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Abstract

A tangle of order k in a connectivity function λ may be thought of as a

“k-connected component” of λ. For a connectivity function λ and a tangle

in λ of order k that satisfies a certain robustness condition, we describe a

tree decomposition of λ that displays, up to a certain natural equivalence,

all of the k-separations of λ that are non-trivial with respect to the tangle.

In particular, for a tangle in a matroid or graph of order k that satisfies a

certain robustness condition, we describe a tree decomposition of the matroid

or graph that displays, up to a certain natural equivalence, all of the k-

separations of the matroid or graph that are non-trivial with respect to the

tangle.
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Chapter 1

Introduction

Robertson and Seymour’s Graph-Minors Project contains a number of deep

theorems on the structure of graphs, including the celebrated result that

finite graphs are well-quasi-ordered under the minor relation [30]. A crucial

concept in the Graph-Minors Project is that of a tangle in a graph, which

was introduced in [28]. Intuitively, a tangle of order k in a graph G may be

thought of as a “k-connected component” of G, so that most of the tangle

lies on one side or the other of each separation of order less than k.

Tangles have a natural extension to matroids, which was first noted by

Robertson and Seymour [28]. For matroids, tangles play an important role

in structure theory. Indeed, tangles are central to Geelen, Gerards, and

Whittle’s on-going research aimed at extending the work of the Graph-Minors

Project to matroids [10, 12]. Broadly speaking, tangles are used to get a

handle on the highly-connected regions of a matroid.

Historically, a useful tool for understanding the structure of a matroid has

been a tree that describes how a matroid may be decomposed into smaller,

more easily understood pieces. Cunningham and Edmonds [4] proved that

every connected matroid has an associated tree that shows precisely how the

matroid is decomposed into 3-connected pieces. More recently, in a study of

the structure of the 3-separations of 3-connected matroids, Oxley, Semple,

and Whittle [23] described a tree decomposition of a 3-connected matroid

1



CHAPTER 1. INTRODUCTION 2

M that displays, up to a natural equivalence, all of the “non-trivial” 3-

separations of M . Understanding the structure of the 3-separations of 3-

connected matroids has opened the way for substantial progress to be made.

For example, Geelen and Whittle [14] have proved that 3-connected matroids

with suitably controlled 3-separations have a bounded number of inequivalent

representations over prime fields.

The success of Oxley, Semple, and Whittle [23] in describing the struc-

ture of the 3-separations of 3-connected matroids has provided motivation

to pursue an analogous theory for higher-order separations, and progress has

already been made towards this goal. Specifically, Aikin and Oxley [2] have

completely classified the types of crossing separations that can arise in ar-

bitrary matroids. Though we have not seen their work, Aikin and Oxley

(private communication) have also described a tree decomposition of a 4-

connected matroid M that displays, up to a natural equivalence, all of the

“non-trivial” 4-separations of M .

The work of Aikin and Oxley encourages the belief that an analogous

theory for higher-order separations is attainable. However, further progress

is complicated by the fact that high connectivity is generally too restrictive.

For example, projective geometries and the cycle matroids of complete graphs

are generally not highly-connected. Thus, a matroid of interest may have

several highly-connected parts that are separated by low-order separations.

An approach that studies the separations of a matroid relative to its tangles

could overcome this, because the tangles of a matroid identify its highly-

connected parts very successfully. This motivates a study of the separations

of a matroid with respect to its tangles, and this thesis is the outcome.

Before discussing the main result and the structure of this thesis in more

detail, we note two important features. First, we note that though we had a

theory for matroids in mind, the theory we developed relies only on the fact

that the connectivity function of a matroid is an integer-valued, symmetric,

and submodular function. The theory stated for arbitrary connectivity func-

tions undoubtedly has the potential for broader application, so we chose to



CHAPTER 1. INTRODUCTION 3

present it for such functions. Second, of the works we have mentioned, the

one by Oxley, Semple, and Whittle [23] was particularly influential in the

development of this thesis. A 3-connected matroid has a unique tangle of

order three, and via this connection the theory presented here extends parts

of their theory. But many of the definitions and concepts introduced in this

thesis are essentially those of Oxley, Semple, and Whittle. The statements of

Theorem 3.6.1 and Theorem 4.2.1 are also modelled closely after their work.

Loosely speaking, the main result of this thesis, Theorem 4.2.1, says that,

for a connectivity function λ and a tangle in λ of order k that satisfies a

certain robustness condition, there is a tree decompostion of λ that displays,

up to a certain natural equivalence, all of the k-separations of λ that are non-

trivial with respect to the tangle. In particular, for a 3-connected matroid

M with at least nine elements, the unique tangle of order three in M satisfies

the robustness condition, so Theorem 4.2.1 extends the main result of Oxley,

Semple, and Whittle [23].

We now discuss the structure of this thesis in more detail. Chapter 2

introduces some background material on connectivity, width parameters and

tangles, and the structure of crossing separations in matroids.

Chapter 3 is the first main chapter. We start by recalling connectivity

systems and tangles, and we establish some notions for these structures that

will be used frequently. We then define a suitable notion of equivalence on the

k-separations of a connectivity system with respect to a fixed tangle of order

k, and also define what it means for a k-separation of a connectivity system

to be sequential with respect to a fixed tangle of order k. Following Oxley,

Semple, and Whittle [23], we make no attempt to display the sequential k-

separations, and we only attempt to display the non-sequential k-separations

up to equivalence. We introduce the notion of a k-flower in a tangle of order

k in Section 3.4 to study collections of crossing k-separations. There is a

natural quasi-order on k-flowers induced by the non-sequential k-separations

they display. In Section 3.5, we study how the non-sequential k-separations

interact with k-flowers, and we find conditions under which we can refine
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a k-flower. Theorem 3.6.1, the main result of Chapter 3, shows that if we

introduce a notion of robustness for tangles, then all of the non-sequential

k-separations interact with a maximal k-flower in a coherent way. Theorem

3.6.1 plays an essential role in obtaining the tree structure described in The-

orem 4.2.1. We conclude with a section of independent interest in which we

obtain a bound on the number of petals in a sequential k-separation displayed

by a tight k-flower.

Chapter 4 is the second main chapter. Here we introduce the notion of a

partial k-tree for a tangle of order k in a connectivity system, which is a tree

that we can associate with the tangle, some of whose vertices are labelled

by members of a partition of the underlying set. Partial k-trees display k-

separations, so just as with k-flowers there is a quasi-order on partial k-trees

induced by the non-sequential k-separations they display. Theorem 4.2.1, the

main result of Chapter 4, then shows that a maximal partial k-tree displays,

up to equivalence of k-separations, all of the non-sequential k-separations of

a connectivity system with respect to a robust tangle of order k.

Finally, in Chapter 5 we conclude with some applications of the main re-

sults obtained in Chapters 3 and 4 to some particularly interesting structures,

namely k-connected matroids and vertically k-connected matroids.

Here we make a note which results are pre-existing, and which are new.

All of the results in Chapter 2 are pre-existing. Though the tangle-theoretic

approach to the 2-sum decomposition in Section 2.2.3 is well-known, we are

unaware of any presentation in the literature. Chapter 3 and Chapter 4

contain new material, with minor exceptions noted as they appear. The

results of Chapter 5 are derived from earlier chapters. We note, however,

that for 3-connected and 4-connected matroids, Corollary 5.1.4 of Section

5.1 is already known.



Chapter 2

Preliminaries

In this chapter we review some fundamental background material. We as-

sume that the reader is familiar with the basic concepts of matroid theory

and graph theory. Any undefined notation or terminology will follow Oxley

[22].

We fix some notation for certain subsets of positive integers that we use

frequently. For any positive integer n, we let [n] = {1, 2, . . . , n}, and for

integers i ≤ j we let [i, j] = {i, i+ 1, . . . , j}.
Let n be a positive integer. A partition of a set S is a set {S1, . . . , Sn}

of subsets of S such that each element of S belongs to exactly one of the

subsets S1, . . . , Sn. Thus we allow partitions to contain empty members.

