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Abstract 

 

Development in pick-and-place robotic manipulators continues to grow as factory processes are 

streamlined. One configuration of these manipulators is the two degree of freedom, planar, parallel 

manipulator (2DOFPPM). A machine building company, RML Engineering Ltd., wishes to develop custom 

robotic manipulators that are optimised for individual pick-and-place applications. This thesis develops 

several tools to assist in the design process. 

The 2DOFPPM’s structure lends itself to fast and accurate translations in a single plane. However, the 

performance of the 2DOFPPM is highly dependent on its dimensions. The kinematics of the 2DOFPPM 

are explored and used to examine the reachable workspace of the manipulator. This method of analysis 

also gives insight into the relative speed and accuracy of the manipulator’s end-effector in the 

workspace. 

A simulation model of the 2DOFPPM has been developed in Matlab’s® SimMechanics®. This allows the 

detailed analysis of the manipulator’s dynamics. In order to provide meaningful input into the simulation 

model, a cubic spline trajectory planner is created. The algorithm uses an iterative approach of 

minimising the time between knots along the path, while ensuring the kinematic and dynamic limits of 

the motors and end-effector are abided by. The resulting trajectory can be considered near-minimum in 

terms of its cycle-time. 

The dimensions of the 2DOFPPM have a large effect on the performance of the manipulator. Four major 

dimensions are analysed to see the effect each has on the cycle-time over a standardised path. The 

dimensions are the proximal and distal arms, spacing of the motors and the height of the manipulator 

above the workspace. The solution space of all feasible combinations of these dimensions is produced 

revealing cycle-times with a large degree of variation over the same path. 

Several optimisation algorithms are applied to finding the manipulator configuration with the fastest 

cycle-time. A random restart hill-climber, stochastic hill-climber, simulated annealing and a genetic 

algorithm are developed. After each algorithm’s parameters are tuned, the genetic algorithm is shown 

to outperform the other techniques. 
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Terminology 

Herein, various terms are used to describe aspects of manipulators, trajectory planning and 

optimisation. A summary of their definitions are presented here. 

Manipulators 

Chain A linkage of independent bodies connected together by joints. 

Closed Loop Refers to a mechanism’s architecture where a set of bodies are connected in parallel 

so as to work alongside each other, rather than one after the other as is the case with 

serial connections. The bodies form a ring structure. 

DOF Degree of Freedom. Describes the number of independent axis of motions a 

manipulator has. Individual degrees of freedom can be translational or rotational 

movements. 

End-effector The final mechanism attached to the end of the manipulator to perform a task. It is 

also referred to as a gripper in pick-and-place applications. 

Open Loop Refers to a mechanism’s architecture where a set of bodies are connected together 

serially (i.e. one after the other) with no body re-connecting to a previous body as is 

the case with closed loop architectures. 

Pick-and-Place Describes a task performed by a manipulator. This consists of picking up an object, 

performing a translation to a different position in space, and placing the object down 

again. 

Revolute Joint A form of joint connecting two bodies together. The motion offered by this joint is 

revolving around a single axis. This is commonly achieved through electric motors. 

Singularity Occurs when the Jacobian matrix describing the motion of the manipulator becomes 

singular. In physical terms of the manipulators’ bodies, this commonly occurs when 

two or more bodies in a chain become aligned leading to a loss of control of one of 

the arms. This is shown in Figure 0.1 where Linkage_1 and Linkage_2 become aligned 

resulting in the loss of independent control of Linkage_2. 
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Figure 0.1 Occurance of a singularity between two body linkages of a chain. 

Workspace Describes the area reachable by the manipulator’s end-effector. 

 

Trajectory Planning 

Continuity A measure of how smooth a trajectory is. A continuity of C
1
 is continuous in the 

domain of the first order derivative (velocity). A continuity of C
2
 has a continuous 

second order derivative profile (acceleration). 

Database 

Primary Key A field, or combination of fields, in a database table that uniquely identifies each 

record. 

Foreign Key A field in a database table that matches the primary key column of another table. The 

foreign key can be used to cross-reference tables. 
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Optimisation 

Cost Function A measure of how poorly a particular solution performs. It evaluates the negative 

performance in comparison to the fitness function which evaluates the performance 

from a positive perspective. 

Fitness A measure of how good a particular solution performs. 

Fitness Function An equation used to evaluate the fitness of a solution. It evaluates the positive 

performance in comparison to the cost function which evaluates the performance 

from a negative perspective. 

Search Space Also referred to as solution space. This describes the set of all possible solutions. 
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1 Introduction 

1.1 Motivation 

The drive to improve factory efficiencies by increasing throughput has led to increased development in 

robotic product manipulators. The manipulators are often referred to as pick-and-place robots due to 

the task that they perform. Traditionally, robotic manipulators have been designed in a generic way 

which allows the same manipulator to be programmed for multiple tasks on different production lines. 

However, these robotic manipulators may not be the optimal design for any given task. Therefore, using 

robotic manipulators to maximise production output, it is imperative that a customised manipulator is 

developed. The design of the pick-and-place manipulator will allow the fastest possible product handling 

cycle for the production line. 

A New Zealand based company, RML Engineering Ltd., would like to explore the opportunities to 

develop a parallel robot with two degrees of freedom (DOF). More specifically, they would like to have 

the tools and knowledge to create custom manipulators that are optimised for a given task. While 2-DOF 

manipulators are commercially available [1], these are highly priced and are not optimised for any 

particular application. Consequently they do not offer the high-end performance RML Engineering Ltd. 

seek. 

Many pick-and-place tasks do not require the complexity of traditional 6-axis robots and can instead be 

achieved using a simplified manipulator operating in a two dimensional plane. As well as the associated 

cost saving of a simpler design, a manipulator that operates in a single plane can be designed to transfer 

greater loads at increased speeds, as is discussed in Section 1.3.2.2. 

RML Engineering Ltd. is to design a standardised two degree of freedom, planar, parallel manipulator 

(2DOFPPM). An initial concept drawing is shown in Figure 1.1. This design, while standard, can be scaled 

and individual dimensions modified to suit a specific application. The ability to modify the dimensions 

for optimal performance is a feature that will be presented in this thesis.  
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Figure 1.1 A SolidWorks™ rendering of RML Engineering Ltd.'s design of the 2DOFPPM  

1.2 Objectives 

There exist two main objectives for this project. These objectives, once achieved, will allow RML 

Engineering Ltd. to analyse and optimise their 2DOFPPM design for specific applications. The objectives 

are: 

• Produce a simulation model of the mechanical system. This will allow analysis of the 

manipulator’s dynamics. 

• Implement a method to optimise the manipulator’s mechanical dimensions for achieving a near 

minimum cycle-time for a particular task. 

The simulation model will be used to evaluate the dynamic behaviour of the manipulator under applied 

motor torques and the external force due to gravity. More specifically, the torques and forces acting on 

the joints and bodies of the manipulator will be examined. The velocity and acceleration of the 

manipulator’s gripper/end-effector are also of interest as these can affect the design decisions of both 

the manipulator and the gripper which holds the object being manipulated. 
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When optimising a manipulator there are many components that could be considered as parameters for 

tuning. This study will only consider the major components that have the greatest effect on the cycle-

time for performing a task. To validate the optimisation method, a number of techniques will be 

considered. The performances of all the implemented methods will be compared to find the algorithm 

best suited to optimising the manipulators dimensions. 

In order to achieve these main objectives, a third objective must also be met: 

• Implement a trajectory planning methodology that seeks to minimise the time taken to execute 

a given task. 

The trajectory planning method will be used to generate input commands for the motors within the 

simulation. It will also be used to compare different manipulator configurations during the optimisation 

process. The trajectories generated by the planner must represent the fastest possible path achievable 

by a given 2DOFPPM configuration, so that comparisons can be made between individual configurations 

based on the relative cycle-times of the trajectories. 

This project’s task is to achieve the objectives stated above. The outcomes of achieving these objectives 

will provide RML Engineering Ltd. with software tools to assist in the development of bespoke 

manipulators. 

1.3 Robotic Overview 

1.3.1 Comparison of Pick-and-Place Architectures 

In the quest for faster and more efficient production lines, there have been a number of robotic 

technologies developed for product handling and manipulation. This area of robotics is often referred to 

as pick-and-place as the robot’s sole purpose is to move objects from one location to another, with the 

possibility of re-orientation at the same time. Pick-and-place robots can be organised into two 

categories depending on how their manipulating arms are configured. These categories are serial or 

parallel. 

Of the two types mentioned, serial is the most commonly implemented. A serial robot is configured such 

that each arm/axis is linked to another arm/axis in the form of a chain (for example, axis 4 is mounted to 

axis 3 which in turn is mounted to axis 2, which is connected to axis 1, with axis 1 being located to the 

base of the robot). This linked structure allows a great degree of dexterity as it is based around the 

biological structure of a human arm. An example of a serial robot is shown in Figure 1.2. 
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Figure 

The dexterity of serial robots makes them a popular choice in production applications where 

components have to be assembled in ways that are 

very versatile and can be easily reprogrammed to perform another task (

run is completed for widget A, the same robot can be used for a completely different product, widget B). 

However, serial robots do have several draw backs. Inaccuracies are accumulated, so that a small error 

in axis 1 is multiplied such that the error at the end

to the end axes’ actuators being carried by the earlier axes, the links have to be r

the additional load. This adds additional inertia to the system, thus reducing the 

now expected that when speed is the most important issue, an alternative to a 

used. 

Cartesian robots, also known as 

robots are a form of linear robot, meaning that the two or three principal

(that is, they move in a straight line). The axes are also at right angles to one another. 

Cartesian robot is shown in Figure 

suited to transporting heavy loads. Recent advancements in linear actuators

Cartesian systems are now both fast and highly accurate. The main disadvantage of 

                                                          

1
 Image sourced from Herman Bruyninckx

by the authors, who release the text and the figures under the open content WEBook license.
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Figure 1.2 PUMA robot, an example of a serial manipulator
1
 

robots makes them a popular choice in production applications where 

components have to be assembled in ways that are very difficult for other robots to reach. They are also 

very versatile and can be easily reprogrammed to perform another task (for example

run is completed for widget A, the same robot can be used for a completely different product, widget B). 

robots do have several draw backs. Inaccuracies are accumulated, so that a small error 

that the error at the end-effector/TCP (tool centre point) is much greater. Due 

being carried by the earlier axes, the links have to be r

the additional load. This adds additional inertia to the system, thus reducing the 

now expected that when speed is the most important issue, an alternative to a 

also known as gantry robots, are a variation of the serial 

robot, meaning that the two or three principal axes are controlled linearly 

they move in a straight line). The axes are also at right angles to one another. 

Figure 1.3. Due to the linear nature of the axes, Cartesian

suited to transporting heavy loads. Recent advancements in linear actuators

systems are now both fast and highly accurate. The main disadvantage of 

                   

Herman Bruyninckx contribution to The Robotics WEBook, www.roble.info

authors, who release the text and the figures under the open content WEBook license.
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for other robots to reach. They are also 

for example, once a production 

run is completed for widget A, the same robot can be used for a completely different product, widget B). 

robots do have several draw backs. Inaccuracies are accumulated, so that a small error 

(tool centre point) is much greater. Due 

being carried by the earlier axes, the links have to be reinforced to cope with 

the additional load. This adds additional inertia to the system, thus reducing the speed of the robot. It is 

now expected that when speed is the most important issue, an alternative to a serial system will be 

 configuration. Cartesian 

axes are controlled linearly 
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systems are now both fast and highly accurate. The main disadvantage of Cartesian robots is 
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that the working envelope of the system is smaller than the robot itself (that is, the gantry frame limits 

the work area). 

 

Figure 1.3 Direction of actuation for a Cartesian robot
2
 

The alternative to the serial configurations presented above is the parallel manipulator. Parallel robots 

are closed loop mechanisms that have an end-effector supported by at least two chains, controlled by 

separate actuators [2]. The most popular of these is the Delta robot, which comes in both three and four 

axis variations. The Delta robot, shown in Figure 1.4, was first commercialised in the 1990s as the 

Flexpicker™ by ABB®. Originally under strong patent protection, the system has been replicated by many 

other vendors [3]. The Delta robot is now the default choice for high speed pick-and-place applications 

involving objects less than 1 kg in mass. 

 
Figure 1.4 Delta Robot - a popular form of parallel manipulator for high speed pick-and-place applications 

                                                           

2
 Image obtained from http://www.pe.tut.fi/akp/images/cartesian on 12/02/10. 
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Parallel robots offer several advantages over serial robots, including greater rigidity due to the closed 

loop architecture [4], higher payload/weight ratio and reduced inertia as the actuators can be mounted 

at a fixed base instead of on the arms [5]. They also feature higher precision, due to positioning errors 

being averaged rather than compounded as they are in serial manipulators [6]. However, the closed 

loop structure requires more complex mathematical analysis, as well as the disadvantages of more 

singularities, lack of dexterity and a smaller workspace [7]. 

The advantages of parallel manipulators make them ideal for high speed pick-and-place movements 

where the path followed by the end-effector is free of any obstacles. As this is the case for many 

industrial applications, the parallel architecture shall be considered in this thesis. This will focus on a 

specific configuration of parallel manipulators, the 2DOFPPM. 

1.3.2 The 2DOFPPM 

1.3.2.1 Construction 

At an elementary level the 2DOFPPM is the simplest useful form a parallel manipulator can be. The 

manipulator has a single closed loop chain of four arms and a base platform. The manipulator’s 

mechanical components are presented in Figure 1.5. Two motors, Motor_A and Motor_B, are mounted 

to the base platform and actuate the proximal arms, Prox_A and Prox_B. Each proximal arm is then 

connected to a passive (not actuated) distal arm. These distal arms are labelled Dist_A and Dist_B in 

Figure 1.5. The other ends of the distal arms are passively connected together to form a closed loop. A 

gripper, or end-effector, is mounted to the point where the two distal points are joined. 

In addition to the major components, there is a set of mechanical components to ensure the gripper 

remains horizontal, that is, parallel to the base platform. This group of components is termed the 

stabiliser arm and is shown in blue in Figure 1.5. The stabiliser arm is not actuated and simply shadows 

the Prox_B and Dist_B control arms. Prox_Stab_B is the same length as Prox_B and Dist_Stab_B is the 

same length as Dist_B. Several components, labelled Prox_Crank and Dist_Crank are used to hold the 

two stabiliser linkages, Prox_Stab_B and Dist_Stab_B, at an offset, and parallel to Prox_B and Dist_B 

respectively. As the stabiliser arm is only to prevent the gripper from rotating about its mounting point 

and does not bear the load, it may be made of lighter or reduced material. 
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Figure 1.5 2DOFPPM Construction 

A coordinate convention is defined with the +Y axis being vertical upwards and the +X axis being 

horizontal towards the stabilising arm. The Z axis is redundant as the manipulator operates in a single 

plane. Therefore all the components have a constant position in the Z frame of reference. The origin 

(0,0,0) is defined as the middle of the base platform. This convention is used throughout this thesis. 

A revolute joint exists at each interface between the base and the proximal arms, the proximal arms and 

the distal arms, and the two distal arms. Each joint rotates about the Z axis. For this project, the joints 

jAPD, jBPD, jABS are assumed to be passive joints, consisting of an ideal bearing with zero resistance. 

Similarly the joints of the stabilising components (jSBP, jSPC, jSCD, jSDC) are assumed to affect zero rolling 

resistance load on the system. 
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1.3.2.2 Features 

The 2DOFPPM benefits from the same features as more complex parallel manipulators. The inertia of 

the manipulator is relatively small when compared to serial equivalents. This is due to the two motors 

being mounted at the base, leaving only the arms, gripper and the load being manipulated, moving in 

space. This permits fast rotation of the motors, which, when combined with the lever system formed by 

the arms, generates very high acceleration and speed at the end-effector. Experiments have seen the 

2DOFPPM’s end-effector velocity reaching 8.5 ms
-1

 with accelerations exceeding 230 ms
-2

 with a 1 kg 

load [8]. 

With the end-effector only two linkages away from the fixed base, the positional errors are much less 

than those of the common six DOF serial manipulators. Errors are formed by averaging the inaccuracy of 

each of the two chains, where the inaccuracy of each chain is due to positional errors in the actuators, 

slop in the passive joint formed by the proximal and distal arms, and flex in the arms. This compares 

favourably to serial manipulators with greater DOF. An increase in the number of DOF introduces extra 

errors which are accumulated in the serial architecture, rather than averaged as they are in parallel 

systems. 

The stiffness of a parallel structure is further improved with the 2DOFPPM acting in a single plane. The 

forces being transmitted run along the same plane of actuation. This means that there is no shearing 

force along the Z axis, which has traditionally been a limiting factor in the load bearing capability of 

parallel manipulators. Working in a single plane, revolute joints can be used, which can bear higher 

loads than the spherical joints found in other parallel manipulators like the Delta. This means the 

2DOFPPM can fundamentally carry heavier loads. 

1.4 Thesis Structure 

This chapter describes the motivation for the project. Several manipulator configurations are presented 

and their strengths and weaknesses discussed. A detailed overview of the 2DOFPPM is included. The 

research objectives are presented and an outline of the thesis is provided below.  

Chapter 2 offers background information on the subjects of industrial manipulators, trajectory planning 

and manipulator optimisation. The existing research related to this thesis is presented and discussed. 

Based on the current state of the art, justifications are given for the approaches used in this thesis. 

Chapter 3 covers the analysis of the mechanical system via simulation methods. The workspace of the 

2DOFPPM is analysed after considering the forward and inverse kinematic model. The manipulator is 
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simulated using a simulation engine (SimMechanics®) and the model’s output analysed. This simulation 

model provides insight into the manipulator’s dynamics and is used again in Chapter 5 to review any 

optimised manipulator configurations. 

Chapter 4 presents a trajectory planning method that seeks to find a time-minimum trajectory for the 

manipulator to traverse a given path. This trajectory planning method is used to provide input into the 

SimMechanics® simulation of Chapter 3 as well as being used to generate optimisation results in 

Chapters 5 and 6. 

Chapter 5 considers altering certain dimensions of the manipulator to achieve a faster path cycle-time. A 

method of generating and storing large amounts of simulation data is presented. The search space of 

possible manipulator configurations is explored. An introduction into optimisation techniques is given 

along with a justification of the techniques implemented in this thesis. 

Chapter 6 presents the full implementation of the optimisation algorithms. The performance of the 

different methodologies is statistically evaluated and one method is chosen as being the most suitable 

for the task. An optimised manipulator configuration is then viewed in the SimMechanics® simulation of 

Chapter 3 to validate the configuration’s performance. 

Chapter 7 concludes the research presented in this thesis and makes recommendations for future work. 
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2 Literature Review 

This chapter provides an overview of existing research relevant to this project. It is separated into three 

sections. The first section presents the approaches of other researchers in analysing the workspace of 

parallel manipulators and specifically, the 2DOFPPM. The second section discusses existing trajectory 

planning methods, outlining the strengths and weaknesses of each of them. The third section examines 

current methodologies in optimising manipulators for improved performance. 

2.1 Parallel Manipulators and Their Workspace Analysis 

The first parallel mechanism was developed in 1956 by Gough [9] as a universal tyre testing machine. 

This was followed a few years later by the more famous Stewart Platform [10], created as the base for a 

flight simulator. These mechanisms, shown in Figure 2.1, had six degrees of freedom (DOF). The first 

pick-and-place manipulator developed with a parallel architecture was the three DOF Delta robot [11]. 

Clavel, the inventor of the Delta mechanism, questioned why large and heavy serial manipulators were 

being used to perform lightweight pick-and-place operations. His research resulted in a manipulator 

with base mounted actuators and low-mass arms that could easily outperform the serial counterparts 

when moving light objects. Clavel’s design was strongly patented and commercialised by ABB® as the 

FlexPicker™, shown in Figure 2.2. Since the expiration of the FlexPicker™ patent, many three and four 

DOF variations of the Delta manipulator have been commercialised.  

 
Figure 2.1 Early examples of parallel manipulators: Gough's Universal Tyre Tester (left) and a flight simulator using a Stewart 

Platform (right)
3
. 

                                                           

3
 Images obtained from http://commons.wikimedia.org on 22/12/10 under the Creative Commons Licence. 
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Figure 2.2 ABB® Flexpicker™ - the first commercialised parallel pick-and-place manipulator
4
. 

While much research has been undertaken into the Delta and its four DOF variation, there have been a 

relatively small number of researchers who have investigated the simpler two DOF variant. Although the 

three and four DOF variants have greater versatility by being able to operate in all three dimensions, 

there are certain applications where a two DOF planar manipulator is suitable and in some cases 

advantageous. Wherever a product needs to be moved in a single plane (for example, between two 

conveyors), a two DOF manipulator will suffice. As explained in Section 1.3.2.2, by moving in a single 

plane, heavier loads can be carried thereby giving the 2DOFPPM a greater advantage over three 

dimensional manipulators. In recent years the 2DOFPPM has grown in popularity and has been studied 

by Huang [12-15], Gao [16][17], Baradat [8], Li [18][19], Cervantes-Sánchez [20], Stan [21] and others. 

Piras et al. [22] shows through finite element analysis (FEA) of a 2DOFPPM, the effects of vibration on 

accuracy are minimal, but that they are also highly dependent on the precise configuration. Li [19] went 

further to say that the analysis of flexible linkages in the 2-DOF parallel robot is of significant importance 

when high speed and high precision are required. Li [18] also found that the tubular structure of the 

arms, specifically the outer diameter, was of great importance to the system’s rigidity.  This indicates 

that for the most part, the system simulation can be limited to rigid body analysis, with dynamic 

vibration analysis being undertaken near the end of the design cycle to further tune the manipulator for 

highest performance. 

                                                           

4
 Image obtained from www.abb.com on 22/12/10. 
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Several modifications have been made to the basic structure of the 2DOFPPM to improve one or 

another performance aspect. Baradat et al. [8] presents a configuration with improved stiffness in the 

plane perpendicular to the plane of motion. This is achieved by introducing two redundant stabilising 

arms, mechanically coupled together in the perpendicular plane, to counteract any vibration or 

movement in the direction normal to the plane of motion. The additional arms however, greatly 

increase the manipulator’s footprint while also adding extra inertia to the system. Hu et al. [23] present 

a 2DOFPPM with increased stiffness via the introduction of several passive chains connecting the base to 

the end-effector via a translational sliding mechanism. Unlike Baradat’s design, this does not add to the 

size of the mechanism’s footprint, however it does increase the inertia of the system. 

Huang et al. [13] extends the studied manipulator to a third degree of freedom, by incorporating the 

existing mechanism onto a translational actuator in the plane perpendicular to the typical plane of 

operation. This side shifting mechanism allows the manipulator to be used in all three dimensions of 

space, while maintaining the primary benefits of the parallel architecture.  

When defining the workspace of the 2DOFPPM, it is common to refer to it as being the area reachable 

by the end-effector without passing through any singularities of the manipulator [16][20]. However 

Huang et al. [13][14] defines the workspace of the 2DOFPPM as being of rectangular shape within the 

actual area reachable by the end-effector. This reduction in workspace, while theoretical, provides more 

simplistic parameters to evaluate the manipulator’s performance using an index method. A number of 

researchers use the idea of a conditioning index, originally developed by Gosselin and Angeles [24], to 

give an indication of global performance aspects of the manipulator within the workspace [13][14] 

[17][25]. The conditioning index uses the Jacobian matrix of the system to determine the behaviour of 

the manipulator in the workspace. More specifically, the performance index provides a single value 

indicating the accuracy and speed of the end-effector within the workspace. This allows comparisons of 

the global performance within workspaces formed by different manipulators but does not allow direct 

comparison of manipulators over a given path. The index also gives an indication into how susceptible 

the manipulator is to reaching a singularity pose. This can be useful in determining the reachable 

workspace. 

The stabilising arms are used to keep the end-effector parallel with the base. Huang et al. [15] identified 

a potential risk in the stabilising arms over-constraining the manipulator if manufacturing tolerances are 

too tight. If there is no clearance in the joints on the stabiliser arms, the unavoidable imperfections in 

the manufacturing process will result in stabiliser arms locking the entire manipulator into a fixed 
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position. Huang et al. has provided a method to allocate tolerances to the manufactured manipulator 

components.  

2.2 Trajectory Planning 

The control process of a manipulator is typically separated into levels of abstraction. The lowest level 

consists of a closed-loop control system tracking a given trajectory. The next level involves planning the 

trajectory of the actuators. Above that is the generation of the path for which the end-effector is to 

travel through. Higher levels can exist that are often related to the tasks being performed by the 

manipulator. This project is not concerned with the closed-loop control tracking, nor the high task level 

control, but rather involves taking a desired path for the end-effector and transforming it into time 

dependent trajectories for each of the manipulator’s actuators. This process is commonly referred to as 

trajectory planning. 

There exists a wide range of trajectory planning methodologies used to control manipulators. They vary 

in computation complexity, path accuracy, trajectory smoothness and path cycle-time. This section 

discusses the key methods used in industry and for research, highlighting their performance and 

applications. 

A manipulator’s productivity can be increased by executing a task’s path in minimum time or by 

minimising down time. The trajectory planning technique often affects both of these. The cycle-time of 

trajectories can vary based on the method used to generate them, but also some methods of generation 

can take excessive time such that the manipulator must wait for computation to complete before 

executing the path. Such methods are referred to as being off-line algorithms, which are less favourable, 

in terms of computational intensity, than on-line algorithms [26]. 

Another consideration when choosing trajectory planning techniques is how smooth the resulting 

trajectory is. Smoothness is normally considered in terms of the joint actuators, rather than the 

smoothness of the path travelled by the end-effector [27]. This is because a trajectory which is not 

smooth for the actuators will create vibration in the manipulator and can result in poor path tracking. A 

popular method for rating the smoothness of a trajectory is to refer to its level of continuity. A trajectory 

which has C
1
 continuity means that the velocity, or 1

st
 order derivate of the path with respect to time, is 

continuous over the entire path. Similarly, a path with C
2
 continuity has continuous acceleration over 

the whole path. 
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There are two options in choosing a frame of reference for planning a trajectory. The first option 

involves converting the Cartesian path into joint paths by inverse kinematics and then controlling the 

manipulator at the joint level. Alternatively, the joint limits (velocity, acceleration, torque, etc.) are 

converted into Cartesian bounds and then the trajectory is planned at the end-effector level. Luh and Lin 

[28] sought to minimise a trajectory using the latter method but found the conversion of the joint limits 

too difficult due to the non-linear and highly coupled manipulator dynamics. Therefore, the first method 

of converting the Cartesian path into joint space is favoured. 

A popular method for generating smooth trajectories is to use polynomial functions. In this process, 

Cartesian defined knots are converted to N sets of single dimension joint positions, where N is the 

number of knots. A polynomial is then fitted to pass through each of the knots in joint space, thus 

forming the trajectory for each actuator. Zhihong [29] and Spong et al. [30] show that the polynomial 

can either be a single high-order polynomial of order N, or be formed as piecewise segments. The single 

high-order polynomial provides a high level of smoothness but can become computationally intractable 

as the number of knots, and consequently the order of the polynomial, increases [29]. A more common 

approach, and one that is implemented in industrial controllers [30], is to define individual polynomials 

of a lower order between each knot. To ensure continuity between individual polynomial segments, 

constraints are applied forcing the velocity, acceleration and/or jerk profiles to be continuous over the 

entire path. At the simplest level, 3
rd

 order cubic polynomials are used. These can provide a trajectory 

with continuous velocity and acceleration, but will likely have a discontinuous jerk profile. An example of 

how a cubic polynomial is used to describe a joint trajectory is given in Equation (2.1), where the angular 

position, �, of joint � is described by a third order polynomial of time �, with coefficients �� to ��. 

����	 = ����	 + ����	��	 + �
��	��	
 + ����	��	� (2.1)

 

In the 1970s Paul [31] and Finkel [32] investigated using cubic polynomials to interpolate knots for 

manipulator trajectory planning. These required solving 3(N-1) or 4(N-1) systems of linear equations 

where N is the number of knots. These methods proved to be smooth and have small overshoot of joint 

displacement. In 1983, Lin et al. [33] popularised cubic polynomial use for manipulator trajectory 

planning when they developed a method to minimise the time between knots. They used Nelder and 

Mead’s [34] flexible polyhedron search to iteratively alter the path-time at each knot until a near 

minimum cycle-time is found which satisfies the constraints of the manipulator. A trajectory planner of 

this type was implemented specifically for the 2DOFPPM by Hu et al. [23]. 
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Chand and Doty [35] developed an on-line cubic spline trajectory planning methodology. By only 

considering a limited number of knots immediately ahead of the current position, and not the entire 

path, the trajectory could be computed quickly and alterations to the path made on the fly.  

Boryga and Grabós [36] presented a study of trajectory planning for a serial manipulator using piecewise 

5
th

, 7
th

 and 9
th

 order polynomials. They found the 7
th

 order polynomial fitment to be optimal for avoiding 

the limits of the manipulator over a given path and cycle-time. This however, is highly dependent on the 

configuration of the manipulator. 

Thompson and Patel [37] used an alternative method of fitting B-splines to control points, or knots, 

along the path. Unlike cubic polynomials, B-splines do not pass through the knots but instead are 

‘pulled’ towards them. Formulating the splines is computationally easy and can be computed fast 

enough to allow the trajectory planner to be executed on-line. B-splines provide a smooth trajectory 

with continuous position, velocity and acceleration that is easily followed by real-world joint actuators. 

Thompson and Patel’s method allowed velocity and acceleration constraints to be set at each knot along 

the path. Wang and Horng [38] sought to minimise the cycle-time of a B-spline trajectory controller by 

using a recursive flexible polyhedron search method to alter the path time between knots. Despite the 

research into B-splines, they have failed to be implemented into industrial controllers. This is largely 

because the trajectory generated does not pass through the control points, hence lacks the accuracy 

levels needed in industry. 

In general, the trajectory planning methods previously discussed only consider the kinematic limitations 

of the manipulator, that is, the bounds on velocity, acceleration and jerk. However, in reality the 

manipulator’s actuators are also limited by dynamic constraints, such as torque and torque rate. To truly 

maximise the manipulator’s capabilities and find a time-minimum trajectory, the trajectory planner 

must take into account a dynamic model of the manipulator. Kahn and Roth [39] first attempted to 

produce a trajectory planner that took into account the dynamic model. This consisted of optimising an 

unconstrained path subject to torque limitations using Pontryagin’s principle [40]. However, the result 

was computationally intractable, and the dynamic model had to be linearised for an optimal trajectory 

to be found. This linearization of the dynamics results in significant errors, rendering the method 

unsatisfactory [41]. 

Geering et al. [42] showed that for various manipulator configurations the time-minimum trajectory 

subject to torque constraints must be either a bang-bang or bang-singular-bang trajectory. A bang-bang 

trajectory is where the actuator is exerting maximum acceleration up until a switching point where it 
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applies maximum deceleration. A bang-singular-bang trajectory is similar except that a maximum 

velocity is reached before the switching point and the actuator cannot continue to accelerate [29]. 

Figure 2.3 shows the velocity profiles of both a bang-bang and bang-singular-bang trajectory. Chen and 

Desrochers [43] proved that for the trajectory to be traversed in minimum time, at least one of the 

actuators must be in torque saturation along the entire trajectory. 

 

Figure 2.3 Velocity-Time profiles of bang-bang (left) and bang-singular-bang trajectory (right). 

Bang-bang trajectory planning algorithms, when considered in isolation from the rest of the control 

system, appear to be optimal. However, when tracking a purely time-optimal trajectory with a simple 

controller, actuator saturation occurs which causes poor tracking, vibrations in the machine and 

increased machine wear [44-46]. In order not to exceed the actual capabilities of the manipulator, the 

actuator bounds must be chosen conservatively, possibly forcing the manipulator to be underutilised 

[47]. 

Bobrow et al. [48] and Shin and McKay [49] independently developed a trajectory planning method that 

would allow both the kinematic and dynamic constraints to be taken into account. The method first 

determined a function that describes the maximum velocity along the path, dependant on the position 

along the path. Knowing this function, switching points are calculated which switch the actuator from 

maximum acceleration to maximum deceleration at points along the path so as to minimise the overall 

cycle-time. Other variations have been made to this method seeking to improve the performance of the 

algorithm [46][50-52], or make it suitable for on-line calculation [26][53]. Huang et al. [54] has 

implemented a variation of Bobrow et al. and Shin and McKay’s trajectory planner, specific to the 

2DOFPPM. 
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Due to the importance in minimising the cycle-time of manipulators for industrial applications, a large 

amount of research has been undertaken into trajectory planning techniques. This area of research 

continues to be active as even the smallest increase in performance can equate to large financial benefit 

in high production industries. Within this project, the exact trajectory planning technique is not 

important. The trajectory planner is used to compare the performance of different 2DOFPPM 

configurations. Therefore, the only consideration is that the methodology chosen must produce near-

minimum cycle-times that give a good indication into the performance of the 2DOFPPM configuration 

relative to alternative 2DOFPPM configurations. An in-depth discussion of the trajectory planner is 

presented later in Chapter 4. 

2.3 Manipulator Optimisation 

Improving the performance of manipulators in industry can be achieved by improved trajectory planners 

or through developing superior manipulators. While there has been an abundant amount of research 

into trajectory planners, the concept of optimising the manipulator itself has seen somewhat less 

attention. This may be due to many manipulators needing to remain generic in order to serve multiple 

applications. However, for many pick-and-place applications, the task that is performed remains the 

same for the life of the manipulator. It is in these situations, where a custom manipulator could be 

developed that would outperform a generic equivalent. This section presents existing research related 

to optimising a manipulator’s dimensions. 

The importance of customising manipulators is further backed up by Merlet [55], who argues it is 

absolutely necessary in order to ensure the highest performance is obtainable from the mechanism. 

Merlet states that this is especially true of parallel manipulators due to a high degree of coupling that is 

intrinsic in parallel architectures. 

Zhuang et al. [56] argued that cost functions related to manipulators are highly non-linear, and as such 

often have many local minima. This means that gradient based optimisation methods like hill-climbers 

are inadequate. Zhuang et al. instead used an optimisation technique known as simulated annealing to 

find the manipulator configuration that gave the least positional error. With correctly chosen 

optimisation parameters, simulated annealing can overcome local minima to find the global minimum 

[57]. The style of manipulator used for this study was a serial robot. 

Similarly, Stan et al. [58][59] uses a simulated annealing process to maximise the workspace of the 

2DOFPPM. This process, while finding the relative dimensions that give the maximum workspace, does 
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not look at other performance aspects such as path cycle-time or end-effector accuracy. This is useful in 

evaluating the versatility of a manipulator, but does little for the pick-and-place performance indicators 

of speed and accuracy. Stan et al. [21] carries on from his earlier work and seeks to maximise 

transmission quality, manipulability and stiffness indexes of the 2DOFPPM workspace. This is achieved 

through a genetic algorithm. 

Cochron and Bidaud [60] developed a genetic algorithm to optimise a serial manipulator for a specific 

task. The task consisted of an end-effector path with obstacles to be avoided. Six criteria were optimised 

including maximising the reachability, proximity to obstacles and dexterity, and minimising the 

complexity/inertia of the linkages, as well as the linear and angular distances travelled. 

Feddema [61] found that the placement of a manipulator within the work area can alter the path cycle-

time by up to 25 %. Using both six and two DOF serial manipulators as examples, a gradient descent 

method was used to find the optimal position to place the manipulator. This proved to be several orders 

of magnitude faster than locating the position by exhaustive search. In Feddema’s method, the gradient 

descent was preceded by a coarse exhaustive search of the solution space, thus providing a good 

seeding value for the gradient descent to start from. This also largely avoided the effects of becoming 

stuck in local minima. 

Pashkevich and Pashkevich [62] took a different approach to this same problem by seeking to find a 

Pareto-optimal set of solutions based on a multi-objective criterion. A genetic algorithm was used to 

find a set of solutions that were optimal in at least one of the objectives. 

Mitsi et al. [63] also recognised the importance of where the manipulator’s base is positioned in the 

work area. By using a specially developed genetic algorithm combined with a hill-climbing routine, a 

system was developed that minimised the travel distances and maximised the dexterity of the joints of 

an industrial six DOF serial manipulator. This custom method was shown to perform better than a 

genetic algorithm alone. 

While there has been some research around optimising manipulators, there has not been a comparative 

study of optimising algorithms as applied to finding the best manipulator dimensions to achieve the 

fastest possible path cycle-time. This comparison is presented in this thesis for optimising the 2DOFPPM. 
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2.4 Summary 

In summary, the 2DOFPPM is a simplified version of the very popular Delta robot. By only operating in a 

single plane, there is an increase in stiffness and load bearing ability but at the cost of some versatility. 

However, pick-and-place movements are often fixed for the lifetime of the manipulator, thus in such a 

scenario, a 2DOFPPM will be sufficiently effective. A number of subtle improvements to the general 

structure of the manipulator have been presented here. While not attracting as much research as the 

delta robot, several researchers have sought to optimise the workspace of the 2DOFPPM through use of 

a condition index that gives a value to the performance of the manipulator within the workspace. 

A selection of trajectory planning methodologies has been discussed. The trend of researchers in this 

area is to plan the trajectory in joint space as this allows integration of the manipulator’s dynamic 

constraints. Trajectory planners can be grouped as on-line or off-line depending on their computational 

complexity. On-line methods are preferred as they allow the trajectory to be computed on the fly while 

the manipulator is moving, thus increasing up-time of the machine. Using piecewise polynomials to 

define the trajectory between knots is a common technique that allows the kinematic limitations of the 

manipulator to be taken into account. More complex methods also exist that minimise the cycle-time 

within the dynamic constraints of the manipulator. For this project, the exact trajectory planning 

method is not critical provided it achieves near-minimum cycle-times. It may be an off-line or on-line 

system. 

This project seeks to minimise the cycle-time of a 2DOFPPM by finding the optimal dimensions of the 

manipulator. Several researchers have looked at similar problems to this and tested various optimising 

methodologies. This project compares the performance of different optimising methodologies as they 

apply to optimising the 2DOFPPM for a specific task. An optimised manipulator, while specialised in only 

a single task, can provide increased production in industry where the task is repetitive and consistent. 
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3 Mechanical Simulation Analysis 

This chapter covers the simulation of the studied mechanism. Kinematic equations are first developed 

and then used to analyse the reachable workspace of the manipulator. Once this is achieved, Matlab’s® 

SimMechanics® simulation package is used to model the manipulator.  

3.1 Workspace Analysis 

The reachable workspace of a robotic manipulator is useful to know. This defines where the end-

effector of the manipulator can reach and as such determines whether or not the manipulator can 

achieve a given task. For a given path, Figure 3.1 and Figure 3.2 demonstrate a reachable and 

unreachable workspace respectively. In Figure 3.1, the path of the end-effector is completely contained 

within the workspace, whereas the same path shown in Figure 3.2 has some parts outside the 

workspace. A manipulator with the workspace of Figure 3.2 would not be able to complete the given 

task.

 

Figure 3.1 Reachable workspace, i.e. end-effector path is 

within reach of manipulators limits 

 

Figure 3.2 Unreachable workspace, i.e. part of the end-

effectors path lies outside the manipulators workspace 

 

As the manipulator being studied only has two degrees of freedom, the workspace can be obtained by 

moving each actuated arm (degree of freedom) through its full range of motion while holding the other 

arm stationary, iteratively stepping the stationary arm on through its full range of motion after each 

sweep of the non-stationary arm. By plotting the position of the end-effector at each of these points a 

diagram of the workspace can be formed. While this may be easily obtained when using a physical 

model, in software the kinematics of the system must be known. 
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The kinematics of the system describes the motion of the bodies without consideration of the forces 

that cause the motion [64]. This can be broken up into forward and inverse kinematics. While only 

forward kinematics are needed to find the workspace, the inverse kinematics will also be presented here 

for later reference as the calculations are often related. 

3.1.1 Forward Kinematics 

The forward kinematics specifies the valid positions of all bodies/arms for given angles of the two 

actuated joints. Figure 3.3 specifies the angles relative to +Y-axis in an anti-clockwise direction for θA, 

and clockwise for θB. This convention was chosen initially as it would ensure that all realistic angles 

would be positive and less than 360°. While many researchers would rather use the clockwise angle of 

the +X-axis as a plane of reference, it was decided that it would be preferential to align to the 

convention that exists in the most popular of parallel pick-and-place manipulators, the Flexpicker™ by 

ABB® [65]. 

 

Figure 3.3 Configuration with driven angles referenced relative to the +Y-axis 

It will be assumed that the mechanism is symmetrical about the origin, that is, the lengths of the 

proximal and distal arms shall be considered equal in length on both sides:  

‖��‖ = ‖��‖										, ‖�
‖ = ‖�
‖ (3.1)
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The following is the derivation of the TCP (tool centre point, i.e. end-effector) coordinates given θA and θB. Figure 3.4 is used as a reference for the following calculations. 

  

Figure 3.4 Derivation of manipulator's forward kinematics 

The positions of the joints Aj12 and Bj12 are easily resolved using Pythagoras: 

���
 ���� = �−� 2� − �� sin�# −θ$	−�� cos� # −θ$	 ' (3.2)

 

���
 ���� = �−� 2� + �� sin� # −θ(	−�� cos� # −θ(	 ' 

 

(3.3)

Given the fixed position of the actuated proximal arms, A1 and B1, the TCP coordinate can be obtained 

by finding the intersection of the two circles traced by rotating the distal arms, A2 and B2 about the 

joints Aj12 and Bj12. This is displayed graphically in Figure 3.4 and can be resolved mathematically as 

shown below: 

�

 + �
 = �

 + )
 (3.4)
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.���� = /���
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��		+���
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��		+ 0 (3.7)

 

∴ 123 ���� = /.��	 ±	ℎ����
��	 − ���
��		+.��	 ∓	ℎ����
��	 − ���
��		+ 0 

 

(3.8)

 

As shown in Equation (3.8), for given values of θA and θB, there can exist up to two distinct 

arrangements of arms while maintaining a closed loop structure. When considered in practical terms, in 

pick-and-place applications, only one of these configurations, at most, is permissible. This is due to the 

planar mechanism having a work area underneath itself, and as such any configuration with the end-

effector above the X-axis must be considered invalid. Based on this rule, Figure 3.4 shows the difference 

between an allowable configuration, TCP1, and an invalid one, TCP2. 

Further to this, a configuration may be disallowed due to the potential for singularities either at the 

position or while moving to it. A singularity occurs when two or more connected arms become aligned, 

causing a loss in control of a degree of freedom. Singularities can be avoided by disallowing any 

configuration with internal angles (interior angles formed between arms-arms or arms-base) greater 

than or equal to 180°. Figure 3.5 shows an example of such a configuration which would be disallowed. 
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Figure 3.5 An example of an invalid configuration which has had to pass through a singularity to result in this position. 

3.1.2 Inverse Kinematics 

Realising the forward kinematic relationship is only half the kinematics. The inverse kinematics must also 

be obtained. The inverse kinematics answers the issue: “given a desired TCP coordinate (X, Y), determine 

the required angles for θA and θB”. Deng et al. [66] shows for a similar manipulator that there are four 

possible configurations for a given TCP, however, only one of these is permissible if singularities are to 

be avoided. Huang et al. [13] have shown that the solutions can be limited by using formulae (3.9) and 

(3.10). These hold for a five-bar mechanical linkage with 2-DOF: 

�6 = −#2 + 2tan9�
:
;−<6 − -<6
 − =6
 + >6


=6 − >6 ?
@ (3.9)

 

�A = #2 − 2tan9�
:
;−<A + -<A
 − =A
 + >A


=A − >A ?
@ (3.10)

where:    

<6 = −2��123B,  <A = −2��123B, 

>6 =	−2�123C + D
���, >A =	−2 �123C − D
���, 

=6 = �123C + D
	
 + 123B
 + ��
 − �

 , =A = �123C − D
	
 + 123B
 + ��
 − �
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3.1.3 Reachable Workspace 

With the knowledge of the mechanism’s forward kinematics, the workspace can be determined. This 

was done in Matlab® by deriving the end-effector’s X-Y coordinates for 0° ≤ θA ≤ 360° and 0° ≤ θB ≤ 360°. 

Samples were taken at 5° increments. Additional joint angle constraints were included to represent 

mechanical limits imposed by the real-life design. These constraints were obtained from RML 

Engineering Ltd. The coordinates were then plotted to reveal the reachable workspace of a given 

manipulator configuration. The pseudo code of how this is done is shown in Figure 3.6. 

procedure produce reachable workspace 

begin  

θA = θA_min 

θB = θB_max 

while θA < θA_max do 

evaluate TCP using forward kinematics from θA and θB 

if θB < θB_min then 

θA = θA + stepsize 

θB < θB_min 

else 

θB = θB – stepsize 

end 

end 

end 

  

Figure 3.6 Pseudo code for producing the reachable workspace of the manipulator 

The position of the TCP is evaluated using forward kinematics for different motor positions. The 

positions of �6 and  �A are iteratively altered between the minimum and maximum values with a 

granularity based on the parameter stepsize. This provides a close estimate to the reachable workspace 

of the manipulator. 

3.2 SimMechanics® Simulation 

Matlab® was used as the software development environment for this project due to its efficient 

computation ability, object-oriented programming support and its large selection of add-on features. 

One of these features is the Simulink® simulation environment which allows the modelling, simulating 

and analysing of multi-domain dynamic systems. Of particular usefulness to this project were the 

SimMechanics™ and Simscape™ tool-boxes. SimMechanics™ allows the development of a three 

dimensional model of the mechanical system. It should be noted however, that as the 2DOFPPM 

operates in a plane, only two dimensions are needed which in turn saves computation time. 
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The following sections outline the components used in constructing the model, the formation of 

constraints between mechanical bodies as well as the settings for the simulation. 

3.2.1 Model Components 

SimMechanics™ uses the concept of joints and bodies to create a mechanical model. Constraints can 

then be placed on components. Both joints and bodies can be actuated in the time domain and the 

model’s behaviour is simulated under these conditions. While this allows a large degree of flexibility for 

various applications, it does require an accurate understanding of the desired system to permit correct 

implementation. 

 

Figure 3.7 SimMechanics™ model of the 2-DOF Parallel Planar Mechanism 

The mechanical components of the SimMechanics™ simulation are shown in Figure 3.7. This features a 

system of bodies connected by joints. The proximal arms, A1 and B1, are connected via joints, Aj12 and 

Bj12, to distal arms, A2 and B2. The joints Motor_A and Motor_B represent the motors of the system 

and are acted on by joint actuators, Joint Actuator A and Joint Actuator B. This represents the core 

component of the 2DOFPPM. Additional bodies and joints are shown on the right-hand side of Figure 3.7 
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which represent the stabiliser arm components. The following sections explain the various components 

of the model in greater detail. 

The model was developed using variables to define all dimensions, positions, constraints and settings. 

This allows the same model to be used for all simulations of the 2DOFPPM with only the value of the 

variables needing to be changed. When a simulation is run under SimMechanics™, a coded script is run 

(refer Appendix F, Figure F.68) to initialise these variables before conducting the simulation.  

3.2.1.1 Bodies 

Bodies are the fundamental mechanical linkages in the system. Bodies are characterised by their mass 

and inertia, position and orientation in space, as well as any attached coordinate systems. 

 
Figure 3.8 SimMechanics™ Block - Body 

It is a requirement that the positions of each body are validly defined before the model can be 

simulated, that is, the positions of each body can be resolved. This means that the coordinates of the 

connection points on each body need to be specified, and that the coordinates of connection points for 

adjacent bodies be the same. This was done by using the inverse kinematics routine, developed earlier 

in the project (Section 3.1.2), to resolve the coordinates during the start-up script. 

