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Abstract

This thesis presents two studies on non-intrusive speech quality assess-
ment methods. The first applies supervised learning methods to speech
quality assessment, which is a common approach in machine learning
based quality assessment. To outperform existing methods, we concen-
trate on enhancing the feature set. In the second study, we analyse quality
assessment from a different point of view inspired by the biological brain
and present the first unsupervised learning based non-intrusive quality
assessment that removes the need for labelled training data.

Supervised learning based, non-intrusive quality predictors generally
involve the development of a regressor that maps signal features to a rep-
resentation of perceived quality. The performance of the predictor largely
depends on 1) how sensitive the features are to the different types of dis-
tortion, and 2) how well the model learns the relation between the fea-
tures and the quality score. We improve the performance of the quality
estimation by enhancing the feature set and using a contemporary ma-
chine learning model that fits this objective. We propose an augmented
feature set that includes raw features that are presumably redundant. The
speech quality assessment system benefits from this redundancy as it re-
sults in reducing the impact of unwanted noise in the input. Feature set
augmentation generally leads to the inclusion of features that have non-
smooth distributions. We introduce a new pre-processing method and
re-distribute the features to facilitate the training. The evaluation of the
system on the ITU-T Supplement23 database illustrates that the proposed
system outperforms the popular standards and contemporary methods in
the literature.



The unsupervised learning quality assessment approach presented in
this thesis is based on a model that is learnt from clean speech signals.
Consequently, it does not need to learn the statistics of any corruption that
exists in the degraded speech signals and is trained only with unlabelled
clean speech samples. The quality has a new definition, which is based
on the divergence between 1) the distribution of the spectrograms of test
signals, and 2) the pre-existing model that represents the distribution of
the spectrograms of good quality speech. The distribution of the spectro-
gram of the speech is complex, and hence comparing them is not trivial.
To tackle this problem, we propose to map the spectrograms of speech
signals to a simple latent space.

Generative models that map simple latent distributions into complex
distributions are excellent platforms for our work. Generative models that
are trained on the spectrograms of clean speech signals learned to map the
latent variable Z from a simple distribution PZ into a spectrogram X from
the distribution of good quality speech. Consequently, an inference model
is developed by inverting the pre-trained generator, which maps spectro-
grams of the signal under the test, Xt, into its relevant latent variable, Zt,
in the latent space. We postulate the divergence between the distribution
of the latent variable and the prior distribution PZ is a good measure of
the quality of speech.

Generative adversarial nets (GAN) are an effective training method
and work well in this application. The proposed system is a novel appli-
cation for a GAN. The experimental results with the TIMIT and NOIZEUS
databases show that the proposed measure correlates positively with the
objective quality scores.
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1
Introduction

After more than a century of experience with speech transmission in
telecommunication, it may come as a surprise that an automatic assess-
ment of the quality of speech is still an issue. This chapter is an introduc-
tion to the problem of non-intrusive speech quality assessment. Section
1.1 explains why developing a reliable estimation of speech quality is criti-
cally important and presents the motivations for developing non-intrusive
quality assessment systems based on machine learning methods. Section
1.2 provides a brief overview of the approaches utilised and the principles
adopted for the machine learning based systems proposed in this thesis.
Section 1.3 presents the most important contributions of this thesis. The
structure of the thesis is outlined in Section 1.4.

1.1 Motivation

Over the last few decades, the telecommunication industry has grown
rapidly. Many different services exist, and customers generally have many
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options to choose from. In telecommunication, particularly in speech trans-
mission, the success of speech processing applications depends on the
opinion of end-users about the perceived speech quality [1]. Therefore,
a reliable valid estimation of speech quality has become critically impor-
tant. Speech quality assessment systems enable the service providers and
the developers of the new services to assess and monitor the quality of
service on a regular basis.

The most valid method for assessing voice quality is subjective assess-
ment [2, 3]. In subjective assessment, human subjects are asked to listen
to the transmitted speech utterances and score their quality. Hence, sub-
jective tests, in general, are costly and time-consuming. Consequently, ob-
jective quality assessment algorithms, which provide an automatic assess-
ment of voice quality, are more desirable [1].

Initial objective algorithms [4, 5, 6, 7] estimated the distortion intro-
duced by the system under test by comparing the degraded signal that
is processed by the system with the original undistorted signal [8]. The
original undistorted signal is called the reference signal. These algorithms
that require both the reference signal and the degraded signal are called
full-reference or intrusive methods.

In contrast to intrusive methods, non-intrusive methods that are some-
times called single-ended [9, 10, 11] do not depend on a reference signal.
Non-intrusive methods are essential tools for online applications, such as
monitoring speech quality of in-service systems, where the source speech
signal is not available [1]. However, the performance of non-intrusive
models is generally lower than the intrusive models. Furthermore, the
design of a non-intrusive system is normally complicated and is based on
training the model on a database created with human subjects [1].

The standard non-intrusive algorithms (e.g. [12]) mostly attempt to
find an explicit relation between the audio signals and their quality. The
parameters of such methods are based on a database with speech utter-
ances and their rating. This is challenging and often requires quality as-
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sessment specialists to determine the contribution of each feature and their
interaction to the overall audio quality. In contrast, machine learning based
quality assessment methods (e.g. [13]) attempt to mimic quality percep-
tion and avoid designing an explicit model. These machine learning based
methods that replace the knowledge of assessment specialists with "su-
pervised learning" algorithms still rely on databases of speech and asso-
ciated quality ratings from human subjects. However, these methods au-
tomate the training by replacing human expertise with "supervised learn-
ing" algorithms. As will be explained in Chapter 2, such systems are ben-
eficial mainly because they are not limited to particular services and are
adaptable to multiple applications. For example, a system developed for
narrow-band data can be used for wide-band data if we re-train that sys-
tem with a wide-band database.

In this thesis, we develop two machine learning based non-intrusive
speech quality assessment systems. The first one, similar to earlier ma-
chine learning based work, is based on supervised learning methods. Re-
cent supervised learning based quality assessment methods [13, 14, 15, 16,
17, 18] are mainly improved by either employing more data or applying
more powerful learning algorithms for training. Recent powerful machine
learning algorithms [19, 20, 21, 22] that are mostly based on deep learning
also require large databases for training. Hence, accessing an extensive
training database that contains speech utterances and their relative ratings
is a key to the success of many machine learning based speech quality as-
sessment systems. However, free data available for training in this field
is limited. The motivation for the first approach we propose in this thesis
is to improve the performance of machine learning based speech quality
assessment systems by improving the input features rather than enlarging
the training data.

The motivation for the second approach is to remove the need for ex-
pensive training data that includes the subjective rating of the speech ut-
terances. We do this by applying "unsupervised learning" algorithms.
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Figure 1.1: High level structure of a non-intrusive quality assessment sys-
tem.

Our proposed speech quality assessment is the first unsupervised learning
based approach in this field. In the following section, we briefly address
this gap in the literature. We also provide an introductory explanation
to the approaches and principles of applying "machine learning" into the
field of "non-intrusive speech quality assessment".

1.2 Approaches and principles

As will be explained in Chapter 4, in supervised learning terminology,
non-intrusive quality estimation can be described as a multi-class classifi-
cation or a regression problem, where the input and output are the signal
features and the quality score respectively [1]. Several non-intrusive meth-
ods have recently been proposed in the context of quality assessment, us-
ing machine learning algorithms for estimating the score of audio signals
[23, 24, 25, 26, 27, 28, 29, 30, 31]. Figure (1.1) shows the high-level structure
of a non-intrusive quality assessment system.

In the front-end module, a feature vector containing the attributes de-
scribing the audio is constructed. This is a common practice because a
model with thousands of samples per second of audio as input will gener-
ally be very complicated and several conventional machine learning algo-
rithms cannot be efficiently trained on high-dimensional data.

In the back-end module, the features are mapped into a quality score.
In many protocols, the human subjects provide a discrete score, and in this
case, the back-end module is a classifier. However, one might be interested
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in predicting the average rating of an utterance. In that case, the back-end
module becomes a regressor.

More recent speech quality assessment methods [13, 18, 32, 33] that are
end-to-end use the raw audio waveform and the related spectrograms as
input to the back-end module. In such systems, the front-end and back-
end modules are integrated and feature extraction is part of the predicting
function which is based on deep learning algorithms.

The structure in Figure (1.1) indicates that the overall performance of
the supervised quality assessment system depends upon two main as-
pects. The first aspect is a feature set that is sensitive to signal variations
due to different types of distortion. The second aspect is a rich model
that can learn the complex relationship between the audio features and
the quality score.

The most recent machine learning based speech quality assessment
methods in the literature [13, 15, 17, 18] are mainly centred on the second
aspect. Such methods improve the performance of the back-end module
by enlarging training data or applying more complex learning algorithms
with a more extensive set of parameters, which also depend on an en-
larged training data. Reviewing these methods and analysing the scores
reported in the literature for non-intrusive quality assessment confirms
that the availability of training data is one important aspect that restricts
the performance of the quality predictor.

In machine learning based speech quality assessment, training data
refers to speech utterances and their subjective scores. Such databases
are called labelled databases as the subjective scores are the labels for the
speech utterances. Unfortunately, labelled training databases are mostly
proprietary and creating one is costly and time-consuming as it requires
the set-up of subjective evaluation experiments. Hence, in the first phase
of this thesis, we concentrate on the first aspect and instead of improving
the back-end that is dependant on the availability of labelled data, we im-
prove the performance of the system by enhancing the features extracted
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from the front-end module. We study the effect of including more fea-
tures on the performance of the machine learning based speech quality as-
sessment and analyse the performance gain from our proposed enhanced
feature set.

In the second phase, we seek to find a more comprehensive solution
to the problem of the availability of labelled data for the development
and training of the back-end module. The ITU-T coded speech data set,
Supplement 23 [34], is the most well-known public labelled database for
speech quality assessment. Recently other public labelled databases have
been introduced by the authors of [35, 36]. These databases seem to be the
only public databases that contain speech utterances and their relevant
ratings. Conversely, a large number of utterances are readily available
if their quality score is not required. Accordingly, it is beneficial to de-
velop a speech quality assessment that learns from unlabelled data. The
semi-supervised quality assessment systems introduced by the authors of
[37, 38, 39] benefit from these public data for feature extraction. However,
the quality predictor at the end still relies on the databases that contain
speech utterances labelled by the subjects. In this thesis, we present the
first unsupervised machine learning based non-intrusive quality assess-
ment that removes the need for labelled training data.

The unsupervised speech quality assessment we propose in this thesis
is inspired by the functionality of the biological brain. Individuals nat-
urally have an opinion about the quality of input signals based on the
pre-existing model in their brains that is built on their listening habits. We
postulate that quality of speech is correlated with the similarity between
what is heard and the model of speech that exists in the brain.

In this approach we utilise Generative Adversarial Nets (GANs) [20]
to build a generic model of speech . Then we develop an inverted gener-
ator to project the signals into the latent space and rate the quality based
on the distance between the test signal and the distribution of good qual-
ity speech in the latent space. In Chapter 5, we explain this approach in
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more detail and verify its effectiveness. The following section presents the
contribution of this thesis.

1.3 Contributions of the thesis

The most important contributions of this thesis are summarised as follows:

• We introduce the novel idea of augmenting the feature set with raw
features that are presumably redundant. We report on the case where
input features are noisy and illustrate that the proposed augmented
feature set improves the performance by reducing the effect of input
noise. We provide a detailed analysis of this performance gain and
its mathematical model (Chapter 4).

• We present a new pre-processing method that redistributes the fea-
tures to have a smooth distribution. We explain the pre-processing
method in detail and demonstrate that it facilitates the training of
quality assessment (Chapter 4).

• We build a new quality assessment system based on supervised learn-
ing algorithms and use the enhanced feature introduced in this the-
sis. The experimental results confirm the performance gain from the
enhanced feature set and demonstrate that the proposed system out-
performs the current methods in the literature (Chapter 4).

• We introduce the first unsupervised quality estimation system (Chap-
ter 5).

– Data used for training is standard speech signals, which are not
required to be labelled by subjects.

– We use a new quality metric, which is based on how differ-
ent the input is from the pre-existing model trained on clean
speech signals. Therefore, the predictor does not need to learn
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the statistics of degraded speech files and in principle is not lim-
ited to specific types of corruptions in the training data.

– Our system is based on the novel idea of employing the gen-
erative models for quality assessment. We use the generative
adversarial net (GAN) to mimic the pre-existing models in the
brain.

– We utilise divergence metrics to measure the distance between
the prior distribution of the good quality signals and the distri-
bution of the test signal in the latent space. We use this criterion
to assess the quality of audio and demonstrate that it is highly
correlated with the scores from subject tests.

1.4 Structure of the thesis

The remainder of this thesis is organised as follows:

In Chapter 2, we provide an introductory explanation as the back-
ground to machine learning based non-intrusive speech quality assess-
ment and review the approaches that are proposed for speech quality as-
sessment. In Chapter 3, we briefly review the machine learning basics and
the contemporary methods used in this thesis.

In Chapter 4 we investigate supervised learning for speech quality as-
sessment. We propose a new non-intrusive speech quality assessment
based on a neural network and demonstrate the performance gain from
the enhanced feature set. To achieve the higher performance we intro-
duce two novel enhancement procedures to the feature set: 1) Augmenta-
tion, 2) Standardization. We published the main part of Chapter 4 in 2017
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) and won a best student paper award [1].

In Chapter 5, we focus on unsupervised learning for speech quality
assessment. We introduce a novel application for the popular generative
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model called a GAN and build our quality assessment based on the corre-
lation of data points in the input manifold of the generator.

In Chapter 6 we provide a summary of this thesis and discuss its out-
comes. We address the shortcomings and the potential solutions for them
to extend this work in the future.
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2
Background on
speech quality assessment

This chapter presents a brief background of basic concepts in speech Qual-
ity Assessment (QA) and reviews the related work followed by the de-
tailed description of two current standards in this field.

2.1 Introduction

Although multimedia has grown during the last decades, speech is still
one of the main media of communication between humans. Speech is also
increasingly used for human-machine interactions. There are numerous
service providers for customers to choose from, and many of these services
involve different far-end and near-end environments and multiple links
over different networks. In all these services, it is essential to ensure a
high quality of speech, and hence a reliable system to estimate the quality
is required.
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Figure 2.1: Schematic representation of a participant in a quality judgment
experiment from Figure (1) in [40].

As shown in Figure 2.1, speech quality can be viewed as the result of
three processes: perception (P), judgement (J), and description (D). The
perception process is triggered when the sound wave reaches the human
ears, which is called "physical event" (the term "event" here specifies the
instance of a phenomenon that occurs in time and space) [40]. The result
of the perceptual process is a "perceptual event", which can be described
by features such as loudness, coloration, or noisiness that are quantified.
In the judgement process, the perceptual event is compared to the desired
features and results in a "quality event", which represents the judgement
of the overall quality. The description process quantifies the quality event
and expresses the judgement in terms of opinion scores. As denoted by
the dotted line containing the yellow square in Figure 2.1, the processes,
the events, and the desired features are internal to the perceiving human
[40]. The models developed in this thesis simulate this internal scheme to
replace quality assessment judgment experiments (which are laborious)
with an automatic mechanism.
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Measurements of quality have many dimensions such as intelligibility,
naturalness, clarity, pleasantness, brightness [41]. A speech quality assess-
ment system may aim to evaluate the overall quality, or they may measure
individual dimensions and predict multiple quality features [42]. A single
metric does not generally provide sufficient detail for system designers,
so it might not be satisfactory for network planning purposes. Although
single metric based models are not suitable for diagnosing the sources of
poor quality, they are sufficient for network monitoring as it gives an over-
all perception of an auditory event. In general, the use of a single metric
is more common than the use of a multidimensional metric [41, 42]. For
practical purposes, the focus of this thesis is on the models with a single
metric. The quality assessment models that are proposed in Chapter 4 and
5 provide an overall perception of an auditory event, which is sufficient to
predict the end-user opinion of a speech communication system.

Speech quality may refer to a purely listening-only situation, or it may
reflect a conversational situation where both sides are talking (and hence
there are constant changes between talking and listening) [43]. The true
speech quality is often addressed as conversational quality since it is the
common application of speech services. In conversational tests, two peo-
ple are usually questioned about the quality aspects of the conversation
after they had a conversation over the system under the test. However,
because of the complexities involved in conversational tests, the most fre-
quently measured quantity is the listening quality [30, 31, 42, 43]. In the
listening context, which is the focus of this thesis, the speech quality is
mainly affected by speech distortion due to speech codecs, background
noise, and packet loss, whereas in the conversations, the impact of other
degradations such as talker echo and path delay must also be considered.

This chapter will provide a description of speech quality assessment.
In Section 2.2, we review the literature related to quality assessment, intro-
duce different types of such models, and explain why we are interested in
non-intrusive objective algorithms. The quality estimation methods P.563
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[12] and ANIQUE+ [44] are established standards for single-metric non-
intrusive objective quality assessment, which are designed for listening
quality. As will be explained in Section 4.5, the front-end modules of these
two standards are the reference for our work. These two standards are
explained in more detail in Sections 2.3 and 2.4.

2.2 Relevant works

As explained in the previous section, the focus of this thesis is speech qual-
ity assessment in the listening context, which aims to measure an individ-
ual dimension of quality using a single metric. This section presents an
overview of methods in this context.

Subjective assessment is the most valid method for assessing voice
quality, in which human subjects are asked to listen to the speech utter-
ances and to score their quality (see Figure 2.2). One of the most widely
used listening tests is an Absolute Category Rating (ACR) method, de-
scribed in the International Telecommunication Union (ITU-T) Recommen-
dation P.800 [2]. In this test, a number of subjects are asked to rate the qual-
ity of a number of short speech sentences processed by the system under
test in a five-point scale (5: excellent, 4: good, 3: fair, 2: poor, and 1: bad).
The average rating is commonly referred to as Mean Opinion Score (MOS)
[10].

In general, conducting a subjective test is based on the recruitment of
human participants who sit in a laboratory and listen to the test materials
to evaluate their quality under certain conditions specified in the stan-
dard. Since subjective tests require human listeners, they are generally
time-consuming and expensive. As a result, objective quality assessment
algorithms were introduced to provide an automatic assessment of voice
quality [1]. These methods replace the listener panel with a computational
algorithm. However, listening tests are still required for the development
and training of the objective quality assessment algorithm.
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Figure 2.2: Subjective listening quality assessments, adopted from Figure
(1) in [8].

Although some models have been designed to predict individual qual-
ity features such as discontinuity, noisiness, coloration, and intelligibility
[33, 45], most single-metric objective methods provide quality estimations
according to the MOS scale in ACR [40]. In these scenarios, objective meth-
ods aim to deliver estimated MOS values that are highly correlated with
the MOSs obtained from subjective listening experiments [46]. The esti-
mated MOS value is called objective MOS, and the MOS obtained from the
subjective listening test is called subjective MOS [47]. The measure for the
success of an objective method is based on comparing the objective MOS
predicted from the method with the subjective MOS. Pearson Correlation
Coefficient (PCC) and Root Mean Squared Error (RMSE) are common met-
rics in this field [7, 12]. RMSE measures the closeness of objective MOS
to subjective MOS based on the mean square of the residual errors, and
PCC measures the closeness of their fit based on their correlation. These
two standard metrics are explained in Section 4.6.1. In general, a non-
intrusive quality assessment is considered to have higher performance on
a test database in comparison with another method if the computed PCC
and the RMSE are relatively higher and lower than the PCC and RMSE of
the other method, respectively.

In [40], an objective model is classified as either a signal-based model,
a parametric model, or a hybrid model. In signal-based models such as
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Figure 2.3: Objective intrusive listening quality assessments, adopted from
Figure (1) in [8].

[12, 44, 45], the estimation of the quality of speech only depends on the
voice signal and the parameters extracted from speech. On the other hand,
parametric models such as [48, 49] depend on system parameters esti-
mated at run time or during the network planning. One significant ad-
vantage of the parametric models over signal-based models is that they
are employed at design time when the system is not implemented. The
parametric models remove the need for a prototype implementation of
the transmission channel and the simulation of the signals, which is nec-
essary for the signal-based model. Subsequently, Hybrid models such as
[50] combine both concepts from signal-based and parametric models and
make use of both types. Hybrid models depend on both signal and sys-
tem parameters and benefit from diverse information that is readily or
economically accessible or more reliable [40].

The focus of this thesis is the building of a generic non-intrusive method
that is not dependent on a specific system. Hence the system parame-
ters are not reflected, and both methods proposed in Chapter 4 and 5 are
signal-based models that are platform-independent. In the following, we
review the quality assessment systems in the literature in this context.

Karjalainen originally introduced a first perceptual objective quality as-
sessment algorithm in 1985 [4]. Since then, many objective speech quality
estimation models have been proposed. Some examples are Weighted-
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Figure 2.4: Objective non-intrusive listening quality assessments, adopted
from Figure (1) in [8].

Slope Spectral Distance (WSSD) [5], Bark Spectral Distance (BSD) [51, 52],
Perceptual Speech Quality Measure (PSQM) [6], Measuring Normalizing
Block (MNB) [53, 54], Perceptual Evaluation of Speech Quality (PESQ) [7],
and Perceptual Objective Listening Quality Assessment (POLQA) [55]. To
estimate the distortion introduced by the system under test, these algo-
rithms compare the signal processed by the system (degraded signal) with
the original undistorted signal (reference signal) [8]. Such algorithms are
generally called full-reference (or double-ended) models and are consid-
ered to be intrusive as they require both a reference and a degraded signal
(see Figure 2.3) [56].

In contrast with subjective experiments, objective algorithms enable
extensive testing to be performed over short periods [8]. They can also
be used for network monitoring by injecting test signals into a communi-
cation network [8]. However, the need for a reference signal adds extra
load on the network. Furthermore, live calls cannot be evaluated since
clean reference signals are not available [8].

To eliminate the need for a reference signal in full-reference methods,
non-intrusive methods, which do not depend on a reference signal, are
introduced (see Fig.2.4). Non-intrusive methods (sometimes called single-
ended methods) are essential tools for monitoring speech quality of in-
service systems, where the source speech signal is not available [1]. How-
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ever, the design of a non-intrusive model is more complicated than that of
an intrusive model, and its performance is generally lower than systems
that use a reference signal [1].

In 1994-1996 attempts were made to build non-intrusive measurement
systems by comparing the features of the received speech signal and a set
of codewords derived from the undegraded source [9, 57]. Unlike the pre-
vious methods that focused on the auditory system to assess the perceived
quality, the method in [11] focuses on the speech production system. This
method uses the parameterisation of a vocal tract model and applies high
order statistical analysis on them. It identifies telecommunication network
distortions by identifying the states that are unlikely to be produced by the
vocal tract.

In 2002, the ITU-T opened a competition to provide a standard non-
intrusive method that does not require a reference signal for quality esti-
mation [8]. A collaboration between three quality assessment specialised
companies, Psytechnics, Ltd., Swissqual, and Opticom, resulted in the def-
inition of a new standard in May 2004, which is known as ITU-T Recom-
mendation P.563 [8]. In 2007 a new American national standard known
as ANIQUE+[44] was introduced, which outperforms the P.563 standard.
P.563 and ANIQUE+ are the current established standards for single-metric
non-intrusive quality assessment in a listening situation. They are freely
available, and since they have good performance, their feature sets are ex-
pected to be informative and represent different types of distortion. As
will be explained in Section 4.5, the feature set proposed in Chapter 4 con-
tains features extracted from P.563 and ANIQUE+.

While P.563 and ANIQUE+ have demonstrated acceptable accuracy for
many telecommunications scenarios, their quality prediction performance
is compromised for scenarios involving noise suppression, dereverbera-
tion and wireless-VoIP tandem connections [40]. In 2010 a non-intrusive
measure named Speech-to-Reverberation Modulation energy Ratio (SRMR)
[45] was developed for both narrow-band and wide-band reverberant and
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dereverberated speech. The SRMR metric has a relatively simple predict-
ing function using features based on modulation envelopes of a speech
signal, which are known to be useful cues for objective speech quality
and intelligibility estimation. SRMR outperforms P.563 and ANIQUE+ for
tasks involving estimation of multiple dimensions of perceived coloration,
as well as quality measurement and intelligibility estimation of reverber-
ant and dereverberated speech [45].

The normalized SRMR (SRMRnorm) [58] proposed updates in SRM to
reduce the effects of pitch and speech content on the SRMR metric. Com-
pared to the original SRMR implementation, SRMRnorm led to improved
speech intelligibility prediction and exhibited lower variability. Both SRMR
and SRMRnorm use the same predicting function, which is equal to the ratio
between the energy in the lower and higher modulation frequencies. Re-
cent speech quality approaches have focused on applying machine learn-
ing techniques to train the predicting function of the system. The method
proposed in [16], improved SRMRnorm by using the same modulation-
based features but with a different predicting function based on a model
tree trained with a small corpus of speech data.

The work described in [16] is based on a machine learning method that
learns from the training data, and unlike P.563 and SRMR avoids design-
ing an explicit model for mapping signal features to the quality score. Such
machine learning based models [14, 46, 59] propose non-intrusive evalu-
ation algorithms based on the statistical model approach and mimic the
quality perception to estimate the subjective Mean Opinion Score (MOS).
Machine learning based quality assessment systems are desirable as they
are adaptable to various applications and hence are not restricted to par-
ticular services [1].

The machine learning based non-intrusive systems proposed in the lit-
erature predicts the quality by applying a predicting function to a feature
vector extracted from the processed signal. These systems may differ in
the considered features, the predicting function, or both. The work de-
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scribed in [60] makes use of a classifier to predict the discrete value of
quality score while the works described in [23, 24, 25, 26, 27, 28, 29, 31,
61, 62] apply regression methods (with shallow architectures) to estimate
the subjective Mean Opinion Score (MOS) assigned to a speech file. On
the other hand, approaches in [16, 30] use a combination of classification
and regression algorithms as the predicting function. More recent works
[13, 15, 17, 18, 63, 64, 65] focus on deep machine learning methods, which
are shown to be more powerful. Another advantage of methods such as
[13, 18] is that the raw audio waveform and the related spectrograms are
used as input to the predicting function. Accordingly, feature extraction
is part of the overall system, and hence features are expected to be more
informative about the quality.

The machine learning based works cited above are based on super-
vised learning and need a database with speech, and their rating, for train-
ing. The non-intrusive method proposed in Chapter 4 is similar. Chapter
4 compares the performance of the proposed method with those methods
from the list cited above that report results on the public database. The
experimental results in Chapter 4 show that the proposed method has a
higher PCC than the others.

The labelled data that are publicly available for development and train-
ing of supervised learning based quality assessment is limited, and collect-
ing more training data is usually expensive. The ITU-T coded speech data
set, Supplement 23 [34], is the most well-known public labelled database
that is commonly used for training or the evaluation of objective speech
quality systems [14, 23, 24, 26, 28, 29, 44, 8, 46, 61, 62, 64, 66]. Supple-
ment 23 database contains speech affected by noise, packet loss and var-
ious codecs and their corresponding subjective quality score. Speech ut-
terances in Supplement 23 have been down-sampled to 16 kHz. In [35],
a new public data set TCD-VoIP has been created, which allows compari-
son of quality assessment systems with regards quality issues that occur in
Voice-over-Internet Protocol (VoIP). TCD-VoIP, which is used in [17, 65, 67]
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to compare quality metrics, contains wide-band speech that is corrupted
with platform-independent VoIP degradations along with subjective qual-
ity scores. The five types of VoIP degradations in this database are inde-
pendent of the hardware, network or codec in use and listed as 1) back-
ground noise, 2) intelligible competing speakers, 3) echo effects, 4) ampli-
tude clipping, 5) and choppy speech.

Supplement 23 and TCD-VoIP have limited data samples. On the other
hand, proprietary data sets that are large in size (for example the ones used
in [14, 15, 16]) are not publicly available. Since large data sets with human
subjective scores are not publicly available, recent methods focus on esti-
mating objective scores that are computed with intrusive methods. For ex-
ample, the works in [18, 30] are trained with speech files that are rated with
PESQ and hence aim at predicting the PESQ score. Similarly, the works in
[13, 63, 68] are capable of predicting POLQA scores. However, since ob-
jective measures can only approximate human perception, using objective
quality scores as training targets is a significant limitation, and hence re-
cently [36] conducted a large-scale listening test on real-world data and
collected 180,000 subjective quality ratings through Amazon’s Mechanical
Turk (MTurk) [69].

Due to the limitation of the available labelled data, having an unsuper-
vised learning based quality assessment that eliminates the requirement
for labelled data is desired. The authors of [70] used deep learning to
learn the features of speech spectra in an unsupervised manner. They
modified the architecture of an auto-encoder and used the features ex-
tracted from a subband autoencoder for non-intrusive objective quality
assessment. However, such systems are described as semi-supervised as
the non-intrusive method at the end, which maps the features to the score,
still requires labelled data. To our knowledge, the method we propose in
Chapter 5 is the first method that removes the need for labelled training
data.

In the following two subsections, we explain P.563 and ANIQUE+,
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Figure 2.5: The architecture of ITU-T Recommendation P.563, adopted
from [12].

which, as previously mentioned, are two current standards for non-intrusive
listening quality assessment. As explained, their front-end modules form
the basis for the method introduced in Chapter 4.

2.3 P.563

ITU-T standard P.563 [12] is an established standard method for single-
ended speech quality assessment that is developed and used for the evalu-
ation of narrow-band speech codecs. The P.563 standard represents one of
the three current well known non-intrusive quality measurements and is
widely used as benchmark for developing new metrics [36, 45, 58, 64, 65].

