions of ANOVA and were not 

transformed. 

The data for stem and byssus diameter, byssus thread number and attachment 

strength were standardized for days by dividing the values by the number of days the 

trial ran for, to make comparisons of data from experiments that ran for different lengths 

of time viable. After standardization the data were categorized into two data sets: 

Laverique Bay and Crail Bay. The standardized data were subjected to ANOV A tests to 

test the null hypothesis (H0 ) that crab (N. minor) density and size will have no effect on 

the number and diameter of the byssus threads produced by GSM spat. Due to the fact 

the crabs consumed all the mussels in the high crab density treatments at Crail Bay the 
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model was not totally balanced, hence two one-way ANOV A models were run at this 

site. One for crab density and one for crab size. At Laverique bay there were mussels 

present in all replicates so a 2-way ANOV A model was used at this site. In Both the 

one-way and 2-way ANOV A model crab density and crab size were considered to be 

fixed factors. An ANOV A test was also run to assess the differences in byssus thread 

number and thickness between the two study sites, in this model the study sites were 

random factors. ANOV A is a robust test that is suitable to use when analysing ecological 

data. Any results representing significant differences at a= 0.05 were subjected to post 

hoc Tukey tests (pair wise comparisons) to establish the locations of the significant 

differences. Due to the prioritization of the data collection, mussels were counted to 

assess predation, then 20 were removed as outlined above to assess byssus 

characteristics. In many of the 'crab present' treatments there were less than the required 

20 mussels left to test attachment strength, leaving the dataset unbalanced at both study 

sites. Two one-way ANOVA tests were run on the attachment strength data due to the 

lack of data in some treatments; hence the interaction between crab density and crab size 

was not assessed. Separate ANOV A analyses were chosen over MANOV A tests because 

the response variables were significantly correlated (Pearson and Kendall's tau-b tests in 

SPSS). 

A multiple linear regression model analysis was also run on the standardized data 

in SPSS to asses the collective and individual extent to which the three byssus test 

variables ('byssus' thickness, 'stem' thickness and byssus number) affect the attachment 

strength of GSMs at Crail Bay and Laverique bay. Normal Q-Q plots were used to 

assess the normality of the data, and an intercept of 0 was included to account for other 

environmental factors such as temperature and water tlow that weren't included in the 
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analysis and could also be affecting byssus characteristics. Attachment strength data, 

byssus number, byssus thread and stem thickness were all Log 10 transformed to increase 

the normality of the data for both Crail Bay and Laverique Bay. In the linear regression 

model (y (attachment strength)= flo + fJ 1(stem thickness) + fJ2(byssus thickness) + 

fJ3(byssus number) + d) attachment strength was the dependant variable and byssus 

number, byssus width and stem width were independent variables. Colinearity was 

assessed prior to analysis, diagnostic checks of the model did not reveal any outliers and 

boxplots of the residuals were relatively symmetrical. Stepwise selection was used to 

elect the variables to include in the multiple regression model, the criteria for inclusion 

of a variable in the analysis was that the probability of F<=0.05 and the probability ofF 

to remove the variable >=0.1 00. The most statistically significant relationship between 

the dependant variable (attachment strength) and the independent variables (byssus 

number, byssus width and stem width) was identified. only the most significant linear 

regression was displayed in the results section. The original on-standardized data are 

presented in the graphs. 

2.3 RESULTS 
This section will give an overview of the results used to test the null hypothesis 

that decorator crabs (N. minor) will in no way affect the thickness and number of byssus 

threads produced by GSM spat in the Marlborough Sounds. This section is organized 

into crab density and crab size, these are the two factors used to evaluate the extent to 

which N. minor affects byssal stem thickness, byssus thickness and number. The final 

subsection will display the results of regression analyses run to investigate which of the 

38 



Chapter 2 - Predator induced changes in Greenshell mussel byssus 

aforementioned byssus characteristics could be the primary determinant of attachment 

strength. 

2.3.1 Crab density effects. 

Byssus thread thickness and stem thickness, byssus number and attachment 

strength of GSM spat showed a varied response to crab densities but also at both of the 

study sites; Crail Bay (CB) and Laverique Bay (LB). Byssus thickness was not 

significantly affected by variation in crab density at either study site (Table 2.3). Crab 

density also had no significant effect on the attachment strength of GSM spat at either 

study site (Table 2.3) 

Increased crab density did stimulate GSM spat to produce thicker byssal stems at 

both sites (Fig 2.4, Table 2.3). Stem thickness peaked at high crab densities (12 crabs). 

ANOV A tests specify that the differences in stem thickness related to crab density were 

statistically significant at the 95% level at Crail Bay, but not for the mussel spat at 

Laverique Bay (Table 2.3). 

A post hoc Tukey test of 'stem' thickness specified that at Crail Bay the 

differences across the four crab density treatments were significant except for the un-

caged and caged control treatments (p=0.755). The remaining pair wise comparisons all 

had a p-value of <0.001 (Fig 2.5). 

Byssus thread number peaked in the high crab density treatments at both sites 

(Fig. 2.5). Post hoc Tukey test results supported the trends in byssus thread number seen 

in figure 2.5b; at Crail Bay there were statistically significant differences between all 

treatments (p=<O.OO 1) except between the average and high crab densities (p= 0.862). 

At Laverique Bay the differences in byssus thread number were not significantly 
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different between the un-caged and caged control (p=0.603), or between the un-caged 

control and the average crab density treatments (p=0.759). The differences in byssus 

thread number between the remaining treatments were all significant at the 95% level. 

However the overall byssus thread number was higher for all treatments at Crail Bay 

than at Laverique Bay (Fig 2.5) 
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Figure 2.5: Effects of potential predator (N. minor) density on Greenshell mussel byssal stem thickness (mean ± 95% 
C.!.) and byssus number at the two study sites. Crail Bay and Laverique Bay. Stem thickness and Byssus number were 
standardized to days by dividing the total number by the number of days the experiment ran for (42 and 77 days at 
Laverique Bay, 56 days for Crail bay). At Crail bay the caged and un-caged controls had significantly thinner byssal 
stems and lower byssus numbers than the average and high crab density treatments. The differences in stem thickness and 
byssus number were not statistically significant at Laverique bay (ANOV A). Letters represent statistically significant post 
hoc groupings calculated using Tukey tests and ANOV A analysis, only Tukey test results for significant AN OVA results 
are displayed. Crab density treatments are as follows: UC- un-caged control, CC- caged control, Average- 3 crabs per 
cage, High- 12 crabs per cage. 
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Crab size effects 

Crab size had similar effects on stem thickness, byssus thickness and byssus 

number as crab density; the only major point of difference was in attachment strength. 

Crab size did not have a statistically significant effect on byssus thickness at 

either Crail Bay (Table 2.3) or Laverique Bay. Stem thickness did change with crab size; 

mussels in the large crab treatments have the thickest byssal stems at both study sites ( 

(Fig. 2.6). At both sites these differences in stem thickness were not statistically 

significant at the 95% level (Table 2.3 ). 

Table 2.3: ANOV A table for byssus characteristics (thickness and number) and attachment strength for 
both study sites Laverique Bay (LB) and Crail Bay (CB). Crab density and Crab size were considered 
fixed factors in the analysis and byssus number and attachment strength were Log 111 transformed to meet 
h . f h I . s· T I . d. i. b ld t e assumptiOns o t c analysis. , 1gm 1cant resu ts are m 1catec m () 

FACTOR DF. MS F P-VALUE 

LB CB LB CB LB CB LB CB 

BYSSUS 
1 1 

3.38E- 3.64E- 0.855 <0.001 0.356 0.990 
THICKNESS 005 009 

STEM 1 1 0.016 0.006 2.982 13.738 0.760 <0.001 
THICKNESS 

CRAB DENSITY 

BYSSUS 
1 1 0.185 0.091 7.434 5.578 0.556 0.019 

NUMBER 

ATIACHMENT 
1 1 0.035 0.023 0.420 0.319 0.518 0.573 

STRENGTH 
--

BYSSUS 1 1 
5.20E- 2.09E- 1.316 0.986 0.252 0.322 THICKNESS 005 005 

STEM 1 1 0.004 
2.70E-

0.723 0.060 0.396 0.807 
THICKNESS 005 

CRAB SIZE 

BYSSUS 1 1 0.359 0.101 14.422 6.204 <0.001 0.014 
NUMBER 

ATIACHMENT 1 1 0.443 0.293 5.293 3.991 0.023 0.048 
STRENGTH 

BYSSUS 
1 3.26E- 0.825 0.364 -

THICKNESS - 005 -

CRAB DENSITY* STEM 1 2.13E-
<0.001 0.984 CRAB SIZE THICKNESS - 006 - - -

BYSSUS 1 0.125 5.019 0.026 -NUMBER -
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Byssus number and attachment strength were the only dependant 

variables that were significantly affected by crab size; mussels in the large and medium 

crab treatments had more byssus threads per mussel than both the control treatments at 

Crail Bay. And at Laverique bay the large sized crab treatments had more byssus threads 

per mussel than any of the other treatments. (Fig 2.5). Tukey tests supported the patterns 

observed in the graphs and ANOV A tests; at Crail Bay the two crab treatments (Medium 

and Large) had significantly higher numbers of byssus threads than the control 

treatments. At Laverique Bay the mussels in the large crab treatments had significantly 

higher numbers of byssus threads than all the other treatments (Fig. 2.6B, Table 2.3). 