Bodies have coordinate systems assigned to them. These can define points on the body which other 

joints connect to, location of the centre of gravity, or any arbitrary point of potential significance. 

Coordinate systems are defined relative to another coordinate system. For example the centre of gravity 

could be defined as being at a 10 mm offset along the X-axis of the base coordinate system of the body, 

where the base coordinate system is at an (X,Y,Z) location of (20,30,40) in the world (global) coordinate 

system. Each coordinate system also has a defined orientation which allows a coordinate system to be 

rotated about one or more axes. A two dimensional example of coordinate systems is shown in Figure 

3.9. 
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Figure 3.9 An illustration of how the body coordinate systems relate to each other. 

 

In Figure 3.9 the yellow body has three coordinate systems attached to it. CS1 is attached at zero offset 

and zero rotation from the previous grey body. CG has been offset from CS1 by a distance m and 

rotation of θ. CS has been offset from CS1 by a distance n and rotation θ. 

 

Two options exist as to how best to define the system. Either, each body could be defined in the world 

coordinate system, or the bodies could be defined relative to one another. Both these options were 

explored to see which would be the most convenient. While using the world as a reference point made 

it easy for a human to read during debugging, it proved more beneficial to use the relative frame of 

reference of the adjacent body. This was due to the order in which the kinematics were calculated, with 

the position and orientation of the bodies being calculated sequentially along the chain of arms. This 

was done starting at the ground points, through the proximal arms to the distal arms and TCP. 

In the system being analysed, each body has three coordinate systems: 

CS1  – the coordinate system connected to the previous joint in the chain, referenced relative to the 

adjoining coordinate system. 

CS2  – the coordinate system connected to the next joint in the chain, referenced relative to CS1. 

CG  – the coordinate system defining the centre of gravity for the body, referenced relative to CS1. 
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Each body has a mass assigned to it along with an inertia tensor matrix to define the distribution of the 

mass. The inertia matrix was calculated in a custom Matlab® procedure (refer Appendix F, Figure F.82), 

and based on the assumption that the bodies would be regular hollowed cylinders as is commonly the 

case with parallel manipulators. The method of calculation can be seen in Equation (3.11). 

E = 	
FGG
GGH
.12 �3K�
 + K

 + ℎ
	 0 0

0 .12 �3K�
 + K

 + ℎ
	 0
0 0 .12 �3K�
 + K

	MNN

NNO (3.11)

 

where m = mass, h = length, r1 = internal diameter, r2 = outer diameter. 

3.2.1.2 Joints 

In SimMechanics™, joints are block components that represent one or more mechanical degrees of 

freedoms. Joint blocks are used to connect two body blocks to one another. There exist several different 

types of joints in SimMechanics™ however, the studied system only uses revolute joints. These are joints 

that rotate about a single line of reference (often a primary axis). The system has been set up such that 

the manipulator moves in the X-Y plane with the revolute joints rotating about the +Z axis. A revolute 

joint block is shown in Figure 3.10. 

 
Figure 3.10 SimMechanics™ Block - Joint 

SimMechanics™ cannot resolve closed loop topologies directly. Instead, it splits each closed loop into 

two serial chains and analyses them individually while preserving the fact that they are really a single 

closed loop. The joint at which SimMechanics™ cuts the chain can be specified. By specifying the most 

logical joint to cut, the TCP joint, the model behaves in a more appropriate manner than when left to 

determine the cut joint itself. When no joint is specified, the simulation selects one of the actuated 

joints to be cut. This causes the mechanism to be operated in an inverse manner where instead of 

selecting the TCP below the base, it selects the invalid TCP point above the base (see Figure 3.4). 

Although this is easily resolved in this situation, the ability for SimMechanics™ to determine a starting 

configuration that is invalid in reality presented a problem.  



  Chapter 3 – Mechanical Simulation Analysis 

    

31 

 

To ensure the starting configuration is valid for a 2DOFPPM, the initial conditions on the actuated joints, 

Motor_A and Motor_B in Figure 3.7 were set. These initial conditions were calculated and specified in 

the start-up script of the model. This proved successful in limiting the mechanical configuration to 

realistic positions. 

SimMechanics™ allows several features to be added to joints to improve its realism. Both damping and 

stiction values can be added as additional blocks in the program. This project has not utilised these 

options as the values are arbitrary unless the exact bearing system is known, which will not be the case 

at this stage in the design process. If desired, this can be easily added to the system during the final 

design stages to further validate the design decisions. 

3.2.1.3 Joint Actuation 

SimMechanics™ allows both joints and bodies to be actuated by an external force or motion. For the 

system being evaluated it is necessary to only actuate the two joints Aj1B and Bj1B. These joints would 

normally be actuated by servo motors in reality. 

 

Figure 3.11 SimMechanics™ Block - Joint Actuator 

The joint actuation blocks, shown in Figure 3.11, have two modes of operation. Actuation can be in the 

form of either a force or a motion. A force applies a given torque to the joint. A motion requires three 

arguments, angular position, angular velocity and angular acceleration. The manipulator’s TCP is to 

follow a given trajectory and therefore the joint actuator must follow a separate but related trajectory. 

This means that if the joint is controlled by the force technique, a mathematical relationship must be 

developed to relate the joints path to the torque applied. As seen later in Chapter 4, this is not easily 

obtained and therefore the joint must be actuated with the motion parameters. 

The developed system uses an off-line trajectory planner (see Chapter 4) to determine the motor joints 

angular position, velocity and acceleration with respect to time. These values are stored in a file which is 

then accessed by SimMechanics™ during the simulation. 
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3.2.1.4 Sensors 

The simulation would not be useful without any outputs providing data on how the simulation 

performed. As such, SimMechanics™ includes a range of sensor blocks that can be connected to both 

bodies and joints. For measuring joint outputs this project utilises Torque Sensors on the actuated 

‘motor’ joints’ as well as angular position, velocity and acceleration sensors. The Gripper body uses a 

Body Sensor to measure the end-effector’s position, velocity and acceleration in Cartesian space. 

Examples of these sensor blocks are shown in Figure 3.12. 

 

Figure 3.12 SimMechanics™ Blocks - Body Sensor (left), Joint Sensor (right) 

3.2.1.5 Physical Constraints 

Several additional constraints are used to help ensure the simulated model is configured correctly at the 

start of the simulation. Firstly, Initial Condition blocks allow a predefined position to be assigned to the 

joints. This assists in ensuring the arms are configured as desired and not inverted. Secondly, a Parallel 

Constraint block is added between the lower distal arm and the lower arm of the stabilising section. 

These components, shown in Figure 3.13 ensure the manipulator is configured as would be expected 

and prevents SimMechanics™ from potentially placing some arms in an inverted position. 

 
Figure 3.13 SimMechanics™ Blocks - Initial Condition Constraint (left), Ground Constraint (centre), Parallel Constraint (right) 

3.2.2 Simulation Settings 

There are a number of settings that define the environment and how the simulation is processed. 

Several points will be covered here however, for complete details the SimMechanics® documentation 

should be referenced. 

Gravity is defined as a vector. This allows gravity to be either added or removed from the simulation 

which can be useful during debugging. Without gravity, the direct and inverse kinematic procedures 
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produced earlier in the project were used to crosscheck results returned from the SimMechanics® 

simulation. 

There exist several modes of analysis for closed loop systems. Namely these are forward dynamics and 

kinematics. Forward dynamics computes the positions and velocities of the system’s bodies, given 

forces, torques and initial conditions. Kinematics computes the forces and torques required to produce 

the specified motions. This project has used the default mode of forward dynamics analysis, although 

the Kinematics mode was also explored. No noticeable differences in computation performance or 

simulation results were found. 

The simulation can be resolved at either fixed step intervals or by allowing SimMechanics® to detect the 

time intervals to produce an accurate simulation. After some trialling of different settings with various 

cycle-paths, the variable step option was found to be best suited as it produced an accurate result while 

not taking too long to process.  

The simulation can be resolved using one of several numerical analysis techniques. The different 

methods produce the same general result but with differing degrees of accuracy and execution speed. 

The default option in SimMechanics™ for a variable step solver is the Runge-Kutta, Dormand-Prince (4,5) 

pair method. This method proved the most suitable for solving the 2DOFPPM, as configured in this 

section, due to it providing suitable precision in the fastest possible time. 

3.2.3 Running the Simulation 

Figure 3.7 shows the model of the mechanical system in terms of bodies, joints etc. This is turned into a 

subsystem and included as part of the larger system which handles the inputs, outputs and simulation 

settings. The higher level abstraction can be seen in Figure 3.14. The mechanical system is contained 

within the large block labelled ‘Mechanical Robot’. Data streams are read in from files on the left hand 

side and different data streams are read out of the ‘Mechanical Robot’ block on the right hand side. 

These output data streams are stored into separate files. 

The SimMechanics™ model was developed to take input from a pair of files. These files contain time 

dependent data about each of the motors’ angular position, velocity and acceleration. At this stage in 

the thesis, the formation of these data files will not be considered as it will be covered later in Chapter 4 

on Trajectory Planning. These files will instead be used as a given set of commands for which the 

simulation must carry out. 
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Figure 3.14 SimMechanics™ high-level view of the simulation construct 

At the top of Figure 3.14 a file stream is being used as a stopping condition for the simulation. This file is 

a time dependent file consisting of ‘0’ data values up until the desired end of the simulation where a ‘1’ 

value triggers the simulation to stop. This is also produced as part of the trajectory planning process. 

The ‘Machine Environment’ block at the bottom left of Figure 3.14 contains parameters, constraints and 

settings for the simulation. This is where the gravity vector is defined along with mechanical assembly 

tolerances settings. 

When the simulation is run the SimMechanics™ simulation engine evaluates the time dependent inputs 

and, at internally determined points in simulation time, calculates the resulting actions of the 

mechanical components. The sensors within the system then record their measurements and the values 

are stored in files. These files can be plotted and the system’s performance analysed. An automated 

process for plotting these results has been developed. 

3.3 Mechanical Simulation Results 

3.3.1 Workspace Analysis 

As discussed previously, the workspace of a manipulator is defined as the area which the TCP of the 

manipulator can reach given the constraints of the system. In the case of the manipulator being studied, 

the constraints are limited by the minimum and maximum angles of each joint, the upper and lower arm 

lengths and the spacing of the servo motor actuators. The results in this section are based around 

default dimensions and constraints obtained from RML Engineering Ltd. shown in Table 3.1. These 
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default values were obtained based on good engineering principles and a ‘rule-of-thumb’ approach. 

Later in this thesis some of these values will be optimised for a particular task. The results presented 

here are to highlight the effects of each dimension on the shape and size of the workspace, as such the 

default values and their results are not important in themselves but rather the relative changes in the 

results are of interest. Figure 3.16 through to Figure 3.19 highlight the changes in workspace shape 

when the manipulator’s dimensions are varied. 

Table 3.1 Default parameters for workspace analysis. Values obtained from RML Engineering Ltd. 

Parameter Default Setting 

Base length (separation of servo motor actuators) 0.3 m 

Proximal (upper) arm length 0.36 m 

Distal (lower) arm length 0.88 m 

Minimum angle between proximal arm and +Y-axis 43° 

Maximum angle between proximal arm and +Y-axis 164° 

Minimum internal angle between proximal arm and distal arm 43° 

Maximum internal angle between proximal arm and distal arm 134° 

Minimum internal angle between distal arms 48° 

Maximum internal angle between distal arms 71° 

 

The dimensions and constraints of RML Engineering’s first design are displayed in Figure 3.15, along with 

the workspace reachable under these constraints. 

The effects of applying constraints on minimum and maximum angles at each joint can be seen most 

clearly in Figure 3.16, where the default limits are compared to the maximum workspace limited only by 

joint singularities. 

Upon consideration of Figure 3.16, an interesting observation can be made regarding the relative speed 

and accuracy of the TCP within the workspace. If the larger workspace (green) is analysed in the 

knowledge that each point is plotted with a constant angular displacement from each other (8°), it can 

be seen that if the servo motor actuators are rotated at a constant rate, the displacement of the TCP 

becomes smaller in higher density areas (by higher density, it is meant the density of the plotted points 

in the workspace graphs). Conversely, if the plotted points are further dispersed (e.g. near the outer 

limits of the workspace), this indicates an area of the workspace where greatest TCP speed can be 
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achieved. Relative accuracy, due to errors in the servo motor positions, can also be deduced in the same 

manner. Densely populated areas of the workspace are less prone to error in TCP position due to servo 

motor errors, whereas sparsely populated areas will encounter greater TCP errors from any servo motor 

inaccuracies.  

 
Figure 3.15 Workspace of manipulator using RML Engineering’s default dimensions and constraints. 

 

It should be noted however, that the oversimplified perception of relative speed and accuracy in the 

workspace obviously does not take into account the motor dynamics, torque requirements from the 

arms nor the highly coupled nature of the parallel mechanism. A much more thorough analysis is 

required to accurately compare even the relative performance of manipulator configurations, let alone 

being able to evaluate the actual performance. 

Figure 3.17, Figure 3.18 and Figure 3.19 display the effects of changing the spacing between the servo 

motor actuators, and lengths of the proximal and distal arms respectively. In each example the 

dimensions were altered by ±100 mm, and the corresponding workspace plotted. As can be seen in the 

plots, a small change in any of these dimensions can vastly alter the effective workspace. It is for this 
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reason that an effective means of optimising, not only the workspace, but the overall system 

performance is needed. 

 
Figure 3.16 Comparison of workspace limited by RML Engineering's concept manipulator's angle constraints (blue) and angle 

limits before encountering singularities (green). 

Figure 3.17 shows that if the angle constraints remain the same, increasing the separation of the servo 

motors causes the workspace to become a more hollowed, deeper and narrower ‘U’ shape. By moving 

the motors closer to each other, the workspace becomes wider and flatter. 

When considering the effect that the length of the proximal arm has on the workspace, Figure 3.18 

shows that a shorter arm produces a smaller workspace closer to the base. A longer upper arm results in 

a deeper and more hollowed ‘U’ shape with similar width to the original. 

Figure 3.19 demonstrates that altering the distal arm length has the greatest effect in modifying the 

available workspace. This is due to the distal arm being the link furthest from the point of actuation and 

therefore altering its length is ‘multiplied’ by the leverage of the proximal link. By increasing the distal 
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arm length, the workspace becomes spread along the X-axis and slightly compressed in the Y-axis. 

Reducing the distal arm length causes the workspace to become noticeably more ‘U’ shaped. 

Pick-and-place applications often require a rectangular workspace and as such, ‘U’ shaped workspaces 

become ineffective and difficult to utilise. It is therefore preferential to select a workspace that is most 

evenly dispersed in both the X and Y planes. This method of analysis can be useful to achieve a desirable 

workspace. 

 
Figure 3.17 Comparison between workspaces when the base length (separation of actuated joints) is altered. The default 

distance of 0.3 m (blue) is compared to a smaller distance of 0.2 m (green) and a larger distance of 0.4 m (pink). 
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Figure 3.18 Comparison between workspaces when the proximal (upper) arm length is altered. The default length of 0.36 m 

(blue) is compared to a smaller length of 0.26 m (green) and a longer length of 0.46 m (pink). 

 
Figure 3.19 Comparison between workspaces when the distal (lower) arm length is altered. The default length of 0.88 m 

(blue) is compared to a smaller length of 0.78 m (green) and a longer length of 0.98 m (pink). 
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3.3.2 SimMechanics™ Analyis 

In order to present the output and capabilities of the SimMechanics™ simulation, a sample path must be 

defined. Figure 3.20 shows the end-effector’s cycle-path that is being used in this project. This path was 

chosen as it represents a typical pick-and-place cycle for product manipulation using the machines that 

RML Engineering Ltd. currently manufactures. The trajectory planning method used to generate the 

example path in this section is described in the following chapter. The simulation was run using this 

path, along with the additional parameters and constraints specified in Table 3.2. A complete list of 

mechanical parameters can be found in Appendix A. 

 
Figure 3.20 Test cycle-path. Movements follow the order from 1 through 9 

When the SimMechanics™ simulation is run, a visualisation of the manipulator can be viewed showing 

the mechanical components moving in relation to one another under the presence of the external 

forces. A screen shot of this is shown in Figure 3.21. The arms are represented by simple lines, although 

the inertias of each component are represented in three dimensions. Running parallel to the right hand 

side arm is the additional stabilising arm offset by a fixed amount. The gripper is also represented as a 

triangle at the bottom of the two distal arms.  
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Table 3.2 Default parameters used in sample simulation. Values obtained from RML Engineering. 

Parameter Default Setting 

Base length (separation of servo motor actuators) 0.3 m 

Proximal (upper) arm length 0.36 m 

Distal (lower) arm length 0.88 m 

End-effector length 0.01 m 

Proximal arm mass 3.5 kg 

Distal arm mass 2 kg 

End-effector mass 35 kg 

Arm ID (Internal diameter) 0.01 m 

Arm OD (Outer diameter) 0.02 m 

Minimum angle between proximal arm and +Y-axis 43° 

Maximum angle between proximal arm and +Y-axis 164° 

Minimum internal angle between proximal arm and distal arm 43° 

Maximum internal angle between proximal arm and distal arm 134° 

Minimum internal angle between distal arms 48° 

Maximum internal angle between distal arms 71° 

Pick/Place Dwell Time 0.2 s 

 

 
Figure 3.21 Screenshot of the SimMechanics™ simulation being run. 
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Figure 3.22, Figure 3.23 and Figure 3.24 show the motor positions, velocity and acceleration during the 

simulation. The motors start and finish with zero velocity, as well as having a stationary period of 0.2 s in 

the middle of the cycle. This pause in the cycle is to represent the time taken for the end-effector to 

‘pick’ or ‘place’ the handled object. In Figure 3.24 it can be noted that the motor acceleration has abrupt 

changes in values and does not accurately represent the performance ability of a real motor. This is due 

to a limitation of the cubic spline trajectory planning method (see Section 4.1.4) that is used. It will be 

shown in Section 4.4 that this is of insignificant consequence and that the simplified motor characteristic 

is still valid for the level of model fidelity required in this project.  

 
Figure 3.22 Simulated output of the motors’ positions over the sample path-cycle. 
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Figure 3.23 Simulated output of the motors’ angular velocity over the sample path-cycle. 

 
Figure 3.24 Simulated output of the motors’ angular acceleration over the sample path-cycle. 
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The torque required to move the manipulator’s actuated proximal arms in the profiles shown above in 

Figure 3.22 to Figure 3.24, is presented in Figure 3.25. The SimMechanics™ simulation engine takes into 

account the highly coupled nature of the parallel mechanism when producing this result. The sharp 

changes in torque, similar to the acceleration pattern found in Figure 3.24, are again the result of the 

trajectory planning method and can be assumed accurate enough for the simulation task at this stage in 

the thesis. 

 
Figure 3.25 Simulated output of the motors’ torque over the sample path-cycle. 
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velocity and accelerations, Figure 3.27 and Figure 3.28 respectively, an additional line has been plotted 

representing the summation of the X and Y components of velocity and acceleration. This information is 

of particular importance when designing the tool or gripper head to ensure that it is capable of handling 

objects with the high speeds and accelerations produced by the manipulator. 
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Figure 3.26 Simulated output of the end-effector’s position in X and Y components over the sample path-cycle. 

 
Figure 3.27 Simulated output of the end-effector’s velocity in X and Y components over the sample path-cycle. 
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Figure 3.28 Simulated output of the end-effector’s acceleration in X and Y components over the sample path-cycle. 

The exact path followed by the end-effector is more clearly seen in the Cartesian plot shown in Figure 

3.29. The path cycles from left to right, pauses and then returns back to the left. The data points have 
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show that the data points are unevenly dispersed throughout the path. This occurs because of how 

SimMechanics™ executes the simulation. The time between adjacent time segments varies depending 

on how much change SimMechanics™ detects in the mechanical system during the previous time 

segments. It can also be noted that this trajectory does not follow the desired path exactly as shown 

earlier in Figure 3.20. This is due to the trajectory planning method explained in the next chapter. 

The simulation systems developed in this chapter produces results that can be used in later sections. 

The kinematic equations developed will be used in the trajectory planning process (Chapter 4), while the 

SimMechanics™ simulation allows the visualisation and analysis of an optimised manipulator 

configuration in Chapter 6. 
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Figure 3.29 Trajectory traced by the end-effector during the SimMechanics™ simulation. 
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4 Trajectory Planning 

In order for a manipulator to be highly productive, it must perform its task in minimal time. Many 

researchers have investigated methods for achieving this [23][33][37][38][45][46][48-54][67-69]. 

Trajectory planning techniques can be separated into off-line or on-line methods depending on their 

computational intensity and ability to handle new path commands on the fly. Methods that involve 

significant computation, such as performing an iterative optimization process, are generally too slow to 

be computed in real-time while simultaneously tracking the manipulator’s path [26]. Conversely, on-line 

trajectory planning methods must be computed fast enough to avoid causing latency in the 

manipulator’s movements. On-line methods also benefit from being able to re-compute the trajectory if 

obstacles are encountered or if using a vision and conveyer tracking system [26]. 

Many trajectory planners implemented in industrial controllers use on-line trajectory planners that only 

consider the kinematic limitations on the system [26]. By not considering the dynamic constraints (i.e. 

motor torque limits), the trajectory can be computed at sufficient speed which enables them to be on-

line systems. However, by not taking into account the dynamic limitations, the manipulators are forced 

to underutilize their motors’ performance capabilities. If the motors’ maximum performance limitations 

are used in planning a path, saturation of the motors occurs leading to poor path tracking as the motors 

are not capable of producing the torque required to perform the kinematics [26]. When comparing 

configurations and finding an optimal solution of the 2DOFPPM, kinematic only analysis may result in 

solutions that do not perform well in reality. 

After determining that the trajectory planner must take into account the dynamics of the system, a 

number of methodologies were considered. Bobrow et al. [48] and Shin and McKay [49] individually 

presented a method that produces a time-minimum trajectory. This method however, requires that the 

system’s dynamic equations are known.  

Two methods commonly exist for formulating the dynamic equations of a mechanical system, the Euler-

Lagrangian technique and the Newton-Euler approach. These methods produce similar results but are 

obtained by different means. Due to the parallel structure of the 2DOFPPM, the dynamic equations are 

not easily obtained using either of these methods. Kim and Shin [47] developed a minimum-time path 

planning method in joint space using heuristics to produce a dynamic model of the manipulator. Huang 
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et al. [54] also used a hybrid approach to form the dynamic equations for a 2DOFPPM. The trajectory 

planning method used in this project considers these approaches to the problem, and where 

appropriate borrows their ideas to produce a method that is appropriate for this project. 

4.1 Trajectory Planning Process 

A range of trajectory planning methods were considered for this project. The resulting process uses an 

off-line, cubic spline fitment of the path in joint space, taking into account the system’s kinematic 

limitations and an estimation of the system’s dynamic limitations. One of the main objectives of this 

project is to enable the development of customised 2DOFPPM manipulators that are optimized for a 

given task. To do this a trajectory planner must be developed. While the exact path planning 

methodology is not crucial, it is important that comparisons between manipulator configurations are 

compared using the same trajectory planning process. This trajectory planning method allows for the 

manipulator’s dynamics to be taken into account, albeit in a simplified estimated form. 

The following sections present a detailed explanation of the trajectory planning process. The process is 

also summarised diagrammatically in Figure 4.1. 
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Figure 4.1 Flow diagram of the trajectory planning and optimisation process. 

4.1.1 Movement Commands 

The path of a manipulator can be defined in joint space, where the angles of the actuators are the 

defining factor, or, as is more common in industry, the path is defined in terms of the end-effectors 

position in the Cartesian workspace. Figure 4.2 shows the path that the end-effector is required to 

follow and the corresponding angle commands required to achieve that path. Clearly, when defining the 

movement of the manipulator, it is more intuitive to define in terms of the end-effector position in 

Cartesian workspace, than to be defined in terms of the motor’s angular positions. 
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Figure 4.2 Example trajectory in Cartesian space with the corresponding motor positions required to reach each target point. 

Along with defining the path in Cartesian coordinates, several other features and constraints are used to 

tailor the path for a particular task. Table 4.1 summarises the parameters that can be specified in this 

system. 

Table 4.1 Path defining parameter definitions. 

Parameter Units Description 

Target (X,Y) The position in Cartesian coordinates where the end-effector is 

expected to travel to. 

MoveType [‘MoveJ’,’MoveL’] Indicates how the end-effector should move in order to reach the 

target. 

Zone mm Specifies a distance from the target where the end-effector is 

considered close enough and can begin moving to the next target 

on the path. 

MaxTCPSpeed ms
-1 

Sets a limit on the end-effector/TCP speed during the movement. 

Pause s Optional parameter to stipulate the manipulator must pause for a 

period of time. 
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The target is only defined in terms of the X and Y coordinates with the Z component being omitted as 

the 2DOFPPM only acts in a single Z plane. The MoveType permits either a linear move (MoveL) or a 

joint move (MoveJ). A linear move requires the movement to be performed in a straight line between 

the two targets, whereas the joint move is a weaker constraint and allows the movement to be executed 

in a way that is most efficient for the joints. Figure 4.3 depicts the difference between these two moves, 

with the black line representing a linear movement during the vertical ‘pick’ and ‘place’ movements, and 

the green line representing a joint move which deviates from the direct path between targets in order to 

find a more efficient path for the actuated joints. 

 

Figure 4.3 A sample path consisting of two vertical linear movements (MoveL) and a single joint movement (MoveJ). Several 

targets have a zone distance defined allowing a smoother trajectory on approach to the target. 

The zone concept has also been employed by Lloyd and Hayward [70] where they refer to this as a blend 

between two trajectories and similarly by Macfarlane [26] as tightness around a quintic spline control 

point. A large zone allows a smoother, and therefore faster, path to be followed where precision 

movements are not required. A small, or even a zero zone, is used whenever the target point must be 

reached accurately. Figure 4.3 includes zone definitions around two of the targets, thereby facilitating a 

smooth arc movement on approach to the targets. 

When performing a movement, the manipulator’s end-effector, or gripper, may be required to move at 

a speed that is less than the maximum potential produced by the actuators. This may be due to 

limitations in the gripper’s ability to hold an object or because the movement may have to cooperate 

with a task outside of the manipulator itself, for example, conveyor tracking. The MaxTCPSpeed allows 

the speed of the end-effector to be limited if required. 
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When performing pick-and-place tasks there is usually a pause at the ‘pick’ and ‘place’ positions to allow 

the gripper to take hold of or release the object. In industrial applications this takes the form of either a 

set pause time, or by waiting for a feedback signal from the system that the transition has successfully 

taken place. As this project is considering the manipulator in isolation from any peripheral feedback 

system, only the time based pause is considered. This is an optional parameter on any move command. 

When included, the trajectory is formed with the manipulator decelerating to a stationary position at 

the destination target. When omitted, the target is treated as a ‘fly-by’ point with continuous end-

effector velocity and acceleration maintained through the target. 

4.1.2 Formulate Knots 

Although the targets represent the general path the end-effector must follow, the inclusion of the 

MoveType, zone and pause data associated with moving to these targets, transforms the path. This 

altered path will follow the targets approximately, but will do so in a way that is most efficient for the 

actuators yet still satisfies these movement constraints. 

Knots are essentially control points for the fitment of a spline. At this point in the trajectory planning 

process these points are still defined in Cartesian space, but will be transformed later into joint space to 

allow the actual fitment of the cubic spline trajectories. If any move commands have a pause associated 

with them, then the set of movement commands on either side of the paused target are considered 

independent of each other and will be fitted with separate piecewise splines.  

Additional to being a coordinate in space, knots also contain properties allowing the specification of an 

angular velocity. The trajectory planning process sets the manipulator’s velocity to zero at the first and 

last targets in each set of movement command sequences. This ensures the manipulator is stationary 

when it reaches the final knot in a particular move sequence. 

Knots are created along the path in order to provide control points for fitting a spline. These knots are 

formed by fitting a straight line between targets, where the line intersects the zone of the next target a 

knot is placed. This is shown in Figure 4.4. The path moves from left to right, with knots being placed on 

the approaching side of a target’s zone. 
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Figure 4.4 Generation of knots by taking a straight line between targets. Where the line intersects with the zone a knot is 

formed. 

As well as the example presented in Figure 4.4, additional knots are also introduced along linear 

movements to ensure a near-linear trajectory is achieved by the end-effector. How this is achieved is 

discussed in Section 4.2. 

4.1.3 Cartesian to Joint Space Conversion 

The movement commands define the path in Cartesian space because this is more intuitive to the 

robotic programmer. However, the manipulator is better controlled in the joint space as this allows a 

trajectory that is smooth and optimal for the motor actuators to be formed. Therefore the knots that 

were defined in Cartesian space are converted to joint space using the inverse kinematic equations 

developed in Section 3.1.2. Figure 4.5 highlights the motor positions required at each of the knots. 

From this point on in the trajectory planning process, the joint space becomes the standard frame of 

reference. The Cartesian space is only used again to validate the end-effector’s speed and ensure that it 

is under the MaxTCPSpeed prescribed for each movement. 
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Figure 4.5 Knots defined in Cartesian space (left) are converted into joint space coordinates (right). Numbering indicates 

order of knots. 

4.1.4 Cubic Spline Fitment 

With the knots defined in joint space, splines can be fitted between them to form a smooth trajectory 

for each of the motors. These splines define the motion of the joint/motor with respect to time. A 

number of researchers have used piecewise cubic polynomials to form a smooth trajectory [23][33][69]. 

Cubic polynomials allow for continuous velocity and acceleration throughout the path. 

In order for time-dependent splines to be fitted between the knots, a time value must be assigned to 

each knot. The exact time-spacing between knots is not crucial at this stage in the trajectory planning, 

however, the path-time (time travelled along the path) must continually increase at each knot in the 

order they are to be traversed through. In the optimization step of the trajectory planner the time 

between knots will be altered to achieve the shortest overall cycle-time. It is, however, helpful if the 

path-time at each knot is approximated to begin with. This is accomplished by considering the distance 

travelled between knots by the TCP in Cartesian space, and dividing it by the maximum velocity allowed 

for that move (as defined earlier in Section 4.1.1 on movement commands). This is outlined in Equation 

(4.1). 

�PQ = �PQRS + TPQ9PQRSUVWCXQ  (4.1)

 

where UVWCXQ  is the maximum TCP velocity allowed while travelling to knot Ki,  TPQ9PQRS is the Cartesian 

distance between the previous knot, Ki-1, and the destination knot, Ki. This is shown in Equation (4.2). 
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TPQ9PQRS = -Y�PQ − �PQRSZ
 + Y�PQ − �PQRSZ
 (4.2)

 

If there are k knots in the movement, including the starting and finishing knot, there will be k-1 

segments for which a cubic polynomial must be fitted to each. To ensure the path is smooth over the 

entire movement, the 3
rd

 order polynomials describing the position of each motor must be such that 

their 2
nd

 order derivative (acceleration profile) be continuous where the segments are joined together at 

the knots. Figure 4.6 shows the position, velocity and acceleration profiles of a path where matching the 

derivatives of the cubic polynomial have been neglected and is only continuous in the position and 

velocity aspect of the profile. This can be contrasted with Figure 4.7, where the cubic polynomials 

describing the position of the motor are continually differentiable to the 2
nd

 order of acceleration. 

 
Figure 4.6 Position, velocity and acceleration of a discontinuous profile formed by two piecewise cubic polynomials between 

three knots. 
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Figure 4.7 Position, velocity and acceleration of a continuous profile formed by two piecewise cubic polynomials between 

three knots. 

To ensure the cubic splines have C
2
 continuity, that is, the 2

nd
 order derivative is continuous at the knots, 

several constraints must be placed on finding the coefficients to the cubic polynomials. Equation (4.3) is 

the general form for the time dependent cubic polynomial describing the angular position of the motor, θ. The more general form is shown in Equation (4.4), where the time at the previous knot, tKi-1, is 

subtracted from the current path-time, t, to get the time since the previous knot. There are (k-1) 

polynomials to represent each of the path segments between the knots. 

����	 = ����	 + ����	��	 + �
��	��	
 + ����	��	� (4.3)

 

����	 = ����	 + ����	Y� − �PQRSZ + �
��	Y� − �PQRSZ
 + ����	Y� − �PQRSZ� (4.4)

 

for �PQRS ≤ � ≥ �PQ 
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As there exist 4 unknown coefficients for each of the k-1 polynomials, 4(k-1) equations using these 

unknowns are needed to find the coefficients. These equations can be obtained through the constraints 

on the system. Equations (4.5) and (4.6) state that the starting position is known and the initial angular 

velocity is zero. The position of the motor at the end of a given segment, i-1, must be equal to the 

position obtained from the start of the next segment, i, as shown in Equations (4.7) and (4.8). Equation 

(4.9) states that the velocity at the end of a segment must be the same as the velocity at the following 

segment. Similarly the acceleration profiles between segments must be continuous at each knot as 

shown in Equation (4.10). Equations (4.11) and (4.12) are similar to the starting conditions in that they 

constrain the final position to that which is known and the final velocity to zero. 

����	 = ��0	 = �P]  (4.5)

 

����	 = ^�0	 = ^P] = 0 (4.6)

 

����	 + ����	Y�PQ − �PQRSZ + �
��	Y�PQ − �PQRSZ
 + ����	Y�PQ − �PQRSZ� = �Y�PQZ (4.7)

 

����_�	 = �Y�PQZ (4.8)

 

����	 + 2�
��	Y�PQRSZ + 3����	Y�PQRSZ
 = ����_�	��PQ	 (4.9)

 

2�
��	 + 6����	Y�PQRSZ = 2�
��_�	��PQ	 (4.10)

 

����a	 + ��Y�aZ ��PQa� + �
Y�aZ ��PQa�
 + ��Y�aZ ��PQa�� = ���PQa	 (4.11)

 

��Y�aZ + 2�
Y�aZ ��PQa� + 3��Y�aZ ��PQa�
 = ^��PQa� = 0 (4.12)
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When the constraint equations are solved simultaneously, as shown in Equation (4.13), the polynomial 

coefficients are resolved. Equation (4.13) shows the systems of equations for solving 2 splines between 

three knots. θ0 and ω0 are the position and velocity constraints of the first knot. θ1, ω1 and α1 are the 

position, velocity and acceleration of the spline at the middle knot. θ2 and ω2 are the position and 

velocity constraints of the final knot. t0, t1 and t2 are the time values at each of the knots. This example is 

easily expanded out to accommodate more knots. The result is a set of (k-1) 3
rd

 order polynomials to 

describe the path travelled between k knots. This set of cubic polynomials ensures continuous velocity 

and acceleration over the entire path, with stationary starting and ending points.  
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Figure 4.8 shows the position, velocity and acceleration profiles of a sample motor’s cycle-path. The 

individual cubic splines are highlighted by plotting adjacent splines with alternating colours. There is a 

break of 0.2 seconds in the middle of the profile to account for a ‘pick’ or ‘place’ action to occur. The 

motor profile is stationary during this time. 
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Figure 4.8 Position, velocity and acceleration of a continuous profile formed by piecewise cubic polynomials. Alternating 

colours differentiate individual polynomials. 

 

4.1.5 Validation against Constraints 

Once a trajectory has been developed in the form of a cubic polynomial, it is then validated against a set 

of constraints. These constraints, listed in Table 4.2, cover the limitations of the motor’s angular 

velocity, acceleration, jerk and torque, as well as limitations placed on the end-effector’s TCP velocity. 

This process must be done to ensure the trajectories developed do not exceed the capabilities of the 

manipulator. The trajectory can also be evaluated to see if it is maximising its capabilities throughout 

each path segment. If a path segment either exceeds the capabilities of the manipulator or does not 

come close enough to maximizing the performance available, the path is modified as shown in the next 

Section, 4.1.6. 
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Table 4.2 Constraints on trajectories. 

Minimum Value Parameter Evaluated Maximum Value 

-ωmax ω (Motor Angular Velocity) ωmax 

-αmax α (Motor Angular Acceleration) αmax 

-Јmax Ј (Motor Angular Jerk) Јmax 

-τmax τestimated (Estimated Motor Torque) τmax 

 |TCPvelocity| (TCP speed) TCPmax_speed 

 

While the motor’s velocity, acceleration and jerk can be obtained directly from the cubic polynomial 

trajectory description, and the TCP speed can be known through inverse kinematics, the torque 

requirements of the motor are not as easily resolved. This is due to the highly coupled non-linear 

dynamics found in parallel mechanisms. The torque required of one motor is dependent on the torque 

provided by the other motor. While it is possible to obtain the torque requirements, the complex 

mathematics involved does not lend itself well to the task of trajectory planning. Instead, a simple 

estimate is made using some assumptions about the system’s mechanics. These assumptions are listed 

below: 

• The gripper’s mass and inertia properties are assumed to include the mass and inertia of any 

carried load. 

• The mass of the proximal arms are located as point masses about the centre of the length of the 

proximal arms. 

• The mass of the distal arms are located at the point where they attach to the proximal arms. 

• Half of the mass of the gripper and half of the mass of the distal crank are carried by either 

proximal arm and are located as point masses at the end of the proximal arms. 

• The mass of the proximal stabilizing arm is located as a point mass about the centre of the 

length of the ‘B’ proximal arm. 

• The mass of the distal stabilizing arm is located as a point mass at the end of the ‘B’ proximal 

arm. 

• The mass of the proximal crank is located as a point mass at the end of the ‘B’ proximal arm. 

These assumptions are highlighted in diagrammatic form in Figure 4.9. 
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Figure 4.9 Diagramtic view of the assumptions made for torque estimation. Red components represent locations of point 

mass'. Blue represent distance components. Green labels the manipulators components. 

The equations used to estimate the torque required from each motor are represented in (4.14) through 

to (4.19). The calculations for the ‘A’ and ‘B’ motors are different due to the inclusion of the stabilizing 

arms alongside the ‘B’ proximal and distal arms. 

The moment of inertia coupled to motor ‘A’ can be estimated as: 

E6 = cdefC ∗ hidefC2 j
 + hck�lm +ck�lm_oeWpq2 + cre�ddse2 j ∗ idefC
  (4.14)

 

where cdefC and idefC are the mass and length of the proximal arm, ck�lm is the mass of the distal arm, ck�lm_oeWpq is the mass of the crank arm connected at the base of the distal arm, and cre�ddse is the 

mass of the gripper. The torque acting on motor ‘A’ due to gravity is estimated as: 
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16_reWt�mB = cdefC ∗ hidefC2 j ∗ sin��$	 ∗ g + hck�lm + ck�lmvwxyz2 + cre�ddse2 j∗ idefC ∗ sin��$	 ∗ g 

 

(4.15)

where �6 is the angle of the proximal arm from vertical, g is the gravity vector of 9.8 ms
-2

. By adding the 

torque due to gravity to the torque due to the angular acceleration of the inertia of the arms (b6), the 

overall torque requirement can be calculated as: 

16_mfmW{ = E6 ∗ b6 + 16_reWt�mB (4.16)

 

The moment of inertia coupled to motor ‘B’ can be estimated as: 

EA = YcdefC + cdefC_lmW|Z ∗ hidefC2 j

+ hck�lm + ck�lm_lmW| +cdefC_oeWpq +ck�lm_oeWpq2 + cre�ddse2 j∗ idefC
  

(4.17)

 

where cdefC_lmW| and ck�lm_lmW| are the masses of the proximal and distal stabiliser arms, cdefC_oeWpq 

is the mass of the crank arm connected at the end of the proximal ‘B’ arm. The torque acting on motor 

‘B’ due to gravity is estimated as: 

1A_reWt�mB = YcdefC + cdefC_lmW|Z ∗ hidefC2 j ∗ sin��A	 ∗ g
+ hck�lm + ck�lm_lmW| +cdefC_oeWpq +ck�lm_oeWpq2 + cre�ddse2 j∗ idefC ∗ sin��A	 ∗ g 

 

(4.18)

where �A is the angle of the proximal arm from vertical. By adding the torque due to gravity to the 

torque due to the angular acceleration of the inertia of the arms (bA), the overall torque requirement 

can be calculated as: 

1A_mfmW{ = EA ∗ bA + 1A_reWt�mB (4.19)

 

The accuracy of the torque estimation can be seen in Figure 4.10 where it is compared to the simulation 

results from SimMechanics™ for a sample trajectory. The estimated torque tracks a similar profile to the 

SimMechanics™ torque calculation, but does vary, particularly during large peaks in the graph. The 
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greatest weakness of the estimation method is when considering the mass of the components near the 

end-effector. By assuming these masses to be located at the ends of the proximal arms, an error is 

introduced. This error grows as the relative mass of the end-effector increases. The example shown in 

Figure 4.10 uses a heavy 35 kg gripper head. The difference in the motors’ torque profiles results in a 

positional error of the end-effector of 0.029 m by the end of the path. However, if the gripper was to 

only weigh 5 kg the torque error would be less, as shown in Figure 4.11. In this case, the positional error 

of the end-effector shrinks to 0.006 m. Therefore, for the purposes of this project, the method of 

estimating motor torques is valid.  

 
Figure 4.10 Estimated torque profiles compared to SimMechanics™ calculated torque profiles. 35 kg gripper used. 

The torque estimation method has a tendency to underestimate the actual torque required, as gathered 

from the SimMechanics™ simulation. Therefore, when maximising a configuration’s path cycle-time, the 

available torque of the motors is reduced slightly (~10 %) to account for the underestimation. 
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Figure 4.11 Estimated torque profiles compared to SimMechanics™ calculated torque profiles. 5 kg gripper used. 

4.1.6 Altering Time Segments 

As mentioned in the previous section, the time segments between knots on a path are increased or 

decreased depending on how the trajectory compares to the motor and end-effector constraints. If a 

parameter exceeds a constraint during the segment, the time segment is increased and the trajectory is 

recalculated from the cubic spline fitment stage in Section 4.1.4. Similarly, if no parameter is close to the 

constraint, the time segment can be shortened and a new spline fitted. Two variables were found 

heuristically for this problem. These include the amount by which the time segment is expanded or 

contracted, and how close a parameter must be to its constrained limit in order for it to be considered 

‘maximised’. 

The method used is based on Nelder and Meads flexible polyhedron search method [34]. This iterative 

optimization approach has been used as a technique for altering time segments in piecewise polynomial 

trajectory planning by several researchers [23][33][69]. The algorithm that was finally used to analyse 

and alter the time segments is shown below in Figure 4.12. The Matlab® implementation of this 

procedure can be found in Appendix F (refer Figure F.46 through to Figure F.54). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400

-300

-200

-100

0

100

200

300

400

500

Time (s)

T
or

qu
e 

(N
m

)

 

 
Motor A

Motor B

Motor A (est.)

Motor B (est.)



  Chapter 4 – Trajectory  Planning 

    

67 

 

procedure optimise time segments 

begin  

 let  

 ς be the set of constraints 

 ρ be the values of the constrained parameters  

 д is an ageing factor (~100) 

 Ψ is the initial acceptance threshold <1 (~0.8) 

   

 initialise time segments t 

 n = 1 

 

 while ∃ t !optimised do 

  plan path 

  for each path segment ί do 

   check constraints  

   if ∃ ρί > ςί then 

    find (ρί/ςί)max 

    increase ti by (ρί/ςί)max 

   else if ∄ (ρί/ςί) > Ψ
(n+д)/ д

 then 

    find (ρί/ςί)max 

    reduce ti by (ρί/ςί)max 

   end 

  end 

  n = n + 1 

 end 

end 
 

Figure 4.12 Pseudo code for optimising the time segments between knots on a path. 

 

Each path segment is analysed separately. The performance of the path segments are compared to the 

constraints. A segment must never be too short as to allow a constraint to be violated, but determining 

how close the path segment can be to that limit is not easily achieved. A threshold, Ψ, is required to 

establish when a time segment is near enough to optimal. Through experimentation, an initial threshold 

value of 80 % has been found to provide a fast converging and near optimal time for each segment. That 

is, at least one of the parameters must be within 80 % of its constraint. Table 4.3 shows several 

iterations of the expansion and retraction of a sample path’s time segments. For the path with 5 knots (4 

segments), 6 iterations were required until a near-time-optimal path was found. To further expedite the 

optimization process, the threshold is lowered as a function of the number of iterations. This is shown in 

the pseudo code Figure 4.12, where an ageing factor д exponentially weakens the threshold. 

 



Simulation and Optimisation of a 2DOFPPM   

    

68 

 

Table 4.3 Time values for 4 path segments (between 5 knots) over 6 optimisation iterations. 

Iteration Segment 1 Segment 2 Segment 3 Segment 4 

1 0.027 0.028 0.032 0.033 

2 0.574 0.359 0.442 0.614 

3 0.383 0.226 0.276 0.416 

4 0.278 0.148 0.180 0.309 

5 0.229 0.108 0.129 0.262 

6 0.229 0.092 0.106 0.262 

 

All actuated joint trajectories must be optimised simultaneously. In the case of the 2DOFPPM, both 

motor trajectories need to be considered concurrently. This is to ensure that both motors reach each 

knot at the same time. Therefore, when altering time segments, the parameters and constraints of both 

motors need to be considered before deciding how much to increase or decrease the time period.  

4.1.7 Storing of Path Data 

Once the trajectories have been optimized and a set of cubic polynomials have been obtained, the data 

needs to be structured in a way suitable for the SimMechanics™ simulation environment to process. This 

requires the input data to be stored in a file. The file is formatted the following way. The first row of 

cells contains time values. The second, third and fourth rows contain motor position, velocity and 

acceleration values at the corresponding time values. For the purposes of this project, taking recordings 

of data at 50 ms time intervals has proved accurate enough for the purposes of evaluating the 

kinematics and dynamics of the system. 

4.2 Interpolation of Knots for Linear Movements 

In order to control the end-effector along a linear movement, a unique method has been developed that 

still allows the use of cubic splines defined in joint space. By placing extra knots along the straight line 

between two targets the path is constrained to pass through each of those knots. Experimentation was 

carried out to determine the effect of additional knots on the linearity of the path travelled and the 

length of time taken to perform the move. In the following graphical examples it is assumed that a linear 

move is desired for the vertical ‘pick’ or ‘place’ actions and a joint move used for the ‘horizontal’ 

transition above the ‘pick’ and ‘place’ points.  
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Figure 4.13 does not include any additional knots during the vertical movements. This results in a 

trajectory being formed that does not represent a linear movement. The movement is the fastest 

possible path, within the constraints of the manipulator, which passes through each point, starting and 

finishing with zero velocity. This results in a benchmark cycle-time of 0.690 s.  

If a single additional knot is introduced halfway along the linear movements, the trajectory becomes 

significantly closer to the desired path as shown in Figure 4.14. By introducing a single knot on each of 

the two linear movements, the cycle-time increases slightly to 0.716 s. 

Having seen the benefits of adding a single extra knot to the linear movements, it is logical to enquire 

about the effects of adding multiple knots. Figure 4.15 shows a path with five additional knots along the 

linear moves. This results in a path with highly linear vertical movements but at the cost of raising the 

cycle-time to 1.033 s. This significant increase in cycle-time is detrimental to the overall performance of 

the manipulator. By introducing too many knots along the path, the motor joints are forced to switch 

direction frequently. As the system is maximizing the torque capabilities of the motors, the motors’ 

torque step response may not be adequate to switch fast enough from maximum torque in one 

direction to maximum torque in the opposite direction. Therefore, introducing too many knots is seen as 

detrimental to the performance of the manipulator and a middle ground should be found that provides 

a suitably linear movement in a fast time that can be tracked by the motor joints. 