In the P.563 standard [8] the distorted signal is first pre-processed, then
passed through a distortion estimation stage and finally a subsequent per-
ceptual mapping stage. In the final stage, several features that represent
parameters of the speech signal under test are used to predict speech qual-
ity by applying a predicting function, which combines decision rules as
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well as a linear combination of features [16]. This procedure implies that
the distortions to be discovered have to be known in advance, and un-
known distortions (e.g., new codecs, signal enhancement elements in the
system etc.) cannot be detected and considered in the output quality score
[71]. This is the major disadvantage of P.563 (as well as ANIQUE+ and
other non-intrusive systems that are based on a similar concept). For ex-
ample, although the algorithm has demonstrated acceptable accuracy for
transmission systems with echo cancelers [12], other research [72] has re-
ported poor performance for reverberant and dereverberated speech [45].
Additionally, P.563 is designed explicitly for narrow-band speech and hence,
cannot assess the quality of wide-band or super-wide band speech. The
motivation of the method proposed in Chapter 4 is to overcome these
problems by building a quality assessment that is based on supervised
learning algorithms. The advantage of supervised learning based quality
assessment in this context, is that they permit learning new types of distor-
tion providing speech utterances degraded with those types of distortions
are available for training.

Furthermore, P.563 starts with established features, which might con-
strain the solution space accordingly [64]. This can affect the performance
of the standard considering some sources of variability might not be taken
into account. Hence another point of improvement to consider is to en-
hance the feature set. In Chapter 4, we propose to build an enhanced fea-
ture set using the raw features from P.563 and ANIQUE+. In the following,
we explain P.563 in more detail.

Figure (2.5) shows the structure of the P.563 model [8]. As noted, the
model consists of three stages in this model [8]: 1) the preprocessing stage,
2) the distortion estimation stage, which in [12] is modelled as a combina-
tion of three basic principles for evaluating distortions, and 3) the percep-
tual mapping stage.

In the first section of this model, the degraded speech signal is pre-
processed, and then distortion parameters are calculated in the second

23



stage. The majority of distortion parameters are computed based on the
filtered signals that are the outputs of the preprocessing stage. Finally in
the last stage, these parameters are linearly weighted, and the listening
speech quality is estimated. In the following, we briefly review the mod-
ules in Figure (2.5).

2.3.1 Preprocessing

In order to compute the distortion parameters in the second stage, each
signal is first preprocessed. The preprocessing begins with applying a fil-
ter in the frequency domain. The filter characteristic is similar to the mod-
ified IRS receive characteristic given in ITU-T Rec. P.830 [73]. IRS is an
intermediate reference system [74] that represents the characteristics of a
standard telephone handset.

The IRS filtered signal is later used to compute parameters that are
based on the assumption that the subjective tests have been carried out
using a standard telephone handset [12]. Following that a speech level
adjustment to –26 dBov is applied. dBov or dB(overload) is the ampli-
tude of a signal compared with the maximum which a device can handle
before clipping occurs. Hence, this speech level adjustment makes sure
the amplitude of the signal is always smaller than the clipping amplitude
with the ratio -26db. –26 dBov approximately corresponds to –20 dBm0 1,
which is a typical nominal value for mean active speech level measured
according to Recommendation P.56 [73, 75]. Once the signal level has been
normalised, it is filtered using a 4th order Butterworth high-pass filter at
100 Hz cut-off frequency [12]. All the parameters that do not use the IRS
filtered signal use this normalised signal, except the mutes parameters that
are explained in Section 2.3.4 and require the raw signal.

The preprocessing block [8] also performs Voice Activity Detection (VAD)

1dBm0 is an abbreviation for the power in dBm measured at a zero transmission level.
dBm or decibel-milliwatt is a unit of level used to indicate that a power level is expressed
in decibels with reference to one milliwatt.
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using the technique implemented in ITU-T P.862 [7]. VAD is used to iden-
tify portions of the signal that contain speech. The output of the VAD is
used to estimate the speech level, which is required to normalise the signal
to -26dBov. VAD information is also used in the following P.563 modules.

In the following, we explain the four subsequent P.563 modules. The
first three modules compute distortion parameters. They are followed by
the last module that estimates the speech quality.

2.3.2 Unnatural speech

This block looks for unnaturalness in the speech signal. Unlike most qual-
ity assessment models that focus on the auditory system, this component
of P.563 focuses on the source of human voice and models the speech pro-
duction system [8]. This component estimates the distortion by identifying
sounds that can not be plausibly produced by the vocal tract.

The concept of using vocal tract models for quality assessment was first
introduced by Gray [11]. This method is based on modelling the vocal tract
as a set of acoustic tubes with section areas that vary over time. High order
statistical analysis of the model identifies illegal states or variations that
indicate the presence of distorted speech [8]. P.563 implemented Gray’s
method in this component to assess how human-like the speech is.

This component of P.563, which detects unnatural speech, computes
the largest set of parameters [12]. These parameters are subdivided into
two groups: 1) speech statistics and 2) vocal tract analysis.

The speech statistics parameters:

These parameters are mainly based on cepstral and LPC analyses, which
are standard signal processing techniques. The two higher-order moments,
kurtosis and skewness of these parameters, are computed here for further
analysis of the signal properties.
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The vocal tract parameters:

The second group of parameters include the parameters that are related
to I) the vocal tract model analysis, II) unnatural periodicity, and III) full-
reference psychoacoustic model. In the following, we explain these pa-
rameters.

I) For vocal tract model extraction, the human vocal tract is modelled
as eight concatenated lossless acoustic tube sections [8]. The vocal tract pa-
rameters [8] are equal to the tube section areas, which are calculated using
Linear Predictive (LP) analysis [76]. These parameters are only computed
for voiced sections of speech [8]. The LP reflection coefficients [8] are cal-
culated using the autocorrelation method [77] and the Schur recursion
[78]. The resulting parameters from the eight tube sections are then av-
eraged to reduce the information down to three parameters, which model
the cavity articulators (ARTs) [8]. Consequently, a set of statistical mea-
sures are calculated on voiced sections of the entire signal, describing the
size and rate of change of tube section areas and cavities as a function of
time [8]. Finally, the overall vocal tract variations are estimated, which
are a good basis for detecting distorted speech [8]. This is because the vo-
cal tract is controlled by muscles and fast variations in the acoustic tube
model or excessively large sections are not possible in undistorted speech
[8].

II) For computing the parameters that are related to the unnatural pe-
riodicity, the signal is investigated for the occurrence of repeated speech
frames and highly periodic sections that are not speech. In P.563, the sig-
nal periodicity that is described as artificial or robotic, is measured by
analysing the signal in the frequency range between 2.2 and 3.3 kHz and
computing the cross-correlations of short adjacent time signal frames [8].
The signal frames are then classified as periodic or non-silent [8]. The sig-
nal is declared to be robotic if the percentage of periodic frames among
the non-silent frames in a signal is large [8]. Following that, this module
extracts other parameters related to the occurrence of the repeated frame.
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It detects the repeated frames in the signal using the usual high cross-
correlation of repeated frames [12]. This module also investigates the sig-
nal for unnatural beeps. The detectors in this module identify complex
tones and mark them as an unusual beep if they have a short duration
[12].

III) The parameters related to a full-reference psychoacoustic model
present a general description of the received speech quality based on the
intrusive model. Since intrusive models are full-reference and require a
reference signal, an intermediate speech reconstruction model is adopted
to generate one. The speech reconstruction module recovers a quasi-clean
speech signal from the degraded input signal using a speech enhancement
technique [12]. The recovered signal is used as the input for the subse-
quent perceptual full-reference speech quality measurement model, which
is a modified version of ITU-T P.862 [8]. The full-reference model that eval-
uates the difference between the pseudo reference signal and the degraded
speech signal can only measure distortion that the speech enhancement
system has removed [8]. Hence the parameters computed in this clause
reflects only part of the degradation and are not accurate enough to pre-
dict speech quality [8].

2.3.3 Analysis of strong additional noise

The noise analysis calculates different characteristics of noise. Noise that
is considered here can be either static and present over the whole signal
(at least during speech activity) such that the noise power is not correlated
with the speech signal, or the noise power shows dependencies on the
signal power envelope [12]. Hence this functional block computes two
subsets of parameters: 1) Static noise level and SNR and 2) Multiplicative
noises and segmental SNR.

The SNR estimation is performed by calculating the level of speech
and noise sections that are identified by VAD in the preprocessing stage
[8]. This calculation does not reflect the noise that exists within speech
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sections. Hence computing an additional set of parameters is required.
For example, the local background noise parameter estimates noise occur-
ring during speech events by locating intervals between phonemes and
calculating their energy [8]. A phoneme described here is an interval in
which the signal envelope doubles within 100 ms and decreases to near to
its original value within 400 ms [8].

Multiplicative noise [8] is most commonly introduced to the signal by
(mainly cascaded) logarithmic PCM and ADPCM systems and waveform
speech CODECs [12]. Multiplicative noise, which follows the signal en-
velope, is detected by a separate functional block. This functional block
works mainly based on the evaluation of spectral statistics [8]. It is as-
sumed [8] that the noise has a flat spectral characteristic and forms a "noise-
floor" in the spectral domain [8]. Due to its multiplicative conjunction with
the speech, it is only present during speech activity and so the evaluation
has to be concentrated on active speech regions [8]. The output of VAD
is used to restrict the analysis to the active voice frames. This analysis is
applied on the telephone bandpass filtered signa [8]l.

2.3.4 Analysis of interruptions, mutes and time clipping

Mutes and interruptions can be partly described by the outcomes of the
vocal tract functional block. However, for analysing this type of degra-
dation, a separate functional block is required to detect and rate unnatural
mutes and time clippings. This functional block detects two different types
of signal interruption: 1) muting or speech interruptions and 2) temporal
speech clipping.

Muting or interruption of the speech is when part of the signal is re-
moved and replaced with comfort noise or silence [8]. This type of in-
terruption is frequent in telecommunications, especially in packet-based
real-time transmission systems where packets may be lost or dropped by
jitter buffers [8].

The second type is the temporal clipping of the speech sections. This
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happens when a signal becomes interrupted, for example, when Voice Ac-
tivity Detection (VAD) or Digital Circuit Multiplication Equipment is used.
This clipping cuts off the front or back end of speech sections during the
time that the transmitter is detecting the presence of speech [12].

The algorithm used in this functional block of P.563 detects and esti-
mates unnatural silence intervals in a speech utterance by analysing abrupt
variations in the signal envelope. This makes it possible to distinguish be-
tween normal speech ends and abnormal signal interruptions.

2.3.5 Dominant distortion classification and speech qual-

ity estimation

The authors of [12] observed that when different types of degradation
occur simultaneously, human listeners focus on the dominant distortion.
P.563 is based on this assumption and models the behaviour of a person
facing multiple distortions. This model is composed of three steps: 1) de-
cision on the main distortion class, 2) evaluation of speech quality for the
corresponding distortion class, 3) overall calculation of speech quality.

The classification is performed by applying thresholds on the key pa-
rameters computed in the previous functional blocks [8]. These key pa-
rameters are namely PitchAverage, SNR, EstSegSNR, SpeechInterruptions,
Sharp Declines, MuteLength, LPCcurt, Robotization If the test signal falls
into more than one class, a prioritization is performed according to the
annoyance order [12]. The following rank-order of the annoyance or per-
ceptual focus was found by analyzing auditory experiments [8]:

1. high-level background noise;

2. signal interruption;

3. signal correlated noise;

4. speech robotization;
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Figure 2.6: Distortion class decision from Figure (22) in [12].

5. common unnaturalness.

After assigning the input signal to a distortion class, an intermediate
speech quality score is computed. To generate the intermediate speech
quality, other parameters previously calculated are linearly weighted de-
pending on their influence on speech quality in the selected distortion
class [8]. In the following, we briefly review the threshold-based classifi-
cation of the distortion as shown in Figure 2.6, and review the parameters
used for evaluation of the speech quality in each class.

Speech quality is severely affected by the presence of high noise [8],
and most of the signals with background noise have a low MOS, typically
from one to three [8]. As shown in Figure 2.6, the distortion of a signal is
classified as the “high-level background noise” when SNR is equal to or
below 15 dB. The quality estimation of this class is computed by a linear
combination of parameters that are based on the variation of the last vocal
tract tube section, representing the opening of the mouth [8].

In the P.563 algorithm, the signals that are affected by interruptions and
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contain mutes, are identified by sharp changes in the signal level [12]. As
shown in Figure 2.6, these signals are classified as “signal interruption”.
The quality estimation of this class is computed by a linear combination
of parameters that specify the length of the interruption events and the
estimation of the noise during voice events [8].

The signal is classified as “signal correlated noise” when noise distor-
tions vary with the signal envelope [12]. The detection of this class and
the evaluation of the quality is based on the parameters that estimate the
short-term signal to noise ratio during speech activity [8].

Voice signals that contain too much periodicity are classified as “speech
robotization”. Such signals are mostly the result of band-limitations such
as those used in GSM networks [12]. The classification of robotization
distortion and evaluation of the quality is based on the parameters that
estimate the amount of frame repetition in the signal [8].

The signals that are not classified in one of the previous classes are
considered to be in a general class of “common unnaturalness” [12]. This
means that even when the signal is undistorted, it will be assessed using
the same rule as “common unnaturalness” [12]. In this class, a primary dis-
tinction is made between the male and female voice based on a threshold
applied to the pitch average [8]. Following that, the quality is estimated
based on the parameters describing the vocal tract analysis, the basic voice
quality calculated with the speech reconstruction system and background
noise descriptors [8].

After computing the intermediate quality, the final step is to compute
the overall quality of speech. Finally, in this functional block, the overall
speech quality is calculated by linearly combining the intermediate qual-
ity result with some of the parameters that are computed in the previous
blocks.

The speech quality assessment proposed in Chapter 4 employs the P.563
standard to compute the parameters explained above. It utilises these pa-
rameters to create an informative feature set, which will be an input to the
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machine learning based quality predictor.

2.4 ANIQUE+

Auditory Non-Intrusive Quality Estimation plus (ANIQUE+) is an Amer-
ican National Standard (ANS) proposed by Kim in 2007 [44]. It is a per-
ceptual model simulating the functional roles of the human auditory sys-
tem, which adopts improved modelling of quality estimation by applying

Figure 2.7: The overall block diagram of American national standard
ANIQUE+, adapted from [44].
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a statistical learning paradigm [44]. Similar to P.563, ANIQUE+ can be
unpredictable when applied to signals with unknown distortions that are
processed with different categories of algorithms [15]. Furthermore, sim-
ilar to P.563, ANIQUE+ relies on signal properties and assumptions that
are not always realised in real-world environments. Hence the assessment
scores might not be consistent with a human perception rating [36]. How-
ever, an amplitude modulation domain processing of speech that is used
in ANIQUE+ is a point of interest for our work as low-frequency mod-
ulations of speech are shown to be the fundamental carrier of linguistic
information [63]. Consequently, the distortion parameters computed in
ANIQUE+ form informative features and are used in the enhanced fea-
ture set proposed in Chapter 4.

Figure (2.7) shows the overall block diagram of the ANIQUE+ model.
The speech signal is preprocessed in the first module. Next, the overall ob-
jective distortion is computed, which is composed of three different types
of distortion: 1) the frame distortion,DF , 2) the mute distortion, DM , and
3) the nonspeech distortion DN . Finally, the overall objective distortion
value is linearly mapped onto an objective speech quality score. In the
following, we explain these blocks in more detail.

2.4.1 Preprocessing

This module first uses the P.56 speech voltmeter [75] to normalise the
level of the speech signal to -26 dBov. Next, in order to reflect the fre-
quency characteristics of the handset used in listening tests [74], it applies
the receive-side modified intermediate reference system receive filter. The
preprocessed signal will be used as input to the three subsequent modules
that extract distortion parameters [44].
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Figure 2.8: Block diagram of the articulation analysis module from Figure
(2) in [44].

2.4.2 Frame distortion module

The frame distortion module is composed of two blocks: I) the articulation
analysis, and II) the perceptual distortion model. The Articulation Anal-
ysis module decomposes the incoming speech signal into successive time
frames and extracts the feature vector of individual frames based on mod-
ulation analysis. These feature vectors are used as the input to the over-
all frame distortion model [44], which computes an individual distortion
value for each frame and aggregates them over the voice file to compute
an overall frame distortion value.

I) The Articulation Analysis module shown in Figure 2.8 is motivated
by the human auditory system at the peripheral and central levels [44],
and perceptual feature vectors relevant to human speech quality percep-
tion [44]. The following briefly explains the three modules in Figure 2.8.

The first module is critical-band filterbank, which simulates the first stage
of the human auditory system based on filtering the preprocessed signal
by a bank of critical-band filters [44]. The second module is Modulation
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spectrum analysis. It simulates the set of modulation detectors at the central
level of the auditory system, each of which is tuned to a specific modula-
tion frequency [44]. As shown in Figure (2.8), it contains four sub-blocks
and its outputs are Ψk,A(m) and Ψk,N(m), which represent the average ar-
ticulation and nonarticulation power of mth frame respectively:

• "Average articulation power" reflects the amount of signal components
relevant to natural human speech covering the modulation frequency
range of 2 to 30 Hz, corresponding to the limited movement speed
of the human articulation system. [44].

• "Average nonarticulation power" is the amount of perceptually annoy-
ing distortions produced at the rate beyond the speed of human ar-
ticulation systems [44].

The articulation and nonarticulation power are the input to the third
module called Feature extraction, which computes the feature vectors for
frame distortion in ANIQUE+ model. The feature vector for the mth frame
is a 69-dimensional vector expressed as Ξ(m), and it contains the nor-
malised representation of articulation power, nonarticulation power, and
critical band power.

the feature vector, Ξ(m), for frame distortion in ANIQUE+ model con-
tains the normalised representation of articulation power, nonarticulation
power, and critical band power:

II) In the perceptual distortion [44], the distortion of individual speech
frames is first estimated from the input feature vector, Ξ(m), using a Multi-
Layer Perceptron (MLP). The overall distortion for speech is then com-
puted by aggregating over the distortions of individual frames.

The detailed mechanism of quality perception by human listeners is
not known [44]. Hence ANIQUE+ employs a machine learning approach
in which the objective model learns the relationship between feature vec-
tors extracted for the speech frames and the quality rating associated to
that speech.
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Figure 2.9: Multi-layer perceptron for perceptual distortion model,
adopted from Figure (4) in [44].

The frame distortion model here is a Multi-Layer Perceptron (MLP)
with one hidden layer [44]. As shown in Figure 2.9, the MLP has 69 input
neurons, 120 hidden neurons, and one output neuron [44]. The estimation
of parameters of the MLP is derived from the iterative steps of error back-
propagation learning [79], using the training database that contains all the
network distortions except mutes and nonspeech distortions [44].

After the distortions of individual speech frames are estimated using
MLP, the overall distortion DF is computed as:

DF = DS +DB, (2.1)

where DS is the distortion in the speech obtained by accumulating frame
distortions over the active speech frames [44], and DB is the distortion
estimated for audible background noise frames [44]. As shown in Figure
(2.7), DF computed in (2.1) is later accumulated with the output of Mute
module and non-speech module to be mapped to a quality score.
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2.4.3 Mute Module

Since the impact of mutes is believed to be severe, ANIQUE+ applies a
separate mechanism to handle mute distortions [44]. The mute model first
detects unnatural mutes in speech signals and then estimates their impact
on the perceived quality [44].

I) Mute detection here is based on the assumption that natural human
speech signals cannot change too abruptly [10]. Mute distortions are cate-
gorised into two groups based on when losing the speech frames starts to
occur: 1) unnatural abrupt stops, and 2) unnatural abrupt starts. If losing
the speech frames starts during the active speech intervals, the mute is cat-
egorised as an "unnatural abrupt stop" [44]. When the loss starts during
the silence before a speech activity starts, it is categorised as an "unnatural
abrupt start" [44]. In the case of an unnatural abrupt start, the beginning
of mute cannot be recognised, and only the end of the mute is detected.

The mute detection module uses a speech activity profile to specify un-
natural abrupt starts and stops. The speech activity profile is based on the
frame log-power computed every 4 ms from an 8-ms-long segment of s(n)

and is also based on the time derivative of frame log-power with adaptive
background noise power estimation [44]. Detection of unnatural abrupt
stops and starts are performed at every downturn and upward transition
in the speech activity profile, respectively [44]. Although the time deriva-
tive of frame log-power is useful to detect abrupt stops and starts, it is
not enough to distinguish between the unnatural abrupts and the natural
stops such as /p/ and /t/ [44]. Consequently, a feature vector is extracted
to include context information at every downturn/upward transition of
the speech activity profile and 15 ms before/after that [44]. The feature
vector includes the 12-th order mel-frequency cepstral coefficients, frame
log-power, time derivative of frame log-power, and voicing factor derived
from the autocorrelation function of speech [44]. The mute detection mod-
els for unnatural abrupt stops and starts are two MLPs with one hidden
layer using the feature vector as input. The two MLPs detectors are indi-
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vidually trained on all the data in the training database, to detect unnatu-
ral abrupt stops and unnatural abrupt starts respectively [44].

II) The mute impact model estimates the impact of mute distortions on
the perceived speech quality. Experiments revealed that although human
subjects assess the quality of speech continuously over time, their opinion
about the quality of speech is more affected by the recent event rather
than the past ones [80, 81]. In the ANIQUE+ model, the impact of mutes is
modelled based on this biological short-term memory of humans, where
recent distortions play a more significant role than past ones [44]. Hence,
for a speech signal that contains K mutes, the objective distortion at time
t is modelled as [44]:

DM(t) =
k∑
i=1

vi exp[−(t− ti)/τ ]u(t− ti). (2.2)

Here ti for (i = 1, 2, ..., K) represents the time that each mute ends. u is
a unit step function and u(t − ti) is equal to one for t ≥ ti, and equals to
zero when t < ti [44]. In this model, the effect of each mute is raised by the
amount of vi at the end of the mute event, and it decays over time with the
time constant τ [44].

The value of vi, described as the instantaneous distortion of the i-th
mute is estimated by

vi = p1 log2(Li) + p2. (2.3)

Here Li represents the length of the i-th mute, and p1 and p2 are constants
[44]. The optimal parameters p1 and p2 are found by training the mute
model, λM , on a dataset that contains at least one mute distortion but does
not include non-speech distortion [44]. The mute model, λM , is trained
after training the perceptual model, λF . This means the parameters of
previously trained λF are considered as constant when computing the pa-
rameters of λM .

Human subjects rate the quality at the end of speech signal. Hence the
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mute distortion for a speech signal with length T is estimated as:

DM = DM(T ) =
k∑
i=1

vi exp[−(T − ti)/τ ]u(T − ti). (2.4)

As shown in Figure 2.7, DM computed in (2.4) is later accumulated
with the output of the perceptual module and non-speech module to be
mapped to a quality score.

2.4.4 Non-speech module

The non-speech module shown in Figure (2.7) detects and estimates the
impact of non-speech activities that are annoying and occur, for example,
when bit information in packets or frames is distorted during transmission
[44]. In this case, if the distorted packets are not detected at the speech
decoder side, the corrupted bits are used, which results in disturbing non-
speech signals [44].

I) The non-speech detection here has a simple implementation, and
it only recognises the non-speech activities that have significantly abrupt
changes in frame power [44]. In this simple implementation [44], the pos-
itive and negative peaks of time derivative of frame log-power (P (t)) are
first identified for each speech activity period. They will be then marked if
their absolute value exceeds a threshold that is obtained empirically. The
accumulation of the reciprocal of the time interval between two adjacent
marked peaks is then used as a criterion for detecting non-speech activities
[44].

II) The non-speech impact model illustrates the impact of non-speech
distortions on the perceived speech quality. The impact of non-speech
distortion is estimated to be proportional to the accumulated frame log-
power (Pacc) in the non-speech activity region [44]. Hence non-speech dis-
tortion in ANIQUE+ is modelled as DN = q1Pacc + q2, where q1 and q2 are
constants [44]. The optimal parameters q1 and q2 are found by training the
non-speech model, λN , on a dataset that contains speech samples with at
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least one non-speech distortion [44]. The non-speech model, λN , is trained
after training the mute model, λM . This means the parameters of previ-
ously trained λF and λM are considered as constant when computing the
parameters of λN .

2.5 Summary

In this chapter, we reviewed different types of speech quality assessment
and justified why the focus of this thesis is on non-intrusive methods to
predict listening quality. We reported related work in this context and
summarised the advantage of machine learning based quality assessment
systems over conventional standards. We described that machine learning
based systems are more desirable as they are not restricted to particular
services and are adaptable to various applications. Moreover, machine
learning based systems allow the learning of new types of distortion, and
unlike conventional methods, distortions in the test speech files are not
required to be known in advance.

Furthermore, we explained that quality assessment methods that are
based on deep learning are more desirable than the methods that are based
on a shallow architecture. Deep learning algorithms are more powerful
than conventional machine learning algorithms. In deep learning based
methods, feature extraction is part of the overall system, and features are
potentially more informative about the quality. In the next chapter, we re-
view contemporary machine learning algorithms that we employed in the
two quality assessment systems proposed in this thesis and explain how
applying them results in new non-intrusive systems that has advantages
over existing methods.

In this chapter, we additionally presented a description of two cur-
rent standards in QA, namely P.563 and ANIQUE+. In both P.563 and
ANIQUE+, the features are handcrafted by experts. P.563 focuses on the
auditory system where ANIQUE+, additionally uses features based on vo-
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cal tract analysis and speech production. In P.563 the decision algorithm is
well designed based on the knowledge of experts. In contrast, ANIQUE+
less relies on the knowledge of experts and learns the relationship between
the distortion parameters and the quality by employing MLP and learning
from databases. Since ANIQUE+ is trained with extensive training data,
it predicts the quality well for many applications. To conclude, both P.563
and ANIQUE+ have demonstrated acceptable accuracy for many telecom-
munications scenarios. However, their quality prediction performance is
compromised where the applications involve noise suppression, derever-
beration and wireless-VoIP tandem connections [40]. In this chapter, we
described the modules from P.563 and ANIQUE+, which compute distor-
tion parameters that are utilised in the feature set proposed in Chapter
4.
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3
Introduction to machine learning

The use of machine learning has been widespread over the past decades.
As explained in Chapter 2, employing machine learning algorithms in
quality assessment is beneficial in multiple ways. The objective of this
thesis is to develop a new non-intrusive quality assessment system based
on contemporary machine learning methods. This chapter presents an in-
troduction to machine learning and provides an overview of recent algo-
rithms and the methods implemented in this thesis for quality assessment.

3.1 Introduction

Research on machine learning has a long history. In 1950, Alan Turing ar-
gued that programming a computer to have adult-level intelligence would
be too difficult. Hence, he suggested instead of trying to produce a pro-
gramme to simulate the adult mind, we should try to produce one which
simulates that of a child. If the child-level mind were then subjected to an
appropriate course of education, we would obtain the adult brain [82].
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Machine learning has become a very active area of research since then,
and new algorithms and application areas are discovered every day. Ma-
chine learning is currently applied in various domains such as computer
vision, language processing, audio classification, pattern recognition, search
engines, data mining, medical diagnosis, information retrieval, and game
playing.

In Section 3.2 we provide a brief introduction to machine learning.
Then in Section 3.3 we review standard machine learning methods with
shallow architectures and provide an explanation of relevance vector ma-
chine (RVM) and the Correlated Nystrom Views (XNV), which we imple-
ment for supervised QA in Chapter 4. In Section 3.4 we explain deep learn-
ing methods, which is centred on the learning of useful representations of
data. We review deep generative models and provide a detailed expla-
nation of Generative Adversarial Networks (GANs), which is the core of
our proposed unsupervised QA in Chapter 5. In Section 3.5 we review
the popular divergence and distance measures that are used for training
neural networks. The unsupervised QA in Chapter 5 utilises divergence
metrics to quantify the quality of speech.

3.2 Basics in machine learning

In [83], machine learning is defined as the field of study that gives com-
puters the ability to learn without being explicitly programmed . Machine
learning is often necessary when human expertise does not exist, and a
machine (computer) learns a task by sample data or past experience [84].
It also is beneficial when humans can do the task without difficulty, but are
unable to explain their expertise with simple logic, and hence traditional
programming is not adequate. Furthermore, machine learning is valuable
when solutions change in time or need to be adapted to particular cases.
In the following we explain the basics of machine learning.
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What is machine learning? We use algorithms to solve problems on the
computer. An algorithm is a finite list of well-defined instructions for
transforming the input to output. For example, in a sorting algorithm,
the input is a set of numbers, and the output is their ordered list. Different
people might write different algorithms for the same task. Hence there
might be different algorithms for one problem. However, there are some
other tasks that we do not have any algorithm for. For example, in predict-
ing the topic of a document, the input is a set of words, and we know the
output should be one word that specifies the topic. However, we do not
know how to map the input to output. In such a case we cannot directly
write a computer program to solve that problem, and we would like the
machine (computer) to automatically extract the algorithm, using example
data or past experience. In other words, we want to use data to make up
for lack of knowledge [84].

Machine learning algorithms may not be able to find the approxima-
tion with high predictive accuracy but may have the ability to construct a
useful approximation, which can detect particular patterns or regularities.
In certain applications, the efficiency (i.e., the space and time complexity)
of the learning or inference algorithm may be as important as its predictive
accuracy [84].