Attachment strength also varied significantly across crab size treatments at 

both Crail Bay and Laverique bay (Fig 2.5, Table 2.3). For both sites mussels in the 

control treatments (UC and CC) were less tightly attached than mussels in the two crab 

treatments (medium and large). Tukey tests also indicated that there were no significant 

differences in attachment strength between the two control treatments at Crail Bay 

(p=0.129) or Laverique Bay (p= 0.363) or between the two crab treatments for (Crail 

Bay p=0.221, Laverique Bay p=0.125) (Fig 2.6) 
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Figure 2.6: Effects of potential predator (N.minor) size on Greenshell mussel stem thickness. byssus number and 
attachment strength (mean ± 95% C.!.) at the two study sites. Crail bay and Laverique bay. Stem thickness. byssus 
number and attachment strength were standardized to days by dividing the total number by the number of days the 
experiment ran for (42 and 77 days at Laverique Bay, 56 days for Crail bay). At Crail bay the caged and un-caged 
controls had significantly thinner byssal stems and less byssus threads than the average and high crab density 
treatments. At both study sites mussels in the crab treatments (medium and large) had significantly higher attachment 
strengths than control mussels (CC and UC). Letters represent post hoc groupings calculated using Tukey tests, only 
Tukey test results for significant ANOYA results are displayed. Crab size treatments arc as follows: UC- un-cagcd 
control. CC- caged control. Medium and Large crabs. 
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2.3.2 Attachment strength regressions 
The explanatory effect of stem and byssus thickness individually in simple 

regression models was low as R2 was <0.394. Hence, stepwise multiple regression models 

were used to test the correlation between the byssal parameters (stem thickness, byssus 

thickness and byssus number) and the attachment strength of individual mussels at Crail 

bay and Laverique bay. Several multiple regression models with high statistical 

significance were developed (Table 2.4). The regression slopes of Greenshell mussel 

attachment strength against the measured byssus characteristics also varied significantly 

(Fig 2.7), with byssus thickness at Crail Bay having a significantly higher regression slope 

than any of the other byssus characteristics. The regression slopes for stem thickness and 

byssus number were very similar for both sites (Fig 2.7). 
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Figure 2.7: Slopes of regression of Greenshell mussel attachment strength against the three byssus 
characteristics included in the multiple linear regression analysis (± I SE) for each study site. 
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Between the study sites there was a distinct difference in the number of byssus 

threads needed to achieve similar attachment strengths (Fig 2.8 a,b). For the same number 

of byssus threads the resulting attachment strength at Laverique Bay is at least twice as 

high as for the corresponding number of byssus threads at Crail Bay. At both study sites 

the spread of the data was large (Fig 2.8 a,b ); at Laverique Bay byssus number was the 

only dependant variable included in the model however the correlation between byssus 

number and attachment strength was relatively low (R2
: 0. I 23, p=>O.OO I). 

Table 2.4: Multiple linear regression model summary describing the effects of the byssus charatcteristics byssus 
thickness, stem thickness and byssus number on the dependant variable mussel attachment strength. Byssus number, 
byssus thickness, stem thickness and attachment strength were Log 10 transformed to meet the assumptions 

f h I . s· 'f I . d' d. b ld o t e analysts. , tgm tcant resu ts are 10 tcate 10 0 

Site Model Coefficients Std. Error p-value 
Crail Bay 1 Constant -0.387 0.299 0.197 

Byssus number 
1.640 0.174 <0.0001 

(Log10) 
Crail Bay 2 Constant -0.758 0.314 0.017 

Byssus number 
1.686 0.170 <0.0001 

(Log10) 
Byssus thickness 

7.924 2.568 0.002 
(Log1 0) 

Laverique Ba_y 1 Constant -0.200 0.588 0.734 
Byssus number 

1.916 0.455 <0.0001 
(Log10) 

At Crail Bay two models describe the observed increase in attachment strength, 

byssus number alone describes 39.4% (p=>O.OOI) of the variation in attachment strength; 

however when byssus thickness is included in the model the descriptive value increases to 

43.4% (p=>O.OO l) 

45 



Chapter 2- Predator induced changes in Greenshell mussel byssus 

Crail Bay 

2000 

1800 0 0 

1600 0 0 

0 0 

:§ 1400 0 

-5 lr 1200 0 0 0 0 0 

~ 
iii 

1000 0 CXJI) c: 
~ 00 

.s:; 800 0 000 0 0 
0 
<U :::: 0 0 00 0 0 

~ 600 0 OO(]l) 0 0 0 0 

(]l)Q 0 (]l) O(]l) 0 

400 0 

0 0 0 0 0 0 0 

200 (]l)(]l)<JI!!)CXJDO 0 
y= ll.l58x-176.865 
R2= 0.365 

(]l) 0 0 
00 000 0 0 

10 20 30 40 50 60 70 80 90 100 110 120 

Byssus number 

Laverique Bay 

2000 

1800 00 

1600 0 0 

0 0 

§ 1400 0 

5 
lr 1200 (]l)O 

~ 
U) 

1000 00 0 c: 
Ql O(]l) 0 0 
E 

800 (]l)O 0 .s:; 
0 

"' 00 000 :::: 
~ 600 000 

0 000 (]l)Q 

400 0 0 

(]l)Q (]l) y=26.263x -84.52! 

200 <lll!lOO R2=0.!66 

0<:111mX1111111CIIll!!> 
O<lll!lO(]l)(]l)OO 
(]l) Cllli!!>OO 

10 20 30 40 50 60 70 80 90 100 110 120 

Byssus number 

Figure 2.8: the effects of Greenshell1 M mussel byssus number on the attachment strength of individual mussels at two 
study sites. Attachment strength is measured in grams of pressure required to dislodge mussels from the mussel spat 
ropes. R2 values and equations shown in figure. 
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2.4 DISCUSSION 
Abiotic factors such as wave action, temperature, salinity, seasonality and tidal 

regime have been widely documented to affect byssus production and byssus 

characteristics (Young 1985; Eyster and Pechenik 1987; Cote 1995; Hunt and Sheibling 

200 I; O'Connor et a!. 2006). However despite the considerable commercial value of 

farmed GSMs in New Zealand, this study represents one of the first times a biotic factor, 

i.e. crab predation, has been directly implicated in the byssus production for cultivated 

GSM spat. 

When N. minor were present on experimental mussel farm droppers in the 

Marlborough Sounds the GSM spat produced significantly more byssus threads. At Crail 

Bay, the summer trial site using small recently seeded spat, the thickness of the byssal 

root or stem also increased significantly in the presence of the decorator crabs (Fig.2.5 

and 2.6). Bell and Gosline ( 1996) found that for three Mytilus species increased numbers 

of byssus threads directly resulted in increased attachment strength. 

In the current study the changes in byssus production, and hence attachment 

strength of GSM spat, might be as a response to water-borne chemical cues emitted by 

the crabs. The release of chemicals such as pheromones and amino acids has been 

documented for various species of crabs (Ryan, 1966); the chemicals make it possible 

for potential prey species to detect the predators quickly (Cote, 1995). Many escape and 

predator avoidance behaviours have been linked to the chemical cues emitted by 

predators and chemicals secreted by conspecifics attacked by predators (Cote 1995, 

Reimer and Harms-Ringdahl 2001 ). For example Blue mussels (M. edulis) produce 

more, shorter and thicker byssus threads when held in water containing predatory crab 

effluent (Cote, 1995). By increasing byssus number when predators are present the 
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mussels may be increasing their chances of survival. Attachment strength is inversely 

related to prey profitability and attractiveness; decapod predators need to remove a prey 

item from the substrate to be able to manipulate and consume it. Lin ( 1991) 

demonstrated this inverse relationship for ribbed mussels ( Geukensia demissa) and the 

predatory blue crab (Callinectes sapidus); mussels tethered strongly to the substrate with 

nylon threads had a decreased risk of predation. 

Chemical cues may not be the only explanation for the observed byssus changes 

in the experimental GSM spat.. Mussels produce significantly more byssus threads, and 

were consequently more thoroughly attached to the substrate, when they are agitated 

(Young 1985). Agitation has also been shown to affect byssus production in GSM spat; 

Alfaro (2006) demonstrated an increase in byssus number and attachment rate in 

juvenile GSM spat when air bubbles were added to experimental tanks, the air bubbles 

created mechanical stimuli that induced the observed byssal changes. It is reasonable to 

assume that the movement of crabs on the lines could cause enough agitation to have a 

similar effect on byssogenesis in GSM spat. 

A number of previous studies have indicated that in Mytilus species attachment 

strength increases with increasing mussel size (Harger 1970, Witman and Gosline 1997 

and Hunt and Scheib ling 2001 ), However the results of the current study indicate that 

there was an inverse relationship between GSM sapt size and byssus number; the small 

mussels at Crail Bay produced more and thicker byssus threads when exposed to N. 

minor than the larger spat at Laverique Bay. The changes in byssus number and diameter 

were less pronounced and more irregular At Laverique bay. The Decorator crabs showed 

a preference for small mussels (see chapter 3, Fig 3.5) so small mussels could be more 

vulnerable to decorator crab predation, as mussel size increases the handling time 
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increases and hence prey profitability decreases. For larger mussels the risk of predation 

by N. minor is lower, and the energetic costs of producing more and thicker byssus 

threads most likely outweighs the risk of predation. Byssus production in M. edulis 

depletes up to 44% of the carbon and 21% of the nitrogen budget allocated to summer 

growth (Hawkins, 1985). In the ribbed mussel (Aulacomya ater) byssus production 

accounts for around 15% of the total body energy and there is a direct trade-off between 

byssus production and growth (Griffiths and King 1979). The energetic costs in P. 

canaliculus have not been documented but it is realistic to assume some trade-off will be 

made to produce more and thicker byssus threads. 

