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Abstract

In this thesis we study a variety of nanoscale phenomena in certain polymer
systems using a combination of numerical simulation methods and mathe-
matical modelling. The problems considered are: (a) the mixing behaviour of
polymeric fluids in micro- and nanofluidic devices, (b) capillary absorption of
polymer droplets into narrow capillaries, and (c) modelling the phase separa-
tion and self-assembly behaviour in polymer systems with freely deforming
boundaries. These problems are significant in nanotechnological applications of
polymer-based systems.

First, the mixing behaviour of a polymeric melt over two parallely patterned-
slip surfaces is considered. Using molecular dynamics (MD) simulations, it is
shown that mixing is enhanced when the polymer chain size is smaller than the
wavelength of the chemical pattern of the surfaces. An off-set in the upper and
lower wall patterns improved the mixing in the centre of the channel. Application
of a sinusoidally varying body force in addition to the patterned-slip conditions is
shown to enhance mixing further, compared to a constant body force case, with
some limitations. Simulation findings for the constant body force cases are in
qualitative agreement with the continuum theory of Pereira [1]. However, in the
case of a sinusoidally varying body force our simulations do not agree with the
continuum theory. We explain the reasons for the discrepancy between the two
and point out the deficiencies in the continuum theory in predicting the correct

behaviour.

Second, the capillary phenomena of polymer droplets in narrow capillaries
is studied using MD simulations. It is demonstrated that droplets composed of
longer chains require wider tubes for absorption and this result is in agreement
with our continuum modelling. The observed capillary dynamics deviate signif-
icantly from the standard Lucas-Washburn description thus questioning its va-
lidity at the nanoscale. The metastable states during the capillary absorption in

some cases cannot be explained using the existing models of capillary dynamics.

Lastly, the phase separation process in polymer blends between both confined
and unconfined boundaries is studied using Smoothed Particle Hydrodynamics
(SPH). The SPH technique has the advantage of not using a grid to discretize the
spatial domain, which makes it appealing when dealing with problems where
the spatial domain can change with time. The applicability of the SPH method in
describing phase separation in these systems is demonstrated. In particular, its

ability to model freely deforming polymer blends is shown.
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Chapter 1
Introduction

Although polymers have been used for centuries, they were not identified as long
chain-like molecules until relatively recently. It was Pickles [2] who first sug-
gested that rubber is made up of long chains of molecules. Based on his exper-
imental observations, in 1920 Hermann Staudinger came up with the idea that
polymers are molecules made up of covalently bonded elementary units called
monomers [3] (for which he received the 1953 Nobel Prize in Chemistry). Given
this hypothesis, Paul J. Flory [4] and Maurice L. Huggins [5] (separately) gave
the first theoretical treatment of polymer solutions, based on statistical thermo-
dynamics. Flory was awarded the 1974 Nobel Prize in Chemistry for his con-
tributions. In the early 1970s this field of study increased dramatically with the
seminal works of Pierre-Giles de Gennes (for which he received the 1991 Nobel
Prize in Physics) and Samuel F. Edwards. Here the theoretical treatment of poly-
mers was put on a sound mathematical basis with analogies to other branches
of physics (such as quantum mechanics). In fact it was de Gennes who coined
the term soft condensed matter physics [6] to describe this new field, which also
included other novel condensed matter systems such as liquids crystals, gels,
emulsions, colloids and surfactant solutions. Generally, these systems cannot be
described (completely) as liquids or solids and thus new theoretical treatments
need to be developed to describe them (as opposed to using the well established
treatments of liquids or solids). Moreover, since this field is comparatively young
it provides a myriad of diverse and interesting problems for the researcher.

Motivation

With the emergence of nanotechnology, researchers are increasingly interested
in polymer-based applications at the nanoscale [7, 8, 9, 10, 11, 12, 13]. Nanoscale
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phenomena of polymeric materials are particularly fascinating, because at these
dimensions the intrinsic length scales of polymers become comparable with those
of device dimensions [10]. Consequently, polymers at the nanoscale are expected
to display characteristics that are different from their macroscopic behaviour. The
study of polymers at the nanoscale not only bears significance from the viewpoint
of their potential applications in nanotechnology, but also presents an exciting
challenge to the researcher for deepening our understanding of fundamental sci-

ence.

In conjunction with theoretical treatments and experiments, simulation stud-
ies of polymer systems have also increased dramatically in the last forty years.
Owing to their complex molecular structure, and existence of multiple length-
and time-scales, analytical studies of polymers have been difficult [14, 15]. In this
context computer simulations have played an important role in bridging the gap
between experiment and analytical theory. Based on the problem at hand and
properties of interest, different spatio-temporal scale-regimes become important
in polymer systems [16, 17, 18]. This, in turn, determines the level of description
required to model these systems: electronic, atomistic, mesoscopic, etc. [16, 19].
In this dissertation we are only concerned with mesoscopic models of polymers,
which portray universal properties of polymers very well [15, 18]. Simulation
studies of polymers have not only implemented techniques which are already
used in condensed matter physics, such as Monte Carlo or Molecular Dynamics
(MD), but also sought to introduce new methods, or variants of older methods,

which are specific to polymer systems [15].

Our main aim here is to study the behaviour of certain polymer systems at the
nanoscale. Due to the wide scope of this thesis, here we shall only give a brief
overview of motivation behind each of the problems considered. A much more
detailed discussion with sufficient literature review will be given in the respective
chapters to follow.

Mixing of Polymeric Fluids in Narrow Channels

One of the main objectives of micro- or nanofluidic devices is to be able to per-
form biochemical analysis [20]. Most of these processes demand rapid mixing of
polymers/biological molecules [21, 22, 23]. However, flows at these length scales
are predominantly laminar and hence mixing is mainly diffusion driven, which is
often too slow for these applications [24]. It has been shown that mixing of New-
tonian fluids can be enhanced significantly for flows over patterned-slip surfaces
[25, 26]. Using continuum modelling, Pereira [1] studied the effect of patterned-



slip on the mixing behaviour of non-Newtonian fluids and found some encour-
aging results. Here we study the mixing behaviour of polymeric fluids over such
patterned-slip surfaces using MD simulations and compare the results with the

continuum theory predictions of Pereira [1].

Capillary Phenomena of Polymer Droplets

Applications of capillary phenomena are ubiquitous in industry and daily life.
The seminal works of Young and Laplace [27, 28] on the statics of capillarity; and
Lucas and Washburn [29, 30] on the dynamics of capillarity, form the basis for
much of our understanding of this phenomena. These theories describe capil-
larity on macroscale very well. However, the validity of the Lucas-Washburn
approach in the context of nanoscale capillary dynamics has recently been ques-
tioned [31, 32, 33, 34].

Another aspect which is worth exploring is the impact of finite size of liquid
reservoirs on capillarity, which is usually ignored in standard models. However,
such systems are often encountered in nanotechnology where the liquid reser-
voirs are comparable to channel dimensions; and this can have profound impli-
cations on the whole process of capillarity. Thus, in the light of these questions it
is even more important to study the effect of finite size reservoirs on capillarity.
This question has been investigated for Newtonian fluids and several interesting

observations have been made [35, 36, 37].

However, there have been no such studies so far on polymer droplets. Sci-
entists are interested in producing polymer-based nanorods, nanopatterns [7, 38,
39, 40] and capillary forces can play an important role here. At the nanoscale, due
to the macromolecular nature of their constituents, polymer droplets can exhibit
more intriguing capillary phenomena that may not occur in Newtonian fluids.
The entropic loss associated with deformation of chains in confined tubes can
have complex implications on the process of capillary absorption. In this thesis
we investigate the effect of molecular size on the capillary phenomena for small
polymer droplets where the chain size of the polymers is comparable with the

tube dimensions.

Modelling Freely Deforming Polymer Blends

One of the more interesting aspects of polymer solutions or polymer blends
is the phenomena of self-assembly. For example, binary polymer blends phase
separate into domains that are rich in either species. In particular, here we are
concerned with the modelling of polymer thin films with freely deformable sur-
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faces, which are of industrial interest [41, 42, 43]. The case of a freely deforming
interface is important throughout polymer systems. While conventional particle-
based methods can model these free surfaces, in practice, they are problematic
since they require a vast number of particles. This leads to numerics which take
inordinately long to converge. In the case of self-assembly (especially for de-
formable free surfaces) continuum methods seem to be much more attractive.
The basic problem with continuum treatments is that the basic equations (usually
partial differential equations) need to be solved numerically and traditional grid-
based solution techniques are implemented. In the case of a freely deformable
interface this is a serious issue since the grid on which the equations are solved
must be specified before the solution is achieved. In addition to this grid-based
methods have several other disadvantages such as anisotropy effects, etc. [44, 45].

Another important class of polymeric materials that exhibit complex patterns
via self-assembly are block copolymers [46]. In experimental studies of block
copolymer systems the liquid melt is usually spin-coated on to solid substrates,
forming a thin film of block copolymer melt. In this case a rather strange thing
can happen. Rather than remaining flat (as one would expect a normal liquid to
do) the free surface can develop undulations [47] or even can form an island and
hole structure [48, 49]. We seek to apply the smoothed particle hydrodynamics (SPH)
method to deal with self-assembling polymer systems such as polymer solutions,
polymer blends, block copolymer solutions or block copolymer melts. This is a
tirst step in a continuing effort and so we introduce and apply the SPH method
to the simplest self-assembling polymer system - a polymer blend. Here we seek
to show that the SPH method can be successfully applied to confined and non-
confined polymer blends. We envisage that this method will be extended in the
future to other polymer systems, some of which have been elucidated above.

Thesis Outline

We now briefly outline the content of this thesis. In Chapter 2 we give a basic
introduction and background to polymer physics, especially detailing concepts
which will be used throughout the remainder of the thesis. In Chapter 3 we give
a detailed account of the MD simulation technique which is used for two separate
applications later in the thesis. In Chapter 4 we use the MD method to study the
mixing of polymeric solutions in narrow microfluidic channels. We compare our
MD results with theoretical results and give suggestions for enhancing the mixing
in these narrow capillaries. In Chapter 5, we apply the MD method to another mi-
crofluidic problem. Here we ask the question - whether a finite polymer droplet
can be drawn up a narrow capillary? We find there are some interesting polymer



attributes which affect the process. In Chapter 6, we present a continuum nu-
merical treatment of the self-assembly of polymer blends specifically focussed on
applications where the surfaces can deform. This method depends on not mak-
ing a spatial discretization of the geometrical domain and has been previously
applied to astrophysical and fluid dynamical problems. Finally in Chapter 7 we

present Conclusions for our work.



Chapter 2
Polymer Physics

Polymers are large molecules composed of a sequence of many small molecules
that are connected to each other by covalent bonds. The basic repeating unit of
a polymer is called a monomer. A monomer in itself can consist of one or more
different chemical entities. The concepts of polymer and monomer are illustrated
in Fig. 2.1 for a polyethylene molecule.

SESEEEEEE|
cooooos ——(C—(C—AC——(C——HC—AC—=——C——(C —— ooz *|TC:|‘
T

Figure 2.1: A polyethylene molecule with N- CH; monomeric units. The
shorthand notation on the right describes the molecule in terms of its monomeric
unit. The red shaded region in the figure indicates the chain backbone which
runs along the chain connecting all monomer centres.

The number of monomer units in a polymer chain is called the polymerization
index (N) of the chain. In some cases it is often useful to redefine the monomer
as a group of basic monomers to reduce the complexity and the resulting repre-
sentative polymer is said to be coarse-grained [15]. Given their complex molecular
architecture, which is a characteristic of polymers, it is rather difficult to construct
atomistic models that include all degrees of freedom. Fortunately, many poly-
mer systems exhibit universal behaviour independent of details on the molecular
scale. This grants us the freedom to build coarse-grained models that capture the
essential behaviour of polymers and such modelling has proven to be very use-
ful [15, 17]. A detailed discussion on coarse-graining will be provided in the next

chapter.
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The theoretical framework of polymer systems has evolved towards exploit-
ing the universality aspect of these materials. In the following sections, we dis-
cuss some of the basic concepts in polymer physics which are essential to under-
stand the content of this dissertation. Our understanding of these concepts comes
mainly from sources [50, 51, 46, 52, 53].

2.1 Basic Concepts in Polymer Physics

Based on the chemical composition and arrangement of constituents, poly-
mers can be categorized into either homopolymers or heteropolymers. Polymers that
constitute only one type of monomer are known as homopolymers. They are
turther divided into different groups depending on the molecular architecture.
For example, linear, star, branched, etc. as shown in Fig. 2.2. Polymer molecules
that consist of more than one type of monomer species are known as heteropoly-
mers or copolymers. A wide range of copolymers can be realized by varying the
molecular arrangement and chain composition (for example see Fig. 2.2).

o

Linear Star Branched

90990909090 09

Diblock Copolymer

oo 9 090 0 090 0

Random Copolymer

" Son Son o Som 2o Son S S o

Alternating Copolymer

Figure 2.2: The upper half of the figure displays some example homopolymers.
Here polymers are represented as continuous chains. The lower half of the figure
displays some example (linear) copolymers, where the red and blue colours are
used to differentiate two types of monomers. The black line between any two
consecutive monomers is the bond connecting them.

Flexibility

One of the most important properties used to characterize polymers is their

flexibility. It has a significant impact on both static and dynamic properties of
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polymers such as elastic moduli [54] and conformational dynamics [55], etc. The
flexibility of a chain depends on the information regarding its bond lengths, bond
angles and torsion angles. The bond length is the distance between any two con-
secutive monomers. The angle between any two consecutive bonds (three con-
secutive monomers) is defined as the bond angle. The last and most important
(as we will see) is the torsion angle which largely determines the flexibility of
polymers [46]. It is defined as the angle formed between two planes, where the
first plane is constructed by joining the first three monomers of the quadruplet
(a group of four consecutive monomers) and the second plane is constructed by
joining the last three monomers of the same quadruplet. The torsion angle is
pictorially demonstrated in Fig. 2.3(a).

gauche gauche

Ae AE

trans

A
® —120° 0° 120°

12

(a) (b)

Figure 2.3: (a) A part of a polymer chain is shown here. The (blue) monomers are
connected to each other by (red) bonds. The angle between the two intersecting
planes gives us the torsional angle ¢. (b) The energy variation as a function of ¢
(see text).

In most polymers, fluctuations in the torsion angles determine the flexibility,
while the fluctuations in bond lengths and bond angles are often too small to have
any significant effect. The typical variation in energy as a function of torsion an-
gle is shown in Fig. 2.3(b). The torsion angles corresponding to the three minima,
from left to right in Fig. 2.3(b), are called gauche-, trans and gauche™ conforma-
tions, respectively. The reason behind this energy variation upon a change in ¢
can be understood in the following way. At the molecular level, a change in ¢
results in a change in distance between various constituents (atoms) of different

monomers, which, in turn, gives rise to a change in energy.

If a chain is in the all trans state then it is fully stretched to its maximum
length. The ratio of trans to gauche states determines the flexibility of a chain.

Of course, the occupancy of trans or gauche states depends on the temperature
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of the system. If kpT > Ae i.e., the thermal energy is greater than the energy
difference between trans and gauche states then the chain is essentially flexible.
As the temperature decreases, Ae/kpT increases, and trans states become more
preferential. Thus the chain starts to behave more rigidly on the local scale. But
as we zoom out, above a certain critical segment length the chain appears to be
flexible again. The segment length below which the chain appears to be rigid,
and above which it appears to be flexible is known as the persistence length of the
chain. Note, for some polymers the persistence length can be greater than their

chain length. In such a scenario, the chain is rigid at all length scales.

2.2 Ideal Chain Models

The configurational space of a given polymer chain depends on its flexibility
and its interactions with the surroundings. Different models have been proposed
to study different types of polymers based on their flexibility [50, 46]. Here we
are only concerned with flexible polymers.

In an ideal chain model, hard-core repulsive interactions, that prevent any
two monomers from occupying the same space, are completely ignored. Ideal
chain models account for short-range interactions while ignoring long-range
interactions altogether. In the present context, the terms short- and long-range
hold different meanings to their conventional use. The interaction between any
two monomers that are separated by a small number of monomers along the
chain backbone is considered to be short-ranged while between those separated
by a large number of monomers is considered to be long-ranged. The fact that
two monomers separated by a large distance along the chain backbone can still
come close in space is completely ignored in all ideal chain models. But as we
will see, despite this approximation ideal chain models can replicate the generic
behaviour of flexible polymers. In this section we shall discuss some ideal chain
models of flexible polymer chains such as the freely jointed chain model, freely

rotating chain model, and the Gaussian chain model.

2.2.1 Freely Jointed Chain (FJC) Model

In this model, the orientation of a bond is considered to be independent of any
other bond in the chain including its immediate predecessor. That is, a bond is
free to take any orientation it likes. The bond length is assumed to remain con-
stant while torsion angles are ignored. Since the orientation of a bond is indepen-
dent of any other, there is no correlation between any two bonds. Mathematically,

this model is equivalent to a random walk.
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Figure 2.4: A schematic diagram showing a FJC chain on a lattice.

Now let us consider a polymer chain with N segments (bonds), each with
bond length b on a lattice as shown in Fig. 2.4. One of the important properties
used to characterize polymers is their size. To calculate this, let us try to compute
the end-to-end vector R. If the bond vectors representing the chain are denoted

asry,ry, -, ry, where r; is the bond vector connecting monomer i to i 4 1, then
R=ri+rp+---+ry. (2.1)

In the FJC model, the ensemble average (R) = 0 since each bond is likely to span
all possible orientations. Obviously (R) is not a good measure of chain dimen-
sions. The second moment of R, that is the mean square end-to-end distance is a

better choice for polymer size and it is calculated as

() ()

= <iri2>+<2ri-rj> (2.4)
i=1 iZj
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:Nb2+<2]ri\|rj|cost9ij> (2.5)

i7i

(R?) = Nb* + b? <Zcos 91']'> . (2.6)
i#]
The second term in Eq. (2.6) is as in a random chain there are no correlations

between any two distinct bonds. Therefore,

<R2> — NB2. 2.7)

The disadvantage with the FJC model is that it does not prevent a chain seg-
ment from folding back onto its predecessor, which is clearly unphysical. By
incorporating correlations between any two distinct segments we can rectify this
deficiency. The mean square end-to-end vector with short-range interactions in

place takes the following form

— CyNb? (2.8)

where Cy = YN, (cos 0ij) / N is Flory’s characteristic ratio. Note that, even with
short-range interactions included the relationship (R?) o Nb? still holds.

One of the advantages with the FJC model is that all ideal chains can be re-
duced to a FJC. In the FJC model, the short-range interactions between monomers
enter only via the bond length b and there are no correlations between any two
bonds. Any ideal chain with a bond length b can be represented by an equivalent
FJC with a new renormalized bond length bk, chosen such that there are no cor-
relations between any two bonds. The renormalized segment length bx is known
as the Kuhn statistical length of the chain. The magnitude of bx indicates the stiff-
ness of a chain. A small bx means the chain is flexible and a large bx means the
chain is rigid, globally. In other words, the Kuhn statistical length describes the
minimum distance between two points on a polymer chain that are essentially
uncorrelated. Hence, any ideal chain with bond length bk is equivalent to a FJC
with same bond length.

Since a FJC is equivalent to a random walk, the probability distribution of a

chain with N segments as a function of end-to-end vector R in three dimensions
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3 \? 3R?

Therefore, a FJC has a Gaussian distribution for the end-to-end vector. Using

is given by

this probability distribution function we can compute some important thermo-

dynamic quantities such as the entropy and the Helmholtz energy. The entropy
S(R,N) :kB II’IQN (R,N), (2.10)

where Q) (R, N) is the number of conformations that start at origin O and end at
R in N steps and it is directly proportional to the probability for such a confor-
mation/walk. From Egs. (2.9) and (2.10), we get

3R?2

S(R,N) - SO— W’

(2.11)

where Sy is a constant. From Eq. (2.11), with increasing R, the entropy decreases.

The Helmholtz energy
F(R,N)=U-TS(R,N) (2.12)
B 3KpTR?
F(R,N) —FO+W' (2.13)

where Fj is a constant. Note the R? dependency of the Helmholtz energy, this

indicates that an ideal chain behaves like a “Hookean spring”.

2.2.2 Freely Rotating Chain (FRC) Model

In this model all bond lengths and bond angles remain constant. The differ-
ence from the FJC model lies in including the correlations between monomers by
means of torsional angles. The torsional angles are free to assume any value be-
tween —71 < @ < 71, thus bonds are free to rotate. This is the source of flexibility
in FRC models. This model is illustrated with the help of Fig. 2.5.

Let us focus on the bond vector r;j,1 in Fig. 2.5. For simplicity, assume that
all other bond vectors are frozen except for rj; 1. This bond vector is free to ro-
tate about r;. To compute bond vector rj,1’s correlation with other vectors we
must compute its components along the chain backbone. The normal component
of rjyq along r; is bsin6. Since the bond vector is free to rotate, the ensemble
average of this quantity is equal to zero, i.e., b(sin#) = 0. Hence there is no cor-
relation due to the normal component. However, the longitudinal component of

rj1 along 1; is equal to b cos 6, which does not vanish in the ensemble average.
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Figure 2.5: Portion of a freely rotating chain is shown here. 6 is the bond angle
between any consecutive monomers. The circles represent the free rotation of
bond vectors about their predecessors.

Using the same argument, the longitudinal component of ;1 along r; 1 is equal
to bcos? 6 and so on. In this manner the correlation of a bond vector is trans-
mitted through the chain backbone in the form of its longitudinal component.

Generalizing the above approach, for any two bond vectors i and j
(r; - 1;) = b*(cos 6)i-il, (2.14)

As it can be inferred from Eq. (2.14), the correlation between any two bond vec-
tors decreases with increasing distance between them along the chain contour.
From Egs. (2.3) and (2.14), after some algebra we arrive at

>14cos@

R?) = .
< > Nbl—cos@

(2.15)

Once again note that the end-to-end distance satisfies the relationship (R?) o
Nb2. Using scaling arguments it can be shown that the distribution function for
R of a FRC has the same form as that of a FJC.

2.2.3 The Gaussian Chain Model

In this model the chain is divided into a number of equal segments. The seg-
ment length b is chosen such that there are no correlations between any two seg-
ments. All segments are assumed to be flexible and satisfying the Gaussian dis-

3 \*? 3R2
P(R,N) = (W) exp (_W> . (2.16)

tribution:



14 CHAPTER 2. POLYMER PHYSICS

As there are no correlations between segments, the total chain conformation is
simply the product of individual segment conformations. For a N segment chain,

this quantity is given by

N
Y({rx}) H¢ (2.17)

Z_

- (W) [ Lexr (‘@) (218)
3 \3N/2 N 3(R;— R )2

i=1

where {ry} = (11,12, -+ ,ry) is the conformational state of the chain and r, =
R; — R,_1. Here r; and R, are the bond- and position-vectors of segment i, re-
spectively. We can rewrite Eq. (2.19) as

3N/2
Y({rn}) = <%> exp (—%) , (2.20)
where
Up ({rn}) = 3;‘532 R~ Ry 1)%. .21)

From Egs. (2.20) and (2.21), it can be inferred that a Gaussian chain is equivalent
to a chain where consecutive monomers are connected to each other via spring-
like bonds. Any portion of the chain, between two segments n and m also behaves

as a Gaussian chain with distribution function

3(R, —Ry)?

e (2.22)

3 3/2
CD(Rn—Rm,n—m) = (m) exp

2.2.4 Limitations of Ideal Chain Models

As mentioned earlier, ideal chain models fail to account for long-range inter-
actions. Such interactions are present in real polymers. How important these in-
teractions are for a given polymer depends on the number of monomer-monomer
contacts. To understand this let us introduce the following concepts:

* Pervaded volume: It is defined as the volume spanned by a polymer in solu-
tion
V ~ RY, (2.23)
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where R is the size of the chain and 4 is the dimensionality of the system.
¢ Overlap volume fraction: It is defined as the volume fraction of the pervaded

volume that is actually occupied by the chain and is given by

. Nt
b~ (2.24)

where b is the bond length.

For an ideal chain, R ~ v/Nb? and substituting this into the Eq. (2.24), we get
¢* ~ N'~%/2_ The number of monomer-monomer contacts is equal to the prod-
uct of the chain length and the overlap volume fraction, N¢*. This also includes
the contacts between monomers that are separated by large number of monomers
along the chain contour. From Eq. (2.24), N¢* = N 2-d/2 n three dimensions this
quantity is equal to N'/2 which is a large number for long ideal chains. That is,
the number of monomer-monomer contacts is significant for long chains with

high overlap volume fractions. Ideal chain models are flawed in this limit.

2.3 Real Polymers

2.3.1 Excluded Volume Effect

In real polymers, when two monomers approach each other in space the steric
interactions prevent them from overlapping and this effect is known as the ex-
cluded volume effect. The steric interaction between two monomers is similar to
that between two inert atoms. At short distances there is a strong repulsion due
to Pauli’s exclusion principle and at large distances there is a weak attraction
originating from dipole-dipole interactions. The basic form of this interaction
between two monomers is plotted in Fig. 2.6.

In addition to monomer-monomer interactions there can be monomer-solvent
interactions present in the system. The form of the attractive tail in Fig. 2.6 de-
pends on the relative difference between these two competing forces. The trade-
off between these two forces determines whether monomer-monomer contacts

are more preferred over monomer-solvent contacts or the other way around.
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Figure 2.6: Potential energy between two monomers as a function of distance 7.
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Figure 2.7: Meyer’s function at different temperatures.
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The probability of finding two monomers r distance apart is proportional
to the Boltzmann factor exp [—U(r)/kpT], where U(r) is the energy of interac-
tion between the monomers. As expected, the probability of finding another
monomer close to the centre of reference monomer is diminishingly small and
increases sharply close to the radius of the monomer. The probability slowly de-
creases away from this point and attains a constant value 1 at long distances.
The Mayer’s function f defined as exp [—U(r)/kgT] — 1 is used to compute the
excluded volume. It is plotted in Fig. 2.7 for different temperatures (kg = 1).

At a particular T, the excluded volume is defined as the area under the curve
—f, thatis v = — [ fdr. In the high T limit, the excluded volume v has a large
positive value and becomes independent of the temperature. Owing to this the
system is referred to as athermal solvent. The reason for this is that a specimen
monomer does not distinguish between another monomer or a solvent particle
as it just experiences the hard-core repulsion. If the monomer-solvent attrac-
tion dominates the monomer-monomer attraction then it leads to a small positive
value of v and the polymer is said to be in good solvent conditions. As the tem-
perature increases, at some particular value © both the repulsive and attractive
contributions to the excluded volume cancel out each other. Thus, the chain acts
as an ideal chain at ®—temperature. For T < O, the attractive part of the inte-
gral dominates the repulsive part and hence monomers like to come close to each

other. This behaviour occurs under poor solvent conditions.

This means that, depending on the temperature, polymer chains behave dif-
ferently. Under the three different temperature domains discussed above the size
of the polymers vary significantly. In good solvent conditions the polymer chain
likes the solvent particles and thus its size increases compared to an ideal chain of
same length. On the contrary, in a poor solvent monomers come close and form
a coiled conformation. Interesting behaviour appears near the ©® —temperature
where the excluded volume becomes zero and the chain behaves as an ideal

chain.

2.3.2 Probability Distribution for R

A real polymer chain with excluded volume interactions can be thought of as
a Self Avoiding Random Walk (SAW). In a SAW, the next segment of the chain can
only proceed to a site which is not being occupied already. Such a chain is known

as a non-Markovian chain in that it has memory of sites it has already visited.

