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Abstract

Anomaly Detection is an important aspect of many application domains.
It refers to the problem of finding patterns in data that do not conform to
expected behaviour. Hence, understanding of expected behaviour well is
fundamental to performing effective anomaly detection. However, data
profiles constantly evolve in certain domains such as computer networks.
In other domains such as traffic monitoring and healthcare, data are dis-
tributed and are either too large or there are privacy concerns in trans-
mitting them to a central location. These situations pose a challenge to
obtain an accurate understanding of non-anomalous profiles. Changing
profiles undermine existing anomaly detection models and make them
less effective. Training a robust model with data from multiple sources
is also challenging. Moreover, in real world scenarios, it is not apparent
how an anomaly detection model can be built to address the problem.

This thesis focuses on the building of a robust anomaly detection sys-
tem where data profiles evolve and/or are distributed. It proposes a novel
Online Offline Framework to separate existing expected behaviour, new
possible expected behaviour and anomalies in streaming data. It also ad-
dresses the distributed scenario using a theoretically sound fully Bayesian
approach. These methods improve performances of anomaly detection
systems and work well with biased and uneven data partitions.

The proposed methods are validated using real world data in three
different domains. This thesis identifies the implementation difficulties in
these domains and produces three novel methodologies to address each
of the core anomaly detection problems.
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Chapter 1

Introduction

Anomaly Detection is an important aspect of many application domains
such as network monitoring [17], traffic surveillance and monitoring [181],
fraud detection [30], climate monitoring [30], autonomous vehicles [92]
and industrial Internet of Things (IoT) [111, 112]. Anomaly detection is
about finding patterns in data that do not conform to the expected be-
haviours [30]. The challenge is to obtain an accurate understanding of
expected behaviours. The requirements and scenarios for anomaly de-
tection have changed considerably because of the huge increase in data
sources and data volumes [50] brought about by recent trends in technol-
ogy which include 5G [131], IoT, and Edge Artificial Intelligence (AI). 5G is
the next generation cellular network to support demanding services such
as mobile broadband, reliable and low latency communications, machine
to machine communications, etc [131]. IoT represents the proliferation of
devices being able to sense, collect and transmit data over the Internet [70].
Edge AI is the process of pushing AI capabilities of training and inference
towards the edge of the network closer to the application or the user [170].

This thesis focuses on two main theoretical scenarios, which pose a
challenge for anomaly detection. They are data streams that evolve over
time and distributed data. Concept-drift is the phenomenon where the val-
ues and trends in the data change over time, i.e. when the underlying dis-

1



2 CHAPTER 1. INTRODUCTION

tribution of the data changes. The way that data evolve might be system-
atic or random but this is not an anomaly. However, it affects performance
of anomaly detection models. Evolving data is a real-life phenomenon
which is seen in many situations and applications [71]. In computer net-
works for example, Software Defined Networking (SDN) allows one to
control the network centrally using software applications which gives rise
to concept-drift [212]. The deployment of new types of network applica-
tions, application layer protocols or services result in new network session
behaviours that can be distinctive, and even normal data displays varia-
tions [89, 162, 167]. New legitimate traffic in network data can be new
services, new protocols or new profiles of data such as flash crowd data.
For example, a host-server sending only images now allows for sending
of videos under the same application. These new data are different from
the data used to train a model and they are usually and should be de-
tected as anomalous. However, when this happens, legitimate anomalies
are missed because the incoming data are considered as false positives.

The second theoretical scenario is distributed data. Traditionally, af-
ter data are aggregated from numerous sites and sensors, they are sent
to the cloud and are used for analysis or training a model. In this Big
Data era, sending data over the network is expensive, especially in wire-
less networks. They can use most of the bandwidth, hindering other ap-
plications or processes. Moreover, a model needs to be trained using the
data and deployed quickly back at the edge for certain real-time applica-
tions such as in autonomous vehicles, surveillance and predictive main-
tenance in industrial sites [196]. Furthermore, in certain sectors such as
healthcare, transmitting data also raises privacy concerns. Fortunately,
with the advent of Edge AI and the advance in technology, computational
capabilities are being pushed to the edge of the network [50, 170]. This
shift in paradigm can redefine anomaly detection systems to work over
networks without transmitting data but rather only certain parameters,
thus lowering communication costs and protecting data privacy. Mov-
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ing away from having a central server also avoids having a single point
of failure. For example, crash detection in traffic surveillance [148], in-
valid router updates in network connections [103], pedestrian detection in
self-driving cars [215], anomalous condition detection in medical electro-
cardiograms [30], etc. are all mission critical scenarios which require quick
decision making and tractability. Models can be now trained closer to the
site of the application and this allows for quick deployment and decision
making. However, these benefits also come with new constraints. Learn-
ing locally at each site on local data is not sufficient to build a robust model
especially when the data may vary. The challenge now is to build a global
model, similar to the one that would have been built at the cloud with all
of the data. The constraint is to avoid sending raw data. Though, the com-
putational capabilities at the edge have improved over the years, it cannot
match up to the one at the cloud. This thesis explores this challenge and
utilises a Bayesian approach to build a global model for anomaly detection
by transmitting only the parameters of the model. Bayesian methods and
their rationale are explained further in Sections 2.2 and 4.1.

The definition of “anomaly” depends on the application. For exam-
ple, in a Wireless Sensor Network (WSN), a malfunctioning sensor can be
the anomaly to be detected. In Internet Protocol (IP) traffic, malwares are
anomalies to be detected. In video streams of road traffic, crash detection
is equivalent to anomaly detection. However, it is not feasible to anticipate
all types of anomalies. Malwares may not be the only type of anomalies to
detect or crashes may not be the only anomalies of interest. So the space of
anomalies is usually too large to be defined. Fortunately, the space defined
by non-anomalous data is much more manageable. Hence, understanding
normal behaviour is vital to detecting other anomalous behaviours both
existing known and unknown new ones. In this thesis, normal data mean
non-anomalous data. This thesis explores many existing machine learning
models and gives only an overview of each unless it is specifically used for
achieving the objectives. Details of each method can be found in the wider
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Internet and in the literature [24].

In practice, successful anomaly detection requires a robust understand-
ing of the application domain, which brings its own challenges. Typi-
cally, there are many steps involved to capture the right information before
anomaly detection can even take place. To address the whole chain from a
domain-specific issue to a robust solution, this thesis looks at three generic
real world domains: systems monitoring, network graphs monitoring and
surveillance monitoring. In monitoring systems such as industrial equip-
ment and machines, operations in data centers, solar charges at power
stations, etc., the challenge lies in identifying the right features to build a
useful anomaly detection model. Capturing network connection informa-
tion is vital for detecting anomalous in networked scenarios such as Inter-
net traffic routes, connections between sensors in WSNs and power grids.
Extracting useful information quickly is essential for training an anomaly
detection model in surveillance monitoring. In doing so, this thesis intro-
duces three novel methods to build an anomaly detection system for each
of the mentioned domains.

1.1 Motivation

Dynamic scenarios occur in every application of anomaly detection as
things are always changing. With the proliferation of data with 5G and
IoT, the need to address issues that occur in a dynamic scenario intensi-
fies. However, the study of dynamic scenarios have not been thoroughly
addressed in anomaly detection literature. Methods have been focused
on building anomaly detection models which can generalise to new data
instead of viewing dynamic scenarios uniquely. This thesis is the first to
move the study of anomaly detection in this direction.

Distributed scenarios are becoming more common in recent years and
will be expected to become more necessary in the future. This can be seen
by the increase in the volume of research focused on Edge AI [150, 209].
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Thus, being able to detect anomalous data at the edge quickly with a rel-
atively simple model is essential because computational and memory ca-
pabilities in edge devices are generally low due to hardware constraints.
Hence, this is a challenging problem which this thesis aims to tackle.

1.1.1 Problems with current methods

There is a vast literature as will be shown in Chapter 2 on anomaly de-
tection methods to improve detection rates and to reduce false positive
rates [24]. Detection refers to correctly identifying an anomaly. False pos-
itives refer to legitimate data incorrectly identified as anomalous. In this
context, methods fall into the categories known as supervised, unsuper-
vised or semi-supervised.

Supervised methods contain examples of both anomalous and non-
anomalous classes during training. These are also called Signature-based
methods [24]. Although supervised methods perform well in detecting
known anomalies [24], they typically fail at detecting new anomalies. Fur-
thermore, obtaining and labelling samples of anomalous data is very time
consuming [30].

Unsupervised methods assume that normal data points are majority
and perform outlier detection [67]. This assumption is not valid in a num-
ber of scenarios. For example, Denial-of-Service (DoS) attacks are anoma-
lies in the context of network security and such data points occur together
with similar profile. Furthermore, with high dimensional data, outlier de-
tection rarely performs well because of the curse of dimensionality [3].

Semi-supervised methods which only use normal class during train-
ing are also known as Behaviour-based methods. Behaviour-based methods
lose their validity when encountering new variants of normal data. For
example in network monitoring, the provision of a new service, a change
in protocols, or addition of new sensors all lead to a new “normal”. A suc-
cessful Behaviour-based model identifies existing normal data and gen-
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eralises to new normal data well. Some methods in machine learning
literature to achieve generalisation are the Denoising AutoEncoder (AE)
(DAE) [19], Dropout [178] and Early Stopping [152]. However, verifying
whether they have generalised to unseen or evolved data is a nearly im-
possible task. In the literature, generalisation ability is evaluated on a hith-
erto unseen test set. However adversarial examples may be found [28,82].
One cannot conclusively state how the machine learning model gener-
alises to new data. As such, one cannot be confident that the model will
distinguish all normal data from anomalies, both current and future. In
critical systems, this is not a risk worth taking, and suppresses the adop-
tion of machine learning based methods in the real world, where a high
cost is paid for errors [176].

1.1.2 Evolving data

One way to address evolving data is using online methods which train and
perform on live streaming data [24]. Although online methods capture
concept-drift more effectively [58], they are not effective when anomalies
happen in clusters as they are mainly outlier detection methods. Existing
anomaly detection methods can be categorised as online or offline. Offline
models are traditional models trained with data offline and deployed in
the system for anomaly detection. Many existing systems, such as fire-
walls, which can be either Signature-based or Behaviour-based methods,
fall under this category. They can be optimised to pick out patterns in high
dimensional data that are not easily recognisable by humans but they suf-
fer from lengthy training times and require updates with new data pro-
files. Online methods on the other hand suffer from lack of labelled train-
ing data. In this train of thought, this thesis proposes a novel Hybrid On-
line Offline Framework to obtain the benefits of both online and offline
models while addressing each of its limitations.



1.2. RESEARCH QUESTION 7

1.1.3 Heterogeneously Distributed Data

Current methods are also not suited for distributed training at the edge
where the data are distributed in many locations. Distributed training
methods for neural networks such as synchronous or asynchronous stochas-
tic gradient descents [29] have high computational complexities and long
training times which may not be feasible in edge networks. Some stud-
ies [186] also explore ensemble methods where each site trains a model
using its own data and transmits the parameters to other sites. The models
are deployed as an ensemble during deployment. Other studies [112] per-
form aggregation of the parameters or combine clusters to build a global
model. However, such ad-hoc averaging methods are not suitable when
the data are heterogeneously distributed over many sites. Here heteroge-
neously distributed data refers to data which are from different distribu-
tions and partitioned in an uneven and biased manner. Existing studies
do not account for such a scenario in their evaluations in comparison to
this thesis. More details are provided in Chapter 4.

1.2 Research Question

Designing an anomaly detection system under evolving and distributed
data remains as an open research problem as prior studies on anomaly
detection have not considered them. Thus, this thesis attempts to address
the following research question.

How can anomaly detection take into consideration evolving and het-
erogeneously distributed data?

Moreover, there are many steps involved to set-up real world data for
effective anomaly detection. Whilst attempting to answer the above re-
search question, this thesis also considers the difficulty of handling real
world domains. A supplementary question is as follows.

How to represent data in different domains for anomaly detection?
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This is another aspect which is not addressed in the existing literature.
Useful information is unique to the problem and so there is no one right
answer. This thesis attempts to address the following question in three
generic domains of systems monitoring [140], network graphs monitoring
and surveillance monitoring in video streams. This thesis also validates
the novel methods developed in these scenarios.

1.3 Research Objectives

The main research question can be answered in parts. The research objec-
tives of this thesis are as follows.

(A) Design an anomaly detection system that is robust under evolving
streaming data.
Online methods from the literature already capture concept-drift.
However, to train them to perform well, they require dimension-
ality reduction and a good reference of normal data which offline
methods can achieve. This thesis attempts to design a framework
combining the strengths of an online and an offline model to achieve
the objective.

(B) Develop an anomaly detection model that can be trained on het-
erogeneously distributed data.
This objective naturally comes with the constraint of not allowing
the data to be aggregated in one location or site. Sufficient statistics
or parameter values can be sent to each site but not the entire dataset.
This thesis approaches this question by building an anomaly detec-
tion model using Bayesian inference which is more robust compared
to other methods.

(C) Explore methods to prepare data for anomaly detection in real world
domains while validating the methods from objectives (A) and (B).
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The literature for anomaly detection is focused on methods while ig-
noring this important aspect. The challenge is to obtain useful in-
formation in the context to build-up an anomaly detection system.
Hence, many of the methods are not deployed in the real world. As
part of the validation, this thesis shows and explains the many steps
involved in the collection and preparation of real world data to per-
form effective anomaly detection in each of the domains.

1.4 Research Contributions

This thesis makes the following major contributions:

1. A novel Online Offline framework to build a anomaly detection system that
is robust under evolving data
This framework can be utilised for both Signature-based and Behaviour-
Based methods. Under evolving data, an independent online and of-
fline model can be improved using this framework to achieve better
detection rate and lower false positive rate. This framework can also
be used to mitigate inaccurate generalisation and allows detection of
new normal data. Thus, it addresses objectives (A). This contribu-
tion has been published in [141,142]. This contribution has also been
patented [143].

2. A novel approach using Bayesian methods to perform distributed training
for anomaly detection under heterogeneously distributed data.
This approach requires only the parameters of the model to be sent
over the communication network. The fully Bayesian approach builds
a Bayesian Neural Network (BNN) and its parameters are aggre-
gated using Expectation Propagtion (EP). The use of EP also requires
the use of Variational Inference (VI) to train the BNN. In a Single
Layer Feed-forward Neural Network (SLFN), a closed form solution
is possible. The training and aggregation is quick and the method is
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robust under heterogeneously distributed data as compared to other
methods in the literature.

3. Methods to obtain useful information in real world domains for anomaly
detection.
This thesis addresses the challenges of three real world domains and
presents three sub-contributions.

(a) The first domain is on systems monitoring and an example sce-
nario of an antenna site at an Internet Service Provider (ISP)
is considered. Venture Networks, a rural ISP located in the
Horowhenua District of New Zealand provides Internet con-
nectivity to local farms, and has several sites across the region.
The problem particular to this domain is in identifying the right
features to be able to build a useful anomaly detection model.
This thesis designs a novel Bottom-up approach and an itera-
tive procedure to address the problem of feature identification
for systems monitoring. This contribution is published in [140].

(b) The second domain is on monitoring network graphs and the
considered scenario is connections between core routers defined
by the Border Gateway Protocol (BGP) protocol. REANNZ [157]
monitors the connections between research institutions within
and in and out of New Zealand. They are also aware of how the
core routers of the world are connected. Sometimes there have
been misconfigurations or malicious attempts at breaking these
connections which lead to Internet downtime through the BGP
protocol [5]. This thesis implements a novel method by building
a network graph and using its centrality values as input to train
an anomaly detection model to address BGP anomaly detection.

(c) The third domain is on surveillance monitoring. For this do-
main, the scenario of detecting anomalies such as accidents,
stalled vehicles, etc. based on video feeds from cameras at high-
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ways is considered. To detect an accident on the road, this thesis
uses different methods to extract object and motion information
and builds a novel pipeline which leads to training a relatively
simple and deployable anomaly detection model.
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1.6 Thesis Structure

This thesis is structured as follows. Chapter 2 reviews the literature and
is broken into Offline models, Online models, Bayesian methods and dis-
tributed model training and existing distributed anomaly detection meth-
ods. Chapter 3 introduces the Hybrid Online Offline Framework, eval-
uates it on public datasets and shows an example for binary classifica-
tion. Chapter 4 shows how to use Expectation Propagation (EP) for dis-
tributed training on a Single Layer Feed-Forward Neural Network (SLFN)
and effectiveness on a deep neural network as well. This is evaluated on
various public datasets. Chapter 5 studies the three real world domains
for anomaly detection and shows the use of the approaches from the ear-
lier chapters after obtaining useful information in each context. Chapter 6
summarises and talks about future directions to extend this thesis.



Chapter 2

Background and Literature
Review

This chapter reviews related work that form the background and moti-
vation for the rest of this thesis. This chapter begins with the different
types of anomaly detection methods and highlights their strengths and
weaknesses. Subsequently, distributed methods for training a model are
reviewed. Finally, the public datasets and evaluation measures used in
this thesis are introduced.

2.1 Anomaly Detection Models

There are many papers on anomaly detection in the literature and they are
categorized here as either online, offline or a combination. A comprehen-
sive review on the many techniques used can also be found in [24].

2.1.1 Introduction

This subsection briefly introduces some well known methods in the liter-
ature which are also explored in this thesis. The first method is the Princi-
pal Component Analysis (PCA). Given dataset of d-dimensional vectors,

13
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PCA finds a reduced dimensional hyperplane that minimises the square
of the projection error over the remaining dimensions. In other words,
the subspace defined by a linear combination of the principal components
provides a coordinate system to represent the data with little loss [3]. Data
points with large projection distances to this subspace are viewed as out-
liers. This approach assumes that the relationship between observed vari-
ables is linear, which is usually too simplistic.

The Support Vector Machine (SVM) [40] on the other hand, maps the
data to a higher dimensional space using the kernel trick to draw a hyper-
plane to separate two classes in the data. The one-class variant known
as the One Class Support Vector Machine (OCSVM) [165] is trained only
on normal data and aims to separate the data from the origin in the same
manner. Data points that fall closer to the origin are then identified as out-
liers. The decision boundary is defined using a few of the training data
points which are called support vectors.

Another common approach is using the Gaussian Mixture Model (GMM).
This probabilistic method is relatively simple yet effective. It assumes
that the data is the output of a generative process in which each point
belongs to one of a few Gaussian clusters whose parameters are learnt
from data [3]. Data points that have a low probability of being generated
by any Gaussian cluster can be deemed as outliers. A GMM with enough
mixtures can model any distribution [68]. The Kernel Density Estimation
(KDE) method is a non-parametric variant of the GMM to estimate the
probability density function of the data. A Gaussian or other kernel den-
sity is placed on each data point and one obtains a smooth density for the
data.

Some other common density based estimators are k-Nearest Neigh-
bours (k-NN) [9], Radius Nearest Neighbours (Rad-NN) and Local Outlier
Factor (LOF) [26]. k-NN involves holding the training dataset in memory
and calculating the distance of the nearest k data points to a new vector
of observations. Larger distances denote outliers. Similarly, the Rad-NN
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involves counting the number of nearest data points within a specified
radius, and low numbers indicate outliers. The LOF is able to adjust for
variations in different local densities. This attribute allows outlier detec-
tion of data which have small distances to a highly dense neighbourhood,
compared to normal data which may have larger distances but in a sparse
neighbourhood.

Most of the above are susceptible to the curse of dimensionality which
states that the number of samples needed to estimate an arbitrary func-
tion with a given level of accuracy grows exponentially with respect to the
number of input variables [14]. Thus, for statistically significant results,
exponentially more data is required for training a model. This becomes
a problem in online models when data is available in small batches yet
many features need to be captured. In view of this, deep learning methods
have become more favourable [25] and in particular deep AutoEncoders
(AEs) for anomaly detection [11, 27, 130, 136, 207, 207]. An AE consists of
an encoder network, a latent layer and a decoder network. The encoder
maps the input data into the latent layer of lower dimension, and the de-
coder reconstructs them again. This is also called an undercomplete AE,
and is shown in Figure 2.1. The weights of both maps are determined us-
ing the data during training phase. Training an undercomplete AE forces
the AE to retain important variations that are required to reconstruct the
input. As a result, the latent layer provides a succinct representation of
high dimensional data [130]. Where the AE is trained with only normal
data, the associated Reconstruction Error (RE) can be used as an anomaly
score [51, 68]. The underlying assumption is that normal data can be re-
constructed (low RE) while anomalous data will have higher RE.

The AE learns the distribution of the normal data. TheRE measure can
then be viewed as a vertical distance from the center/peak of the distribu-
tion. Points with a larger RE tend to mean that the data point is far from
the centre. A 2 dimensional density plot is depicted in Figure 2.2. Points
in each contour line have the same RE. Points with smaller RE are closer
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to the center of distribution of the training data and likewise, a larger RE
denotes that the data point is further from the centre.

Figure 2.1: A Neural Network AutoEncoder (AE) Model. Lines are
weights and each node (circle) is a non-linearity applied to a weighted
sum. [128]

Let X denote the normal data and w denote the parameters of the
AE. In essence, an AE is trained to determine w of a function f such that
fw(X) = X . Training an undercomplete AE prevents it from learning the
identity function. For a test data point x̂, the RE or the anomaly score is
the L2 norm.

RE = ‖fw(x̂)− x̂‖2 (2.1)

There are many variants of the AE such as the Denoising AutoEncoder
(DAE) and Variational AutoEncoder (VAE). To extract important features,
the DAE corrupts the input data by adding noise and trains by minimis-
ing RE with respect to the original inputs [191]. The VAE is a generative
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Figure 2.2: Kernel density plot of 50 random points drawn from a
2-dimensional Gaussian distribution with mean (0,2) and covariance
[(1,0.5),(0.5,1)]

model trained by minimising RE and the Kullback-Liebler(KL) divergence
between the encoder’s distribution and the multivariate Gaussian distri-
bution which defines a prior on the latent space [95]. More insights into
these methods are provided in Chapter 3.

In the literature, one can find other types of neural networks as well.
The Random Vector Functional Link (RVFL) is an example of a Single
Layer Feed-forward Neural Network (SLFN) [81]. The weights between
the input and the hidden layer are randomly set and remain fixed. Only
the weights between the hidden layer and the output layer are trained.
The number of nodes in the hidden layer is many times more than the
number of input nodes. Like other neural nets, RVFLs can also be formed
into AE. In some studies, this is also a form of an Extreme Learning Ma-
chine (ELM) as shown in Figure 2.3 [184]. This thesis will make use of such
a RVFL-AE, and its Bayesian variant. The rationale is further explained in
Chapter 4.
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Figure 2.3: A Random Vector Functional Link AutoEncoder (RVFL-AE)
is a form of an Extreme Learning Machine when the output and input
vectors are the same. [184]

2.1.2 Offline Models

This thesis defines offline models as those trained offline with static data.
Because, these usually have long training times and require a large amount
of data before they can perform well. After training, the model is then de-
ployed in a system to detect anomalies as and when they occur. Most of-
fline models are supervised or semi-supervised (one-class), meaning some
labelled data of one or both classes are available. In most cases, this means
all the training data is normal.

Some recent offline methods are OCSVM and Kernel PCA [193], outlier
Dirichlet mixture model [121], Affinity Propogation with k-means cluster-
ing [195] and LOF and global k-NN [7]. These methods first extract pro-
files that describe the data, and then use these to determine thresholds or
boundaries for normal data. However, in high dimensions, performance
drops as a result of the curse of dimensionality, and so finding succinct
representations in an unsupervised manner becomes important.

Moustafa et al. [121] reduce dimensionality through a simple linear



2.1. ANOMALY DETECTION MODELS 19

transformation, namely PCA, but non-linear transformations based on neu-
ral nets such as AE have found wide application.

Various Deep Neural Nets (DNN) and their learning algorithms such
as Sparse AutoEncoder (SAE)s, DAEs, Contractive AEs, Convolutional
AutoEncoder (CAE)s, VAEs, Deep Convolutional Neural Networks (DCNN),
Long Short Term Memory (LSTM), Deep Belief Nets (DBN) have been ex-
plored in the context of anomaly detection [11, 27, 51, 93, 130, 136, 207, 207].
Erfani et al. [51] utilise a linear OCSVM on the latent layer of a Deep Belief
Net (DBN) for anomaly detection. Cao et al. [27] introduce new regular-
izers to AE and VAE to force normal data into a tight area centered at the
origin in the latent layer of the AE. Aygun et al. [11] train an AE and DAE
and determine the threshold (for the RE to classify data as anomalous or
normal) stochastically. Kim et al. [93] merge five Deep Neural Networks
(DNN) trained with different sets of features into one DNN. These meth-
ods are trained without supervision (ie. targets) to learn salient features of
the data [126].

However, these models are unable to incorporate new data in a live
stream or dynamic scenario. After training, the weights of these models
are fixed. Updating the weights with just the new data would not work be-
cause neural networks suffer from a phenomenon called Catastrophic For-
getting [96]: the neural network forgets what it learnt of previously. Thus,
it needs to be retrained with all of the (old and new) data.

Yin et al. [213] propose a deep learning approach using Recurrent Neu-
ral Networks (RNN). The authors experimented with different numbers
of hidden nodes and varying learning rates. RNNs have more parame-
ters and are able to capture the temporal characteristics of recent data in
a stream but like all Neural Network (NN), they still suffer from Catas-
trophic Forgetting. This method also assumes that the data are temporally
related.

Nguyen et al. [136] and Xu et al. [207] use VAE to detect anomalies.
Nguyen et al. [136] employ VAE’s gradients to cluster the anomalies and
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analyse them. The above mentioned methods with the exception of [136,
207] are not evaluated on streaming data. Moreover, these models also
need appropriate regularisation in order to be able to score new data cor-
rectly but this is problematic as there is no way to ascertain whether the
trained model can generalise correctly until after the fact. Even with opti-
mising the model based on a hold-out validation dataset is not sufficient
because one cannot be certain that the hold-out dataset captures all possi-
ble variations. This becomes apparent when the number of false positives
starts to increase in live streams.

The above models are Behaviour-based methods which can detect new
anomalous behaviours. Signature-based methods are only able to detect
the anomalous profiles used in training. One example of the latter is by
Sun et al. [182] who firstly detect one category of network traffic using
Gradient Boosting Decision Tree. Upon detection, of a specific class of
anomaly, the authors use k-NN to classify into subclasses. To detect other
types of network traffic, the authors use a stacking ensemble of six classi-
fiers.