Although the two study sites had similar physical characteristics, the seasonality 

of the two trials could also be contributing to the observed differences in byssus 

characteristics and attachment strength. The average temperature at Crail Bay during the 

experiment would have been approximately 4°C lower than during the Laverique Bay 

trial (table 2.2). Byssus production in M. edulis has been shown to increase when 

temperature increases (Allen et al. 1976, Young 1985), this increase has been attributed 

to changes in the mussels' metabolic rate and increased mobility of the mussels at higher 

temperatures (Allen et al. 1976). The GSMs in this study showed an inverse relationship 

between temperature and byssus production; byssus number was higher at the winter 

study site. Byssus threads are produced in response to a number of contributing factors 

(Young 1985), in this study the effects of agitation due to increased wind and higher 

frequency of storms in the winter months may have over-ridden the influence of 

temperature on byssus production. 

Previous studies regarding predator induced byssogenisis and changes in byssus 

thickness were performed under controlled conditions in laboratory settings. This study 
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was entirely field based which can have positive and negative consequences when trying 

to draw conclusions based on the results obtained. Although it may be more appropriate 

to draw conclusions regarding the focal ecosystem from results of trials conducted 

within that particular ecosystem; the environmental variables discussed above need to be 

taken into account when drawing conclusions regarding the extent to which N. minor 

presence affects byssus production. Randomization of treatments across the section of 

backbone selected should have mediated some of these potential environmental biases. 

This study demonstrated that the presence of a potential predator can influence 

byssus production in cultivated GSM spat. This could have economic implications for 

the mussel industry by increasing spat retention which is regularly less than 5%. Spat 

losses can cost commercial GSM farmers hundreds of thousands of dollars annually, due 

to farmers having to purchase more spat or spend more time and effort catching spat to 

compensate for these (Sim-Smith 2006). This is a highly inefficient method of farming 

and an increase in spat retention as small as I% could have significant economic 

benefits. Spat attachment strength also has implications in spat survival particularly 

during the stripping of spat for reseeding. The field trials in this study were restricted in 

site and replication by industry allocations of GSM spat. Temporal replication within a 

site using spat from the same source would add weight to the results and conclusions 

drawn from the results. Further research incorporating the aforementioned suggestions is 

needed to improve the generality and applicability of the results. 
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Chapter 3: Predation by Notomithrax minor on Greenshell 
mussel spat: spat retention, prey size selection and 

predation rates 

3.1 INTRODUCTION 
Crabs are common predators in many marine ecosystems and due to their 

behaviour and feeding they can affect prey population densities and the abundance of 

many non-target co-existing organisms (Woods, 1993). Not only can crabs directly 

reduce prey numbers in a given area via predation, the long term indirect effects of 

predator behaviour may disrupt the fitness of prey individuals and subsequently the 

persistence of the prey populations (Leonard et al. 1999; Mistri, 2004 ). 

Brachyuran crabs prey heavily on marine bivalves, including many mussel 

species (Mistri 2004). Due to their often high abundance and cosmopolitan distribution, 

it is important to understand the prey preferences of these crabs and how they influence 

the behaviour and morphology of their prey species. Crab foraging and predatory 

behaviour can have particularly high costs, both economically and ecologically, when 

the crabs or their prey are of commercial importance (Richards et al. 1999, Sanchez-

Salazar et al. 1987, Woods, 1993). 

In this study the focal prey species, the endemic New Zealand (NZ) GreensheJlTM 

mussel Perna canaliculus (hereafter referred to as GSM), is the most extensively farmed 

marine bivalve species in New Zealand (Carton et al., 2007) producing export market 

revenue of more than NZ$ 180 M (NZ Mussel Industry Council Ltd Database 2006). 

The focal predator species, the camouflage crab Notomithrax minor, has no direct 

commercial value. 
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The GSM aquaculture industry is largely dependant on wild spat caught on either 

local spat-rope collectors or macroalgae washed up on Ninety Mile Beach (Buchanan, 

1994; Carton et al. 2007; Jeffs et a!. 1999). Wild spat settlement is notoriously 

unreliable and once the spat have been collected the retention rates are extremely 

variable, with often only about 2% of all spat applied to grow-out lines being retained to 

grow to a harvestable size (Hayden 1994, Webb and Heasman 2006). The inefficient use 

of spat and poor spat retention rates ultimately result in large production and financial 

losses (Carton et al. 2007), costing the aquaculture industry hundreds of thousands of 

dollars annually (Sim-Smith 2006). 

Possible causes of the low spat retention rates include: predation (Sim-Smith 

2006), competition (Hickman 1979, Hayden 1984) and environmental conditions (Alfaro 

2005, Sim-Smith 2006). Juvenile GSMs (spat) are particularly susceptible to predation; 

the small mussels have thin shells, weak byssal attachment and are farmed in high 

densities which in itself attract many predator species. Anecdotal evidence from NIW A 

and Sealord Group Ltd. suggests that predation is one of the principal factors leading to 

substantial decreases in spat retention. The current study investigates the effects of a 

common invertebrate predator, the decorator crab N. minor, on GSM spat. This chapter 

incorporates field caging experiments to assess predation rates on locally caught P. 

canaliculus and M. galloprovincialis spat and Kaitaia sourced GSM spat in Pelorus 

Sound, Marlborough Sounds, NZ. Crab prey size preferences and satiation levels were 

also investigated in a laboratory setting using wild caught N. minor and hatchery raised 

P. canaliculus. The specific aim of this work is to better understand the effect that N. 

minor has on GSM spat retention rates, and indirectly what sort of financial impact this 

has on the NZ GSM industry. 
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This focus of this chapter us to test the following null hypotheses: (I) decorator 

crabs (N. minor) have no effect on the survival and growth of GSM spat in the 

Marlborough Sounds, (2) decorator crabs show no preference for a particular size of 

GSM spat, and (3) decorator crabs have the ability to consume an unlimited number of 

GSM spat. 

3.2 METHODS 

3.2.1 Field trial study site 

This research was conducted in Pelorus Sound (in the Marlborough Sounds), 

which stretches 35 km from the Pelorus River at Havelock in the south (inner Sounds), 

to the Cook Strait in the north (outer Sounds). Pelorus Sound has several major arms 

including the Tawhitinui Reach and Kenepuru Sound (Fig.3.1 ). 

Data relating to the environmental conditions of Pelorus Sound, including 

salinity, Chi a concentration, nutrient and particulate fluxes, were taken from Hickman 

et al. ( 1991) and Gibbs et al. ( 1992). 

3.2.2 Laverique Bay and Crail Bay 

During the two study periods, winter 2006 (June-September) and summer 

2006/2007 (November-January), caging experiments were carried out on GSM spat 

farms in Pelorus Sound, the Marlborough Sounds, NZ. The farms were located at two 

discrete sites within Pelorus Sound (Crail Bay and Laverique Bay). The sites are spat 

catching and grow-out sites, selected for their water quality, phytoplankton 

concentrations and relatively low density of predatory fish. Both sites are located in 

Beatrix Bay, in eastern Pelorus Sound. 
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Table 3.1: Site specific temperature, salinity and chlorophyll a measurements for Laverique Bay and Crail 
Bay. The data is from 2005-2006, for the summer and winter periods during which current testing took 
place. 

WEEK TEMPERATURE (
0 C) SALINITY (PPM) CHL A (IJG. LITRE.

1
) 

LAVERIOUE CRAIL BAY LAVERIOUE CRAIL BAY LAVERIOUE CRAIL BAY 

BAY BAY BAY 
DEC 04-DEC10 16 17.5 33.5 33.3 0.1 1.2 0.1 1.3 

DEc 18-DEC 25 17.5 18 34 34 0. 1-0.3 0.1-1.5 

JUN 12-JUN 18 12.5 12.7 33.2 33.8 0.8-1.2 0.9-1.2 

JUN 26-JUL 02 11.7 12.0 33.6 33.9 1.0-1.7 0.8-1.2 

Data adapted from NIWA 'Marlborough Sounds Environmental Monitoring Programme' (2005-2006). 

Both study sites are situated in a large eastern branch of the Pelorus Sound. The 

branch contains three major bays: Beatrix, Crail and Clova Bay, all of which support a 

large number of marine farms (Fig. 3.1 ). Crail Bay is on the north western shore of 

Beatrix Bay (41°05'393 S, 173°58'205 E) and Laverique Bay (41°01' S, 174°02' E) is 

in the south eastern area of Beatrix Bay( Fig. 3.1 ). The Crail Bay site is situated in 

relatively deep water (approx 30m), whereas the Laverique Bay site is around 25m deep. 

Both sites are relatively exposed to wind and water movement, they also have similar 

salinity, temperature and Chi a characteristics (Table 3.1 ). 

3.2.3 Experimental design 
Cages were placed on droppers at both sites to retain experimental crabs within a 

specific area of spat line. The cages used were commercial shellfish grow-out apparatus 

called Aquapurses. The specific Aquapurses used were 0.8 m long with 8 mm mesh; a 

20x20 mm hole was cut in the top and bottom of each cage to allow the cage to be 

attached around the mussel line. Aquapurses are manufactured by Tooltech Pty Ltd 

(Australia) and are used commercially in oyster culture in NZ. 