Types of learning Machine learning algorithms can be organized into
two major settings based on the type of data available during training the
machine: supervised learning and unsupervised learning. We will also
explain a learning type that is intermediate between these two. This is
referred to as semi-supervised learning.

In supervised learning, we know the value of the output for the input
data in the training set. In this case, our dataset is called labelled data [85].
Curve-fitting is a simple example of supervised learning. In Chapter 4, we
propose a supervised quality assessment, which uses training data that
contains speech utterances labelled with their quality score.
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In machine learning applications, one can often find a large amount of
unlabeled data without difficulty, while labelled data are costly to obtain.
Therefore a natural question is whether we can use unlabeled data to build
a more accurate predictor, given the same amount of labelled data. This
problem is often referred to as semi-supervised learning [86], which has been
an area of interest in the machine learning community. One prominent ap-
proach to semi-supervised learning is based on the idea of using unlabeled
data to learn some meaningful representation and map the input features
to an intermediate feature space, called latent space [87]. In this proce-
dure, instead of mapping the input features to the output, the algorithm
learns to map latent space to the output. The hope is that the learner finds
it is easier to learn from the latent space. In the context of semi-supervised
learning, learning the feature representation from unlabelled data is called
pre-training (or regularisation), and the following step that uses labelled
data is called fine-tuning. The parameters learnt during pre-training might
change in the fine-tuning step that is supervised [88].

In unsupervised learning, we have an unlabeled training data set, which
is simply a set of input data (that are not mapped to any output value). The
unsupervised learning can be applied for partitioning the training set into
appropriate subsets. Such methods have an extensive application where
it is desirable to classify data into meaningful categories [89]. Genera-
tive models [20, 90], which have obtained considerable attention recently,
have become another promising area in unsupervised learning. Genera-
tive models use unlabelled training sets to learn the distribution of data
and model how they were generated. In Chapter 5, we explain the novel
supervised learning we implemented based on generative models. Our
proposed method is more similar to the assessment functionality of the
human brain, which is trained with unlabeled signals.

Types of output The goal of supervised machine learning is to learn a
mapping from the input space to the output space. Based on the desired
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outcome, the application of machine learning can be divided into two ma-
jor categories: classification and regression.

The value of the output might be real value numbers or discrete value
numbers. If the predicted variable is a real number, it is called a regression
problem. In regression problems, the process that performs mapping is
called a function estimator or regressor. Alternatively, if the predicted vari-
able is discrete, it is called a classification problem, in which the output can
represent a categorical value. In classification problems, the process that
expresses the mapping is called a classifier, a recogniser, or a categoriser.
The output itself is called a label, a class, a category, or a decision. The
output may also have a vector-value with elements being real numbers or
categorical values [89].

In the quality estimation literature, which is the focus of this thesis,
the type of output depends on the protocol used for rating the quality. In
many protocols, the human subjects provide a discrete score, and for that
case, the problem is considered as a classification problem. For example,
the ACR protocol [2], allows for five discrete scores, and hence the prob-
lem becomes a multi-class classification problem. However, most quality
assessments estimate the subjective mean opinion score (MOS) [47]. In
this case, the problem converts to a regression problem. It is noted that in
some other protocols, such as the MUSHRA protocol [3], the user essen-
tially provides a continuous score and hence the problem is a regression
problem by definition.

Neural networks Neural networks are an extensive area of research in
machine learning, which is inspired by the biological brain. A neural net-
work is a connected graph with input, output and hidden neurons that are
connected with weighted edges. The weights affect how much the input
propagates forward through the network to the output. The neurons typ-
ically use a scalar-to-scalar function called an activation function to trans-
form their input to a value called the neuron’s activation. The weights are
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updated during the learning process that is called training.

Training Training is a learning process in which sample data is used to
estimate the parameters of the model. In general, learning comprises an
iterative forward and backward propagations that adjust the weights in
order to optimise the objective function with regards to the training data.

Objective function The objective function is the function to be max-
imised or minimised in an optimisation problem. In the machine learning
context, the objective provides a formal specification of the problem. The
objective function (sometimes called cost function or loss function in the
machine learning context) is determined before the training begins. Mean
Squared Error (MSE) is an example of a simple objective function that is
commonly used for regression problems. It is defined as:

L =
1

N

N∑
i=1

(yi − ŷi)2, (3.1)

where yi and ŷi are actual and predicted data points respectively, and N

is the number of data points available for training. MSE is useful for re-
gression problems, in which the intention is to reduce the cost based on
the difference between the actual data points and the predicted regression
line. Sections 3.3 and 3.4, reviews machine learning methods in the litera-
ture with regards to the varieties in architectures and objective functions.

Gradient descent Gradient descent optimisation methods are the most
common techniques used for training neural networks and estimating their
parameters [91]. Gradient descent is a way to find the model’s parame-
ters, θ ∈ Rd, that minimise the objective function L(θ). Gradient descent
methods are based on iterative updates of the parameters in the opposite
direction of ∇θL(θ). Here ∇θL(θ), which is the gradient of the objective
function with regards to the model’s parameters, determines the direc-
tion of the slope of the surface created by the objective function. In short,
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gradient descent algorithms follow the direction of the slope of the objec-
tive function downhill until it reaches its (local) minimum value [91]. The
learning rate, η, determines the size of the steps to take towards the valley.

Basis functions and kernel functions Linear regression or classification
is simple to implement but is not effective if a linear function cannot ap-
proximate the relationship between input and output. A key concept to
overcome this problem in kernel-based methods is to use a set of basis
functions for mapping data to space with a much higher dimensionality
where a linear regression or classification is appropriate by applying hy-
perplanes.

As noted in Aizerman [92], inner products in this high-dimensionality
space can be expressed with kernel functions in the original space. There-
fore, using kernel functions enables us to carry out computations implic-
itly in the high dimensional space, without actually performing a transfor-
mation to the high dimensionality space. This concept is referred to as the
kernel trick, which leads to computational savings.

Shallow and deep architecture Machine learning algorithms can be cat-
egorised into two types according to the level of their hierarchical abstrac-
tion from data [93]: shallow learning and deep learning. In this context,
shallow and deep architecture refer to two different ways to model the
problem when the complexity of problems increases. In conventional (i.e.,
shallow) machine learning methods, there is only one hidden layer, and
the capacity of neural networks is controlled by varying their width (i.e.,
the number of neurons in the hidden layer). On the other hand, deep neu-
ral networks allow multiple hidden layers and their significant power is
achieved through the depth of network. It is shown [94] that functions
that can be implemented by a deep network of polynomial size, require
exponential size in order to be approximated by a shallow network. Deep
learning methods have gained popularity because they often outperform
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shallow machine learning methods. However, they require an extensive
amount of data for training. Due to the unavailability of a large scale la-
belled database, the supervised method proposed in Chapter 4 has a shal-
low architecture. On the other hand, the unsupervised method proposed
in Chapter 5 is based on deep learning. The proposed method does not
require labelled data, and for training the deep network, it utilises large
scale unlabelled data that is publicly available. The next two sections pro-
vide a literature review on machine learning methods having shallow and
deep architectures.

3.3 Machine learning with shallow architecture

The supervised method proposed in Chapter 4 has a shallow architecture.
In this section, we briefly explain this model and review the Relevance
Vector Machine (RVM) and the Correlated Nystrom Views (XNV), which
are employed in Chapter 4.

In conventional machine learning problems, we have a model with a
relatively small number of parameters and aim to optimise them so that
the prediction error (or in general, the cost function) has its smallest value.
In order to solve a machine learning problem, we execute code on the com-
puter to use the training data and find the optimised parameters of that
model.

For example, in a regression problem defined as:

y = f(x) + ε, (3.2)

the output is assumed to be the sum of a deterministic function of the input
and random noise, where f(x) is the unknown function. Machine learn-
ing algorithms aim to approximate the parameters of f(x) based on sam-
ple data. Since data comes from a process that is not completely known
to us, the outcome is defined as a random variable Y . Here the outcome
Y is drawn from a probability distribution P (Y = y), which specifies the
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process. It should be noted that the process might be deterministic in re-
ality, but because the complete knowledge about that is not accessible, it
is modelled as random and it is analysed by applying probability theory
[84].

The core task of machine learning in the regression problem above is
modelling this problem by inference from the samples in training data.
Programming computers to make an inference from sample data is a com-
bination of statistics and computer science. Statistics provides the mathe-
matical framework for inference, and computer science provides efficient
implementation of the inference methods.

One approach to estimate the model parameters in machine learning
problems is Maximum Likelihood Estimation (MLE). Maximum likelihood
estimation attempts to find parameters θ for the model so that the obser-
vations D = (d1, ..., dn) in training data are most likely to occur. In MLE,
the objective function to be maximised is called the likelihood function.
The likelihood function is defined as:

L(θ|D) = f(D|θ), (3.3)

where f(D|θ) is the probability of observing samples D from a model that
has properties defined by θ. Consequently, the maximum likelihood esti-
mator of θ is defined as:

θ̂ = arg max
θ

[L(θ|D)], (3.4)

which is typically computed through gradient descent. In MLE, the op-
timised parameters, θ̂, are found so that the likelihood (or equivalent log
likelihood) of the training data is maximised. Optimisation with MLE is
prone to overfit1 to the training data when the training set is small. Fur-
thermore, in the maximum likelihood approach, a parameter is treated
as an unknown constant and hence no statistical information is provided
about the results.

1Overfitting (or overlearning) means that the system learns aspects of the database
that are not representative and that do not generalise to other data.
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Alternatively, Bayesian estimation treats a parameter as a random vari-
able, which takes any prior information into account by using a prior prob-
ability distribution. Bayesian estimation is used when some prior informa-
tion about the parameter is available. It is called the prior because it is the
knowledge we have before looking at the samples. Prior beliefs are partic-
ularly important when the number of available samples is small. Bayesian
estimation combines the information that can be learnt from data with the
prior information, and therefore it is less prone to overlearning the sam-
ples.

Bayesian estimation use Bayes’ rule to combine the prior and the value
calculated from the training set. It calculates the posterior probability after
having seen the observation as:

posterior =
prior × likelihood

evidence
. (3.5)

This can be written as:

p(θ|D) =
p(θ)× p(D|θ)

p(D)
, (3.6)

where θ denotes the unknown parameters, and D is a training dataset.
P (D) is a normaliser to guarantee that the posterior integrates to one.

Maximum A Posteriori (MAP) estimate is a Bayesian approach that is
often applied when a probabilistic model suffers from overfitting. In MAP
estimation, the posterior density is reduced to a single point [95] and the
prediction is computed as:

p(y∗|x∗, D) = p(y∗|x∗, θMAP ), (3.7)

where x∗ is the test datapoint, y∗ is its predicted output and θMAP are
parameters that maximised the posterior. On the other hand, in the full
Bayesian approach we use the complete posterior by averaging the output
of all possible predictions, using all values for parameters, weighted by
their probabilities:

p(y∗|x∗, D) =

∫
p(y∗|x∗, θ)p(θ|D)dθ. (3.8)
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Except for certain simple cases where the posterior has a nice form,
the integral is analytically intractable and is not easily evaluated unless
approximation methods such as sampling are applied [95]. Fortunately,
this operation is relatively simple if a Gaussian prior is considered over
the joint probability distribution of the observations. Consequently, Gaus-
sian Processes for Machine Learning [96] have become one of the important
Bayesian machine learning approaches.

The fundamental idea in Gaussian processes is the closer data points
are, the more correlated to each other their corresponding output will be.
This idea is modelled below:

Model 1. Let x1 and x2 be two input vectors where d represents the distance
between them, and y1 and y2 are their corresponding outputs. We assume y1 and

y2 have a Gaussian distribution with covariance matrix

[
c11 c12

c21 c22

]
:

• If d is small then y1 and y2 correlate strongly and hence c12 has a large
value.

• If d is large then y1 and y2 become independent and hence c12 tends to zero.

Gaussian processes formed a useful background for many well-known
machine learning methods with shallow architecture. The Relevance Vec-
tor Machine (RVM) introduced by Tipping [97] is a special case of a Gaus-
sian process. In general, the performance of the RVM is good for both
regression and the binary classification. However, the original RVM suf-
fers from a number of drawbacks. For example, it does not perform well
for multi-class classification. Moreover, the order of its training effort is
high. Major efforts have been made to reduce these drawbacks. This has
led to the accelerated training algorithm described in [98], which does not
use all data for a start. Furthermore, a multi-class training procedure with
good performance was presented in [99], which uses the fast procedure
described in [98].
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The success of the RVM was because of both its effectiveness and its
sparseness. The model is called sparse when it contains relatively few non-
zero parameters. Sparsity makes the model interpretation simpler and
generally generate models with improved productivity [100]. The sparse-
ness in RVM was achieved by specifying a prior distribution for the vector
of weights. The sparseness in RVM relies on hyperparameters that govern
the prior distribution of the weights. The original RVM of Tipping [97]
provides point estimates of the hyperparameters, which is known as type
II maximum likelihood.

The RVM method defined in [101] applies a true Bayesian approach
as an alternative to point estimates for the hyperparameters. This fully
Bayesian RVM is based on the variational approximation and does not
seem to have any practical advantages over the original RVM, but is more
elegant. While closely related to the RVM, this alternative sparse method
is sometimes referred to as a Sparse Bayesian Learning (SBL).

Fast methods for SBL have been developed in [102] for regression prob-
lems, which appears to make the variational-approximation based meth-
ods more attractive than the original RVM approach. In Chapter 4, we
consider using these fast methods as the back-end regressor of the qual-
ity assessment system. By using this statistical method, the objective of
the quality assessment turns into estimating the predictive distribution of the
quality of an utterance. In this case, results can be used to obtain both the
prediction and the precision. For example, when the output has a Gaus-
sian distribution, the predicted value is its mean, and its precision is the
inverse of its variance.

As will be explained in Chapter 4, we also employed Correlated Nys-
trom Views (XNV) [103] for quality assessment. XNV is a fast semi-supervised
algorithm with shallow architecture for both regression and classification.
XNV is shown to outperform other methods by improving predictive per-
formance and reducing the variability of performance whilst also reduc-
ing runtime by orders of magnitude [103]. The method builds on two
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main ideas. The first idea is based on the Nyström method that generates
random features [104] for constructing views on a given data set. The sec-
ond is multiview regression, using Canonical Correlation Analysis (CCA)
[105], which biases the regression towards useful features.

In brief, XNV first applies two equally useful but sufficiently different
views on the data. Then it uses the canonical norm to penalise features that
are uncorrelated across the views. XNV substantially reduces the variance
with a minimal increase in bias [103]. This makes it a good option for the
quality assessment systems in Chapter 4 that are based on the statistical
analysis methods.

The supervised and semi-supervised methods reviewed in this section
have a shallow architecture, which is the base for the quality assessment
system proposed in Chapter 4. The use of machine learning methods with
deep architecture has appeared as a promising area of research in statisti-
cal machine learning. In the next section, we review deep machine learn-
ing, which is the introductory to the contents of Chapter 5.

3.4 Deep neural networks

In the previous section, we briefly reviewed machine learning methods
with shallow architectures. The focus of this section is machine learning
methods with deep architectures.

There have been numerous studies demonstrating the effectiveness of
deep learning methods in a variety of application domains [106, 107]. Deep
networks have been mainly applied to visual classification databases such
as handwritten digits [108], image classification [21], object detection [109],
face detection [110, 111] or pedestrian detection [19], and also to acoustic
signals to perform speech recognition [112], acoustic modeling [113] and
audio classification [114]. In Section 3.4.1 we present an introduction to
deep neural networks in general and review the relevant methods.

Deep neural networks were traditionally used for discriminative mod-
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els, which focus on predicting labels of the data. Deep generative mod-
els, which focus on modeling the actual distribution of data, have also
achieved considerable success. The unsupervised quality assessment
method proposed in this thesis is based on deep generative models. In Sec-
tion 3.4.2 we present an introduction to deep generative neural networks.
In Section 3.4.3 we explain Generative Adversarial Networks (GANs), which
we implemented for developing the quality assessment proposed in Chap-
ter 5.

3.4.1 Introduction

Deep learning has appeared as a promising area of research in statistical
machine learning [110, 115, 116, 117, 118, 119, 120, 121]. Learning algo-
rithms for deep architectures are organised in a hierarchy with multiple
levels. This concept takes its inspiration from the mammalian visual cor-
tex, which consists of a chain of processing elements, each of which is
associated with a different representation of the raw visual input [88]. Ac-
cordingly, deep learning is centred on the learning of representations of
data which are useful for the task at hand.

In deep learning, it has been hypothesised that learning a hierarchy
of features makes it easier and more practical to develop useful repre-
sentations. Such representations are beneficial because although they are
tailored to a specific task, they borrow statistical strength from data that
originates from other related tasks. Furthermore, learning the feature rep-
resentation usually leads to higher-level features that are more robust to
unforeseen sources of variance that exist in real data [88]. However, until
2006, it was not clear how to train such deep networks. This was because
gradient-based optimisation often appears to get stuck in poor solutions
when the algorithm starts from a random initialisation of the parameters
[119].

In 2006 Hinton et al. [115] proposed a greedy layer-wise unsupervised
learning procedure named Deep Belief Networks (DBN). DBNs are com-
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posed of several layers of Restricted Boltzmann Machines (RBM). Boltz-
mann machines are statistical models that are characterised by the joint
probability distributions of the states of their nodes, a property shared
with graphical models [122]. The learning aims to make the weights such
that in "free-running" mode the network gives for the visible nodes the
same distribution as the environment does. The hidden units are trained
to capture higher-order data correlations that are observed at the visible
units [106]. The principle is that each layer starting from the bottom is
trained to represent its input (the output of the previous layer). After
this unsupervised initialisation, the stack of layers can be converted into a
deep supervised feedforward neural network and fine-tuned by stochastic
gradient descent [88].

Shortly after Hinton introduced DBNs, alternative algorithms were pro-
posed based on auto-encoders. Examples are ordinary auto-encoders [116],
sparse auto-encoders [117], denoising auto-encoders [123], variational au-
toencoders [90], and adversarial autoencoders [124]. The auto-encoder
neural network is an unsupervised learning algorithm that sets the tar-
get values to be equal to the inputs and applies backpropagation to learn
the weights. These deep auto-encoder algorithms can be seen as learning
to transform one representation (the output of the previous stage) into an-
other, at each step disentangling the factors of variations underlying the
data [125].

The methods above either 1) perform a greedy-layer-wise pre-training
of weights, using unlabeled data alone followed by supervised fine-tuning
(as introduced by Hinton using RBMs), or 2) learn unsupervised encod-
ings at multiple levels of the architecture jointly with a supervised signal
[126]. The aim is that the unsupervised method improves the accuracy of
the task at hand. It has been observed that once a good representation has
been found at each level, it can be used to initialise and successfully train
a deep neural network by supervised gradient-based optimisation [125].

Comparative experimental results have shown that deep networks can
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outperform shallow architectures. However, when a deep neural network
is trained on a small training set, it typically tends to suffer from over-
fitting. Accordingly, due to the limitation of the available data, deep ar-
chitecture does not appear to be advantageous for the supervised quality
assessment in Chapter 4.

Dropout is an algorithm introduced by Hinton et al. [127] to prevent
neural networks from overfitting. Dropout can be interpreted as a form
of regularisation by adding noise to the fully connected neural network
layers. Each element in these layers is kept with probability p, otherwise
is set to 0 with probability (1− p). Dropout improves the network’s gener-
alisation ability, bringing improved performance on test datasets.

Drop-connect generalises Dropout [128] by randomly dropping the
weights rather than the activations. Each hidden unit in such neural net-
works must learn to work with a randomly chosen sample of other units
[128]. This should make each hidden unit more robust and drive it to-
wards creating useful features on its own without relying on other hidden
units to correct its mistakes [128]. In Chapter 4, we implement a super-
vised quality assessment with a deep architecture regularised by drop-
connect. However, the system did not perform better than the one with
shallow architecture. This can be justified based on the size of data avail-
able in comparison with the size of the neural network.

Unlike the supervised method in Chapter 4, the unsupervised method
proposed in Chapter 5 is not dependant on labelled data and the availabil-
ity of data is not a limitation any more. Hence, in Chapter 5 we benefit
from deep learning and train the system with speech signal files that are
freely available.

One other significant difference between the methods proposed in Chap-
ters 4 and 5 is the size of the input. In Chapter 4, due to limitation of avail-
able data, we handpicked the useful features for the system and utilised
a front-end module to extract an enhanced feature set from raw signals.
However, in Chapter 5, spectrograms of the raw speech signals are used

58



for input because deep architectures allow large input vectors.
Standard neural networks receive a single vector as input and train-

ing is not efficient on multi-dimensional inputs. A convolutional neural
network (CNN) [129] is a special kind of a neural network designed to
cope with the variability of 2D shapes. They ensure some level of shift,
scale and deformation invariance by combining local feature fields, shared
weights, and utilising spatial subsampling [111]. Deep convolution neu-
ral networks (DCNNs) [21, 130, 131, 132, 133, 134] have shown excellent
performance in processing images and spectrograms. In Chapter 5 spec-
trograms of the speech signals are used as the input into our quality as-
sessment system and convolutional networks are beneficial.

The architecture of the regular deep neural networks and CNNs inher-
ently relies on the assumption that samples are generated independently.
Recurrent neural networks (RNNs) are feed-forward networks with a spe-
cific structure, based on the notion of time layering, which enables them
to model data with temporal or sequential structure and different length
inputs and outputs. RNNs became a powerful learning tool [135] for se-
quential inputs like speech and language processing where data points are
related in time. In Chapter 6, we discuss using RNNs as the future line of
this work, which enables our system to use raw signals as input instead of
spectrograms.

In this section, we briefly reviewed deep neural networks and how it
is advantageous for unsupervised quality assessment. In the next section,
we review deep generative neural networks, which are applied in the un-
supervised quality assessment method proposed in Chapter 5.

3.4.2 Deep generative networks

Generative models are powerful tools for learning data distributions in
unsupervised learning. As will be explained in Chapter 5, the unsuper-
vised method proposed in this thesis employs a deep generative model.
In this section, we review deep generative methods and justify why we
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selected Generative Adversarial Networks (GANs) to implement for the
quality assessment proposed in Chapter 5.

The original application of generative models is sampling from a learned
distribution and synthesising new instances. However, the applications
of generative models have extended and they are considered an excel-
lent tool for representation learning. Representation learning is learning
a meaningful and interpretable latent representation typically called the
latent space. It has a vast area of applications, not limited to, but includ-
ing visualisation by projecting data onto two or three dimensions, data
compression, and detection of abnormal patterns.

To generate data, generative models typically sample from a simple
distribution and map that into a data point in the learned distribution.
Hence good generative models are hopefully able to learn a good repre-
sentation [136] automatically, where that simple distribution (that is easy
to sample from) is considered to be the latent space.

Early methods of representation learning are based on restricted Boltz-
mann machines [115] and deep autoencoders [116]. Deep Convolutional
Generative Adversarial Networks (DCGANs) [22] that are based on GANs,
are shown to be a successful tool for representation learning. DCGANs
benefit from convolutional networks with adding certain constraints on
the architecture of the networks and the connections between the neu-
rons. The variational autoencoder [90] and the adversarial autoencoder
[124] are also shown to learn representations well by imposing a prior dis-
tribution to the latent space. Variational Recurrent [137] and Adversarial
Symmetric Variational Auto-Encoders (AS-VAE)[138] are other examples
of generative models with a similar concept.

It has been proposed [139] that a good representation is one that dis-
entangles the underlying factors of variation. InfoGAN [136] success-
fully learns this in an unsupervised way by introducing the information-
theoretic regularisation term that forces high mutual information between
latent codes and generator distribution. In [140] the authors derived vari-
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ational lower and upper bounds on the mutual information between the
input and the latent variable. They used these bounds and derived a rate-
distortion curve that characterises the tradeoff between the compression
and the reconstruction accuracy of the samples in the training set.

In Chapter 5, we go out of the domain of the rate-distortion curve and
study the case where samples come from a distribution that is different
from the training set. We demonstrate that the latent variables become
correlated when the distribution of input is different from the training
data. We benefit from this novel idea and hypothesise that the correla-
tion between the latent variables will be a good measure of quality when
we compare the samples under test with the training data.

WaveNets [141], Generative Adversarial networks(GANs) [20] and vari-
ational Auto-encoders (VAE) [90] are the state-of-the-art generative mod-
els. The latent space does not have an explicit definition in WaveNets.
Considering the criteria defined in Chapter 5 is for quality to be measured
in the latent space, we do not pursue WaveNets. In VAE, the latent space
is regularised using the KL-divergence (which is explained in Section 3.5)
between encoded samples and the prior. This means that the distribu-
tion of the encoded samples is expected to be an approximation of the
prior distribution. Hence the distribution of the prior is naturally slightly
different from that produced by the trained encoding network. The ap-
proach we propose is based on the assumption that the the distribution
of the prior is same as that produced by the trained encoding network.
Therefore VAE is not a suitable candidate for our purpose either. In con-
trast, GANs use a simple continuous input noise vector z, which reflects
the latent space and imposes no restrictions on how the generator may use
this noise. Therefore the distribution of the latent space in GANs is same
as the distribution defined as the prior. Furthermore GANs are more suc-
cessful in modelling signals in comparison with VAE. Hence, GANs suit
our purpose better and we prefer GANs as the basis of our system for our
work. In the next section we review GANs and the approaches proposed
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to improve its training.

3.4.3 Generative adversarial networks

Generative Adversarial Networks (GANs) [20] are learning techniques for
both semisupervised and unsupervised problems, which have gained much
attention since 2014 [22, 142, 143, 144, 145, 146]. As explained in the pre-
vious section, the unsupervised quality assessment proposed in Chapter 5
is based on GANs. The explosion of interest in GANs is driven not only
by "their potential to learn deep, highly nonlinear mappings from a latent
space into a data space and back", but also by "their potential for deep rep-
resentation learning that can be used in a variety of applications" [147] (in-
cluding image synthesis, semantic image editing, style transfer, image su-
per resolution, and classification [147]). Image processing was the primary
domain of GANs, but the idea was soon employed in other areas such as
video synthesis [148, 149] and language processing [146, 150, 151, 152]. In
this section, we first describe GANs. Then we review other GAN-based
methods that improve the training and explain why we selected the origi-
nal GAN to implement for the unsupervised quality assessment in Chap-
ter 5.

GANs use a two player min-max game and learn a generator network
G that generates samples playing against a discriminator network D [20].
G learns to generate samples by transforming a random input z drawn
from a simple probability distribution Pnoise(z) into a sample G(z) from
distribution of data Pdata. D learns to differentiate between samples from
Pdata and the generated distribution PG [20]. In other words, D and G play
a two-player minimax game as:

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pnoise(z)[log(1−D(G(z)))],

(3.9)

where V (D,G) is the value function of the game and D(x) represents the
probability that x came from the Pdata rather than PG [20]. If G and D have
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(a) (b)

(c) (d)

Figure 3.1: Guidance to understand the min-max problem in GANs (taken
from [20]): In order to learn the distribution Pdata (black dotted line),
Generative Adversarial Nets iteratively update generative distribution Pg
(green solid line) and discriminative distributionD (blue dashed line). The
lower and higher horizontal lines are the domain from which z is sampled
and the domain of x respectively (The arrows show x = G(z) maps the
uniform distrbution z to Pg). (a) Pg is similar to Pdata and D is a partially
accurate classifier [20]. (b) D is trained to discriminate generated samples
from data [20]. (c) G(z) moved to those regions that are more likely to be
classified as real data [20]. (d) After several steps of training Pg = Pdata

and D(X) = 1
2

cannot differentiate between the two distributions [20].

enough capacity, they reach the point that PG matches Pdata. Figure (3.1)
from [20] is a pedagogical explanation of the approach.

The original GAN models may suffer from different problems such as
mode collapse, diminished gradient, and non-convergence. A number of
works have been proposed to improve training GANs and they can be cat-
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egorised into modifying the network design, updating the cost function,
or using a different optimization technique.

Deep Convolutonal GAN (DCGAN) [22] is one of the most popular
network design for GANs. GANs are known to be unstable to train as they
often result in generators that produce nonsensical outputs. In DCGANs,
a family of architectures is proposed that results in stable training across a
range of datasets. It also allows for training higher resolution and deeper
generative models.

The conditional GAN (CGAN) [144] is a conditional version of a gen-
erative adversarial network, which can generate data conditioned on the
class labels. Stacked Generative Adversarial Networks (SGAN) [153] con-
sists of a top-down stack of GANs, each trained to generate plausible
lower-level representations conditioned on higher-level representations.
SGAN is able to generate images of much higher quality than GANs with-
out stacking.

In Minibatch discrimination [143] a new penalty term is added to the
cost function, which prevents mode collapse. Mode collapse is when the
generator collapses to a parameter setting where it always generates the
same point. Feature matching [143] proposes a new cost function for the
generator with the new objective that the generated data has to match the
statistics of the real data.

Vanishing gradients is another problem that the original GAN suffers
from. In gradient based learning methods, the parameters of the neu-
ral network are updated in each iteration of training proportional to the
partial derivative of the error function with respect to that parameter. In
such methods, the vanishing gradient prevents the weight from being ef-
fectively updated. In order to overcome the problem of vanishing gradi-
ents in GANs, Least Squares Generative Adversarial Networks (LSGANs)
[145] adopts the least squares loss function for the discriminator. Wasser-
stein GAN (WGAN) [154] overcomes this problem and improves the sta-
bility of learning by proposing a new cost function using Wasserstein dis-
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tance that provides a reliable gradient everywhere. WGAN enforces a
Lipschitz constraint on the critic by using weight clipping. The authors
of [155] found that weight clipping sometimes leads WGANs to generate
only poor samples or fails to converge. They introduced gradient penalty
(WGAN-GP) [155], which proposes an alternative to clipping weights by
penalizing the norm of the gradient of the critic with respect to its input.