2.1.3 Online Models

Online models provide a natural approach to address evolving data. On-
line models are trained with new data as they arrive, typically in batches.
These models are able to capture concept drift [58], by continuously up-
dating the thresholds which distinguish normal from anomalies. Most
models work with some form of “knowledge retention” rate, used to bal-
ance past versus new information. They are either trained on normal data
(semi-supervised or one-class) [135] or are completely unsupervised (out-
lier detection [67]) [36, 46, 206].

In this space, there are many different methods. Some examples in-
clude Local Outlier Factor (LOF) [161], bilateral Principal Component Anal-
ysis (PCA) [204], global LOF combined with local subspace outlier detec-
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tion in the global space [189] and Kernel Density Estimation (KDE) [72].
Unfortunately, these methods are adversely affected by the curse of di-
mensionality, because data in high dimensions are sparse and most points
end up as “outliers” [4].

Alrawashdeh et al. [8] propose a fast activation function to increase con-
vergence speed and accuracy for deep learning in real time. However it
is difficult to optimise neural networks with only few iterations. As such,
an optimal deep learning model can only be trained offline, which ren-
ders it unable to adapt rapidly to new data. Van et al. [189] maps high
dimensional data to a lower dimension using local subspaces. Huang et
al. [79] uses Self-Organising Maps (SOM) to reduce dimensions and use
a SLFN to learn majority patterns under a dynamically changing envi-
ronment. A Single Layer Feedforward Neural Network (SLFN) can be
trained quickly, which is important in many scenarios; and though it may
not learn succinct representations, it does provide a model for anomaly
detection. Upon dimensionality reduction, some offline methods such
as [121], [195] can also be invoked in an online fashion. Using deep learn-
ing to reduce the dimensionality can also improve these methods [51].
This approach has not yet been explored for online models on streaming
data. This is one of the aspects of the Online Offline Framework proposed
in this thesis.

Another issue with some online models is the difficulty of obtaining
ground truth continuously in a live stream with new behaviours. For in-
stance, Lakhina et al. [101, 102] perform PCA to reduce dimensions and
look for high residuals to detect volume anomalies in origin-destination
flows and Nevat et al. [135] uses Generalised Likelihood Ratio Test (GLRT)
to test the transition matrix of the state-path of TCP traffic flows against
that of normal TCP flows. These are semi-supervised models which re-
quire normal data for training. The Online Offline Framework addresses
this by using the offline model to provide a bias, aiding in the performance
of the online model.
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Naturally, the lack of labelled data leads to the use of unsupervised
methods. One group of unsupervised methods is clustering. Chenaghlau
et al. [36] perform batch clustering using Density Based Spatial Clusting
Application with Noise (DBSCAN). Dromard et al. [46] use Density Grid
based clustering where they separate the space into grids and bucket data
points. The authors use a time sliding window to update the feature space
partition. Bigdeli et al. [18] experiment with a two-layer cluster based ap-
proach by representing each cluster by a Gaussian Mixture Model (GMM).
New instances are collected in batches and checked for similarity with
existing clusters. Clusters are merged or new ones are generated. On-
line clustering methods rely on the assumption that normal data clusters,
while anomalous data do not. The data points which do not cluster (out-
liers) are marked as anomalies. However, anomalous data such as DoS
(where many data points show similar profile and occur in large quan-
tities) tend to cluster, and hence evade this approach. Thus, it is better
to have a model to provide a baseline of what is normal data. In fact,
clustering algorithms are better suited at detecting clusters rather than the
presence of outliers. This thesis shall use a clustering algorithm to detect
new “possibly normal” data instead of outliers.

A number of online models in the literature attempt to retain existing
knowledge to some extent, by updating parameters such as cluster means,
covariances or thresholds with new data [18, 36, 46, 79, 206]. These are de-
noted as incremental learning in this thesis.

In most data streams and most of the time, it is reasonable to assume
that the bulk of the data is normal. However, when anomalies occur in
large numbers such as DoS attacks or when there are measurement er-
rors due to malfunctioning devices, having a purely online model fails.
Updating thresholds or decision boundaries in such scenarios based on
inliers will prove detrimental because it will result in more false negatives
in future. On the whole, online models are appropriate for streaming data,
so long as the curse of dimensionality is addressed and some guidance in
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the form of appropriate inliers or expected normal data is given. Each of
the above outlier detection or novelty detection models can be used in the
Online Offline framework proposed in this thesis.

Clustering methods will be reserved for detecting new possibly nor-
mal data. Detecting new normal data has not be addressed in the litera-
ture. These data may be classified as normal or anomalous depending on
the model’s regularisation. The framework in this thesis shows that these
“new normal” should be classified as anomalies because they are different
from existing normal data. And using clustering, they can be picked out
from the sea of anomalous data points.

2.1.4 Combination methods

There are a few studies in the literature which combine offline and online
methods. Existing methods consist of an offline step to select necessary
features in a supervised or an unsupervised manner, followed by online
learning. Hence, these can easily fall under the banner of online methods.

Su et al. [179, 180] use a genetic algorithm to determine the weights
for different features (offline aspect). The authors improve k-NN based
classifiers using clustering to identify DoS attacks. Recursively, clusters
are split based on distances between points to reduce average dispersion.
The final resulting centroids are used instead of individual instances for
k-NN classification.

Alaei et al. [6] preprocess the data to select features for each type of at-
tack in the data set (offline aspect). A Naı̈ve Bayes module incrementally
predicts the probability that the new point belongs to one of the attack
classes. The authors employ active learning (online aspect) where a ran-
dom threshold is selected, the labels for instances near this threshold are
queried, and the classifiers are updated. The point is classified according
to maximum certainty of the classifiers.

An incremental k-NN-SVM method is explored by Xu et al. [208]. The
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data in batches are clustered using K-Means clustering (online aspect). The
cluster centers are classified using k-NN from a database of points (offline
aspect). All points in the cluster are then labelled with the label of the
cluster center. If the k neighbors do not have the same label, an SVM is
trained on the neighbors before classification.

Fischer et al. [58] combine an online and offline model for image classi-
fication. They use an offline Localised Generalised Matrix Learning Vector
Quantization (LGMLVQ) and online incremental classifiers such as incre-
mental online LVQ and incremental SVM with a reliability measure for
each classifier and choose the output of the more reliable classifier. This is
not used for data streams.

The above are Signature-based methods. Determining the right fea-
tures using anomalous data falls under Signature-based approach as well
as it would determine the important features for those anomalies only.

2.1.5 Summary

Table 2.1: Summary of related work

Online Offline Combination

Signature [182] [179, 180]
-based [6, 208]

Behaviour [8, 72, 161, 189, 204] [7, 121, 130, 193, 195]
-based [18, 36, 46, 101, 102, 135] [11, 27, 51, 93, 136, 207]

Table 2.1 gives a summary of the approaches reviewed. It is apparent
that an online offline combination method for behaviour based anomaly
detection is lacking. The literature also does not distinguish between anoma-
lies and possibly new normal data. This is an important segregation for
systems. This thesis is the first to study this.
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2.2 Bayesian Approaches and Distributed Imple-

mentations

For a model, Bayesian theory paves a way to make inferences about pa-
rameters w, given dataX . This is commonly known as the posterior distri-
bution, denoted P (w|X). Instead of attributing one value, Bayesian infer-
ence allows to attribute a probability distribution to each parameter. For
example, the parameters of neural networks are the weights connecting
each neuron. If each parameter is independent of one another, they can
each be viewed as a one-dimensional Gaussian with a mean and a stan-
dard deviation instead of one value. The mode of the posterior also known
as the Maximum-A-Posteriori (MAP) estimate provides a one value esti-
mate for the parameters if required. In the Gaussian case, this would be
the value of the mean. A brief introduction to the Bayesian approach for
ridge regression which is used to build the proposed method in Chapter 4
is given in the appendix C [20, 164].

Bayesian approaches have their benefits as follows [20, 64, 198].

• They allow confidence or uncertainty of the model’s output to be
computed.

• They provide a natural mechanism to cope with insufficient data.

• They allow prior beliefs to play a role.

• A Bayesian approach to neural networks can potentially avoid some
of the pitfalls of stochastic optimization [113].

These come with additional costs:

• High computational cost, especially in models with a large number
of parameters.

• There is no clear method to select a prior.
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• Longer training times if no closed form solution is available.

• Lack of tractability if no closed form solution is available.

2.2.1 Bayesian Inference Methods

Given the advantages of neural networks in anomaly detection and the
benefits of a Bayesian approach, it is natural to consider it in this the-
sis. The aim is to obtain the posterior distribution of the weights of the
neural network. A fully Bayesian treatment of deep neural networks is
computationally intractable because of the integration over all weights of
the marginal likelihood term and so, a closed form solution is not readily
available [22]. For an in-depth formulation, readers are referred to Blei
et al. [22]. In this subsection, some methods which perform approximate
inferences are reviewed.

The first study in training a BNN can be found in Neal [133]. The most
well-known method is using the Metropolis Hastings algorithm [37], a
form of Markov Chain Monte Carlo (MCMC). The Metropolis Hastings
algorithm generates the Markov Chain by accepting and rejecting gener-
ated samples and it moves the sample distribution closer to the posterior
distribution. MCMC has been shown to work as the number of samples
approach infinity. Even when MCMC convergences, it is not easy to de-
termine the number of steps required for convergence [64].

Over the years, this method has been modified and improved to achieve
faster convergence. Hamiltonian Monte Carlo uses second order vari-
ables and fictitious momentum to drive the sampling closer to the pos-
terior [132]. This method has been improved upon by Chen et al. [34] and
further optimized using BOHAMIANN by Springenberg et al. [177]. An-
other approach is to use Stochastic Gradient Langevin Dynamics [201].

Apart from MCMC, the posterior can also be approximated by min-
imising the Kullback-Libler (KL) divergence [100], KL[q(w)||P (w|X)] be-
tween the posterior and an approximate distribution, q(w) such as a Gaus-
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sian. This is commonly known as Variational Inference (VI) [20]. Ex-
pectation Propagation (EP) instead minimises the reverse KL divergence,
KL[P (w|X)||q(w)] [120]. For more details on KL divergence, readers are
referred to Bishop [20]. Classical EP was originally designed to incorpo-
rate data pointwise into the posterior, although the same idea can be used
with data partitioned into subsets [190]. This thesis uses EP to perform
distributed training of a model in Chapter 4.

Gal et al. [61] and Kingma et al. [94] use dropout to perform Bayesian
inference. Blundell et al. [23] call their method to train a BNN Bayes by
Backprop (BbB) and Hernández-Lobato et al. [75] call theirs probabilistic
backpropagation. BbB performs VI via a local reparameterisation trick
[94]. Probabilistic backpropagation uses Assumed Density Filtering (ADF)
[120] to update the posterior. For more details, readers are referred to the
respective studies [23, 75]. There are a number of methods to perform VI
but they are not as effective when the data are heterogeneously distributed
as will be shown in Section 4.3. EP is a generalised version of ADF (iter-
ative ADF) where it loops over the factors of the posterior multiple times
until convergence. EP is described in more detail in Chapter 4 and why it
is appropriate for distributed training.

2.2.2 Distributed Anomaly Detection

With the growth in computing power of edge devices, there is a potential
to perform computation closer to the application [115]. Amongst the many
challenges Edge AI faces, one is the case in which the data is distributed
across different sites. This section reviews the literature of anomaly detec-
tion models that are built without transmitting the raw data.

Miao et al. [118] reformulates the One Class Support Vector Machine
(OCSVM) into a decentralised optimisation function and diffusion coop-
eration [84] is used to achieve consensus. Similarly, O’Reilly et al. [147]
reformulates the Minimum Volume Elliptical Principal Component Anal-
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ysis (MVE-PCA) equations such that each site manages its own objective
and constraint term. Then Alternating Direction Method of Multipliers [2]
is used to determine the principal components through convergence via
the mean of the objective values. Tsou et al. [186] proposes an ensemble
algorithm to optimally weight Random Forest (OWRF) models trained on
data at each site. The authors minimise uncertainty of predictions to learn
the best model. Lyu et al. [112] merges Gaussian clusters trained on data
from different levels of the network to the cloud. In the above works, only
the summary of the data or parameters necessary for model training are
being transmitted.

By analyzing the topology and installing rules to collect statistics at
optimal monitoring positions, forwarding anomalies are detected and lo-
cated in the network [103]. For a prediction variance anomaly detector,
the most vital component is the covariance matrix. Instead of collecting
all data segments centrally, the matrix is aggregated using compressed
difference sequences and the sample standard deviation at each site for
anomaly detection in WSNs [205].

Weights of Gated Recurrent Units trained at different sites are aver-
aged based on number of data points for anomaly detection [137]. Feder-
ated learning (FL) is used to train a deep Long Short Term Memory model
for anomaly detection with a focus on communication efficiency through
a gradient compression mechanism [109]. The general principle of FL is to
share parameters or gradient updates to train neural networks instead of
data and is further explained in Section 2.2.3. These models are employed
only on one dimensional sequential data. A Multi-task Deep Neural Net-
work is trained using FL in a supervised manner for anomaly detection
and classification in network data [216].

However, these methods involve ad hoc averaging of parameters which
may not be identifiable because trained parameters on different datasets
may represent data from different distributions; or these methods require
the assumption that the objective function is linearly separable, which is
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not necessarily valid. By ad hoc averaging, it is meant that these meth-
ods do not account for uncertainty or variance of the distribution of the
data or that the data could be from a completely different distribution.
Other methods of aggregation are problem specific and work simply on
one-dimensional variables. Training deep learning models at the edge is
infeasible, both computationally and in terms of memory. The scenario
where the data is biased and unevenly distributed is not experimentally
evaluated in the above studies.

2.2.3 Distributed Training Methods

This section considers existing methods for training a model in a distributed
fashion. The consensus algorithm [160, 168, 203] is a well known method
used to achieve agreement between sites. It is used in blockchain tech-
nology [98]. Liu et al. [107] perform neural network training using the
consensus algorithm. Chahal et al. [29] surveys various methods such
as synchronous and asynchronous stochastic gradient descent, gradient
accumulation, scatter-reduce-all gather method, binary blocks algorithm
and fault tolerance-all reduce method for neural network training.

Hardy et al. [73] achieves distributed training of a Generative Adversial
Network (GAN) using a parameter server and a peer-to-peer communica-
tion pattern between the GAN’s discriminator and generator. Teerapit-
tayanon et al. [183] proposes a hierarchical method to train deep neural
networks. Similarly, data communication is improved for distributed syn-
chronous Stochastic Gradient Descent (SGD) by merging gradients of dif-
ferent layers [169]. The trade off between local gradient descent updates
and global aggregation is explored with respect to resource constraints to
optimise communication in [194]. Optimising SGD algorithms for com-
munications only leads to slight a improvement and it depends on the
task and data. If the data is unevenly partitioned the gradient updates can
completely negate each other.
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Lyu et al. [111] presents a privacy-preserving deep learning framework
in IoT using random projection and differential privacy. Scardapane et
al. uses decentralized Average Consensus method (DAC) and Alternating
Direction Method of Multipliers to train a non-Bayesian RVFL [163].

These methods either have high computational complexity or have
long training times and are not easily implemented at the edge. They are
also not applicable for Bayesian approaches as they do not capture the
uncertainty in the data at different locations as well. Again they are not
evaluated with the scenario where the data is biased and unevenly dis-
tributed.

FL is a concept introduced for training models with decentralized data
[117]. The key challenges of FL are that the training data are not Indepen-
dent and Identically Distributed (IID), are unbalanced and massively dis-
tributed, and communication is also limited [104, 117]. There are studies
which provide frameworks for FL [97] and tackle accuracy degradation in
models due to imbalances in distributed training data [48]. A model simi-
larity scheme to compare models trained on data in different locations and
a protocol to classify data without transmitting model parameters helps
preserve privacy but does not elaborate on distributed training [86].

As will be shown in Chapter 4, the proposed method implicitly achieves
FL with certain restrictions such as the use of a SLFN. Communication is
reduced since convergence is achieved quickly. This work is not a general
FL method but shows that for specific applications such as anomaly detec-
tion, FL can be achieved with the right model design and methodology.

There are few studies which perform distributed training using Bayesian
methods. Neiswanger et al. [134] performs parallel MCMC to obtain sub-
posterior in each site using a fractional prior and then combining them.
But the fractional prior may be too weak to effectively regularize [65]. An-
other approach would be to combine the posteriors of each site and divide
the result by K − 1 priors, where K is the number of sites. This however,
runs into computational instabilities [65]. Hasenclever et al. [74] develop
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Stochastic Natural Gradient EP, a double loop optimization of power EP
[119] to ensure convergence with additional computational complexities
[190]. Xu et al. [211] also use EP and MCMC to perform inference at each
site using a posterior server which maintains a global approximation. A
deep BNN is more computationally demanding as it requires multiple
stochastic passes [124]. For the purpose of anomaly detection within an
application, this thesis shows that a SLFN produces near similar results
with a huge reduction in computation and time.

2.3 Datasets and Evaluation Metrics

2.3.1 Sequential Datasets

As this thesis considers dynamic scenarios which occur mostly in stream-
ing data, sequential or streaming datasets are required to validate the pro-
posed framework. There are few real world datasets of such available
[62, 122]. The streaming nature is important because similar data to train-
ing data will show lower variation in the Reconstruction Errors (RE)s of
each batch, compared to unseen data as will be shown in Chapter 3.

The UNSW-NB15 dataset has a hybrid of real and modern, normal and
contemporary synthesized attack [122, 123]. It has a volume of 100 GB
with 2,540,044 network flow records which are logged in four CSV files.
These flow records aggregate transmitted packets over the network based
on source and destination IP address, port numbers and protocol of the
connection into statistical features. The UNSW-NB15 training and test
set CSV files summarise the different types of traffic in the entire dataset.
This is a good dataset to test machine learning (ML) algorithms because
the number of anomalies and normal data points are well balanced. In
a real scenario, there will usually be more normal data than anomalous.
This is also clear in the ground truth CSV file where the attacks are time
stamped. Fortunately, the dataset comes with the sequentially recorded
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network flow records.
Another network flow dataset is the CTU13 botnet dataset [62], which

consists of 13 different captures of different real world botnets mixed with
normal and background data, which is also provided sequentially. More
details on these datasets are found in Appendix A.

2.3.2 Other ML Datasets

The NSL-KDD 2009 dataset is an improved version of KDDCUP dataset
captured by 1998 DARPA IDS evaluation program [43, 90]. Though the
NSL-KDD 2009 dataset is old, it is still a viable public dataset as it is still
being used in many studies. It contains four different types of attacks
namely, DoS (Denial of Service), Probe, R2L (Remote to Local) and U2R
(User to Root). More details can be found in the appendix A.

The UCI machine learning repository contains many datasets for ML
[47]. For anomaly detection, the class with more data samples is consid-
ered normal class and the others are combined to form the anomaly class
in the used datasets in this thesis. Four datasets from different applications
are used, namely, Abalone, PageBlocks, Shuttle and Australian Credit Ap-
proval. The datasets are randomly partitioned to achieve a balanced set
for testing in Chapter 4. The details are found in Table 2.2.

Table 2.2: Datasets Summary

Dataset Application Attri- No. Instances
Domain butes Training (Testing)

(Normal+Anomaly)
UNSW-NB15 Intrusion Detection 42 56000 (37000+45332)
NSLKDD2009 Intrusion Detection 41 67340 (9711+12833)

Abalone Biology 8 1880 (94+94)
PageBlocks Text Recognition 10 4353 (560+560)

Shuttle Sensor Monitoring 9 34108 (3022+3022)
Australian

Finance 14 283 (100+100)
Credit Approval
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2.3.3 Evaluation Metrics

The following measures are used to evaluate the methods developed in
this thesis: Receiver Operating Characteristic (ROC) curve, Area Under
ROC Curve (AUC), Precision-Recall (PR) curve, True Positive Rate (TPR),
False Positive Rate (FPR) and Accuracy (Acc).

The ROC curve is the plot of TPR against FPR at different threshold
settings. The closer the curve is to the left and the top border of the ROC
space, the more accurate the model, as illustrated in Figure 2.4. The AUC
is a scalar measure of the ROC curve, and represents the degree of separa-
bility of anomalies versus normal data. A perfect model has an AUC value
of 1 while a value of 0.5 or less suggests that the model has no capacity to
separate the classes.

Figure 2.4: Receiver Operating Characteristic (ROC) curve

For streaming data, when the number of anomalies are fewer than the
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normal data, the methods are also evaluated on the Precision-Recall (PR)
curve. The PR curve is the plot of precision against Recall (also known as
TPR) as shown in Figure 2.5. The area under PR curve gives the Average
Precision (AP). The baseline of the PR curve is the proportion of anomalies
in the dataset.

Figure 2.5: Precision Recall (PR) curve

TPR is also known as detection rate. True positives (TP) are the num-
ber of actual anomalies detected as anomalies. False positives (FP) is the
number of normal data detected as anomalies. True negatives (TN) are
number of normal data detected as normal. False Negatives (FN) are the
number of anomalies detected as normal.

TPR =
TP

TP + FN
(2.2)

FPR =
FP

FP + TN
(2.3)
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Acc =
TP + TN

Total number of data points
(2.4)

To evaluate convergence of a BNN with covariance matrix Q and mean
r, two other measures are introduced to measure relative difference to
global parameters [147]. The details are explained in Chapter 4. Let rG

and QG denote the global parameters and ‖ · ‖F denotes the Frobenius
norm. For rG, the relative difference of the mean square error along the
independent dimensions is computed:

Erel(Q) =
‖Q−QG‖F
‖QG‖F

(2.5)

Erel(r) =
1
d

∑d
j=1 ‖rj − rGj‖2

1
d

∑d
j=1 ‖rGj‖2

(2.6)

To evaluate the real world scenarios however, since the data is not la-
belled, it is difficult to obtain a quantitative measure of performance. Thus,
in relation to the scenario and with feedback from the experts, the meth-
ods are evaluated on whether the models detect the anomalies based on a
threshold. This threshold is determined based on the model’s performance
on normal test data.

2.4 Conclusion

Anomaly detection literature is rich and many alternative techniques and
non machine learning methods such as Artificial Immune Systems can also
found [42,77]. The appropriateness of these methods depend on the appli-
cation domain and whether the underlying assumptions are met. Machine
Learning methods are appropriate when there are many features to con-
sider and when patterns are not easily recognisable.

This chapter has reviewed the state of the art in anomaly detection
methods. The methods can be classified as Online or Offline, and each
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of them has their own strengths and demerits. In this review, deep learn-
ing methods in particular have been shown to perform well for feature
extraction and anomaly detection.

Detecting anomalies under evolving data is a gap in the current re-
search which needs to be addressed. Offline methods attempt to gener-
alise to new data but there is no way of verifying whether the method has
generalised properly. It is also prudent to detect new normal data and
understand them. Online methods handle concept drift but suffer from
lack of labelled training data for accurate detection. Moreover, an On-
line Offline combination method for behaviour based anomaly detection
is lacking.

Then a review on various methods to train a Bayesian Neural Net-
work was given. Distributed models and methods to train a distributed
model were surveyed. However, these methods are not validated on het-
erogeneity of data at different locations. Moreover, the methods involve
ad hoc averaging of parameters or require the assumption that the objec-
tive function is linearly separable, which is not necessarily valid. Existing
Bayesian methods have high computational complexity for edge deploy-
ment. There is also no fully Bayesian approach to distributed training for
anomaly detection.

Hence, these aspects form the motivation for the approaches proposed
in the following chapters. The methods developed are also validated on
real world domains. The next chapter addresses how anomaly detection
can take into consideration evolving data.



Chapter 3

The Hybrid Online Offline
Framework

To address the issue of detecting anomalies under evolving data, this chap-
ter develops a novel Hybrid Online Offline Framework and it is shown
to improve on any individual online or offline model. The main aim is
to exploit strengths of the individual models while avoiding their weak-
nesses [141–144]. Deep learning models, trained offline, are able to pick
out patterns in high-dimensional data, find succinct representations and
learn the underlying distribution of the data, but they cannot be updated
easily. Online models are better able to spot anomalies (outliers) in new
data, but do not possess the knowledge of the distribution of normal data.
Hence, the rationale for the hybrid is to use the offline model’s learned
knowledge as a bias for the online model to select data to train on. The
main framework and algorithm is explained along with the assumptions
required and the roles of each component.

Following the framework, a heuristic method to detect new data is pre-
sented in Section 3.3. Instead of generalising to new data, the framework
deems all new data as anomalous. Then through clustering, new poten-
tially legitimate data is detected. This also prevents generalising incor-
rectly to new data. This thesis is the first to consider such an approach.

37
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In Section 3.4, a signature-based variant of the hybrid framework is
explored.

3.1 The Online Offline Framework

The overall framework is shown in Figure 3.1 and the main method is
found in Algorithm 1 [142, 144]. Table 3.1 lists the symbols used.