Long-lines in the interior of the farms were selected to minimize the variation of 

exposure among experimental droppers. On the target long-line, top and bottom 
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locations were avoided: cages were placed at 4 m depth on randomly selected 8 m long 

single droppers, one cage per dropper. At Laverique Bay, the farm is set-up using single 

droppers which consist of 8 m lengths of commercial spat catching rope, commonly 

known as Christmas tree rope. Cages were placed on the northwest side of the backbone 

at 4m depth, but on one dropper the cage was placed shallower (3m), because of scuffing 

during earlier movement of the spat lines which had removed most of the mussels at the 

desired depth. 

MARLBOROUG SOUNDS 
MARINE FARMS 

Figure 3.1: The location of the study sites. Boxes indicate site locations within Pelorus Sound, Laverique 
Bay to the north (I) and Crail Bay to the south (2). Locations of existing mussel farms are from 
Marlborough District Council data (2003). 
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At Crail Bay, continuous 12 m long droppers were used and single cages were 

placed on droppers on the east side of the backbone (Fig. 3.2). 

The droppers at Laverique Bay were placed in the water on the 8th of March 

2006 to allow mussel spat to settle naturally on the lines. The field trial commenced on 

the 25th of July 2006 and by this time the spat had an average total shell length (TSL 

measured across the anterior dorsal-posterior ventral axis) of 16.8 mm ± 0.79 (95% 

C.I.). GSM density was considerably higher in the uppermost 1 m of the droppers. Upon 

visual inspection at commencement of the field trial there was no substantial 'over­

settlement' of M. galloprovincialis, although numerous other species were also present 

on the lines, including various scallop species, bryozoans, algae and a small number of 

decorator crabs between 10-20 mm total carapace width (TCW measured at the widest 

point of carapace). 

The GSMs at Crail Bay were sourced from Kaitaia spat collected at Ninety Mile 

Beach and seeded mechanically onto the spat ropes 3 wk before commencement of the 

field trial (23rd November 2006). Due to the spat being seeded onto the line there was 

minimal over-settlement of other species; M. galloprovincialis were present in very low 

numbers. At the start of the field trial at Crail Bay the average size of the GSM spat was 

4.86 mm ± 0.56 (95% C.I.). Some cotton stocking was still visible but the mussels were 

readily accessible to predators. 

Crabs were collected 10 days before commencement of the field trials and held 

in large (1.3 m width x 1.3 m height x 0.75m depth) black plastic tanks in the laboratory 

at the Cawthron Aquaculture Facility, Nelson. Crabs were fed to excess 24 hr after 

collection with fresh GSM flesh. 24 hr before onset of the field trial the crabs were 

sorted into the relevant treatments (detailed below) and weighed to 0.1 g, to permit 
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estimation of crab growth over the experimental period. Crabs were transported to each 

site in a 90 L bin filled with fresh seawater with two battery powered air pumps 

oxygenating the water. The caged section of mussel rope was checked for any local 

crabs, which were removed before the experimental crabs were introduced. 

----

Figure 3.2: schematic illustration of the construction of a GSM mussel farm in the Marlborough Sounds, 
outlining terms in the methodology (study site, backbone, dropper and cage) and the positioning of the 
experimental cages. 

The effects of crab density and size on GSM growth, mortality and attachment 

strength, different crab treatments were tested. Treatments included: high (H) (12 crabs) 

and low density (L) (3 crabs), of both large (La) and medium sized crabs (M). Large 

males had TCW >20 mm, large females were >15 mm, medium males were 15-20 mm, 

and medium females were 10-15 mm TCW. A zero density caged treatment (CC) and an 

uncaged control (UC) were also included in the trails to assess caging effects. Only 

medium and large crabs were used because of the cryptic nature of these crabs and the 

logistic difficulty involved with their collection. At Laverique Bay, 3 replicates of each 
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treatment were retrieved after 6 wk and again after 11 wk, At Crail Bay, 8 replicates of 

each treatment were retrieved after 8 wk (Table 3.2). The differences in methodology for 

the two study sites was due to the fact commercial GSM spat were used, thus 

experimental design was limited by the quantity and type of spat made available by 

commercial GSM farmers. Optimally the entire Laverique Bay trial would have been run 

for 11 weeks due to it being run in the winter. Predation rates and GSM growth rates are 

generally lower during the winter months. However the GSM spat at Laverique Bay 

needed to start to be harvested for on growing after 6 weeks, only half of the spat was 

made available for longer term experimentation (11 wk). The Crail Bay trial was run for 

a shorter period due to the fact it was run in the summer months and no limitations were 

placed on experimental design by the GSM farmers at this study site. 

3.2.4 Line retrieval 
At each retrieval date (Table 3.2) the spat lines were lifted and the 0.8 m section 

inside the cage was removed. On un-caged control lines a 0.8 m section of line was cut 

at 4 m depth. The top and bottom I 0 em of the caged and un-caged samples were 

excluded due to clumping of mussels against the ends of the cages. The 60 em sections 

of line were soaked in a 10% chlorine solution for 24 hr, thoroughly scrubbed and 

inspected to remove any GSM spat and other bivalves. The spat and other bivalves were 

then sieved through a 2 mm sieve and rinsed to remove any residual fouling. The TSL 

(total shell length) of a haphazardly selected sub-sample of 25 GSM spat was recorded 

for each sample. The total number of GSM spat for each sample was recorded. 
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Table 3.2: Detailed outline of experimental design at Laverique Bay and Crail Bay 

Treatment Crab Size Crail Bay Laverique Bay 

Put out Retrieved Put out Retrieved 

11/07/06 22/08/06 (6 wk) 
23/11/06 18/01/07 (8 wk) 

Medium (M) 
11/07/06 22/10/06 ( 11 wk) 

11/07/06 22/08/06 (6 wk) 
High (H) 23/11/06 18/01/07 (8 wk) 

Large (La) 11/07/06 22/10/06 ( 11 wk) 

11/07/06 22/08106 (6 wk) 
23/11/06 18101/07 (8 wk) 

Medium(M) 11/07/06 22/10/06 (11wk) 

Low (L) 
11/07/06 22/08/06 (6 wk) 

23/11/06 18101/07 (8 wk) 
Large(La) 11/07/06 22/1 0/06 ( 11 wk) 

11/07/06 22/08106 (6 wk) 
23/11/06 18/01/07 (8 wk) 

Zero Caged (CC) 11/07/06 22/10/06 (11wk) 

11/07/06 22/08/06 (6 wk) 
23/11/06 18/01/07 (8 wk) 

Uncaged Control (UC) 11/07/06 22/10/06 (11wk) 

3.2.5 Laboratory trials 

The N. minor used in the laboratory experiments were collected by hand from 

mussel farms in Pelorus Sound, 10 days prior to trial commencement. The mussels used 

were a combination of hatchery-raised and wild spat obtained from spat catching farms 

in Pelorus Sound and the Cawthron Aquaculture facility. The animals were maintained 

in flow-through indoor tanks at the Cawthron Aquaculture facility. Only undamaged 

crabs were used in experiments. The carapace width (CW) of each of the test crabs and 

the total shell length (TSL) of the test mussels was determined using calipers. TSL was 

measured across the anterior dorsal-posterior ventral axis. The sex of the crab was also 

noted. The test crabs were starved for 48 hr prior to experimentation to standardize 

hunger levels and each crab was used only once. 

Experiments were conducted in 9 I plastic aquaria supplied with filtered, 

temperature controlled seawater ( 17 -l8°C, salinity 34-35 ppt, water turnover rate: 5 
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min). Aquaria were also supplied with individual air lines. Individual test crabs were 

placed haphazardly in one of 26 replicate aquaria with bivalve prey. Experiments were 

conducted with a 12 h photoperiod. The test aquaria were covered in 1 mm mesh to 

ensure no mussels or crabs escaped. At the end of each experiment, the crab was 

removed, and the live and dead mussels, along with shell fragments, were recovered. 

Only mussels with visible signs of crab predation (chipped or crushed shells) were 

included in predation estimates. Chipped shells that were not opened by the crab and 

dead bivalves with intact shells (non-predatory mortality) were not included in predation 

estimates. The difference in the number of prey at the start of the trial and end of the trial 

represented the number of prey consumed. 

3.2.6 Prey size selection 

The objective of this experiment was to determine predator size preferences of 

prey eaten by 'medium' sized male and female N. minor (males, 20-35 mm TCW; 

females, 15-27 mm TCW). This size range is representative of the majority of the crabs 

collected on GSM farms in Pelorus Sound. A standard array of various sized mussel spat 

(<5 mm, 30 mussels; 5-10 mm, 15 mussels; 10-15 mm, 7 mussels; >15 mm, 3 mussels) 

were added to individual small plastic mesh bags (80 x 80 mm, 1 mm mesh). High 

numbers of small mussels and low numbers of large mussels were used in this 

experiment to balance out encounter rate and biomass of each size class. These bags 

were held in the corresponding test aquaria 72 hr before initiation of the trials to allow 

byssal attachments to form and the mussels to clump naturally. At the start of each 

experiment, the bags were opened up, laid flat and attached to the base of each aquarium 

to make all enclosed mussels accessible to the crabs. After 3 days the number of mussel 
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spat remaining in each size class was determined. In order to eliminate the possibility of 

secondary settlement and migration of the mussel spat, three control treatments (no 

crabs) were included in the experiment. 