2.1 Connectivity

2.1.1 Connectivity systems

Let λ be an integer-valued function on the subsets of a finite set E. We call

λ symmetric if λ(X) = λ(E − X) for all X ⊆ E. We call λ submodular if

λ(X)+λ(Y ) ≥ λ(X ∪Y )+λ(X ∩Y ) for all X, Y ⊆ E. If λ is integer-valued,

symmetric, and submodular, then λ is called a connectivity function on E.

If E is a finite set and λ is a connectivity function on E, then the pair (E, λ)

5
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is a connectivity system.

We now introduce some examples of connectivity systems that arise nat-

urally from combinatorial structures.

Example 1. Let M be a matroid with rank function r. For all X ⊆ E(M),

we let λM(X) = r(X) + r(E(M) −X) − r(M) + 1. It is straightforward to

prove that (E(M), λM) is a connectivity system. We call λM the connectivity

function of M . We note that the connectivity function of a matroid M is

invariant under duality, that is, λM = λM∗ .

Example 2. A polymatroid on a set E is an integer-valued, increasing, sub-

modular function on the subsets of E whose value on ∅ is 0. We can generalise

the construction of Example 1 to a polymatroid f on E as follows. For all

X ⊆ E, we let λf (X) = f(X)+f(E−X)−f(E)+1. It is also straightforward

to prove that (E, λf ) is a connectivity system.

Example 3. Let G be a graph with edge set E. For X ⊆ E, we let λG(X)

denote the number of vertices of G that are incident with both an edge

of X and an edge of E − X. It is not difficult to prove that (E, λG) is a

connectivity system. We call λG the connectivity function of G. We also

note that λM(G)(X) = λG(X) + c(E) − c(X) − c(E − X) + 1, where c(X)

denotes the number of connected components of the induced subgraph on X.

Example 4. We can generalise the construction of Example 3 to a hyper-

graph G on E as follows. For X ⊆ E, we let λG(X) denote the number of

vertices of G that are incident with both an edge of X and an edge of E−X.

Then (E, λG) is a connectivity system.

Example 5. Let G be a graph and let X ⊆ V (G). Let λV (G)(X) denote the

number of edges incident with both a vertex in X and a vertex in V (G)−X.

Clearly λV (G) is symmetric, and a simple counting argument shows that λ is

submodular, so (V (G), λV (G)) is a connectivity system.

Example 6. We can generalise the construction of Example 5 to an edge-

weighted graph G as follows. Let w : E(G) −→ Z+ ∪ {0} be a weighting



CHAPTER 2. PRELIMINARIES 7

of the edges of G, and let X ⊆ V (G). We let λw(X) denote the weight of

the set of edges that are incident with both a vertex in X and a vertex in

V (G)−X. Then (V (G), λw) is a connectivity system.

Let λ be a connectivity function on E, and let k be a positive integer. A

partition (X,E−X) of E is called a k-separation of λ if λ(X) ≤ k. A subset

X of E is said to be k-separating in λ if λ(X) ≤ k. When the connectivity

function λ is clear from the context we shall often abbreviate “k-separation of

λ” and “k-separating in λ” to “k-separation” and “k-separating” respectively.

A k-separating set X, or k-separation (X,E −X) is exact if λ(X) = k.

There are two features of these definitions that are worth noting. First,

we will follow the convention of matroid theory and consider a k-separation

(X,E −X) to be an unordered partition. Second, if λM is the connectivity

function of a matroid M , then a k-separation (X,E(M)−X) of λM is some-

times called a k-separating partition of M , while the term “k-separation” is

reserved for those k-separating partitions (X,E(M)−X) of M that satisfy

min{|X|, |E(M) − X|} ≥ k (see, for example, [23]). In this thesis, we will

only make such a distinction in the context of k-connected matroids.

2.1.2 Matroid and graph connectivity

We will later specialise results obtained for connectivity functions to matroids

that satisfy certain connectivity conditions, so we introduce the necessary

connectivity terminology here.

Let M be a matroid with ground set E and rank function r. Recall

that the connectivity function λM of M is defined for all subsets X of E by

λM(X) = r(X) + r(E −X)− r(M) + 1. Let k be a positive integer. The set

X or the partition (X,E −X) is k-separating if λ(X) ≤ k. A k-separating

partition (X,E − X) is a k-separation if min{|X|, |E − X|} ≥ k. A k-

separating set, k-separating partition (X,E−X), or k-separation (X,E−X)

is exact if λ(X) = k. For k ≥ 2, a matroid M is k-connected if it has no

j-separations for 1 ≤ j ≤ k − 1.
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Let G be a graph. If G is a connected graph that has at least one pair

of distinct non-adjacent vertices, then we define the connectivity κ(G) of G

to be the smallest positive integer k such that G has a k-element vertex

cut. If G is connected but has no pair of non-adjacent vertices, then we let

κ(G) = |V (G)| − 1. Finally, if G is disconnected, then we let κ(G) = 0. For

positive integer k, the graph G is said to be k-connected if κ(G) ≥ k.

We now describe a notion of matroid connectivity that directly generalises

graph connectivity. Let k be a positive integer. A matroid M is vertically

k-separated if there is a k-separating partition (X, Y ) of E(M) such that

min{r(X), r(Y )} ≥ k. If M has a pair of disjoint cocircuits, then the vertical

connectivity of M , denoted κ(M), is the least positive integer k such that M

is vertically k-separated; otherwise we let κ(M) = r(M).

For a connected graph G, the following theorem makes precise the claim

that vertical connectivity directly generalises graph connectivity.

Theorem 2.1.1. [22, Theorem 8.2.5] Let G be a connected graph. Then

κ(M(G)) = κ(G).

A matroid M is cyclically k-connected if M∗ is vertically k-connected.

2.2 Tree-width, branch-width, and tangles

In this section we describe two important notions of graph “width”, namely

tree-width and branch-width, and their extensions to matroids. We discuss

some of their important properties, including the connection between tree-

width and branch-width. Although tree-width and branch-width will not

appear later in this thesis, an understanding of these concepts motivates the

study of tangles. In Section 2.2.2, we discuss the canonical obstructions to

small branch-width, called tangles. Finally, to help the reader’s intuition for

tangles, we present a tangle-theoretic approach to the 2-sum decomposition

for connected matroids.
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2.2.1 Tree-width and branch-width

In their ground-breaking work on graph minors, Robertson and Seymour

proved that finite graphs are well-quasi-ordered under the minor relation

[30]. In other words, in any infinite set of finite graphs, there is one that is

isomorphic to a minor of another. The result is widely considered to be the

deepest in all of graph theory, and many concepts developed in the proof are

of independent interest. This is particularly true of tree-decompositions and

the associated measures of tree-likeness.

We first discuss tree-width, which was introduced by Robertson and Sey-

mour in [25]. Loosely speaking, a graph has small tree-width if it can be

constructed by piecing together small graphs in a tree-like way. We make

this notion precise by considering the following representation of a graph as

a tree.

Let G be a graph, T a tree, and V = {Vt | t ∈ V (T )} a collection of

vertex sets Vt ⊆ V (G) indexed by the vertices of T . The pair (T,V) is a

tree-decomposition of G if the following properties hold:

(i) V (G) =
⋃
t∈V (T ) Vt;

(ii) for every edge e of G there exists a t ∈ V (T ) such that both ends of e

are in Vt; and

(iii) for s, t, u ∈ V (T ), if t lies on the path of T from s to u then Vs∩Vu ⊆ Vt.

Observe that conditions (i) and (ii) together show that G is the union of the

subgraphs G[Vt], while (iii), roughly speaking, shows that these subgraphs

are put together like a tree. The width of a tree-decomposition (T,V) of G

is the number max{|Vt| − 1 | t ∈ V (T )}, and the tree-width of G, denoted

tree-width(G), is the smallest width of any tree-decomposition of G.