 
Figure 4.13 Trajectory with no linear constraints 
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Figure 4.14 Trajectory with a single additional knot for linear movements 

 
Figure 4.15 Trajectory with many additional knots for linear movement 
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Figure 4.16 Trajectory with an additional knot halfway through linear movement and another positioned close to destination 

target 

While introducing a single knot in Figure 4.14 improved the linearity of the movement compared to 

having no additional knots (Figure 4.13), it still deviates from the linear path somewhat. A solution was 

found by introducing a second knot near the knot at the destination target. As shown in Figure 4.16, this 

minimized the straight line divergence while keeping the cycle-time to 0.8379 s. This method was 

formulated by the inclusion of two additional parameters to a path’s definition, LinearErrorFactor and 

LastLinearTargetDistance.  

The LinearErrorFactor is a value, measured in metres, representing how far along a linear movement a 

knot must be placed. For the example path shown, a value of 0.2 m was used. This means that for a 

linear move of less than 0.2 m, no additional knot would be introduced. For a linear move of 0.5 m, two 

additional knots would be included. 

The LastLinearTargetDistance, also measured in metres, represents the distance back from the knot at 

the edge of the destination target. In the example a value of 0.02 m was used. Therefore a knot was 

placed at the destination target of the linear move, and another placed a further 0.02 m back along the 

path. 
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As with any method of fitting splines in joint space, problems can occur when considered from the end-

effector’s point of view in Cartesian space. Figure 4.17 presents a path where the 

LastLinearTargetDistance is too small, causing the cubic spline fitments to result in a path that ‘loops’ 

back on itself. The trajectory planning method found the fastest trajectory for passing through both 

knots, within the constraints of the motors, to be a looping action. This occurred due to the knots being 

spaced too close together. This highlights a possible deficiency in the algorithm as trajectories like this 

are undesirable. It is therefore important to check parameters, like LastLinearTargetDistance, and view 

the simulated path to ensure the final path is valid. 

 
Figure 4.17 An example of the problem caused by fitment of the splines in joint space resulting in the Cartesian path looping 

back on itself. 

4.3 B-splines, 3rd, 5th and Higher Order Polynomial Fitting 

When deciding on the type of spline fitting method to be used, a number of options were considered. 

This section briefly details the options of using B-splines and a range of polynomials to fit between the 

knots. 

The use of B-splines as an interpolation path planning method was popular in the past [37][38]. This was 

due to their easy and fast mathematical manipulation. However, B-splines do not actually pass through 

the control points (knots), but rather are ‘pulled’ towards them as shown in Figure 4.18. It is for this 



 

  

reason that they are not commonly used now. The failure of a trajectory to 

in the path, renders it unsuitable for many applications.

Figure 4.18 B-spline example. The red spline is 'pulled' towards the black control points.
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As mentioned earlier in this chapter, the exact trajectory planning methodology is not important 

provided it allows a fair and realistic comparison between different manipulator configurations. This 

means that a trajectory must represent the capabilities of the manipulator accurately while taking into 

account motor constraints. As with any simulation, there will always be short-comings when compared 

to reality. The use of quintic and higher-order polynomials have the advantage of increased model 

fidelity over the cubic polynomial method, but at the cost of extra computation. The cubic polynomial 

fitting method was chosen as it provided a trajectory constrained to a high enough degree of accuracy 

for comparing manipulator configurations, while being easily computed. 

4.4 Managing Discontinuous Jerk 

The comparison of cubic polynomial spline fitting to higher-order polynomial fitting showed limitations 

in the fidelity of the trajectory produced. The cubic polynomials resulted in discontinuities of jerk at the 

knots. Motors are not able to produce the instantaneous change in jerk or have an infinite torque step-

response. A number of researchers have successfully used piecewise cubic polynomials for trajectory 

planning in industrial manipulators [23][33][52][69]. Despite these researchers being satisfied with the 

performance, an experiment was conducted to see the variation in end-effector trajectory if the joint 

trajectories were subjected to a low pass filter. To do this, the acceleration profile was put through a 

low-pass Butterworth filter. The resulting signal was then integrated using the trapezoidal numerical 

method to achieve the new velocity profile, and integrated again to produce the new filtered position 

profile. Filtering out the high frequencies within the signal in this manner, effectively places limits on the 

jerk and higher derivates of motor position.  

Figure 4.19 presents the position, velocity and acceleration profiles for the two motors before and after 

the filtering and integration process. The acceleration profile has had the sharp changes smoothed 

which better represents the capabilities of a real motor. As can be seen in the position profile, a 

positional error has been introduced. When the trajectory profile is examined in Cartesian space, as 

shown in Figure 4.20, the end-effector no-longer passes through all the knots. However, the error is 

small enough for the project’s requirements. This experimentation supports the use of piecewise cubic 

polynomials in trajectory planning, and has enough fidelity to compare and contrast different 

configurations. 

 



  Chapter 4 – Trajectory  Planning 

    

75 

 

 
Figure 4.19 Motor position, velocity and acceleration commands before and after low-pass filtering. 

 
Figure 4.20 Trajectory using the filtered position, velocity and acceleration commands.
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5 Dimensional Performance Analysis 

The simulation of the manipulator presented in Chapter 3, using the trajectory planning method 

presented in Chapter 4, provides insight into the performance of the manipulator. The simulation 

enables the limits of the manipulator to be explored and examined in detail. If a pick-and-place 

application is known, say that of moving a known load through a pre-determined path, there may exist a 

2DOFPPM manipulator that has the optimal dimensions for performing that task. 

In this chapter, the 2DOFPPM dimensions are considered as parameters for optimisation. Motor and 

dimensional constraints are specified in order to limit the optimisation process. A database is created to 

store simulation results during the optimisation procedure. The search space of possible manipulator 

configurations is examined for a particular task. Knowing the shape of the search space, the possibility of 

applying optimisation algorithms to find the fastest configuration is discussed. 

5.1 Constraints and Parameters 

The 2DOFPPM has a number of parameters that can be altered. In this project, the selection of motors 

and the lengths of four major dimensional parameters are considered as variables to be optimised for 

achieving the best performance. These four dimensions are: 

• Proximal arm length 

• Distal arm length 

• Separation distance of the motors 

• Height of motors above the workspace 

The dimensions relating to the positioning of the stabiliser arm components have only minimal effect on 

the performance of the manipulator and to minimise computation in the optimisation process, these 

values shall be considered fixed. The dimensions to be optimised are shown in Figure 5.1. The 

workspace height is defined as a distance by which the Y components of each target in the workspace 

are raised (if positive) or lowered (if negative). 
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Figure 5.1 Diagram of the four dimensions to be optimised 

In addition to the dimensions above, the choice of motors is also included as a variable to be optimised. 

A database table is used to store data associated with various motors. This allows only motors that are 

currently available in the marketplace to be selected, rather than assuming there is access to an ideal 

motor. Motors have been classified by their maximum torque, angular velocity, angular acceleration and 

angular jerk properties. 

5.2 Results Storage 

The optimising process generates a large amount of data relating to individual trajectory planning and 

simulations. To safely store the generated data, a database was developed. By using a database and not 

temporary memory storage such as RAM, more data can be stored in a permanent state. This is also 

useful for accessing at a future date without having to re-run the entire optimisation process. 
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MySQL™ was chosen as the database platform as it is free to use under the GNU GPL licensing 

agreement [72] and the existence of an interface for data transaction between Matlab® and MySQL™ 

[73]. Five tables were created in MySQL™ to store the simulation data. An Entity-Relationship Diagram 

(ERD) of the database tables is shown in Figure 5.2. The following sections describe each of the tables 

individually. 

 

Figure 5.2 ERD diagram of the MySQL database schema 
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5.2.1 Paths 

Whenever an optimisation process is started, the path, for which the optimisation will take place is 

stored in the database. A new PathID is assigned to uniquely identify the path. The path is stored 

between two tables, paths and moves. A single entry is inserted into the paths’s table which contains 

parameters relating to the trajectory planning process. The PathID is the primary key. The actual 

movement commands are stored separately in the moves table. This separation is due to a path 

consisting of more than one movement. So to ensure a normalised database, a separate table was 

created to store the movement commands. 

5.2.2 Moves 

The movement commands that help define the path are stored in the moves table. The primary key is 

PathId, which is also a foreign key relating the entry back to the paths table. A second key is used to 

ensure that each path has a sequence of moves that can be easily identified. MSequence marks each 

move with an increasing integer in the order which the movements take place. The moves table contains 

attributes that define the target in Cartesian coordinates, MoveType, zone, and the maximum TCP speed 

for the move. A pause attribute also exists to allow the definition of a temporary pause in the cycle 

where a ‘pick’ or ‘place’ movement is programmed. 

5.2.3 Userconstraints 

The userconstraints table groups together all the constraints imposed on the optimisation by the user of 

the software system. Every path has an associated set of userconstraints. The userconstraints specifies 

the maximum permissible motor parameters. The table also contains dimensional constraints including 

the maximum and minimum angles allowed of the joints, the inner and outer radii of the arm 

components, and the offset dimensions of the stabiliser arm and gripper element. Limits on the overall 

maximum width and depth of the manipulator are recorded in this table. Gripper mass and the density 

properties of the arms are also stored here. 

The PathId is the primary key for the table and is also a foreign key linking the set of userconstraints to 

the same path in the paths table. 

5.2.4 Simulations 

For a given path defined in the paths table, there may be numerous simulations. As the optimisation 

process requires multiple manipulator configurations to be simulated a separate table, simulations, is 

used to store the five variable parameters (proximal and distal arm lengths, motor separation distance, 

workspace height and the motor used) as well as the cycle-time achieved for the path. The MotorID is a 
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foreign key linking to a specific motor in the motors table. The time the simulation took place is also 

stored as a timestamp. The comment attribute is included in the table to allow additional identification 

of the optimisation process used when the simulation was executed. 

5.2.5 Motors 

The motors table stores data for a range of motors. MotorID is the primary key and is used to identify 

the motor in the simulations table. Each motor has a name and description attribute as well as a file path 

to a specification document. The inclusion of specification documents was added to allow easy lookup 

for technical details of a particular motor. The motor’s limits are included, namely the maximum torque 

and angular velocity, acceleration and jerk. Additional details of the motor’s moment of inertia and 

encoder resolution are optional parameters to be stored. 

5.3 Search Space 

Before attempting to solve an optimisation problem it is useful to gain insight into the search space of 

possible solutions. In the problem presented here, the search space is a set of four dimensional 

parameters of the 2DOFPPM, and the optimisation goal is to find the shortest cycle-time. Therefore, to 

find the search space, every possible permutation of the four dimensions must be considered. As the 

parameters being altered are length dimensions and therefore are continuous with an infinite number 

of possible permutations, the cycle-time must be evaluated at discrete distances between some limiting 

bounds for each of the four parameters. 

The same cycle-path that was used in Chapter 3 (refer Figure 3.20), is used to demonstrate the 

optimisation methods in this chapter. In order to find the search space for the path, limits were placed 

on each dimension parameter as shown in Equations (5.1) through to (5.12). 

�|Wls�Qy
	≤ 	 �|Wls 	≤ �|Wls�x�  (5.1)

 

�|Wls�Qy = c��c���K�<��K����� (5.2)

 

�|Wls�x� = 0.9 ∗ c����T�ℎ (5.3)

 

where c����T�ℎ is a user defined parameter specifying the maximum width of the manipulator as 

shown in Figure 5.3. Setting a maximum width is useful as the space where the manipulator is to be 

installed is often limited. For the sample path, c����T�ℎ is set at 1.5 m as this is a typical size 
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constraint for a manipulator performing the given path-cycle. A further limitation is imposed by 

restricting �|Wls to 90 % of	c����T�ℎ. This is done as  �|Wls cannot take up the full length of c����T�ℎ as that would leave no room for the proximal arms.  

The length of c��c���K�<��K����� is a user defined parameter specifying the minimum separation 

distance of the motors. This constraint allows the physical dimensions of the motor or gearbox housings 

to be accounted for. For the sample path, this is set at 0.01 m to allow room for nominally sized 

gearboxes. 

�defC�Qy 	≤ 	 �defC 	≤ �defC�x�  (5.4)

 

�defC�Qy = 0 (5.5)

 

�defC�x� = c����T�ℎ2  (5.6)

 

�k�lm�Qy 	≤ 	 �k�lm 	≤ �k�lm�x� (5.7)

 

�k�lm�Qy = c��c���K�<��K����� (5.8)

 

�k�lm�x� = �c���<��ℎ
 + ��|Wls�x�2 '

 (5.9)

 

where c���<��ℎ is a user defined parameter specifying the maximum length of the manipulator 

measured from the motor base to the end-effector, while the proximal arms are hanging down in the Y-

plane as shown in Figure 5.3. Similar to the c����T�ℎ parameter, c���<��ℎ is implemented to 

account for any constraints on the space available for installing the manipulator. For the sample path 

this is set at 1.5 m, again to account for a typical size constraint on a manipulator executing the 

dimensions of the sample path. In Equation (5.6),  �defC�x�  is limited to half of c����T�ℎ as with two 

proximal arms of this length the c����T�ℎ constraint would be reached, even with a �|Wls length of 

zero. Equation (5.9) is obtained by considering the Pythagoras triangle formed by c���<��ℎ and half �|Wls as the proximal arm length approaches zero. 
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���<�=ℎ�V�p 	 ≤ 	���<�=ℎ�	 ≤ ���<�=ℎ�VWC (5.10)

 

���<�=ℎ�V�p = −0.3 ∗ c���<��ℎ (5.11)

 

���<�=ℎ�VWC = 0.3 ∗ c���<��ℎ (5.12)

 

where ���<�=ℎ� is the height which the workspace is raised relative to the original programmed 

movement coordinates. It is expected that the coordinates are programmed with the manipulator 

mounted in a position where it can reach all the targets. This parameter allows for small changes to be 

made to the positioning of the manipulator. As such, a value of 30 % of the c���<��ℎ parameter was 

considered sufficient variation to encompass the optimal workspace height. 

 
Figure 5.3 MaxWidth and MaxDepth parameters are defined by the user to limit the search space. They correspond to the 

dimensions in this diagram. 

The dimensions being altered are continuous, therefore there are an infinite number of possible 

combinations despite the boundary conditions stated above. To limit the number of dimension 

combinations simulated, each dimension is divided into discrete values. For this project, the separation 

distance of the motors (�|Wls	), proximal arm length (�defC	) and distal arm length (�k�lm 	) were divided 

into 50 discrete values, evenly spaced between the upper and lower bounds of each parameter. The 

workspace height (���<�=ℎ�) was divided into 10 discrete values, evenly spaced between its upper 

and lower limits. Evaluating each of the possible combinations provides an accurate view of the solution 

space but is granular enough to be computed in a realistic time frame. By dividing the dimensions to this 

level, there exist 1.25 million combinations (50� ∗ 10) to be explored. 
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At this point it useful to note that evaluating the cycle-time for every combination of the dimensions 

does not need to run through SimMechanics™. As the trajectory planning process calculates the 

position, velocity and acceleration profiles of the motors over time, the cycle-time is therefore 

determined at this stage. So where cycle-time is the only performance criteria being analysed, 

SimMechanics™ does not add any value and can consequently be omitted to save processing time. 

SimMechanics™ can then be used to review any particular configuration of interest at a later point in 

time. For example, the configuration with the fastest cycle-time after the trajectory planning process 

can be examined in detail in the SimMechanics™ simulation to look closer at joint torques or the end-

effector’s acceleration profile. 

The search space for finding the optimal dimensions of the 2DOFPPM for traversing the sample path was 

then generated. Figure 5.4 shows the cycle-time plotted against three of the dimensions, �|Wls, �defC, 

�k�lm. The red data points represent configurations with the fastest cycle-time, whilst the blue represent 

the slowest. Due to limitations of graphing multiple parameters at once, the workspace height 

(���<�=ℎ�) data is lost within the graph. To view the effects that all four dimensions have on the 

path’s cycle-time, Figure 5.5 shows 10 graphs at each of the 10 workspace heights. 

 
Figure 5.4 Graph of the search space for the sample path. The proximal and distal arm lengths and motor separation distance 

are plotted with the colours representing the cycle-time. The intersecting pink lines show the location of the minimum cycle-

time. 
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Figure 5.5 Search space for sample path. Each graph represents a different workspace height
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Search space for sample path. Each graph represents a different workspace height, starting from a high workspace 
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From Figure 5.4 and Figure 5.5, it can be seen that for the sample path, the fastest cycle-times are 

achieved with relatively short proximal and distal arms, a small separation distance of the motors, and a 

slight rise in the workspace height. It is also noted that the optimal solution lies on the border of the 

search space, that is, the manipulator is only just able to reach all points on the sample path. Figure 5.5a 

through to Figure 5.5c show that no valid configurations exist when the workspace is raised too high. 

The generation of the search surface was performed on a single computer (refer Appendix B). With the 

simulation optimised for speed, it took 18 hours to evaluate the 1.25 million possible combinations to 

this level of accuracy.  

5.4 Optimisation Overview 

While a coarse but complete view of the solution space can be generated in a matter of hours, as shown 

in the previous section, it may be possible to find a near-optimal solution faster. The optimisation task is 

to find the configuration of four dimensions of the 2DOFPPM that leads to the fastest cycle-time. In 

terms of optimisation problems, this is a simple problem and therefore simple optimisation techniques 

shall be considered.  

There are an ever-growing number of optimisation algorithms available and comparisons between 

techniques are common. Prügel-Bennett [74] compared the performance of a Hill Climber, Stochastic 

Hill Climber and a Genetic Algorithm for a toy problem with a similar search space. Mitchell et al. [75] 

analyses the performances of a Hill Climber and a Genetic Algorithm to find under what conditions each 

algorithm is superior. Garg and Kumar [76] compare the performances of a Genetic Algorithm to  

Simulated Annealing as applied to manipulator path planning. These are only a few of many such 

comparisons between optimising techniques.  

For simple optimisation problems like this there are four main techniques commonly used. These are: 

• Random Restart Hill Climber 

• Stochastic Hill Climber 

• Simulated Annealing 

• Genetic Algorithm 

A comparison of these four techniques, as applied to finding the optimal dimensional configuration of a 

manipulator, is considered important and valid. The next chapter implements and evaluates these 

algorithms. 



  Chapter 5 – Dimensional Performance Analysis 

    

87 

 

It should be noted that a near-optimal solution is being considered instead of a truly optimal solution as 

the optimisation techniques cannot be guaranteed to find the absolute best solution, but rather a 

solution that is near optimal. A near-optimal solution is sufficient, as sub-millisecond improvements to 

the cycle-time are insignificant given the estimation process required to generate the trajectory. There is 

also no benefit in optimising arm lengths beyond the degree of precision capable of the fabrication 

process. 
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6 Optimisation Methodologies 

Over the following sections, four optimising techniques are implemented and their performances 

compared. The sample path used in Chapter 3 (refer Figure 3.20) and Chapter 5 is employed again to 

evaluate the techniques. All optimisations are performed on a single computer. The specifications of this 

computer can be found in Appendix BAppendix F. 

The key performance indicators for each technique are: 

• Minimum path cycle-time achieved. 

• Computation time to reach ‘optimisation’. 

The minimum path cycle-time is the overall time to traverse the sample path as calculated by the 

trajectory planner. The point where each method is considered to reach ‘optimisation’ will vary due the 

individual process. However, a comparison will be made between the optimisation techniques to 

determine which method finds a suitably fast cycle-time with the least amount of computation. 

Each technique is run multiple times to allow statistical evaluations to be performed. Where possible, 

the techniques have been given the same starting conditions. For example, the number of iterations for 

restarting the hill climber is used again as the number of stochastic hill climber starting attempts. Each 

technique also has a number of parameters that need to be tuned to maximise the technique’s 

performance. In most cases the parameters are tuned by evaluating the performance over a number of 

runs. This allows the performance of the parameters to be fairly evaluated in a statistical manner. Due 

to the large processing time of evaluating some of the parameters, simple empirical testing was done to 

tune these parameters. The method for tuning each parameter is documented in each of the following 

sections. 

6.1.1 Random Restart Hill Climber 

After random search techniques, a Hill Climber is the simplest of optimising algorithms. Hill climbing 

methods are popular due to the simplicity of implementing them. All that is required is an evaluation 

function for which a measure of fitness can be obtained and the ability to select other solutions around 

the current solution (that is, the neighbourhood). In the case of optimising the 2DOFPPM dimensional 

configuration for achieving the fastest cycle-time for a given path, the evaluation function is the cycle-
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time and neighbouring solutions are configurations close to the current configuration that vary slightly 

in the optimised dimension(s). 

It should be noted that formally, Hill Climbing methods seek to achieve a maximum. In this project, the 

minimum cycle-time is the objective. However, the technique to minimise remains fundamentally the 

same as the maximisation method and as such, the term ‘Hill Climber’ will be used even though the 

opposite effect is desirable. Sometimes the minimisation method is referred to as gradient descent, but 

this term will not be used in this work. 

A Hill Climber starts by randomly selecting a solution and evaluating its performance against a fitness 

function. The neighbouring solutions are then considered and their performance evaluated. If a 

neighbouring solution is found to perform better than the first solution, the neighbourhood of that 

solution is evaluated. This iterative process continues until a solution is found that performs better than 

all of its neighbouring solutions.  

A Hill Climbing method works well when there are no local optima in the search space, only the global 

optima. When looking at the search space in the previous section (refer Figure 5.5), it could be assumed 

that this is the case in this project (that is, the cycle-time is minimised as the dimensions tend towards 

short proximal and distal arms, a small separation distance of the motors, and a slight rise in the 

workspace height). However, when a single instance of a Hill Climber is run, it finds itself stuck in a local 

optimum, unable to get out and reach the desired global optimum. This is due to the search surface 

containing shallow troughs and low ridges that create local optima. After some consideration, it was 

decided that the most likely cause of these local optima is the iterative trajectory planning process. 

Because the trajectory planner iteratively increases and decreases the path time between knots, a near 

optimal trajectory is generated. How close to truly optimal each trajectory is depends on the process 

and some configurations may be closer to optimal than others. This results in some configurations being 

considered slightly less favourable than their neighbours, even though they may in fact be slightly better 

if the trajectory planner produced a truly optimal trajectory. 

To apply a Hill Climbing method to a search space containing local optima, as is the case here, it is 

common to use a Random Restart Hill Climber (RRHC). A RRHC differs from a standard Hill Climber by 

selecting more than one starting solution. This has the effect of producing hill climbers at multiple 

starting points in the search space. Each Hill Climber is allowed to find its own (local) optimum. By this 

method, a greater area of the search space is covered, increasing the likelihood of finding the global 

optimum. However the RRHC method cannot be guaranteed to find the global optimum. 
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Figure 6.1 shows the RRHC implemented in Matlab® code. The overall process is implemented for a 

number of iterations (restarts) in the form of a coded for-loop (lines 11-67). In each iteration a motor is 

selected from a database (line 14) and a random 2DOFPPM configuration is chosen within some 

constraints (line 19). A path is then compiled (line 25) using the CompilePath() method developed earlier 

in the trajectory planning section (refer Section 4.1 and Figure F.7 through to Figure F.11 in Appendix F). 

The path is then stored in the database (line 32) and the configuration and its cycle-time are considered 

to be the ‘best’ so far (lines 35-36). The neighbouring configurations are then found based on the 

parameter StepSize (lines 43-44). A trajectory is generated for each of the neighbouring configurations 

(line 49) and the results stored in the database (line 50). The cycle-times of the neighbouring solutions 

are compared to the current solution (lines 58-59) and if a better solution is found, it then becomes the 

‘best’ configuration (line 62) and the process is repeated. If several solutions are better than the current 

solution, the best solution is chosen. If no neighbour improves the cycle-time, then a local minimum has 

been found, the while-loop (lines 38-66) is exited and the iteration stops. 

When selecting the neighbouring configurations in this problem, 30 configurations are chosen. These 30 

configurations are the result of the four dimensions being altered. Each dimension could remain 

unchanged or be increased or decreased by the StepSize amount. The solution that remains unchanged 

in all dimensions is rejected as that is the current solution. The code for this method, 

SelectNeighbouringConfig(), is included in Appendix F (refer Figure F.72). 

The RRHC, contains two variables that require tuning. The first is the parameter named StepSize (lines 1 

& 44). The StepSize determines the distance away from the current configuration to examine its 

neighbourhood. To tune the StepSize, several values were considered and tested by performing 90 runs 

of the RRHC optimising method using each. The other parameter to determine is how many random 

restart iterations are required to sufficiently cover the search space. In the Matlab® code this is referred 

to as TermCond.Iterations (line 11). This was also tuned by running the RRHC multiple times and 

considering the performance of the method as the number of iterations increased. Both parameters 

were tuned simultaneously by running 90 RRHCs for several values of StepSize meanwhile recording the 

performance relative to the number of restart iterations. 
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1 function  OptimiseConfigurationHC(CP,TermCond,UConstraints,S tepSize) 
2 % Uses a random restart hill climber to narrow on a time-minimum configuration  
3 % VARIABLES:  
4 % CP - Cycle Path class containing geometric detai ls of the path  
5 % TermCond - Termination Condition class detailing  conditions of terminating process  
6 % UConstraints - User Constraints class  
7 % StepSize - size of steps (in m) to evaluate neig hbouring configurations  
8   

9 StorePathsUserConstraintsSQL(CP,UConstraints);  % Store path and user constraint data  
10  
11 for  i=1:TermCond.Iterations     % Run Hill Climber for a number of iterations  
12      

13     % Select 'random' motor details from database  
14     [motorID,newPPC] = SelectMotor(CP.PPC,UConstra ints);  
15   

16     CP.PPC = newPPC;    % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)  
17      

18     % Select random configuration that reaches all move  targets  
19     config = SelectRandomConfig(CP.Moves,motorID,U Constraints);  
20   

21     try   
22         % Compile path using Configuration and Path Plannin g Constraints (PPC)  
23         % Path Planning Results (ppr) are returned along wi th positional and zone data  
24         % about targets  
25         [Targets_XYZ,ppr] = CompilePath(CP.Moves,c onfig,CP.PPC); 
26     catch  exception 
27         % Skip to next iteration if exception occurs due to  config unable to meet targets  
28         continue ;    
29     end  
30      

31     % Store results of path planning in database  
32     StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i) ;  
33      

34     local = false;  % Set flag indicating whether a local minima has be en found  
35     minCycleTime = ppr.PathA(size(ppr.PathA,1)).En dTime; % Set best cycletime acheived  
36     bestConfig = config;    
37      

38     while  local == false % Loop until local minima has been found  
39         clear neighboursPPR ;        % Clear variables  
40         clear neighboursConfig ;     % Clear variables  
41          

42         % Select configurations around the best configurati on so far  
43         neighboursConfig = ...  
44             SelectNeighbouringConfig(bestConfig,CP .Moves,motorID,UConstraints,StepSize); 
45                  

46         for  j=1:size(neighboursConfig,2) 
47             % Compile Paths using each of the neighbouring conf igurations(neighboursConfig)  
48             % Store results in database, and save Path Planning  Results (ppr) in an array  
49             [Targets_XYZ,ppr] = CompilePath(CP.Mov es,neighboursConfig(j),CP.PPC); 
50             StoreSimulationsSQL(neighboursConfig(j ),CP.PPC,ppr,CP.ID,i); 
51             neighboursPPR(j)=ppr; 
52         end  
53          

54         local = true;   % set flag - will be reset if not local  
55         for  j=1:size(neighboursPPR,2) 
56             % Compare results of each neighbouring configuratio n. Replace bestConfig with  
57             % neighbour if faster cycletime is found  
58             if  neighboursPPR(j).PathA(size(neighboursPPR(j).PathA ,1)).EndTime ...  
59                                                                         < minCycleTime 
60                 minCycleTime = ...  
61                         neighboursPPR(j).PathA(siz e(neighboursPPR(j).PathA,1)).EndTime; 
62                 bestConfig = neighboursConfig(j); 
63                 local = false; 
64             end  
65         end  
66     end  
67 end  
68 end  

 

Figure 6.1 Matlab® Code of the RRHC Optimising Method 
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Four different values of step size were chosen. These distances are shown in Table 6.1 and are measured 

in metres. Alongside each is the relative length of the step size when compared to the width (0.6 m) and 

height (0.3 m) of the sample path (refer Figure 3.20). The comparison to the path dimensions is shown 

to give an indication of the appropriate StepSize should a significantly different path be optimised using 

the technique outlined in this research.  

Table 6.1 StepSizes evaluated and their relative path dimensions 

StepSize (m) Percentage of path width (0.6 m) Percentage of path height (0.3 m) 

0.01 1.67 % 3.33 % 

0.02 3.33 % 6.67 % 

0.05 8.33 % 16.67 % 

0.1 16.67 % 33.33 % 

 

The results of the 4 x 90 runs of the RRHC have been summarised in the following figures. Figure 6.2 

shows a histogram distribution of the minimum cycle-time achieved by each of the StepSizes. StepSizes 

of 0.01 and 0.02 m are seen to perform better than the larger distances of 0.05 and 0.1 m over 100 

restart iterations. The mean, standard deviation and median cycle-times of each StepSize is shown in 

Table 6.2. 

 
Figure 6.2 Normalised histogram of minimum cycle-time achieved by four different StepSizes using the RRHC method after 

100 restart iterations. Based on 90 individual runs. 
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Table 6.2 Mean, standard deviation and median minimum cycle-times for four different StepSizes 

StepSize (m) Mean Minimum Cycle-

time (s) 

Minimum Cycle-time 

Standard Deviation (s) 

Median Minimum 

Cycle-time (s) 

0.01 1.64 0.06 1.65 

0.02 1.65 0.05 1.66 

0.05 1.70 0.06 1.70 

0.1 1.71 0.07 1.71 

 

While the mean and median give an indication into which StepSize is best to use for this project, the 

performance of each StepSize is better analysed by applying a proven statistical comparison technique 

known as the Wilcoxon-Mann-Whitney (WMW) two-sample rank-sum test [77] [78] (also known as a U-

test). The WMW is a non-parametric method used to test whether two independent samples of 

observations are of equal value in a statistical sense (that is, is one StepSize better than another). As the 

median minimum cycle-time achieved by StepSize = 0.01 is the best of the four distances considered, the 

WMW method will be used to compare the significance of this result to the other three StepSizes. The 

results in Table 6.3 show that the null hypothesis is rejected for StepSizes = 0.05 and 0.1, but is 

confirmed for StepSize = 0.02. This means that the StepSize = 0.01 is statistically better than StepSizes = 

0.05 and 0.1, but there is no significant difference when compared to StepSize = 0.02. These results were 

obtained using the standard 95 % confidence interval. 

Table 6.3 Wilcoxon-Mann-Whitney test results comparing StepSize = 0.01 to the other StepSizes 

StepSize (m) Rejection of Null-Hypothesis p-Value 

0.02 0 0.189 

0.05 1 7.73 x10
-11 

0.1 1 3.37 x10
-12

 

 

While only the StepSize has been analysed so far, the number of random restart iterations is of equal 

importance to the RRHC algorithm. Figure 6.3 shows the mean minimum cycle-time achieved versus the 

number of random restart iterations for each of the StepSizes. The greatest improvement is seen within 

the first ten iterations with the average minimum cycle-time reducing by 0.15 s. The rate of 

improvement declines as the number of iterations increases, but even after 100 iterations, all four 
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StepSizes continue to improve the mean minimum cycle-time, albeit slowly. StepSizes of 0.01 and 0.02 m 

not only find better configurations of the 2DOFPPM, but also achieve them with less restart iterations. 

The mean minimum cycle-time was at 1.7 s after approximately 30 iterations for StepSizes of 0.01 and 

0.02m, whereas it took on average 100 restart iterations for StepSizes 0.05 and 0.1 m. 

Figure 6.4 shows histogram distributions of the minimum cycle-time for a StepSize of 0.02 m at intervals 

of 25, 50, 75 and 100 random restart iterations. This shows a very dispersed distribution when only a 

few restart iterations are used, as is the case with 25 random restarts. As the number of restarts is 

increased, the minimum cycle-time achieved by the RRHC becomes more consistent (that is, a narrower 

distribution) and centres on approximately 1.65 s as shown by the histograms of the 75 and 100 restart 

iterations. Even after 100 restart iterations, there is still variation with the RRHC sometimes achieving 

cycle-times as low as 1.5 s and other times only managing to optimise to 1.75 s. 

 

Figure 6.3 Mean Minimum Cycle-time versus the number of Random Restart Iterations for four StepSizes 
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Figure 6.4 Normalised histograms of minimum cycle-time achieved by the RRHC method with a StepSize of 0.02 m, after 25, 

50, 75, 100 restart iterations. Based on 90 individual runs. 
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optimisation is completed, on average it has found a better solution than the other StepSizes after the 

same length of time. 

 

Figure 6.5 Box plot of the computation time required for each RRHC to find its minimum cycle-time. Graph shows separate 

box plots for each StepSize. 
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Figure 6.6 Computation time versus mean minimum cycle-time for four StepSizes 
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3 = 	 11 + <����9���	�  (5.13)

 

where 3 is the probability of selection, ��� and 2��  are the cycle-times of the neighbouring and current 

solution respectively, and 1 is a constant that determines the shape of the selection probability profile. 

 

Figure 6.7 Example selection probability profile for a SHC 

The probability profile resulting from the function can be seen in Figure 6.7 where the probability of 

acceptance is plotted against the difference in cycle-times of the two solutions being compared. As can 

be seen, the probability of selection is greater if the neighbouring solution is better than the current 

solution (that is, a negative difference in cycle-time). However, the probability of selecting a 

neighbouring solution with a slower cycle-time also exists. As the difference in cycle-times increases, the 

probability of selection approaches that of a traditional Hill Climber. This stochastic approach allows the 

SHC to escape from local optima. 

The Matlab® code used to execute the SHC is presented in Figure 6.8. The implementation is very similar 

to the RRHC (cf. Figure 6.1) but varies in that only one neighbour is selected at random with its path 

compiled (lines 42-45), and the selection process is now probabilistic (line 59). By only selecting and 

evaluating one neighbour there is less redundant computation which will be shown to lead to a faster 

optimising algorithm. 
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1 function  OptimiseConfigurationSHC(CP,TermCond,UConstraints, StepSize,MaxAttempts,T) 
2 % Uses a random restart stochastic hill climber to  narrow on time-minimum configuration  
3 % VARIABLES:  
4 % CP - Cycle Path class containing geometric detai ls of the path  
5 % TermCond - Termination Condition class detailing  conditions of terminating process  
6 % UConstraints - User Constraints class  
7 % StepSize - size of steps (in m) to evaluate neig hbouring configurations  
8 % MaxAttempts - the number of attempts before deci ding current iteration is complete  
9 % T - constant in algorithm that affects probabili ty of selection  
10   

11 StorePathsUserConstraintsSQL(CP,UConstraints);  % Store path and user constraint data  
12 for  i=1:TermCond.Iterations     % Run Stochastic Hill Climber for a number of itera tions    
13     % Select 'random' motor details from database  
14     [motorID,newPPC] = SelectMotor(CP.PPC,UConstra ints); 
15     CP.PPC = newPPC;   % Assign Path Planning Constraints (PPC) of motor t o Cyc le Path(CP)    
16     % Select random configuration that reaches all move  targets  
17     config = SelectRandomConfig(CP.Moves,motorID,U Constraints); 
18     try  
19         % Compile path using Configuration and Path Plannin g Constraints (PPC)  
20         % Path Planning Results (ppr) are returned along wi th positional and zone data  
21         % about targets  
22         [Targets_XYZ,ppr] = CompilePath(CP.Moves,c onfig,CP.PPC); 
23     catch  exception 
24         % Skip to next iteration if exception occurs due to  config unable to meet targets  
25         continue ; 
26     end  
27     % Store results of path planning in database  
28     StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i) ;       
29     local = false;  % Set flag indicating whether a local minima has be en found  
30     minCycleTime = ppr.PathA(size(ppr.PathA,1)).En dTime; % Set best cycletime acheived  
31     bestConfig = config;                % Set the best Configuration  
32     currentConfig = config;             % Set the current Configuration  
33     currentCycleTime = minCycleTime;    % Set cycletime acheived by currentConfig       
34     while  attempts < MaxAttempts    % Loop for a set number of attempts  
35         clear neighboursPPR ;            % Clear variables  
36         clear neighboursConfig ;         % Clear variables  
37         clear selectedNeighbourConfig ;  % Clear variables  
38         clear selectedNeighbourPPR ;     % Clear variables           
39         % Select configurations around the currentConfig  
40         neighboursConfig = SelectNeighbouringConfi g( ...  
41                                 currentConfig,CP.Moves,motorID,UConstraints,StepSiz e);                
42         % Select a random neighbour  
43         randIndex = randperm(numel(neighboursConfi g)); 
44         selectedNeighbourConfig = neighboursConfig (randIndex(1,1));         
45         % Evaluate the selected neighbour by compiling a pa th  
46         [Targets_XYZ,ppr] = CompilePath(CP.Moves,s electedNeighbourConfig,CP.PPC); 
47         %Store results of path planning in database  
48         StoreSimulationsSQL(selectedNeighbourConfi g,CP.PPC,ppr,CP.ID,i); 
49         selectedNeighbourPPR = ppr; 
50         selectedNeighbourCycleTime = ...  
51                 selectedNeighbourPPR.PathA (size(selectedNeighbourPPR.PathA,1)).EndTime;        
52         % Check if it is the best, save if it is  
53         if  selectedNeighbourCycleTime < minCycleTime 
54             minCycleTime = selectedNeighbourCycleT ime; 
55             bestConfig = selectedNeighbourPPR; 
56         end          
57         % Determine probability of selection based on cycle  time  
58         diff = selectedNeighbourCycleTime - curren tCycleTime; 
59         probOfSelection = 1/(1+exp((selectedNeighb ourCycleTime - currentCycleTime)/T));        
60         myRand = rand(1);   % Select neighbouring config based on probability  
61         if  myRand < probOfSelection 
62             currentConfig = selectedNeighbourConfi g; 
63             currentCycleTime = selectedNeighbourPP R.PathA( ...  
64                                             size(s electedNeighbourPPR.PathA,1)).EndTime; 
65         end  
66     end  
67 end  
68 end 

 

Figure 6.8 Matlab® Code of the SHC Optimising Method 
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The SHC optimising method has several parameters that need to be tuned to maximise the performance 

of the algorithm. Firstly, the StepSize (lines 1 & 40), as was also used in the RRHC, determines how far to 

look for neighbouring solutions. As the SHC and RRHC algorithms apply the StepSize in similar ways, the 

StepSize value that was tuned for the RRHC will again be used for the SHC. This also simplifies the 

parameter tuning process, as there are fewer parameter combinations to be evaluated. As shall be seen 

in the following algorithms, the number of parameter combinations can become large. Making valid 

assumptions such as this become necessary to limit the evaluation time. The SHC StepSize parameter is 

set as 0.02 m. 

The second parameter to be tuned is the T value (lines 1 & 59) used in Equation (5.13). This sets the 

shape of the probability profile. A low T value produces a profile approaching that of the RRHC, whereas 

a high value approaches a random search. Figure 6.9 shows the selection probability profiles generated 

for several values of T. This section analyses which of those profiles is best suited to the problem of 

optimising the 2DOFPPM dimensions to achieve the fastest cycle-time. 

 

Figure 6.9 Selection probability profiles of four T constants for a SHC 

The final parameter to be tuned is the MaxAttempts (line 1 & 34). Unlike the RRHC, the SHC has no 

obvious termination condition. The RRHC is terminated once it has found a solution surrounded by less 

optimal neighbours. This may result in terminating at a local optimum. The SHC seeks to avoid this by 
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stochastically selecting a worse neighbour, even if all the neighbours are less optimal. Therefore, the 

parameter MaxAttempts sets the number of iterations that the algorithm will perform. This section 

determines the value for MaxAttempts for this research problem. 

In order to evaluate the best values for T and MaxAttempts, 4 x 150 runs of the SHC were performed. 

This consisted of 150 runs using each of the four T values being examined (0.01, 0.05, 0.1, and 0.5). The 

performance of the SHC was also monitored in relation to the number of iteration attempts. This 

provided data to evaluate the best value for MaxAttempts. The results of the SHC evaluation are 

summarised in the following figures. Figure 6.10 shows a histogram distribution of the minimum cycle-

time achieved using each of the four T constants. A T value of 0.05 is seen to perform better than the 

others after 5000 iterations. The mean, standard deviation and median minimum cycle-times for each T 

value are presented in Table 6.4. 

 

Figure 6.10 Normalised histogram of minimum cycle-time achieved by four different T values using the SHC method after 

5000 iterations. Based on 150 individual runs. 
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Table 6.4 Mean and Median minimum cycle-times for four different values of T 

T Mean Minimum Cycle-

time (s) 

Minimum Cycle-time 

Standard Deviation (s) 

Median Minimum Cycle-

time (s) 

0.01 1.79 0.22 1.73 

0.05 1.61 0.07 1.60 

0.1 1.64 0.10 1.61 

0.5 1.85 0.17 1.81 

 

While the mean and median minimum cycle-times for a T value of 0.05 are shorter than the other three 

values of T, it is useful to validate this statistically using the Wilcoxon-Mann-Whitney U-test, as done 

with the StepSizes of the RRHC. The optimisation results achieved with a T value of 0.05 are compared to 

the results obtained using the other three T values. The U-test results can be seen in Table 6.5, where 

the null hypothesis is rejected for T = 0.01 and 0.5 with a 95 % confidence interval. However there is no 

statistically significant difference with the minimum cycle-time achieved by T = 0.1 and T = 0.05.  

Table 6.5 Wilcoxon-Mann-Whitney test results comparing T = 0.05 to the other values of T 

T Rejection of Null-Hypothesis p-Value 

0.01 1 1.83 x10
-10

 

0.1 0 0.240
 

0.5 1 5.60 x10
-18

 

 

So far the performance of the SHC with different values of T has only considered the results after 5000 

iterations (that is, MaxAttempts = 5000). The histogram plots in Figure 6.11 show the distribution of the 

minimum cycle-times after 100, 1000 and 5000 attempts. The median minimum cycle-time is evaluated 

for each value of T at 100, 1000 and 5000 attempts, and is shown in Table 6.6. After 100 attempts, a T 

value of 0.1 is found to give the lowest average minimum cycle-time. However, 0.05 is found to produce 

the lowest mean minimum cycle-time after both 1000 and 5000 attempts. The significance of these 

results is evaluated using the Wilcoxon-Mann-Whitney U-test with a 95 % confidence interval. The 

results of this test are shown in Table 6.7. After 100 attempts, there is no difference in the minimum 

cycle-time achieved using T values 0.01, 0.05 and 0.1. Using a T value of 0.5 performs worse than the 

other three values tested. After both 1000 and 5000 attempts the T value of 0.05 proves better than 
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0.01 and 0.5, but there is no significant difference in the performance when compared to a T value of 

0.1. Therefore, T can be set to either 0.05 or 0.1 for best results of the SHC based on the values tested. 

 

Figure 6.11 Normalised histograms of minimum cycle-times using four T values after 100, 1000 and 5000 attempts 

Table 6.6 Median Minimum cycle-times for different T values after different number of attempts 

T 
Median Minimum Cycle-Time (s) 

100 Attempts 1000 Attempts 5000 Attempts 

0.01 1.98 1.82 1.73 

0.05 2.01 1.69 1.60 

0.1 1.97 1.74 1.61 

0.5 2.02 1.96 1.81 
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Table 6.7 Wilcoxon-Mann-Whitney test results. Comparing T = 0.1 to the other values of T for 100 attempts, and T = 0.05 to 

the other values of T for 1000 and 5000 attempts. 

T 

100 Attempts (T = 0.1) 1000 Attempts (T = 0.05) 5000 Attempts (T = 0.05) 

Rejection of 

Null-Hypothesis 
p-Value 

Rejection of 

Null-Hypothesis 
p-Value 

Rejection of 

Null-Hypothesis 
p-Value 

0.01 0 0.915 1 6.18 x10
-4

 1 1.83 x10
-10

 

0.05 0 0.501 N/A N/A N/A N/A 

0.1 N/A N/A 0 0.156 0 0.240 

0.5 1 0.030 1 7.50 x10
-10

 1 5.60 x10
-18

 

 

The other parameter to be tuned in the SHC algorithm is MaxAttempts. It is important to look at the 

minimum cycle-time achieved as a function of the attempts required. This can give an indication of how 

many iteration attempts are required until a near optimal solution is expected to be found. Figure 6.12 

shows that for all values of T, the greatest improvement in finding a solution with a minimum cycle-time, 

is achieved within the first 500 iteration attempts. The mean minimum cycle-time continues to improve, 

but at a slowing rate, right up until 5000 attempts. However, a value of 2500 attempts is a suitable 

compromise for the SHC algorithm to find a configuration that produces a near minimum cycle-time. 

Figure 6.13 shows the computation time required for the SHC to achieve a given mean minimum cycle-

time. Four lines are plotted for each of the T values tested. It can be seen that by 2500 seconds, all of 

the T values have come close to reaching an ‘optimal’ solution. T values of 0.05 and 0.1 easily 

outperform the values of 0.01 and 0.5. 

The SHC is a modification of the RRHC which introduces a probability to the selection process. This 

allows the SHC to escape from local optima. Several parameters that affect the performance of the SHC 

have been tuned in this section. Firstly, the StepSize value is chosen to be the same as that of the RRHC 

and is set at 0.2 m. Secondly, the value T sets the shape of the probability selection curve. Four values 

were tested and a value of 0.05 was chosen to provide the fastest convergence on the optimal 

2DOFPPM dimensions. Finally, as the SHC has no obvious terminating condition, a value had to be set to 

limit the number of iteration attempts. 2500 attempts were shown to provide a suitable number of 

iterations to converge on a near optimal set of dimensions. Therefore the parameter MaxAttempts has 

been set at 2500. 
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Figure 6.12 Mean minimum cycle-time achieved relative to the number of iteration attempts for four values of T 

 
Figure 6.13 Computation time versus mean minimum cycle-time for four T values of the SHC 
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6.1.3 Simulated Annealing 

The SHC algorithm can be modified to produce an algorithm known as Simulated Annealing (SA). SA 

differs from SHC in two ways: 

• The main difference is that the parameter T is varied during the optimising process. T starts out 

large and is reduced over a number of iterations. 

• Unlike the SHC, SA always accepts solutions if they are better than the current solution. 

SA gets its name from an analogy to the thermodynamics process of slowing cooling a crystal so that it 

forms in a state of lowest energy. In the same way, the SA algorithm slowly ‘cools’ the value of T so that 

the algorithm finds the lowest value of a minimisation problem. With an initially high value of T, the SA 

has a high ‘energy’ state and the search method is closer to a random search technique. As T is reduced, 

the optimisation process becomes closer to a standard Hill Climber. Figure 6.14 shows an example of the 

selection probability profile of a SA, as applied to optimising the 2DOFPPM for minimum cycle-time. It 

can be noted that a better solution (that is, one with a lower cycle-time) is always selected with a 

probability of 1. Also, the probability of selecting a weaker solution starts out greater but is reduced 

over successive iterations as the value of T is reduced. Near the end of the optimising process the SA 

selection profile becomes close to that of a Hill Climber. 