3.2. 7 Satiation level 

The purpose of this experiment was to determine the number of small GSM spat 

that individual and multiple 'medium' sized male and female N. minor (males, 20-35 

mm TCW; females, 15-27 mm TCW) could consume per hour. The 16 test aquaria 

contained 0 (lx control) or 1 (15x treatment), crab selected at random for sex and size 

within the 'medium' size range (males, 20-35 mm TCW; females, 15-27 mrn TCW). At 

the start of the experiment, I 00 small P. canaliculus ~5 mm, were added to each of the 

experimental aquaria. The mussels had been left to attach to small (40x 50 mrn) hessian 

wrapped plastic panels for 24 hours pre-experimentation allow for byssal attachment. 

After 1 hr the initial mussel panel in each aquarium was removed and a new 

identical panel was introduced. The number of mussels eaten was then recorded; this 

process was repeated every hour from 0900 to 1700 daily for three consecutive days. 

3.2.8 Statistical analysis 
The statistical and data packages SPSS 14.0 for Windows (SPSS Incorporated, 

Chicago, Illinois) and SigmaPiot 9.01 for Windows (SyStat Software, Inc.) were used 

for graphing and analysis of the data. 

3.2.9 Field trials 

Box-plots for GSM number and GSM spat size were constructed to assess 

normality and to help recognize any outliers. Any outliers were checked against the raw 

data and if they were genuine outliers, the data points were deleted. Cochran's Q test 
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was used to assess the equality of variances across the crab density, size and control 

treatments. GSM mussel number data were square root transformed for Crail Bay and 

log10 transformed for Laverique Bay to meet the requirements of parametric Analysis of 

Variance (ANOVA). GSM size data were log10 transformed for both sites to also meet 

the requirements of parametric ANOV A. The data for mussel number and size were 

standardized for varying trial temporal durations by dividing the values by the duration 

(days) of each trial. 

The site-specific standardized data were subjected to a two-way ANOV A to test the null 

hypothesis (H0 ) that crab (N. minor) density and size had no effect on the number of 

GSM spat and size of GSM spat found on mussel culture droppers in Pelorus Sound. A 

two-way ANOV A test was run for each of the two response variables (mussel number 

and size). Separate ANOVA analyses were chosen over MANOVA tests due to 

statistically significant correlations between the response variables (Pearson and 

Kendall's tau-b tests in SPSS). In the ANOVA model, crab density and crab size were 

considered to be fixed factors. Results significant a = 0.05 were subject to post hoc 

Tukey tests (pair-wise comparisons) to establish the location of significant differences 

3.2.10 Laboratory trials 

For the prey size selection data, the percent of mussels eaten in each mussel size 

class (small (<5 mm), small-medium (5-10 mm), medium-large (10-15 mm), large (>15 

mm)) was calculated for each of the crab experimental (male, female and control) 

categories. Percent values were used because a different number of mussels were used in 

each of the 4 mussel size classes. 
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Cochran's Q test was used to assess the equality of variances across the crab sex 

and control treatments, and Normal Q-Q plots were constructed to test the normality of 

the data. The data did not meet the normality requirements of parametric ANOV A, even 

after a number of data transformations including log10 and square root. Therefore, the 

non-parametric Kruskal-Wallis test was used to test the null hypothesis (H0 ) there was 

no relationship between mussel size and the proportion of mussels consumed by male 

and female N. minor. For the Kruskal-Wallis analysis the data set was split into male and 

female crabs and ranked. Mussel size classes were used as the grouping (independent) 

variable and the percent of mussels eaten per size class was used as the dependent 

variable. 

The average numbers of mussels eaten per hour and per day were calculated 

from the data collected in the satiation trial. The mean number of mussels eaten per day 

was calculated for male and female crabs, and a control treatment. Normal Q-Q plots 

were constructed to assess the normality of the data and Cochran's Q test was used to 

assess the equality of variances across the three treatment days. The number of mussels 

eaten per day was log10 transformed to meet the requirements of parametric ANOV A. 

The data were subject to two-way ANOV A to test the null hypothesis (Ho) that the 

number of GSM spat consumed by male and female N. minor in independent of both 

crab sex and time (day). In the ANOVA model, day and crab sex were considered to be 

fixed factors. The locations of significant differences (a= 0.05) were identified using 

post hoc Tukey tests (pair-wise comparisons). 
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3.3 RESULTS 

3.3.1 Field trials 

Greenshell (Perna canaliculus) mussel density showed different responses to 

decorator crab (Notomithrax minor) crab density and size at the two study sites. At 

Laverique Bay, the initial densities (m-1
) of GSM spat was lower than at Crail Bay (LB= 

989.2 m-1
; CB= 4638.0 m-1

). Crab density and crab size did not significantly affect GSM 

density at Laverique Bay (Table 3.3). 

At Crail Bay, crab density had a marginally significant effect on GSM density, 

whereas crab size did not significantly effect on the number of GSMs per meter of spat 

dropper (Fig 3.3, Table 3.3). The two crab treatments had significantly lower GSM 

densities than the two control treatments (Fig 3.3, Table 3.3), but were not significantly 

different from each other (post hoc Tukey test, p<0.05) 
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Fig 3.3: Effects of potential predator (N. minor) presence on P. canaliculus (Greenshell mussel) density (mussels m·2) 

on spat catching ropes at the two study sites, Crail Bay and Laverique Bay. Mussel number was standardised for days 
by dividing the mussel number by the number of days the experiment ran for (42 and 77 days at Laverique Bay, 56 
days for Crail Bay). The differences in P. canaliculus densities were statistically significant at Crail Bay but not at 
Laverique Bay. Letters represent statistical ly significant post hoc groupings calculated using Tukey tests following 
ANOV A. Crab density treatments are as follows: UC - un-caged control, CC - caged control, Average - 3 crabs per 
cage, High - 12 crabs per cage. 
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At Laverique Bay average GSM TSL (total shell length) was higher than at 

Crail Bay (LB: 26.16± 0.311; CB: 14.24± 0.279), and there were no statistically 

significant differences in GSM TSL across the experimental treatments (Fig 3.4, Table 

3.3) 

Table 3.3: ANOYA table for GSM (P. canaliculus) density, and GSM size for both study sites Laverique Bay (LB) and 
Crail Bay (CB). Crab density and Crab size were considered to be fixed factors in the analysis. For Crail Bay, GSM 
numbers were square root transformed; at Laverique Bay these dependant factors were log10 transformed to meet the 
assumptions of parametric ANOV A. GSM size was log10 transformed for data from both Laverique Bay and Crail Bay. 
Sign' fi F . I I d f T III SS 1 1cant results are indicated in bold. -rattos ca cu ate rom lype 

FACTOR OF. MS F P-VALUE 

LB CB LB CB LB CB LB CB 

CRAB DENSITY 1 1 0.162 2.535 3.322 4.227 0.077 0.049 

GSM CRAB SIZE 1 1 0.005 0.604 0.095 1.007 0.760 0.324 

NUMBER 

CRAB 
1 1 0.017 0.014 0.353 0.024 0.556 0.878 

SIZE*DENSITY 

CRAB DENSITY 1 1 0.221 <0.001 2.656 0.068 0.112 0.769 

GSM 
CRAB SIZE 1 1 0.276 0.028 3.317 6.163 0.077 0.019 

SIZE 

CRAB 
1 1 0.062 0.002 0.750 0.499 0.392 0.486 SIZE*DENSITY 

Crab density did not have a significant effect on GSM TSL at Crail Bay (Table 

3.3, Fig 3.4), although GSMs in caged control and medium crab size treatments had 

significantly higher TSLs than un-caged control and large crab size treatments (post hoc 

Tukey test p<0.05). 
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Fig 3.4: Effects of crab (N. minor) presence on P. canaliculus (GSM) size on spat catching ropes at the two study sites, 
Crail Bay and Laverique Bay. Mussel size was standardised for days by dividing the mussel number by the number of 
days the experiment ran for (42 and 77 days at Laverique Bay, 56 days for Crail Bay). The differences in P. canaliculus 
size were statistically significant at Crail Bay but not at La veri que Bay (ANOV A). Letters represent statistically 
significant post hoc groupings calculated using Tukey tests following ANOV A. 

3.3.2 Laboratory experiments 

3.3.3 Size preference 
The null hypothesis that there was no significant difference in the percentage of 

mussels consumed in each mussel size class was rejected for male (p <0.001) and female (p 

<0.00 1) crabs. However in the control treatments there were no significant differences in the 

number of GSM spat lost in relation to mussel size class (Table 3.5) 

Table 3.4: Kruskal-Wallis non-parametric ANOV A result table: 
the grouping variable for this test was GSM size ( <5 mrn, 5-l 0 
mrn, 10-15 mrn, > 15 mrn). Significant results are indicated in 
bold. 

GSM SIZE PREFERENCE 

FACTOR OF P-VALUE 

FEMALE 3 62.569 <0.001 

MALE 3 17.992 <0.001 

CONTROL 3 2.871 0.412 
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Female crabs consumed more mussels in the <5 mm and 5-10 mm size classes 

than in the two larger mussel size classes (1 0-15 mm and > 15 mm), whereas the male 

crabs consumed more mussel spat in the 5-10 mm and 10-15 mm size classes (Fig 3. 7). 

Female crabs showed a marked proportional decrease in the percent of mussel spat 

consumed from the 10-15 mm size class to the largest mussel size class ( -43% ). The 

proportional decrease in mussel spat consumption between these two size classes was 

less substantial for male crabs (-29%) (Fig 3.7). 
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Fig 3.5: Average percent of GSM spat consumed by medium-sized male and female N. minor 
(males 20-35 mm TCW; females 15-27 mm TCW) and the number of mussels lost in control 
treatments (no crabs) over three days. Means± 95% CI. 