As one easily checks, the connected graphs of tree-width one are precisely

the trees. Due to the simple structure of trees, many graph problems become

easier when specialised to trees. A crucial feature of tree-width is that graphs

of bounded tree-width are sufficiently similar to trees that it is often possible
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to adapt results for trees to this class of graphs. As an example of this

paradigm, consider the problem of well-quasi-ordering graphs. Kruskal [20]

proved that finite trees are well-quasi-ordered under the minor relation, and

Nash-Williams [21] later gave an elegant proof of this fact using a ‘minimal

bad sequence’ argument. Although their argument is substantially more

difficult, Robertson and Seymour [27] adapted Nash-Williams’ argument to

prove that, for every positive integer n, every infinite set of graphs with tree-

width at most n is well-quasi-ordered under the minor relation. Robertson

and Seymour’s proof that finite graphs are well-quasi-ordered relies heavily

on this result.

In addition to its importance in graph structure theory, tree-width also

has significant algorithmic consequences. Indeed, many algorithmic problems

that are known to be NP-hard for general graphs are solvable in polynomial

time for inputs of bounded tree-width (see, for example, [3]).

Given the success of tree-width for graphs, it is natural to ask if the con-

cept can be generalised to matroids. Although it is not clear from Robert-

son and Seymour’s definition, tree-width can be defined without reference

to graph vertices, and hence it extends to matroids (see [19]). However, a

closely-related parameter, branch-width, has more natural properties for ma-

troids, and has gained considerably more attention from matroid theorists.

Robertson and Seymour introduced the notion of branch-width for hy-

pergraphs in [28]. Roughly speaking, a hypergraph has small branch-width

if it can be decomposed into small pieces along low-order separations in a

tree-like way. One of the attractive properties of branch-width is that it

easily extends to connectivity functions as follows.

Let λ be a connectivity function on a finite set E. A tree is cubic if all its

internal vertices have degree 3. A branch-decomposition (T, τ) of λ consists

of a cubic tree T and a bijection τ from the set of leaves of T to the set E.

If e is an edge of T , then T\e induces a partition (X, Y ) of the set of leaves

of T . The width of e is defined to be λ(τ(X)). The width of the branch-

decomposition (T, τ) is the maximum among the widths of the edges of T .
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The branch-width of λ, denoted branch-width(λ), is the minimum among the

widths of the branch-decompositions of λ. If λ has no branch-decompositions,

then we define the branch-width of λ to be λ(∅).
If G is a hypergraph, then the branch-width of G, denoted

branch-width(G), is defined to be the branch-width of its connectivity func-

tion λG. Similarly, if M is a matroid, then the branch-width of M , denoted

branch-width(M), is defined to be the branch-width of its connectivity func-

tion λM . Since λM = λM∗ for any matroid M , we see that branch-width for

matroids is invariant under duality.

Robertson and Seymour proved that a hypergraph has bounded tree-

width if and only if it has bounded branch-width. More precisely, they proved

the following theorem.

Theorem 2.2.1. [28, 5.2] If G is a hypergraph, then

branch-width(G) ≤ tree-width(G) + 1 ≤ 3

2
branch-width(G).

Similarly, it was proved by Hliněný and Whittle in [19] that a matroid

has bounded tree-width if and only if it has bounded branch-width, though

the precise bounds for matroids differ from those given in Theorem 2.2.1.

Given that branch-width can be defined for both graphs and matroids, it

is natural to ask if the branch-width of a graph is equal to the branch-width

of its cycle matroid. In general, the branch-width of a graph may be larger

than the branch-width of its cycle matroid. For example, consider a path

of length 3. However, if a graph G has a cycle of length at least 2, then G

and its cycle matroid M(G) have the same branch-width [17]. Combining

this result with the fact that branch-width for matroids is invariant under

duality, one easily sees that the branch-width of a planar graph containing

a cycle is equal to the branch-width of its geometric dual. Note that this

seemingly natural result does not hold for tree-width. For example, the cube

and the octahedron have different tree-width.

We now conclude this section with a discussion of some of the interesting

properties of branch-width for matroids.
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Perhaps the most significant use of branch-width for matroids is in the

work of Geelen, Gerards, and Whittle which aims to extend the results and

techniques of Robertson and Seymour’s Graph-Minors Project to matroids.

In [8], Geelen, Gerards, and Whittle prove that, for any prime power q and

any positive integer n, the class of GF(q)-representable matroids with branch-

width at most n is well-quasi-ordered under the minor relation. The theorem

also has consequences for the excluded minors of GF(q)-representable ma-

troids. Indeed, Geelen and Whittle [15] have proved that, for each positive

integer k and each prime power q, the class of GF(q)-representable matroids

has only finitely many excluded minors of branch-width at most k.

The class Bk of matroids of branch-width at most k has many attractive

properties. Indeed, Bk is closed under taking duals, minors, direct sums, and

2-sums. Therefore it is natural to seek excluded-minor characterisations for

Bk. The matroids of branch-width one are precisely the direct sums of loops

and coloops, so U1,2 is the unique excluded minor for B1. The matroids of

branch-width at most 2 are the series-parallel matroids [28]; and the excluded

minors are known to be U2,4 and M(K4) [22]. For all k ≥ 3, however, no

complete list of excluded minors for Bk is known. For the binary matroids

of branch-width 3, Dharmatilake [5] gave a list of 10 excluded minors, and

conjectured that his list was complete. Dharmatilake’s conjecture was later

proved by Hliněný [18]. Hall, Oxley, Semple, and Whittle [16] proved that

there are finitely many excluded minors for B3. For each positive integer

k ≥ 2, Geelen, Gerards, Robertson, and Whittle [7] proved that an excluded

minor for Bk has size at most (6k − 1)/5, thus proving that Bk has a finite

number of excluded minors.

2.2.2 Tangles

Finite graphs and GF(q)-representable matroids of bounded branch-width

are well-quasi-ordered under the minor relation [27, 8]. It remains, then,

to consider those graphs and GF(q)-representable matroids of large branch-

width. Robertson and Seymour [26] proved that such graphs contain a large
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grid minor. Similarly, Geelen, Gerards, and Whittle [11] proved that GF(q)-

representable matroids with large branch-width contain the cycle matroid

of a large grid as a minor. The existence of a large grid-minor is useful for

investigating the structure of the graphs and GF(q)-representable matroids of

large branch-width. However, a graph or GF(q)-representable matroid may

have several regions of large branch-width that are separated by low-order

separations. To gain a handle on these parts, Robertson and Seymour [28]

introduced tangles.

Tangles are the canonical obstruction to small branch-width, that is, a

structure that appears in a graph or matroid if and only if the branch-width

is large. Loosely speaking, a tangle indicates for each low-order separation

on which side a particular high branch-width part lies. Although Robertson

and Seymour introduced tangles for hypergraphs, the definition of a tangle

extends naturally to arbitrary connectivity systems as follows.

Let λ be a connectivity function on E, and let k be a positive integer.

A tangle of order k in (E, λ) is a collection T of subsets of E such that the

following properties hold:

(T1) λ(A) < k for all A ∈ T .

(T2) If (A,E − A) is a (k − 1)-separation, then T contains A or E − A.

(T3) If A,B,C ∈ T , then A ∪B ∪ C 6= E.

(T4) E − {e} /∈ T for each e ∈ E.

We note that (T3) can be used to sharpen (T2) to say that T contains exactly

one of A or E − A.

If G is a hypergraph, then tangle of order k in G is a tangle of order k in

its connectivity system (E(G), λG). Similarly, if M is a matroid, then tangle

of order k in M is a tangle of order k in its connectivity system (E(M), λM).

Robertson and Seymour [28] proved that the branch-width of a hyper-

graph G is equal to the maximum order of a tangle in G. Dharmatilake [6]

defined tangles for matroids, and proved that the branch-width of a matroid
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M is equal to the maximum order of a tangle in M . Geelen, Gerards, Robert-

son, and Whittle [9] defined tangles for arbitrary connectivity functions, and

proved the following result.

Theorem 2.2.2. [9, Theorem 3.2] Let λ be a connectivity function on E.

Then the maximum order of a tangle in (E, λ) is equal to the branch-width

of λ.

We note that, although they did not explicitly define tangles for con-

nectivity functions, Theorem 2.2.2 is cryptomorphic to a result proved by

Robertson and Seymour [28, (3.5)].