Energy-based Generative Adversarial Networks (EBGAN) [156] views
the discriminator as an energy function that attributes low energies to
the regions near the data manifold and higher energies to other regions.
EBGAN allows the use of a wide variety of architectures and loss functions
[156]. The work in [156] replaced the discriminator with an auto-encoder,
where the energy is the reconstruction error. The EBGAN with the pro-
posed architecture exhibits more stable behavior than regular GANs dur-
ing training. Boundary Equilibrium Generative Adversarial Networks
(BEGAN) [157] is based on the autoencoder for the discriminator as for
the EBGAN, but using a loss derived from the Wasserstein distance. It
uses a typical GAN objective with the addition of an equilibrium term
which balances the discriminator and the generator [157].

In the standard GAN the generator is trained to increase the probabil-
ity that fake data is real. Relativistic GANs (RGANs) [158] suggest the
probability of real data being real should also decrease during the train-
ing. RGANs use a relativistic discriminator, which estimates the probability
that the given real data is more realistic than a randomly sampled fake
data and adopts the cost function relatively [159]. GANs with a relativistic
discriminator are more stable and produce data of higher quality while its
training is faster.

In this thesis, we use the generator module of GANs to learn the model
of good quality speech signals. To assess the quality of speech we propose
to compare the distribution of speech signals in the latent space. For this,
we have to implement an inverted generator that maps the speech signals
back into the latent space. To implement the inverted generator, a simple
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architecture in the forward generator is desirable. Hence, in Chapter 5 we
utilise the original GAN by Goodfellow [20] for learning the distribution
of the spectrograms of speech signals. We use the same architecture used
for CIFAR database in [20], and the algorithm successfully converged on
our database. Hence we did not require the application of the techniques
introduced above to overcome such problems.

As explained above, the GAN-based quality assessment proposed in
Chapter 5, assesses the quality of speech by comparing the distribution of
speech signals in the latent space. In the next section, we study different
divergence metrics and how to utilise them to compare the distributions.

3.5 Divergence measures

In this section, we briefly review divergence between probability distri-
butions, which is essential in order to read Chapter 5. Divergence is a
measure to quantify the difference or discrepancy between two probabil-
ity distributions P (x) andQ(x). It is a weaker notion than the distance as it
does not have to be symmetric. Approximating a divergence between two
distributions is used for various purposes in the statistics, information the-
ory, and machine learning communities. In the following, we review the
most popular divergence and distance measures that are used for training
neural networks.

Kullback–Leibler divergence (KL) [160] is one of the most popular
divergence measures in statistics and machine learning that has been used
for decades in a wide range of inference problems. It is defined as:

KL(P‖Q) =

∫
Q(x) log

(
P (x)

Q(x)

)
dx. (3.10)

One can define the scoring function fQ(x) = − logQ(x) [161] and rewrite
Equation (3.10) as

df (P,Q) = Ex∼PfQ(x)− Ex∼PfP (x) (3.11)
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Jensen Shannon divergence (JS) introduced by Rao [162] and generalised
by Lin [163] is a symmetrised version of the Kullback-Leibler divergence.
It is defined as:

JS(P‖Q) = H

(
P +Q

2

)
− 1

2
H(P )− 1

2
H(Q), (3.12)

whereH is the Shannon entropy. Equation (3.12) can be expressed in terms
of the Regarding Kullback-Leibler divergence as:

JS(P‖Q) = KL(P‖P +Q

2
) +KL(Q‖P +Q

2
). (3.13)

Integral probability metric (IPM) [164] is another popular family of
distance measures defined as:

IPM(P‖Q) = sup
f∈F
|Ex∼Pf(x)− Ex∼Qf(x)| (3.14)

where F is a class of real-valued bounded measurable functions. The
supremum in Equation (3.14) finds the function f , whose average value
over P is most different from its average over Q. Wasserstein distance
[165], and maximum mean discrepancy (MMD) [166] are two famous IPM
metrics. In the following, we explain these two metrics in more detail and
explain they are different only in the function class F .

Maximum mean discrepancy (MMD) has been adopted in a variety
of modern applications in machine learning and statistics. It considers the
unit ball in a universal reproducing kernel Hilbert space (RKHS) [167] as
the function class and defines the divergence as:

MMD2(P,Q) = sup
‖f‖Hk=1

(Ex∼Pf(x)− Ex∼Qf(x))2 , (3.15)

whereH represents an RKHS with k as its reproducing kernel. The choice
of the unit ball in RKHS for MMD has two reasons: 1) it is rich enough
that the MMD decreases to zero if and only if P = Q, and 2) it is restrictive
enough for to converge quickly to its expectation when the sample size
increases [166]. In terms of mean embeddings, MMD can be written as:

MMD2(P,Q) = ‖µP − µQ‖2
Hk=1, (3.16)
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where µP = Ex∼Pk(·, x) and µQ = Ex∼Qk(·, x). This indicates the MMD
metric is analogous to the Euclidean distance between the mean elements
of the two distributions in the Hilbert space [161].

Wasserstein distance or earth mover (EM) distance is defined as:

W(P,Q) = inf
π∈Π(P,Q)

E(x,y)∼π(‖x− y‖), (3.17)

where Π(P,Q) is the set of all joint distributions π(x, y) with marginal P
and Q. Intuitively the EM distance is defined as the optimal cost of trans-
porting "probability" mass from x to y in order to transform the distribu-
tion P into the distribution Q. Under mild assumptions,W(P,Q) is con-
tinuous everywhere and differentiable almost everywhere [154]. Hence
when optimised, it often behaves better than the KL and JS. This makes
it more desirable to be used as the cost function for the generative mod-
els that are based on a relatively low-dimensional latent space. However,
finding the infimum in (3.17) is not trivial.

The famous Kantorovich-Rubinstein theorem [168] shows that L1-
Wasserstein distance is a particular case of Kantorovich metric and can
be written as:

W(P,Q) = sup
‖f‖L≤1

(Ex∼Pf(x)− Ex∼Qf(x))2 , (3.18)

where ‖f‖L is the Lipschitz semi-norm of a bounded continuous real-
valued function f . The final Equation (3.18) for Wasserstein distance is
similar to Equation (3.15) at the starting point of MMD.

To solve the maximisation problem in Equation (3.18), WGAN consid-
ers function f to be a neural network and roughly approximates that us-
ing backpropagation. The supremum in Equation (3.18) is over all the 1-
Lipschitz functions f . To enforce this in an approximate manner, WGAN
uses weight clipping and clamps the weights to a fixed range after each
gradient update.

In Chapter 5 we utilise the definition of divergence between the distri-
butions to assess the quality of speech signals. We propose to project the
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test signals into the latent space and rate them based on the divergence
between the distribution of the latent variables and the prior model distri-
bution defined for good quality signals. In Section 5.4, we study different
divergence metrics for quality assessment and select the one that suits our
purpose for rating the quality of speech.

3.6 Summary

In Chapter 2, we studied different types of speech quality assessment and
reviewed the advantage of machine learning based quality assessment
systems over conventional standards. In this chapter, we presented an
introduction to machine learning and reviewed contemporary algorithms
with shallow and deep architectures.

As explained in Chapter 2, several non-intrusive quality assessment
methods have recently been proposed based on supervised machine learn-
ing models. The overall goal in Chapter 4 is to improve the estimation of
the objective score of a speech utterance, so that in comparison with ex-
isting standards and methods, it has a high correlation with the scores
obtained from human subjects.

In this chapter, we showed reasons why deep learning methods appear
to be suitable for our purpose as they often outperform shallow machine
learning methods. However, due to the unavailability of a large scale, la-
belled database, the supervised method proposed in Chapter 4 has a shal-
low architecture, and its performance is improved by enhancing the fea-
tures. On the other hand, the unsupervised method proposed in Chapter
5 is based on deep learning as it does not require labelled data.

The overall goal in Chapter 5 is to implement the first unsupervised
quality estimation system. In this method, we mimic the high dimensional
functionality that exists in the brain and enables us to rate the quality. We
aim to define a new criterion for quality, and the overall goal is that this
criterion correlates with the scores from subject tests. In the following two
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chapters, we explain these supervised and unsupervised quality assess-
ment systems, respectively.
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4
Supervised quality assessment

4.1 Introduction

Several non-intrusive quality assessment methods have recently been pro-
posed based on supervised machine learning models. In these methods,
the machine learning algorithms learn to estimate the quality of speech
signals, where quality is defined as the outcome of a particular subjective
quality estimation protocol. In supervised quality-assessment problems,
the overall goal is to improve the estimation of the objective score of a
speech utterance so that it has a high correlation with the scores obtained
from human subjects.

Supervised learning based non-intrusive quality estimation, can be de-
scribed as a multi-class classification or a regression problem, where the
input is a set of signal features, and the output is its quality score. Signal
features can be generated by executing a pre-processing algorithm on the
input utterances. In many protocols, the human subjects are asked to rate
the quality score with a discrete score [2]. This means our target variable
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is a discrete score. Many protocols typically allow for five discrete scores
[2]. In this case, the problem will be a multi-class classification problem.
However, in the quality estimation literature, the mean score for an utter-
ance is generally used, which is a continuous score computed based on
the arithmetic mean value of subjective judgments [47]. For this case, the
problem becomes a regression problem.

The ACR method [2] is the most commonly used subjective test pro-
cedure in telecommunication. In ACR, the human subjects are paid to lis-
ten to speech utterances under controlled conditions and rate them using
a five-level impairment scale (1: bad, 2: poor, 3: fair, 4: good, 5: excel-
lent). The subjective listening quality mean-opinion-score (MOS) is then
computed for each speech file by averaging over the rating scores for all
the subjects. In the supervised non-intrusive quality assessment, the main
goal generally is to develop a regressor that predicts MOS values that are
highly correlated with the MOS of subjective tests.

Some supervised learning algorithms, such as Bayesian methods, go
further and use statistics to find a full predictive distribution instead of
predicting a constant value. As explained in section 3.3, by using statisti-
cal methods in quality assessment, the objective of the quality assessment
is to provide the predictive distribution for the quality of an utterance.
Hence, results can be used to obtain both the prediction and the precision.
For example, if the output has a Gaussian distribution, the predicted value
is its mean, and its precision is the inverse of its variance.

We have implemented various supervised learning methods, includ-
ing both Bayesian and non-statistical ones, and used them for quality as-
sessment. The Bayesian algorithms we implemented are Variational Rel-
evance Vector Machines (VRVM) [101], Fast Variational Sparse Bayesian
Learning (SBL) [102], and Correlated Nystrom Views (XNV) [103], which
are popular kernel-based methods in a nonlinear regression problem. The
sparsity property of Variational RVM results in low computational cost
and makes it useful for practical applications. The fast adaptive varia-
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tional RVM decreases the complexity of the training procedure. Moreover,
XNV reduces runtime by orders of magnitude compared to some other
semi-supervised learning algorithms [103]. The non-statistical methods
we used in our quality assessment are neural networks with drop-connect
[169], stacked autoencoders [116], stacked denoising autoencoders [123],
and generalized autoencoders [170]. To compare the performance of our
machine learning based methods with each other and also with the P.563
standard, which is designed by humans, we tested them on the IITU-T
Supplement 23 database. The evaluation metrics and test database are ex-
plained in sections 4.6.1 and 4.6.2 respectively. The results from our initial
experiments with machine learning based methods that are listed above
were the same, and none of them was better than the scores reported for
the P.563 standard in [8].

Our experimental results from applying various machine learning mod-
els in non-intrusive quality assessment indicate that with the limited data
we have, even rich machine learning algorithms do not enhance perfor-
mance. From our results, and the results others reported in the literature,
we concluded that the overall performance of speech quality assessment
systems could be improved by either collecting more training data, which
is usually expensive, or by enhancing the features [1]. The focus of the
work explained in this chapter is to enhance the features that are input to
the regressor. Our publication in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing [1], presents the overall concept
of this chapter.

To give a better understanding of the features, we first review the model
architecture of the non-intrusive systems in section 4.2, and explain why
enhancing the features is an important aspect of our work. Next we intro-
duce two novel ideas that enhance the feature set.

The first idea is to augment the feature set with raw features that are
presumably redundant [1]. We study the case where input features are
noisy and illustrate that the proposed augmented feature set improves the
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performance by reducing the effect of input noise [1]. We provide a more
detailed analysis of this performance gain and its mathematical model in
section 4.3.

The second idea we present in this chapter is the pre-processing method
we apply to the data. This method redistributes the data to obtain pre-
distorted features that facilitate the training. Section 4.4 explains the pre-
processing method in more detail. Section 4.5 explains how these feature
enhancement ideas are applied to quality assessment and discusses the
aspects of implementation.

To demonstrate the effectiveness of our system, we evaluated it on the
ITU-T Supplement 23 database, which is widely used as benchmark for
comparing the performance of non-intrusive systems [14, 23, 26, 28, 61, 62].
The experimental results showed that our method outperforms contempo-
rary single-ended quality assessment systems and current popular stan-
dards. Section 4.6 provides more details on the experimental results. This
is followed by a summary of this chapter in section 4.7.

4.2 Model architecture of non-intrusive QA

Supervised learning based non-intrusive quality estimation proposed in
this chapter is expressed as a regression problem, where the input is a
set of features that describes the attributes of speech utterance, and the
output is its quality score. In this section, we study two different types of
architecture for non-intrusive systems in which features are extracted at
different levels.

The classic view in regression problems is that if the information is
irrelevant or redundant, then knowledge discovery during training is dif-
ficult. Therefore, in conventional machine learning algorithms, selecting
a proper set of features is an important aspect of the overall performance
[171, 172, 173]. Selecting a proper set of features usually improves the pre-
diction performance of the predictors. It also provides faster and more
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cost-effective predictors. Furthermore, it provides a better understanding
of the underlying process that generated the data [174].

Lately, deep learning methods [116, 115, 175] have become very pop-
ular, particularly for building hierarchical representations of data. Deep
learning models remove the need for feature engineering as they auto-
matically develop feature representations from unlabeled data. Lower
layers in deep architectures attempt to detect simple features to feed into
higher layers, which detect more complex features [121]. Such neural net-
work models are well suited to domains where large datasets are avail-
able [169]. Deep neural networks significantly outperform shallow ones
in many large and complex systems. However, deep neural networks do
not apply to the quality assessment method proposed in this chapter due
to the small size labelled database that is publicly available as opposed to
a substantial amount of data needed for training deep neural networks.

A non-intrusive quality assessment system that operates directly at the
waveform level requires a large amount of data for learning a large num-
ber of parameters at the input level. Therefore, the non-intrusive quality
assessment systems presented in the literature contain a front-end mod-
ule, which pre-processes the speech signal and extracts information from
the waveform to construct a feature vector. The feature vector must in-
clude the attributes that represent different types of distortion. Likewise,
the supervised model proposed in this chapter has a front-end module,
which computes features that describe the audio and are the input to the
quality predictor.

The front-end module in non-intrusive quality assessment systems, de-
composes the degraded signal voice into time frames and computes the
physical features of the individual frames. An aggregation function is re-
quired to provide one score that represents the quality of the whole ut-
terance. This section focuses on aggregation and where it is performed.
Based on the literature, we conclude that the aggregation module could
be placed either between the front-end system and the quality predictor
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or after the quality predictor. In the following subsections, we explain
how these two structures are different from each other and which model
we favour.

In section 4.2.2 we describe the structure model in which the aggrega-
tion is performed over the predicted distortion of the frames. In section
4.2.1 we explain the model in which the aggregation is performed over the
features of the frames.

4.2.1 Aggregation over the features

In this section, we explain the structure in which the aggregation module
is the central component. Figure (4.1) shows the overall structure of this
model. The front-end module decomposes the degraded signal voice into
time frames and computes the features of individual frames. The aggre-
gation component aggregates the features over all the frames of one utter-
ance and computes the overall features for the utterance. The predictor
then takes the overall features of one utterance to estimate its distortion
and maps it to a MOS score. In this architecture, the temporal structure of
the features is maintained and can be used for quality estimation.

There are several non-intrusive methods that have this structure [14,
23, 8], applying various aggregation approaches. For example, the speech
quality assessment introduced in [14] assumes that the speech quality can
be estimated from statistical properties of the per-frame features. Thus it
calculates the moments independently for each per-frame feature, which
gives a set of features that globally describe one speech utterance.

Aggregation over the features allows us to use the temporal structure
of the features for quality estimation. Thus, at least in theory, the method
will perform better than the method that we will introduce in section 4.2.2.
For this reason, we favour this approach. The enhanced feature set pro-
posed in section 4.5 contains the raw features from P.563 that has this ar-
chitecture.
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Figure 4.1: Architecture model for speech quality assessment system,
where aggregation is performed over the features.

4.2.2 Aggregation over the predicted distortion

In this section, we explain the structure in which the aggregation module
is placed after the predictor. Unlike the model explained in section 4.2.1,
the distortion is predicted for individual frames and the aggregation is
performed over the estimated distortion of all the frames in one utterance.

Figure (4.2) shows the overall structure of this model. The front-end
module decomposes the degraded signal voice into time frames and com-
putes the features of the individual frames. The predictor uses the features
computed per-frame to estimate the distortion for individual frames. Im-
portantly, this distortion is a scalar value for each frame. In the aggrega-
tion module, the individual distortions are aggregated to compute over-
all utterance distortion which will be later mapped to the quality score.
ANIQUE+ [44] is an example of the speech quality assessment with such
a structure.

Since the aggregation of the method of Figure (4.2) is performed on a
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Figure 4.2: Architecture model for speech quality assessment system,
where aggregation is performed over the predicted distortions.

per frame basis, the quality estimation cannot exploit the temporal struc-
ture of signal features other than the temporal structure in the scalar dis-
tortion. The enhanced feature set proposed in section 4.5 contains raw
features from ANIQUE+, which has this structure. However, in order to
exploit the temporal structure of signal features, we compute the moments
of per-frame features. Section 4.5 explains this in more detail.

4.3 Feature set augmentation

In this section, we study the relationship between the number of features
and the performance of machine learning algorithms. In the particular
case where input features are noisy, we illustrate that the presence of re-
dundant features in the input enables the machine learning systems to
access more precise information and hence results in better performance.
The enhanced feature set proposed in section 4.5 is an augmented fea-
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ture set that benefits from redundant features and aims to improve perfor-
mance by reducing the effect of input noise.

The term "curse of dimensionality" was first introduced by Bellman
[176]. The term states that the convergence of predictors to the true value
of a smooth function is very slow if the dimensionality of the input fea-
ture set is large [177]. This effect is justified due to the exponential growth
of hypervolume as a function of dimensionality in Euclidean space [178].
The term also states that where the number of training data is fixed, having
higher-dimensional features can make the predictor more prone to over-
fitting. Consequently, a technique called feature selection [172, 174, 179]
is often an essential data processing step prior to applying conventional
learning algorithms. Feature selection is the removal of irrelevant and re-
dundant information, and it often improves the performance of traditional
machine learning algorithms.

The results reported in [180] are one example of benefiting from high
dimensional features based on collecting sufficient training data. The ef-
fectiveness of high dimensional features is also reported based on devel-
oping complex algorithms. For example, the complex methods in [181,
182, 183] use multiple feature combination and boosting algorithms that
enable the system to achieve higher performance by managing high di-
mensional features properly. Deep learning approaches, including models
such as CNN [121], RNN [135, 184], GAN [20, 185], are other examples that
benefit from high dimensional features where sufficient training data is
available. Deep neural networks are computationally tractable even when
applied to high dimensional inputs and have gained significant interest as
they outperform shallow neural networks.

To conclude, as stated in [174] "including presumably redundant vari-
ables might result in a performance gain". Although this statement is well-
known and a large number of papers (e.g., [179, 186, 187] ) refer to it, the
explanation in [174] is qualitative, and a detailed analysis of the perfor-
mance gain does not exist [1]. In this section, we study the scenario in
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which redundant features represent the same information, but contain in-
dependent noise [1]. We analyse how enlarging the feature dimensionality
improves the performance of linear machine learning models. In general
this is not feasible to analyse, so an analysis of the linear case is presented.
The experimental results suggest that the performance gain from redun-
dant features can also be generalised into nonlinear learning problems.

In the following subsections, we study the relationship between the
number of features and the performance of the system for two different
scenarios. In the first scenario, the ground truth model has few features,
and we increase the dimensionality of the feature set by adding redun-
dant features. In the second scenario, the ground truth model has many
features, and we enlarge the feature set by observing the features that con-
tain new information [1]. Although in both scenarios, adding more fea-
tures results in improved performance, the performance gain has different
behaviours. This is because in the first scenario, we include redundant fea-
tures to decrease the effect of noise, whereas, in the second scenario, we
are adding new information by including the missing features [1]. The un-
derlying model for a linear quality estimation is first presented in section
4.3.1. Then the different behaviours of the two models above are studied
in Sections 4.3.2 and 4.3.3.

4.3.1 Underlying model for linear quality estimation

We aim to develop a MOS estimator based on a set of observed features.
In this section, we explain how to model this with a linear regressor. x and
y are underlying and observed feature vectors respectively. We represent
the associated random variables with capital letters X and Y .

Let us assume X is distributed normally with a zero mean and are
independent:

X ∼ N (0, RX). (4.1)

Without loss of generality, we assume that the covariance matrix of X is
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constant along the diagonal, RX = Iσ2
X . The MOS is computed as

MOS = aTx. (4.2)

We estimate MOS based on a set of observed features y as

ˆMOS = bTy. (4.3)

The random variable V is the prediction error [1] and defined as

V = aTX − bTY. (4.4)

Vector bmust be estimated from Y aiming to minimize the prediction error
on the training data [1]. In the following two subsections, we define two
different families of the features and model the relationship between the
number of observed features and the prediction error.

4.3.2 Model behaviour for redundant features

In this section, we assume the observed features in y are redundant and
contain the same information, but have independent noise [1]. In the fol-
lowing, we model the relationship between the number of observed fea-
tures and the performance of the linear quality estimator.

Let us assume the random underlying feature vector X contains the
independent features that represent the data. In practice, X cannot be ob-
served and hence is unknown. In contrast, the random observed feature
vector Y represents a feature set observable in the real world. Y includes
noise and is likely to contain features that are correlated. We define two
different types of noise: 1) intrinsic noise and 2) observation noise. Intrin-
sic noise is considered to be the noise that is naturally part of the under-
lying features and is inevitable. Hence, it always is joined to X . Obser-
vation noise occurs due to errors in computation and measurement and
is included in the observed features. Consequently, the random observed
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feature vector Y is a transformation of the random underlying feature vec-
tor X into another space with a higher dimension [1]. Hence, Y contains
redundant information and is of the form

Y = C(X + U) +W. (4.5)

C is a transformation matrix, andU andW are random noise vectors called
intrinsic noise and observation noise respectively [1].

The prediction error from 4.4 will be

V = (aT − bTC)X − bTCU − bTW. (4.6)

X , U , and W are independent and it follows that:

σ2
V = E[XT (aT − bTC)T (aT − bTC)X

+ UTCT bbTCU +W T bbTW ].
(4.7)

σ2
V is scalar and we can write σ2

V = tr[σ2
V ]. Exchanging the linear operators,

the expectation and the trace, and using the cyclic property of the trace [1],
we can write

σ2
V = bT (CRXC

T + CRUC
T +RW )b

− 2aTRXC
T b+ aTRXa.

(4.8)

The optimal b∗ must satisfy

2(CRXC
T + CRUC

T +RW )b∗ − 2CRXa = 0, (4.9)

and it follows that

b∗ = (CRXC
T + CRUC

T +RW )−1CRXa. (4.10)
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Substituting (4.10) back into (4.8) gives

σ2
E = aTRXC

T (CRXC
T + CRUC

T +RW )−1CRXa

− 2aTRXC
T (CRXC

T + CRUC
T +RW )−1CRXa+ aTRXa

= aTRXa− aTRXC
T (CRXC

T + CRUC
T +RW )−1CRXa (4.11)

= aTRXC
TCT]a

− aTRXC
T (CRXC

T + CRUC
T +RW )−1CRXC

TCT]a (4.12)

= aTRXC
T (I − (CRXC

T + CRUC
T +RW )−1CRXC

T )CT]a (4.13)

= aTRXC
T (CRXC

T + CRUC
T +RW )−1(CRUC

T +RW )CT]a (4.14)

The underlying random features in X are independent. Without loss
of generality, we assume RX = Id×d (so it sets the scale), RU = hId×d, and
RW = gIt×t, where d and t are the dimensionality of X and Y respectively,
and g and h are small [1]. These assumptions led to

σ2
V = aT (CTC + hCTC + gI)−1(hCTC + gI)a, (4.15)

where we reduced the dimensionality from t to d. In the following we
study the relation between σ2

V and the number of features, and analyse its
behaviour by enlarging the feature set.

For simplicity we initially consider the "repeat" case, where C is a tall
matrix of stacked identity matrices [1]. Let us repeat each feature n times.
Then CTC = nI and we get

σ2
V = aT (nI + hnI + gI)−1(hnI + gI)a (4.16)

=
g + nh

g + n(h+ 1)
aTa. (4.17)

Figure (4.3.a) models this behaviour. This is clearer [1] if we do not have
intrinsic noise and set h = 0:

σ2
V =

g

g + n
aTa, (4.18)

in which σ2
V goes to zero if n is very large. However, because of the pres-

ence of intrinsic noise, the floor for (4.17) is σ2
V >

h
h+1

aTa.
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Figure 4.3: The abstract behaviour of two different models for gaining per-
formance by enlarging the feature set.

Now consider the more general case where instead of repeating the
features, C is a tall n × d matrix, where n is the dimensionality of the
observed features and d is the dimensionality of underlying features [1].
We assume elements of C are i.i.d and have normal distribution

C ∼ NN(0,Σc), (4.19)

where Σc is a diagonal matrix with diagonal elements equal to σc [1]. We
aim to estimate the behaviour of σ2

V by finding the expectation of Equa-
tion (4.15) over C [1]. Since the underlying behaviour of the model is not
analytically tractable, we limit the case [1] and study the behaviour of this
model where h = 0. We analyse the main aspect of the model behaviour
by re-writing Equation (4.15) as

σ2
V = gaT (CTC + gI)−1a, (4.20)

EC [σ2
V ] = gaTEC [(CTC + gI)−1]a, (4.21)

Since the elements of C are i.i.d and have normal distribution, CTC ∼
WN(Σc, n) has a Wishart distribution [188] with the mean value

E[(CTC)ij] =

nσc i = j

0 i 6= j
. (4.22)
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g is small compared to n. Hence we approximate EC [(CTC + gI)−1] with
EC [(CTC)−1] and it follows that

EC [σ2
V ] ∼ gaTE[(CTC)−1]a. (4.23)

Since C is a tall matrix with normal distribution, (CTC)−1 ∼ W−1(Σ−1
c , n)

has an Inverse Wishart distribution [188]. With the assumption σc = 1 we
[1] have [1]

E[(CTC)−1
ij ] =

 1
n−d−1

i = j

0 i 6= j
, (4.24)

Using this in (4.21) we can estimate the mean of σ2
V as

EC [σ2
V ] ∼ g

n−N − 1
aTa, (4.25)

where n is the dimensionality of observed features [1]. Again as expected,
the variance of the error is decreasing by enlarging n. Hence if the model
of (4.5) is correct, it motivates the augmented feature set with redundant
features for higher performance [1].

4.3.3 Model behaviour for insufficient features

In this section, we [1] assume the dimensionality of the observed feature
vector y is smaller than the dimensionality of underlying feature set x and
develop a linear MOS estimator. In the following, we model the relation-
ship between the number of observed features and the performance of the
linear quality estimator [1].

Let us assume the random observed feature vector Y is a subset of the
random underlying feature set X and is of the form:

Y = SX +W, (4.26)

where W is random observation noise and

S = [In×n 0(N−n)×(N−n)]. (4.27)
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n and N are the number of selected features and full features respectively
[1]. Accordingly, the prediction error is:

V = (aT − bTS)X − bTW, (4.28)

and we [1] aim to minimise its variance:

σ2
V = aTRXa+ bT (SRXS

T +RW )b− 2aTRXS
T b. (4.29)

The optimal b∗ must satisfy

2(SRXS
T +RW )b∗ − 2SRXa = 0, (4.30)

and it follows that

b∗ = (SRXS
T +RW )−1SRXa. (4.31)

Let us assume RX = IN×N (to set the scale) and RW = gIn×n. Using b∗

in (4.29) we obtain

σ2
V = aT [IN×N − ST (In×n + gIn×n)−1S]a (4.32)

=
N∑
i=1

λia
2
i , (4.33)

where λi = 1 if i > n and λi = g
g+1

if i ≤ n. We [1] assume ai ∼ N(E(ai), σ
2
i )

and so

E(σ2
V ) =

N − n
g+1

N

N∑
i=1

E(a2
i ). (4.34)

Equation (4.34) indicates that the variance of the estimation error and the
number of selected features have a linear relationship, whereas in the
model behaviour for redundant features is nonlinear [1]. Figure (4.3) illus-
trates the abstract behaviour of this model, and the model with redundant
features from the previous section. Because of the observation noise, the
floor for (4.34) is not zero and has the value of (1− 1

g+1
)
∑N

i=1E(a2
i ).
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4.4 Pre-processing features

In the previous section, we illustrated that an augmented feature set is ben-
eficial for better performance of machine learning algorithms. The focus
of this section is to enhance the feature set by pre-processing the features
and redistributing them to have a smooth distribution.