To calculate the probability distribution function for R, let us consider the to-

tal number of walks starting at the origin O and ending between R and R + dR
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and denote it by Wy(R)dR. This includes both random walks and SAWs. For a
chain with N segments on a lattice with coordination number z, the total number

of such walks that have an end-to-end distance R is
Wo({R}) = 2N, (2.25)

Out of these zN conformations the probability for a chain with N segments to
have an end-to-end distance between R and R + dR is

Ny o2 3\ 3R?
Wo(R) = zV47tR"dR (27{Nb2> exp (_W) . (2.26)

Eq. (2.26) includes all possible walks of N steps. By eliminating all the random
walks from Wy(R), we can obtain the number of SAWs with end-to-end distance
R.

For this purpose we use the excluded volume interactions. If v, is the excluded
volume of each monomer, assuming the chain is homogeneously spread in space,
the probability for a site being occupied by a monomer is v/ R3. Then, the prob-
ability for a site not being occupied by a monomer is 1 — v./R3. Two monomers
occupying a single site amounts to two segments overlapping. Since the number
of distinct pairs for a chain with N segments is N(N — 1) /2, the probability of

finding a walk with no-overlaps is

\N(N-1)/2
Pex(R) = (1 - %)
= exp [Wlog (1 — %)} . (2.27)

For N >> 1and v./R> << 1, the above equation reduces to

Por(R) = exp (_vzcllg) . (2.28)

Out of all possible walks given by Eq. (2.26), the number of walks that satisfy
the excluded volume condition in Eq. (2.28) is

W(R) = WO(R)Pex(R)

2 2
SR” - welN ) . (229)

N 2 3 32
— 2N47R2AR [ —— _3R% wN
z dnRd <2an2) xp ( NP

The first term within the exponent argument in Eq. (2.29) is the entropic con-
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tribution and the second term is due to the energetic contribution. To find the
equilibrium end-to-end distance we have to maximize Eq. (2.29) with respect to

1/5
1/2
R:R()(N UC) ) (2.30)

R and this gives us

b3

where Ry is the end-to-end distance for an ideal chain of the same length. The
chain dimensions increase significantly for a SAW chain (R « N3/%) compared to

an ideal chain (R o« N1/2). This effect is known as swelling of chains.

2.3.3 A Polymer Chain in a Melt is Ideal

Based on the concentration of polymers in solution, polymer liquids are classi-
tied as dilute, semi-dilute or polymer melt. In a dilute solution the concentration
of polymers is low and there are no overlaps between different chains. As the
polymer concentration increases, above a certain critical concentration chains in-
vade pervaded volumes of other chains. This results in significant overlaps and
the system is said to be in semi-dilute conditions. If the system is densely packed
with polymer molecules only without any solvent then it is referred to as a poly-

mer melt. We limit our discussion to this case only.

In a polymer melt, the system is densely packed with polymer molecules.
In such a scenario, how does an individual chain behave? Using self-consistent
mean field argument, each chain is surrounded by approximately equal number
of other chains. Therefore, each monomer of a representative chain experiences
the same amount of attraction and repulsion from its surroundings . Hence, on
average the chain experiences no net interaction. Therefore, a chain in a melt is
ideal. This situation is analogous to the @ —temperature case, and hence the melt

is often referred to as ® — solvent.

2.4 Radius of Gyration

The mean square end-to-end vector is not always the most useful quantity for
describing non-linear polymers, for example, branched polymers, ring polymers,
etc [46]. The most commonly used quantity for measuring the size of polymers is
the mean square radius of gyration. Moreover this quantity can be directly mea-
sured from light scattering experiments. Therefore, the radius of gyration (Ry)

allows us to test theoretical predictions against experimental results.

The mean square radius of gyration is defined as the average mean square
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distance of each monomer from the centre of mass of the chain

(R) =

Z| =

N
(Y (xi = Rem)?), (2.31)
=1

1

where () denotes ensemble average and

1
N !
1

M=

Rem = r;, (2.32)

I
—_

is the centre of mass position of the chain. For an ideal chain the following re-
lationship between the mean square radius of gyration and mean square end-to-
end distance holds

(R?)

2.5 Viscoelasticity

Polymer melts are viscoelastic materials, which means that when a stress is
applied they exhibit both solid-like (elastic) and fluid-like (viscous) behaviour.
This property is known as viscoelasticity. To elucidate this property we consider a
Hookean solid and a Newtonian fluid. The stress response of a Hookean solid is
given by:

z=-Gy, (2.34)

where T is the stress, G is the elastic modulus and % is the strain in the solid.

Similarly, the stress response of a Newtonian fluid is given by
T=-1 (2.35)

where 7 is the viscosity of the fluid and 4 is the shear rate.

Polymers exhibit both these properties. The simplest model which represents
viscoelasticity of polymers is the Maxwell model [56], which can be imagined as a
Hookean spring connected in series with a viscous dashpot. In such a series com-
bination, the stress on both elements is the same while the strain experienced by
the material is the sum of strains on each element. Using these concepts, differen-
tiating Eq. (2.34) and adding it to Eq. (2.35), we arrive at the Maxwell constitutive

equation for viscoelastic fluids:

Chs
z+ A§ = —17, (2.36)
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where A = 7/G is the relaxation time, up to which point the material behaves
like a solid and above which it flows as a fluid. However, unlike in the above
model, many polymers do not relax in a single relaxation time, i.e. they exhibit
multiple relaxation times [56].



Chapter 3
Molecular Dynamics

Statistical mechanics is an important branch of theoretical physics. It connects
the microscopic details of the system such as molecular masses, positions and
velocities to macroscopically observable quantities such as density, temperature,
pressure, etc [57]. Only a handful of problems in statistical mechanics can be
solved analytically. Most often complexity of the problem has to be simplified in
a theoretical model in order to obtain analytical solutions. Such a heuristic ap-
proach does not yield useful results all the time [58]. As a consequence, a direct

comparison between theory and experiment is not always possible.

Computer simulations have played a prominent role in filling the gap between
the theories and experiments [59]. Using computer simulations, in principle, theo-
retical models can be implemented without making any further approximations.
However, in practice some approximations are still made to improve the effi-
ciency of the algorithms. Despite these approximations, simulations can offer
more realistic models of experimental systems than theoretical methods in most
cases. Results obtained from simulations can be compared with both theoreti-
cal predictions and experimental results. A good agreement between theory and
simulation can validate the accuracy of the theory in explaining the underlying
phenomena. Similarly, a comparison between simulation and experiment can

validate the accuracy of the model.

Computer simulations also provide us with a framework for carrying out new
pseudo experiments i.e., subjecting the system under study to a new environment or
predicting the behaviour of a new system. For example, simulations can be made
of a system under extreme temperature or pressure [58]. Conducting such ex-
periments in reality may be impractical and/or expensive. In experiments, there

is a great emphasis on the sample preparation under the right conditions. This

22
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process is very difficult to control and as a result samples are prone to defects and
impurities. However this is not an issue in simulations. Computer simulations
grant us a great degree of control over the sample preparation process and the
sample can be as perfect as desired. Simulations have also become a testing tool
for experimental setups [60]. Today, many experimental and theoretical studies

are complemented with simulations.

Molecular dynamics [59] and Monte Carlo [59] methods are two of the most
commonly used simulation techniques that are available for studying properties
of materials. Molecular dynamics is a deterministic method. In this method,
particle positions are determined from force field calculations thus allowing dy-
namic evolution of the system to be followed. As a result, molecular dynamics
is the ideal choice for studying dynamic properties such as viscosity, diffusion
coefficient, etc. [59, 61, 62]. On the other hand, the Monte Carlo method is based
on exploring the energy surface by random sampling and is mainly designed to
study equilibrium properties. We have used molecular dynamics extensively in
this thesis work and shall restrict our discussion to this method only.

Molecular dynamics (MD) is a particle based simulation technique used for
studying equilibrium and dynamic properties in a wide range of problems, start-
ing from nonequilibrium properties of liquids, defects in crystals, nanoclusters,
biomolecules, electronic properties of materials, etc [58]. It essentially involves
solving Newton’s equation of motion for a system of particles on a computer,
allowing us to compute properties of interest through a representative time aver-

age.

MD is capable of providing detailed information about the system under in-
vestigation which might not be possible to obtain from experiments [61]. Infor-
mation on positions and velocities of the individual particles is difficult to retrieve
from real experiments whereas these data are readily available for analysis in a
MD simulation at all times. In experiments, the calculated physical quantities are
averages over the period of measurement and number of particles [61]. Molecular
dynamics provides us with instantaneous snapshots of the particle positions and
velocities which in turn are used to calculate various properties of interest either
by evaluating them during the course of the simulation or by storing the informa-
tion on positions and velocities for post-simulation analysis. In this manner, MD
relates microscopic details such as positions and velocities to macroscopic prop-
erties such as temperature, energy etc. albeit via the laws of statistical mechanics.
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3.1 Connection to Statistical Mechanics

In a classical system consisting of few particles, physical properties can be ob-
tained by solving equations of motion. Such an approach is highly impractical
as the system size grows and becomes impossible to apply to macroscopic sys-
tems (=~ 10% atoms). Fortunately, statistical mechanics provides an alternative
approach to study physical properties of macroscopic systems. In statistical me-
chanics, macroscopic properties of interest are extracted from microscopic details
via distribution functions that describe the probability of finding the system in a
particular microscopic state. A microscopic state or simply a state is the descrip-
tion of positions and velocities of all particles in the system. A collection of such
microstates which obey the same macroscopic properties is called an “ensemble”.
The observables are then calculated as ensemble averages i.e., an average over all
microstates. For example, for a system of N particles, with position coordinates
1,1y, -+, ry and momenta coordinates py, p2, - -, PN, in the canonical ensem-

ble, the average of a physical quantity A is given by

_ [ dpNarY exp(—BE)A(pY, 1Y)

4 JdpNdtNexp(—BE)  ’

(3.1)

where (—BE) A
exp (—
[ dpNdrN exp (—BE) (32)

is the probability of finding the system in a microstate {rN , pN y={r,1,- -, 1N,

P1. P2 -, PN} with energy E at temperature f = 1/kgT. The integration in Eq.
(3.1) is over all microstates in phase space.

In statistical mechanics the evolution of a N-particle system is conceptual-
ized in terms of its evolution in phase space. The phase space is a hypothetical
6N-dimensional space where 3N-dimensions correspond to the positions of con-
figurational space and the remaining 3N-dimensions correspond to the conjugate
momenta of momentum space. Therefore, each point in phase space, I', is a function
of {ry, 12, -+ ,tN,P1L, P2 - ,PN }. At equilibrium, the averages of any physical
quantities are calculated as ensemble averages using Eq. (3.1).

In the ensemble approach, physical quantities are calculated from the repre-
sentative sample microstates as described above. The microstates in this case are
several mental copies of the system with different microscopic details (different
particle positions and velocities) but obeying the same macroscopic conditions
such as constant energy, constant temperature, etc. Alternatively, physical prop-
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erties can also be calculated using time averages in place of ensemble averages.
At equilibrium, due to dynamic evolution of the particle positions and velocities,
the system explores different microscopic states in phase space under the same
macroscopic conditions. Then, time averages are calculated by computing aver-
ages of desired physical property over the phase space trajectory. This method of
calculating quantities is analogous to experimental measurements where proper-
ties of interest are calculated as averages over the time period of measurement.
In the limit of t — oo, time averages should be identical to the ensemble aver-
ages. This is known as the ergodic hypothesis and forms the crucial connection
between molecular dynamics and statistical mechanics [59]. Note the ergodic hy-
pothesis is valid only in an equilibrium situation [61]. In nonequilibrium studies,
the macroscopic state of the system changes in time due to external perturbations

and clearly the ergodic hypothesis is not applicable for such studies.

3.2 Implementation

Molecular dynamics in many ways resembles real experiments. Just like in
experiments, one has to prepare the sample under desired conditions, let the sys-
tem reach the desired state and then measure the properties of interest. Because
of this, a MD simulation is often referred to as a virtual experiment or computer
experiment. A typical MD simulation consists of the following steps:
Initialization.

Evaluation of potentials.
Solving the equations of motion under right conditions.

Time integration.

U

Obtaining time averages.

We now give a brief overview of all these points.

3.2.1 Initialization

Every simulation starts with an initial configuration. In molecular dynam-
ics, the initial configuration is specified by assigning positions and velocities to
all the constituent particles. Often in simulations particle positions are chosen
such that the initial configuration is close to the system’s equilibrium structure.
While lattice structures are straightforward intuitive choices as initial configu-
rations for solid systems, what about homogeneous fluids? Fortunately, lattice
structures such as the face-centered cubic (fcc) work just as well for liquid sys-

tems [63]. With liquids additional attention must be paid in choosing appropri-
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ate lattice constants so that the density is compatible with that of the system. In
the case of liquids, particles are placed on a lattice that closely resembles their
equilibrium structure. After assigning initial positions and velocities, the system
is equilibrated for a short period until it acquires its equilibrium structure. Dur-
ing this equilibration period the initial configuration on the lattice melts and the
liquid finds its equilibrium structure. Ideally, the initial configuration should be
such that the system under study relaxes to its equilibrium structure as quickly
as possible [59]. Introduction of a small random displacement about the initial
particles positions on the lattice has been shown to speed up the melting process
of the lattice structure and thus helps the system to reach its equilibrium struc-
ture faster [64]. The random displacement must be small enough to avoid any
possible overlaps between particles.

However, in the case of molecular systems it is also necessary to include infor-
mation regarding orientation of the molecular constituents [59]. Preparing initial
configurations for molecular systems may not be straightforward. Fortunately,
lattice structures with appropriate lattice constants work for molecular systems
also. Apart from using lattice structures another method for creating initial con-
figurations is by randomly placing molecules in a specific volume to realize the
system at a particular density. Due to its very nature, this approach may lead to
unphysical overlaps between different entities of the system [59]. However, the
system can be relaxed to its equilibrium configuration by the application of a suit-
able mechanism. We will introduce one such mechanism used in our simulations

in the next chapter.

Having assigned positions to all the particles, the next step is to select parti-
cle velocities according to the temperature of the system. Often, initial velocities
are assigned from the Maxwell-Boltzmann distribution in accordance with the
operating temperature [59]. Another method is to select velocities from a uni-
form random distribution [59, 61]. Normally, in this case velocities assume the
Maxwell-Boltzmann distribution rapidly [59]. We use this latter method for gen-
erating initial velocities. After choosing one of the above two methods to gener-
ate the initial velocity distribution, then the individual velocities are rescaled to
match the desired temperature. For equilibrium studies, it is important to ensure
that the total initial vector momentum is zero to avoid any drift of the system
[65]. Once the initial configuration of the system is set the next step is to define

interactions between various constituents of the system.
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3.2.2 DPotentials

The nature of a system is contained in the various types of interactions that
are present between its constituents. These interactions are implemented by in-
cluding the potential energy functions into the Hamiltonian of the system. De-
pending on the system under study and the properties of interest either classical
or ab-initio MD methods are employed. In our dissertation work, we only deal
with the classical form of molecular dynamics and hence limit our discussion to
this class of MD. Before we proceed to discussing potentials used in our work we

would like to briefly discuss the paradigm of classical molecular dynamics.

Complete description of intra- and inter-atomic interactions of any physical
system demands quantum mechanical treatment. The Hamiltonian representa-

tion of a system at atomic level can be written as [58]
%:%+%+%e+%n+%n- (3-3)

where % and 7 indicate the kinetic and potential energies, respectively and the
subscript ‘e’ refers to electrons and 'n’ refers to the nuclei. Using a quantum
mechanical picture also means implementation of complex potentials. As a con-
sequence, corresponding simulations will be computationally very intensive and
time consuming; limiting their application to small systems. Fortunately, a clas-

sical description is found to be adequate for many practical applications [59].

Classical MD operates under the Born-Oppenheimer approximation [66]. Ac-
cording to this approximation, since the mass of nuclei are much heavier than
electrons, the electronic motions quickly adjust to any change in the position of
nuclei. This allows us to decouple the Hamiltonian into electronic and nuclear
parts. Assuming that the electronic motions are much faster than the nuclear
motion, electronic motion averages out leaving the Hamiltonian as a function of
nuclear variables only [59]. In addition to this approximation, in classical MD, it
is also assumed that the interaction between particles can be described by poten-
tial energy functions. For the sake of simplicity, from here on, we refer to classical

MD simply as molecular dynamics.

The general form of a potential function of a many body system can broken
down as [59]

V= Zvl(ri) +Y Y oa(rir) 4+ Y )Y os(rirj ) 4o (34)

i j>i i j>ik>j
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The first term in the above equation is due to the external field. The second term
represents pair interactions between particles. The argument of this term usu-
ally reduces to the pair-wise distance r;; = [r; — r;|, between particles i and j.
The third term is due to triplet interactions and so on. In general, the potential
functions are truncated at the pair term and higher order terms are neglected as
they are computationally expensive. However, many body effects can be incor-
porated via pair potentials by replacing them with some effective potentials. This
approach is found to be adequate for many practical situations. The strategies
involved in constructing these effective potentials will be discussed later in the

Lennard-Jones potential section.

Most of the potentials that are used in simulations to describe the systems are
empirical in nature. Surprisingly, empirical potentials are found to be adequate
in modelling many particle systems. These potentials are constructed based on
experimental results, structural information, etc [67, 68]. For example, in a molec-
ular system the potential energy should a function of bond lengths, bond angles,
torsion angles, etc. The potential function of a simple molecular system has the

following form

D = Dyopg + q)angle + DPiorsional + Pron—vonded (3.5)

where the first term on the right hand side of Eq. (3.5) accounts for any fluctua-
tions in the bond lengths. The term &, models the penalty associated with any
deviations in the bond angles between different bonded entities of the molecules,
from their equilibrium values. The third term is the torsional angle term. Tor-
sional angle is defined as the angle between two intersecting planes where the
first plane contains the first three monomers of the quadruplet and the second
plane is constructed by joining the last three. Fig. 3.1 shows the schematic dia-
gram of bond- and torsion-angles. The final term in Eq. (3.5) is due to the interac-
tion between non-bonded entities. Note each of the terms in Eq. (3.5) correspond
to a term in Eq. (3.4).

Depending on the problem and nature of study, further approximations can
be made in addition to neglecting the quantum mechanical effects. Moreover,
our limited understanding of various types of interactions hinders us from con-
structing potentials that can precisely capture all features of the system. In many
cases, we are interested in the general behaviour of the system rather than the
exact, and application of detailed potentials that encapsulate all features is not
necessary in such situations. Therefore, in simulations, there is greater emphasis

on using “generic" potentials that capture essential physics while reducing the
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Figure 3.1: (a) Bond angle ¢, (b) Torsion angle 1. The blue spheres represents
monomers and the red cylinders represent the connecting bonds.

complexity of the problem and thus being computationally economical. In gen-
eral, the generic potentials commonly used in simulations describe the underly-
ing phenomena very well. One of the most commonly used generic potential is
the Lennard-Jones potential.

The Lennard-Jones Potential

The Lennard-Jones (L]) potential is one of the most successful and widely used
potentials in MD simulations. Its widespread use is due to its universal appeal in
correctly describing the pair-wise interactions between particles interacting via
van der Waals forces. The L] potential consists of two parts, (2) short-range re-
pulsion, and (b) long-range attraction. The short-range repulsion is due to Pauli’s
principle. When the atoms or molecules come very close to each other in space,
their electronic clouds start to overlap causing an abrupt increase in their poten-
tial energy which eventually pushes them apart. On the other hand, the long-
range attraction term is due to weak dispersion forces originating from the fluc-

tuations in dipole moments of molecules [63]. The 12 — 6 form of L] potential is

Py (r) = 4e [(5)12 - (3')6} , (3.6)

r r

given by

where ¢ and ¢ correspond to the interaction energy and the size of the particles
respectively, and r is the distance between the particles. The parameters ¢ and ¢
are system dependent. The 12 term represents the short-range repulsion and
the 7% term is due to the weak long-range attraction. The 12 — 6 form is the most
commonly used form of the L] potential because of the computational benefits it

has to offer [65]. The typical L] potential as a function of distance, r, is shown in
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Fig. 3.2.
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Figure 3.2: The Lennard-Jones potential.

Initial simulations using the L] potentials were carried out to study rare earth
gases such as Ar [59]. The L] potential successfully models these systems because
of their closed electronic shells and since particles interact mainly via dispersion
forces. But because of its ability to emulate such interatomic interactions the L]

potential is widely used as a model or test potential for many systems.

As mentioned previously, many body interactions are integrated into simula-
tions via effective potentials. We will explain this concept using the L] potential as
an example. The L] potential in its original form represents interactions between
two individual particles that are separated by a distance r as given by Eq. (3.6).
Many body interactions can be incorporated into this equation by fine-tuning
the parameters € and ¢ to match the experimental results as closely as possible.
The L] potential with these modified parameters no longer represents the interac-
tions between two individual particles but an effective interaction which includes

many body effects also [59].

3.2.3 Coarse Graining

In this dissertation, we deal with flexible linear polymer molecules. To model
these polymers we make use of the concept of coarse graining. The coarse grain-
ing methods are at the core of modelling polymers in computer simulations be-
cause of the several advantages they offer [15]. Here we present a brief introduc-

tion to the concept of coarse graining in the context of polymer modelling.
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Unlike simple fluids, polymer systems exhibit a range of length- and time-
scales [15]. The origin of these different scales stems from the connectivity (due
to bonds) between different constituents of the chains. To give an example, in
a long polymer chain, the bond length might be ~ 1 A, the persistence length
~ 10 A and the coil radius ~ 100 A [15]. The persistence length is defined as
the length over which the chain appears to be rigid. Different time-scales arise
from vibrations in the bond lengths, angles and torsional angles. Thus multiscale
modelling methods must be employed for studying properties of polymers as
they link salient features on different spatial- and (or) temporal-scales [16]. The
properties of the polymers are connected to different length- and time-scales and
hence depending on the properties of interest, certain degrees of freedom can be
excluded. Based on the scale of operation, molecular simulations can be catego-
rized into, (a) electronic level (quantum chemistry), (b) atomic level (force field),
or (c) monomeric level (mesoscopic models) [19]. Here we will only focus on
mesoscopic models which are of most interest to us.

The basic entity of a polymer chain which repeats itself along the chain back-
bone is called a monomer. The chemical structure of monomers, in general, is
very complex at the atomic level. Therefore, the potential energy functions will
be very complicated and cumbersome; and hence impractical to implement if we
took into account all the degrees of freedom. Such models are not only computa-
tionally expensive but also irrelevant for many studies. In mesoscopic models, a
monomer is treated as a single effective unit interacting with similar units, while
the chemical structure of the monomer is completely ignored [15]. This method
of reducing the complexity of a molecular system is known as coarse graining.
In some cases, further coarse graining may be desired and this is achieved by
grouping together numbers of monomers and treating the resultant as a single

monomer.

At first sight, one might feel that coarse graining methods are very crude ap-
proximations and will not be able to provide sufficient insight into the system
under study. Fortunately, many properties of macromolecules display universal
behaviour that is independent of the chemical structure of monomers [51]. There-
fore, coarse grained methods can be successfully applied at studying universal
properties of macromolecules. For example, the radius of gyration (Rg,) of a flexi-
ble chain is proportional to NV, where N is the number of monomeric units in the
chain and v is the exponent that depends on the solvent conditions. By exploiting
this aspect of polymers in simulations, effective potential energy functions are

defined to model the interaction between coarse grained monomers.
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3.2.4 The Finitely Extensible Nonlinear Elastic (FENE) Potential

This potential is based on the concept of a bead-spring model. In this model, a
polymer chain is represented as a string of beads (monomers) connected to each
other via spring-like bonds. The bead-spring models are the most efficient and
effective for modelling flexible polymer chains [15].

Figure 3.3: The bead-spring model. The blue spheres are the monomers
connected by bonds represented by springs (black).

In Fig. 3.3 we show a schematic diagram of the model. The most popular
potential based on the bead-spring model is the FENE potential [56, 69]. This
potential captures the essential behaviour of polymers thus making it one of the
most widely used in computer simulations of polymers [15]. In the FENE model,
the monomers are connected to each other via nonlinear springs and it is written

down as )
—2kr3In {1 - <%> } for r <y

00 for r > ry

Prene = (3.7)

where k, g and r are the spring constant, maximum allowed bond length and the

current bond length, respectively. The FENE potential is plotted in Fig. 3.4.

The FENE potential has obvious advantages over the harmonic-spring model
[15]. In the harmonic-spring model, the bond extension has Hookean behaviour
and does not impose any restrictions on the maximum extension a bond could
take. Hence large unphysical bond extensions are not prevented in this model
[15]. The FENE model rectifies this shortcoming by imposing an upper limit on
the maximum extensibility. For small bond extensions, the FENE potential be-
haves like a harmonic spring, but once the bonds are stretched to their maximum

limit it rises sharply. This prevents unphysical over-stretching of bonds.

However, excluded volume interactions are not included in the FENE model.
For this purpose, the L] potential is employed alongside with the FENE potential
to prevent monomers from overlapping. This combination adequately describes

the bond interactions for our purposes.
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Figure 3.4: The FENE potential as a function of bond extension.

3.3 Ensembles

The system under study can be exposed to various constraints depending on
the nature of the study. The phase space trajectory explored by the system is sub-
jected to the initial conditions and constraints under which it operates i.e., con-
stant energy (NVE), constant temperature (NVT), isothermal-isobaric (NPT), etc.
We will only discuss constant energy (NVE) and constant temperature (NVT) en-
sembles here which are relevant to our work. For detailed discussion on different

ensembles the reader is referred to sources [59, 61].

3.3.1 Microcanonical Ensemble (NVE)

In this ensemble, the number of particles (N), volume (V) and energy (E) of the
system remain constant. Systems that obey these constraints can be thought of as
“isolated systems” in that they do not exchange energy with their surroundings.
In this ensemble, the phase space evolution takes place due to exchange between
kinetic and potential parts of energy while the total energy remains constant. The
allowed microstates lie on an energy surface in phase space that satisfies the con-
stant energy criteria. In practice, a small window of energy E to E + JE is consid-
ered and therefore microstates lie in a hypershell of thickness 6E in phase space.
In this ensemble, the probability of finding the system in any of these possible

microstates is equally likely.

In an NVE simulation, the temperature of the system is directly calculated
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from its kinetic energy using the equipartition theorem which states that kinetic
energy per degree of freedom is equal to kgT /2. Implementation of this ensem-
ble in MD simulations is quite straightforward. By default, Newton’s equation of
motion conserves energy and the subsequent phase space trajectories generated

by solving these equations sample the microcanonical ensemble.

3.3.2 Canonical Ensemble (NVT)

The NVT ensemble is widely used in MD simulations because of its practical
relevance. In this ensemble, the number of particles (N), volume (V) and temper-
ature (T) of the system remain constant. In this ensemble the system is assumed
to be in contact with a much bigger heat reservoir and it is allowed to exchange
heat (energy) with the reservoir. At equilibrium, the system comes to thermal
equilibrium with the reservoir. The probability of finding the system in a partic-
ular microstate with energy E; is given by the Boltzmann distribution

o—Ei/ksT

P = (3.8)

ye E/RT

where the summation index j spans over all states.

The temperature of a system is derived from the kinetic energy which in turn
is a function of particle velocities. Therefore, by adjusting particle velocities the
temperature of the system can be controlled. There are several methods to realize
a canonical ensemble or a NVT simulation in molecular dynamics [59, 61]. Sim-
plest of all is the velocity rescaling method based on the equipartition theorem
[70]. In this method thermostating is achieved by rescaling the particle velocities
to meet the constant temperature condition. Since the kinetic energy is fixed in
strict terms, the momentum space cannot be explored properly [71]. This also

leads to unrealistic dynamics.