Tangles are a central component to Robertson and Seymour’s Graph-

Minor Structure Theorem [29]. Loosely speaking, the Graph-Minor Structure

Theorem states that any graph G without a fixed graph H as a minor admits

a tree-decomposition into pieces that almost embed into some surface that

H does not. The pieces of the tree-decomposition of a graph correspond

to its maximal tangles, that is, the tangles that are inclusion-wise maximal.

Roughly, the tree-decomposition enables one to convert information about

the ‘local structure’ of a graph relative to each maximal tangle into knowledge

of the ‘global structure’ of a graph.

Geelen, Gerards, and Whittle [13] proved that any connectivity function

can be put together from its maximal tangles in a tree-like way. We now

describe this decomposition in more detail. Let λ be a connectivity function

on a set E. A tree-decomposition of λ consists of a tree T and a partition

π of E whose members, called bags, label the vertices of T . A k-separation

(X, Y ) of λ is displayed by a tree-decomposition T of λ if, for some edge e of

T , the set X is the union of the bags labelling the vertices of a component

of T\e. Let T1 and T2 be distinct tangles in a connectivity function λ. Then

(X1, X2) is a distinguishing separation if X1 ∈ T1 and X2 ∈ T2. We now state

the main result.

Theorem 2.2.3. [13, Theorem 9.1] Let λ be a connectivity function on E,

and let T1, . . . Tn be maximal tangles in λ. Then there exists a tree decompo-
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sition T of λ such that V (T ) = [n] and such that the following hold:

(i) For each i ∈ V (T ) and e ∈ E(T ) if T ′ is the component of T\e con-

taining i, then the union of those bags that label vertices of T ′ is not a

member of Ti.

(ii) For each pair of distinct vertices i and j of T , there exists a minimum-

order distinguishing separation for Ti and Tj that is displayed by T .

Theorem 2.2.3 extends a key result [28, 10.3] of Robertson and Seymour

for graphs. Geelen, Gerards, and Whittle also proved, as a corollary of Theo-

rem 2.2.3, that the number of maximal tangles in an m-element connectivity

system is at most (m− 2)/2.

We conclude this section with a basic result on tangles in k-connected

matroids.

Lemma 2.2.4. [6, Lemma 2.4] Let M be a matroid, and let k ≥ 2. If M is

k-connected and |E(M)| ≥ 3(k−2)+1, then T = {X ⊆ E(M) | |X| ≤ k−2}
is the unique tangle of order k in M .

We will use special cases of Lemma 2.2.4 later for illustration. We defer

a proof to Section 5.1.

2.2.3 Tangles of order three in connected matroids

We now sketch a tangle-theoretic approach to the well-known 2-sum de-

composition for connected matroids that may help the reader’s intuition for

tangles. We work with a connected matroid M and a fixed tangle T of order

three in M . A set X ∈ T is a maximal member of T if no set that properly

contains X is in T .

Recall that Cunningham and Edmonds [4] described the following tree-

like decompostion for the connected matroids that are not 3-connected which

gives an explicit description of their structure.
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Theorem 2.2.5. [22, Proposition 8.3.5] Let M be a connected matroid.

Then, for some integer k, there are 3-connected matroids M1, . . . ,Mk and

a k-vertex tree T with edges e1, . . . , ek−1 and vertices labelled by M1, . . . ,Mk

such that

(i) E(M1) ∪ · · · ∪ E(Mk) = E(M) ∪ {e1, . . . , ek−1};

(ii) if ei joins Ma and Mb, then Ma ∩Mb = {ei}; and

(iii) if no edge joins Ma and Mb, then Ma ∩Mb = ∅.

Moreover, M is the matroid that labels the single vertex of T/{e1, . . . , ek−1}
at the conclusion of the following process: contract the edges e1, . . . , ek−1 one

by one in order; when ei is contracted, its ends are identified and the vertex

formed by this identification is labelled by the 2-sum of the matroids that

previously labelled the ends of ei.

We show that each tangle T of order three in a connected matroid M

corresponds to a component in the 2-sum decomposition of M . We begin

by showing that the maximal members of a tangle T of order three in M

partition E(M).

Lemma 2.2.6. Let T be a tangle of order 3 in a connected matroid M . Then

the maximal members of T partition E(M).

Proof. We first show that the maximal members of T cover E(M). Let

e ∈ E(M). Then λ({e}) < 3, so {e} ∈ T by (T4). Thus, e is contained in

some maximal member of T .

We now show that the maximal members of T are pairwise disjoint. As-

sume that X and Y are distinct maximal members of T . If X ∩ Y is non-

empty, then λ(X ∩ Y ) ≥ 2 because M is connected. Hence λ(X ∪ Y ) ≤ 2 by

the submodularity of λ. By (T2), either X∪Y or E−(X∪Y ) is a member of

T . But X ∪Y is not a member of T because X are Y are maximal members

of T . Thus E − (X ∪ Y ) is a member of T . Then X,Y , and E − (X ∪ Y )

cover E(M); a contradiction of (T3). Thus X ∩ Y is empty and the lemma

is proved.
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We note that Lemma 2.2.6 does not hold for tangles of order k > 3.

Let M be a matroid. For a set X = {X1, X2, . . . , Xn} of subsets of E(M)

we define a function ρM as follows

ρM(X) = rM(X1 ∪X2 ∪ · · · ∪Xn)−
n∑
i=1

rM(Xi) + n.

Let T be the set of maximal members of a tangle T of order 3 in a

connected matroid M . We define a set function ρT on T by letting ρT (X) =

ρM(X) for all X ⊆ T .

Let X and Y be disjoint subsets of E(M). We define

κM(X, Y ) = min{λM(Z) | X ⊆ Z ⊆ E(M)− Y }.

The following theorem was proved by Tutte [31].

Theorem 2.2.7. (Tutte’s Linking Theorem.) If X and Y are disjoint sets

in a matroid M , then there exists a minor N of M such that E(N) = X ∪Y
and λN(X) = κM(X, Y ).

We sketch the proof of the next result.

Lemma 2.2.8. Let T = (T1, T2, . . . , Tn) be the maximal members of a tangle

T of order 3 in a connected matroid M , and let (t1, t2, . . . , tn) be a transversal

of T .

(i) ρT is the rank function of a 3-connected matroid N on T .

(ii) M has a minor on {t1, t2, . . . , tn} that is isomorphic to N .

(iii) If {X1, . . . , Xm} and {Y1, . . . , Yp} are disjoint subsets of T , then

κN({X1, . . . , Xm}, {Y1, . . . , Yp}) = κM(X1 ∪ · · · ∪Xm, Y1 ∪ · · · ∪ Yp).

Proof. If each member of T has one element, then the result is immedi-

ate. Assume that |T1| ≥ 2. Applying Tutte’s Linking Theorem to the

disjoint subsets E(M) − T1 and {t1}, there is a minor N of M such that

E(N) = (E(M) − T1) ∪ {t1} and λN({t1}) = 2. It is easily checked that
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T ′ = {{t1}, T2, . . . , Tn} is the set of maximal members of a tangle T ′ of order

three in N . By induction we may assume that the lemma holds for T ′ in N ,

and one routinely checks that the lemma also holds for T in M .

The matroid N in Lemma 2.2.8 is called the matroid induced by T . We

may regard its ground set as being the maximal members of T or some

transversal of these sets according to convenience. It is isomorphic to one of

the components in the 2-sum decomposition of M . Indeed, the tangles of or-

der three correspond to the different components of the 2-sum decomposition

described in Theorem 2.2.5.

Suppose that M is 3-connected up to series or parallel classes. Then M

has a unique tangle of order 3, and the matroid induced by this tangle is the

simplification or cosimplification of M respectively. In general, a connected

matroid has a unique tangle of order three if and only if it has the prop-

erty that whenever (A,B) is a 2-separation of M with corresponding 2-sum

decomposition MA⊕2MB, then either MA or MB is a series-parallel matroid.