It has been shown [189, 190] that preprocessing of the data can often
have a significant impact on the performance of a machine learning algo-
rithm. Consequently, modern quality estimation systems that are based
on machine learning generally exhibit sensitivity to the distribution of
data and how the data are presented. Standardisation is a preprocessing
type that is important for many neural networks. In this section, we first
briefly review the two most common techniques that are used for standar-
dising the input of a neural network and then introduce a standardisation
method to transform data to have a smooth and light-tailed distribution,
which leads to a better predictor.

In the machine learning area, standardising usually refers to a transfor-
mation that is performed on the input data to scale them into an acceptable
range for the network, or adjust its distribution to either meet the assump-
tions or facilitate the training. Standardizing the inputs of neural networks
often receives little attention in the literature, mainly because insufficient
prior information is available about the data or, if such information exists,
it is too application-specific. Hence it is common in many algorithms (e.g.,
k-means [191], k-nearest neighbors [192], Ridge Regression [193], Gaus-
sian Radial Basis Function Networks [194], Support Vector Machine (SVM)
[195]) to simply standardise each feature to either the same range or the
same standard deviation using one of the following methods:

• Min-max normalisation [196]: This method of normalisation will lin-
early scale input data into the appropriate range, which is typically
the range of [−1, 1] or [0, 1] . A linear scaling requires that the mini-
mum and maximum values associated with the features be found or
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estimated by an expert person in a given domain.

• Z-score normalization [196]: This method normalises the input data
to have zero mean and unit variance. This can be done by subtracting
the mean from each feature, then dividing the values of each feature
by its standard deviation.

The two methods above are crucial and play an important role in the
success of machine learning methods such as RBF [197] and pattern clas-
sification tasks based on PCA [198]. They are also important for getting
good results from weight decay [199].

A number of machine learning models have been built with the im-
plicit assumption that the distribution is normal or uniform, and hence
cannot perform as designed if the input data is not appropriately dis-
tributed [200]. Even those models that can cope with irregular distribu-
tions will be assisted if the distributions are comparatively regularised
[200]. Hence a standardisation method that adjusts the distributions ap-
propriately is desirable.

Although the two common methods explained above adjust the vari-
ance of the data, they do not change the shape of the distribution of data
and hence do not facilitate a smooth distribution. There are other methods
that aim to increase the uniformity of data based on clipping off the ends of
the distribution. These methods utilise statistical measurement to remove
the outliers and spread out the distribution of the data [201]. However, in
such methods, the threshold value for outliers is computed heuristically.
These methods also make an assumption that the features have a normal
distribution.

Other approaches [202, 203] exist that assume the data is non-normal
and aim to increase the normality of the data. However, they assume that
the data has a smooth distribution that is pushed to one side. Hence they
transform data to remove the skew exclusively. Nevertheless, features
with non-smooth distributions (e.g. multimodal data or data with outliers)
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are likely to occur in many machine learning application areas, including
speech quality estimation. As proposed in the previous section, using a
large number of features is beneficial for better performance. The usage of
a large number of features naturally leads to the inclusion of features that
have poor behaviour [1].

The novelty we introduce in this section is to perform a pre-distortion
operation to obtain pre-distorted features with a smooth and light-tailed
distribution for the specific goal of facilitating the learning of the mapping
from the features to speech quality. Section 4.4.1 presents a method to
pre-distort the features. Section 4.4.2 discusses how to implement the pre-
distortion operation.

4.4.1 Pre-processing method description

Our proposed method is to pre-distort at least a subset of the features indi-
vidually, so that the pre-distorted features have a smooth and light-tailed
distribution. In this section, we discuss the pre-distortion operation in
more detail. The approach selected is a standard procedure for mapping a
random variable with a particular distribution to a new random variable
with another distribution.

To create a mapping from an observed feature y to a pre-distorted fea-
ture, it is convenient at a conceptual level to first map to a pre-distorted
feature with a uniform probability distribution v. If we observe a realiza-
tion y of the random variable Y with the cumulative distribution FY (y),
then the corresponding realization of V is v = FY (y), which has a uniform
distribution on the interval [0, 1] [204]. The flow chart for this method is
presented in Figure (4.4).

The random variable V does not have outliers and is an extreme ex-
ample of a light-tailed (or zero-tail) distribution. Hence it does not have
regions for which it is difficult to learn the relationship between input and
output. The information of the relationship is not lost as the mapping be-
tween Y and V is one-to-one. As explained in the next section, the estimate
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Figure 4.4: Flow chart of the proposed method for standardising the input
of neural network to uniform distribution.
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of FY is more accurate when more data is available. Thus when the train-
ing database is large, there is no significant drawback using V rather than
Y as the input for the quality estimation system, but it is advantageous
because of its smooth distribution.

If a (non-zero) light-tailed distribution fW (w) is desired, it is possible to
map the feature to a new random variable W. To obtain the pre-distorted
feature, W , we apply the mapping w = F−1

W (FY (y)) to each observed fea-
ture realization y, where F−1

W (·) is an inverse mapping.

4.4.2 Pre-processing method implementation

In the proposed method explained in the previous section, the cumula-
tive distribution FW of the desired feature must be designed by the user.
However, the estimation of the cumulative distribution FY of the observed
feature is required. This section explains the methods to estimate FY and
then discusses the implementation aspects for mapping F−1

W .
Existing methods can be used for the estimation of FY . A first illus-

trative method to estimate the cumulative distribution of Y is to utilise
histograms [205]. A second illustrative method is based on Gaussian mix-
ture distributions. Established methods, such as expectation maximisation
(EM) [206] can be used to estimate the parameters of the order-Q Gaussian
mixture distribution of Y from a given set of data D = y1, y2, ..., yN . Note
that a larger cardinality N of D facilitates a larger order Q. This leads to
approximate any probability distribution to the desired precision for suf-
ficiently high Q. Hence, we utilise this second method and employ the
fitgmdist function in Matlab 9.9.0 library to estimate the parameters of the
distribution of the features that are presumed to have order-3 Gaussian
mixture distribution. In the following, we discuss the mapping F−1

W .
If W = V (a uniform distribution on [0,1]) then the mapping F−1

W is
trivial. It is noted that Gaussians are light-tailed and may work well as
the input to a machine-learning system. If W is desired to be a Gaussian
random variable, then F−1

W is to be an inverse mapping of the cumulative
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function of a Gaussian. With the assumption that the desired pre-coded
feature W has unity variance, the cumulative distribution function [207] is
defined as

FW (w) =
1

2
[1 + erf(− w√

2
)]. (4.35)

Thus for this case

F−1
W (FY (y)) =

√
2erf−1(2FY (y)− 1). (4.36)

The erf and inverse functions are available in many platforms, hence F−1
W

can be computed for any value FY (y).

4.5 Enhanced feature set for quality estimation

The supervised non-intrusive quality assessment system proposed in this
chapter is based on the extraction of features that capture the information
from a speech signal and represent different types of distortion. This sec-
tion describes the proposed enhanced feature set that leads to improved
prediction accuracy of the single-ended quality assessment.

As discussed in Section 2.2, the non-intrusive quality estimation P.563
and ANIQUE+ are the two existing standards and naturally form an ex-
cellent reference for our work. Therefore, we [1] built our input vector
so that it contains both the features extracted from P.563 and ANIQUE+.
Since P.563 and ANIQUE+ are designed for for narrowband speech, our
system requires to downsample the speech files to 8 kHz if they are wide-
band.

The feature sets from both standards P.563 and ANIQUE+ are expected
to represent similar information about the quality of the speech [1]. Hence
our input vector is likely to hold redundant features [1]. However, as il-
lustrated in Section 4.3, we hypothesise that the quality assessment system
benefits from this redundancy as it results in reducing the impact of input
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noise [1]. In the following, we describe the procedure we performed to
build our feature set from P.563 and ANIQUE+.

As explained in Section 2.3, P.563 analyses the speech signals using
several modules and determines a set of characterising signal parameters.
The algorithm then uses a restricted set of the key parameters to determine
a distortion class. Furthermore, the assigned distortion class and the key
parameters are then used to predict the speech quality. Naturally the 43
characterising signal parameters form an informative global feature set for
the quality assessment platforms [1].

In ANIQUE+, as explained in Section 2.4, the Articulation Analysis Block
decomposes the incoming speech signal into successive time frames that
are classified into active speech or audible background noise frames [1]. The
algorithm then computes the local feature vector for each frame, which
has the dimensionality 69. The per-frame features are used to predict one
scalar value that represents the distortion of each frame, which is then
aggregated over the duration of the signal to estimate its perceptual dis-
tortion.

In ANIQUE+, only one scalar value represents the distortion of each
frame, and hence, it does not exploit the temporal structure of the signal
features. In this work, we aim to improve the predictive accuracy of the
quality assessment by considering the influence of the temporal statistics
on the perception of the quality of an utterance. Hence, we [1] use the
method suggested in [14] and converted the 69 per-frame features gener-
ated with ANIQUE+ to per-utterance features by computing the first four
moments of the features over the active speech frames of the signal. In
this approach, we [1] hypothesise that the speech quality can be estimated
from statistical attributes of the per-frame features, and their probability
distributions are described with their mean, variance, skewness, and kur-
tosis [14]. Thus for each per-frame feature Φi, we obtain four global fea-
tures, µΦi

, σΦi
, sΦi

, kΦi
, that describe the speech utterance. We define the

global feature set Ψ, which contains 276 per-utterance features that are
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computed by aggregation over the 69 ANIQUE+ per-frame features:

Ψ = {µΦi
, σΦi

, sΦi
, kΦi
}69
i=1. (4.37)

µΦi
, σΦi

, sΦi
, and kΦi

are mean, variance, skewness, and kurtosis of the fea-
ture Φi that is computed over the speech active frames of the signal.

The feature sets generated from ANIQUE+ and P.563 have a different
nature. However, they both represent the same information about the
perceived quality of speech [1]. As illustrated in section 4.3, the quality
assessment system benefits from redundancy. Hence, we built the aug-
mented feature set Σ with the dimensionality 319 by accumulating 43 fea-
tures computed from P.563 and 276 features extracted from ANIQUE+:

Σ = {Ξ,Ψ}, (4.38)

where Ξ and Ψ contain global features from P.563 and ANIQUE+, respec-
tively.

Finally, to facilitate the training, we standardise the features using the
method proposed in section 4.4. We [1] standardise each feature in Σ to
obtain a pre-distorted feature xi with a uniform probability distribution
and built our final enhanced feature set X = {xi}319

i=1. The experimental
results reported in the next section demonstrate the effectiveness of our
proposed feature set.

4.6 Experimental results

Section 4.6.1 explains the evaluation metrics and is followed by section
4.6.2 that describes the database we used in our experiments. The experi-
mental results in section 4.6.3 validate that the quality assessment system
benefits from redundant features. Finally, section 4.6.4 presents the exper-
imental results from the quality assessment systems we developed with
the enhanced feature set, and compares its performance with the existing
methods.
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4.6.1 Evaluation Metrics

To analyse our system and compare it with other non-intrusive models, we
computed the Root Mean Squared Error (RMSE) and Pearson Correlation
Coefficient (PCC), which are commonly used in this field. We report both
per-file and per-condition results for RMSE and PCC. The per-condition
score is generally better than the per-file score as it reduces material de-
pendence [208].

RMSE measures the closeness of predicted scores to subjective MOS
based on the mean square of the residual errors:

RMSE =

√∑
(xi − yi)2

N
. (4.39)

xi and yi are the subjective and predicted MOS, respectively. Equation
4.39 is used for both per-file and per-condition RMSE. In calculating per-
file RMSE, xi and yi are the subjective and predicted MOS of utterance i. In
calculating the per-condition RMSE, we first average the predicted and the
subjective MOS over the conditions. In this case, xi and yi are subjective
and predicted MOS averaged over the utterances that are degraded under
condition i. Consequently, N is the number of utterances for computing
per-file RMSE, or the number of conditions for computing per-condition
RMSE.

Likewise, we reported both per-file and per-condition PCC. PCC is
based on Pearson’s formula and gives an alternative view of the closeness
of the fit between predicted MOS and the subjective MOS:

PCC =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
. (4.40)

x̄ and ȳ are the average over xi and yi·
Per-condition PCC is the most commonly reported score [12]. A non-

intrusive quality assessment is considered to have a high performance if
condition-averaged predicted MOS have a high correlation with condition
subjective MOS.
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In order to make a direct comparison between objective and subjec-
tive scores, it is common practice [7] to perform a third-order polynomial
regression before computing per-condition PCC. The regression is mono-
tonic so that information is preserved, but it eliminates the influence of
irrelevant factors in subjective votes such as the preferences of individual
subjects, or the context of the experiment. As it is common practice, we
also perform a third-order polynomial regression to map the condition-
averaged predicted scores onto the condition subjective MOS. Hence, yi in
Equation 4.39 and Equation 4.40 is the mapped condition-averaged pre-
dicted score for condition i.

In the third-order polynomial regression, the subjective scores are re-
gressed as a function of objective scores. We employ the Polyfit function
in the Matlab 9.9.0 library to estimate the parameters of the polynomial
regressor. Then we employ the polyval function in the Matlab 9.9.0 library
to map the objective scores to new scores that are expected to be more
correlated to the subjective MOS.

4.6.2 Database

To evaluate our method with real data, we employed the ITU-T coded-
speech data set, Supplement 23 [34], which is the only labelled database
that is publicly available and is commonly used for the evaluation of ob-
jective speech quality systems. ITU-T Suppl23 provides speech material,
and related subjective test plans and scores. Since our experiment was lim-
ited to Supplement 23, we used k-fold cross-validation techniques [209] to
assure our system was not overfitting or giving a misleading result on the
given database.

ITU-T Suppl23 was originally designed to characterize the subjective
performance of the 8 kbit/s codec that has been proposed for adoption
as per ITU–T Recommendation G.729 [210]. Supplement 23 contains three
experiments. Experiment two uses the comparative category rating (CCR),
which needs reference signals. Our non-intrusive system is independent
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of the reference signal, hence, experiment two is not suitable for our pur-
pose. We used experiments one and three that are scored based on the
absolute category rating (ACR).

Experiment one examines the performance of G.729 codec interwork-
ing with other ITU–T speech coding standards (G.711, G.726 , and G.728)
and regional speech coding standards used in digital cellular applications
(full-rate GSM, RPE-LTP:GSM–FR, North American VSELP: IS–54, half-
rate Japanese digital cellular: RCR Std 27C). The conditions defined in
experiment one include encodings by each of these single codecs (includ-
ing G.729), and also the encodings by the combination of two or three
codecs. The combination conditions have been defined to represent the
combinations of codecs that are likely to occur in real applications, includ-
ing connections involving a mobile link, where G.729 codec is used for a
wireless system, or where wireless mobile terminals are connected over
trunks with the G.729 codec as the network codec [211]. The full specifica-
tions of the 44 conditions in experiment one are given in Appendix A.

Experiment three examines the effect of channel degradations on the
G.729 codec. This experiment includes conditions that evaluate G.729
codec under detected frame erasure, and random bit error channel degra-
dation conditions. Table A.2 in the Appendix gives the full specifications
of 50 conditions in experiment three.

The coded-speech data set Supplement 23 is delivered on three CD-
ROMs; each CD-ROM is allocated to one experiment. The database in
experiments one and three has seven datasets, which came from differ-
ent organizations with different languages: CNET (France), CSELT (Italy),
Nortel (formerly BNR, Canada) and NTT (Japan). The seven data sets con-
tain a total of 1328 speech files. Speech samples for these experiments con-
sist of two short sentences and are approximately 8 seconds long. Speech
occupies 80 to 90 percent of this time, and the remaining 10 to 20 percent is
inter-sentence pauses. All the speech materials are recorded in 16-bit lin-
ear PCM (binary) files with a PC-format (low-byte first) [34]. Each speech
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file in Supplement 23 is scored by 24 subjects; the average of these scores
form the mean opinion score (MOS).

Supplement 23 has limited data samples and is considered to be a
small database. Hence, cross-validation is commonly used to evaluate
non-intrusive quality systems with Supplement 23. Cross-validation [209]
is a resampling procedure, which reduces problems like overfitting or se-
lection bias. One procedure, called k-fold cross-validation, divides data
into k groups (or folds) of approximately equal size. K-fold cross-validation
involves k iterations. At each iteration, one fold is treated as a test set, and
the system is trained with the remaining k − 1 folds [209].

The voice files in experiments one and three from Supplement 23 come
in seven datasets. Hence it is common [14, 23, 26, 28, 8, 61, 62] to vali-
date the system applying 7-fold cross-validation, leaving one dataset out
in each iteration. The seven datasets in Supplement 23 came from differ-
ent labs with different languages and conditions. Hence, the distribution
of the data set that is used for the test might be very different from the
other six data sets used for training. Consequently, the test results are ex-
pected to vary from one iteration to another depending on how similar
the test samples are to the samples used for training. Some methods such
as [24, 29, 46, 66] used a different type of 7-fold cross-validation on sup-
plement 23 in order to distribute data evenly into test and training groups.
For this, they pooled all data sets together and randomly divided the voice
files into seven groups. Applying cross-validation on the mixed data in-
creases the similarity of test data and training data and hence increases the
scores. However, there is no real gain in the performance of the system. In
this thesis, we use both types of cross-validation for different purposes.

In our experiment with the features in section 4.6.3, we pooled all data
sets together and randomly divided the speech files into seven groups.
Dividing the data into the groups with a similar distribution results in sta-
ble behaviour at different iterations of the cross-validation. An identical
distribution of samples in test and training sets permitted us to analyse
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the effect of redundant features on the performance of the system inde-
pendent of the effect of a variety of conditions in the test voice files. This
enabled us to study the behaviour of our system and validate the relation-
ship between the number of features and the performance of the system.

The experiment in section 4.6.4 is to evaluate the performance of our
final system. To have a fair comparison with the scores reported in the
literature, we used datasets of Supplement 23 as folds and apply 7-fold
cross-validation procedure, leaving one data set out in each iteration. That
is, six data sets of Supplement 23 are used for training, and the remaining
data set is used for the test. Hence the voice files in the test set come from a
laboratory that is different from the laboratories that generated voice files
in the training set, and the test speech might be in a different language.
Consequently, the scores reported in section 4.6.4 are expected to be lower
than the scores in section 4.6.3.

4.6.3 Experiment with redundant features

This section explains the experiments that we performed on the ITU-T
Suppl23 database to verify speech quality assessment benefits from re-
dundant features. As explained in section 4.6.2, we pooled all data sets
together and randomly divided the 1396 speech files into seven groups
to apply seven-fold cross-validation. We evaluated the relationship be-
tween the number of features and the performance of the quality predic-
tor. We demonstrated that our experimental results fitted the behaviour of
the model with redundant features better.

To study the relationship between the number of the features and the
performance of the quality predictor, we initially used a simple linear re-
gressor. We evaluated its performance on the subset of features, Xn, which
is randomly selected from the enhanced feature set X that was explained
in section 4.5. The parameter n = 10, 20, 30, ..., 310 is the cardinality of Xn.
To observe the statistical behaviour of the model, we repeated the experi-
ments with 20 random subsets of features for each value of n. The results
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Figure 4.5: The relationship between the number of the features used for
training our linear regressor and the Mean Squared Error, which repre-
sents the performance of our linear quality predictor.

are shown in Figure (4.5), which suggest the error asymptotically goes
down as the number of features increases. This indicates the behaviour
of our system is similar to the behaviour of the model with redundant fea-
tures shown in Figure (4.3.a), rather than the linear behaviour of the model
for insufficient features in Figure (4.3.b).

Next, we show that the quality assessment follows the same behaviour
for non-linear predictors. For that, we [1] repeated our experiment with
a neural network that had one hidden layer with five nodes using a sig-
moid activation function, followed by a linear regressor. The combination
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(a) Redundant feature model
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(b) Subset of features model

Figure 4.6: The relationship between the number of features and the Mean
Squared Error, which represents the performance of a non-linear quality
predictor. The blue points represent the experimental results that verify
the error is decreasing by increasing the number of features. The red circles
in (a) and (b) represent the best line that fits the blue points based on two
different models proposed in section 4.3.
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of sigmoid activation function in the hidden layer and linear regressor as
output is a very common basic choice here. As discussed in section 4.1,
larger neural networks with more complexity did not improve the per-
formance of the system and we concluded that this simple small neural
network chosen here was sufficient for this task.

Figure (4.6) shows the fit of our experimental results to the two models
with redundant and insufficient features. The blue points represent the
experimental results. The red circles in Figure (4.6.a) and (4.6.b) are two
candidate models fit to the data from redundant features and insufficient
features respectively. To find the candidate models for Equations (4.25)
and (4.34) that best fit to our data, we employed the fminsearch function
in the Matlab 9.9.0 library. The fminsearch function finds minimum value
of multivaraible functions, which here is our cost function that is defined
as squared error between data points and the output from Equations (4.25)
and (4.34) respectively. Based on Akaike’s information criterion [212] the
model with redundant features fits our data better than the model with
insufficient features and its evidence ratio is 2.5× 1031. The evidence ratio
indicates that for given data from our experimental results, the model with
redundant features is 2.5×1031 more likely than the model with insufficient
features to be the best fit.

In both experiments explained in this section, it was observed that the
variance of the performance of the system decreased with increasing the
value of n. This was expected as the different random Xn’s are more likely
to include the same features for larger n, when the overall number of the
features in X is fixed [1]. Hence, the variance of the performance of the
system is small for larger values of n [1].

4.6.4 Experiment with quality assessment

This section explains the final experiment with our proposed nonintrusive
system using the enhanced feature set proposed in section 4.5. In the fol-
lowing, the effect of the proposed standardisation method is analysed, and
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the effect of redundant features is explained in more detail.

The enhanced feature set proposed in section 4.5 is based on extracting
the features of speech files using P.563 and ANIQUE+, which are standard
methods for narrowband speech. Hence we downsampled the 16 kHz
speech files in the database to 8 kHz before we could build our augmented
feature set. Generating the enhanced feature set from ITU-T Supplement
23 database took 12 minutes on an Intel(R) Core(TM) i5-8265U processor.

As explained in section 4.4, the augmented feature set includes many
features that have multimodal distributions. We standardised those fea-
tures with the method proposed in section 4.4.2 and mapped them into
features with a uniform probability distribution on the interval [0, 1]. The
standardisation of the remaining features was not advantageous because
of their smooth distribution. Thus the remaining features were mapped to
the range [0, 1] using min-max normalisation. Standardisation of the fea-
tures extracted from ITU-T Supplement 23 database took 20 minutes on an
Intel(R) Core(TM) i5-8265U processor.

We performed experiments with different regressors in our system:
RVM, XNV, and neural network of different sizes. Preliminary experi-
mental results suggested that the performance of all the systems is similar,
independent of the regressor type and the neural network size. However,
the high-dimensional enhanced feature set made the training of RVM and
XNV slow. Although the RVM based non-intrusive system is slow and
takes almost one day to complete, it is considered an excellent prediction
tool where extra information about the precision of the predicted score is
required. In the following, we report the results based on configuring our
system to use a neural network. Like the previous experiment in section
4.6.3, the neural network has one hidden layer with five nodes using a
sigmoid activation function, followed by a linear regressor [1]. Training
this neural network with ITU-T Supplement 23 database takes around 15
minutes on cpu.

To evaluate the effect of our proposed enhanced feature set, we [1] per-
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Table 4.1: RMSE and PCC computed per-file and per-condition for differ-
ent types of feature sets. The scores are computed based on seven-fold
cross-validation on ITU-T Suppl23. The per-condition PCC score is com-
puted after applying the 3rd-order polynomial regression.

RMSE PCC

Input Feature set Per-File Per-Cond Per-File Per-Cond

M
in

-m
ax

N
or

m
al

i-
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ti
on

P.563 0.640 0.548 0.75 0.87

ANIQUE+ 0.632 0.529 0.73 0.87

P.563 and
0.566 0.469 0.81 0.91

ANIQUE+

Pr
op
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ed

st
an

da
rd

-
is

at
io

n

P.563 0.632 0.538 0.75 0.87

ANIQUE+ 0.616 0.510 0.75 0.89

P.563 and
0.548 0.458 0.82 0.92

ANIQUE+
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formed experiments with six different feature sets:

• P.563 features that are standardised with min-max normalisation

• ANIQUE+ features that are standardised with min-max normalisa-
tion

• augmented feature set from ANIQUE+ and P.563 that are standard-
ised with min-max normalisation

• P.563 features that are standardised with our proposed method

• ANIQUE+ features that are standardised with our proposed method

• augmented feature set from ANIQUE+ and P.563 that are standard-
ised with our proposed method

We first analyse the effect of the augmented feature set. As illustrated
in Table 4.1, combining ANIQUE+ features with P.563 features increased
the performance of the system from 0.87 to 0.91 for the ITU-T Suppl23
database (see the first three rows in which the min-max normalisation is
applied). Likewise, the performance is increased to 0.92, where our pro-
posed standardisation method is applied (see the last three rows). This
improvement in the performance from combining the feature sets from
ANIQUE+ and P.563 is consistent with what we proposed in section 4.3,
as both feature sets represent the quality of speech well and most probably
contain the same information, but include independent noise. This implies
that using the augmented feature set that includes features from both stan-
dards reduced the effect of input noise and improved the performance of
our non-intrusive quality assessment for this database [1].

We also use Table 4.1 to evaluate the effect of our proposed standardisa-
tion method. Comparing the results in the last three rows of Table 4.1 with
the first three rows indicates that our proposed standardisation method
improved the performance of our system for the ITU-T Suppl23 database.
Our standardisation method increased the PCC score from 0.87 to 0.89
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when the ANIQUE+ features are used. However, it was not advantageous
for P.563 features alone, and the PCC score stayed as 0.87 independent
of the type of standardisation applied. This was expected as the number
of non-smooth features in P.563 was not large, and hence, our proposed
standardisation method was not beneficial for this case.

The last row in Table 4.1 illustrates that the per-condition PCC score
is 0.92 when we use the enhanced feature set proposed in section 4.5 as
the input to our system. In the following, we study this result in more
detail and compare it with other methods in the literature followed by the
statistical significance test at the end of this section.

Table 4.2 reports the details of the scores from our system using the
enhanced feature set 1. Columns one and two present the per-file and the
per-condition RMS error on unseen data. Per-file and the per-condition
PCC results are given in columns three and four. The score is reported
for each iteration of the cross-validation procedure with the name of the
database used as a test set. Given that different databases come from dif-
ferent laboratories and languages (BNR: English, CNET: French, CSELT:
Italian, and NTT:Japanese) it was expected that the PCC value would vary
from one database to another depending on the similarity between the
distribution of the test and training speech signals.

Our experimental results in Table 4.2 show the mean value of the PCC
score from 7-fold cross-validation on experiment one and three from sup-
plement 23 database is 0.92. The scatter plot in Figure (4.7) visually repre-
sents the correlation coefficient with the value 0.92 between the subjective
condition scores and the predicted condition scores. Each data point in
the plot represents one of the test conditions from the 332 different condi-
tions in experiment one and three. As explained in section 4.6.2, the test
conditions in experiment one are related to codec distortions, and the test
conditions in experiment three are the effect of channel degradation. We

1The authors of [1] made a mistake and reported MSE score instead of RMSE. Hence
the scores in [1] are slightly smaller than the actual RMSE scores reported here.
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Table 4.2: RMSE and PCC computed per-file and per-condition for our
proposed system, using a combination of ANIQUE+ features with P.563.
The performance measures are computed after applying a third-order
polynomial regression to the model predictions . Each database in ITU-T
Suppl23 corresponds to a lab and an experiment, where X1 and X3 indicate
experiments one and three respectively.

RMSE PCC

Database Per-File Per-Cond Per-File Per-Cond

BNR-X1 0.421 0.248 0.858 0.946

BNR-X3 0.406 0.235 0.849 0.949

CNET-X1 0.429 0.288 0.835 0.923

CNET-X3 0.431 0.303 0.807 0.893

CSELT-X3 0.529 0.391 0.806 0.884

NTT-X1 0.404 0.259 0.816 0.912

NTT-X3 0.385 0.242 0.853 0.932

Mean 0.432 0.285 0.832 0.919

computed the mean value of the PCC score from 7-fold cross-validation
for each experiment individually and that is 0.93 and 0.90 for experiment
one and three respectively. The reason for the lower score on experiment
three is that it contains a test database in Italian language, where none of
training data is Italian. If we remove the Italian database from testing, the
mean value of the PCC score for experiment three increases into 0.92. This
suggests that our system performance for both experiments are very sim-
ilar to each other, although the distortion types are very different in these
two experiments. Hence, we conclude that the performance of our system
is not dependant on the type of distortions in experiments one and three.
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Figure 4.7: Scatter plots for condition scores on experiment one and three
from ITU-T Supplement 23 databases [34]. These two experiments con-
tain 332 conditions testing coder distortions, channel errors, and noise for
English, French, Japanese, and Italian languages [8]. The results include a
third-order monotonic fit between experiments.