 

Figure 6.14 SA selection probability profile before and after annealing 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
ro

b
a

b
il

it
y

 o
f 

S
e

le
ct

io
n

Difference in Cycle Time (s)

Initial Selection 

Probability Profile

Selection Probability 

Profile After Annealing



Simulation and Optimisation of a 2DOFPPM   

    

108 

 

Equation (5.14) is used to determine the probability of selection. This is the same equation as that used 

in the SHC, but rather than T being constant, it is reduced as the iterations increase. T is attenuated after 

a set number of iterations using the formula shown in Equation (5.15). 

3 = 	 11 + <����9���	�  (5.14)

 

1 = 1 ∗	1Wmmsp�Wm�fp (5.15)

 

where 3 is the probability of selection, ��� and 2��  are the cycle-times of the neighbouring and current 

solution respectively, 1 is a constant that determines the shape of the selection probability profile and  0 < 1Wmmsp�Wm�fp < 1 is a value to attenuate the value of 1 over time. 

The Matlab® code developed to execute the SA is presented in Figure 6.15 and Figure 6.16. This 

implementation is similar to the SHC (refer Figure 6.8). The main differences are that there are now two 

coded loops; the inner loop (lines 53-95) which behaves like the SHC’s loop and an outer loop (lines 50-

98) which alters the value of T at each iteration (line 96). The other variation is that the selection process 

is now conditional on whether the selected neighbour’s cycle-time is faster or slower than the current 

solution’s cycle-time (lines 82-93). 

Once again, the StepSize (lines 1 & 61) obtained from tuning the RRHC is used as the StepSize for the SA. 

This is because the techniques do not vary in this regard.  Therefore, the StepSize is 0.02 m. The number 

of iterations of the inner loop is controlled by the parameter MaxAttempts1 (lines 1 & 53). Several 

values were chosen, and the resulting performances evaluated as presented in this section. The values 

being tested for MaxAttempts1 are 200, 500 and 2000. After some enumerative testing, the outer loop 

parameter MaxAttempts2 (lines 2 & 50) was set at 5. This provided enough ‘cooling’ for the SA to work 

effectively. 

Optimisation runs were also made with lower values of MaxAttempts1 (10 and 40), but these did not 

provide enough iterations for the optimisation process to complete. The results using these values of 

MaxAttempts1 are included in Appendix D. 
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1 function  OptimiseConfigurationSA(CP,TermCond,UConstraints,S tepSize,MaxAttempts1, ...  
2                                                             MaxAttempts2,T,Attenuation) 
3 % Uses a random restart hill climber with simulate d annealing to narrow on a  
4 %  time-minimum configuration  
5 % VARIABLES:  
6 % CP - Cycle Path class containing geometric detai ls of the path  
7 % TermCond - Termination Condition class detailing  conditions of terminating process  
8 % UConstraints - User Constraints class  
9 % StepSize - size of steps (in m) to evaluate neig hbouring configurations  
10 % MaxAttempts1 - maximum number of attempts/iterat ions in the inner loop of algorithm  
11 %                   before 'cooling' takes place  
12 % MaxAttempts2 - maximum number of attempts/iterat ions of the outer loop in algorithm.  
13 %                   The number of 'cooling' steps taking place  
14 % T - constant in algorithm that affects probabili ty of selection  
15 % Attenuation - the 'cooling' factor reducing the probability of selecting a less optimal  
16 %               configuration as time goes on  
17   

18 % Store path and user constraint data  
19 StorePathsUserConstraintsSQL(CP,UConstraints); 
20   

21 for  i=1:TermCond.Iterations     % Run Simulated Annealer for a number of iterations  
22      

23     % Select 'random' motor details from database  
24     [motorID,newPPC] = SelectMotor(CP.PPC,UConstra ints); 
25      

26     CP.PPC = newPPC;   % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)  
27      

28     % Select random configuration that reaches all move  targets  
29     config = SelectRandomConfig(CP.Moves,motorID,U Constraints); 
30      

31     try  
32         % Compile path using Configuration and Path Plannin g Constraints (PPC)  
33         % Path Planning Results (ppr) are returned along wi th positional and zone data  
34         % about targets  
35         [Targets_XYZ,ppr] = CompilePath(CP.Moves,c onfig,CP.PPC); 
36     catch  exception 
37         % Skip to next iteration if exception occurs due to  config unable to meet targets  
38         continue ; 
39     end  
40      

41     % Store results of path planning in database  
42     StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i) ;  
43      

44     minCycleTime = ppr.PathA(size(ppr.PathA,1)).En dTime; % Set best cycletime acheived  
45     bestConfig = config;                % Set the best Configuration  
46     currentConfig = config;             % Set the current Configuration  
47     currentCycleTime = minCycleTime;    % Set cycletime acheived by currentConfig  
48     

49     attempts2 = 0;  % Reset counter  
50     while  attempts2 < MaxAttempts2 
51      

52         attempts1 = 0;  % Reset counter  
53         while  attempts1 < MaxAttempts1 
54             clear neighboursPPR ;            % Clear variables  
55             clear neighboursConfig ;         % Clear variables  
56             clear selectedNeighbourConfig ;  % Clear variables  
57             clear selectedNeighbourPPR ;     % Clear variables  
58   

59             % Select configurations around the currentConfig  
60             neighboursConfig = SelectNeighbouringC onfig( ...  
61                                     currentConfig, CP.Moves,motorID,UConstraints,StepSize); 
62              

63             % Select a random neighbour  
64             randIndex = randperm(numel(neighboursC onfig)); 
65             selectedNeighbourConfig = neighboursCo nfig(randIndex(1,1)); 
66   

 

Figure 6.15 Matlab® Code of the SA Optimising Method (Part 1/2) 
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67             % Evaluate the selected neighbour  
68             [Targets_XYZ,ppr] = CompilePath(CP.Mov es,selectedNeighbourConfig,CP.PPC); 
69   

70             StoreSimulationsSQL(selectedNeighbourC onfig,CP.PPC,ppr,CP.ID,i); 
71             selectedNeighbourPPR = ppr; 
72             selectedNeighbourCycleTime = ...  
73                 selectedNeighbourPPR.PathA(size(se lectedNeighbourPPR.PathA,1)).EndTime; 
74   

75             % Check if it is the best, save if it is  
76             if  selectedNeighbourCycleTime < minCycleTime 
77                 minCycleTime = selectedNeighbourCy cleTime; 
78                 bestConfig = selectedNeighbourPPR;  
79             else  
80              

81             % check if it is better than the current config/cyc letime  
82             if  selectedNeighbourCycleTime < minCycleTime 
83                 % Replace currentConfig with neighbour  
84                 currentConfig = selectedNeighbourC onfig; 
85                 currentCycleTime = selectedNeighbo urCycleTime; 
86             else  
87                 % Determine probability of selection based on cycle time and the ...  
88                 %  'cooling' process  
89                 probOfSelection = ...  
90                            1/(1+exp((selectedNeigh bourCycleTime - currentCycleTime)/T));  
91                  

92                 % Select neighbouring config based on probability  
93                 myRand = rand(1); 
94                 if  myRand < probOfSelection 
95                     currentConfig = selectedNeighb ourConfig; 
96                     currentCycleTime = selectedNei ghbourPPR.PathA( ...  
97                                             size(s electedNeighbourPPR.PathA,1)).EndTime;  
92                 end  
93             end  
94             attempts1 = attempts1+1; 
95         end  
96         T=Attenuation*T;    % Reduce T by an amount over time ('cooling')  
97         attempts2 = attempts2+1; 
98         end    
99     end  
100 end   

Figure 6.16 Matlab® Code of the SA Optimising Method (Part 2/2) 

Three values of T (lines 2 & 90) were chosen and analysed with three different attenuation rates, 

Tattenuation (lines 2 & 96). The values of T were 0.05, 0.2 and 0.5. The three attenuation rates were 0.7, 0.8 

and 0.9. Figure 6.17 shows the selection probability profiles over time for the nine possible 

combinations of these values. The first column shows the initial selection probability, the central column 

shows the probability of selection after some cooling has taken place, and the final column shows the 

final selection probability profiles at the end of the SA optimisation process. 

In order to tune the SA parameters, 100 runs were made for each of the 27 combinations of 

MaxAttempts1 (= 200, 500, 2000), T (= 0.05, 0.2, 0.5) and Tattenuation (= 0.7, 0.8, 0.9). The results were 

then statistically analysed to find the best combination. These results are presented in the following 

pages. 
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Figure 6.17 Selection probability profiles for three values of T at three different attenuation rates over time 

Figure 6.18 shows the distributions of minimum cycle-times from 100 runs of the SA algorithm using a 

MaxAttempts1 value of 200 and nine different combinations of T and Tattenuation. The means, standard 

deviations and medians of these results are summarised in Table 6.8. It can be seen that there is little 

variation in the minimum cycle-time due to the different values of T and Tattenuation. This is supported by 

the Wilcoxon-Mann-Whitney test results in Table 6.9 which compares the median minimum cycle-time 

of the SA algorithm, using T = 0.05 and Tattenuation = 0.9, to each of the other eight parameter settings. The 

test shows that, in all but two of the eight other parameter combinations, there is no statistical 

difference in the performance of using T = 0.05 and Tattenuation = 0.9 as parameters in the SA algorithm.  
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Figure 6.18 Normalised histograms of minimum cycle-times for three T values with three Tattenuation rates. MaxAttempts1 

= 200. 

Table 6.8 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for MaxAttempts1 = 200 

T 
Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9 

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s) 

0.05 2.02 0.19 2.01 2.01 0.18 2.00 2.00 0.19 1.99 

0.2 2.02 0.18 2.01 2.02 0.19 2.02 1.99 0.18 1.99 

0.5 2.03 0.18 2.00 2.01 0.18 2.00 2.01 0.19 2.00 

 

Figure 6.19 shows the distributions of minimum cycle-times from 100 runs of the SA algorithm using a 

MaxAttempts1 value of 500 and nine different combinations of T and Tattenuation. As was the result when 

using 200 as the MaxAttempts1 value, there is little variation in the minimum cycle-time distribution 

due to the different values of T and Tattenuation, as seen in Table 6.10. The Wilcoxon-Mann-Whitney test 

results in  
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Table 6.11 compare the median minimum cycle-time of the SA algorithm, using T = 0.05 and Tattenuation = 

0.7, to each of the other eight parameter settings. The test shows that, in five of the eight other 

parameter combinations, there is no statistical difference in the performance of using T = 0.05 and 

Tattenuation = 0.7 as parameters in the SA algorithm.  

Table 6.9 Wilcoxon-Mann-Whitney test results. Comparing T = 0.05, Tattenuation = 0.9 to the other combinations of values 

tested with MaxAttempts1 = 200 

T 

Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9 

Rejection of 

Null-Hypothesis 
p-Value 

Rejection of 

Null-Hypothesis 
p-Value 

Rejection of 

Null-Hypothesis 
p-Value 

0.05 1 0.044 0 0.294 N/A N/A 

0.2 0 0.062 0 0.053 0 0.988 

0.5 1 0.024 0 0.513 0 0.316 
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Figure 6.19 Normalised histograms of minimum cycle-times for three T values with three Tattenuation rates. MaxAttempts1 

= 500. 

Table 6.10 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for MaxAttempts1 = 500 

T 
Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9 

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s) 

0.05 1.95 0.17 1.96 2.01 0.22 2.0 1.99 0.18 1.99 

0.2 2.00 0.18 2.00 2.00 0.20 2.0 1.97 0.18 1.98 

0.5 1.99 0.18 1.99 1.98 0.19 1.99 1.98 0.19 1.99 

 

Table 6.11 Wilcoxon-Mann-Whitney test results. Comparing T = 0.05, Tattenuation = 0.7 to the other combinations of values 

tested with MaxAttempts1 = 500 

T 

Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9 

Rejection of 

Null-Hypothesis 
p-Value 

Rejection of 

Null-Hypothesis 
p-Value 

Rejection of 

Null-Hypothesis 
p-Value 

0.05 N/A N/A 1 0.041 0 0.093 

0.2 1 0.014 1 0.044 0 0.273 

0.5 0 0.054 0 0.200 0 0.205 
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Figure 6.20 Normalised histograms of minimum cycle-times for three T values with three Tattenuation rates. MaxAttempts1 

= 2000. 

Figure 6.20 shows the distributions of minimum cycle-times from 100 runs of the SA algorithm using a 

MaxAttempts1 value of 2000 and nine different combinations of T and Tattenuation. While not as uniform as 

the results when using values of 200 and 500 for MaxAttempts1, there is still little variation in the 

minimum cycle-time distribution due to the different values of T and Tattenuation. The mean, standard 

deviation and median results are summarised in Table 6.12. The Wilcoxon-Mann-Whitney test results in 

Table 6.13 compare the median minimum cycle-time of the SA algorithm, using T = 0.05 and Tattenuation = 

0.7, to each of the other eight parameter settings. The test shows that the combination of T and 

Tattenuation producing the lowest median cycle-time, are statistically better than four of the other eight, T 

and Tattenuation combinations.  

Table 6.12 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for MaxAttempts1 = 2000 

T 
Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9 

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s) 

0.05 2.05 0.24 1.98 1.93 0.17 1.97 2.04 0.21 2.09 
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0.2 1.97 0.20 1.97 1.96 0.19 1.99 1.99 0.17 2.00 

0.5 1.91 0.17 1.92 2.00 0.16 2.00 1.89 0.16 1.86 

 

Table 6.13 Wilcoxon-Mann-Whitney test results. Comparing T = 0.5, Tattenuation = 0.9 to the other combinations of values 

tested with MaxAttempts1 = 2000 

T 

Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9 

Rejection of 

Null-Hypothesis 
p-Value 

Rejection of 

Null-Hypothesis 
p-Value 

Rejection of 

Null-Hypothesis 
p-Value 

0.05 1 0.021 0 0.473 1 0.016 

0.2 0 0.152 0 0.103 1 0.018 

0.5 0 0.451 1 0.006 N/A N/A 

 

The results above compare the effect the parameters, T and Tattenuation, have on the minimum cycle-time. 

For each of the three MaxAttempts1 values there was little difference in the minimum cycle-time 

performance due to the values of T and Tattenuation. Another important aspect in evaluating an algorithm is 

how long it takes to perform the optimisation. Figure 6.21 through to Figure 6.23 show the mean 

minimum cycle-time achieved relative to the length of time the optimisation was run for. Each graph 

plots the nine combinations of T and Tattenuation. 
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Figure 6.21 Mean minimum cycle-time versus computation time with MaxAttempts1 = 200 for nine combinations of T and 

Tattenuation. 

Figure 6.21 presents the mean minimum cycle-time achieved by the SA, using a value of 200 for 

MaxAttempts1, over the time taken during computation. Nine combinations of T and Tattenuation are 

plotted. There is very little difference between the performances of the different parameter 

combinations. The ‘optimised’ cycle-time of between 2 and 2.05 seconds is reached after approximately 

200 seconds of computation time, when MaxAttempts1 is set at 200. 

In comparison, Figure 6.22 shows the same data but when MaxAttempts1 is set at 500. In this case, it 

takes approximately 550 seconds of computation to reach an ‘optimised’ state. Unlike the situation 

when MaxAttempts1 was set at 200, for MaxAttempts1 being 500 there is a clearly better performing 

parameter combination of T = 0.05 and Tattenuation = 0.7. 

Figure 6.23 represents the SA computation time performance but with MaxAttempts1 being set at 2000. 

The time taken for each parameter set to reach its mean minimum cycle-time varies between 300 and 

1400 seconds. The mean minimum cycle-time reached by each parameter also varies greatly between 

different combinations of T and Tattenuation. 
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Figure 6.22 Mean minimum cycle-time versus computation time with MaxAttempts1 = 500 for nine combinations of T and 

Tattenuation. 

The SA technique of optimisation always accepts a better solution (configuration), and accepts a weaker 

solution with some probability relative to the strength of the solution. The probability of selecting a 

weaker solution decreases, or ‘cools’, as the algorithm progresses. 

There are five parameters used in the SA. The first is the StepSize, like the RRHC and SHC algorithms, this 

determines how far away to look for neighbouring solutions. This is set at 0.02 m based on the results 

from the RRHC analysis in Section 6.1.1. The other parameters are specific to the SA algorithm. 

MaxAttempts2 was found by enumerative testing and set at 5. MaxAttempts1, T and Tattenuation have 

been analysed by statistical methods and the results presented here. The values of T and Tattenuation 

tended to have little effect on the performance of the algorithm as applied to this research problem. 

Therefore, the focus is turned to the parameter MaxAttempts1. When MaxAttempts1 was higher (2000) 

a better solution (lower cycle-time) was found. However, this required a longer processing time. These 

results are due to MaxAttempts1, along with MaxAttempts2, dictating the number of solutions 

examined. The time taken for the SA to reach ‘optimisation’ is relatively short given the algorithm is 

seeking to find the optimal dimensions of a manipulator, which may take a number of weeks to fully 
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design. It is for this reason that the value of 2000 is the preferred choice for MaxAttempts1 out of the 

three parameter values examined. With MaxAttempts1 set at 2000, the combination of T = 0.5 and 

Tattenuation = 0.9 is chosen as they find the fastest cycle-time as shown in Figure 6.23 and Table 6.13. 

 
Figure 6.23 Mean minimum cycle-time versus computation time with MaxAttempts1 = 2000 for nine combinations of T and 

Tattenuation. 

6.1.4 Genetic Algorithm 

The three methods presented so far (RRHC, SHC and SA) are all based around the concept of searching 

neighbouring solutions of a randomly selected solution, in the hope of iteratively making improvements. 

An alternative is to use an evolutionary approach which aims to produce better solutions by ‘breeding’ 

good solutions together. This is modelled on the way organisms adapt and improve in the biological 

world. The Genetic Algorithm (GA) is a popular algorithm for implementing an evolutionary optimising 

technique. 

The GA begins by randomly producing a number of samples (in the case of the 2DOFPPM these samples 

are different dimensional configurations). This group of samples is known as the population. The GA 

performs a number of evolutionary cycles, also known as generations. During each generation the 
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fitness of each individual in the population is evaluated (for the 2DOFPPM this is the path cycle-time). 

Once the fitness of each sample in the population is evaluated, the population goes through a selection 

process which chooses a number of samples. The samples are selected based on a probability relating to 

their fitness. The unselected samples are discarded which reduces the population. To rebuild the 

population to its full size, reproduction occurs. Reproduction consists of the selected samples being 

‘mated’ with each other, through a stochastic process, to produce offspring. The offspring are new 

samples that consist of traits found in their two parents (crossover) and possibly some random variation 

(mutation). These offspring are then placed into the population and another generation begins. 

Figure 6.24 shows the first segment of the Matlab® code used to execute the GA. As in the previous 

methods, the data relating to the path and the constraints on the manipulator are stored in the 

database (line 14). Where the previous methods selected a single configuration at random, the GA 

selects a number of random configurations which is known as a population (lines 21-34). For each of 

these dimensional configurations, a motor and its properties are also selected from the database (line 

25). 

Once the population is initialised it undergoes a number of iterations, or generations, which alter the 

population in the hope of producing improved configurations (lines 27-244). After a number of 

generations, where the GA has reproduced new configurations by ‘breeding’ other configurations in the 

population, the population can lose diversity. In terms of the biological analogy, this is due to 

inbreeding. The result of this loss in diversity means the GA is no longer searching in the global search 

space but effectively becomes stuck in a local minimum. One of the ways to counter this effect is 

implemented in the second half of the code in Figure 6.24 (lines 52-68). If the difference between the 

minimum and maximum cycle-times of the population is less than a 0.2 s, 10 % of the inbred population 

are replaced by new configurations selected randomly from the search space (line 60). These new 

configurations add diversity to the ‘gene’ pool and allow the GA to continue to find improved solutions. 
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1 function  OptimiseConfigurationGA(CP,TermCond,UConstraints,P opSize, ...  
2                                              SelectionSize,MutationRate,MutationAmount)  

3 % Uses a Genetic Algorithm to narrow on time-minim um configuration  
4 % VARIABLES:  
5 % CP - Cycle Path class containing geometric detai ls of the path  
6 % TermCond - Termination Condition class detailing  conditions of terminating process  
7 % UConstraints - User Constraints class  
8 % PopSize - Number of individuals in GA population  
9 % SelectionSize - Number of individuals selected f or breeding  
10 % MutationRate - Probability of mutation occuring in child (%)  
11 % MutationAmount - The amount of mutation to occur  in child (%)  
12   

13 % Store path and user constraint data  
14 StorePathsUserConstraintsSQL(CP,UConstraints);    
15 population = repmat(Configuration,PopSize,1); 
16 popPPC = repmat(PPConstraints,PopSize,1); 
17 popFitness = zeros(PopSize,1); 
18 popCycleTime = zeros(PopSize,1); 
19 popMotorID = zeros(PopSize,1); 
20   

21 %% INITIALISATION - Initialise population by selec ting random configurations  
22   

23 for  p=1:PopSize 
24     % Select 'random' motor details from database  
25     [motorID,newPPC] = SelectMotor(CP.PPC,UConstra ints); 
26     CP.PPC = newPPC; % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)  
27   

28     % Select random configuration that reaches all move  targets  
29     config = SelectRandomConfig(CP.Moves,motorID,U Constraints); 
30      

31     population(p) = config; 
32     popPPC(p) = CP.PPC; 
33     popMotorID(p) = motorID; 
34 end  
35   

36 % Perform GA for a set number of evolution cycles  
37 for  i=1:TermCond.Iterations       
38     % Check if popCycleTimes are too similar and replac e some with random configurations  
39     if  i >1 
40         minct = 500; 
41         maxct = 0; 
42         for  p=1:PopSize 
43             if  popCycleTime(p) < 5000 
44                if  popCycleTime(p) < minct 
45                    minct = popCycleTime(p); 
46                end  
47                if  popCycleTime(p) > maxct 
48                    maxct = popCycleTime(p); 
49                end  
50             end  
51         end           
52         if  maxct-minct < 0.2   % Population is too inbred!  
53             % Replace 10% of inbred population with random indi viduals  
54             for  rp = 1:floor(PopSize/10) 
55                 % Select 'random' motor details from database  
56                 [motorID,newPPC] = SelectMotor(CP. PPC,UConstraints); 
57                 % Assign Path Planning Constraints (PPC) of motor t o Cycle Path (CP)  
58                 CP.PPC = newPPC; 
59                 % Select random configuration that reaches all move  targets  
60                 config = SelectRandomConfig(CP.Mov es,motorID,UConstraints); 
61                  

62                 % Randomly select an individual from population for  replacement  
63                 replaceP = ceil(PopSize*rand(1)); 
64                 population(replaceP) = config; 
65                 popPPC(replaceP) = CP.PPC; 
66                 popMotorID(replaceP) = motorID; 
67             end  
68         end  
69    end   

Figure 6.24 Matlab® Code of the GA Optimising Method (Part 1/4) 
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After the population is initialised and an iterative loop is entered into, each configuration is evaluated to 

determine its fitness. As shown in Figure 6.25 (line 83), this involves planning a trajectory using the 

CompilePath() method (refer Figure F.7 - Figure F.11 in Appendix F) and storing the resulting path in the 

database (line 85). To limit the amount of computation, the algorithm first checks if the exact same 

configuration has previously been analysed, and if it has, the previously calculated cycle-time result is 

returned (line 80). Once the cycle-time for each configuration in the database has been obtained, the 

fitness of each solution is set as being the inverse of the cycle-time cubed (line 95). This function gave an 

exponentially increasing fitness to the configurations with faster cycle-times. 

Following the evaluation of each configuration, the GA performs a selection process on the population. 

The code in the lower half of Figure 6.25 shows how the GA selects a percentage of the population 

based on the fitness of each configuration (lines 98-132). The configurations with higher fitness have a 

higher probability of being selected (line 124).   

With a percentage of the population already selected, Figure 6.26 shows how the GA performs a 

reproduction action to produce new configurations from the selected configurations. A new population 

is formed (line 137) and the selected configurations are automatically inserted into it (lines 140-144). To 

fill the remainder of the new population, the selected configurations are chosen randomly in pairs (lines 

154-162) and ‘bred’ to form new configurations. This breeding process is done in the form of taking 

some ‘genes’ (in the case of the 2DOFPPM, this refers to the four dimensions being optimised) from one 

of the two ‘parent’ configurations and combining it with the ‘genes’ of the other ‘parent’ configuration 

(lines 164-178). The result is a ‘child’ configuration that has dimensions from both of the two selected 

configurations. 

While the new configuration is different from both of its ‘parent’ configurations, the GA also introduces 

some mutation to help keep diversity in the population. This is documented in Figure 6.27 (lines 180-

212). Each of the four dimensions of the new ‘child’ configuration is, with some probability 

(MutationRate), subject to being altered in this way (lines 181, 189, 197 & 205). The amount that it is 

altered is set by a parameter called MutationAmount. 

The coded GA also attempts to keep diversity in the population by ensuring that any new configuration 

introduced by the reproduction process is unique. This is shown in the bottom half of Figure 6.27 (lines 

218-238). 
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70     

71      

72 %% EVALUATION - Evaluate the performance of each i ndividual in population  
73   

74     for  p=1:PopSize 
75         config = population(p); 
76         ppc = popPPC(p); 
77         try  
78             %Check if config has already been simulated,return cycletime if it exists in  
79             % database  
80             ct = CheckConfigExists(CP.ID,config); 
81             if  isempty(ct) 
82                 % Evaluate the selected individual by compiling a p ath  
83                 [Targets_XYZ,ppr] = CompilePath(CP .Moves,config,ppc); 
84                  %Store results of path planning in database  
85                 StoreSimulationsSQL(config,ppc,ppr ,CP.ID,i); 
86                  

87                 popCycleTime(p) = ppr.PathA(size(p pr.PathA,1)).EndTime; 
88             else  
89                 popCycleTime(p) = ct; 
90             end              
91         catch  exception 
92             %If error occurs give individual poor cycletime so will be repaced nextcycle  
93             popCycleTime(p) = 99999;     
94         end          
95         popFitness(p) = 1/(popCycleTime(p)^3); %Fitness equals inverse of cycletime cubed  
96     end  
97   

98 %% SELECTION - Select sub population from populati on for breeding based on fitness  
99      

100     sumFitness = 0;     
101     for  p=1:PopSize 
102        sumFitness = sumFitness + popFitness(p); 
103     end      
104     % Assign selection probability to each individual i n population based on fitness  
105     popProb = zeros(PopSize,1); 
106     for  p=1:PopSize 
107        popProb(p) = popFitness(p)/sumFitness; 
108     end      
109     selectionProb = zeros(PopSize,1); 
110     sumProb = 0; 
111     for  p=1:PopSize 
112        selectionProb(p) = sumProb + popProb(p); 
113        sumProb = selectionProb(p); 
114     end  
115      

116     % Select a number (SelectionSize) of the population  for breeding  
117     selectedPop = repmat(Configuration,SelectionSi ze,1); 
118     selectedPopPPC = repmat(PPConstraints,Selectio nSize,1); 
119     selectedPopMotorID = zeros(SelectionSize,1); 
120     selectedPopCycleTime = zeros(SelectionSize,1);  
121     for  s=1:SelectionSize 
122         randnum = rand(1); 
123         for  p=1:PopSize 
124             if  selectionProb(p) > randnum 
125                 selectedPop(s) = population(p); 
126                 selectedPopPPC(s) = popPPC(p); 
127                 selectedPopMotorID(s) = popMotorID (p); 
128                 selectedPopCycleTime(s) = popCycle Time(p); 
129                 break ; 
130             end  
131         end  
132     end  
133    

Figure 6.25 Matlab® Code of the GA Optimising Method (Part 2/4) 



Simulation and Optimisation of a 2DOFPPM   

    

124 

 

 

 

134 %% REPRODUCTION 
135   

136     % Add selected parents to new population  
137     newPopulation = repmat(Configuration,PopSize,1 ); 
138     newPopPPC = repmat(PPConstraints,PopSize,1); 
139     newPopMotorID = zeros(PopSize,1); 
140     for  s=1:SelectionSize 
141         newPopulation(s) = selectedPop(s); 
142         newPopPPC(s) = selectedPopPPC(s); 
143         newPopMotorID(s) = selectedPopMotorID(s); 
144     end  
145   

146     % Generate children to fill rest of new population  
147     for  p=SelectionSize:PopSize 
148         reachable = false; 
149         unique = true; 
150         while  reachable == false && unique == true; 
151             % CROSSOVER - children configuration dimensions are  a random number between  
152             % their two parents  
153   

154             % select two random parents from selectedPop  
155             randnum1 = ceil(rand(1)*SelectionSize) ; 
156             randnum2 = ceil(rand(1)*SelectionSize) ; 
157             parent1Config = selectedPop(randnum1);  
158             parent2Config = selectedPop(randnum2);  
159             parent1ppc = selectedPopPPC(randnum1);  
160             parent2ppc = selectedPopPPC(randnum2);  
161             parent1motorID = selectedPopMotorID(ra ndnum1); 
162             parent2motorID = selectedPopMotorID(ra ndnum2); 
163   

164             minlb = min([parent1Config.LengthBase parent2Config.LengthBase]); 
165             maxlb = max([parent1Config.LengthBase parent2Config.LengthBase]); 
166             lb = minlb+(maxlb-minlb)*rand(1);   % Set childs base length  
167              

168             minll = min([parent1Config.LengthLower  parent2Config.LengthLower]); 
169             maxll = min([parent1Config.LengthLower  parent2Config.LengthLower]); 
170             ll = minll+(maxll-minll)*rand(1);   % Set childs distal arm length  
171              

172             minlu = min([parent1Config.LengthUpper  parent2Config.LengthUpper]); 
173             maxlu = min([parent1Config.LengthUpper  parent2Config.LengthUpper]); 
174             lu = minlu+(maxlu-minlu)*rand(1);   % Set childs proximal arm length  
175              

176             minwh = min([parent1Config.WorkspaceHe ight parent2Config.WorkspaceHeight]); 
177             maxwh = min([parent1Config.WorkspaceHe ight parent2Config.WorkspaceHeight]); 
178             wh = minwh+(maxwh-minwh)*rand(1);   % Set childs workspace height  
179   
  

Figure 6.26 Matlab® Code of the GA Optimising Method (Part 3/4) 
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180             % MUTATION - with some probability alter childs dim ension  
181             if  rand(1) < MutationRate 
182                 if  rand(1) <0.5 
183                     MutAmount = MutationAmount; 
184                 else  
185                     MutAmount = -MutationAmount; 
186                 end  
187                 lb = lb * (1+MutAmount); 
188             end  
189             if  rand(1) < MutationRate 
190                 if  rand(1) <0.5 
191                     MutAmount = MutationAmount; 
192                 else  
193                     MutAmount = -MutationAmount; 
194                 end  
195                 lu = lu * (1+MutAmount); 
196             end  
197             if  rand(1) < MutationRate 
198                 if  rand(1) <0.5 
199                     MutAmount = MutationAmount; 
200                 else  
201                     MutAmount = -MutationAmount; 
202                 end  
203                 ll = ll * (1+MutAmount); 
204             end  
205             if  rand(1) < MutationRate 
206                 if  rand(1) <0.5 
207                     MutAmount = MutationAmount; 
208                 else  
209                     MutAmount = -MutationAmount; 
210                 end  
211                wh = wh * (1+MutAmount); 
212            end  
213             

214            % Generate new configuration based on childs dimens ions  
215            [config, reachable] = ...  
216                    CalculateConfig(lb,lu,ll,wh,CP. Moves,parent1motorID,UConstraints); 
217             

218            % Check configuration is unique in population  
219            for  pp=1:PopSize 
220                existingConfig = newPopulation(pp);  
221                try  
222                    if  config.LengthBase == existingConfig.LengthBase ...  
223                            && config.LengthUpper = = existingConfig.LengthUpper ...  
224                            && config.LengthLower = = existingConfig.LengthLower ...  
225                            && config.WorkspaceHeig ht == existingConfig.WorkspaceHeight  
226                        unique = false; 
227                        break ; 
228                    end  
229                catch  exception 
230                end  
231             end  
232              

233             % Add child to population if it is unique and can a cheive the desired path  
234             if  unique == true && reachable == true 
235                 newPopulation(p) = config; 
236                 newPopPPC(p) = parent1ppc; 
237                 newPopMotorID(p) = parent1motorID;  
238             end  
239         end       
240     end  
241     population = newPopulation; 
242     popPPC = newPopPPC; 
243     popMotorID = newPopMotorID; 
244 end  
245 end 
  

Figure 6.27 Matlab® Code of the GA Optimising Method (Part 4/4) 
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The GA code has a number of parameters. The choosing of these parameters is critical to the 

performance of the algorithm. Some of the parameters have been tuned through initial empirical 

methods, whereas some have been more thoroughly evaluated. The parameters MutationRate (lines 2 

& 181-205) and MutationAmount (lines 2 & 183-211) were chosen through trial and error until suitable 

values were found. The MutationRate determines the chance of each dimension of a newly generated 

configuration being altered. The amount that the dimension is altered is set by the MutationAmount. 

The tuned values for these parameters are 25 % for the MutationRate and 10 % alteration by the 

MutiationAmount. 

There are three other parameters that affect the performance of the GA. Firstly, the Population (lines 1, 

23 and throughout the algorithm) states the number of individual configurations maintained throughout 

the algorithm. Secondly, the Selection Rate (lines 2 & 121) establishes the percentage of the Population 

that will be selected to be in the population for the next generation and to reproduce. The third 

parameter is the number of Iterations (line 37) that the GA will perform until it determines it has found 

an ‘optimum’ configuration. 

In order to find good values for these three parameters, a number of optimisation runs were performed 

using three different Population values (30, 50, 100), with three different Selection Rates (30 %, 60 %,  

80 %). Each of the nine parameter combinations was run for 300 iterations to compare the performance 

over time. To statistically validate the performance of each permutation, 75 runs were done with every 

parameter combination. 

The distributions of the minimum cycle-time achieved with each parameter combination are shown by 

the histograms in Figure 6.28. The means, standard deviations and medians of this same data are shown 

in Table 6.14. The best performing combination, with a median minimum cycle-time of 1.59 seconds, 

was a Population size of 100 with 80 % of the configurations being selected for reproduction as given by 

the Selection Rate. 
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Figure 6.28 Normalised histograms of minimum cycle-time achieved by the GA method with a mutation rate of 25 %, 

mutation amount of 5 % using population sizes of 30, 50 and 100 with selection rates of 30 %, 60 % and 80 %. Results are 

based on 75 individual runs. 

 

Table 6.14 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times with varying population and selection size 

Population 

Size 

Selection Rate = 30 % Selection Rate = 60 % Selection Rate = 80 % 

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s) 

30 1.65 0.05 1.66 1.64 0.06 1.65 1.65 0.06 1.65 

50 1.63 0.06 1.62 1.63 0.08 1.62 1.62 0.06 1.63 

100 1.62 0.07 1.64 1.63 0.06 1.62 1.59 0.06 1.59 

 

To validate this result, the Wilcoxon-Mann-Whitney test was performed, comparing the combination of 

Population = 100 and Selection Rate = 80 % to the other eight parameter combinations tested. The 

results, presented in Table 6.15, show that the null hypothesis was rejected in all eight cases. This means 

that the best parameter combination performs significantly better than the other combinations tested. 
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Table 6.15 Wilcoxon-Mann-Whitney test results. Comparing a population size of 100 and selection rate of 80 % to the other 

combinations of values tested 

Population 

Size 

Selection Rate = 30 % Selection Rate = 60 % Selection Rate = 80 % 

Rejection of 

Null-

Hypothesis 

p-Value 

Rejection of 

Null-

Hypothesis 

p-Value 

Rejection of 

Null-

Hypothesis 

p-Value 

30 1 7.66 x10
-7 

1 3.53 x10
-5

 1 5.73 x10
-6

 

50 1 4.27 x10
-4

 1 0.012 1 0.034 

100 1 0.015 1 0.007 N/A N/A 

 

 
Figure 6.29 Computation time versus mean minimum cycle-time for nine combinations of population size and selection rate 

The average computation time to reach ‘optimisation’ was faster for smaller population sizes as shown 

in Figure 6.29. This is easily explained by the fact that fewer configurations had to be analysed for the 

smaller populations. It can be noted however, that the combination of Population = 100 and Selection 

Rate = 80 %, almost always found a better solution (that is, a lower cycle-time), for the duration of the 

process than the other parameter combinations. 
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The third parameter to be tuned was the number of evolution Iterations. Figure 6.30 plots the mean 

minimum cycle-time over the number of Iterations. It can be seen that the greatest improvement in the 

minimum cycle-time occurs during the early iterations. After 300 iterations, the average performance 

increase is minimal. However, improvement can still be seen after 300 iterations, therefore indicating 

that the GA has the potential to continue optimising with a greater number of iterations. 

 
Figure 6.30 Number of evolution iterations/generations versus the mean minimum cycle-time for nine combinations of 

population size and selection rate 

The GA method provides an evolutionary approach to optimising the 2DOFPPM’s dimensions to achieve 

the fastest cycle-time for a given path. This section has presented the code used to implement the 

algorithm in Matlab®, as well as discussed and tuned the parameters required to maximise the GA’s 

capability. Initial empirical testing led to values of 25 % and 10 % for the MutationRate and 

MutationAmount, respectively. The lowest minimum cycle-time was shown to be achieved using a 

Population size of 100 and a Selection Rate of 80 %. 300 Iterations has been chosen as the number of 

evolutionary generations to be used by the GA. While the GA still shows signs of improvements past 300 

iterations, the improvement is minimal and the time taken to achieve those iterations is far greater than 

the time taken by the other algorithms being considered.  
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6.1.5 Comparison 

Four optimisation techniques have been implemented to find the best dimensional configuration for the 

2DOFPPM. Each technique has several parameters that had to be tuned to achieve the best 

performance from the algorithm. Table 6.16 presents the four optimising techniques along with a 

summary of the tuned parameter values associated with each method. 

Table 6.16 Summary of parameter values for the optimising algorithms 

Algorithm Parameter Value 

RRHC StepSize 0.02 m 

 Iterations 100 

   

SHC StepSize 0.02 m 

 T 0.05 

 MaxAttempts 2500 

   

SA StepSize 0.02 m 

 T 0.5 

 Tattenuation 0.9 

 MaxAttempts1 2000 

 MaxAttempts2 5 

   

GA Population Size 100 

 Selection Rate 80 % 

 MutationRate 25 % 

 MutationAmount 10 % 

 

In order to compare the relative performance of the four optimisation methods several graphs have 

been plotted and a statistical evaluation undertaken. The first of these graphs is found in Figure 6.31, 

which plots a histogram of the minimum cycle-time achieved by each of the methods. These histograms 

represent the results of each technique using the best tuned parameters from the previous sections. 

Along with the histogram distributions, Table 6.17 summarises the mean and median minimum cycle-

times of each method. It is noted that the RRHC and SHC perform relatively well with mean cycle-times 
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of 1.65 and 1.64 seconds respectively. The distribution of the RRHC is near normal, while the SHC is 

more heavily weighted towards finding lower cycle-times. The SA process resulted in a wide spread of 

minimum cycle-times and a mean minimum cycle-time of 1.89 seconds. The large variation in results as 

well as a higher mean minimum cycle-time shows that the SA failed to optimise as well as the other 

techniques. The GA achieved the lowest mean minimum cycle-time of the four techniques with a time of 

1.59 seconds. The distribution is near normal and does not suffer from any outliers. 

 
Figure 6.31 Normalised histograms of minimum cycle-time achieved by the RRHC, SHC, SA and GA optimisation methods 

 

Table 6.17 Mean and median minimum cycle-times achieved by the RRHC, SHC, SA and GA optimisation methods 

Algorithm Mean Minimum Cycle-time (s) Median Minimum Cycle-time (s) 

RRHC 1.65 1.66 

SHC 1.64 1.62 

SA 1.89 1.86 

GA 1.59 1.59 
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While the mean and median give an indication into which optimising algorithm is best suited for this 

project, a statistical analysis of the minimum cycle-times is needed. The Wilcoxon-Mann-Whitney test is 

used to compare the algorithm with the lowest median (that is, the GA) with the other three algorithms. 

The results of this test are shown in Table 6.18 where the null-hypothesis is rejected for all of the three 

distributions with a 95 % confidence level. This proves that, based on the sample of results collected, the 

GA is the best of the four algorithms at finding the 2DOFPPM configuration that can achieve the lowest 

minimum cycle-time for a given path. 

Table 6.18 Wilcoxon-Mann-Whitney test results. Comparing the GA to the RRHC, SHC and SA optimisation methods 

Algorithm Rejection of Null-Hypothesis p-Value 

RRHC 1 5.82 x10
-7

 

SHC 1 0.002
 

SA 1 9.99 x10
-14

 

 

Up until this point in the comparison of optimisation methods, only the end result of the algorithm has 

been considered. Figure 6.32 shows a comparison of the computation time taken by the four 

techniques. The mean minimum cycle-time is plotted as a function of the computation time. It can be 

seen that the SA technique terminates first in less than 1500 seconds, but even during that time it never 

outperformed the other techniques. The SHC finished in just under 2000 seconds, and found a near 

optimal solution in a third less time the RRHC. The RRHC took 3000 seconds to terminate, and the 

average minimum cycle-time had plateaued near this time. The GA required almost 8000 seconds to 

finish, but on average had outperformed the other techniques in the first 1000 seconds. 

Four optimising techniques have been implemented to find the best dimensional configuration of the 

2DOFPPM for achieving the fastest cycle-time over a given path. Of these four techniques, the GA finds 

the configuration giving the lowest mean cycle-time. While the GA takes the longest to complete its 

optimisation process, on average it never performs worse than any of the other algorithms over any 

given time frame. It is therefore, that the GA is the recommended choice in algorithms when optimising 

the dimensions of the 2DOFPPM. 
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Figure 6.32 Computation time versus mean minimum cycle-time for the RRHC, SHC, SA and GA optimisation methods 

 

6.2 Selecting a Configuration 

The optimising algorithms presented in this chapter seek to find the configuration giving the fastest 

cycle-time. This provides the designers of the 2DOFPPM with a useful tool to find near optimal 

dimensions for maximising the productivity of the manipulator. It is important to realise that this tool, 

while useful, should not be used in isolation. If the dimensions of the optimised configuration are used 

without regard for other design considerations, the customised 2DOFPPM may fail to perform its task. 

An example of this is highlighted by taking the optimal dimensions and running a SimMechanics™ 

simulation. Figure 6.33 shows the trajectory and reachable workspace of a near optimal 2DOFPPM 

configuration as found by the GA in Section 6.1.4. It can be seen that the reachable workspace of this 

2DOFPPM only just encompasses the trajectory followed by the end-effector. If there was a slight 

change in the design constraints (for example, a widening of the pick and place positions) the 

‘optimised’ configuration would no longer be able to reach all the targets, thus rendering it unsuitable 

for the task. 
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Figure 6.33 Trajectory and workspace of the optimised 2DOFPPM configuration resulting from the GA 

To avoid this situation, two options are available for the designer. The first is to test the optimised 

2DOFPPM in SimMechanics™ on a variety of slightly modified paths. The second option is to select a less 

optimal configuration that has a larger workspace with greater room for changes in the path. 
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7 Conclusion and Recommendations 

7.1 Conclusion 

This thesis has studied the simulation and optimisation of the 2DOFPPM on behalf of RML Engineering 

Ltd. With the continuing pressure to increase throughput in factories, development in product handling 

robotic manipulators is of great importance. Many industrial pick-and-place manipulators perform the 

same cyclic movement for the lifetime of the robot. RML Engineering Ltd. wanted to investigate 

developing 2DOFPPM pick-and-place manipulators that are customised for individual applications. While 

a standard manipulator design would be made, the dimensions of the mechanism would be changeable 

to provide a configuration that is optimised for a specific task. This thesis develops a simulation model of 

the 2DOFPPM and produces software systems to allow the optimisation of the manipulator’s 

dimensions. 

The 2DOFPPM configuration is a simple parallel manipulator design that is capable of performing high 

speed translational movements in a single plane of motion. The parallel architecture grants it a highly 

stiff structure with great positional accuracy characteristics. The leverages obtained by the 

manipulator’s construction provide high velocities and accelerations of the end-effector, thus leading to 

fast product handling cycles.  

Initially, the kinematics of the 2DOFPPM were presented and used to analyse the reachable workspace 

of the manipulator. The effects that joint limits and relative manipulator dimensions have on the shape 

and size of the workspace were examined. This provides a method of tuning the manipulator 

dimensions to achieve a workspace with a robust and useful shape. 

A model of the system was developed using SimMechanics™. This model takes motor input commands 

and simulates the movement of the mechanism’s bodies under the actuation of the motors. The forces 

and torques acting on the joints were measured along with the velocity and acceleration components 

experienced by the end-effector. The SimMechanics™ simulation model allows detailed analysis of the 

dynamic performance of a 2DOFPPM design prior to physical fabrication of the device. 

To provide meaningful input into the simulation model a trajectory planner was developed. The 

trajectory planner was required to minimise the time taken for the manipulator to traverse the path as it 

would later be used in part of the manipulator configuration optimisation. 
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The trajectory planner takes a set of movement commands that describes the path the end-effector 

must traverse through. The movement commands not only state the positions in Cartesian space that 

the end-effector must move to and from, but also enable additional parameters to be specified that 

alter the shape and/or the speed of the movements. The trajectory planner then converts the set of 

Cartesian movement instructions into joint space commands for the motor actuators to follow. 

Piecewise cubic polynomial splines are fitted between knots in joint space. This provides continuous 

velocity and acceleration profiles for the motors to follow. The travel time allocated between knots is 

iteratively altered as the algorithm seeks to maximise the kinematic and dynamic capabilities of the 

manipulator at all stages in the trajectory. The algorithm developed generates a near time minimum 

trajectory. 

The trajectory planner was then used in the process of optimising the manipulator for a given path. By 

varying the dimensions of the manipulator, the minimum path cycle-time achievable also changes. Four 

key dimensions were used as parameters for optimisation, the proximal and distal arm lengths, the 

separation distance of the motors and the height of the manipulator above the workspace. The effect 

each dimension has on the path cycle-time was examined by plotting the solution space, that is, a coarse 

view of all the possible combinations of the four dimensions. 

While the solution space gave an indication into the optimal manipulator configuration, it was proposed 

that an optimising algorithm may be able to find the best configuration faster. Four optimising 

algorithms were implemented. These were the RRHC, SHC, SA and GA techniques. Given a sample path 

and a set of manipulator constraints, each algorithm was set to find the best dimensional configuration 

for the manipulator. Every technique had parameters that required tuning to maximise its performance. 

The parameters were tuned either through initial empirical testing or via running each algorithm 

multiple times with different parameter values and performing statistical comparisons. Once all 

parameters of every algorithm were sufficiently tuned, multiple runs of each algorithm were performed 

to enable fair statistical evaluation of the methods.  

The GA was the best performing algorithm, on average finding a configuration that could achieve a 

faster cycle-time than the other techniques. The SHC and RRHC had similar performance characteristics 

to one another, although the SHC converged on a near optimal solution faster. The SA technique failed 

to converge consistently. A Wilcoxon-Mann-Whitney test was undertaken to statistically compare the 

significance of the individual optimising technique’s results. The outcome of this test showed that the 

GA was the best performing algorithm with a 95 % confidence interval. 
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This thesis has presented RML Engineering Ltd. with several tools to assist in the design of customised 

2DOFPPMs. By using a GA to optimise the manipulators dimensions, a fast cycle-time can be achieved 

which in turn leads to increased productivity. While knowing the optimal dimensions is useful, it cannot 

be used in isolation as the risk of designing a manipulator so specific that any changes to the pick-and-

place path render it unusable. Therefore, the SimMechanics™ simulation model is used to test the 

optimised design under a range of conditions. This validates both the performance and reachable 

workspace of the manipulator configuration. 