Broadly speaking thermostats can be categorized into two groups depending
on the method of implementation, (a ) stochastic, or (b) deterministic [71]. Though
there are several thermostats that are used to realize constant temperature molec-
ular dynamics we limit our discussion to:

1. the Langevin thermostat and

2. the Nose-Hoover thermostat

as they are relevant for the work presented in this dissertation.



3.3. ENSEMBLES 35

Langevin Thermostat

This thermostat is based on stochastic dynamics. The system particles are as-
sumed to be immersed in a fictious solvent. Solute (system) particles experience
two types of forces due to their interaction with the solvent particles: a frictional
force and a random force. The physical origins of these forces can be understood
in the following way. Due to the movement of solute particles in the solvent, the
solvent particles exert a frictional drag resisting the motion of solute particles.
This is modelled as a frictional force on the particles. During their movement in
the solution, solvent particles randomly collide with the solute particles and this
effect is modelled as a random force. The frictional and random forces are related
to each other via the fluctuation-dissipation theorem [72]. Including the frictional

and random force terms into the equations of motion yields
mi¥i(t) = —m;yiti(t) + Fi + R;, (3.9)

where F; is the force experienced by particle i due to its interaction with all other
particles. The first term on the right hand side of the above equation represents
the frictional drag on particle i with friction coefficient ;. The term R; is the
random force that mimics the effect of random kicks due to solvent particles on
the solute particle i. By adjusting the frictional and random forces while obey-
ing the fluctuation-dissipation theorem, constant temperature simulations can be

realized. The random force R; satisfies the following conditions [71]

* R; is a Gaussian process with zero mean. This approximation is valid if the
mass of the Brownian particle is much larger than that of the solvent particles.
This approximation leads to the following probability distribution for R;

W(R) = — 1o R2ARY (3.10)

(
(R) =0 (3.11)

Here < > denotes the ensemble average. Since on average a particle expe-
riences zero force, the random force term does not have any effect on the
sampled phase space. As a consequence, the generated trajectory represents

a canonical ensemble.

e It is also essential that R; has no correlation in time and space. This condition
is fulfilled by assuming that the correlation time between any two random col-

lision events is infinitesimally small. The above approximation results in the
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following autocorrelation relationship

(Ri(H)R;(t)) = 2mikpTyep0;;0(t — 1 ). (3.12)
In the above equation T, is the reference or desired temperature. The Kro-
necker delta function ¢;; models the spatial correlation and 6 (¢ — t') is the Dirac-

delta function to model time correlation, between particles i and j [73].

Because of its stochastic nature due to random collisions, the Langevin thermo-
stat allows us to use bigger timesteps. This feature is very useful, especially in
the study of polymer systems where the relaxation times can be very long [74].
Another advantage of this thermostat is that it permits thermostating individ-
ual degrees of freedom separately [73]. This feature is specifically useful in flow

simulations where it is desirable to only thermostat chosen degrees of freedom.
Nosé-Hoover Thermostat

This thermostat falls under the category of deterministic thermostats. In this
thermostat, the interaction between the system and reservoir is modelled by in-
troducing an additional degree of freedom [75]. This additional degree of free-
dom is represented by introducing an extra variable s. This variable controls the
heat flow in and out of the system. Since an additional degree of freedom is in-
troduced, this method is often referred as the extended system method. Along with
the system particle positions and momenta, equations of motion are also solved
for this extra degree of freedom s. Fluctuations in the variable s determine the di-
rection of heat flow [75]. The artificial variable s relates the real system timestep

(t) to the extended system timestep (6t') by the following relation
ot' = sét. (3.13)

From the above equation it can be inferred that the time-scale in the extended
system appears to be stretched by a factor of s. As a result of this scaling even
though the particle coordinates are the same in both the real and extended sys-

tems, velocities differ. The real and extended system velocities are related via
V; =5s1, (314)

where v; is the velocity of particle i in the real system and #; is the velocity in the

extended system.
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The Lagrangian for the extended system is

L = % imiszf% —®(r) + %Qsz — gkpTefIns. (3.15)
i=

The first two terms in the above equation represent the kinetic and potential en-
ergy contributions due to the real system. The third is the kinetic energy due to
the additional variable s with an effective mass Q and velocity s. The last term
is the potential energy due to s. Here g is the number of degrees of freedom and
Tyef is the temperature of the extended system (and desired temperature for the
real system). The form of the potential energy for the extended system is chosen
so that a canonical ensemble is realized [75]. The equations of motion are derived

from the Lagrangian (Eq. (3.15)) as

i = F/ms> — 25t /s (3.16)
N

Qs =Y mysit — gkpTyer/s, (3.17)
i=1

and the corresponding conjugate momenta

Pi = miszi‘i (318)
ps = Q5. (3.19)
The resulting Hamiltonian of the extended system
2

_ Pi
H = ; 2m;s?

2
p
+®(r) + ﬁ + gkpTyefIns (3.20)

is a conserved quantity and this property can be used as a test during the simu-
lation run. It can be shown that the average of a quantity in the extended system
samples a canonical ensemble [75]. The trajectories produced using this thermo-
stat are smooth, deterministic and time-reversible [71].

However, there is an inherent problem with Nosé’s formulism. The timestep
depends on the scaling factor s and fluctuations in s lead to unequal time inter-
vals during the course of the simulation which is not intuitive and makes this
method unsuitable for studying dynamic properties [76]. Hoover [76] proposed
a modified version of Nosé’s formulism that addresses this issue. By eliminating
the scaling factor s from the equations of motion, Hoover recovered the following
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set of equations:

i=p/m (3.21)
p = F(q) — Cp- (3.22)

Here ( is the friction coefficient given by
. N 2
C = (Z Pi /mi - ngTref> /Q (3.23)
i=1

The time evolution of s can be obtained by solving the second order differen-
tial equation given by Eq. (3.17). The solution of s can be oscillatory in behaviour
and as a result heat exchange between the system and the reservoir may take
place in a periodic fashion which is not desirable [77]. The heat flow can be con-
trolled by adjusting the thermal inertia Q. If the value of Q is too high then the
energy flow takes place at a slow pace. In the limit Q — oo, the system recov-
ers the conventional microcanonical ensemble. On the other hand, if Q is too
small it leads to weak, damped oscillations in energy which in turn lead to poor
equilibration [59].

3.3.3 Application to Nonequilibrium Molecular Dynamics

The discussion of the thermostats above is from the perspective of equilib-
rium statistical mechanics. All the simulations reported in this dissertation are
of nonequilibrium nature. In nonequilibrium mechanics, the system is moved
from one equilibrium state to another by the application of an external force and
during this process additional heat is produced. In many practical situations it is
desirable to remove this excess heat and thermostats can be used for this job [78].
Note, caution must be paid while using thermostats in non-equilibrium situations
to avoid any interference that may take place due to thermostating. For example,
in Poiseuille flow simulations, aimed at computing longitudinal velocity profiles,
it is desirable to be avoid thermostating the fluid in the flow direction, as it will
alter the dynamics in that direction.

3.4 Time integration

Once all interactions between constituents of the system are specified the next

step is to use them to solve Newton’s equation of motion. The equation of motion
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of any particle i of the system is
m;t; = —VCDZ', (3.24)

where m; is the mass of particle i and ®; is sum of all potentials acting on it. Sim-
ply solving the above equations of motion results in a microcanonical ensemble.
However, imposition of additional constraints such as the one discussed in the
previous section alter these equations. For example, the NVT simulation with the

Langevin thermostat modifies the equations of motion as in Eq. (3.9).

The dynamical evolution of the system is obtained by solving equations of
motion in time. Given the positions and velocities of all the particles at time
t = 0, the system evolution can be found out at any future time . Thus the
MD method is deterministic in nature. Though deterministic in principle, the
trajectory explored by the system in phase space can be different from that of
the actual trajectory because of approximations made at the algorithmic level to
improve the efficiency and precision errors that occur at the machine level. How-
ever, most often MD simulations are used for calculating thermodynamic/time
averages, in which case the errors can be reduced [61]. Thus it is not always nec-
essary to solve the equations of motion exactly provided the time average of the
approximate trajectories is close enough to that of the exact trajectories.

Numerically, the time evolution is achieved by discretizing the equations of
motion, which are second order differential equations, in time. Choosing a good
algorithm for time integration is important. These time integration schemes, be-
cause of finite differencing in time, invariably depend on the choice of timestep
used. Generally, time evolution is achieved by doing a Taylor series expansion
of particle positions and velocities by a small increment in time from ¢ to t + ét.
In practice, the Taylor series expansion is terminated after a certain number of
terms and this leads to truncation errors. Consequently, the order of accuracy of
the algorithm inherently depends on the timestep size §t. Other types of error
that occur in MD simulations are due to precision errors. Usually, the truncation

errors are the ones that need close attention [59].

There are several time integration schemes that are used in MD simulations
[59, 61]. We restrict our discussion to two of the most popular

1. Predictor-Corrector Method.
2. Verlet Integration.
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3.4.1 Predictor-Corrector Method

In this method [79, 59, 80], particle positions, velocities, accelerations and time
derivatives of acceleration are predicted by expanding them in the vicinity of
their current time t. Thus subsequently obtained values are referred to as pre-
dicted values.

17 (t+6t) = r(t) + v(t) 0t + (1/2)a(t) 6t* + (1/6)b(t) 5t + - --
vP(E46t) = v(t) +a(t) ot + (1/2)b 61> + - -

af(t+ot) =a(t) +b(t)ot+---

bP(t+6t) =b(t) + - - (3.25)

In the above equations, the superscript ‘p” denotes that they are predicted values.
The above set of equations do not yield proper time evolution of the system as
they do not depend on the force field calculations. The corrector step rectifies this

inadequacy.

In the corrector step, the accelerations a“(t + dt) are obtained by substituting
for the positions r?(t + 6t) into the equations of motion and solving for the ac-
celerations. These corrected accelerations are then used to estimate the error in

accelerations by subtracting a“(f + 6t) from a” (t 4 dt),
Aa(t +ot) = a“(t + ot) — aP (t + ot). (3.26)

The error estimate is then used to find the corrected values

r°(t) = rP(t) + coda(t + ot)
ve(t) = vP(t) 4+ c1Aa(t + ot)
a’(t) = aP(t) + coAa(t + dt)
b (t) = bP(t) + czAa(t + ot) (3.27)

where ¢, c1, ¢p, c3 are constants. It may be necessary to carry out several itera-

tions at the corrector level to acquire the required degree of convergence.

This is a disadvantage since often the most time consuming part of a MD algo-
rithm is the force field calculations. Several iterations at the corrector step means
several force field evaluations. Thus multiple force field calculations at the cor-
rector step severely hampers the progress of the simulation. This is the major
drawback of the predictor-corrector methods. Another disadvantage with these
algorithms is that they are not time reversible.



3.4. TIME INTEGRATION 41

3.4.2 Verlet Algorithm

By far the most widely used method for performing time integration in MD
simulations, was proposed by Verlet [81]. Let r(t), v(#) and a(t) be the positions,
velocities and accelerations of the particles at time ¢t. By doing a Taylor series

expansion for the positions r in the vicinity of ¢, one arrives at:

r(t+0t) = r(t) +v(t) 6t + (1/2)a(t) 6t> + (1/6)b(t) 5> + O(t*) + - - -(3.28)
r(t —0t) = r(t) — v(t) 6t + (1/2)a(t) 6> — (1/6)b(t) 583 + O(+*) + - - -(3.29)

Here 6t is the timestep size. Adding the above two equations yields
r(t+6t) = 2r(t) — x(t — 5t) + a(t) 62 + O(ot?). (3.30)

By substituting for the positions at t and ¢ — 6t and accelerations at ¢ into Eq.
(3.30), we obtain positions at the next timestep t + Jt. The accelerations a(t) are
computed from Eq. (3.24). This algorithm is accurate to order 5t*. This gives us

the freedom of choosing relatively large timesteps.

Using Egs. (3.28) and (3.29), we can calculate the velocities at time t. Though
velocities are not part of the time-stepping process, they do play an important role
in evaluating quantities like the kinetic energy which can be used to test for en-
ergy conservation, for example. By subtracting Eq. (3.28) from Eq. (3.29), we have

r(t+6t) —x(t —dt)

v(t) = o . (3.31)

This equation is correct to an order of 6t>. Thus, choosing large timesteps can
lead to deviations in the total energy at long times [82].

The Verlet algorithm has several advantages over the predictor-corrector meth-
ods. The time advancement is purely a function of particle positions, this reduces
the amount of memory required. From Eq. (3.31) it can also be inferred that time
reversal is possible in this method. Unlike in the predictor-corrector methods ad-
vancement of positions occurs in one step in the Verlet method. This considerably
reduces the computational effort required. The Verlet algorithm also shows good
energy conservation even for long timesteps and also conserves linear momen-

tum for conserved forces [59].

However, the Verlet algorithm does not work particularly well in computing
velocities because it is only accurate up to O(t?). Consequently large timesteps

can cause fluctuations in velocities, kinetic energy and total energy at short time-
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scales. There have been several algorithms proposed to rectify this problem and
the most well-known being the velocity Verlet algorithm [83]. In the Verlet al-
gorithm, positions and velocities are evaluated by advancing in half timesteps.
These quantities are then used in computing the values of the positions and ve-
locities of the particles at future time ¢ 4 §t. After some simple algebra, the final

form of time integration equations are

r(t) + v(t) 5t + (1/2)a(t) 61> (3.32)
v(t) + (1/2){a(t) +a(t + 6t)}. (3.33)

r(t + ot)
v(t+ot)

This algorithm is also a two step process like the predictor-corrector methods but
differs in that it involves calculation of variables r, v and a at times t and t + Jt.
But this additional computation results in a much more stable numerical solu-
tion. Ultimately, this leads to much better phase space trajectories, good energy

conservation and thus makes it the most widely used time integration method in
MD [59].

3.5 Tools

Practical implementation of MD simulations involves application of some ad-
ditional tools to improve the efficiency of the algorithm. In this section we discuss
some of the key tools that are an integral part of a typical MD simulation.

3.5.1 Periodic Boundary Conditions

Molecular dynamics can be applied to study the behaviour of both small and
large systems. Properties of systems with a few hundreds to thousands of parti-
cles, like nanoclusters, nanoparticles etc., can be studied with reasonable accuracy
using the MD method discussed so far. However, as the system size increases it
becomes computationally very expensive to conduct MD simulations thus com-
puting bulk properties becomes difficult. This problem can be overcome by the
application of periodic boundary conditions [59].

A system with periodic boundary conditions is replicated infinitely in all di-
rections. The central cell defines the actual simulation domain and all other sur-
rounding (ghost) cells contain images of the particles that are within the central
cell. The coordinates for these images are obtained by adding a simple transla-
tional vector to the original coordinates. Images of the particles interact in the
same manner as the original particles they represent. If a particle i moves from
the central cell to one of its neighbouring cells, all its images move in the same
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fashion and one of the images of the particle enters into the central box from the
opposite side. Thus the density of the system is preserved at all times. Therefore,
the system is infinitely big in size to calculate bulk properties while we only solve
equations of motion for the particles that are present in the central cell.

The periodic boundary conditions must be applied with some precautions.
All edge lengths of the simulation domain must be larger than any correlations
that may be present in the system. If any of the correlation lengths present in the
system are longer than the edges, they will be suppressed because of the periodic
boundary conditions. Additional information on various circumstances in which

the periodic boundary conditions fail can be found in [59].

3.5.2 Limiting the Interaction Range

Most potential energy functions have an infinite interaction range, but in most
cases the potential energy becomes diminishingly small at large distances. There-
fore, one can impose a finite radius for interactions thus giving a more efficient
way of implementing these potentials in simulations. The value of the cut-off
radius must be large enough to encompass all important contributions. But the
truncation at a finite distance causes abrupt jumps in the force and energy. This in
turn effects the conservation of energy [65] which is a crucial test in many simula-
tions. This problem can be overcome by shifting the potential so that the potential
and force go to zero smoothly at the cut-off radius. The shifted potential energy

has the following form:

CID(r) _ CI)(r) - (D(rcut) - [V - rcut] <l%)>rcm for r < reut (3.34)

0 for r > reyt.

When applied in combination with periodic boundary conditions, one must
ensure that the range of interaction () is always less than half of the smallest

edge of the system. This prohibits interaction of particles with their own images.

3.5.3 Neighbour-list Building

The most time consuming part of a typical MD simulation are the force field
calculations. Most simulations use pair potentials to model the interactions and
this involves finding neighbours that are within a certain cut-off radius from the
central particle. Assuming that the potential is pair-wise additive, for a system of
N particles, O(N?) pair distances must be computed. This number grows inor-

dinately large with a modest increase in N and becomes impossible to deal with.
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Moreover, out of this only a small fraction have significant contributions in the

calculations.

Hence we make a simplification. Each particle interacts only with other par-
ticles which are within the cut-off distance () from its centre. Special attention
must be paid to ensure any particle i only interacts with another distinct particle
j of the system or an image of j from one of the neighbouring ghost cells, j’ but

not with both. This is called the minimum image convention.

In liquids, the local environment around particles does not change signifi-
cantly over a small number of timesteps. That is, neighbouring particles around
any particle change only over sufficiently large periods of time. This aspect can be
utilized to decrease the amount of computation devoted to calculating the O(N?)
pair distances at every timestep. Verlet [81] proposed a neighbour-list building
technique based on the above observations. In this method, in addition to the in-
teraction sphere (in 3D) of radius 7., an additional skin, 7g;,, is considered in the
neighbour-list construction. Each particle then consists of a neighbour-list that in-
cludes particles within the radius r¢,¢ + 7, surrounding it. The skin depth 7y,
accounts for any particles that may enter the interaction region at a later time and
hence the force field evaluations will not miss any particles that may contribute to
it. Therefore, it is quite important to choose the correct 7, value to ensure that
no interactions are missed out. Once the neighbour-list for all particles is con-
structed, for the next few timesteps, force field evaluations just use the neighbour-
list of the representative particle to calculate pair distances. This list has to be re-
built every certain number of timesteps to account for any local changes that may
occur and to yield proper dynamics. There is a fundamental connection between
the frequency of the neighbour-list build and the skin distance, 7. If 7, is too
small, the skin region is going to be narrow. Thus there is a greater probability for
the constituents within the r.,s + 74, region to change considerably over a short
period of time and therefore demanding more frequent neighbour-list building.

3.5.4 Parallelization

So far we have only discussed MD simulations that can be run on single pro-
cessors. This form of computing is known as serial computing. Even with the most
powerful processors it is difficult to study large systems because of the compu-
tational times and memory involved grow very large [84]. Also, in simulations
relating to nonequilibrium studies the macroscopic state of the system changes
slowly requiring long periods of time to attain steady state [84]. The dynamics
of systems such as proteins, biomembranes and polymers take place over long
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periods of time. In all the above mentioned instances serial computing can be
computationally very demanding. These issues can be addressed using parallel

computing [85].

With the appearance of modern supercomputers such studies are feasible to-
day. Supercomputers are multiprocessor systems where the number of proces-
sors can be tens to hundreds of thousand. These machines are designed to tackle
large scale tasks. The task at hand is divided into a number of sub-tasks and each
of them are assigned to one of these processors. Different processors handling
different sub-tasks exchange information needed to perform the operation as a
whole. This method of distributing a single task to multiple processors is known

as parallelization.

Molecular dynamics simulations are inherently parallel in nature [84], making
MD problems ideal for high performance supercomputers. With the ever increas-
ing power of supercomputers some of the computer experiments that were not
possible previously have been revisited. As an example, a recent MD study of
cubic copper of 3.2 x 10! atoms has been reported [86]. Such a study would not
have been possible without parallelization techniques. In MD, parallelization can
be accomplished in one of the three ways, (2) atom decomposition, (b) force de-
composition, and (c) domain decomposition [84]. All our MD simulations were
carried out using LAMMPS [87] package which uses the domain decomposition

method for parallelization, hence we restrict our discussion to this method only.

In the domain decomposition, the simulation domain is divided into a number
of sub-domains each of which is assigned to a processor. Each processor contains
all information regarding the particles of the sub-domain it represents. The force
tield calculations are performed simultaneously on all processors. Each processor
carries out these calculations on the particles it contains. This method of decom-
position works particularly well for short-range potentials. Since most of the par-
ticles that are needed to perform force-field calculations are present in the same
sub-domain i.e., same processor, little communication is required between pro-
cessors. However, a small number of particles from neighbouring sub-domains
(processors) surrounding each sub-domain can potentially contribute to the force
field calculations. If a particle moves from one sub-domain to another in the next
timestep, its corresponding information is also passed from its previous proces-
sor to the current processor. Ideally, we would like the supercomputer to devote
most of its productive time to carry out the calculations while minimizing the
communication between the processors. To improve the efficiency of calculations
performed for particles that lie close to the boundary of the sub-domains, a small
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strip surrounding the sub-domain is considered (see Fig. 3.5). The information
of all ghost particles belonging to this strip are stored alongside the constituent
particle information on every sub-domain. Now, since each processor also has
information on potential neighbours that reside on neighbouring sub-domains
(processors), which can contribute towards force-field calculations performed on
the processor, additional interprocessor communication is avoided. The inter-
processor information exchange is achieved using the message passing interface
(MPI) [88].

boundary region
»in the adjacent
processor sub-domains
representing
a particular
sub-domain

__> i
{6}
—1—

\

particle exchange

Figure 3.5: Domain decomposition method of parallelization. Each cell repre-
sents a sub-domain assigned to a single processor. The red strip indicates the
region around the sub-domain belonging to neighbouring sub-domains. Particle
information within the strip is made available to the sub-domain to improve
the efficiency the algorithm. The green circle shows the particle exchange
mechanism between processors.



Chapter 4
Flow over Patterned Surfaces

The study of fluid flow at micro- and nanoscales is fascinating for a variety of rea-
sons. From a fundamental point of view the question that arises is, how does the
fluid respond when confined to such narrow dimensions? However, it is the po-
tential applications of this science that attracts the bulk of the research in this area.
One of the major goals of microfluidics is to shrink a whole laboratory which is
capable of performing chemical and biological analysis onto a chip [20]. Minia-
turization of this sort is believed to revolutionize the way chemical and biological
processes are performed in a similar way to how integrated circuits transformed
the world of computing [21]. Among several advantages of this technology in-
clude the need for small volumes of reagents, high sensitivity, high throughput
via automation, robustness and portability, to name a few [89, 24, 22]. Applica-
tions of this technology would extend to many areas [20, 21, 90, 91].

Flows in micro- and nanofluidic devices are predominantly laminar in nature.
Though laminar flows are desirable in some situations [23], they pose severe lim-
itations in many microfluidic applications that require rapid mixing. Due to the
laminar nature of the flows, mixing takes place only by virtue of diffusion in these
devices. Mixing by such means usually requires long length- and timescales,
which makes these devices unsuitable for many practical applications [21, 23].
Furthermore, diffusion driven mixing can be even slower for macromolecular
systems, on the order of tens of minutes in some cases [24]. One of the primary
goals of microfluidic devices is to be able to perform the biochemical analysis
such as drug delivery, cell activation, protein folding, etc. and these processes
require fast mixing [89, 22]. Thus, there is a need to investigate better mixing

mechanisms for macromolecular fluids.

Stroock et al. [92] showed that by inducing transverse flows, using patterned
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groove surfaces, mixing rates can be improved. Transverse flows increase the
path traversed by the fluid streamlines, for the same channel length, compared
to pure laminar flows, thus reducing the required channel lengths for mixing.
It has been shown that such transverse flows can be induced using patterned-
slip surfaces. Hendy et al. [25] have studied the flow of Newtonian fluid over
patterned-slip walls, periodic wetting (small slip) and non-wetting (large slip)
regions, analytically and compared the results with MD simulations. They con-
cluded that flows over such patterned-slip surfaces enhance mixing significantly.
Ou et al. [26] exploited this effect to create a microscale device based on hy-
drophobic ridges that was found to enhance mixing of an aqueous dye. Pereira
[1] has carried out a perturbation analysis of a continuum theory for a viscoelas-
tic fluid with patterned-slip boundary conditions along the lines of Hendy’s [25]
work. From this study he found that mixing is enhanced for shear-thickening
fluids but suppressed for shear-thinning fluids, when compared to Newtonian
fluids. Furthermore, by applying a time dependent pressure it has been shown

to produce an enhancement of the transverse flows!

Here we study the mixing behaviour of polymer flows over patterned-slip
surfaces using MD and compare the results with the continuum theory predic-
tions of Pereira [1]. This chapter is organized as follows. In section 1 we discuss
various mixing methods that are used in microfluidic applications. In section 2
we discuss some of important properties of micro- and nanoflows that are rel-
evant to our work and in section 3 we introduce the concept of slip length. In
section 4 the simulation setup and initial configuration generation are discussed.
In section 5 we carry out Couette flow simulations to determine the nature of the
fluid. In section 6 the slip length dependence on the wall-fluid interaction is pre-
sented. Finally, in sections 7 and 8 we study the mixing behaviour in a flow over
patterned-slip surfaces under different body force conditions. The main findings

from this work are summarized in section 9.

4.1 Mixing Methods

To achieve rapid mixing, the aim will be to maximize the interfacial area be-
tween different streams in as short a time as possible. Clearly, diffusion driven
mixing alone cannot meet this demand and alternative mechanisms must be de-
veloped to promote transverse flows to speed up mixing. Basically, there are two
types of micromixers that are usually employed for mixing in microfluidic de-

vices:

* Passive Mixers: These micromixers promote mixing via molecular diffusion or
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chaotic advection [89], using the topology of the device. These mixers do not
consist of any moving parts nor use any external sources of energy for mixing
purposes [93]. The advantage of passive micromixers is that they do not wear
out easily as they do not have of any moving parts. The drawback of these

devices is that they cannot be controlled externally, and hence are inflexible.

* Active Mixers: These micromixers can be classified into two groups depending
on whether or not they contain any moving parts. Micromixers that use micro-
stirrer bars, piezoelectric membranes, etc. [93], use moving components, fall
under the first category. The second type of active micromixers use perturba-
tions in external fields such as pressure, temperature, electrohydrodynamics,
etc. [89]. Active micromixers offer a great deal of flexibility in comparison to
passive mixers since they can be controlled externally. However, it is difficult
to integrate these mixers into microfluidic devices. Moreover, due to friction

generated from moving parts they wear out over time.

A detailed discussion on the various types of passive and active micromixers is
presented in the review article [89]. We study a hybrid micromixer that has fea-
tures of both passive and active micromixers, to enhance the mixing in polymeric
fluids. Before venturing into the details of the method employed for this purpose,
we think it is appropriate to provide some insight into the underlying physics be-
hind this method.

4.2 Micro- and Nanoscale Flows

The area of microfluidics deals with the study of fluid flow and its manip-
ulation on the length scales of micrometre to millimetre [23]. At these scales,
fluids act quite differently to their macroscale behaviour. When scaling down
from the macro- to microscale, certain phenomena which have negligible effect
at the macroscale become more important [21], changing the fluid behaviour at
the microscale. Therefore, in order to develop microfluidic devices it is essential
to understand the various phenomena that are important at these length scales.

Here we introduce some of these aspects which are relevant to our work.

4,21 Laminar Flow

Mass transport in microdevices is viscous dominated and inertial effects are
negligibly small [21]. Typically, in fluid dynamics the flow regime is determined

as laminar or turbulent based on the Reynolds number Re. The Reynolds number
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is defined by
_ pvL

I
where p is the fluid density, v is the characteristic fluid velocity, L is the charac-

Re (4.1)

teristic length scale, and yu is the fluid viscosity. Most microflows have low Re,
which means that the flow is basically laminar. As a consequence, streamlines do

not cross each other which is a drawback for mixing.