In the following, we compare the performance of our system with other
methods. We first briefly compare the performance of our system with
two current ITU-T standards (for intrusive and non-intrusive methods)
by simply comparing the scores as it is common practice. This forms a
baseline comparison for us to start. Then we compare our results with
the latest non-intrusive methods in the literature in more detail and finally
provide a statistically significance test.

Table 4.3 shows the distribution of the absolute error for the ITU-T
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Suppl23 database and compares our method with ITU-T standards P.563
and P.862.1. The P.563 standard is the current standard for non-intrusive
quality assessment. The results in Table 4.3 indicate that our non-intrusive
model is more accurate than P.563 for this database. As shown in the table,
93.67% of test signals had an error smaller than 0.5, which is higher than
the 86.14% reported for P.563.

Table 4.3: Distribution of absolute errors for the Supplement 23 database
after a third-order monotonic mapping (ITU-T P.862.1 is intrusive and ex-
pected to have higher performance than other methods in the table that
are non-intrusive).

Absolute error <0.25 <0.50 <0.75 <1.0 <1.25
ITU-T P.862.1 72.89% 95.18% 99.10% 100.0% 100.0%
ITU-T P.563 57.23% 86.14% 97.29% 99.70% 100.0%
Our Method 64.76% 93.67% 97.89% 99.40% 100.0%

ITU-T P.862.1 is an intrusive standard and has access to the original
speech when assessing the quality of test speech. Hence P.862.1 was ex-
pected to be more accurate than our model. As reported in Table 4.3,
95.18% of test data in P.862 had an error smaller than 0.5, which was slightly
higher than the 93.67% we reported. The difference between the accu-
racy of P.862.1 and our model became larger for a smaller error range. In
P.862.1, 72.89% of estimated MOS had an error smaller than 0.25. However,
in our model, only 64.76% of the estimated MOS had an error smaller than
0.25.

In the following, we evaluate the performance of our system in com-
parison with other methods in the literature. As it is a common practice,
we focus on the mean value of PCC scores computed from 7-fold cross-
validation on Suppl23 database and compare it with the results others re-
ported in their work.

Table 4.4 reviews the PCC scores reported in the literature [14, 23, 26,
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28, 61, 62] related to the non-intrusive quality assessment of speech that is
built based on machine learning methods. The per-condition PCC scores
are reported from performing cross-validation on ITU-T Suppl23. As ex-
plained in section 4.6.2, the standard practice is to do cross-validation by
leaving one data set out in each iteration. However, the scores with † are
reported from pooling all datasets together. Doing cross-validation on the
mixed data is expected to result in a higher score. Other methods such as
[15, 16, 24, 29, 45, 46, 58, 66, 213] are not shown in this table as they are
trained and tested with databases that are either not provided for public
usage or their subjective scores are not available. Thus we were unable to
make a fair comparison.

As shown in Table 4.4, ANIQUE+ has a very high score of 0.98. This
is to be expected as ITU-T Suppl23 was included in the training databases
[215]. The authors of [14] and [28] report the next highest scores, 0.94 and
0.92 respectively. However, for both systems, additional databases were
used for training and a higher score is expected. The score reported in [26]
is 0.91. However, the author acknowledged an implementation error and
the correct score is 0.88 [1].

Reviewing the results in Table 4.4 indicates that our model is compet-
ing with the model introduced in [62]. In the following, we provide a more
detailed comparison of these competitive results for each iteration of the
cross-validation and this will be statistically significance tested at the end
of the section. 3

Table 4.5 compares our results with 1) the result reported by [62], 2)
non-intrusive standard P.563 and 3) intrusive standard P.862.1. The reason
we chose the method in [62] for this comparison is that it has the highest
score in Table 4.4, where the training and test data is same as data we used
in our system.

Table 4.5 indicates that the performance of our system is higher than
the P.563 standard on five data sets, and it is almost equal to P.563 on the
other two data sets. Intrusive standard P.862.1 has access to the original
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Table 4.4: Review of the scores in the literature related to machine learn-
ing methods for assessing the quality of speech, from performing cross-
validation on ITU-T Suppl23. The scores with an asterisk are from systems
that used additional databases for training. The scores with † are based on
experiments with different cross-validation methods. The score with × is
not correct and is the result of an implementation error

Method PCC Score

ANIQUE+ [44] 0.98*

Low Complexity, Non-Intrusive Speech Quality ... [14] 0.94*

Non-intrusive speech Quality Assessment Using ... [28] 0.92*

Our model [1] 0.92

A Hierarchical Bayesian Approach to Modeling ... [26] 0.91×

Probabilistic Non-Intrusive Quality Assessment ... [62] 0.91

A Bayesian Estimator for Non-intrusive Speech ... [214] 0.90†

A Bayesian Approach to Non-Intrusive Quality ... [61] 0.89

Nonintrusive Speech Quality Evaluation Using ... [59] 0.88†

A Bayesian Hierarchical Mixture of Experts [23] 0.88
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Table 4.5: Comparison of PCC computed per-condition for Supplement 23
database after a third-order monotonic mapping. Each database in ITU-T
Suppl23 corresponds to a lab and an experiment, where X1 and X3 indicate
experiments one and three, respectively. ITU-T P.862.1 is intrusive and
expected to have higher performance than other methods in the table that
are non-intrusive.

Database P.862.1 P.563 method in [62] Our method

BNR-X1 (English) 0.968 0.902 0.926 0.949

BNR-X3 (English) 0.934 0.916 0.944 0.949

CNET-X1 (French) 0.947 0.885 0.912 0.923

CNET-X3 (French) 0.904 0.886 0.888 0.886

CSELT-X3 (Italian) 0.964 0.854 0.847 0.884

NTT-X1 (Japanese) 0.957 0.842 0.940 0.914

NTT-X3 (Japanese) 0.943 0.929 0.887 0.927

Mean 0.945 0.888 0.906 0.919
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signal when scoring the test signal and its performance is naturally higher
than our model on six data sets. P.862.1 reported a PCC score of 0.934 on
the remaining dataset, which is slightly lower than the PCC score, 0.949 in
our model.

As illustrated in Table 4.5, the result from our model is very compet-
itive with the results in [62]. Analysing the PCC score for each iteration
(i.e, each row in the table) indicates that our performance is on average
0.0126 higher in correlation than the performance of the method in [62].
The mean PCC in our method is 0.919, which is 0.013 higher than the mean
PCC, 0.906, reported in [62]. In the following, we analyse the reliability of
our results and statistically compare them with the results from [62].

In order to measure the reliability of the experimental results, it is a
common practice to compute the confidence interval. The confidence in-
terval is a measure of the belief that an unknown parameter value lies in a
specific interval. Most commonly, the 95% confidence level is used [216].
95% confidence is an estimated interval that we have 95% confidence the
unknown parameter value lies in that interval.

For a random variable X with a normal distribution, 0.95% confidence
interval is

X̄ ± 1.96
s√
n
, (4.41)

where n is the number of observed samples, X̄ is the sample mean, and s

is the sample standard deviation. However, the distribution of PCC in our
experiments is not symmetric and is negatively skewed. The reason for
the skew is that correlation cannot be greater than 1.0, and the distribution
does not extend in the positive direction as it does in the negative direc-
tion. In the following, we explain how we computed the 0.95% confidence
interval for our experimental results in Table 4.5.

The PCC we reported in Table 4.5 is based on our experiment and is the
sample correlation that is called r. In our experiment with ITU-T Suppl23
r is 0.919, which is an estimate of the population correlation ρ. We used the
sample correlation r to construct a confidence interval for the population
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correlation ρ (Later in this section, we also use r to perform a hypothesis
test on ρ and compare our method with [62]).

We computed the confidence interval on ρ based on the following steps
from [217]:

• Let r be the sample correlation of the n points. Then the quantity

W =
1

2
ln

1 + r

1− r
(4.42)

is approximately normally distributed, with mean given by

µW =
1

2
ln

1 + ρ

1− ρ
, (4.43)

and variance given by

σ2
W =

1

n− 3
. (4.44)

• SinceW is normally distributed (with known standard deviaton σW =
1√
n−3

), equation (4.41) can be used to compute a 95% confidence in-
terval for µW .

• The 95% confidence interval for ρ is obtained by inverting the equa-
tion (4.43) and mapping the interval for µW into the confidence in-
terval for ρ as

ρ =
e2µW − 1

e2µW + 1
. (4.45)

We computed the 95% confidence interval for the results we reported
in Table 4.5 based on our experiment with ITU-T Suppl23. The 95% confi-
dence interval is [0.911, 0.942]. This means we are 95% confident that the
correlation coefficient between the subject scores and the scores predicted
by our method is between 0.911 and 0.942.

Although 95% confidence interval is a common approach to check the
reliability of our experiment, it does not compare our results with others
and does not provide any information about how confident we are that our
method performs better than others. The hypothesis is "The performance
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of our method is better than the performance of the method in [62]". To de-
termine how certain we are that this hypothesis is true, we must perform
a hypothesis test. A hypothesis test produces a number between zero and
one that measures the degree of certainty we may have in the truth of a
hypothesis [217].

We constructed a hypothesis test to compare our method with [62].
There are two possible interpretations from comparing the results we ob-
served in our experiment and the results reported in [62]:

• H0: ρ1 − ρ2 ≥ 0.

• H1: ρ1 − ρ2 < 0.

The standard name for H0 is the null hypothesis, and H1 is called the
alternate hypothesis. The interpretation in H0 is that the population corre-
lation coefficient ρ1 in [62] is actually greater than or equal to the popula-
tion correlation coefficient ρ1 in our method. Hence the sample correlation
coefficient r1 = 0.0906 (reported in [62]) is lower than sample correlation
coefficient r2 = 0.0919 (that we reported) only because of the possible vari-
ation from the population mean.

The interpretation in H1 is that the population correlation coefficient
ρ1 is actually less than population correlation coefficient ρ2, and the sam-
ple correlation coefficients r2 = 0.0919 > r1 = 0.0906 represents a real
difference that is expected to be seen if a new experiment is performed.

A hypothesis test assigns a quantitative measure to the plausibility of
the null hypothesis, which is called P -value [217]. The P -value is a num-
ber between zero and one that measures the strength of the disagreement
between observed samples and H0. When the P -value is small, the evi-
dence against H0 is stronger.

Hypothesis tests are closely related to confidence intervals and can be
performed based on the quantity of W computed in equation (4.42). We
compute the P -value based on the following steps from [217]:
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• We assume H0 is true and compute a null distribution under the
assumption that H0 is true:

W1 −W2 ∼ N (0, σ2
W1

+ σ2
W2

) = N (0, 0.077968118). (4.46)

• We compute a z-score, which is a number representing how many
standard deviations above or below zero W1 −W2 is

z =
W1 −W2 − 0√

(1/(n1 − 3) + 1/(n2 − 3)
= 1.00040892. (4.47)

• From the z table, the P -value is 0.15, which is the area to the left of z
under the normal curve in (4.46).

To early statisticians [218], p-value equals 0.05 is considered to be an
appropriate choice for being significant evidence rejecting H0, and it has
continued to be conventionally used in statistical analysis. Consequently,
p-value equals to 0.1 explains that it is not unlikely for the observed data
to be random. However, the point at which the rejection of H0 occurs
depends largely on the degree of discrepancy and how it is interpreted by
each individual [219]. This means the choice of significance level at which
H0 is rejected is arbitrary and p-value that is not significant at the 0.05
level can be significant at the 0.1 level. Since the P -value for the results
we reported based on our experiment with ITU-T Suppl23 is 0.15, we fail
to reject H0 at the 0.05 level. Nevertheless, the P -value tells us that if H0
were true, the probability of observing the scores reported in Table 4.5 (that
shows the performance of our method is higher than [62]) is only 15%.

4.7 Summary

We have proposed a new non-intrusive speech quality assessment based
on a neural network and demonstrated the performance gain from the
enhanced feature set. To achieve the higher performance we introduced
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two novel enhancement procedures to the feature set: 1) Augmentation,
2) Standardization.

We hypothesised that an augmented feature set with redundant fea-
tures reduces the effect of input noise and improves the performance of
a non-intrusive speech quality assessment. We evaluated the relationship
between the performance of the linear regressors and the number of the re-
dundant features and derived equations that show the variance of the er-
ror asymptotically decreases with enlarging the feature set. Based on our
experimental results with the linear and non-linear regressors, we con-
clude that a machine learning based non-intrusive system benefits from
redundant features that represent the same information but include inde-
pendent noise.

Our second hypothesis was that pre-distorted features with a smooth
distribution facilitate the training of a machine learning based speech qual-
ity assessment. This was confirmed by the experimental results from ap-
plying our proposed standardisation methods on our augmented feature
set. The effect of standardisation is more evident when a larger fraction of
features have a non-smooth distribution.

The final experimental results with the ITU-T Supplement 23 database
confirm the performance gain from the enhanced feature set. To demon-
strate the proposed system performs well, we analysed the reliability of
our results and statistically compared them with the current methods.
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5
Unsupervised quality assessment

The brain is an excellent source of inspiration for machine learning. We
postulate that the human brain has a model of auditory signals it receives
and hence can rate the quality of these signals as good or bad if they are
similar to, or different from that model postulated in the brain. In this
chapter, we use generative models to simulate the existing models in the
brain. We define a new criterion for quality and aim to mimic the high-
dimensional functionality in the brain, which enables people to rate the
quality of speech.

5.1 Introduction

In conventional non-intrusive algorithms, the specialists in the field use
their knowledge to design complex algorithms to model the interaction
of the features and their contribution to the overall quality [1]. Machine
learning methods do not explicitly design a model, and the system relies
on statistical learning from the training data. Both types use the knowl-
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edge of experts to either design the system or carefully craft the features
required for training. The quality assessment systems introduced in [37,
38, 39] use unsupervised feature learning, so they rely less on hand-crafted
features designed based on prior knowledge. However, data used for
training the regressor at the end is still to be labelled by the subjects. In
this chapter, we explain how we built an entirely unsupervised quality
assessment system, which does not need supervision of any kind.

Non-intrusive quality assessment methods in the literature imitate the
behaviour of subjects who rate the quality of speech by learning statistics
from the training data. Such systems perform well on speech corrupted
under known conditions. However, they fail to reflect other types of im-
pairment if they are not included in the training data. The quality degra-
dation caused by the WaveNet coder [220] is an example where the quality
assessment methods existing at the time failed to identify in their evalu-
ation process and hence were not reflected in the quality score. Hence
a reliable quality assessment method is desirable which is not limited to
specific types of corruption or training data. To implement such a method,
we look at the factors that an individual implicitly takes into account when
rating the quality of speech. These factors are likely based on how far the
samples are from their expectation or how much they are used to those
types of corruptions.

To simulate the model existing in the human brain for the perception
of good quality speech, we adopt generative models and train them with
speech files that sound reasonable and natural and that humans are typi-
cally used to hearing. Then for measuring the quality of speech, we apply
a new criterion that is based on divergence metrics explained in section
3.5.

The remainder of this chapter is organised as below. In section 5.2, we
review the literature that inspired the approach developed in this chapter
and compare our proposed approach with the methods in the literature
that adopt a similar insight.
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In section 5.3, we state the problem we solved in this chapter by study-
ing generative models from a different perspective, and we show how they
can be employed for measuring the quality of speech. We start with a gen-
erator G that is trained to map the latent variable Z to sample X1 from
P1(X1). We note that using G to generate data X2 from P2(X2) effects the
distribution of Z, unless P2(X2) = P1(X1). We analyse this hypothesis in
section 5.4 in more detail and explain how to benefit from this in measur-
ing the quality of samples that are outside the training domain.

In section 5.5, we explain our proposed method and implement an in-
verted generator that projects sample X to its latent variable Z. In section
5.6, we perform experiments to assess the proposed idea and evaluate the
high-level performance of the proposed quality assessment system. We
observed that the new proposed criterion positively correlates with the
objective scores estimated by PESQ. This correlation is promising for in-
vestment on this novel measure.

The focus of this work is mainly on audio quality estimation. However,
the theory and experiment results can accurately be extended to other do-
mains, such as the domain of the image. In section 5.7, we summarise the
overall findings in this chapter and discuss the limitations and shortcom-
ings.

5.2 Related works

Many successful machine learning models have been implemented with
the intention to copy the schemes observed in the biological brain. For ex-
ample, deep-learning models attempt to mimic the activity in layers of
neurons in the neocortex [221]. Convolutional neural network models
[129] that are successfully used for pattern recognition tasks are another
example that are heavily inspired by the study of cats’ brains in the 1950s
and 1960s by Hubel and Wiesel [222, 223]. In their research, they explored
how neurons in the brain are organised to produce visual perception and
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suggested a new model that specifies how mammals perceive the world
visually. In the following, we briefly review the findings with regards to
vision and study how the concept presented there can be extended into
speech and employed in quality assessment. Then we highlight the key
differences between our proposed method and the other methods in the
literature that are based on a similar concept.

Hubel and Wiesel [222, 223] verified that although vision starts from
the eyes, the actual interpretation of visual inputs is in the primary visual
cortex in the brain. Their experiments [224] showed that if a kitten is pre-
vented from having a visual experience during a critical period at the start
of its life, its vision will be severely affected for the rest of its lifetime. They
showed that the effect was less when the prevention of visual experience
and the eye closure was delayed. Furthermore, they confirmed that there
were no effects on the vision from the closure of eyes in an adult cat [225].
These experimental results hold that learning the model of vision in the
brain has to occur during a critical period in infancy. It was shown that
the same phenomenon also exists in primates [226].

The critical period hypothesis was also popularised in linguistics by
Lenneberg in 1967 [227]. This hypothesis holds that primary language
acquisition must occur in childhood before cerebral lateralisation is com-
plete. The requirement for hearing and practising during a critical pe-
riod is apparent in the studies of language acquisition in feral children
who have minimal exposure to language, and likewise in the studies that
involve congenitally deaf children [228]. Research on the brain regard-
ing second language acquisition [229, 230] also illustrates that variation in
age of exposure to second languages results in different neural represen-
tations.

Other interesting findings that are closely related to the critical period
hypothesis are the studies associated with the phonetic structure of lan-
guage. The structure of the phonetic sounds that people hear during their
early life shapes both their perception and production of speech [228].
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Studies showed that very young infants do not have any bias towards the
phonemes characteristic of any particular language. Hence young infants
perceive the speech sounds universally similar to each other. However,
this will change when they grow. For example, adult Japanese speakers
cannot reliably distinguish between the /r/ and /l/ sounds in English
[231], whereas 4-month-old Japanese infants can make this discrimination
as reliably as 4-month-old English infants. From this insight, one possibil-
ity is that adults’ responses to the stimulation of the brain is based on the
circuits they retain from the input they are exposed to during childhood
[228].

Based on these findings, we propose that a person rates the quality
of input signals based on the pre-existing structure in their brain that is
formed during their childhood. Quality does not have an explicit defi-
nition. However, an individual implicitly rates the quality, where high
quality for them corresponds to normal and typically formed based on
their listening habits. In other words, given that an individual has been
exposed to a variety of speech since they were born, they have a model
of good quality speech in their heads, which is linked to the speech that
they typically hear. In this study, we adopt this hypothesis, and as will
be explained in section 5.3, define a new criterion for measuring the qual-
ity by employing generative models. We now provide a brief overview of
the fundamental differences between our proposed system and the exist-
ing non-intrusive quality assessment systems in the literature. Then we
review methods in the literature that seem to apply an approach equiva-
lent to our proposed approach of applying deep generative networks. We
further state how our work is distinct from them.

Recently, many quality estimation systems have been introduced based
on machine learning methods [28, 29, 30, 31]. Our work is distinct from
them in two significant aspects:

1. In this study, data used for training are standard audio signals and
are not required to be labelled by human subjects. This is because
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we mimic the behaviour of the human brain that is not trained with
degraded signals.

2. In this study, quality has a new definition, which is based on how
different the input is from the pre-existing model trained on natural
inputs. Therefore, the method is not dependent on the specific types
of corruptions in the training data.

Anomaly detection methods such as [232, 233, 234, 235], which try to
find anomalies in the data without supervision, seem to be conceptually
similar to what we propose in our quality assessment. However, our work
differs from them in two key ways. The first key difference is their appli-
cation. Our system is designed to rate the quality, rather than simply indi-
cating the anomaly. As will be explained in this chapter, our system allows
rating because it explores the informative knowledge about the distribu-
tion of the test samples. In contrast, the anomaly detection systems define
general criteria for anomalies based only on the distribution of training
data and seek no information about the distribution of test samples.

The second main difference is the approach applied in our system,
which makes this rating possible. Unsupervised anomaly detection meth-
ods [236, 237] are often based on neural networks that are trained to recon-
struct training samples. In these models, it is assumed that the network
can reconstruct a new test sample with a small reconstruction loss only if
it comes from the distribution of training data. Hence, a large reconstruc-
tion loss is an indicator of the anomalies for test samples. Such systems
are optimised once for the entire training data so that they can reconstruct
any new sample that is similar to training data. However, in our proposed
approach, we first train our system with the training data but then at test
time, we optimise the corresponding latent variable for each test sample
individually. Following that, as will be explained in section 5.5, we use
the latent variables of test samples to measure the difference between the
distribution of test inputs and training data. Finally, we quantify this dif-
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ference and adopt it as a measure of quality.

Similar to our approach, the authors of [238] suggest using deep gen-
erative models for speech quality assessment, and applied a WaveNet ar-
chitecture in their work. However, they try to mimic PESQ, which is an
intrusive algorithm. To our knowledge, no one has used the concept of
deep generative learning for non-intrusive quality assessment.

Likewise, RankGAN [239] proposed a generative adversarial network
that assesses and ranks the quality of samples. However, RankGAN is
not designed for assessing the quality, and it intends to help GANs with
learning a better generator. As opposed to performing a binary classifi-
cation task in the original GAN, RankGAN learns by relatively ranking
information. In RankGAN, the discriminator module is replaced with a
ranker. The ranker is trained to rank the fake input lower than real input
with respect to a reference signal. Since a reference signal is required in
RankGAN, it is again an intrusive type of quality assessment.

The authors of [240] brought the concept of quality assessment into the
field of generative models. However, their goal is opposite to ours. They
use quality assessment methods for measuring the quality of samples gen-
erated from GANs intending to assess the quality of the GAN itself. Our
work is one of the first to use GANs for quality assessment from this point
of view.

In this chapter, we propose the novel idea of adopting generative mod-
els for non-intrusive quality assessment. For this, we study generative
models from a different perspective. Instead of focusing on the generators
for generating samples with good quality, we focus on the latent variables
that are input for the generator that produces samples with varying qual-
ity. Subsequently, our contribution is to adapt a generative model and
build a generic model of speech similar to the model in the brain for mea-
suring the quality of new input based on the structure existing there. The
next section outlines this statement in more detail.
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5.3 Problem statement

As explained in the previous section, it is natural to think of the quality of
voice as the distance between what people hear and the model existing in
their brain (i.e., the model that is developed based on what they are used
to hearing). Based on this notion, and how a person’s opinion about the
quality is affected by this factor of distance, we claim that the quality of an
audio file is good for a person when it is close to their expectations built
on their listening habits. Conversely, quality is deemed to be bad if it is
far from their expectations. Generative models are a suitable method to
be used in this context because they enable us to build a generic model
of speech similar to the model that exists in the brain. In this section, we
briefly state the notion of generative models for quality assessment and the
relative criterion to be considered for that and leave the detailed analysis
of our hypothesis and its practicality for the next section.

When generative models are trained on a dataset that is considered to
be good quality data, these models learn a manifold of good quality data.
The distribution of the learnt manifold is usually complex and not explic-
itly defined. To generate good quality data, the generator G samples the
latent random variable, Z, from a simple distribution, PZ , and maps that
into the random variable, X ∼ PX , from the distribution of good quality
data. At first sight, using the log-likelihood of the samples generated from
the generators seems like a good measure to assess its quality. However,
as stated in [241] log-likelihood and visual fidelity of samples seemed to
be mostly independent of each other when the data is high-dimensional in
deep generative models. Moreover, evaluating likelihoods is challenging
when the model density is specified implicitly based on the prior density
PZ and the generator function G. Hence, in the following section, we seek
to find a reliable criterion that measures quality correctly. Here we briefly
analyse the log likelihood of data in generative models and briefly discuss
how transforming data into the latent space effects the model density.
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Let us consider g = G−1 is a function representing the inverse of the
neural network that projects back X into its latent variable Z:

Z = g(X). (5.1)

For simplicity we assume g is a bijective function and the dimensionality
of X and Z are identical. By applying the formula of change of variables,
the probability density of the sample x transformed to z can be written as:

PX(x) = PZ(z)
∣∣∣det∂g(x)

∂x

∣∣∣ , (5.2)

where the term ∂g(x)
∂x

is the Jacobian of g at x. Although PZ(z) is easy to
compute, the Jacobian of high-dimensional distributions can be compu-
tationally expensive [242]. In our scenario, PX(x) will remain unknown.
However, the log likelihood of the test sample, X̄ , is computed as:

EX̄ logPX(X̄) = EX̄ log(PZ(g(X̄))J(X̄)) (5.3)

= EX̄ log(PZ(g(X̄)) + EX̄ log(J(X̄)), (5.4)

where we defined J(x) =
∣∣∣det∂g(x)

∂x

∣∣∣.
In Equation (5.4), the first term EX̄ log(PZ(g(X̄)) is the cross entropy

between the ground-truth and model distributions, and term EX̄ log J(X̄)

provides the adjustment required for the conversion to the likelihood in
the original domain. This equation illustrates that the likelihood value
might be reduced or increased in the latent space depending on the Jaco-
bian term, which accounts for the compression or expansion of the local
volume in the mapping from X to Z. If we replace the log-likelihood with
a general form of function h : RN → R, we have:

EXh(X) =

∫
PX(x)h(x)dx =

∫
PZ(G−1(x))J(x)h(x)dx. (5.5)

Hence, we note that other measures are also not the same when evaluated
in the original domain or in the latent domain. However, if the distance
measure between two distributions be zero in the original domain, evalu-
ating them in the Z domain also would be the same.
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This suggests that for comparing X̄ with X , we should compare dis-
tributions rather than computing a likelihood or similar measures. This
is because a comparison of distributions would always show the differ-
ence between random variables X̄ and X . However, the likelihood and
related measures only provide the probability of the samples given the
model distribution of the training data. Consequently, they do not pro-
vide additional information about how samples are distributed and hence
do not make it possible to compare other aspects of the distribution of
samples with the distribution of training data.

In the following section, we propose that for measuring the quality of
test sample, X̄ , we use the inverted generator, G−1 and map X̄ into the
latent space to find the relevant Z̄ for that. Then we postulate that com-
paring the distribution of the latent variable, Z̄, with the prior distribution,
PZ , is a good indication of the quality of X̄ . The following section anal-
yses our proposed criteria in more detail and studies the general form of
measuring divergence between the distributions for this purpose.

5.4 Analysis

We analyse the hypothesis stated in the previous section, which is the prin-
ciple of the proposed unsupervised quality assessment developed in this
chapter. We first analyse the utilisation of a generative model for simu-
lating the model that hypothetically exists in the brain. Then we analyse
the proposed criteria for comparing the distribution of the latent variables
with the prior distribution in order to rate the quality of a new sample.

Let us assume generator G1 acts as an operator that maps a normally
distributed random vector Z ∼ N (0, I) to another vector X1 ∼ P1 as:

X1 = G1Z. (5.6)

Now consider a new test sample X2 ∼ P2 that can be generated from an-
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other operator G2:

X2 = G2Z. (5.7)

We intend to compare X2 with X1 and rate its similarity to X1. For this,
we suggest finding the input Z̄ for G1 so that the output is X2, and that is:

Z̄ = G−1
1 G2Z. (5.8)

Accordingly, G−1
1 G2 = 1 only if G1 = G2 and that results in P1 = P2. In

this special case G−1
1 G2 Maps Z to itself and hence, Z̄ has a multivariate

normal distribution with zero mean and the identity covariance matrix. In
other scenarios the term G−1

1 G2 in Equation (5.8) effects the distribution
of Z̄. Consequently, the distribution of Z̄ will be different from N (0, I).
We propose that divergence between the distribution of Z̄ and Z is an
indication of how much the test sample X2 looks like the desired sample
X1. Furthermore, we propose that the operator G introduced above can be
represented by generative neural networks that map the latent variable Z
to sample X .

As illustrated in section 3.5, we can define a divergence between two
distributions PZ and PZ̄ in the general form of:

df (PZ , PZ̄) = EZ∼PZ̄
f(Z)− EZ∼PZ

f(Z), (5.9)

where different choices of f results in different divergence metrics. For
example, by choosing f(z) = z or f(z) = z2, Equation (5.9) measures the
distance based on the mean or the variance of the distributions. IPM dis-
tance measures, such as MMD and Wasserstein distance do not explicitly
define the function, and instead specify a class of functions F . Then the
supremum function f that has an average value over PZ that is most dif-
ferent from its average over PZ̄ , is used to measure the divergence (see
section 3.5 for a more detailed explanation).

The divergence metrics used in statistics usually do not have any prior
information about the distributions that are compared and therefore are

129



(a) Digit three. (b) Digit six.

Figure 5.1: Association of the pattern of digit eight to digit three and six.

very generic. In this work, we know that PZ is a multivariate normal distri-
bution with zero mean and the identity covariance matrix. Consequently,
we have some intuition about the properties of the distribution that are
more relevant to be compared for measuring how much that distribution
diverges from N (0, I). In this work, we rely on this prior information and
select a function f so that it reflects the properties that best represent the
normal distribution.