7.2 Industry Review 

The following is a review from the project’s industry supervisor, Daryl Joyce, at RML Engineering Ltd. The 

full statement is included in Appendix C. 

“This project has provided RML Engineering with further knowledge and tools to continue 

our development of the customisable packaging robot placement module. The robotic 

simulation will assist us in our mechanical design, while at the same time being a useful tool 

for showing the robot’s performance to potential customers. One of the key advantages to 

this packaging robot will be the capacity to optimise the dimensions to achieve a faster cycle 

rate than current standardised manipulators. The optimisation methods developed as part 

of this project will allow us to achieve this. Overall the project has been fruitful in providing 

us with software tools and a greater knowledge of robotic manipulators.” 

7.3 Future Work 

This thesis has provided tools that enable the development, analysis and optimisation of the 2DOFPPM 

mechanism. While the results of the thesis are of significant use to RML Engineering Ltd., there remain a 

number of improvements to be explored. These, along with a number of research directions, are 

discussed below. 

Simulation Model: 

(1) The SimMechanics™ simulation could be extended to include a model of the motors. This could 

be achieved using another Matlab® toolbox called SimElectronics™. By modelling the motors a 

more detailed view of the system could be obtained. 

(2) Developing an on-line trajectory planner within the simulation model with a feedback loop to 

control the motors in ‘real-time’. By integrating the trajectory planner with the low level control 

system a wider view of the system could be simulated. 
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(3) With the introduction of recommendations (1) and (2), the impact any controller or motor 

inaccuracies had on the positional error of the end-effector could be evaluated. 

(4) Analysing the effects vibration has on the end-effector’s positional accuracy by introducing non-

rigid bodies into the model. This would provide the model with a high degree of fidelity which is 

useful in the final stages of the design process. 

Trajectory Planning: 

(5) An improved trajectory planning algorithm that calculates the path faster while achieving truly 

time minimum trajectories would assist in the final stages of optimising the 2DOFPPM 

configuration.  

Optimisation Methods: 

(6) While several optimising techniques have been applied to finding the optimal dimensions of the 

2DOFPPM, the ever growing field of optimisation means that other methods may exist that 

perform better than those tested within this thesis. One of these approaches is to use a hybrid 

algorithm. For example, combining a genetic algorithm with a hill climber. 

(7) The optimisation in this thesis has focused on minimising the path’s cycle-time. While this is 

commonly the most important performance measure for pick-and-place manipulators, other 

details are also of some value. Multi-objective optimisation techniques could be employed to 

maximise end-effector positional accuracy while at the same time minimising the cycle-time. 

(8) The four major dimensions of the 2DOFPPM, along with the selection of the motors, have been 

considered as variables to be optimised. These contribute to being the major factors 

determining the minimum cycle-time achieved by the manipulator. However, there are other 

aspects that also affect the result, including the less significant dimensions and the density and 

volume of the materials used to fabricate the arms. A wider optimisation could be performed 

that takes into account these other factors. 

The investigation of these topics would further add to the study of the 2DOFPPM and optimisation of its 

parameters. 
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7.4 Summary 

The 2DOFPPM mechanism has been studied in this thesis. A simulation model has been developed using 

SimMechanics™. This model provides insight into the dynamic performance of the manipulator under 

the actuation of motor torques and external forces. To assist in this, a trajectory planner has been 

developed that provides a near time-minimum trajectory. 

The ability to customise the manipulator for a specific task has been identified as valuable to increasing 

productivity. Several optimising algorithms have been implemented to tune the dimensions until the 

best configuration is found. The most successful of these techniques is the Genetic Algorithm. 

This work was undertaken for RML Engineering Ltd. The company is now using the software tools 

developed within this thesis to optimise and analyse the 2DOFPPM for specific industrial applications. 
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Appendix A Simulation Parameters 

 

Table A.1 Default parameters used in sample simulation in Chapter 3. Values obtained from RML Engineering. 

Parameter Default Setting 

Base length (separation of servo motor actuators) 0.3 m 

Proximal (upper) arm length 0.36 m 

Distal (lower) arm length 0.88 m 

End-effector length 0.01 m 

Proximal arm mass 3.5 kg 

Distal arm mass 2 kg 

End-effector mass 35 kg 

Proximal (upper) stabiliser arm mass 0.2 kg 

Distal (lower) stabiliser arm mass 0.3 kg 

Proximal (upper) crank arm mass 0.2 kg 

Distal (lower) crank arm mass 0.2 kg 

Arm ID (Internal diameter) 0.01 m 

Arm OD (Outer diameter) 0.02 m 

Stabiliser Arm ID (Internal diameter) 0.005 m 

Stabiliser Arm OD (Outer diameter) 0.01 m 

End-effector mount offset (from joining of distal arms) (X) 0 m 

End-effector mount offset (from joining of distal arms) (Y) -0.02 m 

Proximal (upper) stabiliser arm offset from motor B (X) 0.05 m 

Proximal (upper) stabiliser arm offset from motor B (Y) 0.1 m 

Distal (lower) stabiliser arm offset from end-effector (X) -0.05 m 

Distal (lower) stabiliser arm offset from end-effector (Y) -0.1 m 

Minimum angle between proximal arm and +Y-axis 43° 

Maximum angle between proximal arm and +Y-axis 164° 

Minimum internal angle between proximal arm and distal arm 43° 

Maximum internal angle between proximal arm and distal arm 134° 

Minimum internal angle between distal arms 48° 

Maximum internal angle between distal arms 71° 

Pick/Place Dwell Time 0.2 s 



Simulation and Optimisation of a 2DOFPPM   

    

150 

 

Appendix B Computer Specifications 

 

Table B.1 Specifications of the computer used to perform all computations in this thesis. 

Operating System 32-bit 

Microsoft Windows XP 

Professional 

Version 2002 

Service Pack 3 

Processor Intel(R) Core(TM)2 Cuo CPU 

E8400 @ 3.00GHz 

2.99 GHz 

RAM 3.21 GB 
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Appendix C Industry Review 
 

 
Figure C.1 Industry feedback from RML Engineering Ltd. 
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Appendix D Simulated Annealing Additional Results 

The following figures and tables are the results of using values of 10 and 40 for the parameter 

MaxAttempts1 in the SA algorithm (refer Section 6.1.3). All the other parameters remain the same as 

found in the body of the thesis. 

 
Figure D.1 Normalised histograms of minimum cycle-times for three T values with three Tattenuation rates. MaxAttempts1 = 10. 

 

Table D.1 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for MaxAttempts1 = 10 

T 
Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9 

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s) 

0.05 2.121 0.211 2.108 2.135 0.224 2.130 2.141 0.224 2.145 

0.2 2.132 0.216 2.125 2.136 0.226 2.130 2.143 0.234 2.141 

0.5 2.130 0.229 2.104 2.146 0.221 2.157 2.137 0.231 2.117 
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Figure D.2 Normalised histograms of minimum cycle-times for three T values with three Tattenuation rates. MaxAttempts1 = 40. 

 

Table D.2 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for MaxAttempts1 = 40 

T 
Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9 

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s) 

0.05 2.068 0.198 2.046 2.081 0.185 2.086 2.065 0.196 2.023 

0.2 2.074 0.191 2.062 2.067 0.196 2.057 2.082 0.190 2.094 

0.5 2.069 0.189 2.056 2.073 0.184 2.045 2.066 0.188 2.037 
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Figure D.3 Mean minimum cycle-time versus computation time with MaxAttempts1 = 10 for nine combinations of T and 

Tattenuation. 
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Figure D.4 Mean minimum cycle-time versus computation time with MaxAttempts1 = 40 for nine combinations of T and 

Tattenuation. 
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Appendix E SQL Code 

 
CREATE DATABASE IF NOT EXISTS matlab_2dofppm; 
 
DROP TABLE matlab_2dofppm.Simulations IF EXISTS; 
DROP TABLE matlab_2dofppm.Motors IF EXISTS; 
DROP TABLE matlab_2dofppm.UserConstraints IF EXISTS; 
DROP TABLE matlab_2dofppm.Moves IF EXISTS; 
DROP TABLE matlab_2dofppm.Paths IF EXISTS; 
 
CREATE TABLE matlab_2dofppm.Paths( 
  PathID INT, 
  LinearErrorFactor FLOAT, 
  LastLinearTargetDistance FLOAT, 
  ReactiveFactor FLOAT, 
  InitialAcceptanceThreshold FLOAT, 
  RelativeAgeingFactor FLOAT, 
  AttemptedConfigurations INT, 
  PRIMARY KEY (PathID) 
); 
 
CREATE TABLE matlab_2dofppm.UserConstraints( 
  PathID INT, 
  MaxMotorTorque FLOAT, 
  MaxMotorVelocity FLOAT, 
  MaxMotorAcceleration FLOAT, 
  MaxMotorJerk FLOAT, 
  MassGripper FLOAT, 
  MinArmAng_BU FLOAT, 
  MinArmAng_UL FLOAT, 
  MinArmAng_LL FLOAT, 
  MaxArmAng_BU FLOAT, 
  MaxArmAng_UL FLOAT, 
  MaxArmAng_LL FLOAT, 
  ProxArmDensity FLOAT, 
  DistArmDensity FLOAT, 
  TorsionArmDensity FLOAT, 
  ProxArmIRadius FLOAT, 
  DistArmIRadius FLOAT, 
  ProxArmORadius FLOAT, 
  DistArmORadius FLOAT, 
  TorsionIRadius FLOAT, 
  TorsionORadius FLOAT, 
  MassUpperCrank FLOAT, 
  MassLowerCrank FLOAT, 
  UpperTorsionOffsetB_X FLOAT, 
  UpperTorsionOffsetB_Y FLOAT, 
  LowerTorsionOffsetTCP_X FLOAT, 
  LowerTorsionOffsetTCP_Y FLOAT, 
  GripperMountOffset_X FLOAT, 
  GripperMountOffset_Y FLOAT, 
  GripperLength FLOAT, 
  MinMotorSeparation FLOAT, 
  MaxWidth FLOAT, 
  MaxDepth FLOAT, 
  PRIMARY KEY (PathID), 
  FOREIGN KEY (PathID) REFERENCES matlab_2dofppm.Paths(PathID) 
); 
  

Figure E.1 Create SQL Database and Tables Script (Part 1/2) 
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CREATE TABLE matlab_2dofppm.Moves( 
  PathID INT, 
  MSequence INT, 
  Knot_X FLOAT, 
  Knot_Y FLOAT, 
  MType VARCHAR( 10), 
  MZone FLOAT, 
  Speed FLOAT, 
  Pause FLOAT, 
  PRIMARY KEY (PathID,MSequence), 
  FOREIGN KEY (PathID) REFERENCES matlab_2dofppm.Paths(PathID) 
); 
 
CREATE TABLE matlab_2dofppm.Motors( 
  MotorID INT, 
  Name VARCHAR( 255 ), 
  Description VARCHAR( 255 ), 
  SpecsFolder VARCHAR( 255 ), 
  MaxTorque FLOAT, 
  MaxVelocity FLOAT, 
  MaxAcceleration FLOAT, 
  MaxJerk FLOAT, 
  MomentInertia FLOAT, 
  EncoderResolution FLOAT, 
  PRIMARY KEY (MotorID) 
); 
 
CREATE TABLE matlab_2dofppm.Simulations( 
  SimID INT, 
  ProxArmLength FLOAT, 
  DistArmLength FLOAT, 
  MotorSeparation FLOAT, 
  WorkspaceHeight FLOAT, 
  MotorID INT, 
  CycleTime FLOAT, 
  ExecutionDT DATETIME, 
  PathID INT, 
  Comment VARCHAR( 255), 
  Comment2 VARCHAR ( 255 ), 
  Iteration INT, 
  Attempts1 INT, 
  PRIMARY KEY (SimID), 
  FOREIGN KEY (PathID) REFERENCES matlab_2dofppm.Paths(PathID), 
  FOREIGN KEY (MotorID) REFERENCES matlab_2dofppm.Motors(MotorID) 
); 
  

Figure E.2 Create SQL Database and Tables Script (Part 2/2) 
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Appendix F Matlab® Code 

The following figures contain all the Matlab® code used in this thesis. Methods, scripts and classes are 

listed in alphabetical order. 

 
function  [config, reachable] = CalculateConfig( ...  
                    LengthBase,LengthUpper,LengthLo wer,WorkspaceHeight,Moves,MotorID,uc) 
% Calculates the configuration's parameters needed for SimMechanics model  
% VARIABLES:  
% LengthBase - Length of the base/separation of mot ors  
% LengthUpper - Length of upper/proximal arms  
% LengthLower - Length of lower/distal arms  
% WorkspaceHeight - Height of workspace  
% Moves - Class containing path move commands  
% MotorID - Integer identifying with motor in datab ase  
% uc - UserConstraints class  
  
config = Configuration;     % Create new instance of a Configuration  
  
reachable = false;  % set flag  
  
%% Fixed Parameters  
  
config.LengthBase = LengthBase; 
config.LengthUpper = LengthUpper; 
config.LengthLower = LengthLower; 
config.WorkspaceHeight = WorkspaceHeight; 
  
config.MotorID = MotorID; 
  
config.MassUpper = ThickWalledTubeMass(uc.ProxArmIR adius,uc.ProxArmORadius, ...  
                                        config.Leng thUpper,uc.ProxArmDensity); 
config.MassLower = ThickWalledTubeMass(uc.DistArmIR adius,uc.DistArmORadius, ...  
                                        config.Leng thLower,uc.DistArmDensity); 
config.MassGripper = uc.MassGripper; 
config.MassUpperTorsion = ThickWalledTubeMass(uc.To rsionIRadius,uc.TorsionORadius, ...  
                                                con fig.LengthUpper,uc.TorsionArmDensity); 
config.MassLowerTorsion = ThickWalledTubeMass(uc.To rsionIRadius,uc.TorsionORadius, ...  
                                                con fig.LengthLower,uc.TorsionArmDensity); 
config.MassUpperCrank = uc.MassUpperCrank; 
config.MassLowerCrank = uc.MassLowerCrank; 
  
config.GripperMountOffset_X = uc.GripperMountOffset _X; 
config.GripperMountOffset_Y = uc.GripperMountOffset _Y;  
config.GripperLength = uc.GripperLength; 
  
config.UpperTorsionOffsetB_X = uc.UpperTorsionOffse tB_X; 
config.UpperTorsionOffsetB_Y = uc.UpperTorsionOffse tB_Y; 
config.LowerTorsionOffsetTCP_X = uc.LowerTorsionOff setTCP_X; 
config.LowerTorsionOffsetTCP_Y = uc.LowerTorsionOff setTCP_Y; 
  
config.InRadiusArms = uc.ProxArmIRadius; 
config.OutRadiusArms = uc.DistArmIRadius; 
config.InRadiusTorsion = uc.TorsionIRadius; 
config.OutRadiusTorsion = uc.TorsionORadius;  
… 

 

Figure F.1 CalculateConfig Function (Part 1/4) 
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… 
 
config.InertiaUpper =ThickWalledTubeInertia(config. InRadiusArms,config.OutRadiusArms, ...  
                                                con fig.LengthUpper,config.MassUpper); 
config.InertiaLower =ThickWalledTubeInertia(config. InRadiusArms,config.OutRadiusArms, ...  
                                                con fig.LengthLower,config.MassLower); 
config.InertiaGripper = ThickWalledTubeInertia(conf ig.InRadiusArms, ...  
                          config.OutRadiusArms,conf ig.GripperLength,config.MassGripper);  
config.InertiaUpperTorsion = ThickWalledTubeInertia (config.InRadiusTorsion, ...  
                                config.OutRadiusTor sion,config.LengthUpper, ...  
                                config.MassUpperTor sion); 
config.InertiaLowerTorsion = ThickWalledTubeInertia (config.InRadiusTorsion, ...  
                                config.OutRadiusTor sion,config.LengthLower, ...  
                                config.MassLowerTor sion); 
config.InertiaUpperCrank = ThickWalledTubeInertia(c onfig.InRadiusTorsion, ...  
                            config.OutRadiusTorsion , ...  
                            sqrt(config.UpperTorsio nOffsetB_X^2 ...  
                            +config.UpperTorsionOff setB_X^2),config.MassUpperCrank); 
config.InertiaLowerCrank = ThickWalledTubeInertia(c onfig.InRadiusTorsion, ...  
                            config.OutRadiusTorsion , ...  
                            sqrt(config.LowerTorsio nOffsetTCP_X^2 ...  
                            +config.LowerTorsionOff setTCP_X^2),config.MassLowerCrank); 
  
config.MinUpperArmAngle = uc.MinArmAng_BU; 
config.MaxUpperArmAngle = uc.MaxArmAng_BU; 
config.Min1_2ArmAngle = uc.MinArmAng_UL; 
config.Max1_2ArmAngle = uc.MaxArmAng_UL; 
config.MinLowerArmAngle = uc.MinArmAng_LL; 
config.MaxLowerArmAngle = uc.MaxArmAng_LL; 
…  

Figure F.2 CalculateConfig Function (Part 2/4) 
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… 
 
%% Internally Computed Parameters  
  
config.ThetaAstart = d2r(180); 
config.ThetaBstart = d2r(180); 
  
[ aBaseX,aBaseY,bBaseX,bBaseY,ajX,ajY,bjX,bjY,tcpX, tcpY,error,errorMsg ] = ...  
    Direct_2DOF_PPM(config.ThetaAstart,config.Theta Bstart,config.LengthBase, ...  
    config.LengthUpper,config.LengthLower,config.Mi n1_2ArmAngle, ...  
    config.Max1_2ArmAngle,config.MinLowerArmAngle,c onfig.MaxLowerArmAngle );  
  
if  error > 1 
    reachable = false; 
    errorMsg 
    return ; 
end  
  
config.CS1_UpperA = [0, 0, 0]; 
config.CS1_LowerA = [0, 0, 0]; 
config.CS1_UpperB = [0, 0, 0]; 
config.CS1_LowerB = [0, 0, 0]; 
config.CS1_Gripper = [0, 0, 0]; 
config.CS1_UpperTorsion = [0, 0, 0]; 
config.CS1_UpperCrank = [0, 0, 0]; 
config.CS1_LowerTorsion = [0, 0, 0]; 
config.CS1_LowerCrank = [0, 0, 0]; 
  
config.CS2_UpperA = [ajX-aBaseX,ajY-aBaseY,0]; 
config.CS2_LowerA = [tcpX-ajX,tcpY-ajY,0]; 
config.CS2_UpperB = [bjX-bBaseX,bjY-bBaseY,0]; 
config.CS2_LowerB = [tcpX-bjX,tcpY-bjY,0]; 
config.CS2_Gripper = [0,-config.GripperLength,0]; 
config.CS2_UpperTorsion = [bjX-bBaseX,bjY-bBaseY,0] ; 
config.CS2_UpperCrank = [config.UpperTorsionOffsetB _X, config.UpperTorsionOffsetB_Y, 0];  
config.CS2_LowerTorsion = [tcpX-bjX,tcpY-bjY,0]; 
config.CS2_LowerCrank=[config.LowerTorsionOffsetTCP _X,config.LowerTorsionOffsetTCP_Y,0];  
  
config.CS3_LowerB = [0 0 0]; 
config.CS3_UpperB = [0 0 0]; 
config.CS3_Gripper = [-0.05,0,0]; 
config.CS3_UpperCrank=[config.LowerTorsionOffsetTCP _X,config.LowerTorsionOffsetTCP_Y,0];  
config.CS3_LowerCrank = [config.GripperMountOffset_ X,config.GripperMountOffset_Y,0]; 
  
config.CS4_Gripper = [0.05,0,0]; 
  
config.CG_UpperA = [(ajX-aBaseX)/2,(ajY-aBaseY)/2,0 ]; 
config.CG_LowerA = [(tcpX-ajX)/2,(tcpY-ajY)/2,0]; 
config.CG_UpperB = [(bjX-bBaseX)/2,(bjY-bBaseY)/2,0 ]; 
config.CG_LowerB = [(tcpX-bjX)/2,(tcpY-bjY)/2,0]; 
config.CG_Gripper = [0,-config.GripperLength/2,0]; 
config.CG_UpperTorsion = [(bjX-bBaseX)/2,(bjY-bBase Y)/2,0]; 
config.CG_UpperCrank = [(config.UpperTorsionOffsetB _X+ ...  
                            config.LowerTorsionOffs etTCP_X)/2, ...  
                            config.UpperTorsionOffs etB_Y/2,0]; 
config.CG_LowerTorsion = [(tcpX-bjX)/2,(tcpY-bjY)/2 ,0]; 
config.CG_LowerCrank = [config.LowerTorsionOffsetTC P_X/2,0,0]; 
…  

Figure F.3 CalculateConfig Function (Part 3/4) 
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… 
 
config.OrientCG_UpperA = [0,0,0]; 
config.OrientCG_LowerA = [0,0,0]; 
config.OrientCG_UpperB = [0,0,0]; 
config.OrientCG_LowerB = [0,0,0]; 
config.OrientCG_Gripper = [0,0,0]; 
config.OrientCG_UpperTorsion = [0,0,0]; 
config.OrientCG_UpperCrank = [0,0,0]; 
config.OrientCG_LowerTorsion = [0,0,0]; 
config.OrientCG_LowerCrank = [0,0,0]; 
  
config.Gpoint_1 = [aBaseX, aBaseY, 0]; 
config.Gpoint_2 = [bBaseX, bBaseY, 0]; 
config.Gpoint_3 = [bBaseX+config.UpperTorsionOffset B_X, ...  
                    bBaseY+config.UpperTorsionOffse tB_Y,0]; 
  
[ thetaA, thetaB, error, errorMsg ] = Inverse_2DOF_ PPM(tcpX,tcpY,config.LengthBase, ...  
                                                con fig.LengthUpper,config.LengthLower); 
if  error ~=0 
    reachable = false; 
    errorMsg 
    return ; 
end  
config.ThetaA_IC = mod(thetaA + config.ThetaAstart, pi); 
config.ThetaB_IC = mod(thetaB + config.ThetaBstart, pi); 
  
%% Check reachability  
  
reachable = CheckReachability(Moves,config); 
  
%% Check dimensions are within user constraints  
if  reachable == true % only test if already passed reachability test  
    if  config.LengthBase < uc.MinMotorSeparation 
        reachable = false; 
    elseif  config.LengthBase > 0.9*uc.MaxWidth 
        reachable = false; 
    elseif  config.LengthUpper > (uc.MaxWidth - config.LengthB ase)/2 
        reachable = false; 
    elseif  config.LengthLower < config.LengthBase 
        reachable = false; 
    elseif  config.LengthLower > sqrt((uc.MaxDepth - config.Le ngthUpper)^2 + ...  
                                        (config.Len gthBase/2)^2) 
        reachable = false; 
    end  
end  
  
end  
  

Figure F.4 CalculateConfig Function (Part 4/4) 
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function  cycletime = CheckConfigExists(pathID,config) 
% Checks if Configuration has already been tested f or this path.  
% Returns an empty matrix if doesn't exist otherwis e returns cycletime  
% VARIABLES:  
% pathID - ID for the current path being optimised  
% config - Instance of Configuration class  
  
    % Open database connection  
    mysql( 'open' , 'localhost:3306' , 'root' , 'mysql' ); 
    mysql( 'use matlab_2dofppm' ); 
     
    % Query searches for an exact matching of configura tion parameters up to 4 decimal  
    %  places accurate  
    query = [ 'SELECT cycletime FROM simulations ' ...  
            'WHERE PathID = "' ,num2str(pathID), '" ' ...  
            'AND ROUND(proxarmlength,4) = ROUND("' ,num2str(config.LengthUpper), '",4) ' ...  
            'AND ROUND(distarmlength,4) = ROUND("' ,num2str(config.LengthLower), '",4) ' ...  
            'AND ROUND(motorseparation,4) = ROUND("' ,num2str(config.LengthBase), '",4) ' ...  
            'AND ROUND(workspaceheight,4) = ' ...  
            'ROUND("' ,num2str(config.WorkspaceHeight), '",4) ' ...  
            'Limit 1 '  
            ]; 
     
    cycletime = mysql(query); 
  
    mysql( 'close' ) 
end 
  

Figure F.5 CheckConfigExists Function 
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function  reachable = CheckReachability(Moves,config) 
% Checks to see if all targets can be reached by th e configuration  
% VARIABLES:  
% Moves - Instance of Moves class  
% config - Instance of Configuration class  
  
    reachable = true;   % set flag  
     
    % Loop through each move and use inverse kinematics  to check target can  
    % be reached by configuration  
    for  m=1:size(Moves,2) 
        knotX = Moves(m).Target.Knot.X; 
        knotY = Moves(m).Target.Knot.Y + config.Wor kspaceHeight; 
  
        [thetaA,thetaB,error,errorMsg] = Inverse_2D OF_PPM(knotX,knotY, ...  
                                config.LengthBase,c onfig.LengthUpper,config.LengthLower); 
  
        if  error ~= 0 
            reachable = false; 
            break  
        end  
  
        [tcpX,tcpY,error,errorMsg] = Direct_2DOF_PP M(thetaA,thetaB,config.LengthBase, ...  
                                        config.Leng thUpper,config.LengthLower, ...  
                                        config.Min1 _2ArmAngle,config.Max1_2ArmAngle, ...  
                                        config.MinL owerArmAngle,config.MaxLowerArmAngle); 
        if  error ~= 0 
            reachable = false; 
            break    % return from function if error occurs as it indica tes its unreachable  
        end  
    end  
end 
  

Figure F.6 CheckReachability Function 
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function  ppr = CompilePath(Moves,Config,PPC) 
% Compiles a path for the 2DOFPPM Config based on t he user specifed Move  
% commands while keeping within the PPC (Path Plann ing Constraints)  
% VARIABLES:  
% Moves - Instance of the Moves class  
% Config - Instance of the Configuration class  
% PPC - Instance of the PPConstraints class (Path P lanning Constraints)  
% RETURNS: 
% ppr - Instance of the PPResults class (Path Plann ing Results)  
  
% Give Targets (within Moves) a PathTime to start w ith, based on the moves  
% max Velocity constraint and the distance between the knots.  
for  m=1:(size(Moves,2)-1) 
    Xc = Moves(m).Target.Knot.X; 
    Yc = Moves(m).Target.Knot.Y; 
    Xn = Moves(m+1).Target.Knot.X; 
    Yn = Moves(m+1).Target.Knot.Y; 
    dist = sqrt((Xn-Xc)^2+(Yn-Yc)^2); 
    vel = Moves(m+1).Velocity; 
    Moves(m+1).Target.PathTime = Moves(m).Target.Pa thTime + dist/vel; 
end 
  
Targets = repmat(Target,1,1); 
  
%Formulate Knots from Targets  
for  m=1:(size(Moves,2)-1) 
    current_move = Moves(m); 
    next_move = Moves(m+1); 
    current_target = Moves(m).Target; 
    next_target = Moves(m+1).Target; 
    next_MaxVel = Moves(m+1).Velocity;  %get max TCP velocity permitted during move  
  
    if  (m==1)   %then add first knot  
        Targets(end)=current_target; 
    end  
…  

Figure F.7 CompilePath Function (Part 1/5) 
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… 
 
if  strcmp(next_move.MoveType, 'MoveL' )  %then create additional knots inbetween targets  
        kc = current_target.Knot; 
        kn = next_target.Knot; 
        Xc = kc.X; 
        Yc = kc.Y; 
        Tc = current_target.PathTime; 
        Xn = kn.X; 
        Yn = kn.Y; 
        Tn = next_target.PathTime; 
        Zn = next_move.Zone * 10^-3;  %zone data is defined in mm, therefore we scale  
  
        % X value at edge of zone at next target  
        if  Xn >= Xc 
            Xz = Xn-Zn*sin(atan(abs(Xn-Xc)/abs(Yn-Y c))); 
        else  
            Xz = Xn+Zn*sin(atan(abs(Xn-Xc)/abs(Yn-Y c))); 
        end  
        % Y value at edge of zone at next target  
        if  Yn >= Yc 
            Yz = Yn-Zn*cos(atan(abs(Xn-Xc)/abs(Yn-Y c))); 
        else  
            Yz = Yn+Zn*cos(atan(abs(Xn-Xc)/abs(Yn-Y c))); 
        end  
        % Time value at edge of zone at next target  
        Tz = Tn - (Tn-Tc)*Zn/sqrt((Xn-Xc)^2+(Yn-Yc) ^2); 
        % X value at last target before target at edge of z one  
        if  Xz >= Xc 
            Xl = Xn-(Zn+PPC.LastLinearTargetDistanc e)*sin(atan(abs(Xn-Xc)/abs(Yn-Yc))); 
        else  
            Xl = Xn+(Zn+PPC.LastLinearTargetDistanc e)*sin(atan(abs(Xn-Xc)/abs(Yn-Yc))); 
        end  
        % Y value at last target before target at edge of z one  
        if  Yz >= Yc 
            Yl = Yn-(Zn+PPC.LastLinearTargetDistanc e)*cos(atan(abs(Xn-Xc)/abs(Yn-Yc))); 
        else  
            Yl = Yn+(Zn+PPC.LastLinearTargetDistanc e)*cos(atan(abs(Xn-Xc)/abs(Yn-Yc))); 
        end  
        % Time value at edge of zone at next target  
        Tl = Tn - (Tn-Tc)*(Zn+PPC.LastLinearTargetD istance)/sqrt((Xn-Xc)^2+(Yn-Yc)^2); 
        %calculate number of steps/extra knots required in linear move  
        LinearSteps = ceil(sqrt((Xl-Xc)^2+(Yl-Yc)^2 )/PPC.LinearErrorFactor); 
  
        for  i=1:LinearSteps 
            Xi = ((Xl-Xc)/LinearSteps*i)+Xc; 
            Yi = ((Yl-Yc)/LinearSteps*i)+Yc; 
            Ti = ((Tl-Tc)/LinearSteps*i)+Tc; 
            k = Knot(Xi,Yi); 
            t = Target(k,Ti,next_MaxVel); 
            Targets(end+1)=t; 
        end  
  
        %finally add knot/target at edge of zone  
        k = Knot(Xz,Yz); 
        t = Target(k,Tz,next_MaxVel); 
        Targets(end+1)=t; 
…  

Figure F.8 CompilePath Function (Part 2/5) 
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… 
 
    elseif  strcmp(next_move.MoveType, 'MoveJ' ) %then we can just add knots at targets  
            kc = current_target.Knot; 
            kn = next_target.Knot; 
            Xc = kc.X; 
            Yc = kc.Y; 
            Tc = current_target.PathTime; 
            Xn = kn.X; 
            Yn = kn.Y; 
            Tn = next_target.PathTime; 
            Zn = next_move.Zone * 10^-3; 
             
            % X value at edge of zone at next target  
            if  Xn >= Xc 
                Xz = Xn-Zn*sin(atan(abs(Xn-Xc)/abs( Yn-Yc))); 
            else  
                Xz = Xn+Zn*sin(atan(abs(Xn-Xc)/abs( Yn-Yc))); 
            end  
            % Y value at edge of zone at next target  
            if  Yn >= Yc 
                Yz = Yn-Zn*cos(atan(abs(Xn-Xc)/abs( Yn-Yc))); 
            else  
                Yz = Yn+Zn*cos(atan(abs(Xn-Xc)/abs( Yn-Yc))); 
            end  
            % Time value at edge of zone at next target  
            Tz = Tn - (Tn-Tc)*Zn/sqrt((Xn-Xc)^2+(Yn -Yc)^2); 
  
            k = Knot(Xz,Yz); 
            t = Target(k,Tz,next_MaxVel); 
            Targets(end+1)=t; 
    end  
  
    %add extra target for pause if move command has one  
    if  (next_move.Pause > 0) 
        t=Targets(end); 
        t.Knot.Omega_A = 0; 
        t.Knot.Omega_B = 0; 
        Targets(end)=t; 
        tn=t; 
        tn.PathTime = tn.PathTime + next_move.Pause ; 
        tn.Knot.Omega_A = 0; 
        tn.Knot.Omega_B = 0; 
        Targets(end+1)=tn; 
        % increase time on following targets  
        for  n=m+1:(size(Moves,2)) 
            Moves(n).Target.PathTime = Moves(n).Tar get.PathTime+next_move.Pause; 
        end  
    end  
end 
  
% Assign zero velocity to first and last Knots  
kf = Targets(1).Knot; 
kf.Omega_A = 0; 
kf.Omega_B = 0; 
Targets(1).Knot = kf; 
kl = Targets(end).Knot; 
kl.Omega_A = 0; 
kl.Omega_B = 0; 
Targets(end).Knot = kl; 
  
Targets1 = repmat(Target,1,0); 
TargetsNew = repmat(Target,1,0); 
pa = repmat(PathSegment,1,0); 
pb = repmat(PathSegment,1,0); 
…  

Figure F.9 CompilePath Function (Part 3/5) 
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… 
 
for  t=1:(size(Targets,2)-1) 
   if  ((Targets(t).Knot.X == Targets(t+1).Knot.X) && ...  
            (Targets(t).Knot.Y == Targets(t+1).Knot .Y)) 
  
       % collate last target that belongs to this particul ar sector/action  
       Targets1(end+1) = Targets(t);    
  
       [pa2,pb2,Targets2] = PathGenerator(Targets1, Config,PPC); 
  
        %add targets for this sector/action to our collecti on of Targets  
        for  t2=1:size(Targets2,2) 
            TargetsNew(end+1) = Targets2(t2); 
        end  
        %add paths for this sector/action to our collection  of pa and pb  
        for  p2=1:size(pa2,1) 
            if  isempty(pa) 
                pa(end,1) = pa2(p2); 
                pb(end,1) = pb2(p2); 
            else  
                pa(end+1,1) = pa2(p2); 
                pb(end+1,1) = pb2(p2); 
            end  
        end  
  
        % As the PathTime has most likely changed, alter th e remaining Targets PathTime  
        %  so that it is continuous with the targets in Tar getsNew  
        intersectingTargetNum = size(TargetsNew,2);  
        pathTimeDiff = TargetsNew(intersectingTarge tNum).PathTime - ...  
                                                   Targets(intersectingTargetNum).PathTime;  
        for  tr=size(TargetsNew,2):size(Targets,2) 
            Targets(tr).PathTime = Targets(tr).Path Time + pathTimeDiff; 
        end  
  
        % Clear this 'Targets1' because starting to collate  from scratch new targets that  
        %  will be used for a separate sector/action  
        clear Targets1 ;  
        Targets1 = repmat(Target,1,0); 
   else  
       % Collate targets that belong to this particular se ctor/action  
       Targets1(end+1) = Targets(t);  
   end  
end 
    %do this once more with the final targets from Targ ets1  
    Targets1(end+1) = Targets(end);   %add final target  
    kl = Targets1(end).Knot; 
    kl.Omega_A = 0; 
    kl.Omega_B = 0; 
    Targets1(end).Knot = kl; 
  
    [pa2,pb2,Targets2] = PathGenerator(Targets1,Con fig,PPC);  
  
    %add targets for this sector/action to our collecti on of Targets  
    for  t2=1:size(Targets2,2) 
        TargetsNew(end+1) = Targets2(t2); 
    end  
    %add paths for this sector/action to our collection  of pa and pb  
    for  p2=1:size(pa2,1) 
        pa(end+1,1) = pa2(p2); 
        pb(end+1,1) = pb2(p2); 
    end 
…  

Figure F.10 CompilePath Function (Part 4/5) 
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… 
 
%% Path planning is now complete. The following pro cesses the path for storage in files.  
  
% get the number of interpolated readings for path  
segmentIntPoints = 5;   % Take 5 samples along each path segment  
intPoints = size(pa,1)*segmentIntPoints; 
  
thetasA = zeros(intPoints,1); 
omegasA = zeros(intPoints,1); 
alphasA = zeros(intPoints,1); 
thetasB = zeros(intPoints,1); 
omegasB = zeros(intPoints,1); 
alphasB = zeros(intPoints,1); 
  
time = zeros(intPoints,1); 
n = 1; 
  
for  s=1:size(pa,1) 
    psA = pa(s); 
    psB = pb(s); 
  
    stepsize = (psA.EndTime-psA.StartTime)/segmentI ntPoints; 
  
    for  t=psA.StartTime+0.0001:stepsize:psA.EndTime 
        %NB: psB start and end times are the same as psA's  
        thetaA = psA.getTheta(t); 
        thetasA(n) = thetaA; 
        omegaA = psA.getOmega(t); 
        omegasA(n) = omegaA; 
        alphaA = psA.getAlpha(t); 
        alphasA(n) = alphaA; 
        thetaB = psB.getTheta(t); 
        thetasB(n) = thetaB; 
        omegaB = psB.getOmega(t); 
        omegasB(n) = omegaB; 
        alphaB = psB.getAlpha(t); 
        alphasB(n) = alphaB; 
        time(n) = t; 
        n = n+1; 
    end  
end 
  
% remove trailing zeros from the pva results using deblank method  
warning( 'off' , 'MATLAB:deblank:NonStringInput' );  %turn off warning  
pvaA = deblank([time, thetasA, omegasA, alphasA]');         
pvaB= deblank([time, thetasB, omegasB, alphasB]'); 
  
% produces a stop (1) command at the end of pva's t o stop SimMechanics simulation  
sControl = zeros(size(pvaA,2),1); 
sControl(end) = 1; 
SimControl = [deblank(time')',sControl]'; 
  
% save pva's and SimControl to .mat files for use i n SimMechanis simulation  
save(strcat(pwd, '\PG_Outputs\SimControl.mat' ), 'SimControl' ); 
save(strcat(pwd, '\PG_Outputs\pvaA.mat' ), 'pvaA' ); 
save(strcat(pwd, '\PG_Outputs\pvaB.mat' ), 'pvaB' ); 
save(strcat(pwd, '\PG_Outputs\Knots_TXY.mat' ), 'Knots_TXY' ); 
  
ppr = PPResults; 
ppr.PathA = pa; 
ppr.PathB = pb; 
ppr.Knots = Knots_TXY; 
  
end 
  

Figure F.11 CompilePath Function (Part 5/5) 
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classdef  Configuration 
% Contains parameters defining the physical configu ration of the manipulator.  
% Also referred to as 'mvar' (model variable) in so me methods.  
     
properties  
    MassUpper               % Mass of the upper/proximal arm  
    MassLower               % Mass of the lower/distal arm  
    MassGripper             % Mass of the gripper  
    MassUpperTorsion        % Mass of the upper torsion bar  
    MassLowerTorsion        % Mass of the lower torsion bar  
    MassUpperCrank          % Mass of the upper crank arm  
    MassLowerCrank          % Mass of the lower crank arm  
    LengthBase              % Distance between the centers of the two motors  
    LengthUpper             % Length of the upper/proximal arm  
    LengthLower             % Length of the lower/distal arm  
    GripperMountOffset_X    % Offset from bottom revolute joint where the gripp er mounts(X)  
    GripperMountOffset_Y    % Offset from bottom revolute joint where the gripp er mounts(Y)  
    GripperLength           % Length of the gripper  
  
    WorkspaceHeight         % Height from motors to heighest knot  
  
    MotorID                 % Id for motor type used  
  
    UpperTorsionOffsetB_X   %Offset from centerof motorB for base point of stab iliserarm(X)  
    UpperTorsionOffsetB_Y   %Offset from centerof motorB for base point of stab iliserarm(Y)  
    LowerTorsionOffsetTCP_X % Offset from center of 'TCP' for lower torsion bar  (X)  
    LowerTorsionOffsetTCP_Y % Offset from center of 'TCP' for lower torsion bar  (Y)  
  
    InRadiusArms            % Inner radius of the tubular arms  
    OutRadiusArms           % Outer radius of the tubular arms  
    InRadiusTorsion         % Inner radius of the tubular torsion bars  
    OutRadiusTorsion        % Outer radius of the tubular torsion bars  
  
    InertiaUpper            % Inertia of the upper/proximal arm  
    InertiaLower            % Inertia of the lower/distal arm  
    InertiaGripper          % Inertia of the gripper  
    InertiaUpperTorsion     % Inertia of the upper torsion bar  
    InertiaLowerTorsion     % Inertia of the lower torsion bar  
    InertiaUpperCrank       % Inertia of the upper crank arm  
    InertiaLowerCrank       % Inertia of the lower crank arm  
  
    MinUpperArmAngle        % Minimum angle allowed between upper arm and verti cal  
    MaxUpperArmAngle        % Minimum angle allowed between upper arm and verti cal  
    Min1_2ArmAngle          % Minimum angle allowed between upper-lower arms  
    Max1_2ArmAngle          % Maximum angle allowed between upper-lower arms  
    MinLowerArmAngle        % Minimum angle allowed between lower-lower arms  
    MaxLowerArmAngle        % Maximum angle allowed between lower-lower arms  
  
    ThetaAstart             % Starting angle between +Y axis and left upper arm  
    ThetaBstart             % Starting angle between +Y axis and right upper ar m 
  
    CS1_UpperA              % Coordinate system 1 on the upper/proximal A arm  
    CS1_LowerA              % Coordinate system 1 on the lower/distal A arm  
    CS1_UpperB              % Coordinate system 1 on the upper/proximal B arm  
    CS1_LowerB              % Coordinate system 1 on the lower/distal B arm  
    CS1_Gripper             % Coordinate system 1 on the gripper  
    CS1_UpperTorsion        % Coordinate system 1 on the upper torsion bar  
    CS1_UpperCrank          % Coordinate system 1 on the upper crank arm  
    CS1_LowerTorsion        % Coordinate system 1 on the lower torsion bar  
    CS1_LowerCrank          % Coordinate system 1 on the lower crank arm  
 …  

Figure F.12 Configuration Class (Part 1/2) 
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    CS2_UpperA              % Coordinate system 2 on the upper/proximal A arm  
    CS2_LowerA              % Coordinate system 2 on the lower/distal A arm  
    CS2_UpperB              % Coordinate system 2 on the upper/proximal B arm  
    CS2_LowerB              % Coordinate system 2 on the lower/distal B arm  
    CS2_Gripper             % Coordinate system 2 on the gripper  
    CS2_UpperTorsion        % Coordinate system 2 on the upper torsion bar  
    CS2_UpperCrank          % Coordinate system 2 on the upper crank arm  
    CS2_LowerTorsion        % Coordinate system 2 on the lower torsion bar  
    CS2_LowerCrank          % Coordinate system 2 on the lower crank arm  
  
    CS3_LowerB              % Coordinate system 3 on the lower/distal A arm  
    CS3_UpperB              % Coordinate system 3 on the lower/distal B arm  
    CS3_Gripper             % Coordinate system 3 on the gripper  
    CS3_UpperCrank          % Coordinate system 3 on the upper crank arm  
    CS3_LowerCrank          % Coordinate system 3 on the lower crank arm  
  
    CS4_Gripper             % Coordinate system 4 on the gripper  
  
                            % CoG = Center of Gravity  
    CG_UpperA               % CoG coordinate system on the upper/proximal A arm  
    CG_LowerA               % CoG coordinate system on the lower/distal A arm  
    CG_UpperB               % CoG coordinate system on the upper/proximal B arm  
    CG_LowerB               % CoG coordinate system on the lower/distal B arm  
    CG_Gripper              % CoG coordinate system on the gripper  
    CG_UpperTorsion         % CoG coordinate system on the upper torsion bar  
    CG_UpperCrank           % CoG coordinate system on the upper crank arm  
    CG_LowerTorsion         % CoG coordinate system on the lower torsion bar  
    CG_LowerCrank           % CoG coordinate system on the lower crank arm  
  
    OrientCG_UpperA         %Orientation of CoG coordinate system on the upper/ proximalAarm  
    OrientCG_LowerA         %Orientation of CoG coordinate system on the lower/ distal A arm  
    OrientCG_UpperB         %Orientation of CoG coordinate system on the upper/ proximalBarm  
    OrientCG_LowerB         %Orientation of CoG coordinate system on the lower/ distal B arm  
    OrientCG_Gripper        % Orientation of CoG coordinate system on the gripp er  
    OrientCG_UpperTorsion   % Orientation of CoG coordinate system on the upper  torsion bar  
    OrientCG_UpperCrank     % Orientation of CoG coordinate system on the upper  crank arm  
    OrientCG_LowerTorsion   % Orientation of CoG coordinate system on the lower  torsion bar  
    OrientCG_LowerCrank     % Orientation of CoG coordinate system on the lower  crank arm  
  
    Gpoint_1                % Ground point 1  
    Gpoint_2                % Ground point 2  
    Gpoint_3                % Ground point 3  
  
    ThetaA_IC               % Initial condition for theta position on motor A  
    ThetaB_IC               % Initial condition for theta position on motor B  
end 
     
end 
  

Figure F.13 Configuration Class (Part 2/2) 

 

 
classdef  CyclePath 
% Contains constraints and move commands for a sing le cycle of a path  
     
properties  
    ID          % ID to uniquely identify each cycle path  
    Moves       % Moves associated with this path  
    PPC         % Path Planning Constraints (PPConstraints) for thi s path  
end 
     
end 
  

Figure F.14 CyclePath Class 
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function  r = d2r(d) 
%#eml 
    r=d/180*pi;     % Converts degrees to radians  
end 
   

Figure F.15 d2r (Degrees to Radians) Function 
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function  [ tcpX, tcpY, error, errorMsg ] = ...  
    Direct_2DOF_PPM( thetaA, thetaB, LengthBase,Len gthUpper,LengthLower, ...  
        min1_2ArmAngle,max1_2ArmAngle,minLowerArmAn gle,maxLowerArmAngle ) 
% Direct_2DOF_PPM takes the angles of the two upper  arms (wrt the +Y axis) of a  
% 2DOFPPM and outputs the coordinates of the TCP (t ool center point)  
% VARIABLES:  
% thetaA - angle of motor A from +Y-axis (radians)  
% thetaB - angle of motor B from +Y-axis (radians)  
% LengthBase - length of base / separation of motor s (m)  
% LengthUpper - length of upper/proximal arm (m)  
% LengthLower - length of lower/distal arm (m)  
% min1_2ArmAngle - minimum allowable acute angle be tween proximal and distal arms(radians)  
% max1_2ArmAngle - maximum allowable acute angle be tween proximal and distal arms(radians)  
% minLowerArmAngle - minimum allowable acute angle between distal arms(radians)  
% maxLowerArmAngle - maximum allowable acute angle between distal arms(radians)  
% RETURNS: 
% tcpX - X co-ordinate of the TCP/end-effector  
% tcpY - Y co-ordinate of the TCP/end-effector  
% error - value indicating an error (0 = no error)  
% errorMsg - message associated with an error  
  