3.3.4 Satiation trial 
The maximum mean number of GSMs eaten crab-1 h( 1 was 56.43 (± 13.02 (95% 

C.l.)), at time one on the first day of experimentation. The mussel consumption rate by 

the crabs decreased over time. Per hour, this decrease was irregular (Fig 3.5), but the 
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observed decrease in mussel consumption by the crabs from day 1 to day 3 was 

statistically significant (df 2, F: 8.875, p-value: <0.001 ). 
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Fig 3.6: Average number of GreensheiiTM mussel (P. canaliculus) spat (<5mm) eaten per medium sized male and 
female crab (N. minor minor: males: 20-35mm TCW, females: 15-27mm TCW) per hour across three days of testing. 
Error bars are 95% confidence intervals of the mean. 

Crab sex had a significant effect on the number of GSM spat consumed by 

medium sized N. minor (Fig 3.7, Table 3.5). Male crabs consumed significantly more 

GSM spat than female crabs, particularly on day one (Fig 3.7). However both male and 

female crabs consumed significantly less mussel spat with increasing time (Fig. 3.7). 
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Fig 3.7: Average number of GSM (P. canaliculus) spat ( <5 mm) eaten by male and female medium 
sized crabs (N. minor: males: 20-35mm TCW, females: 15-27mm TCW) per day across three days 
of testing. Means± 95% Cl. 

The proportional decrease in average mussel consumption was larger for male 

crabs (day 1-day 2: 59%, day 2-day 3: 72%) than for female crabs (day 1-day 2: 50% 

day 2-day 3: 61 %) and decreased more from day 2 to day 3 than from day 1 to day 2 

(Fig 3.7). The interaction between day and crab sex was also significant (Table 3.5), so 

the difference between the number of mussel spat eaten by male and female crabs was 

more pronounced on the first day of the experiment as opposed to day three (Fig. 3.7, 

Table 3.5). 
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Table 3.5: ANOVA table for proportion of GSM spat (<5 mm) eaten per day for medium sized 
male and female N. minor. The trial ran for three days and crabs were fed I 00 mussel spat per crab per 
hour. Significant results indicated in bold. F-ratios calculated from Type III SS 

FACTOR NUMBER OF MUSSEL SPAT EATEN 

DF. I MS F P-VALUE 

CRAB SEX 1 27.516 91.922 0.003 

DAY 2 285.009 8.875 <0.001 

CRAB SEX X DAY 2 10.916 3.521 0.031 

3.4 DISCUSSION 
GSM density on spat farm droppers in Pelorus Sound decreased significantly 

when decorator crabs (N. minor) were introduced. This decrease only occurred when 

small (mean ± 95% C.I. of 14.24 mm ± 0.28) Kaitaia spat were used in experiments 

during the winter of 2006, than in the trials run on larger (24.48 ± 0.32) locally caught 

spat during the summer of 2006/2007. GSM spat supply and retention from seeding to 

harvest is highly variable; losses are often more than 50% and losses of 95% are 

experienced regularly (Sim-Srnith 2006, Carton et al. 2007). This inefficient use of GSM 

spat can lead to large production and financial losses (Carton et al., 2007). The 

mechanisms related to spat retention are complex and factors including nutrition 

(Buchanan 1994 ), water flow (Alfaro 2005), desiccation stress (Carton et al. 2007), 

disease (Jeffs et al. 1999), and settlement surface (Buchanan 1994, Alfaro and Jeffs 

2003) have been implicated. This study adds the presence of a potential predator to the 

list of factors affecting spat retention, with the specific aim of helping to resolve the 

problem of spat losses. 
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Predation by N. minor is not the only explanation for the observed decreases in 

GSM spat number in the presence of N. minor. The two study sites had similar physical 

characteristics, however the seasonality of the two trials could also be contributing to the 

observed differences in mussel spat losses. The number of storm activities and 

corresponding increases in hydrodynamic forces acting on the mussel spat increase 

during winter months. The risk of mussel spat dislodgement from the substrate is higher 

during stormy conditions, storms have been shown to cause losses of upto 65% of 

Mytilus califorianus (Paine and Levin 1981 ). The fact that in the current study the 

winter trial site, Crail Bay, had higher spat losses could have been due to the fact that 

the probability of dislodgement increases with increased hydrodynamic forces (Hunt and 

Scheibling 2001). Another explanation for the observed mussel spat losses is the ability 

of GSM spat to go through a secondary settlement phase if the primary settlement 

location becomes less than optimal (Buchanan 1994, Buchanan and Babcock 1997, 

Carton et al. 2007). During secondary settlement the spat will sever the byssus threads 

used to attach to a substrate during primary settlement and migrate over 1 OOs of meters 

by 'mucus- drifting' (Buchanan 1994). GSM spat can use secondary settlement to move 

a number of times before they recruit into grow-out areas (Jeffs et al. 1999). The ability 

for 'mucus-drifting' by GSM spat is lost once they reach 6 mm TSL, due to anatomical 

changes of the pedal glands (Buchanan and Babcock 1997). There is still a high level of 

uncertainty surrounding the factors that trigger secondary settlement in GSM spat, 

although stressors such as desiccation, temperature, starvation (Carton et al., 2007), and 

the presence of potential predators could be incentive enough for spat to invest effort 

into secondary settlement. 

71 



Chapter 3- Predation by Notomithrax minor on Greenshell mussel spat 

Secondary settlement by GSM spat in the presence of N. minor could be 

classified as an anti-predator response, with the spat possibly responding to water-borne 

chemical cues emitted by the predatory crabs. The release of chemicals such as 

pheromones and amino acids has been documented for various species of crabs (Ryan, 

1966), and these chemicals make it possible for prey species to detect predators (Cote, 

1995). Predator avoidance behaviours have been linked to the chemical cues emitted by 

predators and chemicals secreted by conspecifics attacked by predators (Cote 1995, 

Reimer and Harms-Ringdahl 2001): secondary settlement might be an example of such 

an escape mechanism. 

The decrease in both GSM spat numbers when N. minor were present could also 

be due to direct predation by the decorator crabs. Anecdotal evidence from mussel 

growers in the Marlborough Sounds and researchers at The Cawthron Institute (Nelson) 

suggests that N. minor found on mussel lines can consume substantial quantities of 

mussel spat. The current study supports these claims, with crabs in a laboratory setting 

consuming significant numbers of GSM spat (max. 36 GSM spat h- 1 crab-1
). However, 

no alternative food-sources were offered to crabs so these results may over-estimate the 

predation rates of N. minor on GSM spat in a natural setting. 

Woods (1993) researched the natural diet of N. ursus and found that it comprised 

of a wide range of items including: algae, gastropods, isopods, amphipods, bryozoans, 

sponges, bivalves and small decapods. Current evidence therefore suggests that bivalves 

typically only constitute a small portion of the diet of decorator crabs. This may be due 

to the morphology of the chelae which are generally elongate and slender (Wicksten 

1980, Woods 1993) and are not well adapted to the crushing behaviour required to break 

the relatively thick shells of bivalves (Woods 1993) N. minor generally have to adopt 
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one of two more labour intensive feeding techniques to prey on bivalves : 1) chipping or 

biting the shell margin using chelae or mandibles, or 2) forcing the valves of the bivalve 

apart using the chelae or legs (Woods 1993); pers. obs.). 

Small mussels have thinner shells and could therefore be more attractive to N. 

minor, in the sense that thinner-shelled mussels are easier prey items than thicker-shel~ed 

mussels. This statement is supported by evidence from both the field and lab 

experiments in this study. At Crail Bay, where the mussels were smaller, the decrease in 

mussel density was greater than at La veri que Bay where the mussels were on average 10 

mm larger (TSL post trial). In the laboratory trials, both male and female crabs 

consumed mussels across all of the size classes, however crabs preferred mussels < 15 

mm TSL and seemed to only consume larger individuals when the smaller mussels had 

become depleted. 

Five major hypotheses exist in the literature which offers explanations for the 

observed size selection of GSM by decorator crabs. 1) the chelal wear model 

(Smallegange and van der Meer 2003), in which crabs select smaller than optimal 

mussels to prevent claw wear and tear .. 2) the prey evaluation hypothesis (Einer and 

Hughes 1978, Jubb et al. 1983), in which the crabs pick up and evaluate the prey item 

for a set period of time before accepting or rejecting it. When unlimited prey items are 

available the crabs select mussels close to the predicted optimal size, and as the optimal 

prey items become depleted the crabs will progressively take less profitable prey in 

accordance with the energy maximization model (Charnov 1976). 3) the 'relative­

stimulus' model (Jubb et al. 1983), in which the acceptance of the prey item is 

dependant on the strength of the olfactory and/or tactile stimuli emitted by a prey item 

when held in the chelae compared to the stimuli received from other prey items 
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simultaneously touched by the crabs legs. If any breakage of the mussel shell occurs 

during handling the olfactory and tactile stimuli increase, making it highly likely that the 

crab will include this specific prey item in its diet. 4) the 'mechanical selection' model 

(Hughes and Seed 1981 ), in which crabs have difficulty grasping small mussels and 

often drop the prey item accidentally during manipulation. The extended period of time 

required to break into large mussels often exceeds the crabs' stimulus to persevere. 