2.3 The structure of the 3-separations of 3-

connected matroids

The tree decomposition for 3-connected matroids described by Oxley, Semple,

and Whittle [23, 24] has become an important tool in matroid structure

theory. Their work was particularly influential in the development of this

thesis, so we provide a summary of their work here as background. Loosely

speaking, the main theorem of [23] states that, for a 3 connected matroid M

having at least nine elements, there is a labelled tree with the property that,

up to equivalence, all “non-sequential” 3-separations of M are displayed by

T . The main theorem of [24] shows that, if certain conditions are imposed

on the tree in [23], then it has a uniqueness property.
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2.3.1 Sequential and equivalent 3-separations

An important feature of the tree decompostion described by Oxley, Semple,

and Whittle is that it guarantees to display only the “non-sequential” 3-

separations, and of these, only a member from each equivalence class. We

first make these notions precise, and then we illustrate, by way of example,

why the feature is necessary.

Let M be a 3-connected matroid. A set X in M is fully closed if it is

closed in both M and M∗, that is, X = cl(X) and X = cl∗(X). The full

closure of a subset X of a matroid M , denoted fcl(X), is the intersection of

all fully closed sets containing X. We can use the full closure operator to

define an equivalence relation on the set of 3-separations of M as follows.

Let (A,B) and (C,D) be exact 3-separations of M . Then (A,B) and (C,D)

are equivalent if {fcl(A), fcl(B)} = {fcl(C), fcl(D)}. An exact 3-separation

(A,B) is sequential if fcl(A) = E(M) or fcl(B) = E(M).

Consider the following examples from [23]. Let P be the matroid PG(3, q)

for some prime power q. If L is a line of P , then it is easily seen that

(L,E(P ) − L) is a sequential 3-separation of P . Clearly there is no way to

display all of the lines of P in a tree-like way.

Now suppose that P1 and P2 are distinct planes of P , and consider the

matroid P ′ = P |(P1∪P2). Let A = P1−P2, B = P1∩P2, and C = P2−P1. It

is easily seen that, for all subsets B′ of B, the partition (A∪B′, C∪(B−B′)) is

a 3-separation of P ′. Moreover, it is easily seen that all of these 3-separations

are equivalent. Clearly there is no reasonable way to display all of them in a

tree-like way.

We have seen that from a structural point of view, the existence of equiv-

alent and sequential 3-separations is not problematic; they can be classified

by the full closure operator. The existence of equivalent and sequential 3-

separations is also not problematic from an algorithmic point of view; if one

had a rank oracle, then listing all sequential 3-separations or all of the 3-

separations equivalent to a given 3-separation can done so that each item on

the list is added in polynomial time (see [24]).
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2.3.2 Flowers

One of the difficulties of characterising the 3-separations of 3-connected ma-

troids is that they can “cross”. Two 3-separations (A,B) and (C,D) cross

if all the intersections A ∩ C, A ∩ D, B ∩ C, and B ∩ D are non-empty.

Flowers are the fundamental structures that were introduced in [23] to study

collections of mutually crossing 3-separations.

Let n is a positive integer, and let M be a 3 connected matroid. A

partition Φ = (P1, . . . , Pn) of E(M) is a flower with petals P1, . . . , Pn if,

for all i ∈ [n], |Pi| ≥ 2, and both Pi and Pi ∪ Pi+1 are 3-separating, where

subscripts are interpreted modulo n.

Understanding the structure of flowers was crucial to obtaining a tree that

displays all of the non-sequential 3-separations of a 3-connected matroid, so

we now describe the classes of flowers. A flower Φ is an anemone if any

union of petals of Φ is 3-separating, and a daisy if only consecutive unions

of petals of Φ in the cyclic order are 3-separating. The classes of daisies and

anemones can be further refined according to the local connectivity between

pairs of petals. For sets X, Y ⊆ E(M), the local connectivity between X and

Y , denoted u(X, Y ), is defined by u(X, Y ) = r(X) + r(Y )− r(X ∪ Y ).

For n ≥ 3, an anemone (P1, . . . , Pn) is called

(i) a paddle if u(Pi, Pj) = 2 for all i 6= j;

(ii) a copaddle if u(Pi, Pj) = 0 for all i 6= j; and

(iii) spike-like if n ≥ 4, and u(Pi, Pj) = 1 for all i 6= j.

Similarly, a daisy (P1, . . . , Pn) is called

(i) swirl-like if n ≥ 4 and u(Pi, Pj) = 1 for all consecutive i, j, while

u(Pi, Pj) = 0 for all non-consecutive i, j; and

(ii) Vámos-like if n = 4 and u(Pi, Pj) = 1 for all consecutive i, j, while

{u(P1, P3),u(P2, P4)} = {0, 1}.
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Finally, a flower (P1, . . . , Pn) is unresolved if n = 3, and u(Pi, Pj) = 1 for all

i 6= j.

The next theorem shows that every flower with at least three petals is

one of these types.

Theorem 2.3.1. [23, Theorem 4.1] If Φ = (P1, . . . , Pn) is a flower, then

Φ is either a daisy or an anemone. Moreover, if n ≥ 3, then Φ is either a

paddle, a copaddle, spike-like, swirl-like, Vámos-like, or is unresolved.

Following [23], we now give an informal description of some flowers. We

visualise a flower by thinking of a collection of lines in projective space. These

lines can be thought of as lines of attachment of 3-separating sets that form

the petals of the flower.

P1

P2

P3

P4

Figure 2.1: A representation of a rank-6 paddle.

Example 7. Consider a collection of rank-3 planes P1, . . . , Pn glued together

along a single common line, and assume that each plane has enough struc-

ture to make the resulting matroid 3-connected. The resulting partition

(P1, . . . , Pn) is an paddle of rank
∑n

i=1 r(Pi) − 2(n − 1). We illustrate a

4-petal rank-6 paddle in figure 2.1.

Example 8. Choose an independent set {p1, . . . , pn} in projective space, and

let Li be the line spanned by {pi, pi+1} for all i, modulo n. Attach rank-3

planes Pi to Li for all i, again assuming each plane has enough structure
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P1
P2

P3

P4

P5

Figure 2.2: A representation of a rank-10 swirl-like flower.

to make the resulting matroid 3-connected. The partition (P1, . . . , Pn) is

a swirl-like flower of rank
∑n

i=1 r(Pi) − n. We illustrate a 5-petal rank-10

swirl-like flower in figure 2.2.

A flower Φ displays a 3-separating set X or a 3-separation (X, Y ) if X is

a union of petals of Φ. Recall that a quasi-order is a reflexive and transitive

relation. There is a natural quasi-order 4 on the set of flowers in M induced

by the non-sequential 3-separations that they display, and this order gives

rise to a natural notion of equivalence of flowers. Let Φ1 and Φ2 be flowers

in M . Then Φ1 4 Φ2 if, for every non-sequential 3-separation displayed

by Φ1, there is an equivalent one displayed by Φ2. Two flowers Φ1 and

Φ2 are equivalent if both Φ1 4 Φ2 and Φ2 4 Φ1. Thus equivalent flowers

display, up to equivalence of 3-separations of M , the same non-sequential

3-separations. The order of a flower Φ is the minimum number of petals in

a flower equivalent to Φ.

We have seen that equivalent flowers display, up to equivalence of 3-
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separations, the same non-sequential 3-separations. The flowers that contain

the minimum number of petals among equivalent flowers are “tight”, and

understanding their structure turns out to be important. An element e of

M is loose in the flower Φ if e ∈ fcl(Pi) − Pi for some petal Pi of Φ. An

element e of M that is not loose in Φ is called tight in Φ. The petal Pi of Φ

is loose if every element in Pi is loose. A petal of Φ is tight if it is not loose.

Thus a tight petal contains at least one element that is tight in Φ. A flower

of order at least 3 is tight if all of its petals are tight. A flower of order 1 or

2 is tight if it has one petal or two petals respectively. Oxley, Semple, and

Whittle prove that the order of a flower Φ is equal to the number of petals

in any tight flower equivalent to Φ [23, Theorem 5.1].

A flower is maximal if it is maximal in the quasi-order 4. Proving that

the non-sequential 3-separations of a matroid “conform” with tight maximal

flowers was crucial in the proof of the main theorem. We state the theorem

after the next definition. Let (X, Y ) be a 3-separation of M . We say that

(X, Y ) conforms with Φ if either (X, Y ) is equivalent to a 3-separation dis-

played by Φ, or (X, Y ) is equivalent to a 3-separation (X ′, Y ′) such that X ′

or Y ′ is contained in a petal of Φ.