4.2.2 Surface Area to Volume Ratio

At the macroscale, the surface area to volume (SAV) ratios are small enough
for surface effects not to influence the flow in a major way. But as we scale down,
the SAV ratio increases, thus surface effects become ever more prominent. This
quantity becomes very large at microscales and the surface forces start to dom-
inate the body forces [21, 91, 23]. This property can be utilized to advantage to

overcome some of the limitations posed for fluid flow at small scales.

4.3 Concept of Slip Length

The standard text book assumption for fluid flow at the fluid-solid interface
is the validity of the no-slip boundary condition [94]. According to this condition
the velocity of the fluid at the wall-fluid interface is equal to the velocity of the
wall itself, while this condition is found to be adequate for describing macroscale
flows, its validity at small length scales has always been debated [94, 95, 96]. In
recent years, experimental and simulation studies at the microscale have reported
violation of the no-slip boundary condition i.e., they reported finite slip of fluids
at the wall-fluid boundary [97, 98, 99, 100, 101, 102].

The phenomenon of slip is quantified in terms of slip length, which is defined
as the distance in a direction perpendicular and into the wall where the linear
extrapolation of the longitudinal component of the fluid velocity at the fluid-wall
interface becomes zero. The concept of slip length is illustrated in Fig. 4.1.

The property of slip can be used to address some of the shortcomings of
micro- and nanoflows. One of the issues with micro- and nanoflows is that at
these length scales the resistance to the flow is quite high. It has been demon-
strated that the slip phenomenon can be effectively used to tackle this problem
[99, 103]. Thus there have been studies exploring various conditions under which
large slip lengths can be actualized. Some studies have reported microscale slip
lengths [97, 98, 104]. The slip length has been found to depend on several factors
such as surface roughness [103, 105], wettability [105, 106], shear rate dependence
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Figure 4.1: The longitudinal velocity profile u,(y) in a Couette flow where the
upper wall of the channel is moving in the x direction. The linear extrapolation
of ux(y) at the liquid-solid boundary intersects the plane of reference ¢ distance
into the wall. Here 0 is called the slip length of the flow.

[100, 107, 108], etc.

4.4 Molecular Dynamics Simulations

Simulation Setup

A coarse grained polymer melt was created by modelling polymer molecules
as bead-spring chains with N = 20 monomers each. The polymer melt was con-
fined between two atomistically flat walls in the xz plane with periodic boundary
conditions in x and z directions. The direction of flow was along the x axis. Each
wall contained three atomic layer deep fcc (100) atoms. The wall atoms were
fixed in space throughout all the simulations reported in this chapter, to reduce
the computational effort. Though fixing the wall atoms is unrealistic, it should
not have any major implications on results as all simulations were performed un-
der the same conditions. The schematic representation of the simulation setup is
shown in Fig. 4.2. Throughout this thesis all the physical quantities are expressed
in reduced Lennard-Jones units.

The interaction between the wall atoms and monomers was modelled using
the shifted L] potential (combining Egs. (3.6) and (3.34)) with the cut-off radius
reut = 2.50. Density of the walls was chosen to be 0.7073. The interaction be-
tween bonded monomers was modelled using the FENE potential with ry = 1.5¢
and k = 30ec—2. This set of parameters prevents unphysical events such as bond-
breaking and chain crossing [109]. In addition to the FENE potential, the ex-
cluded volume interactions between bonded monomers was included with the
help of the shifted L] potential with ¢ = 1.00 and &7y = 1.0e. These param-
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+w

Figure 4.2: The xy cross section of the simulation setup is shown here. The
polymeric fluid (blue-coloured particles) is placed between atomistic walls
(gold-coloured particles ) at Fw.

eters are fixed throughout all the simulations. The density of the melt was at
pf = 0.90~3. The mass of both fluid and wall particles were set to 1.0m.

We perform isothermal simulations where the temperature of the system was
maintained at T = 1.0kgT /¢ using the Langevin thermostat. Since the flow is in
the x direction and we are interested in the transverse flows (u,), thermostating
these components can lead to undesirable results. Hence only the z component of
the equations of motion was thermostated to avoid any interference with the flow
[110]. The Langevin thermostat provides us with the possibility of thermostating
the individual components of equations of motion. Therefore, the equations of

motion governing the system are given by

BCIDZ-J-
mi;=—)_ , (4.2)
L g o
aq)i]'
my; = — , (4.3)
l ; 9yi
mz; + mlz; = — Y az%] + f;, (4.4)
1

i#j

where I' = 1.07 ! is the friction constant which represents the viscous damping
due to the drag experienced by a fluid particle resulting from its motion through
the Langevin solvent; and f; is the random force acting on particle i that mimics

the effect of random collisions the particle undergoes with the fictious solvent
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particles. Here T = v/ mo? /¢ is the characteristic time scale of the simulation. The
equations of motion were integrated using the velocity Verlet algorithm with a
timestep At = 0.0017. All the physical quantities are expressed in the reduced L]

units.

Initial Configuration

The initial configuration of the melt was generated by randomly placing poly-
mer chains within the simulation domain i.e., between the walls discarding the
excluded volume interactions. The bond length between monomers was set to
b ~ 0.97c. Due to the random arrangement of the molecules in the simulation
box, the initial melt consisted of highly overlapping monomers which is clearly
unphysical. Therefore, a mechanism is required for which an equilibrated melt

without any overlaps can be realized before starting the actual simulation.

There are several methods for which this can be achieved and we use the soft
potential approach proposed by Auhl et al. [111]. In this method, the interaction
between bonded monomers was modelled by the FENE potential in conjunction
with the soft potential, while the non-bonded monomers interacted only via the
soft potential. The soft potential is given by

A1+ cos (7tr/7es)] for r < rg
cI)sofi.‘(r) =
0 for r > rg

where r.s = 21/6¢ is the cut-off radius for the interaction. The prefactor A is the
amplitude of the interaction energy whose value increases in time from 0.0 to 60.0
during the equilibration period of 507. The systematic increase in A ensures that
the distance between overlapping particles increases in a gradual manner. The
soft potential as a function of A (or time) is shown in Fig. 4.3. Particles expe-
rience a large repulsive force at short distances and the magnitude of this force
decreases with distance becoming negligibly small around r ~ 1.0c, which is ap-
proximately the inter-particle (between both bonded and non-bonded) distance.
As the magnitude of A increases in time so does the potential and this ensures a
smooth transition of the system from a highly overlapping state to a well equili-
brated melt.

During this equilibration period of 507, the equilibration process was moni-
tored by recording per monomer potential energies and the results are shown in
Fig. 4.4. From this plot we can infer that the time period of 507 is sufficiently long

for the system to attain an equilibrium state. After this time period the interac-
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Figure 4.3: The soft potential as a function of distance r for various interaction
strengths A.
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Figure 4.4: The average potential energy per monomer (V) as a function of time
during the equilibration process. At initial times the potential energy sharply
rises attributed to the overlaps in the system. After this time it starts to decline
gradually and eventually attains a constant value around 407.

tion between monomers (both bonded and non-bonded) was switched from the
soft potential to the shifted L] potential. Note the FENE potential between the
bonded monomers stays intact. Further equilibration was carried out using the
L] potential, first for 50T with r, fF = 21764 then for another 50T with reff = 2.50.
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Here the subscript cf f denotes the cut-off radius for monomer-monomer interac-
tion in the L] potential. This process was the first step for all the MD simulations

polymer melts in this dissertation.

4,5 Characterization of The Fluid

Based on their rheological properties fluids can be categorized as simple or
complex. Simple fluids obey Newton’s law of viscosity which states that shear
stress is proportional to the applied shear rate, IT = 10du /dy, where I1is the shear
stress. The constant of proportionality 7 is known as the viscosity of the fluid and
it is independent of applied shear rate. For complex fluids, on the other hand,
the viscosity is not a constant but a function of applied shear rate and can also
be time-dependent in some cases [56]. As a result of this, the stress versus shear
rate response is non-linear, for complex fluids, which is why they are also called
non-Newtonian fluids. Non-Newtonian fluids can be classified into three major
categories:

¢ Pseudoplastic: The viscosity of the fluid decreases with increasing shear rate
and attributing to this fact these fluids are also called shear-thinning fluids.

¢ Dilatant: Fluids, for which the viscosity increases with increasing shear rate

are known as dilatant or shear-thickening fluids.

¢ Bingham plastics: These fluids demonstrate solid like behaviour below a crit-

ical shear stress and above which they start to flow with constant viscosity.

We now examine the viscous behaviour of the polymer melt under study using

the Couette flow simulations.

4.5.1 Couette Flow

The equilibrated melt was obtained by using the same procedure as was dis-
cussed in Sec. 4.4. The L] interaction parameter for the wall-fluid interaction was
set to e, = 1.0e. The interaction between bonded monomers was described by
the FENE potential. Both bonded and non-bonded monomers interacted via the
L] potential with r¢,; = 2.50.

The Couette flow was realized by applying a tangential velocity to the upper
wall in the positive x direction while the lower wall remained stationary. The
velocity of the upper wall was increased in incremental steps of AU = 0.10/7,
until the wall velocity (or shear rate) has reached the desired value. After each
increment of AU, the system was equilibrated for 107 to let it come to thermal

equilibrium. Upon attaining the final value for the wall velocity, U, the system
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was equilibrated for another 5007 to reach steady state. This time period was
found to be sufficiently long enough for the system to reach steady state. The
steady state of the flow was confirmed by monitoring the potential energy, which
attained a constant value during this period.

After reaching the steady state, we start making measurements on the sys-
tem. Here we report some of the observations from these simulations. First, we
compute the longitudinal velocity profiles as a function of shear rate. For this pur-
pose, the simulation domain (between the walls) was divided into bins of length
Ay = 0.20 in y direction. At each timestep, fluid particles were mapped into one
of these bins based on their y coordinates. Then an average velocity for each bin
was evaluated as: ;

E Ui
(i (y, y + Ay)) = =—, (4.5)

where the summation is over all the particles n which lie between y and y + Ay.

To minimize thermal noise further time averaging of this quantity was done for
1037. The thus obtained tangential velocity profiles for different U are shown in
Fig. 4.5. The magnitude of the velocity profiles was found to be proportional to
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Figure 4.5: Longitudinal velocity profiles for different upper wall velocities U.
The velocity profiles are linear except for slight curvature up to a distance of o
away from both inner wall surfaces. The magnitude of the velocity profiles is
linearly proportional to U.

the applied shear rate (7 = U/2w, where 2w is the separation between the walls
(See Fig. 4.2)).
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A finite slip was noticed close to both walls. Respective slip lengths were ex-
tracted by doing a linear extrapolation of u,(y) into the wall and the distance at
which u,(y) become zero was identified as the slip length at that particular shear
rate. The results are shown in Fig. 4.6. The trend in the slip length behaviour,
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Figure 4.6: The slip length as a function of shear rate.

as a function of shear rate, is in qualitative agreement with the previous studies
[108, 112, 113]. However, a quantitative comparison is not possible as they were
carried out under different conditions. The shear flow simulations are often crit-
icized for using unrealistically high shear rates at which the heat generated per
volume is quite large. Our calculations show that this is not the case for polymer
liquids i.e., the shear rates used are reasonable. Moreover, through our simu-
lations we are attempting to predict the fluid behaviour under the given setup

rather than realizing the experimental conditions.

The longitudinal velocity profiles in Fig. 4.5 display a slight curvature in the
region ¢ away from the walls. This was due to the layering of particles near the
wall surfaces. To demonstrate this we plot the density and velocity profiles for
U = 250 /7 in Fig. 4.7. The density profile has primary peaks nearly ¢ away
from both walls. Close to the stationary wall the velocity profile has a bump and
deviates from linearity. In the same region, the density profile reveals the exis-
tence of the first fluid layer and thus more fluid particles exist in this region. This
region is followed by a region with fewer particles (the first valley in Fig. 4.7) and

thus a drop in velocity. After this point the fluctuations in density die out and the
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Figure 4.7: Density and u, component of velocity are plotted as a function of y.
The black line represents the velocity profile; the red line is the density profile.

velocity profile becomes linear. Similar analysis can be applied to explain the de-
viation from linearity in the velocity profile near the upper wall. However, close
to the upper wall the minimum density has a re profound effect on the velocity
profile (dip in velocity) than the primary maximum. This could be due to the
strong influence of the upper wall movement on the fluid, dragging along fluid
layers with it.

The shear viscosity is defined as

ny
’j/ 7

n= (4.6)

where [T,y is the xy component of the stress tensor. We calculate [T,y based on
atomistic implementation of the Irving-Kirwood method [114, 115]:

N: Ny,
ny = —— Z m; ulxuly + Z Zrl]xFL]z]y + Z Zrl]prondlly (47)
i=1j>i i=1j>i

where V, N, Nc and N, are the system volume, total number of particles in the
system, number of chains and the chain length, respectively and (- - - ) represents
the time average of the quantity over the simulation period. The first term in the
above equation is the kinetic energy contribution to the stress tensor; u;, and u;;,
are the x and y components of the velocity of particle i, respectively. The second

term is the potential energy contribution coming from the pair-wise L] interac-
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tions where 7jj, and Fpj, are the x component of the displacement vector and
the y component of the L] force, between particles i and j, respectively. The third
term accounts for bond interactions where Fbondﬁy represents the y component of
the bond force between particles i and j. For each shear rate, the stress tensor
component Iy, was calculated using Eq. (4.7) and the corresponding shear vis-

cosity was calculated using Eq. (4.6). The results are shown in Fig. 4.8. At

12—

08—

0.6

-24 -2 -16 -1.2 -0.8

Figure 4.8: Log-log plot between shear viscosity 77 and shear rate . The figure in
the inset is the viscosity response in the high shear rate limit. The red line is the
line-fit to the viscosity in this regime.

low shear rates, the fluctuations in viscosity are quite large. This is because at
these shear rates, the thermal velocity of the fluid is greater than the velocity
of the characteristic flow thus leading to large errors in the measured viscosity
[113, 116, 117]. At large shear rates, we fit these data with the power law model
[56] for non-Newtonian fluids according to which viscosity of the fluid is given
byn =m ("y)"_l, here m is the consistency coefficient and the exponent n deter-
mines the nature of the fluid. A value of n < 1 means the fluid is shear-thinning
and n > 1 corresponds to a shear-thickening fluid. The model fits the data very
well in the high shear rate limit (See the inset figure in Fig. 4.8) and by measuring
the gradient of this line-fit we extract the exponent n to be n = 0.6063 £ 0.0138
suggesting that the fluid under consideration is shear-thinning. The value of the

consistency coefficient m was found to be 1.84.
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4.6 Determining the Slip Lengths

The slip length of a fluid at the solid boundary is strongly influenced by the
interaction between them. In our simulations, we control the slip length by ad-
justing the wall-fluid interaction parameter ¢, in the L] potential. A series of
Poiseuille flow simulations with different ¢, s were carried out. From the resul-
tant velocity profiles the slip lengths () corresponding to the particular ¢,y were
extracted.

In experiments, Poiseuille flows are realized by applying a constant pressure
gradient across the channel ends. However, insofar as simulations are concerned,
pressure gradients can lead to inhomogeneities in the fluid [118]. Poiseuille flows
can also be realized by the application of constant body force on each of the fluid
particles, and are much simpler to implement in simulations. A very detailed and
insightful discussion on this topic can be found in the article by Todd et al. [118].

Except for the interaction parameter between the fluid and the wall, ¢, fr all
other interactions are the same as in the previous section. By varying ¢,,¢, a range
of slip lengths could be studied. For each ¢, the system was initially equili-
brated for 1007. After this period, a body force was applied, on each monomer
every timestep, in incremental steps of AF = 0.01mc /72 and the system was equi-
librated for 10T at each increment to stabilize the temperature of the fluid. Upon
reaching the desired value of F = 0.05mc /72, the fluid was further equilibrated
for another 1037 to let the flow attain steady state. Now we start computing the
longitudinal velocity profiles by dividing the system into bins of size Ay = 0.2
along y direction. At each timestep, the fluid particles were mapped into one of
these bins depending on their y coordinates. An average velocity (u,(y)) was
calculated for each bin using Eq. (4.5). Thus obtained bin velocities were further
averaged over time for 2 x 1037, for more accurate results. The longitudinal ve-
locity profiles for different ¢,¢ values are shown in Fig. 4.9. It is quite evident
from Fig. 4.9, that fluid experiences a finite slip at the wall-fluid boundary (since

ux (Fw) # 0).

To extract slip lengths from these velocity profiles, we fit them with the theo-
retical predictions. The fluid flow can be described using the Navier-Stokes equa-

tions. The continuity equation for the mass conservation:

0
&+ V- (pu) = 0. (48)

Assuming that the fluid is incompressible and flow has reached the steady state
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Figure 4.9: Average longitudinal velocity profiles for different values of ¢, for
y > 0. Note, the velocity profiles are symmetric about y = 0.

the first term in the Eq. (4.8) drops out and the equation reduces to
V-u=0, (4.9)

The equation for the conservation of momentum is given by

1Y (%—1: +u Vu) = —V-1IL+ pF, (4.10)
where [1 is the stress tensor and F is the body force acting on the fluid. The
Navier-Stokes solution that best represents our system is two dimensional in (x,y)
since the simulation domain is periodic in the z direction. Since the flow is lami-
nar at these length scales (~ 200 — 400) and symmetric in the z direction, only the
u, component of the velocity, which is the velocity in the direction of the force,
is non-zero. Furthermore, we must have u, = uy(y) since we have u, = 0. As-
suming that the flow has attained steady state, the left hand side of Eq. (4.10) is
zero since the flow is incompressible and laminar. To solve for the velocity field
ux(y) in Eq. (4.10) we implement the Navier slip boundary condition [96]. Ac-
cording to this condition the longitudinal component of the fluid velocity at the
solid boundary:

Oy
uy(fw) = :F(SW(iw)’ (4.11)

where ¢ is the slip length. Solving Eq. (4.10) using the Navier boundary condition
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yields

[ Fwp 1/n w y\1+1/n
ux(y) = (7) {1 T1/n {1 = (5) } +(5} fory >0, (4.12)

where the values of m and n are available from the Couette flow simulations.

Note that u,(y) is symmetric about y = 0. All the quantities in Eq. (4.12) are
known except for the slip length . By fitting Eq. (4.12) to the velocity profiles in
Fig. 4.9 we obtain the relationship between ¢,r and J. The effect of interaction
parameter &, on the slip length ¢ is shown in Fig. 4.10. The slip length was
found to decrease with increasing ¢, ¢. A large €, s implies that monomers will be
strongly attracted to the wall and consequently will tend to stick to it, leading to
a small slip length é.

40

30 —

10—

Figure 4.10: Slip length 4 as a function of the interaction parameter €.

4.7 MD Simulations for Enhanced Mixing

4.7.1 Patterned Boundaries

We now study the effect of patterned-slip boundary conditions on the fluid
flow and try to quantify its effect on the mixing behaviour. The patterned-slip
boundary conditions were implemented by creating alternate stripes of high slip
(low wettability) and low slip (high wettability) along the channel walls in the

x direction. In our simulations this was realized by varying the wall-fluid inter-
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action g, of the LJ potential in these regions, along the walls in the x direction.
Using this strategy we created two types of wall atoms, A and B, with ¢,y = 0.5¢
and e,5, = 0.9¢, representing their respective interaction strengths with fluid
particles. A schematic diagram describing this setup is shown in Fig. 4.11. As

A B A B

Y
X
A
A
A B A B

Figure 4.11: Schematic diagram of the pattern slip boundary setup for MD
simulations. The blue colour represents A-type wall atoms and the red colour
represents B-type wall atoms. The block lengths of A and B regions are equal in
size. A is the wavelength of the pattern.

a consequence, fluid particles experience a large slip when they interact with A-
type wall atoms and a small slip when they interact with B-type wall atoms (See
Fig. 4.10).

To start with once again the polymer molecules were placed between the chan-
nel walls and the system was equilibrated as described in Sec. 4.4, but this time
with patterned-slip boundary in place as shown in Fig. 4.11. After this equili-
bration period, the body force was ramped up to F = 0.05mc /12 as described in
the previous section. As pointed out previously, one of the indications of mixing
is the presence of transverse flows. Here we compute transverse velocity pro-
files u,(x,y) for various patterned-slip boundary conditions, to study the mixing
properties. The contour plots for the transverse velocity were calculated by divid-
ing the simulation domain into bins of size AxAy = 1.00% and at each timestep
particles were mapped into one of these bins. The average transverse velocity
uy(x,y) for each of these bins was obtained by dividing the total transverse ve-
locity due to all the particles in the bin by the number of particles that contributed
to the sum. For better statistics, time averaging of this profile was performed over
the next 4 x 10%7. This time period for averaging was found to be sufficiently long

enough as the transverse profiles with longer averaging periods do not show any
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significant deviations.

Simulations were carried out for different pattern wavelengths and their ef-
fect on the transverse velocity was observed. The wavelength A (or wave num-
ber k = 27t/ A) of the pattern can be varied by changing the A plus B block length
(See Fig. 4.11). Simulations were conducted for wavelengths kw = /2, 27t/3,
7, 471/3 and 27t and corresponding time averaged u,(x,y) profiles are shown in
Fig. 4.12. We observe alternating near circular regions of high positive and neg-
ative transverse velocities in both upper and lower halves of the xy cross section
about the channel axis, along the x direction. The number of alternating patterns
in the transverse profile is equal to the number of patterns along the channel wall.
However, the velocity profiles did not align with the wall pattern. This is due to
the inertia of the fluid and hence the phase lag between the applied force and the
transverse velocity profiles. This observation is consistent with the continuum
theory which suggests a phase lag of 77/2 between the wall pattern and transverse
velocity response [25, 1]. The transverse velocity profiles were anti-symmetric
about the channel axis. That is, if the upper half has a positive transverse velocity
region then the lower half of the same region has a negative transverse velocity
region. The profile pattern was reversed in the subsequent patterned region. It is
evident that the patterned-slip boundary induces transverse flows.

The curl of a velocity field is the measure of rotation of the fluid. This quantity
is known as the vorticity and it is defined by 3 = V x u. We compute the vor-
ticity for the case kw = 71/2 and the resulting contour plot is shown in Fig. 4.13.
Note, the dominant Poiseuille velocity has been subtracted from u to obtain this
plot. The vorticity is (approximately) symmetric about the x axis. Consider the
domain x > 0. In this domain the maximum magnitude of the vorticity occurs
in the region between the maximum magnitude of the transverse velocity. This is
in agreement with the expectations from continuum theory [1]. Along the axis of
the channel the vorticity is small as in these regions the flow is predominantly in

the longitudinal direction.

One important scaling factor in this study is the size of the polymer to the
wavelength of the wall-slip pattern. Its effect is evident from Fig. 4.12 where
transverse velocity profiles for different pattern wavelengths are plotted. To un-
derstand these profiles and the variations in the magnitude of transverse velocity
profiles we calculate the average size of the polymer molecule, the radius of gy-
ration (Rg), in the melt. Using the Poiseuille flow simulations with constant slip
boundary condition, achieved by setting wall-fluid interaction to e,y = 1.0¢, we
compute the average radius of gyration of the chain to be Ry = 5.3690. Com-
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Figure 4.12: Contour plots of the transverse velocity profile u,(x,y) for various
kw. Red regions represent positive transverse velocity regions and blue regions
represent negative transverse velocity regions.

parison between R, and A helps us understand the transverse velocity profiles.
Well developed transverse flows were observed when the radius of gyration of
the polymers (Rq) was smaller than the pattern length (A/2). However, in the
case of kw = 27 the pattern length was 4.8c, which is less than the radius of gy-
ration of the polymers. In this case the transverse flows were suppressed. The
ratio of the length of the patterned region to the radius of gyration of polymer
chains seems to be an important factor in determining the amount of transverse
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Figure 4.13: The vorticity field for the case kw = 7r/2. Here the magnitude of the
vorticity is indicated by label V3. Note, maximum vorticity occurs in the region
between maximum magnitude of transverse velocity.

flow that can be achieved. The physical origins of this effect can be understood
in the following way. When the length of a patterned region is comparable to
the radius of gyration of the polymer chains then, on average, a polymer chain
spans two different wettable wall regions simultaneously. Hence these chains
start interacting with the wall as if it was a homogeneous continuum, thus de-
creasing the transverse flow. In our simulations for kw = 27, the length of a
patterned region was less than the radius of gyration of polymer chains and we
have noticed a significant drop in the transverse velocity. The magnitude of the
maximum transverse velocity in this case decreased by a factor of 2 compared to
the magnitude of the maximum transverse velocity for kw = 71/2. We have also
observed that the transverse flow was not as well developed as in the other cases
where the Ry was less than the pattern length. This indicates that the length of
the patterned regions should be longer than radius of gyration to enhance trans-
verse flows. This is an important result, which is not captured by the continuum
modelling [1] since it does not contain information regarding individual chains
and hence does not include the length-scale R,. Alternatively, putting these two
results together leads us to a relationship between channel width and radius of
gyration for maximum transverse velocity, i.e. w > Ry/2. Of course, the upper
limit on the channel width is given by (external) physical restrictions.
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Figure 4.14: Contour plot of transverse velocity profile u,(x,y) for kw = /2
with offset patterning.

4.7.2 Off-Set Patterning

Simulations with off-set patterning of the walls were also conducted to study
their effect on the transverse flow. The off-setting was done by moving the upper
wall patterning by 3.2¢ to the right while the lower wall’s patterning position re-
mained unchanged. We refer to the earlier case where the patterns were exactly
parallel to each other as parallel patterning. Results of the simulations with off-
setting in the pattern have shown no significant deviations in the magnitude of
the maximum transverse velocity compared to that of parallel patterning. How-
ever, the transverse velocity regions in the upper and lower halves of the cross-
section do not align parallel to each other as in the case of parallel patterning but
they are off-set (see Fig. 4.14).

This was expected since the off-setting in the patterning leads to different flow
behaviour on either side of the channel axis and hence off-setting of transverse
flow regions occurs. An interesting observation from these simulations is that
the transverse velocity is non-zero, in certain regions, in the centre of the chan-
nel. Hence, with this patterning setup fluid elements in the centre of the channel
can flow towards the boundaries. In contrast, in the parallel patterning case, the
transverse fluid velocity in the centre of the channel was always close to zero and
thus fluid elements in centre of channel would never mix (except through diffu-
sion). Therefore we suggest to obtain mixing throughout the channel, it is better
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to have off-set patterned regions on opposite sides of the channel.