Figure 3.1: Online Offline Framework

There are many components to the framework. In the beginning, the
offline model is trained with normal data {x̂j}nj=1 and it outputs the Recon-
struction Error R̂Ej for each point x̂j (lines 1-2, Algorithm 1). This offline
model can be any deep learning model that outputs a form of anomaly
score such as RE and provides dimensionality reduction. In the experi-
ments in Section 3.2, three different offline deep learning models are eval-
uated. One key difference from other methods is that this model learns the
existing normal data or the training dataset well and trades bias for higher
variance, which prevents generalising incorrectly on new data as will be
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Table 3.1: Description of symbols

Symbol Description
x̂j Normal data used for offline training, j = 1, ..n

x̂k Normal data used for online initialisation, k = 1, ..m

xi Incoming live stream data to be scored
d Dimension of training and incoming data
d′ Dimension of latent layer representation, d′ < d

zi Latent layer representation of xi

R̂Ej Reconstruction error of x̂j through offline model
REi Reconstruction error of xi through offline model

Anomaly sci Anomaly score for xi

θ
Upper percentile bound on the batch,

i.e. Remove outlier points > θ-percentile
thres Threshold to determine data for online training
n Number of data used for offline training, n > m

m Number of data in each batch to determine threshold
l Number of data in each batch for online training

Offline model A type of Autoencoder or any model that provides RE
Online model An outlier detection model

Online DB Online database to store data for online training
Batch DB Batch database to store data for MW test
MW test 1-sided Mann-Whitney U test
H0 Null hypothesis: Mean ranks equal or populations same

Ha

1-sided alternative hypothesis. Batch
mean ranks are larger than those of legitimate data

Temp-DB Temporary search database to store data for clustering
M Number of data points to perform clustering on
t Split range into t equal intervals
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Algorithm 1 Online Offline Framework

1: OfflineModel← Train((x̂j)j=1,..n, parameters)
2: (R̂Ej)j=1,..n← OfflineModel((x̂j)j=1,..n)

3: Initialize OnlineModel← Train((x̂k)k=1,..m, parameters)
4: thres←Median((R̂Ek)k=1,..m)

5: while True do . Stream data xi

6: zi, REi← OfflineModel(xi)
7: if REi < thres then
8: Anomaly sci ← 0

9: Online DB← zi

10: else
11: Anomaly sci ← OnlineModel(zi)
12: end if
13: Batch DB← (xi, REi)

14: if Retrain Criteria then . Can be parallelized
15: OnlineModel← Update(Online DB, OnlineModel)
16: Online DB← Empty(Online DB)
17: end if
18: if Size of Batch DB == m then . Can be parallelized
19: BatchData← RemoveOutlier((REi)i=1,..m, θ)
20: p-value←MW test((R̂Ej)j=1,..n, BatchData)
21: if p-value > 5% then
22: thres←Median((REi)i=1,..m)
23: end if
24: Batch DB← Empty(Batch DB)
25: end if
26: end while
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shown in Section 3.3.

The online model is also initialised with existing data. The threshold
thres is initialised as the median value of the dataset used to initialise the
online model (lines 3-4, Algorithm 1). The online model is an outlier de-
tection algorithm. The parameters can be updated with an incremental
step and with new data or completely retrained with new data, i.e. 0%
knowledge retention rate. The framework is evaluated with six different
outlier detection methods of which two of them are incremental.

As the stream of values xi arrives, it is fed into the offline model to
obtain the low-dimensional representation zi and REi (line 6). If REi <
thres, it is classified as normal, assigned anomaly score of 0, and stored in
an online Database. The online model is retrained with this new data once
a retraining criterion is met. If REi ≥ thres, the current online model
provides the anomaly score for xi (line 11). The stream of xis and its
corresponding REis are then collated into batches (Batch DB) to obtain
(REi)i=1,..m (line 13, 19). REi less than θth percentile of the batch (Remove-
Outlier function in line 19) is used to conduct a one-sided Mann-Whitney
test (see 3.1.3) against (R̂Ej)j=1,..n (line 20). If the null hypothesis H0 is not
rejected, the median value of this batch will be the new threshold thres.
This thres is allowed to drift. If H0 is rejected, the thres value is not up-
dated because more than θ% of the data is significantly different from the
normal training set (x̂j)j=1,..n. In the following subsections, the functions
of each step shall be explained.

3.1.1 Offline Model

The model of choice is a deep AE for the reasons mentioned in chapter 2
and that deep learning has shown to be able to learn complex data struc-
tures such as the underlying distribution of high dimensional data [126].

The REs of the stream data are compared against a threshold for the
anomaly score which is either 0 or determined by the online model. If this
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threshold was fixed, then it is comparing solely with the offline training
dataset. In which case, if the data point has an anomaly score of 0, this
data point goes into training the online model and the online model will
be learning the same thing as the offline model. Thus, a moving threshold
is required to allow data that are not similar to the normal training data set
for online training. With the drifting threshold, the aim is to include new
variants of normal data in the stream. This is prevalent when data types
are evolving as these variants would have higher REs.

When the collective REs of a batch of data decreases, lowering the
threshold helps to detect anomalies better and improve detection rate.
When it increases, raising the threshold will prevent normal data from be-
ing classified incorrectly or reduce false positives. Section 3.1.2 describes
the moving threshold in detail.

3.1.2 Online Model

The online model is trained in batches with recent data, and has a lower
training complexity compared to the offline model. In deployment, su-
pervision is not easy because the streaming data is unlabelled. Without
any labels, it performs outlier detection purely under the assumption of
that the normal data occurs in relatively large numbers. Thus, to help it to
perform better, it can be trained with data points that are closer to known
normal data profiles. The offline model provides such supervision (line
7,9, Algorithm 1). In addition, the online model can be trained using the
latent layer representation zi, addressing the curse of dimensionality.

There are many outlier detection models that can be used as the on-
line model as described in section 2.1.3. This thesis explores the OCSVM,
GMM, LOF and KDE. The ideal online model would also be able to retain
knowledge or incrementally learn with new data and two of such meth-
ods, Incremental OCSVM (IOCSVM) and Incremental GMM (IGMM) are
expolored.
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The OCSVM can retain knowledge in the form of its “support vectors”,
which describe the current center and decision boundary completely. The
method of retaining all of the support vectors (100% knowledge retention)
and using new data to update the model shall be denoted as IOCSVM.
The scenario where no support vectors are retained (0% knowledge reten-
tion) shall be denoted as the traditional OCSVM in this thesis. There are
other works applying OCSVM to the latent layer of an AE [27, 51, 195],
but no methods have considered the streaming nature of the problem and
implemented it in an incremental fashion.

The IGMM updates parameters through merging similar components
and regularising the weights to sum to one [1]. The implementation of
IGMM in [1] uses forgetting rate equivalent to 1−(knowledge retention
rate) in this thesis. The model retrained completely with new data (0%
knowledge retention) shall be denoted as the GMM.

The existing incremental versions of LOF [125, 151] perform updates
one point at a time, which is infeasible in live network streams. Re-training
with data from current and previous iterations will incur high memory
overhead. KDE with the Gaussian kernel fits a Gaussian at each point
while GMM fits over the number of components. Hence, the incremental
version of KDE [172] can be considered as similar to IGMM.

Though the threshold drifts, it needs to drift with structure and in-
dependently from the normal training set. Here is where an assumption
needs to be invoked. If a certain percentage of the data in each batch
is expected to be normal, the percentile value can be used in determin-
ing a threshold. In the experiments, 50% of the data in each batch of the
stream is assumed to be normal. This is a conservative assumption in real-
scenarios, thus, the median value of the REs of the batch is taken as the
threshold (line 22, Algorithm 1). Percentile values are robust to outliers.
To reiterate, there may be normal data above this threshold, but they are
not considered for online training. They can still be given a low anomaly
score by the online model, albeit not 0 (line 11, Algorithm 1).
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However, allowing this threshold to drift freely without any restric-
tion might result in anomalous data going into online training. In situ-
ations such as DoS attacks, when there are more anomalies in the batch,
the median value will increase. To prevent this, the REs of each batch
is compared with the normal training dataset using the Mann-Whitney U
statistical test which will be described in section 3.1.3.

3.1.3 Mann-Whitney U (MW) Test

TheREs of points in each batch form a distribution. To determine whether
the profile of the data has substantially changed, the distribution of REs
of each batch is compared with the REs of the training data. This is to
prevent updating it when there are anomalous data in the stream.

The Mann-Whitney U test (MW-test) also known as the Mann-Whitney-
Wilcoxon or the Wilcoxon rank-sum test is a non parametric test to deter-
mine whether the medians of two independent groups are significantly
different [56, 114]. It can also be interpreted as testing whether observa-
tions from one group tend to be larger than observations in the other. In
depth formulation of the MW-test is found in [171].

To perform this test, the following assumptions need to hold. Firstly
the data must be ordinal, i.e. they can be ranked. Secondly, the two groups
of data must be independent. Thirdly, each observation must be mutually
independent. Fourthly, the two distributions should have the same shape.
This last assumption is not a hard requirement [56]. If all four assump-
tions are met, the MW-test can be used to determine the exact difference
between the medians of the two groups. If only the first three assump-
tions are met, the MW-test determines whether one group’s mean ranks
are significantly higher or lower. The REs are continuous values which
can be ranked from lowest to highest and each new batch of data is inde-
pendent. There is no relationship between each data point considered in
the datasets used. Under the assumption that most data is normal, a right
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skewed distribution is expected as shown in Figure 3.2.

(a) Training set (b) First batch containing anomalies

Figure 3.2: Distribution of reconstruction error on UNSW-NB15

A one-sided MW-test is performed to check whether each batch’s REs
are significantly greater than that of the training set. When this test is
statistically significant (when the p-value is small and H0 is rejected), the
batch contains more points further from the distribution of the training
data. In other words, more anomalies or new types of data that are dif-
ferent from the ones seen during training are present. In this scenario, the
threshold is not updated with the new median value obtained from this
batch.

When there are anomalies in the stream, this test is naturally going to
be statistically significant. Excluding high REs, which denote anomalous
points allows us to compare normal data against each other, (line 19, Al-
gorithm 1). Hence, this test is better performed with only the data points
in the batch that are less than a fixed θth-percentile value of the batch, (line
20, Algorithm 1). 100 − θ can also be seen as the percentage of expected
anomalies in each batch. A conservative value will be the θ = 50, which is
similar to the threshold for selecting data for online training. If the test is
statistically significant at θ = 50, this means that more than 50% of the data
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in that batch is different from the training data and could point towards
a scenario such as an intrusion attempt, network fault or DoS in network
applications. However, this will not occur all the time. To capture new
variants of normal data that the offline model has not seen, θ > 50 is more
appropriate.

3.2 Results and Analysis

To evaluate the Hybrid Online Offline Framework, sequential datasets are
used as described in Secion 2.3.1. Normal data from the first 100,000 flows
of the first CSV file from the UNSW-NB15 dataset are selected as the train-
ing set. This resembles a scenario in which not all types of normal data are
available during the training phase. There are 88,570 normal flow records
in the first 100,000 records, and 10% is held as a validation set for training
of the AE. Normal data from the next 1000 records are used to initialise the
online model. Anomaly detection is performed on the remaining 119,000
flow records. All the anomalies in the first CSV file are contained within
these records. The model’s performance is also evaluated on batches with
no anomalies as well.

To test the model to be able to perform under new normal data types in
Section 3.3, two types of data are removed within the dataset from train-
ing. ftp and ssh from the “services” feature are removed from the training
dataset and online initialisation while including them in the testing set.
Then Algorithm 2 is utilised to detect these data types later. This simu-
lates the scenario of encountering completely new data. ftp and ssh were
chosen because they present a substantial but not significant portion of the
dataset in terms of both normal data and anomalies.

From the CTU13 botnet, four different captures from scenarios which
contain a large number of records are selected, namely CTU13-13, -9, -1
and -3. From each 200,000 chronological records containing anomalies are
selected. The training set is obtained in the similar fashion as the UNSW-
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NB15 dataset such that the number of training items are near similar. The
remaining data is used as the testing set.

Details on the preprocessing of the data, model parameters and time
taken for training are described in appendix B.1.1.

3.2.1 Hybrids vs. Pure

The results are summarised in Table 3.2. The models based on the pro-
posed framework is denoted as “Hybrids”, also individually denoted as
AE+MW, VAE+MW, DAE+MW (+ the respective online model). The purely
online models (which perform only outlier detection in batches on the la-
tent layer representation of the respective offline models) are denoted as
online AE, VAE, DAE + the respective outlier detection model (and the
offline versions similarly). In this scenario, neither MW test nor thresh-
olds are used to select data for online training. The vanilla AE, VAE and
DAE is also considered as a purely offline model using RE as the anomaly
score. UNSW-NB15 refers to the complete dataset, while UNSW-NB15-
New refers to the scenario where ftp and ssh were removed from the train-
ing set but included in the test set. This is to show-case the detection of
new data later in Section 3.3.

The best model overall is the hybrid AE+MW+IOCSVM with an aver-
age AUC of 0.9372. Figures 3.3 and 3.4 show ROC curves for each meth-
ods using AE as the offline model, on UNSW-NB15 and UNSW-NB15-
New respectively. Figures 3.3a and 3.4a compare the hybrid models. The
AE+MW+IOCSVM is also included in the comparison between the indi-
vidual online and offline models. Similarly, Figures 3.5 and 3.6 give the
PR curves for each of the AE methods run on UNSW-NB15 and UNSW-
NB15-New. In the legend of Figures 3.5 and 3.6, the average precision or
the area under PR curve is reported for each of the model.

The hybrids show the best performance on average in terms of AUC
over individual online and offline models regardless of choice of AE, VAE
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Models UNSW UNSW CTU13 CTU13 CTU13 CTU13 Row Model
Offline Online -NB15 -NB15-New -13 -9 -1 -3 Average Average

H
yb

ri
ds

AE + MW

IOCSVM 0.9506 0.8821 0.9253 0.9513 0.9674 0.9466 0.9372

0.8769

IGMM 0.9144 0.8845 0.9743 0.8308 0.9672 0.8178 0.8981
OCSVM 0.9201 0.8680 0.8459 0.8591 0.6151 0.8767 0.8308

GMM 0.9158 0.9274 0.8349 0.8228 0.8521 0.8723 0.8708
LOF 0.8982 0.9016 0.8168 0.8428 0.9505 0.8887 0.8831
KDE 0.9529 0.8864 0.8458 0.8205 0.6804 0.8626 0.8414

O
nl

in
e

AE1

IOCSVM 0.7305 0.6129 0.6222 0.5423 0.8324 0.5753 0.6526

0.6644

IGMM 0.4087 0.5073 0.8523 0.2685 0.6330 0.8887 0.5930
OCSVM 0.9056 0.7265 0.9365 0.4864 0.4698 0.8897 0.7357

GMM 0.6132 0.5889 0.8589 0.3267 0.6972 0.8742 0.6598
LOF 0.5818 0.6084 0.4974 0.5140 0.6661 0.4062 0.5456
KDE 0.9733 0.8433 0.8575 0.6752 0.5700 0.8806 0.7999

O
ffl

in
e

AE 0.8978 0.8484 0.8723 0.8407 0.9175 0.8654 0.8736

0.8109
AE1 + OCSVM 0.9215 0.8502 0.4728 0.6141 0.8734 0.7617 0.7489

AE1 + GMM 0.8858 0.8898 0.9124 0.9477 0.7117 0.8498 0.8662
AE1 + LOF 0.8428 0.8164 0.6240 0.7125 0.9385 0.3257 0.7099
AE1 + KDE 0.9850 0.8774 0.8630 0.8456 0.6597 0.9038 0.8557

H
yb

ri
ds

VAE + MW

IOCSVM 0.7938 0.9187 0.9285 0.5947 0.7174 0.9295 0.8137

0.8060

IGMM 0.8438 0.8871 0.9321 0.5662 0.9590 0.9339 0.8536
OCSVM 0.8331 0.8863 0.9220 0.5815 0.6819 0.8946 0.7999

GMM 0.8385 0.8799 0.8375 0.5643 0.8293 0.8737 0.8038
LOF 0.8332 0.8923 0.8728 0.5667 0.8699 0.7708 0.8009
KDE 0.8715 0.8719 0.8615 0.6267 0.5923 0.7623 0.7643

O
nl

in
e

VAE1

IOCSVM 0.4998 0.3704 0.5489 0.4832 0.6037 0.4977 0.5006

0.6333

IGMM 0.4153 0.6029 0.7195 0.4893 0.6697 0.8631 0.6266
OCSVM 0.7626 0.7787 0.8781 0.6187 0.3293 0.8902 0.7096

GMM 0.5476 0.6219 0.7974 0.6216 0.7060 0.8328 0.6878
LOF 0.6386 0.6020 0.5449 0.5242 0.6954 0.1964 0.5335
KDE 0.8560 0.8503 0.8029 0.8616 0.2518 0.8284 0.7418

O
ffl

in
e

VAE 0.7355 0.9345 0.8694 0.6487 0.8530 0.8889 0.8216

0.7846
VAE1 + OCSVM 0.9388 0.8592 0.7533 0.2067 0.4036 0.4773 0.6064

VAE1 + GMM 0.8828 0.8973 0.8849 0.9591 0.9389 0.8978 0.9101
VAE1 + LOF 0.8587 0.8248 0.8073 0.7176 0.8836 0.8464 0.8230
VAE1 + KDE 0.9246 0.8750 0.8129 0.9247 0.1707 0.8635 0.7619

H
yb

ri
ds

DAE + MW

IOCSVM 0.9209 0.8639 0.9472 0.7954 0.9082 0.7582 0.8656

0.8652

IGMM 0.9212 0.8293 0.9161 0.9583 0.9847 0.9190 0.9214
OCSVM 0.8940 0.8333 0.9094 0.7733 0.8405 0.8672 0.8529

GMM 0.8926 0.8619 0.8756 0.8880 0.9078 0.8771 0.8838
LOF 0.8313 0.8597 0.9053 0.9011 0.9700 0.9063 0.8956
KDE 0.9475 0.7767 0.8207 0.6722 0.7015 0.7127 0.7718

O
nl

in
e

DAE1

IOCSVM 0.7192 0.7087 0.6295 0.4209 0.7991 0.4999 0.6295

0.6414

IGMM 0.4524 0.5487 0.7339 0.5689 0.5107 0.7828 0.5995
OCSVM 0.8819 0.6415 0.8458 0.4403 0.5866 0.8449 0.7068

GMM 0.5650 0.6287 0.7739 0.4833 0.6394 0.8098 0.6500
LOF 0.6184 0.6315 0.4819 0.5150 0.6942 0.4630 0.5673
KDE 0.9672 0.6454 0.7803 0.4161 0.6472 0.7150 0.6952

O
ffl

in
e

DAE 0.8816 0.8400 0.9596 0.9677 0.9215 0.8887 0.9098

0.7971
DAE1 + OCSVM 0.9050 0.7804 0.5891 0.3497 0.9114 0.2872 0.6371

DAE1 + GMM 0.9153 0.8804 0.9215 0.9492 0.7912 0.8769 0.8890
DAE1 + LOF 0.8345 0.8092 0.7053 0.7238 0.9338 0.5924 0.7665
DAE1 + KDE 0.9866 0.8463 0.7957 0.5972 0.7296 0.7430 0.7830

Table 3.2: Area under ROC curves (AUC) for the offline AE, VAE, DAE and
online IOCSVM, IGMM, OCSVM, GMM, LOF, KDE. The hybrids denote
the framework, the online denote purely online models and offline denote
models whose training is done only once offline. 1 denotes that the model
is used for dimensionality reduction only.
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or DAE. The hybrid AE+MW+IOCSVM and hybrid AE+MW+IGMM per-
forms better over the other hybrids because of its ability to retain knowl-
edge. In the IOCSVM, the retention of the support vectors ensures that the
decision boundary or the center of the OCSVM do not change drastically
in each iteration. The purely online models do not perform as well, regard-
less of the offline choice (AE / VAE / DAE), because they have not seen
the attributes of normal data. They do not differentiate between anoma-
lies and infrequent but normal data types. Feeding them with appropriate
inliers in the case of the hybrids helps them to score anomalies as outliers
better.

Another interesting result is that sometimes the online OCSVM and
the online GMM performs better than their incremental counterparts, the
online IOCSVM and the online IGMM. This happens mostly in the purely
online scenario. For example, with the AE, the online AE+OCSVM has
a score of 0.9056 while the online AE+IOCSVM has a score of 0.7305. In
the online IOCSVM an anomaly point with low RE can become a sup-
port vector. Retaining this point affects subsequent iterations. Likewise,
components pertaining to certain anomalous regions gets retained in the
online IGMM. The hybrid models are not severely affected by it because
they have guidance to select the right points for training. One way to ad-
dress this issue is to decrease the knowledge retention rate for incremental
online methods.

Performance of most models drop when going from the UNSW-NB15
dataset to UNSW-NB15-New. This can also be seen in Figure 3.6. The ftp
and ssh data contains both normal and anomalous points. In the hybrid
models, all of the ftp and ssh data have high REs because the AE has not
seen this type of data before. Hence, all new data, normal or not, is classi-
fied as anomalous as expected. As mentioned in section 2.1.2, there is no
model which can generalise well all the time in a real live network. Section
3.3 will show the importance of such a classification to detect all new data
instead of generalising to new data. The ROC curves in Figures 3.3 and
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3.4 also suggest that the models following the hybrid framework are more
consistent compared to the others. Examining the PR curves, Figures 3.5
and 3.6 on the UNSW-NB15 dataset, all the models in the hybrid frame-
work achieved an average precision over 0.5. Though ROC curves are al-
ways monotonic, PR curves need not necessarily be monotonic [41, 80]. In
this aspect, the area under the PR curve or the average precision provides
better comparability. The best performer is the AE+MW+IOCSVM with
an average precision of 0.8472. On the UNSW-NB15-New dataset, though
they outperform the random classifier, the average precision drops for all
models. All of the new data, which contain normal and anomalies, are
considered anomalous because the model has not seen it before. So this
result is expected. The hybrid AE+MW+GMM has the highest average
precision of 0.5706. It also has the highest AUC of 0.9274 amongst the
models with AE as the offline model.

The vanilla DAE performs better on average with an average AUC of
0.9098 compared to the vanilla AE and VAE when comparing the offline
models. However, when considering the hybrids, the AE outperforms the
VAE and DAE. The VAE is a generative model and its RE is not particu-
larly suited to identify inputs similar to the training distribution [127]. The
VAE may also assign high probability (i.e. low RE) in areas where no data
have been observed [173]. However, it is the best performing model with
an AUC of 0.9345 under UNSW-NB15-New. This is because it generalises
better to new data. The DAE is trained to remove noise from the data.
Hence, it is not as well suited to select data for online training as the AE.
The DAE also adds regularization into the training enabling the model to
better generalise to new data. On contrary to common intuition, this is not
a desirable feature to detect new data as explained in Section 3.2.4.
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(a) Hybrid models

(b) Online models

(c) Offline models

Figure 3.3: ROC curves on
UNSW-NB15 with the AE. The
hybrid models are the most con-
sistent.

(a) Hybrid models

(b) Online models

(c) Offline models

Figure 3.4: ROC curves on
UNSW-NB15-New with the AE.
The hybrid models are the most
consistent.
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(a) Hybrid models

(b) Online models

(c) Offline models

Figure 3.5: PR curves on UNSW-
NB15 with the AE. The average
precision is shown in the legend
beside each label.

(a) Hybrid models

(b) Online models

(c) Offline models

Figure 3.6: PR curves on UNSW-
NB15-New with the AE. The av-
erage precision is shown in the
legend beside each label.
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3.2.2 Detection Rates

To classify data as normal vs anomaly, a threshold is implemented on the
anomaly scores. Unlike other models, the OCSVM also learns a decision
boundary but this may not be optimal. The decision boundary can be af-
fected if an anomaly point is selected for online training. The anomaly
scores are unaffected by such points. They are related to the point’s dis-
tance from the center which is more robust because it considers all of the
points and the influence of each point is smaller. Table 3.3 gives results of
using the decision boundary by AE+MW+IOCSVM vs an optimal thresh-
old, on the anomaly scores on the UNSW-NB15 dataset. The ”optimal”
threshold here is the one for which detection rate equals overall accuracy.
In the real world setting, this threshold can be determined by holding out a
validation set of normal data and relevant anomalies. The anomaly scores
give a better performance as compared to the decision boundary. How-
ever, this does come at a cost of higher false positive rate as shown in
Table 3.4.

Table 3.3: Results for individual anomalies in the UNSW-NB15 of the
AE+MW+IOCSVM

Detection rate Detection rate Total
Anomalies of decision of optimal number

boundary (%) threshold (%) present
Fuzzers 24.85 61.87 1718
Exploits 61.59 93.94 1997
Generic 98.07 99.73 5599

Reconnaissance 39.63 90.31 805
DoS 47.85 91.42 303

Backdoors 58.97 92.31 39
Worms 50.00 50.00 8

Shellcode 29.79 84.04 94
Analysis 14.52 59.68 62
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Table 3.4: Overall results of the AE+MW+IOCSVM

Method FPR(%) TPR(%) Accuracy(%)
Decision Boundary 1.27 72.24 96.37
Optimal Threshold 8.86 91.13 91.14

3.2.3 Moving Medians

Table 3.5: Median thresholding on UNSW-NB15

Method: AE+MW+IOCSVM AUC
Moving Median with MW 0.9506

Moving Median without MW 0.9262
Fixed Threshold 0.9467

Table 3.5 compares the AE+MW+IOCSVM method using the moving
median threshold on the UNSW-NB15 dataset. Moving median with MW
refers to the AE+MW+IOCSVM method. Moving median without MW
refers to the method by allowing the threshold values to increase and de-
crease freely. The fixed median thresholding method fixes the threshold at
median of the training set REs at initialisation.

Figure 3.7 shows median values of the REs of each batch on top, and
the number of actual anomalies and number of predicted anomalies in
each batch below. The line shows the number of anomalies predicted by
the IOCSVM decision boundary. Red dots show batches in which the null
hypothesis H0 is rejected and the purple dots show the batches where it
is not rejected. When it is not rejected, the threshold for selecting points
for online training is allowed to drift and updated with the new median.
When H0 is rejected, this new median is discarded, suggesting more than
100− θ percentile of the batch contains anomalies or new data. The green
line indicates the median of training REs.

In Table 3.5, using the MW test to accept or reject the new median
threshold gives better performance than letting it freely move or using
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Figure 3.7: Moving median w.r.t Number of Anomalies

a fixed threshold. It allows capturing of new variants of normal data that
are within limits of the REs of the expected normal data. Allowing the
median value to move freely shifts the median too far from the expected
normal data which results in classifying some anomalous points as nor-
mal data. Having a fixed threshold, though conservative, does not accom-
modate variants of new normal data and hence, performs poorer. This
is further affirmed by Figure 3.7. Figure 3.7 shows that the median val-
ues of the REs of each batch increases when there are anomalies present
in each batch. This allows us to understand how different each batch is
from the training set. In the last 20 batches, though there are no anoma-
lies, the median value is allowed to drift above the fixed threshold. This
gives evidence that new variants of normal data can have higher REs and
accommodating this allows for better performance as depicted in Table
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3.5.

The 6th batch indicated with a red ’x’ on Figure 3.7 is a median rejected
by the MW test even though it is small. This implies that the points in the
batch have relatively higher REs despite having a small median value.
The value of θ is set at 85th percentile and with batch size of 1000. Even
though the number of actual anomalies is less than (100−85)%×1000 = 150

from batch 44 onwards, H0 is rejected for a number of iterations. This
implies that there are new variants of normal data in the batch skewing
the distribution of RE to a larger median value. This can also be seen in
batches 90-93, amongst the last few rejected batches where there are no ac-
tual anomalies. These batches in fact contain important variants of normal
data that the offline model has not seen before. Further processing could
be done on these batches and be used to update the offline model. Any
data from batch 95-120 will not be useful in updating the offline model,
which has already acquired profiles for these batches.