Theorem 2.3.2. [23, Theorem 8.1] Let M be a 3-connected matroid with

at least 9 elements, and let Φ be a tight maximal flower in M . Then every

non-sequential 3-separation of M conforms with Φ.

The condition that the matroid has at least 9 elements in Theorem

2.3.2 is essential, as the following example from [23] shows. Consider the

8-element rank-4 matroid R8 that is represented geometrically by a cube

(see [22, pp. 508]). The 4-point planes of R8 are the six faces of the cube

and the six diagonal planes. With notation as in figure 2.3, the partition

Φ = ({1, 2}, {3, 4}, {5, 6}, {7, 8}) is a tight maximal flower. However, the

non-sequential 3-separation ({1, 3, 5, 7}, {2, 4, 6, 8}) does not conform with

Φ.
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1

5

2

6

4

8

3

7

Figure 2.3: The matroid, R8.

2.3.3 Partial 3-trees

We now define the tree structure described in [23]. Let π be a partition of

a finite set E. Let T be a tree such that every member of π labels some

vertex of T . Note that some vertices may be unlabelled, and that no vertex

is multiply labelled. Then T is called a π-labelled tree. Labelled vertices are

called bag vertices and the members of π are called bags .

Let T ′ be a subtree of T . The union of bags that label vertices of T ′ is

called the subset of E displayed by T ′. The partition of E displayed by e

is the partition displayed by the connected components of T\e. Let v be a

vertex of T that is not a bag vertex. Then the partition of E displayed by v

is the partition displayed by the connected components of T − v. The edges

incident with v are in natural one-to-one correspondence with the connected

components of T − v, and hence with the members of the partition of E

displayed by v. In what follows, if a cyclic ordering is imposed on the edges

incident with v, then we cyclically order the members of the partition of E

displayed by v in the corresponding order.

Let M be a 3-connected matroid on ground set E. An almost partial

3-tree T for M is a π-labelled tree, where π is a partition of E such that the

following conditions hold:

(i) For each edge e of T , the partition (X, Y ) of E displayed by e is 3-

separating, and, if e is incident with two bag vertices, then (X, Y ) is a
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non-sequential 3-separation.

(ii) Every non-bag vertex v is labelled either D or A. If v is labelled D,

then there is a cyclic ordering on the edges incident with v.

(iii) If a vertex v is labelled A, then the partition of E displayed by v is a

tight maximal anemone of order at least 3.

(iv) If a vertex v is labelled D, then the partition of E displayed by v, with

the cyclic order induced by the cyclic ordering on the edges incident

with v, is a tight maximal daisy of order at least 3.

By conditions (iii) and (iv), a vertex v labelled D or A corresponds to a

flower of M . The 3-separations displayed by this flower are the 3-separations

displayed by v. A vertex of a partial 3-tree is referred to as a daisy vertex

or an anemone vertex if it is labelled D or A, respectively. A vertex labelled

either D or A is a flower vertex . A 3-separation is displayed by an almost

partial 3-tree T if it is displayed by some edge or some flower vertex of T . A

3-separation (R,G) of M conforms with an almost partial 3-tree T if either

(R,G) is equivalent to a 3-separation that is displayed by a flower vertex or

an edge of T , or (R,G) is equivalent to a 3-separation (R′, G′) such that R′

or G′ is contained in a bag of T .

An almost partial 3-tree for M is a partial 3-tree if every non-sequential

3-separation of M conforms with T . The set of partial 3-trees for M is

quasi-ordered as follows. Let T1 and T2 be two partial 3-trees for M . Then

T1 4 T2 if, for every non-sequential 3-separations displayed by T1, there is

some equivalent 3-separation displayed by T2. If T1 4 T2 and T2 4 T1, then

T1 is an equivalent partial 3-tree to T2. A partial 3-tree is maximal if it is

maximal in the quasi-order 4.

We now state the main result of [23].

Theorem 2.3.3. [23, 9.1] Let M be a 3-connected matroid with |E(M)| ≥ 9,

and let T be a maximal partial 3-tree for M . Then every non-sequential 3-

separation of M is equivalent to a 3-separation displayed by T .
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Maximal partial 3-trees are by no means unique. Consider the following

example from [24]. Let M be the 3-connected matroid obtained by taking

three distinct triangles in M(K4) and, along each, attaching a copy of F7 by

generalised parallel connection. One maximal partial 3-tree for M consists

of a bag vertex that is labelled by the elements of M(K4) and is adjacent to

exactly three other bag vertices, each labelled by the elements of one of the

copies of F7 that are not in M(K4). Another maximal partial 3-tree for M

consists of a flower vertex that is adjacent to exactly three bag vertices, each

labelled by the elements of one of the copies of F7.

To get a more canonical structure, Oxley, Semple, and Whittle [24] in-

troduced the notion of a 3-tree. A maximal partial 3-tree for M is a 3-tree

if

(i) for every tight maximal flower ofM of order three, there is an equivalent

flower that is displayed by a vertex of T ; and

(ii) if a vertex is incident with two edges, e and f , that display equivalent 3-

separating partitions, then the other ends of e and f are flower vertices,

v has degree two, and v labels a non-empty bag.

Two edges of a 3-tree are twins if they are incident with a common vertex

and display equivalent 3-separations. The reduction of a 3-tree T , denoted

R(T ), is the unlabelled tree obtained from T by contracting one edge from

each pair of twins of T .

We now summarise the main results from [24].

Theorem 2.3.4. Let M be a 3-connected matroid with |E(M)| ≥ 9. Then

M has a 3-tree T . Moreover, if T1 and T2 are 3-trees for M , then T1 and T2

have isomorphic reductions.

2.4 Higher-order separations

In this section, we review the work of Aiken and Oxley [2] in describing

the structure of crossing k-separations of arbitrary matroids. We then ex-
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amine the notion of 2-equivalence of 4-separations of 4-connected matroids

defined by Aikin in [1]. Though we have not seen their work, Aikin and

Oxley (private communication) have described a tree decomposition of a 4-

connected matroidM that displays, up to 2-equivalence, the “non-sequential”

4-separations of M .

2.4.1 k-flowers

Given the success of flowers in describing the interactions of crossing 3-

separations in 3-connected matroids, it is natural to ask if flowers can be

extended to describe the interactions of higher-order crossing separations in

more general structures. Indeed, this was done by Aiken and Oxley [2], who

defined a generalised flower structure called a k-flower to study the behaviour

of crossing k-separations in arbitrary matroids.

Let λ be a connectivity function on a finite set E, and let k be a positive

integer. A k-flower in λ with petals P1 . . . , Pn is a partition (P1, . . . , Pn) of E

such that, for all i, both Pi and Pi ∪ Pi+1 are exact k-separating sets, where

subscripts are interpreted modulo n.

Let Φ = (P1, . . . , Pn) be a k-flower in λ. Then Φ is a k-anemone if any

union of petals of Φ is k-separating, and Φ is a k-daisy if only consecutive

unions of petals of Φ in the cyclic order are k-separating.

Most of [2] is concerned with extending the complete flower classification

described in Theorem 2.3.1 to polymatroids. Recall that a polymatroid on a

set E is an integer-valued, increasing, submodular function on the subsets of

E whose value on ∅ is 0. The connectivity function λf of a polymatroid f on

E is defined for all X ⊆ E by λf (X) = f(X) + f(E −X)− f(E) + 1. The

local connectivity in f between subsets X and Y of E, denoted uf (X, Y ), is

defined by uf (X, Y ) = f(X) + f(Y ) − f(X ∪ Y ). We can now summarise

the main results of [2].

Theorem 2.4.1. Let λ be a connectivity function on E, and let Φ =

(P1, . . . , Pn) be a k-flower in λ for some k ≥ 1. Then Φ is either a k-



CHAPTER 2. PRELIMINARIES 28

anemone or a k-daisy. Moreover, if n ≥ 4 and λ is the connectivity function

of a polymatroid, then Φ can be completely classified in terms of n, k, the lo-

cal connectivity between consecutive petals, and the local connectivity between

non-consecutive petals.

