

Simulation and Optimisation

of a

Two Degree of Freedom, Planar, Parallel

Manipulator

A Thesis

Submitted in Fulfilment

of the Requirements for the Degree

of

Master of Engineering

in

Electronic and Computer Systems Engineering

at

Victoria University of Wellington

by

Ben Haughey

2011

iii

For my wife and our one on the way

 Abstract

v

Abstract

Development in pick-and-place robotic manipulators continues to grow as factory processes are

streamlined. One configuration of these manipulators is the two degree of freedom, planar, parallel

manipulator (2DOFPPM). A machine building company, RML Engineering Ltd., wishes to develop custom

robotic manipulators that are optimised for individual pick-and-place applications. This thesis develops

several tools to assist in the design process.

The 2DOFPPM’s structure lends itself to fast and accurate translations in a single plane. However, the

performance of the 2DOFPPM is highly dependent on its dimensions. The kinematics of the 2DOFPPM

are explored and used to examine the reachable workspace of the manipulator. This method of analysis

also gives insight into the relative speed and accuracy of the manipulator’s end-effector in the

workspace.

A simulation model of the 2DOFPPM has been developed in Matlab’s® SimMechanics®. This allows the

detailed analysis of the manipulator’s dynamics. In order to provide meaningful input into the simulation

model, a cubic spline trajectory planner is created. The algorithm uses an iterative approach of

minimising the time between knots along the path, while ensuring the kinematic and dynamic limits of

the motors and end-effector are abided by. The resulting trajectory can be considered near-minimum in

terms of its cycle-time.

The dimensions of the 2DOFPPM have a large effect on the performance of the manipulator. Four major

dimensions are analysed to see the effect each has on the cycle-time over a standardised path. The

dimensions are the proximal and distal arms, spacing of the motors and the height of the manipulator

above the workspace. The solution space of all feasible combinations of these dimensions is produced

revealing cycle-times with a large degree of variation over the same path.

Several optimisation algorithms are applied to finding the manipulator configuration with the fastest

cycle-time. A random restart hill-climber, stochastic hill-climber, simulated annealing and a genetic

algorithm are developed. After each algorithm’s parameters are tuned, the genetic algorithm is shown

to outperform the other techniques.

Simulation and Optimisation of a 2DOFPPM

vi

Acknowledgments

I would like to thank Prof. Dale Carnegie for supervising my research and having someone to bounce

ideas off. His support in helping me return to study has been fundamental in undertaking this thesis. To

Dr. Will Browne for providing advice on optimisation algorithms, and Dr. Peter Donelan for helping me

understand singularity analysis, much gratitude is given. I am most thankful for the help I have received

from the technical and administrative staff in the ECS and Physics departments of Victoria University. To

my fellow classmates, thanks for providing me with the much needed breaks from study.

This project was made possible through the partnership with RML Engineering Ltd. I would like to thank

all the staff there who have assisted me during this project. I would especially like to thank Daryl Joyce,

my manager, for providing this opportunity and for committing resources to R & D projects.

Appreciation is given to Arron Porter for providing a mechanical design of the manipulator, and Varun

Dennis for assisting with technical drawings.

This project was made financially viable with the assistance of TechNZ Capability Funding, for which I am

most grateful.

I owe a great deal of gratitude to my parents for teaching me the value of education. They have

supported me through my younger years and continue to encourage me to achieve my potential.

To my wife Sarah, I am truly thankful for her supporting me in my decision to return to study. The many

hours she spent proof reading my work, has helped make this thesis what it is. Her constant love and

encouragement has helped me throughout this project.

I would like to thank God for providing me with the many blessings I have received in my life. Though

Him it is all possible.

 Contents

vii

Contents

Abstract .. v

Acknowledgments .. vi

Contents.. vii

List of Tables ... x

Lift of Figures..xii

Terminology ... xx

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Objectives .. 2

1.3 Robotic Overview ... 3

1.3.1 Comparison of Pick-and-Place Architectures ... 3

1.3.2 The 2DOFPPM .. 6

1.4 Thesis Structure ... 8

2 Literature Review .. 11

2.1 Parallel Manipulators and Their Workspace Analysis .. 11

2.2 Trajectory Planning .. 14

2.3 Manipulator Optimisation .. 18

2.4 Summary ... 20

3 Mechanical Simulation Analysis ... 21

3.1 Workspace Analysis.. 21

3.1.1 Forward Kinematics .. 22

3.1.2 Inverse Kinematics.. 25

3.1.3 Reachable Workspace .. 26

Simulation and Optimisation of a 2DOFPPM

viii

3.2 SimMechanics
®

Simulation .. 26

3.2.1 Model Components .. 27

3.2.2 Simulation Settings ... 32

3.2.3 Running the Simulation .. 33

3.3 Mechanical Simulation Results ... 34

3.3.1 Workspace Analysis .. 34

3.3.2 SimMechanics™ Analyis .. 40

4 Trajectory Planning .. 49

4.1 Trajectory Planning Process ... 50

4.1.1 Movement Commands ... 51

4.1.2 Formulate Knots ... 54

4.1.3 Cartesian to Joint Space Conversion ... 55

4.1.4 Cubic Spline Fitment ... 56

4.1.5 Validation against Constraints .. 61

4.1.6 Altering Time Segments .. 66

4.1.7 Storing of Path Data ... 68

4.2 Interpolation of Knots for Linear Movements ... 68

4.3 B-splines, 3
rd

, 5
th

 and Higher Order Polynomial Fitting .. 72

4.4 Managing Discontinuous Jerk ... 74

5 Dimensional Performance Analysis .. 77

5.1 Constraints and Parameters ... 77

5.2 Results Storage .. 78

5.2.1 Paths .. 80

5.2.2 Moves .. 80

5.2.3 Userconstraints .. 80

5.2.4 Simulations... 80

 Contents

ix

5.2.5 Motors ... 81

5.3 Search Space .. 81

5.4 Optimisation Overview... 86

6 Optimisation Methodologies ... 89

6.1.1 Random Restart Hill Climber ... 89

6.1.2 Stochastic Hill Climber .. 98

6.1.3 Simulated Annealing ... 107

6.1.4 Genetic Algorithm .. 119

6.1.5 Comparison .. 130

6.2 Selecting a Configuration ... 133

7 Conclusion and Recommendations .. 135

7.1 Conclusion ... 135

7.2 Industry Review ... 137

7.3 Future Work ... 137

7.4 Summary ... 139

References ... 141

Appendix A Simulation Parameters.. 149

Appendix B Computer Specifications ... 150

Appendix C Industry Review .. 151

Appendix D Simulated Annealing Additional Results .. 152

Appendix E SQL Code .. 156

Appendix F Matlab® Code ... 158

Simulation and Optimisation of a 2DOFPPM

x

List of Tables

Table 3.1 Default parameters for workspace analysis. Values obtained from RML Engineering

Ltd. .. 35

Table 3.2 Default parameters used in sample simulation. Values obtained from RML

Engineering.. 41

Table 4.1 Path defining parameter definitions. .. 52

Table 4.2 Constraints on trajectories. .. 62

Table 4.3 Time values for 4 path segments (between 5 knots) over 6 optimisation iterations. 68

Table 6.1 StepSizes evaluated and their relative path dimensions ... 93

Table 6.2 Mean, standard deviation and median minimum cycle-times for four different

StepSizes .. 94

Table 6.3 Wilcoxon-Mann-Whitney test results comparing StepSize = 0.01 to the other

StepSizes .. 94

Table 6.4 Mean and Median minimum cycle-times for four different values of T 103

Table 6.5 Wilcoxon-Mann-Whitney test results comparing T = 0.05 to the other values of T 103

Table 6.6 Median Minimum cycle-times for different T values after different number of

attempts .. 104

Table 6.7 Wilcoxon-Mann-Whitney test results. Comparing T = 0.1 to the other values of T for

100 attempts, and T = 0.05 to the other values of T for 1000 and 5000 attempts. 105

Table 6.8 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for

MaxAttempts1 = 200 ... 112

Table 6.9 Wilcoxon-Mann-Whitney test results. Comparing T = 0.05, Tattenuation = 0.9 to the other

combinations of values tested with MaxAttempts1 = 200 .. 113

Table 6.10 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for

MaxAttempts1 = 500 ... 114

Table 6.11 Wilcoxon-Mann-Whitney test results. Comparing T = 0.05, Tattenuation = 0.7 to the other

combinations of values tested with MaxAttempts1 = 500 .. 114

Table 6.12 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for

MaxAttempts1 = 2000 ... 115

Table 6.13 Wilcoxon-Mann-Whitney test results. Comparing T = 0.5, Tattenuation = 0.9 to the other

combinations of values tested with MaxAttempts1 = 2000 .. 116

 List of Tables

xi

Table 6.14 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times with varying

population and selection size ... 127

Table 6.15 Wilcoxon-Mann-Whitney test results. Comparing a population size of 100 and

selection rate of 80 % to the other combinations of values tested 128

Table 6.16 Summary of parameter values for the optimising algorithms ... 130

Table 6.17 Mean and median minimum cycle-times achieved by the RRHC, SHC, SA and GA

optimisation methods .. 131

Table 6.18 Wilcoxon-Mann-Whitney test results. Comparing the GA to the RRHC, SHC and SA

optimisation methods .. 132

Table A.1 Default parameters used in sample simulation in Chapter 3. Values obtained from

RML Engineering. ... 149

Table B.1 Specifications of the computer used to perform all computations in this thesis. 150

Table D.1 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for

MaxAttempts1 = 10 ... 152

Table D.2 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for

MaxAttempts1 = 40 ... 153

Simulation and Optimisation of a 2DOFPPM

xii

List of Figures

Figure 0.1 Occurance of a singularity between two body linkages of a chain. xxi

Figure 1.1 A SolidWorks™ rendering of RML Engineering Ltd.'s design of the 2DOFPPM 2

Figure 1.2 PUMA robot, an example of a serial manipulator ... 4

Figure 1.3 Direction of actuation for a Cartesian robot ... 5

Figure 1.4 Delta Robot - a popular form of parallel manipulator for high speed pick-and-place

applications ... 5

Figure 1.5 2DOFPPM Construction ... 7

Figure 2.1 Early examples of parallel manipulators: Gough's Universal Tyre Tester (left) and a

flight simulator using a Stewart Platform (right). .. 11

Figure 2.2 ABB® Flexpicker™ - the first commercialised parallel pick-and-place manipulator. 12

Figure 2.3 Velocity-Time profiles of bang-bang (left) and bang-singular-bang trajectory (right). 17

Figure 3.1 Reachable workspace, i.e. end-effector path is within reach of manipulators limits 21

Figure 3.2 Unreachable workspace, i.e. part of the end-effectors path lies outside the

manipulators workspace .. 21

Figure 3.3 Configuration with driven angles referenced relative to the +Y-axis 22

Figure 3.4 Derivation of manipulator's forward kinematics... 23

Figure 3.5 An example of an invalid configuration which has had to pass through a singularity to

result in this position. .. 25

Figure 3.6 Pseudo code for producing the reachable workspace of the manipulator 26

Figure 3.7 SimMechanics™ model of the 2-DOF Parallel Planar Mechanism 27

Figure 3.8 SimMechanics™ Block - Body ... 28

Figure 3.9 An illustration of how the body coordinate systems relate to each other. 29

Figure 3.10 SimMechanics™ Block - Joint ... 30

Figure 3.11 SimMechanics™ Block - Joint Actuator ... 31

Figure 3.12 SimMechanics™ Blocks - Body Sensor (left), Joint Sensor (right) ... 32

Figure 3.13 SimMechanics™ Blocks - Initial Condition Constraint (left), Ground Constraint

(centre), Parallel Constraint (right) ... 32

Figure 3.14 SimMechanics™ high-level view of the simulation construct .. 34

Figure 3.15 Workspace of manipulator using RML Engineering’s default dimensions and

constraints. .. 36

 List of Figures

xiii

Figure 3.16 Comparison of workspace limited by RML Engineering's concept manipulator's angle

constraints (blue) and angle limits before encountering singularities (green). 37

Figure 3.17 Comparison between workspaces when the base length (separation of actuated

joints) is altered. The default distance of 0.3 m (blue) is compared to a smaller

distance of 0.2 m (green) and a larger distance of 0.4 m (pink). ... 38

Figure 3.18 Comparison between workspaces when the proximal (upper) arm length is altered.

The default length of 0.36 m (blue) is compared to a smaller length of 0.26 m (green)

and a longer length of 0.46 m (pink). ... 39

Figure 3.19 Comparison between workspaces when the distal (lower) arm length is altered. The

default length of 0.88 m (blue) is compared to a smaller length of 0.78 m (green) and

a longer length of 0.98 m (pink). .. 39

Figure 3.20 Test cycle-path. Movements follow the order from 1 through 9 ... 40

Figure 3.21 Screenshot of the SimMechanics™ simulation being run. ... 41

Figure 3.22 Simulated output of the motors’ positions over the sample path-cycle. 42

Figure 3.23 Simulated output of the motors’ angular velocity over the sample path-cycle. 43

Figure 3.24 Simulated output of the motors’ angular acceleration over the sample path-cycle............. 43

Figure 3.25 Simulated output of the motors’ torque over the sample path-cycle. 44

Figure 3.26 Simulated output of the end-effector’s position in X and Y components over the

sample path-cycle. ... 45

Figure 3.27 Simulated output of the end-effector’s velocity in X and Y components over the

sample path-cycle. ... 45

Figure 3.28 Simulated output of the end-effector’s acceleration in X and Y components over the

sample path-cycle. ... 46

Figure 3.29 Trajectory traced by the end-effector during the SimMechanics™ simulation. 47

Figure 4.1 Flow diagram of the trajectory planning and optimisation process. 51

Figure 4.2 Example trajectory in Cartesian space with the corresponding motor positions

required to reach each target point. .. 52

Figure 4.3 A sample path consisting of two vertical linear movements (MoveL) and a single joint

movement (MoveJ). Several Targets have a zone distance defined allowing a

smoother trajectory on approach to the target. ... 53

Figure 4.4 Generation of knots by taking a straight line between targets. Where the line

intersects with the zone a knot is formed. ... 55

Simulation and Optimisation of a 2DOFPPM

xiv

Figure 4.5 Knots defined in Cartesian space (left) are converted into joint space coordinates

(right). Numbering indicates order of knots. .. 56

Figure 4.6 Position, velocity and acceleration of a discontinuous profile formed by two

piecewise cubic polynomials between three knots. .. 57

Figure 4.7 Position, velocity and acceleration of a continuous profile formed by two piecewise

cubic polynomials between three knots. .. 58

Figure 4.8 Position, velocity and acceleration of a continuous profile formed by piecewise cubic

polynomials. Alternating colours differentiate individual polynomials. 61

Figure 4.9 Diagramtic view of the assumptions made for torque estimation. Red components

represent location of point mass'. Blue represent distance components. Green labels

the manipulators components. .. 63

Figure 4.10 Estimated torque profiles compared to SimMechanics™ calculated torque profiles. 35

kg gripper used. ... 65

Figure 4.11 Estimated torque profiles compared to SimMechanics™ calculated torque profiles. 5

kg gripper used. ... 66

Figure 4.12 Pseudo code for optimising the time segments between knots on a path. 67

Figure 4.13 Trajectory with no linear constraints .. 69

Figure 4.14 Trajectory with a single additional knot for linear movements ... 70

Figure 4.15 Trajectory with many additional knots for linear movement .. 70

Figure 4.16 Trajectory with an additional knot halfway through linear movement and another

positioned close to destination target .. 71

Figure 4.17 An example of the problem caused by fitment of the splines in joint space resulting in

the Cartesian path looping back on itself. .. 72

Figure 4.18 B-spline example. The red spline is 'pulled' towards the black control points. 73

Figure 4.19 Motor position, velocity and acceleration commands before and after low-pass

filtering. ... 75

Figure 4.20 Trajectory using the filtered position, velocity and acceleration commands. 75

Figure 5.1 Diagram of the four dimensions to be optimised ... 78

Figure 5.2 ERD diagram of the MySQL database schema .. 79

Figure 5.3 MaxWidth and MaxDepth parameters are defined by the user to limit the search

space. They correspond to the dimensions in this diagram. ... 83

 List of Figures

xv

Figure 5.4 Graph of the search space for the sample path. The proximal and distal arm lengths

and motor separation distance are plotted with the colours representing the cycle-

time. The intersecting pink lines show the location of the minimum cycle-time. 84

Figure 5.5 Search space for sample path. Each graph represents a different workspace height,

starting from a high workspace in the a) to a low workspace in j). 85

Figure 6.1 Matlab® Code of the RRHC Optimising Method ... 92

Figure 6.2 Normalised histogram of minimum cycle-time achieved by four different StepSizes

using the RRHC method after 100 restart iterations. Based on 90 individual runs. 93

Figure 6.3 Mean Minimum Cycle-time versus the number of Random Restart Iterations for four

StepSizes ... 95

Figure 6.4 Normalised histograms of minimum cycle-time achieved by the RRHC method with a

StepSize of 0.02 m, after 25, 50, 75, 100 restart iterations. Based on 90 individual

runs. .. 96

Figure 6.5 Box plot of the computation time required for each RRHC to find its minimum cycle-

time. Graph shows separate box plots for each StepSize. ... 97

Figure 6.6 Computation time versus mean minimum cycle-time for four StepSizes............................. 98

Figure 6.7 Example selection probability profile for a SHC .. 99

Figure 6.8 Matlab® Code of the SHC Optimising Method .. 100

Figure 6.9 Selection probability profiles of four T constants for a SHC .. 101

Figure 6.10 Normalised histogram of minimum cycle-time achieved by four different T values

using the SHC method after 5000 iterations. Based on 150 individual runs. 102

Figure 6.11 Normalised histograms of minimum cycle-times using four T values after 100, 1000

and 5000 attempts .. 104

Figure 6.12 Mean minimum cycle-time achieved relative to the number of iteration attempts for

four values of T .. 106

Figure 6.13 Computation time versus mean minimum cycle-time for four T values of the SHC 106

Figure 6.14 SA selection probability profile before and after annealing .. 107

Figure 6.15 Matlab® Code of the SA Optimising Method (Part 1/2) .. 109

Figure 6.16 Matlab® Code of the SA Optimising Method (Part 2/2) .. 110

Figure 6.17 Selection probability profiles for three values of T at three different attenuation rates

over time ... 111

Figure 6.18 Normalised histograms of minimum cycle-times for three T values with three

Tattenuation rates. MaxAttempts1 = 200. .. 112

Simulation and Optimisation of a 2DOFPPM

xvi

Figure 6.19 Normalised histograms of minimum cycle-times for three T values with three

Tattenuation rates. MaxAttempts1 = 500. .. 114

Figure 6.20 Normalised histograms of minimum cycle-times for three T values with three

Tattenuation rates. MaxAttempts1 = 2000. .. 115

Figure 6.21 Mean minimum cycle-time versus computation time with MaxAttempts1 = 200 for

nine combinations of T and Tattenuation. .. 117

Figure 6.22 Mean minimum cycle-time versus computation time with MaxAttempts1 = 500 for

nine combinations of T and Tattenuation. .. 118

Figure 6.23 Mean minimum cycle-time versus computation time with MaxAttempts1 = 2000 for

nine combinations of T and Tattenuation. .. 119

Figure 6.24 Matlab® Code of the GA Optimising Method (Part 1/4) .. 121

Figure 6.25 Matlab® Code of the GA Optimising Method (Part 2/4) .. 123

Figure 6.26 Matlab® Code of the GA Optimising Method (Part 3/4) .. 124

Figure 6.27 Matlab® Code of the GA Optimising Method (Part 4/4) .. 125

Figure 6.28 Normalised histograms of minimum cycle-time achieved by the GA method with a

mutation rate of 25 %, mutation amount of 5 % using population sizes of 30, 50 and

100 with selection rates of 30 %, 60 % and 80 %. Results are based on 75 individual

runs. .. 127

Figure 6.29 Computation time versus mean minimum cycle-time for nine combinations of

population size and selection rate .. 128

Figure 6.30 Number of evolution iterations/generations versus the mean minimum cycle-time for

nine combinations of population size and selection rate .. 129

Figure 6.31 Normalised histograms of minimum cycle-time achieved by the RRHC, SHC, SA and

GA optimisation methods .. 131

Figure 6.32 Computation time versus mean minimum cycle-time for the RRHC, SHC, SA and GA

optimisation methods .. 133

Figure 6.33 Trajectory and workspace of the optimised 2DOFPPM configuration resulting from

the GA ... 134

Figure C.1 Industry feedback from RML Engineering Ltd. .. 151

Figure D.1 Normalised histograms of minimum cycle-times for three T values with three

Tattenuation rates. MaxAttempts1 = 10. .. 152

Figure D.2 Normalised histograms of minimum cycle-times for three T values with three

Tattenuation rates. MaxAttempts1 = 40. .. 153

 List of Figures

xvii

Figure D.3 Mean minimum cycle-time versus computation time with MaxAttempts1 = 10 for

nine combinations of T and Tattenuation. .. 154

Figure D.4 Mean minimum cycle-time versus computation time with MaxAttempts1 = 40 for

nine combinations of T and Tattenuation. .. 155

Figure E.1 Create SQL Database and Tables Script (Part 1/2) .. 156

Figure E.2 Create SQL Database and Tables Script (Part 2/2) .. 157

Figure F.1 CalculateConfig Function (Part 1/4) ... 158

Figure F.2 CalculateConfig Function (Part 2/4) ... 159

Figure F.3 CalculateConfig Function (Part 3/4) ... 160

Figure F.4 CalculateConfig Function (Part 4/4) ... 161

Figure F.5 CheckConfigExists Function .. 162

Figure F.6 CheckReachability Function ... 163

Figure F.7 CompilePath Function (Part 1/5) .. 164

Figure F.8 CompilePath Function (Part 2/5) .. 165

Figure F.9 CompilePath Function (Part 3/5) .. 166

Figure F.10 CompilePath Function (Part 4/5) .. 167

Figure F.11 CompilePath Function (Part 5/5) .. 168

Figure F.12 Configuration Class (Part 1/2) .. 169

Figure F.13 Configuration Class (Part 2/2) .. 170

Figure F.14 CyclePath Class .. 170

Figure F.15 d2r (Degrees to Radians) Function ... 171

Figure F.16 Direct_2DOF_PPM Function (Part 1/2) ... 172

Figure F.17 Direct_2DOF_PPM Function (Part 2/2) ... 173

Figure F.18 EstimateTCPVel Function ... 174

Figure F.19 EstimateTorqueA Function... 174

Figure F.20 EstimateTorqueB Function ... 175

Figure F.21 FindMaxAlpha Function ... 175

Figure F.22 FindMaxJerk Function .. 176

Figure F.23 FindMaxOmega Function ... 176

Figure F.24 FindMaxTorqueA Function ... 177

Figure F.25 FindMaxTorqueB Function ... 178

Figure F.26 FindMinAlpha Function .. 178

Figure F.27 FindMinJerk Function .. 179

Simulation and Optimisation of a 2DOFPPM

xviii

Figure F.28 FindMinOmega Function.. 179

Figure F.29 FindMinTorqueA Function ... 180

Figure F.30 FindMinTorqueB Function ... 181

Figure F.31 GetNextPathID Function .. 181

Figure F.32 GetPPConstraints Function .. 182

Figure F.33 Inverse_2DOF_PPM Function... 182

Figure F.34 Knot Class .. 183

Figure F.35 MoveCMD Class ... 184

Figure F.36 OptimisationStart Script (Part 1/2) ... 185

Figure F.37 OptimisationStart Script (Part 2/2) ... 186

Figure F.38 OptimiseConfigurationGA Function (Part 1/4) .. 187

Figure F.39 OptimiseConfigurationGA Function (Part 2/4) .. 188

Figure F.40 OptimiseConfigurationGA Function (Part 3/4) .. 189

Figure F.41 OptimiseConfigurationGA Function (Part 4/4) .. 190

Figure F.42 OptimiseConfigurationHC Function .. 191

Figure F.43 OptimiseConfigurationSA Function Part (1/2) .. 192

Figure F.44 OptimiseConfigurationSA Function Part (2/2) .. 193

Figure F.45 OptimiseConfigurationSHC Function .. 194

Figure F.46 PathGenerator Function (Part 1/9) ... 195

Figure F.47 PathGenerator Function (Part 2/9) ... 196

Figure F.48 PathGenerator Function (Part 3/9) ... 197

Figure F.49 PathGenerator Function (Part 4/9) ... 198

Figure F.50 PathGenerator Function (Part 5/9) ... 199

Figure F.51 PathGenerator Function (Part 6/9) ... 200

Figure F.52 PathGenerator Function (Part 7/9) ... 201

Figure F.53 PathGenerator Function (Part 8/9) ... 202

Figure F.54 PathGenerator Function (Part 9/9) ... 203

Figure F.55 PathSegment Class (Part 1/2) ... 204

Figure F.56 PathSegment Class (Part 2/2) ... 205

Figure F.57 Plot_Knots_TCP Function ... 206

Figure F.58 Plot_Sim_Outputs Function (Part 1/3) ... 207

Figure F.59 Plot_Sim_Outputs Function (Part 2/3) ... 208

Figure F.60 Plot_Sim_Outputs Function (Part 3/3) ... 209

 List of Figures

xix

Figure F.61 Plot Search Surface Script .. 210

Figure F.62 PPConstraints Class .. 211

Figure F.63 PPResults Class .. 211

Figure F.64 Produce Reachable Workspace Script .. 212

Figure F.65 ProduceSearchSurface Function... 213

Figure F.66 ProduceSearchSurface Start Script ... 214

Figure F.67 r2d (Radians to Degrees) Function ... 215

Figure F.68 RunSimulation Function (Part 1/3) ... 215

Figure F.69 RunSimulation Function (Part 2/3) ... 216

Figure F.70 RunSimulation Function (Part 3/3) ... 217

Figure F.71 SelectMotor Function .. 218

Figure F.72 SelectNeighbouringConfig Function ... 219

Figure F.73 SelectRandomConfig Function (Part 1/4) ... 220

Figure F.74 SelectRandomConfig Function (Part 2/4) ... 221

Figure F.75 SelectRandomConfig Function (Part 3/4) ... 222

Figure F.76 SelectRandomConfig Function (Part 4/4) ... 223

Figure F.77 StorePathsUserConstraintsSQL Function (Part 1/2) .. 224

Figure F.78 StorePathsUserConstraintsSQL Function (Part 2/2) .. 225

Figure F.79 StoreSimulationsSQL Function ... 226

Figure F.80 Target Class ... 227

Figure F.81 TerminationCondition Class ... 227

Figure F.82 ThickWalledTubeInertia Function .. 227

Figure F.83 ThickWalledTubeMass Function ... 228

Figure F.84 UserConstraints Class .. 228

Simulation and Optimisation of a 2DOFPPM

xx

Terminology

Herein, various terms are used to describe aspects of manipulators, trajectory planning and

optimisation. A summary of their definitions are presented here.

Manipulators

Chain A linkage of independent bodies connected together by joints.

Closed Loop Refers to a mechanism’s architecture where a set of bodies are connected in parallel

so as to work alongside each other, rather than one after the other as is the case with

serial connections. The bodies form a ring structure.

DOF Degree of Freedom. Describes the number of independent axis of motions a

manipulator has. Individual degrees of freedom can be translational or rotational

movements.

End-effector The final mechanism attached to the end of the manipulator to perform a task. It is

also referred to as a gripper in pick-and-place applications.

Open Loop Refers to a mechanism’s architecture where a set of bodies are connected together

serially (i.e. one after the other) with no body re-connecting to a previous body as is

the case with closed loop architectures.

Pick-and-Place Describes a task performed by a manipulator. This consists of picking up an object,

performing a translation to a different position in space, and placing the object down

again.

Revolute Joint A form of joint connecting two bodies together. The motion offered by this joint is

revolving around a single axis. This is commonly achieved through electric motors.

Singularity Occurs when the Jacobian matrix describing the motion of the manipulator becomes

singular. In physical terms of the manipulators’ bodies, this commonly occurs when

two or more bodies in a chain become aligned leading to a loss of control of one of

the arms. This is shown in Figure 0.1 where Linkage_1 and Linkage_2 become aligned

resulting in the loss of independent control of Linkage_2.

 Terminology

xxi

Figure 0.1 Occurance of a singularity between two body linkages of a chain.

Workspace Describes the area reachable by the manipulator’s end-effector.

Trajectory Planning

Continuity A measure of how smooth a trajectory is. A continuity of C
1
 is continuous in the

domain of the first order derivative (velocity). A continuity of C
2
 has a continuous

second order derivative profile (acceleration).

Database

Primary Key A field, or combination of fields, in a database table that uniquely identifies each

record.

Foreign Key A field in a database table that matches the primary key column of another table. The

foreign key can be used to cross-reference tables.

Simulation and Optimisation of a 2DOFPPM

xxii

Optimisation

Cost Function A measure of how poorly a particular solution performs. It evaluates the negative

performance in comparison to the fitness function which evaluates the performance

from a positive perspective.

Fitness A measure of how good a particular solution performs.

Fitness Function An equation used to evaluate the fitness of a solution. It evaluates the positive

performance in comparison to the cost function which evaluates the performance

from a negative perspective.

Search Space Also referred to as solution space. This describes the set of all possible solutions.

 Chapter 1 – Introduction

1

1 Introduction

1.1 Motivation

The drive to improve factory efficiencies by increasing throughput has led to increased development in

robotic product manipulators. The manipulators are often referred to as pick-and-place robots due to

the task that they perform. Traditionally, robotic manipulators have been designed in a generic way

which allows the same manipulator to be programmed for multiple tasks on different production lines.

However, these robotic manipulators may not be the optimal design for any given task. Therefore, using

robotic manipulators to maximise production output, it is imperative that a customised manipulator is

developed. The design of the pick-and-place manipulator will allow the fastest possible product handling

cycle for the production line.

A New Zealand based company, RML Engineering Ltd., would like to explore the opportunities to

develop a parallel robot with two degrees of freedom (DOF). More specifically, they would like to have

the tools and knowledge to create custom manipulators that are optimised for a given task. While 2-DOF

manipulators are commercially available [1], these are highly priced and are not optimised for any

particular application. Consequently they do not offer the high-end performance RML Engineering Ltd.

seek.

Many pick-and-place tasks do not require the complexity of traditional 6-axis robots and can instead be

achieved using a simplified manipulator operating in a two dimensional plane. As well as the associated

cost saving of a simpler design, a manipulator that operates in a single plane can be designed to transfer

greater loads at increased speeds, as is discussed in Section 1.3.2.2.

RML Engineering Ltd. is to design a standardised two degree of freedom, planar, parallel manipulator

(2DOFPPM). An initial concept drawing is shown in Figure 1.1. This design, while standard, can be scaled

and individual dimensions modified to suit a specific application. The ability to modify the dimensions

for optimal performance is a feature that will be presented in this thesis.

Simulation and Optimisation of a 2DOFPPM

2

Figure 1.1 A SolidWorks™ rendering of RML Engineering Ltd.'s design of the 2DOFPPM

1.2 Objectives

There exist two main objectives for this project. These objectives, once achieved, will allow RML

Engineering Ltd. to analyse and optimise their 2DOFPPM design for specific applications. The objectives

are:

• Produce a simulation model of the mechanical system. This will allow analysis of the

manipulator’s dynamics.

• Implement a method to optimise the manipulator’s mechanical dimensions for achieving a near

minimum cycle-time for a particular task.

The simulation model will be used to evaluate the dynamic behaviour of the manipulator under applied

motor torques and the external force due to gravity. More specifically, the torques and forces acting on

the joints and bodies of the manipulator will be examined. The velocity and acceleration of the

manipulator’s gripper/end-effector are also of interest as these can affect the design decisions of both

the manipulator and the gripper which holds the object being manipulated.

 Chapter 1 – Introduction

3

When optimising a manipulator there are many components that could be considered as parameters for

tuning. This study will only consider the major components that have the greatest effect on the cycle-

time for performing a task. To validate the optimisation method, a number of techniques will be

considered. The performances of all the implemented methods will be compared to find the algorithm

best suited to optimising the manipulators dimensions.

In order to achieve these main objectives, a third objective must also be met:

• Implement a trajectory planning methodology that seeks to minimise the time taken to execute

a given task.

The trajectory planning method will be used to generate input commands for the motors within the

simulation. It will also be used to compare different manipulator configurations during the optimisation

process. The trajectories generated by the planner must represent the fastest possible path achievable

by a given 2DOFPPM configuration, so that comparisons can be made between individual configurations

based on the relative cycle-times of the trajectories.

This project’s task is to achieve the objectives stated above. The outcomes of achieving these objectives

will provide RML Engineering Ltd. with software tools to assist in the development of bespoke

manipulators.

1.3 Robotic Overview

1.3.1 Comparison of Pick-and-Place Architectures

In the quest for faster and more efficient production lines, there have been a number of robotic

technologies developed for product handling and manipulation. This area of robotics is often referred to

as pick-and-place as the robot’s sole purpose is to move objects from one location to another, with the

possibility of re-orientation at the same time. Pick-and-place robots can be organised into two

categories depending on how their manipulating arms are configured. These categories are serial or

parallel.

Of the two types mentioned, serial is the most commonly implemented. A serial robot is configured such

that each arm/axis is linked to another arm/axis in the form of a chain (for example, axis 4 is mounted to

axis 3 which in turn is mounted to axis 2, which is connected to axis 1, with axis 1 being located to the

base of the robot). This linked structure allows a great degree of dexterity as it is based around the

biological structure of a human arm. An example of a serial robot is shown in Figure 1.2.

Simulation and Optimisation of a 2DOFPPM

4

Figure

The dexterity of serial robots makes them a popular choice in production applications where

components have to be assembled in ways that are

very versatile and can be easily reprogrammed to perform another task (

run is completed for widget A, the same robot can be used for a completely different product, widget B).

However, serial robots do have several draw backs. Inaccuracies are accumulated, so that a small error

in axis 1 is multiplied such that the error at the end

to the end axes’ actuators being carried by the earlier axes, the links have to be r

the additional load. This adds additional inertia to the system, thus reducing the

now expected that when speed is the most important issue, an alternative to a

used.

Cartesian robots, also known as

robots are a form of linear robot, meaning that the two or three principal

(that is, they move in a straight line). The axes are also at right angles to one another.

Cartesian robot is shown in Figure

suited to transporting heavy loads. Recent advancements in linear actuators

Cartesian systems are now both fast and highly accurate. The main disadvantage of

1
 Image sourced from Herman Bruyninckx

by the authors, who release the text and the figures under the open content WEBook license.

Simulation and Optimisation of a 2DOFPPM

Figure 1.2 PUMA robot, an example of a serial manipulator
1

robots makes them a popular choice in production applications where

components have to be assembled in ways that are very difficult for other robots to reach. They are also

very versatile and can be easily reprogrammed to perform another task (for example

run is completed for widget A, the same robot can be used for a completely different product, widget B).

robots do have several draw backs. Inaccuracies are accumulated, so that a small error

that the error at the end-effector/TCP (tool centre point) is much greater. Due

being carried by the earlier axes, the links have to be r

the additional load. This adds additional inertia to the system, thus reducing the

now expected that when speed is the most important issue, an alternative to a

also known as gantry robots, are a variation of the serial

robot, meaning that the two or three principal axes are controlled linearly

they move in a straight line). The axes are also at right angles to one another.

Figure 1.3. Due to the linear nature of the axes, Cartesian

suited to transporting heavy loads. Recent advancements in linear actuators

systems are now both fast and highly accurate. The main disadvantage of

Herman Bruyninckx contribution to The Robotics WEBook, www.roble.info

authors, who release the text and the figures under the open content WEBook license.

robots makes them a popular choice in production applications where

for other robots to reach. They are also

for example, once a production

run is completed for widget A, the same robot can be used for a completely different product, widget B).

robots do have several draw backs. Inaccuracies are accumulated, so that a small error

(tool centre point) is much greater. Due

being carried by the earlier axes, the links have to be reinforced to cope with

the additional load. This adds additional inertia to the system, thus reducing the speed of the robot. It is

now expected that when speed is the most important issue, an alternative to a serial system will be

 configuration. Cartesian

axes are controlled linearly

they move in a straight line). The axes are also at right angles to one another. An example of a

Cartesian robots are well

suited to transporting heavy loads. Recent advancements in linear actuators have also meant that

systems are now both fast and highly accurate. The main disadvantage of Cartesian robots is

www.roble.info. Copyright is held

authors, who release the text and the figures under the open content WEBook license.

 Chapter 1 – Introduction

5

that the working envelope of the system is smaller than the robot itself (that is, the gantry frame limits

the work area).

Figure 1.3 Direction of actuation for a Cartesian robot
2

The alternative to the serial configurations presented above is the parallel manipulator. Parallel robots

are closed loop mechanisms that have an end-effector supported by at least two chains, controlled by

separate actuators [2]. The most popular of these is the Delta robot, which comes in both three and four

axis variations. The Delta robot, shown in Figure 1.4, was first commercialised in the 1990s as the

Flexpicker™ by ABB®. Originally under strong patent protection, the system has been replicated by many

other vendors [3]. The Delta robot is now the default choice for high speed pick-and-place applications

involving objects less than 1 kg in mass.

Figure 1.4 Delta Robot - a popular form of parallel manipulator for high speed pick-and-place applications

2
 Image obtained from http://www.pe.tut.fi/akp/images/cartesian on 12/02/10.

Simulation and Optimisation of a 2DOFPPM

6

Parallel robots offer several advantages over serial robots, including greater rigidity due to the closed

loop architecture [4], higher payload/weight ratio and reduced inertia as the actuators can be mounted

at a fixed base instead of on the arms [5]. They also feature higher precision, due to positioning errors

being averaged rather than compounded as they are in serial manipulators [6]. However, the closed

loop structure requires more complex mathematical analysis, as well as the disadvantages of more

singularities, lack of dexterity and a smaller workspace [7].

The advantages of parallel manipulators make them ideal for high speed pick-and-place movements

where the path followed by the end-effector is free of any obstacles. As this is the case for many

industrial applications, the parallel architecture shall be considered in this thesis. This will focus on a

specific configuration of parallel manipulators, the 2DOFPPM.

1.3.2 The 2DOFPPM

1.3.2.1 Construction

At an elementary level the 2DOFPPM is the simplest useful form a parallel manipulator can be. The

manipulator has a single closed loop chain of four arms and a base platform. The manipulator’s

mechanical components are presented in Figure 1.5. Two motors, Motor_A and Motor_B, are mounted

to the base platform and actuate the proximal arms, Prox_A and Prox_B. Each proximal arm is then

connected to a passive (not actuated) distal arm. These distal arms are labelled Dist_A and Dist_B in

Figure 1.5. The other ends of the distal arms are passively connected together to form a closed loop. A

gripper, or end-effector, is mounted to the point where the two distal points are joined.

In addition to the major components, there is a set of mechanical components to ensure the gripper

remains horizontal, that is, parallel to the base platform. This group of components is termed the

stabiliser arm and is shown in blue in Figure 1.5. The stabiliser arm is not actuated and simply shadows

the Prox_B and Dist_B control arms. Prox_Stab_B is the same length as Prox_B and Dist_Stab_B is the

same length as Dist_B. Several components, labelled Prox_Crank and Dist_Crank are used to hold the

two stabiliser linkages, Prox_Stab_B and Dist_Stab_B, at an offset, and parallel to Prox_B and Dist_B

respectively. As the stabiliser arm is only to prevent the gripper from rotating about its mounting point

and does not bear the load, it may be made of lighter or reduced material.

 Chapter 1 – Introduction

7

Figure 1.5 2DOFPPM Construction

A coordinate convention is defined with the +Y axis being vertical upwards and the +X axis being

horizontal towards the stabilising arm. The Z axis is redundant as the manipulator operates in a single

plane. Therefore all the components have a constant position in the Z frame of reference. The origin

(0,0,0) is defined as the middle of the base platform. This convention is used throughout this thesis.

A revolute joint exists at each interface between the base and the proximal arms, the proximal arms and

the distal arms, and the two distal arms. Each joint rotates about the Z axis. For this project, the joints

jAPD, jBPD, jABS are assumed to be passive joints, consisting of an ideal bearing with zero resistance.

Similarly the joints of the stabilising components (jSBP, jSPC, jSCD, jSDC) are assumed to affect zero rolling

resistance load on the system.

Simulation and Optimisation of a 2DOFPPM

8

1.3.2.2 Features

The 2DOFPPM benefits from the same features as more complex parallel manipulators. The inertia of

the manipulator is relatively small when compared to serial equivalents. This is due to the two motors

being mounted at the base, leaving only the arms, gripper and the load being manipulated, moving in

space. This permits fast rotation of the motors, which, when combined with the lever system formed by

the arms, generates very high acceleration and speed at the end-effector. Experiments have seen the

2DOFPPM’s end-effector velocity reaching 8.5 ms
-1

 with accelerations exceeding 230 ms
-2

 with a 1 kg

load [8].

With the end-effector only two linkages away from the fixed base, the positional errors are much less

than those of the common six DOF serial manipulators. Errors are formed by averaging the inaccuracy of

each of the two chains, where the inaccuracy of each chain is due to positional errors in the actuators,

slop in the passive joint formed by the proximal and distal arms, and flex in the arms. This compares

favourably to serial manipulators with greater DOF. An increase in the number of DOF introduces extra

errors which are accumulated in the serial architecture, rather than averaged as they are in parallel

systems.

The stiffness of a parallel structure is further improved with the 2DOFPPM acting in a single plane. The

forces being transmitted run along the same plane of actuation. This means that there is no shearing

force along the Z axis, which has traditionally been a limiting factor in the load bearing capability of

parallel manipulators. Working in a single plane, revolute joints can be used, which can bear higher

loads than the spherical joints found in other parallel manipulators like the Delta. This means the

2DOFPPM can fundamentally carry heavier loads.

1.4 Thesis Structure

This chapter describes the motivation for the project. Several manipulator configurations are presented

and their strengths and weaknesses discussed. A detailed overview of the 2DOFPPM is included. The

research objectives are presented and an outline of the thesis is provided below.

Chapter 2 offers background information on the subjects of industrial manipulators, trajectory planning

and manipulator optimisation. The existing research related to this thesis is presented and discussed.

Based on the current state of the art, justifications are given for the approaches used in this thesis.

Chapter 3 covers the analysis of the mechanical system via simulation methods. The workspace of the

2DOFPPM is analysed after considering the forward and inverse kinematic model. The manipulator is

 Chapter 1 – Introduction

9

simulated using a simulation engine (SimMechanics®) and the model’s output analysed. This simulation

model provides insight into the manipulator’s dynamics and is used again in Chapter 5 to review any

optimised manipulator configurations.

Chapter 4 presents a trajectory planning method that seeks to find a time-minimum trajectory for the

manipulator to traverse a given path. This trajectory planning method is used to provide input into the

SimMechanics® simulation of Chapter 3 as well as being used to generate optimisation results in

Chapters 5 and 6.

Chapter 5 considers altering certain dimensions of the manipulator to achieve a faster path cycle-time. A

method of generating and storing large amounts of simulation data is presented. The search space of

possible manipulator configurations is explored. An introduction into optimisation techniques is given

along with a justification of the techniques implemented in this thesis.

Chapter 6 presents the full implementation of the optimisation algorithms. The performance of the

different methodologies is statistically evaluated and one method is chosen as being the most suitable

for the task. An optimised manipulator configuration is then viewed in the SimMechanics® simulation of

Chapter 3 to validate the configuration’s performance.

Chapter 7 concludes the research presented in this thesis and makes recommendations for future work.

 Chapter 2 – Literature Review

11

2 Literature Review

This chapter provides an overview of existing research relevant to this project. It is separated into three

sections. The first section presents the approaches of other researchers in analysing the workspace of

parallel manipulators and specifically, the 2DOFPPM. The second section discusses existing trajectory

planning methods, outlining the strengths and weaknesses of each of them. The third section examines

current methodologies in optimising manipulators for improved performance.

2.1 Parallel Manipulators and Their Workspace Analysis

The first parallel mechanism was developed in 1956 by Gough [9] as a universal tyre testing machine.

This was followed a few years later by the more famous Stewart Platform [10], created as the base for a

flight simulator. These mechanisms, shown in Figure 2.1, had six degrees of freedom (DOF). The first

pick-and-place manipulator developed with a parallel architecture was the three DOF Delta robot [11].

Clavel, the inventor of the Delta mechanism, questioned why large and heavy serial manipulators were

being used to perform lightweight pick-and-place operations. His research resulted in a manipulator

with base mounted actuators and low-mass arms that could easily outperform the serial counterparts

when moving light objects. Clavel’s design was strongly patented and commercialised by ABB® as the

FlexPicker™, shown in Figure 2.2. Since the expiration of the FlexPicker™ patent, many three and four

DOF variations of the Delta manipulator have been commercialised.

Figure 2.1 Early examples of parallel manipulators: Gough's Universal Tyre Tester (left) and a flight simulator using a Stewart

Platform (right)
3
.

3
 Images obtained from http://commons.wikimedia.org on 22/12/10 under the Creative Commons Licence.

Simulation and Optimisation of a 2DOFPPM

12

Figure 2.2 ABB® Flexpicker™ - the first commercialised parallel pick-and-place manipulator
4
.

While much research has been undertaken into the Delta and its four DOF variation, there have been a

relatively small number of researchers who have investigated the simpler two DOF variant. Although the

three and four DOF variants have greater versatility by being able to operate in all three dimensions,

there are certain applications where a two DOF planar manipulator is suitable and in some cases

advantageous. Wherever a product needs to be moved in a single plane (for example, between two

conveyors), a two DOF manipulator will suffice. As explained in Section 1.3.2.2, by moving in a single

plane, heavier loads can be carried thereby giving the 2DOFPPM a greater advantage over three

dimensional manipulators. In recent years the 2DOFPPM has grown in popularity and has been studied

by Huang [12-15], Gao [16][17], Baradat [8], Li [18][19], Cervantes-Sánchez [20], Stan [21] and others.

Piras et al. [22] shows through finite element analysis (FEA) of a 2DOFPPM, the effects of vibration on

accuracy are minimal, but that they are also highly dependent on the precise configuration. Li [19] went

further to say that the analysis of flexible linkages in the 2-DOF parallel robot is of significant importance

when high speed and high precision are required. Li [18] also found that the tubular structure of the

arms, specifically the outer diameter, was of great importance to the system’s rigidity. This indicates

that for the most part, the system simulation can be limited to rigid body analysis, with dynamic

vibration analysis being undertaken near the end of the design cycle to further tune the manipulator for

highest performance.

4
 Image obtained from www.abb.com on 22/12/10.

 Chapter 2 – Literature Review

13

Several modifications have been made to the basic structure of the 2DOFPPM to improve one or

another performance aspect. Baradat et al. [8] presents a configuration with improved stiffness in the

plane perpendicular to the plane of motion. This is achieved by introducing two redundant stabilising

arms, mechanically coupled together in the perpendicular plane, to counteract any vibration or

movement in the direction normal to the plane of motion. The additional arms however, greatly

increase the manipulator’s footprint while also adding extra inertia to the system. Hu et al. [23] present

a 2DOFPPM with increased stiffness via the introduction of several passive chains connecting the base to

the end-effector via a translational sliding mechanism. Unlike Baradat’s design, this does not add to the

size of the mechanism’s footprint, however it does increase the inertia of the system.

Huang et al. [13] extends the studied manipulator to a third degree of freedom, by incorporating the

existing mechanism onto a translational actuator in the plane perpendicular to the typical plane of

operation. This side shifting mechanism allows the manipulator to be used in all three dimensions of

space, while maintaining the primary benefits of the parallel architecture.

When defining the workspace of the 2DOFPPM, it is common to refer to it as being the area reachable

by the end-effector without passing through any singularities of the manipulator [16][20]. However

Huang et al. [13][14] defines the workspace of the 2DOFPPM as being of rectangular shape within the

actual area reachable by the end-effector. This reduction in workspace, while theoretical, provides more

simplistic parameters to evaluate the manipulator’s performance using an index method. A number of

researchers use the idea of a conditioning index, originally developed by Gosselin and Angeles [24], to

give an indication of global performance aspects of the manipulator within the workspace [13][14]

[17][25]. The conditioning index uses the Jacobian matrix of the system to determine the behaviour of

the manipulator in the workspace. More specifically, the performance index provides a single value

indicating the accuracy and speed of the end-effector within the workspace. This allows comparisons of

the global performance within workspaces formed by different manipulators but does not allow direct

comparison of manipulators over a given path. The index also gives an indication into how susceptible

the manipulator is to reaching a singularity pose. This can be useful in determining the reachable

workspace.

The stabilising arms are used to keep the end-effector parallel with the base. Huang et al. [15] identified

a potential risk in the stabilising arms over-constraining the manipulator if manufacturing tolerances are

too tight. If there is no clearance in the joints on the stabiliser arms, the unavoidable imperfections in

the manufacturing process will result in stabiliser arms locking the entire manipulator into a fixed

Simulation and Optimisation of a 2DOFPPM

14

position. Huang et al. has provided a method to allocate tolerances to the manufactured manipulator

components.

2.2 Trajectory Planning

The control process of a manipulator is typically separated into levels of abstraction. The lowest level

consists of a closed-loop control system tracking a given trajectory. The next level involves planning the

trajectory of the actuators. Above that is the generation of the path for which the end-effector is to

travel through. Higher levels can exist that are often related to the tasks being performed by the

manipulator. This project is not concerned with the closed-loop control tracking, nor the high task level

control, but rather involves taking a desired path for the end-effector and transforming it into time

dependent trajectories for each of the manipulator’s actuators. This process is commonly referred to as

trajectory planning.

There exists a wide range of trajectory planning methodologies used to control manipulators. They vary

in computation complexity, path accuracy, trajectory smoothness and path cycle-time. This section

discusses the key methods used in industry and for research, highlighting their performance and

applications.

A manipulator’s productivity can be increased by executing a task’s path in minimum time or by

minimising down time. The trajectory planning technique often affects both of these. The cycle-time of

trajectories can vary based on the method used to generate them, but also some methods of generation

can take excessive time such that the manipulator must wait for computation to complete before

executing the path. Such methods are referred to as being off-line algorithms, which are less favourable,

in terms of computational intensity, than on-line algorithms [26].

Another consideration when choosing trajectory planning techniques is how smooth the resulting

trajectory is. Smoothness is normally considered in terms of the joint actuators, rather than the

smoothness of the path travelled by the end-effector [27]. This is because a trajectory which is not

smooth for the actuators will create vibration in the manipulator and can result in poor path tracking. A

popular method for rating the smoothness of a trajectory is to refer to its level of continuity. A trajectory

which has C
1
 continuity means that the velocity, or 1

st
 order derivate of the path with respect to time, is

continuous over the entire path. Similarly, a path with C
2
 continuity has continuous acceleration over

the whole path.

 Chapter 2 – Literature Review

15

There are two options in choosing a frame of reference for planning a trajectory. The first option

involves converting the Cartesian path into joint paths by inverse kinematics and then controlling the

manipulator at the joint level. Alternatively, the joint limits (velocity, acceleration, torque, etc.) are

converted into Cartesian bounds and then the trajectory is planned at the end-effector level. Luh and Lin

[28] sought to minimise a trajectory using the latter method but found the conversion of the joint limits

too difficult due to the non-linear and highly coupled manipulator dynamics. Therefore, the first method

of converting the Cartesian path into joint space is favoured.

A popular method for generating smooth trajectories is to use polynomial functions. In this process,

Cartesian defined knots are converted to N sets of single dimension joint positions, where N is the

number of knots. A polynomial is then fitted to pass through each of the knots in joint space, thus

forming the trajectory for each actuator. Zhihong [29] and Spong et al. [30] show that the polynomial

can either be a single high-order polynomial of order N, or be formed as piecewise segments. The single

high-order polynomial provides a high level of smoothness but can become computationally intractable

as the number of knots, and consequently the order of the polynomial, increases [29]. A more common

approach, and one that is implemented in industrial controllers [30], is to define individual polynomials

of a lower order between each knot. To ensure continuity between individual polynomial segments,

constraints are applied forcing the velocity, acceleration and/or jerk profiles to be continuous over the

entire path. At the simplest level, 3
rd

 order cubic polynomials are used. These can provide a trajectory

with continuous velocity and acceleration, but will likely have a discontinuous jerk profile. An example of

how a cubic polynomial is used to describe a joint trajectory is given in Equation (2.1), where the angular

position, �, of joint � is described by a third order polynomial of time �, with coefficients �� to ��.

����	 = ����	 + ����	��	 + �
��	��	
 + ����	��	� (2.1)

In the 1970s Paul [31] and Finkel [32] investigated using cubic polynomials to interpolate knots for

manipulator trajectory planning. These required solving 3(N-1) or 4(N-1) systems of linear equations

where N is the number of knots. These methods proved to be smooth and have small overshoot of joint

displacement. In 1983, Lin et al. [33] popularised cubic polynomial use for manipulator trajectory

planning when they developed a method to minimise the time between knots. They used Nelder and

Mead’s [34] flexible polyhedron search to iteratively alter the path-time at each knot until a near

minimum cycle-time is found which satisfies the constraints of the manipulator. A trajectory planner of

this type was implemented specifically for the 2DOFPPM by Hu et al. [23].

Simulation and Optimisation of a 2DOFPPM

16

Chand and Doty [35] developed an on-line cubic spline trajectory planning methodology. By only

considering a limited number of knots immediately ahead of the current position, and not the entire

path, the trajectory could be computed quickly and alterations to the path made on the fly.

Boryga and Grabós [36] presented a study of trajectory planning for a serial manipulator using piecewise

5
th

, 7
th

 and 9
th

 order polynomials. They found the 7
th

 order polynomial fitment to be optimal for avoiding

the limits of the manipulator over a given path and cycle-time. This however, is highly dependent on the

configuration of the manipulator.

Thompson and Patel [37] used an alternative method of fitting B-splines to control points, or knots,

along the path. Unlike cubic polynomials, B-splines do not pass through the knots but instead are

‘pulled’ towards them. Formulating the splines is computationally easy and can be computed fast

enough to allow the trajectory planner to be executed on-line. B-splines provide a smooth trajectory

with continuous position, velocity and acceleration that is easily followed by real-world joint actuators.