4.7.3 Comparison with Continuum Modelling

We compare results obtained from the MD simulations with continuum mod-
elling calculations based on Pereira’s [1] perturbation analysis. This method is
only applicable in the limit where the variation in slip length is small. In the con-
tinuum modelling the Navier-Stokes equations for the flow were solved using
the Navier slip boundary condition. The patterned-slip boundary condition was

implemented by defining the slip as a function of x:
5=y (1 + ae"kX) ) (4.13)

where « is a small perturbation about the mean value of slip length &y. Because of
the variation in the slip boundary conditions both u, and u, must be functions of
x and y. Using the perturbation analysis the longitudinal and transverse velocity

profiles can be written as

ux = uxo + lxuxl -I_ O(DCZ) + ttty (4.14)
Uy = ay, +-- -, (4.15)

where 1, is given by Eq. (4.12). Thus solving the Navier-Stokes equations with

the above conditions yields

\uy| = ayR, (4.16)
where y
[ Fwp\""
and R is given by the solution of the following differential equation
d*R d°R d’R
24 R _ R 2 209 _ 1 a R
Piggs +20=1/m) o +2 [y (kw)? (1 —2/n) — (1—1/n) /n} 7
F2(1—1/n) (1 —2/n) (kw)? Z—; + (k) [(ko) 7~ (1 1/n) /n] R = 0,
(4.18)
where 7 = y/w. The boundary conditions for the above equation are:
R(0)=0 (4.19)
R(1)=0 (4.20)
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"

R"(0) =0 (4.21)
R'(1)+ (6/w)R" (1) = (6/w) (kw) (4.22)

This analysis cannot be applied to verify our existing MD results as it is only valid
for small «. To accomplish a reasonable comparison between the theory and sim-
ulations, we carried out simulations corresponding to a small x. From Fig. 4.10,
the choice of optimal ¢, values were found to be ¢, f, = 0.8¢ and &, f, = 0.9e. We
conducted MD simulations with these interaction parameters for the case kw = 7
and found the maximum transverse velocity to be uy,,. = 0.0070/7. Note, for
the MD simulations, patterning of the boundaries was implemented as described
in the Sec. 4.7.1 where we have square-wave variation in the slip length where
as the continuum theory is based on a sinusoidal variation. However, Hendy et
al.[25] showed this does not influence transverse flows significantly as long as «
is sufficiently small.

-0.001
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=™ -0.003 |-

-0.004 —

-0.005 —

ylw

Figure 4.15: The transverse velocity u, versus y/w solved using Egs. (4.16) and
(4.18) with parameters selected to agree with MD simulation (see text).

To make a comparison between the theory and simulation, we need to deter-
mine an approximate value for a that represents the patterning of the surface.
This was accomplished using the following method. From Fig. 4.10, é; /w = 0.36
for ewf, = 0.8¢and br/w = 0.17 for ewf, = 0.9¢. The mean of these two is the av-
erage slip length éo/w = 0.265. Now the patterned-slip surface can be modelled

by assuming a small fluctuation a about this mean value. Thus we define a using
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the following equations:

0 = (50(1 + 06) (4.23)
(52 = (5()(1 — lX) (4.24)

Solving for « from the above two equations yields « = 0.3463. Although we could
have used another set of interaction parameters to get a much smaller value of «,
we have observed that this leads to a very small transverse flow which is diffi-
cult to distinguish from thermal fluctuations. Thus we use the case & = 0.3463
to make a comparison between the continuum theory and MD simulations. The
continuum equations were solved using the above set of parameters numerically
and the result is shown in Fig. 4.15. Thus using Eqs. (4.16), (4.17) together with
the value of « given above and the maximum magnitude from Fig. 4.15 we find a
maximum transverse velocity uy,,, = 0.0058¢ /7 and this value is in good agree-
ment with the MD result where u,,,,. = 0.0070 /.

4.8 Time Dependent Body Force

We now make use of the viscoelastic property [119] of the polymer melts. Us-
ing continuum modelling, Pereira [1] showed that viscoelasticity of polymers can
be utilized to enhance mixing further for these materials. In this study a time de-
pendent sinusoidal pressure gradient was applied in addition to the patterned-
slip boundary conditions to enhance transverse flows. We carried out MD sim-
ulations to validate the predictions of this work. The time dependent pressure
gradient was mimicked by applying a sinusoidal body force in the x direction:

F = Fy[1+esin(wt)], (4.25)

where the body force F oscillates about the mean value Fy with a small perturba-

tion € and w is the frequency of the oscillation.

4.8.1 Simulations of Homogeneous Channels with Sinusoidal

Body Force

Initially, we conducted MD simulations with a sinusoidal body force using
homogeneous surfaces i.e., boundaries were not patterned. As we will see, this
helps us in testing the elastic behaviour of the fluid. We apply a sinusoidal body
force with a perturbation constant, €, in Eq. (4.25) set to 0.1, so that the maximum
value of this oscillating body force was 10% larger than for the constant case. The
frequency w was increased from 27t/100 rads/t to 27 /10 rads/t. The body force
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was changed incrementally after every 7 time to allow the thermostat to stabilize
the temperature of the system. In each of these simulations the system was equi-
librated roughly for 2 x 1037. The first thing we require to do is to verify that
our fluid behaves like an elastic fluid. Thus when we apply a sinusoidal body
force we expect an elastic fluid will also respond with a sinusoidal longitudinal
velocity. However, because of viscous dissipation, the fluid will be out of phase
with the body force. According to the continuum model of Pereira [1] the phase
angle, ¢ that the longitudinal velocity lags behind the body force is related to the
relaxation time A and the forcing frequency, w via

¢ = arctan(Aw). (4.26)

Simulations were carried out at frequencies 27t/100, 27t/40, 27t/30, 27t/20 and
27/10 rads/t. Note, we cannot increase the frequency of the sinusoidal body
force further since the polymer chains will not have sufficient time to respond to
changes in body force.

In response to the sinusoidally varying body force, we expect a sinusoidally
varying Poiseuille flow in the channel. In each frequency case, by monitoring
the maximum of the Poiseuille velocity profile (uy,,, ) in the centre of the channel,
we found that the response of the fluid was indeed sinusoidally time varying and
this confirms that the fluid is indeed elastic. To demonstrate this effect we present
the results of the body force and corresponding longitudinal velocity response in
Fig. 4.16 for the case where w = 271/100 rads/t. The phase lag ¢ between the
longitudinal force and the velocity further affirms the elasticity of the fluid. Note,
the longitudinal velocity shown was an average over 1000 configurations, where
the averaging was done every Tt, where time period T = 10, 20, 30,40, 100 de-
pending on the particular frequency being studied. The phase lag is marked by
the blue line in Fig. 4.16. To obtain a precise value of this phase lag we fit the
longitudinal velocity data (circles) to a sinusoid, A sin(wt + ¢) + Ap. Ag and A
can be obtained from the data while w is known. We carry out a least squares
tit to obtain ¢. In each case the least squares error was found to be less than
10~3rad. The phase lags calculated according to this method are given in Table
4.1. As the forcing frequency increases we find the phase lag correspondingly in-
creases, which is expected since for higher frequencies the polymer chains cannot
respond sufficiently quickly, leading to a larger phase lag. The largest phase lag
that can occur is 77/2 rad. Now, according to Eq. (4.26) we can also obtain A for
the polymer melt. These are also tabulated in Table 4.1. Interestingly, for each
forcing frequency we find a different A, with the As systematically increasing
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Figure 4.16: The body force (circles) and maximum longitudinal velocity re-
sponse (squares) as a function of time. The scale on the left-hand side represents
body force and the one on the right-hand side represents the magnitude of uy,,,. .

w 27t/100 | 27t /40 | 27t/30 | 27t/20 | 27t /10
¢ 0.516 1.007 | 1.167 | 1.375 | 1.571
A 9.02 10.08 | 11.17 | 16.08 00
Uy 0.0287 | 0.0284 | 0.0283 | 0.0281 | 0.0288
% increase 21.2 20.1 19.7 18.8 21.7

Table 4.1: Phase lag (¢), relaxation time (A), maximum of transverse velocity
(4y,.,) and percentage increase in maximum transverse velocity compared to
constant body force case for various sinusoidally varying body force frequencies.

with frequency.

4.8.2 Simulations of Patterned Channels with Sinusoidal Body

Force

In the continuum model of Pereira [1], the viscoelastic behaviour of the fluid
was modelled using a linearized White-Metzner model [120]. According to this

model
0T

A =
T+ A5

where A is the relaxation time of the fluid. The longitudinal and transverse ve-

()4 (4.27)

locity profiles can be obtained by using the perturbative approach by expanding
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the velocity profiles in terms of x and e.

u = uy + aug + € (U + upsin(wt)) + ae(uyno + tg1rsin(wt)) + O (ocz, 62> + .-
(4.28)
v = avy + &€ (V410 + Va115in(wt)) + - - - (4.29)

The sinusoidal body force effect on the transverse flow can be quantified by
solving v,11 [1]. Solving the Navier-Stokes equations using the above set of equa-
tions with appropriate boundary conditions yields

1/2
0411 | (1 +A2w2) . (4.30)

Hence the model predicts that the transverse velocity is proportional to the fre-
quency of the sinusoidal body force.

As we saw from our simulations, the fluid has more than one relaxation time.
Thus we see an important deficiency of the simplified continuum model [1] - it
employs only a single relaxation constant, A. As pointed out above this sim-
plification was used to obtain tractable solutions. However, a better model for
our viscoelastic fluid would be a Generalized linear viscoelastic model [56], that is a

superposition of linear White-Metzner models of the form

00 8;
=Yz Mg =)L (4.31)

Given that there is not a single A that describes our fluid, but in principle there
is an infinite number of them we might not expect the response of the fluid to be
exactly as specified by Eq. (4.30).

4.8.3 Comparison between Constant Body Force and Sinusoidal

Body Force Simulations

We now proceed to discuss the simulations with the (same) patterned bound-
ary conditions as discussed in the earlier section but in conjunction with the si-
nusoidal body force. Now the transverse velocity profile changes with the body
force which is a sinusoidal function of time. To calculate average transverse ve-
locity profiles we have to consider only those profiles which are separated by
Tt. We take 5000 such configurations to evaluate the transverse velocity pro-

tiles for each frequency which was found to be a sufficient number of averages
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to compare with the constant body force case, as averages obtained using more
configurations than this did not show any significant change. Note, to carry out
these 5000 averages for the simulation with forcing frequency of 271/100 rads/t
took approximately 7 days of cpu time on a parallel Blue-Gene machine with 128
processors. At the moment, this is the smallest frequency we can simulate so as

to obtain reliable results.

As with the simulations for homogeneous slip boundary conditions, we
carried out simulations at frequencies of 27t/100, 27t/40,27w/30,27/20, and
27/10 rads/ T keeping the pattern length constant at kw = 77/2. The resulting
transverse velocity profile for the case w = 27/10 rads/t is shown in Fig. 4.17.
Since we have taken these averages after every Tt time the velocity profile has
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Figure 4.17: Transverse velocity profile uy(x,y) for the time dependent body
force case for the frequency w = 277/10.

a similar form to the constant body force case. To compare the magnitude of
the transverse velocity with the constant body force case we have calculated
the transverse velocity profile for the same setup with the constant body force
(Fo = 0.05mc /7%) by taking 5000 averages (See Fig. 4.18).

The transverse velocity profile in Fig. 4.17 is shifted compared to the constant
body force case in Fig. 4.18. This result also complements the viscoelasticity
of the fluid. With oscillatory body force, the maximum value of the transverse
velocity has increased to 0.0288mc /7> (compared to a maximum value of
0.0236mc /T2 in the constant body force case). This represents a 22% increase
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Figure 4.18: Transverse velocity profile u,(x,y) for constant body force case with
5000 averages.

in the transverse velocity. Results of simulations for other values of w are given
in Table. 4.1. In general, we find the increase is on average 20%, compared to
a constant body force, and given we have applied a maximum 10% increase in
the body force this represents a reasonable increase. We see that the maximum
transverse velocity does not change appreciably with increasing frequency. Thus
although our simulations agree with the continuum theory in that a sinusoidally
varying body force will increase the transverse velocity, the simulations do not
show transverse velocities which increase as w increases. We believe the reason
for this is that the simplified continuum model includes only a single A while
the fluid modelled is characterized by several relaxation constants. Instead the
transverse velocity be a function of a combination of velocities corresponding
each relaxation constant. Hence Eq. (4.30) does not hold.

Another deficiency of the continuum model [1] is that it is only a linear
viscoelastic model. When compared to our MD simulations this is not such a
serious problem, since we use perturbations, € which are quite small (i.e, 10%
of mean body force). However, certainly for larger perturbations a non-linear
model would be more appropriate.



76 CHAPTER 4. FLOW OVER PATTERNED SURFACES

4.9 Summary

In this study we have sought to model the flow of polymeric fluids in narrow
channels at a microscopic level. We have focused on enhancing the mixing in
these fluids with a combination of active and passive techniques. The passive
method is to pattern the channel boundaries with regions of high and low slip
while the active method is to employ a sinusoidally varying pressure. We first
modelled the passive method by varying the interaction between monomers and
wall atoms. The polymeric fluid was characterized as a shear-thinning fluid and
we found significant transverse flows, especially when the pattern spacing was
greater than the radius of gyration of a polymer chain. In this case polymers tend
to stick or slip adjacent to the different patterned regions, thus perturbing the
dominant Poiseuille flow. In the case that the pattern spacing is smaller than the
radius of gyration of the polymer chains, the transverse velocity is suppressed,
as the polymer chains span two or more regions and begin to interact with them
as if the boundaries were homogeneous. Thus the flow returns to being strongly
Poiseuille-like. In general we found qualitative agreement with previous con-
tinuum theory [1]. We made quantitative comparison with this theory and have
found good agreement on the magnitude of the generated transverse velocity.
We proceeded to consider the effect of an off-set arrangement of the patterned
regions. In this case, although the magnitude of the transverse velocity did not
increase, it was an improvement on the previous case, since now transverse flow
is generated throughout the width of the channel (see Fig. 4.14). In the case
where the patterned regions are aligned on either side of the channel, transverse
flow is zero in the middle of the channel for the entire length of the channel.
Hence, fluid in this region will not mix by convection (only via diffusion). We
have continued on to couple a sinusoidally varying pressure gradient with the
patterned boundary conditions. In this case the continuum theory had predicted
an enhancement of the transverse velocity. Our simulations also found an
enhancement of the transverse flow for a sinusoidally varying pressure. The
increase - 20 % results from a 10% increase in the amplitude of the pressure. The
continuum modelling also predicted that this transverse velocity should increase
with frequency. However, our simulations did not show this for two reasons: (i)
the polymeric fluid was found to have a number of relaxation constants (whereas
the continuum theory assumes only one) and (ii) there is an upper bound on
the magnitude of frequency, since polymer chains cannot respond sufficiently
quickly for large frequencies.



Chapter 5

Capillary
Absorption of Polymer Droplets

When a capillary (narrow hollow tube) is lowered into a liquid, the liquid
either ascends or descends the capillary. This phenomenon is known as capillary
action or capillarity and it has a wide range of applications both in biological
and industrial processes [35, 32]. In general, the standard continuum models
on capillarity [27, 28, 29, 30] describe this phenomena very well. However,
these models make certain assumptions that may not be always valid [35]. In
particular, here we shall focus on one particular assumption: size of the liquid
reservoir. Standard macroscopic theories on capillarity assume that the liquid
reservoir is infinite (compared to tube dimensions). However, this is not always
the case. For example, industrial applications such as ink-jet printing, spray
painting, etc. deal with finite liquids [35, 36]. Marmur [35] first studied the
effect of finite size of the liquids on the statics and dynamics of capillarity. He
found that the Laplace pressure originating from the curvature of the droplet
(due to finite size of the liquid) plays an important role in determining the
underlying capillary process. He showed that capillary absorption of sufficiently
small, non-wetting droplets is possible. This is in contrast with the standard
macroscopic models where capillary uptake of non-wetting liquids is prohibited.
As we scale down, these finite size effects become more profound and this can
give rise to novel phenomena which are otherwise absent. For example, using
Marmur’s arguments, Schebarchov and Hendy [37] were able to explain the
absorption of non-wetting metal droplets into carbon nanotubes (CNTs) [121].

Macroscopic models on capillarity cannot explain such phenomena.

There is a growing interest in building polymer-based functional nanomate-
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rials for novel applications [122, 123, 124, 125, 126, 127, 128]. One of the methods
used for producing such structures is by filling nanomoulds using capillary
forces. For example, polymer-based nanopattern wires [129], nanorods and
nanotubes [40], nanoscale protein patterning [130], nanofibers [131], nanobelts
[132], etc. were produced using capillary action. Most of the methods involved in
the production of such materials fall in the above discussed regime, viz the size
of the liquid reservoir is finite compared to the channel dimensions. Thus, the
Laplace pressure driven capillary forces can become important. Nanoscale phe-
nomena of polymer solutions or melts is particularly fascinating because at these
dimensions, their characteristic length scales become comparable with those of
device dimensions. This can have important implications on the behaviour of

polymers in these devices, which can lead to new phenomena [7, 38].

Moreover, the capillary dynamics of polymers can be important in the above
mentioned applications, involved with producing polymer-based nanomaterials.
In the context of nanocapillaries, the question that received most attention,
recently, is whether the Lucas-Washburn law [29, 30] of capillary rise applies
at the nanoscale [31]. This is yet to be fully solved, with the literature full
of conflicting results [31, 32, 33, 34, 133, 134, 135, 136]. At the nanoscale, as
mentioned earlier, confinement effects on polymers become prominent and this

can impact the underlying capillary dynamics in a major way.

In this chapter, we study the capillary phenomena of small polymer droplets
in narrow tubes using MD and theoretical analysis. In particular, we focus on
the macromolecular aspect of polymers and study its effect on both statics and
dynamics of capillarity. The chapter is organized as following. In section 1 we in-
troduce the basics of capillarity and discuss the role of finite size effects. In section
2 we carry out the characterization of the droplet and in section 3 we present the
contact angle simulations. In section 4 we present the results and discussion of
the capillarity of polymer droplets. In section 5, a theoretical analysis of capillary
phenomena of polymer droplets is carried out and the results are compared with

the simulations. Finally, in section 6 we conclude the findings from this study.

5.1 Basics of Capillarity

The fundamentals of capillarity were established in the early part of 19th
century by Young [27] and Laplace [28]. Their theory forms the basis for much
of our understanding of the static equilibrium conditions for capillarity. The
physical foundation for capillarity lies in understanding the concept of surface
tension, which is a quantitative measure of the surface properties at the macro-
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scopic level. Molecular interactions at the microscale give rise to this property.
To understand this statement, consider a molecule in the interior of a liquid
bulk, it experiences cohesive forces from surrounding molecules in all directions.
Hence, the net resultant force acting on a molecule within the bulk is nearly zero.
However, this is not the case for the molecules that form the surface. Due to
loss of neighbours on one side, these molecules experience a net inward force,
perpendicular to the surface and into the bulk; and this gives rise to surface
tension. Quantitatively, it is defined as the amount of energy required to increase
the surface by unit area. If a system contains more than one type of molecule,
then there exist adhesive forces between dissimilar molecules in addition to
cohesive forces between similar molecules. When there is more than one type of
molecule the term “surface tension’ is replaced by ‘interfacial tension’. However,

in this chapter we shall use both of these words interchangeably.

The relative competition between the cohesive and adhesive forces deter-
mines the nature of the liquid-vapour interface. Based on thermodynamic
arguments, Young [27] derived the condition for static equilibrium for a

liquid-solid system (see Fig. 5.1) in terms of interfacial tensions:

Yoy = Vs, + Vv COS O, (5.1)

where the subscripts S, L and V denote solid, liquid and vapour phases; v,,7,,
and 7,, are the interfacial tensions associated with the solid-vapour, solid-liquid
and liquid-vapour surfaces. 6. is referred to as the contact angle between the
liquid-vapour and solid-vapour interfaces. If 6. < 90°, the liquid is said to
partially wet the surface with the limiting case 6. = 0°, total wetting; and if
8 > 90° then the liquid is said to be non-wetting.

Due to surface tension liquids try to minimize their surface area. Acting
against this is the pressure difference across the liquid-vapour interface. A
delicate balance between these two competing forces determines the equilibrium
shape of the liquid surface. In the case of a spherical droplet, the pressure

difference across the surface is given by

27y
AP = 21w 2
R (5.2)

Here v, is the liquid-vapour surface tension and R is the radius of the droplet.
From here on we drop the subscript LV in 7, ,,, for simplicity.

When a capillary is immersed in a liquid, the liquid ascends or descends
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Tov

Figure 5.1: An equilibrium configuration of a droplet-substrate system. The locus
of points where the solid-liquid interface meets the liquid-vapour interface is
known as the contact line. The angle between these two interfaces at the contact
line is the contact angle (6;) of the droplet with respect to the solid.

the capillary depending on its wetting behaviour. If the liquid likes to wet the
surface then adhesive forces are stronger than cohesive forces and it rises up the
tube; and vice-versa. For a capillary immersed in an infinite liquid reservoir, the
equilibrium height of the liquid column inside the tube, H, can be determined
by equating the pressure difference across the meniscus due to surface tension to

the gravitional force:

_ 2 cos 95’ (53)
ApgR;
where Ap is the difference in densities between liquid and vapour phases, g is
the acceleration due to gravity and R; is the radius of the tube. Note that H
is positive for . < 90° i.e., liquid ascends the tube whereas for 6, > 90°, H is

negative i.e., liquid descends below the height of the liquid reservoir.

The dynamics of capillarity were first studied by Lucas [29] and Washburn
[30] independently. They derived the equation for the height of the liquid column
as a function of time assuming (i) that the flow has reached quasi-steady state
conditions, (ii) the liquid reservoir to be infinite, (iii) neglecting the inertial and
frictional effects, (iv) that the tube radius is constant, and (v) the contact angle is

constant. The Lucas-Washburn equation is given by

R, cosf,\ /2
m) Vi (5.4)

H1) = ( 21

where 7 is the viscosity of the fluid. An important point to note is the relationship
H(t) « \/t, as we will come back to this later in the Chapter. From Egs. (5.3) and
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(5.4), capillary uptake of liquids is not possible for 6. > 90°.

The capillary models discussed above assume that the liquid reservoir is
infinite. However, as pointed our earlier, this is not always true. Here we briefly
discuss Marmur’s work in this regard due to its relevance to our study.

Consider a droplet and tube setup as shown in Fig. 5.2. Compared to the case
of an infinite reservoir here we have two liquid surfaces. The additional surface
from the protruding droplet results in a Laplace pressure which was absent in
the infinite liquid reservoir case. The static equilibrium condition for such a
system, in the absence of gravity is described by [35]

2 27y cosf
2y , 2ycost.

2 R =0 (5.5)

e

where R;, and R; are the radii of the protruding droplet at equilibrium and the
tube, respectively. The first term is due to the Laplace pressure and the second
term is due to the pressure difference across the meniscus.

2R,

Ry

(a) Initial configuration  (b) Partially absorbed (c) Complete absorption

Figure 5.2: (a) The initial system setup, Ry, is the initial radius of the droplet
and R; is the radius of the tube. (b) An intermediate stage during the absorption
process with R; being the radius of the protruding droplet. (c) The droplet
gets totally absorbed into the tube and R, is the final equilibrium radius of the
protruding droplet.
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Now let us try to obtain the condition for capillary absorption in terms of
contact angle. At equilibrium Eq. (5.5) takes the following form

Ry, 1

Ry  cos6, (56)
From Eq. (5.6) it can be inferred, for 6. < 90°, Ry, is negative, and the droplet
will be absorbed for all radii Rdi > 0. When the liquid is non-wetting, the
contact angle 6. > 90° and R;, > 0, liquid will ascend the tube as long as the
radius of the protruding droplet R; is greater than a certain critical radius R,
(equilibrium radius of the protruding droplet) even for contact angles greater
than 90°! This result adds a new dimension to the classical theories which do
not permit capillary action for non-wetting fluids. Note that from Eq. (5.6), the
equilibrium droplet radius below which absorption takes place also depends on
the radius of the tube. For smaller tubes the droplet size has to be smaller to be

able to observe absorption.

Unlike their Newtonian counterparts, polymeric fluids possess conforma-
tional entropy, originating from their macromolecular structure. In the case of
capillary absorption of polymers in tubes comparable to chain size, if a droplet
were to ascend the tube then its constituent chains must stretch in the direction of
tube axis. This will result in loss of conformational entropy. Thus, in the case of
polymer droplets, in addition to the Laplace pressure, which pushes the droplet
into the tube, we have the conformational entropy loss which opposes the
droplet motion into the tube. The trade-off between these two competing forces
(assuming that the meniscus pressure is neutral) should determine whether the
droplet gets absorbed or not. Hence, the aim of this study is to examine the
effect of molecular size on the entire process of capillary driven absorption. This
is realized by studying the capillary phenomena in droplets of the same size
(total number of monomers is constant) while varying the chain length of the
constituting chains.

5.2 Characterization of The Droplet

The initial configurations for polymer droplets were prepared by randomly
placing the constituent chains in a spherical volume to realize the system density
at 0.850 3. Since the initial configuration consisted of highly overlapping
chains we used the soft potential method discussed in Chapter 4 to bring the
system to equilibrium. The temperature of the system was kept constant at
T = 1.0kgT/e by coupling the monomers with the Langevin thermostat with a
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friction coefficient of I' = 1.0~ 1. The equations of motion were integrated using
the velocity Verlet algorithm.

During the equilibration period, for the first 6T the interaction between mono-
mers was described by the soft potential with 7y = 21/6g and the equations of
motion were integrated with At = 0.00017. After this time, the potential energy
remained approximately constant and this confirms that the system has reached
equilibrium. At this point, interaction between the monomers was switched
from the soft potential to the L] potential with parameters ¢ = 1.0 and ¢ = 1.0
and the timestep size was changed to At = 0.017.

The average properties of chains were extracted by noting down droplet
configurations every 1007 for the next 5 x 10*t. This method was applied to
droplets made up of different chain lengths but having the same number of total
monomers. (For example for a droplet of 8000 monomers we ran separate simu-
lations of 400 chains of length 20, 80 chains of length 100 and so on.) The average
radius of droplets with 8000 monomers was approximately (Rg) ~ 15.03 & 0.07c,
where the error estimate is the standard deviation computed over droplets of all
chain lengths studied. As we can see there is very little effect of chain length on
the droplet size. For droplets with 16000 monomers, (Ry) ~ 18.58 + 0.07¢.

We now compute the average chain size (Rg), averaged over all the chains
in the droplet, for droplets of different chain lengths (at constant total number
of monomers). The time average of this quantity was obtained by computing
an average over 500 droplet configurations over the simulation period and the
results are shown in Fig. 5.3 for 8000 monomer droplets. In the small N limit,
on average the chains behave as if they were ideal chains, (Rg) o« N%. There
appears to be cross-over from this behaviour for chain lengths N > 200. A
possible explanation for this trend may be as follows. For small N, each chain
on average is surrounded by a large number of chains, equally in all directions.
This is analogous to a chain in a melt which is ideal. As N increases, each chain
on average will have fewer polymer neighbours, i.e. more exposure to solvent.

Therefore, the trend in (Rq) deviates from the ideal chain behaviour.

We also compared these results with single chain simulations, conducted
under the same conditions as droplet simulations. The (Rg) behaviour from
these simulations for different chain lengths is plotted in Fig. 5.3. The single
chain simulations reveal that the chains display poor solvent behaviour, where
(Rg) & N%33. The (R,) from the droplet simulations, as N approaches the system
size (N — total number of monomers in the droplet), converges onto the single
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Figure 5.3: The (Rg) behaviour as a function of chain length. The black curve
(circles) represents the average size of a chain in the droplets of 8000 monomers.
The red curve (squares) is data from single chain simulations.

chain results. This trend supports our earlier explanation for the shrinkage in
(Rg), for droplets with larger N values. Simulations for larger droplets with
16000 monomers revealed that (Rg) behaviour was similar to 8000 monomer
droplet except for a slight deviation in the large N limit. This is because on
average each chain has more neighbour chains in a 16000 monomer droplet than

in 8000 monomer droplet.