3.2.4 Varying Framework Parameters

Figure 3.8a shows graphs of varying batch size for the MW test and for
online training. The MW test is not strongly affected by batch size. For
online training however, there is a drop in performance with larger batch
sizes. This is because with larger batch sizes, the online model retraining
occurs less frequently and the data profiles have changed.

In Figure 3.8b, as the number of epochs increases, there is no real drop
in performance of the hybrid AE+MW+IOCSVM model. This is because
the role of the offline model in the hybrid is not to give an anomaly score
but rather to select points for the online model to learn from. On the
UNSW-NB15, the vanilla DAE performs better with average AUC of 0.9098
against the Hybrid DAE+MW+IOCSVM with an AUC of 0.8656. The dif-
ference is highest on the CTU13-9 dataset. Training the model with noisy
input performs regularisation and it generalises to new data better [19,
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(a) AUC against different batch sizes (b) AUC against number of epochs

(c) Number of rejected tests against per-
centile threshold

(d) Number of rejected tests against θ

Figure 3.8: Results varying parameters of the AE+MW+IOCSVM on
UNSW-NB15

158]. Thus, the vanilla DAE did well. Dropout is a technique by which
units are randomly dropped during training to improve regularisation:
if this is included in AE training [178], similar results are obtained on the
CTU13-9 dataset where the vanilla AE does better than its hybrid. In Table
3.6, the AE is trained with a dropout probability of 0.5 on its first hidden
layer on the CTU13-9 dataset. Even though the offline DAE performed
better on average than its hybrid, it was not consistent. In such cases,
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this can mean that the model has not generalised correctly or enough, or
the new streaming data is different. Also, since it cannot be determined
how the model generalises in high dimensional space, one cannot be con-
fident that the model will do well over future data streams. The under-
regularised AE avoids this situation all together, learns the training set
well and gives a higher RE to any data point that is not similar. The job of
anomaly scoring is completely delegated to the online model. The benefit
of this approach is that there is less need to focus on training a model to
generalise to new data.

Table 3.6: AE trained with dropout on CTU13-9

Method AUC Method AUC
AE+MW+IOCSVM 0.7426 DAE+MW+IOCSVM 0.7954
Offline vanilla AE 0.9385 Offline DAE 0.9677

Figure 3.8c varies the percentile threshold on the RE values for select-
ing data for online training. The median was used under the assumption
that at least 50% of the data is normal. With a higher value, more anoma-
lous points enter online training as normal data, thus the AUC score drops.
Any value less than 70th-percentile would be acceptable for the UNSW-
NB15 stream. This value depends on the percentage of the expected nor-
mal data in each batch, but has no impact on the number of rejected MW
tests. This also suggests that in the event of a batch with more anomalies,
the model is robust to not allow the threshold thres to increase.

In Figure 3.8d, θ is varied in the range of [50,99] percentile for selecting
data for the MW test in the UNSW-NB15. The total number of possible
rejected tests is 119. As expected, using a higher θ for the MW test results
in more of the batches rejecting the null hypothesis, H0. This is because
anomalous data points which have higher REs are being considered in
the batch for the MW test. Having a high θ would yield similar results
as a fixed median threshold. Here the median is initialised as described
in Algorithm 1 (cf. the analysis in Table 3.5). Similarly, having θ too small
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allowsH0 to be accepted: the model will then give results similar to a mov-
ing median without the MW test as in Table 3.5, resulting in lower AUC
as seen in Figure 3.8d. A small threshold of θ = 50 percentile can be used
(in parallel) to check whether most of the data in the batch is anomalous,
without updating thresholds. Rejection of H0 on a lower θ strongly sug-
gests that most points in the batch are anomalous. This could signify an
intrusion since the lower half of the batch’s REs leads to rejection of H0.

The main concept behind the improvement of the AUC is due to being
able to correctly identify inliers which are normal data in the online model
that the offline model has identified as anomalies as depicted in Figure 3.9.

Figure 3.9: Online model identifying new normal data.

3.3 Detecting New Data

One key difference from other methods in the literature is that this of-
fline model learns the training set well and trades bias for higher variance,
which prevents generalising incorrectly on new data. Using the MW-test,
it is determined whether the streaming data is suspiciously different from
the training set. This is possible because it is the online model which per-
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forms the anomaly scoring. The training and threshold update can be
done in parallel, so scoring is not delayed in live streams. Following that,
the heuristic to detect new data is found in Algorithm 2.

Today’s anomalies may be tomorrow’s normal. With new types of in-
novations constantly occurring, new legitimate data especially in network
traffic are bound to occur. Anomaly detection systems that perform well
on current data will most likely flag these new patterns as anomalies. The
main idea for detecting them is to look for clusters amongst anomalous
data that remain after removing current normal data. This works better
when the new type of data fall close to each other in the same spectrum
of anomaly scores. In a well regularised model, this tends not to be the
case. In the hybrid framework, as anomaly score of 0 is applied to all data
less than thres, these data can be immediately removed and thus, reduce
the search space (lines 2-3, Algorithm 2). Another important primary step
is to remove any preprocessing (Appendix B.1.1) done on the data based
on existing normal data (line 5, Algorithm 2). This step could be done
continuously but it is most effective once enough data are obtained.

The range of anomaly scores is first split into t intervals (lines 12-14,
Algorithm 2). Then clusters are searched for by removing points as the
range is limited (lines 15-16, Algorithm 2). Principal component analy-
sis (PCA) is performed to reduce the dimensionality here. Note that the
offline model cannot be used to do this because it is trained on existing
normal data. Clustering algorithms such as DBSCAN will do well here
(cf. their use in [36, 46]) as the aim is not to spot outliers but clusters (lines
21-22, Algorithm 2). There is no restriction on the number of intervals or
their sizes.

This algorithm embodies an assumption that new normal data consists
of connected dense regions amongst the points with high anomaly scores,
building on the intuition that new normal data does not attempt to hide or
mask in the way that anomalies might. The value ofM is not deterministic
however, making this is a heuristic rather than a definitive method. It is
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Algorithm 2 Search for new normal data. All acronyms are found in Table
3.1.

1: while True do . Stream data xi with anomaly scores
2: counter ← 0

3: if Anomaly sci == 0 then
4: Drop xi

5: else
6: xi ← RemovePreprocessing(xi)
7: counter += 1
8: end if
9: end while

10: if counter == M then
11: minval← min(Anomaly scores)

12: maxval← max(Anomaly scores)

13: diff ← (maxval −minval)/t
14: for r := 1 to t do
15: thresnew ← minval + r × diff
16: for i := 1 to M do
17: if Anomaly sci > thresnew then
18: Temp-DB.insert(xi)
19: end if
20: end for
21: Temp-DB← PCA(Temp-DB)
22: clusters←Cluster(Temp-DB)
23: NewNormalData←SpotClusters(clusters)
24: Temp-DB←Empty(Temp-DB)
25: end for
26: end if
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a challenge to automatically determine the size of a cluster required for
it to be deemed “normal” [185]. On a positive note, the search space is
smaller and the problem is inverted: instead of looking for non-clustering
points in a sea of data, looking for clustering points in subsets of the sea of
anomalies is a more manageable task.

3.3.1 Performance

To detect new normal data, the anomaly detection system must discrimi-
nate all of them as anomalous and rank them close to each other. In a well
regularised model this is not possible, because the new data type may be
given varying anomaly scores. The anomaly scores of the offline vanilla
VAE (which obtained the best AUC score of 0.9345 on the UNSW-NB15-
New stream), are compared against the AE+MW+IOCSVM which is the
best overall performing model. Here ‘ftp’ and ‘ssh’ data are considered
new because they were excluded from the training data. In Figure 3.10
the anomaly scores are separated into 10 percentiles and the data type in
each percentile range is shown. There are fewer points in the hybrid be-
cause scores equal to 0 have been dropped (line 3, Algorithm 2). This is
not possible with the offline VAE to reduce the search space. This benefit
is exclusive to the hybrid framework.

Looking at the VAE, the new data falls over all percentile ranges while
for the hybrid model, the new data falls in the higher end of the spectrum.
The hybrid model scores the new data much higher than the model which
generalises better to new data. Hence, it will be easier to identify clusters
on the scores of the hybrid model. This phenomenon occurs for all of the
models in the Hybrid framework.

To bring out the clusters as specified in line 21 of Algorithm 2, results of
PCA in 2 dimensions of the hybrid AE+MW+IOCSVM (line 20, Algorithm
2) is shown. With t = 10 in Algorithm 2, Table 3.7 shows the PCA plots
for anomaly scores greater than thresnew for r = 1, 5, 6 and 10. When
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Table 3.7: PCA plots for anomaly scores greater than each thresnew.
thresnew is increased for each subsequent plot downwards for r = 1, 5,
6 and 10 respectively. Green, blue and red points indicate ‘ssh’, ‘ftp’ and
other types respectively in the ground truth column.

Without new With new Ground
data data truth

UNSW-NB15 UNSW-NB15-New UNSW-NB15-New
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(a) offline VAE (b) AE+MW+IOCSVM

Figure 3.10: Data types in each percentile range on UNSW-NB15-New.

there is new data, as thresnew increases, when going down the columns,
the connected dense regions become clearer. This phenomenon does not
occur when there are only anomalies.

3.4 Binary Classification

The hybrid framework can also be used for binary classification instead
of one-class classification [141, 143]. As both normal and anomaly classes
are required during training, this is considered a Signature-based model.
An example model using Radius Nearest Neighbour (For brevity this shall
be referred to as ‘Rad-NN’ in what follows) and SVM is presented in this
section.

3.4.1 Model Description

Figure 3.11 depicts the system overview. xi denotes the data to be clas-
sified. The offline model is trained offline with labelled data. The online
model is trained with recent data that has traversed through the network
and their corresponding labels are as accurate as the confidence of the sys-
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Figure 3.11: System overview, C denotes the confidence measure of the
prediction label L.

tem. xi is classified by the offline model with confidence C∗i . If C∗i is lower
than a specified threshold, thres, or the offline model is unable to clas-
sify it (C∗i = 0), the online model is invoked to classify xi with confidence
Ciˆ. The label, Li then depends on the model with the higher confidence,
Ci = max(C∗i , Ciˆ). Thereafter, the data classified by the system with high
confidence, Ci > u for an upper threshold u is obtained to retrain the on-
line model. The online model will retrain itself by retaining some knowl-
edge and using high confidence points when a retraining criteria is met.
To implement this system, Rad-NN as the offline model and the SVM as
the online model are chosen.

Nearest Neighbour models are also known as ‘lazy learners’ because
they do not learn a discriminative function but ”memorize” the dataset
[154]. They simply maintain a knowledge base of points in hyperspace
and when tasked with classifying a new point, xi, the model calculates the
distance between xi and its neighbours. It then counts the votes or classes
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of the neighbouring points and classifies xi. This is an appropriate model
to retain knowledge or useful points that encompass the general features
of network data. The voting can be done based on equal weighting or
distance weighting where closer points have a higher weight on their vote
for xi. Equal weighting might not be appropriate in the presence of class
imbalance. The commonly used k-NN model does this based on a user
defined value k for the number of nearest neighbours to vote. An issue
with k-NN is that sometimes a point might be quite far from all of the
other points and yet it is able to classify the new point. Rad-NN counts
the votes of neighbouring points within a specified radius. In this context,
if xi is too far away, it will be an outlier and the model will be unable to
classify it. The complexity for the search is ofO(d× log2(n)), where n is the
number of points and d is the number of features with an implementation
of a Ball tree structure.

Upon classification, the confidence C∗i of the Rad-NN’s classification of
point xi is calculated using the following function.

C∗(xi, k) = 1−

k∑
j=1

D(F,NLNj(F ))

k∑
j=1

D(F,NUNj(F ))

(3.1)

D(a, b) represents the distance between points a and b. NLNj(F ) repre-
sents the jth nearest like neighbor of xi while NUNj(F ) represents its jth

nearest unlike neighbor [78]. The number of like points or unlike points
are not constrained by the value of the radius. Since Rad-NN uses dis-
tance weighting for classifying, this measure will always be less than 1.
This confidence scoring addresses two points. Firstly, the closer the target
data point is to unlike points, the denominator value will be low and the
confidence score will be low. Secondly, if the target data point has few
like neighbours close to it, then it is occurring in a sparse region. The nu-
merator value will be high as it would have to take the distances of like
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points farther away and so the confidence score will be low. This scoring
methodology is independent of the classification methodology.

For the online model, SVMs are used as they are simple and efficient
machine learning models in high dimensional spaces. They use the ker-
nel trick to map data into a higher dimensional subspace where a deci-
sion boundary, given by a decision function, is obtained [20]. SVMs can
be trained with limited data. As normal data changes, SVM can incre-
mentally learn with the new data and shift its decision boundary. The
Radial Basis Function (RBF) kernel is chosen because it does not assume
any prior knowledge about the data, is invariant to translation and is able
to fit every target value exactly [20]. Furthermore, the bias and variance
can be adjusted using the C and γ parameters in the RBF kernel. C is
the penalty parameter. A low value of C will give us a simpler decision
function at the cost of training accuracy. γ is the inverse of the influence
of each training point on the decision function and adjusts the spread of
the decision region. For the hybrid model, the SVM can have high vari-
ance because it is trained on high confidence points. Training time is
O(max(n, d) ×min(n, d)2) [32]. For a small number of samples, this does
not pose an issue. Furthermore, once the SVM is trained, the support vec-
tors are enough to describe the current decision boundary. These support
vectors will be retained for the next retraining in the system. The SVM
will be retrained in batches when the number of high confidence points in
the database reaches a specified number. In this way, as depicted in Figure
3.12, the decision boundary of the SVM will shift as it is retrained with
new data.

For the SVM, its confidence Cˆ can be computed using Platt scaling
on the scores of the decision function. Platt scaling is an algorithm to
give a probability estimate on the output of the decision function. This
probability is calibrated using the data points used to obtain the decision
function [105].
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Figure 3.12: SVM decision boundary shift. The shaded items represent
support vectors. Support vectors are retained on the right diagram with
the addition of two new points represented by thickness. The decision
boundary shifts slightly and new support vectors are obtained.

3.4.2 Performance and Evaluation

This model is evaluated on the NSLKDD dataset [43]. Data preprocessing
and model training details including grid-search for determining the pa-
rameters are found in Appendix B.2.1. The SVM parameters are C = 100,
γ = 0.1. Confidence threshold, thres for Rad-NN is 92.2%. k, to calcu-
late its confidence is 10. Upper threshold, u for online training selection is
96%. The SVM is retrained when the number of previous support vectors
and high confidence points reaches 1300. The results are as follows. The
system achieves 95.55% accuracy, 94.42% detection rate and 2.96% false
positive rate. The SVM was trained 11 times whilst predicting 21,244 data
points in the testing set.

Table 3.8 compares the hybrid system with other offline + online al-
gorithms implemented in a similar fashion. The Gaussian Naive Bayes
(GNB) is used as the other online algorithm. With the GNB, all online
models are retrained completely with no points being retained as there is
no clear way to retain points for the GNB. The classification probabilities
of GNB is taken as its confidence measure. In Table 3.9, the hybrid system
with other offline methods. In Table 3.10, the hybrid system is compared
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with other online methods.
To test the system further, the offline model is trained without each

one of the anomaly types from the dataset. The respective anomaly is also
removed from the points used to initialise the online model. The results
are found in Table 3.11. A similar experiment in Table 3.12 is shown but
the online model is initialised with all anomaly points.

Table 3.8: Comparison with other offline and online methods

Model FPR TPR Acc
Offline + Online (%) (%) (%)
Rad-NN + SVM 2.96 94.42 95.55
Rad-NN + SVMa 3.80 88.82 92.00
Rad-NN + GNB 3.95 81.01 87.47

SVM + GNB 8.15 70.68 79.78

aSupport vectors are not retained.

Firstly, retaining the support vectors gives better overall results com-
pared to Rad-NN + SVM without retention in Table 3.8. Training without
retention runs the risk of shifting the decision boundary too much, espe-
cially more since the data points are only as accurate as the confidence
label.

Offline methods are not effective in capturing concept drift and higher
detection rates comes at the expense of higher false positive rates as seen
in Table 3.9. The Rad-NN by itself gives us the poorest detection rate.
This is certainly expected as its role is to capture the general features of
the data. The SVM trained offline also does not perform well because it
was trained with too many irrelevant points, i.e. noise. Though they do
not perform as well individually but together, they are able to overcome
their inadequacies. The performance of Rad-NN is improved when com-
plemented with an online model in Table 3.8. However, the SVM trained
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Table 3.9: Comparison with offline methods

Model FPR TPR Acc
(%) (%) (%)

Rad-NN + SVM 2.96 94.42 95.55
SVM (C=100, γ=0.1) 8.04 71.01 80.02

Rad-NN 2.13 59.33 75.90
Decision Tree 3.37 70.12 81.51

Gaussian Naive Bayes 3.26 62.04 76.95
k-NN (k=5,equal-weighted votes) 2.88 61.33 76.71

Artificial Neural Networks [83] 3.23 81.20 81.16
Deep Recurrent Neural Networks [213] 3.07 72.95 83.28

Self taught learning [85] 21.60a 95.95 88.39
Stochastically improved 4.01a 83.08 88.65

Denoising Autoencoder [11]

aDerived from the confusion matrix of the published results

Table 3.10: Comparison to other online methods

Model FPR TPR Acc
(%) (%) (%)

Hybrid System 2.96 94.42 95.55
SOM & Neural Network [79] 14.06 94.40 90.00
2 layer GMM clustering [18] 7.00 85.00 88.44a

Deep Belief Network with 4.47a 95.2 95.34a

Adaptive Linear Function [8]

aDerived from the confusion matrix of the published results
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Table 3.11: Detection after removing each type of attack during offline
training and online initialisation

Training % R2L % DoS % Probe % U2R
Data detected detected detected detected

Full System 78.39 99.60 97.68 85.03
Data without R2L 14.67 99.31 97.64 81.28
Data without DoS 73.89 79.69 98.52 83.42

Data without Probe 77.55 99.57 61.50 86.63
Data without U2R 77.93 99.60 97.95 80.21

Table 3.12: Detection after removing each type of attack during offline
training only

Training R2L % DoS % Probe % U2R %
Data detected detected detected detected

Full System 78.39 99.60 97.68 85.03
Data without R2L 73.66 99.60 97.42 81.81
Data without DoS 73.36 99.21 98.47 85.56

Data without Probe 77.25 99.44 93.28 86.10
Data without U2R 78.01 99.60 97.82 84.49
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purely offline shows better performance than SVM + GNB. This is mainly
because the offline SVM misclassifies with higher confidence than the Rad-
NN and more incorrectly labelled points are used in the training of the
online model. Also, since the confidence scoring of Rad-NN is indepen-
dent of its classification methodology, the Rad-NN does not face this issue.
This suggests that a strong offline classifier with a robust confidence scor-
ing methodology is necessary.

Comparing Table 3.10 with Table 3.9, online methods have higher over-
all detection rates but they also have higher false positive rates. This is
because it is difficult to optimise in real time. Online models are better at
capturing concept drift and so they have higher detection rates.

In Table 3.11, after complete removal of each type of attack, the model
still detected more than 50% of DoS, Probe and U2R data points as anoma-
lies. However, it was only able to detect 14.67% of the R2L attacks. This is
because R2L attacks are similar to normal data and possibly closer to the
boundary. Figure 3.13 shows a PCA analysis of the testing set. In two di-
mensions, R2L and normal data points are more agglomerated compared
to the other anomalies. In Table 3.12, the online model had a head start
with a few points of each attack trying to mimic the situation where the
online model has already detected a new attack before. In such a scenario,
there is a huge improvement in detecting each type of attack compared to
Table 3.11. Hence, inserting a new type of anomaly into the online model
during one of its retraining is sufficient for the system to adapt and learn
to detect the anomaly in future.

In Tables 3.11 and 3.12, the system trained without certain attacks en-
ables better detection of other anomalies while poorer detection for some
others. For example in Table 3.11, without DoS attacks, Probe attacks have
a higher detection rate while U2R attacks have a lower detection rate.
There may be a few reasons for this phenomenon. Firstly, with fewer
unrelated anomalies in the RadNN, there is less noise. On the contrary,
the misclassification comes at a cost of training the SVM incorrectly. Fur-
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Figure 3.13: PCA analysis of testing set

thermore, the SVM is overfit with a high penalty parameter C in the RBF
kernel. The fluctuations are not consistent because part of the detection
process depends on the shifting decision boundary of the online SVM and
this depends on the recent points that have traversed through the system.

A few caveats of this model are as follows. This model is for binary
classification and labelled anomaly and normal points are necessary for
training. Furthermore, this model does not consider the curse of dimen-
sionality unlike the AE in the behaviour-based hybrid framework.

Performance on Streaming Data

Streaming data is not a requirement for this model because the assump-
tion that most of the data is normal is not used. Regardless, to make it
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complete, the performance of the model is evaluated on the UNSW-NB15
streaming dataset as described in Section 3.2 which is of streaming nature
and the results are shown in Table 3.13. The training dataset is used to
train the model.

Table 3.13: Rad-NN + SVM on UNSW-NB15 stream

Dataset FPR TPR Precision Acc
(%) (%) (%) (%)

UNSW-NB15 Stream 2.16 98.74 81.78 97.92

3.5 Conclusion

Both the behaviour based hybrid framework and the binary hybrid model
have been shown to perform better than an offline or online model indi-
vidually. It is robust under evolving data. The framework also allows one
to identify new normal data as dense connected regions amongst anoma-
lous data. The binary model can be used when the type of anomalies are
known. Chapter 6 will highlight avenues for improvement.

Continuing to address the challenges highlighted in Chapter 2, the next
chapter looks at how anomaly detection can take into consideration dis-
tributed data and ties it in with the hybrid framework developed here.



Chapter 4

Distributed Training

With the advent of Big Data, pooling the data at one location incurs a high
communication overhead. In wireless transmissions, the problem is fur-
ther exacerbated. This chapter addresses the training of a model when
the data is heterogeneously distributed. Moreover, with Edge AI, in some
real-time applications such as autonomous vehicles, both training and in-
ference need to be made quickly as well.

In this aspect, Bayesian models have many advantages as mentioned
in Section 2.2 but the methods in the literature have not considered a fully
Bayesian approach. This chapter will show the use of Expectation Propa-
gation (EP) to build a Bayesian Random Vector Functional Link AutoEn-
coder (BRVFL-AE) in a distributed manner. The BRVFL-AE has a closed
form solution. It is also a SLFN and thus, it has lower computational and
memory complexity. It is then compared to a standard Bayesian AutoEn-
coder (BAE) which requires Variational Inference (VI) to build the poste-
rior (Section 2.2.1).

4.1 Preliminaries

This section introduces the Bayesian Neural Network (BNN) used at edge
sites, and the EP algorithm used to combine information [164, 190]. More
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details on Bayesian methods for regression are found in Appendix C and
Bishop [20].

4.1.1 Bayesian Random Vector Functional Links

Let x ∈ Rd be the input vector. The output of a neural network with one
hidden layer is denoted by

f(x) =
B∑
l=1

wlhl(x) = wTh(x) (4.1)

where hl(·) as shown in 4.2 is a randomly initialised non-linear mapping
which project the input to a higher B dimensional space. hl is the classical
sigmoid function with weights a ∈ RB and biases b ∈ R drawn from a
uniform distribution in the range [−λ, λ] where λ is a positive real number
as shown in [164].

hl(x) =
1

1 + exp(−(aTx + b))
(4.2)

Structuring the above problem as a ridge regression problem with dataset
D = {(xi, yi)|i = 1 . . . n} for yi ∈ R, the optimal weights w are found by
solving

w∗ = argmin
w∈RB

{
1

2
‖Hw − y‖2 +

C

2
‖w‖2

}
. (4.3)

In Equation (4.3), H is built by stacking row-wise vectors h(xi) and C

is the regularisation factor. The solution can be found analytically via the
Moore-Penrose inverse:

w∗ = (HTH + CI)−1HTy. (4.4)

Considering a multidimensional output instead, replacing yi by yi ∈ Rd,
where each dimension is independent, a multidimensional regression prob-
lem is obtained where the equations are as before but w is now B × d and
is independent along each dimension j = 1, . . . , d. This independence for-
mulation is possible as only one set of weights are being trained.
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Let X denote the data. P (X|w) denotes the likelihood and P (w) de-
notes the prior. The posterior distribution over the parameters is given by
Bayes law:

P (w|X) ∝ P (X|w)P (w). (4.5)

From the results for Bayesian ridge regression [20, 164], let each of the
outputs vary by white noise with variance σ2, resulting in (4.6) for the
likelihood in each dimension. N (x|a, b) denotes a Gaussian distribution
over x with mean a and variance b. For the prior, allow the weights to be
small and express it as a zero-mean multivariate Gaussian with diagonal
covariance. In Equation (4.7), m0 = 0 and S0 = γ−1I for all j and γ is the
precision parameter.

P (X|wj, σ
2) = N (xij|wT

j h(xi), σ
2) (4.6)

P (wj|m0,S0) = N (wj|m0,S0) (4.7)

The posterior is again Gaussian, with mean mj and covariance Σ given by

mj = Σ(S−10 m0 +
1

σ2
HTxj) (4.8)

Σ = (S−10 +
1

σ2
HTH)−1 (4.9)

If σ2 is constant for each j then Σ depends only on the variation in the
data given by HTH. The predictive distribution is also Gaussian,

P (x̂j|x̂, σ2, γ) = N (x̂j|mT
j h(x̂), φ(x̂)2) (4.10)

φ(x̂)2 = σ2 + h(x̂)TΣh(x̂). (4.11)

The method above provides not only an estimate for the mean of the
weights, but also a variance for the weights and therefore, a predictive
variance for y. Furthermore, the solution is in closed form. Instead of
specifying values for the hyper-parameters σ2 and γ, a conjugate prior dis-
tribution can be placed on them to perform Bayesian inference and obtain
MAP values from the data.
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4.1.2 Expectation Propagation

EP was formally introduced by Opper and Winthler [146] and generalised
by Minka [120]. It is an iterative message-passing algorithm which min-
imises the Kullback-Leibler (KL) divergence of the reverse form:
KL[P (w|X)||q(w|θ)] between two distributions [20, 100]. From (4.5), if
there is no closed form solution, VI [20] or MCMC can be used to esti-
mate the posterior or to sample from the posterior. It is then projected on
to q, a member of the family of exponential distributions, by matching its
moments [20, 166]. There is no guarantee of convergence but it has been
shown to work well for models with log-concave factors such as the Gaus-
sian distribution [65]. In the case where the posterior is in the exponential
family, minimizing the divergence conveniently corresponds to matching
the moments [120].