Therefore crabs often passively select medium-sized prey items. 5) the 'key-stimulus' 

model (Hughes and Seed 1995), as in the 'relative-stimulus' model crabs select prey in 

response to the strength of the stimuli emitted by the prey item, rejection of the prey 

item will occur after a period of handling if the attack is proving ineffective. Previous 

experience by the predator will lead to adjustment of the handling time to suit the 

expectation of the quality and density of local prey populations (Hughes and Seed 1995). 

The observed preference by male crabs (N. minor) for GSM < 15 mm TSL and 

female crabs for GSM < 10 mm can be explained by all the aforementioned hypotheses, 

although some may be more relevant than others. For example, the 'chelal wear' 

hypothesis is particularly applicable in the current study. Mature N. minor males and 

females have sexually dimorphic chelae. As in many species of decorator crabs, both 

male and female chelae are long and slender (Wicksten 1980). However, chelae of male 

N. minor are generally larger and presumably stronger than those of females (pers. obs.), 

therefore male N. minor are better equipped to attack and consume a large size range of 

prey items (Woods 1993). The experimental crabs were starved before initiation of the 

size preference trials and the 'key stimulus' hypothesis allows for hunger levels in its 

design. Previous studies of decorator crab dietary preferences also support other aspects 

of this hypothesis. Woods (1993) found that dietary preferences of Notomithrax ursus 
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were associated with crab age. Immature, possibly less experienced, N. ursus favoured 

small, easily handled prey such as isopods, amphipods and small gastropods, whereas 

mature crabs preferred large and more 'difficult' prey items such as calcareous red algae 

and decapods. 

Many studies have investigated the predator-prey relationship between crabs and 

bivalves (Bertness and Cunningham 1981, Hughes and Seed 1981, Blundon and 

Kennedy 1982, Jubb et al. 1983, Lin 1991, Allen 1997, Barbeau et al. 1998, Leonard et 

al. 1999). However, very little published literature exists on the feeding behaviour and 

preferences of Notomithrax species which is surprising because they are common and 

widespread around New Zealand, and N. minor is particularly abundant on mussel farms 

in the Marlborough Sounds. Woods (1993) observed that bivalves only constitute a 

minor dietary component of the diet of the decorator crab N. ursus. However due to the 

methodology used to determine gut contents and the crabs' feeding behavior, the 

importance of bivalves as a dietary component was most likely underestimated. The 

current study encompasses both field and laboratory experimentation to 

comprehensively examine the relationship between the commercially important bivalve 

GSM and a potential predator N. minor. The results of this study indicate that contrary to 

previous studies on decorator crab dietary preferences, GSM's are likely a significant 

dietary component for N. minor found on GSM farms in the Pe1orus Sound, 

Marlborough Sounds, New Zealand. 

As in most organisms, crab prey selection and feeding rate is related to a number 

of motivational factors including activity level, age, moult stage, reproductive condition 

and hunger (Zimmer-Faust 1989, Hayden et al. 2007). In a study by (Brousseau et al. 

2001) investigating the predation rates of the Asian crab (Hemigrapsus sanguineus) 
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daily mean consumption rates of 12.7±11.6 juvenile Mytilus edulis per day. This was 

similar to consumption rate of 13.7±2.9 per day small ribbed mussels (Geukensia 

demissa) by large (CW 42-43mm) Panopeus herbstii (Brousseau et al. 200 I). However 

in the current study the daily mean predation rate was significantly higher on day one of 

the trial (30.6±4.55 (95% C.l.) GSM spat per day, sexes pooled; N= 15) however this 

rate dropped off significantly over the three days of the trial to 4.5±1.47 GSM spat per 

day. Although the current study indicates that N. minor is capable of consuming large 

numbers of GSM spat when starved in laboratory conditions, these results do not take 

into account the time spent foraging in the field that will possibly cause a significant 

reduction in the daily consumption rate. However due to the fact aquaculture practices 

lead to artificially high densities of juvenile GSMs laboratory consumption rates may 

provide a realistic estimate of the predatory impact of N. minor on GSM farms in the 

Marlborough Sounds. 

When GSM spat are seeded onto farm lines the size range of the mussels will be 

limited to 4-6 mm TSL. It is however unknown when and how the crabs settle onto the 

farm lines. Prey size preferences of N. minor may not be important in an actual mussel 

farming situation if the crabs settle onto the mussel lines when the mussel spat have 

already grown to a size that is above the preferred prey size range. The growth rates of 

N. minor and GSM spat will also impact on the vulnerability of the spat to predation by 

the crabs, because size refuges may exist for mussel spat. The observed prey size 

preferences by N. minor will be the most problematic to mussel farmers when crabs 

within the experimental size range are found in high densities on spat farms where the 

GSM spat is within the crabs' preferred size range (i.e. < 15 mm TSL). Although this 

76 



Chapter 3- Predation by Notomithrax minor on Greenshell mussel spat 

situation has been observed by individuals in the GSM industry it would be beneficial to 

know how often and where large N. minor occur on small GSM spat. 

However due to fact that the experimental designs of the field and 

laboratory trials were constrained by time, spat availability and industry requirement, 

there are a number of opportunities for the GSM industry to expand on the current study. 

Firstly this study does not incorporate information regarding settlement patterns, growth 

rates and numbers of N. minor on mussel farms in the Pelorus Sound. These factors are 

important to determine whether medium sized crabs occur regularly on optimally sized 

mussels (> 15mm TSL), or if due to natural settlement and growth patterns, sporadic or 

constant size refuges exist for GSM spat. Secondly, the design of the field experiments 

does not allow the opportunity to distinguish between secondary settlement and 

predation as the underlying cause of the observed spat losses. Being able to determine 

these underlying causes may be interesting from an ecological point of view, but GSM 

growers are more interested in the fact large spat losses occur in the presence of N. 

minor rather than the causes of the losses. By supplementing the field trials in the 

current study with laboratory trials to determine the rate of secondary settlement such as 

those used by Meder et al. (2004), a more comprehensive understanding of the 

underlying causes of GSM spat losses in the presence of decorator crabs could be 

gained. 

Despite the aforementioned areas of deficiency, this study demonstrates that 

decorator crab (N. minor) presence significantly decreases the retention rates of GSM 

spat on mussel farms in the Marlborough Sounds. The importance of this finding is 

amplified by the lack of published data regarding the focal predator and the economic 

significance of the GSM. Spat retention rates have been a contentious issue for GSM 
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farmers since the birth of the industry and cost mussel farmers hundreds of thousands of 

dollars annually. Previous attempts to understand this issue have focused on a number of 

factors including predation (Sim-Smith 2006), competition (Hickman 1979, Hayden 

1984) and environmental conditions (Alfaro 2005, Sim-Smith 2006). However this study 

highlights one factor affecting spat retention that has been previously overlooked and 

deserves closer scrutiny and experimental testing by the GSM industry in the 

Marlborough Sounds. 
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Chapter 4: General Conclusions 

4.1 SUMMARY OF FINDINGS 
Quantitative field and laboratory studies of the effects of the decorator crab 

Notomithrax minor on GSM spat survival and attachment strength suggest that N. minor 

may cause significant financial losses to GSM farmers in the Marlborough Sounds, and 

elsewhere in NZ. 

4.1.1 N. minor and GSM spat byssus production 
Abiotic factors such as wave action, temperature and salinity have been 

identified as factors that affect the byssal characteristics and attachment strength of 

several mussel species (Young 1985, Cote 1995, Alfaro 2005). This study proposes that 

a biotic factor, specifically the presence of a potential predator (N. minor), also affects 

byssus production and attachment strength in the spat of the commercially important 

mussel Perna canaliculus (GSM). The increase in byssal attachment strength and byssal 

thickness in the presence of N. minor was most pronounced in small, recently seeded 

GSM spat. Small mussels are most vulnerable to decorator crab predation (Chapter 3), 

and attachment strength is inversely related to prey profitability and attractiveness (Lin 

1991 ). 

Increased byssus production by GSM spat has a number of direct and indirect 

implications for GSM farmers. First, there are a number of published articles that 

suggest byssus production can account for a significant proportion of carbon, nitrogen 

and energy allocated to growth (Griffiths and King 1979, Hawkins and Bayne 1985). 

This study was not specifically designed to assess the energetic costs of byssus 

production in P. canaliculus but it is realistic to assume some trade-off with growth will 
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exist to produce more and thicker byssus threads. Reduced growth rates will increase 

costs to GSM farmers due to decreased crop turnover and the consequent inefficient use 

of space and resources. Second, the retention rates of GSM spat on farms in the 

Marlborough Sounds are regularly less than 5%. GSM spat costs mussel farmers 

between NZ$0.80 (Kaitaia spat) and NZ$1.00 (locally caught and Golden Bay spat) per 

m of spat rope (at a density of 200 GSMs m-1
) (pers. comm., Aaron Pannell, 

Marlborough Mussels Ltd., 2007). When high densities of N. minor were present on 

Kaitaia spat at Crail Bay the spat losses were at a maximum (Fig 3.3). At the levels 

observed in the field trials GSM spat losses translated to an approximate cost of 

NZ$30,000-$35,000 per average sized GSM farm (based on a seeding density of 200 

GSM spat m-1
, on average sized farm i.e. 90 backbones with 4000 m of line per 

backbone). The costs are amplified by farmers having to purchase excess GSM spat or 

spend more time and effort catching spat to compensate for the losses (Sim-Smith 2006). 