5.3 Contact Angle Simulations

The nature of the solid-liquid-vapour interface is related to the contact
angle. The contact angle can be used to discriminate between wetting and
non-wetting surfaces. As discussed in the earlier sections of this Chapter the
value of contact angle is essential for studying capillary action. Though the
concept of contact angle becomes ambiguous for very small systems, we shall
nevertheless attempt to capture the approximate behaviour of the liquid-vapour
interface. It is well known that the surface tension of polymeric fluids depends
on the molecular weight of the comprising chains [137, 138], which will in turn
affect the contact angle. We test the molecular size dependence of the contact
angle in our simulations. Within the framework of MD simulations, control over
the contact angle can be gained by tuning the interaction between the liquid

and solid constituents. By varying this interaction the wetting properties of the
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(b) Equilibrated configuration

Figure 5.4: Initially the droplet of radius Ry was placed on the substrate. After
equilibration the droplet assumes the shape of an equilibrium spherical cap of
height h making an angle 6. with the substrate.

liquid can be changed. A weak interaction results in a large contact angle due to

domination of cohesive forces over adhesive ones and vice-versa.

Equilibrated liquid droplets were placed on a single atom thick simple cubic
substrate with lattice constant 2 = 1.0c. The substrate atoms were fixed in
space to reduce the computational effort. The interaction between the substrate
atoms and monomers was given by the L] potential with ¢ = 1.0. In general, for
wetting liquids, a precursor foot is found to spread ahead of the bulk droplet and
hence the contact angle becomes time-dependent [139, 140]. Therefore, to avoid
ambiguity in determining the contact angle we restrict ourselves to non-wetting
droplets. A L] interaction strength of ¢,s = 0.5¢ fulfills this condition (6. > 90°)
in our simulations. The temperature of the droplet was maintained constant by
coupling the Langevin thermostat to all the monomers with a friction coefficient
of I = 1.0t~ Though the Langevin thermostat screens the hydrodynamic
effects by its very virtue, this does not cause serious concern as we are only
interested in the equilibrium properties. The equations of motion were integrated
using the velocity Verlet algorithm with a timestep At = 0.017.

The droplet was initially equilibrated for 10*T on the substrate to let it attain
its equilibrium height. After this point, we note down the configurations every
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1007 for the next 4 x 10*t to calculate averages. The equilibrium contact angles
were extracted by approximating the equilibrated droplet to a spherical cap. If a
droplet has an initial radius Rg, and assumes a spherical cap geometry of height
h, after equilibration, then the contact angle formed by the spherical cap is

3
0. = cos™! (1 — —> : (5.7)
4R3/h3 +1

The initial and final configurations from one of the simulations is shown in
Fig. 5.4. From our simulations we calculate time averages of the quantities Ry
and h, over the averaging period. These quantities are then substituted into
Eq. (5.7) to extract an approximate contact angle, for that particular case. These
measurements were repeated for different chain lengths and droplet sizes, to
quantify their effect on the contact angle. The results are shown in Fig. 5.5. The
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Figure 5.5: Contact angle measurements as a function of chain length, N are
plotted here. The black curve (circles) represents the data from 8000 monomer
droplets and the red curve (squares) represents the data from 16000 monomer
droplets.

contact angle remains approximately constant irrespective of the chain length
and the droplet size, within respective parameter ranges shown in Fig. 5.5. These
results are in good qualitative agreement with earlier observations [141, 142]. We
estimate the average contact angle for the case of ¢ys = 0.5¢ as 6, =~ 104° with in

1% error.
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5.4 Capillary Absorption of Polymer Droplets

In the context of non-wetting polymer droplets, for capillary absorption to
take place, the Laplace pressure must overcome conformational entropy loss in
addition to meniscus pressure. It is also worthwhile to consider the dynamics of
the underlying process. As mentioned earlier, the validity of the Lucas-Washburn
equation at the nanoscale is debatable. We suspect entanglement effects will play
a role in determining the dynamics at nanoscale. Entangled polymers are known
to display different dynamic regimes depending on their chain lengths. Melts
with shorter chains exhibit Rouse-type dynamics whereas those composed of
longer chains showcase reptation-type dynamics [51, 143]. Therefore, it is of con-
siderable interest to study the effect of molecular size on the statics and dynamics
of polymer droplets under capillary action. For this purpose, we carry out MD
simulations of polymer droplets of the same size (total number of monomers is
constant) but composed of different chain lengths. We restrict our simulations to
two cases, N = 20 and 200 as the former falls in the Rouse regime and the latter
falls in the reptation region [143]. This difference in chain dynamics should cap-

ture any significant differences in the observed capillary absorption dynamics.

The tube was constructed by rolling a single atom thick, simple cubic layer
with a lattice constant 2 = 1.0c into a cylinder with both ends of the tube being
open. The tube atoms remained fixed. An equilibrated droplet was placed at the
entrance of one of the ends of the tube. The simulation setup is as shown in Fig.
5.2. The interaction between the tube atoms and monomers was described by
the LJ potential with parameters 0,y = 1.00 and ¢,y = 0.5¢. Temperature of the
droplet was kept constant at T = 1.0kgT /e using the Nosé-Hoover thermostat
with a damping parameter of 10T specified as the relaxation period for the
temperature. The equations of motion were integrated via the velocity Verlet
algorithm with a timestep of 0.017.

5.4.1 Droplets with 8000 Monomers

We first report the results for an 8000 monomer droplet and later compare
them with the results for a larger droplet with 16000 monomers. For a droplet of
tixed size, the tube radius was varied systematically to determine the critical tube
radius, Ry, below which no absorption takes place. A number of simulations
were run for different tube radii ranging from R; = 4.260 to R; = 6.690 and
the subsequent absorption process was monitored for each of the cases. From
these simulations we were able to narrow down the critical tube radius region

and here we only focus on results from this region. The absorption process was
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monitored by recording the height of the liquid meniscus inside the tube and
the radius of the protruding droplet as a function of time. The results for the

N = 20 case are shown in Fig. 5.6. For a smaller tube radius of Ry = 5.100,
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Figure 5.6: Upper section of the figure: the meniscus height; lower section of the
figure: radius of protruding droplet, are plotted as a function of time for two
different radii of the tube, for an 8000 monomer droplet with N = 20 chains.

the radius of the protruding droplet and height of the liquid meniscus does not
change over time. But for a slightly larger radius of R; = 5.260 the droplet gets
absorbed into the tube, once the system overcomes the initial energy barrier
for penetration. Corresponding to the capillary absorption, the height of the
meniscus increases and the radius of the protruding droplet decreases. In order
to determine the critical cut-off radius below which there is no absorption, the
simulation with smaller tube radius of R; = 5.100 was run for much longer. Yet
there was no absorption. This indicates that the critical tube radius for N = 20
for 8000 monomer droplet is Ry = 5.260.

To test the applicability of the Lucas-Washburn description to our systems we
tit the meniscus height data to [144]:

H(t) = (’y(Rd(t) ;—;b) cos 6, \/f) , (5.8)

where 7 is the surface tension, R;(t) is the radius of the protruding droplet at
time ¢, b is the slip length, and y is the viscosity of the fluid. The initial portion of

the meniscus height data were ignored as the Lucas-Washburn description does
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not account for inertial forces at initial times. The fit to the meniscus height for

Ry = 5.260 was found to be in poor agreement with Eq. (5.8).

During the simulation process we also calculated the average size of the
chain, averaged over all chains in the droplet, in all three directions to study
the impact of the absorption process on the molecular configurations. This was
achieved by computing all the three components of the radius of gyration, R,:

1 ¥ 1 N 1 Y
— 21 Xcm 21 ch :NZI Zcm
1: 1: 1=

(5.9)
where x,y, andz are components of the monomer position vectors and
Xem, Yem, and Z.;,, are the coordinates of the centre of mass of the chain. The aver-
age behaviour of each of these components, averaged over all chains, reflects the
effect of underlying dynamics on the macromolecular nature of the fluid. Each of
these quantities are plotted as a function of time for R; = 5.10c and 5.26¢ in Figs.
5.7 and 5.8 The average size of the chains remains unchanged over the whole
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Figure 5.7: The average components of R, are plotted as a function of time for
R; = 5.100 for the 8000 monomer droplet.

period for Ry = 5.100. In the case of R; = 5.260, the Rg, component of the radius
of gyration increases during the absorption process whereas the chains simulta-
neously shrink in the other two directions. This corresponds to elongation of the

chain in the direction of the tube and compression in the other two directions.

We also investigate the effect of absorption on the potential energy which

4
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Figure 5.8: The average components of R, are plotted as a function of time for
Ry = 5.260 for the 8000 monomer droplet.

accounts for both bond interactions due to bonded entities and LJ-type inter-

actions between non-bonded entities. The results for the above two cases are

presented in Fig. 5.9. The potential energy was approximately constant in the
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Figure 5.9: The potential energy behaviour for the 8000 monomer droplet for

different tube radii.

case of Ry = 5.100 whereas it increases in the case of Ry = 5.260 during the

absorption. This rise coincides with the increase trend observed in Rg, shown in
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Fig. 5.8. Thus we confirm the increase in the chain size parallel to the tube axis,
due to deformation of chains, causes an increase in the potential energy. (Note,
not all of this increase is due to chain deformation, some still can be attributed to
the changing shape of the droplet.)

Similar calculations were carried out for an 8000 monomer droplet made up
of N = 200 chains, to examine the effect of molecular size on the whole process.
The meniscus height and the radius of the protruding droplet for this case are
plotted in Fig. 5.10. Several interesting outcomes can be observed from this plot.

T I T I T T I T T T T T 150
i — R=5410 ]
- |— R=5570 — 100
— R=5730 @
i T
— — 50
4 " "hﬁhwmn) Ao b
15— — T 0
. .n'ku.«uﬂw‘m.‘k‘ Wi y R H“‘W‘ Y
10— —
O
mt}
5 — —

I 1 I 1 I 1 I 1 I 1 I 1 I 1 1
0 . !
0 let05 2e+t05 3et05 4e+05 5Se+05 6Get05 7e+t05 8et05  9et+05
t(n)

Figure 5.10: The meniscus height and the radius of the protruding droplet as a
function of time for the 8000 monomer droplet with N = 200 chains, for different
tube radii.

For tubes smaller than R; = 5.57¢ there was no absorption, within the time scale
of the simulation runs. The absorption process was almost spontaneous for the
case of R; = 5.73¢ barring the initial times.

The most interesting case of all was R; = 5.57c where the droplet sits outside
the tube entrance for a very long time, during which the droplet tries to enter the
tube by overcoming some sort of barrier. This is clearly evident from the menis-
cus height plot. The origin of this barrier can be energetic as suggested in [37] or
entropic, due to conformational entropy loss, or a combination of both. During
this period, we also observe partial absorption and desorption taking place. Such
a process was neither present in the N = 20 case nor was reported earlier for
either Newtonian or non-Newtonian fluids. Eventually, the droplet overcomes

this barrier and gets drawn up the tube. We attribute this effect to the increase in
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Figure 5.11: The (R;) components for R; = 5.570 and 8000 monomer droplet.
The blue dashed encircled regions show the partial absorption instances.

molecular size, N. The average behaviour of chain size for this case is shown in
Fig. 5.11. Prior to absorption, while the droplet attempts to enter the tube, fluctu-
ations in R¢, were observed and the trend in these fluctuations coincides with the
partial absorption and desorption in the meniscus height (see Fig. 5.10). Because
of the partial absorption and desorption processes, there was either an increase or
decrease in (Rgy), corresponding to a compression or expansion of the other two
components observed. Hence the average behaviour of the components of R, is
a good measure of the underlying phenomena. Another interesting observation
from this simulation was the capillary dynamics. Once again we found that the
capillary dynamics observed here cannot be described by the Lucas-Washburn
description (Eq. (5.8)). Moreover, the standard capillary models cannot explain
the process of partial absorption and desorption observed in this case.

The average chain size measurements were also performed on the bigger tube
radius R; = 5.730 case and the results are shown in Fig. 5.12. In this particular
case, we were able to study the system behaviour after complete absorption,
mainly due to faster dynamics involved compared to the previous case of
Ry = 5.570. Once the droplet was totally absorbed into the tube, the meniscus
height remained approximately constant (refer to Fig. 5.10), during which period
we monitored the average R, components. An interesting observation from this
calculation was that after complete absorption the chains started to relax. This
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Figure 5.12: The (Ry) components for R; = 5.73c and 8000 monomer droplet.
The blue vertical dashed line separates the absorption process into before and
after complete encapsulation.
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Figure 5.13: The potential energy for 8000 monomer droplet with N = 200 as a
function of time, for different tube radii.
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can be seen from the decrease in R, and relatively slow increase in the other two
components. In the long time limit, we expect the chains to retain their original
size in the bulk (unless obstructed by the capillary walls). The potential energy
measurements complement the argument for the relaxation process. The average
potential energy per monomer for the 8000 monomer droplet with N = 200 is
shown in Fig. 5.13. Throughout the absorption process, depending on whether
the droplet is inside or outside the tube, the potential energy either increases or
decreases. In the case of R; = 5.73¢, during the relaxation process the potential

energy slowly decreases with time until the system attains its equilibrium state.

5.4.2 Droplets with 16000 Monomers

Absorption simulations were also performed for larger droplets with 16000
monomers for chain lengths 20 and 200. The critical tube radius region was
identified by conducting a number of simulations for R; between 4.94¢0 and 7.49¢.
Apart from the fact that larger droplets require broader tubes for absorption,
which stems from Marmur’s theory, we also noticed some other interesting
physics related to absorption dynamics. We shall report them one by one here.
First, we present results for absorption of an N = 20 droplet. The height of the
meniscus and radius of the protruding droplet are presented in Fig. 5.14 and the
critical tube radius 6.37¢. The activation time, time after which the absorption
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Figure 5.14: The meniscus height and radius of the protruding droplet plots for
the 16000 monomer droplet with N = 20 chains, for various tube radii.

process starts, has increased considerably compared to the 8000 monomer
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droplet for the same chain length. This could be due to an increase in curvature
of the droplets resulting in weaker Laplace forces.

Results for N = 200 droplets show remarkably different behaviour in com-
parison with any of the earlier cases presented. The meniscus height plots are
sufficient to bring about this contrast and trends in the radius of the protruding
droplet, Ry, and potential energy calculations complement its findings. The
meniscus height plots for different R; are shown in Fig. 5.15 and the critical
tube radius is 6.69¢. In the case of R; = 6.53c throughout the simulation period
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Figure 5.15: The meniscus height as a function of time for the 16000 monomer
droplet with N = 200, for various tube radii. In the inset we highlight the
metastable and partial absorption regions for the case of R; = 6.690.

the droplet was found to partially absorb and desorb without ever being able
to cross the barrier. One can argue that this is purely a dynamic issue, given
long enough time the droplet may eventually overcome this barrier with the
help of fluctuations and capillarity phenomenon can be observed. Though we
do not deny this possibility, it is not at the core of our claims, that is precise
identification of the critical tube radius. The most interesting observation was
the persistent partial absorption and desorption of the droplet, which has not
been reported before. For a slightly larger tube of R; = 6.69¢, the droplet gets
stuck in multiple metastable states, for long periods of times. This scenario

implies that the droplet is partially inside and partially outside for relatively long
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time periods. Such a process contrasts with existing dynamic theories aimed at

explaining the capillary dynamics of simple liquids.

5.5 Theoretical Analysis

The MD results from the previous sections show for droplets composed of
longer chains, a larger critical tube radius is required than for droplets composed
of shorter chains. Specifically, we have found that the radius of gyration of
the N = 20 chains is 2.14c while the N = 200 chain is 5.83¢, compared to
critical tube radii of roughly 5260 and 5.57¢ (respectively) for the droplet
composed of 8000 monomers and 6.37c and 6.69¢ (respectively) for the droplet
composed of 16000 monomers. We shall now attempt to understand the previous
MD simulation results from a theoretical point of view - why do the droplets
composed of longer chains have a larger critical tube radius? We only consider
equilibrium thermodynamics here and therefore only model the initial and final,
equilibrium conformations of the polymer droplets. Previously Schebarchov
and Hendy [37] were able to show that non-wetting metallic droplets could be
drawn up a narrow capillary tube if the droplet radius was sufficiently small.
Their theoretical analysis was based on surface tension arguments (between the
metallic droplet, the tube walls and the surrounding solvent) which gives rise to
a Laplace pressure which assists the droplet in rising up the tube. Our analysis is
based on these ideas, however, the complicating factor is that for polymer chains
one needs to account for chain entropy. If a chain is confined within a narrow
tube the number of possible conformations it may investigate decreases and as a

result the chain’s free energy increases.

In Fig. 5.3 it is shown that for N small the radius of gyration of the polymer
chains which make up the droplet scales roughly like a random walk chain, i.e.
an exponent of 0.484 compared to the random walk exponent of 0.5. Moreover,
for almost all chain lengths sampled their radius of gyration is significantly
larger than a single polymer chain (of the same length) in a poor solvent. This
indicates that the chains are much more extended and investigate many more
conformations than a single polymer chain in a poor solvent. Even though the
droplet is in a poor solvent the individual chains which make up the droplet
behave like ideal chains. This is true as long as N is sufficiently small (N = 200
being an upper limit). We consider the situation where we have a droplet with a
constant number of total monomers. Then given that the droplet is composed of
chains of N monomers each, we shall denote the number of chains in the droplet
as m and we keep mN constant. We assume the chains which make up the
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polymer droplet are ideal (random-walk) chains and we measure chain entropy

with respect to this state.

Consider Fig. 5.2a, in which it shown the situation when the droplet sits at
the lower end of the capillary. The free energy of this state, denoted Fj, is just the
surface energy of the droplet, since we measure chain entropy with respect to the
ideal state. Thus we have

F; = yrv4mR? + sy 2R, L (5.10)

and note that due to volume conservation mNb* = 471R3/3, yielding
1/3
Ry _ (3mN (5.11)
b 4

In the above equations, b represents the monomer size, and L is the length that
an absorbed droplet is in contact with the tube walls.

Next we consider the situation when the droplet is completely absorbed
within the capillary tube. We make the following assumptions in modelling this
state:

¢ We assume the chains have sufficient time to disentangle and form separate
blobs when moving into the tube. In doing this, they attempt to minimize the
conformational entropy penalty. This, of course, may not always be kineti-
cally possible but for sufficiently short chains (remember we only simulated
absorption for chains up to N = 200) is reasonable.

* The tube radius, R;, needs to be smaller than or at least comparable to the
radius of gyration of the individual chains. If the tube radius is much larger
than the radius of gyration of the individual chains, then there will be no
entropy penalty for entering the tube.

* We assume the chains within the droplet behave like ideal chains even though
the whole droplet is in a poor solvent. Our MD simulations validate this

assumption (for chains that are short enough).

A schematic of a fully absorbed droplet is shown in Fig. 5.2c. The volume of
this droplet is

4 1— 3sinf. + 4 sin3 6,
Vip = nR?L — gnR? ( 2 o 663 (5.12)

and of course this volume is just mNb>. Using this equation we can eliminate L
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in favour of R;. The surface energy associated with this droplet shape is

ATR?

—_ 5.13
1+ sin 6, ( )

Fiy = ys1.27RL + vy
Now we need to determine the conformational energy penalty (of the polymer
chains) for entering the narrow capillary. To determine this entropy penalty we
use the arguments of Grosberg and Khokhlov [53]. (The argument is a scaling
type analysis, meaning numerical pre-factors are ignored.) The energy cost for
an ideal chain to be confined to a tube of radius R; is based on a collisional
argument. The ideal chain takes K steps to traverse from one side of the tube to
the other, where R; ~ K1/2p. Every time the chain hits the tube wall it incurs an
energy penalty of kgT. A chain composed of N monomers is composed of N/K
such random walks and therefore has (N/K — 1) collisions. Since K = (R;/b)?

the free energy of confinement is

b 2
Fconfined = kgT <N [E} - 1) . (5.14)

We should mention the N in the above equation does not directly correspond to
the chain lengths we used in the MD section. The MD represents a coarse-grained
model where several base units are grouped into each monomer. As a result
the N in Eq.(5.14) is of the order of 10° — 10° and so the last term of minus one
is negligible compared to the first term. However, we will leave it here since it
has some significance (see below). Recall we have m chains which make up this

droplet so the total entropic energy penalty, F}, is

b 2
FL = mkyT <N {E} — 1) . (5.15)

t

We can see that as R; — 0 the entropy energy diverges. Moreover, if the droplet is
made up of shorter chains (N decreases and m increases but still mN is constant)
the entropical energy decreases. This is as we would expect and is due to fewer
collisions per chain (as the chain length decreases). The total free energy, Fjj, for
an absorbed droplet is F;; = Fj; + Fl,. Note, that this energy is valid only if the
radius of gyration of individual chains which make up the droplet is comparable
in size to tube radius, so that a lower bound for this energy is just F;. The
important energy is the free energy difference between an absorbed droplet
and the droplet sitting at the entrance of the capillary. Thus we define this
difference as AF = Fj; — F;. For convenience we scale this free energy difference
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by 'yLV47rR§ to make it dimensionless and denote it as A®. It is given by (after

AF 1\ /R;\? 1 , 2
Ab=_—— _—(Z) (=t - 0. ) — =
')’LV47TR§ <3) <Rd> <1+Sil’19c+81n C) 3(

kT b
S A N|—| —1]. 5.16
* <’)’LV47TRL21> m ( {Rt:| ) ( )

Note, 47tR? is known and equal to (477)'/3(3mN)2/3p?. An analytically simpler,

some algebraic manipulation)

R
fi) cosf, —1
2

yet accurate, expression is obtained if we neglect the minus one term in the

entropy. In this case we obtain

2

: 2 n
+ Sln9C> — 571 COS QC -1+ W’ (517)

1

AP = 312 (1 + sin 6,

where 7 = R;/R; and x = vryb?/(kgT). The absorbed state will be favoured
when A® < 0.

Consider the partial wetting case first, ie. 6, < 7/2 and recall we are
only interested in the situation where the tube diameter is smaller than the
liquid droplet diameter. In this case, in the absence of a polymeric contribution
(last term in Eq.(5.16)) the liquid droplet will always be absorbed fully into the
capillary [37]. However, for polymer liquid droplets this is not the case, since the
entropic term is positive and its presence favours the droplet sitting outside the
tube. The case 6, = 71/2 is particularly instructive in this context. For large 7 the
surface energy terms are approximately -1. However a polymeric droplet will
not enter the tube when 1 > 1. where

e = 1/3x(Ry/b). (5.18)

This means for R;/b < 4/ % the polymer droplet will not be absorbed in

contrast to the non-polymeric droplet. However, this corresponds to a very
narrow tube, e.g., if R;/b ~ 300 and x ~ 1 then the tube radius below which
absorption ceases is 10b. In Fig. 5.16 is shown the free energy for polymeric
(full-lines) and non-polymeric droplets (dashed lines) versus 1 for a contact
angle of /2. For this figure we use x = 1, mN = 10° and we use Eq. (5.16)
for the free energy. The non-polymeric case, as explained above, is always fully
absorbed while for only one polymer chain of length 10° the critical value of 7 is
13.6, while for 103 chains each of length 10° the critical 7 is slightly larger at 13.8.
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Figure 5.16: Surface energy difference for various droplet configurations for
8. = 90° as a function of 7.

For the non-wetting case, i.e., 6. > 7/2 yielding cosf; < 0 there is only
one term favouring absorption. Figure 5.17 shows the free energy for a contact
angle of 103.5°. (Recall the contact angle from the MD simulations was in
the non-wetting regime (=~ 103.5°).) In the absence of the polymeric term, all
droplets below a radius of 6.35R; would be absorbed into the capillary. For both
polymeric cases, however the critical tube radius is smaller (at 5.5R; for the 10
length chains and 5.3R; for the 10° length chain) and the critical 7. decreases
with increasing chain length. In our MD simulations for the droplet of 8000
monomers, the critical 7, for short chains (N = 20) is 2.9, which for longer chains
(N = 200) is 2.7. For the droplet of 16000 monomers, the critical #. for short
chains (N = 20) is 2.95, which for longer chains (N = 200) is 2.8. Thus the
theoretical results agree with our MD simulations qualitatively in that both MD
simulations and theory predict (i) a decrease in critical # with longer chains and
(ii) when a simple molecular fluid droplet would be absorbed, the polymeric
droplet remains outside the tube. This difference can only be attributed to the

entropy penalty the chains must overcome when entering a restricted domain.
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Figure 5.17: Surface energy for various droplet configurations for 6. = 103° as a
function of 7.
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Figure 5.18: Surface energy for various droplet configurations for 6, = 135° as a
function of 7.
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Finally we present results for the case of a contact angle of 135° (Fig. 5.18).
The results generally follow the previous cases. However, an important differ-
ence now is that the surface tension term in much more important. As a result
the regime where droplets will be absorbed is very small and furthermore the
critical 7, for the polymeric and non-polymeric droplets become very close. In
this case we do not consider a droplet made up of chains of length 10° because
their radius of gyration is smaller than the tube radius for 17 < 2.

5.6 Conclusions

We have presented MD simulations for absorption of polymer droplets,
made up of many small chains, into narrow capillaries. The chains behave (for
sufficiently short chains) like ideal chains since most of the chains are surrounded
by other polymer chains. By tuning the MD interaction parameters we were able
to simulate a system with a contact angle of roughly 103.5°, corresponding to a
non-wetting droplet. We then simulated the absorption of droplets composed
of shorter and longer chains into a narrow capillary and found in general
the longer chains could not enter sufficiently narrow tubes. We attribute this
phenomena to chain entropy, the longer chains lose more conformation entropy
on entering narrow tubes. Moreover, we also found that capillary dynamics
of polymer droplets in such narrow capillaries cannot be explained using the
existing models. The MD simulations and theory presented agree qualitatively.
The theory also suggests for sufficiently narrow tubes or long polymer chains,
polymer droplets which wet the tube walls, may not enter the tube. This is in

contrast to a simple wetting liquid which always absorbs into the tube.



Chapter 6
SPH Simulations of Polymer Blends

Here we study phase separation in polymer blends using a numerical technique
called Smoothed Particle Hydrodynamics (SPH) [145]. Polymer blends have many
industrial applications [146, 147] and are useful in studying phase separation
phenomena [148]. These systems are also interesting from the viewpoint that
the theoretical concepts developed for studying them can be extended to other

polymer systems such as diblock copolymers [149].

A polymer blend is a mixture of two or more different types of polymers.
These systems are often investigated with the purpose of producing materials
that have combined features of all the constituent polymers. Such materials
are useful in circumstances where the blend possesses desired properties that
are absent in any of its constituent polymers, in their pure states. For example,
blending an elastomer with a rigid polymer produces a material that is rigid yet
less brittle. Here we are concerned with binary mixtures of homopolymer blends
and hence we shall restrict our discussion to these types of blends only.

Although, ideally, it is desirable to have a polymer blend that can mix
homogeneously, most polymer blends do not mix i.e., they phase separate [150].
Based on temperature, composition of the blend and chain lengths of the con-
stituent molecules, polymer blends exhibit different phase behaviour. Therefore,
knowledge of phase separation behaviour of polymer blends is essential from

the perspective of their potential applications.