As in FL, if a global model exists, the IID assumption is invoked with
respect to the global model for the data, though they may be unevenly bal-
anced between sites. This may also be viewed as performing Bayesian in-
ference site by site taking the posterior as the new prior in the subsequent
iteration. Else, other alternatives such as learning distinct local models
should be considered [104, 174]. From (4.5), the likelihood is factored into
partitions, one for each site in the network. These are then combined it-
eratively with an approximate prior to produce the global posterior upon
convergence. As shown in 4.12, let there be k = 1, . . . , K sites and Xk de-
note the data in the kth edge site. The dimension variable j is omitted to
reduce clutter.

P (w|X) ∝
K∏
k=1

P (Xk|w)P (w) (4.12)

is approximated by

g(w|r,Q) ∝
K∏
k=1

gk(w|rk,Qk)g0(w|r0,Q0), (4.13)

where g(w|r,Q) is a member of the exponential family and r,Q are the
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natural parameters. Details on exponential family of distributions are
found in Appendix C.1.1 and [38]. The exponential family of distribu-
tions is closed under multiplication and translates to addition of the nat-
ural parameters [38]. The EP algorithm is stated as follows. Firstly, ini-
tialise rk,Qk = 0 and r0,Q0 as the natural parameters of the distribution
at each site and of the global prior respectively. Then r = r0 +

∑K
k=1 rk and

Q = Q0 +
∑K

k=1 Qk. In the following steps, g−k and g\k are representations
for the cavity and tilted distribution as calculated with respect to Equation
(4.13).

E1: At each site, determine the cavity distribution g−k by substituting
r−k = r− rk, Q−k = Q−Qk.

E2: At each site, approximate the tilted distribution g\k where g\k(w) ∝
P (Xk|w)g−k(w), using VI [20] if no closed form solution is available,
and by matching moments.

E3: At each site, compute the change in distribution.
∆rk = r\k − r−k − rk and ∆Qk = Q\k −Q−k −Qk

E4: At each site, update the distribution with a damping factor δ ∈ (0, 1],
rk ← rk + δ∆rk and Qk ← Qk + δ∆Qk

E5: In a central site, update the global parameters, r ← r + δ
∑K

k=1 ∆rk

and Q← Q + δ
∑K

k=1 ∆Qk

Repeat steps E1-E5 until ∆rk and ∆Qk are small or when the tilted dis-
tribution at each site is consistent with the approximate posterior [65].
Assuming each of the weights of the BRVFL-AE follows a Gaussian dis-
tribution as in [164], EP can be used in closed form to compute the tilted
distribution. Since Gaussian distribution is a member of the exponential
family of distributions, there is a one-to-one mapping between the natural
parameters and the mean and covariance of the Gaussian distribution:

r = Σ−1m Q = Σ−1 (4.14)
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4.2 EP-BRVFL-AE

How EP can be used in a BRVFL-AE is described here. The main method
is firstly formulated for the case where there exists a central site, and then
extended to a completely distributed scenario. The hyper-parameters are
estimated likewise. Subsequently, the measures to perform anomaly de-
tection are described, and a system diagram is given for implementation.
The rationale for each component is summarised in Figure 4.1.

Figure 4.1: Rationale for EP-BRVFL-AE

4.2.1 Central Site

The formulation of EP-BRVFL-AE follows naturally from the methods in
Sections 4.1. An AE consists of an encoder network, a latent layer and a
decoder network. The encoder maps the input data into the latent layer
and the decoder reconstructs them. For the RVFL, the encoder network is
fixed and maps the input data into a higher dimension. Skip connections
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Algorithm 3 EP-BRVFL-AE(C)

1: Initialise site and global parameters, rk,Qk, r,Q

2: while ∆rk and ∆Qk are large do
At each site, k: . Site Operation

3: Update site distribution as in E4 . From 2nd iteration
4: Determine cavity distribution as in E1
5: Compute tilted distribution with (4.8) and (4.9)

using cavity as prior
6: Compute ∆rk and ∆Qk as in E3

7: Send ∆rk and ∆Qk to central

At Central: . Central Operation
8: for k = 1, . . . , K do
9: Initialise Q−k = 0, δ = 2δ0.

10: while |Q−k| ≤ 0 do
11: δ← δ/2

12: for k = 1, . . . , K do
13: Calculate rk,Qk as in E4
14: end for
15: Calculate r,Q as in E5
16: Calculate cavity parameter Q−k as in E1
17: end while
18: end for

19: Send δ, r,Q to sites
20: end while
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are not implemented from input to output, as when autoencoding through
a SLFN, the model could merely learn the identity function.

Algorithm 3 presents EP-BRVFL-AE(C) with a central site. Site param-
eters, rk,Qk are initialised to zero and global parameters r and Q are ini-
tialised to 0 and γI respectively. The central site holds in memory a copy
of the edge sites’ parameters as well, to determine the best δ with respect
to all sites. In E2 of each iteration of EP, the prior is the cavity distribu-
tion. It is necessary that |Q−k| > 0. Else, the damping factor δ needs to
be reduced. When the data is evenly distributed, the value of δ is rarely
reduced. As the BRVFL method performs closed-form updates, the algo-
rithm generally converges in as few as two iterations depending on the
heterogeneity of distributed data. The experiments also verify both these
aspects.

The computation of update, cavity and tilted distribution (and changes)
shall be referred to as “Site operation”. The update computation at the site
begins on the second iteration (line 3). The computation to aggregate the
changes and to determine δ shall be referred to as “Central operation” as
mentioned in Algorithm 3.

4.2.2 Fully Distributed

Algorithm 4 gives a fully distributed version, EP-BRVFL-AE(D). Each edge
site holds a copy of the global parameters and incorporates new informa-
tion when it is received. The main difference is that the central operation
will be performed at the edge site. The updates from each site is broadcast
throughout the network.

Firstly, network topology is described as follows. Network density κ is
defined in (4.15). The Average Degree Per Site (ADPS) in (4.16) indicates
the average number of neighbours per site. E is the total number of edges
in the network and K is the total number of sites. A fully connected net-
work has κ = 1 while a ring network has κ = 2/(K − 1). The Maximum
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Algorithm 4 EP-BRVFL-AE(D) without Central Site

1: Initialise site and global parameters, rk,Qk, r,Q

2: while ∆rk and ∆Qk are large do
At each site, k: . Site Operation

3: Determine cavity distribution as in E1
4: Compute tilted distribution with (4.8) and (4.9)

using cavity as prior
5: Compute ∆rk and ∆Qk as in E3

6: Broadcast ∆rk and ∆Qk

7: Receive ∆rk and ∆Qk from other sites

8: Initialise Q−k = 0, δ = 2δ0.
9: while |Q−k| ≤ 0 do . Central Operation

10: δ← δ/2

11: Calculate rk,Qk as in E4
12: Calculate r,Q as in E5
13: Calculate cavity parameter Q−k as in E1
14: end while
15: end while
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Number of Hops required for any site to communicate in the network is
denoted as Max Hops.

κ =
2E

K(K − 1)
(4.15)

ADPS =
2E

K
(4.16)

Figure 4.2: A network with 5 sites is shown. The left image is distributed
with κ = 1 and the right image has a central site.

If a site receives updates ∆rk and ∆Qk from all other sites, it will
achieve the same result as having a central site. In other words, EP-BRVFL-
AE(C) and EP-BRVFL-AE(D) with κ = 1 are equivalent if all other param-
eters are kept constant. An example diagram is shown in Figure 4.2. For
networks with κ < 1, waiting for Max Hops steps to occur before perform-
ing an update is ideal, but the training can also proceed with updates as
they arrive. In the latter case, an update from an edge site three hops away
will only be incorporated on the third iteration. The clear advantage of not
waiting is that there is no need for the site to have any knowledge of the
network topology. Table 4.1 shows an example of a network and how two
of the sites are updated. Since site A is 3 hops away from site E, the first
update from site A will reach site E on the 3rd iteration.

Algorithm 4 appears simpler and with less computation per iteration
but it requires more communication to reach convergence. This reduction
in computation is mainly due to each site being interested only in the δ
value that works for itself. The experiments showed that the first update
from each site is the most important. This is because only the changes are
transmitted and in the first iteration, the flat initial prior allows the data to
provide the most significant changes.
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Received updates incorporated into update

CB

A

DE

F

Iteration At site C At site E
2 A1, B1, D1 D1, F1
3 A2, B2, D2, E1 D2, F2, C1
4 A3, B3, D3, E2, F1 D3, F3, C2, B1, A1

...
...

...

Table 4.1: Numbers represent iterations and letters represent sites, then
C1 is the update that is broadcast from site C after the first iteration. C2
consists of updates from A1, B1, D1, and its own data.

4.2.3 Anomaly measures

After Algorithm 3 reaches convergence, the global parameters r,Q are
used as the parameters for the BRVFL-AE in each site. After Algorithm 4
reaches convergence, each site’s global parameters would have converged
to a similar value. Anomaly scoring can be performed using one of three
measures.

The common scoring method is using the RE for AE. The MAP esti-
mate can be used for the weights. The predictive variance, φ(x̂)2 can also
be used as the measure or the confidence score for RE. Areas with high
variance suggest that there is not enough data in the neighbourhood and
thus, the point is more anomalous. A heuristic, H, being a combination of
both measures is also evaluated.

RE =
d∑
j=1

‖mT
j h(x̂)− x̂j‖2 (4.17)

H = RE × φ(x̂) (4.18)

4.2.4 Complexity Analysis

Let c denote the transmission cost of network transmission per parameter,
t denote the number of iterations required to obtain δ and s be the number
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of EP iterations needed for convergence. For the completely distributed
setting, let ek be the number of neighbours for site k.

Memory

Each site firstly holds nk data points of dimension d. The parameters r and
Q containBd andB(B+1)/2 quantities respectively. In EP-BRVFL-AE(C),
at each site, the natural parameters rk,Qk and the changes ∆rk,∆Qk are
stored. At the central site, the global parameters r,Q, parameters of all of
the sites and the sum of changes of the sites are stored. For EP-BRVFL-
AE(D), 4(Bd + B(B + 1)/2) quantities are stored at each site adding the
global parameters and the sum of changes from neighbouring sites. Hence,
memory is dominated by O(B2).

Computation

For both Algorithms 3 and 4, the cost of computing H at each site is
nk(Bd + 1). At each site, the update, cavity and change computation in-
volving addition or subtraction costs Bd+B2 each. For the tilted distribu-
tion, computing HTH, HTXk and m and inverting Σ, cost B2nk, Bnkd, B2

and B3 respectively. If B > nk then the computation cost is dominated by
O(B3) else, it is dominated by O(B2nk).

For EP-BRVFL-AE(C), summing up the updates costsK(Bd+B2) at the
central site. To compute δ, an additional cost of 2K(Bd + B2) for the up-
date and cavity computation andB3 to obtain the determinant is required.
This computation is repeated t times. For EP-BRVFL-AE(D), summing up
the updates is bounded above by K(Bd+B2), the update and cavity com-
putation costs 2(Bd+B2) and the determinant computation costs B3. This
is repeated t times until δ is determined. In the experiments, if the data is
evenly distributed the initial value of δ0 = 1 suffices.



4.2. EP-BRVFL-AE 87

Communication

The sites transmit the changes in the natural parameters. In EP-BRVFL-
AE(C), the central site transmits the global natural parameters with the
same cost, cK(Bd + B(B + 1)/2) to all sites. To transmit δ, the cost is cK.
In EP-BRVFL-AE(D), the edge sites broadcast the changes to the network.
Depending on κ, the communication at each iteration has an upper bound
of cK(Bd+B(B + 1)/2).

The total cost is total computation and communication at both edge
and central times s. In the experiments, convergence is achieved with
s = 2 for EP-BRVFL-AE(C) and s =Max Hops for EP-BRVFL-AE(D). Con-
sidering only the dominating terms, the total computational and commu-
nication complexity is O(s(cKB2 + maxk(nkB

2, B3))). Amount of data,
nk is under computation and not under communication. With big data,
nk >> B2, this presents significant savings in communication complexity
of the network.

Comparison

EP-BRVFL-AE has a lower order of complexity or comparable to other
methods. It depends on the number of data items, nk, linearly, while B
is a fixed parameter. For instance, MVE-PCA [147] is cubic in nk. Table 4.2
gives a summary of these complexities.

4.2.5 Results and Analysis

Performance

The UNSW-NB15, NSLKDD and Australian Credit Approval, Shuttle, Abalone
and Pageblocks datasets from the UCI ML repository are used in the ex-
periments. Preprocessing of the data is described in Appendix C.2.

Firstly, changes in the hyper-priors do not yield any significant changes
to the AUC score on the UNSW-NB15 dataset. Comparing the different
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Memory
Communi-

Computation
cation

Edge (C) O(B2 + nkd) O(cB2) O(B3 + nkB
2)

Central (C) O(KB2) O(cKB2) O(tB3)

Edge (D) O(B2 + nkd) O(cKB2) O(tB3 + nkB
2)

MVE-PCA [147] O(d2 + nkd) O(n3
k)

Hyperellipsoidal
O(ρkd

2)
O(ρ2kp+ nk+

Clustering [112]a b ρkd
3)

ap is the number of nearest ellipsoidals
bρk is the number of ellipsoidals at each site

Table 4.2: Complexity comparisons: Edge (C) and Edge (D) denote the
edge sites for EP-BRVFL-AE(C) and EP-BRVFL-AE(D) respectively.

anomaly scoring methodologies on EP-BRVFL-AE(C) in Table 4.3, the pre-
dictive variance score is the most consistent as the number of sites increase.
RE can be used for further inspection of f(x̂) against x̂ to identify the type
of anomaly by breaking it down to individual attributes. Also, it can be
seen thatH is dominated by RE.

UNSW-NB15 Shuttle
No. Sites: 500 100 1 500 100 1

RE 89.88 89.91 89.93 86.67 94.19 99.74
φ(x̂)2 89.99 89.99 89.98 95.30 96.64 99.39
H 89.88 89.91 89.93 86.67 94.19 99.74

Table 4.3: AUC of different scoring methodologies on EP-BRVFL-AE(C)
for different number of sites on UNSW-NB15 and Shuttle dataset.

Figure 4.3 shows AUC against different multiplicative factors ζ on the
nodes in the hidden layer. In general, the more nodes in the middle layer,
the better results but it comes at a higher computational cost with a larger
B. The results show that a factor of ζ = 5 is sufficient.

Results of experimenting with a small number of data points in each
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Data points UNSW-NB15 Shuttle Aus Credit
at each site: 5 10 5 10 5 10

φ(x̂)2 72.45 75.88 94.72 95.09 76.04 87.84
H 70.60 74.04 95.54 95.22 77.70 87.65

Table 4.4: AUC of EP-BRVFL-AE(C) with small number of data points at
each of the 10 sites.

Figure 4.3: AUC against factor ζ for EP-BRVFL-AE(C) on the Shuttle and
UNSW-NB15 datasets.

site are shown in Table 4.4. The data points are sampled at random. Though
the EP-BRVFL-AE(C) still performs with few data points, in this case, it is
more beneficial to send the data to a central site as B > nk unless there are
privacy concerns.

The EP-BRVFL-AE(C) is compared with various other approaches, namely
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PCA, k-NN, LOF, GMM, Bayesian GMM, OCSVM, RVFL-AE and AE.
Each of these models are trained locally using data present in each site
as done in [118, 147]. The results over 10 and 50 sites are reported in Table
4.5. The same test set is used across all sites and the average AUC and its
standard deviation is reported. In the centralised approach, all data are
sent to the central site where the model is trained.

Parameters for these other approaches are determined by commonly
used rules of thumb. For PCA, the number of principal components (and
for the AE the number of nodes in the hidden layer) is

√
d + 1 [27]. The

number of nearest-neighbours for KNN and LOF is
√
nk. The GMM is

trained using expectation maximisation [20]. The Bayesian GMM is trained
using VI and Dirichlet process weight concentration [21]. The BRVFL-AE
is trained locally and parameters are not shared using EP. Weights for the
RVFL-AE are determined using (4.4). For BRVFL-AE and EP-BRVFL-AE,
if the heuristic measureH performs better, it is reported in brackets; other-
wise, the predictive variance measure is reported. These results are shown
in Table 4.5.

From Table 4.5, the most consistent performing model over any num-
ber of sites is the EP-BRVFL-AE. The difference between the EP-BRVFL-
AE and BRVFL-AE at the central site is due to the hyper-parameter op-
timisation. There is no standard deviation on EP-BRVFL-AE because the
global parameters are shared across all sites. Sharing parameters using
EP also improves the AUC result on the Australian Credit and Abalone
datasets. Ranking the performance, the top three performing methods are
EP-BRVFL-AE (C), BRVFL-AE and Bayesian GMM, which suggests that
the Bayesian approaches are best for distributed training. As for the other
methods, there is no clear consistent model. In some cases the standard de-
viation increases with number of sites, which shows that models trained
only on local data can have different results. The Bayesian GMM and
GMM show good overall performance but fail when there is not enough
data at the local site, as can be seen with the Australian Credit dataset.
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Datasets UNSW-NB15 NSLKDD
Local

1
Local

1
No. Sites: 50 10 50 10

EP-BRVFL-AE(C) 89.98 89.98 89.98 96.09 96.09 96.09
BRVFL-AE 88.91 ± 1.02 89.81 ± 0.29 89.98 96.05 ± 0.17 96.16 ± 0.08 96.09

PCA 74.09 ± 1.69 73.75 ± 0.61 73.78 95.52 ± 0.25 95.50 ± 0.14 95.51
KNN 81.45 ± 0.83 83.74 ± 0.26 86.12 95.26 ± 0.18 94.92 ± 0.21 94.33
LOF 66.16 ± 3.38 81.32 ± 0.79 88.86 85.20 ± 2.81 83.91 ± 0.82 87.30

Bayesian GMM 88.77 ± 2.57 88.33 ± 2.48 87.29 95.59 ± 0.39 95.47 ± 0.40 95.25
GMM 83.70 ± 2.70 82.31 ± 0.77 84.62 95.45 ± 0.93 96.17 ± 0.87 96.59

OCSVM 79.84 ± 1.06 79.94 ± 0.35 79.96 93.60 ± 0.15 93.65 ± 0.06 93.65
RVFL-AE 87.86 ± 0.85 88.73 ± 0.29 89.81 94.98 ± 0.21 95.21 ± 0.12 95.75

AE 81.19 ± 0.19 81.21 ± 0.08 81.21 91.69 ± 0.12 91.68 ± 0.06 91.68

Datasets Shuttle Abalone
Local

1
Local

1
No. Sites: 50 10 50 10

EP-BRVFL-AE(C) 97.17 98.28 99.39 75.70 75.09 74.50
BRVFL-AE 95.39 ± 0.51 95.75 ± 0.51 97.26 72.74 ± 4.97 74.56 ± 1.87 74.62

PCA 84.95 ± 3.56 83.91 ± 3.35 83.14 68.12 ± 6.42 66.94 ± 2.83 65.73
KNN 97.92 ± 0.56 97.34 ± 0.62 98.05 59.32 ± 5.63 71.11 ± 3.04 77.98
LOF 98.34 ± 0.71 93.38 ± 2.30 98.79 51.87 ± 6.56 66.64 ± 2.86 74.15

Bayesian GMM 99.63 ± 0.11 99.23 ± 1.23 99.70 74.30 ± 4.49 78.67 ± 1.07 81.84
GMM 99.76 ± 0.14 99.86 ± 0.02 99.90 60.10 ± 8.27 72.06 ± 2.65 81.38

OCSVM 96.51 ± 0.55 96.50 ± 0.23 96.49 55.02 ± 4.27 55.52 ± 2.01 55.78
RVFL-AE 94.33 ± 0.34 95.23 ± 0.16 95.01 64.52 ± 4.48 76.35 ± 1.78 76.69

AE 91.53 ± 0.19 91.53 ± 0.07 91.53 37.54 ± 3.49 36.37 ± 1.07 35.88

Datasets Australian Credit Approval PageBlocks
Local

1
Local

1
No. Sites: 50 10 50 10

EP-BRVFL-AE(C) 85.57 83.67 80.82 97.34 97.44 97.56
BRVFL-AE 69.32(72.54)±10.44 73.44 ± 7.24 79.86 96.35 ± 0.64 97.05 ± 0.33 97.49

PCA 72.80 ± 10.93 71.31 ± 5.46 71.43 95.04 ± 1.18 95.24 ± 0.63 95.34
KNN 75.15 ± 9.24 81.13 ± 4.71 85.33 95.04 ± 0.85 95.78 ± 0.25 96.36
LOF 71.98 ± 12.06 79.05 ± 5.40 81.82 96.22 ± 1.68 93.92 ± 1.04 95.06

Bayesian GMM 50 ± 0.00 68.30 ± 5.71 82.08 96.04 ± 0.84 95.94 ± 0.53 96.49
GMM 49.99 ± 0.07 50.00 ± 0.22 78.02 92.89 ± 2.52 93.58 ± 2.05 94.19

OCSVM 77.95 ± 8.94 83.51 ± 3.66 86.84 96.25 ± 0.73 96.51 ± 0.24 96.59
RVFL-AE 74.85 ± 9.80 71.22 ± 5.57 86.80 97.02 ± 0.37 97.18 ± 0.19 95.38

AE 77.33 ± 9.18 83.32 ± 2.59 85.07 89.72 ± 1.46 89.62 ± 0.68 89.54

Table 4.5: AUC over various datasets and methods. AUC usingH is given
in brackets if it performs better than φ(x̂)2 for bayesian implementation.
The data are randomly distributed. Both mean and standard deviation
(mean ± standard deviation) is reported for methods where the model is
learnt using local data at each site and results are averaged.
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To compare to other distributed methods such as MVE-PCA [147], do-
OCSVM and sparse doOCSVM [118], EP is performed on the same data
sets used in those studies. From Table 4.6, the EP-BRVFL-AE(C) performs
comparably to other methods in the literature.

Table 4.6: Comparisons of AUC of different models

Datasets
Central 20 sites

MVE-PCA
EP-BRVFL

MVE-PCA
EP-BRVFL

-AE(C) -AE(C)
Abalone 83.28 74.5 82.73 75.35
Shuttle 98.41 99.66 94.68 97.83

Central 10 sites
Aus Credit 80.77 80.82 73.98 83.67

Datasets
50 sites

doOCSVM Sparse doOCSVM EP-BRVFL-AE(C)
Abalone 63.41 64.52 75.70

PageBlocks 94.71 95.28 97.38

Fully Distributed

EP-BRVFL-AE(C) gives the same result as EP-BRVFL-AE(D) when κ = 1.
Table 4.7 gives the results with different number of sites and κ values.
The network configurations are implemented at random for the various
κ values. The one with 10 sites is shown in Figures 4.4 and 4.5 shows
the configuration with 10 and 50 sites respectively. For each network, the
method is run for its Max Hops+2 iterations. The small standard deviation
in AUC scores suggest that global solution at each site is almost similar to
having a central site gathering all updates. This is further affirmed by the
small average relative difference values, Erel(r) and Erel(Q). The results
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show that the method works irrespective of κ. Similar results are observed
on the other datasets.

Network Convergence AUC (Mean ± Standard Deviation)
Sites κ ADPS Max Hops Erel(r) Erel(Q) φ(x̂)2 H

10 0.8 7.2 2 0.0775 0.0029 89.98 ± 0.000 89.93 ± 0.000
10 0.6 5.4 3 0.0448 0.0017 89.99 ± 0.000 89.93 ± 0.000
10 0.4 3.6 3 0.0607 0.0023 89.99 ± 0.000 89.93 ± 0.000
10 0.222 1.11 6 0.0182 0.0006 89.99 ± 0.000 89.93 ± 0.000
50 0.8 39.2 2 0.1691 0.0064 89.98 ± 0.000 89.92 ± 0.000
50 0.4 19.6 3 0.1228 0.0046 89.98 ± 0.000 89.92 ± 0.000
50 0.2 9.8 4 0.0875 0.0033 89.98 ± 0.000 89.98 ± 0.000

Table 4.7: Performance of EP-BRVFL-AE(D) on UNSW-NB15 dataset. Av-
erage values over the sites on the last iteration are reported for Erel(r) and
Erel(Q) against the solution for EP-BRVFL-AE(C). Mean and standard de-
viation of Area under ROC curves (AUC) using both φ(x̂) and H over the
distributed sites are reported.

(a) κ = 0.8 (b) κ = 0.6 (c) κ = 0.4 (d) κ = 0.222

Figure 4.4: Networks with 10 sites

Biased Partitions of Data

In some networks, distribution of data from individual sites may be dif-
ferent. Furthermore, the number of data points could vary widely. The
worst-case scenario is where data in each site have different profiles. Us-
ing a GMM, the data is split into 10 such that each site contains data from
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(a) κ = 0.8 (b) κ = 0.4 (c) κ = 0.2

Figure 4.5: Networks with 50 sites

Network Convergence AUC (Mean ± Standard Deviation)
Sites κ ADPS Max Hops Erel(r) Erel(Q) φ(x̂)2 H

10 1 9 1 0.0023 0.000 89.76 ± 0.000 89.46 ± 0.000
10 0.8 7.2 2 0.0758 0.0029 89.75 ± 0.162 89.40 ± 0.141
10 0.6 5.4 3 0.2419 0.0084 89.55 ± 0.200 89.34 ± 0.137
10 0.4 3.6 3 0.2668 0.0091 89.44 ± 0.674 89.19 ± 0.604
10 0.222 2.0 6 0.3406 0.0080 89.57 ± 0.616 89.78 ± 0.683

Table 4.8: Performance of EP-BRVFL-AE(D) on UNSW-NB15 with biased
and uneven partitions of data.
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a separate Gaussian component. The UNSW-NB15 dataset is used and the
results are found in Table 4.8.