Third, spat attachment strength also has implications for spat survival, particularly 

during the stripping of spat for reseeding, because if the mussel spat are attached more 

tightly they are more likely to be crushed in the machinery used to strip spat off the 

droppers. 

4.1.2 N. minor predation and GSM spat retention 

N. minor presence not only affected the byssal characteristics of GSM spat but 

also spat retention rates, but not mussel size. The density of Kaitaia GSM spat on mussel 

farms in Pelorus Sound decreased significantly when medium and high densities of the 

decorator crabs, N. minor, were introduced. The mechanisms related to spat retention are 

complex, with factors implicated in substantial mussel spat losses including nutrition 
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(Buchanan 1994), water flow (Alfaro 2005), desiccation stress (Carton et al. 2007), 

disease (Jeffs et al. 1999), and settlement surface (Buchanan 1994, Alfaro and Jeffs 

2003). This study adds the presence of a predatory crab to the list of factors affecting 

spat retention and could therefore help resolve the issue of spat losses. GSM spat losses 

in the presence of N. minor may be due to detachment by GSM spat (i.e. secondary 

settlement) in response to chemical cues secreted by N. minor and/or direct predation 

pressure by the decorator crabs. Crab sex and size also affected the number of GSM spat 

consumed and prey size preference of N. minor; female crabs preferentially consumed 

smaller mussels than male crabs, however all of the crabs preferred mussels under 15 

mm TSL and seemed to only consume larger individuals when the smaller mussels had 

become depleted. These results relate directly to GSM spat losses in the field because 

spat are seeded artificially onto spat grow-out droppers when they are between 40-50 

mm TSL. This is within the size range of GSM that N. minor prefers to consume and the 

size range during which secondary settlement of spat occurs (Buchanan and Babcock 

1997). The current study does not distinguish between secondary settlement and 

predation as the underlying cause of the observed spat losses. Distinguishing between 

the two causes could be important from an ecological point of view, however GSM 

farmers are more interested in the fact that the losses occur and not the underlying 

mechanisms. Spat losses can cost commercial GSM farmers hundreds of thousands of 

dollars annually, due to farmers having to purchase more spat or spend more time and 

effort catching spat to compensate for the losses (Sim-Smith 2006). 
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4.1.3 General conclusions 
The goal of this study was to obtain new quantitative information regarding the 

effects of a common fouling species, the decorator crab N. minor, on farmed GSM spat 

in the Marlborough Sounds, NZ. N. minor were identified by growers in the GSM 

industry as a possible economic threat to mussel farmers. The results of the current study 

support this claim by demonstrating that small GSM spat can be highly susceptible to 

predation by N. minor, and that when N. minor are present on GSM spat farms, spat 

retention rates could drop significantly. The fact N. minor presence also increased the 

attachment rates of GSM spat that were not lost due to predation or secondary settlement 

also leads to increased costs to GSM farmers due to increased spat damage and loss 

during stripping and reseeding. Identifying N. minor as a major cause of reduced spat 

retention rates and the resulting financial losses is not realistic until the reproductive 

behaviour, growth, and distribution of N. minor is investigated further. Currently there is 

no single abiotic or biotic factor that completely explains the low GSM spat retention 

rates observed in the Marlborough Sounds. It is more likely that a complex array of 

factors influence retention rates and this study suggests that N. minor is a previously 

overlooked and underestimated factor that contributes significantly to spat retention 

issues faced by GSM farmers. 

From an ecological perspective the results of the current study appear to 

contradict each other to some degree; N. minor increases both GSM attachment strengths 

and GSM spat losses. The majority of the spat in the field trials were lost due to 

predation or secondary settlement and the increase in byssal attachment strength 

reported in chapter 2 only applied to the GSM spat that were still present after 

experimentation. 
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Due to the fact this study is highly industry focused it is important to note that 

although some ecological contradiction does occur, the evidence does indicate that there 

are two detrimental processes acting on GSM spat in the presence of N. minor that may 

have serious financial consequences for mussel farmers. Firstly, at an early GSM life 

stage, the presence of decorator crabs results in substantial GSM spat losses, either 

directly via predation or indirectly via spat detachment. Secondly, the surviving mussels 

have higher strength of attachment which means energy diverted from growth 

(i.e.production) into byssal attachment and that the mussels are more susceptible to 

damage during reseeding and harvesting processes. 

4.2 FUTURE DIRECTIONS 
The experimental designs of the field and laboratory trials were constrained by 

time, spat availability and industry requirement, which means that there are a number of 

opportunities to expand on the current study. The two field trials were conducted on 

different types of spat at different times of year; at Crail Bay (summer 2006/2007), 

small, recently seeded Kaitaia spat were used, and at Laverique Bay (winter 2006) the 

spat were larger, locally caught spat. This leads to problems when comparing predation 

rates between the sites particularly because the Kaitaia spat were well within the 

preferred size range of N. minor and the locally caught spat at Laverique Bay were 

already at the upper limit of size preference at the start of the field trial. Multiple trials at 

different sites run simultaneously on the same type and size of GSM spat could be used 

to build a more comprehensive picture of the potential implications of N. minor presence 

on GSM spat retention and byssal characteristics. 
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Due to the design of the field experiments, the current study cannot distinguish 

between secondary settlement and predation as the underlying cause of the observed spat 

losses. By supplementing the field trials in the current study with laboratory trials to 

determine the rate of secondary settlement such as those used by Meder et al. (2004), a 

more comprehensive understanding of the underlying causes of GSM spat losses in the 

presence of decorator crabs could be gained. Being able to determine the underlying 

causes of spat losses may be interesting from an ecological point of view, but GSM 

growers are less interested in the causes, than in the fact that large spat losses occur in 

the presence of N. minor. 

Very little published data are available regarding the diet, behaviour and growth 

of N. minor, which is surprising as it is common on GSM farming structures and has 

been identified by members of the mussel farming industry as a potential threat. 

Identifying the growth rates and settlement behaviour of N. minor on GSM farms in the 

Marlborough Sounds was beyond the scope of this study; however understanding the 

settlement behaviour of N. minor could lead to the development of measures that 

minimise the impact of this predator. 

Fish predation of GSMs is minimised by holding small mussels near the water's 

surface, moving spat from areas of high to low fish density within the first 8 wk and 

reducing the amount of fouling and disturbance (Jeffs et al. 1999, Sim-Smith 2006). 

Similar precautions could be taken to minimise the settlement of N. minor onto GSM 

spat farms if the settlement and growth behaviour of this crab species is better 

understood. GSM farmers have experimented with caging of spat susceptible to 

predation with varying levels of success. Early trials included putting a plastic cage 

around each rope and enclosing entire farms in nets, the nets had a tendency to get 
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blocked by fouling species and the mussel spat in the plastic cages migrated to the 

outside of the cage (Dawber 2004). Oyster and clam farmers in the Northern 

hemisphere also use plastic mesh and netting to cover bivalve beds and exclude 

crustacean predators. The predator netting excludes adult crabs but small juveniles often 

still enter the cages and grow rapidly to a size where they are able to consume 

significant numbers of older bivalves (Fiimlin 1993). Caging of GSM spat lines for short 

periods of time soon after seeding or reseeding when the mussels are most vulnerable to 

predation could significantly reduce the numbers of N. minor present. However due to 

the cryptic nature of the decorator crabs it would be difficult to detect any juveniles that 

had made their way into the cages. Regular visual inspection of spat lines for the 

occurrence of high densities of larger N. minor and the subsequent manual removal of 

the crabs is another possible risk management procedure. Many bivalve culturists have 

employed traps to capture and lure away predatory crabs from mussel lines and bivalve 

culture plots, a good understanding of the dietary preferences of N. minor is essential 

when using crab traps. Using traps has the potential to attract more non-target predators 

to the area if the bait and trapping method is too generalised. A more radical method to 

eliminate or minimise N. minor numbers could include the use of chemicals. Acetic acid 

and chlorine dips of spat during reseeding have been used to control fouling species 

(Forrest et al. 2007), including the tunicate Styela clava (LeBlanc et al. 2007) and the 

sea-squirt Didemnum vexillum (Coutts and Sinner 2004). If N. minor settle onto the 

GSM spat lines before the final re-seeding, then similar treatments could also be used to 

eradicate the crabs. Research would be needed to determine the appropriate chemicals 

and concentrations required to remove or kill the crabs whilst causing the lowest 

acceptable damage to the GSMs. The development of hatchery techniques for artificially 
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raising commercial quantities of mussel spat also offers the possibility to selectively 

breed families of GSM that are more resistant to crab predation. 

N. minor is an omnivore and Woods (1993) suggested that bivalves may only 

constitute a small proportion of the diet of a related Notomithrax spp. The dietary 

preferences of N. minor should also be examined in a larger-scale experiment, because a 

number of other taxa, including fouling algae and bryozoan species, are present on GSM 

farms which may be preferred over GSM spat. Personal observations of the experimental 

sections of GSM spat droppers indicated that the density of fouling organisms in the 

high and medium crab density treatments was a significantly lower than in the caged and 

uncaged control treatments. N. minor might prefer to consume problematic fouling 

species such as the blue mussel Mytilus galloprovincialis over GSM making it a 

beneficial species to the GSM industry. 

The results of this study provide novel and practical information describing the 

interaction between the decorator crab N. minor and GSM spat. It also assesses the threat 

this fouling species poses to an economically significant farmed bivalve. The findings of 

this study, and the recommendations arising from it, will be shared with the GSM 

industry to raise awareness of the previously under-estimated threat that crabs pose to 

GSM farms. 
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