Thompson and Patel’s method allowed velocity and acceleration constraints to be set at each knot along

the path. Wang and Horng [38] sought to minimise the cycle-time of a B-spline trajectory controller by

using a recursive flexible polyhedron search method to alter the path time between knots. Despite the

research into B-splines, they have failed to be implemented into industrial controllers. This is largely

because the trajectory generated does not pass through the control points, hence lacks the accuracy

levels needed in industry.

In general, the trajectory planning methods previously discussed only consider the kinematic limitations

of the manipulator, that is, the bounds on velocity, acceleration and jerk. However, in reality the

manipulator’s actuators are also limited by dynamic constraints, such as torque and torque rate. To truly

maximise the manipulator’s capabilities and find a time-minimum trajectory, the trajectory planner

must take into account a dynamic model of the manipulator. Kahn and Roth [39] first attempted to

produce a trajectory planner that took into account the dynamic model. This consisted of optimising an

unconstrained path subject to torque limitations using Pontryagin’s principle [40]. However, the result

was computationally intractable, and the dynamic model had to be linearised for an optimal trajectory

to be found. This linearization of the dynamics results in significant errors, rendering the method

unsatisfactory [41].

Geering et al. [42] showed that for various manipulator configurations the time-minimum trajectory

subject to torque constraints must be either a bang-bang or bang-singular-bang trajectory. A bang-bang

trajectory is where the actuator is exerting maximum acceleration up until a switching point where it

 Chapter 2 – Literature Review

17

applies maximum deceleration. A bang-singular-bang trajectory is similar except that a maximum

velocity is reached before the switching point and the actuator cannot continue to accelerate [29].

Figure 2.3 shows the velocity profiles of both a bang-bang and bang-singular-bang trajectory. Chen and

Desrochers [43] proved that for the trajectory to be traversed in minimum time, at least one of the

actuators must be in torque saturation along the entire trajectory.

Figure 2.3 Velocity-Time profiles of bang-bang (left) and bang-singular-bang trajectory (right).

Bang-bang trajectory planning algorithms, when considered in isolation from the rest of the control

system, appear to be optimal. However, when tracking a purely time-optimal trajectory with a simple

controller, actuator saturation occurs which causes poor tracking, vibrations in the machine and

increased machine wear [44-46]. In order not to exceed the actual capabilities of the manipulator, the

actuator bounds must be chosen conservatively, possibly forcing the manipulator to be underutilised

[47].

Bobrow et al. [48] and Shin and McKay [49] independently developed a trajectory planning method that

would allow both the kinematic and dynamic constraints to be taken into account. The method first

determined a function that describes the maximum velocity along the path, dependant on the position

along the path. Knowing this function, switching points are calculated which switch the actuator from

maximum acceleration to maximum deceleration at points along the path so as to minimise the overall

cycle-time. Other variations have been made to this method seeking to improve the performance of the

algorithm [46][50-52], or make it suitable for on-line calculation [26][53]. Huang et al. [54] has

implemented a variation of Bobrow et al. and Shin and McKay’s trajectory planner, specific to the

2DOFPPM.

Simulation and Optimisation of a 2DOFPPM

18

Due to the importance in minimising the cycle-time of manipulators for industrial applications, a large

amount of research has been undertaken into trajectory planning techniques. This area of research

continues to be active as even the smallest increase in performance can equate to large financial benefit

in high production industries. Within this project, the exact trajectory planning technique is not

important. The trajectory planner is used to compare the performance of different 2DOFPPM

configurations. Therefore, the only consideration is that the methodology chosen must produce near-

minimum cycle-times that give a good indication into the performance of the 2DOFPPM configuration

relative to alternative 2DOFPPM configurations. An in-depth discussion of the trajectory planner is

presented later in Chapter 4.

2.3 Manipulator Optimisation

Improving the performance of manipulators in industry can be achieved by improved trajectory planners

or through developing superior manipulators. While there has been an abundant amount of research

into trajectory planners, the concept of optimising the manipulator itself has seen somewhat less

attention. This may be due to many manipulators needing to remain generic in order to serve multiple

applications. However, for many pick-and-place applications, the task that is performed remains the

same for the life of the manipulator. It is in these situations, where a custom manipulator could be

developed that would outperform a generic equivalent. This section presents existing research related

to optimising a manipulator’s dimensions.

The importance of customising manipulators is further backed up by Merlet [55], who argues it is

absolutely necessary in order to ensure the highest performance is obtainable from the mechanism.

Merlet states that this is especially true of parallel manipulators due to a high degree of coupling that is

intrinsic in parallel architectures.

Zhuang et al. [56] argued that cost functions related to manipulators are highly non-linear, and as such

often have many local minima. This means that gradient based optimisation methods like hill-climbers

are inadequate. Zhuang et al. instead used an optimisation technique known as simulated annealing to

find the manipulator configuration that gave the least positional error. With correctly chosen

optimisation parameters, simulated annealing can overcome local minima to find the global minimum

[57]. The style of manipulator used for this study was a serial robot.

Similarly, Stan et al. [58][59] uses a simulated annealing process to maximise the workspace of the

2DOFPPM. This process, while finding the relative dimensions that give the maximum workspace, does

 Chapter 2 – Literature Review

19

not look at other performance aspects such as path cycle-time or end-effector accuracy. This is useful in

evaluating the versatility of a manipulator, but does little for the pick-and-place performance indicators

of speed and accuracy. Stan et al. [21] carries on from his earlier work and seeks to maximise

transmission quality, manipulability and stiffness indexes of the 2DOFPPM workspace. This is achieved

through a genetic algorithm.

Cochron and Bidaud [60] developed a genetic algorithm to optimise a serial manipulator for a specific

task. The task consisted of an end-effector path with obstacles to be avoided. Six criteria were optimised

including maximising the reachability, proximity to obstacles and dexterity, and minimising the

complexity/inertia of the linkages, as well as the linear and angular distances travelled.

Feddema [61] found that the placement of a manipulator within the work area can alter the path cycle-

time by up to 25 %. Using both six and two DOF serial manipulators as examples, a gradient descent

method was used to find the optimal position to place the manipulator. This proved to be several orders

of magnitude faster than locating the position by exhaustive search. In Feddema’s method, the gradient

descent was preceded by a coarse exhaustive search of the solution space, thus providing a good

seeding value for the gradient descent to start from. This also largely avoided the effects of becoming

stuck in local minima.

Pashkevich and Pashkevich [62] took a different approach to this same problem by seeking to find a

Pareto-optimal set of solutions based on a multi-objective criterion. A genetic algorithm was used to

find a set of solutions that were optimal in at least one of the objectives.

Mitsi et al. [63] also recognised the importance of where the manipulator’s base is positioned in the

work area. By using a specially developed genetic algorithm combined with a hill-climbing routine, a

system was developed that minimised the travel distances and maximised the dexterity of the joints of

an industrial six DOF serial manipulator. This custom method was shown to perform better than a

genetic algorithm alone.

While there has been some research around optimising manipulators, there has not been a comparative

study of optimising algorithms as applied to finding the best manipulator dimensions to achieve the

fastest possible path cycle-time. This comparison is presented in this thesis for optimising the 2DOFPPM.

Simulation and Optimisation of a 2DOFPPM

20

2.4 Summary

In summary, the 2DOFPPM is a simplified version of the very popular Delta robot. By only operating in a

single plane, there is an increase in stiffness and load bearing ability but at the cost of some versatility.

However, pick-and-place movements are often fixed for the lifetime of the manipulator, thus in such a

scenario, a 2DOFPPM will be sufficiently effective. A number of subtle improvements to the general

structure of the manipulator have been presented here. While not attracting as much research as the

delta robot, several researchers have sought to optimise the workspace of the 2DOFPPM through use of

a condition index that gives a value to the performance of the manipulator within the workspace.

A selection of trajectory planning methodologies has been discussed. The trend of researchers in this

area is to plan the trajectory in joint space as this allows integration of the manipulator’s dynamic

constraints. Trajectory planners can be grouped as on-line or off-line depending on their computational

complexity. On-line methods are preferred as they allow the trajectory to be computed on the fly while

the manipulator is moving, thus increasing up-time of the machine. Using piecewise polynomials to

define the trajectory between knots is a common technique that allows the kinematic limitations of the

manipulator to be taken into account. More complex methods also exist that minimise the cycle-time

within the dynamic constraints of the manipulator. For this project, the exact trajectory planning

method is not critical provided it achieves near-minimum cycle-times. It may be an off-line or on-line

system.

This project seeks to minimise the cycle-time of a 2DOFPPM by finding the optimal dimensions of the

manipulator. Several researchers have looked at similar problems to this and tested various optimising

methodologies. This project compares the performance of different optimising methodologies as they

apply to optimising the 2DOFPPM for a specific task. An optimised manipulator, while specialised in only

a single task, can provide increased production in industry where the task is repetitive and consistent.

 Chapter 3 – Mechanical Simulation Analysis

21

3 Mechanical Simulation Analysis

This chapter covers the simulation of the studied mechanism. Kinematic equations are first developed

and then used to analyse the reachable workspace of the manipulator. Once this is achieved, Matlab’s®

SimMechanics® simulation package is used to model the manipulator.

3.1 Workspace Analysis

The reachable workspace of a robotic manipulator is useful to know. This defines where the end-

effector of the manipulator can reach and as such determines whether or not the manipulator can

achieve a given task. For a given path, Figure 3.1 and Figure 3.2 demonstrate a reachable and

unreachable workspace respectively. In Figure 3.1, the path of the end-effector is completely contained

within the workspace, whereas the same path shown in Figure 3.2 has some parts outside the

workspace. A manipulator with the workspace of Figure 3.2 would not be able to complete the given

task.

Figure 3.1 Reachable workspace, i.e. end-effector path is

within reach of manipulators limits

Figure 3.2 Unreachable workspace, i.e. part of the end-

effectors path lies outside the manipulators workspace

As the manipulator being studied only has two degrees of freedom, the workspace can be obtained by

moving each actuated arm (degree of freedom) through its full range of motion while holding the other

arm stationary, iteratively stepping the stationary arm on through its full range of motion after each

sweep of the non-stationary arm. By plotting the position of the end-effector at each of these points a

diagram of the workspace can be formed. While this may be easily obtained when using a physical

model, in software the kinematics of the system must be known.

Simulation and Optimisation of a 2DOFPPM

22

The kinematics of the system describes the motion of the bodies without consideration of the forces

that cause the motion [64]. This can be broken up into forward and inverse kinematics. While only

forward kinematics are needed to find the workspace, the inverse kinematics will also be presented here

for later reference as the calculations are often related.

3.1.1 Forward Kinematics

The forward kinematics specifies the valid positions of all bodies/arms for given angles of the two

actuated joints. Figure 3.3 specifies the angles relative to +Y-axis in an anti-clockwise direction for θA,

and clockwise for θB. This convention was chosen initially as it would ensure that all realistic angles

would be positive and less than 360°. While many researchers would rather use the clockwise angle of

the +X-axis as a plane of reference, it was decided that it would be preferential to align to the

convention that exists in the most popular of parallel pick-and-place manipulators, the Flexpicker™ by

ABB® [65].

Figure 3.3 Configuration with driven angles referenced relative to the +Y-axis

It will be assumed that the mechanism is symmetrical about the origin, that is, the lengths of the

proximal and distal arms shall be considered equal in length on both sides:

‖��‖ = ‖��‖										, ‖�
‖ = ‖�
‖ (3.1)

 Chapter 3 – Mechanical Simulation Analysis

23

The following is the derivation of the TCP (tool centre point, i.e. end-effector) coordinates given θA and θB. Figure 3.4 is used as a reference for the following calculations.

Figure 3.4 Derivation of manipulator's forward kinematics

The positions of the joints Aj12 and Bj12 are easily resolved using Pythagoras:

���
 ���� = �−� 2� − �� sin�# −θ$	−�� cos� # −θ$	 ' (3.2)

���
 ���� = �−� 2� + �� sin� # −θ(−�� cos� # −θ('

(3.3)

Given the fixed position of the actuated proximal arms, A1 and B1, the TCP coordinate can be obtained

by finding the intersection of the two circles traced by rotating the distal arms, A2 and B2 about the

joints Aj12 and Bj12. This is displayed graphically in Figure 3.4 and can be resolved mathematically as

shown below:

�

 + �
 = �

 +)
 (3.4)

Simulation and Optimisation of a 2DOFPPM

24

∴ � = 	�

 − �

 + +
2+ (3.5)

ℎ = 	-�

 − �

(3.6)

.���� = /���
��	 +	 �����
��	 − ���
��		+���
��	 +	 �����
��	 − ���
��		+ 0 (3.7)

∴ 123 ���� = /.��	 ±	ℎ����
��	 − ���
��		+.��	 ∓	ℎ����
��	 − ���
��		+ 0

(3.8)

As shown in Equation (3.8), for given values of θA and θB, there can exist up to two distinct

arrangements of arms while maintaining a closed loop structure. When considered in practical terms, in

pick-and-place applications, only one of these configurations, at most, is permissible. This is due to the

planar mechanism having a work area underneath itself, and as such any configuration with the end-

effector above the X-axis must be considered invalid. Based on this rule, Figure 3.4 shows the difference

between an allowable configuration, TCP1, and an invalid one, TCP2.

Further to this, a configuration may be disallowed due to the potential for singularities either at the

position or while moving to it. A singularity occurs when two or more connected arms become aligned,

causing a loss in control of a degree of freedom. Singularities can be avoided by disallowing any

configuration with internal angles (interior angles formed between arms-arms or arms-base) greater

than or equal to 180°. Figure 3.5 shows an example of such a configuration which would be disallowed.

 Chapter 3 – Mechanical Simulation Analysis

25

Figure 3.5 An example of an invalid configuration which has had to pass through a singularity to result in this position.

3.1.2 Inverse Kinematics

Realising the forward kinematic relationship is only half the kinematics. The inverse kinematics must also

be obtained. The inverse kinematics answers the issue: “given a desired TCP coordinate (X, Y), determine

the required angles for θA and θB”. Deng et al. [66] shows for a similar manipulator that there are four

possible configurations for a given TCP, however, only one of these is permissible if singularities are to

be avoided. Huang et al. [13] have shown that the solutions can be limited by using formulae (3.9) and

(3.10). These hold for a five-bar mechanical linkage with 2-DOF:

�6 = −#2 + 2tan9�
:
;−<6 − -<6
 − =6
 + >6

=6 − >6 ?
@ (3.9)

�A = #2 − 2tan9�
:
;−<A + -<A
 − =A
 + >A

=A − >A ?
@ (3.10)

where:

<6 = −2��123B, <A = −2��123B,

>6 =	−2�123C + D
���, >A =	−2 �123C − D
���,

=6 = �123C + D
	
 + 123B
 + ��
 − �

 , =A = �123C − D
	
 + 123B
 + ��
 − �

Simulation and Optimisation of a 2DOFPPM

26

3.1.3 Reachable Workspace

With the knowledge of the mechanism’s forward kinematics, the workspace can be determined. This

was done in Matlab® by deriving the end-effector’s X-Y coordinates for 0° ≤ θA ≤ 360° and 0° ≤ θB ≤ 360°.

Samples were taken at 5° increments. Additional joint angle constraints were included to represent

mechanical limits imposed by the real-life design. These constraints were obtained from RML

Engineering Ltd. The coordinates were then plotted to reveal the reachable workspace of a given

manipulator configuration. The pseudo code of how this is done is shown in Figure 3.6.

procedure produce reachable workspace

begin

θA = θA_min

θB = θB_max

while θA < θA_max do

evaluate TCP using forward kinematics from θA and θB

if θB < θB_min then

θA = θA + stepsize

θB < θB_min

else

θB = θB – stepsize

end

end

end

Figure 3.6 Pseudo code for producing the reachable workspace of the manipulator

The position of the TCP is evaluated using forward kinematics for different motor positions. The

positions of �6 and �A are iteratively altered between the minimum and maximum values with a

granularity based on the parameter stepsize. This provides a close estimate to the reachable workspace

of the manipulator.

3.2 SimMechanics® Simulation

Matlab® was used as the software development environment for this project due to its efficient

computation ability, object-oriented programming support and its large selection of add-on features.

One of these features is the Simulink® simulation environment which allows the modelling, simulating

and analysing of multi-domain dynamic systems. Of particular usefulness to this project were the

SimMechanics™ and Simscape™ tool-boxes. SimMechanics™ allows the development of a three

dimensional model of the mechanical system. It should be noted however, that as the 2DOFPPM

operates in a plane, only two dimensions are needed which in turn saves computation time.

 Chapter 3 – Mechanical Simulation Analysis

27

The following sections outline the components used in constructing the model, the formation of

constraints between mechanical bodies as well as the settings for the simulation.

3.2.1 Model Components

SimMechanics™ uses the concept of joints and bodies to create a mechanical model. Constraints can

then be placed on components. Both joints and bodies can be actuated in the time domain and the

model’s behaviour is simulated under these conditions. While this allows a large degree of flexibility for

various applications, it does require an accurate understanding of the desired system to permit correct

implementation.

Figure 3.7 SimMechanics™ model of the 2-DOF Parallel Planar Mechanism

The mechanical components of the SimMechanics™ simulation are shown in Figure 3.7. This features a

system of bodies connected by joints. The proximal arms, A1 and B1, are connected via joints, Aj12 and

Bj12, to distal arms, A2 and B2. The joints Motor_A and Motor_B represent the motors of the system

and are acted on by joint actuators, Joint Actuator A and Joint Actuator B. This represents the core

component of the 2DOFPPM. Additional bodies and joints are shown on the right-hand side of Figure 3.7

Simulation and Optimisation of a 2DOFPPM

28

which represent the stabiliser arm components. The following sections explain the various components

of the model in greater detail.

The model was developed using variables to define all dimensions, positions, constraints and settings.

This allows the same model to be used for all simulations of the 2DOFPPM with only the value of the

variables needing to be changed. When a simulation is run under SimMechanics™, a coded script is run

(refer Appendix F, Figure F.68) to initialise these variables before conducting the simulation.

3.2.1.1 Bodies

Bodies are the fundamental mechanical linkages in the system. Bodies are characterised by their mass

and inertia, position and orientation in space, as well as any attached coordinate systems.

Figure 3.8 SimMechanics™ Block - Body

It is a requirement that the positions of each body are validly defined before the model can be

simulated, that is, the positions of each body can be resolved. This means that the coordinates of the

connection points on each body need to be specified, and that the coordinates of connection points for

adjacent bodies be the same. This was done by using the inverse kinematics routine, developed earlier

in the project (Section 3.1.2), to resolve the coordinates during the start-up script.

Bodies have coordinate systems assigned to them. These can define points on the body which other

joints connect to, location of the centre of gravity, or any arbitrary point of potential significance.

Coordinate systems are defined relative to another coordinate system. For example the centre of gravity

could be defined as being at a 10 mm offset along the X-axis of the base coordinate system of the body,

where the base coordinate system is at an (X,Y,Z) location of (20,30,40) in the world (global) coordinate

system. Each coordinate system also has a defined orientation which allows a coordinate system to be

rotated about one or more axes. A two dimensional example of coordinate systems is shown in Figure

3.9.

 Chapter 3 – Mechanical Simulation Analysis

29

Figure 3.9 An illustration of how the body coordinate systems relate to each other.

In Figure 3.9 the yellow body has three coordinate systems attached to it. CS1 is attached at zero offset

and zero rotation from the previous grey body. CG has been offset from CS1 by a distance m and

rotation of θ. CS has been offset from CS1 by a distance n and rotation θ.

Two options exist as to how best to define the system. Either, each body could be defined in the world

coordinate system, or the bodies could be defined relative to one another. Both these options were

explored to see which would be the most convenient. While using the world as a reference point made

it easy for a human to read during debugging, it proved more beneficial to use the relative frame of

reference of the adjacent body. This was due to the order in which the kinematics were calculated, with

the position and orientation of the bodies being calculated sequentially along the chain of arms. This

was done starting at the ground points, through the proximal arms to the distal arms and TCP.

In the system being analysed, each body has three coordinate systems:

CS1 – the coordinate system connected to the previous joint in the chain, referenced relative to the

adjoining coordinate system.

CS2 – the coordinate system connected to the next joint in the chain, referenced relative to CS1.

CG – the coordinate system defining the centre of gravity for the body, referenced relative to CS1.

Simulation and Optimisation of a 2DOFPPM

30

Each body has a mass assigned to it along with an inertia tensor matrix to define the distribution of the

mass. The inertia matrix was calculated in a custom Matlab® procedure (refer Appendix F, Figure F.82),

and based on the assumption that the bodies would be regular hollowed cylinders as is commonly the

case with parallel manipulators. The method of calculation can be seen in Equation (3.11).

E = 	
FGG
GGH
.12 �3K�
 + K

 + ℎ
	 0 0

0 .12 �3K�
 + K

 + ℎ
	 0
0 0 .12 �3K�
 + K

	MNN

NNO (3.11)

where m = mass, h = length, r1 = internal diameter, r2 = outer diameter.

3.2.1.2 Joints

In SimMechanics™, joints are block components that represent one or more mechanical degrees of

freedoms. Joint blocks are used to connect two body blocks to one another. There exist several different

types of joints in SimMechanics™ however, the studied system only uses revolute joints. These are joints

that rotate about a single line of reference (often a primary axis). The system has been set up such that

the manipulator moves in the X-Y plane with the revolute joints rotating about the +Z axis. A revolute

joint block is shown in Figure 3.10.

Figure 3.10 SimMechanics™ Block - Joint

SimMechanics™ cannot resolve closed loop topologies directly. Instead, it splits each closed loop into

two serial chains and analyses them individually while preserving the fact that they are really a single

closed loop. The joint at which SimMechanics™ cuts the chain can be specified. By specifying the most

logical joint to cut, the TCP joint, the model behaves in a more appropriate manner than when left to

determine the cut joint itself. When no joint is specified, the simulation selects one of the actuated

joints to be cut. This causes the mechanism to be operated in an inverse manner where instead of

selecting the TCP below the base, it selects the invalid TCP point above the base (see Figure 3.4).

Although this is easily resolved in this situation, the ability for SimMechanics™ to determine a starting

configuration that is invalid in reality presented a problem.

 Chapter 3 – Mechanical Simulation Analysis

31

To ensure the starting configuration is valid for a 2DOFPPM, the initial conditions on the actuated joints,

Motor_A and Motor_B in Figure 3.7 were set. These initial conditions were calculated and specified in

the start-up script of the model. This proved successful in limiting the mechanical configuration to

realistic positions.

SimMechanics™ allows several features to be added to joints to improve its realism. Both damping and

stiction values can be added as additional blocks in the program. This project has not utilised these

options as the values are arbitrary unless the exact bearing system is known, which will not be the case

at this stage in the design process. If desired, this can be easily added to the system during the final

design stages to further validate the design decisions.

3.2.1.3 Joint Actuation

SimMechanics™ allows both joints and bodies to be actuated by an external force or motion. For the

system being evaluated it is necessary to only actuate the two joints Aj1B and Bj1B. These joints would

normally be actuated by servo motors in reality.

Figure 3.11 SimMechanics™ Block - Joint Actuator

The joint actuation blocks, shown in Figure 3.11, have two modes of operation. Actuation can be in the

form of either a force or a motion. A force applies a given torque to the joint. A motion requires three

arguments, angular position, angular velocity and angular acceleration. The manipulator’s TCP is to

follow a given trajectory and therefore the joint actuator must follow a separate but related trajectory.

This means that if the joint is controlled by the force technique, a mathematical relationship must be

developed to relate the joints path to the torque applied. As seen later in Chapter 4, this is not easily

obtained and therefore the joint must be actuated with the motion parameters.

The developed system uses an off-line trajectory planner (see Chapter 4) to determine the motor joints

angular position, velocity and acceleration with respect to time. These values are stored in a file which is

then accessed by SimMechanics™ during the simulation.

Simulation and Optimisation of a 2DOFPPM

32

3.2.1.4 Sensors

The simulation would not be useful without any outputs providing data on how the simulation

performed. As such, SimMechanics™ includes a range of sensor blocks that can be connected to both

bodies and joints. For measuring joint outputs this project utilises Torque Sensors on the actuated

‘motor’ joints’ as well as angular position, velocity and acceleration sensors. The Gripper body uses a

Body Sensor to measure the end-effector’s position, velocity and acceleration in Cartesian space.

Examples of these sensor blocks are shown in Figure 3.12.

Figure 3.12 SimMechanics™ Blocks - Body Sensor (left), Joint Sensor (right)

3.2.1.5 Physical Constraints

Several additional constraints are used to help ensure the simulated model is configured correctly at the

start of the simulation. Firstly, Initial Condition blocks allow a predefined position to be assigned to the

joints. This assists in ensuring the arms are configured as desired and not inverted. Secondly, a Parallel

Constraint block is added between the lower distal arm and the lower arm of the stabilising section.

These components, shown in Figure 3.13 ensure the manipulator is configured as would be expected

and prevents SimMechanics™ from potentially placing some arms in an inverted position.

Figure 3.13 SimMechanics™ Blocks - Initial Condition Constraint (left), Ground Constraint (centre), Parallel Constraint (right)

3.2.2 Simulation Settings

There are a number of settings that define the environment and how the simulation is processed.

Several points will be covered here however, for complete details the SimMechanics® documentation

should be referenced.

Gravity is defined as a vector. This allows gravity to be either added or removed from the simulation

which can be useful during debugging. Without gravity, the direct and inverse kinematic procedures

 Chapter 3 – Mechanical Simulation Analysis

33

produced earlier in the project were used to crosscheck results returned from the SimMechanics®

simulation.

There exist several modes of analysis for closed loop systems. Namely these are forward dynamics and

kinematics. Forward dynamics computes the positions and velocities of the system’s bodies, given

forces, torques and initial conditions. Kinematics computes the forces and torques required to produce

the specified motions. This project has used the default mode of forward dynamics analysis, although

the Kinematics mode was also explored. No noticeable differences in computation performance or

simulation results were found.

The simulation can be resolved at either fixed step intervals or by allowing SimMechanics® to detect the

time intervals to produce an accurate simulation. After some trialling of different settings with various

cycle-paths, the variable step option was found to be best suited as it produced an accurate result while

not taking too long to process.

The simulation can be resolved using one of several numerical analysis techniques. The different

methods produce the same general result but with differing degrees of accuracy and execution speed.

The default option in SimMechanics™ for a variable step solver is the Runge-Kutta, Dormand-Prince (4,5)

pair method. This method proved the most suitable for solving the 2DOFPPM, as configured in this

section, due to it providing suitable precision in the fastest possible time.

3.2.3 Running the Simulation

Figure 3.7 shows the model of the mechanical system in terms of bodies, joints etc. This is turned into a

subsystem and included as part of the larger system which handles the inputs, outputs and simulation

settings. The higher level abstraction can be seen in Figure 3.14. The mechanical system is contained

within the large block labelled ‘Mechanical Robot’. Data streams are read in from files on the left hand

side and different data streams are read out of the ‘Mechanical Robot’ block on the right hand side.

These output data streams are stored into separate files.

The SimMechanics™ model was developed to take input from a pair of files. These files contain time

dependent data about each of the motors’ angular position, velocity and acceleration. At this stage in

the thesis, the formation of these data files will not be considered as it will be covered later in Chapter 4

on Trajectory Planning. These files will instead be used as a given set of commands for which the

simulation must carry out.

Simulation and Optimisation of a 2DOFPPM

34

Figure 3.14 SimMechanics™ high-level view of the simulation construct

At the top of Figure 3.14 a file stream is being used as a stopping condition for the simulation. This file is

a time dependent file consisting of ‘0’ data values up until the desired end of the simulation where a ‘1’

value triggers the simulation to stop. This is also produced as part of the trajectory planning process.

The ‘Machine Environment’ block at the bottom left of Figure 3.14 contains parameters, constraints and

settings for the simulation. This is where the gravity vector is defined along with mechanical assembly

tolerances settings.

When the simulation is run the SimMechanics™ simulation engine evaluates the time dependent inputs

and, at internally determined points in simulation time, calculates the resulting actions of the

mechanical components. The sensors within the system then record their measurements and the values

are stored in files. These files can be plotted and the system’s performance analysed. An automated

process for plotting these results has been developed.

3.3 Mechanical Simulation Results

3.3.1 Workspace Analysis

As discussed previously, the workspace of a manipulator is defined as the area which the TCP of the

manipulator can reach given the constraints of the system. In the case of the manipulator being studied,

the constraints are limited by the minimum and maximum angles of each joint, the upper and lower arm

lengths and the spacing of the servo motor actuators. The results in this section are based around

default dimensions and constraints obtained from RML Engineering Ltd. shown in Table 3.1. These

 Chapter 3 – Mechanical Simulation Analysis

35

default values were obtained based on good engineering principles and a ‘rule-of-thumb’ approach.

Later in this thesis some of these values will be optimised for a particular task. The results presented

here are to highlight the effects of each dimension on the shape and size of the workspace, as such the

default values and their results are not important in themselves but rather the relative changes in the

results are of interest. Figure 3.16 through to Figure 3.19 highlight the changes in workspace shape

when the manipulator’s dimensions are varied.

Table 3.1 Default parameters for workspace analysis. Values obtained from RML Engineering Ltd.

Parameter Default Setting

Base length (separation of servo motor actuators) 0.3 m

Proximal (upper) arm length 0.36 m

Distal (lower) arm length 0.88 m

Minimum angle between proximal arm and +Y-axis 43°

Maximum angle between proximal arm and +Y-axis 164°

Minimum internal angle between proximal arm and distal arm 43°

Maximum internal angle between proximal arm and distal arm 134°

Minimum internal angle between distal arms 48°

Maximum internal angle between distal arms 71°

The dimensions and constraints of RML Engineering’s first design are displayed in Figure 3.15, along with

the workspace reachable under these constraints.

The effects of applying constraints on minimum and maximum angles at each joint can be seen most

clearly in Figure 3.16, where the default limits are compared to the maximum workspace limited only by

joint singularities.

Upon consideration of Figure 3.16, an interesting observation can be made regarding the relative speed

and accuracy of the TCP within the workspace. If the larger workspace (green) is analysed in the

knowledge that each point is plotted with a constant angular displacement from each other (8°), it can

be seen that if the servo motor actuators are rotated at a constant rate, the displacement of the TCP

becomes smaller in higher density areas (by higher density, it is meant the density of the plotted points

in the workspace graphs). Conversely, if the plotted points are further dispersed (e.g. near the outer

limits of the workspace), this indicates an area of the workspace where greatest TCP speed can be

Simulation and Optimisation of a 2DOFPPM

36

achieved. Relative accuracy, due to errors in the servo motor positions, can also be deduced in the same

manner. Densely populated areas of the workspace are less prone to error in TCP position due to servo

motor errors, whereas sparsely populated areas will encounter greater TCP errors from any servo motor

inaccuracies.

Figure 3.15 Workspace of manipulator using RML Engineering’s default dimensions and constraints.

It should be noted however, that the oversimplified perception of relative speed and accuracy in the

workspace obviously does not take into account the motor dynamics, torque requirements from the

arms nor the highly coupled nature of the parallel mechanism. A much more thorough analysis is

required to accurately compare even the relative performance of manipulator configurations, let alone

being able to evaluate the actual performance.

Figure 3.17, Figure 3.18 and Figure 3.19 display the effects of changing the spacing between the servo

motor actuators, and lengths of the proximal and distal arms respectively. In each example the

dimensions were altered by ±100 mm, and the corresponding workspace plotted. As can be seen in the

plots, a small change in any of these dimensions can vastly alter the effective workspace. It is for this

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5
Work Area of 2-DOF Parallel Planar Manipulator

X Axis (m)

Y
 A

xi
s

(m
)

Base Length = 0.3 m

Upper Arm Length = 0.36 m

Lower Arm Length = 0.88 m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

 Chapter 3 – Mechanical Simulation Analysis

37

reason that an effective means of optimising, not only the workspace, but the overall system

performance is needed.

Figure 3.16 Comparison of workspace limited by RML Engineering's concept manipulator's angle constraints (blue) and angle

limits before encountering singularities (green).

Figure 3.17 shows that if the angle constraints remain the same, increasing the separation of the servo

motors causes the workspace to become a more hollowed, deeper and narrower ‘U’ shape. By moving

the motors closer to each other, the workspace becomes wider and flatter.

When considering the effect that the length of the proximal arm has on the workspace, Figure 3.18

shows that a shorter arm produces a smaller workspace closer to the base. A longer upper arm results in

a deeper and more hollowed ‘U’ shape with similar width to the original.

Figure 3.19 demonstrates that altering the distal arm length has the greatest effect in modifying the

available workspace. This is due to the distal arm being the link furthest from the point of actuation and

therefore altering its length is ‘multiplied’ by the leverage of the proximal link. By increasing the distal

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5
Comparison Between Limits on Interior Angles

X Axis (m)

Y
 A

xi
s

(m
)

Base Length = 0.3 m

Upper Arm Length = 0.36 m

Lower Arm Length = 0.88 m

Iteration Step Size = 8 °

Base Length = 0.3 m

Upper Arm Length = 0.36 m

Lower Arm Length = 0.88 m

Iteration Step Size = 8 °

Min(U-L) Arm Angle = 43 ° / 0 °

Max(U-L) Arm Angle = 134 ° / 180 °

Min(L-L) Arm Angle = 48 ° / 0 °

Max(L-L) Arm Angle = 71 ° / 180 °

Min(U-B) Arm Angle = 33 ° / 0 °

Max(U-B) Arm Angle = 175 ° / 180 °

Simulation and Optimisation of a 2DOFPPM

38

arm length, the workspace becomes spread along the X-axis and slightly compressed in the Y-axis.

Reducing the distal arm length causes the workspace to become noticeably more ‘U’ shaped.

Pick-and-place applications often require a rectangular workspace and as such, ‘U’ shaped workspaces

become ineffective and difficult to utilise. It is therefore preferential to select a workspace that is most

evenly dispersed in both the X and Y planes. This method of analysis can be useful to achieve a desirable

workspace.

Figure 3.17 Comparison between workspaces when the base length (separation of actuated joints) is altered. The default

distance of 0.3 m (blue) is compared to a smaller distance of 0.2 m (green) and a larger distance of 0.4 m (pink).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5
Effects on Workspace from Varying Actuator Spacing

X Axis (m)

Y
 A

xi
s

(m
)

Base Length = 0.2 m / 0.3 m / 0.4 m

Upper Arm Length = 0.36 m

Lower Arm Length = 0.88 m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

Base Length = 0.2 m / 0.3 m / 0.4 m

Upper Arm Length = 0.36 m

Lower Arm Length = 0.88 m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

Base Length = 0.2 m / 0.3 m / 0.4 m

Upper Arm Length = 0.36 m

Lower Arm Length = 0.88 m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

 Chapter 3 – Mechanical Simulation Analysis

39

Figure 3.18 Comparison between workspaces when the proximal (upper) arm length is altered. The default length of 0.36 m

(blue) is compared to a smaller length of 0.26 m (green) and a longer length of 0.46 m (pink).

Figure 3.19 Comparison between workspaces when the distal (lower) arm length is altered. The default length of 0.88 m

(blue) is compared to a smaller length of 0.78 m (green) and a longer length of 0.98 m (pink).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5
Effects on Workspace from Varying Upper Arm Length

X Axis (m)

Y
 A

xi
s

(m
)

Base Length = 0.3 m

Upper Arm Length = 0.26m / 0.36m / 0.46m

Lower Arm Length = 0.88 m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

Base Length = 0.3 m

Upper Arm Length = 0.26m / 0.36m / 0.46m

Lower Arm Length = 0.88 m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

Base Length = 0.3 m

Upper Arm Length = 0.26m / 0.36m / 0.46m

Lower Arm Length = 0.88 m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5
Effects on Workspace from Varying Lower Arm Length

X Axis (m)

Y
 A

xi
s

(m
)

Base Length = 0.3 m

Upper Arm Length = 0.36 m

Lower Arm Length = 0.78m / 0.88m / 0.98m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

Base Length = 0.3 m

Upper Arm Length = 0.36 m

Lower Arm Length = 0.78m / 0.88m / 0.98m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

Base Length = 0.3 m

Upper Arm Length = 0.36 m

Lower Arm Length = 0.78m / 0.88m / 0.98m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

Base Length = 0.3 m

Upper Arm Length = 0.36 m

Lower Arm Length = 0.78m / 0.88m / 0.98m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

Base Length = 0.3 m

Upper Arm Length = 0.36 m

Lower Arm Length = 0.78m / 0.88m / 0.98m

Iteration Step Size = 5 °

Min(U-L) Arm Angle = 43 °

Max(U-L) Arm Angle = 134 °

Min(L-L) Arm Angle = 48 °

Max(L-L) Arm Angle = 71 °

Min(U-B) Arm Angle = 33 °

Max(U-B) Arm Angle = 175 °

Simulation and Optimisation of a 2DOFPPM

40

3.3.2 SimMechanics™ Analyis

In order to present the output and capabilities of the SimMechanics™ simulation, a sample path must be

defined. Figure 3.20 shows the end-effector’s cycle-path that is being used in this project. This path was

chosen as it represents a typical pick-and-place cycle for product manipulation using the machines that

RML Engineering Ltd. currently manufactures. The trajectory planning method used to generate the

example path in this section is described in the following chapter. The simulation was run using this

path, along with the additional parameters and constraints specified in Table 3.2. A complete list of

mechanical parameters can be found in Appendix A.

Figure 3.20 Test cycle-path. Movements follow the order from 1 through 9

When the SimMechanics™ simulation is run, a visualisation of the manipulator can be viewed showing

the mechanical components moving in relation to one another under the presence of the external

forces. A screen shot of this is shown in Figure 3.21. The arms are represented by simple lines, although

the inertias of each component are represented in three dimensions. Running parallel to the right hand

side arm is the additional stabilising arm offset by a fixed amount. The gripper is also represented as a

triangle at the bottom of the two distal arms.

 Chapter 3 – Mechanical Simulation Analysis

41

Table 3.2 Default parameters used in sample simulation. Values obtained from RML Engineering.

Parameter Default Setting

Base length (separation of servo motor actuators) 0.3 m

Proximal (upper) arm length 0.36 m

Distal (lower) arm length 0.88 m

End-effector length 0.01 m

Proximal arm mass 3.5 kg

Distal arm mass 2 kg

End-effector mass 35 kg

Arm ID (Internal diameter) 0.01 m

Arm OD (Outer diameter) 0.02 m

Minimum angle between proximal arm and +Y-axis 43°

Maximum angle between proximal arm and +Y-axis 164°

Minimum internal angle between proximal arm and distal arm 43°

Maximum internal angle between proximal arm and distal arm 134°

Minimum internal angle between distal arms 48°

Maximum internal angle between distal arms 71°

Pick/Place Dwell Time 0.2 s

Figure 3.21 Screenshot of the SimMechanics™ simulation being run.

Simulation and Optimisation of a 2DOFPPM

42

Figure 3.22, Figure 3.23 and Figure 3.24 show the motor positions, velocity and acceleration during the

simulation. The motors start and finish with zero velocity, as well as having a stationary period of 0.2 s in

the middle of the cycle. This pause in the cycle is to represent the time taken for the end-effector to

‘pick’ or ‘place’ the handled object. In Figure 3.24 it can be noted that the motor acceleration has abrupt

changes in values and does not accurately represent the performance ability of a real motor. This is due

to a limitation of the cubic spline trajectory planning method (see Section 4.1.4) that is used. It will be

shown in Section 4.4 that this is of insignificant consequence and that the simplified motor characteristic

is still valid for the level of model fidelity required in this project.

Figure 3.22 Simulated output of the motors’ positions over the sample path-cycle.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20

40

60

80

100

120

140
Motor Positions

Time (s)

P
os

iti
on

 (
D

eg
)

Motor A

Motor B

 Chapter 3 – Mechanical Simulation Analysis

43

Figure 3.23 Simulated output of the motors’ angular velocity over the sample path-cycle.

Figure 3.24 Simulated output of the motors’ angular acceleration over the sample path-cycle.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-400

-300

-200

-100

0

100

200

300

400

500
Motor Angular Velocity

Time (s)

A
ng

ul
ar

 V
el

oc
ity

 (
D

eg
 s

-1
)

Motor A

Motor B

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-8000

-6000

-4000

-2000

0

2000

4000

6000
Motor Angular Acceleration

Time (s)

A
ng

ul
ar

 A
cc

el
er

at
io

n
(D

eg
 s

-2
)

Motor A

Motor B

Simulation and Optimisation of a 2DOFPPM

44

The torque required to move the manipulator’s actuated proximal arms in the profiles shown above in

Figure 3.22 to Figure 3.24, is presented in Figure 3.25. The SimMechanics™ simulation engine takes into

account the highly coupled nature of the parallel mechanism when producing this result. The sharp

changes in torque, similar to the acceleration pattern found in Figure 3.24, are again the result of the

trajectory planning method and can be assumed accurate enough for the simulation task at this stage in

the thesis.

Figure 3.25 Simulated output of the motors’ torque over the sample path-cycle.

Figure 3.26, Figure 3.27 and Figure 3.28 show the end-effector’s (TCP) position, velocity and acceleration

during the simulation. Each graph has been separated into separate (X, Y) Cartesian coordinates. In the

velocity and accelerations, Figure 3.27 and Figure 3.28 respectively, an additional line has been plotted

representing the summation of the X and Y components of velocity and acceleration. This information is

of particular importance when designing the tool or gripper head to ensure that it is capable of handling

objects with the high speeds and accelerations produced by the manipulator.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-400

-300

-200

-100

0

100

200

300

400

500

600
Motor Torques

Time (s)

T
or

qu
e

(N
m

)

Motor A

Motor B

 Chapter 3 – Mechanical Simulation Analysis

45

Figure 3.26 Simulated output of the end-effector’s position in X and Y components over the sample path-cycle.

Figure 3.27 Simulated output of the end-effector’s velocity in X and Y components over the sample path-cycle.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
TCP Position

Time (s)

P
os

iti
on

 (
m

)

X

Y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
TCP Velocity

Time (s)

V
el

oc
ity

 (
m

 s
-1

)

X

Y

√(X2 + Y2)

Simulation and Optimisation of a 2DOFPPM

46

Figure 3.28 Simulated output of the end-effector’s acceleration in X and Y components over the sample path-cycle.

The exact path followed by the end-effector is more clearly seen in the Cartesian plot shown in Figure

3.29. The path cycles from left to right, pauses and then returns back to the left. The data points have

been plotted to show the relative position in time, with the points at the start of the cycle being plotted

as a duller colour becoming progressively brighter towards the end of the cycle. Careful observation will

show that the data points are unevenly dispersed throughout the path. This occurs because of how

SimMechanics™ executes the simulation. The time between adjacent time segments varies depending

on how much change SimMechanics™ detects in the mechanical system during the previous time

segments. It can also be noted that this trajectory does not follow the desired path exactly as shown

earlier in Figure 3.20. This is due to the trajectory planning method explained in the next chapter.

The simulation systems developed in this chapter produces results that can be used in later sections.

The kinematic equations developed will be used in the trajectory planning process (Chapter 4), while the

SimMechanics™ simulation allows the visualisation and analysis of an optimised manipulator

configuration in Chapter 6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-50

-40

-30

-20

-10

0

10

20

30

40

50
TCP Acceleration

Time (s)

A
cc

el
er

at
io

n
(m

 s
-2

)

X
Y

√(X2 + Y2)

 Chapter 3 – Mechanical Simulation Analysis

47

Figure 3.29 Trajectory traced by the end-effector during the SimMechanics™ simulation.

 Chapter 4 – Trajectory Planning

49

4 Trajectory Planning

In order for a manipulator to be highly productive, it must perform its task in minimal time. Many

researchers have investigated methods for achieving this [23][33][37][38][45][46][48-54][67-69].

Trajectory planning techniques can be separated into off-line or on-line methods depending on their

computational intensity and ability to handle new path commands on the fly. Methods that involve

significant computation, such as performing an iterative optimization process, are generally too slow to

be computed in real-time while simultaneously tracking the manipulator’s path [26]. Conversely, on-line

trajectory planning methods must be computed fast enough to avoid causing latency in the

manipulator’s movements. On-line methods also benefit from being able to re-compute the trajectory if

obstacles are encountered or if using a vision and conveyer tracking system [26].

Many trajectory planners implemented in industrial controllers use on-line trajectory planners that only

consider the kinematic limitations on the system [26]. By not considering the dynamic constraints (i.e.

motor torque limits), the trajectory can be computed at sufficient speed which enables them to be on-

line systems. However, by not taking into account the dynamic limitations, the manipulators are forced

to underutilize their motors’ performance capabilities. If the motors’ maximum performance limitations

are used in planning a path, saturation of the motors occurs leading to poor path tracking as the motors

are not capable of producing the torque required to perform the kinematics [26]. When comparing

configurations and finding an optimal solution of the 2DOFPPM, kinematic only analysis may result in

solutions that do not perform well in reality.

After determining that the trajectory planner must take into account the dynamics of the system, a

number of methodologies were considered. Bobrow et al. [48] and Shin and McKay [49] individually

presented a method that produces a time-minimum trajectory. This method however, requires that the

system’s dynamic equations are known.

Two methods commonly exist for formulating the dynamic equations of a mechanical system, the Euler-

Lagrangian technique and the Newton-Euler approach. These methods produce similar results but are

obtained by different means. Due to the parallel structure of the 2DOFPPM, the dynamic equations are

not easily obtained using either of these methods. Kim and Shin [47] developed a minimum-time path

planning method in joint space using heuristics to produce a dynamic model of the manipulator. Huang

Simulation and Optimisation of a 2DOFPPM

50

et al. [54] also used a hybrid approach to form the dynamic equations for a 2DOFPPM. The trajectory

planning method used in this project considers these approaches to the problem, and where

appropriate borrows their ideas to produce a method that is appropriate for this project.

4.1 Trajectory Planning Process

A range of trajectory planning methods were considered for this project. The resulting process uses an

off-line, cubic spline fitment of the path in joint space, taking into account the system’s kinematic

limitations and an estimation of the system’s dynamic limitations. One of the main objectives of this

project is to enable the development of customised 2DOFPPM manipulators that are optimized for a

given task. To do this a trajectory planner must be developed. While the exact path planning

methodology is not crucial, it is important that comparisons between manipulator configurations are

compared using the same trajectory planning process. This trajectory planning method allows for the

manipulator’s dynamics to be taken into account, albeit in a simplified estimated form.

The following sections present a detailed explanation of the trajectory planning process. The process is

also summarised diagrammatically in Figure 4.1.

 Chapter 4 – Trajectory Planning

51

Figure 4.1 Flow diagram of the trajectory planning and optimisation process.

4.1.1 Movement Commands

The path of a manipulator can be defined in joint space, where the angles of the actuators are the

defining factor, or, as is more common in industry, the path is defined in terms of the end-effectors

position in the Cartesian workspace. Figure 4.2 shows the path that the end-effector is required to

follow and the corresponding angle commands required to achieve that path. Clearly, when defining the

movement of the manipulator, it is more intuitive to define in terms of the end-effector position in

Cartesian workspace, than to be defined in terms of the motor’s angular positions.

Simulation and Optimisation of a 2DOFPPM

52

Figure 4.2 Example trajectory in Cartesian space with the corresponding motor positions required to reach each target point.

Along with defining the path in Cartesian coordinates, several other features and constraints are used to

tailor the path for a particular task. Table 4.1 summarises the parameters that can be specified in this

system.

Table 4.1 Path defining parameter definitions.

Parameter Units Description

Target (X,Y) The position in Cartesian coordinates where the end-effector is

expected to travel to.

MoveType [‘MoveJ’,’MoveL’] Indicates how the end-effector should move in order to reach the

target.

Zone mm Specifies a distance from the target where the end-effector is

considered close enough and can begin moving to the next target

on the path.

MaxTCPSpeed ms
-1

Sets a limit on the end-effector/TCP speed during the movement.

Pause s Optional parameter to stipulate the manipulator must pause for a

period of time.

0 1 2 3 4 5 6 7 8
0

1

2

3

Time

M
ot

or
 A

P
os

iti
on

 (
ra

d)

0 1 2 3 4 5 6 7 8
0

1

2

3

Time

M
ot

or
 B

P
os

iti
on

 (
ra

d)

-0.4 -0.2 0 0.2 0.4
-1

-0.9

-0.8

-0.7

-0.6

0

1

2

3

4

5

6

7

8

X (m)

Y
 (

m
)

 Chapter 4 – Trajectory Planning

53

The target is only defined in terms of the X and Y coordinates with the Z component being omitted as

the 2DOFPPM only acts in a single Z plane. The MoveType permits either a linear move (MoveL) or a

joint move (MoveJ). A linear move requires the movement to be performed in a straight line between

the two targets, whereas the joint move is a weaker constraint and allows the movement to be executed

in a way that is most efficient for the joints. Figure 4.3 depicts the difference between these two moves,

with the black line representing a linear movement during the vertical ‘pick’ and ‘place’ movements, and

the green line representing a joint move which deviates from the direct path between targets in order to

find a more efficient path for the actuated joints.

Figure 4.3 A sample path consisting of two vertical linear movements (MoveL) and a single joint movement (MoveJ). Several

targets have a zone distance defined allowing a smoother trajectory on approach to the target.

The zone concept has also been employed by Lloyd and Hayward [70] where they refer to this as a blend

between two trajectories and similarly by Macfarlane [26] as tightness around a quintic spline control

point. A large zone allows a smoother, and therefore faster, path to be followed where precision

movements are not required. A small, or even a zero zone, is used whenever the target point must be

reached accurately. Figure 4.3 includes zone definitions around two of the targets, thereby facilitating a

smooth arc movement on approach to the targets.

When performing a movement, the manipulator’s end-effector, or gripper, may be required to move at

a speed that is less than the maximum potential produced by the actuators. This may be due to

limitations in the gripper’s ability to hold an object or because the movement may have to cooperate

with a task outside of the manipulator itself, for example, conveyor tracking. The MaxTCPSpeed allows

the speed of the end-effector to be limited if required.

Simulation and Optimisation of a 2DOFPPM

54

When performing pick-and-place tasks there is usually a pause at the ‘pick’ and ‘place’ positions to allow

the gripper to take hold of or release the object. In industrial applications this takes the form of either a

set pause time, or by waiting for a feedback signal from the system that the transition has successfully

taken place. As this project is considering the manipulator in isolation from any peripheral feedback

system, only the time based pause is considered. This is an optional parameter on any move command.

When included, the trajectory is formed with the manipulator decelerating to a stationary position at

the destination target. When omitted, the target is treated as a ‘fly-by’ point with continuous end-

effector velocity and acceleration maintained through the target.

4.1.2 Formulate Knots

Although the targets represent the general path the end-effector must follow, the inclusion of the

MoveType, zone and pause data associated with moving to these targets, transforms the path. This

altered path will follow the targets approximately, but will do so in a way that is most efficient for the

actuators yet still satisfies these movement constraints.

Knots are essentially control points for the fitment of a spline. At this point in the trajectory planning

process these points are still defined in Cartesian space, but will be transformed later into joint space to

allow the actual fitment of the cubic spline trajectories. If any move commands have a pause associated

with them, then the set of movement commands on either side of the paused target are considered

independent of each other and will be fitted with separate piecewise splines.

Additional to being a coordinate in space, knots also contain properties allowing the specification of an

angular velocity. The trajectory planning process sets the manipulator’s velocity to zero at the first and

last targets in each set of movement command sequences. This ensures the manipulator is stationary

when it reaches the final knot in a particular move sequence.

Knots are created along the path in order to provide control points for fitting a spline. These knots are

formed by fitting a straight line between targets, where the line intersects the zone of the next target a

knot is placed. This is shown in Figure 4.4. The path moves from left to right, with knots being placed on

the approaching side of a target’s zone.

 Chapter 4 – Trajectory Planning

55

Figure 4.4 Generation of knots by taking a straight line between targets. Where the line intersects with the zone a knot is

formed.

As well as the example presented in Figure 4.4, additional knots are also introduced along linear

movements to ensure a near-linear trajectory is achieved by the end-effector. How this is achieved is

discussed in Section 4.2.

4.1.3 Cartesian to Joint Space Conversion

The movement commands define the path in Cartesian space because this is more intuitive to the

robotic programmer. However, the manipulator is better controlled in the joint space as this allows a

trajectory that is smooth and optimal for the motor actuators to be formed. Therefore the knots that

were defined in Cartesian space are converted to joint space using the inverse kinematic equations

developed in Section 3.1.2. Figure 4.5 highlights the motor positions required at each of the knots.

From this point on in the trajectory planning process, the joint space becomes the standard frame of

reference. The Cartesian space is only used again to validate the end-effector’s speed and ensure that it

is under the MaxTCPSpeed prescribed for each movement.

Simulation and Optimisation of a 2DOFPPM

56

Figure 4.5 Knots defined in Cartesian space (left) are converted into joint space coordinates (right). Numbering indicates

order of knots.

4.1.4 Cubic Spline Fitment

With the knots defined in joint space, splines can be fitted between them to form a smooth trajectory

for each of the motors. These splines define the motion of the joint/motor with respect to time. A

number of researchers have used piecewise cubic polynomials to form a smooth trajectory [23][33][69].

Cubic polynomials allow for continuous velocity and acceleration throughout the path.

In order for time-dependent splines to be fitted between the knots, a time value must be assigned to

each knot. The exact time-spacing between knots is not crucial at this stage in the trajectory planning,

however, the path-time (time travelled along the path) must continually increase at each knot in the

order they are to be traversed through. In the optimization step of the trajectory planner the time

between knots will be altered to achieve the shortest overall cycle-time. It is, however, helpful if the

path-time at each knot is approximated to begin with. This is accomplished by considering the distance

travelled between knots by the TCP in Cartesian space, and dividing it by the maximum velocity allowed

for that move (as defined earlier in Section 4.1.1 on movement commands). This is outlined in Equation

(4.1).

�PQ = �PQRS + TPQ9PQRSUVWCXQ (4.1)

where UVWCXQ is the maximum TCP velocity allowed while travelling to knot Ki, TPQ9PQRS is the Cartesian

distance between the previous knot, Ki-1, and the destination knot, Ki. This is shown in Equation (4.2).