Figure 4.6a shows mean AUC increasing and Figure 4.6b shows stan-
dard deviation amongst AUC over all sites decreasing as updates are be-
ing received at each iteration. Figures 4.6c and 4.6d show relative errors
decreasing with respect to EP-BRVFL-AE(C). The results show that at the
iteration after the Max Hops of the network, the solutions converge. This
also further validates that the first update from each site is the most im-
portant. Hence, s in the computational complexity is at most the Max
Hops value. From Table 4.8 and Figure 4.6, the solutions for the worst case
scenario on the poorest distributed network for 10 sites of κ = 0.222 still
converge. This implies that the solution will converge for any network
configurations.

Furthermore, EP-BRVFL-AE(C) achieves an AUC of 89.76 and 89.46 for
φ(x̂)2 and H measures respectively with GMM split. An important obser-
vation is that EP-BRVFL-AE(D) with κ = 1 achieves the same result in Ta-
ble 4.8, despite the biased and uneven partition of data. This implies that
updates from each site can still be combined using EP to build the model.
Hence, logically, the model is robust under transmission delays. The com-
putation at each site can continue and the update can be included in the
following iteration. The worst case scenario is simulated where updates
from each site arrive one at a time and the computation for the global pa-
rameters is performed after each arrival. Figure 4.7a shows how the global
parameters converge to the scenario where all updates arrive together at
the central site. The AUC score increases as each update from the site
is included as depicted in Figure 4.7b. Hence, asynchronous updates are
possible with the information received at each site.

The value of δ remains close to the initial value of 1 when the data is
evenly distributed. For the case of GMM split, Figure 4.8 shows the mini-
mum and average δ values for Q−k to remain positive definite at different
κ values. Most of the time, as δ remains unchanged, t = 1 in the computa-
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(a) AUC (b) Standard Deviation of AUC

(c) Erel(r) (d) Erel(Q)

Figure 4.6: EP-BRVFL-AE(D) with 10 sites evaluated at each EP iteration
on the UNSW-NB15 dataset with GMM split.
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(a) Erel(r) and Erel(Q) (b) AUC

Figure 4.7: EP-BRVFL-AE(C) with 10 sites where updates are combined
one by one on UNSW-NB15 with GMM split.

(a) Minimum δ (b) Average δ

Figure 4.8: (a) Minimum and (b) Average of δ over 10 sites during each EP
iteration
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tional complexity.

4.3 EP-BAE

EP-BRVFL-AE gives a good model for distributed training and anomaly
detection. The SLFN provides a fast, efficient and simple solution to work
at the edge of the network. One of the essentials it lacks is depth in the
neural network and dimensionality reduction that is achieved by the of-
fline model, the AE in Chapter 3. Depth of a neural network is impor-
tant to model complicated data such as in image recognition. This sec-
tion explores whether a deep Bayesian AutoEncoder (BAE) can replace
the BRVFL-AE.

One immediate implication is that with more hidden layers in the neu-
ral network with non-linear activations, Bayesian inference is no longer
analytically tractable. Hence a closed form solution does not exist. In al-
gorithms 3 and 4, the computation of the tilted distribution needs to be
replaced by approximation methods such as VI [20]. Furthermore, the im-
mense computation required would stress edge devices.

4.3.1 Performance

Model VI BOHAMIANN
BAE with data at central 74.07 90.84
EP-BAE (C) with 5 sites 76.54 74.16

Table 4.9: AUC scores on UNSW-NB15 ML dataset

An AE with 3 hidden layers is used. The AUC scores of BAE trained
with all data in one location and EP-BAE with data at 5 sites are shown
under VI and BOHAMIANN in Table 4.9. ADVI [99] was used to com-
pute the tilted distribution for the BAE. The MAP estimate of the poste-
rior is used as a one value estimate of the weights and the RE is used as
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the anomaly measure. VI is approximating the posterior to a product of
independent Gaussian distributions. There are other methods to train a
BNN such as BOHAMMIAN [177], Bayes-By-Backprop [23], Probabilistic
Backpropagation [75], Dropout [61] and Stochastic Gradient Hamiltonian
Monte-Carlo (SGHMC) [34], amongst which BOHAMMIAN shows supe-
rior performance [177]. BOHAMMIAN is essentially performing MCMC
sampling from the posterior and works well with all of the data at the
central as shown in Table 4.9. This is because BOHAMIAN samples from
the true posterior which is unlikely to be Gaussian. However, this poses
a problem for EP because the posterior at each site needs to be mapped
to a member of the exponential family of distributions. This process will
affect the accuracy a great deal. For example, if the posterior is bimodal as
in Figure 4.9, a map to a Gaussian distribution would put the mean in the
middle where it is furthest from the mode. Using VI to approximate the
posterior, allows to obtain one of the modes as a Gaussian. And this is a
better approximation to be fed into the EP iterations for distributed train-
ing. Thus, it performs more consistently. However, convergence might
also take longer if the distribution is projected onto Gaussians with differ-
ent modes during the EP iterations.

Next the EP-BAE which is now trained in a distributed manner, is com-
bined with the two best performing online models from Section 3.2.The
results are shown in Tables 4.10 and 4.11. In this scenario the IOCSVM
does not perform as well, this is because it is difficult to train the EP-BAE
to be a strong classifier of existing data (i.e. overfit). Incorrect support
vectors hugely influence IOCSVM. The IGMM method does not face this
issue and it improves the offline EP-BAE. Table 4.10 gives the result of
using EP-BAE(D) as the offline model.
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Figure 4.9: An example Bimodal distribution

Model
UNSW-NB15
AUC AP

EP-BAE(D) 96.71 62.79
EP-BAE(D)+IOCSVM 92.61 46.60

EP-BAE(D)+IGMM 98.43 85.96

Table 4.10: Average AUC and AP score of EP-BAE(D) on streaming
datasets over 5 sites

4.3.2 System Implementation

A block diagram for EP-BRVFL-AE(D) and EP-BAE(D) at the edge site
is depicted in Figure 4.10. After convergence, the data used to train the
anomaly detection model can be discarded to save memory. The method
can be adapted to perform online batch training with new data as well. It
was shown in Section 4.2.5 that the optimal waiting time is equivalent to

Model
UNSW-NB15
AUC AP

EP-BAE(D) 95.85 74.38
EP-BAE(D)+IOCSVM 93.40 61.62

EP-BAE(D)+IGMM 97.43 82.73

Table 4.11: Average AUC and AP score of EP-BAE(D) on streaming
datasets with GMM split on 5 sites
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the max hop time for any two sites in the network to communicate their
updates.

Figure 4.10: Block Diagram of EP-BRVFL-AE(D) implementation on edge
site

4.4 Conclusion

In this chapter, a novel EP-BRVFL-AE for anomaly detection in Edge AI
networks is described. The model is trained in a distributed manner with-
out having to share data from each site. Only changes in the posterior
parameters of the EP-BRVFL-AE weights are shared instead of raw data.
Furthermore, the use of the conjugate prior and SLFN ensues a closed-
form solution which achieves rapid convergence. The longest wait time
is the number of Max Hops within a network. Moreover, asynchronous
update is also possible.

The EP-BRVFL-AE was evaluated against other methods in the liter-
ature and the results were comparable. It was also evaluated in the dis-
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tributed setting with varying network densities and has been shown to
be stable in terms of performance. Worst case scenario analysis was per-
formed by splitting the data in a biased and uneven manner and the model
was able to converge. The algorithm performs well in general under all of
the mentioned scenarios. The method of using EP has been extended to
train a BAE as the offline model and the Hybrid Online Offline Frame-
work has been shown to improve on the purely offline model. However,
this incurs higher computational complexity and requires a longer time to
achieve convergence.

Thus far evolving and heterogeneously distributed data have been con-
sidered for anomaly detection and the methods have been validated on
available public datasets. However, these datasets are available in for-
mats suitable for machine learning models and it is not always the case
in the real world. It is rare that raw data can be directly applied to ma-
chine learning models. In the following chapter, three different generic
real world domains are studied and each poses a unique challenge. The
methods developed in Chapters 3 and 4 are further validated on a scenario
in each domain.



Chapter 5

Real World Scenarios

The literature on anomaly detection focuses heavily on methods but less
on the many challenges faced in the real world. This chapter addresses the
unique challenges involved in effectively implementing an anomaly de-
tection model in three generic domains, namely systems monitoring [140],
network graphs monitoring and surveillance monitoring.

5.1 Systems monitoring

Industrial equipment monitoring, data center operations monitoring and
power station monitoring are some examples of systems where the perfor-
mance need to be monitored regularly. When a fault occurs, it needs to be
detected and the cause identified quickly. To build a robust anomaly de-
tection system in this domain, the informative variables must be selected.
This section studies the challenges of systems monitoring domain applied
to a rural ISP: Venture Networks, located in the Horowhenua District of
New Zealand.

103
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5.1.1 Introduction

To provide Internet connectivity to rural communities, ISPs need to de-
ploy and maintain many wireless sites in isolated or inaccessible terrain.
Addressing failures at such sites can be very expensive, both in identify-
ing the fault, and also in the repair or rectification. Data monitoring can
be useful, to spot anomalies and predict a fault (and possibly pre-empt it
altogether), or to locate and isolate it quickly once it causes an issue for
the network. There might be hundreds of variables to be monitored in
principle, but only a few of significance for detecting faults.

The ISP provides Internet connectivity to local farms, and has several
sites across the region. Some of the sites are difficult to access, espe-
cially during the winter months, due to the challenging terrain and severe
weather. In the last year, Venture Networks has been caught off guard
by several unexpected failures at their sites. In one case, a battery bank
failed before expected, and in another case, water penetrated a suppos-
edly waterproof power junction box, causing half of the solar array to fail.
When dealing with sites in challenging areas, often a trip to identify the
fault will be required, which can be expensive, and worse, dangerous es-
pecially during adverse weather conditions.

In what follows, step-by-step methods are shown to set-up an anomaly
detection model from scratch with a novel Bottom-Up approach to identify
useful features, determine the cause of anomalies and update variables
iteratively. The Hybrid Online Offline Framework is also validated in this
scenario.

5.1.2 Methodology

ISPs may already subscribe to a third party data monitoring tool such as
SolarWinds [175]. An ISP can also set up a monitoring tool from open
source programs such as Zabbix [145]. In the former, an ISP has an abun-
dant number of variables that can be monitored, and in the latter, an ISP
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would need to build the variables up from scratch.

Even with an abundant number of variables, it is futile to indiscrim-
inately throw all the variables into a ML algorithm in hope of learning
some patterns. Not only will it be difficult, but patterns learnt cannot be
easily interpreted. In the literature, there are many feature selection meth-
ods that reduce a set of variables to important ones [31]. This approach
shall be referred to as the Top-Down approach. For this method, real world
data that depicts anomalies is required and, being Top-Down, it may not
provide enough context to enable proper insights into the faults. Thus, it
is prudent to build the monitoring variables from scratch; in other words,
from the knowledge of the network manager or the Bottom-Up approach.
The Bottom-Up approach also allows managers to incorporate new vari-
ables that may be important but are not in the list of variables provided
by third party monitoring solution providers, for example by including a
sensor to monitor moisture or temperature near the batteries.

Bottom-Up Approach

Being aware of what variables are fed into the ML model is an important
step which is usually ignored. Many practitioners input many variables
and expect it to perform but putting in uninformative variables will not
yield any useful results. Informative variables should come from knowl-
edge of the system and the problem. To begin, the following questions
were posed to the network manager.

1. Describe the nature of the faults or anomalies faced by the system.

2. To detect each of the above mentioned faults, which variables are
currently monitored?

3. For each of the above mentioned variables, how are the data col-
lected?
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The rationale for the first question is to understand the faults that oc-
cur within the site. This can be battery faults, latency issues, radio fre-
quency anomalies, etc. Each of these can be further broken down into sub-
categories. For instance, battery faults can be caused by either low-voltage,
battery out of order or limited solar generation. It may be brought all the
way to the individual battery or each link in the network. The objective is
to make this list as fine-grained and as comprehensive as possible.

Next, from each of the sub-categories, variables which the network
manager currently uses to detect the anomalies are identified. For exam-
ple, high Watt hours and high Current can result in low voltage situations
which affects performance as a whole. One of the difficulties in identify-
ing these variables for ML is that network managers tend to understand
the faults from a high level. “A low-voltage situation could be caused by
excessive consumption or a lack of control of power generation.” For ML
methods, this cause needs to be further broken down to specific measur-
able variables by asking appropriate questions. Some examples include
“How is consumption or power-generation measured?” This also helps
the network manager think through their current processes and facilitates
the building of a model of the fault that the data can point to, when it
occurs.

Measurement

The next challenge is to accurately measure the identified variables. If
the existing third party provider already measures and provides all of the
required variables, then the task is simple. Otherwise, one would need
to find a way to measure the variables directly or indirectly depending
on the site architecture and set-up. For example, the ‘ping’ command can
be used to measure RTT, weather information can be scraped off the web,
and Signal-to-Noise ratio (SNR) measurements – as well as other spectrum
analysis – can be performed using existing radios, or by setting up custom
monitoring hardware within the environment.
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Another challenge is to determine the appropriate time-window to make
the measurements. This depends on the persistence of the site operation
when a fault is detected. It also depends on the measuring capabilities.
Some variables can only be measured every hour, while others can be mea-
sured every few seconds. Small intervals capture fine changes which may
not be relevant in the context of site operation. It may also require more
computation to measure, and additional storage space. Rendering an in-
terval too large might miss pertinent information. Either way, it is nec-
essary to study different time-windows during experimentation to gain
specific insights.

Types of Variables

Certain variables are not numerical. For example the weather is a cate-
gorical variable and certain device information such as state of the device,
flags, or DIP switches which only take a few numerical values should also
be considered as categorical.

Some faults are detectable relative to previous values. This goes into
second order calculation of variables such as Change in Watt Hours or ‘∆
Watt Hrs’ over two time-windows.

In a time-window, certain variables can be measured many times. For
instance, Battery Temperature or Charge Current may be measured every 10
seconds. In a time-window of 5 minutes, one obtains 30 values. Statisti-
cal attributes such as mean, maximum, minimum, median, variance, and
interquartile-range of variables can be used to describe the distribution of
the 30 values. This depends on the variable and the anomaly of interest,
i.e., which statistical attribute indicates the fault most accurately and is
based on the knowledge and understanding of the network.
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Table 5.1: Measured & Derived Variables

Variables Description Type Derived Variables Type
Battery Voltage Instantaneous battery bank voltage (internal sensor) Numerical ∆Battery Voltage 2nd Order

Battery SVoltage Instantaneous battery bank voltage (external sensor) Numerical ∆Battery SVoltage 2nd Order
Target Voltage Target battery bank voltage Numerical – –

Charge Current Instantaneous charge controller charge current Numerical – –
Output Power Instantaneous power into the battery bank Numerical ∆Output Power 2nd Order
Input Power Charge controller input power Numerical ∆Input Power 2nd Order

Array Voltage Instantaneous output voltage of solar array Numerical ∆Array Voltage 2nd Order
Array Current Instantaneous output current of solar array Numerical ∆Array Current 2nd Order
Sweep Vmp Maximum power voltage of the array Numerical – –
Sweep Voc Open circuit voltage of the array Numerical – –

Sweep Pmax Maximum power produced by the array Numerical – –
Battery Temp Battery temperature (external sensor) Numerical ∆Battery Temp 2nd Order

Heat sink Charge controller heat sink temp Numerical ∆Heat sink 2nd Order
Amp Hours Daily (moving) amp hours count Numerical – –
Watt Hours Daily (moving) watt hours count Numerical – –

Weather Temp Levin town temperature Numerical – –
Weather Wind Levin town wind speed Numerical – –

Tx Capacity Transmit capacity of the wireless link Numerical – –
Rx Capacity Receive capacity of the wireless link Numerical – –

Signal Received Signal Strength Indicator Numerical – –
Noise Floor Noise floor of the wireless link Numerical – –

SNR Signal-to-Noise Ratio of the wireless link Numerical – –
RTT Site-to-Site Round-trip Time Numerical – –

Tx RTT Radio transmit Round-trip Time Numerical – –
Min Vb daily Daily (moving) min battery voltage Statistical – –
Max Vb daily Daily (moving) max battery voltage Statistical – –
Min Tb daily Daily (moving) min battery temp Statistical – –
Max Tb daily Daily (moving) max battery temp Statistical – –

Weather Weather state (clouds/rain/sun, etc) Categorical – –
Charge State Current stage of the 4-stage charging algorithm Categorical – –
DIP Switches Hardware configuration switch state Categorical – –

CCQ Client Connection Quality Categorical – –
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5.1.3 Experiments and Results

Through the Bottom-Up approach, the following variables depicted in Ta-
ble 5.1 were identified and measured. These are related to the main types
of anomalies that have occurred frequently, namely power and latency.

These variables are a natural starting point to measure and input into
ML methods. Through analysis and identification of faults, more variables
can be identified and added later on as anomalies occur. For example, if a
hardware fault is found to be caused by water damage, that cause could
be incorporated by measuring moisture or water levels in the vicinity as a
variable for future detection.

Various methods were used to measure the variables. Weather was
recorded by polling a weather service Application Programming Interface
(API), due to the lack of a local weather station. Most of the variables –
except those related to weather, latency, or radio-specific functions – were
captured using a commercially available solar charge controller. A time
window of 5 minutes was used to capture each of the variables, and the
results were stored on a server running within Venture Networks’ central
office.

As for preprocessing the data, categorical variables were converted to
numerical values using one-hot encoding followed by PCA. Min-Max scal-
ing was used to normalise the data. For this specific ISP, the data profile
significantly varies during different hours of the day. Training one model
over 24 hours would not suffice because if a situation that would usually
occur during the night occurred during the day, that would be regarded
as unexpected. Hence a new categorical variable is inserted to denote the
hour interval.

An AE was trained by removing variables which the Network Ad-
ministrator currently monitors, namely Battery Voltage, Battery SVoltage,
∆Battery Voltage and ∆Battery SVoltage. This is to test whether the anoma-
lies can still be identified using other variables. In the same manner, fur-
ther validation is done on the Hybrid model with the dataset.
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With only the AE, Figure 5.1 shows how Battery Voltage changes dur-
ing the course of the day. During normal operations, the anomaly scores
are low. However, when there is an unexpected behaviour there are more
spikes in anomaly scores and this has been determined solely based on
other variables. This suggests that if Battery Voltage were not observed,
the AE would still be able to detect the unexpected behaviour. Upon fur-
ther analysis, the network manager can determine that Battery Voltage
should be measured and be an input variable to the AE to make it more
robust. The bottom graph of Figure 5.1 shows how one variable behaves.
The top graph shows how all of the other variables move in correlation
depicted on to one dimension to show whether it is moving normally or
anomalously of a ML model and the benefits of using it to uncover hidden
relationships.



5.1. SYSTEMS MONITORING 111

Fi
gu

re
5.

1:
Le

ft
Bo

tt
om

:
O

bs
er

ve
d

Ba
tt

er
y

Vo
lt

ag
e

va
ri

ab
le

du
ri

ng
no

rm
al

op
er

at
io

ns
.

Le
ft

To
p:

A
no

m
al

y
sc

or
es

fr
om

A
E

ba
se

d
on

ot
he

r
va

ri
ab

le
s

du
ri

ng
no

rm
al

op
er

at
io

ns
.

R
ig

ht
Bo

tt
om

:O
bs

er
ve

d
Ba

tt
er

y
Vo

lt
-

ag
e

du
ri

ng
so

m
e

un
ex

pe
ct

ed
be

ha
vi

ou
r.

R
ig

ht
To

p:
A

no
m

al
y

sc
or

es
ba

se
d

on
ot

he
r

va
ri

ab
le

s
du

ri
ng

un
ex

-
pe

ct
ed

be
ha

vi
ou

r.T
he

th
re

sh
ol

d
in

bl
ue

is
de

fin
ed

ba
se

d
on

Le
ft

To
p

gr
ap

h.



112 CHAPTER 5. REAL WORLD SCENARIOS

From the network manager’s method of observing ‘Battery Voltage’,
the problem was detected on the 17th of June after consecutive days of
torrential rain.

The AE also detects more anomalies during that period and after. This
is determined by comparing the anomaly scores during normal operations
on left top of Figure 5.1. The threshold in blue is also determined in this
manner. A few data points being above the threshold during normal op-
erations is not surprising and could reflect measurement error. However,
when many points are above the threshold, it can be concluded that there
are some unexpected behaviours.

To determine the cause of the unexpected behaviour, feature identi-
fication was performed on the data during the anomalous period. The
features are ranked based on χ2 statistic [192] and Mutual Information
(MI) [49] in Table 5.2. Both these methods make different assumptions
about the data but regardless, it helps us to identify that the unexpected
behaviour is due to the battery. Note that in the literature, these methods
are used for feature identification before training a ML model [31]. Here it
is done after identifying the anomaly to understand what type it is. This
also helps us identify other important variables to monitor and the hidden
relationships between them in describing the fault. For instance, ‘Sweep
Voc’ should also be monitored instead of only ‘Battery Voltage’. Other
related variables to this battery anomaly are also learnt.

Since latency anomalies were not observed during the period, they
were artificially injected by using the Linux utility traffic control. It ran
on the server collecting anomaly data, so as to not degrade live customer
connections. The results are shown in Figure 5.2. The results are shown
in logarithmic scale since the anomaly scores were huge. The respective
features are ranked in Table 5.3. However, by looking at the contribution
of each feature to the anomaly score based on the values of the χ2 statis-
tic and Mutual Information (MI), only RTT stood out. This is because the
latency anomaly was injected artificially instead of it having occurred in
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real-time. Despite that, unexpected values in ‘Input Power’, ‘Array Volt-
age’ and ‘Sweep Voc’ are also be related to latency anomalies.

Ranking based on
Rank χ2 Mutual

statistic Information
1 Sweep Voc Sweep Voc
2 Sweep Vmp Min Vb daily
3 Array Voltage Watt hours
4 Target Voltage Amp hours
5 Charge Current Max VB daily
6 Output Power Max TB daily
7 Input Power Weather Temp

Table 5.2: Features that describe unexpected behaviour in Figure 5.1

Ranking based on
Rank χ2 Mutual

statistic Information
1 RTT RTT
2 Target Voltage Sweep Voc
3 Sweep Vmp ∆Input Power
4 Array Voltage Array Voltage
5 Sweep Voc Input Power
6 Output Power Weather Temp
7 Input Power Sweep Pmax

Table 5.3: Features that describe latency in Figure 5.2
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Hence from the above results, obtaining the right variables is perti-
nent for a proper anomaly detection system. A hypothesis that certain
variables can help to detect anomalies can be a good starting point. This
is the Bottom-Up approach described in section 5.1.2. Subsequently, as
anomalies are detected, feature identification can be performed to cate-
gorise the fault and to find important relationships between the variables
that describe the fault. The network manager can identify potential new
variables to measure for fine grained results in future for this specific un-
expected behaviour. However, it is impossible to encompass all possible
anomalies at the start. If an anomalous behaviour is missed, which the
network manager has been made aware of from other sources such as cus-
tomer complaints, it means that the model has not been provided with the
right variables to detect that particular anomaly. Hence, this is an iterative
process depicted in Figure 5.3 to identify variables over time and continu-
ally build a robust model. The next time that particular anomaly occurs, it
can be easily detected and mitigated.

This process also helps the network manager understand exactly how
the network operates, identify the specific cause(s) of a fault and address
it instead of using ‘patchwork’ methods such as boosting the signal or
increasing power. After a robust model is built, this also allows for au-
tomation of network operations.

The Hybrid AE+MW+IOCSVM model from Chapter 3 is tested on this
dataset and the results are shown in Figure 5.4. Compared to Figure 5.1,
overall, it can be seen that the hybrid model provides better discrepancy
between anomalous points and normal points. This goes to validate that
the hybrid model performs better than using only the offline model on
this real world dataset. Three graphs are presented by adjusting the thres
variable in Figure 3.1 and Algorithm 1. In the top graph, the conservative
approach of median for thres is taken. This works but during normal
operations, most of the anomaly scores are also close to the threshold (blue
line in Figure 5.4). In the second graph, thres = 80thPercentile(RE) is
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taken and this shows a good balance between detecting anomalous days
and normal days. With the fixed thres, there are more false negatives on
the anomalous days and this could result in missing the anomaly when
observing the scores live.

In the subsequent section, the challenges in Network Graph monitor-
ing are studied in similar fashion.

5.2 Monitoring Network Graphs

From the beginning of the Internet there have been connected devices
such as routers transferring information. These connections are constantly
changing with updates or when devices are added or removed. How-
ever, sometimes the changes are malicious [5, 10]. This section studies the
challenges of capturing network connection information using Network
graphs applied to BGP updates.

5.2.1 Introduction

The global Internet is connected using core routers which route traffic be-
tween users and servers. The routers use connectivity information such
as IP addresses to determine where to direct network traffic. The BGP
[155] prescribes the connections between Autonomous Systems (ASs) and
it forms the backbone of the global Internet. However in recent times,
this protocol has been susceptible to hijacking [5]. Hijacking is a form of
application-layer DDoS attack which allows an attacker to impersonate a
network using a legitimate network prefix as their own. This allows traffic
to be inadvertently forwarded to the attacker if the attempt is not detected
quickly. Over the last decade, there have been many such BGP hijacking
incidents [5]. Some examples include loss of connectivity for domains of
an ISP “panix.com” [59]. In an attempt to ban “youtube.com”, Pakistan
telecom advertised invalid BGP routes which led a huge volume of traffic
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not intended for Pakistan towards the Pakistan AS [159]. This a form of
unintentional BGP hijacking.

There are many approaches in the literature to detect BGP anomalies
such as time-series based, machine learning based and statistical pattern
recognition based [5]. However, all of these approaches use statistical fea-
tures derived from BGP updates within a specified time window as was
similarly done in Section 5.1. Some examples are as follows:

• BGP message volume

• Number of announcement and withdrawals for an AS

• Number of new-path announcements

• Maximum and Average AS-Path length

• Number of duplicate withdrawals

• Packet size

Though the Bottom-Up approach is feasible, in the bigger picture as
attacks evolve, a more robust approach or a feature set which remains in-
variant to attacks is necessary. In this section, invariant details of normal
operations are captured and an anomaly detection model is trained using
graphical information instead of statistical features.