Numerical methods deployed for studying phase separation phenomena
in polymer systems are mostly lattice- or grid-based [149, 44]. These methods
either use lattice Monte Carlo or solve the time-dependent Ginzburg-Landau
equation on a grid using finite difference techniques. However, lattice models

103
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have disadvantages such as (a) anisotropy effects, stemming from the grid-based
nature of these methods, which can be significant in thin film studies and (b)
inefficiency in modelling dense polymer systems [44, 45], for example. Moreover,
these methods can be computationally highly inefficient and/or expensive in
modelling systems with free surfaces. Thin films of polymer blends, generally,
are prepared by spin-casting on substrates, where the top surface freely deforms,
are interesting from technological and scientific viewpoints [41, 42, 43, 151, 152].
Block copolymers are other polymer systems that self-assemble and form more
complex morphologies, than polymer blends, on nanoscale, which are of great
interest in technology [153, 154, 155]. These systems also exhibit interesting
behaviour on substrates, where the top surface freely deforms and this leads
to undulations or island-hole structures at the free surface [156, 157, 47, 48, 49].
Grid-based methods are not efficient for modelling such systems. As mentioned
earlier, the theoretical framework of polymer blends can be extended to study
diblock copolymer systems [149]. On the other hand, atomistic simulation meth-
ods such as the MD or off-lattice methods can tackle the free surface problems
mentioned above, in principal, but they can be computationally very intensive
[44]. We employ the SPH method for studying polymer blends, which we believe
has the potential to address most of the above listed issues.

The chapter is organized as following. In section 2 we discuss the thermody-
namics of mixing in polymer blends and its relation to the model used in our sim-
ulations. In section 3 we introduce the basic concepts of the SPH method; and in
section 4 its application to study phase separation in polymer blends. In section 5
we focus on tools that are used to improve the efficiency of the algorithms. In sec-
tion 6 we present the results from SPH simulations of polymer blends. Finally in
section 7 we give conclusions from this work and also briefly discuss future work.

6.1 Thermodynamics of Phase Separation

Here we give a brief review of the thermodynamic treatment of polymer
blends, originally due to Flory [4] and Huggins [5] and now given in standard
texts on polymer physics [119, 46, 53]. Under given conditions, if a blend prefers
to mix and form a single homogeneous phase then the mixture is said to be
miscible. On the other hand if the system phase separates into regions that are
rich in either species then the blend is said to be immiscible. The study of phase
behaviour of a blend as a function of temperature and composition gives us the

phase diagram of the system.

The phase behaviour of any mixture can be studied by measuring the change
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in free energy upon mixing. To estimate this quantity, let us consider two
homopolymer systems that are initially separate and subsequently brought
into contact with each other. Whether the blend prefers to mix, leading to a
homogeneous phase, or phase separates depends on the sign of change in free
energy given by

AFyiy = AUpyix — TAS iz, (6.1)

where AlU,,;, and AS,,;, are the change in enthalpy and entropy between mixed
and pure states, respectively. By pure states we refer to both A and B fluids prior
to when they were brought in contact. If AF,;, < 0, the system prefers to be
homogeneous and if AF,;, > 0 then it prefers to phase separate, with the aid of

fluctuations. We shall attempt to derive expressions for AS,,;, and Al,,;y.

Let us consider a polymer blend with two types of polymers, A and B. For
simplicity, we use a lattice model where each lattice site is occupied by either
an A or a B monomer. In the above statement it is implicitly assumed that both
monomers are identical in size which is not true in general. It also implied that
the system is incompressible. Though this models is an over-simplification of the

problem it manages to capture the essential physics of phase separation.

First we calculate the entropy of mixing. Note, here we are aiming to obtain
an expression for the combinatorial part of the entropy. We do not account for
configurational entropy that arises from the macromolecular nature of polymers.
We also ingore the non-combinatorial entropy that arises from changes in the
volume upon mixing or in the presence of surfaces [158]. This non-combinatorial
entropy dominates over enthalpy at elevated temperatures. Assuming that the

system is already in a homogeneous state, the entropy per monomer is
Smix = kpIn Qi (6.2)

where ()i, is the number of ways a monomer can be arranged on the lattice

which in this case is equal to number of lattice sites, n. Hence,
Smix = kg Inn. (6.3)

If the volume fractions of A and B polymers in the system are denoted by ¢4
and ¢p, then the number of A monomers is equal to n¢, and the number of
B monomers is equal to n¢p. The entropy per monomer in pure states, for the
A-specie is s4 = kplnQy = kplnn¢,, and similarly for sg. Here ()4 is the
number of ways in which a monomer belonging to the A-species can be arranged



106 CHAPTER 6. SPH SIMULATIONS OF POLYMER BLENDS

on its respective lattice with n¢,4 sites. Therefore, the entropy of mixing per
monomer for A polymers is Asy = s,y —54 = —kpln¢,. If the blend consists
of n4, A monomers and ng, B monomers then the total change in entropy of the
system is given by

AS,,ix = naAsp + ngAsg. (6.4)

This equation is valid for any binary mixture. For a polymer blend with molec-
ular weights of the constituent polymers N4 and Np the above equation can be

rewritten to calculate AST".  per molecule as

n n
AS". = N—’:As A+ N—BBAsB. (6.5)

Using n4 = n¢ 4 and ng = n¢p, we obtain As,,;, per monomer (or per lattice site)

NS,y = —kp Z—IZIH(PA + I({)]—BBIH(PB . (6.6)
Since ¢4 and ¢p are always less than 1, the entropy of mixing is always positive
and thus promotes mixing. With increasing temperature, TAs,,;, also increases
which results in lowering the free energy of mixing. One important point to note
here is the molecular weight dependence of As,,;,. For binary solutions and low
molecular weight system As,,;, is large. But for high molecular weight blends,
which is the case for most polymer blends, As,,;, becomes significantly smaller.
The implications of this on the phase separation will be discussed later in the

section.

Now we calculate the enthalpy of mixing. We assume that the interactions for
any monomer are restricted only to its immediate neighbours and are also limited
to pair-wise interactions only. Let us denote the pair-wise interaction energies be-
tween A — A, A — B and B — Bmonomers by €4 4, € 4p and ep respectively. Under
the mean field approximation, in a homogeneous mixture, at any site, the proba-
bility of finding an A monomer is ¢4 and the probability of finding a B monomer
is ¢p. Therefore, the enthalpy of mixing per site in homogeneous phase is

Z
Umix = 5 [‘PE}‘C'AA + Pphenp + 2<PA<PB€AB] . (6.7)

Here z is the coordination number of the lattice. The factor of a half in Eq. (6.7)
accounts for double counting.
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The enthalpy per monomer in pure states for each of the species is

z z
Uy = EGDAEAA ; Up = EGDBEBB- (6.8)

From Egs. (6.7) and (6.8), the enthalpy of mixing is

Athyiy = Upix — (Up +up) = g [(47,24 - ¢A> €AA T (<P%; - (PB> €B + 24’A¢B€AB] .

(6.9)
Under the conditions of incompressibility and no change in volume upon
mixing, we have ¢4 + ¢p = 1. However in real systems there is a small, but
non-zero, change in the volume upon mixing, which we ignore here. Using the
above approximations in Eq. (6.9) we arrive at

Atyiy = z¢p (1 — ) {SAB - % (ean+ EBB)} , (6.10)

where ¢ = ¢ 4. The Flory interaction parameter defined by

z 1
X = kB_T {EAB 5 (eaa + SBB)} p (6.11)

contains information regarding the characteristic nature of the interactions. If
x < 0 then unlike molecules would like to mix while if x > 0 then interactions
between like molecules is favoured leading to phase separation of the blend.
Substituting for x in Eq. (6.10) we get

Alyix = X¢ (1 - ¢) kgT. (6.12)

Combining Egs. (6.6) and (6.12), the free energy of mixing per lattice site is

Afmix = kT Nilngl)—l—lN_—qbln(l—(p)—l—X(P(l—qb) . (6.13)
A B

From Eq. (6.13) we can study phase behaviour of any mixture. For low molecular

blends or solutions, N4 and Np are small. Hence the entropic contribution

dominates the phase behaviour. For high molecular weight polymer blends the

entropic contribution becomes small and the trade-off between the entropic and

enthalpic contributions regulates the phase separation process.

In the upper half of Fig. 6.1, we have plotted the NAf,,;,/kgT as a function
of composition ¢ for a symmetric polymer blend (N4 = N = N) for a particular
value of xN. It is reasonable to choose YN as the suitable parameter to study the
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phase behaviour. This parameter includes temperature and molecular weight,
both of which influence the underlying phase separation process. Note that
this is not the case for solvent-solvent mixtures where just the x parameter is
sufficient to describe the phase separation mechanism. Af,,;, has two minima at
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Figure 6.1: In the upper graph the free energy of mixing as a function of composi-
tion is plotted. The points b; and b, represent coexisting phases. Between points
s1 and s; the system is metastable with respect to fluctuations in the composition.
In the lower graph, the black curve is obtained from projecting bs from the free
energy curve and the red curve is obtained from projecting ss curve, as a function
of xN.

points by and b with a maxima in between. The first derivative of free energy

with respect to ¢ is equal at these two points, i.e.,

aAfmix) _ (aAfmix) 6.14
(34’ by op )y, 619

In other words the chemical potentials at these points are equal. Points b and b,

are called binodal points. The locus of binodal points as a function of xN gives the
binodal curve which distinguishes a single phase from the phase separated region
in the parameter space xN. In the vicinity of binodal points if the system were
to locally phase separate, due to any fluctuations, it will result in an increase in
free energy. Thus phase separation is not favoured close to the binodal points.
To locate the binodal points in addition to (dAf,ix/d¢) = 0, the condition
(0%A fix/9¢*) > 0 must be satisfied.
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For compositions between the inflection points s; and s, the system is
unstable and spontaneously phase separates with respect to any fluctuations
in composition. The phase separation process of this sort is known as spinodal
decomposition and the corresponding points which act as a boundary encompass-
ing this portion of the free energy curve are called spinodal points. In this region,
any fluctuation in composition lowers the free energy and so the system phase
separates spontaneously. In the region between the bs and ss, small fluctuations
lead to an increase in free energy whereas large fluctuations lead to a decrease in
free energy. Hence this region is called metastable. The phase separation process
in this region is called binodal decomposition. The phase separation mechanism
in binodal decomposition is not spontaneous, unlike spinodal decomposition.
At spinodal points we have 9%Af,,i,/9¢> = 0. The locus of spinodal points as a
function of xN gives us the spinodal curve. The binodal curve separates the single
phase from the phase separated region. The region between the binodal and
spinodal curve represents the metastable region. Above the spinodal curve the

system is unstable and phase separates spontaneously.

The global free energy or the free energy functional is obtained by integrating
the local free energy given by Eq. (6.13) over the entire system volume. This
quantity describes the thermodynamic state of the system correctly independent
of whether the system is homogeneous or inhomogeneous, unlike the local free
energy which always works under homogeneous mixture conditions. The most
popular form of the free energy functional to study phase separation in polymer
blends is the Flory-Huggins-de Gennes (FHAG) free energy [51] formulism
written as

1
FHdG dr { Vo (1) , 6.15
e = [ | fuielo 0]+ sgrr—g 7 V9 0 (615)
The first term inside the integral is the local Flory-Huggins free energy given by
Eq. (6.13). The second term represents the penalty, due to local fluctuations, in
concentration in the random phase approximation limit proposed by de Gennes
[51]. Note that this approximation is only valid in the limit of slow spatial

variations.

Though the free energy functional given by Eq. (6.15) is the preferred choice,
here we consider a slightly simpler version of this free energy which is more
generic for phase separating systems. This simplification is justified since the
primary focus of this study is to test the applicability of a numerical method to
polymer blends rather than replicating the exact behaviour of the system. For
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this purpose we define the local order parameter to be the difference in the local
concentrations i.e., { (r) = ¢4 (r) — ¢p (r), in the incompressible limit. Rewriting
the integrand of the FHAG free energy functional in terms of the order parameter
P yields

HR) () (55 o (59) (59)
+9(1+¢2) Vel (6.16)

Using logarithmic and binomial expansions (about i ~ 0) and neglecting the

higher order terms, which is a valid approximation since ¥ is small in the vicinity
of a phase transition, Eq. (6.16) can be approximated by

+ X X |V1p] (6.17)

LN {1/22 + égb4 +0 (l[J ) + Constant]
where “constant” represents terms not involving 1. These terms only lower or
raise the free energy, but do not affect the position of any maxima or minima.
Rearranging the terms in increasing powers of 1 and ignoring the constant
terms, we find that the FHAG free energy functional is equivalent to the the
Ginzburg-Landau free energy functional

kBT ~ [ [——w 1\ h (6.18)

The parameters in Eq. (6.18) can be chosen such that they can be mapped to
the parameters in Eq. (6.17). Hence this choice for the free energy functional
(the Ginzburg-Landau form) is a suitable choice for polymer blends. Another
important point to note is the resemblance of Eq. (6.18) to the Cahn-Hilliard (CH)
model [159, 160] that is employed to study phase separation in binary alloys. In
the CH-model the local free energy is assumed to be a function of order param-
eter and gradients of the order parameter. These gradients of order parameter
account for the cost of forming an interface between the dissimilar species.

6.2 Introduction to SPH

In SPH, continuum equations that govern the system evolution are solved
by approximating the fluid as a collection of particles. Thus it combines features
of both continuum and particle methods. In the SPH method, the fluid under
consideration is divided into a number of fluid volumes. Each fluid volume is

referred to as a particle. Each of these particles possess physical properties such
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as mass, density, velocity, volume, etc. The dynamical evolution of the system is
followed by solving the equations of motion, governed by the hydrodynamics of
the system. Physical properties that are required to solve these equations of mo-
tion are calculated by obtaining a smoothed average of physical properties over
all the particles in the system. This method was initially developed to address
astrophysical problems but soon found applications in diverse fields ranging
from fluid dynamics, mechanics of solids to animations, to name a few [161]. A
comprehensive review on SPH is provided in references [161, 145]. In this section

we give a brief overview of some of the fundamental concepts in SPH.

The basic idea in SPH is to evaluate the value of a field variable at a particular
point in space by calculating a weighted average of the same physical variable
from the surrounding particles in the neighbourhood. Ideally, the value of a
physical quantity A at point r is given by

/

Alr) = /A(r/) 5(r—r)dr, 6.19)
14

where integration is performed over the total volume of the system V and J is

the Dirac-delta function.

To numerically compute the value of the variable A(r), the Dirac-delta func-
tion in Eq. (6.19) is replaced by a kernel W(r — r, 1) which acts as a smoothing
function over all the particles in volume V. Here h is referred to as the smoothing
length which effectively controls the weighted contribution to the value of the
variable from the distribution of particles that are within the volume of the

system. The kernel should satisfy the following conditions:

e The normalization condition: [ W(r —r,h)dr = 1.

v
e In the limit # — 0, the kernel W should behave as the Dirac-delta function i.e.,

lim W(r—r,h) — 6(r—r).
h—0

Replacing the J function in Eq. (6.19) with W yields

/

Ar) = / A(E)W(r -1, h)dr. (6.20)
1%

The continuous integration over the whole volume in Eq. (6.20) can be approx-
imated by the summation over all the particles by dividing the system into a
number of particles. This is known as the particle approximation [162]. Each
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particle has a mass, volume and density. Hence rewriting Eq. (6.20)

N
A(r) = Z{ A(rj)) W(r —1j,h) Ar;,
]:

where the index j runs over all the particles in the system, N and Ar; = m;/p;
is the volume of particle j with mass m; and density p;. Thus the value of the
physical variable A(r) is a smoothed weighted average over all the particles j.

Therefore,
N

Ar) =Y 2 A(e) W(x -1, h). 6.21)
j=1 Pj

While the summation in Eq. (6.21) is over all the particles in the system, in
reality, only a small number of particles that are in the vicinity of the central
particle contribute to the sum with negligible contribution from the rest. This
aspect can be utilized to narrow down the number of contributing particles to
a small influence area (volume in 3D) around each particle and hence reducing
the computational effort. This region of influence is known as the support domain.
The area under the support domain can be controlled by varying the smoothing
length h. A physical interpretation of the above statement can be provided in the
following way. The smoothing length / defines the decay of W as a function of
distance from the central particle. If /1 is small then particles that are close to the
central particle contribute the most to the sum. Therefore the summation in Eq.

(6.21) can be reduced to particles only within the support domain.

One of the major advantages of using the SPH method is that spatial deriva-
tives can be calculated without the aid of a discrete grid. In SPH, the gradient of
function A(r) is given by

VeA() = Y 2L A(r)) Ve W(r — 1, h), 6.22)
j
The above equation does not yield correct results since it gives a non-zero
contribution even if the function A is constant. This leads to violation of the
conservation of linear and angular momentum. To rectify this, the following
identity is used,
pVA=V(pA)—AVp, (6.23)

where p is the density of the particle. Eq. (6.23) not only conserves linear and
angular momentums but also helps to achieve higher orders of accuracy [163].
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Using Eq. (6.23), Eq. (6.22) can be rewritten as

[A(r) = A(r)] ViW (r —1j,h) . (6.24)

The density of a particle can be calculated in two ways. Using the definition in
Eq. (6.21) the density of particle i is

0i = Zm] W(I‘i - I']', h) (625)
j
Alternatively one can use the continuity equation:

Z—f +pV-v=0. (6.26)

From Egs. (6.24) and (6.26), for any particle i, we have

_ = ij (Vi — V]') : Vl' W(l‘i - r]',h), (6-27)

where v; and v; are the velocities of the particles i and j, respectively. In general
Eq. (6.25) is widely used to calculate the density but shown to have problems at
free surfaces. It leads to oscillations in density of particles at free surfaces which
in turn causes fluctuations in pressure. This leads to unphysical behaviour of
surface particles. On the other hand using Eq. (6.27) to compute densities is
found to be much more stable at handling free surfaces. In Eq. (6.27), when
particles approach each other their relative velocity becomes negative thus
increasing the density of that particle. This leads to an increase in pressure on the
particles and hence at subsequent times these particles are pushed apart from
each other to stabilize the density or pressure. Note, that Egs. (6.25) and (6.27)
are equivalent since formally differentiating Eq. (6.25) gives Eq. (6.27).

The above discussion only provides a brief introduction to the SPH method-
ology providing the grounds by which we can apply it to our polymer blends.
We do not indulge in a serious discussion on the other aspects involving SPH as
they are irrelevant to our study here. Rather than getting into the specific details
about the method, our focus here is to consider whether SPH can be applied to

phase separating polymer systems.
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6.3 Application of SPH to Polymer Blends

The SPH method has been successfully applied to polymer blends by Oku-
zono [164]. Using the two-fluid model [165], he demonstrated the applicability
of SPH to study phase separation in polymer blends. This study was restricted
to fluids with periodic boundary conditions. However the real strength of the
SPH method lies in its ability to model complicated bounding geometries or
free surfaces. Here we attempt to extend Okuzono’s work to polymer blends
with bounding surfaces (which the blend cannot penetrate) and to free surfaces.
Essentially the underlying theory remains the same as that used by Okuzono.
We provide a brief overview of the necessary background and also derive the

equations that need to be solved.

Consider a binary polymer mixture consisting of polymers A and B. The
system domain is divided into a number of equi-volume fluid elements or
quasi-particles. For simplicity we shall just refer to these fluid elements as
particles. Let us denote the number of A particles by N4 and the number of B
particles by Np. Initially, each of these particles consist both A and B polymer
densities. As a convention, we use indices i, j, - - - to indicate A particles, n,m, - - -
for B particles, and a, 3, - - - for any particle. Using the notation described above,

the A and B densities for any particle « are given by

Ny

pa(rs) =Y maW(ry —xj,h), (6.28)
=1
Np

OB (I'[x) = Z mp W(rﬂt — Iy, h)/ (629)
n=1

where my = Muy/Ny and mg = Mpg/Np are masses of individual A and B
particles, respectively; M4 and Mp are the total mass of A and B fluid in the
system. Thus, the total density of particle a is p(ry) = p(rga) + p(ryp). During
the course of the simulation, irrespective of its A and B compositions (densities),
a particle’s identity does not change. The governing equations of motion act such
that if an A particle is in a B rich region, which implies p4 < pp, it moves away
from its current location towards an A rich region and vice-versa. Eventually the
system phase separates on the macroscale.

The smoothing kernel was chosen to be the Gaussian, due to its mathematical
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simplicity in implemention, given by

1 \%? 2 /)2
Wit — 1) = (W) o (i), (6.30)
where d is the dimensionality of the system. We derive the equations of mo-
tion using the Lagrangian formulism. The Lagrangian for the system under

consideration is:

1
L= ;mﬁ {fos —f (Pﬁ/¢Aﬁf¢Bﬁ)} / (6.31)

where f (0g, pap, ¢pp) is the free energy density per unit mass and ¢ = pag/pp
and ¢pg = ppp/pp are the mass fractions of A and B fluids, respectively.

In case of polymer fluids, additional forces arise from the viscoelastic effects
due to stress exerted on their conformations due to motion. We ignore this effect
in our simulations. For binary polymer mixtures, associated with this is the
dissipation that originates from relative motion and velocity gradients between
dissimilar species. This effect is incorporated into our model via the dissipation
function [165]

mgl m
Z Pop (VA —VB)é +ZﬂDﬁ Dﬁ, (632)
B PP R

where (g, vag(= valy) , and vpg(= vpl,) are the friction coefficient, A fluid
velocity, and B fluid velocity of particle B. We assumed the viscosity of both
fluids to be equal to 17. Dg is the velocity gradient tensor defined as

Ds = % [(Vv)ﬁ + (vv)g] , (6.33)

where (Vv); is calculated using the definition

m

(V) =3 —L (vy = V) VW, (6.34)
v B
where -
Va = Y —L v Wy, (6.35)
p PP

is the velocity of any particle «.
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Now, the equation of motion for any particle « is

doL JL OR
diot, or ot =0. (6.36)
Inserting Egs. (6.31) and (6.32) into Eq. (6.36), and after some algebra we finally
arrive at

.. g[xﬁ g[ﬂtx éa

Iy = Z (_2 + _2> : Vawaﬁ FP 7= (va — VB)a- (6.37)

B\ Px Pp ‘o

To obtain a dimensionless form, the above equation was rescaled with respect
to Iy, up and pg which are units of length, velocity, and density, respectively. The
first term in Eq. (6.37) involves the stress tensor e and describes the interaction
between the particles. In the second term in Eq. (6.37), B is a system parameter,
To = (papp/p*)s is the friction coefficient and ¢, = p4 or pp depending on
whether &« = A or B. The sign of the second term is minus if the particle a is of
type A and plus if it is of type B.

The stress tensor [ P is written as

@ ;= —(Patjap) L +29%7' Dy, (6.38)

where [ is the unit tensor, ji,4 is the chemical potential between particles « and §,
D, the velocity gradient tensor, and R = pouply/7 is a dimensionless parameter.

We now define each entity in Eq. (6.38) and explain their significance.

Although the fluid mixture was assumed to be incompressible, this is not
possible to realize in simulations as there is always finite compressibility required
to allow particle motion. Real fluids also have finite compressibility. The state of

finite compressibility is included via the equation of state:

»
Pu = Po [(%) — 1] , (6.39)

where py is a positive constant and p is the average density of the system. If
the density of any particle « deviates from the system average then it results
in a change in pressure at that particle/point. Globally, this drives the system
towards a constant density or zero-pressure state. If p, > p then a positive
pressure is exerted on the particle which will push the particles farther apart
from each other and vice-versa. Obviously the magnitude of pressure depends
on the right set of parameters for py and y which are system dependent. In our

simulations we use Okuzono’s values for these parameters, pg = 2.0 and ¢ = 2.
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The chemical potential is responsible for driving the system towards phase
separation. Note, if the system is in the binodal-spinodal region of the phase
diagram, fluctuations in the order parameter can drive the system towards phase
separation. The ultimate stable phase is the one where the chemical potential
exchange between the two phases is equal. Due to its simplicity and relevance to
small molecular systems we use the Ginzburg-Landau form of free energy in Eq.
(6.18) to compute the free energy

_ 9Fg
Ha = wl (6.40)
Hy = —€Py +ud> — K(V2¢)y, (6.41)

where ¢ = (04 — PB)a/pPa is the local order parameter for the particle « and
€, uand K are constants. The first and second terms are readily available from
Egs. (6.28) and (6.29). Now considering the third term in Eq. (6.41), we have
\V& — / ifa=A
V2, = ((oa —pB)/P)a ! (6.42)
V(o5 —pa)/p)e ifa =B
The sign convention is taken care of in the final definition for chemical potential.

Assuming that the incompressibility condition approximately holds, we are left
with

2(Vv? ifa = A
Vg~ 4 2V Pa)e /pu iba (6.43)
2(V?0p), /px ifa =B
Using Eq. (6.23), the Eq. (6.43) can be rewritten as
m .
(V204) = Zp—: (Voa);— (Voa)| - ViWy ifa=4,  (644)
]' 1

<V2p3>n - 2;”—3 [(Vog), — (VoB),]  VaWum ifa=B.  (645)

m Bn
Keeping the above convention in mind, we re-define the order parameter as

@a{((PAPB)/P)a ifa=A

(0B —pa) /p), ifa=B

Therefore, the chemical potential takes the following form

,ﬂacﬁ = eaﬁﬁa/ (6.46)
— eup (—e(f)a +udl - szqsa) . (6.47)
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where €,5 = 1if a and p are both of same type and —1 otherwise.

Having defined all the entities in Eq. (6.37), the next step is determine the
time evolution of the system. In the next section, we introduce some tools to
achieve this.

6.4 Implementation

6.4.1 Initial Configuration

All the simulations presented in this chapter are of two-dimensional systems.
The system consists of two types of particles, A and B. The system domain size is
denoted as Ly x L, where L, and L, are its dimensions in the x and y directions,
respectively. In all our simulations, the initial configuration has L, = L, = L.
All systems contain N = 2L,L, particles, which gives a fluid particle volume
(actually area since we are in two dimensions) of 1. The fluid particle size can
be varied (by changing N) and should be made sufficiently small so that the
simulation results are independent of particle size. We use a smoothing length of

1.2 times the fluid particle size.

The initial configuration of the system was generated using one of the
following two methods. First we shall discuss the case of symmetric polymer
blends i.e., N4 = Np. All the A particles are placed on a square lattice of lattice
constant 1.0. Another similar lattice was created for B particles. These two
lattices were then superimposed on each other and the B lattice was displaced
by (0.5,0.5) with respect to the A lattice.

Clearly, the above described method is not applicable for asymmetric polymer
blends. As an example consider a system where N4 < Np. In this case, particles
belonging to the minority type (A) are distributed randomly on the lattice, first.
Then the remaining vacant lattice sites are filled with the particles of majority
type (B). Note in both methods, the initial particle coordinates lie between (0,0),

(Lx, Ly).
6.4.2 Time Integration

The time evolution of the system was achieved by discretizing the equation of
motion, Eq. (6.37), in time. In our simulations we use the Improved Euler method
for this purpose. This method involves two steps: a predictor step and a corrector
step. In the predictor step, particle velocities and positions are calculated at half
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timesteps as given by

At

Un+1/2 = Unt S An-1/2, (6.48)
At

Xp41/2 = Xn + 70,1. (6.49)

Here v, x and a indicate velocity, position and acceleration of a particle. n(> 0)
is the timestep index and At is the timestep size. At timet = 0,4_1,, = 0. Thus
obtained particle positions and velocities are used to compute the forces at half
timesteps, a,,11/2. These forces were then used in the corrector step to compute
particle positions and velocities at the full time step:

Upi1 = Un+ At a,1/9, (6.50)
At

v =0, + 761,14_1/2, (6.51)

Xpi1 = Xn + At 0. (6.52)

6.4.3 Linked List

As described earlier, in evaluating any physical quantity we only need parti-
cles that are within the support domain around each particle. For a system of N
particles there exist N2 number of pair-wise interactions, which is a large number
even for a system of 10° particles. Out of these N? interactions only a small
fraction have significant contribution towards evaluated physical quantities. By
limiting the pair-wise calculations to the support domain the insignificant pair
calculations are avoided thus greatly reducing the required computational effort.
In our simulations, we use the linked-list method [162] for this purpose.