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Motor A
Position (rad)

M
ot

or
 B

P
os

iti
on

 (
ra

d)

0

1

2

3

4

5

6

7

,8

-0.4 -0.2 0 0.2 0.4
-1

-0.9

-0.8

-0.7

-0.6

0

1

2

3

4

5

6

7

8

TCP X (m)

T
C

P
 Y

 (
m

)

 Chapter 4 – Trajectory Planning

57

TPQ9PQRS = -Y�PQ − �PQRSZ
 + Y�PQ − �PQRSZ
 (4.2)

If there are k knots in the movement, including the starting and finishing knot, there will be k-1

segments for which a cubic polynomial must be fitted to each. To ensure the path is smooth over the

entire movement, the 3
rd

 order polynomials describing the position of each motor must be such that

their 2
nd

 order derivative (acceleration profile) be continuous where the segments are joined together at

the knots. Figure 4.6 shows the position, velocity and acceleration profiles of a path where matching the

derivatives of the cubic polynomial have been neglected and is only continuous in the position and

velocity aspect of the profile. This can be contrasted with Figure 4.7, where the cubic polynomials

describing the position of the motor are continually differentiable to the 2
nd

 order of acceleration.

Figure 4.6 Position, velocity and acceleration of a discontinuous profile formed by two piecewise cubic polynomials between

three knots.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

A
ng

ul
ar

 P
os

ito
n

(r
ad

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.2

0

0.2

0.4

0.6

0.8

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d
s-1

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

0

1

2

Time (s)A
ng

ul
ar

 A
cc

el
er

at
io

n
(r

ad
 s

-2
)

Simulation and Optimisation of a 2DOFPPM

58

Figure 4.7 Position, velocity and acceleration of a continuous profile formed by two piecewise cubic polynomials between

three knots.

To ensure the cubic splines have C
2
 continuity, that is, the 2

nd
 order derivative is continuous at the knots,

several constraints must be placed on finding the coefficients to the cubic polynomials. Equation (4.3) is

the general form for the time dependent cubic polynomial describing the angular position of the motor, θ. The more general form is shown in Equation (4.4), where the time at the previous knot, tKi-1, is

subtracted from the current path-time, t, to get the time since the previous knot. There are (k-1)

polynomials to represent each of the path segments between the knots.

����	 = ����	 + ����	��	 + �
��	��	
 + ����	��	� (4.3)

����	 = ����	 + ����	Y� − �PQRSZ + �
��	Y� − �PQRSZ
 + ����	Y� − �PQRSZ� (4.4)

for �PQRS ≤ � ≥ �PQ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

A
ng

ul
ar

 P
os

ito
n

(r
ad

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d
s-1

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-2

0

2

Time (s)A
ng

ul
ar

 A
cc

el
er

at
io

n
(r

ad
 s

-2
)

 Chapter 4 – Trajectory Planning

59

As there exist 4 unknown coefficients for each of the k-1 polynomials, 4(k-1) equations using these

unknowns are needed to find the coefficients. These equations can be obtained through the constraints

on the system. Equations (4.5) and (4.6) state that the starting position is known and the initial angular

velocity is zero. The position of the motor at the end of a given segment, i-1, must be equal to the

position obtained from the start of the next segment, i, as shown in Equations (4.7) and (4.8). Equation

(4.9) states that the velocity at the end of a segment must be the same as the velocity at the following

segment. Similarly the acceleration profiles between segments must be continuous at each knot as

shown in Equation (4.10). Equations (4.11) and (4.12) are similar to the starting conditions in that they

constrain the final position to that which is known and the final velocity to zero.

����	 = ��0	 = �P] (4.5)

����	 = ^�0	 = ^P] = 0 (4.6)

����	 + ����	Y�PQ − �PQRSZ + �
��	Y�PQ − �PQRSZ
 + ����	Y�PQ − �PQRSZ� = �Y�PQZ (4.7)

����_�	 = �Y�PQZ (4.8)

����	 + 2�
��	Y�PQRSZ + 3����	Y�PQRSZ
 = ����_�	��PQ	 (4.9)

2�
��	 + 6����	Y�PQRSZ = 2�
��_�	��PQ	 (4.10)

����a	 + ��Y�aZ ��PQa� + �
Y�aZ ��PQa�
 + ��Y�aZ ��PQa�� = ���PQa	 (4.11)

��Y�aZ + 2�
Y�aZ ��PQa� + 3��Y�aZ ��PQa�
 = ^��PQa� = 0 (4.12)

Simulation and Optimisation of a 2DOFPPM

60

When the constraint equations are solved simultaneously, as shown in Equation (4.13), the polynomial

coefficients are resolved. Equation (4.13) shows the systems of equations for solving 2 splines between

three knots. θ0 and ω0 are the position and velocity constraints of the first knot. θ1, ω1 and α1 are the

position, velocity and acceleration of the spline at the middle knot. θ2 and ω2 are the position and

velocity constraints of the final knot. t0, t1 and t2 are the time values at each of the knots. This example is

easily expanded out to accommodate more knots. The result is a set of (k-1) 3
rd

 order polynomials to

describe the path travelled between k knots. This set of cubic polynomials ensures continuous velocity

and acceleration over the entire path, with stationary starting and ending points.

FGG
GGG
GGH
1 ��0 1 ��
 ���2�� 3��
1 ��0 0 ��
 ���0 0

0 00 0 0 00 00 01 0 0 00 00 10 0 2�� 3��
2 6��0 00 0 0 00 0
0 −10 0 0 0−2 01 �
0 1 �

 �
�2�
 3�

MN

NNN
NNN
O

FGG
GGG
GGG
H�������
������
��
�

��
MN

NNN
NNN
NO
=

FGG
GGG
GH��̂�����̂�b��
̂
MN

NNN
NNO =

FGG
GGG
GH��0����̂�b��
0 MNN

NNN
NO
 (4.13)

Figure 4.8 shows the position, velocity and acceleration profiles of a sample motor’s cycle-path. The

individual cubic splines are highlighted by plotting adjacent splines with alternating colours. There is a

break of 0.2 seconds in the middle of the profile to account for a ‘pick’ or ‘place’ action to occur. The

motor profile is stationary during this time.

 Chapter 4 – Trajectory Planning

61

Figure 4.8 Position, velocity and acceleration of a continuous profile formed by piecewise cubic polynomials. Alternating

colours differentiate individual polynomials.

4.1.5 Validation against Constraints

Once a trajectory has been developed in the form of a cubic polynomial, it is then validated against a set

of constraints. These constraints, listed in Table 4.2, cover the limitations of the motor’s angular

velocity, acceleration, jerk and torque, as well as limitations placed on the end-effector’s TCP velocity.

This process must be done to ensure the trajectories developed do not exceed the capabilities of the

manipulator. The trajectory can also be evaluated to see if it is maximising its capabilities throughout

each path segment. If a path segment either exceeds the capabilities of the manipulator or does not

come close enough to maximizing the performance available, the path is modified as shown in the next

Section, 4.1.6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.01

0.02

0.03

A
ng

ul
ar

 P
os

ito
n

(r
ad

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.1

-0.05

0

0.05

0.1

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d
s-1

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-2

-1

0

1

Time (s)A
ng

ul
ar

 A
cc

el
er

at
io

n
(r

ad
 s

-2
)

Simulation and Optimisation of a 2DOFPPM

62

Table 4.2 Constraints on trajectories.

Minimum Value Parameter Evaluated Maximum Value

-ωmax ω (Motor Angular Velocity) ωmax

-αmax α (Motor Angular Acceleration) αmax

-Јmax Ј (Motor Angular Jerk) Јmax

-τmax τestimated (Estimated Motor Torque) τmax

 |TCPvelocity| (TCP speed) TCPmax_speed

While the motor’s velocity, acceleration and jerk can be obtained directly from the cubic polynomial

trajectory description, and the TCP speed can be known through inverse kinematics, the torque

requirements of the motor are not as easily resolved. This is due to the highly coupled non-linear

dynamics found in parallel mechanisms. The torque required of one motor is dependent on the torque

provided by the other motor. While it is possible to obtain the torque requirements, the complex

mathematics involved does not lend itself well to the task of trajectory planning. Instead, a simple

estimate is made using some assumptions about the system’s mechanics. These assumptions are listed

below:

• The gripper’s mass and inertia properties are assumed to include the mass and inertia of any

carried load.

• The mass of the proximal arms are located as point masses about the centre of the length of the

proximal arms.

• The mass of the distal arms are located at the point where they attach to the proximal arms.

• Half of the mass of the gripper and half of the mass of the distal crank are carried by either

proximal arm and are located as point masses at the end of the proximal arms.

• The mass of the proximal stabilizing arm is located as a point mass about the centre of the

length of the ‘B’ proximal arm.

• The mass of the distal stabilizing arm is located as a point mass at the end of the ‘B’ proximal

arm.

• The mass of the proximal crank is located as a point mass at the end of the ‘B’ proximal arm.

These assumptions are highlighted in diagrammatic form in Figure 4.9.

 Chapter 4 – Trajectory Planning

63

Figure 4.9 Diagramtic view of the assumptions made for torque estimation. Red components represent locations of point

mass'. Blue represent distance components. Green labels the manipulators components.

The equations used to estimate the torque required from each motor are represented in (4.14) through

to (4.19). The calculations for the ‘A’ and ‘B’ motors are different due to the inclusion of the stabilizing

arms alongside the ‘B’ proximal and distal arms.

The moment of inertia coupled to motor ‘A’ can be estimated as:

E6 = cdefC ∗ hidefC2 j
 + hck�lm +ck�lm_oeWpq2 + cre�ddse2 j ∗ idefC
 (4.14)

where cdefC and idefC are the mass and length of the proximal arm, ck�lm is the mass of the distal arm, ck�lm_oeWpq is the mass of the crank arm connected at the base of the distal arm, and cre�ddse is the

mass of the gripper. The torque acting on motor ‘A’ due to gravity is estimated as:

Simulation and Optimisation of a 2DOFPPM

64

16_reWt�mB = cdefC ∗ hidefC2 j ∗ sin��$	 ∗ g + hck�lm + ck�lmvwxyz2 + cre�ddse2 j∗ idefC ∗ sin��$	 ∗ g

(4.15)

where �6 is the angle of the proximal arm from vertical, g is the gravity vector of 9.8 ms
-2

. By adding the

torque due to gravity to the torque due to the angular acceleration of the inertia of the arms (b6), the

overall torque requirement can be calculated as:

16_mfmW{ = E6 ∗ b6 + 16_reWt�mB (4.16)

The moment of inertia coupled to motor ‘B’ can be estimated as:

EA = YcdefC + cdefC_lmW|Z ∗ hidefC2 j

+ hck�lm + ck�lm_lmW| +cdefC_oeWpq +ck�lm_oeWpq2 + cre�ddse2 j∗ idefC

(4.17)

where cdefC_lmW| and ck�lm_lmW| are the masses of the proximal and distal stabiliser arms, cdefC_oeWpq

is the mass of the crank arm connected at the end of the proximal ‘B’ arm. The torque acting on motor

‘B’ due to gravity is estimated as:

1A_reWt�mB = YcdefC + cdefC_lmW|Z ∗ hidefC2 j ∗ sin��A	 ∗ g
+ hck�lm + ck�lm_lmW| +cdefC_oeWpq +ck�lm_oeWpq2 + cre�ddse2 j∗ idefC ∗ sin��A	 ∗ g

(4.18)

where �A is the angle of the proximal arm from vertical. By adding the torque due to gravity to the

torque due to the angular acceleration of the inertia of the arms (bA), the overall torque requirement

can be calculated as:

1A_mfmW{ = EA ∗ bA + 1A_reWt�mB (4.19)

The accuracy of the torque estimation can be seen in Figure 4.10 where it is compared to the simulation

results from SimMechanics™ for a sample trajectory. The estimated torque tracks a similar profile to the

SimMechanics™ torque calculation, but does vary, particularly during large peaks in the graph. The

 Chapter 4 – Trajectory Planning

65

greatest weakness of the estimation method is when considering the mass of the components near the

end-effector. By assuming these masses to be located at the ends of the proximal arms, an error is

introduced. This error grows as the relative mass of the end-effector increases. The example shown in

Figure 4.10 uses a heavy 35 kg gripper head. The difference in the motors’ torque profiles results in a

positional error of the end-effector of 0.029 m by the end of the path. However, if the gripper was to

only weigh 5 kg the torque error would be less, as shown in Figure 4.11. In this case, the positional error

of the end-effector shrinks to 0.006 m. Therefore, for the purposes of this project, the method of

estimating motor torques is valid.

Figure 4.10 Estimated torque profiles compared to SimMechanics™ calculated torque profiles. 35 kg gripper used.

The torque estimation method has a tendency to underestimate the actual torque required, as gathered

from the SimMechanics™ simulation. Therefore, when maximising a configuration’s path cycle-time, the

available torque of the motors is reduced slightly (~10 %) to account for the underestimation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-400

-300

-200

-100

0

100

200

300

400

500

600

Time (s)

T
or

qu
e

(N
m

)

Motor A

Motor B

Motor A (est.)

Motor B (est.)

Simulation and Optimisation of a 2DOFPPM

66

Figure 4.11 Estimated torque profiles compared to SimMechanics™ calculated torque profiles. 5 kg gripper used.

4.1.6 Altering Time Segments

As mentioned in the previous section, the time segments between knots on a path are increased or

decreased depending on how the trajectory compares to the motor and end-effector constraints. If a

parameter exceeds a constraint during the segment, the time segment is increased and the trajectory is

recalculated from the cubic spline fitment stage in Section 4.1.4. Similarly, if no parameter is close to the

constraint, the time segment can be shortened and a new spline fitted. Two variables were found

heuristically for this problem. These include the amount by which the time segment is expanded or

contracted, and how close a parameter must be to its constrained limit in order for it to be considered

‘maximised’.

The method used is based on Nelder and Meads flexible polyhedron search method [34]. This iterative

optimization approach has been used as a technique for altering time segments in piecewise polynomial

trajectory planning by several researchers [23][33][69]. The algorithm that was finally used to analyse

and alter the time segments is shown below in Figure 4.12. The Matlab® implementation of this

procedure can be found in Appendix F (refer Figure F.46 through to Figure F.54).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400

-300

-200

-100

0

100

200

300

400

500

Time (s)

T
or

qu
e

(N
m

)

Motor A

Motor B

Motor A (est.)

Motor B (est.)

 Chapter 4 – Trajectory Planning

67

procedure optimise time segments

begin

 let

 ς be the set of constraints

 ρ be the values of the constrained parameters

 д is an ageing factor (~100)

 Ψ is the initial acceptance threshold <1 (~0.8)

 initialise time segments t

 n = 1

 while ∃ t !optimised do

 plan path

 for each path segment ί do

 check constraints

 if ∃ ρί > ςί then

 find (ρί/ςί)max

 increase ti by (ρί/ςί)max

 else if ∄ (ρί/ςί) > Ψ
(n+д)/ д

 then

 find (ρί/ςί)max

 reduce ti by (ρί/ςί)max

 end

 end

 n = n + 1

 end

end

Figure 4.12 Pseudo code for optimising the time segments between knots on a path.

Each path segment is analysed separately. The performance of the path segments are compared to the

constraints. A segment must never be too short as to allow a constraint to be violated, but determining

how close the path segment can be to that limit is not easily achieved. A threshold, Ψ, is required to

establish when a time segment is near enough to optimal. Through experimentation, an initial threshold

value of 80 % has been found to provide a fast converging and near optimal time for each segment. That

is, at least one of the parameters must be within 80 % of its constraint. Table 4.3 shows several

iterations of the expansion and retraction of a sample path’s time segments. For the path with 5 knots (4

segments), 6 iterations were required until a near-time-optimal path was found. To further expedite the

optimization process, the threshold is lowered as a function of the number of iterations. This is shown in

the pseudo code Figure 4.12, where an ageing factor д exponentially weakens the threshold.

Simulation and Optimisation of a 2DOFPPM

68

Table 4.3 Time values for 4 path segments (between 5 knots) over 6 optimisation iterations.

Iteration Segment 1 Segment 2 Segment 3 Segment 4

1 0.027 0.028 0.032 0.033

2 0.574 0.359 0.442 0.614

3 0.383 0.226 0.276 0.416

4 0.278 0.148 0.180 0.309

5 0.229 0.108 0.129 0.262

6 0.229 0.092 0.106 0.262

All actuated joint trajectories must be optimised simultaneously. In the case of the 2DOFPPM, both

motor trajectories need to be considered concurrently. This is to ensure that both motors reach each

knot at the same time. Therefore, when altering time segments, the parameters and constraints of both

motors need to be considered before deciding how much to increase or decrease the time period.

4.1.7 Storing of Path Data

Once the trajectories have been optimized and a set of cubic polynomials have been obtained, the data

needs to be structured in a way suitable for the SimMechanics™ simulation environment to process. This

requires the input data to be stored in a file. The file is formatted the following way. The first row of

cells contains time values. The second, third and fourth rows contain motor position, velocity and

acceleration values at the corresponding time values. For the purposes of this project, taking recordings

of data at 50 ms time intervals has proved accurate enough for the purposes of evaluating the

kinematics and dynamics of the system.

4.2 Interpolation of Knots for Linear Movements

In order to control the end-effector along a linear movement, a unique method has been developed that

still allows the use of cubic splines defined in joint space. By placing extra knots along the straight line

between two targets the path is constrained to pass through each of those knots. Experimentation was

carried out to determine the effect of additional knots on the linearity of the path travelled and the

length of time taken to perform the move. In the following graphical examples it is assumed that a linear

move is desired for the vertical ‘pick’ or ‘place’ actions and a joint move used for the ‘horizontal’

transition above the ‘pick’ and ‘place’ points.

 Chapter 4 – Trajectory Planning

69

Figure 4.13 does not include any additional knots during the vertical movements. This results in a

trajectory being formed that does not represent a linear movement. The movement is the fastest

possible path, within the constraints of the manipulator, which passes through each point, starting and

finishing with zero velocity. This results in a benchmark cycle-time of 0.690 s.

If a single additional knot is introduced halfway along the linear movements, the trajectory becomes

significantly closer to the desired path as shown in Figure 4.14. By introducing a single knot on each of

the two linear movements, the cycle-time increases slightly to 0.716 s.

Having seen the benefits of adding a single extra knot to the linear movements, it is logical to enquire

about the effects of adding multiple knots. Figure 4.15 shows a path with five additional knots along the

linear moves. This results in a path with highly linear vertical movements but at the cost of raising the

cycle-time to 1.033 s. This significant increase in cycle-time is detrimental to the overall performance of

the manipulator. By introducing too many knots along the path, the motor joints are forced to switch

direction frequently. As the system is maximizing the torque capabilities of the motors, the motors’

torque step response may not be adequate to switch fast enough from maximum torque in one

direction to maximum torque in the opposite direction. Therefore, introducing too many knots is seen as

detrimental to the performance of the manipulator and a middle ground should be found that provides

a suitably linear movement in a fast time that can be tracked by the motor joints.

Figure 4.13 Trajectory with no linear constraints

Simulation and Optimisation of a 2DOFPPM

70

Figure 4.14 Trajectory with a single additional knot for linear movements

Figure 4.15 Trajectory with many additional knots for linear movement

 Chapter 4 – Trajectory Planning

71

Figure 4.16 Trajectory with an additional knot halfway through linear movement and another positioned close to destination

target

While introducing a single knot in Figure 4.14 improved the linearity of the movement compared to

having no additional knots (Figure 4.13), it still deviates from the linear path somewhat. A solution was

found by introducing a second knot near the knot at the destination target. As shown in Figure 4.16, this

minimized the straight line divergence while keeping the cycle-time to 0.8379 s. This method was

formulated by the inclusion of two additional parameters to a path’s definition, LinearErrorFactor and

LastLinearTargetDistance.

The LinearErrorFactor is a value, measured in metres, representing how far along a linear movement a

knot must be placed. For the example path shown, a value of 0.2 m was used. This means that for a

linear move of less than 0.2 m, no additional knot would be introduced. For a linear move of 0.5 m, two

additional knots would be included.

The LastLinearTargetDistance, also measured in metres, represents the distance back from the knot at

the edge of the destination target. In the example a value of 0.02 m was used. Therefore a knot was

placed at the destination target of the linear move, and another placed a further 0.02 m back along the

path.

Simulation and Optimisation of a 2DOFPPM

72

As with any method of fitting splines in joint space, problems can occur when considered from the end-

effector’s point of view in Cartesian space. Figure 4.17 presents a path where the

LastLinearTargetDistance is too small, causing the cubic spline fitments to result in a path that ‘loops’

back on itself. The trajectory planning method found the fastest trajectory for passing through both

knots, within the constraints of the motors, to be a looping action. This occurred due to the knots being

spaced too close together. This highlights a possible deficiency in the algorithm as trajectories like this

are undesirable. It is therefore important to check parameters, like LastLinearTargetDistance, and view

the simulated path to ensure the final path is valid.

Figure 4.17 An example of the problem caused by fitment of the splines in joint space resulting in the Cartesian path looping

back on itself.

4.3 B-splines, 3rd, 5th and Higher Order Polynomial Fitting

When deciding on the type of spline fitting method to be used, a number of options were considered.

This section briefly details the options of using B-splines and a range of polynomials to fit between the

knots.

The use of B-splines as an interpolation path planning method was popular in the past [37][38]. This was

due to their easy and fast mathematical manipulation. However, B-splines do not actually pass through

the control points (knots), but rather are ‘pulled’ towards them as shown in Figure 4.18. It is for this

reason that they are not commonly used now. The failure of a trajectory to

in the path, renders it unsuitable for many applications.

Figure 4.18 B-spline example. The red spline is 'pulled' towards the black control points.

Polynomial spline fitting between

[23][30][33][36][52][54][69][71]

the polynomial methods. Interpolating cubic polynomials between knots allows the trajectory to be

continuous in both velocity and acceleration. However, it is sometimes desirable to also be co

in the jerk component of the trajectory

used. Additional constraints are put on the polynomials to allow a solution to be found. Sta

final accelerations are set to zero, as well as the constraint of continuous jerk between adjacent splines.

The introduction of the extra coefficients and constraints with

computation required, but allows

An alternative method is to use a single

are k knots, with constraints placed on the initial and final velocities, the polynomial must

k+1 with k+2 coefficients. A path consisting of 3 knots therefore is represented by a 4

providing continuous velocity, acceleration and jerk. A path consisting of 4 knots is represented by a 5

order polynomial providing continuous velocity, acceleration, jerk and

position). It can be easily seen that with a path consisting of a large number of knots, the polynomial has

a large number of unknown coefficients. Solving these coefficients bec

time consuming. Therefore, using the method of a single high

trajectory planning system where an unknown

 Chapter

reason that they are not commonly used now. The failure of a trajectory to pass t

in the path, renders it unsuitable for many applications.

spline example. The red spline is 'pulled' towards the black control points.

Polynomial spline fitting between knots is a commonly used approach to trajectory planning

] . The 3
rd

 order polynomials, as used in this thesis, are the simplest of

the polynomial methods. Interpolating cubic polynomials between knots allows the trajectory to be

continuous in both velocity and acceleration. However, it is sometimes desirable to also be co

in the jerk component of the trajectory [26]. This is where the 5th order, or quintic, polynomials are

Additional constraints are put on the polynomials to allow a solution to be found. Sta

final accelerations are set to zero, as well as the constraint of continuous jerk between adjacent splines.

extra coefficients and constraints with quintic polynomial inc

computation required, but allows for the path to be constrained within the motors

An alternative method is to use a single high-order polynomial that passes through all the knots

knots, with constraints placed on the initial and final velocities, the polynomial must

. A path consisting of 3 knots therefore is represented by a 4

providing continuous velocity, acceleration and jerk. A path consisting of 4 knots is represented by a 5

tinuous velocity, acceleration, jerk and snap (that is

. It can be easily seen that with a path consisting of a large number of knots, the polynomial has

a large number of unknown coefficients. Solving these coefficients becomes increasingly challenging and

using the method of a single high-order polynomial is not viable in

where an unknown, and potentially large, number of knots exist.

Chapter 4 – Trajectory Planning

73

pass through specific points

spline example. The red spline is 'pulled' towards the black control points.

knots is a commonly used approach to trajectory planning

order polynomials, as used in this thesis, are the simplest of

the polynomial methods. Interpolating cubic polynomials between knots allows the trajectory to be

continuous in both velocity and acceleration. However, it is sometimes desirable to also be continuous

order, or quintic, polynomials are

Additional constraints are put on the polynomials to allow a solution to be found. Starting and

final accelerations are set to zero, as well as the constraint of continuous jerk between adjacent splines.

quintic polynomial increases the

within the motors’ jerk limits.

order polynomial that passes through all the knots. If there

knots, with constraints placed on the initial and final velocities, the polynomial must be of order

. A path consisting of 3 knots therefore is represented by a 4
th

 order polynomial

providing continuous velocity, acceleration and jerk. A path consisting of 4 knots is represented by a 5
th

snap (that is, the 4
th

 derivative of

. It can be easily seen that with a path consisting of a large number of knots, the polynomial has

omes increasingly challenging and

order polynomial is not viable in a

of knots exist.

Simulation and Optimisation of a 2DOFPPM

74

As mentioned earlier in this chapter, the exact trajectory planning methodology is not important

provided it allows a fair and realistic comparison between different manipulator configurations. This

means that a trajectory must represent the capabilities of the manipulator accurately while taking into

account motor constraints. As with any simulation, there will always be short-comings when compared

to reality. The use of quintic and higher-order polynomials have the advantage of increased model

fidelity over the cubic polynomial method, but at the cost of extra computation. The cubic polynomial

fitting method was chosen as it provided a trajectory constrained to a high enough degree of accuracy

for comparing manipulator configurations, while being easily computed.

4.4 Managing Discontinuous Jerk

The comparison of cubic polynomial spline fitting to higher-order polynomial fitting showed limitations

in the fidelity of the trajectory produced. The cubic polynomials resulted in discontinuities of jerk at the

knots. Motors are not able to produce the instantaneous change in jerk or have an infinite torque step-

response. A number of researchers have successfully used piecewise cubic polynomials for trajectory

planning in industrial manipulators [23][33][52][69]. Despite these researchers being satisfied with the

performance, an experiment was conducted to see the variation in end-effector trajectory if the joint

trajectories were subjected to a low pass filter. To do this, the acceleration profile was put through a

low-pass Butterworth filter. The resulting signal was then integrated using the trapezoidal numerical

method to achieve the new velocity profile, and integrated again to produce the new filtered position

profile. Filtering out the high frequencies within the signal in this manner, effectively places limits on the

jerk and higher derivates of motor position.

Figure 4.19 presents the position, velocity and acceleration profiles for the two motors before and after

the filtering and integration process. The acceleration profile has had the sharp changes smoothed

which better represents the capabilities of a real motor. As can be seen in the position profile, a

positional error has been introduced. When the trajectory profile is examined in Cartesian space, as

shown in Figure 4.20, the end-effector no-longer passes through all the knots. However, the error is

small enough for the project’s requirements. This experimentation supports the use of piecewise cubic

polynomials in trajectory planning, and has enough fidelity to compare and contrast different

configurations.

 Chapter 4 – Trajectory Planning

75

Figure 4.19 Motor position, velocity and acceleration commands before and after low-pass filtering.

Figure 4.20 Trajectory using the filtered position, velocity and acceleration commands.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3
P

os
iti

on
 (

ra
d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-10

-5

0

5

10

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d
s-1

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-200

-100

0

100

Time (s)A
ng

ul
ar

 A
cc

el
er

at
io

n
(r

ad
 s

-2
)

Motor A Filtered Motor B Filtered Motor A Unfiltered Motor B Unfiltered

 Chapter 5 – Dimensional Performance Analysis

77

5 Dimensional Performance Analysis

The simulation of the manipulator presented in Chapter 3, using the trajectory planning method

presented in Chapter 4, provides insight into the performance of the manipulator. The simulation

enables the limits of the manipulator to be explored and examined in detail. If a pick-and-place

application is known, say that of moving a known load through a pre-determined path, there may exist a

2DOFPPM manipulator that has the optimal dimensions for performing that task.

In this chapter, the 2DOFPPM dimensions are considered as parameters for optimisation. Motor and

dimensional constraints are specified in order to limit the optimisation process. A database is created to

store simulation results during the optimisation procedure. The search space of possible manipulator

configurations is examined for a particular task. Knowing the shape of the search space, the possibility of

applying optimisation algorithms to find the fastest configuration is discussed.

5.1 Constraints and Parameters

The 2DOFPPM has a number of parameters that can be altered. In this project, the selection of motors

and the lengths of four major dimensional parameters are considered as variables to be optimised for

achieving the best performance. These four dimensions are:

• Proximal arm length

• Distal arm length

• Separation distance of the motors

• Height of motors above the workspace

The dimensions relating to the positioning of the stabiliser arm components have only minimal effect on

the performance of the manipulator and to minimise computation in the optimisation process, these

values shall be considered fixed. The dimensions to be optimised are shown in Figure 5.1. The

workspace height is defined as a distance by which the Y components of each target in the workspace

are raised (if positive) or lowered (if negative).

Simulation and Optimisation of a 2DOFPPM

78

Figure 5.1 Diagram of the four dimensions to be optimised

In addition to the dimensions above, the choice of motors is also included as a variable to be optimised.

A database table is used to store data associated with various motors. This allows only motors that are

currently available in the marketplace to be selected, rather than assuming there is access to an ideal

motor. Motors have been classified by their maximum torque, angular velocity, angular acceleration and

angular jerk properties.

5.2 Results Storage

The optimising process generates a large amount of data relating to individual trajectory planning and

simulations. To safely store the generated data, a database was developed. By using a database and not

temporary memory storage such as RAM, more data can be stored in a permanent state. This is also

useful for accessing at a future date without having to re-run the entire optimisation process.

 Chapter 5 – Dimensional Performance Analysis

79

MySQL™ was chosen as the database platform as it is free to use under the GNU GPL licensing

agreement [72] and the existence of an interface for data transaction between Matlab® and MySQL™

[73]. Five tables were created in MySQL™ to store the simulation data. An Entity-Relationship Diagram

(ERD) of the database tables is shown in Figure 5.2. The following sections describe each of the tables

individually.

Figure 5.2 ERD diagram of the MySQL database schema

Simulation and Optimisation of a 2DOFPPM

80

5.2.1 Paths

Whenever an optimisation process is started, the path, for which the optimisation will take place is

stored in the database. A new PathID is assigned to uniquely identify the path. The path is stored

between two tables, paths and moves. A single entry is inserted into the paths’s table which contains

parameters relating to the trajectory planning process. The PathID is the primary key. The actual

movement commands are stored separately in the moves table. This separation is due to a path

consisting of more than one movement. So to ensure a normalised database, a separate table was

created to store the movement commands.

5.2.2 Moves

The movement commands that help define the path are stored in the moves table. The primary key is

PathId, which is also a foreign key relating the entry back to the paths table. A second key is used to

ensure that each path has a sequence of moves that can be easily identified. MSequence marks each

move with an increasing integer in the order which the movements take place. The moves table contains

attributes that define the target in Cartesian coordinates, MoveType, zone, and the maximum TCP speed

for the move. A pause attribute also exists to allow the definition of a temporary pause in the cycle

where a ‘pick’ or ‘place’ movement is programmed.

5.2.3 Userconstraints

The userconstraints table groups together all the constraints imposed on the optimisation by the user of

the software system. Every path has an associated set of userconstraints. The userconstraints specifies

the maximum permissible motor parameters. The table also contains dimensional constraints including

the maximum and minimum angles allowed of the joints, the inner and outer radii of the arm

components, and the offset dimensions of the stabiliser arm and gripper element. Limits on the overall

maximum width and depth of the manipulator are recorded in this table. Gripper mass and the density

properties of the arms are also stored here.

The PathId is the primary key for the table and is also a foreign key linking the set of userconstraints to

the same path in the paths table.

5.2.4 Simulations

For a given path defined in the paths table, there may be numerous simulations. As the optimisation

process requires multiple manipulator configurations to be simulated a separate table, simulations, is

used to store the five variable parameters (proximal and distal arm lengths, motor separation distance,

workspace height and the motor used) as well as the cycle-time achieved for the path. The MotorID is a

 Chapter 5 – Dimensional Performance Analysis

81

foreign key linking to a specific motor in the motors table. The time the simulation took place is also

stored as a timestamp. The comment attribute is included in the table to allow additional identification

of the optimisation process used when the simulation was executed.

5.2.5 Motors

The motors table stores data for a range of motors. MotorID is the primary key and is used to identify

the motor in the simulations table. Each motor has a name and description attribute as well as a file path

to a specification document. The inclusion of specification documents was added to allow easy lookup

for technical details of a particular motor. The motor’s limits are included, namely the maximum torque

and angular velocity, acceleration and jerk. Additional details of the motor’s moment of inertia and

encoder resolution are optional parameters to be stored.

5.3 Search Space

Before attempting to solve an optimisation problem it is useful to gain insight into the search space of

possible solutions. In the problem presented here, the search space is a set of four dimensional

parameters of the 2DOFPPM, and the optimisation goal is to find the shortest cycle-time. Therefore, to

find the search space, every possible permutation of the four dimensions must be considered. As the

parameters being altered are length dimensions and therefore are continuous with an infinite number

of possible permutations, the cycle-time must be evaluated at discrete distances between some limiting

bounds for each of the four parameters.

The same cycle-path that was used in Chapter 3 (refer Figure 3.20), is used to demonstrate the

optimisation methods in this chapter. In order to find the search space for the path, limits were placed

on each dimension parameter as shown in Equations (5.1) through to (5.12).

�|Wls�Qy
	≤ 	 �|Wls 	≤ �|Wls�x� (5.1)

�|Wls�Qy = c��c���K�<��K����� (5.2)

�|Wls�x� = 0.9 ∗ c����T�ℎ (5.3)

where c����T�ℎ is a user defined parameter specifying the maximum width of the manipulator as

shown in Figure 5.3. Setting a maximum width is useful as the space where the manipulator is to be

installed is often limited. For the sample path, c����T�ℎ is set at 1.5 m as this is a typical size

Simulation and Optimisation of a 2DOFPPM

82

constraint for a manipulator performing the given path-cycle. A further limitation is imposed by

restricting �|Wls to 90 % of	c����T�ℎ. This is done as �|Wls cannot take up the full length of c����T�ℎ as that would leave no room for the proximal arms.

The length of c��c���K�<��K����� is a user defined parameter specifying the minimum separation

distance of the motors. This constraint allows the physical dimensions of the motor or gearbox housings

to be accounted for. For the sample path, this is set at 0.01 m to allow room for nominally sized

gearboxes.

�defC�Qy 	≤ 	 �defC 	≤ �defC�x� (5.4)

�defC�Qy = 0 (5.5)

�defC�x� = c����T�ℎ2 (5.6)

�k�lm�Qy 	≤ 	 �k�lm 	≤ �k�lm�x� (5.7)

�k�lm�Qy = c��c���K�<��K����� (5.8)

�k�lm�x� = �c���<��ℎ
 + ��|Wls�x�2 '

 (5.9)

where c���<��ℎ is a user defined parameter specifying the maximum length of the manipulator

measured from the motor base to the end-effector, while the proximal arms are hanging down in the Y-

plane as shown in Figure 5.3. Similar to the c����T�ℎ parameter, c���<��ℎ is implemented to

account for any constraints on the space available for installing the manipulator. For the sample path

this is set at 1.5 m, again to account for a typical size constraint on a manipulator executing the

dimensions of the sample path. In Equation (5.6), �defC�x� is limited to half of c����T�ℎ as with two

proximal arms of this length the c����T�ℎ constraint would be reached, even with a �|Wls length of

zero. Equation (5.9) is obtained by considering the Pythagoras triangle formed by c���<��ℎ and half �|Wls as the proximal arm length approaches zero.

 Chapter 5 – Dimensional Performance Analysis

83

���<�=ℎ�V�p 	 ≤ 	���<�=ℎ�	 ≤ ���<�=ℎ�VWC (5.10)

���<�=ℎ�V�p = −0.3 ∗ c���<��ℎ (5.11)

���<�=ℎ�VWC = 0.3 ∗ c���<��ℎ (5.12)

where ���<�=ℎ� is the height which the workspace is raised relative to the original programmed

movement coordinates. It is expected that the coordinates are programmed with the manipulator

mounted in a position where it can reach all the targets. This parameter allows for small changes to be

made to the positioning of the manipulator. As such, a value of 30 % of the c���<��ℎ parameter was

considered sufficient variation to encompass the optimal workspace height.

Figure 5.3 MaxWidth and MaxDepth parameters are defined by the user to limit the search space. They correspond to the

dimensions in this diagram.

The dimensions being altered are continuous, therefore there are an infinite number of possible

combinations despite the boundary conditions stated above. To limit the number of dimension

combinations simulated, each dimension is divided into discrete values. For this project, the separation

distance of the motors (�|Wls), proximal arm length (�defC) and distal arm length (�k�lm) were divided

into 50 discrete values, evenly spaced between the upper and lower bounds of each parameter. The

workspace height (���<�=ℎ�) was divided into 10 discrete values, evenly spaced between its upper

and lower limits. Evaluating each of the possible combinations provides an accurate view of the solution

space but is granular enough to be computed in a realistic time frame. By dividing the dimensions to this

level, there exist 1.25 million combinations (50� ∗ 10) to be explored.

Simulation and Optimisation of a 2DOFPPM

84

At this point it useful to note that evaluating the cycle-time for every combination of the dimensions

does not need to run through SimMechanics™. As the trajectory planning process calculates the

position, velocity and acceleration profiles of the motors over time, the cycle-time is therefore

determined at this stage. So where cycle-time is the only performance criteria being analysed,

SimMechanics™ does not add any value and can consequently be omitted to save processing time.

SimMechanics™ can then be used to review any particular configuration of interest at a later point in

time. For example, the configuration with the fastest cycle-time after the trajectory planning process

can be examined in detail in the SimMechanics™ simulation to look closer at joint torques or the end-

effector’s acceleration profile.

The search space for finding the optimal dimensions of the 2DOFPPM for traversing the sample path was

then generated. Figure 5.4 shows the cycle-time plotted against three of the dimensions, �|Wls, �defC,

�k�lm. The red data points represent configurations with the fastest cycle-time, whilst the blue represent

the slowest. Due to limitations of graphing multiple parameters at once, the workspace height

(���<�=ℎ�) data is lost within the graph. To view the effects that all four dimensions have on the

path’s cycle-time, Figure 5.5 shows 10 graphs at each of the 10 workspace heights.

Figure 5.4 Graph of the search space for the sample path. The proximal and distal arm lengths and motor separation distance

are plotted with the colours representing the cycle-time. The intersecting pink lines show the location of the minimum cycle-

time.

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

lbase (m)lprox (m)

l d
is

t (
m

)

C
yc

le
-T

im
e

(s
)

2

2.5

3

3.5

4

4.5

Figure 5.5 Search space for sample path. Each graph represents a different workspace height

0.4
0.6

0.8

1

1.2

lb

WSHeight = 0.36 (m)

lprox (m)

l d
is

t (
m

)

0.4
0.6

0.8

1

1.2

lb

WSHeight = 0.27 (m)

lprox (m)

l d
is

t (
m

)

0.4
0.6

0.8

1

1.2

lb

WSHeight = 0.18 (m)

lprox (m)

l d
is

t (
m

)

0.4
0.6

0.8

1

1.2

lb

WSHeight = 0.09 (m)

lprox (m)

l d
is

t (
m

)

0.4
0.6

0.8

1

1.2

lb

WSHeight = 0 (m)

lprox (m)

l d
is

t (
m

)

 Chapter 5 – Dimensional Performance Analysis

Search space for sample path. Each graph represents a different workspace height, starting from a high workspace

in the a) to a low workspace in j).

0.2
0.4

base (m)

WSHeight = 0.36 (m)

0.2
0.4

base (m)

WSHeight = 0.27 (m)

0.2
0.4

base (m)

WSHeight = 0.18 (m)

0.2
0.4

base (m)

WSHeight = 0.09 (m)

0.2
0.4

base (m)

WSHeight = 0 (m)

0.20.4
0.6

0.8

1

1.2

lba

WSHeight = -0.09 (m)

lprox (m)

l d
is

t (
m

)

0.20.4
0.6

0.8

1

1.2

lba

WSHeight = -0.45 (m)

lprox (m)

l d
is

t (
m

)
0.20.4

0.6

0.8

1

1.2

lba

WSHeight = -0.18 (m)

lprox (m)
l d

is
t (

m
)

0.20.4
0.6

0.8

1

1.2

lba

WSHeight = -0.27 (m)

lprox (m)

l d
is

t (
m

)

0.20.4
0.6

0.8

1

1.2

lba

WSHeight = -0.36 (m)

lprox (m)

l d
is

t (
m

)

Dimensional Performance Analysis

85

starting from a high workspace

0.2
0.4

ase (m)

WSHeight = -0.09 (m)

0.2
0.4

ase (m)

WSHeight = -0.45 (m)

0.2
0.4

ase (m)

WSHeight = -0.18 (m)

0.2
0.4

ase (m)

WSHeight = -0.27 (m)

0.2
0.4

ase (m)

WSHeight = -0.36 (m)

C
yc

le
 T

im
e

(s
)

2

2.5

3

3.5

4

4.5

Simulation and Optimisation of a 2DOFPPM

86

From Figure 5.4 and Figure 5.5, it can be seen that for the sample path, the fastest cycle-times are

achieved with relatively short proximal and distal arms, a small separation distance of the motors, and a

slight rise in the workspace height. It is also noted that the optimal solution lies on the border of the

search space, that is, the manipulator is only just able to reach all points on the sample path. Figure 5.5a

through to Figure 5.5c show that no valid configurations exist when the workspace is raised too high.

The generation of the search surface was performed on a single computer (refer Appendix B). With the

simulation optimised for speed, it took 18 hours to evaluate the 1.25 million possible combinations to

this level of accuracy.

5.4 Optimisation Overview

While a coarse but complete view of the solution space can be generated in a matter of hours, as shown

in the previous section, it may be possible to find a near-optimal solution faster. The optimisation task is

to find the configuration of four dimensions of the 2DOFPPM that leads to the fastest cycle-time. In

terms of optimisation problems, this is a simple problem and therefore simple optimisation techniques

shall be considered.

There are an ever-growing number of optimisation algorithms available and comparisons between

techniques are common. Prügel-Bennett [74] compared the performance of a Hill Climber, Stochastic

Hill Climber and a Genetic Algorithm for a toy problem with a similar search space. Mitchell et al. [75]

analyses the performances of a Hill Climber and a Genetic Algorithm to find under what conditions each

algorithm is superior. Garg and Kumar [76] compare the performances of a Genetic Algorithm to

Simulated Annealing as applied to manipulator path planning. These are only a few of many such

comparisons between optimising techniques.

For simple optimisation problems like this there are four main techniques commonly used. These are:

• Random Restart Hill Climber

• Stochastic Hill Climber

• Simulated Annealing

• Genetic Algorithm

A comparison of these four techniques, as applied to finding the optimal dimensional configuration of a

manipulator, is considered important and valid. The next chapter implements and evaluates these

algorithms.

 Chapter 5 – Dimensional Performance Analysis

87

It should be noted that a near-optimal solution is being considered instead of a truly optimal solution as

the optimisation techniques cannot be guaranteed to find the absolute best solution, but rather a

solution that is near optimal. A near-optimal solution is sufficient, as sub-millisecond improvements to

the cycle-time are insignificant given the estimation process required to generate the trajectory. There is

also no benefit in optimising arm lengths beyond the degree of precision capable of the fabrication

process.

Simulation and Optimisation of a 2DOFPPM

88

 Chapter 6 – Optimisation Methodologies

89

6 Optimisation Methodologies

Over the following sections, four optimising techniques are implemented and their performances

compared. The sample path used in Chapter 3 (refer Figure 3.20) and Chapter 5 is employed again to

evaluate the techniques. All optimisations are performed on a single computer. The specifications of this

computer can be found in Appendix BAppendix F.

The key performance indicators for each technique are:

• Minimum path cycle-time achieved.

• Computation time to reach ‘optimisation’.

The minimum path cycle-time is the overall time to traverse the sample path as calculated by the

trajectory planner. The point where each method is considered to reach ‘optimisation’ will vary due the

individual process. However, a comparison will be made between the optimisation techniques to

determine which method finds a suitably fast cycle-time with the least amount of computation.

Each technique is run multiple times to allow statistical evaluations to be performed. Where possible,

the techniques have been given the same starting conditions. For example, the number of iterations for

restarting the hill climber is used again as the number of stochastic hill climber starting attempts. Each

technique also has a number of parameters that need to be tuned to maximise the technique’s

performance. In most cases the parameters are tuned by evaluating the performance over a number of

runs. This allows the performance of the parameters to be fairly evaluated in a statistical manner. Due

to the large processing time of evaluating some of the parameters, simple empirical testing was done to

tune these parameters. The method for tuning each parameter is documented in each of the following

sections.

6.1.1 Random Restart Hill Climber

After random search techniques, a Hill Climber is the simplest of optimising algorithms. Hill climbing

methods are popular due to the simplicity of implementing them. All that is required is an evaluation

function for which a measure of fitness can be obtained and the ability to select other solutions around

the current solution (that is, the neighbourhood). In the case of optimising the 2DOFPPM dimensional

configuration for achieving the fastest cycle-time for a given path, the evaluation function is the cycle-

Simulation and Optimisation of a 2DOFPPM

90

time and neighbouring solutions are configurations close to the current configuration that vary slightly

in the optimised dimension(s).

It should be noted that formally, Hill Climbing methods seek to achieve a maximum. In this project, the

minimum cycle-time is the objective. However, the technique to minimise remains fundamentally the

same as the maximisation method and as such, the term ‘Hill Climber’ will be used even though the

opposite effect is desirable. Sometimes the minimisation method is referred to as gradient descent, but

this term will not be used in this work.

A Hill Climber starts by randomly selecting a solution and evaluating its performance against a fitness

function. The neighbouring solutions are then considered and their performance evaluated. If a

neighbouring solution is found to perform better than the first solution, the neighbourhood of that

solution is evaluated. This iterative process continues until a solution is found that performs better than

all of its neighbouring solutions.

A Hill Climbing method works well when there are no local optima in the search space, only the global

optima. When looking at the search space in the previous section (refer Figure 5.5), it could be assumed

that this is the case in this project (that is, the cycle-time is minimised as the dimensions tend towards

short proximal and distal arms, a small separation distance of the motors, and a slight rise in the

workspace height). However, when a single instance of a Hill Climber is run, it finds itself stuck in a local

optimum, unable to get out and reach the desired global optimum. This is due to the search surface

containing shallow troughs and low ridges that create local optima. After some consideration, it was

decided that the most likely cause of these local optima is the iterative trajectory planning process.

Because the trajectory planner iteratively increases and decreases the path time between knots, a near

optimal trajectory is generated. How close to truly optimal each trajectory is depends on the process

and some configurations may be closer to optimal than others. This results in some configurations being

considered slightly less favourable than their neighbours, even though they may in fact be slightly better

if the trajectory planner produced a truly optimal trajectory.

To apply a Hill Climbing method to a search space containing local optima, as is the case here, it is

common to use a Random Restart Hill Climber (RRHC). A RRHC differs from a standard Hill Climber by

selecting more than one starting solution. This has the effect of producing hill climbers at multiple

starting points in the search space. Each Hill Climber is allowed to find its own (local) optimum. By this

method, a greater area of the search space is covered, increasing the likelihood of finding the global

optimum. However the RRHC method cannot be guaranteed to find the global optimum.

 Chapter 6 – Optimisation Methodologies

91

Figure 6.1 shows the RRHC implemented in Matlab® code. The overall process is implemented for a

number of iterations (restarts) in the form of a coded for-loop (lines 11-67). In each iteration a motor is

selected from a database (line 14) and a random 2DOFPPM configuration is chosen within some

constraints (line 19). A path is then compiled (line 25) using the CompilePath() method developed earlier

in the trajectory planning section (refer Section 4.1 and Figure F.7 through to Figure F.11 in Appendix F).

The path is then stored in the database (line 32) and the configuration and its cycle-time are considered

to be the ‘best’ so far (lines 35-36). The neighbouring configurations are then found based on the

parameter StepSize (lines 43-44). A trajectory is generated for each of the neighbouring configurations

(line 49) and the results stored in the database (line 50). The cycle-times of the neighbouring solutions

are compared to the current solution (lines 58-59) and if a better solution is found, it then becomes the

‘best’ configuration (line 62) and the process is repeated. If several solutions are better than the current

solution, the best solution is chosen. If no neighbour improves the cycle-time, then a local minimum has

been found, the while-loop (lines 38-66) is exited and the iteration stops.

When selecting the neighbouring configurations in this problem, 30 configurations are chosen. These 30

configurations are the result of the four dimensions being altered. Each dimension could remain

unchanged or be increased or decreased by the StepSize amount. The solution that remains unchanged

in all dimensions is rejected as that is the current solution. The code for this method,

SelectNeighbouringConfig(), is included in Appendix F (refer Figure F.72).

The RRHC, contains two variables that require tuning. The first is the parameter named StepSize (lines 1

& 44). The StepSize determines the distance away from the current configuration to examine its

neighbourhood. To tune the StepSize, several values were considered and tested by performing 90 runs

of the RRHC optimising method using each. The other parameter to determine is how many random

restart iterations are required to sufficiently cover the search space. In the Matlab® code this is referred

to as TermCond.Iterations (line 11). This was also tuned by running the RRHC multiple times and

considering the performance of the method as the number of iterations increased. Both parameters

were tuned simultaneously by running 90 RRHCs for several values of StepSize meanwhile recording the

performance relative to the number of restart iterations.

Simulation and Optimisation of a 2DOFPPM

92

1 function OptimiseConfigurationHC(CP,TermCond,UConstraints,S tepSize)
2 % Uses a random restart hill climber to narrow on a time-minimum configuration
3 % VARIABLES:
4 % CP - Cycle Path class containing geometric detai ls of the path
5 % TermCond - Termination Condition class detailing conditions of terminating process
6 % UConstraints - User Constraints class
7 % StepSize - size of steps (in m) to evaluate neig hbouring configurations
8

9 StorePathsUserConstraintsSQL(CP,UConstraints); % Store path and user constraint data
10
11 for i=1:TermCond.Iterations % Run Hill Climber for a number of iterations
12

13 % Select 'random' motor details from database
14 [motorID,newPPC] = SelectMotor(CP.PPC,UConstra ints);
15

16 CP.PPC = newPPC; % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)
17

18 % Select random configuration that reaches all move targets
19 config = SelectRandomConfig(CP.Moves,motorID,U Constraints);
20

21 try
22 % Compile path using Configuration and Path Plannin g Constraints (PPC)
23 % Path Planning Results (ppr) are returned along wi th positional and zone data
24 % about targets
25 [Targets_XYZ,ppr] = CompilePath(CP.Moves,c onfig,CP.PPC);
26 catch exception
27 % Skip to next iteration if exception occurs due to config unable to meet targets
28 continue ;
29 end
30

31 % Store results of path planning in database
32 StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i) ;
33

34 local = false; % Set flag indicating whether a local minima has be en found
35 minCycleTime = ppr.PathA(size(ppr.PathA,1)).En dTime; % Set best cycletime acheived
36 bestConfig = config;
37

38 while local == false % Loop until local minima has been found
39 clear neighboursPPR ; % Clear variables
40 clear neighboursConfig ; % Clear variables
41

42 % Select configurations around the best configurati on so far
43 neighboursConfig = ...
44 SelectNeighbouringConfig(bestConfig,CP .Moves,motorID,UConstraints,StepSize);
45

46 for j=1:size(neighboursConfig,2)
47 % Compile Paths using each of the neighbouring conf igurations(neighboursConfig)
48 % Store results in database, and save Path Planning Results (ppr) in an array
49 [Targets_XYZ,ppr] = CompilePath(CP.Mov es,neighboursConfig(j),CP.PPC);
50 StoreSimulationsSQL(neighboursConfig(j),CP.PPC,ppr,CP.ID,i);
51 neighboursPPR(j)=ppr;
52 end
53

54 local = true; % set flag - will be reset if not local
55 for j=1:size(neighboursPPR,2)
56 % Compare results of each neighbouring configuratio n. Replace bestConfig with
57 % neighbour if faster cycletime is found
58 if neighboursPPR(j).PathA(size(neighboursPPR(j).PathA ,1)).EndTime ...
59 < minCycleTime
60 minCycleTime = ...
61 neighboursPPR(j).PathA(siz e(neighboursPPR(j).PathA,1)).EndTime;
62 bestConfig = neighboursConfig(j);
63 local = false;
64 end
65 end
66 end
67 end
68 end

Figure 6.1 Matlab® Code of the RRHC Optimising Method

 Chapter 6 – Optimisation Methodologies

93

Four different values of step size were chosen. These distances are shown in Table 6.1 and are measured

in metres. Alongside each is the relative length of the step size when compared to the width (0.6 m) and

height (0.3 m) of the sample path (refer Figure 3.20). The comparison to the path dimensions is shown

to give an indication of the appropriate StepSize should a significantly different path be optimised using

the technique outlined in this research.

Table 6.1 StepSizes evaluated and their relative path dimensions

StepSize (m) Percentage of path width (0.6 m) Percentage of path height (0.3 m)

0.01 1.67 % 3.33 %

0.02 3.33 % 6.67 %

0.05 8.33 % 16.67 %

0.1 16.67 % 33.33 %

The results of the 4 x 90 runs of the RRHC have been summarised in the following figures. Figure 6.2

shows a histogram distribution of the minimum cycle-time achieved by each of the StepSizes. StepSizes

of 0.01 and 0.02 m are seen to perform better than the larger distances of 0.05 and 0.1 m over 100

restart iterations. The mean, standard deviation and median cycle-times of each StepSize is shown in

Table 6.2.