Aikin and Oxley [2] also construct examples of k-flowers in matroids to

satisfy each of the possibilities given in their classification theorem.

2.4.2 The structure of the 4-separations of 4-connected

matroids

Let M be a 4-connected matroid. Aikin [1] observed that, to have any

hope of displaying the 4-separations of M in a tree-like way, one could only

guarantee to display the “non-sequential” 4-separations up to some notion

of equivalence. Furthermore, he observed that, unlike the situation for 3-

separations, any natural equivalence of the 4-separations must incorporate

2-element “equivalence moves”. To characterise these notions, Aikin defined

the following extension of the full closure operator.

The full 2-span of a subset X of M , denoted fs2(X), is the set X ∪X1 ∪
· · · ∪Xm, where X1, . . . , Xm are disjoint subsets of E(M)−X such that,

(i) Each Xi has either one or two elements;

(ii) λ(X ∪X1 ∪ · · · ∪Xi) ≤ 4, for all i ∈ [m]; and

(iii) The sequence (Xi)
m
i=1 has maximal length with respect to properties (i)

and (ii).

The full 2-span is a well-defined closure operator on the collection of 4-

separating sets of M having at least 3 elements. Two exact 4-separations

(A,B) and (C,D) are 2-equivalent if {fs2(A), fs2(B)} = {fs2(C), fs2(D)}. A

4-separation (A,B) is sequential if fs2(A) = E(M) or fs2(B) = E(M).



Chapter 3

Flowers

In this chapter, we define a notion of equivalence on the k-separations of

a connectivity system that are non-trivial with respect to a fixed tangle T
of order k. We also identify those k-separations that are “sequential” with

respect to T . We then define k-flowers in T to study how the non-sequential

k-separations interact. The main goal of the chapter is to prove Theorem

3.6.1, which asserts that, if T is a tangle of order k that satisfies a certain

robustness condition, then every non-sequential k-separation conforms with

a tight maximal k-flower in T . Theorem 3.6.1 is a crucial step towards

obtaining the tree structure in Chapter 4. We conclude the chapter with a

section of independent interest, where we obtain a bound on the number of

petals in a sequential k-separation displayed by a tight k-flower in a tangle

T .

3.1 Connectivity systems

We recall some fundamental notions for connectivity systems that we use in

this chapter. For a more detailed treatment of connectivity systems, we refer

the reader to Section 2.1.1.

Let λ be an integer-valued function on the subsets of a finite set E. We

call λ symmetric if λ(X) = λ(E−X) for all X ⊆ E. We call λ submodular if

29
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λ(X)+λ(Y ) ≥ λ(X ∪Y )+λ(X ∩Y ) for all X, Y ⊆ E. If λ is integer-valued,

symmetric, and submodular, then λ is called a connectivity function on E.

If E is a finite set and λ is a connectivity function on E, then the pair (E, λ)

is a connectivity system.

Connectivity systems arise naturally from matroids and graphs. Let M

be a matroid on ground set E with rank function r. For X ⊆ E, we let

λM(X) = r(X) + r(E −X)− r(M) + 1. It is straightforward to prove that

(E, λM) is a connectivity system. Let G be a graph with edge set E. For

X ⊆ E, we let λG(X) denote the number of vertices of G that are incident

with both an edge of X and an edge of E −X. It is also straightforward to

prove that (E, λG) is a connectivity system. Moreover, if G is a connected

graph, then λM(G)(X) ≤ λG(X).

Let λ be a connectivity function on E, and let k be a positive integer. A

partition (X,E−X) of E is called a k-separation of λ if λ(X) ≤ k. A subset

X of E is said to be k-separating in λ if λ(X) ≤ k. When the connectivity

function λ is clear from the context we shall often abbreviate “k-separation

of λ” and “k-separating set in λ” to “k-separation” and “k-separating set”

respectively. A k-separating set X, or k-separation (X,E − X) is exact if

λ(X) = k.

We note that we consider a k-separation (X,E −X) to be an unordered

partition of E. We also make no assumption on the number of elements in

the sets X and E −X.

We will make use of the following elementary properties of connectivity

functions.

Lemma 3.1.1. [9, Lemma 2.3.] If λ is a connectivity function on E, then,

for all X, Y ⊆ E, we have:

(i) λ(X) ≥ λ(∅).

(ii) λ(X) + λ(Y ) ≥ λ(X − Y ) + λ(Y −X).

The submodularity of the connectivity function λ is frequently used in

the following form:
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Lemma 3.1.2. Let X and Y be k-separating subsets of E.

(i) If λ(X ∩ Y ) ≥ k, then X ∪ Y is k-separating.

(ii) If λ(E − (X ∪ Y )) ≥ k, then X ∩ Y is k-separating.

We write by uncrossing to mean “by an application of Lemma 3.1.2”.

3.2 Tangles

Let (E, λ) be a connectivity system, and let k be a positive integer. Recall

that a tangle of order k in (E, λ) is a collection T of subsets of E such that

the following properties hold:

(T1) λ(A) < k for all A ∈ T .

(T2) If (A,E − A) is a (k − 1)-separation, then T contains A or E − A.

(T3) If A,B,C ∈ T , then A ∪B ∪ C 6= E.

(T4) E − {e} /∈ T for each e ∈ E.

Let T be a tangle of order k in a connectivity system (E, λ). A subset

X of E is T -strong if it is not contained in a member of T ; otherwise X is

T -weak . It is easy to see that supersets of T -strong sets are T -strong, and

that subsets of T -weak sets are T -weak. A partition {X1, . . . , Xn} of E is

T -strong if Xi is a T -strong set for all i ∈ [n]; otherwise {X1, . . . , Xn} is

T -weak . In particular, a k-separation (X,E − X) of λ is T -strong if both

X and E −X are T -strong sets; otherwise (X,E −X) is T -weak . We note

that if a partition {X,E −X} of E is T -strong, then neither X nor E −X
is a member of T , so λ(X) ≥ k by (T2). Thus a T -strong k-separation

(X,E −X) is exact.

In any unexplained context, if we use the phrase “T -strong k-separating

set” or “T -strong k-separation” without mention of the order of the tangle

T , then it will be implicit that T has order k.
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3.3 Sequential and equivalent k-separations

An essential feature of the tree decompostion of a 3-connected matroid de-

scribed by Oxley, Semple, and Whittle [23] is that it only guarantees to

display, up to equivalence, the non-sequential 3-separations. In this section

we fix a tangle T of order k in a connectivity system (E, λ), and we focus

on the k-separations of λ that are T -strong. We define a natural notion of

equivalence on the T -strong k-separations of a connectivity system with re-

spect to T , and we define what it means for a T -strong k-separation to be

sequential with respect to T .

Let T be a tangle of order k in a connectivity system (E, λ). A T -strong

k-separating set X is fully closed with respect to T if X∪Y is not k-separating

for every non-empty T -weak set Y ⊆ E −X. In particular, we observe that

if X is a proper subset of E that is fully closed with respect to T , then E−X
is a T -strong set because X ∪ (E −X) is k-separating by Lemma 3.1.1 (i).

We abbreviate “fully closed with respect to T ” to “fully closed” when the

tangle T is clear from the context.

We next develop some results that show every T -strong k-separating set

is contained in a unique minimal k-separating set that is fully closed with

respect to T .

Lemma 3.3.1. Let T be a tangle of order k in a connectivity system (E, λ),

and let X be a T -strong k-separating set in λ. If X1 and X2 are fully-closed

k-separating sets that contain X, then there is a fully-closed k-separating set

Y such that X ⊆ Y ⊆ X1 ∩X2.

Proof. Let Y be maximal with respect to the properties that X ⊆ Y ⊆
X1 ∩X2 and λ(Y ) ≤ k. Assume towards a contradiction that Y is not fully

closed. Then there is some non-empty T -weak set Z contained in E−Y such

that Y ∪ Z is k-separating. If Z ⊆ X1 ∩ X2, then X ⊆ Y ∪ Z ⊆ X1 ∩ X2

and Y ∪ Z properly contains Y ; a contradiction of the maximality of Y .