In the linked-list method, the system domain is divided into M cells of equal
size. The dimensions of the cell are dm, and dm, in x and y directions, respec-
tively. The condition dm,,dm, > r.,; has been imposed on the cell dimensions.
This was done to ensure that for any particle 7, all other particles that belong to
its support domain reside in its immediate neighbouring cells. In this manner
we can restrict neighbour searching to the least possible number of cells (8 in
2D). The linked list implementation is illustrated in Fig. 6.2. For any particle i,
all the other particles that contribute to its physical quantities are always within
its support domain. We use a r¢,¢ of 3h.
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Figure 6.2: A schematic diagram showing the linked-list mechanism for a small
part of the system. The area under the circle represents the support domain for
the particle i. In this particular case dm, = dm, = dm. The cell dimension always
satisfies the following condition dm > rc,, where rqy; is the cut-off radius for
interaction. The dotted arrows indicate presence of fluid beyond the boundaries
shown in the figure.

6.5 Results

In all our simulations, we set # = 1.0 and K = 0.5 in Eq. (6.41). The timestep
size was fixed to At = 0.005. This choice for At was found to be adequate for
our purposes and did not cause large fluctuations in particle densities. Most of
the time p ~ 1.0 & 0.07 which is small enough so as to not influence the phase
separation process. This observation also confirms that the choice of parameters

po = 2.0 and v = 2.0 in Eq. (6.39) are adequate for our purposes.

To realize a disordered state, the initial configuration of the blends was
simulated for 100 time units with e = —0.5. After this period, the ¢ was changed
to 0.5 and the subsequent time evolution of the phase separation process was

recorded. The phase separation process was monitored with the help of the local
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order parameter

Po = Paq — Ppo = DAL —FPBe A“p_ PBx, (6.53)
4

as a function of time ¢, for all particles.

The amount of A and B fluids are conserved at all times. This can be

measured using the global order parameter:

1 N
N ;cpa =1- (6.54)

where f is the volume fraction of A fluid in the system. In all our simulations,
® was conserved at all times except for small fluctuations induced due to

compressibility of the fluid.

6.5.1 Blend with Periodic Boundary Conditions

First of all we studied the phase separation of a polymer blend with periodic
boundary conditions applied in both directions. The phase separation process
was monitored by observing the local order parameter evolution as a function of
time t. The results for the symmetric polymer blend f = 0.5 for a 50 x 50 system
are shown in Fig. 6.3. Att = 0, the system is in a disordered state and hence the
local order parameters of all particles are close to zero. Upon quenching the sys-
tem starts to phase separate. The homogeneity of the phase separation process,
at early times, indicates that the underlying process is spinodal decomposition.
At early times (f = 10 to 50), the smaller droplets of one phase get enveloped by
larger droplets of that phase. At later times the domains rich in A and B phases
grow in size. Note, that the segregation is relatively weak (the order parameter
maximum only reaches 0.75) which is in keeping with Ginzburg-Landau model
we are using to describe the system’s free energy.

Simulations for the asymmetric blend case of f = 0.4 were also carried out
and the results are shown in Fig. 6.4. In this case the minority phase initially
forms circular droplets. This behaviour is similar to the f = 0.5 case. As for the
f = 0.5 case, small droplets coalesce (or are enveloped) with other droplets of
the minority phase. In the long time limit these circular droplet increase in size.
This is the behaviour commonly observed in asymmetric polymer blends [164]
and our results are in qualitative agreement with these findings. In principle,
we could continue on these simulations to smaller f, however the behaviour

described above is typical — for smaller f circular droplets only form.
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(k) t=1900

Figure 6.3: The phase separation process for a symmetric polymer blend of size
50 x 50 with periodic boundary conditions applied. Plotted is the local order
parameter as a function of time . The red colour represents phase A and the
blue colour represents the B phase. The degree of phase separation is indicated
by the colour scale of the order parameter as shown in the last figure.
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(i) t=400

G) =900

Figure 6.4: The phase separation process for asymmetric polymer blend with
f = 0.4 of size 50 x 50 with periodic boundary conditions. The minority phase
droplets grow in size with time.
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6.5.2 Blend between Two Parallel Plates

A system of practical importance is a polymer blend confined between two
parallel substrates. Here we study the phase separation in such systems using the
SPH methodology. With the inclusion of substrates, in addition to the fluid-fluid

interactions we have fluid-wall interactions.

The presence of impenetrable walls prevents the fluid particles from entering
the wall regions. To model this effect, we adopt an LJ-type force (repulsive
part only) between the fluid particles and the walls [166, 167]. The form of this
boundary force is:

A(l/y)° if 0<y<I
fy)={Dy—b?* if I<y<b

0 otherwise

where y is the normal distance of the particle from the substrate surface and the

2
D:A(S+2) o= st (6.55)

parameters

2b T s+2

The exponent s determines the steepness of the boundary force. For distances
smaller than /, the boundary force is large and gradually decreases for distances
between | and b. For distances beyond b from the surface, particles do not
experience the wall. In all our simulations with substrates we have set A = 0.1,
s = 8 and b = 0.5. This set of parameters are chosen so that no instabilities are
caused in the system due to boundary forces. This choice for boundary force also
ensures a smooth force field [166]. Note, this force acts normal to the substrate
and into the fluid. This boundary force is added to the y component of the
equation of motion given by Eq. (6.37).

Now to model the interfacial attraction between the fluid particles and the

walls we incorporate a surface energy term into the free energy functional [157]:

i_ o2 Moy 5 2 _Fsurface
- _/dr[ e9? + St + 5 V9 e (6.56)

where the last term is the surface energy term and has been chosen to have the

following form

o
Fsurfuce - /dry_v('b’ (6.57)

where o is the strength of fluid-wall interaction and the exponent v determines
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the interaction range and steepness of the field; y is the normal distance of the
particle from the surface, and is always positive. A small value of v means
that the field is long-range and the magnitude of the surface energy will be
small close to the walls. A large value of v implies that the surface field is
short-range and its magnitude is large close to the walls. By adjusting the values
of interaction strength ¢ and exponent v, the desired behaviour for the fluid-wall
interaction can be achieved. Depending on the sign of ¢ the surfaces can be made
to prefer either of the species. If a choice of ¢ leads to the surface preferring A
particles, by simply changing its sign the substrate preference can be changed
to B particles. Note that the repulsive boundary force is not included in the free
energy functional as it is independent of the particle (order parameter) and thus
will be eliminated from the chemical potential calculation. Therefore, we had to

explicitly define the interaction between the fluid particles and the walls.

The surface energy interactions are obtained by completing a functional
derivative on the free energy (Eq. 6.57) to obtain the following chemical potential:

() = —epu+upd — K (V29) +0

1 1
i —] , (6.59)
e (Ly —7y)

where ry, is the y coordinate of particle a. Note, the surface interaction will
favour one phase at the lower surface and the other phase at the upper surface
since opposite signs precede each term in the chemical potential, Eq. (6.58).

We have carried out simulations over a wide range of ¢ and v values. Here
we only report results for those combinations of ¢ and v for which the surface
energy term does not dominate the underlying phase separation process. Note
while the system is bounded in the y direction, periodic boundary conditions are

applied in the x direction to allow for the particle movement.

In Fig. 6.5, we show the phase separation for the case ¢ = —0.1 and v = 1.0
for a symmetric polymer blend. The usual phase separation behaviour was
observed everywhere in the system except for regions close to the walls. The
lower wall was found to attract the A particles while the upper wall attracted
the B particles. This is evident from the phase evolution snapshots. The domains
grow parallel to the substrates. The thickness of the A and B phases next to
the substrates was found to increase with time. At long times, the system will
eventually phase separate into A and B phases macroscopically with A phase in
the lower half and B phase in the upper half of the system geometry.

The effect of the short-range nature of the surface potential was studied by
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changing v = 2.0 for the above system. The domain growth results for this case
are shown in Fig. 6.6. As expected the phase behaviour close to the walls was
different from the v = 1.0 case. For example, compare the configurations at
t = 100 in both cases. Due to the short-range nature of v = 2.0 surface potential,
the thickness of the A phase adjacent to the lower wall was smaller than that of
v = 1.0 case at the same instance. It might well be the case for this simulation
that the final state is metastable. Although we have run this simulation for an
extended time, the large elliptical droplet remains for a long time, even though

we would expect lamellae in this case.

Simulations were also carried out for larger values of ¢. The results for the
case ¢ = —0.5 are shown in Figs. 6.7 and 6.8. Due to a stronger fluid-wall
interaction, in the long-range case of v = 1.0, we observe macroscopic phase
separation which was not seen for ¢ = —0.1, for the same v. For the v = 2.0 case
(Fig. 6.8), the blend forms stripes of A and B phases parallel to the wall.

We have also carried out simulations for positive values of ¢ and its effect on
the phase separation was noted. The results for ¢ = 0.1 and v = 1.0 are shown
in Fig. 6.9. Unlike ¢ = —0.1, here the B phase is attracted to the lower wall while
the A phase is attracted to the upper wall. This confirms that by changing the
sign of the interaction parameter, the alignment of the phases can be changed.

Simulations for the asymmetric blend case of f = 0.4 were also studied and
the results shown in Fig. 6.10. The minority phase was found to form droplets
as expected. The effect of the surface interaction on the phase separation process
was evident. The lower wall attracts the minority phase which eventually lead

to macroscopic phase separation at long times.

It should be noted that the boundary condition here is very simple to imple-
ment. The encouraging aspect of this work is that we could simulate much more
complicated bounding geometries such as circles or other regular or even irregu-

lar geometries. All one needs is to specify the (local) unit normal at the boundary.
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Figure 6.5: Evolution of the spinodal decomposition in the presence of two

parallel walls. Shown are the snapshots of the phase evolution for a symmetric
50 x 50 polymer blend system with ¢ = —0.1 and v = 1.0.
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Figure 6.6: Domain growth for the symmetric polymer blend of size 50 x 50 with
o= —0.1and v = 2.0.
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Figure 6.7: Domain growth for the symmetric polymer blend of size 50 x 50 with
o= —05and v = 1.0.
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Figure 6.8: Domain growth for the symmetric polymer blend of size 50 x 50 with

c=—05and v = 2.0.
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Figure 6.9: Domain growth for the symmetric polymer blend of size 50 x 50 with
o = 0.1 and v = 1.0. The alignment of the phase is opposite to that of ¢ = —0.1.
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Figure 6.10: Domain growth for the asymmetric polymer blend of size 50 x 50
with f = 04,0 =0.1and v = 1.0.
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6.5.3 Blend on a Substrate

Here we test the usefulness of the SPH method for modelling polymer blends
with free surfaces. To start with we consider a polymer blend on a substrate (with
the wall removed at the upper surface). The same boundary force given by Eq.
(6.5.2) was used to model the hardcore repulsion between the fluid particles and
the wall to prevent the fluid particles from penetrating the wall. The fluid-wall
interaction was implemented as discussed in the previous section, via Eq. (6.58).
In all previous cases the system dimensions (Ly, Ly) did not change in time and
hence constructing the cell grid (My, M) for linked-list purposes had to be done
only once at the beginning of the simulation. But in the present case, the surface
of the system is free to deform in the y direction, and hence its dimensions in this
direction are time dependent. This means that the cell grid has to be constructed
at every single timestep to build the linked-list. Hence, these simulations are

computationally more intensive compared to fixed domain simulations.

This system differs from the two substrate case in one other aspect. In the two
substrate case we need not bother about the momentum transfer to the particles
in the normal direction due to the boundary force implementation. Since the
system was bounded in both the y directions, any initial momentum transfer
would not lead to particles drifting away from the substrates. However, in the
present case, the system does not have any upper boundary and it is free to
deform in that direction. Therefore, the momentum transferred in the normal
direction due to the boundary condition can lead to drifting of the whole system

away from the substrate in the positive y direction.

To oppose the system from drifting in positive the y direction, we have

included a gravity-like term in the equation of motion:

i} L Epa
Go= 1|t | VaWap| —3 (6.59)
3 Pa Pp y

where the last term —¢ acts in the downwards direction and |- - - | y indicates the
y component of the term within the brackets. A range of ¢ values were inves-
tigated to find the right choice for g to model this system. Periodic boundary
conditions are applied in the x direction. It is important to note here that we have
not implemented any surface tension term at the top, free surface. Although
this is possible to do, it requires an additional calculation which we have not
implemented as yet. We will discuss this in the Future Work section, below. Thus

the vacuum-polymer blend surface tension is the same for both phases.
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In Fig. 6.11, we show the results for the case o = —0.1, v = 1.0 and g = 0.0001.
In this case, the A particles were found to move towards the substrate and as
a result the B particles moved away from the substrate. The upper surface of
the system freely deformed as can be seen from the snapshots of the system.
During the course of the simulation, because of the momentum gained due to the
boundary force, the particles and eventually the whole system was found to drift
in the y direction. This can observed from the system snapshots at time ¢t = 200.
Eventually, due to the gravity term, the blend settles down on the substrate with
the preferred phase next to it. Increasing the value of g to 0.0003 has shown to
improve the stability by reducing the drift of the system and this can be seen
in Fig. 6.12. However, there was still some drift in the system in this case too.
Further increasing the g value prevents the system from drifting altogether but it
leads to oscillatory fluctuations in the system, in the y direction. This is because
large values of g push the particles towards the substrate which will cause the
pressure to increase. This eventually results in particles being pushed away from

the substrate. However, these oscillations were found to decay with time.
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Figure 6.11: Phase separation for a 50 x 50 polymer blend on a substrate with
o= —0.1,v=1.0and g = 0.0001.
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Figure 6.12: Phase separation for a 50 x 50 polymer blend on a substrate with
o= —0.1,v=1.0and g = 0.0003.
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6.5.4 Blend with Free Surface

Here we study polymer blends with freely deformable surfaces. Since the
surface of the system is free to deform in both directions, the system dimensions
change in time. This leads to constructing the cell grid every single timestep
as mentioned in the previous section. Once again, we emphasize there is no
difference in surface tension between the two components of the polymer blend

and vacuum.

The phase separation process for one of the model systems is shown in Fig.
6.13. The spatial domain was found to freely deform. In the long time limit the
A and B phases separated on macroscale forming a dumbbell shape. The shape
of the dumbbell is symmetric (with respect to the interface between the phases)
which we would expect since each component has the same surface tension with
vacuum. Hence, the system has formed a stable (minimum) free energy state.
Of course the structure of the macroscopic phase separated system will depend
on the parameters in the chemical potential, Eq. (6.41). Simulations for larger
systems were also carried out and the results are shown in Fig. 6.14. Formation
of A and B rich domains was observed. However, to reach macroscopically
separated phases the simulations have to be run for very long times and it is
quite probable the final state at t = 900 is only metastable. Simulations were also
carried out for the asymmetric case of f = 0.4. Droplet like minority domains
were observed growing in time and this result is consistent with the earlier
results for the same case. The results are shown in Fig. 6.15.

The simulations in this section has demonstrated the capability of the present
technique to model freely deforming surfaces. Such results would be extremely

difficult, if not impossible, with any grid-based technique.
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Figure 6.13: The phase separation process for a 20 x 20 polymer blend with freely
deformable surface.
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Figure 6.14: The phase separation process for a polymer blend of 50 x 50 system
with freely deformable surface.
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Figure 6.15: The phase separation process for a polymer blend of 50 x 50 system
with freely deformable surface for the case of f = 0.4.
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6.6 Conclusions

In this chapter we have successfully applied the SPH method to study
the phase separation process in polymer blends under a variety of boundary
conditions. To start with phase separation in both symmetric and asymmetric
blends was studied with periodic boundary conditions applied in both direc-
tions. The phase separation process was observed to take place simultaneously
system-wide and this confirms that the underlying mechanism is spinodal
decomposition. As expected, in the asymmetric blend case of f = 0.4, growth of

a droplet-like minority phase was noticed.

Then, we studied the phase separation in polymer blends confined between
hard walls. Simulations were conducted for different surface energy-strengths
and forms (short-range and long-range). In general, for symmetric polymer
blends lamellae-type phases were found to grow parallel to the walls, indicating
signs of macrophase separation at long times. One exception from the above
trend (lamellae-type phase growth) was noticed in v = 2.0 case and we attribute
this to the system being stuck in one of the metastable states. In the asymmetric
blend case (f = 0.4), growth of droplet-like minority domains was observed
away from the walls. Near the walls the surface energy influence on the phase
separation process was evident leading to phase alignment parallel to the walls.
In the short-range surface energy cases (v = 2.0), due to rapid decline in the
surface energy as a function of distance from the walls, macrophase separation
took longer than the long-range surface energy cases (v = 1.0). Increasing the
surface energy strength has shown to speed up the phase separation process. By
controlling the sign of surface energy term with respect to the phase, preferred

phase alignment was achieved.

The utility of the SPH method in modelling phase separation of freely
deforming blends on a substrate was tested next. A range of gravity-like forces
(8), to prevent the system from drifting away from the substrate, were tested and
reasonable behaviour was found for values between ¢ = 0.0001 to 0.0003. For
these values of g a small drift in the system was observed during the intermediate
times. But eventually the system was found to settle down on the substrate and
the rate at which this happens (settling process) was found to be proportional to
the magnitude of g. For values of ¢ > 0.0005, the system was found to oscillate in
the y direction, indicating compression of the fluid. The usual phase separation
process was observed in all these simulations and the free deformation of top

surface was evident (see Fig. 6.12).
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Finally, the phase separation of blends without any constraints (confinements)
and without periodic boundary conditions was studied. The blend surface was
found to deform freely in both directions. For the given set of parameters ¢ and K,
and for 20 x 20 system at long times a dumbbell-type macrophase morphology
was observed. Similar equilibrium macrophase separation is expected for 50 x 50

system at long times.

6.6.1 Future Work

The major improvement of the present model as applied to polymer blends
is the capability to model different surface tensions in the case where we have
free (boundary) surfaces. That is, we require the A monomer-vacuum surface
tension to be different from the B monomer-vacuum surface tension. To do this
we need to be able to identify the (free surface) boundary particles and then
apply a suitable surface tension to these particles. While this implementation
is slightly more difficult than what we presently have done, we have a good
understanding as to how to do this. Essentially, boundary particles have fewer
nearest neighbours than bulk particles and we may use this property to identify
them. Moreover, with the kernel implementation in SPH, we naturally keep a
tab on the number of nearest neighbours each particle possesses.

We implemented the GL-type free energy in these simulations. This method
works very well close to the critical temperature thus local order parameters
¢ ~ 0 and for small molecular weight blends. The next step will be to use the
FHAG free energy functional given by Eq. (6.15) with the Flory-Huggins free
energy of mixing (Eq. (6.13)). Here the asymmetry in blend composition directly
enters via the Flory-Huggins free energy. This model, in principle, should be

applicable over wider range of temperatures (away from critical temperature).

We believe our method can be extended to study self-assembly in diblock
copolymer systems. Block copolymer melts exhibit exotic self-assembled pat-
terns, with a periodic pattern wavelength. If the system dimensions are not an
integer multiple of the periodic pattern wavelength, it gives rise to frustration
effects, as the system cannot attain its equilibrium morphology. This in turn can
give rise to new or variants of existing morphological patterns [168]. Commonly
used grid-based methods to study these systems rely on trial and error to
find suitable dimensions for the system. For example, as pointed out in the
Introduction chapter, a diblock copolymer melt spin coated onto a flat substrate
yields a deforming free surface and ultimately an island and hole structure [157].
Our model can potentially address these issues. The free energy for diblock
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copolymer systems on a substrate has the following form [157]:

F K ’ / ’ Fourface
kT /Vdr {—5452 4 ;4)4 +5 Vol + B/V/ dr'G(r, 1 )p(r)p(r )] - kaT ,
(6.60)

and as we can see this equation is just an extension of Eq. (6.56). The additional
term ( [(, dr’- - -) in the above equation, involving G which is a Green’s function,
models the connectivity between two types of polymers in the diblock copoly-
mer. The complexity with this term is that the Green’s function is of a long range

nature and hence becomes computationally expensive to evaluate.



Chapter 7
Conclusions

Polymer systems are very complex materials that are vital in a wide range of
applications both in industry and biology. In this thesis we studied certain
polymer systems that are of interest in nanotechnology. We employed different
simulation techniques to study these systems and the simulation findings were
complemented with appropriate theoretical analysis, wherever possible. Even
though a detailed summary was provided at the end of each of these chapters,
here we shall try to condense our main findings from each of these studies and

discuss the directions for future work.

Flow over Patterned Surfaces

This study was intended towards investigating a mechanism to enhance mix-
ing in polymeric fluids in narrow channels. Poiseuille flow over patterned-slip
surfaces was found to induce transverse flows indicating mixing. A comparison
between the simulation results and continuum analysis has shown good agree-
ment, in general. However, the transverse flows were found to be dependent
on the relationship between the wavelength of the slip-pattern A and the size
of the chains R,. For A/2 > R, transverse flows were well-developed and for
A2 < Rg transverse flows were suppressed. When Rg > A/2, on average a
polymer chain spans two different patterned regions and hence the chains close
to the surface behave as if they are adjacent to a homogeneous entity rather
than a heterogeneous surface. In such situations the surface patterning will have
minimal effects on the flow. Therefore to achieve good mixing it is desirable to
have A/2 > R,. This condition could be useful when such flows are nanoscale,
as at these dimensions polymers become comparable to device dimensions. The
continuum theory [1] does not provide any such information. The transverse
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flow was zero in the centre of the channel when upper- and lower-wall patterns
were parallel to each other. An off-setting between two wall patterns has shown
to induce non-zero transverse flows even in the centre of the channel, in certain

regions; thus, suggesting better conditions for mixing.

Next, a time dependent sinusoidal body force was applied on the fluid in
conjunction with pattern-slip boundary conditions. This was shown to enhance
the transverse flows further (compared to constant body force cases discussed
above), as suggested by the continuum theory [1]. However, our simulations dif-
fer from the theory in that transverse velocity does not increase with increasing
frequency of the body force. The reason for this discrepancy is due to the fact
that continuum theory assumes that there is only one single relaxation constant
involved whereas our simulations reveal otherwise. It was also found that
there is an upper bound on the frequency above which the polymer molecules
will not have sufficient time to react to the changes in the body force. Thus
suggesting that transverse flows cannot be increased unlimitedly by increasing

the frequency of the body force.

Capillary Absorption of Polymer Droplets

Capillary absorption of small polymer droplets into narrow capillaries was
studied using MD simulations. The motivation behind this study was to examine
the effect of molecular size on the capillary phenomena in the limit where the
chain size becomes comparable with the tube diameter; such situations are often

encountered in nanotechnology.

For this purpose, capillary absorption simulations of polymer droplets of
the same size (equal number of monomers) but made up of different chain
lengths (N) were conducted. Our results show that small N droplets require
smaller critical tube radii (R;c) for absorption than large N droplets. When the
chain size of the polymers becomes comparable with that of the tube diameter
it results in the deformation of chain conformations which in turn leads to a
loss in conformational entropy. Therefore, there is an entropy loss associated
with the absorption of polymers in narrow tubes and this loss increases with
N thus discouraging capillary uptake of large N droplets. This result can have
important implications on the capillary-driven nanoscale phenomena aimed at

building polymer nanostructures.

The capillary dynamics were also studied by evaluating the height of the

meniscus as a function of time and the results were compared with the Lucas-
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Washburn theory. Our data deviate significantly from the Lucas-Washburn
description. Moreover, in one of our simulations for an N = 200 droplet with
R; = 6.690 several metastable states, where the meniscus height did not change
for long periods, were observed. Such behaviour cannot be explained by the
existing models on capillary dynamics and has not been previously observed.
Our findings here once again can be important in capillary-driven methods for

nanostructures.

Our results were found to be in qualitative agreement with the proposed
theory. The theory also suggests that the capillary uptake of wetting polymer
droplets may also be prohibited in sufficiently narrow capillaries. This is in
contrast with the general understanding of capillary phenomena, where a
wetting liquid is always thought to ascend the tube.

SPH Simulations of Polymer Blends

The primary goal of this work was to investigate a numerical method for
studying phase separation and self-assembly in freely deforming polymer
systems. As pointed our earlier, this is of great interest in many self-assembling
systems and their related applications. However, in this thesis, as a starting point,
we restricted ourselves to the simplest possible binary phase separating polymer
system: a polymer blend. Since the emphasis was on testing the applicability of
the SPH method to these systems we did not indulge in numerical comparison
between our results and well-established results that exist for polymer blends.

However, we intend to carry out this in our future work.

As a first step, phase separation in symmetric and asymmetric polymer
blends with periodic boundary conditions was studied and the phase behaviour
expected was observed. Then, we studied a polymer blend confined between
two hard walls by adding an additional surface energy term to model the
wall-fluid interaction. Different surface energy strengths and forms were tested
out and their impact on the phase separation process was noted. The domain
growth away from the walls occurred via spinodal decomposition while close to
the walls phase growth was influenced by the wall-fluid surface energy. At long
times, macrophase separation was noticed with each phase preferring to align
parallel with either of the walls. We showed that by controlling the sign of the

surface energy desired phase alignment could be achieved.

Next the SPH method was applied to describe the phase behaviour of

polymer blends on substrates, with the top surface free to deform. The phase
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separation was observed as a function of time and during this period the top
surface of the system deformed freely. We also studied the phase separation in
polymer blends without any boundary conditions. Here for the given choice of
parameters, dumbbell-shape phase separation occurred on a macroscopic level.

The SPH method offers the greatest avenue for future investigation. We
intend to include a surface tension term (for the case of a freely deforming
surface) and also apply our technique to block copolymer melts, for which a
number of interesting free surface deformation phenomena have been predicted
to occur. We believe the SPH method will be a novel computational tool to

investigate free surface polymer problems.



Appendix A
Onion-Ring Analysis

In our MD simulations on polymer droplets, the chains in the bulk of a droplet
are expected to behave differently from those ones that are close to the surface.
Since our simulations deal with very small droplets, where the surface to volume
ratios are high, significant number of monomers/chains reside on the surface.
Hence it is important to study the chain properties as function of their radial
distance 7 from the centre of the droplet. This was achieved using what we call
the onion-ring analysis. In this method the droplet was divided into radial bins of
thickness dr = 0.01c, in the radially outward direction. A schematic diagram in

which this method is depicted is shown in Fig. A.1.

Figure A.1: The droplet is divided into concentric spherical shells of thickness dr.
An example chain whose centre of mass lies in one the bins is shown here.

For a particular droplet configuration, all the chains in droplet were mapped
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into one of these bins based on their centre of mass positions (cm). After mapping
all chains into their respective bins, an average (Ry) was computed for each bin,
over all the chains whose cm falls in that bin. This gives us the radial (R) profile.
For better statistics, we calculate the time average of this profile.

10 T T T T I T I T

R,(0)

0 25 5 75 10 125 15
r(o)

Figure A.2: The average R, profiles as a function of radial distance, r for different
chain lengths.

In Fig. A.2 we show the average chain size profile as a function of r, for the
8000 monomer droplet case, for various chain compositions, N. The profiles are
smooth for shorter chains and the noise in data increases with N. This is purely
due to the fact that there are more chains contributing to the averages, in each of
the bins, in the small N regime than in large N regime. The noise in R, close to the
surfaces is due to the fact there are fewer chains in these regions and hence poor
statistics. In general, as we move away from the centre towards the droplet sur-
face the average chain size decreases. We also see, the rate at which R decreases
as a function of r, increases with N. This is reasonable as the number of neigh-
bouring chains decreases rapidly with increasing N and hence the chains prefer
to shrink. In all cases, as ¥ — R;, where R is the radius of the droplet, R, de-

creases compared to its value in the bulk. We attribute this to the surface tension.
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