5.2.2 Methodology

The core routers have connectivity information and they receive updates
every few seconds announcing new paths or withdrawing existing ones.
This connectivity information, and updates, represent a changing node
and edge graph. Currently the core router only assimilates update infor-
mation pertaining to its direct neighbours into its Global Routing Table
(GRT). However the updates contain more information, and it is possible
for the core router to build a view of the entire connected network as a
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Figure 5.5: An example of a BGP update on a core router with the AS-Path
highlighted.

network graph. Figure 5.5 shows an example of a BGP update on a core
router. The AS-Path field are the AS numbers and NZ’s core router’s num-
ber is 38022. Each core router in the world has a unique AS number. The
route from AS11123 would need to go through AS2914, AS3356 to reach
AS38022. There is also an hourly view of the entire routing table and some
of the lines are shown in Figure 5.6. The connections between ASs are
highlighted. Using this information and the updates, a network graph can
be built as show in Figure 5.7. Note that each core router will have a dif-
ferent view of the network. This depends on the arrival of the updates
and the fact that each router is only concerned about its connections to the
other ASs. This means to say that there may be connections between other
ASs that the router is not aware off.

Upon building the entire network, the next step is to extract informa-
tion or features which represent the graph. This is then used to train a
ML model for anomaly detection. This approach has not been explored
for BGP anomaly detection. BGP anomalies always manifest as changes in
network graphs. During a BGP incident, large portions of network traffic
will be rerouted leading to several nodes having more or less paths rout-
ing through them. Hence, the network graph will change substantially.
Hence, this graphical approach remain invariant to different types of BGP
anomalies. The graph so obtained is undirected, as edges (connections)
link vertices (AS) symmetrically: meaning if two ASs are connected, the
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Figure 5.6: BGP table view on a core router generated every hour
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Figure 5.7: Network view of AS38022 at 0919 hours on 30 Aug 2020. The
thickness of the lines represent multiple links and colours are for aesthet-
ics.

traffic can flow in both directions.

Graph Representation

The next step is to represent the graph in a form for training a ML model.
There are several ways to achieve this but not all of them are efficient or
possible due to memory and computational limitations, as follows.

The most basic representation is the Adjacency matrix. The Adjacency
matrix of a graph is a binary square matrix to indicate whether pairs of
nodes are connected or not. Since the network graph is undirected, the Ad-
jacency matrix is symmetric and has eigenvalues and eigenvectors. These
information can be used as data representation of the graph to train the ML
model. Unfortunately, computing the Adjacency matrix for the entire net-
work has complexity O(n2) where n is the number of vertices. This is not
feasible in a live network with thousands of routers. Furthermore, since
there are many vertices which are not connected, the Adjacency matrix
is sparse and sparse matrices have increased time and memory complex-
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ity [153].

Another representation is using centrality which describes how central
each vertex (AS) is in the graph [33]. There are several centrality measures
which can be used.

• Degree centrality (DC) of a vertex u is the degree of u (number of
direct neighbours n) in the graph of N − 1 other vertices.

DC(u) =
n

N − 1

• Closeness centrality (CC) of a vertex u is the reciprocal of the sum
of the length of the shortest paths between u and all other vertices in
the graph.

CC(u) =
1∑

v∈V d(u, v)

where d(u, v) is the shortest path in terms of number of links between
vertices u and v. It is better to normalise this score to represent the
average length of the shortest paths rather than the sum, giving

CC(u) =
N − 1∑
v∈V d(u, v)

where N is the total number of vertices in the graph.

• Betweenness centrality (BC) counts the fraction of shortest paths
going through a vertex u.

BC(u) =
∑
s 6=u6=t

γs,t(u)

γs,t

where γs,t(u) is the number of shortest paths between vertex s and
vertex t that pass through u. γs,t is the number of shortest paths
between s and t.
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• Eigenvector centrality (EC) generalizes degree centrality by incor-
porating the importance of the neighbors. The eigenvector centrality
of vertex u is a function of its neighbors’ centralities. It is propor-
tional to the summation of their centralities.

EC(u) =
1

δ

n∑
j=1

AijEC(vj)

where δ is a constant, n is the number of u’s neighbours, vj is the jth

neighbour of u and A is the Adjacency matrix.

Calculation of the Adjacency matrix and all possible paths between 2
vertices is computationally expensive. This rules out the use of BC and EC
for the BGP application. DC is the easiest to compute and takes less than a
second to process each update. CC represents the average inverse distance
of a vertex to all its reachable neighbours and contains more information
than DC. To compute the distance in CC, Dijkstra’s algorithm is used [44]
and takes around 6 minutes to process each update. This is still feasible
and practical for BGP updates.

From Figure 5.7, few vertices are disconnected and this occurs occa-
sionally at different time periods. A better measure of centrality of a vertex
u is defined by equation 5.1 [199];

CC(u) =
(n− 1)

(N − 1)

(n− 1)∑
v∈V d(u, v)

(5.1)

where d(u, v) is the shortest path between vertices u and v. N is the total
number of vertices in the graph and n is the total number of reachable
vertices from u. A vertex u is reachable from another vertex v if there
exists a path linking the two vertices [199].

Last but not least, Graph Neural Networks [210] can be used for rep-
resentation learning of graphs. Each vertex aggregates feature informa-
tion from its neighbours to compute a new feature vector layer by layer.
After multiple iterations of information aggregation, the feature vector
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of each vertex captures the structural information of its neighbourhood.
This is used for vertex classification, link prediction, graph classification,
etc. [197, 210]. Wang et al. [197] propose a one class classification frame-
work for graph anomaly detection using Graph Neural Networks. This
method accounts for feature information of each vertex. Though it can
contain more information, it is not necessarily required for BGP anomaly
detection at this stage. Multiple iterations also take longer time to process
and may not be feasible in real-time. This method can be used if features
such as the volume of traffic, wired or wireless connection at each core
router is considered in building the anomaly detection model. It is hence,
left as future work.

5.2.3 Experiments and Results

The incident of interest, called “Century Link Outage” occurred on 30 Aug
2020 [39]. Network operations centers around the world were alerted to
it at 10:09 hours UTC through twitter. It was resolved around 1600 hours
UTC. REANNZ [157] is New Zealand’s National Research and Education
Network. They monitor connections between research institutions within
and out of New Zealand. They were alerted to this incident, again through
twitter. Fortunately, during the period of downtime, New Zealand was not
heavily affected as it was late in the night. The data provided by REANNZ
on the New Zealand core router, AS38022, spans from 1400 hours 23 Aug
2020 to 1600 hours on 31 Aug 2020.

To further validate the technique and the detection of this incident,
data from another core router in Japan called WIDE, AS2497, is obtained
from routeviews.org during the same period [187]. The data spans from
0000 hours on 20 Aug 2020 to 0000 hours on 3 Sep 2020.

The centrality information calculated using (5.1) is used to train an AE
as the offline model. Instead of training with all of the ASs in the network,
only ASs in the first 2 hops of the respective core router, REANNZ and
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WIDE are taken. The details are similar to the model in Chapter 3. The
Hybrid Online Offline framework is also compared with the purely offline
AE. The online model in this instance is the IOCSVM. Data before 28 Aug
is used to train the model, data on 29 Aug is used as a validation set. Data
from 30 Aug is used as the test set. Figure 5.8 shows the performance
of the offline AE and the Hybrid AE+MW+IOCSVM. Figure 5.9 shows
the performance of the offline AE and the Hybrid AE+MW+IOCSVM on
30 Aug and for the next few days. The anomaly scores are on ordinal
scale and thus, they are not comparable in between models. The threshold
for the offline AE is determined based on the AE’s performance on the
validations set. For the AE+MW+IOCSVM model, anomaly scores greater
than zero suggest that the point is above the threshold of the offline AE.
A low anomaly score suggests that the point is an inlier and is potentially
“new normal” data.

(a) Performance of AE (b) Performance of AE + MW + IOCSVM

Figure 5.8: Anomaly scores of model at REANNZ core router of the BGP
Century Link Outage. Threshold for offline AE determined based on vali-
dation set.

In both cases, the AE is enough to detect the anomaly as the score
increases and breaches the threshold around the same time as the BGP
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(a) Performance of AE on 30 Aug (b) Performance of AE+MW+IOCSVM on 30
Aug

(c) Performance of AE from 30 Aug to 3 Sep(d) Performance of AE+MW+IOCSVM from
30 Aug to 3 Sep

Figure 5.9: Anomaly scores of model at WIDE of the BGP Century Link
Outage. Threshold for offline AE determined based on validation set.
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updates arrive and change the centrality of the ASs. This can be seen
in Figures 5.8a, 5.9a and 5.9c. However as the network resolves to nor-
mality, the anomaly score provided by the AE alone does not decrease
because the network structure and the router’s centralities have changed.
The AE+MW+IOCSVM model in Figures 5.8b, 5.9b and 5.9d show that
the new structures have lower anomaly scores as they are now “inliers”
with respect to the online model. After the Century link outage, as the
network resolves itself, there are also new ASs within the first 2 hops of
the WIDE router. This indicates that the network graph has changed and
as such the anomaly score is not zero. However, they are low and stable
to indicate that this new network centralities are inliers. The variation of
the anomaly scores after the anomalous event suggest that there is new
information which needs to be incorporated into the offline model. From
Figure 5.10, the MW-test are rejected yet, the median of the anomaly scores
are stable and the anomaly scores are low from Figure 5.9d. As described
in Chapter 3, clustering can be used to determine the new centrality values
to update the offline model. From Figures 5.11 and 5.12, both REANNZ’s
and WIDE’s core routers’ view of the network has slightly changed.

Hence, in this section, a novel method of using centralities of network
connections as features to detect BGP anomalies was explored. It was also
shown that new normal is an important scenario to consider. The Hybrid
Online Offline Framework is also validated.

The next section shows how to extract useful information from video
surveillance stream to build a simple yet effective anomaly detection model.

5.3 Surveillance monitoring

Monitoring surveillance streams is a bothersome job which should be au-
tomated. There are many different surveillances looking out for different
things such as road, airport, maritime, store, coastal, forest, ocean, etc. [63].
The main challenge in this domain is to be able to extract useful informa-
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Figure 5.10: MW tests of the AE+MW+IOCSVM on WIDE’s core router
data.

(a) 0919 hours (b) 1019 hours (c) 1619 hours

Figure 5.11: Network view of REANNZ core router, AS38022 at (a) 0919
hours before the outage, (b) 1019 hours during the outage and (c) 1619
hours after the outage on 30 Aug 2020. The thickness of the lines represent
multiple links and colours are for aesthetics.
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(a) 0919 hours (b) 1019 hours (c) 1619 hours

Figure 5.12: Network view of WIDE core router, AS2497 at (a) 0919 hours
before the outage, (b) 1019 hours during the outage and (c) 1619 hours after
the outage on 30 Aug 2020. The thickness of the lines represent multiple
links and colours are for aesthetics.

tion from the video stream to build an anomaly detection model. The fol-
lowing section investigates this with the scenario of accident detection in
road traffic surveillance streams.

5.3.1 Introduction

Detecting accidents quickly can enable emergency services to be deployed
in time. There are a few studies which have tackled this problem [13, 45,
148]. The method by Doshi et al. [45] is fast but it does not capture the
motion of the object. Peri et al. [148] use post processing to determine
anomalies and not in real-time. Bai et al. [13] analyzes each location in
the video instead of vehicle and its trajectory to detect anomalies. All of
the above work involves a pipeline to extract information. Similarly, this
section presents a novel pipeline, with different elements to obtain details
such as motion information in the video stream before training an AE as
an anomaly detector. The EP-BRVFL-AE model developed in Chapter 4
is validated as the anomaly detector as it is simple and has low computa-
tional and memory complexities.
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5.3.2 Methodology

Figure 5.13: Pipeline for extracting information from surveillance video
streams.

Figure 5.13 shows the required pipeline to extract information from a
surveillance stream to train an anomaly detection model. This work ex-
plores off the shelf methods for each aspect of the pipeline to validate the
ideas introduced in the earlier chapters.

Background Subtraction and Object Detection

One commonly used method is an adaptive GMM [87]. This method
places a GMM to model each pixel in the video frame over a few frames.
Each mixture is ordered and from the first few strongest mixtures, pixels
that are above 2.5 standard deviations away from the selected mixtures
are marked as a foreground. The GMM is updated with each frame. This
method is effective but in real-time stationary objects will enter the back-
ground during the update. An alternative is to train a GMM similarly with
enough video frames to obtain the best model and take the mixture with
the highest weight as the background [69]. With enough frames, stationary
objects will not be in the background. The training however, needs to be
performed offline but upon which, in deployment, no update is required.
Recently, VAE has also been suggested for background modelling [55].
However, this requires too much computational power for near similar
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gains as the GMM. All of them have been explored to obtain near similar
results.

Upon using a Background Subtraction (BS) method, all foreground ob-
jects can be identified. However, using only BS is noisy and when objects
move in front of one another, the method identifies 2 objects as one. To ad-
dress this, existing Object Detection (OD) methods such as YOLO(v3) [53],
Faster R-CNN [156], SSD [108], amongst others can be used. One other
caveat is that these models require supervised pre-training and thus, are
only able to detect objects in the training dataset. For the most part, this
is not a major issue in traffic surveillance as objects are usually vehicles.
Due to the deep nature of the neural network involved in these models
however, inference takes longer (≈ 1.5s). In this pipeline YOLO(v3) has
been utilised because its average precision is on par with the rest and it is
faster [53]. However, the choice of BS method or object detection model is
not the focus of this thesis. The main goal is to obtain the bounding boxes
for each of the objects detected in the video stream.

Motion Extraction

Learning the motion of the objects in the stream is important so as to detect
anomalous motions. It is also important to know where in the frame the
specific motion occurs. Motion information includes the location, size,
speed and direction of the object. Two widely used methods are based on
optical flow [54, 110]. The Lucas-Kanade method finds a few points such
as corners of the object and calculates the horizontal and vertical change in
pixel intensity between frames [110]. Capturing the corners of the object
poses another challenge with this method. The Farneback optical flow
computes this change over all points in the frame [54]. These vectors are
then binned into a histogram where the bins are direction of motion. With
multiple objects in the frame moving in different directions, this method
will not work very well.

Object tracking methods can also be used to extract motion. The Simple
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Online and Realtime Tracking (SORT) method makes use of the Hungar-
ian algorithm and Kalman filter to track and assign velocities given the
bounding box of the object [16]. The advanced version of SORT called,
Deep SORT uses deep learning to integrate the appearance information
to improve performance [202]. This requires pre-training with the type of
objects that are to be tracked.

In this section the SORT method is used. The bounding boxes of the
detected object are fed into the SORT algorithm to obtain 7 values for each
object in the frame as shown in 5.2.

x = [u, v, s, r, u̇, v̇, ṡ] (5.2)

These 7 values represent the state of the object in the frame. u and v rep-
resent the horizontal and vertical pixel location of the centre of the object.
s and r represent the scale (area) and aspect ratio of the object’s bounding
box. The aspect ratio is considered to be constant. When a detection is as-
sociated to a target, the detected bounding box is used to update the target
state where the velocity components are solved optimally via a Kalman fil-
ter framework [88]. If no detection is associated to the target, its state is
simply predicted without correction using the linear velocity model.

Using EP for Online Learning

One of the motivations as highlighted in Chapter 2 for online learning is
to capture concept drift. Chapter 3 highlighted that new information not
seen during training can occur and to build a robust model, one needs to
incorporate this into the model. Online learning is similar to addressing
catastrophic forgetting [96], i.e. to update a model without having to com-
pletely retrain it. There have been many studies in this area [91, 188]. This
is a whole area of research and it is beyond the scope of this thesis. Kirk-
patrick et al. [96] suggest Elastic Weights Consolidation where the new
weights lie in the intersection of the existing posterior distribution of a
model and the posterior distribution of the new task or information. This
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Bayesian approach is similar to what was achieved in Section 4.2.5 and
Figure 4.7b. In Section 4.2.5, the experiment evaluated the asynchronous
scenario where the updates arrived one by one. In essence, this is similar
to online learning where new information is obtained later. In relation to
Kirkpatrick et al. [96], if such an intersection between the posterior dis-
tribution do not exist, then it justifies having to increase the number of
parameters, i.e. using a wider or deeper neural network.

This is especially relevant for Edge AI where the edge device such as
the camera does not have enough memory to store a lot of data. As shown
in Figure 5.13 and Figure 4.10, data is discarded after using it for training
the BRVFL-AE with EP being used to incorporate new information.

5.3.3 Experiments and Results

Data from the 2021 AI city challenge on detecting anomalies such as crashes,
stalled vehicles is used for this experiment [129]. The data is collected from
a video surveillance camera at a highway. Two frames from the video are
shown in Figure 5.14.

(a) Normal traffic (b) Crash

Figure 5.14: Frames during normal traffic and a crash

Firstly YOLO(v3) is used to find the bounding boxes of the vehicles.
YOLO(v3) was pretrained on the COCO dataset [106]. Using the SORT
algorithm, 7 values as shown in Equation 5.2 are obtained for each object
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and these are taken as the training data for BRVFL-AE. The trained model
is evaluated thereafter with normal traffic and when the crash occurs.

There are multiple objects in each frame with each giving its own anomaly
score. Since the number of objects do not remain the same, taking average
dilutes the score of frame suppose it has an anomalous object. Hence,
the maximum anomaly score of all objects in the frame is taken as the
frame anomaly score. One other issue was that ”trucks” on the highway
gave high frame anomaly scores because they varied in sizes and shapes
and there was not enough ”truck” information in the training set. In real-
world implementation, this is a likely scenario. Fortunately, ”trucks” are
not present in all frames; and when an accident occurs, all frames from
that period should have higher anomaly scores. Considering ”trucks” as
noise, the frame anomaly scores are smoothed using a moving median fil-
ter over 100 frames. The results are shown in Figure 5.15.

In the video, the accident occurs on the 1400th frame. With the mov-
ing median filter, the accident is detected on the 1635th, 1614th and 1634th

frame where the scores jump up. A threshold can be easily drawn to de-
tect this. This is about 8 seconds later for a video stream at 30 frames per
second. YOLO also takes a while to perform inference per frame. To im-
prove the speed, all frames in the video need not be considered because
the information between subsequent frames are very similar. YOLO(v3)
though reported as the fastest object detection method [53], it takes more
than 1 second to detect all of the objects in the frame. More research in this
area is required and it is described in Section 6.2.

Furthermore, if there are a lot of noise and smoothing methods need
to be used, it will reduce the real world feasibility of the method. Thus,
training the BRVFL-AE with more data is also necessary. However, since
the pipeline is entirely automated, if the object detection method captures
”objects” which are not relevant, this will affect the BRVFL-AE. Thus, the
accuracy of the object detection model matters. Improving this accuracy
can be explored through combining background subtraction and object
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detection [60].



5.3. SURVEILLANCE MONITORING 137

(a) MAP

(b) Variance

(c) Heuristic

Figure 5.15: Frame anomaly
score from the BRVFL-AE model
with (a) MAP estimate, (b) Vari-
ance and (c) Heuristic measure.

(a) MAP

(b) Variance

(c) Heuristic

Figure 5.16: Frame anomaly
score from the EP-BRVFL-AE
trained with 4 separate parti-
tions. (a) MAP estimate, (b) Vari-
ance and (c) Heuristic measure.
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Since edge devices are typically memory-limited, the EP-BRVFL-AE
was implemented for online learning in this application. As was shown
in Section 4.2.5 and Figure 4.7b, EP can be used to update the BRVFL-AE.
The training dataset is split into 4 equal components and combined one
by one using EP. The results are shown in Figure 5.16. Though scores vary,
as the model is different from the one trained with all the data, the effec-
tiveness in detecting the crash is retained. This shows that it is possible
for the model to be updated using EP. However, more research is required
to ascertain whether this type of one-shot learning is sufficient in the long
run.

In this section a novel pipeline is developed to be able to extract infor-
mation from video streams for ML and anomaly detection thereafter. The
EP-BRVFL-AE was again validated as a simple model which can nonethe-
less perform effectively in a real world scenario.

5.4 Summary

The challenges of three unique real world domains were addressed with
three scenarios: namely systems monitoring applied to an ISP, network
graphs monitoring applied to BGP updates and surveillance monitoring
applied to road traffic video stream. For systems monitoring, the main
challenge was to identify the right features and the Bottom-Up approach
was devised. To detect anomalous BGP updates, network graph informa-
tion was parsed using centrality values of nodes to build an anomaly de-
tection model. Lastly, a novel pipeline was devised to extract information
to build a simple yet effective accident detection model. The methods de-
vised in this chapter are widely applicable to several applications within
each domain.

The next chapter summarises the entire thesis by highlighting the con-
tributions and future work.



Chapter 6

Conclusion

The goal of this thesis was to develop methods for anomaly detection in
dynamic and distributed scenarios. This chapter summaries the thesis,
outlines the major contributions, and points out the directions for future
work.

6.1 Contributions

The main research question “How can anomaly detection take into consider-
ation evolving and heterogeneously distributed data?” was answered in two
parts, in Chapters 3 and 4. Then Chapter 5 built novel methods to ad-
dress the anomaly detection problem in each domain and implemented
the methods developed in the earlier chapters. Specifically:

1. A Hybrid Online Offline framework was designed to achieve ro-
bust anomaly detection system under evolving data.
The offline model learns existing normal data well and the online
model performs outlier detection. The hybrid framework exploits
the strengths of the individual models and was shown to outperform
either individual model. This was done using the offline model’s
learned knowledge as a bias for the online model to select data to
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train on in the data stream. A dynamic median threshold and the
MW-test were employed to prevent the online model from learning
on anomalous data. The framework was evaluated on public stream-
ing datasets: the UNSW-NB15, CTU13-13, CTU13-9, CTU13-1 and
CTU13-3. A combination of three offline models and six online mod-
els were considered in the framework [142, 144].

From this behaviour-based version, it was shown that clustering can
be used to determine whether there are new types of normal data.
This is only possible based on the anomaly scoring of the designed
Hybrid Online Offline model. This is because the hybrid framework
outputs anomaly scores in the same range for new unknown data
points. Upon detection of new normal data, the offline model can be
retrained or updated using EP if the offline model is Bayesian.

A signature-based method using an offline Rad-NN and an online
SVM has also been designed. This also outperforms individual of-
fline or online models. The method uses confidence scoring to de-
termine the confidence of each of the individual model’s label of the
incoming data. To measure the confidence of the Rad-NN, a novel
confidence measure was formulated in Equation (3.1) [141, 143].

2. EP was used to train a BRVFL-AE with heterogeneously distributed
data. The method was further explored with a deep BAE trained
using VI.

Amongst the methods available for distributed training, EP and BRVFL-
AE were chosen because of the following benefits. Firstly, BRVFL-AE
is a SLFN which provides a closed form solution. Secondly, it is quick
to train. Thirdly, the Bayesian method provides a way to measure
uncertainty. Fourthly, EP allows the aggregating of parameter val-
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ues from different sites while accounting for covariance. With these
benefits, the method can be implemented on edge devices such as
cameras or routers where computation capabilities are limited. The
method was evaluated on six machine learning datasets: UNSW-
NB15, NSLKDD, Shuttle, Abalone, Australian Credit Approval and
Pageblocks. The method was further tested under a scenario where
the data were segregated in an unevenly and biased manner. This
was achieved by separating the data via a GMM and each site con-
tained data from one mixture. The method was also evaluated under
different network densities and asynchronous updates. The method
was shown to perform well under all of the above mentioned scenar-
ios.

It was also shown that EP can work with a deep BAE to build the
offline model in a distributed manner, as part of the Hybrid Online-
Offline Framework. For this to be feasible, there are caveats such as
the use of VI and the need for greater computational resources. As
the method was also shown to work with asynchronous updates, it
can be adapted to perform online learning with new data.

3. Three real world domains were explored using three scenarios re-
spectively.

• Systems monitoring applied to an ISP. The main challenge was
to determine the appropriate variables to measure to build an
anomaly detection model. A novel Bottom-Up approach was
introduced and subsequently, an iterative procedure was de-
signed to measure the right variables. Feature identification
methods were used to characterise anomalous behaviours in-
stead of using it before training a ML model as done in the lit-
erature. The Bottom-Up approach is a generic method which
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can be used to identify features when there are an abundant of
variables to monitor.

The Hybrid framework was also validated and has shown to
perform better than a single model. The model was evaluated
using real-world systems monitoring data from an ISP.

• Network Graphs monitoring applied to BGP updates. A novel method
of formulating network graphs from the BGP updates and rep-
resenting the graph using centrality information was proposed.
This method captures the invariants of the domain. The cen-
trality information of each node is then used to represent the
graph and train an anomaly detection model. Data from RE-
ANNZ and the WIDE core router were used. This method of
expressing connections as graphs and using centrality values
can also be used for building anomaly detection model in other
networked scenarios such as power grids.

The Hybrid framework was also validated and has shown to
perform better than a single model. There are also many ways
the routers can be connected in normal scenarios. The Hybrid
framework also identifies new normal scenarios with the MW-
tests which can be used to update the offline model.

• Surveillance monitoring applied to road traffic video stream. A novel
pipeline is designed to extract pertinent information required
to detect anomalies and accidents. Firstly, the background sub-
traction is employed using GMM [69]. Next, YOLO(v3) [53] is
used to detect objects to fine tune the bounding boxes. Using
SORT: a combination of Kalman Filter and the Hungarian al-
gorithm [16], the motion and size of the object are extracted
from subsequent frames. This information is used to train an
EP-BRVFL-AE. Data from the 2021 AI city challenge were used
[129]. It detects an accident on the highway successfully. This
generic pipeline can be used in other application scenarios such
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as pedestrian footpath or security monitoring. EP was further
tested to perform online learning with batches of data and sim-
ilar results were achieved.

6.2 Future Work

Though the contributions and experiments have addressed the objectives,
they have opened up many avenues for future work, to expand the re-
search in both academic and practical scenarios.

6.2.1 Hybrid Model

The Hybrid Online Offline framework is very flexible. Firstly, using smaller
values of θ for the MW test helps to identify batches with more anomalous
data. Secondly, the re-training criteria can be a function of other attributes
in the network instead of reaching a stipulated size or seasonality. Thirdly,
with seasonality, the percentage of expected normal data need not be fixed.
The offline model can be trained with other loss functions (see [27]) for dif-
ferent representations of the data. Hence, the framework can be adapted
for different scenarios in the real world.