D=LengthBase;           % Length of base  
aBaseX = -D/2;          % X component of lhs of base  
aBaseY = 0;             % Y component of lhs of base  
bBaseX = D/2;           % X component of rhs of base  
bBaseY = 0;             % Y component of rhs of base  
a1=LengthUpper;         % Left Upper Arm  
a2=LengthLower;         % Left Lower Arm  
b1=LengthUpper;         % Right Upper Arm  
b2=LengthLower;         % Right Lower Arm  
  
error = 0;              % Notify an error exists by setting to 1  
errorMsg = 'null' ;      % Details about error  
  
ajX = ((-D/2)-a1*sin(pi-thetaA));       % X component of lhs arm joint  
ajY = (-a1*cos(pi-thetaA));             % Y component of lhs arm joint  
bjX = ((D/2)+b1*sin(pi-thetaB));        % X component of rhs arm joint  
bjY = (-b1*cos(pi-thetaB));             % Y component of rhs arm joint  
  
k = sqrt((bjX-ajX)^2+(abs(bjY-ajY))^2); % Distance between lhs & rhs joints  
  
i = (a2^2-b2^2+k^2)/(2*k); 
  
h = sqrt(a2^2-i^2); 
  
mX = ajX + (i*(bjX-ajX))/k;              
mY = ajY + (i*(bjY-ajY))/k; 
  
tcpX = mX + (h*(bjY-ajY))/k;            % X component of TCP  
tcpY = mY - (h*(bjX-ajX))/k;            % Y component of TCP  
  
  
% Check lower arms still reach, else throw an error  - added a 1% tollerance to allow for  
%  calculation errors  
if  ((sqrt((ajX-tcpX)^2+(ajY-tcpY)^2)>a2*1.01)||(sqrt( (bjX-tcpX)^2+(bjY-tcpY)^2)>b2*1.01)) 
    error = 2; 
    errorMsg = 'Arm configuration cannot be resolved' ; 
end 
  
% Only permit TCP's below the base  
if  (tcpY > aBaseY) 
    error = 2; 
    errorMsg = 'TCP cannot be raised above base' ; 
end 
…  

Figure F.16 Direct_2DOF_PPM Function (Part 1/2) 
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% Angle between upper left arm and lower left arm  
thetaAJ = -atan2(((aBaseX-ajX)*(tcpY-ajY)-(tcpX-ajX )*(aBaseY-ajY)), ...  
                    (aBaseX-ajX)*(tcpX-ajX)+(aBaseY -ajY)*(tcpY-ajY)); 
  
% Angle between upper right arm and lower right arm   
thetaBJ = atan2(((bBaseX-bjX)*(tcpY-bjY)-(tcpX-bjX) *(bBaseY-bjY)), ...  
                    (bBaseX-bjX)*(tcpX-bjX)+(bBaseY -bjY)*(tcpY-bjY)); 
  
% Angle between right and left lower fore arms  
thetaTCP = atan2(((bjX-tcpX)*(ajY-tcpY)-(ajX-tcpX)* (bjY-tcpY)), ...  
                    (bjX-tcpX)*(ajX-tcpX)+(bjY-tcpY )*(ajY-tcpY)); 
  
  
% Check all joint angles are within limits  
if  (thetaAJ < min1_2ArmAngle) 
    error = 1; 
    errorMsg = strcat( 'Interference between A arms. (' ,num2str(thetaAJ*180/pi), ...  
                        '<' ,num2str(min1_2ArmAngle*180/pi), ')!' ); 
elseif  (thetaBJ < min1_2ArmAngle) 
    error = 1; 
    errorMsg = strcat( 'Interference between B arms. (' ,num2str(thetaBJ*180/pi), ...  
                        '<' ,num2str(min1_2ArmAngle*180/pi), ')!' ); 
elseif  (thetaTCP < minLowerArmAngle) 
    error = 1; 
    errorMsg = strcat( 'Interference between lower arms. (' ,num2str(thetaTCP*180/pi), ...  
                        '<' ,num2str(minLowerArmAngle*180/pi), ')!' ); 
elseif  (thetaAJ > max1_2ArmAngle) 
    error = 1; 
    errorMsg = strcat( 'Angle between A arms is too great. (' ,num2str(thetaAJ*180/pi), ...  
                        '>' ,num2str(max1_2ArmAngle*180/pi), ')!' ); 
elseif  (thetaBJ > max1_2ArmAngle) 
    error = 1; 
    errorMsg = strcat( 'Angle between B arms is too great. (' ,num2str(thetaBJ*180/pi), ...  
                        '>' ,num2str(max1_2ArmAngle*180/pi), ')!' ); 
elseif  (thetaTCP > maxLowerArmAngle) 
    error = 1; 
    errorMsg = strcat( 'Angle between lower arms is too great. (' , ...  
                    num2str(thetaTCP*180/pi), '>' ,num2str(maxLowerArmAngle*180/pi), ')!' ); 
end 
  
% Check all parameters are real (if complex, it ind icates that the arms can not reach).  
% Return error = 2 if can't reach  
if  (isreal(aBaseX) == false ...  
   || isreal(aBaseY) == false ...  
   || isreal(bBaseX) == false ...  
   || isreal(bBaseY) == false ...  
   || isreal(ajX) == false ...  
   || isreal(ajY) == false ...  
   || isreal(bjX) == false ...  
   || isreal(bjY) == false ...  
   || isreal(tcpX) == false ...  
   || isreal(tcpY) == false) 
  
    error = 2; 
    errorMsg = strcat( 'Arm configuration is invalid. Cannot form closed l oop.' ); 
end 
end 
   

Figure F.17 Direct_2DOF_PPM Function (Part 2/2) 
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function  [Velocity] = EstimateTCPVel(Knot0,Knot1,StartTime, EndTime) 
% Estimates the TCP/end-effector velocity based on the time taken to travel between two  
% knots  
% VARIABLES:  
% Knot0 - Instance of Knot class, travelling from  
% Knot1 - Instance of Knot class, travelling to  
% StartTime - Time at Knot0  
% EndTime - Time at Knot1  
% RETURNS: 
% Velocity - estimated velocity  
     
    x0 = Knot0.X; 
    y0 = Knot0.Y; 
    x1 = Knot1.X; 
    y1 = Knot1.Y; 
     
    dist = sqrt((x1-x0)^2+(y1-y0)^2); 
     
    Velocity = dist/(EndTime-StartTime); 
end 
  

Figure F.18 EstimateTCPVel Function 

 

 
function  Torque = EstimateTorqueA(LengthUpper,Mass_upper,Ma ss_lower,MassGripper, ...  
                                    Mass_LowerCrank ,theta,alpha) 
% Estimates the torque requited by MotorA under a g iven acceleration  
% VARIABLES:  
% LengthUpper - Length of upper/proximal arm (m)  
% Mass_upper - Mass of upper/proximal arm (kg)  
% Mass_lower - Mass of lower/distal arm (kg)  
% MassGripper - Mass of gripper (kg)  
% Mass_LowerCrank - Mass of lower crank (kg)  
% theta - angle of MotorA (rad)  
% alpha - angular acceleration fo MotorA (rad/s/s)  
% RETURNS: 
% Torque - estimate of torque required by MotorA (N m) 
  
g = 9.81;   % Define gravity in SI units  
  
% Inertia of arms acting on motor  
Inertia = ((Mass_upper)*(LengthUpper/2)^2) + ...  
            ((Mass_lower+Mass_LowerCrank/2+MassGrip per/2)*(LengthUpper)^2); 
  
% Torque due to gravity  
T_gravity = (Mass_upper)*g*(LengthUpper/2)*sin(thet a) + ...  
                (Mass_lower+Mass_LowerCrank/2+MassG ripper/2)*g*LengthUpper*sin(theta); 
  
% Total torque  
Torque = Inertia * alpha + T_gravity; 
  
end 
  

Figure F.19 EstimateTorqueA Function 
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function  Torque = EstimateTorqueB(LengthUpper,Mass_upper,Ma ss_lower,MassGripper, ...  
                                    Mass_UpperTorsi on,Mass_LowerTorsion,Mass_UpperCrank, ...  
                                    Mass_LowerCrank ,theta,alpha) 
% Estimates the torque required by MotorB under a g iven acceleration  
% VARIABLES:  
% LengthUpper - Length of upper/proximal arm (m)  
% Mass_upper - Mass of upper/proximal arm (kg)  
% Mass_lower - Mass of lower/distal arm (kg)  
% MassGripper - Mass of gripper (kg)  
% Mass_UpperTorsion - Mass of upper/proximal torsio n arm (kg)  
% Mass_LowerTorsion - Mass of lower/distal torsion arm (kg)  
% Mass_UpperCrank - Mass of upper/proximal crank (k g)  
% Mass_LowerCrank - Mass of lower/distal crank (kg)  
% theta - angle of MotorB (rad)  
% alpha - angular acceleration fo MotorB (rad/s/s)  
% RETURNS: 
% Torque - estimate of torque required by MotorA (N m) 
  
g=9.81;     % Define gravity in SI units  
  
% Inertia of arms acting on motor  
Inertia = ((Mass_upper+Mass_UpperTorsion)*(LengthUp per/2)^2) + ...  
            ((Mass_lower+Mass_LowerTorsion+Mass_Upp erCrank+Mass_LowerCrank/2+ ...  
                                                        MassGripper/2)*(LengthUpper)^2); 
  
% Torque due to gravity  
T_gravity = (Mass_upper+Mass_UpperTorsion)*g*(Lengt hUpper/2)*sin(theta) + ...  
            (Mass_lower+Mass_LowerTorsion+Mass_Uppe rCrank+Mass_LowerCrank/2+ ...  
                                                Mas sGripper/2)*g*LengthUpper*sin(theta); 
  
% Total torque  
Torque = Inertia * alpha + T_gravity; 
  

Figure F.20 EstimateTorqueB Function 

 
function  [Alpha,Time] = FindMaxAlpha(Coef,StartTime,EndTime ) 
% Finds near-maximum angular acceleration of motors  for cubic polynomial trajectory  
% VARIABLES:  
% Coef - Cubic polynomial coefficients  
% StartTime - Start time of trajectory sector  
% EndTime - End time of trajectory sector  
% RETURNS: 
% Alpha - Maximum angular acceleration of trajector y sector  
% Time - Time at which maximum angular acceleration  occurs  
  
Alpha = -99999999999999; 
Time = StartTime; 
% take 10 samples of Alpha between start and end ti mes 
for  time=StartTime:(EndTime-StartTime)/10:EndTime 
    t = time - StartTime; 
    A = 2*Coef(3) + 6*Coef(4)*t; 
     
    if  (A > Alpha) 
        Alpha = A; 
        Time = time; 
    end  
end 
  
end 
  

Figure F.21 FindMaxAlpha Function 
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function  [Jerk,Time] = FindMaxJerk(Coef,StartTime,EndTime) 
% Finds near-maximum angular jerk of motors for cub ic polynomial trajectory  
% VARIABLES:  
% Coef - Cubic polynomial coefficients  
% StartTime - Start time of trajectory sector  
% EndTime - End time of trajectory sector  
% RETURNS: 
% Jerk - Maximum angular jerk of trajectory sector  
% Time - Time at which maximum angular jerk occurs  
     
  
Time = StartTime; 
Jerk = 6*Coef(4); 
  
end 
  

Figure F.22 FindMaxJerk Function 

 
function  [Omega,Time] = FindMaxOmega(Coef,StartTime,EndTime ) 
% Finds near-maximum angular velocity of motor for cubic polynomial trajectory  
% VARIABLES:  
% Coef - Cubic polynomial coefficients  
% StartTime - Start time of trajectory sector  
% EndTime - End time of trajectory sector  
% RETURNS: 
% Omega - Maximum angular velocity of trajectory se ctor  
% Time - Time at which maximum angular velocity occ urs  
  
  
Omega = -99999999999999; 
Time = StartTime; 
% take 10 samples of Omega between start and end ti mes 
for  time=StartTime:(EndTime-StartTime)/10:EndTime 
    t = time - StartTime; 
    O = Coef(2) + 2*Coef(3)*t + 3*Coef(4)*t^2; 
     
    if  (O > Omega) 
        Omega = O; 
        Time = time; 
    end  
end 
  
end 
  

Figure F.23 FindMaxOmega Function 
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function  [Torque,Time] = FindMaxTorqueA(Coef,StartTime,EndT ime,Mass_upper,Mass_lower, ...  
                                            MassGri pper,Mass_LowerCrank,LengthUpper) 
% Finds near-maximum torque of motor A for cubic po lynomial trajectory  
% VARIABLES:  
% Coef - Cubic polynomial coefficients  
% StartTime - Start time of trajectory sector (s)  
% EndTime - End time of trajectory sector (s)  
% Mass_upper - Mass of upper/proximal arm (kg)  
% Mass_lower - Mass of lower/distal arm (kg)  
% MassGripper - Mass of gripper (kg)  
% Mass_LowerCrank - Mass of lower crank (kg)  
% LengthUpper - Length of upper/proximal arm (m)  
% RETURNS: 
% Torque - Maximum torque of trajectory sector  
% Time - Time at which maximum torque occurs  
  
Torque = -99999999999999; 
Time = StartTime; 
% take 10 samples of estimated torque between start  and end times  
for  time=StartTime:(EndTime-StartTime)/10:EndTime 
    t = time - StartTime; 
    T = EstimateTorqueA(LengthUpper,Mass_upper,Mass _lower,MassGripper,Mass_LowerCrank, ...  
            (Coef(1) + Coef(2)*t + Coef(3)*t^2 + Co ef(4)*t^3),(2*Coef(3)+6*Coef(4)*t)); 
     
    if  (T > Torque) 
        Torque = T; 
        Time = time; 
    end  
end 
  
end 
  

Figure F.24 FindMaxTorqueA Function 
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function  [Torque,Time] = FindMaxTorqueB(Coef,StartTime,EndT ime,Mass_upper,Mass_lower, ...  
                                    MassGripper,Mas s_UpperTorsion,Mass_LowerTorsion, ...  
                                    Mass_UpperCrank ,Mass_LowerCrank,LengthUpper) 
% Finds near-maximum torque of motor B for cubic po lynomial trajectory  
% VARIABLES:  
% Coef - Cubic polynomial coefficients  
% StartTime - Start time of trajectory sector (s)  
% EndTime - End time of trajectory sector (s)  
% Mass_upper - Mass of upper/proximal arm (kg)  
% Mass_lower - Mass of lower/distal arm (kg)  
% MassGripper - Mass of gripper (kg)  
% Mass_UpperTorsion - Mass of upper/proximal torsio n arm (kg)  
% Mass_LowerTorsion - Mass of lower/distal torsion arm (kg)  
% Mass_UpperCrank - Mass of upper/proximal crank (k g)  
% Mass_LowerCrank - Mass of lower/distal crank (kg)  
% LengthUpper - Length of upper/proximal arm (m)  
% RETURNS: 
% Torque - Maximum torque of trajectory sector  
% Time - Time at which maximum torque occurs  
    
Torque = -99999999999999; 
Time = StartTime; 
% take 10 samples of estimated torque between start  and end times  
for  time=StartTime:(EndTime-StartTime)/10:EndTime 
    t = time - StartTime; 
    T = EstimateTorqueB(LengthUpper,Mass_upper,Mass _lower,MassGripper, ...  
                        Mass_UpperTorsion,Mass_Lowe rTorsion,Mass_UpperCrank, ...  
                        Mass_LowerCrank,(Coef(1) + Coef(2)*t + Coef(3)*t^2 + ...  
                                            Coef(4) *t^3),(2*Coef(3)+6*Coef(4)*t));     
    if  (T > Torque) 
        Torque = T; 
        Time = time; 
    end  
end 
  
end 
  

Figure F.25 FindMaxTorqueB Function 

 
function  [Alpha,Time] = FindMinAlpha(Coef,StartTime,EndTime ) 
% Finds near-minimum angular acceleration of motors  for cubic polynomial trajectory  
% VARIABLES:  
% Coef - Cubic polynomial coefficients  
% StartTime - Start time of trajectory sector  
% EndTime - End time of trajectory sector  
% RETURNS: 
% Alpha - Minimum angular acceleration of trajector y sector  
% Time - Time at which minimum angular acceleration  occurs  
  
Alpha = 99999999999999; 
Time = StartTime; 
% take 10 samples of Alpha between start and end ti mes 
for  time=StartTime:(EndTime-StartTime)/10:EndTime 
    t = time - StartTime; 
    A = 2*Coef(3) + 6*Coef(4)*t; 
     
    if  (A < Alpha) 
        Alpha = A; 
        Time = time; 
    end  
end 
  
end 
  

Figure F.26 FindMinAlpha Function 
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function  [Jerk,Time] = FindMinJerk(Coef,StartTime,EndTime) 
% Finds near-minimum angular jerk of motors for cub ic polynomial trajectory  
% VARIABLES:  
% Coef - Cubic polynomial coefficients  
% StartTime - Start time of trajectory sector  
% EndTime - End time of trajectory sector  
% RETURNS: 
% Jerk - Minimum angular jerk of trajectory sector  
% Time - Time at which minimum angular jerk occurs  
  
Time = StartTime; 
Jerk = 6*Coef(4); 
  
end 
  

Figure F.27 FindMinJerk Function 

 
function  [Omega,Time] = FindMinOmega(Coef,StartTime,EndTime ) 
% Finds near-minimum angular velocity of motor for cubic polynomial trajectory  
% VARIABLES:  
% Coef - Cubic polynomial coefficients  
% StartTime - Start time of trajectory sector  
% EndTime - End time of trajectory sector  
% RETURNS: 
% Omega - Minimum angular velocity of trajectory se ctor  
% Time - Time at which minimum angular velocity occ urs  
  
Omega = 99999999999999; 
Time = StartTime; 
% take 10 samples of Omega between start and end ti mes 
for  time=StartTime:(EndTime-StartTime)/10:EndTime 
    t = time - StartTime; 
    O = Coef(2) + 2*Coef(3)*t + 3*Coef(4)*t^2; 
     
    if  (O < Omega) 
        Omega = O; 
        Time = time; 
    end  
end 
  
end 
  

Figure F.28 FindMinOmega Function 
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function  [Torque,Time] = FindMinTorqueA(Coef,StartTime,EndT ime,Mass_upper,Mass_lower, ...  
                                            MassGri pper,Mass_LowerCrank,LengthUpper) 
% Finds near-minimum torque of motor A for cubic po lynomial trajectory  
% VARIABLES:  
% Coef - Cubic polynomial coefficients  
% StartTime - Start time of trajectory sector (s)  
% EndTime - End time of trajectory sector (s)  
% Mass_upper - Mass of upper/proximal arm (kg)  
% Mass_lower - Mass of lower/distal arm (kg)  
% MassGripper - Mass of gripper (kg)  
% Mass_LowerCrank - Mass of lower crank (kg)  
% LengthUpper - Length of upper/proximal arm (m)  
% RETURNS: 
% Torque - Minimum torque of trajectory sector (Nm)  
% Time - Time at which minimum torque occurs  
  
Torque = 99999999999999; 
Time = StartTime; 
% take 10 samples of estimated torque between start  and end times  
for  time=StartTime:(EndTime-StartTime)/10:EndTime 
    t = time - StartTime; 
    T = EstimateTorqueA(LengthUpper,Mass_upper,Mass _lower,MassGripper,Mass_LowerCrank, ...  
            (Coef(1) + Coef(2)*t + Coef(3)*t^2 + Co ef(4)*t^3),(2*Coef(3)+6*Coef(4)*t)); 
     
    if  (T < Torque) 
        Torque = T; 
        Time = time; 
    end  
end 
  
end 
  

Figure F.29 FindMinTorqueA Function 
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function  [Torque,Time] = FindMinTorqueB(Coef,StartTime,EndT ime,Mass_upper,Mass_lower, ...  
                                    MassGripper,Mas s_UpperTorsion,Mass_LowerTorsion, ...  
                                    Mass_UpperCrank ,Mass_LowerCrank,LengthUpper) 
% Finds near-minimum torque of motor B for cubic po lynomial trajectory  
% VARIABLES:  
% Coef - Cubic polynomial coefficients  
% StartTime - Start time of trajectory sector (s)  
% EndTime - End time of trajectory sector (s)  
% Mass_upper - Mass of upper/proximal arm (kg)  
% Mass_lower - Mass of lower/distal arm (kg)  
% MassGripper - Mass of gripper (kg)  
% Mass_UpperTorsion - Mass of upper/proximal torsio n arm (kg)  
% Mass_LowerTorsion - Mass of lower/distal torsion arm (kg)  
% Mass_UpperCrank - Mass of upper/proximal crank (k g)  
% Mass_LowerCrank - Mass of lower/distal crank (kg)  
% LengthUpper - Length of upper/proximal arm (m)  
% RETURNS: 
% Torque - Minimum torque of trajectory sector  
% Time - Time at which minimum torque occurs  
    
Torque = 99999999999999; 
Time = StartTime; 
% take 10 samples of estimated torque between start  and end times  
for  time=StartTime:(EndTime-StartTime)/10:EndTime 
    t = time - StartTime; 
    T = EstimateTorqueB(LengthUpper,Mass_upper,Mass _lower,MassGripper, ...  
                        Mass_UpperTorsion,Mass_Lowe rTorsion,Mass_UpperCrank, ...  
                        Mass_LowerCrank,(Coef(1) + Coef(2)*t + Coef(3)*t^2 + ...  
                                            Coef(4) *t^3),(2*Coef(3)+6*Coef(4)*t));     
    if  (T < Torque) 
        Torque = T; 
        Time = time; 
    end  
end 
  
end 
  

Figure F.30 FindMinTorqueB Function 

 
function  PathID = GetNextPathID() 
% Returns the next available (unused) path identifi er from database  
  
    % Connect to database  
    mysql( 'open' , 'localhost:3306' , 'root' , 'mysql' ) 
    mysql( 'use matlab_2dofppm' ) 
     
    PathID = mysql( 'SELECT IFNULL(MAX(PathID)+1,1) FROM paths' ); 
  
    mysql( 'close' ) 
  
end 
  

Figure F.31 GetNextPathID Function 
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function  ppc = GetPPConstraints() 
% Returns an instance of the PPConstraints class co ntaining the Path Planning Constraints  
  
    % Create new instance of class  
    ppc = PPConstraints; 
  
    ppc.LinearErrorFactor = 0.2; 
    ppc.LastLinearTargetDistance = 0.02; 
    ppc.ReactiveFactor = 0.5; 
    ppc.InitialAcceptanceThreshold = 0.8; 
    ppc.RelativeAgeingFactor = 100; 
  
end 
  

Figure F.32 GetPPConstraints Function 

 
function  [ thetaA, thetaB, error, errorMsg ] = ...  
                Inverse_2DOF_PPM( tcpX, tcpY, Lengt hBase,LengthUpper,LengthLower) 
% Returns the angles required for a given (X,Y) TCP  coordinate  
% VARIABLES:  
% tcpX - tcp/end-effector X coordinate  
% tcpY - tcp/end-effector Y coordinate  
% LengthBase - length of base / separation of motor s (m)  
% LengthUpper - length of upper/proximal arm (m)  
% LengthLower - length of lower/distal arm (m)  
% RETURNS: 
% thetaA - angle of motor A from +Y-axis (radians)  
% thetaB - angle of motor B from +Y-axis (radians)  
% error - value indicating an error (0 = no error)  
% errorMsg - message associated with an error  
  
    D=LengthBase;           % Length of base  
    a1=LengthUpper;         % Left Upper Arm  
    a2=LengthLower;         % Left Lower Arm  
    b1=LengthUpper;         % Right Upper Arm  
    b2=LengthLower;         % Right Lower Arm  
  
    error = 0;              % Set as no error  
    errorMsg = 'null' ;      % Details about error  
  
    aA = -2*a1*tcpY; 
    aB = -2*a1*(tcpX + (D/2)); 
    aC = tcpX^2 + tcpY^2+(D/2)^2+a1^2-a2^2+2*(D/2)* tcpX; 
  
    bA = -2*b1*tcpY; 
    bB = -2*b1*(tcpX - (D/2)); 
    bC = tcpX^2 + tcpY^2+(D/2)^2+b1^2-b2^2-2*(D/2)* tcpX; 
  
    thetaA = 2*atan((-aA-sqrt(aA^2-aC^2+aB^2))/(aC- aB)); 
    thetaB = 2*atan((-bA+sqrt(bA^2-bC^2+bB^2))/(bC- bB)); 
  
    thetaA = thetaA - d2r(90);  % Convert to project's conventions  
    thetaB = d2r(90)-thetaB;    % Convert to project's conventions  
  
    % Check all parameters are real (if complex, it ind icates that the arms can not reach.  
    % Give error = 2 if can't reach  
    if  (isreal(thetaA) == false || isreal(thetaB) == fals e) 
        error = 2; 
        errorMsg = strcat( 'Arm configuration is invalid. Cannot form closed l oop.' ); 
    end  
  
end 
  

Figure F.33 Inverse_2DOF_PPM Function 
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classdef  Knot 
% Defines a knot (position of end effector).  
% The knot is defined both in terms of its cartesia n coordinates in the  
% workspace, as well as its joint coordinates in th e joint space.  
  
properties  
    X        % X component of knot in cartesian coordinate  
    Y        % Y component of knot in cartesian coordinate  
    Theta_A  % Theta_A component of knot in joint space  
    Theta_B  % Theta_B component of knot in joint space  
    Omega_A  % Angular velocity of motor A at knot  
    Omega_B  % Angular velocity of motor B at knot  
end 
  
methods  
    % Create instance of Knot class with variables  
    function  k = Knot(X,Y,Theta_A,Theta_B) 
        if  nargin == 2  % Allow defining with only X,Y  
            k.X = X; 
            k.Y = Y; 
        elseif  nargin == 4 
            k.X = X; 
            k.Y = Y; 
            k.Theta_A = Theta_A; 
            k.Theta_B = Theta_B; 
        else  
        end  
    end  
  
end 
end 
  

Figure F.34 Knot Class 
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classdef  MoveCMD 
% Defines a move command (Target,MoveType,Velocity, Zone,[Pause]).  
  
properties  
Target      % Position/Orientation and PathTime  
MoveType    % Either Linear or Joint move  
Velocity    % Maximum velocity limit for the TCP  
Zone        % Distance from Knot at which Target is considered reached thus  
            %  allowing next Target to be aimed at  
Pause       % Time period for manipulator to stop stationary af ter completing this move  
end 
  
methods  
    % Create instance of MoveCMD class with variables  
    function  m = MoveCMD(Target,MoveType,Velocity,Zone,Pause) 
        if  nargin == 4  % If only 4 arguments specified (omitting Pause) se t Pause = 0  
            m.Target = Target; 
            m.MoveType = MoveType; 
            m.Velocity = Velocity; 
            m.Zone = Zone;     
            m.Pause = 0; 
        end  
        if  nargin == 5 
            m.Target = Target; 
            m.MoveType = MoveType; 
            m.Velocity = Velocity; 
            m.Zone = Zone;     
            m.Pause = Pause;    
        end  
    end  
end 
end 
  

Figure F.35 MoveCMD Class 
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% Create new instance of UserConstraints class and set variables  
uc = UserConstraints; 
uc.MaxMotorTorque = 300; 
uc.MaxMotorVelocity = 20; 
uc.MaxMotorAcceleration = 9999; 
uc.MaxMotorJerk = 999999; 
uc.MassGripper = 35; 
uc.MinArmAng_BU = d2r(33); 
uc.MinArmAng_UL = d2r(43); 
uc.MinArmAng_LL = d2r(48); 
uc.MaxArmAng_BU = d2r(175); 
uc.MaxArmAng_UL = d2r(134); 
uc.MaxArmAng_LL = d2r(71); 
uc.ProxArmDensity = 2700; 
uc.DistArmDensity = 2700; 
uc.TorsionArmDensity = 2700; 
uc.ProxArmIRadius = 0.01; 
uc.DistArmIRadius = 0.01; 
uc.ProxArmORadius = 0.02; 
uc.DistArmORadius = 0.02; 
uc.TorsionIRadius = 0.005; 
uc.TorsionORadius = 0.01; 
uc.MassUpperCrank = 0.2; 
uc.MassLowerCrank = 0.2; 
uc.UpperTorsionOffsetB_X = 0.05; 
uc.UpperTorsionOffsetB_Y = 0.1; 
uc.LowerTorsionOffsetTCP_X = -0.05; 
uc.LowerTorsionOffsetTCP_Y = 0.1; 
uc.GripperMountOffset_X = 0; 
uc.GripperMountOffset_Y = -0.02; 
uc.GripperLength = 0.01; 
uc.MinMotorSeparation = 0.01; 
uc.MaxWidth = 1.5; 
uc.MaxDepth = 2; 
  
% Specify knots for Path  
k1 = Knot(-0.3,-1); 
k2 = Knot(-0.3,-0.7); 
k3 = Knot(0,-0.65); 
k4 = Knot(0.3,-0.7); 
k5 = Knot(0.3,-1); 
k6 = Knot(0.3,-0.75); 
k7 = Knot(0,-0.7); 
k8 = Knot(-0.3,-0.75); 
k9 = Knot(-0.3,-1); 
  
% Create Move commands from Knots  
m1 = MoveCMD(Target(k1), 'MoveJ' ,10,1); 
m2 = MoveCMD(Target(k2), 'MoveL' ,10,30); 
m3 = MoveCMD(Target(k3), 'MoveJ' ,10,50); 
m4 = MoveCMD(Target(k4), 'MoveJ' ,10,30); 
m5 = MoveCMD(Target(k5), 'MoveL' ,10,1,0.2); 
m6 = MoveCMD(Target(k6), 'MoveL' ,10,20); 
m7 = MoveCMD(Target(k7), 'MoveJ' ,10,30); 
m8 = MoveCMD(Target(k8), 'MoveJ' ,10,20); 
m9 = MoveCMD(Target(k9), 'MoveL' ,10,1); 
  
% Create new CyclePath from Moves  
cp = CyclePath; 
cp.ID = GetNextPathID(); 
cp.Moves = [m1 m2 m3 m4 m5 m6 m7 m8 m9]; 
cp.PPC = GetPPConstraints(); 
  
% Set termination conditions  
termcond = TerminationCondition; 
termcond.CycleTime = 0.1; 
termcond.Iterations = 300; 
…  

Figure F.36 OptimisationStart Script (Part 1/2) 
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… 
 
try  
    % Optimisation method specific parameters (in this case the GA)  
    popSize = 50; 
    selectionSize = 30; 
    mutationRate = 0.25; 
    mutationAmount = 0.1; 
  
    % Run optimisation technique (in this case the GA)  
    OptimiseConfigurationGA( ...  
                    cp,termcond,uc,popSize,selectio nSize,mutationRate,mutationAmount); 
  
catch  exception     % Send email notification if excetion occurs  
    send_mail_message( 'matlab2dofppm' , 'ERROR: MATLAB Simulation' , ...  
                                                    getReport(exception, 'extended' )) 
end 
  

Figure F.37 OptimisationStart Script (Part 2/2) 
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function  OptimiseConfigurationGA(CP,TermCond,UConstraints,P opSize, ...  
                                                Sel ectionSize,MutationRate,MutationAmount) 
% Uses a Genetic Algorithm to narrow on time-minimu m configuration  
% VARIABLES:  
% CP - Cycle Path class containing geometric detail s of the path  
% TermCond - Termination Condition class detailing conditions of terminating process  
% UConstraints - User Constraints class  
% PopSize - Number of individuals in GA population  
% SelectionSize - Number of individuals selected fo r breeding  
% MutationRate - Probability of mutation occuring i n child (%)  
% MutationAmount - The amount of mutation to occur in child (%)  
  
% Store path and user constraint data  
StorePathsUserConstraintsSQL(CP,UConstraints);  
population = repmat(Configuration,PopSize,1); 
popPPC = repmat(PPConstraints,PopSize,1); 
popFitness = zeros(PopSize,1); 
popCycleTime = zeros(PopSize,1); 
popMotorID = zeros(PopSize,1); 
  
%% INITIALISATION - Initialise population by select ing random configurations  
  
for  p=1:PopSize 
    % Select 'random' motor details from database  
    [motorID,newPPC] = SelectMotor(CP.PPC,UConstrai nts); 
    CP.PPC = newPPC;    % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)  
    % Select random configuration that reaches all move  targets  
    config = SelectRandomConfig(CP.Moves,motorID,UC onstraints);     
    population(p) = config; 
    popPPC(p) = CP.PPC; 
    popMotorID(p) = motorID; 
end 
  
% Perform GA for a set number of evolution cycles  
for  i=1:TermCond.Iterations     
    % Check if popCycleTimes are too similar and replac e some with random configurations  
    if  i >1 
        minct = 500; 
        maxct = 0; 
        for  p=1:PopSize 
            if  popCycleTime(p) < 5000 
               if  popCycleTime(p) < minct 
                   minct = popCycleTime(p); 
               end  
               if  popCycleTime(p) > maxct 
                   maxct = popCycleTime(p); 
               end  
            end  
        end          
        if  maxct-minct < 0.2   % Population is too inbred!  
            % Replace 10% of inbred population with random indi viduals  
            for  rp = 1:floor(PopSize/10) 
                % Select 'random' motor details from database  
                [motorID,newPPC] = SelectMotor(CP.P PC,UConstraints); 
                % Assign Path Planning Constraints (PPC) of motor t o Cycle Path (CP)  
                CP.PPC = newPPC; 
                % Select random configuration that reaches all move  targets  
                config = SelectRandomConfig(CP.Move s,motorID,UConstraints); 
                 
                % Randomly select an individual from population for  replacement  
                replaceP = ceil(PopSize*rand(1)); 
                population(replaceP) = config; 
                popPPC(replaceP) = CP.PPC; 
                popMotorID(replaceP) = motorID; 
            end  
        end  
    end  
…  

Figure F.38 OptimiseConfigurationGA Function (Part 1/4) 
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… 
 
%% EVALUATION - Evaluate the performance of each in dividual in population  
  
    for  p=1:PopSize 
        config = population(p); 
        ppc = popPPC(p); 
        try  
            % Check if config has already been simulated, retur n cycletime if it exists in  
            % database  
            ct = CheckConfigExists(CP.ID,config); 
            if  isempty(ct) 
                % Evaluate the selected individual by compiling a p ath  
                [Targets_XYZ,ppr] = CompilePath(CP. Moves,config,ppc); 
                 %Store results of path planning in database  
                StoreSimulationsSQL(config,ppc,ppr, CP.ID,i); 
                 
                popCycleTime(p) = ppr.PathA(size(pp r.PathA,1)).EndTime; 
            else  
                popCycleTime(p) = ct; 
            end              
        catch  exception 
            % If error occurs give individual poor cycletime so  will be repaced next cycle  
            popCycleTime(p) = 99999;     
        end          
        popFitness(p) = 1/(popCycleTime(p)^3); % Fitness equals inverse of cycletime cubed  
    end  
  
%% SELECTION - Select sub population from populatio n for breeding based on fitness  
     
    sumFitness = 0;     
    for  p=1:PopSize 
       sumFitness = sumFitness + popFitness(p); 
    end      
    % Assign selection probability to each individual i n population based on fitness  
    popProb = zeros(PopSize,1); 
    for  p=1:PopSize 
       popProb(p) = popFitness(p)/sumFitness; 
    end      
    selectionProb = zeros(PopSize,1); 
    sumProb = 0; 
    for  p=1:PopSize 
       selectionProb(p) = sumProb + popProb(p); 
       sumProb = selectionProb(p); 
    end  
     
    % Select a number (SelectionSize) of the population  for breeding  
    selectedPop = repmat(Configuration,SelectionSiz e,1); 
    selectedPopPPC = repmat(PPConstraints,Selection Size,1); 
    selectedPopMotorID = zeros(SelectionSize,1); 
    selectedPopCycleTime = zeros(SelectionSize,1); 
    for  s=1:SelectionSize 
        randnum = rand(1); 
        for  p=1:PopSize 
            if  selectionProb(p) > randnum 
                selectedPop(s) = population(p); 
                selectedPopPPC(s) = popPPC(p); 
                selectedPopMotorID(s) = popMotorID( p); 
                selectedPopCycleTime(s) = popCycleT ime(p); 
                break ; 
            end  
        end  
    end  
…  

Figure F.39 OptimiseConfigurationGA Function (Part 2/4) 
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… 
 
%% REPRODUCTION 
  
    % Add selected parents to new population  
    newPopulation = repmat(Configuration,PopSize,1) ; 
    newPopPPC = repmat(PPConstraints,PopSize,1); 
    newPopMotorID = zeros(PopSize,1); 
    for  s=1:SelectionSize 
        newPopulation(s) = selectedPop(s); 
        newPopPPC(s) = selectedPopPPC(s); 
        newPopMotorID(s) = selectedPopMotorID(s); 
    end  
  
    % Generate children to fill rest of new population  
    for  p=SelectionSize:PopSize 
        reachable = false; 
        unique = true; 
        while  reachable == false && unique == true; 
            % CROSSOVER - children configuration dimensions are  a random number between  
            % their two parents  
  
            % select two random parents from selectedPop  
            randnum1 = ceil(rand(1)*SelectionSize);  
            randnum2 = ceil(rand(1)*SelectionSize);  
            parent1Config = selectedPop(randnum1); 
            parent2Config = selectedPop(randnum2); 
            parent1ppc = selectedPopPPC(randnum1); 
            parent2ppc = selectedPopPPC(randnum2); 
            parent1motorID = selectedPopMotorID(ran dnum1); 
            parent2motorID = selectedPopMotorID(ran dnum2); 
  
            minlb = min([parent1Config.LengthBase p arent2Config.LengthBase]); 
            maxlb = max([parent1Config.LengthBase p arent2Config.LengthBase]); 
            lb = minlb+(maxlb-minlb)*rand(1);   % Set childs base length  
             
            minll = min([parent1Config.LengthLower parent2Config.LengthLower]); 
            maxll = min([parent1Config.LengthLower parent2Config.LengthLower]); 
            ll = minll+(maxll-minll)*rand(1);   % Set childs distal arm length  
             
            minlu = min([parent1Config.LengthUpper parent2Config.LengthUpper]); 
            maxlu = min([parent1Config.LengthUpper parent2Config.LengthUpper]); 
            lu = minlu+(maxlu-minlu)*rand(1);   % Set childs proximal arm length  
             
            minwh = min([parent1Config.WorkspaceHei ght parent2Config.WorkspaceHeight]); 
            maxwh = min([parent1Config.WorkspaceHei ght parent2Config.WorkspaceHeight]); 
            wh = minwh+(maxwh-minwh)*rand(1);   % Set childs workspace height  
 …  

Figure F.40 OptimiseConfigurationGA Function (Part 3/4) 
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… 
            % MUTATION - with some probability alter childs dim ension  
            if  rand(1) < MutationRate 
                if  rand(1) <0.5 
                    MutAmount = MutationAmount; 
                else  
                    MutAmount = -MutationAmount; 
                end  
                lb = lb * (1+MutAmount); 
            end  
            if  rand(1) < MutationRate 
                if  rand(1) <0.5 
                    MutAmount = MutationAmount; 
                else  
                    MutAmount = -MutationAmount; 
                end  
                lu = lu * (1+MutAmount); 
            end  
            if  rand(1) < MutationRate 
                if  rand(1) <0.5 
                    MutAmount = MutationAmount; 
                else  
                    MutAmount = -MutationAmount; 
                end  
                ll = ll * (1+MutAmount); 
            end  
            if  rand(1) < MutationRate 
                if  rand(1) <0.5 
                    MutAmount = MutationAmount; 
                else  
                    MutAmount = -MutationAmount; 
                end  
                wh = wh * (1+MutAmount); 
            end  
             
            % Generate new configuration based on childs dimens ions  
            [config, reachable] = ...  
                    CalculateConfig(lb,lu,ll,wh,CP. Moves,parent1motorID,UConstraints); 
             
            % Check configuration is unique in population  
            for  pp=1:PopSize 
                existingConfig = newPopulation(pp);  
                try  
                    if  config.LengthBase == existingConfig.LengthBase ...  
                            && config.LengthUpper = = existingConfig.LengthUpper ...  
                            && config.LengthLower = = existingConfig.LengthLower ...  
                            && config.WorkspaceHeig ht == existingConfig.WorkspaceHeight  
                        unique = false; 
                        break ; 
                    end  
                catch  exception 
                end  
            end  
             
            % Add child to population if it is unique and can a cheive the desired path  
            if  unique == true && reachable == true 
                newPopulation(p) = config; 
                newPopPPC(p) = parent1ppc; 
                newPopMotorID(p) = parent1motorID; 
            end  
        end       
    end  
    population = newPopulation; 
    popPPC = newPopPPC; 
    popMotorID = newPopMotorID; 
end 
end 
  

Figure F.41 OptimiseConfigurationGA Function (Part 4/4) 
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function  OptimiseConfigurationHC(CP,TermCond,UConstraints,S tepSize) 
% Uses a random restart hill climber to narrow on a  time-minimum configuration  
% VARIABLES:  
% CP - Cycle Path class containing geometric detail s of the path  
% TermCond - Termination Condition class detailing conditions of terminating process  
% UConstraints - User Constraints class  
% StepSize - size of steps (in m) to evaluate neigh bouring configurations  
  
StorePathsUserConstraintsSQL(CP,UConstraints);  % Store path and user constraint data  
  
for  i=1:TermCond.Iterations     % Run Hill Climber for a number of iterations  
     
    % Select 'random' motor details from database  
    [motorID,newPPC] = SelectMotor(CP.PPC,UConstrai nts);  
  
    CP.PPC = newPPC;    % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)  
     
    % Select random configuration that reaches all move  targets  
    config = SelectRandomConfig(CP.Moves,motorID,UC onstraints);   
    try   
        % Compile path using Configuration and Path Plannin g Constraints (PPC)  
        % Path Planning Results (ppr) are returned along wi th positional and zone data  
        % about targets  
        [Targets_XYZ,ppr] = CompilePath(CP.Moves,co nfig,CP.PPC); 
    catch  exception 
        % Skip to next iteration if exception occurs due to  config unable to meet targets  
        continue ;    
    end  
     
    % Store results of path planning in database  
    StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i);       
    local = false;  % Set flag indicating whether a local minima has be en found  
    minCycleTime = ppr.PathA(size(ppr.PathA,1)).End Time; % Set best cycletime acheived  
    bestConfig = config;    
     
    while  local == false % Loop until local minima has been found  
        clear neighboursPPR ;        % Clear variables  
        clear neighboursConfig ;     % Clear variables  
         
        % Select configurations around the best configurati on so far  
        neighboursConfig = ...  
            SelectNeighbouringConfig(bestConfig,CP. Moves,motorID,UConstraints,StepSize); 
                 
        for  j=1:size(neighboursConfig,2) 
            % Compile Paths using each of the neighbouring conf igurations(neighboursConfig)  
            % Store results in database, and save Path Planning  Results (ppr) in an array  
            [Targets_XYZ,ppr] = CompilePath(CP.Move s,neighboursConfig(j),CP.PPC); 
            StoreSimulationsSQL(neighboursConfig(j) ,CP.PPC,ppr,CP.ID,i); 
            neighboursPPR(j)=ppr; 
        end  
         
        local = true;   % set flag - will be reset if not local  
        for  j=1:size(neighboursPPR,2) 
            % Compare results of each neighbouring configuratio n. Replace bestConfig with  
            % neighbour if faster cycletime is found  
            if  neighboursPPR(j).PathA(size(neighboursPPR(j).PathA ,1)).EndTime ...  
                                                                        < minCycleTime 
                minCycleTime = ...  
                        neighboursPPR(j).PathA(size (neighboursPPR(j).PathA,1)).EndTime; 
                bestConfig = neighboursConfig(j); 
                local = false; 
            end  
        end  
    end  
end 
end 
  

Figure F.42 OptimiseConfigurationHC Function 
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function  OptimiseConfigurationSA(CP,TermCond,UConstraints,S tepSize,MaxAttempts1, ...  
                                                            MaxAttempts2,T,Attenuation) 
% Uses a random restart hill climber with simulated  annealing to narrow on a  
%  time-minimum configuration  
% VARIABLES:  
% CP - Cycle Path class containing geometric detail s of the path  
% TermCond - Termination Condition class detailing conditions of terminating process  
% UConstraints - User Constraints class  
% StepSize - size of steps (in m) to evaluate neigh bouring configurations  
% MaxAttempts1 - maximum number of attempts/iterati ons in the inner loop of algorithm  
%                   before 'cooling' takes place  
% MaxAttempts2 - maximum number of attempts/iterati ons of the outer loop in algorithm.  
%                   The number of 'cooling' steps t aking place  
% T - constant in algorithm that affects probabilit y of selection  
% Attenuation - the 'cooling' factor reducing the p robability of selecting a less optimal  
%               configuration as time goes on  
  
% Store path and user constraint data  
StorePathsUserConstraintsSQL(CP,UConstraints); 
  
for  i=1:TermCond.Iterations     % Run Simulated Annealer for a number of iterations  
     
    % Select 'random' motor details from database  
    [motorID,newPPC] = SelectMotor(CP.PPC,UConstrai nts); 
     
    CP.PPC = newPPC;   % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)  
     
    % Select random configuration that reaches all move  targets  
    config = SelectRandomConfig(CP.Moves,motorID,UC onstraints); 
     
    try  
        % Compile path using Configuration and Path Plannin g Constraints (PPC)  
        % Path Planning Results (ppr) are returned along wi th positional and zone data  
        % about targets  
        [Targets_XYZ,ppr] = CompilePath(CP.Moves,co nfig,CP.PPC); 
    catch  exception 
        % Skip to next iteration if exception occurs due to  config unable to meet targets  
        continue ; 
    end  
     
    % Store results of path planning in database  
    StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i);   
     
    minCycleTime = ppr.PathA(size(ppr.PathA,1)).End Time; % Set best cycletime acheived  
    bestConfig = config;                % Set the best Configuration  
    currentConfig = config;             % Set the current Configuration  
    currentCycleTime = minCycleTime;    % Set cycletime acheived by currentConfig  
…  

Figure F.43 OptimiseConfigurationSA Function Part (1/2) 
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… 
  
    attempts2 = 0;  % Reset counter  
    while  attempts2 < MaxAttempts2 
     
        attempts1 = 0;  % Reset counter  
        while  attempts1 < MaxAttempts1 
            clear neighboursPPR ;            % Clear variables  
            clear neighboursConfig ;         % Clear variables  
            clear selectedNeighbourConfig ;  % Clear variables  
            clear selectedNeighbourPPR ;     % Clear variables  
  
            % Select configurations around the currentConfig  
            neighboursConfig = SelectNeighbouringCo nfig( ...  
                                    currentConfig,C P.Moves,motorID,UConstraints,StepSize); 
             
            % Select a random neighbour  
            randIndex = randperm(numel(neighboursCo nfig)); 
            selectedNeighbourConfig = neighboursCon fig(randIndex(1,1)); 
  
            % Evaluate the selected neighbour  
            [Targets_XYZ,ppr] = CompilePath(CP.Move s,selectedNeighbourConfig,CP.PPC); 
  
            StoreSimulationsSQL(selectedNeighbourCo nfig,CP.PPC,ppr,CP.ID,i); 
            selectedNeighbourPPR = ppr; 
            selectedNeighbourCycleTime = ...  
                selectedNeighbourPPR.PathA(size(sel ectedNeighbourPPR.PathA,1)).EndTime; 
  
            % Check if it is the best, save if it is  
            if  selectedNeighbourCycleTime < minCycleTime 
                minCycleTime = selectedNeighbourCyc leTime; 
                bestConfig = selectedNeighbourPPR; 
            else  
             
            % check if it is better than the current config/cyc letime  
            if  selectedNeighbourCycleTime < minCycleTime 
                % Replace currentConfig with neighbour  
                currentConfig = selectedNeighbourCo nfig; 
                currentCycleTime = selectedNeighbou rCycleTime; 
            else  
                % Determine probability of selection based on cycle time and the ...  
                %  'cooling' process  
                probOfSelection = ...  
                            1/(1+exp((selectedNeigh bourCycleTime - currentCycleTime)/T)); 
                 