Figure 6.2 Normalised histogram of minimum cycle-time achieved by four different StepSizes using the RRHC method after

100 restart iterations. Based on 90 individual runs.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

50

StepSize = 0.01 m

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

50

StepSize = 0.02 m

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

50

P
er

ce
nt

ag
e

of
 R

un
s

(%
)

StepSize = 0.05 m

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

50

Minimum Cycle-time (s)

StepSize = 0.1 m

Simulation and Optimisation of a 2DOFPPM

94

Table 6.2 Mean, standard deviation and median minimum cycle-times for four different StepSizes

StepSize (m) Mean Minimum Cycle-

time (s)

Minimum Cycle-time

Standard Deviation (s)

Median Minimum

Cycle-time (s)

0.01 1.64 0.06 1.65

0.02 1.65 0.05 1.66

0.05 1.70 0.06 1.70

0.1 1.71 0.07 1.71

While the mean and median give an indication into which StepSize is best to use for this project, the

performance of each StepSize is better analysed by applying a proven statistical comparison technique

known as the Wilcoxon-Mann-Whitney (WMW) two-sample rank-sum test [77] [78] (also known as a U-

test). The WMW is a non-parametric method used to test whether two independent samples of

observations are of equal value in a statistical sense (that is, is one StepSize better than another). As the

median minimum cycle-time achieved by StepSize = 0.01 is the best of the four distances considered, the

WMW method will be used to compare the significance of this result to the other three StepSizes. The

results in Table 6.3 show that the null hypothesis is rejected for StepSizes = 0.05 and 0.1, but is

confirmed for StepSize = 0.02. This means that the StepSize = 0.01 is statistically better than StepSizes =

0.05 and 0.1, but there is no significant difference when compared to StepSize = 0.02. These results were

obtained using the standard 95 % confidence interval.

Table 6.3 Wilcoxon-Mann-Whitney test results comparing StepSize = 0.01 to the other StepSizes

StepSize (m) Rejection of Null-Hypothesis p-Value

0.02 0 0.189

0.05 1 7.73 x10
-11

0.1 1 3.37 x10
-12

While only the StepSize has been analysed so far, the number of random restart iterations is of equal

importance to the RRHC algorithm. Figure 6.3 shows the mean minimum cycle-time achieved versus the

number of random restart iterations for each of the StepSizes. The greatest improvement is seen within

the first ten iterations with the average minimum cycle-time reducing by 0.15 s. The rate of

improvement declines as the number of iterations increases, but even after 100 iterations, all four

 Chapter 6 – Optimisation Methodologies

95

StepSizes continue to improve the mean minimum cycle-time, albeit slowly. StepSizes of 0.01 and 0.02 m

not only find better configurations of the 2DOFPPM, but also achieve them with less restart iterations.

The mean minimum cycle-time was at 1.7 s after approximately 30 iterations for StepSizes of 0.01 and

0.02m, whereas it took on average 100 restart iterations for StepSizes 0.05 and 0.1 m.

Figure 6.4 shows histogram distributions of the minimum cycle-time for a StepSize of 0.02 m at intervals

of 25, 50, 75 and 100 random restart iterations. This shows a very dispersed distribution when only a

few restart iterations are used, as is the case with 25 random restarts. As the number of restarts is

increased, the minimum cycle-time achieved by the RRHC becomes more consistent (that is, a narrower

distribution) and centres on approximately 1.65 s as shown by the histograms of the 75 and 100 restart

iterations. Even after 100 restart iterations, there is still variation with the RRHC sometimes achieving

cycle-times as low as 1.5 s and other times only managing to optimise to 1.75 s.

Figure 6.3 Mean Minimum Cycle-time versus the number of Random Restart Iterations for four StepSizes

0 10 20 30 40 50 60 70 80 90 100
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Random Restart Iterations

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

StepSize = 0.01 m

StepSize = 0.02 m
StepSize = 0.05 m

StepSize = 0.1 m

Simulation and Optimisation of a 2DOFPPM

96

Figure 6.4 Normalised histograms of minimum cycle-time achieved by the RRHC method with a StepSize of 0.02 m, after 25,

50, 75, 100 restart iterations. Based on 90 individual runs.

As with any optimising algorithm, performance is also measured in how long it takes to reach

‘optimisation’. So far StepSizes of 0.01 and 0.02 m have shown to achieve better minimum cycle-times

than 0.05 and 0.1 m. However, the time taken for each RRHC to achieve its ‘optimal’ state varies as

shown by the box and whisker plot in Figure 6.5. For this plot, 100 random restart iterations have been

used. It can be seen that as the StepSize increases, the time to reach an ‘optimal’ solution is reduced.

This is expected, given that a larger StepSize will cover the search space faster by taking larger ‘steps’ at

each iteration in the optimisation process.

The variation in the time taken to ‘optimise’ the 2DOFPPM dimensions is visible in Figure 6.6, where the

four StepSizes are again compared. The mean minimum cycle-time achieved by the RRHC is plotted

against the length of time the algorithm is run for. Once more, 100 random restart iterations are used

for each instance of the RRHC. It is observed that larger StepSizes result in faster converging algorithms.

The 0.1 m StepSize completes its optimisation within 300 seconds, the 0.05 m StepSize takes close to

1000 seconds, the 0.02 m StepSize on average takes 4200 seconds, and the 0.01 m StepSize requires

5000 seconds to reach its optimised state. It can also be noted that when the 0.1 m StepSize

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

50

Iterations = 25

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

50

Iterations = 50

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

50

P
er

ce
nt

ag
e

of
 R

un
s

(%
)

Iterations = 75

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

50

Minimum Cycle-time (s)

Iterations = 100

 Chapter 6 – Optimisation Methodologies

97

optimisation is completed, on average it has found a better solution than the other StepSizes after the

same length of time.

Figure 6.5 Box plot of the computation time required for each RRHC to find its minimum cycle-time. Graph shows separate

box plots for each StepSize.

This section has discussed the use of the RRHC optimising method as applied to finding the optimal

dimensions of the 2DOFPPM. Several parameters have been evaluated to achieve optimal performance

from the algorithm. The first of these is the StepSize distance used to determine the space to

neighbouring solutions. The second is the number of random restart iterations required to sufficiently

explore the search space. StepSizes of 0.01 and 0.02 m were shown to outperform 0.05 and 0.1 m, but

after 100 iterations there was little to distinguish between 0.01 and 0.02 m. The difference in the

computation time required to find the minimum cycle-time, as shown in Figure 6.5, demonstrates that

the StepSize of 0.02 m makes it the preferred choice as it takes significantly less time to reach its

optimised state. The number of random restart iterations required has been set at 100 as the graph in

Figure 6.3 shows the improvement in the minimum cycle-time reaching a plateau around this number.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.01

0.02

0.05

0.1

S
te

p
S

iz
e

(m
)

Computation Time To Find Local Minima (s)

Simulation and Optimisation of a 2DOFPPM

98

Figure 6.6 Computation time versus mean minimum cycle-time for four StepSizes

6.1.2 Stochastic Hill Climber

The RRHC technique suffered from becoming stuck in local optima. While the concept of using multiple

restart positions helped to solve this, there are alternative methods that could potentially perform

better. One of these is the Stochastic Hill Climber (SHC). The SHC varies from a standard Hill Climber in

two ways:

• Rather than checking all solutions in the neighbourhood of the current solution and then

selecting the best one, the SHC only selects one neighbour at random for evaluation.

• The method of selecting this new neighbour is probabilistic based on the relative performance

of the current solution and the neighbour.

The SHC gets its name from the fact that the selection process is now stochastic rather than based on

the absolute difference in performance of the solutions. This process now allows a ‘weaker’ solution

(that is, a solution with a slower cycle-time) to be selected over a ‘stronger’ solution based on some

probability. The function used to determine this probability is stated in Equation (5.13).

0 1000 2000 3000 4000 5000 6000
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Computation Time (s)

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

StepSize = 0.01

StepSize = 0.02
StepSize = 0.05

StepSize = 0.1

 Chapter 6 – Optimisation Methodologies

99

3 = 	 11 + <����9���	� (5.13)

where 3 is the probability of selection, ��� and 2�� are the cycle-times of the neighbouring and current

solution respectively, and 1 is a constant that determines the shape of the selection probability profile.

Figure 6.7 Example selection probability profile for a SHC

The probability profile resulting from the function can be seen in Figure 6.7 where the probability of

acceptance is plotted against the difference in cycle-times of the two solutions being compared. As can

be seen, the probability of selection is greater if the neighbouring solution is better than the current

solution (that is, a negative difference in cycle-time). However, the probability of selecting a

neighbouring solution with a slower cycle-time also exists. As the difference in cycle-times increases, the

probability of selection approaches that of a traditional Hill Climber. This stochastic approach allows the

SHC to escape from local optima.

The Matlab® code used to execute the SHC is presented in Figure 6.8. The implementation is very similar

to the RRHC (cf. Figure 6.1) but varies in that only one neighbour is selected at random with its path

compiled (lines 42-45), and the selection process is now probabilistic (line 59). By only selecting and

evaluating one neighbour there is less redundant computation which will be shown to lead to a faster

optimising algorithm.

0

0.5

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
ro

b
a

b
il

it
y

 o
f

S
e

le
ct

io
n

Difference in Cycle-time (Nct - Cct) (s)

Simulation and Optimisation of a 2DOFPPM

100

1 function OptimiseConfigurationSHC(CP,TermCond,UConstraints, StepSize,MaxAttempts,T)
2 % Uses a random restart stochastic hill climber to narrow on time-minimum configuration
3 % VARIABLES:
4 % CP - Cycle Path class containing geometric detai ls of the path
5 % TermCond - Termination Condition class detailing conditions of terminating process
6 % UConstraints - User Constraints class
7 % StepSize - size of steps (in m) to evaluate neig hbouring configurations
8 % MaxAttempts - the number of attempts before deci ding current iteration is complete
9 % T - constant in algorithm that affects probabili ty of selection
10

11 StorePathsUserConstraintsSQL(CP,UConstraints); % Store path and user constraint data
12 for i=1:TermCond.Iterations % Run Stochastic Hill Climber for a number of itera tions
13 % Select 'random' motor details from database
14 [motorID,newPPC] = SelectMotor(CP.PPC,UConstra ints);
15 CP.PPC = newPPC; % Assign Path Planning Constraints (PPC) of motor t o Cyc le Path(CP)
16 % Select random configuration that reaches all move targets
17 config = SelectRandomConfig(CP.Moves,motorID,U Constraints);
18 try
19 % Compile path using Configuration and Path Plannin g Constraints (PPC)
20 % Path Planning Results (ppr) are returned along wi th positional and zone data
21 % about targets
22 [Targets_XYZ,ppr] = CompilePath(CP.Moves,c onfig,CP.PPC);
23 catch exception
24 % Skip to next iteration if exception occurs due to config unable to meet targets
25 continue ;
26 end
27 % Store results of path planning in database
28 StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i) ;
29 local = false; % Set flag indicating whether a local minima has be en found
30 minCycleTime = ppr.PathA(size(ppr.PathA,1)).En dTime; % Set best cycletime acheived
31 bestConfig = config; % Set the best Configuration
32 currentConfig = config; % Set the current Configuration
33 currentCycleTime = minCycleTime; % Set cycletime acheived by currentConfig
34 while attempts < MaxAttempts % Loop for a set number of attempts
35 clear neighboursPPR ; % Clear variables
36 clear neighboursConfig ; % Clear variables
37 clear selectedNeighbourConfig ; % Clear variables
38 clear selectedNeighbourPPR ; % Clear variables
39 % Select configurations around the currentConfig
40 neighboursConfig = SelectNeighbouringConfi g(...
41 currentConfig,CP.Moves,motorID,UConstraints,StepSiz e);
42 % Select a random neighbour
43 randIndex = randperm(numel(neighboursConfi g));
44 selectedNeighbourConfig = neighboursConfig (randIndex(1,1));
45 % Evaluate the selected neighbour by compiling a pa th
46 [Targets_XYZ,ppr] = CompilePath(CP.Moves,s electedNeighbourConfig,CP.PPC);
47 %Store results of path planning in database
48 StoreSimulationsSQL(selectedNeighbourConfi g,CP.PPC,ppr,CP.ID,i);
49 selectedNeighbourPPR = ppr;
50 selectedNeighbourCycleTime = ...
51 selectedNeighbourPPR.PathA (size(selectedNeighbourPPR.PathA,1)).EndTime;
52 % Check if it is the best, save if it is
53 if selectedNeighbourCycleTime < minCycleTime
54 minCycleTime = selectedNeighbourCycleT ime;
55 bestConfig = selectedNeighbourPPR;
56 end
57 % Determine probability of selection based on cycle time
58 diff = selectedNeighbourCycleTime - curren tCycleTime;
59 probOfSelection = 1/(1+exp((selectedNeighb ourCycleTime - currentCycleTime)/T));
60 myRand = rand(1); % Select neighbouring config based on probability
61 if myRand < probOfSelection
62 currentConfig = selectedNeighbourConfi g;
63 currentCycleTime = selectedNeighbourPP R.PathA(...
64 size(s electedNeighbourPPR.PathA,1)).EndTime;
65 end
66 end
67 end
68 end

Figure 6.8 Matlab® Code of the SHC Optimising Method

 Chapter 6 – Optimisation Methodologies

101

The SHC optimising method has several parameters that need to be tuned to maximise the performance

of the algorithm. Firstly, the StepSize (lines 1 & 40), as was also used in the RRHC, determines how far to

look for neighbouring solutions. As the SHC and RRHC algorithms apply the StepSize in similar ways, the

StepSize value that was tuned for the RRHC will again be used for the SHC. This also simplifies the

parameter tuning process, as there are fewer parameter combinations to be evaluated. As shall be seen

in the following algorithms, the number of parameter combinations can become large. Making valid

assumptions such as this become necessary to limit the evaluation time. The SHC StepSize parameter is

set as 0.02 m.

The second parameter to be tuned is the T value (lines 1 & 59) used in Equation (5.13). This sets the

shape of the probability profile. A low T value produces a profile approaching that of the RRHC, whereas

a high value approaches a random search. Figure 6.9 shows the selection probability profiles generated

for several values of T. This section analyses which of those profiles is best suited to the problem of

optimising the 2DOFPPM dimensions to achieve the fastest cycle-time.

Figure 6.9 Selection probability profiles of four T constants for a SHC

The final parameter to be tuned is the MaxAttempts (line 1 & 34). Unlike the RRHC, the SHC has no

obvious termination condition. The RRHC is terminated once it has found a solution surrounded by less

optimal neighbours. This may result in terminating at a local optimum. The SHC seeks to avoid this by

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
ro

b
a

b
il

it
y

 o
f

S
e

le
ct

io
n

Difference in Cycle-time (Nct - Cct) (s)

T = 0.01

T = 0.05

T = 0.1

T = 0.5

Simulation and Optimisation of a 2DOFPPM

102

stochastically selecting a worse neighbour, even if all the neighbours are less optimal. Therefore, the

parameter MaxAttempts sets the number of iterations that the algorithm will perform. This section

determines the value for MaxAttempts for this research problem.

In order to evaluate the best values for T and MaxAttempts, 4 x 150 runs of the SHC were performed.

This consisted of 150 runs using each of the four T values being examined (0.01, 0.05, 0.1, and 0.5). The

performance of the SHC was also monitored in relation to the number of iteration attempts. This

provided data to evaluate the best value for MaxAttempts. The results of the SHC evaluation are

summarised in the following figures. Figure 6.10 shows a histogram distribution of the minimum cycle-

time achieved using each of the four T constants. A T value of 0.05 is seen to perform better than the

others after 5000 iterations. The mean, standard deviation and median minimum cycle-times for each T

value are presented in Table 6.4.

Figure 6.10 Normalised histogram of minimum cycle-time achieved by four different T values using the SHC method after

5000 iterations. Based on 150 individual runs.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
0

20

40

 T = 0.01

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
0

20

40

 T = 0.05

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
0

20

40

P
er

ce
nt

ag
e

of
 R

un
s

(%
)

 T = 0.1

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
0

20

40

Minimum Cycle-time (s)

 T = 0.5

 Chapter 6 – Optimisation Methodologies

103

Table 6.4 Mean and Median minimum cycle-times for four different values of T

T Mean Minimum Cycle-

time (s)

Minimum Cycle-time

Standard Deviation (s)

Median Minimum Cycle-

time (s)

0.01 1.79 0.22 1.73

0.05 1.61 0.07 1.60

0.1 1.64 0.10 1.61

0.5 1.85 0.17 1.81

While the mean and median minimum cycle-times for a T value of 0.05 are shorter than the other three

values of T, it is useful to validate this statistically using the Wilcoxon-Mann-Whitney U-test, as done

with the StepSizes of the RRHC. The optimisation results achieved with a T value of 0.05 are compared to

the results obtained using the other three T values. The U-test results can be seen in Table 6.5, where

the null hypothesis is rejected for T = 0.01 and 0.5 with a 95 % confidence interval. However there is no

statistically significant difference with the minimum cycle-time achieved by T = 0.1 and T = 0.05.

Table 6.5 Wilcoxon-Mann-Whitney test results comparing T = 0.05 to the other values of T

T Rejection of Null-Hypothesis p-Value

0.01 1 1.83 x10
-10

0.1 0 0.240

0.5 1 5.60 x10
-18

So far the performance of the SHC with different values of T has only considered the results after 5000

iterations (that is, MaxAttempts = 5000). The histogram plots in Figure 6.11 show the distribution of the

minimum cycle-times after 100, 1000 and 5000 attempts. The median minimum cycle-time is evaluated

for each value of T at 100, 1000 and 5000 attempts, and is shown in Table 6.6. After 100 attempts, a T

value of 0.1 is found to give the lowest average minimum cycle-time. However, 0.05 is found to produce

the lowest mean minimum cycle-time after both 1000 and 5000 attempts. The significance of these

results is evaluated using the Wilcoxon-Mann-Whitney U-test with a 95 % confidence interval. The

results of this test are shown in Table 6.7. After 100 attempts, there is no difference in the minimum

cycle-time achieved using T values 0.01, 0.05 and 0.1. Using a T value of 0.5 performs worse than the

other three values tested. After both 1000 and 5000 attempts the T value of 0.05 proves better than

Simulation and Optimisation of a 2DOFPPM

104

0.01 and 0.5, but there is no significant difference in the performance when compared to a T value of

0.1. Therefore, T can be set to either 0.05 or 0.1 for best results of the SHC based on the values tested.

Figure 6.11 Normalised histograms of minimum cycle-times using four T values after 100, 1000 and 5000 attempts

Table 6.6 Median Minimum cycle-times for different T values after different number of attempts

T
Median Minimum Cycle-Time (s)

100 Attempts 1000 Attempts 5000 Attempts

0.01 1.98 1.82 1.73

0.05 2.01 1.69 1.60

0.1 1.97 1.74 1.61

0.5 2.02 1.96 1.81

1.5 2
0

20

40

100 Attempts

1.5 2
0

20

40

1000 Attempts

1.5 2
0

20

40

5000 Attempts

T = 0.01

1.5 2
0

20

40

1.5 2
0

20

40

1.5 2
0

20

40

T = 0.05

1.5 2
0

20

40

P
er

ce
nt

ag
e

of
 R

un
s

(%
)

1.5 2
0

20

40

1.5 2
0

20

40

T = 0.1

1.5 2
0

20

40

1.5 2
0

20

40

Minimum Cycle-time (s)
1.5 2

0

20

40

T = 0.5

 Chapter 6 – Optimisation Methodologies

105

Table 6.7 Wilcoxon-Mann-Whitney test results. Comparing T = 0.1 to the other values of T for 100 attempts, and T = 0.05 to

the other values of T for 1000 and 5000 attempts.

T

100 Attempts (T = 0.1) 1000 Attempts (T = 0.05) 5000 Attempts (T = 0.05)

Rejection of

Null-Hypothesis
p-Value

Rejection of

Null-Hypothesis
p-Value

Rejection of

Null-Hypothesis
p-Value

0.01 0 0.915 1 6.18 x10
-4

 1 1.83 x10
-10

0.05 0 0.501 N/A N/A N/A N/A

0.1 N/A N/A 0 0.156 0 0.240

0.5 1 0.030 1 7.50 x10
-10

 1 5.60 x10
-18

The other parameter to be tuned in the SHC algorithm is MaxAttempts. It is important to look at the

minimum cycle-time achieved as a function of the attempts required. This can give an indication of how

many iteration attempts are required until a near optimal solution is expected to be found. Figure 6.12

shows that for all values of T, the greatest improvement in finding a solution with a minimum cycle-time,

is achieved within the first 500 iteration attempts. The mean minimum cycle-time continues to improve,

but at a slowing rate, right up until 5000 attempts. However, a value of 2500 attempts is a suitable

compromise for the SHC algorithm to find a configuration that produces a near minimum cycle-time.

Figure 6.13 shows the computation time required for the SHC to achieve a given mean minimum cycle-

time. Four lines are plotted for each of the T values tested. It can be seen that by 2500 seconds, all of

the T values have come close to reaching an ‘optimal’ solution. T values of 0.05 and 0.1 easily

outperform the values of 0.01 and 0.5.

The SHC is a modification of the RRHC which introduces a probability to the selection process. This

allows the SHC to escape from local optima. Several parameters that affect the performance of the SHC

have been tuned in this section. Firstly, the StepSize value is chosen to be the same as that of the RRHC

and is set at 0.2 m. Secondly, the value T sets the shape of the probability selection curve. Four values

were tested and a value of 0.05 was chosen to provide the fastest convergence on the optimal

2DOFPPM dimensions. Finally, as the SHC has no obvious terminating condition, a value had to be set to

limit the number of iteration attempts. 2500 attempts were shown to provide a suitable number of

iterations to converge on a near optimal set of dimensions. Therefore the parameter MaxAttempts has

been set at 2500.

Simulation and Optimisation of a 2DOFPPM

106

Figure 6.12 Mean minimum cycle-time achieved relative to the number of iteration attempts for four values of T

Figure 6.13 Computation time versus mean minimum cycle-time for four T values of the SHC

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Iterations/Attempts

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

 T = 0.01
 T = 0.05
 T = 0.1
 T = 0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Computation Time (s)

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

 T = 0.01

 T = 0.05
 T = 0.1
 T = 0.5

 Chapter 6 – Optimisation Methodologies

107

6.1.3 Simulated Annealing

The SHC algorithm can be modified to produce an algorithm known as Simulated Annealing (SA). SA

differs from SHC in two ways:

• The main difference is that the parameter T is varied during the optimising process. T starts out

large and is reduced over a number of iterations.

• Unlike the SHC, SA always accepts solutions if they are better than the current solution.

SA gets its name from an analogy to the thermodynamics process of slowing cooling a crystal so that it

forms in a state of lowest energy. In the same way, the SA algorithm slowly ‘cools’ the value of T so that

the algorithm finds the lowest value of a minimisation problem. With an initially high value of T, the SA

has a high ‘energy’ state and the search method is closer to a random search technique. As T is reduced,

the optimisation process becomes closer to a standard Hill Climber. Figure 6.14 shows an example of the

selection probability profile of a SA, as applied to optimising the 2DOFPPM for minimum cycle-time. It

can be noted that a better solution (that is, one with a lower cycle-time) is always selected with a

probability of 1. Also, the probability of selecting a weaker solution starts out greater but is reduced

over successive iterations as the value of T is reduced. Near the end of the optimising process the SA

selection profile becomes close to that of a Hill Climber.

Figure 6.14 SA selection probability profile before and after annealing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
ro

b
a

b
il

it
y

 o
f

S
e

le
ct

io
n

Difference in Cycle Time (s)

Initial Selection

Probability Profile

Selection Probability

Profile After Annealing

Simulation and Optimisation of a 2DOFPPM

108

Equation (5.14) is used to determine the probability of selection. This is the same equation as that used

in the SHC, but rather than T being constant, it is reduced as the iterations increase. T is attenuated after

a set number of iterations using the formula shown in Equation (5.15).

3 = 	 11 + <����9���	� (5.14)

1 = 1 ∗	1Wmmsp�Wm�fp (5.15)

where 3 is the probability of selection, ��� and 2�� are the cycle-times of the neighbouring and current

solution respectively, 1 is a constant that determines the shape of the selection probability profile and 0 < 1Wmmsp�Wm�fp < 1 is a value to attenuate the value of 1 over time.

The Matlab® code developed to execute the SA is presented in Figure 6.15 and Figure 6.16. This

implementation is similar to the SHC (refer Figure 6.8). The main differences are that there are now two

coded loops; the inner loop (lines 53-95) which behaves like the SHC’s loop and an outer loop (lines 50-

98) which alters the value of T at each iteration (line 96). The other variation is that the selection process

is now conditional on whether the selected neighbour’s cycle-time is faster or slower than the current

solution’s cycle-time (lines 82-93).

Once again, the StepSize (lines 1 & 61) obtained from tuning the RRHC is used as the StepSize for the SA.

This is because the techniques do not vary in this regard. Therefore, the StepSize is 0.02 m. The number

of iterations of the inner loop is controlled by the parameter MaxAttempts1 (lines 1 & 53). Several

values were chosen, and the resulting performances evaluated as presented in this section. The values

being tested for MaxAttempts1 are 200, 500 and 2000. After some enumerative testing, the outer loop

parameter MaxAttempts2 (lines 2 & 50) was set at 5. This provided enough ‘cooling’ for the SA to work

effectively.

Optimisation runs were also made with lower values of MaxAttempts1 (10 and 40), but these did not

provide enough iterations for the optimisation process to complete. The results using these values of

MaxAttempts1 are included in Appendix D.

 Chapter 6 – Optimisation Methodologies

109

1 function OptimiseConfigurationSA(CP,TermCond,UConstraints,S tepSize,MaxAttempts1, ...
2 MaxAttempts2,T,Attenuation)
3 % Uses a random restart hill climber with simulate d annealing to narrow on a
4 % time-minimum configuration
5 % VARIABLES:
6 % CP - Cycle Path class containing geometric detai ls of the path
7 % TermCond - Termination Condition class detailing conditions of terminating process
8 % UConstraints - User Constraints class
9 % StepSize - size of steps (in m) to evaluate neig hbouring configurations
10 % MaxAttempts1 - maximum number of attempts/iterat ions in the inner loop of algorithm
11 % before 'cooling' takes place
12 % MaxAttempts2 - maximum number of attempts/iterat ions of the outer loop in algorithm.
13 % The number of 'cooling' steps taking place
14 % T - constant in algorithm that affects probabili ty of selection
15 % Attenuation - the 'cooling' factor reducing the probability of selecting a less optimal
16 % configuration as time goes on
17

18 % Store path and user constraint data
19 StorePathsUserConstraintsSQL(CP,UConstraints);
20

21 for i=1:TermCond.Iterations % Run Simulated Annealer for a number of iterations
22

23 % Select 'random' motor details from database
24 [motorID,newPPC] = SelectMotor(CP.PPC,UConstra ints);
25

26 CP.PPC = newPPC; % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)
27

28 % Select random configuration that reaches all move targets
29 config = SelectRandomConfig(CP.Moves,motorID,U Constraints);
30

31 try
32 % Compile path using Configuration and Path Plannin g Constraints (PPC)
33 % Path Planning Results (ppr) are returned along wi th positional and zone data
34 % about targets
35 [Targets_XYZ,ppr] = CompilePath(CP.Moves,c onfig,CP.PPC);
36 catch exception
37 % Skip to next iteration if exception occurs due to config unable to meet targets
38 continue ;
39 end
40

41 % Store results of path planning in database
42 StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i) ;
43

44 minCycleTime = ppr.PathA(size(ppr.PathA,1)).En dTime; % Set best cycletime acheived
45 bestConfig = config; % Set the best Configuration
46 currentConfig = config; % Set the current Configuration
47 currentCycleTime = minCycleTime; % Set cycletime acheived by currentConfig
48

49 attempts2 = 0; % Reset counter
50 while attempts2 < MaxAttempts2
51

52 attempts1 = 0; % Reset counter
53 while attempts1 < MaxAttempts1
54 clear neighboursPPR ; % Clear variables
55 clear neighboursConfig ; % Clear variables
56 clear selectedNeighbourConfig ; % Clear variables
57 clear selectedNeighbourPPR ; % Clear variables
58

59 % Select configurations around the currentConfig
60 neighboursConfig = SelectNeighbouringC onfig(...
61 currentConfig, CP.Moves,motorID,UConstraints,StepSize);
62

63 % Select a random neighbour
64 randIndex = randperm(numel(neighboursC onfig));
65 selectedNeighbourConfig = neighboursCo nfig(randIndex(1,1));
66

Figure 6.15 Matlab® Code of the SA Optimising Method (Part 1/2)

Simulation and Optimisation of a 2DOFPPM

110

67 % Evaluate the selected neighbour
68 [Targets_XYZ,ppr] = CompilePath(CP.Mov es,selectedNeighbourConfig,CP.PPC);
69

70 StoreSimulationsSQL(selectedNeighbourC onfig,CP.PPC,ppr,CP.ID,i);
71 selectedNeighbourPPR = ppr;
72 selectedNeighbourCycleTime = ...
73 selectedNeighbourPPR.PathA(size(se lectedNeighbourPPR.PathA,1)).EndTime;
74

75 % Check if it is the best, save if it is
76 if selectedNeighbourCycleTime < minCycleTime
77 minCycleTime = selectedNeighbourCy cleTime;
78 bestConfig = selectedNeighbourPPR;
79 else
80

81 % check if it is better than the current config/cyc letime
82 if selectedNeighbourCycleTime < minCycleTime
83 % Replace currentConfig with neighbour
84 currentConfig = selectedNeighbourC onfig;
85 currentCycleTime = selectedNeighbo urCycleTime;
86 else
87 % Determine probability of selection based on cycle time and the ...
88 % 'cooling' process
89 probOfSelection = ...
90 1/(1+exp((selectedNeigh bourCycleTime - currentCycleTime)/T));
91

92 % Select neighbouring config based on probability
93 myRand = rand(1);
94 if myRand < probOfSelection
95 currentConfig = selectedNeighb ourConfig;
96 currentCycleTime = selectedNei ghbourPPR.PathA(...
97 size(s electedNeighbourPPR.PathA,1)).EndTime;
92 end
93 end
94 attempts1 = attempts1+1;
95 end
96 T=Attenuation*T; % Reduce T by an amount over time ('cooling')
97 attempts2 = attempts2+1;
98 end
99 end
100 end

Figure 6.16 Matlab® Code of the SA Optimising Method (Part 2/2)

Three values of T (lines 2 & 90) were chosen and analysed with three different attenuation rates,

Tattenuation (lines 2 & 96). The values of T were 0.05, 0.2 and 0.5. The three attenuation rates were 0.7, 0.8

and 0.9. Figure 6.17 shows the selection probability profiles over time for the nine possible

combinations of these values. The first column shows the initial selection probability, the central column

shows the probability of selection after some cooling has taken place, and the final column shows the

final selection probability profiles at the end of the SA optimisation process.

In order to tune the SA parameters, 100 runs were made for each of the 27 combinations of

MaxAttempts1 (= 200, 500, 2000), T (= 0.05, 0.2, 0.5) and Tattenuation (= 0.7, 0.8, 0.9). The results were

then statistically analysed to find the best combination. These results are presented in the following

pages.

 Chapter 6 – Optimisation Methodologies

111

P
ro

b
a

b
il

it
y

o
f

S
e

le
ct

io
n

 1
W

mm
s

p
�

W
m�

f
p

=
0

.7

 1
W

mm
s

p
�

W
m�

f
p

=
0

.8

 1
W

mm
s

p
�

W
m�

f
p

=
0

.9

 Attempts = 0 Attempts = 2 Attempts = 5

 Difference in Cycle-time (s)

 1 = 0.5 1 = 0.2 1 = 0.05

Figure 6.17 Selection probability profiles for three values of T at three different attenuation rates over time

Figure 6.18 shows the distributions of minimum cycle-times from 100 runs of the SA algorithm using a

MaxAttempts1 value of 200 and nine different combinations of T and Tattenuation. The means, standard

deviations and medians of these results are summarised in Table 6.8. It can be seen that there is little

variation in the minimum cycle-time due to the different values of T and Tattenuation. This is supported by

the Wilcoxon-Mann-Whitney test results in Table 6.9 which compares the median minimum cycle-time

of the SA algorithm, using T = 0.05 and Tattenuation = 0.9, to each of the other eight parameter settings. The

test shows that, in all but two of the eight other parameter combinations, there is no statistical

difference in the performance of using T = 0.05 and Tattenuation = 0.9 as parameters in the SA algorithm.

0

0.2

0.4

0.6

0.8

1

-0.5 -0.3 -0.1 0.1 0.3 0.5

0

0.2

0.4

0.6

0.8

1

-0.5 -0.3 -0.1 0.1 0.3 0.5

0

0.2

0.4

0.6

0.8

1

-0.5 -0.3 -0.1 0.1 0.3 0.5

0

0.2

0.4

0.6

0.8

1

-0.5 -0.3 -0.1 0.1 0.3 0.5

0

0.2

0.4

0.6

0.8

1

-0.5 -0.3 -0.1 0.1 0.3 0.5

0

0.2

0.4

0.6

0.8

1

-0.5 -0.3 -0.1 0.1 0.3 0.5

0

0.2

0.4

0.6

0.8

1

-0.5 -0.3 -0.1 0.1 0.3 0.5

0

0.2

0.4

0.6

0.8

1

-0.5 -0.3 -0.1 0.1 0.3 0.5

0

0.2

0.4

0.6

0.8

1

-0.5 -0.3 -0.1 0.1 0.3 0.5

Simulation and Optimisation of a 2DOFPPM

112

Figure 6.18 Normalised histograms of minimum cycle-times for three T values with three Tattenuation rates. MaxAttempts1

= 200.

Table 6.8 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for MaxAttempts1 = 200

T
Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s)

0.05 2.02 0.19 2.01 2.01 0.18 2.00 2.00 0.19 1.99

0.2 2.02 0.18 2.01 2.02 0.19 2.02 1.99 0.18 1.99

0.5 2.03 0.18 2.00 2.01 0.18 2.00 2.01 0.19 2.00

Figure 6.19 shows the distributions of minimum cycle-times from 100 runs of the SA algorithm using a

MaxAttempts1 value of 500 and nine different combinations of T and Tattenuation. As was the result when

using 200 as the MaxAttempts1 value, there is little variation in the minimum cycle-time distribution

due to the different values of T and Tattenuation, as seen in Table 6.10. The Wilcoxon-Mann-Whitney test

results in

1.5 2 2.5
0

10

20

30

40

 Tattenuation = 0.7

1.5 2 2.5
0

10

20

30

40

 Tattenuation = 0.8

1.5 2 2.5
0

10

20

30

40

 Tattenuation = 0.9

 T = 0.05

1.5 2 2.5
0

10

20

30

40

P
er

ce
nt

ag
e

of
 R

un
s

(%
)

1.5 2 2.5
0

10

20

30

40

1.5 2 2.5
0

10

20

30

40

 T = 0.2

1.5 2 2.5
0

10

20

30

40

1.5 2 2.5
0

10

20

30

40

Minimum Cycle-time (s)
1.5 2 2.5

0

10

20

30

40

 T = 0.5

 Chapter 6 – Optimisation Methodologies

113

Table 6.11 compare the median minimum cycle-time of the SA algorithm, using T = 0.05 and Tattenuation =

0.7, to each of the other eight parameter settings. The test shows that, in five of the eight other

parameter combinations, there is no statistical difference in the performance of using T = 0.05 and

Tattenuation = 0.7 as parameters in the SA algorithm.

Table 6.9 Wilcoxon-Mann-Whitney test results. Comparing T = 0.05, Tattenuation = 0.9 to the other combinations of values

tested with MaxAttempts1 = 200

T

Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9

Rejection of

Null-Hypothesis
p-Value

Rejection of

Null-Hypothesis
p-Value

Rejection of

Null-Hypothesis
p-Value

0.05 1 0.044 0 0.294 N/A N/A

0.2 0 0.062 0 0.053 0 0.988

0.5 1 0.024 0 0.513 0 0.316

1.5 2 2.5
0

10

20

30

40

 Tattenuation = 0.7

1.5 2 2.5
0

10

20

30

40

 Tattenuation = 0.8

1.5 2 2.5
0

10

20

30

40

 Tattenuation = 0.9

 T = 0.05

1.5 2 2.5
0

10

20

30

40

P
er

ce
nt

ag
e

of
 R

un
s

(%
)

1.5 2 2.5
0

10

20

30

40

1.5 2 2.5
0

10

20

30

40

 T = 0.2

1.5 2 2.5
0

10

20

30

40

1.5 2 2.5
0

10

20

30

40

Minimum Cycle-time (s)
1.5 2 2.5

0

10

20

30

40

 T = 0.5

Simulation and Optimisation of a 2DOFPPM

114

Figure 6.19 Normalised histograms of minimum cycle-times for three T values with three Tattenuation rates. MaxAttempts1

= 500.

Table 6.10 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for MaxAttempts1 = 500

T
Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s)

0.05 1.95 0.17 1.96 2.01 0.22 2.0 1.99 0.18 1.99

0.2 2.00 0.18 2.00 2.00 0.20 2.0 1.97 0.18 1.98

0.5 1.99 0.18 1.99 1.98 0.19 1.99 1.98 0.19 1.99

Table 6.11 Wilcoxon-Mann-Whitney test results. Comparing T = 0.05, Tattenuation = 0.7 to the other combinations of values

tested with MaxAttempts1 = 500

T

Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9

Rejection of

Null-Hypothesis
p-Value

Rejection of

Null-Hypothesis
p-Value

Rejection of

Null-Hypothesis
p-Value

0.05 N/A N/A 1 0.041 0 0.093

0.2 1 0.014 1 0.044 0 0.273

0.5 0 0.054 0 0.200 0 0.205

 Chapter 6 – Optimisation Methodologies

115

Figure 6.20 Normalised histograms of minimum cycle-times for three T values with three Tattenuation rates. MaxAttempts1

= 2000.

Figure 6.20 shows the distributions of minimum cycle-times from 100 runs of the SA algorithm using a

MaxAttempts1 value of 2000 and nine different combinations of T and Tattenuation. While not as uniform as

the results when using values of 200 and 500 for MaxAttempts1, there is still little variation in the

minimum cycle-time distribution due to the different values of T and Tattenuation. The mean, standard

deviation and median results are summarised in Table 6.12. The Wilcoxon-Mann-Whitney test results in

Table 6.13 compare the median minimum cycle-time of the SA algorithm, using T = 0.05 and Tattenuation =

0.7, to each of the other eight parameter settings. The test shows that the combination of T and

Tattenuation producing the lowest median cycle-time, are statistically better than four of the other eight, T

and Tattenuation combinations.

Table 6.12 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for MaxAttempts1 = 2000

T
Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s)

0.05 2.05 0.24 1.98 1.93 0.17 1.97 2.04 0.21 2.09

1.5 2 2.5
0

10

20

30

40

 Tattenuation = 0.7

1.5 2 2.5
0

10

20

30

40

 Tattenuation = 0.8

1.5 2 2.5
0

10

20

30

40

 Tattenuation = 0.9

 T = 0.05

1.5 2 2.5
0

10

20

30

40

P
er

ce
nt

ag
e

of
 R

un
s

(%
)

1.5 2 2.5
0

10

20

30

40

1.5 2 2.5
0

10

20

30

40

 T = 0.2

1.5 2 2.5
0

10

20

30

40

1.5 2 2.5
0

10

20

30

40

Minimum Cycle-time (s)
1.5 2 2.5

0

10

20

30

40

 T = 0.5

Simulation and Optimisation of a 2DOFPPM

116

0.2 1.97 0.20 1.97 1.96 0.19 1.99 1.99 0.17 2.00

0.5 1.91 0.17 1.92 2.00 0.16 2.00 1.89 0.16 1.86

Table 6.13 Wilcoxon-Mann-Whitney test results. Comparing T = 0.5, Tattenuation = 0.9 to the other combinations of values

tested with MaxAttempts1 = 2000

T

Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9

Rejection of

Null-Hypothesis
p-Value

Rejection of

Null-Hypothesis
p-Value

Rejection of

Null-Hypothesis
p-Value

0.05 1 0.021 0 0.473 1 0.016

0.2 0 0.152 0 0.103 1 0.018

0.5 0 0.451 1 0.006 N/A N/A

The results above compare the effect the parameters, T and Tattenuation, have on the minimum cycle-time.

For each of the three MaxAttempts1 values there was little difference in the minimum cycle-time

performance due to the values of T and Tattenuation. Another important aspect in evaluating an algorithm is

how long it takes to perform the optimisation. Figure 6.21 through to Figure 6.23 show the mean

minimum cycle-time achieved relative to the length of time the optimisation was run for. Each graph

plots the nine combinations of T and Tattenuation.

 Chapter 6 – Optimisation Methodologies

117

Figure 6.21 Mean minimum cycle-time versus computation time with MaxAttempts1 = 200 for nine combinations of T and

Tattenuation.

Figure 6.21 presents the mean minimum cycle-time achieved by the SA, using a value of 200 for

MaxAttempts1, over the time taken during computation. Nine combinations of T and Tattenuation are

plotted. There is very little difference between the performances of the different parameter

combinations. The ‘optimised’ cycle-time of between 2 and 2.05 seconds is reached after approximately

200 seconds of computation time, when MaxAttempts1 is set at 200.

In comparison, Figure 6.22 shows the same data but when MaxAttempts1 is set at 500. In this case, it

takes approximately 550 seconds of computation to reach an ‘optimised’ state. Unlike the situation

when MaxAttempts1 was set at 200, for MaxAttempts1 being 500 there is a clearly better performing

parameter combination of T = 0.05 and Tattenuation = 0.7.

Figure 6.23 represents the SA computation time performance but with MaxAttempts1 being set at 2000.

The time taken for each parameter set to reach its mean minimum cycle-time varies between 300 and

1400 seconds. The mean minimum cycle-time reached by each parameter also varies greatly between

different combinations of T and Tattenuation.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

Computation Time (s)

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

T = 0.05, Tattenuation = 0.7

T = 0.05, Tattenuation = 0.8

T = 0.05, Tattenuation = 0.9

T = 0.2, Tattenuation = 0.7

T = 0.2, Tattenuation = 0.8

T = 0.2, Tattenuation = 0.9

T = 0.5, Tattenuation = 0.7

T = 0.5, Tattenuation = 0.8

T = 0.5, Tattenuation = 0.9

Simulation and Optimisation of a 2DOFPPM

118

Figure 6.22 Mean minimum cycle-time versus computation time with MaxAttempts1 = 500 for nine combinations of T and

Tattenuation.

The SA technique of optimisation always accepts a better solution (configuration), and accepts a weaker

solution with some probability relative to the strength of the solution. The probability of selecting a

weaker solution decreases, or ‘cools’, as the algorithm progresses.

There are five parameters used in the SA. The first is the StepSize, like the RRHC and SHC algorithms, this

determines how far away to look for neighbouring solutions. This is set at 0.02 m based on the results

from the RRHC analysis in Section 6.1.1. The other parameters are specific to the SA algorithm.

MaxAttempts2 was found by enumerative testing and set at 5. MaxAttempts1, T and Tattenuation have

been analysed by statistical methods and the results presented here. The values of T and Tattenuation

tended to have little effect on the performance of the algorithm as applied to this research problem.

Therefore, the focus is turned to the parameter MaxAttempts1. When MaxAttempts1 was higher (2000)

a better solution (lower cycle-time) was found. However, this required a longer processing time. These

results are due to MaxAttempts1, along with MaxAttempts2, dictating the number of solutions

examined. The time taken for the SA to reach ‘optimisation’ is relatively short given the algorithm is

seeking to find the optimal dimensions of a manipulator, which may take a number of weeks to fully

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

Computation Time (s)

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

T = 0.05, Tattenuation = 0.7

T = 0.05, Tattenuation = 0.8

T = 0.05, Tattenuation = 0.9

T = 0.2, Tattenuation = 0.7

T = 0.2, Tattenuation = 0.8

T = 0.2, Tattenuation = 0.9

T = 0.5, Tattenuation = 0.7

T = 0.5, Tattenuation = 0.8

T = 0.5, Tattenuation = 0.9

 Chapter 6 – Optimisation Methodologies

119

design. It is for this reason that the value of 2000 is the preferred choice for MaxAttempts1 out of the

three parameter values examined. With MaxAttempts1 set at 2000, the combination of T = 0.5 and

Tattenuation = 0.9 is chosen as they find the fastest cycle-time as shown in Figure 6.23 and Table 6.13.

Figure 6.23 Mean minimum cycle-time versus computation time with MaxAttempts1 = 2000 for nine combinations of T and

Tattenuation.

6.1.4 Genetic Algorithm

The three methods presented so far (RRHC, SHC and SA) are all based around the concept of searching

neighbouring solutions of a randomly selected solution, in the hope of iteratively making improvements.

An alternative is to use an evolutionary approach which aims to produce better solutions by ‘breeding’

good solutions together. This is modelled on the way organisms adapt and improve in the biological

world. The Genetic Algorithm (GA) is a popular algorithm for implementing an evolutionary optimising

technique.

The GA begins by randomly producing a number of samples (in the case of the 2DOFPPM these samples

are different dimensional configurations). This group of samples is known as the population. The GA

performs a number of evolutionary cycles, also known as generations. During each generation the

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

Computation Time (s)

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

T = 0.05, Tattenuation = 0.7

T = 0.05, Tattenuation = 0.8

T = 0.05, Tattenuation = 0.9

T = 0.2, Tattenuation = 0.7

T = 0.2, Tattenuation = 0.8

T = 0.2, Tattenuation = 0.9

T = 0.5, Tattenuation = 0.7

T = 0.5, Tattenuation = 0.8

T = 0.5, Tattenuation = 0.9

Simulation and Optimisation of a 2DOFPPM

120

fitness of each individual in the population is evaluated (for the 2DOFPPM this is the path cycle-time).

Once the fitness of each sample in the population is evaluated, the population goes through a selection

process which chooses a number of samples. The samples are selected based on a probability relating to

their fitness. The unselected samples are discarded which reduces the population. To rebuild the

population to its full size, reproduction occurs. Reproduction consists of the selected samples being

‘mated’ with each other, through a stochastic process, to produce offspring. The offspring are new

samples that consist of traits found in their two parents (crossover) and possibly some random variation

(mutation). These offspring are then placed into the population and another generation begins.

Figure 6.24 shows the first segment of the Matlab® code used to execute the GA. As in the previous

methods, the data relating to the path and the constraints on the manipulator are stored in the

database (line 14). Where the previous methods selected a single configuration at random, the GA

selects a number of random configurations which is known as a population (lines 21-34). For each of

these dimensional configurations, a motor and its properties are also selected from the database (line

25).

Once the population is initialised it undergoes a number of iterations, or generations, which alter the

population in the hope of producing improved configurations (lines 27-244). After a number of

generations, where the GA has reproduced new configurations by ‘breeding’ other configurations in the

population, the population can lose diversity. In terms of the biological analogy, this is due to

inbreeding. The result of this loss in diversity means the GA is no longer searching in the global search

space but effectively becomes stuck in a local minimum. One of the ways to counter this effect is

implemented in the second half of the code in Figure 6.24 (lines 52-68). If the difference between the

minimum and maximum cycle-times of the population is less than a 0.2 s, 10 % of the inbred population

are replaced by new configurations selected randomly from the search space (line 60). These new

configurations add diversity to the ‘gene’ pool and allow the GA to continue to find improved solutions.

 Chapter 6 – Optimisation Methodologies

121

1 function OptimiseConfigurationGA(CP,TermCond,UConstraints,P opSize, ...
2 SelectionSize,MutationRate,MutationAmount)

3 % Uses a Genetic Algorithm to narrow on time-minim um configuration
4 % VARIABLES:
5 % CP - Cycle Path class containing geometric detai ls of the path
6 % TermCond - Termination Condition class detailing conditions of terminating process
7 % UConstraints - User Constraints class
8 % PopSize - Number of individuals in GA population
9 % SelectionSize - Number of individuals selected f or breeding
10 % MutationRate - Probability of mutation occuring in child (%)
11 % MutationAmount - The amount of mutation to occur in child (%)
12

13 % Store path and user constraint data
14 StorePathsUserConstraintsSQL(CP,UConstraints);
15 population = repmat(Configuration,PopSize,1);
16 popPPC = repmat(PPConstraints,PopSize,1);
17 popFitness = zeros(PopSize,1);
18 popCycleTime = zeros(PopSize,1);
19 popMotorID = zeros(PopSize,1);
20

21 %% INITIALISATION - Initialise population by selec ting random configurations
22

23 for p=1:PopSize
24 % Select 'random' motor details from database
25 [motorID,newPPC] = SelectMotor(CP.PPC,UConstra ints);
26 CP.PPC = newPPC; % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)
27

28 % Select random configuration that reaches all move targets
29 config = SelectRandomConfig(CP.Moves,motorID,U Constraints);
30

31 population(p) = config;
32 popPPC(p) = CP.PPC;
33 popMotorID(p) = motorID;
34 end
35

36 % Perform GA for a set number of evolution cycles
37 for i=1:TermCond.Iterations
38 % Check if popCycleTimes are too similar and replac e some with random configurations
39 if i >1
40 minct = 500;
41 maxct = 0;
42 for p=1:PopSize
43 if popCycleTime(p) < 5000
44 if popCycleTime(p) < minct
45 minct = popCycleTime(p);
46 end
47 if popCycleTime(p) > maxct
48 maxct = popCycleTime(p);
49 end
50 end
51 end
52 if maxct-minct < 0.2 % Population is too inbred!
53 % Replace 10% of inbred population with random indi viduals
54 for rp = 1:floor(PopSize/10)
55 % Select 'random' motor details from database
56 [motorID,newPPC] = SelectMotor(CP. PPC,UConstraints);
57 % Assign Path Planning Constraints (PPC) of motor t o Cycle Path (CP)
58 CP.PPC = newPPC;
59 % Select random configuration that reaches all move targets
60 config = SelectRandomConfig(CP.Mov es,motorID,UConstraints);
61

62 % Randomly select an individual from population for replacement
63 replaceP = ceil(PopSize*rand(1));
64 population(replaceP) = config;
65 popPPC(replaceP) = CP.PPC;
66 popMotorID(replaceP) = motorID;
67 end
68 end
69 end

Figure 6.24 Matlab® Code of the GA Optimising Method (Part 1/4)

Simulation and Optimisation of a 2DOFPPM

122

After the population is initialised and an iterative loop is entered into, each configuration is evaluated to

determine its fitness. As shown in Figure 6.25 (line 83), this involves planning a trajectory using the

CompilePath() method (refer Figure F.7 - Figure F.11 in Appendix F) and storing the resulting path in the

database (line 85). To limit the amount of computation, the algorithm first checks if the exact same

configuration has previously been analysed, and if it has, the previously calculated cycle-time result is

returned (line 80). Once the cycle-time for each configuration in the database has been obtained, the

fitness of each solution is set as being the inverse of the cycle-time cubed (line 95). This function gave an

exponentially increasing fitness to the configurations with faster cycle-times.

Following the evaluation of each configuration, the GA performs a selection process on the population.

The code in the lower half of Figure 6.25 shows how the GA selects a percentage of the population

based on the fitness of each configuration (lines 98-132). The configurations with higher fitness have a

higher probability of being selected (line 124).

With a percentage of the population already selected, Figure 6.26 shows how the GA performs a

reproduction action to produce new configurations from the selected configurations. A new population

is formed (line 137) and the selected configurations are automatically inserted into it (lines 140-144). To

fill the remainder of the new population, the selected configurations are chosen randomly in pairs (lines

154-162) and ‘bred’ to form new configurations. This breeding process is done in the form of taking

some ‘genes’ (in the case of the 2DOFPPM, this refers to the four dimensions being optimised) from one

of the two ‘parent’ configurations and combining it with the ‘genes’ of the other ‘parent’ configuration

(lines 164-178). The result is a ‘child’ configuration that has dimensions from both of the two selected

configurations.

While the new configuration is different from both of its ‘parent’ configurations, the GA also introduces

some mutation to help keep diversity in the population. This is documented in Figure 6.27 (lines 180-

212). Each of the four dimensions of the new ‘child’ configuration is, with some probability

(MutationRate), subject to being altered in this way (lines 181, 189, 197 & 205). The amount that it is

altered is set by a parameter called MutationAmount.

The coded GA also attempts to keep diversity in the population by ensuring that any new configuration

introduced by the reproduction process is unique. This is shown in the bottom half of Figure 6.27 (lines

218-238).