To select a proper function and also to visually compare the distribu-
tions of variables, we made a pilot experiment in section 5.6.1. This pilot
experiment represents the example latent variables in the two-dimensional
space, which potentially leads us to possible choices for f . Here we only
provide a brief overview of this pilot experiment and explain how we use
it to verify our hypothesis. The detailed explanation of the experiment and
analysis of the results are presented in section 5.6.1.

The pilot experiment employs the images of handwritten digits from
the MNIST database (refer to section 5.6.1 for the description of the MNIST
database) and investigates the earlier statement about rating the similarity
of new samples with the desired samples by comparing their distributions
in the latent space. As shown in Figure (5.1), by their nature the patterns
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and curves in the shape of digits three and six are to some extent related
to the pattern in the shape of digit eight. As will be explained in section
5.6.1, other digits can be more or less related to the digit eight too. Ac-
cordingly, we assume that the distribution of the image of the digit eight
is the desired distribution, and we intend to compare the distributions of
the images of other digits (including digit eight itself) with the desired
distribution. Consequently, we replace G1 in Equation (5.6) with a GAN
that is trained with the images of the digit eight. G1 maps Z ∼ N (0, I)

to X1, which is a random variable with the dimensionality of 28 × 28 that
represents the greyscale images of handwritten digit eight.

After training the GAN, we implement an inverted generatorG−1, which
maps greyscale images of any new handwritten digit, X̄ , to its relevant 2-
D latent variable Z̄. We perform four tests, in which, X̄ represents images
of digits eight, three, six, and one respectively. Figure (5.6) in section 5.6
presents the two-dimensional latent space and visually compares the dis-
tribution of the latent variables, Z̄, retrieved from these tests for the digits
eight, three, six, and one.

Figure (5.6.a) presents the two-dimensional latent space relevant to the
digit eight. This figure illustrates that the elements of the latent vari-
able for generating the digit eight are approximately distributed as ex-
pected and it is comparable to a multivariate Gaussian distribution with
zero mean and the identity covariance matrix. Furthermore, Figure (5.6.b)
presents the two-dimensional latent space that visually compares the el-
ements of the latent variables of the digits three and eight. This figure
illustrates that the elements of the latent variable for the digit three are
directional in the manifold. This again validates our hypothesis and also
suggests that the covariance matrix or the correlation coefficient in the la-
tent space might be a good choice for measuring the dissimilarity of the
digit eight with other digits.

Ultimately, based on the entire results discussed in Section 5.6.1, we hy-
pothesise that a criterion based on the correlation coefficients of the latent
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variables is likely to be a relevant measure for quality assessment. In the
following, we explain how to apply this criterion for quality assessment
and later evaluate that in section 5.6.2.

For speech quality assessment, which is the focus of this thesis, we
compare the test signal, X̄ , with the good quality training signal, X , based
on the divergence between the distribution of their respective latent vari-
ables in the latent space. Hence, we utilise Equation (5.9) and rate the
quality of X̄ relative to X as:

RX(X̄) = df (PZ , PZ̄) (5.10)

= EZ∼PZ̄
f(Z)− EZ∼PZ

f(Z), (5.11)

where PZ and PZ̄ are the distribution of the latent variables computed for
X and X̄ respectively. PZ is a prior distribution defined in the setting of the
GAN before it is trained with good quality speech. Since PZ is pre-defined,
the second term, EZ∼PZ

f(Z), in (5.11) is fixed. We remove the fixed term
from the relative measure in 5.11 and define the absolute quality rating of
test signal X̄ as:

R(X̄) = EZ∼PZ̄
f(Z). (5.12)

In this new measure, the offset that is introduced into our performance
measure is ignored.

The choice of f(Z) = log(PZ̄(Z)) results in a single measure that rates
the quality based on the log-likelihood of the random variables in the la-
tent space. However, as discussed in the previous section, log-likelihood
and related measures do not compare the distributions and hence are not
desirable in our application. We hypothesize that f(Z) = ‖ZZT‖ is a good
choice as it provides a rating measure, R, based on the latent variable’s
covariance matrix and provides the desirable additional information re-
garding the distribution of the samples and its difference with the multi-
variate normal distribution. In order to compare the covariance matrices
and assign a single value to them, we associated the covariance matrix to
a scalar score by applying a matrix norm. The matrix norm is a function,
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||.|| : Km×n → R, that maps all matrices of size m× n in the space of Km×n

into a scalar value in the set of real numbers under specific conditions.

Among many types of matrix norms, the Frobenius norm is the most
simple one and seems to suit our purpose. The Frobenius norm of matrix
A that is defined as:

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij|2. (5.13)

is the square root of the sum of squared magnitude of all entries. The
Frobenius norm of a matrix can also be described as the Euclidean norm
of the vectorised version of a matrix that is formed by concatenating all of
its rows or columns. Accordingly, it is likely to be a good choice for our
work. Employing the Frobenius norm in Equation (5.12), we propose to
rate the speech signal X̄ and assign a score to that as:

r(X̄) = ||ΣZ̄ ||F , (5.14)

where Σz̄ is the covariance matrix of the latent variable relevant to X̄ .
Equation (5.14) is the main equation for this body of work, where the
larger value for r represents a more significant difference between the dis-
tribution of X̄ and high-quality data. Hence we expect that our proposed
score increases as the quality of test signals decreases. Our experimental
results in section 5.6.2 validate that our proposed rating based on the score
defined in Equation (5.14) is a useful criteria for unsupervised quality as-
sessment, which measures the degradation in the speech files.

To compute ΣZ̄ in Equation (5.14), our system requires an inverted
generator, G−1 that maps each sample x to its latent variable z, so that
G(z) = x. The following section explains the inverted generator in more
detail and presents the implementation aspects of that.
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5.5 Implementation of Method

The criterion defined in the previous section measures the correlation of
data points in the latent space. Hence our method relies on having a valid
inversion process that projects a given observation in the original domain
to a vector in the latent space. An inversion process, known as inference,
maps a data sample, x, to a latent variable, z, so that when z is passed
through the generative network, it produces the original data x.

The inference model is accurate only if it is an injective function that
maps distinct elements of the original domain into distinct elements in the
latent space. If the inference model is non-injective, it is possible that the
distinct data points, x1 and x2, be mapped into the same latent variable
z̄. Passing z̄ through the generative network generates x̄, which cannot be
identical to both x1 and x2.

As discussed earlier in section 3.4.2, the generative model we chose for
this work has a GAN training structure. All GANs have a generator that
maps data from the latent space into the space that is to be learnt. How-
ever, the original formulation does not support inverse mapping. The in-
dependently proposed Adversarially Learned Inference (ALI) [243] and
Bidirectional GANs (BiGAN) [244] jointly learn a generation network and
an inference network using an adversarial process. However, it is shown
in [147] that the fidelity of reconstructed data samples synthesised using
an ALI/BiGAN are poor. In [245], the reconstruction is improved by intro-
ducing an additional adversarial cost. However, none of these inference
models is defined as injective. Furthermore, such inference models only
learn the training data, and hence samples with a different distribution
are not expected to be reconstructed precisely. Therefore, these models are
not good candidates for our application as test samples are likely to have
a different distribution from the training data.

To verify our statement above with regards to the inverted inference
models such as ALI and their fitness for our purpose, we tested ALI with
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Figure 5.2: Examples of digits from MNIST on the left and their recon-
struction with ALI on the right side.

several sample data from the MNIST database. Figure (5.2) shows random
digits from the MNIST database and their reconstruction with ALI that
is trained on the digit eight. The images on the left side are the sample
digits from MNIST. The images on the right are the reconstructed samples
that are generated with ALI from a 100-dimensional latent space. ALI
reconstructs the digit eight with a small error. However, the other digits
are not reconstructed well, and all the reconstruction images are a form of
a digit eight similar to that digit.

Other techniques have been proposed to invert the generator of the
pre-trained GANs [246, 247] for every single input under the test. These
techniques have a different training approach that instead of modifying
the network weights, modifies the input. In such methods, the weights
from the pre-trained generator in the GAN network are frozen, and the
reconstruction error is minimised individually for each sample by modi-
fying the input. In such methods the reconstruction is precise when the di-
mensionality of the latent space is sufficiently large. Although additional
time is required to train the inversed generator for each test sample, the
benefit is that the reconstruction error is minimised for each sample. Such
methods are desirable only if the reconstruction error has to be minimal.

In Equation (5.14), we assume that the inverted generator is absolute
so that when the latent variable is passed through the pre-trained genera-
tor, it reconstructs the original data points under the test with zero error.
Therefore, we choose an approach similar to the techniques above, where
the weights of the pre-trained generator are frozen and the desired input
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Figure 5.3: Examples of digits from MNIST on the left and their recon-
struction with inverted GAN on the right side.

is found from the iterative steps of backpropagation. For qualitative eval-
uation of the inverted GAN, in Figure (5.3) we show pairs of data points
and their reconstruction from a 100-dimensional latent space. This figure
illustrates that although the reconstruction is not precise in our inverted
generator, it results in smaller reconstruction error in comparison with ALI
in Figure (5.2).

Flow-GAN [242] introduced recently is a generative adversarial net-
work with an invertible generator. The generator in the flow-GAN is a se-
quence of invertible bijective transformations. Hence, the inference model
is formed by inverting those invertible generators. Employing the bijective
inference model in the flow-GAN results in zero reconstruction error for
all data. Additionally, the inference model in flow-GAN does not have the
overhead of training the network for individual test samples. However,
Flow-GANs were not available when this research was completed.

In the next section, we employ our inverted generator to estimate the
latent variables so that when they are passed through the generative net-
work, it produces data points that are close to the original data. We per-
form experiments to assess our proposed criterion for measuring the qual-
ity, and evaluate the high-level performance of our proposed unsuper-
vised quality assessment system.
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5.6 Experiments

We initially design a pilot experiment to validate our proposed idea and
then test our system on speech files to verify how this can be used for
quality assessment. The next two sections explain these experiments in
more detail.

5.6.1 Pilot experiment with MNIST

We perform a pilot experiment on the MNIST database of handwritten
digits to visually verify the correctness of our proposed approach. First we
describe the MNIST database. Next, we explain the experiment we design
to represent our idea and the motivation behind our approach. Finally,
we present the experimental results and analyse how they support our
hypothesis with regards to the measure we define in section 5.4 in order
to apply that in quality assessment.

MNIST databse

The Modified National Institute of Standards and Technology (MNIST)
database [248] is a collection of handwritten digit images designed for
testing the learning techniques and pattern recognition methods on real-
world data. The MNIST database is publicly available and requires mini-
mal preprocessing and formatting. Consequently, it is used extensively in
machine learning research [20, 249, 250, 251], and it has become a standard
for fast-testing machine learning algorithms and techniques [252, 253].

The MNIST (modified NIST) database is constructed from NIST’s Spe-
cial Database 3 and Special Database 1, which contain black and white
images of handwritten digits. SD-3 and SD-1 in the NIST database are the
training data set, and the test data set respectively. NIST’s training data
set is collected from American Census Bureau employees, whereas the test
data set is collected from American high school students. Therefore, SD-3
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is cleaner than SD-1, and the digits there are more easily recognised. Since
the distribution of the training set and the test set in the NIST database is
different, the original NIST is not desirable for machine learning experi-
ments. Accordingly, the MNIST database was developed by remixing the
samples from NIST’s data sets, which is more appropriate for testing ma-
chine learning techniques [248].

The training set in the MNIST database is composed of 30,000 images
from SD-1 and 30,000 images from SD-3. Overall the training set contains
60,000 images that are collected from approximately 250 writers. The test
set in the MNIST database is composed of 5,000 images from SD-1 and
5,000 images from SD-3. The writers of 10,000 digits in the test set are
different from the writers of the digits in the training set. The images in
the training set and test set are labelled by values between zero and nine,
which specify what digit they are.

In addition to remixing the samples, the black and white (bilevel) im-
ages from the NIST database are normalized in the MNIST database. In
the modified database, the images from the original NIST are size normal-
ized and centred in a fixed-size image so that the centre of gravity of the
intensity lies at the centre of an image with 28×28 pixels [252]. The dimen-
sionality of the resulting image sample vectors in MNIST is 28× 28 = 784.
The image sample vectors contain grey levels, and the pixel values are 0 to
255, where 0 is white, and 255 is black. The greyscale images are the result
of the anti-aliasing technique used by the normalization algorithm [248].
Anti-aliasing is the smoothing of edges in digital fonts or images. It blends
colors in a natural-looking way and makes edges appear less jagged. Fig-
ure (5.4), presents random samples from the MNIST database.

The MNIST database in machine learning is comparable to the TIMIT
database [254] in the signal processing [252]. Similar to TIMIT phone clas-
sification and recognition tasks, which have been commonly used for de-
veloping and testing speech recognition algorithms [255, 256], MNIST as
discussed earlier has been used as a benchmark for testing machine learn-
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Figure 5.4: Random sample digits from the training set in the MNIST
database.

ing techniques, and general classification tasks [252]. Hence, similar to
TIMIT, which is familiar to many speech processing researchers, MNIST is
a well-known database for machine learning researchers. In the following
section, we describe how we design an experiment to test the correctness
of our proposed machine learning technique with the MNIST database.
Later in section 5.6.2, we use the TIMIT database and the NOIZEUS database
to examine the proposed machine learning based quality assessment tech-
nique with speech.

Design and description of experiment

As explained above, the reason that MNIST is popular is its simplicity
and its size, which allows deep learning researchers to quickly check and
prototype their algorithms [253]. In this section, we explain our exper-
iment employing the MNIST database for testing the correctness of our
proposed machine learning technique and explain the motivation for con-
ducting this experiment.

The seven-segment display shown in Figure (5.5) is a form of an elec-
tronic display device for displaying decimal numerals. The set of seven
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Figure 5.5: The seven-segment display from [257]

segments in these displays that form the number eight is the original mo-
tivation behind the pilot experiment we designed for checking our idea
before we perform experiments with the speech files.

The seven elements of the display can be lit in different combinations
to represent the numerical digits zero to nine, where digit eight is on dis-
play if all the elements are on. The fact that all the digital numbers are
displayed via the digital number eight is an indication that all the digits
are somewhat associated with digit eight. Considering that handwritten
digits are to some extent similar to the digital display of numbers, we pro-
pose to extend this idea of an association between the digit eight and other
digits into the pattern of handwritten digits. We design our experiment to
measure the similarity between the digit eight and the other digits in the
MNIST database and intend to quantify this similarity by applying the
measure defined in section 5.4. We naturally expect to observe that digits
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such as three and six, have more similarity to the digit eight than the other
digits such as one or seven.

In this pilot experiment, the digit eight is the desired sample, and we
intend to rate the similarity of other digits to that. In the next section,
this experiment will be extended to speech quality assessment, in which
speech files that have good quality are desired samples, and we intend
to rate the quality of test speech files by assessing their similarity to the
desired speech files. As explained in section 5.4, for rating the similarity of
the samples to the desired sample, we require a generative neural network
that maps the latent variables sampled from the latent space to the desired
sample. Accordingly, we train a GAN with all the 600 images of digit eight
from the MNIST training database.

We adopt the original formulation of GAN implemented for generating
MNIST samples by Goodfellow et al. [20], which is written in Python. The
neural network they used as the discriminator contains two hidden layers,
each containing 240 neurons using a maxout activation function. The in-
put size is 28× 28 = 784, and the output has one neuron with the sigmoid
activation, which determines whether samples are from the generator or
the data distribution.

The generator neural net used by Goodfellow et al. in the GAN has
two hidden layers, each containing 1200 neurons with rectifier linear acti-
vations. The output has 28 × 28 = 784 neurons with a sigmoid activation
function. The input size in this original GAN is 100. However, we change
the input size to be variable k. As will be explained at the end of this sec-
tion, for the visual case, we first set k to be two, and then increase that to
100 for real comparison between the digits.

Furthermore, we train our GAN only with the images that contain the
digit eight, whereas the original GAN in [20] is trained on the whole train-
ing data set that contain digits from zero to nine. Therefore, the pre-trained
generator of our GAN maps the random variable Z ∼ N (0, I) drawn from
the latent space into the greyscale images of digit eight.
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After training the GAN, we develop our inverted generator on top of
the pre-trained generator as explained in section 5.5. The inverted gener-
ator, which is also written in Python, is an inversion process that projects
the new sample image x into latent space and estimates its corresponding
latent variable ẑ. The dimensionality of x is 28× 28 = 784 and ẑ is set to be
k-dimensional.

To verify that our proposed statement in section 5.4 is correct, we use
our inverted GAN and use the images of digits one to nine from the MNIST
test data set and map them to their relevant latent variable in the latent
space. We expect to see that the distribution of the latent random variable
Ẑ is similar to the prior distribution of latent random variable Z ∼ N (0, I)

for digits such as three that are similar to eight. On the other hand, we
expect to see that Ẑ diverges from N (0, I) when the digits under the test
are more distinct. In the following, we describe the process of estimating
the distribution of the latent variable for each digit.

To estimate the distribution of the latent variable for each digit d ∈
[1, 9], we use 120 samples {xd,i}120

i=1, where xd,i is the ith random sample
from the MNIST training set that contains an image of handwritten digit
d. For each of the 120 samples, we use the inverted GAN to find a k-
dimensional latent variable, ẑd,i, that is relevant to xd,i. We stack ẑd,is and
form the matrix z̄d, in which each row contains one realisation of the ran-
dom latent variable relevant to the digit d. The size of z̄d is 120× k, and it
contains 120 points in the latent space, where each point generates digit d
keeping the handwriting style if used, as input to our GAN. At the end of
this test, we have nine matrices that represent the estimated distribution
of the latent variable for each digit from one to nine.

In order to visualise the distribution of the latent variables, we first
set k to be two, which results in two-dimensional latent space. A two-
dimensional latent space enables us to plot the realisations of latent vari-
able. These plots present a high-level insight into the variation of the dis-
tribution of the latent variables of the different digits. However, two is not
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sufficient to reconstruct the digits properly with a small reconstruction er-
ror. Hence, the latent variables computed with our inverted generator are
not a good estimate of the distribution of the latent variables. Moreover,
the dimensionality of two is likely not adequate to represent the variation
in the distributions. Hence, we repeat the test and increase the value of k
to 100 to analyse the distribution of the latent variables of digits and com-
pare them with each other in more detail. The next section presents the
experimental results and their relevant analysis.

Results

Figure (5.6.a) shows the elements of latent variables found for 120 samples
of digit eights from the MNIST test data set for k = 2. Since the GAN is
trained to map Z ∼ N (0, I) to the images of the digit eight in the MNIST
training set, we expect the latent variable retrieved for the images of the
digit eight in the test set to have a distribution that is close to a multi-
variate Gaussian distribution with a zero mean and a diagonal covariance
matrix. Figure (5.6.a) illustrates that the elements of the latent variable for
120 test samples of the digit eight, which are retrieved from our inverted
generator, are approximately distributed as expected. It is noted that the
mean value of the latent variable is not zero on one axis. However, it is
relative to a multivariate Gaussian distribution with an identity covariance
matrix.

Figure (5.6.b), and (5.6.c) compares elements of the latent variable found
for test images of the digit eight with elements of the latent variable found
for 120 samples from the digits three, and six respectively. As expected,
the latent variables for the digits three and six are directed in the manifold.
Figure (5.6.d) intends to compare the distribution of the latent variable of
the digit three with the digit six. We infer that the correlation between x-
axis and y-axis for the digit six is larger than is the digit three as it is less
similar to the digit eight.

We repeat the test above for 120 samples from the MNIST database that
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(b) Digits three and eight.
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(c) Digits six and eight.
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(d) Digits three, six and eight.
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(e) Digits one and eight.
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(f) Digits one,three, six and eight.

Figure 5.6: Comparison of two-dimensional latent space for the digits. The
latent space is based on the reconstruction of 120 handwritten samples
from the MNIST database. The system is trained based on the latent space
that has a Gaussian distribution with a unit covariance matrix.
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contain the images of the digit one. Since the dimensionality of two is not
sufficient for generating the digit one with a GAN that is trained with the
digit eight, the elements of latent variable computed for the digit one are
not a good estimation of its distribution. This poor estimation is the result
of the large reconstruction error produced by the inverted generator, and
the large reconstruction error is the result of low dimensionality of the
latent space.

Figure (5.6.e) compares the elements of the latent variable found for
test images of the digit eight with the elements of the latent variable found
for 120 test samples from the images of digit one. Since the pattern in
the model of the digit one is very different from the pattern in the model
for the digit eight, the difference between the two distributions is more
apparent, where both the mean and the covariance are different. As shown
in Figure (5.6.f) the elements of the latent variable for the digit one has a
very different distribution from the digit eight, whereas the elements of
the latent variables for the digits three and six are more similar to the digit
eight.

The distinct distribution of the latent variable for the digit one is also
partly caused by the large reconstruction error from the inverted genera-
tor that has an input size of two. Hence, these initial plots are simply a
way for visualising the high-level effect of similarity of the samples on the
correlation between their relevant latent variables and are not particularly
reliable.

To continue with our pilot experiment, but to achieve a more reliable
estimation of the distribution of the latent variables, we enlarge the di-
mensionality of the latent space and set k = 100, which is the size of the
input for the orignal GAN implemented in [20] for the MNIST databse.
We repeat the test and compute {ẑd}9

d=1 , where ẑd is a 120 × 100 matrix
that represents the distribution of the latent variable for digits d ∈ [1, 9].

We test the criterion we defined in section 5.4, and rate the similarity of
each digit to the digit eight, using the measure defined in equation (5.14).
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Table 5.1: Rating the similarity of digits to digit eight based on Equation
(5.14). The rating is based on the examination of 120 handwritten samples
from the MNIST database for each of the digits.

digit 8 3 5 6 2 9 7 4 1
R .166 .167 .170 .171 .172 .179 .180 .182 .225

Table 5.1 shows the rating of the digits according to their similarities to
the digit eight. The digits are ordered based on our proposed measure in
increasing order. Hence, the digits on the left side of the table have the
lowest value (i.e., are more similar to the digit eight), and the digits on the
right side have the highest value (i.e., are less similar to the digit eight). By
looking at the order of the digits in the table, we interpret that digits three
and five are the most similar digits to digit eight, whereas digits four and
one have the least similarity.

Since the shape of digits six and nine are rotationally symmetric, we
expected them to have a similar rating. However, the results in Table 5.1
show that the digit six has a lower correlation than is the digit nine, which
means the digit six is more similar to the digit eight compared to the digit
nine. By looking at the shape of digits six and nine in Figure (5.7), we
suggest that this disagreement with our expectation is probably because
digit six is more likely to have a diagonal rather than vertical line, which
creates similarity to the diagonal line in digit eight. On the other hand, as
shown in Figure (5.7), the descending line on digit nine can be diagonal or
vertical depending on the style of the handwriting.

Ultimately, from this reasonable rating in this pilot experiment, we in-
fer that our proposed criterion and technique for measuring the similarity
of the samples are reasonable, and we propose to employ this measure for
quality assessment. The next section presents our experiments with audio
files in this context.
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Figure 5.7: Random samples from the MNIST database to display the ver-
tical and diagonal lines in digits six, nine and eight. Some examples of the
diagonal and vertical lines are marked in green and red in order to high-
light the similarity and dissimilarity of those lines in digits six and nine to
the diagonal line in digit eight.

5.6.2 Experiment with speech

In the previous section, we designed a pilot experiment to validate the
idea behind our proposed unsupervised learning technique for assessing
the quality of speech. We tested our technique with the MNIST database
by training a generator on the desired sample data and applying an in-
verted generator for rating the similarity of new samples to the desired
samples based on Equation (5.14). The results from the pilot experiment
lead us to apply our technique to the real-world problem of quality assess-
ment. In this experiment, we limit the degradation to the case of additive
noise and examine how our proposed technique is beneficial in the field of
non-intrusive speech quality assessment. This initial step towards imple-
menting the first unsupervised quality assessment is promising and opens
a new path for applying unsupervised learning into speech quality assess-
ment.

To verify the application of our technique in non-intrusive speech qual-
ity assessment, we test our proposed system with the speech files. First we
define the databases we use in this experiment and the pre-processing of
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the speech files. Next, we provide a description of the experiment. Finally,
we present the results and analyse them.

Databases

In this experiment, we use the speech files from two databases, TIMIT
[254], and NOIZEUS [258]. Speech files in the TIMIT database are similar
to how people are typically used to hearing speech. Consequently, as dis-
cussed in section 2.2, they are considered as being of good quality in this
work. On the other hand, the NOIZEUS database contains noisy speech
files and we use them for testing our quality assessment system. Here we
provide an overview of these two databases.

The TIMIT acoustic-phonetic continuous speech corpus [254] is de-
signed to provide speech data for the development and evaluation of auto-
matic speech recognition systems. The TIMIT database design is the result
of a joint effort among researchers at the Massachusetts Institute of Tech-
nology (MIT), SRI International(SRI), and Texas Instruments, Inc. (TI). The
corpus is composed of 2342 distinct sentences from three collections [259]:

1. 2 calibration sentences, which are provided by SRI.

2. 450 phonetically compact sentences that are hand-designed by MIT.

3. 1890 randomly selected sentences chosen by TI.

The researchers at TI conducted the recording of the sentences with 630
speakers from eight dialectical regions of the United States. 439 of the
speakers (Approximately 70%) are male, and 191 of them are female (30%).
Each talker reads a total of ten sentences, which are the two calibration
sentences, five of the phonetically-compact sentences, and three of the ran-
domly selected sentences. Accordingly, the TIMIT database contains a to-
tal of 6300 speech files. The speech data are digitally recorded at 20 kHz in
a relatively quiet environment where the peak signal to noise ratio is 29 dB.
The recording is simultaneously on a pressure-sensitive microphone and
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on a Sennheiser close-talking microphone. The speech files are filtered and
downsampled to 16 kHz at the National Institute for Standards and Tech-
nology (NIST). In addition to the speech files in the waveform, the TIMIT
database includes their relevant time-aligned orthographic, phonetic and
word transcriptions. However, these are not relevant to our work and are
not used in this thesis.

We consider the speech files in TIMIT as the desired samples and use
them for training our system. Consequently, we test our system with
the speech files in the NOIZEUS database. The publicly available speech
database NOIZEUS is a noisy speech corpus developed for facilitating the
comparison of speech enhancement algorithms among research groups
[260]. The NOIZEUS database contains 30 sentences produced by three
male and three female speakers (5 sentences per speaker). The 30 sen-
tences are selected from the IEEE database [261] and include all the phonemes
in the American English language. The sentences are recorded in a sound-
proof booth with Tucker Davis Technologies (TDT) recording equipment.
The recordings are originally sampled at 25 kHz and then downsampled
to 8 kHz. Subsequently, the recordings are corrupted by different real-
world noises over a range of signal to noise ratios (SNRs).

Noise signals are selected from the AURORA database [262], which
includes recordings from different places: car, exhibition hall, restaurant,
street, airport, train station, train and a crowd of people (babble). The
noise signals are added to the speech signals at four SNR levels of 0 dB, 5
dB, 10 dB and 15 dB.

To consider the realistic frequency characteristics of equipment in the
telecommunication area, the speech and noise signals are filtered first. The
filters are the modified Intermediate Reference System (IRS) filters used in
ITU-T P.862, which simulate the receiving frequency characteristics of tele-
phone handsets. The modified IRS filter is independently applied to both
the clean and noise signals and then filtered noise is artificially added to
the filtered speech signals. In order to add noise to the speech signals, the
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active speech level of the filtered clean speech signal is first determined.
Next, a noise segment that has the same length as the speech signal is ran-
domly selected from the noise recordings and scaled to reach the desired
SNR level. Ultimately, the noise segment is added to the filtered clean
speech signal.
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Figure 5.8: Distribution of objective MOS score computed for speech files
in the NOIZEUS database by running the PESQ algoritm.

As will be explained in the description of the experiment, we use the
speech files in the NOIZEUS database as input to our inverted generator
and rate their quality based on the divergence of their distribution in the
latent space from the prior distribution defined for our GAN that is trained
with speech files in TIMIT. To evaluate our ratings and analyse their cor-
relation with the MOS score, we run the full-reference PESQ algorithm [7]
on both clean and degraded speech files.
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The intrusive PESQ algorithm estimates the quality of degraded speech
signals by comparing them with the clean reference speech signals. Fig-
ure (5.8) shows the distribution of MOS score computed for the NOIZEUS
databsase. The PESQ score computed for noisy speech files in NOIZEUS
is between one and three. For estimating the quality of clean speech files,
the clean speech file is compared with itself as the reference. Since there is
no difference between them, the PESQ score estimated for all of the clean
speech signals is equal to 4.5.
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Figure 5.9: comparison between the objective MOS scores computed for
speech files in the NOIZEUS database by running the PESQ algoritm and
the SNR level.

Figure (5.9) shows the objective PESQ MOS scores computed for speech
files in the NOIZEUS database and compares them with the SNR level of
those files. As expected, the quality increases by as the SNR level increases.
The scores reported in the results section is based on the PESQ objective
MOS of the NOIZEUS files. In the following section, we explain how we
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pre-process the speech files in the TIMIT and NOIZEUS databases to use
them as input to our neural network.

Pre-processing

The speech files in the TIMIT and NOIZEUS database are represented as
time series, where the y-axis denotes the amplitude of the waveform. The
raw waveforms are high dimensional and may not necessarily provide
explicit information about the quality of speech. On the other hand, the
spectrograms of speech files, which provide a time-frequency representa-
tion of the signal, can reduce the dimensionality of raw audio and retain
more information than most hand-crafted features traditionally used for
audio analysis [263].