                % Select neighbouring config based on probability  
                myRand = rand(1); 
                if  myRand < probOfSelection 
                    currentConfig = selectedNeighbo urConfig; 
                    currentCycleTime = selectedNeig hbourPPR.PathA( ...  
                                            size(se lectedNeighbourPPR.PathA,1)).EndTime; 
                end  
            end  
            attempts1 = attempts1+1; 
        end  
        T=Attenuation*T;    % Reduce T by an amount over time ('cooling')  
        attempts2 = attempts2+1; 
        end    
    end  
end 
  

Figure F.44 OptimiseConfigurationSA Function Part (2/2) 
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function  OptimiseConfigurationSHC(CP,TermCond,UConstraints, StepSize,MaxAttempts,T) 
% Uses a random restart stochastic hill climber to narrow on time-minimum configuration  
% VARIABLES:  
% CP - Cycle Path class containing geometric detail s of the path  
% TermCond - Termination Condition class detailing conditions of terminating process  
% UConstraints - User Constraints class  
% StepSize - size of steps (in m) to evaluate neigh bouring configurations  
% MaxAttempts - the number of attempts before decid ing current iteration is complete  
% T - constant in algorithm that affects probabilit y of selection 
  
StorePathsUserConstraintsSQL(CP,UConstraints);  % Store path and user constraint data  
for  i=1:TermCond.Iterations     % Run Stochastic Hill Climber for a number of itera tions     
    % Select 'random' motor details from database  
    [motorID,newPPC] = SelectMotor(CP.PPC,UConstrai nts); 
    CP.PPC = newPPC;   % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)     
    % Select random configuration that reaches all move  targets  
    config = SelectRandomConfig(CP.Moves,motorID,UC onstraints); 
    try  
        % Compile path using Configuration and Path Plannin g Constraints (PPC)  
        % Path Planning Results (ppr) are returned along wi th positional and zone data  
        % about targets  
        [Targets_XYZ,ppr] = CompilePath(CP.Moves,co nfig,CP.PPC); 
    catch  exception 
        % Skip to next iteration if exception occurs due to  config unable to meet targets  
        continue ; 
    end  
    % Store results of path planning in database  
    StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i);       
    local = false;  % Set flag indicating whether a local minima has be en found  
    minCycleTime = ppr.PathA(size(ppr.PathA,1)).End Time; % Set best cycletime acheived  
    bestConfig = config;                % Set the best Configuration  
    currentConfig = config;             % Set the current Configuration  
    currentCycleTime = minCycleTime;    % Set cycletime acheived by currentConfig      
    while  attempts < MaxAttempts    % Loop for a set number of attempts          
        % Select configurations around the currentConfig  
        neighboursConfig = SelectNeighbouringConfig ( ...  
                                currentConfig,CP.Moves,motorID,UConstraints,StepSiz e);                
        % Select a random neighbour  
        randIndex = randperm(numel(neighboursConfig )); 
        selectedNeighbourConfig = neighboursConfig( randIndex(1,1));         
        % Evaluate the selected neighbour by compiling a pa th  
        [Targets_XYZ,ppr] = CompilePath(CP.Moves,se lectedNeighbourConfig,CP.PPC); 
        %Store results of path planning in database  
        StoreSimulationsSQL(selectedNeighbourConfig ,CP.PPC,ppr,CP.ID,i); 
        selectedNeighbourPPR = ppr; 
        selectedNeighbourCycleTime = ...  
                selectedNeighbourPPR.PathA(size(selectedNeighbourPP R.PathA,1)).EndTime;        
        % Check if it is the best, save if it is  
        if  selectedNeighbourCycleTime < minCycleTime 
            minCycleTime = selectedNeighbourCycleTi me; 
            bestConfig = selectedNeighbourPPR; 
        end          
        % Determine probability of selection based on cycle  time  
        diff = selectedNeighbourCycleTime - current CycleTime; 
        probOfSelection = 1/(1+exp((selectedNeighbo urCycleTime - currentCy cleTime)/T));        
        myRand = rand(1);   % Select neighbouring config based on probability  
        if  myRand < probOfSelection 
            currentConfig = selectedNeighbourConfig ; 
            currentCycleTime = selectedNeighbourPPR .PathA( ...  
                                            size(se lectedNeighbourPPR.PathA,1)).EndTime; 
        end  
    end  
end 
end  
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function  [pathA,pathB,Targets] = PathGenerator(Targets, Con fig, ppc) 
% Creates a path trajectory for each motor, that tr avels through each target. The paths  
% are optimised to maximise the configuration's cap abilities as defined in the Path  
% Planning Constraints  
% VARIABLES:  
% Targets - Contains the Targets that define the pa th in Cartesian coordinates  
% Config - The 2DOFPPM configuration  
% ppc - Path Planning Constraints defining the limi tations of the configuration  
% RETURNS: 
% pathA - Path Segments for motor A  
% pathB - Path Segments for motor B  
% Targets - Updated Target objects  
  
TCPOffset_X = Config.GripperMountOffset_X; 
TCPOffset_Y = Config.GripperMountOffset_Y - Config. GripperLength; 
  
% convert knots from cartesian to joint space  
numKnots = size(Targets,2); 
for  t=1:numKnots 
   knot = Targets(t).Knot; 
   [knot.Theta_A,knot.Theta_B,er,ermsg] = Inverse_2 DOF_PPM(knot.X-TCPOffset_X, ...  
            knot.Y- TCPOffset_Y,Config.LengthBase,Config.LengthUpper,Co nfig.LengthLower);    
   if  (er > 0) 
        error(ermsg) 
   end  
   %modulate angles so that theta is between 0 and pi  
   knot.Theta_A = mod(Config.ThetaAstart-knot.Theta _A,pi);     
   knot.Theta_B = mod(Config.ThetaBstart-knot.Theta _B,pi); 
   Targets(t).Knot = knot; 
end 
  
withinConstraints = 0;      % flag  
OptimisationIterations = 0; % flag  
  
while  (withinConstraints == 0) 
  
    %% Finding coefficients for the cubic polynomia l that defines each path segment  
    %% between adjacent knots  
  
    A = zeros((numKnots-1)*4);      % Initialised matrix that contains the multiples of    
                                    %  the coefficients (a0,a1,a2,a3)  
    wA = zeros((numKnots-1)*4,1);   % Initialised array that contains the numerical  
                                    %  'answer' to A*coefficients  
    B = zeros((numKnots-1)*4);      % Initialised matrix that contains the multiples of   
                                    %  the coefficients (a0,a1,a2,a3)  
    wB = zeros((numKnots-1)*4,1);   % Initialised array that contains the numerical  
                                    %  'answer' to A*coefficients  
  
    row = 1;    %keeps track of row in matrices of equations, each row is a new equation  
 …  

Figure F.46 PathGenerator Function (Part 1/9) 
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    % equations derived from first knot  
        knot1 = Targets(1).Knot; 
  
        % start position (eq.1)  
            A(row,1) = 1; 
            wA(row,1) = knot1.Theta_A; 
            B(row,1) = 1; 
            wB(row,1) = knot1.Theta_B; 
            row = row + 1;  %increment row, next equation  
  
        % start velocity (eq.2)  
            A(row,2) = 1; 
            wA(row,1) = knot1.Omega_A; 
            B(row,2) = 1; 
            wB(row,1) = knot1.Omega_B; 
            row = row + 1;  %increment row, next equation  
  
    for  t=2:numKnots-1 
  
       target0 = Targets(t-1); 
       target1 = Targets(t); 
       knot0 = Targets(t-1).Knot; 
       knot1 = Targets(t).Knot; 
       % time between previous target and current target  
       tpt = target1.PathTime - target0.PathTime;    
  
       % position as defined by previous path segment (eq. 3)  
           %a0km + a1km(tpk) + a2km(tpk)^2 + a3km(tpk)^3 = kno t1.ThetaA;  
           A(row,(t-1)*4-3+0) = 1; 
           A(row,(t-1)*4-3+1) = tpt; 
           A(row,(t-1)*4-3+2) = tpt^2; 
           A(row,(t-1)*4-3+3) = tpt^3; 
           wA(row,1) = knot1.Theta_A; 
           B(row,(t-1)*4-3+0) = 1; 
           B(row,(t-1)*4-3+1) = tpt; 
           B(row,(t-1)*4-3+2) = tpt^2; 
           B(row,(t-1)*4-3+3) = tpt^3; 
           wB(row,1) = knot1.Theta_B; 
           row = row + 1;  %increment row, next equation  
  
       % position as defined by next path segment (eq.4)  
           %a0k = knot1.ThetaA;  
           A(row,(t)*4-3+0) = 1; 
           wA(row,1) = knot1.Theta_A; 
           B(row,(t)*4-3+0) = 1; 
           wB(row,1) = knot1.Theta_B; 
           row = row + 1;  %increment row, next equation  
…  

Figure F.47 PathGenerator Function (Part 2/9) 
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       % velocity  
           if  (isempty(knot1.Omega_A)==false)   %Omega_A is specified (eq.2)  
                %a1k = Omega_A  
                A(row,(t)*4-3+1) = 1; 
                wA(row,1) = knot1.Omega_A; 
  
           else      % velocity as defined by previous and next path seg ment (eq.5)  
               %0 = a1k + 2(tpk)a2k + 3(tpk^2)a3k - a1kp  
                A(row,(t-1)*4-3+1) = 1; 
                A(row,(t-1)*4-3+2) = 2*tpt; 
                A(row,(t-1)*4-3+3) = 3*tpt^2; 
                A(row,(t)*4-3+1) = -1; 
                wA(row,1) = 0; 
           end  
  
           if  (isempty(knot1.Omega_B)==false)   %Omega_A is specified (eq.2)  
                %a1k = Omega_A  
                B(row,(t)*4-3+1) = 1; 
                wB(row,1) = knot1.Omega_B; 
  
           else      % velocity as defined by previous and next path seg ment (eq.5)  
               %0 = a1k + 2(tpk)a2k + 3(tpk^2)a3k - a1kp  
                B(row,(t-1)*4-3+1) = 1; 
                B(row,(t-1)*4-3+2) = 2*tpt; 
                B(row,(t-1)*4-3+3) = 3*tpt^2; 
                B(row,(t)*4-3+1) = -1; 
                wB(row,1) = 0; 
           end  
           row = row + 1;  %increment row, next equation  
  
       % acceleration as defined by previous and next path  segment (eq.6)  
            %2a2k + 6a3k(tpk) - 2a2kp = 0  
            A(row,(t-1)*4-3+2) = 2; 
            A(row,(t-1)*4-3+3) = 6*tpt; 
            A(row,(t)*4-3+2) = -2; 
            wA(row,1) = 0; 
            B(row,(t-1)*4-3+2) = 2; 
            B(row,(t-1)*4-3+3) = 6*tpt; 
            B(row,(t)*4-3+2) = -2; 
            wB(row,1) = 0; 
            row = row + 1;  %increment row, next equation  
    end  
…  

Figure F.48 PathGenerator Function (Part 3/9) 
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… 
 
    % equations derived from last knot  
        target0 = Targets(numKnots-1); 
        target1 = Targets(numKnots); 
        knot0 = target0.Knot; 
        knot1 = target1.Knot; 
        % time between previous target and current target  
        tpt = target1.PathTime - target0.PathTime;      
        t = numKnots; 
  
        % final position (eq.7)  
            %a0km + a1km(tpk) + a2km(tpk)^2 + a3km(tpk)^3 = kno t1.ThetaA;  
            A(row,(t-1)*4-3+0) = 1; 
            A(row,(t-1)*4-3+1) = tpt; 
            A(row,(t-1)*4-3+2) = tpt^2; 
            A(row,(t-1)*4-3+3) = tpt^3; 
            wA(row,1) = knot1.Theta_A; 
            B(row,(t-1)*4-3+0) = 1; 
            B(row,(t-1)*4-3+1) = tpt; 
            B(row,(t-1)*4-3+2) = tpt^2; 
            B(row,(t-1)*4-3+3) = tpt^3; 
            wB(row,1) = knot1.Theta_B; 
            row = row + 1;  %increment row, next equation  
  
        % final velocity (eq.8)  
            A(row,(t-1)*4-3+1) = 1; 
            A(row,(t-1)*4-3+2) = 2*tpt; 
            A(row,(t-1)*4-3+3) = 3*tpt^2; 
            wA(row,1) = knot1.Omega_A; 
            B(row,(t-1)*4-3+1) = 1; 
            B(row,(t-1)*4-3+2) = 2*tpt; 
            B(row,(t-1)*4-3+3) = 3*tpt^2; 
            wB(row,1) = knot1.Omega_B; 
  
    % coefficients of the equations (a10,a11,a12,a13,a2 0,a21,a22,a23,...,ak0,ak1,ak2,ak3)  
    a = A\wA;    
    % coefficients of the equations (b10,b11,b12,b13,b2 0,b21,b22,b23,...,bk0,bk1,bk2,bk3)  
    b = B\wB;    
 …  

Figure F.49 PathGenerator Function (Part 4/9) 
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… 
 
    % Now we have the coefficients, we can create path segments between knots  
    % using the coefficients to describe the linking po lynomials  
  
    PathA = repmat(PathSegment,numKnots-1,1);   % Initialise array, data type 'PathSegment'  
    PathB = repmat(PathSegment,numKnots-1,1);   % Initialise array, data type 'PathSegment'  
    maxTorqueA = zeros(numKnots-1,2);       % Initialising array to store maximum torque  
                                            %  for each segment of PathA  
    maxTorqueB = zeros(numKnots-1,1);       % Initialising array to store maximum torque  
                                            %  for each segment of PathB  
    minTorqueA = zeros(numKnots-1,2);       % Initialising array to store minimum torque  
                                            %  for each segment of PathA  
    minTorqueB = zeros(numKnots-1,2);       % Initialising array to store minimum torque  
                                            %  for each segment of PathB  
    maxOmegaA = zeros(numKnots-1,2);        % Initialising array to store maximum angular  
                                            %  velocity (omega) for each segment of PathA  
    maxOmegaB = zeros(numKnots-1,2);        % Initialising array to store maximum angular  
                                            %  velocity (omega) for each segment of PathB  
    minOmegaA = zeros(numKnots-1,2);        % Initialising array to store minimum angular  
                                            %  velocity (omega) for each segment of PathA  
    minOmegaB = zeros(numKnots-1,2);        % Initialising array to store minimum angular  
                                            %  velocity (omega) for each segment of PathB  
    maxAlphaA = zeros(numKnots-1,2);        % Initialising array to store maximum angular  
                                            %  acceleration(alpha)for each segment of PathA  
    maxAlphaB = zeros(numKnots-1,2);        % Initialising array to store maximum angular  
                                            %  acceleration(alpha)for each segment of PathB  
    minAlphaA = zeros(numKnots-1,2);        % Initialising array to store minimum angular  
                                            %  acceleration(alpha)for each segment of PathA  
    minAlphaB = zeros(numKnots-1,2);        % Initialising array to store minimum angular   
                                            %  acceleration(alpha)for each segment of PathB  
    maxJerkA = zeros(numKnots-1,2);         % Initialising array to store maximum angular   
                                            %  jerk (jerk) for each segment of PathA  
    maxJerkB = zeros(numKnots-1,2);         % Initialising array to store maximum angular   
                                            %  jerk (jerk) for each segment of PathB  
    minJerkA = zeros(numKnots-1,2);         % Initialising array to store minimum angular   
                                            %  jerk (jerk) for each segment of PathA  
    minJerkB = zeros(numKnots-1,2);         % Initialising array to store minimum angular   
                                            %  jerk (jerk) for each segment of PathB  
    TCPVelocities = zeros(numKnots-1,1);    % Initialising array to store estimated TCP   
                                            %  velocities achieved during each path segment  
…  
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… 
 
    for  t=1:numKnots-1 
        StartTime = Targets(t).PathTime; 
        EndTime = Targets(t+1).PathTime; 
        CoefA = [a((t*4-3)+0) a((t*4-3)+1) a((t*4-3 )+2) a((t*4-3)+3)]; 
        CoefB = [b((t*4-3)+0) b((t*4-3)+1) b((t*4-3 )+2) b((t*4-3)+3)]; 
        psA = PathSegment(CoefA,StartTime,EndTime);  
        psB = PathSegment(CoefB,StartTime,EndTime);  
  
        %find min and max torques within each PathSegment  
        [maxTorqueA(t,1),maxTorqueA(t,2)] = FindMax TorqueA(CoefA,StartTime,EndTime, ...  
                                Config.MassUpper,Co nfig.MassLower,Config.MassGripper, ...  
                                Config.MassLowerCra nk,Config.LengthUpper); 
        [minTorqueA(t,1),minTorqueA(t,2)] = FindMin TorqueA(CoefA,StartTime,EndTime, ...  
                                Config.MassUpper,Co nfig.MassLower,Config.MassGripper, ...  
                                Config.MassLowerCra nk,Config.LengthUpper); 
        [maxTorqueB(t,1),maxTorqueB(t,2)] = FindMax TorqueB(CoefB,StartTime,EndTime, ...  
                                Config.MassUpper,Co nfig.MassLower,Config.MassGripper, ... .  
                                Config.MassUpperTor sion,Config.MassLowerTorsion, ...  
                                Config.MassUpperCra nk,Config.MassLowerCrank, ...  
                                Config.LengthUpper) ; 
        [minTorqueB(t,1),minTorqueB(t,2)] = FindMin TorqueB(CoefB,StartTime,EndTime, ...  
                                Config.MassUpper,Co nfig.MassLower,Config.MassGripper, ...  
                                Config.MassUpperTor sion,Config.MassLowerTorsion, ...  
                                Config.MassUpperCra nk,Config.MassLowerCrank, ...  
                                Config.LengthUpper) ; 
         
        %find min and max angular velocity within each Path Segment  
        [maxOmegaA(t,1),maxOmegaA(t,2)] = FindMaxOm ega(CoefA,StartTime,EndTime); 
        [minOmegaA(t,1),minOmegaA(t,2)] = FindMinOm ega(CoefA,StartTime,EndTime); 
        [maxOmegaB(t,1),maxOmegaB(t,2)] = FindMaxOm ega(CoefB,StartTime,EndTime); 
        [minOmegaB(t,1),minOmegaB(t,2)] = FindMinOm ega(CoefB,StartTime,EndTime); 
         
        %find min and max angular acceleration within each PathSegment  
        [maxAlphaA(t,1),maxAlphaA(t,2)] = FindMaxAl pha(CoefA,StartTime,EndTime); 
        [minAlphaA(t,1),minAlphaA(t,2)] = FindMinAl pha(CoefA,StartTime,EndTime); 
        [maxAlphaB(t,1),maxAlphaB(t,2)] = FindMaxAl pha(CoefB,StartTime,EndTime); 
        [minAlphaB(t,1),minAlphaB(t,2)] = FindMinAl pha(CoefB,StartTime,EndTime); 
         
        %find min and max angular velocity within each Path Segment  
        [maxJerkA(t,1),maxJerkA(t,2)] = FindMaxJerk (CoefA,StartTime,EndTime); 
        [minJerkA(t,1),minJerkA(t,2)] = FindMinJerk (CoefA,StartTime,EndTime); 
        [maxJerkB(t,1),maxJerkB(t,2)] = FindMaxJerk (CoefB,StartTime,EndTime); 
        [minJerkB(t,1),minJerkB(t,2)] = FindMinJerk (CoefB,StartTime,EndTime); 
         
        %estimate TCP Velocities for each PathSegment  
        [TCPVelocities(t,1)] = ...  
                    EstimateTCPVel(Targets(t).Knot, Targets(t+1).Knot,StartTime,EndTime); 
         
        %add path segment into path  
        PathA(t)=psA; 
        PathB(t)=psB; 
    end 
…  
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… 
 
    %% Check constraints against actual values, and  modify time periods as neccessary  
  
    withinConstraints = 1; %reset flag         
    for  t=1:numKnots-1 
        if  ((Targets(t).Knot.X == Targets(t+1).Knot.X) && ...  
                                            (Target s(t).Knot.Y == Targets(t+1).Knot.Y)) 
            %do nothing - don't change time as it is a user spe cified pause  
        else          
            %determine greatest absolute torque reached in segm ent  
            if  (abs(maxTorqueA(t,1)) > abs(minTorqueA(t,1))) 
                mTorqueA = abs(maxTorqueA(t,1)); 
            else  
                mTorqueA = abs(minTorqueA(t,1)); 
            end  
            if  (abs(maxTorqueB(t,1)) > abs(minTorqueB(t,1))) 
                mTorqueB = abs(maxTorqueB(t,1)); 
            else  
                mTorqueB = abs(minTorqueB(t,1)); 
            end  
            if  (mTorqueA > mTorqueB) 
                mTorque = mTorqueA; 
            else  
                mTorque = mTorqueB; 
            end  
  
            %determine greatest absolute angular velocity (Omeg a) reached in segment  
            if  (abs(maxOmegaA(t,1)) > abs(minOmegaA(t,1))) 
                mOmegaA = abs(maxOmegaA(t,1)); 
            else  
                mOmegaA = abs(minOmegaA(t,1)); 
            end  
            if  (abs(maxOmegaB(t,1)) > abs(minOmegaB(t,1))) 
                mOmegaB = abs(maxOmegaB(t,1)); 
            else  
                mOmegaB = abs(minOmegaB(t,1)); 
            end  
            if  (mOmegaA > mOmegaB) 
                mOmega = mOmegaA; 
            else  
                mOmega = mOmegaB; 
            end  
             
            %determine greatest absolute angular acceleration ( Alpha) reached in segment  
            if  (abs(maxAlphaA(t,1)) > abs(minAlphaA(t,1))) 
                mAlphaA = abs(maxAlphaA(t,1)); 
            else  
                mAlphaA = abs(minAlphaA(t,1)); 
            end  
            if  (abs(maxAlphaB(t,1)) > abs(minAlphaB(t,1))) 
                mAlphaB = abs(maxAlphaB(t,1)); 
            else  
                mAlphaB = abs(minAlphaB(t,1)); 
            end  
            if  (mAlphaA > mAlphaB) 
                mAlpha = mAlphaA; 
            else  
                mAlpha = mAlphaB; 
            end 
…   
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            %determine greatest absolute angular jerk (Jerk) re ached in segment  
            if  (abs(maxJerkA(t,1)) > abs(minJerkA(t,1))) 
                mJerkA = abs(maxJerkA(t,1)); 
            else  
                mJerkA = abs(minJerkA(t,1)); 
            end  
            if  (abs(maxJerkB(t,1)) > abs(minJerkB(t,1))) 
                mJerkB = abs(maxJerkB(t,1)); 
            else  
                mJerkB = abs(minJerkB(t,1)); 
            end  
            if  (mJerkA > mJerkB) 
                mJerk = mJerkA; 
            else  
                mJerk = mJerkB; 
            end              
            % extract max TCP velocity for PathSegment  
            mTCPVel = TCPVelocities(t,1); 
            TCPVel_Max = Targets(t+1).VelocityLimit ;  
            %Calculate Scaling Factor for shortening time segme nt if need be  
            shorteningFactor = ppc.InitialAcceptanc eThreshold^ ...  
             ((OptimisationIterations+ppc.RelativeA geingFactor)/ppc.RelativeAgeingFactor);  
            if  ((mTorque>ppc.MaxTorque) || (mOmega>ppc.MaxOmega) || ...  
                   (mAlpha>ppc.MaxAlpha) || (mJerk> ppc.MaxJerk) || (mTCPVel>TCPVel_Max))  
                % Then need to extend path time based on either tor que, omega, alpha,  
                %  jerk or TCP velocity  
                withinConstraints = 0; %set flag  
                target1 = Targets(t); 
                target2 = Targets(t+1);  
                %determine which ratio to use  
                if  (mTorque/ppc.MaxTorque > mOmega/ppc.MaxOmega) && ...  
                                    (mTorque/ppc.Ma xTorque > mAlpha/ppc.MaxAlpha) && ...  
                                    (mTorque/ppc.Ma xTorque > mJerk/ppc.MaxJerk) && ...  
                                    (mTorque/ppc.Ma xTorque > mTCPVel/TCPVel_Max) 
                    ratio = mTorque/ppc.MaxTorque; 
                elseif  (mOmega/ppc.MaxOmega > mTorque/ppc.MaxTorque) && ...  
                                    (mOmega/ppc.Max Omega > mAlpha/ppc.MaxAlpha) && ...  
                                    (mOmega/ppc.Max Omega > mJerk/ppc.MaxJerk) && ...  
                                    (mOmega/ppc.Max Omega > mTCPVel/TCPVel_Max) 
                    ratio = mOmega/ppc.MaxOmega; 
                elseif  (mAlpha/ppc.MaxAlpha > mTorque/ppc.MaxTorque) && ...  
                                    (mAlpha/ppc.Max Alpha > mOmega/ppc.MaxOmega) && ...  
                                    (mAlpha/ppc.Max Alpha > mJerk/ppc.MaxJerk) && ...  
                                    (mAlpha/ppc.Max Alpha > mTCPVel/TCPVel_Max) 
                    ratio = mAlpha/ppc.MaxAlpha; 
                elseif  (mJerk/ppc.MaxJerk > mTorque/ppc.MaxTorque) && ...  
                                    (mJerk/ppc.MaxJ erk > mOmega/ppc.MaxOmega) && ...  
                                    (mJerk/ppc.MaxJ erk > mAlpha/ppc.MaxAlpha) && ...  
                                    (mJerk/ppc.MaxJ erk > mTCPVel/TCPVel_Max) 
                    ratio = mJerk/ppc.MaxJerk; 
                else  
                    ratio = mTCPVel/TCPVel_Max; 
                end  
  
                % Increase PathTime on next knot by a factor relati ve to the difference in  
                % either torques or omegas (depending on which ever  is greatest). Also  
                % increase all following knots by the same length.  
                for  i=t+1:numKnots 
                    target_i = Targets(i); 
                    target_i.PathTime = target_i.Pa thTime + ...  
                        (target2.PathTime-target1.P athTime) * ratio * ppc.ReactiveFactor;  
  
                    Targets(i) = target_i; %re-insert knot back into collection of knots  
                end  
 …  

Figure F.53 PathGenerator Function (Part 8/9) 
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            elseif  ((mTorque<ppc.MaxTorque*shorteningFactor) && ...  
                                            (mOmega <ppc.MaxOmega*shorteningFactor) && ...  
                                            (mAlpha <ppc.MaxAlpha*shorteningFactor) && ...  
                                            (mJerk< ppc.MaxJerk*shorteningFactor) && ...  
                                            (mTCPVe l<TCPVel_Max*shorteningFactor))  
                % This means that the torque, angular velocity, ang ular acceleration,  
                % angular jerk and TCP velocity are outside a perce ntage of the maximum   
                % for both motors. Therefore the cycle can be short ened to get more   
                % performance from the mechanism.  
  
                withinConstraints = 0; %set flag  
                target1 = Targets(t); 
                target2 = Targets(t+1); 
  
                if  (mTorque/ppc.MaxTorque > mOmega/ppc.MaxOmega) && ...  
                                    (mTorque/ppc.Ma xTorque > mAlpha/ppc.MaxAlpha) && ...  
                                    (mTorque/ppc.Ma xTorque > mJerk/ppc.MaxJerk) && ...  
                                    (mTorque/ppc.Ma xTorque > mTCPVel/TCPVel_Max) 
                    ratio = 1 - mTorque/ppc.MaxTorq ue; 
                elseif  (mOmega/ppc.MaxOmega > mTorque/ppc.MaxTorque) && ...  
                                    (mOmega/ppc.Max Omega > mAlpha/ppc.MaxAlpha) && ...  
                                    (mOmega/ppc.Max Omega > mJerk/ppc.MaxJerk) && ...  
                                    (mOmega/ppc.Max Omega > mTCPVel/TCPVel_Max) 
                    ratio = 1 - mOmega/ppc.MaxOmega ; 
                elseif  (mAlpha/ppc.MaxAlpha > mTorque/ppc.MaxTorque) && ...  
                                    (mAlpha/ppc.Max Alpha > mOmega/ppc.MaxOmega) && ...  
                                    (mAlpha/ppc.Max Alpha > mJerk/ppc.MaxJerk) && ...  
                                    (mAlpha/ppc.Max Alpha > mTCPVel/TCPVel_Max) 
                    ratio = 1 - mAlpha/ppc.MaxAlpha ; 
                elseif  (mJerk/ppc.MaxJerk > mTorque/ppc.MaxTorque) && ...  
                                    (mJerk/ppc.MaxJ erk > mOmega/ppc.MaxOmega) && ...  
                                    (mJerk/ppc.MaxJ erk > mAlpha/ppc.MaxAlpha) && ...  
                                    (mJerk/ppc.MaxJ erk > mTCPVel/TCPVel_Max) 
                    ratio = 1 - mJerk/ppc.MaxJerk; 
                else  
                    ratio = 1 - mTCPVel/TCPVel_Max;  
                end  
  
                % Decrease PathTime on next knot by a factor relati ve to the difference in  
                % either torques or omegas (depending on which ever  is smallest). Also  
                % decrease all following knots by the same length.  
                for  i=t+1:numKnots 
                    target_i = Targets(i); 
                    target_i.PathTime = target_i.Pa thTime - ...  
                        (target2.PathTime-target1.P athTime) * ratio * ppc.ReactiveFactor; 
  
                    Targets(i) = target_i; %re-insert knot back into collection of knots  
                end  
            end          
        end  
    end  
    % From here the process is encapsulated in a loop(f rom line 26) to increase  
    %  Knot.PathTimes where appropriate until absolute values of max/min torques are  
    %  within the constraints  
     
    OptimisationIterations = OptimisationIterations +1;     
end 
  
pathA = PathA; 
pathB = PathB; 
end 
  

Figure F.54 PathGenerator Function (Part 9/9) 
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classdef  PathSegment 
% Defines a segment of a path within a given time p eriod.  
% The position on the path segment is defined by a polynomial function of time.  
  
properties  
Coef            % Array of polynomial coefficients.  
StartTime       % The start time for the segment.  
EndTime         % The end time for the segment.  
end 
  
methods  
    % Create instance of PathSegment class with variabl es  
    function  ps = PathSegment(Coef,StartTime,EndTime) 
        if  nargin > 0  
            ps.Coef = Coef; 
            ps.StartTime = StartTime; 
            ps.EndTime = EndTime; 
        end  
    end  
  
    % Returns the angle position at the requested time within the time segment  
    function  theta = getTheta(obj,time) 
        % check time requested is within time defined by th is PathSegment  
        if  ((time >= obj.StartTime)&&(time<=obj.EndTime+1e-10 )) 
            j = 0;                    % represents the order of the polynomial coefficien t  
            t = time - obj.StartTime; % time since start of this segment  
            thetaSum = 0; 
            for  i=1:length(obj.Coef) 
                thetaSum = thetaSum + obj.Coef(i)*t ^j; 
                j=j+1; 
            end  
            theta = thetaSum; 
        else  
            disp([ 'Time requested (' ,num2str(time), ...  
                ') is outside this path segments definable range:' , ...  
                num2str(obj.StartTime), '>=' , 'time' , '<=' ,num2str(obj.EndTime)]) 
            error( 'Time requested is outside this path segments defin able range' ) 
        end  
    end  
  
    % Returns the angular velocity at the requested tim e within the time segment  
    function  omega = getOmega(obj,time) 
        % check time requested is within time defined by th is PathSegment  
        if  ((time >= obj.StartTime)&&(time<=obj.EndTime+1e-10 )) 
            j = 0;                    % represents the order of the polynomial coefficien t  
            t = time - obj.StartTime; % time since start of this segment  
            omegaSum = 0; 
            for  i=1:length(obj.Coef) 
                omegaSum = omegaSum + j*obj.Coef(i) *t^(j-1);    % 1st order derivative  
                j=j+1; 
            end  
            omega = omegaSum; 
  
        else  
            disp([ 'Time requested (' ,num2str(time), ...  
                ') is outside this path segments definable range:' , ...  
                num2str(obj.StartTime), '>=' , 'time' , '<=' ,num2str(obj.EndTime)]) 
            error( 'Time requested is outside this path segments defin able range' ) 
        end  
    end  
…  

Figure F.55 PathSegment Class (Part 1/2) 
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% Returns the angular acceleration at the requested  time within the time segment  
    function  alpha = getAlpha(obj,time) 
        if  ((time >= obj.StartTime)&&(time<=obj.EndTime+1e-10 )) 
            j = 0;                    % represents the order of the polynomial coefficien t  
            t = time - obj.StartTime; % time since start of this segment  
            alphaSum = 0; 
            for  i=1:length(obj.Coef) 
                alphaSum = alphaSum + (j-1)*j*obj.C oef(i)*t^(j-2);  % 2nd order derivative  
                j=j+1; 
            end  
            alpha = alphaSum; 
  
        else  
            disp([ 'Time requested (' ,num2str(time), ...  
                ') is outside this path segments definable range:' , ...  
                num2str(obj.StartTime), '>=' , 'time' , '<=' ,num2str(obj.EndTime)]) 
            error( 'Time requested is outside this path segments defin able range' ) 
        end  
    end  
end 
end 
  

Figure F.56 PathSegment Class (Part 2/2) 
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function  [fig,h] = Plot_Knots_TCP(FigID) 
% Plots the Knots and the Trajectory followed by th e TCP in the SimMechanics simulation  
  
fig = figure(FigID);    % Create new Figure  
% Load Targets and Knots  
load PG_Outputs\Targets_XYZ.mat  Targets_XYZ  
load PG_Outputs\Knots_TXY.mat  Knots_TXY  
  
%% Plot Target Points  
h = scatter(Targets_XYZ(:,1),Targets_XYZ(:,2), 'MarkerEdgeColor' ,[1 0 0], ...  
                                                        'MarkerFaceColor' ,[1,0.7,0.7]); 
hold on; 
  
% Plot Centre of Target points  
scatter(Targets_XYZ(:,1),Targets_XYZ(:,2), 'Marker' , '+' , 'MarkerEdgeColor' ,[1 0 0], ...  
                                                        'SizeData' ,10^2, 'LineWidth' ,2); 
% Obtain the axes size (in axpos) in Points  
currentunits = get(gca, 'Units' ); 
set(gca, 'Units' , 'Points' ); 
axpos = get(gca, 'Position' ); 
set(gca, 'Units' , currentunits); 
  
%% Plot Knots 
%customise colours  
tKnots_TXY=Knots_TXY'; 
numKnots = size(tKnots_TXY,2); 
tf = tKnots_TXY(1,numKnots); 
knotColours = zeros(numKnots,3); 
for  i=1:numKnots 
    time = tKnots_TXY(1,i); 
   knotColours(i,1) = 0.7-0.7*time/tf; 
   knotColours(i,2) = 0.7-0.7*time/tf; 
   knotColours(i,3) = 1; 
end 
  
scatter(Knots_TXY(:,2),Knots_TXY(:,3), 'Marker' , 'o' , 'CData' ,knotColours, ...  
                                                            'SizeData' ,15^2, 'LineWidth' ,5) 
%% Plot TCP Trajectory Followed  
  
load Mdl_Outputs\TCP_XY.mat  TCP_TXY     % Load TCP Path from SimMechanics  
% customise colours  
numPpoints = size(TCP_TXY,2); 
tf = TCP_TXY(1,numPpoints); 
pathColours = zeros(numPpoints,3); 
for  i=1:numPpoints 
    time = TCP_TXY(1,i); 
   pathColours(i,1) = 1; 
   pathColours(i,2) = 1; 
   pathColours(i,3) = 0.7-0.7*time/tf; 
end 
  
scatter(TCP_TXY(2,:),TCP_TXY(3,:), 'Marker' , 'x' , 'CData' ,pathColours, 'LineWidth' ,1.5, ...  
                                                                        'SizeData' ,10^2) 
hold off  
grid on; 
set(gca, 'DataAspectRatio' ,[1 1 1]) 
  
%% Extra Graphical Manipulation 
%Scale target points to their actual size with resp ect to the axis  
%Zones are defined in mm, so scale by 1000, but div ide by 2 as it only defines the radius  
scalingRatio = (1000/2);     
markerWidth = (Targets_XYZ(:,3)/scalingRatio)/diff( xlim)*axpos(3); %Calculate Marker width  
set(h, 'SizeData' , markerWidth.^2) 
 
end  

 
 

Figure F.57 Plot_Knots_TCP Function 
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function  Plot_Sim_Outputs(AngularUnits,SimID,config) 
% Plots the output results of a Simulation  
% VARIABLES:  
% Angular Units - either 'Rad' or 'Deg'  
% SimID - Simulation ID  
% config - Instance of a Configuration class  
  
% setup motor angle units  
if  (strcmp(AngularUnits, 'rad' )) 
    scaleFactor = 1; 
    unitLabel = 'Rad' ; 
elseif  (strcmp(AngularUnits, 'deg' )) 
    scaleFactor = 180/pi; 
    unitLabel = 'Deg' ; 
else  
    error([ 'AngularUnits must be either "rad" or "deg". "' ,AngularUnits, ...  
                                                            '" is not permissible' ]); 
end 
  
% Load Simulation output files  
load Mdl_Outputs\M_Torque.mat  M_Torque  
load Mdl_Outputs\M_PVA.mat  M_PVA 
load Mdl_Outputs\TCP_PVA.mat  TCP_PVA 
load PG_Outputs\Knots_TXY.mat  Knots_TXY  
load PG_Outputs\Targets_XYZ.mat  Targets_XYZ  
load Mdl_Outputs\TorqueCalcs.mat  TorqueCalcs  
  
groupName = [ 'SimID: ' ,num2str(SimID), ' - 2DOF_PPM Simulation Outputs' ]; 
  
group = setfigdocked( 'GroupName' ,groupName, 'GridSize' ,[3 3], 'Maximize' ,1, ...  
                                                'GroupDocked' ,0, 'SpanCell' ,[1 2 2 1]); 
  
%% Plot Knots and TCP  
  
% Call Plot_Knots_TCP function to create the scatte r plot of the knots etc, passing back  
% handles to the figure and ScatterGroup. A resize function has been added so that the  
% 'zones' are resized to be in scale with the axis  
[fig,scatterHandle] = Plot_Knots_TCP(SimID*100+1); 
group = setfigdocked( 'GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,2); 
set(fig, 'ResizeFcn' ,{@f_PlotKnotsTCP,Targets_XYZ,fig,scatterHandle}); 
  
%% Plot Motor Torques  
figure(SimID*100+2) 
  
plot(M_Torque(1,:),M_Torque(3,:), '-k' ,M_Torque(1,:),M_Torque(2,:), '-r' , ...  
            TorqueCalcs(1,:),TorqueCalcs(2,:), ':k' ,TorqueCalcs(1,:),TorqueCalcs(4,:), ':r' ) 
title( 'Motor Torques' ); 
xlabel( 'Time (s)' ); 
ylabel( 'Torque (Nm)' ); 
  
grid on; 
h_legend = legend( 'Motor A' , 'Motor B' , 'Motor A (est.)' , 'Motor B (est.)' , ...  
                                                                'Location' , 'NorthEast' ); 
set(h_legend, 'FontSize' ,8); 
group = setfigdocked( 'GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,7); 
…  

Figure F.58 Plot_Sim_Outputs Function (Part 1/3) 
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%% Plot Motor PVAs  
  
figure(SimID*100+3) 
plot(M_PVA(1,:),M_PVA(2,:)*scaleFactor, '-m' ,M_PVA(1,:),M_PVA(3,:)*scaleFactor, '-c' ) 
title( 'Motor Positions' ); 
xlabel( 'Time (s)' ); 
ylabel([ 'Position (' ,unitLabel, ')' ]); 
grid on; 
h_legend = legend( 'Motor A' , 'Motor B' , 'Location' , 'NorthEast' ); 
set(h_legend, 'FontSize' ,8); 
group = setfigdocked( 'GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,1); 
  
figure(SimID*100+4) 
plot(M_PVA(1,:),M_PVA(4,:)*scaleFactor, '-m' ,M_PVA(1,:),M_PVA(5,:)*scaleFactor, '-c' ) 
title( 'Motor Angular Velocity' ); 
xlabel( 'Time (s)' ); 
ylabel([ 'Angular Velocity (' ,unitLabel, ' s^-^1)' ]); 
grid on; 
h_legend = legend( 'Motor A' , 'Motor B' , 'Location' , 'NorthEast' ); 
set(h_legend, 'FontSize' ,8); 
group = setfigdocked( 'GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,4); 
  
figure(SimID*100+5) 
plot(M_PVA(1,:),M_PVA(6,:)*scaleFactor, '-m' ,M_PVA(1,:),M_PVA(7,:)*scaleFactor, '-c' ) 
title( 'Motor Angular Acceleration' ); 
xlabel( 'Time (s)' ); 
ylabel([ 'Angular Acceleration (' ,unitLabel, ' s^-^2)' ]); 
grid on; 
h_legend = legend( 'Motor A' , 'Motor B' , 'Location' , 'NorthEast' ); 
set(h_legend, 'FontSize' ,8); 
group = setfigdocked( 'GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,6); 
…  

Figure F.59 Plot_Sim_Outputs Function (Part 2/3) 
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%% Plot TCP PVA  
  
figure(SimID*100+6) 
plot(TCP_PVA(1,:),TCP_PVA(2,:), '-b' ,TCP_PVA(1,:),TCP_PVA(3,:), '-g' ) 
title( 'TCP Position' ); 
xlabel( 'Time (s)' ); 
ylabel( 'Position (m)' ); 
grid on; 
h_legend = legend( 'X' , 'Y' , 'Location' , 'NorthEast' ); 
set(h_legend, 'FontSize' ,8); 
group = setfigdocked( 'GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,3); 
  
figure(SimID*100+7) 
plot(TCP_PVA(1,:),TCP_PVA(5,:), '-b' ,TCP_PVA(1,:),TCP_PVA(6,:), '-g' ,TCP_PVA(1,:), ...  
                                        sqrt((TCP_P VA(5,:)).^2+(TCP_PVA(6,:)).^2), '--m' ) 
title( 'TCP Velocity' ); 
xlabel( 'Time (s)' ); 
ylabel( 'Velocity (m s^-^1)' ); 
grid on; 
h_legend = legend( 'X' , 'Y' , '\surd(X^2 + Y^2)' , 'Location' , 'NorthEast' ); 
set(h_legend, 'FontSize' ,8); 
group = setfigdocked( 'GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,5); 
  
figure(SimID*100+8) 
plot(TCP_PVA(1,:),TCP_PVA(8,:), '-b' ,TCP_PVA(1,:),TCP_PVA(9,:), '-g' ,TCP_PVA(1,:), ...  
                                        sqrt((TCP_P VA(8,:)).^2+(TCP_PVA(9,:)).^2), '--m' ) 
title( 'TCP Acceleration' ); 
xlabel( 'Time (s)' ); 
ylabel( 'Acceleration (m s^-^2)' ); 
grid on; 
h_legend = legend( 'X' , 'Y' , '\surd(X^2 + Y^2)' , 'Location' , 'NorthEast' ); 
set(h_legend, 'FontSize' ,8); 
  
group = setfigdocked( 'GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,8); 
  
end 
  
function  XData2 = ScaleLegendLine(ch_legend1,ch_legend2) 
    XData1 =  get(ch_legend1, 'XData' ); 
    XData2 =  get(ch_legend2, 'XData' ); 
    XScale = XData2 - XData1; 
    XData2 = XData1 + XScale / 2; 
end 
  

Figure F.60 Plot_Sim_Outputs Function (Part 3/3) 
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PathID = 123;       % Enter PathID for search surface results  
  
% Open Database connection  
ch = mysql( 'open' , 'localhost:3306' , 'root' , 'mysql' ); 
db = mysql( 'use matlab_2dofppm' ); 
  
query = [ 'SELECT ' ...  
            's.MotorSeparation, ' ...  
            's.ProxArmLength, ' ...  
            's.DistArmLength, ' ...  
            's.WorkspaceHeight, ' ...  
            's.CycleTime ' ...  
            'FROM Simulations AS s ' ...  
            'WHERE ' ...  
            'PathID = "' ,num2str(PathID), '" ' ...  
            'ORDER BY s.CycleTime ASC '  
            ]; 
  
    [ 
        b ...  
        u ...  
        l ...  
        h ...  
        t ...  
    ] = mysql(query); 
  
mysql( 'close' ); 
  
tcolor = t; 
hh = ceil((h-(min(h)*1.2))*400); 
  
figure(PathID); 
  
xlabel( 'Motor Separation (m)' , 'FontWeight' , 'bold' , 'Color' , 'w' ) 
ylabel( 'Proximal (Upper) Arm (m)' , 'FontWeight' , 'bold' , 'Color' , 'w' ) 
zlabel( 'Distal (Lower) Arm (m)' , 'FontWeight' , 'bold' , 'Color' , 'w' ) 
set(gca, 'XColor' , [0 0 0]); 
set(gca, 'YColor' , [0 0 0]); 
set(gca, 'ZColor' , [0 0 0]); 
set(gca, 'Color' , [1 1 1]); 
  
% Plot search surface  
s3 = scatter3(b,u,l,80,tcolor, 'filled' ); 
xlabel( 'Motor Separation (m)' , 'FontWeight' , 'bold' , 'Color' , 'k' ) 
ylabel( 'Proximal (Upper) Arm (m)' , 'FontWeight' , 'bold' , 'Color' , 'k' ) 
zlabel( 'Distal (Lower) Arm (m)' , 'FontWeight' , 'bold' , 'Color' , 'k' ) 
  
set(gca, 'XColor' , [0 0 0]); 
set(gca, 'YColor' , [0 0 0]); 
set(gca, 'ZColor' , [0 0 0]); 
set(gca, 'Color' , [1 1 1]); 
  
map1 = jet(256);  
map2 = map1(end:-1:1, :); 
colormap(map2) 
set(gca, 'CLim' , [t(1,1), t(end,1)]); 
cb = colorbar( 'YColor' , 'k' ); 
set(get(cb, 'ylabel' ), 'String' , 'Cycle-Time (s)' , 'FontWeight' , 'bold' , 'Color' , 'k' ); 
line([-1000 1000],[u(1,1) u(1,1)],[l(1,1) l(1,1)], 'Color' ,[1 0 1], 'LineWidth' ,2) 
line([b(1,1) b(1,1)],[-1000 1000],[l(1,1) l(1,1)], 'Color' ,[1 0 1], 'LineWidth' ,2) 
line([b(1,1) b(1,1)],[u(1,1) u(1,1)],[-1000 1000], 'Color' ,[1 0 1], 'LineWidth' ,2) 
XLim([min(b) max(b)]) 
YLim([min(u) max(u)]) 
ZLim([min(l) max(l)]) 
  

Figure F.61 Plot Search Surface Script 



  Appendix F – Matlab® Code 

    

211 

 

 
classdef  PPConstraints 
% Contains constraints on the path planning  
     
properties  
    MaxTorque                   % Maximum torque permissible (Nm)  
    MaxOmega                    % Maximum angular velocity provided by the motors ( rad)  
    MaxAlpha                    % Maximum angular acceleration provided by motors(r ad/s)  
    MaxJerk                     % Maximum angular jerk provided by the motors (rad/ s/s)  
    LinearErrorFactor           % A factor to indicate number of interpolated point s  
                                %  during a MoveL. The number corresponds to the mi nimum  
                                %  spacing of interpolated points in meters. Smalle r the  
                                %  number the more accurate it will be, but also mo re  
                                %  computationally expensive.  
    LastLinearTargetDistance    % Distance back from last target in linear move, wh ere an  
                                %  additional target is placed to ensure greater li nearity  
                                %  while minimising excessive targets.  
    ReactiveFactor              % The proportion of the relative maximums of torque  and  
                                %  omega, that a path segments time is increased by .  
    InitialAcceptanceThreshold  % The percentage that the torque or omega must be w ithin  
                                %  of the maximums to be considered optimal  
    RelativeAgeingFactor        % A factor used in the process of discounting the  
                                %  InitialAcceptanceThreshold as the number of iter ations  
                                %  increases.  
end 
  
end 
  

Figure F.62 PPConstraints Class 

 
classdef  PPResults 
% Contains results from path planning  
  
properties  
    PathA       % PathSegments for motor A  
    PathB       % PathSegments for motor B  
    Knots       % Knots(X,Y) against time  
end 
     
end 
  

Figure F.63 PPResults Class 
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% Produces the reachable workspace of the 2DOFPPM w ith only the basic physical dimensions  
% needed  
  