 Chapter 6 – Optimisation Methodologies

123

70

71

72 %% EVALUATION - Evaluate the performance of each i ndividual in population
73

74 for p=1:PopSize
75 config = population(p);
76 ppc = popPPC(p);
77 try
78 %Check if config has already been simulated,return cycletime if it exists in
79 % database
80 ct = CheckConfigExists(CP.ID,config);
81 if isempty(ct)
82 % Evaluate the selected individual by compiling a p ath
83 [Targets_XYZ,ppr] = CompilePath(CP .Moves,config,ppc);
84 %Store results of path planning in database
85 StoreSimulationsSQL(config,ppc,ppr ,CP.ID,i);
86

87 popCycleTime(p) = ppr.PathA(size(p pr.PathA,1)).EndTime;
88 else
89 popCycleTime(p) = ct;
90 end
91 catch exception
92 %If error occurs give individual poor cycletime so will be repaced nextcycle
93 popCycleTime(p) = 99999;
94 end
95 popFitness(p) = 1/(popCycleTime(p)^3); %Fitness equals inverse of cycletime cubed
96 end
97

98 %% SELECTION - Select sub population from populati on for breeding based on fitness
99

100 sumFitness = 0;
101 for p=1:PopSize
102 sumFitness = sumFitness + popFitness(p);
103 end
104 % Assign selection probability to each individual i n population based on fitness
105 popProb = zeros(PopSize,1);
106 for p=1:PopSize
107 popProb(p) = popFitness(p)/sumFitness;
108 end
109 selectionProb = zeros(PopSize,1);
110 sumProb = 0;
111 for p=1:PopSize
112 selectionProb(p) = sumProb + popProb(p);
113 sumProb = selectionProb(p);
114 end
115

116 % Select a number (SelectionSize) of the population for breeding
117 selectedPop = repmat(Configuration,SelectionSi ze,1);
118 selectedPopPPC = repmat(PPConstraints,Selectio nSize,1);
119 selectedPopMotorID = zeros(SelectionSize,1);
120 selectedPopCycleTime = zeros(SelectionSize,1);
121 for s=1:SelectionSize
122 randnum = rand(1);
123 for p=1:PopSize
124 if selectionProb(p) > randnum
125 selectedPop(s) = population(p);
126 selectedPopPPC(s) = popPPC(p);
127 selectedPopMotorID(s) = popMotorID (p);
128 selectedPopCycleTime(s) = popCycle Time(p);
129 break ;
130 end
131 end
132 end
133

Figure 6.25 Matlab® Code of the GA Optimising Method (Part 2/4)

Simulation and Optimisation of a 2DOFPPM

124

134 %% REPRODUCTION
135

136 % Add selected parents to new population
137 newPopulation = repmat(Configuration,PopSize,1);
138 newPopPPC = repmat(PPConstraints,PopSize,1);
139 newPopMotorID = zeros(PopSize,1);
140 for s=1:SelectionSize
141 newPopulation(s) = selectedPop(s);
142 newPopPPC(s) = selectedPopPPC(s);
143 newPopMotorID(s) = selectedPopMotorID(s);
144 end
145

146 % Generate children to fill rest of new population
147 for p=SelectionSize:PopSize
148 reachable = false;
149 unique = true;
150 while reachable == false && unique == true;
151 % CROSSOVER - children configuration dimensions are a random number between
152 % their two parents
153

154 % select two random parents from selectedPop
155 randnum1 = ceil(rand(1)*SelectionSize) ;
156 randnum2 = ceil(rand(1)*SelectionSize) ;
157 parent1Config = selectedPop(randnum1);
158 parent2Config = selectedPop(randnum2);
159 parent1ppc = selectedPopPPC(randnum1);
160 parent2ppc = selectedPopPPC(randnum2);
161 parent1motorID = selectedPopMotorID(ra ndnum1);
162 parent2motorID = selectedPopMotorID(ra ndnum2);
163

164 minlb = min([parent1Config.LengthBase parent2Config.LengthBase]);
165 maxlb = max([parent1Config.LengthBase parent2Config.LengthBase]);
166 lb = minlb+(maxlb-minlb)*rand(1); % Set childs base length
167

168 minll = min([parent1Config.LengthLower parent2Config.LengthLower]);
169 maxll = min([parent1Config.LengthLower parent2Config.LengthLower]);
170 ll = minll+(maxll-minll)*rand(1); % Set childs distal arm length
171

172 minlu = min([parent1Config.LengthUpper parent2Config.LengthUpper]);
173 maxlu = min([parent1Config.LengthUpper parent2Config.LengthUpper]);
174 lu = minlu+(maxlu-minlu)*rand(1); % Set childs proximal arm length
175

176 minwh = min([parent1Config.WorkspaceHe ight parent2Config.WorkspaceHeight]);
177 maxwh = min([parent1Config.WorkspaceHe ight parent2Config.WorkspaceHeight]);
178 wh = minwh+(maxwh-minwh)*rand(1); % Set childs workspace height
179

Figure 6.26 Matlab® Code of the GA Optimising Method (Part 3/4)

 Chapter 6 – Optimisation Methodologies

125

180 % MUTATION - with some probability alter childs dim ension
181 if rand(1) < MutationRate
182 if rand(1) <0.5
183 MutAmount = MutationAmount;
184 else
185 MutAmount = -MutationAmount;
186 end
187 lb = lb * (1+MutAmount);
188 end
189 if rand(1) < MutationRate
190 if rand(1) <0.5
191 MutAmount = MutationAmount;
192 else
193 MutAmount = -MutationAmount;
194 end
195 lu = lu * (1+MutAmount);
196 end
197 if rand(1) < MutationRate
198 if rand(1) <0.5
199 MutAmount = MutationAmount;
200 else
201 MutAmount = -MutationAmount;
202 end
203 ll = ll * (1+MutAmount);
204 end
205 if rand(1) < MutationRate
206 if rand(1) <0.5
207 MutAmount = MutationAmount;
208 else
209 MutAmount = -MutationAmount;
210 end
211 wh = wh * (1+MutAmount);
212 end
213

214 % Generate new configuration based on childs dimens ions
215 [config, reachable] = ...
216 CalculateConfig(lb,lu,ll,wh,CP. Moves,parent1motorID,UConstraints);
217

218 % Check configuration is unique in population
219 for pp=1:PopSize
220 existingConfig = newPopulation(pp);
221 try
222 if config.LengthBase == existingConfig.LengthBase ...
223 && config.LengthUpper = = existingConfig.LengthUpper ...
224 && config.LengthLower = = existingConfig.LengthLower ...
225 && config.WorkspaceHeig ht == existingConfig.WorkspaceHeight
226 unique = false;
227 break ;
228 end
229 catch exception
230 end
231 end
232

233 % Add child to population if it is unique and can a cheive the desired path
234 if unique == true && reachable == true
235 newPopulation(p) = config;
236 newPopPPC(p) = parent1ppc;
237 newPopMotorID(p) = parent1motorID;
238 end
239 end
240 end
241 population = newPopulation;
242 popPPC = newPopPPC;
243 popMotorID = newPopMotorID;
244 end
245 end

Figure 6.27 Matlab® Code of the GA Optimising Method (Part 4/4)

Simulation and Optimisation of a 2DOFPPM

126

The GA code has a number of parameters. The choosing of these parameters is critical to the

performance of the algorithm. Some of the parameters have been tuned through initial empirical

methods, whereas some have been more thoroughly evaluated. The parameters MutationRate (lines 2

& 181-205) and MutationAmount (lines 2 & 183-211) were chosen through trial and error until suitable

values were found. The MutationRate determines the chance of each dimension of a newly generated

configuration being altered. The amount that the dimension is altered is set by the MutationAmount.

The tuned values for these parameters are 25 % for the MutationRate and 10 % alteration by the

MutiationAmount.

There are three other parameters that affect the performance of the GA. Firstly, the Population (lines 1,

23 and throughout the algorithm) states the number of individual configurations maintained throughout

the algorithm. Secondly, the Selection Rate (lines 2 & 121) establishes the percentage of the Population

that will be selected to be in the population for the next generation and to reproduce. The third

parameter is the number of Iterations (line 37) that the GA will perform until it determines it has found

an ‘optimum’ configuration.

In order to find good values for these three parameters, a number of optimisation runs were performed

using three different Population values (30, 50, 100), with three different Selection Rates (30 %, 60 %,

80 %). Each of the nine parameter combinations was run for 300 iterations to compare the performance

over time. To statistically validate the performance of each permutation, 75 runs were done with every

parameter combination.

The distributions of the minimum cycle-time achieved with each parameter combination are shown by

the histograms in Figure 6.28. The means, standard deviations and medians of this same data are shown

in Table 6.14. The best performing combination, with a median minimum cycle-time of 1.59 seconds,

was a Population size of 100 with 80 % of the configurations being selected for reproduction as given by

the Selection Rate.

 Chapter 6 – Optimisation Methodologies

127

Figure 6.28 Normalised histograms of minimum cycle-time achieved by the GA method with a mutation rate of 25 %,

mutation amount of 5 % using population sizes of 30, 50 and 100 with selection rates of 30 %, 60 % and 80 %. Results are

based on 75 individual runs.

Table 6.14 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times with varying population and selection size

Population

Size

Selection Rate = 30 % Selection Rate = 60 % Selection Rate = 80 %

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s)

30 1.65 0.05 1.66 1.64 0.06 1.65 1.65 0.06 1.65

50 1.63 0.06 1.62 1.63 0.08 1.62 1.62 0.06 1.63

100 1.62 0.07 1.64 1.63 0.06 1.62 1.59 0.06 1.59

To validate this result, the Wilcoxon-Mann-Whitney test was performed, comparing the combination of

Population = 100 and Selection Rate = 80 % to the other eight parameter combinations tested. The

results, presented in Table 6.15, show that the null hypothesis was rejected in all eight cases. This means

that the best parameter combination performs significantly better than the other combinations tested.

1.5 2
0

20

40

Selection Rate = 30 %

1.5 2
0

20

40

Selection Rate = 60 %

1.5 2
0

20

40

Selection Rate = 80 %

Population
Size = 30

1.5 2
0

20

40

P
er

ce
nt

ag
e

of
 R

un
s

(%
)

1.5 2
0

20

40

1.5 2
0

20

40

Population
Size = 50

1.5 2
0

20

40

1.5 2
0

20

40

Minimum Cycle-time (s)
1.5 2

0

20

40

Population
Size = 100

Simulation and Optimisation of a 2DOFPPM

128

Table 6.15 Wilcoxon-Mann-Whitney test results. Comparing a population size of 100 and selection rate of 80 % to the other

combinations of values tested

Population

Size

Selection Rate = 30 % Selection Rate = 60 % Selection Rate = 80 %

Rejection of

Null-

Hypothesis

p-Value

Rejection of

Null-

Hypothesis

p-Value

Rejection of

Null-

Hypothesis

p-Value

30 1 7.66 x10
-7

1 3.53 x10
-5

 1 5.73 x10
-6

50 1 4.27 x10
-4

 1 0.012 1 0.034

100 1 0.015 1 0.007 N/A N/A

Figure 6.29 Computation time versus mean minimum cycle-time for nine combinations of population size and selection rate

The average computation time to reach ‘optimisation’ was faster for smaller population sizes as shown

in Figure 6.29. This is easily explained by the fact that fewer configurations had to be analysed for the

smaller populations. It can be noted however, that the combination of Population = 100 and Selection

Rate = 80 %, almost always found a better solution (that is, a lower cycle-time), for the duration of the

process than the other parameter combinations.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Computation Time (s)

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

Population = 30, Selection Rate = 30%
Population = 30, Selection Rate = 60%

Population = 30, Selection Rate = 80%

Population = 50, Selection Rate = 30%

Population = 50, Selection Rate = 60%
Population = 50, Selection Rate = 80%

Population = 100, Selection Rate = 30%

Population = 100, Selection Rate = 60%
Population = 100, Selection Rate = 80%

 Chapter 6 – Optimisation Methodologies

129

The third parameter to be tuned was the number of evolution Iterations. Figure 6.30 plots the mean

minimum cycle-time over the number of Iterations. It can be seen that the greatest improvement in the

minimum cycle-time occurs during the early iterations. After 300 iterations, the average performance

increase is minimal. However, improvement can still be seen after 300 iterations, therefore indicating

that the GA has the potential to continue optimising with a greater number of iterations.

Figure 6.30 Number of evolution iterations/generations versus the mean minimum cycle-time for nine combinations of

population size and selection rate

The GA method provides an evolutionary approach to optimising the 2DOFPPM’s dimensions to achieve

the fastest cycle-time for a given path. This section has presented the code used to implement the

algorithm in Matlab®, as well as discussed and tuned the parameters required to maximise the GA’s

capability. Initial empirical testing led to values of 25 % and 10 % for the MutationRate and

MutationAmount, respectively. The lowest minimum cycle-time was shown to be achieved using a

Population size of 100 and a Selection Rate of 80 %. 300 Iterations has been chosen as the number of

evolutionary generations to be used by the GA. While the GA still shows signs of improvements past 300

iterations, the improvement is minimal and the time taken to achieve those iterations is far greater than

the time taken by the other algorithms being considered.

0 50 100 150 200 250 300
1.55

1.6

1.65

1.7

1.75

1.8

Evolution Iterations

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

Population = 30, Selection Rate = 30%
Population = 30, Selection Rate = 60%

Population = 30, Selection Rate = 80%

Population = 50, Selection Rate = 30%

Population = 50, Selection Rate = 60%
Population = 50, Selection Rate = 80%

Population = 100, Selection Rate = 30%

Population = 100, Selection Rate = 60%
Population = 100, Selection Rate = 80%

Simulation and Optimisation of a 2DOFPPM

130

6.1.5 Comparison

Four optimisation techniques have been implemented to find the best dimensional configuration for the

2DOFPPM. Each technique has several parameters that had to be tuned to achieve the best

performance from the algorithm. Table 6.16 presents the four optimising techniques along with a

summary of the tuned parameter values associated with each method.

Table 6.16 Summary of parameter values for the optimising algorithms

Algorithm Parameter Value

RRHC StepSize 0.02 m

 Iterations 100

SHC StepSize 0.02 m

 T 0.05

 MaxAttempts 2500

SA StepSize 0.02 m

 T 0.5

 Tattenuation 0.9

 MaxAttempts1 2000

 MaxAttempts2 5

GA Population Size 100

 Selection Rate 80 %

 MutationRate 25 %

 MutationAmount 10 %

In order to compare the relative performance of the four optimisation methods several graphs have

been plotted and a statistical evaluation undertaken. The first of these graphs is found in Figure 6.31,

which plots a histogram of the minimum cycle-time achieved by each of the methods. These histograms

represent the results of each technique using the best tuned parameters from the previous sections.

Along with the histogram distributions, Table 6.17 summarises the mean and median minimum cycle-

times of each method. It is noted that the RRHC and SHC perform relatively well with mean cycle-times

 Chapter 6 – Optimisation Methodologies

131

of 1.65 and 1.64 seconds respectively. The distribution of the RRHC is near normal, while the SHC is

more heavily weighted towards finding lower cycle-times. The SA process resulted in a wide spread of

minimum cycle-times and a mean minimum cycle-time of 1.89 seconds. The large variation in results as

well as a higher mean minimum cycle-time shows that the SA failed to optimise as well as the other

techniques. The GA achieved the lowest mean minimum cycle-time of the four techniques with a time of

1.59 seconds. The distribution is near normal and does not suffer from any outliers.

Figure 6.31 Normalised histograms of minimum cycle-time achieved by the RRHC, SHC, SA and GA optimisation methods

Table 6.17 Mean and median minimum cycle-times achieved by the RRHC, SHC, SA and GA optimisation methods

Algorithm Mean Minimum Cycle-time (s) Median Minimum Cycle-time (s)

RRHC 1.65 1.66

SHC 1.64 1.62

SA 1.89 1.86

GA 1.59 1.59

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0

20

40

 RRHC

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0

20

40

 SHC

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0

20

40

P
er

ce
nt

ag
e

of
 R

un
s

(%
)

 SA

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2
0

20

40

Minimum Cycle-time (s)

 GA

Simulation and Optimisation of a 2DOFPPM

132

While the mean and median give an indication into which optimising algorithm is best suited for this

project, a statistical analysis of the minimum cycle-times is needed. The Wilcoxon-Mann-Whitney test is

used to compare the algorithm with the lowest median (that is, the GA) with the other three algorithms.

The results of this test are shown in Table 6.18 where the null-hypothesis is rejected for all of the three

distributions with a 95 % confidence level. This proves that, based on the sample of results collected, the

GA is the best of the four algorithms at finding the 2DOFPPM configuration that can achieve the lowest

minimum cycle-time for a given path.

Table 6.18 Wilcoxon-Mann-Whitney test results. Comparing the GA to the RRHC, SHC and SA optimisation methods

Algorithm Rejection of Null-Hypothesis p-Value

RRHC 1 5.82 x10
-7

SHC 1 0.002

SA 1 9.99 x10
-14

Up until this point in the comparison of optimisation methods, only the end result of the algorithm has

been considered. Figure 6.32 shows a comparison of the computation time taken by the four

techniques. The mean minimum cycle-time is plotted as a function of the computation time. It can be

seen that the SA technique terminates first in less than 1500 seconds, but even during that time it never

outperformed the other techniques. The SHC finished in just under 2000 seconds, and found a near

optimal solution in a third less time the RRHC. The RRHC took 3000 seconds to terminate, and the

average minimum cycle-time had plateaued near this time. The GA required almost 8000 seconds to

finish, but on average had outperformed the other techniques in the first 1000 seconds.

Four optimising techniques have been implemented to find the best dimensional configuration of the

2DOFPPM for achieving the fastest cycle-time over a given path. Of these four techniques, the GA finds

the configuration giving the lowest mean cycle-time. While the GA takes the longest to complete its

optimisation process, on average it never performs worse than any of the other algorithms over any

given time frame. It is therefore, that the GA is the recommended choice in algorithms when optimising

the dimensions of the 2DOFPPM.

 Chapter 6 – Optimisation Methodologies

133

Figure 6.32 Computation time versus mean minimum cycle-time for the RRHC, SHC, SA and GA optimisation methods

6.2 Selecting a Configuration

The optimising algorithms presented in this chapter seek to find the configuration giving the fastest

cycle-time. This provides the designers of the 2DOFPPM with a useful tool to find near optimal

dimensions for maximising the productivity of the manipulator. It is important to realise that this tool,

while useful, should not be used in isolation. If the dimensions of the optimised configuration are used

without regard for other design considerations, the customised 2DOFPPM may fail to perform its task.

An example of this is highlighted by taking the optimal dimensions and running a SimMechanics™

simulation. Figure 6.33 shows the trajectory and reachable workspace of a near optimal 2DOFPPM

configuration as found by the GA in Section 6.1.4. It can be seen that the reachable workspace of this

2DOFPPM only just encompasses the trajectory followed by the end-effector. If there was a slight

change in the design constraints (for example, a widening of the pick and place positions) the

‘optimised’ configuration would no longer be able to reach all the targets, thus rendering it unsuitable

for the task.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Computation Time (s)

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

RRHC

SHC
SA

GA

Simulation and Optimisation of a 2DOFPPM

134

Figure 6.33 Trajectory and workspace of the optimised 2DOFPPM configuration resulting from the GA

To avoid this situation, two options are available for the designer. The first is to test the optimised

2DOFPPM in SimMechanics™ on a variety of slightly modified paths. The second option is to select a less

optimal configuration that has a larger workspace with greater room for changes in the path.

 Chapter 7 – Conclusion and Recommendations

135

7 Conclusion and Recommendations

7.1 Conclusion

This thesis has studied the simulation and optimisation of the 2DOFPPM on behalf of RML Engineering

Ltd. With the continuing pressure to increase throughput in factories, development in product handling

robotic manipulators is of great importance. Many industrial pick-and-place manipulators perform the

same cyclic movement for the lifetime of the robot. RML Engineering Ltd. wanted to investigate

developing 2DOFPPM pick-and-place manipulators that are customised for individual applications. While

a standard manipulator design would be made, the dimensions of the mechanism would be changeable

to provide a configuration that is optimised for a specific task. This thesis develops a simulation model of

the 2DOFPPM and produces software systems to allow the optimisation of the manipulator’s

dimensions.

The 2DOFPPM configuration is a simple parallel manipulator design that is capable of performing high

speed translational movements in a single plane of motion. The parallel architecture grants it a highly

stiff structure with great positional accuracy characteristics. The leverages obtained by the

manipulator’s construction provide high velocities and accelerations of the end-effector, thus leading to

fast product handling cycles.

Initially, the kinematics of the 2DOFPPM were presented and used to analyse the reachable workspace

of the manipulator. The effects that joint limits and relative manipulator dimensions have on the shape

and size of the workspace were examined. This provides a method of tuning the manipulator

dimensions to achieve a workspace with a robust and useful shape.

A model of the system was developed using SimMechanics™. This model takes motor input commands

and simulates the movement of the mechanism’s bodies under the actuation of the motors. The forces

and torques acting on the joints were measured along with the velocity and acceleration components

experienced by the end-effector. The SimMechanics™ simulation model allows detailed analysis of the

dynamic performance of a 2DOFPPM design prior to physical fabrication of the device.

To provide meaningful input into the simulation model a trajectory planner was developed. The

trajectory planner was required to minimise the time taken for the manipulator to traverse the path as it

would later be used in part of the manipulator configuration optimisation.

Simulation and Optimisation of a 2DOFPPM

136

The trajectory planner takes a set of movement commands that describes the path the end-effector

must traverse through. The movement commands not only state the positions in Cartesian space that

the end-effector must move to and from, but also enable additional parameters to be specified that

alter the shape and/or the speed of the movements. The trajectory planner then converts the set of

Cartesian movement instructions into joint space commands for the motor actuators to follow.

Piecewise cubic polynomial splines are fitted between knots in joint space. This provides continuous

velocity and acceleration profiles for the motors to follow. The travel time allocated between knots is

iteratively altered as the algorithm seeks to maximise the kinematic and dynamic capabilities of the

manipulator at all stages in the trajectory. The algorithm developed generates a near time minimum

trajectory.

The trajectory planner was then used in the process of optimising the manipulator for a given path. By

varying the dimensions of the manipulator, the minimum path cycle-time achievable also changes. Four

key dimensions were used as parameters for optimisation, the proximal and distal arm lengths, the

separation distance of the motors and the height of the manipulator above the workspace. The effect

each dimension has on the path cycle-time was examined by plotting the solution space, that is, a coarse

view of all the possible combinations of the four dimensions.

While the solution space gave an indication into the optimal manipulator configuration, it was proposed

that an optimising algorithm may be able to find the best configuration faster. Four optimising

algorithms were implemented. These were the RRHC, SHC, SA and GA techniques. Given a sample path

and a set of manipulator constraints, each algorithm was set to find the best dimensional configuration

for the manipulator. Every technique had parameters that required tuning to maximise its performance.

The parameters were tuned either through initial empirical testing or via running each algorithm

multiple times with different parameter values and performing statistical comparisons. Once all

parameters of every algorithm were sufficiently tuned, multiple runs of each algorithm were performed

to enable fair statistical evaluation of the methods.

The GA was the best performing algorithm, on average finding a configuration that could achieve a

faster cycle-time than the other techniques. The SHC and RRHC had similar performance characteristics

to one another, although the SHC converged on a near optimal solution faster. The SA technique failed

to converge consistently. A Wilcoxon-Mann-Whitney test was undertaken to statistically compare the

significance of the individual optimising technique’s results. The outcome of this test showed that the

GA was the best performing algorithm with a 95 % confidence interval.

 Chapter 7 – Conclusion and Recommendations

137

This thesis has presented RML Engineering Ltd. with several tools to assist in the design of customised

2DOFPPMs. By using a GA to optimise the manipulators dimensions, a fast cycle-time can be achieved

which in turn leads to increased productivity. While knowing the optimal dimensions is useful, it cannot

be used in isolation as the risk of designing a manipulator so specific that any changes to the pick-and-

place path render it unusable. Therefore, the SimMechanics™ simulation model is used to test the

optimised design under a range of conditions. This validates both the performance and reachable

workspace of the manipulator configuration.

7.2 Industry Review

The following is a review from the project’s industry supervisor, Daryl Joyce, at RML Engineering Ltd. The

full statement is included in Appendix C.

“This project has provided RML Engineering with further knowledge and tools to continue

our development of the customisable packaging robot placement module. The robotic

simulation will assist us in our mechanical design, while at the same time being a useful tool

for showing the robot’s performance to potential customers. One of the key advantages to

this packaging robot will be the capacity to optimise the dimensions to achieve a faster cycle

rate than current standardised manipulators. The optimisation methods developed as part

of this project will allow us to achieve this. Overall the project has been fruitful in providing

us with software tools and a greater knowledge of robotic manipulators.”

7.3 Future Work

This thesis has provided tools that enable the development, analysis and optimisation of the 2DOFPPM

mechanism. While the results of the thesis are of significant use to RML Engineering Ltd., there remain a

number of improvements to be explored. These, along with a number of research directions, are

discussed below.

Simulation Model:

(1) The SimMechanics™ simulation could be extended to include a model of the motors. This could

be achieved using another Matlab® toolbox called SimElectronics™. By modelling the motors a

more detailed view of the system could be obtained.

(2) Developing an on-line trajectory planner within the simulation model with a feedback loop to

control the motors in ‘real-time’. By integrating the trajectory planner with the low level control

system a wider view of the system could be simulated.

Simulation and Optimisation of a 2DOFPPM

138

(3) With the introduction of recommendations (1) and (2), the impact any controller or motor

inaccuracies had on the positional error of the end-effector could be evaluated.

(4) Analysing the effects vibration has on the end-effector’s positional accuracy by introducing non-

rigid bodies into the model. This would provide the model with a high degree of fidelity which is

useful in the final stages of the design process.

Trajectory Planning:

(5) An improved trajectory planning algorithm that calculates the path faster while achieving truly

time minimum trajectories would assist in the final stages of optimising the 2DOFPPM

configuration.

Optimisation Methods:

(6) While several optimising techniques have been applied to finding the optimal dimensions of the

2DOFPPM, the ever growing field of optimisation means that other methods may exist that

perform better than those tested within this thesis. One of these approaches is to use a hybrid

algorithm. For example, combining a genetic algorithm with a hill climber.

(7) The optimisation in this thesis has focused on minimising the path’s cycle-time. While this is

commonly the most important performance measure for pick-and-place manipulators, other

details are also of some value. Multi-objective optimisation techniques could be employed to

maximise end-effector positional accuracy while at the same time minimising the cycle-time.

(8) The four major dimensions of the 2DOFPPM, along with the selection of the motors, have been

considered as variables to be optimised. These contribute to being the major factors

determining the minimum cycle-time achieved by the manipulator. However, there are other

aspects that also affect the result, including the less significant dimensions and the density and

volume of the materials used to fabricate the arms. A wider optimisation could be performed

that takes into account these other factors.

The investigation of these topics would further add to the study of the 2DOFPPM and optimisation of its

parameters.

 Chapter 7 – Conclusion and Recommendations

139

7.4 Summary

The 2DOFPPM mechanism has been studied in this thesis. A simulation model has been developed using

SimMechanics™. This model provides insight into the dynamic performance of the manipulator under

the actuation of motor torques and external forces. To assist in this, a trajectory planner has been

developed that provides a near time-minimum trajectory.

The ability to customise the manipulator for a specific task has been identified as valuable to increasing

productivity. Several optimising algorithms have been implemented to tune the dimensions until the

best configuration is found. The most successful of these techniques is the Genetic Algorithm.

This work was undertaken for RML Engineering Ltd. The company is now using the software tools

developed within this thesis to optimise and analyse the 2DOFPPM for specific industrial applications.

 References

141

References

References used in this thesis are listed in order of citation with IEEE formatting.

[1] Pester Pac Automation. [Online]. www.pester.com

[2] Jean-Pierre Merlet, Parallel Robots. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2000.

[3] DFA Media. Drives & Controls. [Online]. http://www.drives.co.uk/features.asp?id=6

[4] T.S. Mruthyunjaya Bhaskar Dasguptaa, "The Stewart platform manipulator: a review," 1998.

[5] S. Lemieux, J.P. Merlet C.M. Gosselin, "A new architecture of planar three-degree-of-freedom

parallel," , Minneapolis, 1996.

[6] Simon Henein, Ivo Magnani, Reymond Clavel Eric Pernette, "Design of parallel robots in

microrobotics," vol. 15, 1997.

[7] Reymond Clavel Peter Vischer, "A Novel 3-DoF Parallel Wrist Mechanism," vol. 19, no. 1, 2000.

[8] Vincent Nabat, Olivier Company, Sebastian Krut, Francois Pierrot Cedric Baradat, "Par2: a Spatial

Mechanism for Fast Planar, 2-dof, Pick-and-Place Applications," Proceedings of the Second

International Workshop on Fundamental Issues and Future Directions for Parallel Mechanisms and

Manipulators, 2008.

[9] V. E. Gough, "Contribution to discussion of papers on research in Automotive stability, control and

tyre performance," Proc. Auto. Div., 1956.

[10] D. Stewart, "A platform with 6 degrees of freedom," Aircraft Engineering and Aerospace

Technology, vol. 38, no. 4, 1966.

[11] R. Clavel, "DELTA, a fast robot with parallel geometry," International Symposium on Industrial

Robots, 1988.

[12] Jiangping Mei, Xueman Zhao, Derek G. Chetwynd Tian Huang, "A Method for Estimating

Servomotor Parameters of a Parallel Robot for Rapid Pick-and-Place Operations," Journal of

Mechanical Design, vol. 127, 2005.

Simulation and Optimisation of a 2DOFPPM

142

[13] Zhanxian Li, Meng Li, Derek G. Chetwynd, Clement M. Gosselin Tian Huang, "Conceptual Design and

Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place Operations,"

vol. 126, May 2004.

[14] Meng Li, Zhanxian Li, Derek G. Chetwynd, David J. Whitehouse Tian Huang, "Optimal Kinematic

Design of 2-DOF Parallel Manipulators With Well-Shaped Workspace Bounded by a Specified

Conditioning Index," IEEE Transactions on Robotics and Automation, vol. 20, no. 3, 2004.

[15] D. G. Chetwynd, J. P. Mei, X. M. Zhao T. Huang, "Tolerance Design of a 2-DOF Overconstrained

Translational Parallel Robot," IEEE Transactions on Robotics, vol. 22, no. 1, 2006.

[16] Yong-Sheng Zhao, Hong-Rui Wang Feng Gao Xiao-qiu Zhang, "A Physical Model of the Solution

Space and the Altas of the Reachable Workspace for 2-DOF Parallel Planar Manipulators,"

Mechanical Machine Theory, vol. 31, no. 2, 1996.

[17] XinJun Liu, William A. Gruver Feng Gao, "Performance Evaluation of Two-Degree-Of-Freedom

Planar Parallel Robots," Mechanical Machine Theory, vol. 33, no. 6, 1998.

[18] Zhiyong Yang, Jiangping Mei, Tian Huang Haihong Li, "A New Dynamic Index of Parallel Robots with

Flexible Links," IEEE Industrial Conference on Industrial Technology, 2008.

[19] Zhiyong Yang, Tian Huang, Jiangping Mei Haihong Li, "Dynamics and Optimization of a 2-Dof Parallel

Robot with Flexible Links," 7th World Congress on Intelligent Control and Automation, 2008.

[20] J. G. Rendon-Sanchez J. J. Cervantes-Sanchez, "A simplified approach for obtaining the workspace of

a class of 2-dof planar parallel manipulators," Mechanism and Machine Theory, vol. 34, 1999.

[21] Vistrian Maties, Radu Balan Sergiu-Dan Stan, "Optimisation of a 2 DOF Micro Parallel Robot Using

Genetic Algorithms," in Frontiers in Evolutionary Robotics. Cluj-Napoca, Romania: I-Tech Education

and Publishing, Vienna, Austria, 2008.

[22] W. L. Cleghorn, J. K. Mills G. Piras, "Dynamic finite-element analysis of a planar high-speed, high-

precision parallel manipulator with flexible links," Mechanism and Machine Theory, vol. 40, 2005.

[23] Xianmin Zhang, Jinqing Zhan Junfeng Hu, "Trajectory Planning of a Novel 2-DoF High-Speed Planar

 References

143

Parallel Manipulator," 2008.

[24] C. Gosselin and J. Angeles, "A Global Performance Index for the Kinematic Optimization of Robotic

Manipulators," Journal of Mechanical Design, vol. 113, no. 3, 1991.

[25] Xin-Jun Liu, Jinsong Wang, Kun-Ku Oh, and Jongwon Kim, "A New Approach to the Design of a

DELTA Robot with a Desired Workspace," Journal of Intelligent and Robotic Systems, vol. 39, 2004.

[26] S. Macfarlane, "On-Line Smooth Trajectory Planning for Manipulators," 1999.

[27] V. Zanotto A. Gasparetto, "A new method for smooth trajectory planning," Mechanism and

Machine Theory, vol. 42, 2007.

[28] C. S. Lin J. Y. S. Luh, "Optimum Path Planning for Mechanical Manipulators," Journal of Dynamic

Systems, Measurement, and Control, vol. 103, no. 2, 1981.

[29] Man Zhihong, Robotics - Second Edition. Jurong, Singapore: Prentice Hall, 2005.

[30] Seth Hutchinson, M. Vidyasagar Mark W. Spong, Robot Modeling and Control. Hoboken, NJ, USA:

John Wiley & Sons, 2006.

[31] R. P. C. Paul, Modelling, trajectory calculation and servoing of a computer controlled arm., 1972.

[32] R. A. Finkel, "Constructing and Debugging Manipulator Programs," Stanford, California, 1976.

[33] Po-rong Chang, J. Y. S. Luh Chun-shin Lin, "Formulation and Optimisation of Cubic Polynomial Joint

Trajectories for Industrial Robots," IEEE Transactions on Automatic Control, vol. AC-28, 1983.

[34] R. Mead J. A. Nelder, "A Simplex Method for Function Minimisation," The Computer Journal, 1965.

[35] Keith L. Doty Sujeet Chand, "On-Line Polynomial Trajectories for Robot Manipulators," The

International Journal of Robotics Research, vol. 4, no. 2, 1985.

[36] A. Grabos M. Boryga, "Planning of manipulator motion trajectory with higher-degree polynomial

use," vol. 44, 2009.

Simulation and Optimisation of a 2DOFPPM

144

[37] Rajnikant V. Patel Stuart E. Thompson, "Formulation of Joint Trajectories for Industrial Robots Using

B-Splines," IEEE Transactions on Industrial Electronics, vol. 34, 1987.

[38] Jong-gin Horng Chi-hsu Wang, "Constrained Minimum-Time Path Planning for Robot Manipulators

Via Virtual Knots of the Cubic B-Spline Functions," IEEE Transactions on Automatic Control, vol. 35,

1990.

[39] B. Roth M. E. Kahn, "The Near-Minimum-Time Control Of Open-Loop Articulated Kinematic Chains,"

Journal of Dynamic Systems, Measurement, and Control , vol. 93, no. 3, 1971.

[40] L. S. Pontryagin and R. V. Gamkrelidze, The Mathematical Theory of Optimal Processes.: Gordon and

Breach Science Publishers, 1987.

[41] V. Rajan, "Minimum Time Trajectory Planning," IEEE International Conference on Robotics and

Automation, 1985.

[42] Lino Guzella, Stephan A. R. Hepner, Christopher H. Onder Hans P. Geering, "Time-Optimal Motions

of Robots in Assembly Tasks," Proceedings of 24th Conference on Decision and Control, 1985.

[43] Alan A. Desrochers Yaobin Chen, "Time-optimal control of two-degree of freedom robot arms," IEEE

Transactions on Robotics and Automation, vol. 6, no. 3, 1990.

[44] C.S., Chang, P.R., Luh, J.Y.S. Lin, "Formulation and Optimization of Cubic Polynomial Joint

Trajectories for Industrial Robots," IEEE Transactions on Automatic Control, vol. AC-28, 1983.

[45] E. Red, "A dynamic Optimal Trajectory Generator for Cartesian Path Following," Robotica, vol. 18,

2000.

[46] H.H., Potts, R.B. Tan, "Minimum Time Trajectory Planner for the Discrete Dynamic Robot Model

with Dynamic Constraints," IEEE Journal of Robotics and Automation, vol. 4, 1988.

[47] K.G. Shin B.K. Kim, "Minimum-Time Path Planning for Robot Arms and Their Dynamics," IEEE

Transactions on Systems, Man, and Cybernetics, vol. SMC-15, 1985.

[48] S. Dubowsky, J.S. Gibson J.E. Bobrow, "Time-Optimal Control of Robotic Manipulators Along

 References

145

Specified Paths," The International Journal of Robotics Research, vol. 3, 1985.

[49] Neil D. McKay Kang. G. Shin, "Minimum-Time Control of Robotic Manipualtors with Geometric Path

Constraints," IEEE Transactions of Automatic Control, vol. AC-30, 1985.

[50] L. Zlajpah, "On Time Optimal Path Control of Manipulators with Bounded Joint Velocities and

Torques," , Ljubljana, Slovenia, 1996.

[51] E.A. Croft D. Constantinescu, "Smooth and Time-Optimal Trajectory Planning for Industrial

Manipulators along Specified Paths," 2000.

[52] Gordon I. Dodds Bailin Cao, "Time-Optimal and Smooth Joint Path Generation for Robot

Manipulators," , Coventry, UK, 1994.

[53] A.S. White, R. Gill J.V. Miro, "On-line Time-optimal Algorithm for Manipulator Trajectory Planning,"

Proceedings of the European Control Conference, 1997.

[54] P.F. Wang, J.P. Mei, X.M. Zhao, D.G. Chetwynd T. Huang, "Time Minimum Trajectory Planning of a 2-

DOF Translational Parallel Robot for Pick-and-place Operations," Annals of the CIRP, vol. 56, 2007.

[55] Jean-Pierre Merlet, "Determination of the Orientation Workspace of Parallel Manipulators," Journal

of Intelligent and Robotic Systems, vol. 13, no. 2, 1995.

[56] Kuanchih Wang, Zvi S. Roth Hanqi Zhuang, "Optimal selection of measurement configurations for

robot calibration using simulated annealing," IEEE International Conference on Robotics and

Automation, 1994.

[57] Jan Korst Emile Aarts, Simulated Annealing and Boltzmann Machines.: John Wiley & Sons, 1989.

[58] Vistrian Maties, Radu Balan Sergiu-Dan Stan, "Optimization of workspace of a 2 DOF parallel

minirobot using Genetic Algorithms and Simulated Annealing optimization methods," IEEE

Workshop on Advanced Robotics and Its Social Impacts, 2007.

[59] Radu Balan, Vistrian Maties Sergiu Stan, "Optimization of the workspace of PKM with 2 DOF," IEEE

International Conference on Automation Science and Engineering, 2006.

Simulation and Optimisation of a 2DOFPPM

146

[60] P. Bidaud O. Chocron, "Genetic Design of 3D Modular Manipulators," IEEE International Conference

on Robotics and Automation, 1997.

[61] John T. Feddema, "Kinematically Optimal Robot Placement for Minimum Time Coordinate Motion,"

IEEE International Conference on Robotics and Automation, vol. 4, 1996.

[62] M. A. Pashkevich A. P. Pashkevich, "Multiobjective optimisation of robot location in a workcell using

genetic algorithms," UKACC International Conference on Control, vol. 1, 1998.

[63] K.-D. Bouzakis, D. Sagris, G. Mansour S. Mitsi, "Determination of optimum robot base location

considering discrete end-effector positions by means of hybrid genetic algorithm," Robotics and

Computer-Integrated Manufacturing, vol. 24, 2008.

[64] Edmund Taylor Whittaker and William McCrea, A Treatise on the Analytical Dynamics of Particles

and Rigid Bodies.: Cambridge University Press, 1988.

[65] ABB Robotics, IRB360 Flexpicker Product Manual, 2008.

[66] Jae-Won Lee, Hyuk-Jin Lee Wenbin Deng, "Kinematics Simulation and Control of a New 2 DOF

Parallel Mechanism Based on Matlab/SimMechanics," 2009.

[67] F.C. Park, A. Sideris J.E. Bobrow, "Recent Advances on the Algorithmic Optimization of Robot

Motion," in Fast Motions in Biomechanics and Robotics. Heidelberg, Germany: Springer, 2006.

[68] Amir Khajepour Saeed Behzadipour, "Time-Optimal Trajectory Planning in Cable-Based

Manipulators," IEEE Transactions on Robotics, vol. 22, 2006.

[69] Gordon I. Dodds, George W. Irwin Bailin Cao, "Time-Optimal and Smooth Constrained Path Planning

for Robot Manipulators," 1994.

[70] V. Hayward J. Lloyd, "Trajectory Generation for Sensor-Driven and Time-Varying Tasks,"

International Journal of Robotics Research, vol. 12, 1993.

[71] Man Zhihong, Robotics. Singapore: Prentice Hall, 2005.

[72] MySQL. [Online]. http://www.mysql.com/about/legal/licensing/oem/

 References

147

[73] Robert Almgren, MySQL client for Matlab.

[74] Adam Prügel-Bennett, "When a genetic algorithm outperforms hill-climbing," Theoretical Computer

Science, vol. 320, no. 1, 2004.

[75] John H. Holland, Stephanie Forrest Melanie Mitchell, "When Will a Genetic Algorithm Outperform

Hill Climbing?," Advances in Neural Information Processing Systems, vol. 6, 1993.

[76] Manish Kumar Devendra P. Garg, "Optimization techniques applied to multiple manipulators for

path planning and torque minimization," Engineering Applications of Artificial Intelligence, vol. 15,

no. 3-4, 2002.

[77] Frank Wilcoxon, "Individual Comparisons by Ranking Methods," Biometrics Bulletin, vol. 1, no. 6,

1945.

[78] H B Mann and D R Whitney, "On a Test of Whether one of Two Random Variables is Stochastically

Larger than the Other," The Annals of Mathematical Statistics, vol. 18, no. 1, 1947.

 Appendix A - Simulation Parameters

149

Appendix A Simulation Parameters

Table A.1 Default parameters used in sample simulation in Chapter 3. Values obtained from RML Engineering.

Parameter Default Setting

Base length (separation of servo motor actuators) 0.3 m

Proximal (upper) arm length 0.36 m

Distal (lower) arm length 0.88 m

End-effector length 0.01 m

Proximal arm mass 3.5 kg

Distal arm mass 2 kg

End-effector mass 35 kg

Proximal (upper) stabiliser arm mass 0.2 kg

Distal (lower) stabiliser arm mass 0.3 kg

Proximal (upper) crank arm mass 0.2 kg

Distal (lower) crank arm mass 0.2 kg

Arm ID (Internal diameter) 0.01 m

Arm OD (Outer diameter) 0.02 m

Stabiliser Arm ID (Internal diameter) 0.005 m

Stabiliser Arm OD (Outer diameter) 0.01 m

End-effector mount offset (from joining of distal arms) (X) 0 m

End-effector mount offset (from joining of distal arms) (Y) -0.02 m

Proximal (upper) stabiliser arm offset from motor B (X) 0.05 m

Proximal (upper) stabiliser arm offset from motor B (Y) 0.1 m

Distal (lower) stabiliser arm offset from end-effector (X) -0.05 m

Distal (lower) stabiliser arm offset from end-effector (Y) -0.1 m

Minimum angle between proximal arm and +Y-axis 43°

Maximum angle between proximal arm and +Y-axis 164°

Minimum internal angle between proximal arm and distal arm 43°

Maximum internal angle between proximal arm and distal arm 134°

Minimum internal angle between distal arms 48°

Maximum internal angle between distal arms 71°

Pick/Place Dwell Time 0.2 s

Simulation and Optimisation of a 2DOFPPM

150

Appendix B Computer Specifications

Table B.1 Specifications of the computer used to perform all computations in this thesis.

Operating System 32-bit

Microsoft Windows XP

Professional

Version 2002

Service Pack 3

Processor Intel(R) Core(TM)2 Cuo CPU

E8400 @ 3.00GHz

2.99 GHz

RAM 3.21 GB

 Appendix C - Industry Review

151

Appendix C Industry Review

Figure C.1 Industry feedback from RML Engineering Ltd.

Simulation and Optimisation of a 2DOFPPM

152

Appendix D Simulated Annealing Additional Results

The following figures and tables are the results of using values of 10 and 40 for the parameter

MaxAttempts1 in the SA algorithm (refer Section 6.1.3). All the other parameters remain the same as

found in the body of the thesis.

Figure D.1 Normalised histograms of minimum cycle-times for three T values with three Tattenuation rates. MaxAttempts1 = 10.

Table D.1 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for MaxAttempts1 = 10

T
Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s)

0.05 2.121 0.211 2.108 2.135 0.224 2.130 2.141 0.224 2.145

0.2 2.132 0.216 2.125 2.136 0.226 2.130 2.143 0.234 2.141

0.5 2.130 0.229 2.104 2.146 0.221 2.157 2.137 0.231 2.117

1.5 2 2.5
0

10

20

30

40

 T
attenuation = 0.7

1.5 2 2.5
0

10

20

30

40

 T
attenuation = 0.8

1.5 2 2.5
0

10

20

30

40

 T
attenuation = 0.9

 T = 0.05

1.5 2 2.5
0

10

20

30

40

P
er

ce
nt

ag
e

of
 R

un
s

(%
)

1.5 2 2.5
0

10

20

30

40

1.5 2 2.5
0

10

20

30

40

 T = 0.2

1.5 2 2.5
0

10

20

30

40

1.5 2 2.5
0

10

20

30

40

Minimum Cycle-time (s)
1.5 2 2.5

0

10

20

30

40

 T = 0.5

 Appendix D – Simulated Annealing Additional Results

153

Figure D.2 Normalised histograms of minimum cycle-times for three T values with three Tattenuation rates. MaxAttempts1 = 40.

Table D.2 Mean (μ), standard deviation (σ) and median (M) minimum cycle-times for MaxAttempts1 = 40

T
Tattenuation = 0.7 Tattenuation = 0.8 Tattenuation = 0.9

μ (s) σ (s) M (s) μ (s) σ (s) M (s) μ (s) σ (s) M (s)

0.05 2.068 0.198 2.046 2.081 0.185 2.086 2.065 0.196 2.023

0.2 2.074 0.191 2.062 2.067 0.196 2.057 2.082 0.190 2.094

0.5 2.069 0.189 2.056 2.073 0.184 2.045 2.066 0.188 2.037

1.5 2 2.5
0

10

20

30

40

 T
attenuation = 0.7

1.5 2 2.5
0

10

20

30

40

 T
attenuation = 0.8

1.5 2 2.5
0

10

20

30

40

 T
attenuation = 0.9

 T = 0.05

1.5 2 2.5
0

10

20

30

40

P
er

ce
nt

ag
e

of
 R

un
s

(%
)

1.5 2 2.5
0

10

20

30

40

1.5 2 2.5
0

10

20

30

40

 T = 0.2

1.5 2 2.5
0

10

20

30

40

1.5 2 2.5
0

10

20

30

40

Minimum Cycle-time (s)
1.5 2 2.5

0

10

20

30

40

 T = 0.5

Simulation and Optimisation of a 2DOFPPM

154

Figure D.3 Mean minimum cycle-time versus computation time with MaxAttempts1 = 10 for nine combinations of T and

Tattenuation.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
2

2.05

2.1

2.15

2.2

2.25

2.3

Computation Time (s)

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

T = 0.05, Tattenuation = 0.7

T = 0.05, T
attenuation

 = 0.8

T = 0.05, Tattenuation = 0.9

T = 0.2, Tattenuation = 0.7

T = 0.2, Tattenuation = 0.8

T = 0.2, Tattenuation = 0.9

T = 0.5, Tattenuation = 0.7

T = 0.5, Tattenuation = 0.8

T = 0.5, Tattenuation = 0.9

 Appendix D – Simulated Annealing Additional Results

155

Figure D.4 Mean minimum cycle-time versus computation time with MaxAttempts1 = 40 for nine combinations of T and

Tattenuation.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
2

2.05

2.1

2.15

2.2

2.25

2.3

Computation Time (s)

M
ea

n
M

in
im

um
 C

yc
le

-T
im

e
(s

)

T = 0.05, Tattenuation = 0.7

T = 0.05, T
attenuation

 = 0.8

T = 0.05, Tattenuation = 0.9

T = 0.2, Tattenuation = 0.7

T = 0.2, Tattenuation = 0.8

T = 0.2, Tattenuation = 0.9

T = 0.5, Tattenuation = 0.7

T = 0.5, Tattenuation = 0.8

T = 0.5, Tattenuation = 0.9

Simulation and Optimisation of a 2DOFPPM

156

Appendix E SQL Code

CREATE DATABASE IF NOT EXISTS matlab_2dofppm;

DROP TABLE matlab_2dofppm.Simulations IF EXISTS;
DROP TABLE matlab_2dofppm.Motors IF EXISTS;
DROP TABLE matlab_2dofppm.UserConstraints IF EXISTS;
DROP TABLE matlab_2dofppm.Moves IF EXISTS;
DROP TABLE matlab_2dofppm.Paths IF EXISTS;

CREATE TABLE matlab_2dofppm.Paths(
 PathID INT,
 LinearErrorFactor FLOAT,
 LastLinearTargetDistance FLOAT,
 ReactiveFactor FLOAT,
 InitialAcceptanceThreshold FLOAT,
 RelativeAgeingFactor FLOAT,
 AttemptedConfigurations INT,
 PRIMARY KEY (PathID)
);

CREATE TABLE matlab_2dofppm.UserConstraints(
 PathID INT,
 MaxMotorTorque FLOAT,
 MaxMotorVelocity FLOAT,
 MaxMotorAcceleration FLOAT,
 MaxMotorJerk FLOAT,
 MassGripper FLOAT,
 MinArmAng_BU FLOAT,
 MinArmAng_UL FLOAT,
 MinArmAng_LL FLOAT,
 MaxArmAng_BU FLOAT,
 MaxArmAng_UL FLOAT,
 MaxArmAng_LL FLOAT,
 ProxArmDensity FLOAT,
 DistArmDensity FLOAT,
 TorsionArmDensity FLOAT,
 ProxArmIRadius FLOAT,
 DistArmIRadius FLOAT,
 ProxArmORadius FLOAT,
 DistArmORadius FLOAT,
 TorsionIRadius FLOAT,
 TorsionORadius FLOAT,
 MassUpperCrank FLOAT,
 MassLowerCrank FLOAT,
 UpperTorsionOffsetB_X FLOAT,
 UpperTorsionOffsetB_Y FLOAT,
 LowerTorsionOffsetTCP_X FLOAT,
 LowerTorsionOffsetTCP_Y FLOAT,
 GripperMountOffset_X FLOAT,
 GripperMountOffset_Y FLOAT,
 GripperLength FLOAT,
 MinMotorSeparation FLOAT,
 MaxWidth FLOAT,
 MaxDepth FLOAT,
 PRIMARY KEY (PathID),
 FOREIGN KEY (PathID) REFERENCES matlab_2dofppm.Paths(PathID)
);

Figure E.1 Create SQL Database and Tables Script (Part 1/2)

 Appendix E – SQL Code

157

CREATE TABLE matlab_2dofppm.Moves(
 PathID INT,
 MSequence INT,
 Knot_X FLOAT,
 Knot_Y FLOAT,
 MType VARCHAR(10),
 MZone FLOAT,
 Speed FLOAT,
 Pause FLOAT,
 PRIMARY KEY (PathID,MSequence),
 FOREIGN KEY (PathID) REFERENCES matlab_2dofppm.Paths(PathID)
);

CREATE TABLE matlab_2dofppm.Motors(
 MotorID INT,
 Name VARCHAR(255),
 Description VARCHAR(255),
 SpecsFolder VARCHAR(255),
 MaxTorque FLOAT,
 MaxVelocity FLOAT,
 MaxAcceleration FLOAT,
 MaxJerk FLOAT,
 MomentInertia FLOAT,
 EncoderResolution FLOAT,
 PRIMARY KEY (MotorID)
);

CREATE TABLE matlab_2dofppm.Simulations(
 SimID INT,
 ProxArmLength FLOAT,
 DistArmLength FLOAT,
 MotorSeparation FLOAT,
 WorkspaceHeight FLOAT,
 MotorID INT,
 CycleTime FLOAT,
 ExecutionDT DATETIME,
 PathID INT,
 Comment VARCHAR(255),
 Comment2 VARCHAR (255),
 Iteration INT,
 Attempts1 INT,
 PRIMARY KEY (SimID),
 FOREIGN KEY (PathID) REFERENCES matlab_2dofppm.Paths(PathID),
 FOREIGN KEY (MotorID) REFERENCES matlab_2dofppm.Motors(MotorID)
);

Figure E.2 Create SQL Database and Tables Script (Part 2/2)

Simulation and Optimisation of a 2DOFPPM

158

Appendix F Matlab® Code

The following figures contain all the Matlab® code used in this thesis. Methods, scripts and classes are

listed in alphabetical order.

function [config, reachable] = CalculateConfig(...
 LengthBase,LengthUpper,LengthLo wer,WorkspaceHeight,Moves,MotorID,uc)
% Calculates the configuration's parameters needed for SimMechanics model
% VARIABLES:
% LengthBase - Length of the base/separation of mot ors
% LengthUpper - Length of upper/proximal arms
% LengthLower - Length of lower/distal arms
% WorkspaceHeight - Height of workspace
% Moves - Class containing path move commands
% MotorID - Integer identifying with motor in datab ase
% uc - UserConstraints class

config = Configuration; % Create new instance of a Configuration

reachable = false; % set flag

%% Fixed Parameters

config.LengthBase = LengthBase;
config.LengthUpper = LengthUpper;
config.LengthLower = LengthLower;
config.WorkspaceHeight = WorkspaceHeight;

config.MotorID = MotorID;

config.MassUpper = ThickWalledTubeMass(uc.ProxArmIR adius,uc.ProxArmORadius, ...
 config.Leng thUpper,uc.ProxArmDensity);
config.MassLower = ThickWalledTubeMass(uc.DistArmIR adius,uc.DistArmORadius, ...
 config.Leng thLower,uc.DistArmDensity);
config.MassGripper = uc.MassGripper;
config.MassUpperTorsion = ThickWalledTubeMass(uc.To rsionIRadius,uc.TorsionORadius, ...
 con fig.LengthUpper,uc.TorsionArmDensity);
config.MassLowerTorsion = ThickWalledTubeMass(uc.To rsionIRadius,uc.TorsionORadius, ...
 con fig.LengthLower,uc.TorsionArmDensity);
config.MassUpperCrank = uc.MassUpperCrank;
config.MassLowerCrank = uc.MassLowerCrank;

config.GripperMountOffset_X = uc.GripperMountOffset _X;
config.GripperMountOffset_Y = uc.GripperMountOffset _Y;
config.GripperLength = uc.GripperLength;

config.UpperTorsionOffsetB_X = uc.UpperTorsionOffse tB_X;
config.UpperTorsionOffsetB_Y = uc.UpperTorsionOffse tB_Y;
config.LowerTorsionOffsetTCP_X = uc.LowerTorsionOff setTCP_X;
config.LowerTorsionOffsetTCP_Y = uc.LowerTorsionOff setTCP_Y;

config.InRadiusArms = uc.ProxArmIRadius;
config.OutRadiusArms = uc.DistArmIRadius;
config.InRadiusTorsion = uc.TorsionIRadius;
config.OutRadiusTorsion = uc.TorsionORadius;
…

Figure F.1 CalculateConfig Function (Part 1/4)

 Appendix F – Matlab® Code

159

…

config.InertiaUpper =ThickWalledTubeInertia(config. InRadiusArms,config.OutRadiusArms, ...
 con fig.LengthUpper,config.MassUpper);
config.InertiaLower =ThickWalledTubeInertia(config. InRadiusArms,config.OutRadiusArms, ...
 con fig.LengthLower,config.MassLower);
config.InertiaGripper = ThickWalledTubeInertia(conf ig.InRadiusArms, ...
 config.OutRadiusArms,conf ig.GripperLength,config.MassGripper);
config.InertiaUpperTorsion = ThickWalledTubeInertia (config.InRadiusTorsion, ...
 config.OutRadiusTor sion,config.LengthUpper, ...
 config.MassUpperTor sion);
config.InertiaLowerTorsion = ThickWalledTubeInertia (config.InRadiusTorsion, ...
 config.OutRadiusTor sion,config.LengthLower, ...
 config.MassLowerTor sion);
config.InertiaUpperCrank = ThickWalledTubeInertia(c onfig.InRadiusTorsion, ...
 config.OutRadiusTorsion , ...
 sqrt(config.UpperTorsio nOffsetB_X^2 ...
 +config.UpperTorsionOff setB_X^2),config.MassUpperCrank);
config.InertiaLowerCrank = ThickWalledTubeInertia(c onfig.InRadiusTorsion, ...
 config.OutRadiusTorsion , ...
 sqrt(config.LowerTorsio nOffsetTCP_X^2 ...
 +config.LowerTorsionOff setTCP_X^2),config.MassLowerCrank);

config.MinUpperArmAngle = uc.MinArmAng_BU;
config.MaxUpperArmAngle = uc.MaxArmAng_BU;
config.Min1_2ArmAngle = uc.MinArmAng_UL;
config.Max1_2ArmAngle = uc.MaxArmAng_UL;
config.MinLowerArmAngle = uc.MinArmAng_LL;
config.MaxLowerArmAngle = uc.MaxArmAng_LL;
…