The spectrograms map raw audio data to a more structured represen-
tation that expresses essential signal properties more clearly [264]. Fur-
thermore, spectrogram representations conveniently allow using neural
network architectures that were originally designed for image processing,
and image classification [265]. Hence, we choose to apply the spectro-
grams of the speech files from the TIMIT and NOIZEUS database as input
to our neural network that is based on the GAN implementation provided
in [20].

The time-frequency spectrograms are images that contain information
with time and frequency along axes, and the strength of a frequency com-
ponent at each time frame by the brightness or the colour. The Short-Time
Fourier Transform (STFT) is a simple, easy-to-apply signal transformation
method that transforms time-domain signals into time-frequency space.
The spectrogram is created from the magnitude of the components in the
frequency domain that are computed by STFT. We employ the Spectro-
gram function in the Matlab 9.9.0 library to extract the time-frequency in-
formation in the speech files of TIMIT and NOIZEUS. Here we provide
details of pre-processing of the speech files in TIMIT and NOIZEUS and
explain how we generate their spectrograms.
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The GAN presented in [20] implemented different architectures for dif-
ferent databases. The architecture of the neural network we use in this ex-
periment is based on the GAN implementation provided in [20], which is
trained with the CIFAR-10 database [266]. Although we use the same ar-
chitecture (i.e. same number of neurons in the hidden layers and same ac-
tivation functions), we train our GAN with the TIMIT database. The GAN
in [20] is trained with 50,000 images from the CIFAR-10 database. Hence,
it is likely that we require tens of thousands of data points for training our
GAN with the spectrograms of speech files in the TIMIT database. The
TIMIT database contains a total of 6,300 sentences, a total of 5.4 hours. To
increase the size of our training data into the range of tens of thousands,
we split the 6,300 speech files in the TIMIT databse to smaller blocks and
generate 38,880 speech segments that are half a second long. We randomly
select 23,000 of the segments that contain speech for training. Similarly,
we break the speech files in the NOIZEUS database into half a second
blocks too. However, we select only one random block from each de-
graded speech file and use that one for the test. Furthermore, we down-
sample the speech files in the TIMIT database to 8 kHz, so that they match
with the speech files in the NOIZEUS database.This preprocessing of the
speech files took 20 minutes to complete on an Intel(R) Core(TM) i5-8265U
processor.

We apply the short-time Fourier transform to the half-a-second-long
speech signals acquired from the TIMIT and NOIZEUS. In computing a
spectrogram, the STFT window size parameterises the trade-off between
time and frequency resolution [267]. A large window size results in narrow-
band spectrograms with high resolution in frequency, whereas small win-
dow size results in wide-band spectrograms with high resolution in time.
If our machine learning model were sufficiently powerful, different choices
of the spectrograms would not make a difference in the system’s perfor-
mance as both narrow-band and wide-band spectrograms hold the same
amount of information. However, in practice, different choices might im-
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pact the sensitivity of our approach for different types of degradation.

Due to the large computational demand of GAN and the limitation in
the size of the input, we set the parameters to make the size of the spec-
trograms close to the size of image files in the CIFAR-10 database. Since
the speech files are sampled at 8 kHz, the half a second speech segment
contains 4000 samples. The window size is set to 128 (16 ms), which is
slightly smaller than 20 ms window size that is commonly used in other
speech applications. The overlap is set to 64 samples, which corresponds
to the typical 50% overlap and the window function is a Hamming win-
dow. This . The number of frequency points used to calculate the dis-
crete Fourier transforms is 128. Applying the STFT with these parame-
ters generates spectrogram representations of the size 64 × 64 (frequency
× time). Figure (5.10) displays random spectrograms generated from the
TIMIT database. In the following section, we explain how to use these
spectrograms of TIMIT and NOIZEUS for evaluating our system.

Design and description of experiment

As discussed earlier, in this experiment, we assume that the distribution
of the spectrograms produced from speech files in the TIMIT database is
the desired distribution for the spectrograms for their relevant speech files
to be recognised as good quality speech. We intend to rate the quality
of the speech files in the NOIZEUS database by projecting their relevant
spectrograms back to the latent space and compare their distribution with
the desired distribution. As explained in section 5.4, for this rating we
require a generative neural network that maps the latent variables sam-
pled from a simple distribution into the greyscale spectrograms with the
distribution of speech files in TIMIT. Furthermore, we require an inverted
generator that projects the greyscale spectrograms generated from speech
files in NOIZEUS back into the latent space and estimates their relevant
latent variable.

In this experiment, we set up the architecture of the GAN similar to
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Figure 5.10: Examples of the spectrograms that are generated from a half
a second of speech. The speech segments are randomly selected from the
TIMIT database.

the original GAN used in [20] for the CIFAR-10 database [266]. How-
ever, instead of the CIFAR-10 database, we train our GAN with the TIMIT
database and hence, adjust the architecture relatively to fit our purpose.

The generator neural net contains two hidden layers, each containing
8000 neurons with a rectifier linear and sigmoid activation function re-
spectively. The discriminator neural net contains two hidden layers, each
containing 1600 neurons using a maxout activation function. The output
of the discriminator has one neuron with the sigmoid activation, which
determines if samples are from the generator or the data distribution.

The CIFAR-10 database contains color images with the size of 32 × 32

in RGB format, where the red, green and blue pixels have integer values
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from 0 to 255. Therefore the size of the generator output and discriminator
input in the original GAN is 32 × 32 × 3 = 3072. However, the size of the
spectrograms in our work, is 64× 64 and they are greyscale. To adjust the
architecure of the GAN to the spectrograms in our work, we change the
size of the generator output and discriminator input to 64× 64× 1 = 4096.

We train our GAN with the 23,000 random spectrograms generated
from the TIMIT speech files. Accordingly, the pre-trained generator of the
GAN maps the random input Z ∼ N (0, I) drawn from the latent space
into the greyscale spectrograms with the distribution of the spectrograms
of speech files in TIMIT. Training GAN on a cpu is very slow. Hence we
trained our system with a gpu. Training our GAN with 23,000 training
data took about 32 hours on Dual Intel Xeon processor. Figure (5.11) shows
random samples generated with our GAN. These images are not real spec-
trograms and are not generated from a speech signal.

After training the GAN, we develop our inverted generator,G−1 on top
of its pre-trained generator G. As explained in section 5.5, the inverted
generator is an inversion process that projects the new sample image x to
its corresponding latent variable z. Hence, G is expected to generate x if
z is used as the input. The size of x and ẑ is 64 × 64 = 4096 and 1000

respectively.

As discussed in section 5.5, the inversion process is not precise and
hence G−1 maps x to ẑ, which is an estimate of z. Accordingly G maps z̄
to x̄, which is somewhat different from x. This reconstruction error is ex-
pected and does not directly impact our results as our proposed measure
in the latent space does not consider the image difference in the spectro-
gram domain.

Figure (5.12) shows some random sample spectrograms generated from
the noisy speech files in the NOIZEUS database and displays their recon-
struction next to them on the right side. The spectrograms on the top
two rows are generated from the noisy speech files, where SNR level is
low. Therefore, those spectrograms are expected to be more noisy. In
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Figure 5.11: Random images generated from a GAN that is trained with
the spectrograms of half a second of speech files from the TIMIT databse.

contrast, the spectrograms on the bottom rows are generated from speech
files, where the SNR level is relatively high and they contain less noise.

To examine our proposed idea in section 5.4 for speech quality as-
sessment, we use our inverted GAN and project the spectrograms of the
speech files from the NOIZEUS database back into the latent space and
estimate their relevant latent random variable Ẑ. We expect to see that
the distribution of the estimated latent variable Ẑ is similar to the prior
distribution of the latent random variable Z ∼ N (0, I) for the spectro-
grams of speech files that have small noise (and hence have large SNR).
On the other hand, we expect to see that the estimated distribution of la-
tent variable Ẑ diverges from N (0, I) when the spectrograms under test
are from the speech files that have a considerable noise (and hence small
SNR). In the following section, we describe the process of estimating the
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Figure 5.12: Examples of spectrograms from NOIZEUS on the left and
their reconstruction with inverted GAN on the right side. The speech and
noise signals in NOIZEUS are filtered by a modified Intermediate Refer-
ence System (IRS) [258]. Hence, the higher frequencies filtered by the mod-
ified IRS have a zero value and are displayed as black stripes at the top of
each plot.
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Figure 5.13: Comparison between the SNR level of noisy speech files and
the Frobenius norm of the correlation coefficient of their latent variables.

distribution of the latent space for the test speech files and present the ex-
perimental results.

Setup and results

In this section, we present the experimental results and examine the corre-
lation between the measure defined in Equation (5.14) and the SNR level
and also the PESQ MOS.

We group the test files into five different conditions based on their SNR
levels: 0 dB, 5 db, 10 dB, 15 dB and the clean files. We intend to rate the
quality of each condition using the measure in Equation (5.14). To estimate
the distribution of the latent variable for speech files that are corrupted
with noise and have a SNR equal to d ∈ [0, 5, 10, 15], we use 120 samples
{xd,i}120

i=1, where xd,i is the spectrogram relevant to the ith random speech
file in the NOIZEUS database that has a SNR = d. We stack xd,is and form
the matrix xd, which has the size of 120 × 4096. For each of the 120 spec-
trograms in xd, we train the inverted GAN on xd,i individually and find its
relevant 100-dimensional latent variable, ẑd,i. This process takes two sec-
onds on Dual Intel Xeon processor for each spectrogram (and hence four
minutes for 120 samples).
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We stack ẑd,is and form matrix ẑd, in which each row contains one re-
alisation of the latent variable in the latent space of degraded speech files
with the SNR value of d. The size of ẑd is 120× 100. Accordingly, it con-
tains 120 estimated points in the latent space that reconstructs the 120 spec-
trograms in xd with a small error, if used as input to our GAN. We repeat
this experiment for the clean files. At the end of this test, we have five
matrices that represent the estimated distribution of the latent variable for
the clean files and the degraded files with SNR values in [0, 5, 10, 15]. We
use the Frobenius norm of the correlation coefficient of each matrix and
rate each condition using Equation (5.14). Computing Frobenius norm of
each matrix takes a millisecond by running a MATLAB code on a cpu.

Figure (5.13) determines that our proposed measure decreases as the
SNR level increases. This is consistent with the analysis in Section 5.4,
which states that our proposed measure is expected to decrease as the
quality of test signals increases. Figure (5.13) shows a substantially lin-
ear relationship between the SNR level and our proposed measure, which
suggests that it is a good measure for rating the quality.
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Figure 5.14: Comparison between the PESQ MOS score of speech files in
NOIZEUS and the Frobenius norm of the correlation coefficient of their
latent variables. The speech files are grouped into five conditions based
on their SNR level.
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We also study the correlation between our proposed measure and the
per-condition MOS of the speech files in the NOIZEUS database. To com-
pute per-condition MOS, we average over the PESQ MOS scores [7] of
test files for each condition. Figure (5.14) shows the relationship between
our proposed measure and the PESQ MOS score. Likewise, our proposed
measure decreases as MOS increases. This is consistent with our hypothe-
sis that expects a negative correlation between our measure and MOS.

In order to statistically verify the negative correlation between our mea-
sure and MOS, we randomly selected a smaller number of samples from
the test signals and repeated our experiment. Figure (5.15) illustrates that
negative correlation is evident despite changing the subset of samples.
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Figure 5.15: Comparison between the PESQ MOS score of speech files in
NOIZEUS and the Frobenius norm of the correlation coefficient of their
latent variables. The speech files are grouped into five conditions based
on their SNR level. The experiment is repeated for different number of
samples that are randomly chosen from original 120 test samples.
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Furthermore, Figure (5.16) displays the PESQ MOS with regards to the
log-likelihood of the samples projected into the latent space. Unlike the
strong correlation between MOS and our measure, there is no clear re-
lationship between MOS and the log-likelihood and log-likelihood is not
as informative as our criteria when MOS score is smaller than two. This
is consistent with the statements in [241, 242], where it is explained that
the log-likelihood of the images generated by generator models and their
relevant latent variables are not highly correlated with the quality of gen-
erated images, and therefore they are not a good measure for evaluating
the generators in the generative models.
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Figure 5.16: Comparison between the PESQ MOS score of speech files in
NOIZEUS and the log-likelihood of their latent variables. The speech files
are grouped into five conditions based on their SNR level.

In addition to the experiment with the different SNR levels, we further
divide corruptions based on the different noise types: train, airport, street,
and babble noise. We define 16 conditions where each condition is defined
based on one of the four noise types, where its SNR level can be 0, 5, 10, or
15. The 17th condition is no corruption, which includes the clean speech
files. We randomly select 120 speech files from each condition and form 17
matrices, {xd}17

i=1. The size of xd is 120×4096, where each row in xd contains
one spectrogram relevant to a speech file randomly selected from the dth
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condition. For each of the 120 spectrograms in each of the 17 matrices,
we train the inverted GAN individually and form 17 matrices, {ẑd}17

i=1.
Each row in ẑd contains one realisation of the latent variable relevant to
the spectrogram of one speech file from dth condition. The size of ẑd is
120× 100, and it contains 120 estimated data points in the latent space that
reconstructs the spectrograms in xd with a minimum error. Again, we use
the Frobenius norm of the correlation coeffiecient of each matrix and rate
each condition using Equation (5.14). Figure (5.17) illustrates the PESQ
MOS value for each condition along the Frobenius norm of the correlation
coeffiecient of each matrix. The results show a modest correlation between
our measure and MOS, where the Pearson Correlation Coefficient between
them is 0.9795.

1 2 3 4 5

PESQ MOS per noise type

0.1

0.12

0.14

0.16

0.18

0.2

0.22

O
u

r 
p

ro
p

o
s

e
d

 m
e

a
s

u
re

Figure 5.17: MOS score of NOIZEUS samples corrupted with the same
noise type to the average correlation coefficient in the latent space.

The experiments above are designed as the proof of concept to inves-
tigate the idea of applying unsupervised machine learning into the qual-
ity assessment with the intention of removing the requirement of labelled
data. The original idea in this work was to have a generic model for speech
where it should not matter what representation is used for speech. How-
ever, in practice, different choices for the parameters of the spectrograms
might make a difference in the system’s performance. For example, in this
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work we used linear frequency scale, whereas MEL spectrograms most
probably make the task easier for the neural network.

Although the scoring function and the parameters of the spectrograms
are not optimised in these experiments, the results from speech files that
are degraded by background noise are promising. These experimental re-
sults, which show high correlation between our proposed measure and
MOS, confirm that our proposed measure is valuable. Furthermore, they
prove that generative models are beneficial in speech quality assessment
and open doors to implementing the unsupervised methods in this field.

5.7 Summary and discussion

In this section, we summarise the GAN-based quality assessment approach
proposed in this chapter. We address its shortcomings and discuss the po-
tential solutions by applying other generative models for unsupervised
speech quality assessment.

Recently many non-intrusive quality estimation systems have been in-
troduced based on machine learning methods. However, they are all su-
pervised or semi-supervised. The innovative GAN-based quality assess-
ment presented in this chapter is the first attempt at an entirely unsuper-
vised method in this context.

We introduced a novel application for GAN and built our quality as-
sessment based on the correlation of data points in the latent space. The
core ability of the GAN is learning generative models that map simple la-
tent distributions into data. In this work, we splitted the speech files into
segments to be shorter in length and used their low-resolution spectro-
gram images to assess their quality. Experimental results show a strong
exponential relationship between their quality and the correlation of spec-
trograms projected back into the latent space.

Due to the large computational demand of a GAN for generating large
size images, we splitted speech signals into short segments and used their
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low dimensional spectrograms as input features to our GAN. However,
with the improvement of deep learning, an end-to-end assessment that
operates directly at the waveform level is more valuable as feature engi-
neering approaches might not retain all the information. For example, by
dividing the speech signals into short segments, we assumed that the short
segment of the speech represents its overall quality. Furthermore, spectro-
grams do not hold all the information if they are under sampled. More-
over, using the spectrograms of the speech files causes an additional over-
head to the system. The pre-processing module that divides the speech
signal to the fixed time frames and computes their discrete Fourier trans-
forms is not expensive. However, an end-to-end assessment that operates
directly at the waveform level is still more valuable for the in-service sys-
tems because feature extraction will be part of the overall system. In this
context, the output of the first hidden layer of the neural network is usu-
ally considered as the features and they are expected to be more informa-
tive about the quality.

A natural future line of work is to develop a speech quality assessment
system that uses the raw audio waveform as input by replacing the GAN
with a generative model that operates on high dimensional data. WaveNet
is a generative model for raw audio and is suitable for employment in
an end-to-end unsupervised non-intrusive quality assessment. We used a
GAN in this work as WaveNet does not appear to have an explicit defi-
nition of latent space in the literature, whereas the basis of our proposed
criteria is to measure the divergence of distributions in the latent space.
WaveNet and whether it has the potential to be adapted in this applica-
tion will be discussed in future works in section 6.2. In the next chapter,
we discuss the contributions of the research in this thesis and provide a
conclusion.
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6
Conclusions

6.1 Summary

In this section, we summarise the two distinctive speech quality assess-
ment methods developed in this thesis. We discuss the advantages of these
two methods and their benefits for speech quality assessment.

The first speech quality assessment proposed in this thesis is based on
supervised learning. The existing supervised learning based quality as-
sessments usually aim to improve the estimation of the objective score
of a speech utterance in a way that the scores estimated correlate with
the scores obtained from human subjects. The existing methods improve
on their performance mainly by using additional data. However, in this
thesis, we concluded the performance of the supervised learning based
speech quality assessment systems could be improved by enhancing the
features that are used as the input to the regressor. In this thesis, we pro-
posed an enhanced feature set for quality assessment based on two ideas:
augmentation and standardisation:
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• The novelty in augmentation is to enhance the feature set with raw
features that are presumably redundant. We hypothesised that an
augmented feature set with redundant features reduces the effect of
input noise and improves the performance of a non-intrusive speech
quality assessment. We evaluated the relationship between the per-
formance of the linear regressors and the number of the redundant
features and derived equations that show the variance of the error
asymptotically decreases with enlarging the feature set. Based on
our experimental results with the linear and non-linear regressors,
we concluded that supervised-learning-based non-intrusive systems
benefit from the redundant features that represent the same informa-
tion but contain independent observation noise.

• With respect to standardisation, we concluded that pre-distorted fea-
tures with smooth distribution facilitate the training of machine learn-
ing based speech quality assessment. The novelty introduced here
was the pre-processing method we applied to the data, which redis-
tributes them to achieve higher performance. The effect of standard-
isation is more evident when a substantial fraction of features has a
non-smooth distribution.

The anticipated benefit of our novel enhanced feature set for quality as-
sessment was confirmed with the experimental results reported in Chap-
ter 4.

The second non-intrusive quality assessment method that we intro-
duced in this thesis is unsupervised and is inspired by the functioning of
the human brain. Our proposed unsupervised based non-intrusive assess-
ment system is distinct from other machine learning based non-intrusive
systems in two significant aspects:

• Data used for its training consists of standard speech signals and is
not required to be labelled by subjects. Therefore the data required
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for its training is not costly and consequently is more readily avail-
able.

• Quality has a new definition based on how different the input is from
the pre-existing model trained on the natural inputs. Hence training
is not based on imitating statistics of degraded speech files.

We concluded that for implementing a system that is not trained on la-
belled data and is not even required to be exposed to degraded speech
signals, we have to simulate two functionalities similar to what exists in
the human brain:

• the unsupervised functionality that learns a model of natural speech.

• the functionality that compares the observed speech with the pre-
existing model, and rates the quality respectively.

To mimic the first function, we used a GAN training structure and
trained that on natural speech to learn a generative model of good quality
data. To mimic the second functionality, we first projected the test speech
back into the latent space. Then we rated the quality based on a distance
between the test signal and the distribution of good quality speech in the
latent space. The experimental results show that our proposed criterion
based on the distance in the latent space is highly correlated with quality
scores.

While we do not claim that the proposed unsupervised system per-
forms better than other supervised and semi-supervised methods in the
literature, we believe that this primary step towards implementing the first
unsupervised quality assessment. This highlights the potential of apply-
ing the generative models for quality assessment, which initiates a new
era in this context.

The focus of this thesis was the speech quality estimation. However,
the theory can be extended and applied in quality assessment for other
domains, such as for images. In practice, we implicitly showed in this
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thesis that our proposed method is an excellent potential image quality
assessment system. This is because our experimental results are based on
the spectrograms of the speech files, which form a particular set of images.
The following section provides the future path of this research.

6.2 Future works

The unsupervised quality assessment proposed in this thesis operates based
on the original formulation of GAN developed by Goodfellow et al. [20].
At the time this research has been conducted, an invertible GAN that can
be used for inference was not established. Therefore, we implemented
our own inference model that estimates the optimum latent variable by
minimizing the reconstruction error. Recently, the authors of [242] intro-
duced Flow-GAN, which consists of a pair of generator-discriminator net-
works with the generator specified as a normalizing flow model [268]. In
a normalizing flow model, the generator transformation G is invertible,
where G maps the latent variables z to the observed variables x such that
x = G(z) and G−1 exists. Using the inference model, G−1 results in zero
reconstruction error for all data. Therefore, the unsupervised approach
proposed in this thesis is expected to be more precise if GAN is replaced
by the Flow-GAN.

Furthermore, as discussed in Chapter 5, an assessment that operates
directly at the waveform level is desired. WaveNet is a deep generative
model of audio data that operates directly at the waveform level [141]. We
suggest that building a speech quality assessment that utilises WaveNet
instead of GAN is a natural future path for this work.

A WaveNet that is trained on the waveforms recorded from human
speakers, generates new speech utterances x = {x1, ..., xT} by generat-
ing one sample at a time. At each step, WaveNet computes the probabil-
ity distribution of output sample given the previous observed samples,
p(xt|x1, ..., xt−1). Then it generates the sample by drawing a value from
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the distribution p(xt) that is computed by the network. In order to control
what speech to generate, additional features are generally fed to the net-
work. In this case, the probability distribution of each sample has the form
of p(xt|x1, ..., xt−1, ct), where ct is a set of conditional features.

WaveNet consists of 1) a deterministic mapping from the previous sam-
ple and conditioning features to the parameters of the distribution (re-
stricted to be of a particular family) of the next sample, and 2) the drawing
of the next sample from that distribution. Naturally, the distance between
the predictive distribution given by WaveNet and the distribution of the
actual sample observed in the test signal is a candidate metric for rating
the quality. Hence, the first step seems to be relevant for developing an
unsupervised quality evaluation.

The GAN-based unsupervised quality assessment we implemented in
this chapter is a proof of concept specifying how generative models can
be the key to the implementation of unsupervised quality assessment.
WaveNet-based quality assessment can be a future path of this research
for developing an end-to-end unsupervised quality assessment system.

The unsupervised method in this thesis investigated speech that is de-
graded by background noise in a purely listening-only situation. We prac-
tised this setup as the small size spectrograms we used in this research
seem not to be sufficient for holding all meaningful information required.
However, the end-to-end quality assessment proposed above does not
have this restriction and is likely to be useful when the speech quality
is affected by other types of distortion due to speech codecs, packet loss,
or even those types of degradation in the conversational situation such as
talker echo and path delay. Naturally, for investigating these new types of
corruptions, new test databases have to be created by adding those types
of corruption to the clean files. In the following section, we conclude this
thesis by presenting the contributions of this research.
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6.3 Contributions

In this thesis, we analysed the performance gain from enlarging the di-
mensionality of the features in the linear machine learning models. We
presented its mathematical model and verified this performance gain for
speech quality assessment. The main part of this research is published in
[1].

Furthermore, we defined an innovative measure for rating the quality
of speech. We designed and implemented the first unsupervised quality
assessment. The outcome from this research opens new doors for applying
unsupervised learning into speech quality assessment.

To conclude, in this thesis, we investigated ideas to apply machine
learning to quality assessment, with the focus of relieving the limitation
created from the data specifications. The two quality assessment systems
we proposed in this thesis establishes that machine learning has the po-
tential to be further advantageous in this context by removing the effect
that the limitation of training data has on the performance of the system.
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A
Conditions in ITU-T Supplement23

In chapter 4, we evaluated our method with the ITU-T coded-speech data
set, Supplement 23 [34]. As explained in section 4.6, we employed exper-
iments one and three from the Supplement 23 database. The following
sections provide the full specifications of the conditions defined in these
two experiments.

A.1 Experiment one

Table A.1 provides the full complement of the conditions for experiment
one. The conditions include single encodings and combinations of the
codecs. The codecs will be G.711, G.726, G.728, G.729, GSM-FR, IS-54, or
Japanese Digital Cellular-HR (JDC-HR). Modulated Noise Reference Unit
(MNRU) is a standalone unit for introducing controlled degradations to
speech signals, where Q is the ratio of speech power to modulated noise
power.

175



Table A.1: Allocation of conditions for experiment one (adopted from Ta-
ble 5.2 in [211]).

Condition 1st codec 2nd codec 3rd codec
C1 G.729
C2 G.729 G.729
C3 G.729 G.729 G.729
C4 G.726
C5 G.726 x4
C6 G.728
C7 G.711
C8 GSM-FR
C9 IS-54

C10 JDC-HR
C11 G.729 G.726
C12 G.729 G.728
C13 G.729 GSM-FR
C14 G.729 IS-54
C15 G.729 JDC-HR
C16 G.726 G.729
C17 G.728 G.729
C18 GSM-FR G.729
C19 IS-54 G.729
C20 JDC-HR G.729
C21 G.729 G.729 GSM-FR
C22 G.729 G.729 IS-54
C23 G.729 G.729 JDC-HR
C24 G.729 G.726 GSM-FR
C25 G.729 G.728 GSM-FR
C26 GSM-FR G.729 G.729
C27 IS-54 G.729 G.729
C28 JDC-HR G.729 G.729
C29 GSM-FR G.726 G.729
C30 GSM-FR G.728 G.729
C31 GSM-FR IS-54
C32 IS-54 JDC-HR
C33 JDC-HR GSM-FR
C34 GSM-FR G.729 IS-54
C35 IS-54 G.729 JDC-HR
C36 JDC-HR G.729 GSM-FR
C37 MNRU (Q=5dB)
C38 MNRU (Q=10dB)
C39 MNRU (Q=15dB)
C40 MNRU (Q=20dB)
C41 MNRU (Q=25dB)
C42 MNRU (Q=30dB)
C43 MNRU (Q=35dB)
C44 MNRU (Q=50dB)
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A.2 Experiment three

Table A.2 presents the allocation of the conditions in experiment three,
which is designed to characterize the performance of codec G.726 under
detected frame erasure, and random bit error channel degradation condi-
tions.

177



Table A.2: Allocation of conditions for experiment three (adopted from
Table 7.2 in [211]).

Condition Codec Transcodings Noise Type Error Type Error Rate (%)
C1 G.729 1 clean - -
C2 G.729 1 clean Random Frame 3
C3 G.729 1 clean Rando Frame 5
C4 G.729 1 clean Bursty Frame 3
C5 G.729 1 clean Bursty Frame 5
C6 G.729 1 Vehicle - -
C7 G.729 1 Vehicle Random Frame 3
C8 G.729 1 Vehicle Rando Frame 5
C9 G.729 1 Vehicle Bursty Frame 3

C10 G.729 1 Vehicle Bursty Frame 5
C11 G.729 1 Street - -
C12 G.729 1 Street Random Frame 3
C13 G.729 1 Street Rando Frame 5
C14 G.729 1 Street Bursty Frame 3
C15 G.729 1 Street Bursty Frame 5
C16 G.729 1 Hoth - -
C17 G.729 1 Hoth Random Frame 3
C18 G.729 1 Hoth Rando Frame 5
C19 G.729 1 Hoth Bursty Frame 3
C20 G.729 1 Hoth Bursty Frame 5
C21 G.729 2 clean - -
C22 G.729 3 clean - -
C23 G.729 2 clean Random Frame 3,3
C24 G.729 3 clean Random Frame 3, 0, 3
C25 G.729 2 clean Bursty Frame 3,3
C26 G.729 3 clean Bursty Frame 3, 0, 3
C27 G.729 2 Vehicle Random Frame 3,3
C28 G.729 2 Vehicle Bursty Frame 3,3
C29 G.729 1 clean Random Bit 1
C30 G.729 1 clean Random Bit 3
C31 G.729 1 clean Random Bit 5
C32 G.729 1 clean Random Bit 10
C33 G.729 1 clean Burst Frame/Random Bit 3,1
C34 G.729 1 clean Burst Frame/Random Bit 3,3

3 C35 G.729 1 clean Burst Frame/Random Bit 3,5
C36 G.729 1 clean Burst Frame/Random Bit 3,10
C37 G.726 1 Clean - -
C38 G.726 1 Vehicle - -
C39 G.726 1 Street - -
C40 G.726 1 Hoth - -
C41 MNRU (Q=10dB) 1 Clean - -
C42 MNRU (Q=15dB) 1 Clean - -
C43 MNRU (Q=20dB) 1 Clean - -
C44 MNRU (Q=25dB) 1 Clean - -
C45 MNRU (Q=30dB) 1 Clean - -
C46 MNRU (Q=50dB) 1 Clean - -
C47 Direct 1 Clean - -
C48 Direct 1 Vehicle - -
C49 Direct 1 Street - -
C50 Direct 1 Hoth - -
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