LengthBase = 0.3;               %Length of the base (m)  
LengthUpper = 0.36;             %Length of each upper arm (m)  
LengthLower = 0.88;             %Length of each lower arm (m)  
minUpperArmAngle = d2r(33);     %Minimum angle allowed between upper arm and vertic al  
maxUpperArmAngle = d2r(175);    %Minimum angle allowed between upper arm and vertic al  
min1_2ArmAngle = d2r(43);       %Minimum angle allowed between upper-lower arms  
max1_2ArmAngle = d2r(134);      %Maximum angle allowed between upper-lower arms  
minLowerArmAngle = d2r(48);     %Minimum angle allowed between lower-lower arms  
maxLowerArmAngle = d2r(71);     %Maximum angle allowed between lower-lower arms  
thetaA = minUpperArmAngle;      %Angle between +Y axis and right upper arm  
thetaB = maxUpperArmAngle;      %Angle between +Y axis and left upper arm  
stepSize = 5;                   %Step size of motors, in degrees, for evaluating wo rkspace  
figure; 
grid on; 
firstValidThetaB = true; 
while  thetaA < maxUpperArmAngle     
    % Perform direct kinematics to get TCP from motor a ngles  
    [ tcpX, tcpY, error, errorMsg ] ...  
        = Direct_2DOF_PPM( thetaA, thetaB, LengthBa se,LengthUpper,LengthLower, ...  
            min1_2ArmAngle,max1_2ArmAngle,minLowerA rmAngle,maxLowerArmAngle ); 
  
    if  (error > 0)  % TCP is at the edge of the reachable workspace         
        if  (thetaB < minUpperArmAngle) 
            % Plot point as reachable  
            line([lastValidTcpX-0.01 lastValidTcpX+ 0.01],[lastValidTcpY lastValidTcpY], ...  
                'Color' , 'b' , 'LineWidth' ,3); 
        end  
        firstValidThetaB = true;     
    else  
        % Plot point as reachable  
        if  (firstValidThetaB == true) 
            line([tcpX-0.01 tcpX+0.01],[tcpY tcpY], 'Color' , 'b' , 'LineWidth' ,3); 
            firstValidThetaB = false; 
        end      
        if  (thetaB < minUpperArmAngle) 
            line([tcpX-0.01 tcpX+0.01],[tcpY tcpY], 'Color' , 'b' , 'LineWidth' ,3); 
        end  
        lastValidTcpX = tcpX; 
        lastValidTcpY = tcpY; 
    end  
  
    if  (thetaB < minUpperArmAngle) 
        thetaA = thetaA + d2r(stepSize);    % Increment thetaA by the step size  
        thetaB = maxUpperArmAngle;          % Reset thetaB for another sweep  
    else  
        thetaB = thetaB - d2r(stepSize);    % Decrement thetaB by the step size  
    end  
end 
   

Figure F.64 Produce Reachable Workspace Script 
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function  ProduceSearchSurface(cp,UConstraints) 
% Runs Simulations evenly over the search space  
% VARIABLES:  
% cp - Instance of CyclePath class  
% Uconstraints - Instant of UserConstraints class  
  
% Store path and user constraint data  
StorePathsUserConstraintsSQL(cp,UConstraints); 
     
[motorID,newPPC] = SelectMotor(cp.PPC,UConstraints) ;    % Select Motor details from DB  
cp.PPC = newPPC; 
  
% Find limits on search area based on moves  
minBase = UConstraints.MinMotorSeparation; 
maxBase = 0.9*UConstraints.MaxWidth;  %allow up to 90% base + 2*5% ProxArms  
minUpper = 0; 
maxUpper = UConstraints.MaxWidth/2; 
minLower = minBase;        
maxLower = sqrt(UConstraints.MaxDepth^2 + (maxBase/ 2)^2); 
minWSHeight = -UConstraints.MaxDepth*0.3; 
maxWSHeight = UConstraints.MaxDepth*0.3; 
  
numIntervals = 20; 
params = zeros(3,0); 
bb = 1; 
uu = 1; 
ll = 1; 
hh = 1; 
  
for  b=minBase:(maxBase-minBase)/numIntervals:maxBase 
    uu = 1; 
    for  u=minUpper:(maxUpper-minUpper)/numIntervals:maxUpp er 
        ll = 1; 
        for  l=minLower:(maxLower-minLower)/numIntervals:maxLow er 
            hh = 1; 
            for  h=minWSHeight:(maxWSHeight-minWSHeight)/10:maxWSHe ight 
                mvar = Configuration; 
                mvar.LengthBase = b; 
                mvar.LengthUpper = u; 
                mvar.LengthLower = l; 
                mvar.WorkspaceHeight = h;                 
                params(end+1,1) = b; 
                params(end,2) = u; 
                params(end,3) = l; 
                [bb uu ll hh]; 
                hh=hh+1; 
                try  
                    mvar = SelectMVar2(cp.Moves,mot orID,UConstraints,mvar); 
                catch  
                    continue ; 
                end  
                try  
                    [Targets_XYZ,ppr] = CompilePath (cp.Moves,mvar,cp.PPC); 
                catch  exception 
                    continue ; 
                end  
                StoreSimulationsSQL(mvar,cp.PPC,ppr ,cp.ID,comment);                 
            end  
            ll=ll+1; 
        end  
        uu=uu+1; 
    end  
    bb=bb+1; 
end 
end 
 

 

Figure F.65 ProduceSearchSurface Function 
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% Create new instance of UserConstraints class and set variables  
uc = UserConstraints; 
uc.MaxMotorTorque = 300; 
uc.MaxMotorVelocity = 20; 
uc.MaxMotorAcceleration = 9999; 
uc.MaxMotorJerk = 999999; 
uc.MassGripper = 35; 
uc.MinArmAng_BU = d2r(33); 
uc.MinArmAng_UL = d2r(43); 
uc.MinArmAng_LL = d2r(48); 
uc.MaxArmAng_BU = d2r(175); 
uc.MaxArmAng_UL = d2r(134); 
uc.MaxArmAng_LL = d2r(71); 
uc.ProxArmDensity = 2700; 
uc.DistArmDensity = 2700; 
uc.TorsionArmDensity = 2700; 
uc.ProxArmIRadius = 0.01; 
uc.DistArmIRadius = 0.01; 
uc.ProxArmORadius = 0.02; 
uc.DistArmORadius = 0.02; 
uc.TorsionIRadius = 0.005; 
uc.TorsionORadius = 0.01; 
uc.MassUpperCrank = 0.2; 
uc.MassLowerCrank = 0.2; 
uc.UpperTorsionOffsetB_X = 0.05; 
uc.UpperTorsionOffsetB_Y = 0.1; 
uc.LowerTorsionOffsetTCP_X = -0.05; 
uc.LowerTorsionOffsetTCP_Y = 0.1; 
uc.GripperMountOffset_X = 0; 
uc.GripperMountOffset_Y = -0.02; 
uc.GripperLength = 0.01; 
uc.MinMotorSeparation = 0.01; 
uc.MaxWidth = 1.5; 
uc.MaxDepth = 2; 
  
% Specify knots for Path  
k1 = Knot(-0.3,-1); 
k2 = Knot(-0.3,-0.7); 
k3 = Knot(0,-0.65); 
k4 = Knot(0.3,-0.7); 
k5 = Knot(0.3,-1); 
k6 = Knot(0.3,-0.75); 
k7 = Knot(0,-0.7); 
k8 = Knot(-0.3,-0.75); 
k9 = Knot(-0.3,-1); 
  
% Create Move commands from Knots  
m1 = MoveCMD(Target(k1), 'MoveJ' ,10,1); 
m2 = MoveCMD(Target(k2), 'MoveL' ,10,30); 
m3 = MoveCMD(Target(k3), 'MoveJ' ,10,50); 
m4 = MoveCMD(Target(k4), 'MoveJ' ,10,30); 
m5 = MoveCMD(Target(k5), 'MoveL' ,10,1,0.2); 
m6 = MoveCMD(Target(k6), 'MoveL' ,10,20); 
m7 = MoveCMD(Target(k7), 'MoveJ' ,10,30); 
m8 = MoveCMD(Target(k8), 'MoveJ' ,10,20); 
m9 = MoveCMD(Target(k9), 'MoveL' ,10,1); 
  
% Create new CyclePath from Moves  
cp = CyclePath; 
cp.ID = GetNextPathID(); 
cp.Moves = [m1 m2 m3 m4 m5 m6 m7 m8 m9]; 
cp.PPC = GetPPConstraints(); 
  
% Produce the search surface  
ProduceSearchSurface(cp,uc); 
  

Figure F.66 ProduceSearchSurface Start Script 
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function  d = r2d(r) 
%#eml 
    d = r * 180/pi;     % Converts radians to degrees  
end 
   

Figure F.67 r2d (Radians to Degrees) Function 

 
function  config = RunSimulation(SimID) 
% Runs a SimMechanics simulation of a previously ge nerated configuration result.  
% VARIABLES:  
% SimID - Simulation ID for database  
  
    % Open Database connection  
    ch = mysql( 'open' , 'localhost:3306' , 'root' , 'mysql' ); 
    db = mysql( 'use matlab_2dofppm' ); 
  
    query = [ 'SELECT ' ...  
            's.ProxArmLength, ' ...  
            's.DistArmLength, ' ...  
            's.MotorSeparation, ' ...  
            's.WorkspaceHeight, ' ...  
            's.MotorID, ' ...  
            's.PathID, ' ...  
            'uc.MaxMotorTorque, ' ...  
            'uc.MaxMotorVelocity, ' ...  
            'uc.MassGripper, ' ...  
            'uc.MinArmAng_BU, ' ...  
            'uc.MinArmAng_UL, ' ...  
            'uc.MinArmAng_LL, ' ...  
            'uc.MaxArmAng_BU, ' ...  
            'uc.MaxArmAng_UL, ' ...  
            'uc.MaxArmAng_LL, ' ...  
            'uc.ProxArmDensity, ' ...  
            'uc.DistArmDensity, ' ...  
            'uc.TorsionArmDensity, ' ...  
            'uc.ProxArmIRadius, ' ...  
            'uc.DistArmIRadius, ' ...  
            'uc.ProxArmORadius, ' ...  
            'uc.DistArmORadius, ' ...  
            'uc.TorsionIRadius, ' ...  
            'uc.TorsionORadius, ' ...  
            'uc.MassUpperCrank, ' ...  
            'uc.MassLowerCrank, ' ...  
            'uc.UpperTorsionOffsetB_X, ' ...  
            'uc.UpperTorsionOffsetB_Y, ' ...  
            'uc.LowerTorsionOffsetTCP_X, ' ...  
            'uc.LowerTorsionOffsetTCP_Y, ' ...  
            'uc.GripperMountOffset_X, ' ...  
            'uc.GripperMountOffset_Y, ' ...  
            'uc.GripperLength, ' ...  
            'uc.MinMotorSeparation, ' ...  
            'uc.MaxWidth, ' ...  
            'uc.MaxDepth ' ...  
            'FROM Simulations AS s ' ...  
            'JOIN paths AS p ON p.pathid = s.pathid ' ...  
            'JOIN userconstraints AS uc ON uc.pathid = p.pathid  ' ...  
            'WHERE ' ...  
            'SimID = "' ,num2str(SimID), '" ' ...  
            ]; 
     
    uc = UserConstraints; 
…  

Figure F.68 RunSimulation Function (Part 1/3) 
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… 
  
   [ 
        ProxArmLength ...  
        DistArmLength ...  
        MotorSeparation ...  
        WorkspaceHeight ...  
        MotorID ...  
        PathID ...  
        uc.MaxMotorTorque  ...  
        uc.MaxMotorVelocity  ...  
        uc.MassGripper ...  
        uc.MinArmAng_BU ...  
        uc.MinArmAng_UL ...  
        uc.MinArmAng_LL ...  
        uc.MaxArmAng_BU ...  
        uc.MaxArmAng_UL ...  
        uc.MaxArmAng_LL ...  
        uc.ProxArmDensity ...  
        uc.DistArmDensity ...  
        uc.TorsionArmDensity ...  
        uc.ProxArmIRadius ...  
        uc.DistArmIRadius ...  
        uc.ProxArmORadius ...  
        uc.DistArmORadius ...  
        uc.TorsionIRadius ...  
        uc.TorsionORadius ...  
        uc.MassUpperCrank ...  
        uc.MassLowerCrank ...  
        uc.UpperTorsionOffsetB_X ...  
        uc.UpperTorsionOffsetB_Y ...  
        uc.LowerTorsionOffsetTCP_X ...  
        uc.LowerTorsionOffsetTCP_Y ...  
        uc.GripperMountOffset_X ...  
        uc.GripperMountOffset_Y ...  
        uc.GripperLength ...  
        uc.MinMotorSeparation ...  
        uc.MaxWidth ...  
        uc.MaxDepth ...  
    ] = mysql(query); 
     
     
    % Get Moves data  
  
    query = [ 'SELECT ' ...  
            'm.MSequence, ' ...  
            'm.Knot_X, ' ...  
            'm.Knot_Y, ' ...  
            'm.MType, ' ...  
            'm.MZone, ' ...  
            'm.Speed, ' ...  
            'm.Pause ' ...  
            'FROM Moves AS m ' ...  
            'WHERE ' ...  
            'PathID = "' ,num2str(PathID), '" ' ...  
            'ORDER BY MSequence ASC' ...  
            ]; 
  
    [ 
        MSequence ...  
        Knot_X ...  
        Knot_Y ...  
        MType ...  
        MZone ...  
        Speed ...  
        Pause  ...  
    ] = mysql(query); 
…  

Figure F.69 RunSimulation Function (Part 2/3) 
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… 
 
    Moves = repmat(MoveCMD,1,0); 
     
    for  i=1:size(MSequence,1) 
        k = Knot(Knot_X(i),Knot_Y(i)); 
        m = MoveCMD(Target(k),MType(i),Speed(i),MZo ne(i),Pause(i)); 
         
        Moves(end+1) = m; 
    end  
     
    % Create matlab configuration from database results  
    config = CalculateConfig(MotorSeparation,ProxAr mLength,DistArmLength, ...  
                                                    WorkspaceHeight,Moves,MotorID,uc); 
    ppc = PPConstraints; 
     
    % get path planning constraints  
    query = [ 'SELECT ' ...  
            'p.LinearErrorFactor, ' ...  
            'p.LastLinearTargetDistance, ' ...  
            'p.ReactiveFactor, ' ...  
            'p.InitialAcceptanceThreshold, ' ...  
            'p.RelativeAgeingFactor ' ...  
            'FROM Paths AS p ' ...  
            'WHERE ' ...  
            'PathID = "' ,num2str(PathID), '" ' ...  
            ]; 
    [ 
        ppc.LinearErrorFactor ...  
        ppc.LastLinearTargetDistance ...  
        ppc.ReactiveFactor ...  
        ppc.InitialAcceptanceThreshold ...  
        ppc.RelativeAgeingFactor ...  
    ] = mysql(query); 
  
    query = [ 'SELECT ' ...  
            'm.MaxTorque, ' ...  
            'm.MaxVelocity, ' ...  
            'm.MaxAcceleration, ' ...  
            'm.MaxJerk ' ...  
            'FROM Motors AS m ' ...  
            'JOIN Simulations AS s ON s.MotorID = m.MotorID ' ...  
            'WHERE ' ...  
            's.SimID = "' ,num2str(SimID), '" ' ...  
            ]; 
    [ 
        ppc.MaxTorque ...  
        ppc.MaxOmega ...  
        ppc.MaxAlpha ...  
        ppc.MaxJerk ...  
    ] = mysql(query); 
     
    mysql( 'close' ); 
  
    % Compile path  
   [Targets_XYZ,ppr] = CompilePath(Moves,config,ppc ); 
     
   % Open and run SimMechanics simulation using parame ters obtained from database  
    open_system( 'TWODOF_PPM_Model');     
    options = simset( 'SrcWorkspace'  , 'current'  );     
    sss = sim( 'TWODOF_PPM_Model',inf,options); 
    close_system( 'TWODOF_PPM_Model'); 
     
    Plot_Sim_Outputs( 'deg' ,SimID,config);   % Plot results  
end 
  

Figure F.70 RunSimulation Function (Part 3/3) 
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function  [MotorID, newPPC] = SelectMotor(ppc,uc) 
% Selects a random motor configuration from databas e for use in optimisation algorithms.  
% VARIABLES:  
% ppc - Path Planning Constraints  
% uc - User Constraints  
  
    % Open Database connection  
    ch = mysql( 'open' , 'localhost:3306' , 'root' , 'mysql' ); 
    db = mysql( 'use matlab_2dofppm' ); 
  
     query = [ 'SELECT MotorID, Name, Description, SpecsFolder, Ma xTorque, MaxVelocity,' ...  
                'MaxAcceleration, MaxJerk, MomentInertia, EncoderRe solution ' ...  
                'FROM Motors ' ...  
                'WHERE ' ...  
                'MaxTorque <= "' ,num2str(uc.MaxMotorTorque), '" ' ...  
                'AND ' ...  
                'MaxVelocity <= "' ,num2str(uc.MaxMotorVelocity), '" ' ...  
                'AND ' ...  
                'MaxAcceleration <= "' ,num2str(uc.MaxMotorAcceleration), '" ' ...  
                'AND ' ...  
                'MaxJerk <= "' ,num2str(uc.MaxMotorJerk), '" ' ...  
                'ORDER BY RAND() LIMIT 1'  
        ]; 
     
    [MotorID Name Description SpecsFolder MaxTorque  MaxVelocity MaxAcceleration ...  
                                MaxJerk MomentInert ia EncoderResolution] = mysql(query); 
                             
    newPPC = ppc; 
    newPPC.MaxTorque = MaxTorque; 
    newPPC.MaxOmega = MaxVelocity; 
    newPPC.MaxAlpha = MaxAcceleration; 
    newPPC.MaxJerk = MaxJerk; 
     
    mysql( 'close' ); 
end 
  

Figure F.71 SelectMotor Function 
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function  neighbouringConfig = SelectNeighbouringConfig(cent ralConfig,Moves,MotorID,uc,ss) 
% Finds Configurations neighbouring a given config  
% VARIABLES:  
% centralConfig - Config around which neighbours wi ll be found  
% Moves - Instance of the MoveCMD class  
% MotorID - ID linking to a motor  
% uc - Instance of UserConstraints class  
% ss - StepSize, how far away to look for neighbour s 
% RETURNS: 
% neighbouringConfig - an array of neighbouring con figurations  
  
lb = centralConfig.LengthBase; 
lu = centralConfig.LengthUpper; 
ll = centralConfig.LengthLower; 
wh = centralConfig.WorkspaceHeight; 
  
neighbourLengths(1,1:4) = [lb,lu,ll,wh+ss]; 
neighbourLengths(2,1:4) = [lb,lu,ll+ss,wh]; 
neighbourLengths(3,1:4) = [lb,lu,ll+ss,wh+ss]; 
neighbourLengths(4,1:4) = [lb,lu+ss,ll,wh]; 
neighbourLengths(5,1:4) = [lb,lu+ss,ll,wh+ss]; 
neighbourLengths(6,1:4) = [lb,lu+ss,ll+ss,wh]; 
neighbourLengths(7,1:4) = [lb,lu+ss,ll+ss,wh+ss]; 
neighbourLengths(8,1:4) = [lb+ss,lu,ll,wh]; 
neighbourLengths(9,1:4) = [lb+ss,lu,ll,wh+ss]; 
neighbourLengths(10,1:4) = [lb+ss,lu,ll+ss,wh]; 
neighbourLengths(11,1:4) = [lb+ss,lu,ll+ss,wh+ss]; 
neighbourLengths(12,1:4) = [lb+ss,lu+ss,ll,wh]; 
neighbourLengths(13,1:4) = [lb+ss,lu+ss,ll,wh+ss]; 
neighbourLengths(14,1:4) = [lb+ss,lu+ss,ll+ss,wh]; 
neighbourLengths(15,1:4) = [lb+ss,lu+ss,ll+ss,wh+ss ]; 
  
neighbourLengths(16,1:4) = [lb,lu,ll,wh-ss]; 
neighbourLengths(17,1:4) = [lb,lu,ll-ss,wh]; 
neighbourLengths(18,1:4) = [lb,lu,ll-ss,wh-ss]; 
neighbourLengths(19,1:4) = [lb,lu-ss,ll,wh]; 
neighbourLengths(20,1:4) = [lb,lu-ss,ll,wh-ss]; 
neighbourLengths(21,1:4) = [lb,lu-ss,ll-ss,wh]; 
neighbourLengths(22,1:4) = [lb,lu-ss,ll-ss,wh-ss]; 
neighbourLengths(23,1:4) = [lb-ss,lu,ll,wh]; 
neighbourLengths(24,1:4) = [lb-ss,lu,ll,wh-ss]; 
neighbourLengths(25,1:4) = [lb-ss,lu,ll-ss,wh]; 
neighbourLengths(26,1:4) = [lb-ss,lu,ll-ss,wh-ss]; 
neighbourLengths(27,1:4) = [lb-ss,lu-ss,ll,wh]; 
neighbourLengths(28,1:4) = [lb-ss,lu-ss,ll,wh-ss]; 
neighbourLengths(29,1:4) = [lb-ss,lu-ss,ll-ss,wh]; 
neighbourLengths(30,1:4) = [lb-ss,lu-ss,ll-ss,wh-ss ]; 
  
neighbouringConfig = repmat(Configuration,1,1); 
  
firstValidNeighbour = true; 
for  n=1:30 
    [n1, reachable] = CalculateConfig(neighbourLeng ths(n,1),neighbourLengths(n,2), ...  
                        neighbourLengths(n,3),neigh bourLengths(n,4),Moves,MotorID,uc); 
    if  reachable 
        if  (firstValidNeighbour) 
            neighbouringConfig(end) = n1; 
            firstValidNeighbour = false; 
        else  
            neighbouringConfig(end+1) = n1; 
        end  
    end   
end 
end 
 

 

Figure F.72 SelectNeighbouringConfig Function 
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function  config = SelectRandomConfig(Moves,MotorID,uc) 
% Selects a random configuration based on the user constraints  
% VARIABLES:  
% Moves - contains Move data about path  
% MotorID - motor identifier linking to motor data stored in database  
% uc - UserConstraints class  
  
config = Configuration;     % Create new configuration  
  
reachable = false;      % Set flag  
while  reachable == false 
%% Variable Parameters  
  
    minBase = uc.MinMotorSeparation; 
    maxBase = 0.9*uc.MaxWidth;  %allow up to 90% base + 2*5% ProxArms  
  
    config.LengthBase = minBase + (maxBase-minBase) *rand; 
     
    minUpper = 0; 
    maxUpper = (uc.MaxWidth - config.LengthBase)/2;  
     
    config.LengthUpper = minUpper + (maxUpper-minUp per)*rand; 
     
    minLower = config.LengthBase;        
    maxLower = sqrt((uc.MaxDepth - config.LengthUpp er)^2 + (config.LengthBase/2)^2); 
     
    config.LengthLower = minLower + (maxLower-minLo wer)*rand; 
     
    minWSHeight = -uc.MaxDepth*0.1; 
    maxWSHeight = uc.MaxDepth*0.1; 
     
    config.WorkspaceHeight = minWSHeight + (maxWSHe ight-minWSHeight)*rand; 
…  

Figure F.73 SelectRandomConfig Function (Part 1/4) 
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… 
 
    %% Fixed Parameters  
  
    config.MotorID = MotorID; 
  
    config.MassUpper = ThickWalledTubeMass(uc.ProxA rmIRadius,uc.ProxArmORadius, ...  
                                                con fig.LengthUpper,uc.ProxArmDensity); 
    config.MassLower = ThickWalledTubeMass(uc.DistA rmIRadius,uc.DistArmORadius, ...  
                                                con fig.LengthLower,uc.DistArmDensity); 
    config.MassGripper = uc.MassGripper; 
    config.MassUpperTorsion = ThickWalledTubeMass(u c.TorsionIRadius,uc.TorsionORadius, ...  
                                                con fig.LengthUpper,uc.TorsionArmDensity); 
    config.MassLowerTorsion = ThickWalledTubeMass(u c.TorsionIRadius,uc.TorsionORadius, ...  
                                                con fig.LengthLower,uc.TorsionArmDensity); 
    config.MassUpperCrank = uc.MassUpperCrank; 
    config.MassLowerCrank = uc.MassLowerCrank; 
  
    config.GripperMountOffset_X = uc.GripperMountOf fset_X; 
    config.GripperMountOffset_Y = uc.GripperMountOf fset_Y;  
    config.GripperLength = uc.GripperLength; 
  
    config.UpperTorsionOffsetB_X = uc.UpperTorsionO ffsetB_X; 
    config.UpperTorsionOffsetB_Y = uc.UpperTorsionO ffsetB_Y; 
    config.LowerTorsionOffsetTCP_X = uc.LowerTorsio nOffsetTCP_X; 
    config.LowerTorsionOffsetTCP_Y = uc.LowerTorsio nOffsetTCP_Y; 
  
    config.InRadiusArms = uc.ProxArmIRadius; 
    config.OutRadiusArms = uc.DistArmIRadius; 
    config.InRadiusTorsion = uc.TorsionIRadius; 
    config.OutRadiusTorsion = uc.TorsionORadius; 
  
    config.InertiaUpper = ThickWalledTubeInertia(co nfig.InRadiusArms, ...  
                                config.OutRadiusArm s,config.LengthUpper,config.MassUpper); 
    config.InertiaLower = ThickWalledTubeInertia(co nfig.InRadiusArms, ...  
                                config.OutRadiusArm s,config.LengthLower,config.MassLower); 
    config.InertiaGripper = ThickWalledTubeInertia( config.InRadiusArms, ...  
                                config.OutRadiusArm s,config.GripperLength, ...  
                                config.MassGripper) ; 
    config.InertiaUpperTorsion = ThickWalledTubeIne rtia(config.InRadiusTorsion, ...  
                                    config.OutRadiu sTorsion,config.LengthUpper, ...  
                                    config.MassUppe rTorsion); 
    config.InertiaLowerTorsion = ThickWalledTubeIne rtia(config.InRadiusTorsion, ...  
                                    config.OutRadiu sTorsion,config.LengthLower, ...  
                                    config.MassLowe rTorsion); 
    config.InertiaUpperCrank = ThickWalledTubeInert ia(config.InRadiusTorsion, ...  
                                    config.OutRadiu sTorsion,sqrt( ...  
                                    config.UpperTor sionOffsetB_X^2+ ...  
                                    config.UpperTor sionOffsetB_X^2), ...  
                                    config.MassUppe rCrank); 
    config.InertiaLowerCrank = ThickWalledTubeInert ia(config.InRadiusTorsion, ...  
                                    config.OutRadiu sTorsion,sqrt( ...  
                                    config.LowerTor sionOffsetTCP_X^2+ ...  
                                    config.LowerTor sionOffsetTCP_X^2), ...  
                                    config.MassLowe rCrank); 
  
    config.MinUpperArmAngle = uc.MinArmAng_BU; 
    config.MaxUpperArmAngle = uc.MaxArmAng_BU; 
    config.Min1_2ArmAngle = uc.MinArmAng_UL; 
    config.Max1_2ArmAngle = uc.MaxArmAng_UL; 
    config.MinLowerArmAngle = uc.MinArmAng_LL; 
    config.MaxLowerArmAngle = uc.MaxArmAng_LL; 
…  

Figure F.74 SelectRandomConfig Function (Part 2/4) 
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… 
 
    %% Internally Computed Parameters  
  
    config.ThetaAstart = d2r(180); 
    config.ThetaBstart = d2r(180); 
  
    [tcpX, tcpY, error, errorMsg ] = Direct_2DOF_PP M(config.ThetaAstart, ...  
                config.ThetaBstart,config.LengthBas e,config.LengthUpper, ...  
                config.LengthLower,config.Min1_2Arm Angle,config.Max1_2ArmAngle, ...  
                config.MinLowerArmAngle,config.MaxL owerArmAngle); 
     
    if  error > 1 
        reachable = false; 
        errorMsg 
        continue ; 
    end  
     
    config.CS1_UpperA = [0, 0, 0]; 
    config.CS1_LowerA = [0, 0, 0]; 
    config.CS1_UpperB = [0, 0, 0]; 
    config.CS1_LowerB = [0, 0, 0]; 
    config.CS1_Gripper = [0, 0, 0]; 
    config.CS1_UpperTorsion = [0, 0, 0]; 
    config.CS1_UpperCrank = [0, 0, 0]; 
    config.CS1_LowerTorsion = [0, 0, 0]; 
    config.CS1_LowerCrank = [0, 0, 0]; 
  
    config.CS2_UpperA = [ajX-aBaseX,ajY-aBaseY,0]; 
    config.CS2_LowerA = [tcpX-ajX,tcpY-ajY,0]; 
    config.CS2_UpperB = [bjX-bBaseX,bjY-bBaseY,0]; 
    config.CS2_LowerB = [tcpX-bjX,tcpY-bjY,0]; 
    config.CS2_Gripper = [0,-config.GripperLength,0 ]; 
    config.CS2_UpperTorsion = [bjX-bBaseX,bjY-bBase Y,0]; 
    config.CS2_UpperCrank =[config.UpperTorsionOffs etB_X,config.UpperTorsionOffsetB_Y, 0]; 
    config.CS2_LowerTorsion = [tcpX-bjX,tcpY-bjY,0] ; 
    config.CS2_LowerCrank = [config.LowerTorsionOff setTCP_X, ...  
                                    config.LowerTor sionOffsetTCP_Y,0]; 
  
    config.CS3_LowerB = [0 0 0]; 
    config.CS3_UpperB = [0 0 0]; 
    config.CS3_Gripper = [-0.05,0,0]; 
    config.CS3_UpperCrank = [config.LowerTorsionOff setTCP_X, ...  
                                    config.LowerTor sionOffsetTCP_Y,0]; 
    config.CS3_LowerCrank = [config.GripperMountOff set_X,config.GripperMountOffset_Y,0]; 
     
    config.CS4_Gripper = [0.05,0,0]; 
…  

Figure F.75 SelectRandomConfig Function (Part 3/4) 
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… 
 
    config.CG_UpperA = [(ajX-aBaseX)/2,(ajY-aBaseY) /2,0]; 
    config.CG_LowerA = [(tcpX-ajX)/2,(tcpY-ajY)/2,0 ]; 
    config.CG_UpperB = [(bjX-bBaseX)/2,(bjY-bBaseY) /2,0]; 
    config.CG_LowerB = [(tcpX-bjX)/2,(tcpY-bjY)/2,0 ]; 
    config.CG_Gripper = [0,-config.GripperLength/2, 0]; 
    config.CG_UpperTorsion = [(bjX-bBaseX)/2,(bjY-b BaseY)/2,0]; 
    config.CG_UpperCrank = [(config.UpperTorsionOff setB_X+ ...  
                                config.LowerTorsion OffsetTCP_X)/2, ...  
                                config.UpperTorsion OffsetB_Y/2,0]; 
    config.CG_LowerTorsion = [(tcpX-bjX)/2,(tcpY-bj Y)/2,0]; 
    config.CG_LowerCrank = [config.LowerTorsionOffs etTCP_X/2,0,0]; 
  
    config.OrientCG_UpperA = [0,0,0]; 
    config.OrientCG_LowerA = [0,0,0]; 
    config.OrientCG_UpperB = [0,0,0]; 
    config.OrientCG_LowerB = [0,0,0]; 
    config.OrientCG_Gripper = [0,0,0]; 
    config.OrientCG_UpperTorsion = [0,0,0]; 
    config.OrientCG_UpperCrank = [0,0,0]; 
    config.OrientCG_LowerTorsion = [0,0,0]; 
    config.OrientCG_LowerCrank = [0,0,0]; 
  
    config.Gpoint_1 = [aBaseX, aBaseY, 0]; 
    config.Gpoint_2 = [bBaseX, bBaseY, 0]; 
    config.Gpoint_3 = [bBaseX+config.UpperTorsionOf fsetB_X, ...  
                            bBaseY+config.UpperTors ionOffsetB_Y,0]; 
  
    [ thetaA, thetaB, error, errorMsg ] = Inverse_2 DOF_PPM(tcpX,tcpY, ...  
                                config.LengthBase,c onfig.LengthUpper,config.LengthLower); 
    if  error ~=0 
        reachable = false; 
        errorMsg 
        continue ; 
    end  
    config.ThetaA_IC = mod(thetaA + config.ThetaAst art,pi); 
    config.ThetaB_IC = mod(thetaB + config.ThetaBst art,pi); 
  
    %% Check reachability  
    reachable = CheckReachability(Moves,config); 
end 
  
end 
  

Figure F.76 SelectRandomConfig Function (Part 4/4) 



Simulation and Optimisation of a 2DOFPPM   

    

224 

 

 
function  StorePathsUserConstraintsSQL(cp,uc) 
% Stores the path Move data along with UserConstrai nts  
% VARIABLES:  
% cp - Instance of CyclePath class  
% uc - Instance of UserConstraints  
  
    % Open database connection  
    ch = mysql( 'open' , 'localhost:3306' , 'root' , 'mysql' ); 
    db = mysql( 'use matlab_2dofppm' ); 
     
    % Store Paths  
    query = [ 'INSERT INTO paths (' ...  
        'PathID,' ...  
        'LinearErrorFactor,' ...  
        'LastLinearTargetDistance,' ...  
        'ReactiveFactor,' ...  
        'InitialAcceptanceThreshold,' ...  
        'RelativeAgeingFactor)' ...  
        'VALUES (' ...  
        '"' ,num2str(cp.ID), '",' ...  
        '"' ,num2str(cp.PPC.LinearErrorFactor), '",' ...  
        '"' ,num2str(cp.PPC.LastLinearTargetDistance), '",' ...  
        '"' ,num2str(cp.PPC.ReactiveFactor), '",' ...  
        '"' ,num2str(cp.PPC.InitialAcceptanceThreshold), '",' ...  
        '"' ,num2str(cp.PPC.RelativeAgeingFactor), '"' ...  
        ')' ...  
        ]; 
    t = mysql(query); 
     
    % Store Moves     
    numMoves = size(cp.Moves,2);     
    for  m=1:numMoves         
        query = [ 'INSERT INTO moves (' ...  
            'PathID,' ...  
            'MSequence,' ...  
            'Knot_X,' ...  
            'Knot_Y,' ...  
            'MType,' ...  
            'MZone,' ...  
            'Speed,' ...  
            'Pause)' ...  
            'VALUES (' ...  
            '"' ,num2str(cp.ID), '",' ...  
            '"' ,num2str(m), '",' ...  
            '"' ,num2str(cp.Moves(m).Target.Knot.X), '",' ...  
            '"' ,num2str(cp.Moves(m).Target.Knot.Y), '",' ...  
            '"' ,cp.Moves(m).MoveType, '",' ...  
            '"' ,num2str(cp.Moves(m).Zone), '",' ...  
            '"' ,num2str(cp.Moves(m).Velocity), '",' ...  
            '"' ,num2str(cp.Moves(m).Pause), '"' ...  
            ')' ...  
            ];         
        t = mysql(query);     
    end  
     
     
    % Store UserConstraints     
    query = [ 'INSERT INTO userconstraints (' ...  
        'PathID,' ...  
        'MaxMotorTorque,' ...  
        'MaxMotorVelocity,' ...  
        'MaxMotorAcceleration,' ...  
        'MaxMotorJerk,' ...  
        'MassGripper,' ...  
        'MinArmAng_BU,' ...  
…  

Figure F.77 StorePathsUserConstraintsSQL Function (Part 1/2) 
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… 
        'MinArmAng_UL,' ...  
        'MinArmAng_LL,' ... 
        'MaxArmAng_BU,' ...  
        'MaxArmAng_UL,' ...  
        'MaxArmAng_LL,' ...  
        'ProxArmDensity,' ...  
        'DistArmDensity,' ...  
        'TorsionArmDensity,' ...  
        'ProxArmIRadius,' ...  
        'DistArmIRadius,' ...  
        'ProxArmORadius,' ...  
        'DistArmORadius,' ...  
        'TorsionIRadius,' ...  
        'TorsionORadius,' ...  
        'MassUpperCrank,' ...  
        'MassLowerCrank,' ...  
        'UpperTorsionOffsetB_X,' ...  
        'UpperTorsionOffsetB_Y,' ...  
        'LowerTorsionOffsetTCP_X,' ...  
        'LowerTorsionOffsetTCP_Y,' ...  
        'GripperMountOffset_X,' ...  
        'GripperMountOffset_Y,' ...  
        'GripperLength,' ...  
        'MinMotorSeparation,' ...  
        'MaxWidth,' ...  
        'MaxDepth)' ...  
        'VALUES (' ...  
        '"' ,num2str(cp.ID), '",' ...  
        '"' ,num2str(uc.MaxMotorTorque), '",' ...  
        '"' ,num2str(uc.MaxMotorVelocity), '",' ...  
        '"' ,num2str(uc.MaxMotorAcceleration), '",' ...  
        '"' ,num2str(uc.MaxMotorJerk), '",' ...  
        '"' ,num2str(uc.MassGripper), '",' ...  
        '"' ,num2str(uc.MinArmAng_BU), '",' ...  
        '"' ,num2str(uc.MinArmAng_UL), '",' ...  
        '"' ,num2str(uc.MinArmAng_LL), '",' ...  
        '"' ,num2str(uc.MaxArmAng_BU), '",' ...  
        '"' ,num2str(uc.MaxArmAng_UL), '",' ...  
        '"' ,num2str(uc.MaxArmAng_LL), '",' ...  
        '"' ,num2str(uc.ProxArmDensity), '",' ...  
        '"' ,num2str(uc.DistArmDensity), '",' ...  
        '"' ,num2str(uc.TorsionArmDensity), '",' ...  
        '"' ,num2str(uc.ProxArmIRadius), '",' ...  
        '"' ,num2str(uc.DistArmIRadius), '",' ...  
        '"' ,num2str(uc.ProxArmORadius), '",' ...  
        '"' ,num2str(uc.DistArmORadius), '",' ...  
        '"' ,num2str(uc.TorsionIRadius), '",' ...  
        '"' ,num2str(uc.TorsionORadius), '",' ...  
        '"' ,num2str(uc.MassUpperCrank), '",' ...  
        '"' ,num2str(uc.MassLowerCrank), '",' ...  
        '"' ,num2str(uc.UpperTorsionOffsetB_X), '",' ...  
        '"' ,num2str(uc.UpperTorsionOffsetB_Y), '",' ...  
        '"' ,num2str(uc.LowerTorsionOffsetTCP_X), '",' ...  
        '"' ,num2str(uc.LowerTorsionOffsetTCP_Y), '",' ...  
        '"' ,num2str(uc.GripperMountOffset_X), '",' ...  
        '"' ,num2str(uc.GripperMountOffset_Y), '",' ...  
        '"' ,num2str(uc.GripperLength), '",' ...  
        '"' ,num2str(uc.MinMotorSeparation), '",' ...  
        '"' ,num2str(uc.MaxWidth), '",' ...  
        '"' ,num2str(uc.MaxDepth), '"' ...  
        ')' ...  
        ]; 
    t = mysql(query); 
     
    mysql( 'close' ); 
end 
  

Figure F.78 StorePathsUserConstraintsSQL Function (Part 2/2) 



Simulation and Optimisation of a 2DOFPPM   

    

226 

 

 
function  StoreSimulationsSQL(config,ppc,ppr,pathID,comment, comment2,iteration) 
% Stores results of simulation run  
% VARIABLES:  
% config - Instance of Configuration class  
% ppc - Instance of PathPlanningConstraints class  
% ppr - Instance of PathPlanningResults class  
% pathID - unique path identifier  
% comment - ability to store text associated with s imulation  
% comment2 - another ability to store text associat ed with simulation  
% iteration - ability to store what optimisation it eration simulation occured on  
  
    % Open database connection  
    ch = mysql( 'open' , 'localhost:3306' , 'root' , 'mysql' ); 
    db = mysql( 'use matlab_2dofppm' ); 
     
    % Retrieve next available SimID from database  
    simID = mysql( 'SELECT IFNULL(MAX(SimID)+1,1) FROM simulations' ); 
  
    % Store simulation data  
    query = [ 'INSERT INTO simulations (' ...  
        'SimID,' ...  
        'ProxArmLength,' ...  
        'DistArmLength,' ...  
        'MotorSeparation,' ...  
        'WorkspaceHeight,' ...  
        'MotorID,' ...  
        'CycleTime,' ...  
        'ExecutionDT,' ...  
        'PathID,' ...  
        'Comment,' ...  
        'Comment2,' ...  
        'Iteration)' ...  
        'VALUES (' ...  
        '"' ,num2str(simID), '",' ...  
        '"' ,num2str(config.LengthUpper), '",' ...  
        '"' ,num2str(config.LengthLower), '",' ...  
        '"' ,num2str(config.LengthBase), '",' ...  
        '"' ,num2str(config.WorkspaceHeight), '",' ...  
        '"' ,num2str(config.MotorID), '",' ...  
        '"' ,num2str(ppr.PathA(size(ppr.PathA,1)).EndTime), '",' ...  
        'NOW(),' ...  
        '"' ,num2str(pathID), '",' ...  
        '"' ,comment, '",' ...  
        '"' ,comment2, '",' ...  
        '"' ,num2str(iteration), '"' ...  
        ')' ...  
        ]; 
     
    t = mysql(query); 
  
    mysql( 'close' );     % Close database connection  
  
end 
 

 

Figure F.79 StoreSimulationsSQL Function 
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classdef  Target 
% Defines a target (i.e. Knot position at a given P athTime).  
  
properties  
    Knot        % Position and Orientation of Target  
    PathTime    % Time along path at which knot is reached  
    VelocityLimit   % Maximum TCP velocity permitted during travel to k not  
end 
  
methods  
    % Create instance of Target class with variables  
    function  t = Target(Knot,PathTime,VelocityLimit) 
        if  nargin == 1 
            t.Knot = Knot; 
            t.PathTime = 0; % Set to zero if initialised only with Knot data.  
                            % PathTime will be updated later.  
        elseif  nargin == 2 
            t.Knot = Knot; 
            t.PathTime = PathTime; 
        elseif  nargin ==3 
            t.Knot = Knot; 
            t.PathTime = PathTime; 
            t.VelocityLimit = VelocityLimit; 
        end  
    end  
end 
end 
  

Figure F.80 Target Class 

 

 
classdef  TerminationCondition 
% Contains conditions for termination of the optimi sation process  
  
properties  
    CycleTime   % Path cycle time. Optimised value must be less tha n this to be   
                %  considered optimised.  
    Iterations  % Number of optimisation iterations.  
end 
     
end 
  

Figure F.81 TerminationCondition Class 

 

 
function  inertia = ThickWalledTubeInertia(r1,r2,h,m) 
% Calculates the inertia of a thick-walled cylindri cal tube with open ends  
% VARIABLES:  
% r1 - Inner Radius (m)  
% r2 - Outer Radius (m)  
% h - Length (m)  
% m - Mass (kg)  
  
inertia = [((1/12)*m*(3*(r1^2+r2^2)+h^2)), 0, 0; 
            0,((1/12)*m*(3*(r1^2+r2^2)+h^2)),0; 
            0,0,((1/2)*m*(r1^2+r2^2));]; 
  
end 
  

Figure F.82 ThickWalledTubeInertia Function 
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function  mass = ThickWalledTubeMass(r1,r2,length,density) 
% Calculates the mass of a thick-walled cylindrical  tube with open ends  
% VARIABLES:  
% r1 - Inner Radius (m)  
% r2 - Outer Radius (m)  
% length - Length of cylinder (m)  
% density - density of tube material (kg/m^3)  
  
    volume = (pi*r2^2-pi*r1^2)*length; 
  
    mass = density*volume; 
  
end 
  

Figure F.83 ThickWalledTubeMass Function 

 

 
classdef  UserConstraints 
% Contains constraints on manipulator specified by the user  
  
properties  
    MaxMotorTorque          % Maximum torque available from motor (Nm)  
    MaxMotorVelocity        % Maximum angular velocity available from motor (ra d/s)  
    MaxMotorAcceleration    % Maximum angular acceleration available from motor  (rad/s2)  
    MaxMotorJerk            % Maximum angular jerk available from motor (rad/s3 )  
    MassGripper             % Mass of the gripper and any load (kg)  
    MinArmAng_BU            %Minimum angle allowed between base and upper/proxi mal arm(rad)  
    MinArmAng_UL            % Minimum angle allowed between upper/proximal arm and  
                            %  lower/distal arm (rad)  
    MinArmAng_LL            % Minimum angle allowed between the two lower/dista l arms (rad)  
    MaxArmAng_BU            %Maximum angle allowed between base and upper/proxi mal arm(rad)  
    MaxArmAng_UL            % Maximum angle allowed between upper/proximal arm and  
                            %  lower/distal arm (rad)  
    MaxArmAng_LL            % Maximum angle allowed between the two lower/dista l arms (rad)  
    ProxArmDensity          % Density of upper/proximal arm (kg/m3)  
    DistArmDensity          % Density of lower/distal arm (kg/m3)  
    TorsionArmDensity       % Density of stabiliser arm (kg/m3)  
    ProxArmIRadius          % Inner Radius of proximal arm (m)  
    DistArmIRadius          % Inner Radius of distal arm (m)  
    ProxArmORadius          % Outer Radius of proximal arm (m)  
    DistArmORadius          % Outer Radius of distal arm (m)  
    TorsionIRadius          % Inner Radius of stabiliser arm (m)  
    TorsionORadius          % Outer Radius of stabiliser arm (m)  
    MassUpperCrank          % Mass of the upper crank (kg)  
    MassLowerCrank          % Mass of the lower crank (kg)  
    UpperTorsionOffsetB_X   % Offset from center of motor B for base point of s tabiliser  
                            %  arm(X)  
    UpperTorsionOffsetB_Y   % Offset from center of motor B for base point of s tabiliser  
                            %  arm(Y)  
    LowerTorsionOffsetTCP_X % Offset from center of 'TCP' for lower torsion bar  (X)  
    LowerTorsionOffsetTCP_Y % Offset from center of 'TCP' for lower torsion bar  (Y)  
    GripperMountOffset_X    % Offset from bottom revolute joint where the gripp er mounts(X)  
    GripperMountOffset_Y    % Offset from bottom revolute joint where the gripp er mounts(Y)  
    GripperLength           % Length of the gripper (m)  
    MinMotorSeparation      % Minimum separation distance between centers of mo tors (m)  
    MaxWidth                % Maximum width of the manipulator as defined as  
                            %  base length + 2x upper arm length  
    MaxDepth                % Maximum depth of the manipulator  
end 
     
end 
  

Figure F.84 UserConstraints Class 

 