Figure F.2 CalculateConfig Function (Part 2/4)

Simulation and Optimisation of a 2DOFPPM

160

…

%% Internally Computed Parameters

config.ThetaAstart = d2r(180);
config.ThetaBstart = d2r(180);

[aBaseX,aBaseY,bBaseX,bBaseY,ajX,ajY,bjX,bjY,tcpX, tcpY,error,errorMsg] = ...
 Direct_2DOF_PPM(config.ThetaAstart,config.Theta Bstart,config.LengthBase, ...
 config.LengthUpper,config.LengthLower,config.Mi n1_2ArmAngle, ...
 config.Max1_2ArmAngle,config.MinLowerArmAngle,c onfig.MaxLowerArmAngle);

if error > 1
 reachable = false;
 errorMsg
 return ;
end

config.CS1_UpperA = [0, 0, 0];
config.CS1_LowerA = [0, 0, 0];
config.CS1_UpperB = [0, 0, 0];
config.CS1_LowerB = [0, 0, 0];
config.CS1_Gripper = [0, 0, 0];
config.CS1_UpperTorsion = [0, 0, 0];
config.CS1_UpperCrank = [0, 0, 0];
config.CS1_LowerTorsion = [0, 0, 0];
config.CS1_LowerCrank = [0, 0, 0];

config.CS2_UpperA = [ajX-aBaseX,ajY-aBaseY,0];
config.CS2_LowerA = [tcpX-ajX,tcpY-ajY,0];
config.CS2_UpperB = [bjX-bBaseX,bjY-bBaseY,0];
config.CS2_LowerB = [tcpX-bjX,tcpY-bjY,0];
config.CS2_Gripper = [0,-config.GripperLength,0];
config.CS2_UpperTorsion = [bjX-bBaseX,bjY-bBaseY,0] ;
config.CS2_UpperCrank = [config.UpperTorsionOffsetB _X, config.UpperTorsionOffsetB_Y, 0];
config.CS2_LowerTorsion = [tcpX-bjX,tcpY-bjY,0];
config.CS2_LowerCrank=[config.LowerTorsionOffsetTCP _X,config.LowerTorsionOffsetTCP_Y,0];

config.CS3_LowerB = [0 0 0];
config.CS3_UpperB = [0 0 0];
config.CS3_Gripper = [-0.05,0,0];
config.CS3_UpperCrank=[config.LowerTorsionOffsetTCP _X,config.LowerTorsionOffsetTCP_Y,0];
config.CS3_LowerCrank = [config.GripperMountOffset_ X,config.GripperMountOffset_Y,0];

config.CS4_Gripper = [0.05,0,0];

config.CG_UpperA = [(ajX-aBaseX)/2,(ajY-aBaseY)/2,0];
config.CG_LowerA = [(tcpX-ajX)/2,(tcpY-ajY)/2,0];
config.CG_UpperB = [(bjX-bBaseX)/2,(bjY-bBaseY)/2,0];
config.CG_LowerB = [(tcpX-bjX)/2,(tcpY-bjY)/2,0];
config.CG_Gripper = [0,-config.GripperLength/2,0];
config.CG_UpperTorsion = [(bjX-bBaseX)/2,(bjY-bBase Y)/2,0];
config.CG_UpperCrank = [(config.UpperTorsionOffsetB _X+ ...
 config.LowerTorsionOffs etTCP_X)/2, ...
 config.UpperTorsionOffs etB_Y/2,0];
config.CG_LowerTorsion = [(tcpX-bjX)/2,(tcpY-bjY)/2 ,0];
config.CG_LowerCrank = [config.LowerTorsionOffsetTC P_X/2,0,0];
…

Figure F.3 CalculateConfig Function (Part 3/4)

 Appendix F – Matlab® Code

161

…

config.OrientCG_UpperA = [0,0,0];
config.OrientCG_LowerA = [0,0,0];
config.OrientCG_UpperB = [0,0,0];
config.OrientCG_LowerB = [0,0,0];
config.OrientCG_Gripper = [0,0,0];
config.OrientCG_UpperTorsion = [0,0,0];
config.OrientCG_UpperCrank = [0,0,0];
config.OrientCG_LowerTorsion = [0,0,0];
config.OrientCG_LowerCrank = [0,0,0];

config.Gpoint_1 = [aBaseX, aBaseY, 0];
config.Gpoint_2 = [bBaseX, bBaseY, 0];
config.Gpoint_3 = [bBaseX+config.UpperTorsionOffset B_X, ...
 bBaseY+config.UpperTorsionOffse tB_Y,0];

[thetaA, thetaB, error, errorMsg] = Inverse_2DOF_ PPM(tcpX,tcpY,config.LengthBase, ...
 con fig.LengthUpper,config.LengthLower);
if error ~=0
 reachable = false;
 errorMsg
 return ;
end
config.ThetaA_IC = mod(thetaA + config.ThetaAstart, pi);
config.ThetaB_IC = mod(thetaB + config.ThetaBstart, pi);

%% Check reachability

reachable = CheckReachability(Moves,config);

%% Check dimensions are within user constraints
if reachable == true % only test if already passed reachability test
 if config.LengthBase < uc.MinMotorSeparation
 reachable = false;
 elseif config.LengthBase > 0.9*uc.MaxWidth
 reachable = false;
 elseif config.LengthUpper > (uc.MaxWidth - config.LengthB ase)/2
 reachable = false;
 elseif config.LengthLower < config.LengthBase
 reachable = false;
 elseif config.LengthLower > sqrt((uc.MaxDepth - config.Le ngthUpper)^2 + ...
 (config.Len gthBase/2)^2)
 reachable = false;
 end
end

end

Figure F.4 CalculateConfig Function (Part 4/4)

Simulation and Optimisation of a 2DOFPPM

162

function cycletime = CheckConfigExists(pathID,config)
% Checks if Configuration has already been tested f or this path.
% Returns an empty matrix if doesn't exist otherwis e returns cycletime
% VARIABLES:
% pathID - ID for the current path being optimised
% config - Instance of Configuration class

 % Open database connection
 mysql('open' , 'localhost:3306' , 'root' , 'mysql');
 mysql('use matlab_2dofppm');

 % Query searches for an exact matching of configura tion parameters up to 4 decimal
 % places accurate
 query = ['SELECT cycletime FROM simulations ' ...
 'WHERE PathID = "' ,num2str(pathID), '" ' ...
 'AND ROUND(proxarmlength,4) = ROUND("' ,num2str(config.LengthUpper), '",4) ' ...
 'AND ROUND(distarmlength,4) = ROUND("' ,num2str(config.LengthLower), '",4) ' ...
 'AND ROUND(motorseparation,4) = ROUND("' ,num2str(config.LengthBase), '",4) ' ...
 'AND ROUND(workspaceheight,4) = ' ...
 'ROUND("' ,num2str(config.WorkspaceHeight), '",4) ' ...
 'Limit 1 '
];

 cycletime = mysql(query);

 mysql('close')
end

Figure F.5 CheckConfigExists Function

 Appendix F – Matlab® Code

163

function reachable = CheckReachability(Moves,config)
% Checks to see if all targets can be reached by th e configuration
% VARIABLES:
% Moves - Instance of Moves class
% config - Instance of Configuration class

 reachable = true; % set flag

 % Loop through each move and use inverse kinematics to check target can
 % be reached by configuration
 for m=1:size(Moves,2)
 knotX = Moves(m).Target.Knot.X;
 knotY = Moves(m).Target.Knot.Y + config.Wor kspaceHeight;

 [thetaA,thetaB,error,errorMsg] = Inverse_2D OF_PPM(knotX,knotY, ...
 config.LengthBase,c onfig.LengthUpper,config.LengthLower);

 if error ~= 0
 reachable = false;
 break
 end

 [tcpX,tcpY,error,errorMsg] = Direct_2DOF_PP M(thetaA,thetaB,config.LengthBase, ...
 config.Leng thUpper,config.LengthLower, ...
 config.Min1 _2ArmAngle,config.Max1_2ArmAngle, ...
 config.MinL owerArmAngle,config.MaxLowerArmAngle);
 if error ~= 0
 reachable = false;
 break % return from function if error occurs as it indica tes its unreachable
 end
 end
end

Figure F.6 CheckReachability Function

Simulation and Optimisation of a 2DOFPPM

164

function ppr = CompilePath(Moves,Config,PPC)
% Compiles a path for the 2DOFPPM Config based on t he user specifed Move
% commands while keeping within the PPC (Path Plann ing Constraints)
% VARIABLES:
% Moves - Instance of the Moves class
% Config - Instance of the Configuration class
% PPC - Instance of the PPConstraints class (Path P lanning Constraints)
% RETURNS:
% ppr - Instance of the PPResults class (Path Plann ing Results)

% Give Targets (within Moves) a PathTime to start w ith, based on the moves
% max Velocity constraint and the distance between the knots.
for m=1:(size(Moves,2)-1)
 Xc = Moves(m).Target.Knot.X;
 Yc = Moves(m).Target.Knot.Y;
 Xn = Moves(m+1).Target.Knot.X;
 Yn = Moves(m+1).Target.Knot.Y;
 dist = sqrt((Xn-Xc)^2+(Yn-Yc)^2);
 vel = Moves(m+1).Velocity;
 Moves(m+1).Target.PathTime = Moves(m).Target.Pa thTime + dist/vel;
end

Targets = repmat(Target,1,1);

%Formulate Knots from Targets
for m=1:(size(Moves,2)-1)
 current_move = Moves(m);
 next_move = Moves(m+1);
 current_target = Moves(m).Target;
 next_target = Moves(m+1).Target;
 next_MaxVel = Moves(m+1).Velocity; %get max TCP velocity permitted during move

 if (m==1) %then add first knot
 Targets(end)=current_target;
 end
…

Figure F.7 CompilePath Function (Part 1/5)

 Appendix F – Matlab® Code

165

…

if strcmp(next_move.MoveType, 'MoveL') %then create additional knots inbetween targets
 kc = current_target.Knot;
 kn = next_target.Knot;
 Xc = kc.X;
 Yc = kc.Y;
 Tc = current_target.PathTime;
 Xn = kn.X;
 Yn = kn.Y;
 Tn = next_target.PathTime;
 Zn = next_move.Zone * 10^-3; %zone data is defined in mm, therefore we scale

 % X value at edge of zone at next target
 if Xn >= Xc
 Xz = Xn-Zn*sin(atan(abs(Xn-Xc)/abs(Yn-Y c)));
 else
 Xz = Xn+Zn*sin(atan(abs(Xn-Xc)/abs(Yn-Y c)));
 end
 % Y value at edge of zone at next target
 if Yn >= Yc
 Yz = Yn-Zn*cos(atan(abs(Xn-Xc)/abs(Yn-Y c)));
 else
 Yz = Yn+Zn*cos(atan(abs(Xn-Xc)/abs(Yn-Y c)));
 end
 % Time value at edge of zone at next target
 Tz = Tn - (Tn-Tc)*Zn/sqrt((Xn-Xc)^2+(Yn-Yc) ^2);
 % X value at last target before target at edge of z one
 if Xz >= Xc
 Xl = Xn-(Zn+PPC.LastLinearTargetDistanc e)*sin(atan(abs(Xn-Xc)/abs(Yn-Yc)));
 else
 Xl = Xn+(Zn+PPC.LastLinearTargetDistanc e)*sin(atan(abs(Xn-Xc)/abs(Yn-Yc)));
 end
 % Y value at last target before target at edge of z one
 if Yz >= Yc
 Yl = Yn-(Zn+PPC.LastLinearTargetDistanc e)*cos(atan(abs(Xn-Xc)/abs(Yn-Yc)));
 else
 Yl = Yn+(Zn+PPC.LastLinearTargetDistanc e)*cos(atan(abs(Xn-Xc)/abs(Yn-Yc)));
 end
 % Time value at edge of zone at next target
 Tl = Tn - (Tn-Tc)*(Zn+PPC.LastLinearTargetD istance)/sqrt((Xn-Xc)^2+(Yn-Yc)^2);
 %calculate number of steps/extra knots required in linear move
 LinearSteps = ceil(sqrt((Xl-Xc)^2+(Yl-Yc)^2)/PPC.LinearErrorFactor);

 for i=1:LinearSteps
 Xi = ((Xl-Xc)/LinearSteps*i)+Xc;
 Yi = ((Yl-Yc)/LinearSteps*i)+Yc;
 Ti = ((Tl-Tc)/LinearSteps*i)+Tc;
 k = Knot(Xi,Yi);
 t = Target(k,Ti,next_MaxVel);
 Targets(end+1)=t;
 end

 %finally add knot/target at edge of zone
 k = Knot(Xz,Yz);
 t = Target(k,Tz,next_MaxVel);
 Targets(end+1)=t;
…

Figure F.8 CompilePath Function (Part 2/5)

Simulation and Optimisation of a 2DOFPPM

166

…

 elseif strcmp(next_move.MoveType, 'MoveJ') %then we can just add knots at targets
 kc = current_target.Knot;
 kn = next_target.Knot;
 Xc = kc.X;
 Yc = kc.Y;
 Tc = current_target.PathTime;
 Xn = kn.X;
 Yn = kn.Y;
 Tn = next_target.PathTime;
 Zn = next_move.Zone * 10^-3;

 % X value at edge of zone at next target
 if Xn >= Xc
 Xz = Xn-Zn*sin(atan(abs(Xn-Xc)/abs(Yn-Yc)));
 else
 Xz = Xn+Zn*sin(atan(abs(Xn-Xc)/abs(Yn-Yc)));
 end
 % Y value at edge of zone at next target
 if Yn >= Yc
 Yz = Yn-Zn*cos(atan(abs(Xn-Xc)/abs(Yn-Yc)));
 else
 Yz = Yn+Zn*cos(atan(abs(Xn-Xc)/abs(Yn-Yc)));
 end
 % Time value at edge of zone at next target
 Tz = Tn - (Tn-Tc)*Zn/sqrt((Xn-Xc)^2+(Yn -Yc)^2);

 k = Knot(Xz,Yz);
 t = Target(k,Tz,next_MaxVel);
 Targets(end+1)=t;
 end

 %add extra target for pause if move command has one
 if (next_move.Pause > 0)
 t=Targets(end);
 t.Knot.Omega_A = 0;
 t.Knot.Omega_B = 0;
 Targets(end)=t;
 tn=t;
 tn.PathTime = tn.PathTime + next_move.Pause ;
 tn.Knot.Omega_A = 0;
 tn.Knot.Omega_B = 0;
 Targets(end+1)=tn;
 % increase time on following targets
 for n=m+1:(size(Moves,2))
 Moves(n).Target.PathTime = Moves(n).Tar get.PathTime+next_move.Pause;
 end
 end
end

% Assign zero velocity to first and last Knots
kf = Targets(1).Knot;
kf.Omega_A = 0;
kf.Omega_B = 0;
Targets(1).Knot = kf;
kl = Targets(end).Knot;
kl.Omega_A = 0;
kl.Omega_B = 0;
Targets(end).Knot = kl;

Targets1 = repmat(Target,1,0);
TargetsNew = repmat(Target,1,0);
pa = repmat(PathSegment,1,0);
pb = repmat(PathSegment,1,0);
…

Figure F.9 CompilePath Function (Part 3/5)

 Appendix F – Matlab® Code

167

…

for t=1:(size(Targets,2)-1)
 if ((Targets(t).Knot.X == Targets(t+1).Knot.X) && ...
 (Targets(t).Knot.Y == Targets(t+1).Knot .Y))

 % collate last target that belongs to this particul ar sector/action
 Targets1(end+1) = Targets(t);

 [pa2,pb2,Targets2] = PathGenerator(Targets1, Config,PPC);

 %add targets for this sector/action to our collecti on of Targets
 for t2=1:size(Targets2,2)
 TargetsNew(end+1) = Targets2(t2);
 end
 %add paths for this sector/action to our collection of pa and pb
 for p2=1:size(pa2,1)
 if isempty(pa)
 pa(end,1) = pa2(p2);
 pb(end,1) = pb2(p2);
 else
 pa(end+1,1) = pa2(p2);
 pb(end+1,1) = pb2(p2);
 end
 end

 % As the PathTime has most likely changed, alter th e remaining Targets PathTime
 % so that it is continuous with the targets in Tar getsNew
 intersectingTargetNum = size(TargetsNew,2);
 pathTimeDiff = TargetsNew(intersectingTarge tNum).PathTime - ...
 Targets(intersectingTargetNum).PathTime;
 for tr=size(TargetsNew,2):size(Targets,2)
 Targets(tr).PathTime = Targets(tr).Path Time + pathTimeDiff;
 end

 % Clear this 'Targets1' because starting to collate from scratch new targets that
 % will be used for a separate sector/action
 clear Targets1 ;
 Targets1 = repmat(Target,1,0);
 else
 % Collate targets that belong to this particular se ctor/action
 Targets1(end+1) = Targets(t);
 end
end
 %do this once more with the final targets from Targ ets1
 Targets1(end+1) = Targets(end); %add final target
 kl = Targets1(end).Knot;
 kl.Omega_A = 0;
 kl.Omega_B = 0;
 Targets1(end).Knot = kl;

 [pa2,pb2,Targets2] = PathGenerator(Targets1,Con fig,PPC);

 %add targets for this sector/action to our collecti on of Targets
 for t2=1:size(Targets2,2)
 TargetsNew(end+1) = Targets2(t2);
 end
 %add paths for this sector/action to our collection of pa and pb
 for p2=1:size(pa2,1)
 pa(end+1,1) = pa2(p2);
 pb(end+1,1) = pb2(p2);
 end
…

Figure F.10 CompilePath Function (Part 4/5)

Simulation and Optimisation of a 2DOFPPM

168

…

%% Path planning is now complete. The following pro cesses the path for storage in files.

% get the number of interpolated readings for path
segmentIntPoints = 5; % Take 5 samples along each path segment
intPoints = size(pa,1)*segmentIntPoints;

thetasA = zeros(intPoints,1);
omegasA = zeros(intPoints,1);
alphasA = zeros(intPoints,1);
thetasB = zeros(intPoints,1);
omegasB = zeros(intPoints,1);
alphasB = zeros(intPoints,1);

time = zeros(intPoints,1);
n = 1;

for s=1:size(pa,1)
 psA = pa(s);
 psB = pb(s);

 stepsize = (psA.EndTime-psA.StartTime)/segmentI ntPoints;

 for t=psA.StartTime+0.0001:stepsize:psA.EndTime
 %NB: psB start and end times are the same as psA's
 thetaA = psA.getTheta(t);
 thetasA(n) = thetaA;
 omegaA = psA.getOmega(t);
 omegasA(n) = omegaA;
 alphaA = psA.getAlpha(t);
 alphasA(n) = alphaA;
 thetaB = psB.getTheta(t);
 thetasB(n) = thetaB;
 omegaB = psB.getOmega(t);
 omegasB(n) = omegaB;
 alphaB = psB.getAlpha(t);
 alphasB(n) = alphaB;
 time(n) = t;
 n = n+1;
 end
end

% remove trailing zeros from the pva results using deblank method
warning('off' , 'MATLAB:deblank:NonStringInput'); %turn off warning
pvaA = deblank([time, thetasA, omegasA, alphasA]');
pvaB= deblank([time, thetasB, omegasB, alphasB]');

% produces a stop (1) command at the end of pva's t o stop SimMechanics simulation
sControl = zeros(size(pvaA,2),1);
sControl(end) = 1;
SimControl = [deblank(time')',sControl]';

% save pva's and SimControl to .mat files for use i n SimMechanis simulation
save(strcat(pwd, '\PG_Outputs\SimControl.mat'), 'SimControl');
save(strcat(pwd, '\PG_Outputs\pvaA.mat'), 'pvaA');
save(strcat(pwd, '\PG_Outputs\pvaB.mat'), 'pvaB');
save(strcat(pwd, '\PG_Outputs\Knots_TXY.mat'), 'Knots_TXY');

ppr = PPResults;
ppr.PathA = pa;
ppr.PathB = pb;
ppr.Knots = Knots_TXY;

end

Figure F.11 CompilePath Function (Part 5/5)

 Appendix F – Matlab® Code

169

classdef Configuration
% Contains parameters defining the physical configu ration of the manipulator.
% Also referred to as 'mvar' (model variable) in so me methods.

properties
 MassUpper % Mass of the upper/proximal arm
 MassLower % Mass of the lower/distal arm
 MassGripper % Mass of the gripper
 MassUpperTorsion % Mass of the upper torsion bar
 MassLowerTorsion % Mass of the lower torsion bar
 MassUpperCrank % Mass of the upper crank arm
 MassLowerCrank % Mass of the lower crank arm
 LengthBase % Distance between the centers of the two motors
 LengthUpper % Length of the upper/proximal arm
 LengthLower % Length of the lower/distal arm
 GripperMountOffset_X % Offset from bottom revolute joint where the gripp er mounts(X)
 GripperMountOffset_Y % Offset from bottom revolute joint where the gripp er mounts(Y)
 GripperLength % Length of the gripper

 WorkspaceHeight % Height from motors to heighest knot

 MotorID % Id for motor type used

 UpperTorsionOffsetB_X %Offset from centerof motorB for base point of stab iliserarm(X)
 UpperTorsionOffsetB_Y %Offset from centerof motorB for base point of stab iliserarm(Y)
 LowerTorsionOffsetTCP_X % Offset from center of 'TCP' for lower torsion bar (X)
 LowerTorsionOffsetTCP_Y % Offset from center of 'TCP' for lower torsion bar (Y)

 InRadiusArms % Inner radius of the tubular arms
 OutRadiusArms % Outer radius of the tubular arms
 InRadiusTorsion % Inner radius of the tubular torsion bars
 OutRadiusTorsion % Outer radius of the tubular torsion bars

 InertiaUpper % Inertia of the upper/proximal arm
 InertiaLower % Inertia of the lower/distal arm
 InertiaGripper % Inertia of the gripper
 InertiaUpperTorsion % Inertia of the upper torsion bar
 InertiaLowerTorsion % Inertia of the lower torsion bar
 InertiaUpperCrank % Inertia of the upper crank arm
 InertiaLowerCrank % Inertia of the lower crank arm

 MinUpperArmAngle % Minimum angle allowed between upper arm and verti cal
 MaxUpperArmAngle % Minimum angle allowed between upper arm and verti cal
 Min1_2ArmAngle % Minimum angle allowed between upper-lower arms
 Max1_2ArmAngle % Maximum angle allowed between upper-lower arms
 MinLowerArmAngle % Minimum angle allowed between lower-lower arms
 MaxLowerArmAngle % Maximum angle allowed between lower-lower arms

 ThetaAstart % Starting angle between +Y axis and left upper arm
 ThetaBstart % Starting angle between +Y axis and right upper ar m

 CS1_UpperA % Coordinate system 1 on the upper/proximal A arm
 CS1_LowerA % Coordinate system 1 on the lower/distal A arm
 CS1_UpperB % Coordinate system 1 on the upper/proximal B arm
 CS1_LowerB % Coordinate system 1 on the lower/distal B arm
 CS1_Gripper % Coordinate system 1 on the gripper
 CS1_UpperTorsion % Coordinate system 1 on the upper torsion bar
 CS1_UpperCrank % Coordinate system 1 on the upper crank arm
 CS1_LowerTorsion % Coordinate system 1 on the lower torsion bar
 CS1_LowerCrank % Coordinate system 1 on the lower crank arm
 …

Figure F.12 Configuration Class (Part 1/2)

Simulation and Optimisation of a 2DOFPPM

170

…

 CS2_UpperA % Coordinate system 2 on the upper/proximal A arm
 CS2_LowerA % Coordinate system 2 on the lower/distal A arm
 CS2_UpperB % Coordinate system 2 on the upper/proximal B arm
 CS2_LowerB % Coordinate system 2 on the lower/distal B arm
 CS2_Gripper % Coordinate system 2 on the gripper
 CS2_UpperTorsion % Coordinate system 2 on the upper torsion bar
 CS2_UpperCrank % Coordinate system 2 on the upper crank arm
 CS2_LowerTorsion % Coordinate system 2 on the lower torsion bar
 CS2_LowerCrank % Coordinate system 2 on the lower crank arm

 CS3_LowerB % Coordinate system 3 on the lower/distal A arm
 CS3_UpperB % Coordinate system 3 on the lower/distal B arm
 CS3_Gripper % Coordinate system 3 on the gripper
 CS3_UpperCrank % Coordinate system 3 on the upper crank arm
 CS3_LowerCrank % Coordinate system 3 on the lower crank arm

 CS4_Gripper % Coordinate system 4 on the gripper

 % CoG = Center of Gravity
 CG_UpperA % CoG coordinate system on the upper/proximal A arm
 CG_LowerA % CoG coordinate system on the lower/distal A arm
 CG_UpperB % CoG coordinate system on the upper/proximal B arm
 CG_LowerB % CoG coordinate system on the lower/distal B arm
 CG_Gripper % CoG coordinate system on the gripper
 CG_UpperTorsion % CoG coordinate system on the upper torsion bar
 CG_UpperCrank % CoG coordinate system on the upper crank arm
 CG_LowerTorsion % CoG coordinate system on the lower torsion bar
 CG_LowerCrank % CoG coordinate system on the lower crank arm

 OrientCG_UpperA %Orientation of CoG coordinate system on the upper/ proximalAarm
 OrientCG_LowerA %Orientation of CoG coordinate system on the lower/ distal A arm
 OrientCG_UpperB %Orientation of CoG coordinate system on the upper/ proximalBarm
 OrientCG_LowerB %Orientation of CoG coordinate system on the lower/ distal B arm
 OrientCG_Gripper % Orientation of CoG coordinate system on the gripp er
 OrientCG_UpperTorsion % Orientation of CoG coordinate system on the upper torsion bar
 OrientCG_UpperCrank % Orientation of CoG coordinate system on the upper crank arm
 OrientCG_LowerTorsion % Orientation of CoG coordinate system on the lower torsion bar
 OrientCG_LowerCrank % Orientation of CoG coordinate system on the lower crank arm

 Gpoint_1 % Ground point 1
 Gpoint_2 % Ground point 2
 Gpoint_3 % Ground point 3

 ThetaA_IC % Initial condition for theta position on motor A
 ThetaB_IC % Initial condition for theta position on motor B
end

end

Figure F.13 Configuration Class (Part 2/2)

classdef CyclePath
% Contains constraints and move commands for a sing le cycle of a path

properties
 ID % ID to uniquely identify each cycle path
 Moves % Moves associated with this path
 PPC % Path Planning Constraints (PPConstraints) for thi s path
end

end

Figure F.14 CyclePath Class

 Appendix F – Matlab® Code

171

function r = d2r(d)
%#eml
 r=d/180*pi; % Converts degrees to radians
end

Figure F.15 d2r (Degrees to Radians) Function

Simulation and Optimisation of a 2DOFPPM

172

function [tcpX, tcpY, error, errorMsg] = ...
 Direct_2DOF_PPM(thetaA, thetaB, LengthBase,Len gthUpper,LengthLower, ...
 min1_2ArmAngle,max1_2ArmAngle,minLowerArmAn gle,maxLowerArmAngle)
% Direct_2DOF_PPM takes the angles of the two upper arms (wrt the +Y axis) of a
% 2DOFPPM and outputs the coordinates of the TCP (t ool center point)
% VARIABLES:
% thetaA - angle of motor A from +Y-axis (radians)
% thetaB - angle of motor B from +Y-axis (radians)
% LengthBase - length of base / separation of motor s (m)
% LengthUpper - length of upper/proximal arm (m)
% LengthLower - length of lower/distal arm (m)
% min1_2ArmAngle - minimum allowable acute angle be tween proximal and distal arms(radians)
% max1_2ArmAngle - maximum allowable acute angle be tween proximal and distal arms(radians)
% minLowerArmAngle - minimum allowable acute angle between distal arms(radians)
% maxLowerArmAngle - maximum allowable acute angle between distal arms(radians)
% RETURNS:
% tcpX - X co-ordinate of the TCP/end-effector
% tcpY - Y co-ordinate of the TCP/end-effector
% error - value indicating an error (0 = no error)
% errorMsg - message associated with an error

D=LengthBase; % Length of base
aBaseX = -D/2; % X component of lhs of base
aBaseY = 0; % Y component of lhs of base
bBaseX = D/2; % X component of rhs of base
bBaseY = 0; % Y component of rhs of base
a1=LengthUpper; % Left Upper Arm
a2=LengthLower; % Left Lower Arm
b1=LengthUpper; % Right Upper Arm
b2=LengthLower; % Right Lower Arm

error = 0; % Notify an error exists by setting to 1
errorMsg = 'null' ; % Details about error

ajX = ((-D/2)-a1*sin(pi-thetaA)); % X component of lhs arm joint
ajY = (-a1*cos(pi-thetaA)); % Y component of lhs arm joint
bjX = ((D/2)+b1*sin(pi-thetaB)); % X component of rhs arm joint
bjY = (-b1*cos(pi-thetaB)); % Y component of rhs arm joint

k = sqrt((bjX-ajX)^2+(abs(bjY-ajY))^2); % Distance between lhs & rhs joints

i = (a2^2-b2^2+k^2)/(2*k);

h = sqrt(a2^2-i^2);

mX = ajX + (i*(bjX-ajX))/k;
mY = ajY + (i*(bjY-ajY))/k;

tcpX = mX + (h*(bjY-ajY))/k; % X component of TCP
tcpY = mY - (h*(bjX-ajX))/k; % Y component of TCP

% Check lower arms still reach, else throw an error - added a 1% tollerance to allow for
% calculation errors
if ((sqrt((ajX-tcpX)^2+(ajY-tcpY)^2)>a2*1.01)||(sqrt((bjX-tcpX)^2+(bjY-tcpY)^2)>b2*1.01))
 error = 2;
 errorMsg = 'Arm configuration cannot be resolved' ;
end

% Only permit TCP's below the base
if (tcpY > aBaseY)
 error = 2;
 errorMsg = 'TCP cannot be raised above base' ;
end
…

Figure F.16 Direct_2DOF_PPM Function (Part 1/2)

 Appendix F – Matlab® Code

173

…

% Angle between upper left arm and lower left arm
thetaAJ = -atan2(((aBaseX-ajX)*(tcpY-ajY)-(tcpX-ajX)*(aBaseY-ajY)), ...
 (aBaseX-ajX)*(tcpX-ajX)+(aBaseY -ajY)*(tcpY-ajY));

% Angle between upper right arm and lower right arm
thetaBJ = atan2(((bBaseX-bjX)*(tcpY-bjY)-(tcpX-bjX) *(bBaseY-bjY)), ...
 (bBaseX-bjX)*(tcpX-bjX)+(bBaseY -bjY)*(tcpY-bjY));

% Angle between right and left lower fore arms
thetaTCP = atan2(((bjX-tcpX)*(ajY-tcpY)-(ajX-tcpX)* (bjY-tcpY)), ...
 (bjX-tcpX)*(ajX-tcpX)+(bjY-tcpY)*(ajY-tcpY));

% Check all joint angles are within limits
if (thetaAJ < min1_2ArmAngle)
 error = 1;
 errorMsg = strcat('Interference between A arms. (' ,num2str(thetaAJ*180/pi), ...
 '<' ,num2str(min1_2ArmAngle*180/pi), ')!');
elseif (thetaBJ < min1_2ArmAngle)
 error = 1;
 errorMsg = strcat('Interference between B arms. (' ,num2str(thetaBJ*180/pi), ...
 '<' ,num2str(min1_2ArmAngle*180/pi), ')!');
elseif (thetaTCP < minLowerArmAngle)
 error = 1;
 errorMsg = strcat('Interference between lower arms. (' ,num2str(thetaTCP*180/pi), ...
 '<' ,num2str(minLowerArmAngle*180/pi), ')!');
elseif (thetaAJ > max1_2ArmAngle)
 error = 1;
 errorMsg = strcat('Angle between A arms is too great. (' ,num2str(thetaAJ*180/pi), ...
 '>' ,num2str(max1_2ArmAngle*180/pi), ')!');
elseif (thetaBJ > max1_2ArmAngle)
 error = 1;
 errorMsg = strcat('Angle between B arms is too great. (' ,num2str(thetaBJ*180/pi), ...
 '>' ,num2str(max1_2ArmAngle*180/pi), ')!');
elseif (thetaTCP > maxLowerArmAngle)
 error = 1;
 errorMsg = strcat('Angle between lower arms is too great. (' , ...
 num2str(thetaTCP*180/pi), '>' ,num2str(maxLowerArmAngle*180/pi), ')!');
end

% Check all parameters are real (if complex, it ind icates that the arms can not reach).
% Return error = 2 if can't reach
if (isreal(aBaseX) == false ...
 || isreal(aBaseY) == false ...
 || isreal(bBaseX) == false ...
 || isreal(bBaseY) == false ...
 || isreal(ajX) == false ...
 || isreal(ajY) == false ...
 || isreal(bjX) == false ...
 || isreal(bjY) == false ...
 || isreal(tcpX) == false ...
 || isreal(tcpY) == false)

 error = 2;
 errorMsg = strcat('Arm configuration is invalid. Cannot form closed l oop.');
end
end

Figure F.17 Direct_2DOF_PPM Function (Part 2/2)

Simulation and Optimisation of a 2DOFPPM

174

function [Velocity] = EstimateTCPVel(Knot0,Knot1,StartTime, EndTime)
% Estimates the TCP/end-effector velocity based on the time taken to travel between two
% knots
% VARIABLES:
% Knot0 - Instance of Knot class, travelling from
% Knot1 - Instance of Knot class, travelling to
% StartTime - Time at Knot0
% EndTime - Time at Knot1
% RETURNS:
% Velocity - estimated velocity

 x0 = Knot0.X;
 y0 = Knot0.Y;
 x1 = Knot1.X;
 y1 = Knot1.Y;

 dist = sqrt((x1-x0)^2+(y1-y0)^2);

 Velocity = dist/(EndTime-StartTime);
end

Figure F.18 EstimateTCPVel Function

function Torque = EstimateTorqueA(LengthUpper,Mass_upper,Ma ss_lower,MassGripper, ...
 Mass_LowerCrank ,theta,alpha)
% Estimates the torque requited by MotorA under a g iven acceleration
% VARIABLES:
% LengthUpper - Length of upper/proximal arm (m)
% Mass_upper - Mass of upper/proximal arm (kg)
% Mass_lower - Mass of lower/distal arm (kg)
% MassGripper - Mass of gripper (kg)
% Mass_LowerCrank - Mass of lower crank (kg)
% theta - angle of MotorA (rad)
% alpha - angular acceleration fo MotorA (rad/s/s)
% RETURNS:
% Torque - estimate of torque required by MotorA (N m)

g = 9.81; % Define gravity in SI units

% Inertia of arms acting on motor
Inertia = ((Mass_upper)*(LengthUpper/2)^2) + ...
 ((Mass_lower+Mass_LowerCrank/2+MassGrip per/2)*(LengthUpper)^2);

% Torque due to gravity
T_gravity = (Mass_upper)*g*(LengthUpper/2)*sin(thet a) + ...
 (Mass_lower+Mass_LowerCrank/2+MassG ripper/2)*g*LengthUpper*sin(theta);

% Total torque
Torque = Inertia * alpha + T_gravity;

end

Figure F.19 EstimateTorqueA Function

 Appendix F – Matlab® Code

175

function Torque = EstimateTorqueB(LengthUpper,Mass_upper,Ma ss_lower,MassGripper, ...
 Mass_UpperTorsi on,Mass_LowerTorsion,Mass_UpperCrank, ...
 Mass_LowerCrank ,theta,alpha)
% Estimates the torque required by MotorB under a g iven acceleration
% VARIABLES:
% LengthUpper - Length of upper/proximal arm (m)
% Mass_upper - Mass of upper/proximal arm (kg)
% Mass_lower - Mass of lower/distal arm (kg)
% MassGripper - Mass of gripper (kg)
% Mass_UpperTorsion - Mass of upper/proximal torsio n arm (kg)
% Mass_LowerTorsion - Mass of lower/distal torsion arm (kg)
% Mass_UpperCrank - Mass of upper/proximal crank (k g)
% Mass_LowerCrank - Mass of lower/distal crank (kg)
% theta - angle of MotorB (rad)
% alpha - angular acceleration fo MotorB (rad/s/s)
% RETURNS:
% Torque - estimate of torque required by MotorA (N m)

g=9.81; % Define gravity in SI units

% Inertia of arms acting on motor
Inertia = ((Mass_upper+Mass_UpperTorsion)*(LengthUp per/2)^2) + ...
 ((Mass_lower+Mass_LowerTorsion+Mass_Upp erCrank+Mass_LowerCrank/2+ ...
 MassGripper/2)*(LengthUpper)^2);

% Torque due to gravity
T_gravity = (Mass_upper+Mass_UpperTorsion)*g*(Lengt hUpper/2)*sin(theta) + ...
 (Mass_lower+Mass_LowerTorsion+Mass_Uppe rCrank+Mass_LowerCrank/2+ ...
 Mas sGripper/2)*g*LengthUpper*sin(theta);

% Total torque
Torque = Inertia * alpha + T_gravity;

Figure F.20 EstimateTorqueB Function

function [Alpha,Time] = FindMaxAlpha(Coef,StartTime,EndTime)
% Finds near-maximum angular acceleration of motors for cubic polynomial trajectory
% VARIABLES:
% Coef - Cubic polynomial coefficients
% StartTime - Start time of trajectory sector
% EndTime - End time of trajectory sector
% RETURNS:
% Alpha - Maximum angular acceleration of trajector y sector
% Time - Time at which maximum angular acceleration occurs

Alpha = -99999999999999;
Time = StartTime;
% take 10 samples of Alpha between start and end ti mes
for time=StartTime:(EndTime-StartTime)/10:EndTime
 t = time - StartTime;
 A = 2*Coef(3) + 6*Coef(4)*t;

 if (A > Alpha)
 Alpha = A;
 Time = time;
 end
end

end

Figure F.21 FindMaxAlpha Function

Simulation and Optimisation of a 2DOFPPM

176

function [Jerk,Time] = FindMaxJerk(Coef,StartTime,EndTime)
% Finds near-maximum angular jerk of motors for cub ic polynomial trajectory
% VARIABLES:
% Coef - Cubic polynomial coefficients
% StartTime - Start time of trajectory sector
% EndTime - End time of trajectory sector
% RETURNS:
% Jerk - Maximum angular jerk of trajectory sector
% Time - Time at which maximum angular jerk occurs

Time = StartTime;
Jerk = 6*Coef(4);

end

Figure F.22 FindMaxJerk Function

function [Omega,Time] = FindMaxOmega(Coef,StartTime,EndTime)
% Finds near-maximum angular velocity of motor for cubic polynomial trajectory
% VARIABLES:
% Coef - Cubic polynomial coefficients
% StartTime - Start time of trajectory sector
% EndTime - End time of trajectory sector
% RETURNS:
% Omega - Maximum angular velocity of trajectory se ctor
% Time - Time at which maximum angular velocity occ urs

Omega = -99999999999999;
Time = StartTime;
% take 10 samples of Omega between start and end ti mes
for time=StartTime:(EndTime-StartTime)/10:EndTime
 t = time - StartTime;
 O = Coef(2) + 2*Coef(3)*t + 3*Coef(4)*t^2;

 if (O > Omega)
 Omega = O;
 Time = time;
 end
end

end

Figure F.23 FindMaxOmega Function

 Appendix F – Matlab® Code

177

function [Torque,Time] = FindMaxTorqueA(Coef,StartTime,EndT ime,Mass_upper,Mass_lower, ...
 MassGri pper,Mass_LowerCrank,LengthUpper)
% Finds near-maximum torque of motor A for cubic po lynomial trajectory
% VARIABLES:
% Coef - Cubic polynomial coefficients
% StartTime - Start time of trajectory sector (s)
% EndTime - End time of trajectory sector (s)
% Mass_upper - Mass of upper/proximal arm (kg)
% Mass_lower - Mass of lower/distal arm (kg)
% MassGripper - Mass of gripper (kg)
% Mass_LowerCrank - Mass of lower crank (kg)
% LengthUpper - Length of upper/proximal arm (m)
% RETURNS:
% Torque - Maximum torque of trajectory sector
% Time - Time at which maximum torque occurs

Torque = -99999999999999;
Time = StartTime;
% take 10 samples of estimated torque between start and end times
for time=StartTime:(EndTime-StartTime)/10:EndTime
 t = time - StartTime;
 T = EstimateTorqueA(LengthUpper,Mass_upper,Mass _lower,MassGripper,Mass_LowerCrank, ...
 (Coef(1) + Coef(2)*t + Coef(3)*t^2 + Co ef(4)*t^3),(2*Coef(3)+6*Coef(4)*t));

 if (T > Torque)
 Torque = T;
 Time = time;
 end
end

end

Figure F.24 FindMaxTorqueA Function

Simulation and Optimisation of a 2DOFPPM

178

function [Torque,Time] = FindMaxTorqueB(Coef,StartTime,EndT ime,Mass_upper,Mass_lower, ...
 MassGripper,Mas s_UpperTorsion,Mass_LowerTorsion, ...
 Mass_UpperCrank ,Mass_LowerCrank,LengthUpper)
% Finds near-maximum torque of motor B for cubic po lynomial trajectory
% VARIABLES:
% Coef - Cubic polynomial coefficients
% StartTime - Start time of trajectory sector (s)
% EndTime - End time of trajectory sector (s)
% Mass_upper - Mass of upper/proximal arm (kg)
% Mass_lower - Mass of lower/distal arm (kg)
% MassGripper - Mass of gripper (kg)
% Mass_UpperTorsion - Mass of upper/proximal torsio n arm (kg)
% Mass_LowerTorsion - Mass of lower/distal torsion arm (kg)
% Mass_UpperCrank - Mass of upper/proximal crank (k g)
% Mass_LowerCrank - Mass of lower/distal crank (kg)
% LengthUpper - Length of upper/proximal arm (m)
% RETURNS:
% Torque - Maximum torque of trajectory sector
% Time - Time at which maximum torque occurs

Torque = -99999999999999;
Time = StartTime;
% take 10 samples of estimated torque between start and end times
for time=StartTime:(EndTime-StartTime)/10:EndTime
 t = time - StartTime;
 T = EstimateTorqueB(LengthUpper,Mass_upper,Mass _lower,MassGripper, ...
 Mass_UpperTorsion,Mass_Lowe rTorsion,Mass_UpperCrank, ...
 Mass_LowerCrank,(Coef(1) + Coef(2)*t + Coef(3)*t^2 + ...
 Coef(4) *t^3),(2*Coef(3)+6*Coef(4)*t));
 if (T > Torque)
 Torque = T;
 Time = time;
 end
end

end

Figure F.25 FindMaxTorqueB Function

function [Alpha,Time] = FindMinAlpha(Coef,StartTime,EndTime)
% Finds near-minimum angular acceleration of motors for cubic polynomial trajectory
% VARIABLES:
% Coef - Cubic polynomial coefficients
% StartTime - Start time of trajectory sector
% EndTime - End time of trajectory sector
% RETURNS:
% Alpha - Minimum angular acceleration of trajector y sector
% Time - Time at which minimum angular acceleration occurs

Alpha = 99999999999999;
Time = StartTime;
% take 10 samples of Alpha between start and end ti mes
for time=StartTime:(EndTime-StartTime)/10:EndTime
 t = time - StartTime;
 A = 2*Coef(3) + 6*Coef(4)*t;

 if (A < Alpha)
 Alpha = A;
 Time = time;
 end
end

end

Figure F.26 FindMinAlpha Function

 Appendix F – Matlab® Code

179

function [Jerk,Time] = FindMinJerk(Coef,StartTime,EndTime)
% Finds near-minimum angular jerk of motors for cub ic polynomial trajectory
% VARIABLES:
% Coef - Cubic polynomial coefficients
% StartTime - Start time of trajectory sector
% EndTime - End time of trajectory sector
% RETURNS:
% Jerk - Minimum angular jerk of trajectory sector
% Time - Time at which minimum angular jerk occurs

Time = StartTime;
Jerk = 6*Coef(4);

end

Figure F.27 FindMinJerk Function

function [Omega,Time] = FindMinOmega(Coef,StartTime,EndTime)
% Finds near-minimum angular velocity of motor for cubic polynomial trajectory
% VARIABLES:
% Coef - Cubic polynomial coefficients
% StartTime - Start time of trajectory sector
% EndTime - End time of trajectory sector
% RETURNS:
% Omega - Minimum angular velocity of trajectory se ctor
% Time - Time at which minimum angular velocity occ urs

Omega = 99999999999999;
Time = StartTime;
% take 10 samples of Omega between start and end ti mes
for time=StartTime:(EndTime-StartTime)/10:EndTime
 t = time - StartTime;
 O = Coef(2) + 2*Coef(3)*t + 3*Coef(4)*t^2;

 if (O < Omega)
 Omega = O;
 Time = time;
 end
end

end

Figure F.28 FindMinOmega Function

Simulation and Optimisation of a 2DOFPPM

180

function [Torque,Time] = FindMinTorqueA(Coef,StartTime,EndT ime,Mass_upper,Mass_lower, ...
 MassGri pper,Mass_LowerCrank,LengthUpper)
% Finds near-minimum torque of motor A for cubic po lynomial trajectory
% VARIABLES:
% Coef - Cubic polynomial coefficients
% StartTime - Start time of trajectory sector (s)
% EndTime - End time of trajectory sector (s)
% Mass_upper - Mass of upper/proximal arm (kg)
% Mass_lower - Mass of lower/distal arm (kg)
% MassGripper - Mass of gripper (kg)
% Mass_LowerCrank - Mass of lower crank (kg)
% LengthUpper - Length of upper/proximal arm (m)
% RETURNS:
% Torque - Minimum torque of trajectory sector (Nm)
% Time - Time at which minimum torque occurs

Torque = 99999999999999;
Time = StartTime;
% take 10 samples of estimated torque between start and end times
for time=StartTime:(EndTime-StartTime)/10:EndTime
 t = time - StartTime;
 T = EstimateTorqueA(LengthUpper,Mass_upper,Mass _lower,MassGripper,Mass_LowerCrank, ...
 (Coef(1) + Coef(2)*t + Coef(3)*t^2 + Co ef(4)*t^3),(2*Coef(3)+6*Coef(4)*t));

 if (T < Torque)
 Torque = T;
 Time = time;
 end
end

end

Figure F.29 FindMinTorqueA Function

 Appendix F – Matlab® Code

181

function [Torque,Time] = FindMinTorqueB(Coef,StartTime,EndT ime,Mass_upper,Mass_lower, ...
 MassGripper,Mas s_UpperTorsion,Mass_LowerTorsion, ...
 Mass_UpperCrank ,Mass_LowerCrank,LengthUpper)
% Finds near-minimum torque of motor B for cubic po lynomial trajectory
% VARIABLES:
% Coef - Cubic polynomial coefficients
% StartTime - Start time of trajectory sector (s)
% EndTime - End time of trajectory sector (s)
% Mass_upper - Mass of upper/proximal arm (kg)
% Mass_lower - Mass of lower/distal arm (kg)
% MassGripper - Mass of gripper (kg)
% Mass_UpperTorsion - Mass of upper/proximal torsio n arm (kg)
% Mass_LowerTorsion - Mass of lower/distal torsion arm (kg)
% Mass_UpperCrank - Mass of upper/proximal crank (k g)
% Mass_LowerCrank - Mass of lower/distal crank (kg)
% LengthUpper - Length of upper/proximal arm (m)
% RETURNS:
% Torque - Minimum torque of trajectory sector
% Time - Time at which minimum torque occurs

Torque = 99999999999999;
Time = StartTime;
% take 10 samples of estimated torque between start and end times
for time=StartTime:(EndTime-StartTime)/10:EndTime
 t = time - StartTime;
 T = EstimateTorqueB(LengthUpper,Mass_upper,Mass _lower,MassGripper, ...
 Mass_UpperTorsion,Mass_Lowe rTorsion,Mass_UpperCrank, ...
 Mass_LowerCrank,(Coef(1) + Coef(2)*t + Coef(3)*t^2 + ...
 Coef(4) *t^3),(2*Coef(3)+6*Coef(4)*t));
 if (T < Torque)
 Torque = T;
 Time = time;
 end
end

end

Figure F.30 FindMinTorqueB Function

function PathID = GetNextPathID()
% Returns the next available (unused) path identifi er from database

 % Connect to database
 mysql('open' , 'localhost:3306' , 'root' , 'mysql')
 mysql('use matlab_2dofppm')

 PathID = mysql('SELECT IFNULL(MAX(PathID)+1,1) FROM paths');

 mysql('close')

end

Figure F.31 GetNextPathID Function

Simulation and Optimisation of a 2DOFPPM

182

function ppc = GetPPConstraints()
% Returns an instance of the PPConstraints class co ntaining the Path Planning Constraints

 % Create new instance of class
 ppc = PPConstraints;

 ppc.LinearErrorFactor = 0.2;
 ppc.LastLinearTargetDistance = 0.02;
 ppc.ReactiveFactor = 0.5;
 ppc.InitialAcceptanceThreshold = 0.8;
 ppc.RelativeAgeingFactor = 100;

end

Figure F.32 GetPPConstraints Function

function [thetaA, thetaB, error, errorMsg] = ...
 Inverse_2DOF_PPM(tcpX, tcpY, Lengt hBase,LengthUpper,LengthLower)
% Returns the angles required for a given (X,Y) TCP coordinate
% VARIABLES:
% tcpX - tcp/end-effector X coordinate
% tcpY - tcp/end-effector Y coordinate
% LengthBase - length of base / separation of motor s (m)
% LengthUpper - length of upper/proximal arm (m)
% LengthLower - length of lower/distal arm (m)
% RETURNS:
% thetaA - angle of motor A from +Y-axis (radians)
% thetaB - angle of motor B from +Y-axis (radians)
% error - value indicating an error (0 = no error)
% errorMsg - message associated with an error

 D=LengthBase; % Length of base
 a1=LengthUpper; % Left Upper Arm
 a2=LengthLower; % Left Lower Arm
 b1=LengthUpper; % Right Upper Arm
 b2=LengthLower; % Right Lower Arm

 error = 0; % Set as no error
 errorMsg = 'null' ; % Details about error

 aA = -2*a1*tcpY;
 aB = -2*a1*(tcpX + (D/2));
 aC = tcpX^2 + tcpY^2+(D/2)^2+a1^2-a2^2+2*(D/2)* tcpX;

 bA = -2*b1*tcpY;
 bB = -2*b1*(tcpX - (D/2));
 bC = tcpX^2 + tcpY^2+(D/2)^2+b1^2-b2^2-2*(D/2)* tcpX;

 thetaA = 2*atan((-aA-sqrt(aA^2-aC^2+aB^2))/(aC- aB));
 thetaB = 2*atan((-bA+sqrt(bA^2-bC^2+bB^2))/(bC- bB));

 thetaA = thetaA - d2r(90); % Convert to project's conventions
 thetaB = d2r(90)-thetaB; % Convert to project's conventions

 % Check all parameters are real (if complex, it ind icates that the arms can not reach.
 % Give error = 2 if can't reach
 if (isreal(thetaA) == false || isreal(thetaB) == fals e)
 error = 2;
 errorMsg = strcat('Arm configuration is invalid. Cannot form closed l oop.');
 end

end

Figure F.33 Inverse_2DOF_PPM Function

 Appendix F – Matlab® Code

183

classdef Knot
% Defines a knot (position of end effector).
% The knot is defined both in terms of its cartesia n coordinates in the
% workspace, as well as its joint coordinates in th e joint space.

properties
 X % X component of knot in cartesian coordinate
 Y % Y component of knot in cartesian coordinate
 Theta_A % Theta_A component of knot in joint space
 Theta_B % Theta_B component of knot in joint space
 Omega_A % Angular velocity of motor A at knot
 Omega_B % Angular velocity of motor B at knot
end

methods
 % Create instance of Knot class with variables
 function k = Knot(X,Y,Theta_A,Theta_B)
 if nargin == 2 % Allow defining with only X,Y
 k.X = X;
 k.Y = Y;
 elseif nargin == 4
 k.X = X;
 k.Y = Y;
 k.Theta_A = Theta_A;
 k.Theta_B = Theta_B;
 else
 end
 end

end
end

Figure F.34 Knot Class

Simulation and Optimisation of a 2DOFPPM

184

classdef MoveCMD
% Defines a move command (Target,MoveType,Velocity, Zone,[Pause]).

properties
Target % Position/Orientation and PathTime
MoveType % Either Linear or Joint move
Velocity % Maximum velocity limit for the TCP
Zone % Distance from Knot at which Target is considered reached thus
 % allowing next Target to be aimed at
Pause % Time period for manipulator to stop stationary af ter completing this move
end

methods
 % Create instance of MoveCMD class with variables
 function m = MoveCMD(Target,MoveType,Velocity,Zone,Pause)
 if nargin == 4 % If only 4 arguments specified (omitting Pause) se t Pause = 0
 m.Target = Target;
 m.MoveType = MoveType;
 m.Velocity = Velocity;
 m.Zone = Zone;
 m.Pause = 0;
 end
 if nargin == 5
 m.Target = Target;
 m.MoveType = MoveType;
 m.Velocity = Velocity;
 m.Zone = Zone;
 m.Pause = Pause;
 end
 end
end
end