This thesis introduced a heuristic search for new data using clustering
in Section 3.3 and Algorithm 2. This method can be extended to search
for inliers. Inliers can either refer to data which lie in the interior of a sta-
tistical distribution, or to data generated by different mechanisms where
one is hidden in an area of high density of the other [52]. Since they oc-
cur together after removing known normal data, these can be classified
as new normal or anomalies which have a particular distribution such as
DoS attacks. If the inliers are new information, they can be incorporated
into the offline model. The offline model can be retrained completely, or if
it is a BNN, EP can be used. It has been shown in Figure 4.7 that EP can
be used to build a model with batches of data arriving one after the other.
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However, distinguishing inliers as new normal or anomalies is not obvi-
ous, which leads to a future research direction. With a human observer,
the Bottom-Up approach and iterative procedure can be used to craft new
variables such that the occurrence can be separated in future.

Another direction is being able to incorporate new variables into an al-
ready trained model. Chen et al. [35] increased the size of the hidden layers
of a neural network, based on the concept of function preserving transfor-
mation. However, the authors do not explore a new input variable. Devel-
oping a method to incorporate a new variable into an already trained NN
would help speed up the iterative procedure from Section 5.1 instead of
having to retrain the offline model from scratch. The applications for this
area of research are also vast. For example, after adding sensors in indus-
trial monitoring or in autonomous vehicles to measure new variables, the
already trained model can be updated.

In the Hybrid model, the MW-test is used to test whether the mean
ranks of distribution of the anomaly scores have significantly changed.
Other methods such as the Kolmogorov–Smirnov (KS) test [116], rela-
tive entropy (Kullback-Leibler Divergence) [100], Welch’s T-test [200] have
been explored but were not as effective as the MW-test for the Hybrid
framework. The KS test was too sensitive to small changes, relative en-
tropy required determining appropriate intervals while the Welch’s T test
required the Gaussian assumption. One avenue to explore is to determine
how exactly the distribution of the data has changed in the online scenario,
given the MW-test result. Similarly in the Signature-based hybrid model
in Section 3.4, the distribution of the confidence scores can be tested to
show when the offline Rad-NN needs to be updated.

6.2.2 Bayesian Method for Distributed Learning

The method of training the EP-BRVFL-AE can be further extended with
more parameters. For each dimension j and each weight, a value of σ2

j
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and γl can be explored instead of one value σ2 and γ which were deter-
mined based on a hyperprior. The former will lead to a different covari-
ance matrix Σj for each dimension and the latter is also known as Auto-
matic Relevance Determination (ARD) [20,164]. Also, instead of assuming
a Gaussian distribution for the likelihood and prior in (4.6) and (4.7), other
distributions such as the Student’s t-distribution can be used. However
these come with more computational requirements.

It was shown in the experiments of Section 5.3 that EP can be used as
a tool for online learning. More research is required to ascertain whether
this type of One-shot learning [57] is sufficient and whether it can work
with deeper NNs.

6.2.3 Real World Scenarios

To implement the methods, hardware compatibility must be determined.
The number of CPU or GPU cores and RAM required for training the
model or storing data or model parameters must fit within the perfor-
mance requirements of speed and accuracy. This study is immensely im-
portant in all of the real world scenarios.

In the systems monitoring situation, as the antenna site was in a rural
area, power consumption of running the algorithm must also be consid-
ered. Implementing a solution to address one problem might lead to new
problems.

For network graphs monitoring, the use of graphical neural networks
can be explored. Other forms of centrality measures such as Approxi-
mate Betweenness Centrality can also be considered in representing the
network graph for training the anomaly detection model [15, 149]. This
may be quicker to process each BGP update. Another possible direction
would be to train a model at each AS based only on its own centrality val-
ues. Then when anomalous updates occur, the anomalous AS(s) can be
detected quickly and tracked. This may prevent anomalous updates from
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disrupting the entire network.
For surveillance monitoring implementation, YOLO(v3) takes too long

to detect all of the objects. The depth of the YOLO neural network can
be reduced if it is trained to only detect a few relevant classes of objects
instead of all 91 classes [106]. Alternatively, transfer learning methods can
be used to train a smaller neural network which provides similar results
[12, 35, 76]. This would save memory in the edge device and time during
forward propagation at inference.

6.3 Final Conclusion

With the continual advancement in technology and applications, anomaly
detection will always be an important research area. For example, detect-
ing anomalies in a distributed sense became more important as IoT and
Big Data took off. This thesis has worked with two main theoretical sce-
narios which are the root of many of the practical problems found in the
real world. These are dynamic data streams and distributed scenarios.

This research has attempted to capture the core problem of extracting
new information from dynamic data streams, and has used that to im-
prove anomaly detection performance. The Hybrid framework can still be
improved as shown in Section 6.2. For distributed scenarios, a Bayesian
approach was implemented and this thesis has shown that this direction
can yield many potential gains.

There is no one best solution for the problem of anomaly detection,
as was illuminated by the case studies explored here. Even though at its
core, the question is always the same, the answer demands engagement
with the fundamentals and context that are unique to each domain.
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Appendix A

Dataset Description

A.1 UNSW-NB15 dataset description

Table A.1 gives a breakdown of the UNSW-NB15 dataset. The list of fea-
tures is given in Table A.2 and its description in Table A.3. More details
are found in [122, 123].

Table A.1: UNSW-NB15: Number of flow records

Statistical features 16 hours 15 hours

Label
Normal 1,064,987 1,153,774
Attack 22,215 299,068

Service

Others 650,635 597,790
DNS 193,512 588,156

HTTP 94,318 111,955
FTP-Data 61,668 64,115

SMTP 38,845 42,800
FTP 24,861 24,229
SSH 23,361 23,799
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Table A.2: List of features in the UNSW-15 dataset

Type Features
Nominal state, service, protocol
Binary is sm ips ports, is ftp login

Numerical

dur, sbytes, dbytes, sttl, dttl, sloss, dloss, sload, dload,
spkts, dpkts, swin, dwin, stcpb, dtspb, smeansz, dmeansz,
response body len, sjit, djit, sintpkt, dintpkt, tcprtt, synack,
ackdat, ct state ttl, ct flw http mthd, ct ftp cmd,
ct srv dst, ct dst src ltm, trans depth, ct srv src,
ct dst ltm, ct src ltm, ct src dport ltm, ct dst sport ltm

Table A.3: Description of features in the UNSW-15 dataset

state The state and its dependent protocol, e.g. ACC, CLO
service http, ftp, ssh, dns, ssl, .., else (-)

protocol Transaction protocol: xnet, swipe, dcn, pnni, ...
is sm ips ports If source IP equals to destination IP addresses and port

numbers are equal, this variable takes value 1 else 0
is ftp login If the ftp session is accessed by user and

password then 1 else 0.
dur Record total duration

sbytes Source to destination bytes
dbytes Destination to source bytes

sttl Source to destination time to live
dttl Destination to source time to live

sloss Source packets retransmitted or dropped
dloss Destination packets retransmitted or dropped
sload Source bits per second
dload Destination bits per second
spkts Source to destination packet count
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dpkts Destination to source packet count
swin Source TCP window advertisement
dwin Destination TCP window advertisement
stcpb Source TCP sequence number
dtspb Destination TCP sequence number

smeansz Mean of the flow packet size transmitted by the src
dmeansz Mean of the flow packet size transmitted by the dst

response body The content size of the data transferred
len from the server’s http service.
sjit Source jitter (mSec)
djit Destination jitter (mSec)

sintpkt Source inter-packet arrival time (mSec)
dintpkt Destination inter-packet arrival time (mSec)
tcprtt The sum of ’synack’ and ’ackdat’ of the TCP.

synack The time between the SYN and the SYN ACK
packets of the TCP.

ackdat The time between the SYN ACK and the ACK
packets of the TCP.

ct state ttl No. for each state according to specific
range of values for sttl and dttl.

ct flw http mthd No. of flows that has methods such as Get
and Post in http service.

ct ftp cmd No of flows that has a command in ftp session.
ct srv dst No. of connections that contain the same service

and destination address in 100 connections.
ct dst src ltm No of connections of the same src and

the dst address in in 100 connections.
trans depth the depth into the connection of

http request/response transaction.
ct srv src No. of connections that contain the same service
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and src address in 100 connections.
ct dst ltm No. of connections of the same

dst address in 100 connections.
ct src ltm No. of connections of the same src

address in 100 connections.
ct src dport ltm No. of connections of the same src address

and the dst port in 100 connections.
ct dst sport ltm No. of connections of the same dst address

and the src port in 100 connections.

A.2 CTU13 Datasets

Table A.4 gives a breakdown of the CTU13 datasets. The features in this
dataset are duration, protocol, state, source type of service, destination
type of service, total packets, total bytes and source bytes.

Table A.4: CTU13 Datasets

Id Duration(hrs) # Packets # NetFlows Size Bot # Bots
1 6.15 71,971,482 2,824,637 52 GB Neris 1
3 66.85 167,730,395 4,710,639 121 GB Rbot 1
9 5.18 115,415,321 2,753,885 94 GB Neris 10

13 16.36 50,888,256 1,925,150 34 GB Virut 1

A.3 NSLKDD

The training dataset was collected for seven weeks and the testing dataset
was collected in the following 2 weeks. The testing data contains vari-
ations of the anomalies found in the training data to make the anomaly
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detection process realistic as most novel attacks are variants of known at-
tacks [43].

The dataset contains 41 features, of which three of them are nominal,
six of them are binary and the remaining are numerical. Table A.5 shows
the count of each class in the dataset. In this thesis, the labels of the attacks
are replaced as anomaly.

Table A.5: NSLKDD 2009 dataset

Total Normal DoS Probe R2L U2R
Training set 125973 67343 45927 11656 995 52
Testing set 22544 9711 7458 2421 2754 200
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Appendix B

Data Preprocessing, Model
Training and Other Results

B.1 Hybrid Online Offline Framework

B.1.1 Data Preprocessing

Firstly, one-hot encoding of the nominal features is performed transform-
ing them into binary features. In the UNSW-15 dataset, the one-hot en-
coded nominal features are ’state’ and ’service’. The feature ’protocol’ is
dropped because it has 135 different protocols from different network lay-
ers, including network, transport and application. All of the normal data is
contained within seven of these and the rest are anomalous data. If these
were included, the machine learning algorithm could learn the protocol
names instead of numerical features to discriminate the data. This would
lead to unnaturally good results but it would not validate the framework.
Principal Component Analysis (PCA) is used to transform all of the binary
features into numerical attributes. Here, PCA is not used for dimension-
ality reduction and so these components continue to explain 100% of the
variability of these binary features. These features are then normalized us-
ing Min-Max scaling. More information about the features are available in
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Appendix A.
For the rest of the numerical features which contain outliers that can

distort the data, the method used by Su et al. [179] is used. It is given by

Normalization of fi =
1− e−lfi
1 + e−lfi

. (B.1)

In this equation, fi is the observed value of the feature i and l is a con-
stant. Each numerical feature has its own l value. The constant l is de-
termined such that the average of feature i of the normal data instances is
mapped to 0.5.

The values in the latent layer of the AE need not be in the range of [0,1].
For training of the online model, robust-scaling is performed on the latent
layer representation based on the values of the latent layer of the training
data.

B.1.2 Model Training

The offline models are trained with five hidden layers as in [27, 51]. The
latent layer dimension is determined based on a rule of thumb, d′ = [1 +√
d] [27, 138]. The batch size for updating weights is fixed at 500 since the

training set size is constant for all of the data sets and the number of epochs
is varied. The Adadelta algorithm is utilised [214] and the weights are
initialised using the uniform distribution [66]. The model which is trained
for 200 epochs is used for comparison. ReLu activations are used in each
hidden layer and Sigmoid in the output layer because the input values are
normalized in the range [0,1]. Noise from the Gaussian distribution with
mean 0 and standard deviation of 0.2 is added to the normalised input of
the training data for the DAE.

All online models are trained on the latent layer representation of the
offline models in batches of 1000 for consistency. In a real setting, this
value largely depends on how much changes is expected in the network
and computational capabilities. Using a larger value increases accuracy as
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more data will be used. But it will result in longer waiting times. The on-
line models can also be trained in time windows with similar consequence.
The retraining criteria here is when the total number of data for retraining
reaches 1000. For the OCSVM with the Gaussian kernel, if data is selected
using thresholding and MW test, ν is set at 0.0001 (< 1/1000) because all
data selected is expected to be normal data. If it is a purely online model,
set ν = 0.5. The γ value in OCSVM is set as the reciprocal of the number of
features. In this case, γ = 1/d′. The number of components for GMM and
the parameters are determined according to Bayesian Information Crite-
rion (BIC) and expectation maximization. The number of neighbours for
the LOF is taken to be 2% of the batch size. The bandwidth parameter for
KDE is

√
d′/2 with respect to the number of features. For the IOCSVM,

all of the support vectors are retained. For IGMM, 5% forgetting rate is
used as in [1]. The purely online models are fit with all of the values in
the previous batch and perform outlier detection as the data arrives in the
current batch.

To remain consistent, the MW-test is also performed in batches of 1000.
θ is determined using grid-search in the range of [50,100) by performing
the MW-test on the REs of the validation set against those of the training
set. Since both groups consist only of normal data, the highest value that
gives us a p-value of 1.0 is taken because they are expected to be exact
under the null hypothesis. For the UNSW-NB15 dataset, θ is calculated to
be 85th percentile. During testing, H0 is rejected at α = 5% significance at
each iteration.

All experiments are implemented using Python 3.7.3 and run on GNU/Linux
x86 64 with an 8xIntel Core i7-6700 CPU at 3.4 GHz, 15.5 GB RAM.

B.1.3 Training and Scoring Times

The offline models took 290.76s to train on average. Table B.1 shows the
total time to score the test set of 119,000 records. This time includes on-
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line training, the MW test and updating thres. The average training time
shows the time taken for online training.

Table B.1: Training and scoring times based on UNSW-NB15

Online Total Scoring Average Training
Models Time (s) Time

IOCSVM 85.49 0.00184
IGMM 328.90 4.170

OCSVM 86.29 0.000975
GMM 81.28 0.00766
LOF 106.41 0.00899
KDE 90.95 0.000725

IGMM takes a long time as similar clusters are merged, whereas GMM
features complete re-training. The time difference of retaining support
vectors in the IOCSVM vs not retaining in the OCSVM is negligible. The
IOCSVM, OCSVM, GMM and KDE make better models in terms of quick
training but IGMM could also work if the training were parallelized. We
compare their results in the next sub section.

B.2 Signature-Based Hybrid Online Offline Frame-

work

B.2.1 Data Preprocessing

One hot encoding of the nominal features are done to make them into bi-
nary features. Next, all binary features are decomposed into eight compo-
nents using PCA. These eight components explain at least 82% of the vari-
ability of these binary features. Taking additional components accounts
for marginal gains with respect to this dataset.
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The feature ’num outbound cmds’ is dropped as it only takes the value 0
in the entire dataset. The features are normalized to the range [0,1]. For the
eight PCA components, Min-Max scaling is used. Min-Max scaling takes
each value and subtracts the minimum value and divides over the feature
range. For the numerical features due to the effect of outliers which can
highly distort the data, Equation B.1 is used.

Model Training

The weighted euclidean distance is used to calculate the radius for Rad-
NN and the distance between each point.

D(a,b) =
√
w1(a1 − b1)2 + · · ·+ wn(an − bn)2 (B.2)

This is because some of the features have more predictive power and the
Rad-NN does not learn that some features are more discriminative than
others. The feature weights are computed based on Chi Squared statistic
[192] and rescaled to the range [0, 1] using Min-Max scaling.

20% of the training set is used to determine the value for the radius.
For each point in this set, the average of its distances from all other points
is firs computed. Since the distribution is skewed, the 50th percentile of
these distances is taken to be the radius. Figure B.1 shows the distribution.
The smaller the radius, there is more responsibility on the online model
for classification. The larger the radius, the system will obtain votes from
points that are further away which is not appropriate.

The system contains a total of 6 parameters to specify. They are k from
Equation 3.1, the threshold value thres for the acceptance of the classifica-
tion of Rad-NN, u for selecting the point for online training, the number
of points for online training and the C and γ parameters of the RBF ker-
nal. The training set is split into 80%-20% proportion. The Rad-NN is
trained on the 80% of the training set and the remaining 20% is used as the
validation dataset to find optimal values for these parameters. The value
for k in Equation 3.1 and thres are dependent. A larger k value gives a
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Figure B.1: Distribution of the average of the distances

more robust confidence score for C∗. Calculating the confidence scores of
each label classified by the Rad-NN, Figure B.2a shows that the minimum
value tends towards 0 as k increases. Taking a high value of k however, is
computationally costly as it takes longer to calculate the confidence of the
classified label and might not be feasible in real time. For each k, an opti-
mal value for thres is taken to be the maximum of the confidence scores of
all the misclassified points in the validation set. In the experiment, we take
k = 10 and the corresponding value for thres is 92.2% as shown by the red
point on Figure B.2b. Subsequently, umust be greater than thres as it is the
second layer threshold to obtain high confidence points for online training.
Using grid-search method on the system, the following parameter values
are obtained. u =96% and 1300 for the number of points for online train-
ing gives the highest detection rate on the validation set as seen in Figure
B.2. Similarly, using grid-search, γ = 0.1 gave the highest detection rate
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(a) Minimum C∗ value against k (b) Optimal thres value against k

while C = 100 gave the lowest false positive rate. If a regularised SVM
with a balance between bias and variance was used, the number of sup-
port vectors to retain for subsequent training will be large. As such, more
high confident points need to be used at the expense of longer waiting
time or the SVM be retrained regularly to ensure concept-drift is captured.
Figures B.3b and B.3a shows the results of the validation process. For a
low values of C or for γ > 1, the number of SVMs trained is very high.

Before deployment in real systems, simulations would be done online
prior to start up. To replicate this in the experiments, the online SVM
is initialised using the first 1300 points in the testing set. The first 1300
points consist of 574 normal data, 453 DoS, 130 R2L, 130 Probe and 13 U2R
points. The attacks are labelled as anomalies.
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Figure B.2: Detection rate of validation set against u and number of points
used in online training

(a) Validation results for γ in RBF kernel
training

(b) Validation results for C in RBF kernel



Appendix C

Bayesian Inference and
EP-BRVFL-AE

C.1 Bayesian Regression

Let {X,y} denote the dataset where X = [x1,x2, . . . ,xn] is of size n and
dimension d and y = [y1, y2, . . . , yn]. Let w denote the parameters of a
function f : X → R to be determined. The general form is given by

yi = fw(xi) + εi, (C.1)

where εi is white noise; drawn from a zero-centered Gaussian distribution
with variance σ2, εi ∼ N (0, σ2). Thus, yi ∼ N (fw(xi), σ

2) and the likeli-
hood is given as

P (y|X,w, σ2) =
n∏
i=1

P (yi|xi,w, σ
2) =

n∏
i=1

1√
2πσ2

exp

(
−|yi − fw(xi)|2

2σ2

)
(C.2)

An optimal value of w can be found by maximizing Equation C.2. This
is known as the Maximum Likelihood Estimate (MLE). This method is not
suitable for distributed training especially when the data at each site is
different. Different ‘optimal’ values of w cannot be combined. By placing

189
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a prior distribution on w, P (w), Bayes law is used to infer the posterior
distribution:

P (w|y,X, σ2) =
P (y|X,w, σ2)P (w)

P (y|X)
(C.3)

P (y|X) =

∫
P (y|X,w, σ2)P (w)dw (C.4)

where P (w|y,X, σ2) is the posterior distribution, P (w) is the prior dis-
tribution and P (y|X) is the normalizing constant or the marginal likeli-
hood. A common choice for the prior is also a zero centered Gaussian,
P (w) ∼ N (0,S) where S is usually a diagonal covariance matrix. Again,
if a point estimate suffices, the Maximum-A-Posteriori (MAP) estimate
wMAP = argmaxw P (w|y,X, σ2) can be found using only the numerator
of Equation C.3. However, a full Bayesian approach accounts for all pos-
teriori models. Hence, for a new datapoint x̂, the posterior predictive dis-
tribution is found by integrating over the model parameters.

P (ŷ|x̂,y,X, σ2) =

∫
w

P (ŷ|w, x̂,y,X, σ2)P (w|y,X, σ2)dw (C.5)

For deep neural networks, computing the marginal likelihood becomes
intractable and no closed form solutions are available. However, for Bayesian
linear regression, with the conjugate prior distribution for the likelihood,
closed form solution can be computed. Then the posterior distribution
will be in the same form as the prior. For linear regression, fw(x) = xTw.
Assume known noise variance σ2 and the Gaussian prior for the weights
P (w) = N (m0,S0), the posterior distribution is also Gaussian with mean
m and covariance matrix Σ as shown below.

m = Σ(S−10 m0 +
1

σ2
Σ−1Xy) (C.6)

Σ = (S−10 +
1

σ2
XTX)−1 (C.7)
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The posterior predictive distribution is also Gaussian and available in
closed form. For more in depth formulation, readers are referred to [20].

P (ŷ|x̂,y,X, σ2) = N (mT ŷ, φ(x̂)2) (C.8)

φ(x̂)2 = σ2 + x̂TΣx̂ (C.9)

C.1.1 Exponential family of distributions

The probability density function of the distributions in the exponential
family follow the following form.

P (x|θ) = h(x) exp(η(θ)T t(x)−A(θ))

where η(θ) is the natural parameter of the distribution and t and A

are vector valued functions. The Gaussian, Gamma, Inverse-Gamma, Ex-
ponential, Dirichlet, Chi-Squared, Wishart are some examples of distribu-
tions in the exponential family. For more details, readers can refer to [38].

For Inverse-Gamma(α, β), the mapping to natural parameters is given
by

r = −α− 1 Q = −β

C.1.2 Gaussian distribution with known mean and unknown

variance

For P (y|µ, σ2) = N(y|µ, σ2) where µ is known and σ2 is unknown, the
likelihood for a vector y of n independent and identically distributed ob-
servations is

P (y|σ2) ∝ σ−n exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2

)
The corresponding conjugate prior density is an Inverse-Gamma distribu-
tion,

P (σ2) ∝ (σ2)−(α+1) exp(−β/σ2)
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with hyper-parameters α, β. The resulting posterior density is

P (σ2|y) ∝ P (y|σ2)P (σ2)

= (σ2)−(α+n+1) exp

(
−2β +

∑n
i=1(yi − µ)2

2σ2

)
.

This posterior follows an Inverse-Gamma distribution:

P (σ2|y) ∝ IG
(
n+ α,−2β +

∑n
i=1(yi − µ)2

2

)
The estimate for the precision parameter follows from the fact that if γ

follows Gamma(α, β) then 1/γ follows Inverse-Gamma(α, β). The mode
of the Inverse-Gamma distribution with parameters α, β is β/(α + 1).

C.2 EP-BRVFL-AE

Algorithm 5 Preprocessing for EP-BRVFL-AE(C)

1: for k = 1, . . . , K do
2: At edges: Send f̄kj to central
3: end for
4: At central: f̄j = 1

K

∑K
k=1 f̄

k
j

5: At central: Compute lj and send to edges
6: At edges: Normalize data using (B.1)

Firstly, before any training can occur, data from all of the sites need to
be normalised appropriately for which Equation B.1 is used.

In EP-BRVFL-AE(D), a broadcast of f̄kj to all sites is required. This in-
curs an additional communication cost of d and computation cost of Knk.
Alternatively, each site can use its own data to perform normalisation es-
pecially if the data distribution is similar between the sites.

The middle layer of the BRVFL-AE is ζ times the input layer d, and
ζ = 10 for comparison unless otherwise mentioned. The algorithm is im-
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plemented with δ0 = 1. The number of edge sites is fixed to 10 for com-
parison and the data is randomly partitioned unless specified. The hyper-
parameters are the MAP estimates of the hyper-posteriors determined by
the EP. The initial hyper-prior parameters are such that the initial estimates
are σ2 = 0.01 and γ = 0.01 as in [164].

All experiments are implemented using Python 3.8.2 and run on GNU/Linux
x86 64 with an Intel Core i7-7567U CPU at 3.5 GHz, 16 GB RAM.

C.3 Determining Hyper-parameters

C.3.1 Averaging Estimates

This method is an alternative to obtaining the values for hyper-parameters
σ2 and γ. It has a lower communication and computation complexity but
relies on some ad hoc averaging. This iterative procedure to obtain MAP
estimates is described in [20, 164]. The updating equations are stated as
follows:

γ =
η + 2αγ
‖m‖22 + 2βγ

(C.10)

σ2 =
‖X −Hw‖22 + βσ
n− η + 2ασ

(C.11)

where η is

η =
B∑
l=1

λl
γ + λl

(C.12)

and λl are eigenvalues of (1/σ2)HTH.

The iterative method begins with a fixed value for σ2 and γ and is up-
dated iteratively at the central location before being sent to the distributed
sites. It involves placing Algorithm 3 into an iterative loop. Let nk denote
the number of data at site k. The following steps in Algorithm 6 are added
to Algorithm 3. Algorithm 6 can be easily adjusted for a fully distributed
version by using only values from neighbouring sites.
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Algorithm 6 Iterative Averaging for Hyper-parameters

1: Initialise values for ασ, βσ, αγ, βγ, σ2 and γ.

At each site:
2: Calculate ‖Xk −Hkw‖22 and ηk using (C.12) and send them and nk to

central.
At central:

3: Calculate n =
∑K

k=1 nk and η = 1
K

∑K
k=1 ηk

4: and TSE =
∑K

k=1 ‖Xk −Hkw‖22
5: Update γ and σ2 using (C.10), (C.11)
6: Send updated γ and σ2 to sites.

The eigenvalues can be calculated once for Hk
THk, stored in memory

and updated with each new σ2. This approach automatically calculates
the MAP estimates for γ and σ2. It also considers the eigenvalues which
corresponds to the curvature of the likelihood function [20].

To estimate γ and σ2 using this iterative averaging algorithm, compu-
tational cost at each site is B2d+nkd and B3 +B. The communication cost
at the site is 3c. At the central the computation cost is 3K + 2 and com-
munication cost is 2c. These cost are also added to the sites in the fully
distributed implementation.
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