Figure F.35 MoveCMD Class

 Appendix F – Matlab® Code

185

% Create new instance of UserConstraints class and set variables
uc = UserConstraints;
uc.MaxMotorTorque = 300;
uc.MaxMotorVelocity = 20;
uc.MaxMotorAcceleration = 9999;
uc.MaxMotorJerk = 999999;
uc.MassGripper = 35;
uc.MinArmAng_BU = d2r(33);
uc.MinArmAng_UL = d2r(43);
uc.MinArmAng_LL = d2r(48);
uc.MaxArmAng_BU = d2r(175);
uc.MaxArmAng_UL = d2r(134);
uc.MaxArmAng_LL = d2r(71);
uc.ProxArmDensity = 2700;
uc.DistArmDensity = 2700;
uc.TorsionArmDensity = 2700;
uc.ProxArmIRadius = 0.01;
uc.DistArmIRadius = 0.01;
uc.ProxArmORadius = 0.02;
uc.DistArmORadius = 0.02;
uc.TorsionIRadius = 0.005;
uc.TorsionORadius = 0.01;
uc.MassUpperCrank = 0.2;
uc.MassLowerCrank = 0.2;
uc.UpperTorsionOffsetB_X = 0.05;
uc.UpperTorsionOffsetB_Y = 0.1;
uc.LowerTorsionOffsetTCP_X = -0.05;
uc.LowerTorsionOffsetTCP_Y = 0.1;
uc.GripperMountOffset_X = 0;
uc.GripperMountOffset_Y = -0.02;
uc.GripperLength = 0.01;
uc.MinMotorSeparation = 0.01;
uc.MaxWidth = 1.5;
uc.MaxDepth = 2;

% Specify knots for Path
k1 = Knot(-0.3,-1);
k2 = Knot(-0.3,-0.7);
k3 = Knot(0,-0.65);
k4 = Knot(0.3,-0.7);
k5 = Knot(0.3,-1);
k6 = Knot(0.3,-0.75);
k7 = Knot(0,-0.7);
k8 = Knot(-0.3,-0.75);
k9 = Knot(-0.3,-1);

% Create Move commands from Knots
m1 = MoveCMD(Target(k1), 'MoveJ' ,10,1);
m2 = MoveCMD(Target(k2), 'MoveL' ,10,30);
m3 = MoveCMD(Target(k3), 'MoveJ' ,10,50);
m4 = MoveCMD(Target(k4), 'MoveJ' ,10,30);
m5 = MoveCMD(Target(k5), 'MoveL' ,10,1,0.2);
m6 = MoveCMD(Target(k6), 'MoveL' ,10,20);
m7 = MoveCMD(Target(k7), 'MoveJ' ,10,30);
m8 = MoveCMD(Target(k8), 'MoveJ' ,10,20);
m9 = MoveCMD(Target(k9), 'MoveL' ,10,1);

% Create new CyclePath from Moves
cp = CyclePath;
cp.ID = GetNextPathID();
cp.Moves = [m1 m2 m3 m4 m5 m6 m7 m8 m9];
cp.PPC = GetPPConstraints();

% Set termination conditions
termcond = TerminationCondition;
termcond.CycleTime = 0.1;
termcond.Iterations = 300;
…

Figure F.36 OptimisationStart Script (Part 1/2)

Simulation and Optimisation of a 2DOFPPM

186

…

try
 % Optimisation method specific parameters (in this case the GA)
 popSize = 50;
 selectionSize = 30;
 mutationRate = 0.25;
 mutationAmount = 0.1;

 % Run optimisation technique (in this case the GA)
 OptimiseConfigurationGA(...
 cp,termcond,uc,popSize,selectio nSize,mutationRate,mutationAmount);

catch exception % Send email notification if excetion occurs
 send_mail_message('matlab2dofppm' , 'ERROR: MATLAB Simulation' , ...
 getReport(exception, 'extended'))
end

Figure F.37 OptimisationStart Script (Part 2/2)

 Appendix F – Matlab® Code

187

function OptimiseConfigurationGA(CP,TermCond,UConstraints,P opSize, ...
 Sel ectionSize,MutationRate,MutationAmount)
% Uses a Genetic Algorithm to narrow on time-minimu m configuration
% VARIABLES:
% CP - Cycle Path class containing geometric detail s of the path
% TermCond - Termination Condition class detailing conditions of terminating process
% UConstraints - User Constraints class
% PopSize - Number of individuals in GA population
% SelectionSize - Number of individuals selected fo r breeding
% MutationRate - Probability of mutation occuring i n child (%)
% MutationAmount - The amount of mutation to occur in child (%)

% Store path and user constraint data
StorePathsUserConstraintsSQL(CP,UConstraints);
population = repmat(Configuration,PopSize,1);
popPPC = repmat(PPConstraints,PopSize,1);
popFitness = zeros(PopSize,1);
popCycleTime = zeros(PopSize,1);
popMotorID = zeros(PopSize,1);

%% INITIALISATION - Initialise population by select ing random configurations

for p=1:PopSize
 % Select 'random' motor details from database
 [motorID,newPPC] = SelectMotor(CP.PPC,UConstrai nts);
 CP.PPC = newPPC; % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)
 % Select random configuration that reaches all move targets
 config = SelectRandomConfig(CP.Moves,motorID,UC onstraints);
 population(p) = config;
 popPPC(p) = CP.PPC;
 popMotorID(p) = motorID;
end

% Perform GA for a set number of evolution cycles
for i=1:TermCond.Iterations
 % Check if popCycleTimes are too similar and replac e some with random configurations
 if i >1
 minct = 500;
 maxct = 0;
 for p=1:PopSize
 if popCycleTime(p) < 5000
 if popCycleTime(p) < minct
 minct = popCycleTime(p);
 end
 if popCycleTime(p) > maxct
 maxct = popCycleTime(p);
 end
 end
 end
 if maxct-minct < 0.2 % Population is too inbred!
 % Replace 10% of inbred population with random indi viduals
 for rp = 1:floor(PopSize/10)
 % Select 'random' motor details from database
 [motorID,newPPC] = SelectMotor(CP.P PC,UConstraints);
 % Assign Path Planning Constraints (PPC) of motor t o Cycle Path (CP)
 CP.PPC = newPPC;
 % Select random configuration that reaches all move targets
 config = SelectRandomConfig(CP.Move s,motorID,UConstraints);

 % Randomly select an individual from population for replacement
 replaceP = ceil(PopSize*rand(1));
 population(replaceP) = config;
 popPPC(replaceP) = CP.PPC;
 popMotorID(replaceP) = motorID;
 end
 end
 end
…

Figure F.38 OptimiseConfigurationGA Function (Part 1/4)

Simulation and Optimisation of a 2DOFPPM

188

…

%% EVALUATION - Evaluate the performance of each in dividual in population

 for p=1:PopSize
 config = population(p);
 ppc = popPPC(p);
 try
 % Check if config has already been simulated, retur n cycletime if it exists in
 % database
 ct = CheckConfigExists(CP.ID,config);
 if isempty(ct)
 % Evaluate the selected individual by compiling a p ath
 [Targets_XYZ,ppr] = CompilePath(CP. Moves,config,ppc);
 %Store results of path planning in database
 StoreSimulationsSQL(config,ppc,ppr, CP.ID,i);

 popCycleTime(p) = ppr.PathA(size(pp r.PathA,1)).EndTime;
 else
 popCycleTime(p) = ct;
 end
 catch exception
 % If error occurs give individual poor cycletime so will be repaced next cycle
 popCycleTime(p) = 99999;
 end
 popFitness(p) = 1/(popCycleTime(p)^3); % Fitness equals inverse of cycletime cubed
 end

%% SELECTION - Select sub population from populatio n for breeding based on fitness

 sumFitness = 0;
 for p=1:PopSize
 sumFitness = sumFitness + popFitness(p);
 end
 % Assign selection probability to each individual i n population based on fitness
 popProb = zeros(PopSize,1);
 for p=1:PopSize
 popProb(p) = popFitness(p)/sumFitness;
 end
 selectionProb = zeros(PopSize,1);
 sumProb = 0;
 for p=1:PopSize
 selectionProb(p) = sumProb + popProb(p);
 sumProb = selectionProb(p);
 end

 % Select a number (SelectionSize) of the population for breeding
 selectedPop = repmat(Configuration,SelectionSiz e,1);
 selectedPopPPC = repmat(PPConstraints,Selection Size,1);
 selectedPopMotorID = zeros(SelectionSize,1);
 selectedPopCycleTime = zeros(SelectionSize,1);
 for s=1:SelectionSize
 randnum = rand(1);
 for p=1:PopSize
 if selectionProb(p) > randnum
 selectedPop(s) = population(p);
 selectedPopPPC(s) = popPPC(p);
 selectedPopMotorID(s) = popMotorID(p);
 selectedPopCycleTime(s) = popCycleT ime(p);
 break ;
 end
 end
 end
…

Figure F.39 OptimiseConfigurationGA Function (Part 2/4)

 Appendix F – Matlab® Code

189

…

%% REPRODUCTION

 % Add selected parents to new population
 newPopulation = repmat(Configuration,PopSize,1) ;
 newPopPPC = repmat(PPConstraints,PopSize,1);
 newPopMotorID = zeros(PopSize,1);
 for s=1:SelectionSize
 newPopulation(s) = selectedPop(s);
 newPopPPC(s) = selectedPopPPC(s);
 newPopMotorID(s) = selectedPopMotorID(s);
 end

 % Generate children to fill rest of new population
 for p=SelectionSize:PopSize
 reachable = false;
 unique = true;
 while reachable == false && unique == true;
 % CROSSOVER - children configuration dimensions are a random number between
 % their two parents

 % select two random parents from selectedPop
 randnum1 = ceil(rand(1)*SelectionSize);
 randnum2 = ceil(rand(1)*SelectionSize);
 parent1Config = selectedPop(randnum1);
 parent2Config = selectedPop(randnum2);
 parent1ppc = selectedPopPPC(randnum1);
 parent2ppc = selectedPopPPC(randnum2);
 parent1motorID = selectedPopMotorID(ran dnum1);
 parent2motorID = selectedPopMotorID(ran dnum2);

 minlb = min([parent1Config.LengthBase p arent2Config.LengthBase]);
 maxlb = max([parent1Config.LengthBase p arent2Config.LengthBase]);
 lb = minlb+(maxlb-minlb)*rand(1); % Set childs base length

 minll = min([parent1Config.LengthLower parent2Config.LengthLower]);
 maxll = min([parent1Config.LengthLower parent2Config.LengthLower]);
 ll = minll+(maxll-minll)*rand(1); % Set childs distal arm length

 minlu = min([parent1Config.LengthUpper parent2Config.LengthUpper]);
 maxlu = min([parent1Config.LengthUpper parent2Config.LengthUpper]);
 lu = minlu+(maxlu-minlu)*rand(1); % Set childs proximal arm length

 minwh = min([parent1Config.WorkspaceHei ght parent2Config.WorkspaceHeight]);
 maxwh = min([parent1Config.WorkspaceHei ght parent2Config.WorkspaceHeight]);
 wh = minwh+(maxwh-minwh)*rand(1); % Set childs workspace height
 …

Figure F.40 OptimiseConfigurationGA Function (Part 3/4)

Simulation and Optimisation of a 2DOFPPM

190

…
 % MUTATION - with some probability alter childs dim ension
 if rand(1) < MutationRate
 if rand(1) <0.5
 MutAmount = MutationAmount;
 else
 MutAmount = -MutationAmount;
 end
 lb = lb * (1+MutAmount);
 end
 if rand(1) < MutationRate
 if rand(1) <0.5
 MutAmount = MutationAmount;
 else
 MutAmount = -MutationAmount;
 end
 lu = lu * (1+MutAmount);
 end
 if rand(1) < MutationRate
 if rand(1) <0.5
 MutAmount = MutationAmount;
 else
 MutAmount = -MutationAmount;
 end
 ll = ll * (1+MutAmount);
 end
 if rand(1) < MutationRate
 if rand(1) <0.5
 MutAmount = MutationAmount;
 else
 MutAmount = -MutationAmount;
 end
 wh = wh * (1+MutAmount);
 end

 % Generate new configuration based on childs dimens ions
 [config, reachable] = ...
 CalculateConfig(lb,lu,ll,wh,CP. Moves,parent1motorID,UConstraints);

 % Check configuration is unique in population
 for pp=1:PopSize
 existingConfig = newPopulation(pp);
 try
 if config.LengthBase == existingConfig.LengthBase ...
 && config.LengthUpper = = existingConfig.LengthUpper ...
 && config.LengthLower = = existingConfig.LengthLower ...
 && config.WorkspaceHeig ht == existingConfig.WorkspaceHeight
 unique = false;
 break ;
 end
 catch exception
 end
 end

 % Add child to population if it is unique and can a cheive the desired path
 if unique == true && reachable == true
 newPopulation(p) = config;
 newPopPPC(p) = parent1ppc;
 newPopMotorID(p) = parent1motorID;
 end
 end
 end
 population = newPopulation;
 popPPC = newPopPPC;
 popMotorID = newPopMotorID;
end
end

Figure F.41 OptimiseConfigurationGA Function (Part 4/4)

 Appendix F – Matlab® Code

191

function OptimiseConfigurationHC(CP,TermCond,UConstraints,S tepSize)
% Uses a random restart hill climber to narrow on a time-minimum configuration
% VARIABLES:
% CP - Cycle Path class containing geometric detail s of the path
% TermCond - Termination Condition class detailing conditions of terminating process
% UConstraints - User Constraints class
% StepSize - size of steps (in m) to evaluate neigh bouring configurations

StorePathsUserConstraintsSQL(CP,UConstraints); % Store path and user constraint data

for i=1:TermCond.Iterations % Run Hill Climber for a number of iterations

 % Select 'random' motor details from database
 [motorID,newPPC] = SelectMotor(CP.PPC,UConstrai nts);

 CP.PPC = newPPC; % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)

 % Select random configuration that reaches all move targets
 config = SelectRandomConfig(CP.Moves,motorID,UC onstraints);
 try
 % Compile path using Configuration and Path Plannin g Constraints (PPC)
 % Path Planning Results (ppr) are returned along wi th positional and zone data
 % about targets
 [Targets_XYZ,ppr] = CompilePath(CP.Moves,co nfig,CP.PPC);
 catch exception
 % Skip to next iteration if exception occurs due to config unable to meet targets
 continue ;
 end

 % Store results of path planning in database
 StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i);
 local = false; % Set flag indicating whether a local minima has be en found
 minCycleTime = ppr.PathA(size(ppr.PathA,1)).End Time; % Set best cycletime acheived
 bestConfig = config;

 while local == false % Loop until local minima has been found
 clear neighboursPPR ; % Clear variables
 clear neighboursConfig ; % Clear variables

 % Select configurations around the best configurati on so far
 neighboursConfig = ...
 SelectNeighbouringConfig(bestConfig,CP. Moves,motorID,UConstraints,StepSize);

 for j=1:size(neighboursConfig,2)
 % Compile Paths using each of the neighbouring conf igurations(neighboursConfig)
 % Store results in database, and save Path Planning Results (ppr) in an array
 [Targets_XYZ,ppr] = CompilePath(CP.Move s,neighboursConfig(j),CP.PPC);
 StoreSimulationsSQL(neighboursConfig(j) ,CP.PPC,ppr,CP.ID,i);
 neighboursPPR(j)=ppr;
 end

 local = true; % set flag - will be reset if not local
 for j=1:size(neighboursPPR,2)
 % Compare results of each neighbouring configuratio n. Replace bestConfig with
 % neighbour if faster cycletime is found
 if neighboursPPR(j).PathA(size(neighboursPPR(j).PathA ,1)).EndTime ...
 < minCycleTime
 minCycleTime = ...
 neighboursPPR(j).PathA(size (neighboursPPR(j).PathA,1)).EndTime;
 bestConfig = neighboursConfig(j);
 local = false;
 end
 end
 end
end
end

Figure F.42 OptimiseConfigurationHC Function

Simulation and Optimisation of a 2DOFPPM

192

function OptimiseConfigurationSA(CP,TermCond,UConstraints,S tepSize,MaxAttempts1, ...
 MaxAttempts2,T,Attenuation)
% Uses a random restart hill climber with simulated annealing to narrow on a
% time-minimum configuration
% VARIABLES:
% CP - Cycle Path class containing geometric detail s of the path
% TermCond - Termination Condition class detailing conditions of terminating process
% UConstraints - User Constraints class
% StepSize - size of steps (in m) to evaluate neigh bouring configurations
% MaxAttempts1 - maximum number of attempts/iterati ons in the inner loop of algorithm
% before 'cooling' takes place
% MaxAttempts2 - maximum number of attempts/iterati ons of the outer loop in algorithm.
% The number of 'cooling' steps t aking place
% T - constant in algorithm that affects probabilit y of selection
% Attenuation - the 'cooling' factor reducing the p robability of selecting a less optimal
% configuration as time goes on

% Store path and user constraint data
StorePathsUserConstraintsSQL(CP,UConstraints);

for i=1:TermCond.Iterations % Run Simulated Annealer for a number of iterations

 % Select 'random' motor details from database
 [motorID,newPPC] = SelectMotor(CP.PPC,UConstrai nts);

 CP.PPC = newPPC; % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)

 % Select random configuration that reaches all move targets
 config = SelectRandomConfig(CP.Moves,motorID,UC onstraints);

 try
 % Compile path using Configuration and Path Plannin g Constraints (PPC)
 % Path Planning Results (ppr) are returned along wi th positional and zone data
 % about targets
 [Targets_XYZ,ppr] = CompilePath(CP.Moves,co nfig,CP.PPC);
 catch exception
 % Skip to next iteration if exception occurs due to config unable to meet targets
 continue ;
 end

 % Store results of path planning in database
 StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i);

 minCycleTime = ppr.PathA(size(ppr.PathA,1)).End Time; % Set best cycletime acheived
 bestConfig = config; % Set the best Configuration
 currentConfig = config; % Set the current Configuration
 currentCycleTime = minCycleTime; % Set cycletime acheived by currentConfig
…

Figure F.43 OptimiseConfigurationSA Function Part (1/2)

 Appendix F – Matlab® Code

193

…

 attempts2 = 0; % Reset counter
 while attempts2 < MaxAttempts2

 attempts1 = 0; % Reset counter
 while attempts1 < MaxAttempts1
 clear neighboursPPR ; % Clear variables
 clear neighboursConfig ; % Clear variables
 clear selectedNeighbourConfig ; % Clear variables
 clear selectedNeighbourPPR ; % Clear variables

 % Select configurations around the currentConfig
 neighboursConfig = SelectNeighbouringCo nfig(...
 currentConfig,C P.Moves,motorID,UConstraints,StepSize);

 % Select a random neighbour
 randIndex = randperm(numel(neighboursCo nfig));
 selectedNeighbourConfig = neighboursCon fig(randIndex(1,1));

 % Evaluate the selected neighbour
 [Targets_XYZ,ppr] = CompilePath(CP.Move s,selectedNeighbourConfig,CP.PPC);

 StoreSimulationsSQL(selectedNeighbourCo nfig,CP.PPC,ppr,CP.ID,i);
 selectedNeighbourPPR = ppr;
 selectedNeighbourCycleTime = ...
 selectedNeighbourPPR.PathA(size(sel ectedNeighbourPPR.PathA,1)).EndTime;

 % Check if it is the best, save if it is
 if selectedNeighbourCycleTime < minCycleTime
 minCycleTime = selectedNeighbourCyc leTime;
 bestConfig = selectedNeighbourPPR;
 else

 % check if it is better than the current config/cyc letime
 if selectedNeighbourCycleTime < minCycleTime
 % Replace currentConfig with neighbour
 currentConfig = selectedNeighbourCo nfig;
 currentCycleTime = selectedNeighbou rCycleTime;
 else
 % Determine probability of selection based on cycle time and the ...
 % 'cooling' process
 probOfSelection = ...
 1/(1+exp((selectedNeigh bourCycleTime - currentCycleTime)/T));

 % Select neighbouring config based on probability
 myRand = rand(1);
 if myRand < probOfSelection
 currentConfig = selectedNeighbo urConfig;
 currentCycleTime = selectedNeig hbourPPR.PathA(...
 size(se lectedNeighbourPPR.PathA,1)).EndTime;
 end
 end
 attempts1 = attempts1+1;
 end
 T=Attenuation*T; % Reduce T by an amount over time ('cooling')
 attempts2 = attempts2+1;
 end
 end
end

Figure F.44 OptimiseConfigurationSA Function Part (2/2)

Simulation and Optimisation of a 2DOFPPM

194

function OptimiseConfigurationSHC(CP,TermCond,UConstraints, StepSize,MaxAttempts,T)
% Uses a random restart stochastic hill climber to narrow on time-minimum configuration
% VARIABLES:
% CP - Cycle Path class containing geometric detail s of the path
% TermCond - Termination Condition class detailing conditions of terminating process
% UConstraints - User Constraints class
% StepSize - size of steps (in m) to evaluate neigh bouring configurations
% MaxAttempts - the number of attempts before decid ing current iteration is complete
% T - constant in algorithm that affects probabilit y of selection

StorePathsUserConstraintsSQL(CP,UConstraints); % Store path and user constraint data
for i=1:TermCond.Iterations % Run Stochastic Hill Climber for a number of itera tions
 % Select 'random' motor details from database
 [motorID,newPPC] = SelectMotor(CP.PPC,UConstrai nts);
 CP.PPC = newPPC; % Assign Path Planning Constraints (PPC) of motor t o Cycle Path(CP)
 % Select random configuration that reaches all move targets
 config = SelectRandomConfig(CP.Moves,motorID,UC onstraints);
 try
 % Compile path using Configuration and Path Plannin g Constraints (PPC)
 % Path Planning Results (ppr) are returned along wi th positional and zone data
 % about targets
 [Targets_XYZ,ppr] = CompilePath(CP.Moves,co nfig,CP.PPC);
 catch exception
 % Skip to next iteration if exception occurs due to config unable to meet targets
 continue ;
 end
 % Store results of path planning in database
 StoreSimulationsSQL(config,CP.PPC,ppr,CP.ID,i);
 local = false; % Set flag indicating whether a local minima has be en found
 minCycleTime = ppr.PathA(size(ppr.PathA,1)).End Time; % Set best cycletime acheived
 bestConfig = config; % Set the best Configuration
 currentConfig = config; % Set the current Configuration
 currentCycleTime = minCycleTime; % Set cycletime acheived by currentConfig
 while attempts < MaxAttempts % Loop for a set number of attempts
 % Select configurations around the currentConfig
 neighboursConfig = SelectNeighbouringConfig (...
 currentConfig,CP.Moves,motorID,UConstraints,StepSiz e);
 % Select a random neighbour
 randIndex = randperm(numel(neighboursConfig));
 selectedNeighbourConfig = neighboursConfig(randIndex(1,1));
 % Evaluate the selected neighbour by compiling a pa th
 [Targets_XYZ,ppr] = CompilePath(CP.Moves,se lectedNeighbourConfig,CP.PPC);
 %Store results of path planning in database
 StoreSimulationsSQL(selectedNeighbourConfig ,CP.PPC,ppr,CP.ID,i);
 selectedNeighbourPPR = ppr;
 selectedNeighbourCycleTime = ...
 selectedNeighbourPPR.PathA(size(selectedNeighbourPP R.PathA,1)).EndTime;
 % Check if it is the best, save if it is
 if selectedNeighbourCycleTime < minCycleTime
 minCycleTime = selectedNeighbourCycleTi me;
 bestConfig = selectedNeighbourPPR;
 end
 % Determine probability of selection based on cycle time
 diff = selectedNeighbourCycleTime - current CycleTime;
 probOfSelection = 1/(1+exp((selectedNeighbo urCycleTime - currentCy cleTime)/T));
 myRand = rand(1); % Select neighbouring config based on probability
 if myRand < probOfSelection
 currentConfig = selectedNeighbourConfig ;
 currentCycleTime = selectedNeighbourPPR .PathA(...
 size(se lectedNeighbourPPR.PathA,1)).EndTime;
 end
 end
end
end

Figure F.45 OptimiseConfigurationSHC Function

 Appendix F – Matlab® Code

195

function [pathA,pathB,Targets] = PathGenerator(Targets, Con fig, ppc)
% Creates a path trajectory for each motor, that tr avels through each target. The paths
% are optimised to maximise the configuration's cap abilities as defined in the Path
% Planning Constraints
% VARIABLES:
% Targets - Contains the Targets that define the pa th in Cartesian coordinates
% Config - The 2DOFPPM configuration
% ppc - Path Planning Constraints defining the limi tations of the configuration
% RETURNS:
% pathA - Path Segments for motor A
% pathB - Path Segments for motor B
% Targets - Updated Target objects

TCPOffset_X = Config.GripperMountOffset_X;
TCPOffset_Y = Config.GripperMountOffset_Y - Config. GripperLength;

% convert knots from cartesian to joint space
numKnots = size(Targets,2);
for t=1:numKnots
 knot = Targets(t).Knot;
 [knot.Theta_A,knot.Theta_B,er,ermsg] = Inverse_2 DOF_PPM(knot.X-TCPOffset_X, ...
 knot.Y- TCPOffset_Y,Config.LengthBase,Config.LengthUpper,Co nfig.LengthLower);
 if (er > 0)
 error(ermsg)
 end
 %modulate angles so that theta is between 0 and pi
 knot.Theta_A = mod(Config.ThetaAstart-knot.Theta _A,pi);
 knot.Theta_B = mod(Config.ThetaBstart-knot.Theta _B,pi);
 Targets(t).Knot = knot;
end

withinConstraints = 0; % flag
OptimisationIterations = 0; % flag

while (withinConstraints == 0)

 %% Finding coefficients for the cubic polynomia l that defines each path segment
 %% between adjacent knots

 A = zeros((numKnots-1)*4); % Initialised matrix that contains the multiples of
 % the coefficients (a0,a1,a2,a3)
 wA = zeros((numKnots-1)*4,1); % Initialised array that contains the numerical
 % 'answer' to A*coefficients
 B = zeros((numKnots-1)*4); % Initialised matrix that contains the multiples of
 % the coefficients (a0,a1,a2,a3)
 wB = zeros((numKnots-1)*4,1); % Initialised array that contains the numerical
 % 'answer' to A*coefficients

 row = 1; %keeps track of row in matrices of equations, each row is a new equation
 …

Figure F.46 PathGenerator Function (Part 1/9)

Simulation and Optimisation of a 2DOFPPM

196

…

 % equations derived from first knot
 knot1 = Targets(1).Knot;

 % start position (eq.1)
 A(row,1) = 1;
 wA(row,1) = knot1.Theta_A;
 B(row,1) = 1;
 wB(row,1) = knot1.Theta_B;
 row = row + 1; %increment row, next equation

 % start velocity (eq.2)
 A(row,2) = 1;
 wA(row,1) = knot1.Omega_A;
 B(row,2) = 1;
 wB(row,1) = knot1.Omega_B;
 row = row + 1; %increment row, next equation

 for t=2:numKnots-1

 target0 = Targets(t-1);
 target1 = Targets(t);
 knot0 = Targets(t-1).Knot;
 knot1 = Targets(t).Knot;
 % time between previous target and current target
 tpt = target1.PathTime - target0.PathTime;

 % position as defined by previous path segment (eq. 3)
 %a0km + a1km(tpk) + a2km(tpk)^2 + a3km(tpk)^3 = kno t1.ThetaA;
 A(row,(t-1)*4-3+0) = 1;
 A(row,(t-1)*4-3+1) = tpt;
 A(row,(t-1)*4-3+2) = tpt^2;
 A(row,(t-1)*4-3+3) = tpt^3;
 wA(row,1) = knot1.Theta_A;
 B(row,(t-1)*4-3+0) = 1;
 B(row,(t-1)*4-3+1) = tpt;
 B(row,(t-1)*4-3+2) = tpt^2;
 B(row,(t-1)*4-3+3) = tpt^3;
 wB(row,1) = knot1.Theta_B;
 row = row + 1; %increment row, next equation

 % position as defined by next path segment (eq.4)
 %a0k = knot1.ThetaA;
 A(row,(t)*4-3+0) = 1;
 wA(row,1) = knot1.Theta_A;
 B(row,(t)*4-3+0) = 1;
 wB(row,1) = knot1.Theta_B;
 row = row + 1; %increment row, next equation
…

Figure F.47 PathGenerator Function (Part 2/9)

 Appendix F – Matlab® Code

197

…

 % velocity
 if (isempty(knot1.Omega_A)==false) %Omega_A is specified (eq.2)
 %a1k = Omega_A
 A(row,(t)*4-3+1) = 1;
 wA(row,1) = knot1.Omega_A;

 else % velocity as defined by previous and next path seg ment (eq.5)
 %0 = a1k + 2(tpk)a2k + 3(tpk^2)a3k - a1kp
 A(row,(t-1)*4-3+1) = 1;
 A(row,(t-1)*4-3+2) = 2*tpt;
 A(row,(t-1)*4-3+3) = 3*tpt^2;
 A(row,(t)*4-3+1) = -1;
 wA(row,1) = 0;
 end

 if (isempty(knot1.Omega_B)==false) %Omega_A is specified (eq.2)
 %a1k = Omega_A
 B(row,(t)*4-3+1) = 1;
 wB(row,1) = knot1.Omega_B;

 else % velocity as defined by previous and next path seg ment (eq.5)
 %0 = a1k + 2(tpk)a2k + 3(tpk^2)a3k - a1kp
 B(row,(t-1)*4-3+1) = 1;
 B(row,(t-1)*4-3+2) = 2*tpt;
 B(row,(t-1)*4-3+3) = 3*tpt^2;
 B(row,(t)*4-3+1) = -1;
 wB(row,1) = 0;
 end
 row = row + 1; %increment row, next equation

 % acceleration as defined by previous and next path segment (eq.6)
 %2a2k + 6a3k(tpk) - 2a2kp = 0
 A(row,(t-1)*4-3+2) = 2;
 A(row,(t-1)*4-3+3) = 6*tpt;
 A(row,(t)*4-3+2) = -2;
 wA(row,1) = 0;
 B(row,(t-1)*4-3+2) = 2;
 B(row,(t-1)*4-3+3) = 6*tpt;
 B(row,(t)*4-3+2) = -2;
 wB(row,1) = 0;
 row = row + 1; %increment row, next equation
 end
…

Figure F.48 PathGenerator Function (Part 3/9)

Simulation and Optimisation of a 2DOFPPM

198

…

 % equations derived from last knot
 target0 = Targets(numKnots-1);
 target1 = Targets(numKnots);
 knot0 = target0.Knot;
 knot1 = target1.Knot;
 % time between previous target and current target
 tpt = target1.PathTime - target0.PathTime;
 t = numKnots;

 % final position (eq.7)
 %a0km + a1km(tpk) + a2km(tpk)^2 + a3km(tpk)^3 = kno t1.ThetaA;
 A(row,(t-1)*4-3+0) = 1;
 A(row,(t-1)*4-3+1) = tpt;
 A(row,(t-1)*4-3+2) = tpt^2;
 A(row,(t-1)*4-3+3) = tpt^3;
 wA(row,1) = knot1.Theta_A;
 B(row,(t-1)*4-3+0) = 1;
 B(row,(t-1)*4-3+1) = tpt;
 B(row,(t-1)*4-3+2) = tpt^2;
 B(row,(t-1)*4-3+3) = tpt^3;
 wB(row,1) = knot1.Theta_B;
 row = row + 1; %increment row, next equation

 % final velocity (eq.8)
 A(row,(t-1)*4-3+1) = 1;
 A(row,(t-1)*4-3+2) = 2*tpt;
 A(row,(t-1)*4-3+3) = 3*tpt^2;
 wA(row,1) = knot1.Omega_A;
 B(row,(t-1)*4-3+1) = 1;
 B(row,(t-1)*4-3+2) = 2*tpt;
 B(row,(t-1)*4-3+3) = 3*tpt^2;
 wB(row,1) = knot1.Omega_B;

 % coefficients of the equations (a10,a11,a12,a13,a2 0,a21,a22,a23,...,ak0,ak1,ak2,ak3)
 a = A\wA;
 % coefficients of the equations (b10,b11,b12,b13,b2 0,b21,b22,b23,...,bk0,bk1,bk2,bk3)
 b = B\wB;
 …

Figure F.49 PathGenerator Function (Part 4/9)

 Appendix F – Matlab® Code

199

…

 % Now we have the coefficients, we can create path segments between knots
 % using the coefficients to describe the linking po lynomials

 PathA = repmat(PathSegment,numKnots-1,1); % Initialise array, data type 'PathSegment'
 PathB = repmat(PathSegment,numKnots-1,1); % Initialise array, data type 'PathSegment'
 maxTorqueA = zeros(numKnots-1,2); % Initialising array to store maximum torque
 % for each segment of PathA
 maxTorqueB = zeros(numKnots-1,1); % Initialising array to store maximum torque
 % for each segment of PathB
 minTorqueA = zeros(numKnots-1,2); % Initialising array to store minimum torque
 % for each segment of PathA
 minTorqueB = zeros(numKnots-1,2); % Initialising array to store minimum torque
 % for each segment of PathB
 maxOmegaA = zeros(numKnots-1,2); % Initialising array to store maximum angular
 % velocity (omega) for each segment of PathA
 maxOmegaB = zeros(numKnots-1,2); % Initialising array to store maximum angular
 % velocity (omega) for each segment of PathB
 minOmegaA = zeros(numKnots-1,2); % Initialising array to store minimum angular
 % velocity (omega) for each segment of PathA
 minOmegaB = zeros(numKnots-1,2); % Initialising array to store minimum angular
 % velocity (omega) for each segment of PathB
 maxAlphaA = zeros(numKnots-1,2); % Initialising array to store maximum angular
 % acceleration(alpha)for each segment of PathA
 maxAlphaB = zeros(numKnots-1,2); % Initialising array to store maximum angular
 % acceleration(alpha)for each segment of PathB
 minAlphaA = zeros(numKnots-1,2); % Initialising array to store minimum angular
 % acceleration(alpha)for each segment of PathA
 minAlphaB = zeros(numKnots-1,2); % Initialising array to store minimum angular
 % acceleration(alpha)for each segment of PathB
 maxJerkA = zeros(numKnots-1,2); % Initialising array to store maximum angular
 % jerk (jerk) for each segment of PathA
 maxJerkB = zeros(numKnots-1,2); % Initialising array to store maximum angular
 % jerk (jerk) for each segment of PathB
 minJerkA = zeros(numKnots-1,2); % Initialising array to store minimum angular
 % jerk (jerk) for each segment of PathA
 minJerkB = zeros(numKnots-1,2); % Initialising array to store minimum angular
 % jerk (jerk) for each segment of PathB
 TCPVelocities = zeros(numKnots-1,1); % Initialising array to store estimated TCP
 % velocities achieved during each path segment
…

Figure F.50 PathGenerator Function (Part 5/9)

Simulation and Optimisation of a 2DOFPPM

200

…

 for t=1:numKnots-1
 StartTime = Targets(t).PathTime;
 EndTime = Targets(t+1).PathTime;
 CoefA = [a((t*4-3)+0) a((t*4-3)+1) a((t*4-3)+2) a((t*4-3)+3)];
 CoefB = [b((t*4-3)+0) b((t*4-3)+1) b((t*4-3)+2) b((t*4-3)+3)];
 psA = PathSegment(CoefA,StartTime,EndTime);
 psB = PathSegment(CoefB,StartTime,EndTime);

 %find min and max torques within each PathSegment
 [maxTorqueA(t,1),maxTorqueA(t,2)] = FindMax TorqueA(CoefA,StartTime,EndTime, ...
 Config.MassUpper,Co nfig.MassLower,Config.MassGripper, ...
 Config.MassLowerCra nk,Config.LengthUpper);
 [minTorqueA(t,1),minTorqueA(t,2)] = FindMin TorqueA(CoefA,StartTime,EndTime, ...
 Config.MassUpper,Co nfig.MassLower,Config.MassGripper, ...
 Config.MassLowerCra nk,Config.LengthUpper);
 [maxTorqueB(t,1),maxTorqueB(t,2)] = FindMax TorqueB(CoefB,StartTime,EndTime, ...
 Config.MassUpper,Co nfig.MassLower,Config.MassGripper,
 Config.MassUpperTor sion,Config.MassLowerTorsion, ...
 Config.MassUpperCra nk,Config.MassLowerCrank, ...
 Config.LengthUpper) ;
 [minTorqueB(t,1),minTorqueB(t,2)] = FindMin TorqueB(CoefB,StartTime,EndTime, ...
 Config.MassUpper,Co nfig.MassLower,Config.MassGripper, ...
 Config.MassUpperTor sion,Config.MassLowerTorsion, ...
 Config.MassUpperCra nk,Config.MassLowerCrank, ...
 Config.LengthUpper) ;

 %find min and max angular velocity within each Path Segment
 [maxOmegaA(t,1),maxOmegaA(t,2)] = FindMaxOm ega(CoefA,StartTime,EndTime);
 [minOmegaA(t,1),minOmegaA(t,2)] = FindMinOm ega(CoefA,StartTime,EndTime);
 [maxOmegaB(t,1),maxOmegaB(t,2)] = FindMaxOm ega(CoefB,StartTime,EndTime);
 [minOmegaB(t,1),minOmegaB(t,2)] = FindMinOm ega(CoefB,StartTime,EndTime);

 %find min and max angular acceleration within each PathSegment
 [maxAlphaA(t,1),maxAlphaA(t,2)] = FindMaxAl pha(CoefA,StartTime,EndTime);
 [minAlphaA(t,1),minAlphaA(t,2)] = FindMinAl pha(CoefA,StartTime,EndTime);
 [maxAlphaB(t,1),maxAlphaB(t,2)] = FindMaxAl pha(CoefB,StartTime,EndTime);
 [minAlphaB(t,1),minAlphaB(t,2)] = FindMinAl pha(CoefB,StartTime,EndTime);

 %find min and max angular velocity within each Path Segment
 [maxJerkA(t,1),maxJerkA(t,2)] = FindMaxJerk (CoefA,StartTime,EndTime);
 [minJerkA(t,1),minJerkA(t,2)] = FindMinJerk (CoefA,StartTime,EndTime);
 [maxJerkB(t,1),maxJerkB(t,2)] = FindMaxJerk (CoefB,StartTime,EndTime);
 [minJerkB(t,1),minJerkB(t,2)] = FindMinJerk (CoefB,StartTime,EndTime);

 %estimate TCP Velocities for each PathSegment
 [TCPVelocities(t,1)] = ...
 EstimateTCPVel(Targets(t).Knot, Targets(t+1).Knot,StartTime,EndTime);

 %add path segment into path
 PathA(t)=psA;
 PathB(t)=psB;
 end
…

Figure F.51 PathGenerator Function (Part 6/9)

 Appendix F – Matlab® Code

201

…

 %% Check constraints against actual values, and modify time periods as neccessary

 withinConstraints = 1; %reset flag
 for t=1:numKnots-1
 if ((Targets(t).Knot.X == Targets(t+1).Knot.X) && ...
 (Target s(t).Knot.Y == Targets(t+1).Knot.Y))
 %do nothing - don't change time as it is a user spe cified pause
 else
 %determine greatest absolute torque reached in segm ent
 if (abs(maxTorqueA(t,1)) > abs(minTorqueA(t,1)))
 mTorqueA = abs(maxTorqueA(t,1));
 else
 mTorqueA = abs(minTorqueA(t,1));
 end
 if (abs(maxTorqueB(t,1)) > abs(minTorqueB(t,1)))
 mTorqueB = abs(maxTorqueB(t,1));
 else
 mTorqueB = abs(minTorqueB(t,1));
 end
 if (mTorqueA > mTorqueB)
 mTorque = mTorqueA;
 else
 mTorque = mTorqueB;
 end

 %determine greatest absolute angular velocity (Omeg a) reached in segment
 if (abs(maxOmegaA(t,1)) > abs(minOmegaA(t,1)))
 mOmegaA = abs(maxOmegaA(t,1));
 else
 mOmegaA = abs(minOmegaA(t,1));
 end
 if (abs(maxOmegaB(t,1)) > abs(minOmegaB(t,1)))
 mOmegaB = abs(maxOmegaB(t,1));
 else
 mOmegaB = abs(minOmegaB(t,1));
 end
 if (mOmegaA > mOmegaB)
 mOmega = mOmegaA;
 else
 mOmega = mOmegaB;
 end

 %determine greatest absolute angular acceleration (Alpha) reached in segment
 if (abs(maxAlphaA(t,1)) > abs(minAlphaA(t,1)))
 mAlphaA = abs(maxAlphaA(t,1));
 else
 mAlphaA = abs(minAlphaA(t,1));
 end
 if (abs(maxAlphaB(t,1)) > abs(minAlphaB(t,1)))
 mAlphaB = abs(maxAlphaB(t,1));
 else
 mAlphaB = abs(minAlphaB(t,1));
 end
 if (mAlphaA > mAlphaB)
 mAlpha = mAlphaA;
 else
 mAlpha = mAlphaB;
 end
…

Figure F.52 PathGenerator Function (Part 7/9)

Simulation and Optimisation of a 2DOFPPM

202

…

 %determine greatest absolute angular jerk (Jerk) re ached in segment
 if (abs(maxJerkA(t,1)) > abs(minJerkA(t,1)))
 mJerkA = abs(maxJerkA(t,1));
 else
 mJerkA = abs(minJerkA(t,1));
 end
 if (abs(maxJerkB(t,1)) > abs(minJerkB(t,1)))
 mJerkB = abs(maxJerkB(t,1));
 else
 mJerkB = abs(minJerkB(t,1));
 end
 if (mJerkA > mJerkB)
 mJerk = mJerkA;
 else
 mJerk = mJerkB;
 end
 % extract max TCP velocity for PathSegment
 mTCPVel = TCPVelocities(t,1);
 TCPVel_Max = Targets(t+1).VelocityLimit ;
 %Calculate Scaling Factor for shortening time segme nt if need be
 shorteningFactor = ppc.InitialAcceptanc eThreshold^ ...
 ((OptimisationIterations+ppc.RelativeA geingFactor)/ppc.RelativeAgeingFactor);
 if ((mTorque>ppc.MaxTorque) || (mOmega>ppc.MaxOmega) || ...
 (mAlpha>ppc.MaxAlpha) || (mJerk> ppc.MaxJerk) || (mTCPVel>TCPVel_Max))
 % Then need to extend path time based on either tor que, omega, alpha,
 % jerk or TCP velocity
 withinConstraints = 0; %set flag
 target1 = Targets(t);
 target2 = Targets(t+1);
 %determine which ratio to use
 if (mTorque/ppc.MaxTorque > mOmega/ppc.MaxOmega) && ...
 (mTorque/ppc.Ma xTorque > mAlpha/ppc.MaxAlpha) && ...
 (mTorque/ppc.Ma xTorque > mJerk/ppc.MaxJerk) && ...
 (mTorque/ppc.Ma xTorque > mTCPVel/TCPVel_Max)
 ratio = mTorque/ppc.MaxTorque;
 elseif (mOmega/ppc.MaxOmega > mTorque/ppc.MaxTorque) && ...
 (mOmega/ppc.Max Omega > mAlpha/ppc.MaxAlpha) && ...
 (mOmega/ppc.Max Omega > mJerk/ppc.MaxJerk) && ...
 (mOmega/ppc.Max Omega > mTCPVel/TCPVel_Max)
 ratio = mOmega/ppc.MaxOmega;
 elseif (mAlpha/ppc.MaxAlpha > mTorque/ppc.MaxTorque) && ...
 (mAlpha/ppc.Max Alpha > mOmega/ppc.MaxOmega) && ...
 (mAlpha/ppc.Max Alpha > mJerk/ppc.MaxJerk) && ...
 (mAlpha/ppc.Max Alpha > mTCPVel/TCPVel_Max)
 ratio = mAlpha/ppc.MaxAlpha;
 elseif (mJerk/ppc.MaxJerk > mTorque/ppc.MaxTorque) && ...
 (mJerk/ppc.MaxJ erk > mOmega/ppc.MaxOmega) && ...
 (mJerk/ppc.MaxJ erk > mAlpha/ppc.MaxAlpha) && ...
 (mJerk/ppc.MaxJ erk > mTCPVel/TCPVel_Max)
 ratio = mJerk/ppc.MaxJerk;
 else
 ratio = mTCPVel/TCPVel_Max;
 end

 % Increase PathTime on next knot by a factor relati ve to the difference in
 % either torques or omegas (depending on which ever is greatest). Also
 % increase all following knots by the same length.
 for i=t+1:numKnots
 target_i = Targets(i);
 target_i.PathTime = target_i.Pa thTime + ...
 (target2.PathTime-target1.P athTime) * ratio * ppc.ReactiveFactor;

 Targets(i) = target_i; %re-insert knot back into collection of knots
 end
 …

Figure F.53 PathGenerator Function (Part 8/9)

 Appendix F – Matlab® Code

203

…

 elseif ((mTorque<ppc.MaxTorque*shorteningFactor) && ...
 (mOmega <ppc.MaxOmega*shorteningFactor) && ...
 (mAlpha <ppc.MaxAlpha*shorteningFactor) && ...
 (mJerk< ppc.MaxJerk*shorteningFactor) && ...
 (mTCPVe l<TCPVel_Max*shorteningFactor))
 % This means that the torque, angular velocity, ang ular acceleration,
 % angular jerk and TCP velocity are outside a perce ntage of the maximum
 % for both motors. Therefore the cycle can be short ened to get more
 % performance from the mechanism.

 withinConstraints = 0; %set flag
 target1 = Targets(t);
 target2 = Targets(t+1);

 if (mTorque/ppc.MaxTorque > mOmega/ppc.MaxOmega) && ...
 (mTorque/ppc.Ma xTorque > mAlpha/ppc.MaxAlpha) && ...
 (mTorque/ppc.Ma xTorque > mJerk/ppc.MaxJerk) && ...
 (mTorque/ppc.Ma xTorque > mTCPVel/TCPVel_Max)
 ratio = 1 - mTorque/ppc.MaxTorq ue;
 elseif (mOmega/ppc.MaxOmega > mTorque/ppc.MaxTorque) && ...
 (mOmega/ppc.Max Omega > mAlpha/ppc.MaxAlpha) && ...
 (mOmega/ppc.Max Omega > mJerk/ppc.MaxJerk) && ...
 (mOmega/ppc.Max Omega > mTCPVel/TCPVel_Max)
 ratio = 1 - mOmega/ppc.MaxOmega ;
 elseif (mAlpha/ppc.MaxAlpha > mTorque/ppc.MaxTorque) && ...
 (mAlpha/ppc.Max Alpha > mOmega/ppc.MaxOmega) && ...
 (mAlpha/ppc.Max Alpha > mJerk/ppc.MaxJerk) && ...
 (mAlpha/ppc.Max Alpha > mTCPVel/TCPVel_Max)
 ratio = 1 - mAlpha/ppc.MaxAlpha ;
 elseif (mJerk/ppc.MaxJerk > mTorque/ppc.MaxTorque) && ...
 (mJerk/ppc.MaxJ erk > mOmega/ppc.MaxOmega) && ...
 (mJerk/ppc.MaxJ erk > mAlpha/ppc.MaxAlpha) && ...
 (mJerk/ppc.MaxJ erk > mTCPVel/TCPVel_Max)
 ratio = 1 - mJerk/ppc.MaxJerk;
 else
 ratio = 1 - mTCPVel/TCPVel_Max;
 end

 % Decrease PathTime on next knot by a factor relati ve to the difference in
 % either torques or omegas (depending on which ever is smallest). Also
 % decrease all following knots by the same length.
 for i=t+1:numKnots
 target_i = Targets(i);
 target_i.PathTime = target_i.Pa thTime - ...
 (target2.PathTime-target1.P athTime) * ratio * ppc.ReactiveFactor;

 Targets(i) = target_i; %re-insert knot back into collection of knots
 end
 end
 end
 end
 % From here the process is encapsulated in a loop(f rom line 26) to increase
 % Knot.PathTimes where appropriate until absolute values of max/min torques are
 % within the constraints

 OptimisationIterations = OptimisationIterations +1;
end

pathA = PathA;
pathB = PathB;
end

Figure F.54 PathGenerator Function (Part 9/9)

Simulation and Optimisation of a 2DOFPPM

204

classdef PathSegment
% Defines a segment of a path within a given time p eriod.
% The position on the path segment is defined by a polynomial function of time.

properties
Coef % Array of polynomial coefficients.
StartTime % The start time for the segment.
EndTime % The end time for the segment.
end

methods
 % Create instance of PathSegment class with variabl es
 function ps = PathSegment(Coef,StartTime,EndTime)
 if nargin > 0
 ps.Coef = Coef;
 ps.StartTime = StartTime;
 ps.EndTime = EndTime;
 end
 end

 % Returns the angle position at the requested time within the time segment
 function theta = getTheta(obj,time)
 % check time requested is within time defined by th is PathSegment
 if ((time >= obj.StartTime)&&(time<=obj.EndTime+1e-10))
 j = 0; % represents the order of the polynomial coefficien t
 t = time - obj.StartTime; % time since start of this segment
 thetaSum = 0;
 for i=1:length(obj.Coef)
 thetaSum = thetaSum + obj.Coef(i)*t ^j;
 j=j+1;
 end
 theta = thetaSum;
 else
 disp(['Time requested (' ,num2str(time), ...
 ') is outside this path segments definable range:' , ...
 num2str(obj.StartTime), '>=' , 'time' , '<=' ,num2str(obj.EndTime)])
 error('Time requested is outside this path segments defin able range')
 end
 end

 % Returns the angular velocity at the requested tim e within the time segment
 function omega = getOmega(obj,time)
 % check time requested is within time defined by th is PathSegment
 if ((time >= obj.StartTime)&&(time<=obj.EndTime+1e-10))
 j = 0; % represents the order of the polynomial coefficien t
 t = time - obj.StartTime; % time since start of this segment
 omegaSum = 0;
 for i=1:length(obj.Coef)
 omegaSum = omegaSum + j*obj.Coef(i) *t^(j-1); % 1st order derivative
 j=j+1;
 end
 omega = omegaSum;

 else
 disp(['Time requested (' ,num2str(time), ...
 ') is outside this path segments definable range:' , ...
 num2str(obj.StartTime), '>=' , 'time' , '<=' ,num2str(obj.EndTime)])
 error('Time requested is outside this path segments defin able range')
 end
 end
…

Figure F.55 PathSegment Class (Part 1/2)

 Appendix F – Matlab® Code

205

…

% Returns the angular acceleration at the requested time within the time segment
 function alpha = getAlpha(obj,time)
 if ((time >= obj.StartTime)&&(time<=obj.EndTime+1e-10))
 j = 0; % represents the order of the polynomial coefficien t
 t = time - obj.StartTime; % time since start of this segment
 alphaSum = 0;
 for i=1:length(obj.Coef)
 alphaSum = alphaSum + (j-1)*j*obj.C oef(i)*t^(j-2); % 2nd order derivative
 j=j+1;
 end
 alpha = alphaSum;

 else
 disp(['Time requested (' ,num2str(time), ...
 ') is outside this path segments definable range:' , ...
 num2str(obj.StartTime), '>=' , 'time' , '<=' ,num2str(obj.EndTime)])
 error('Time requested is outside this path segments defin able range')
 end
 end
end
end

Figure F.56 PathSegment Class (Part 2/2)

Simulation and Optimisation of a 2DOFPPM

206

function [fig,h] = Plot_Knots_TCP(FigID)
% Plots the Knots and the Trajectory followed by th e TCP in the SimMechanics simulation

fig = figure(FigID); % Create new Figure
% Load Targets and Knots
load PG_Outputs\Targets_XYZ.mat Targets_XYZ
load PG_Outputs\Knots_TXY.mat Knots_TXY

%% Plot Target Points
h = scatter(Targets_XYZ(:,1),Targets_XYZ(:,2), 'MarkerEdgeColor' ,[1 0 0], ...
 'MarkerFaceColor' ,[1,0.7,0.7]);
hold on;

% Plot Centre of Target points
scatter(Targets_XYZ(:,1),Targets_XYZ(:,2), 'Marker' , '+' , 'MarkerEdgeColor' ,[1 0 0], ...
 'SizeData' ,10^2, 'LineWidth' ,2);
% Obtain the axes size (in axpos) in Points
currentunits = get(gca, 'Units');
set(gca, 'Units' , 'Points');
axpos = get(gca, 'Position');
set(gca, 'Units' , currentunits);

%% Plot Knots
%customise colours
tKnots_TXY=Knots_TXY';
numKnots = size(tKnots_TXY,2);
tf = tKnots_TXY(1,numKnots);
knotColours = zeros(numKnots,3);
for i=1:numKnots
 time = tKnots_TXY(1,i);
 knotColours(i,1) = 0.7-0.7*time/tf;
 knotColours(i,2) = 0.7-0.7*time/tf;
 knotColours(i,3) = 1;
end

scatter(Knots_TXY(:,2),Knots_TXY(:,3), 'Marker' , 'o' , 'CData' ,knotColours, ...
 'SizeData' ,15^2, 'LineWidth' ,5)
%% Plot TCP Trajectory Followed

load Mdl_Outputs\TCP_XY.mat TCP_TXY % Load TCP Path from SimMechanics
% customise colours
numPpoints = size(TCP_TXY,2);
tf = TCP_TXY(1,numPpoints);
pathColours = zeros(numPpoints,3);
for i=1:numPpoints
 time = TCP_TXY(1,i);
 pathColours(i,1) = 1;
 pathColours(i,2) = 1;
 pathColours(i,3) = 0.7-0.7*time/tf;
end

scatter(TCP_TXY(2,:),TCP_TXY(3,:), 'Marker' , 'x' , 'CData' ,pathColours, 'LineWidth' ,1.5, ...
 'SizeData' ,10^2)
hold off
grid on;
set(gca, 'DataAspectRatio' ,[1 1 1])

%% Extra Graphical Manipulation
%Scale target points to their actual size with resp ect to the axis
%Zones are defined in mm, so scale by 1000, but div ide by 2 as it only defines the radius
scalingRatio = (1000/2);
markerWidth = (Targets_XYZ(:,3)/scalingRatio)/diff(xlim)*axpos(3); %Calculate Marker width
set(h, 'SizeData' , markerWidth.^2)

end

Figure F.57 Plot_Knots_TCP Function

 Appendix F – Matlab® Code

207

function Plot_Sim_Outputs(AngularUnits,SimID,config)
% Plots the output results of a Simulation
% VARIABLES:
% Angular Units - either 'Rad' or 'Deg'
% SimID - Simulation ID
% config - Instance of a Configuration class

% setup motor angle units
if (strcmp(AngularUnits, 'rad'))
 scaleFactor = 1;
 unitLabel = 'Rad' ;
elseif (strcmp(AngularUnits, 'deg'))
 scaleFactor = 180/pi;
 unitLabel = 'Deg' ;
else
 error(['AngularUnits must be either "rad" or "deg". "' ,AngularUnits, ...
 '" is not permissible']);
end

% Load Simulation output files
load Mdl_Outputs\M_Torque.mat M_Torque
load Mdl_Outputs\M_PVA.mat M_PVA
load Mdl_Outputs\TCP_PVA.mat TCP_PVA
load PG_Outputs\Knots_TXY.mat Knots_TXY
load PG_Outputs\Targets_XYZ.mat Targets_XYZ
load Mdl_Outputs\TorqueCalcs.mat TorqueCalcs

groupName = ['SimID: ' ,num2str(SimID), ' - 2DOF_PPM Simulation Outputs'];

group = setfigdocked('GroupName' ,groupName, 'GridSize' ,[3 3], 'Maximize' ,1, ...
 'GroupDocked' ,0, 'SpanCell' ,[1 2 2 1]);

%% Plot Knots and TCP

% Call Plot_Knots_TCP function to create the scatte r plot of the knots etc, passing back
% handles to the figure and ScatterGroup. A resize function has been added so that the
% 'zones' are resized to be in scale with the axis
[fig,scatterHandle] = Plot_Knots_TCP(SimID*100+1);
group = setfigdocked('GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,2);
set(fig, 'ResizeFcn' ,{@f_PlotKnotsTCP,Targets_XYZ,fig,scatterHandle});

%% Plot Motor Torques
figure(SimID*100+2)

plot(M_Torque(1,:),M_Torque(3,:), '-k' ,M_Torque(1,:),M_Torque(2,:), '-r' , ...
 TorqueCalcs(1,:),TorqueCalcs(2,:), ':k' ,TorqueCalcs(1,:),TorqueCalcs(4,:), ':r')
title('Motor Torques');
xlabel('Time (s)');
ylabel('Torque (Nm)');

grid on;
h_legend = legend('Motor A' , 'Motor B' , 'Motor A (est.)' , 'Motor B (est.)' , ...
 'Location' , 'NorthEast');
set(h_legend, 'FontSize' ,8);
group = setfigdocked('GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,7);
…

Figure F.58 Plot_Sim_Outputs Function (Part 1/3)

Simulation and Optimisation of a 2DOFPPM

208

…

%% Plot Motor PVAs

figure(SimID*100+3)
plot(M_PVA(1,:),M_PVA(2,:)*scaleFactor, '-m' ,M_PVA(1,:),M_PVA(3,:)*scaleFactor, '-c')
title('Motor Positions');
xlabel('Time (s)');
ylabel(['Position (' ,unitLabel, ')']);
grid on;
h_legend = legend('Motor A' , 'Motor B' , 'Location' , 'NorthEast');
set(h_legend, 'FontSize' ,8);
group = setfigdocked('GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,1);

figure(SimID*100+4)
plot(M_PVA(1,:),M_PVA(4,:)*scaleFactor, '-m' ,M_PVA(1,:),M_PVA(5,:)*scaleFactor, '-c')
title('Motor Angular Velocity');
xlabel('Time (s)');
ylabel(['Angular Velocity (' ,unitLabel, ' s^-^1)']);
grid on;
h_legend = legend('Motor A' , 'Motor B' , 'Location' , 'NorthEast');
set(h_legend, 'FontSize' ,8);
group = setfigdocked('GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,4);

figure(SimID*100+5)
plot(M_PVA(1,:),M_PVA(6,:)*scaleFactor, '-m' ,M_PVA(1,:),M_PVA(7,:)*scaleFactor, '-c')
title('Motor Angular Acceleration');
xlabel('Time (s)');
ylabel(['Angular Acceleration (' ,unitLabel, ' s^-^2)']);
grid on;
h_legend = legend('Motor A' , 'Motor B' , 'Location' , 'NorthEast');
set(h_legend, 'FontSize' ,8);
group = setfigdocked('GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,6);
…

Figure F.59 Plot_Sim_Outputs Function (Part 2/3)

 Appendix F – Matlab® Code

209

…

%% Plot TCP PVA

figure(SimID*100+6)
plot(TCP_PVA(1,:),TCP_PVA(2,:), '-b' ,TCP_PVA(1,:),TCP_PVA(3,:), '-g')
title('TCP Position');
xlabel('Time (s)');
ylabel('Position (m)');
grid on;
h_legend = legend('X' , 'Y' , 'Location' , 'NorthEast');
set(h_legend, 'FontSize' ,8);
group = setfigdocked('GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,3);

figure(SimID*100+7)
plot(TCP_PVA(1,:),TCP_PVA(5,:), '-b' ,TCP_PVA(1,:),TCP_PVA(6,:), '-g' ,TCP_PVA(1,:), ...
 sqrt((TCP_P VA(5,:)).^2+(TCP_PVA(6,:)).^2), '--m')
title('TCP Velocity');
xlabel('Time (s)');
ylabel('Velocity (m s^-^1)');
grid on;
h_legend = legend('X' , 'Y' , '\surd(X^2 + Y^2)' , 'Location' , 'NorthEast');
set(h_legend, 'FontSize' ,8);
group = setfigdocked('GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,5);

figure(SimID*100+8)
plot(TCP_PVA(1,:),TCP_PVA(8,:), '-b' ,TCP_PVA(1,:),TCP_PVA(9,:), '-g' ,TCP_PVA(1,:), ...
 sqrt((TCP_P VA(8,:)).^2+(TCP_PVA(9,:)).^2), '--m')
title('TCP Acceleration');
xlabel('Time (s)');
ylabel('Acceleration (m s^-^2)');
grid on;
h_legend = legend('X' , 'Y' , '\surd(X^2 + Y^2)' , 'Location' , 'NorthEast');
set(h_legend, 'FontSize' ,8);

group = setfigdocked('GroupName' ,groupName, 'Figure' ,gcf, 'Figindex' ,8);

end

function XData2 = ScaleLegendLine(ch_legend1,ch_legend2)
 XData1 = get(ch_legend1, 'XData');
 XData2 = get(ch_legend2, 'XData');
 XScale = XData2 - XData1;
 XData2 = XData1 + XScale / 2;
end

Figure F.60 Plot_Sim_Outputs Function (Part 3/3)

Simulation and Optimisation of a 2DOFPPM

210

PathID = 123; % Enter PathID for search surface results

% Open Database connection
ch = mysql('open' , 'localhost:3306' , 'root' , 'mysql');
db = mysql('use matlab_2dofppm');

query = ['SELECT ' ...
 's.MotorSeparation, ' ...
 's.ProxArmLength, ' ...
 's.DistArmLength, ' ...
 's.WorkspaceHeight, ' ...
 's.CycleTime ' ...
 'FROM Simulations AS s ' ...
 'WHERE ' ...
 'PathID = "' ,num2str(PathID), '" ' ...
 'ORDER BY s.CycleTime ASC '
];

 [
 b ...
 u ...
 l ...
 h ...
 t ...
] = mysql(query);

mysql('close');

tcolor = t;
hh = ceil((h-(min(h)*1.2))*400);

figure(PathID);

xlabel('Motor Separation (m)' , 'FontWeight' , 'bold' , 'Color' , 'w')
ylabel('Proximal (Upper) Arm (m)' , 'FontWeight' , 'bold' , 'Color' , 'w')
zlabel('Distal (Lower) Arm (m)' , 'FontWeight' , 'bold' , 'Color' , 'w')
set(gca, 'XColor' , [0 0 0]);
set(gca, 'YColor' , [0 0 0]);
set(gca, 'ZColor' , [0 0 0]);
set(gca, 'Color' , [1 1 1]);

% Plot search surface
s3 = scatter3(b,u,l,80,tcolor, 'filled');
xlabel('Motor Separation (m)' , 'FontWeight' , 'bold' , 'Color' , 'k')
ylabel('Proximal (Upper) Arm (m)' , 'FontWeight' , 'bold' , 'Color' , 'k')
zlabel('Distal (Lower) Arm (m)' , 'FontWeight' , 'bold' , 'Color' , 'k')

set(gca, 'XColor' , [0 0 0]);
set(gca, 'YColor' , [0 0 0]);
set(gca, 'ZColor' , [0 0 0]);
set(gca, 'Color' , [1 1 1]);

map1 = jet(256);
map2 = map1(end:-1:1, :);
colormap(map2)
set(gca, 'CLim' , [t(1,1), t(end,1)]);
cb = colorbar('YColor' , 'k');
set(get(cb, 'ylabel'), 'String' , 'Cycle-Time (s)' , 'FontWeight' , 'bold' , 'Color' , 'k');
line([-1000 1000],[u(1,1) u(1,1)],[l(1,1) l(1,1)], 'Color' ,[1 0 1], 'LineWidth' ,2)
line([b(1,1) b(1,1)],[-1000 1000],[l(1,1) l(1,1)], 'Color' ,[1 0 1], 'LineWidth' ,2)
line([b(1,1) b(1,1)],[u(1,1) u(1,1)],[-1000 1000], 'Color' ,[1 0 1], 'LineWidth' ,2)
XLim([min(b) max(b)])
YLim([min(u) max(u)])
ZLim([min(l) max(l)])

Figure F.61 Plot Search Surface Script

 Appendix F – Matlab® Code

211

classdef PPConstraints
% Contains constraints on the path planning

properties
 MaxTorque % Maximum torque permissible (Nm)
 MaxOmega % Maximum angular velocity provided by the motors (rad)
 MaxAlpha % Maximum angular acceleration provided by motors(r ad/s)
 MaxJerk % Maximum angular jerk provided by the motors (rad/ s/s)
 LinearErrorFactor % A factor to indicate number of interpolated point s
 % during a MoveL. The number corresponds to the mi nimum
 % spacing of interpolated points in meters. Smalle r the
 % number the more accurate it will be, but also mo re
 % computationally expensive.
 LastLinearTargetDistance % Distance back from last target in linear move, wh ere an
 % additional target is placed to ensure greater li nearity
 % while minimising excessive targets.
 ReactiveFactor % The proportion of the relative maximums of torque and
 % omega, that a path segments time is increased by .
 InitialAcceptanceThreshold % The percentage that the torque or omega must be w ithin
 % of the maximums to be considered optimal
 RelativeAgeingFactor % A factor used in the process of discounting the
 % InitialAcceptanceThreshold as the number of iter ations
 % increases.
end

end

Figure F.62 PPConstraints Class

classdef PPResults
% Contains results from path planning

properties
 PathA % PathSegments for motor A
 PathB % PathSegments for motor B
 Knots % Knots(X,Y) against time
end

end

Figure F.63 PPResults Class

Simulation and Optimisation of a 2DOFPPM

212

% Produces the reachable workspace of the 2DOFPPM w ith only the basic physical dimensions
% needed

LengthBase = 0.3; %Length of the base (m)
LengthUpper = 0.36; %Length of each upper arm (m)
LengthLower = 0.88; %Length of each lower arm (m)
minUpperArmAngle = d2r(33); %Minimum angle allowed between upper arm and vertic al
maxUpperArmAngle = d2r(175); %Minimum angle allowed between upper arm and vertic al
min1_2ArmAngle = d2r(43); %Minimum angle allowed between upper-lower arms
max1_2ArmAngle = d2r(134); %Maximum angle allowed between upper-lower arms
minLowerArmAngle = d2r(48); %Minimum angle allowed between lower-lower arms
maxLowerArmAngle = d2r(71); %Maximum angle allowed between lower-lower arms
thetaA = minUpperArmAngle; %Angle between +Y axis and right upper arm
thetaB = maxUpperArmAngle; %Angle between +Y axis and left upper arm
stepSize = 5; %Step size of motors, in degrees, for evaluating wo rkspace
figure;
grid on;
firstValidThetaB = true;
while thetaA < maxUpperArmAngle
 % Perform direct kinematics to get TCP from motor a ngles
 [tcpX, tcpY, error, errorMsg] ...
 = Direct_2DOF_PPM(thetaA, thetaB, LengthBa se,LengthUpper,LengthLower, ...
 min1_2ArmAngle,max1_2ArmAngle,minLowerA rmAngle,maxLowerArmAngle);

 if (error > 0) % TCP is at the edge of the reachable workspace
 if (thetaB < minUpperArmAngle)
 % Plot point as reachable
 line([lastValidTcpX-0.01 lastValidTcpX+ 0.01],[lastValidTcpY lastValidTcpY], ...
 'Color' , 'b' , 'LineWidth' ,3);
 end
 firstValidThetaB = true;
 else
 % Plot point as reachable
 if (firstValidThetaB == true)
 line([tcpX-0.01 tcpX+0.01],[tcpY tcpY], 'Color' , 'b' , 'LineWidth' ,3);
 firstValidThetaB = false;
 end
 if (thetaB < minUpperArmAngle)
 line([tcpX-0.01 tcpX+0.01],[tcpY tcpY], 'Color' , 'b' , 'LineWidth' ,3);
 end
 lastValidTcpX = tcpX;
 lastValidTcpY = tcpY;
 end

 if (thetaB < minUpperArmAngle)
 thetaA = thetaA + d2r(stepSize); % Increment thetaA by the step size
 thetaB = maxUpperArmAngle; % Reset thetaB for another sweep
 else
 thetaB = thetaB - d2r(stepSize); % Decrement thetaB by the step size
 end
end

Figure F.64 Produce Reachable Workspace Script

 Appendix F – Matlab® Code

213

function ProduceSearchSurface(cp,UConstraints)
% Runs Simulations evenly over the search space
% VARIABLES:
% cp - Instance of CyclePath class
% Uconstraints - Instant of UserConstraints class

% Store path and user constraint data
StorePathsUserConstraintsSQL(cp,UConstraints);

[motorID,newPPC] = SelectMotor(cp.PPC,UConstraints) ; % Select Motor details from DB
cp.PPC = newPPC;

% Find limits on search area based on moves
minBase = UConstraints.MinMotorSeparation;
maxBase = 0.9*UConstraints.MaxWidth; %allow up to 90% base + 2*5% ProxArms
minUpper = 0;
maxUpper = UConstraints.MaxWidth/2;
minLower = minBase;
maxLower = sqrt(UConstraints.MaxDepth^2 + (maxBase/ 2)^2);
minWSHeight = -UConstraints.MaxDepth*0.3;
maxWSHeight = UConstraints.MaxDepth*0.3;

numIntervals = 20;
params = zeros(3,0);
bb = 1;
uu = 1;
ll = 1;
hh = 1;

for b=minBase:(maxBase-minBase)/numIntervals:maxBase
 uu = 1;
 for u=minUpper:(maxUpper-minUpper)/numIntervals:maxUpp er
 ll = 1;
 for l=minLower:(maxLower-minLower)/numIntervals:maxLow er
 hh = 1;
 for h=minWSHeight:(maxWSHeight-minWSHeight)/10:maxWSHe ight
 mvar = Configuration;
 mvar.LengthBase = b;
 mvar.LengthUpper = u;
 mvar.LengthLower = l;
 mvar.WorkspaceHeight = h;
 params(end+1,1) = b;
 params(end,2) = u;
 params(end,3) = l;
 [bb uu ll hh];
 hh=hh+1;
 try
 mvar = SelectMVar2(cp.Moves,mot orID,UConstraints,mvar);
 catch
 continue ;
 end
 try
 [Targets_XYZ,ppr] = CompilePath (cp.Moves,mvar,cp.PPC);
 catch exception
 continue ;
 end
 StoreSimulationsSQL(mvar,cp.PPC,ppr ,cp.ID,comment);
 end
 ll=ll+1;
 end
 uu=uu+1;
 end
 bb=bb+1;
end
end

Figure F.65 ProduceSearchSurface Function

Simulation and Optimisation of a 2DOFPPM

214

% Create new instance of UserConstraints class and set variables
uc = UserConstraints;
uc.MaxMotorTorque = 300;
uc.MaxMotorVelocity = 20;
uc.MaxMotorAcceleration = 9999;
uc.MaxMotorJerk = 999999;
uc.MassGripper = 35;
uc.MinArmAng_BU = d2r(33);
uc.MinArmAng_UL = d2r(43);
uc.MinArmAng_LL = d2r(48);
uc.MaxArmAng_BU = d2r(175);
uc.MaxArmAng_UL = d2r(134);
uc.MaxArmAng_LL = d2r(71);
uc.ProxArmDensity = 2700;
uc.DistArmDensity = 2700;
uc.TorsionArmDensity = 2700;
uc.ProxArmIRadius = 0.01;
uc.DistArmIRadius = 0.01;
uc.ProxArmORadius = 0.02;
uc.DistArmORadius = 0.02;
uc.TorsionIRadius = 0.005;
uc.TorsionORadius = 0.01;
uc.MassUpperCrank = 0.2;
uc.MassLowerCrank = 0.2;
uc.UpperTorsionOffsetB_X = 0.05;
uc.UpperTorsionOffsetB_Y = 0.1;
uc.LowerTorsionOffsetTCP_X = -0.05;
uc.LowerTorsionOffsetTCP_Y = 0.1;
uc.GripperMountOffset_X = 0;
uc.GripperMountOffset_Y = -0.02;
uc.GripperLength = 0.01;
uc.MinMotorSeparation = 0.01;
uc.MaxWidth = 1.5;
uc.MaxDepth = 2;

% Specify knots for Path
k1 = Knot(-0.3,-1);
k2 = Knot(-0.3,-0.7);
k3 = Knot(0,-0.65);
k4 = Knot(0.3,-0.7);
k5 = Knot(0.3,-1);
k6 = Knot(0.3,-0.75);
k7 = Knot(0,-0.7);
k8 = Knot(-0.3,-0.75);
k9 = Knot(-0.3,-1);

% Create Move commands from Knots
m1 = MoveCMD(Target(k1), 'MoveJ' ,10,1);
m2 = MoveCMD(Target(k2), 'MoveL' ,10,30);
m3 = MoveCMD(Target(k3), 'MoveJ' ,10,50);
m4 = MoveCMD(Target(k4), 'MoveJ' ,10,30);
m5 = MoveCMD(Target(k5), 'MoveL' ,10,1,0.2);
m6 = MoveCMD(Target(k6), 'MoveL' ,10,20);
m7 = MoveCMD(Target(k7), 'MoveJ' ,10,30);
m8 = MoveCMD(Target(k8), 'MoveJ' ,10,20);
m9 = MoveCMD(Target(k9), 'MoveL' ,10,1);

% Create new CyclePath from Moves
cp = CyclePath;
cp.ID = GetNextPathID();
cp.Moves = [m1 m2 m3 m4 m5 m6 m7 m8 m9];
cp.PPC = GetPPConstraints();

% Produce the search surface
ProduceSearchSurface(cp,uc);

Figure F.66 ProduceSearchSurface Start Script

 Appendix F – Matlab® Code

215

function d = r2d(r)
%#eml
 d = r * 180/pi; % Converts radians to degrees
end

Figure F.67 r2d (Radians to Degrees) Function

function config = RunSimulation(SimID)
% Runs a SimMechanics simulation of a previously ge nerated configuration result.
% VARIABLES:
% SimID - Simulation ID for database

 % Open Database connection
 ch = mysql('open' , 'localhost:3306' , 'root' , 'mysql');
 db = mysql('use matlab_2dofppm');

 query = ['SELECT ' ...
 's.ProxArmLength, ' ...
 's.DistArmLength, ' ...
 's.MotorSeparation, ' ...
 's.WorkspaceHeight, ' ...
 's.MotorID, ' ...
 's.PathID, ' ...
 'uc.MaxMotorTorque, ' ...
 'uc.MaxMotorVelocity, ' ...
 'uc.MassGripper, ' ...
 'uc.MinArmAng_BU, ' ...
 'uc.MinArmAng_UL, ' ...
 'uc.MinArmAng_LL, ' ...
 'uc.MaxArmAng_BU, ' ...
 'uc.MaxArmAng_UL, ' ...
 'uc.MaxArmAng_LL, ' ...
 'uc.ProxArmDensity, ' ...
 'uc.DistArmDensity, ' ...
 'uc.TorsionArmDensity, ' ...
 'uc.ProxArmIRadius, ' ...
 'uc.DistArmIRadius, ' ...
 'uc.ProxArmORadius, ' ...
 'uc.DistArmORadius, ' ...
 'uc.TorsionIRadius, ' ...
 'uc.TorsionORadius, ' ...
 'uc.MassUpperCrank, ' ...
 'uc.MassLowerCrank, ' ...
 'uc.UpperTorsionOffsetB_X, ' ...
 'uc.UpperTorsionOffsetB_Y, ' ...
 'uc.LowerTorsionOffsetTCP_X, ' ...
 'uc.LowerTorsionOffsetTCP_Y, ' ...
 'uc.GripperMountOffset_X, ' ...
 'uc.GripperMountOffset_Y, ' ...
 'uc.GripperLength, ' ...
 'uc.MinMotorSeparation, ' ...
 'uc.MaxWidth, ' ...
 'uc.MaxDepth ' ...
 'FROM Simulations AS s ' ...
 'JOIN paths AS p ON p.pathid = s.pathid ' ...
 'JOIN userconstraints AS uc ON uc.pathid = p.pathid ' ...
 'WHERE ' ...
 'SimID = "' ,num2str(SimID), '" ' ...
];

 uc = UserConstraints;
…

Figure F.68 RunSimulation Function (Part 1/3)

Simulation and Optimisation of a 2DOFPPM

216

…

 [
 ProxArmLength ...
 DistArmLength ...
 MotorSeparation ...
 WorkspaceHeight ...
 MotorID ...
 PathID ...
 uc.MaxMotorTorque ...
 uc.MaxMotorVelocity ...
 uc.MassGripper ...
 uc.MinArmAng_BU ...
 uc.MinArmAng_UL ...
 uc.MinArmAng_LL ...
 uc.MaxArmAng_BU ...
 uc.MaxArmAng_UL ...
 uc.MaxArmAng_LL ...
 uc.ProxArmDensity ...
 uc.DistArmDensity ...
 uc.TorsionArmDensity ...
 uc.ProxArmIRadius ...
 uc.DistArmIRadius ...
 uc.ProxArmORadius ...
 uc.DistArmORadius ...
 uc.TorsionIRadius ...
 uc.TorsionORadius ...
 uc.MassUpperCrank ...
 uc.MassLowerCrank ...
 uc.UpperTorsionOffsetB_X ...
 uc.UpperTorsionOffsetB_Y ...
 uc.LowerTorsionOffsetTCP_X ...
 uc.LowerTorsionOffsetTCP_Y ...
 uc.GripperMountOffset_X ...
 uc.GripperMountOffset_Y ...
 uc.GripperLength ...
 uc.MinMotorSeparation ...
 uc.MaxWidth ...
 uc.MaxDepth ...
] = mysql(query);

 % Get Moves data

 query = ['SELECT ' ...
 'm.MSequence, ' ...
 'm.Knot_X, ' ...
 'm.Knot_Y, ' ...
 'm.MType, ' ...
 'm.MZone, ' ...
 'm.Speed, ' ...
 'm.Pause ' ...
 'FROM Moves AS m ' ...
 'WHERE ' ...
 'PathID = "' ,num2str(PathID), '" ' ...
 'ORDER BY MSequence ASC' ...
];

 [
 MSequence ...
 Knot_X ...
 Knot_Y ...
 MType ...
 MZone ...
 Speed ...
 Pause ...
] = mysql(query);
…

Figure F.69 RunSimulation Function (Part 2/3)

 Appendix F – Matlab® Code

217

…

 Moves = repmat(MoveCMD,1,0);

 for i=1:size(MSequence,1)
 k = Knot(Knot_X(i),Knot_Y(i));
 m = MoveCMD(Target(k),MType(i),Speed(i),MZo ne(i),Pause(i));

 Moves(end+1) = m;
 end

 % Create matlab configuration from database results
 config = CalculateConfig(MotorSeparation,ProxAr mLength,DistArmLength, ...
 WorkspaceHeight,Moves,MotorID,uc);
 ppc = PPConstraints;

 % get path planning constraints
 query = ['SELECT ' ...
 'p.LinearErrorFactor, ' ...
 'p.LastLinearTargetDistance, ' ...
 'p.ReactiveFactor, ' ...
 'p.InitialAcceptanceThreshold, ' ...
 'p.RelativeAgeingFactor ' ...
 'FROM Paths AS p ' ...
 'WHERE ' ...
 'PathID = "' ,num2str(PathID), '" ' ...
];
 [
 ppc.LinearErrorFactor ...
 ppc.LastLinearTargetDistance ...
 ppc.ReactiveFactor ...
 ppc.InitialAcceptanceThreshold ...
 ppc.RelativeAgeingFactor ...
] = mysql(query);

 query = ['SELECT ' ...
 'm.MaxTorque, ' ...
 'm.MaxVelocity, ' ...
 'm.MaxAcceleration, ' ...
 'm.MaxJerk ' ...
 'FROM Motors AS m ' ...
 'JOIN Simulations AS s ON s.MotorID = m.MotorID ' ...
 'WHERE ' ...
 's.SimID = "' ,num2str(SimID), '" ' ...
];
 [
 ppc.MaxTorque ...
 ppc.MaxOmega ...
 ppc.MaxAlpha ...
 ppc.MaxJerk ...
] = mysql(query);

 mysql('close');

 % Compile path
 [Targets_XYZ,ppr] = CompilePath(Moves,config,ppc);

 % Open and run SimMechanics simulation using parame ters obtained from database
 open_system('TWODOF_PPM_Model');
 options = simset('SrcWorkspace' , 'current');
 sss = sim('TWODOF_PPM_Model',inf,options);
 close_system('TWODOF_PPM_Model');

 Plot_Sim_Outputs('deg' ,SimID,config); % Plot results
end

Figure F.70 RunSimulation Function (Part 3/3)

Simulation and Optimisation of a 2DOFPPM

218

function [MotorID, newPPC] = SelectMotor(ppc,uc)
% Selects a random motor configuration from databas e for use in optimisation algorithms.
% VARIABLES:
% ppc - Path Planning Constraints
% uc - User Constraints

 % Open Database connection
 ch = mysql('open' , 'localhost:3306' , 'root' , 'mysql');
 db = mysql('use matlab_2dofppm');

 query = ['SELECT MotorID, Name, Description, SpecsFolder, Ma xTorque, MaxVelocity,' ...
 'MaxAcceleration, MaxJerk, MomentInertia, EncoderRe solution ' ...
 'FROM Motors ' ...
 'WHERE ' ...
 'MaxTorque <= "' ,num2str(uc.MaxMotorTorque), '" ' ...
 'AND ' ...
 'MaxVelocity <= "' ,num2str(uc.MaxMotorVelocity), '" ' ...
 'AND ' ...
 'MaxAcceleration <= "' ,num2str(uc.MaxMotorAcceleration), '" ' ...
 'AND ' ...
 'MaxJerk <= "' ,num2str(uc.MaxMotorJerk), '" ' ...
 'ORDER BY RAND() LIMIT 1'
];

 [MotorID Name Description SpecsFolder MaxTorque MaxVelocity MaxAcceleration ...
 MaxJerk MomentInert ia EncoderResolution] = mysql(query);

 newPPC = ppc;
 newPPC.MaxTorque = MaxTorque;
 newPPC.MaxOmega = MaxVelocity;
 newPPC.MaxAlpha = MaxAcceleration;
 newPPC.MaxJerk = MaxJerk;

 mysql('close');
end

Figure F.71 SelectMotor Function

 Appendix F – Matlab® Code

219

function neighbouringConfig = SelectNeighbouringConfig(cent ralConfig,Moves,MotorID,uc,ss)
% Finds Configurations neighbouring a given config
% VARIABLES:
% centralConfig - Config around which neighbours wi ll be found
% Moves - Instance of the MoveCMD class
% MotorID - ID linking to a motor
% uc - Instance of UserConstraints class
% ss - StepSize, how far away to look for neighbour s
% RETURNS:
% neighbouringConfig - an array of neighbouring con figurations

lb = centralConfig.LengthBase;
lu = centralConfig.LengthUpper;
ll = centralConfig.LengthLower;
wh = centralConfig.WorkspaceHeight;

neighbourLengths(1,1:4) = [lb,lu,ll,wh+ss];
neighbourLengths(2,1:4) = [lb,lu,ll+ss,wh];
neighbourLengths(3,1:4) = [lb,lu,ll+ss,wh+ss];
neighbourLengths(4,1:4) = [lb,lu+ss,ll,wh];
neighbourLengths(5,1:4) = [lb,lu+ss,ll,wh+ss];
neighbourLengths(6,1:4) = [lb,lu+ss,ll+ss,wh];
neighbourLengths(7,1:4) = [lb,lu+ss,ll+ss,wh+ss];
neighbourLengths(8,1:4) = [lb+ss,lu,ll,wh];
neighbourLengths(9,1:4) = [lb+ss,lu,ll,wh+ss];
neighbourLengths(10,1:4) = [lb+ss,lu,ll+ss,wh];
neighbourLengths(11,1:4) = [lb+ss,lu,ll+ss,wh+ss];
neighbourLengths(12,1:4) = [lb+ss,lu+ss,ll,wh];
neighbourLengths(13,1:4) = [lb+ss,lu+ss,ll,wh+ss];
neighbourLengths(14,1:4) = [lb+ss,lu+ss,ll+ss,wh];
neighbourLengths(15,1:4) = [lb+ss,lu+ss,ll+ss,wh+ss];

neighbourLengths(16,1:4) = [lb,lu,ll,wh-ss];
neighbourLengths(17,1:4) = [lb,lu,ll-ss,wh];
neighbourLengths(18,1:4) = [lb,lu,ll-ss,wh-ss];
neighbourLengths(19,1:4) = [lb,lu-ss,ll,wh];
neighbourLengths(20,1:4) = [lb,lu-ss,ll,wh-ss];
neighbourLengths(21,1:4) = [lb,lu-ss,ll-ss,wh];
neighbourLengths(22,1:4) = [lb,lu-ss,ll-ss,wh-ss];
neighbourLengths(23,1:4) = [lb-ss,lu,ll,wh];
neighbourLengths(24,1:4) = [lb-ss,lu,ll,wh-ss];
neighbourLengths(25,1:4) = [lb-ss,lu,ll-ss,wh];
neighbourLengths(26,1:4) = [lb-ss,lu,ll-ss,wh-ss];
neighbourLengths(27,1:4) = [lb-ss,lu-ss,ll,wh];
neighbourLengths(28,1:4) = [lb-ss,lu-ss,ll,wh-ss];
neighbourLengths(29,1:4) = [lb-ss,lu-ss,ll-ss,wh];
neighbourLengths(30,1:4) = [lb-ss,lu-ss,ll-ss,wh-ss];

neighbouringConfig = repmat(Configuration,1,1);

firstValidNeighbour = true;
for n=1:30
 [n1, reachable] = CalculateConfig(neighbourLeng ths(n,1),neighbourLengths(n,2), ...
 neighbourLengths(n,3),neigh bourLengths(n,4),Moves,MotorID,uc);
 if reachable
 if (firstValidNeighbour)
 neighbouringConfig(end) = n1;
 firstValidNeighbour = false;
 else
 neighbouringConfig(end+1) = n1;
 end
 end
end
end

Figure F.72 SelectNeighbouringConfig Function

Simulation and Optimisation of a 2DOFPPM

220

function config = SelectRandomConfig(Moves,MotorID,uc)
% Selects a random configuration based on the user constraints
% VARIABLES:
% Moves - contains Move data about path
% MotorID - motor identifier linking to motor data stored in database
% uc - UserConstraints class

config = Configuration; % Create new configuration

reachable = false; % Set flag
while reachable == false
%% Variable Parameters

 minBase = uc.MinMotorSeparation;
 maxBase = 0.9*uc.MaxWidth; %allow up to 90% base + 2*5% ProxArms

 config.LengthBase = minBase + (maxBase-minBase) *rand;

 minUpper = 0;
 maxUpper = (uc.MaxWidth - config.LengthBase)/2;

 config.LengthUpper = minUpper + (maxUpper-minUp per)*rand;

 minLower = config.LengthBase;
 maxLower = sqrt((uc.MaxDepth - config.LengthUpp er)^2 + (config.LengthBase/2)^2);

 config.LengthLower = minLower + (maxLower-minLo wer)*rand;

 minWSHeight = -uc.MaxDepth*0.1;
 maxWSHeight = uc.MaxDepth*0.1;

 config.WorkspaceHeight = minWSHeight + (maxWSHe ight-minWSHeight)*rand;
…

Figure F.73 SelectRandomConfig Function (Part 1/4)

 Appendix F – Matlab® Code

221

…

 %% Fixed Parameters

 config.MotorID = MotorID;

 config.MassUpper = ThickWalledTubeMass(uc.ProxA rmIRadius,uc.ProxArmORadius, ...
 con fig.LengthUpper,uc.ProxArmDensity);
 config.MassLower = ThickWalledTubeMass(uc.DistA rmIRadius,uc.DistArmORadius, ...
 con fig.LengthLower,uc.DistArmDensity);
 config.MassGripper = uc.MassGripper;
 config.MassUpperTorsion = ThickWalledTubeMass(u c.TorsionIRadius,uc.TorsionORadius, ...
 con fig.LengthUpper,uc.TorsionArmDensity);
 config.MassLowerTorsion = ThickWalledTubeMass(u c.TorsionIRadius,uc.TorsionORadius, ...
 con fig.LengthLower,uc.TorsionArmDensity);
 config.MassUpperCrank = uc.MassUpperCrank;
 config.MassLowerCrank = uc.MassLowerCrank;

 config.GripperMountOffset_X = uc.GripperMountOf fset_X;
 config.GripperMountOffset_Y = uc.GripperMountOf fset_Y;
 config.GripperLength = uc.GripperLength;

 config.UpperTorsionOffsetB_X = uc.UpperTorsionO ffsetB_X;
 config.UpperTorsionOffsetB_Y = uc.UpperTorsionO ffsetB_Y;
 config.LowerTorsionOffsetTCP_X = uc.LowerTorsio nOffsetTCP_X;
 config.LowerTorsionOffsetTCP_Y = uc.LowerTorsio nOffsetTCP_Y;

 config.InRadiusArms = uc.ProxArmIRadius;
 config.OutRadiusArms = uc.DistArmIRadius;
 config.InRadiusTorsion = uc.TorsionIRadius;
 config.OutRadiusTorsion = uc.TorsionORadius;

 config.InertiaUpper = ThickWalledTubeInertia(co nfig.InRadiusArms, ...
 config.OutRadiusArm s,config.LengthUpper,config.MassUpper);
 config.InertiaLower = ThickWalledTubeInertia(co nfig.InRadiusArms, ...
 config.OutRadiusArm s,config.LengthLower,config.MassLower);
 config.InertiaGripper = ThickWalledTubeInertia(config.InRadiusArms, ...
 config.OutRadiusArm s,config.GripperLength, ...
 config.MassGripper) ;
 config.InertiaUpperTorsion = ThickWalledTubeIne rtia(config.InRadiusTorsion, ...
 config.OutRadiu sTorsion,config.LengthUpper, ...
 config.MassUppe rTorsion);
 config.InertiaLowerTorsion = ThickWalledTubeIne rtia(config.InRadiusTorsion, ...
 config.OutRadiu sTorsion,config.LengthLower, ...
 config.MassLowe rTorsion);
 config.InertiaUpperCrank = ThickWalledTubeInert ia(config.InRadiusTorsion, ...
 config.OutRadiu sTorsion,sqrt(...
 config.UpperTor sionOffsetB_X^2+ ...
 config.UpperTor sionOffsetB_X^2), ...
 config.MassUppe rCrank);
 config.InertiaLowerCrank = ThickWalledTubeInert ia(config.InRadiusTorsion, ...
 config.OutRadiu sTorsion,sqrt(...
 config.LowerTor sionOffsetTCP_X^2+ ...
 config.LowerTor sionOffsetTCP_X^2), ...
 config.MassLowe rCrank);

 config.MinUpperArmAngle = uc.MinArmAng_BU;
 config.MaxUpperArmAngle = uc.MaxArmAng_BU;
 config.Min1_2ArmAngle = uc.MinArmAng_UL;
 config.Max1_2ArmAngle = uc.MaxArmAng_UL;
 config.MinLowerArmAngle = uc.MinArmAng_LL;
 config.MaxLowerArmAngle = uc.MaxArmAng_LL;
…

Figure F.74 SelectRandomConfig Function (Part 2/4)

Simulation and Optimisation of a 2DOFPPM

222

…

 %% Internally Computed Parameters

 config.ThetaAstart = d2r(180);
 config.ThetaBstart = d2r(180);

 [tcpX, tcpY, error, errorMsg] = Direct_2DOF_PP M(config.ThetaAstart, ...
 config.ThetaBstart,config.LengthBas e,config.LengthUpper, ...
 config.LengthLower,config.Min1_2Arm Angle,config.Max1_2ArmAngle, ...
 config.MinLowerArmAngle,config.MaxL owerArmAngle);

 if error > 1
 reachable = false;
 errorMsg
 continue ;
 end

 config.CS1_UpperA = [0, 0, 0];
 config.CS1_LowerA = [0, 0, 0];
 config.CS1_UpperB = [0, 0, 0];
 config.CS1_LowerB = [0, 0, 0];
 config.CS1_Gripper = [0, 0, 0];
 config.CS1_UpperTorsion = [0, 0, 0];
 config.CS1_UpperCrank = [0, 0, 0];
 config.CS1_LowerTorsion = [0, 0, 0];
 config.CS1_LowerCrank = [0, 0, 0];

 config.CS2_UpperA = [ajX-aBaseX,ajY-aBaseY,0];
 config.CS2_LowerA = [tcpX-ajX,tcpY-ajY,0];
 config.CS2_UpperB = [bjX-bBaseX,bjY-bBaseY,0];
 config.CS2_LowerB = [tcpX-bjX,tcpY-bjY,0];
 config.CS2_Gripper = [0,-config.GripperLength,0];
 config.CS2_UpperTorsion = [bjX-bBaseX,bjY-bBase Y,0];
 config.CS2_UpperCrank =[config.UpperTorsionOffs etB_X,config.UpperTorsionOffsetB_Y, 0];
 config.CS2_LowerTorsion = [tcpX-bjX,tcpY-bjY,0] ;
 config.CS2_LowerCrank = [config.LowerTorsionOff setTCP_X, ...
 config.LowerTor sionOffsetTCP_Y,0];

 config.CS3_LowerB = [0 0 0];
 config.CS3_UpperB = [0 0 0];
 config.CS3_Gripper = [-0.05,0,0];
 config.CS3_UpperCrank = [config.LowerTorsionOff setTCP_X, ...
 config.LowerTor sionOffsetTCP_Y,0];
 config.CS3_LowerCrank = [config.GripperMountOff set_X,config.GripperMountOffset_Y,0];

 config.CS4_Gripper = [0.05,0,0];
…

Figure F.75 SelectRandomConfig Function (Part 3/4)

 Appendix F – Matlab® Code

223

…

 config.CG_UpperA = [(ajX-aBaseX)/2,(ajY-aBaseY) /2,0];
 config.CG_LowerA = [(tcpX-ajX)/2,(tcpY-ajY)/2,0];
 config.CG_UpperB = [(bjX-bBaseX)/2,(bjY-bBaseY) /2,0];
 config.CG_LowerB = [(tcpX-bjX)/2,(tcpY-bjY)/2,0];
 config.CG_Gripper = [0,-config.GripperLength/2, 0];
 config.CG_UpperTorsion = [(bjX-bBaseX)/2,(bjY-b BaseY)/2,0];
 config.CG_UpperCrank = [(config.UpperTorsionOff setB_X+ ...
 config.LowerTorsion OffsetTCP_X)/2, ...
 config.UpperTorsion OffsetB_Y/2,0];
 config.CG_LowerTorsion = [(tcpX-bjX)/2,(tcpY-bj Y)/2,0];
 config.CG_LowerCrank = [config.LowerTorsionOffs etTCP_X/2,0,0];

 config.OrientCG_UpperA = [0,0,0];
 config.OrientCG_LowerA = [0,0,0];
 config.OrientCG_UpperB = [0,0,0];
 config.OrientCG_LowerB = [0,0,0];
 config.OrientCG_Gripper = [0,0,0];
 config.OrientCG_UpperTorsion = [0,0,0];
 config.OrientCG_UpperCrank = [0,0,0];
 config.OrientCG_LowerTorsion = [0,0,0];
 config.OrientCG_LowerCrank = [0,0,0];

 config.Gpoint_1 = [aBaseX, aBaseY, 0];
 config.Gpoint_2 = [bBaseX, bBaseY, 0];
 config.Gpoint_3 = [bBaseX+config.UpperTorsionOf fsetB_X, ...
 bBaseY+config.UpperTors ionOffsetB_Y,0];

 [thetaA, thetaB, error, errorMsg] = Inverse_2 DOF_PPM(tcpX,tcpY, ...
 config.LengthBase,c onfig.LengthUpper,config.LengthLower);
 if error ~=0
 reachable = false;
 errorMsg
 continue ;
 end
 config.ThetaA_IC = mod(thetaA + config.ThetaAst art,pi);
 config.ThetaB_IC = mod(thetaB + config.ThetaBst art,pi);

 %% Check reachability
 reachable = CheckReachability(Moves,config);
end

end

Figure F.76 SelectRandomConfig Function (Part 4/4)

Simulation and Optimisation of a 2DOFPPM

224

function StorePathsUserConstraintsSQL(cp,uc)
% Stores the path Move data along with UserConstrai nts
% VARIABLES:
% cp - Instance of CyclePath class
% uc - Instance of UserConstraints

 % Open database connection
 ch = mysql('open' , 'localhost:3306' , 'root' , 'mysql');
 db = mysql('use matlab_2dofppm');

 % Store Paths
 query = ['INSERT INTO paths (' ...
 'PathID,' ...
 'LinearErrorFactor,' ...
 'LastLinearTargetDistance,' ...
 'ReactiveFactor,' ...
 'InitialAcceptanceThreshold,' ...
 'RelativeAgeingFactor)' ...
 'VALUES (' ...
 '"' ,num2str(cp.ID), '",' ...
 '"' ,num2str(cp.PPC.LinearErrorFactor), '",' ...
 '"' ,num2str(cp.PPC.LastLinearTargetDistance), '",' ...
 '"' ,num2str(cp.PPC.ReactiveFactor), '",' ...
 '"' ,num2str(cp.PPC.InitialAcceptanceThreshold), '",' ...
 '"' ,num2str(cp.PPC.RelativeAgeingFactor), '"' ...
 ')' ...
];
 t = mysql(query);

 % Store Moves
 numMoves = size(cp.Moves,2);
 for m=1:numMoves
 query = ['INSERT INTO moves (' ...
 'PathID,' ...
 'MSequence,' ...
 'Knot_X,' ...
 'Knot_Y,' ...
 'MType,' ...
 'MZone,' ...
 'Speed,' ...
 'Pause)' ...
 'VALUES (' ...
 '"' ,num2str(cp.ID), '",' ...
 '"' ,num2str(m), '",' ...
 '"' ,num2str(cp.Moves(m).Target.Knot.X), '",' ...
 '"' ,num2str(cp.Moves(m).Target.Knot.Y), '",' ...
 '"' ,cp.Moves(m).MoveType, '",' ...
 '"' ,num2str(cp.Moves(m).Zone), '",' ...
 '"' ,num2str(cp.Moves(m).Velocity), '",' ...
 '"' ,num2str(cp.Moves(m).Pause), '"' ...
 ')' ...
];
 t = mysql(query);
 end

 % Store UserConstraints
 query = ['INSERT INTO userconstraints (' ...
 'PathID,' ...
 'MaxMotorTorque,' ...
 'MaxMotorVelocity,' ...
 'MaxMotorAcceleration,' ...
 'MaxMotorJerk,' ...
 'MassGripper,' ...
 'MinArmAng_BU,' ...
…

Figure F.77 StorePathsUserConstraintsSQL Function (Part 1/2)

 Appendix F – Matlab® Code

225

…
 'MinArmAng_UL,' ...
 'MinArmAng_LL,' ...
 'MaxArmAng_BU,' ...
 'MaxArmAng_UL,' ...
 'MaxArmAng_LL,' ...
 'ProxArmDensity,' ...
 'DistArmDensity,' ...
 'TorsionArmDensity,' ...
 'ProxArmIRadius,' ...
 'DistArmIRadius,' ...
 'ProxArmORadius,' ...
 'DistArmORadius,' ...
 'TorsionIRadius,' ...
 'TorsionORadius,' ...
 'MassUpperCrank,' ...
 'MassLowerCrank,' ...
 'UpperTorsionOffsetB_X,' ...
 'UpperTorsionOffsetB_Y,' ...
 'LowerTorsionOffsetTCP_X,' ...
 'LowerTorsionOffsetTCP_Y,' ...
 'GripperMountOffset_X,' ...
 'GripperMountOffset_Y,' ...
 'GripperLength,' ...
 'MinMotorSeparation,' ...
 'MaxWidth,' ...
 'MaxDepth)' ...
 'VALUES (' ...
 '"' ,num2str(cp.ID), '",' ...
 '"' ,num2str(uc.MaxMotorTorque), '",' ...
 '"' ,num2str(uc.MaxMotorVelocity), '",' ...
 '"' ,num2str(uc.MaxMotorAcceleration), '",' ...
 '"' ,num2str(uc.MaxMotorJerk), '",' ...
 '"' ,num2str(uc.MassGripper), '",' ...
 '"' ,num2str(uc.MinArmAng_BU), '",' ...
 '"' ,num2str(uc.MinArmAng_UL), '",' ...
 '"' ,num2str(uc.MinArmAng_LL), '",' ...
 '"' ,num2str(uc.MaxArmAng_BU), '",' ...
 '"' ,num2str(uc.MaxArmAng_UL), '",' ...
 '"' ,num2str(uc.MaxArmAng_LL), '",' ...
 '"' ,num2str(uc.ProxArmDensity), '",' ...
 '"' ,num2str(uc.DistArmDensity), '",' ...
 '"' ,num2str(uc.TorsionArmDensity), '",' ...
 '"' ,num2str(uc.ProxArmIRadius), '",' ...
 '"' ,num2str(uc.DistArmIRadius), '",' ...
 '"' ,num2str(uc.ProxArmORadius), '",' ...
 '"' ,num2str(uc.DistArmORadius), '",' ...
 '"' ,num2str(uc.TorsionIRadius), '",' ...
 '"' ,num2str(uc.TorsionORadius), '",' ...
 '"' ,num2str(uc.MassUpperCrank), '",' ...
 '"' ,num2str(uc.MassLowerCrank), '",' ...
 '"' ,num2str(uc.UpperTorsionOffsetB_X), '",' ...
 '"' ,num2str(uc.UpperTorsionOffsetB_Y), '",' ...
 '"' ,num2str(uc.LowerTorsionOffsetTCP_X), '",' ...
 '"' ,num2str(uc.LowerTorsionOffsetTCP_Y), '",' ...
 '"' ,num2str(uc.GripperMountOffset_X), '",' ...
 '"' ,num2str(uc.GripperMountOffset_Y), '",' ...
 '"' ,num2str(uc.GripperLength), '",' ...
 '"' ,num2str(uc.MinMotorSeparation), '",' ...
 '"' ,num2str(uc.MaxWidth), '",' ...
 '"' ,num2str(uc.MaxDepth), '"' ...
 ')' ...
];
 t = mysql(query);

 mysql('close');
end

Figure F.78 StorePathsUserConstraintsSQL Function (Part 2/2)

Simulation and Optimisation of a 2DOFPPM

226

function StoreSimulationsSQL(config,ppc,ppr,pathID,comment, comment2,iteration)
% Stores results of simulation run
% VARIABLES:
% config - Instance of Configuration class
% ppc - Instance of PathPlanningConstraints class
% ppr - Instance of PathPlanningResults class
% pathID - unique path identifier
% comment - ability to store text associated with s imulation
% comment2 - another ability to store text associat ed with simulation
% iteration - ability to store what optimisation it eration simulation occured on

 % Open database connection
 ch = mysql('open' , 'localhost:3306' , 'root' , 'mysql');
 db = mysql('use matlab_2dofppm');

 % Retrieve next available SimID from database
 simID = mysql('SELECT IFNULL(MAX(SimID)+1,1) FROM simulations');

 % Store simulation data
 query = ['INSERT INTO simulations (' ...
 'SimID,' ...
 'ProxArmLength,' ...
 'DistArmLength,' ...
 'MotorSeparation,' ...
 'WorkspaceHeight,' ...
 'MotorID,' ...
 'CycleTime,' ...
 'ExecutionDT,' ...
 'PathID,' ...
 'Comment,' ...
 'Comment2,' ...
 'Iteration)' ...
 'VALUES (' ...
 '"' ,num2str(simID), '",' ...
 '"' ,num2str(config.LengthUpper), '",' ...
 '"' ,num2str(config.LengthLower), '",' ...
 '"' ,num2str(config.LengthBase), '",' ...
 '"' ,num2str(config.WorkspaceHeight), '",' ...
 '"' ,num2str(config.MotorID), '",' ...
 '"' ,num2str(ppr.PathA(size(ppr.PathA,1)).EndTime), '",' ...
 'NOW(),' ...
 '"' ,num2str(pathID), '",' ...
 '"' ,comment, '",' ...
 '"' ,comment2, '",' ...
 '"' ,num2str(iteration), '"' ...
 ')' ...
];

 t = mysql(query);

 mysql('close'); % Close database connection

end

Figure F.79 StoreSimulationsSQL Function

 Appendix F – Matlab® Code

227

classdef Target
% Defines a target (i.e. Knot position at a given P athTime).

properties
 Knot % Position and Orientation of Target
 PathTime % Time along path at which knot is reached
 VelocityLimit % Maximum TCP velocity permitted during travel to k not
end

methods
 % Create instance of Target class with variables
 function t = Target(Knot,PathTime,VelocityLimit)
 if nargin == 1
 t.Knot = Knot;
 t.PathTime = 0; % Set to zero if initialised only with Knot data.
 % PathTime will be updated later.
 elseif nargin == 2
 t.Knot = Knot;
 t.PathTime = PathTime;
 elseif nargin ==3
 t.Knot = Knot;
 t.PathTime = PathTime;
 t.VelocityLimit = VelocityLimit;
 end
 end
end
end

Figure F.80 Target Class

classdef TerminationCondition
% Contains conditions for termination of the optimi sation process

properties
 CycleTime % Path cycle time. Optimised value must be less tha n this to be
 % considered optimised.
 Iterations % Number of optimisation iterations.
end

end

Figure F.81 TerminationCondition Class

function inertia = ThickWalledTubeInertia(r1,r2,h,m)
% Calculates the inertia of a thick-walled cylindri cal tube with open ends
% VARIABLES:
% r1 - Inner Radius (m)
% r2 - Outer Radius (m)
% h - Length (m)
% m - Mass (kg)

inertia = [((1/12)*m*(3*(r1^2+r2^2)+h^2)), 0, 0;
 0,((1/12)*m*(3*(r1^2+r2^2)+h^2)),0;
 0,0,((1/2)*m*(r1^2+r2^2));];

end

Figure F.82 ThickWalledTubeInertia Function

Simulation and Optimisation of a 2DOFPPM

228

function mass = ThickWalledTubeMass(r1,r2,length,density)
% Calculates the mass of a thick-walled cylindrical tube with open ends
% VARIABLES:
% r1 - Inner Radius (m)
% r2 - Outer Radius (m)
% length - Length of cylinder (m)
% density - density of tube material (kg/m^3)

 volume = (pi*r2^2-pi*r1^2)*length;

 mass = density*volume;

end

Figure F.83 ThickWalledTubeMass Function

classdef UserConstraints
% Contains constraints on manipulator specified by the user

properties
 MaxMotorTorque % Maximum torque available from motor (Nm)
 MaxMotorVelocity % Maximum angular velocity available from motor (ra d/s)
 MaxMotorAcceleration % Maximum angular acceleration available from motor (rad/s2)
 MaxMotorJerk % Maximum angular jerk available from motor (rad/s3)
 MassGripper % Mass of the gripper and any load (kg)
 MinArmAng_BU %Minimum angle allowed between base and upper/proxi mal arm(rad)
 MinArmAng_UL % Minimum angle allowed between upper/proximal arm and
 % lower/distal arm (rad)
 MinArmAng_LL % Minimum angle allowed between the two lower/dista l arms (rad)
 MaxArmAng_BU %Maximum angle allowed between base and upper/proxi mal arm(rad)
 MaxArmAng_UL % Maximum angle allowed between upper/proximal arm and
 % lower/distal arm (rad)
 MaxArmAng_LL % Maximum angle allowed between the two lower/dista l arms (rad)
 ProxArmDensity % Density of upper/proximal arm (kg/m3)
 DistArmDensity % Density of lower/distal arm (kg/m3)
 TorsionArmDensity % Density of stabiliser arm (kg/m3)
 ProxArmIRadius % Inner Radius of proximal arm (m)
 DistArmIRadius % Inner Radius of distal arm (m)
 ProxArmORadius % Outer Radius of proximal arm (m)
 DistArmORadius % Outer Radius of distal arm (m)
 TorsionIRadius % Inner Radius of stabiliser arm (m)
 TorsionORadius % Outer Radius of stabiliser arm (m)
 MassUpperCrank % Mass of the upper crank (kg)
 MassLowerCrank % Mass of the lower crank (kg)
 UpperTorsionOffsetB_X % Offset from center of motor B for base point of s tabiliser
 % arm(X)
 UpperTorsionOffsetB_Y % Offset from center of motor B for base point of s tabiliser
 % arm(Y)
 LowerTorsionOffsetTCP_X % Offset from center of 'TCP' for lower torsion bar (X)
 LowerTorsionOffsetTCP_Y % Offset from center of 'TCP' for lower torsion bar (Y)
 GripperMountOffset_X % Offset from bottom revolute joint where the gripp er mounts(X)
 GripperMountOffset_Y % Offset from bottom revolute joint where the gripp er mounts(Y)
 GripperLength % Length of the gripper (m)
 MinMotorSeparation % Minimum separation distance between centers of mo tors (m)
 MaxWidth % Maximum width of the manipulator as defined as
 % base length + 2x upper arm length
 MaxDepth % Maximum depth of the manipulator
end

end

Figure F.84 UserConstraints Class