Therefore, up to switching X1 and X2, we may assume that Z meets E−X1.

Now, the partition (Y ∪ (Z ∩X1), E − (Y ∪ (Z ∩X1))) is T -strong because
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Y ∪ (Z ∩X1) contains the T -strong set X while E− (Y ∪ (Z ∩X1)) contains

the T -strong set E−X1, so λ(Y ∪(Z∩X1)) ≥ k by (T2). But Y ∪(Z∩X1) is

the intersection of the k-separating sets Y ∪Z and X1, so their union X1∪Z
is k-separating by uncrossing; a contradiction because X1 is fully closed.

Corollary 3.3.2. Let T be a tangle of order k in a connectivity system

(E, λ). Let X be a T -strong k-separating set, and let F be the set of fully-

closed k-separating sets that contain X. Then
⋂
Y ∈F Y is a fully-closed k-

separating set that contains X.

Proof. It suffices to prove that, for any positive integer n, if X1, X2, . . . , Xn ∈
F , then there is some Z ∈ F such that Z ⊆

⋂n
i=1Xi. We proceed by

induction on n. If n = 1 the result is trivial, so we may assume that n ≥ 2

and that the result holds for n − 1. Let X1, X2, . . . , Xn be fully-closed k-

separating sets that contain X. By our inductive hypothesis, there is some

Y ∈ F such that Y ⊆
⋂n−1
i=1 Xi. By Lemma 3.3.1, there is some Z ∈ F such

that Z ⊆ Y ∩Xn. Hence Z ⊆
⋂n
i=1Xi, as required.

Let T be a tangle of order k in a connectivity system (E, λ), and let

X be a T -strong k-separating set. Then the intersection of all fully-closed

k-separating sets that contain X, which we denote by fclT (X), is called the

full closure of X with respect to T . By Corollary 3.3.2, we see that fclT (X)

is minimal with respect to being a fully-closed k-separating set that contains

X. We abbreviate “full closure with respect to T ” to “full closure” when the

tangle T is clear from the context.

The next lemma shows that, for a tangle T of order k in a connectivity

system (E, λ), the full closure with respect to T is a closure operator on the

set of T -strong k-separating sets in λ.

Lemma 3.3.3. Let T be a tangle of order k in a connectivity system (E, λ).

Let X and Y be T -strong k-separating sets. Then the following hold:

(i) X ⊆ fclT (X).

(ii) If X ⊆ Y , then fclT (X) ⊆ fclT (Y ).
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(iii) fclT (fclT (X)) = fclT (X).

Proof. It follows from the definition of fclT (X) that X ⊆ fclT (X). Thus

(i) holds. For (ii), suppose that X ⊆ Y . Then fclT (Y ) is a fully-closed k-

separating set that contains X, so fclT (X) ⊆ fclT (Y ). For (iii), it follows

from (i) that fclT (X) ⊆ fclT (fclT (X)). On the other hand, fclT (X) is a fully-

closed k-separating set that contains fclT (X), so fclT (fclT (X)) ⊆ fclT (X).

Thus fclT (fclT (X)) = fclT (X).

Let T be a tangle of order k in a connectivity system (E, λ). We use the

full closure with respect to T to define a binary relation called T -equivalence

on the set of T -strong k-separating sets in λ. Let X and Y be T -strong

k-separating sets in λ. Then X is T -equivalent to Y if fclT (X) = fclT (Y ).

In what follows, we suppress the tangle T and say that X is “equivalent” to

Y when the tangle T is clear from the context.

We note that if M is a 3-connected matroid on ground set E, and T is

the unique tangle of order three in the connectivity system (E, λM), then

the relation T -equivalent for exact 3-separating sets is precisely the relation

“equivalent” defined by Oxley, Semple, and Whittle in [23].

We omit the elementary proof of the next result.

Lemma 3.3.4. Let T be a tangle of order k in a connectivity system (E, λ).

Then the binary relation T -equivalent is an equivalence relation on the set of

T -strong k-separating sets in λ.

Recall that Oxley, Semple, and Whittle [23] used a full closure operator

to define equivalence of 3-separations in 3-connected matroids. Let M be a

3-connected matroid, and let X be a 3-separating set in M having at least

2 elements. It is easily seen that fcl(X) is a maximal set containing X for

which the members of fcl(X)−X can be ordered (x1, . . . , xn) such that, for

all i ∈ [n], the set X ∪ {x1, . . . , xi} is 3-separating. We can restate this

characterisation of the full closure in a more tangle-theoretic way as follows.

The full closure of X is a maximal set of the form X ∪ {x1} ∪ · · · ∪ {xn},
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where ({x1}, . . . , {xn}) is a sequence of T -weak sets such that, for all i ∈ [n],

the set X ∪ {x1} ∪ · · · ∪ {xi} is 3-separating. For a tangle T of order k in a

connectivity system (E, λ) and a T -strong k-separating set X, we now work

towards a similar characterisation of the full closure of X with respect to T .

Let T be a tangle of order k in a connectivity system (E, λ), and let X

be a T -strong k-separating set in λ. A partial k-sequence for X is a sequence

(Xi)
m
i=1 of pairwise disjoint, non-empty T -weak subsets of E −X such that

X ∪ (
⋃j
i=1Xi) is k-separating for all j ∈ [m].

Lemma 3.3.5. Let T be a tangle of order k in a connectivity system (E, λ),

and let X be a T -strong k-separating set in λ. If (Xi)
m
i=1 is a partial k-

sequence for X, then X ∪ (
⋃m
i=1Xi) ⊆ fclT (X).

Proof. Suppose that (Xi)
m
i=1 is a partial k-sequence for X such that X ∪

(
⋃m
i=1Xi) is not contained in fclT (X). Then fclT (X) 6= E, so E − fclT (X)

is a T -strong set. Let j ∈ [m] be the smallest index such that Xj is not

contained in fclT (X). Now, the partition

((X ∪ (
⋃j
i=1Xi)) ∩ fclT (X), E − ((X ∪ (

⋃j
i=1Xi)) ∩ fclT (X)))

of E is T -strong because (X ∪ (
⋃j
i=1Xi))∩ fclT (X) contains the T -strong set

X while E−((X∪(
⋃j
i=1Xi))∩fclT (X)) contains the T -strong set E−fclT (X).

Thus λ((X ∪ (
⋃j
i=1Xi)) ∩ fclT (X)) ≥ k by (T2). Then uncrossing the k-

separating sets X ∪ (
⋃j
i=1Xi) and fclT (X) we see that fclT (X) ∪ Xj is k-

separating; a contradiction because fclT (X) is fully closed.

Since the full closure with respect to T is a closure operator on the set

of T -strong k-separating sets, we have the following immediate corollary of

Lemma 3.3.5. We omit the straightforward proof.

Corollary 3.3.6. Let T be a tangle of order k in a connectivity system

(E, λ), and let X be a T -strong k-separating set. If (Xi)
m
i=1 is a partial k-

sequence for X, then fclT (X ∪ (
⋃m
i=1Xi)) = fclT (X).
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Let T be a tangle of order k in a connectivity system (E, λ), and let X

be a T -strong k-separating set in λ. Let

P = {X ∪ (
⋃m
i=1Xi) | (Xi)

m
i=1 is a partial k-sequence for X }.

Then it is easy to see that (P,⊆) is a poset. A partial k-sequence (Xi)
m
i=1 for

X is said to be maximal if X ∪ (
⋃m
i=1Xi) is maximal in the poset (P,⊆).

Lemma 3.3.7. Let T be a tangle of order k in a connectivity system (E, λ).

Let X be a T -strong k-separating set, and let (Xi)
m
i=1 be a partial k-sequence

for X. Then fclT (X) = X ∪ (
⋃m
i=1Xi) if and only if (Xi)

m
i=1 is maximal.

Proof. Assume that fclT (X) = X ∪ (
⋃m
i=1Xi). Then (Xi)

m
i=1 is maximal

by Lemma 3.3.5. Conversely, assume that (Xi)
m
i=1 is maximal. Then it

follows from Lemma 3.3.5 that X ∪ (
⋃m
i=1Xi) ⊆ fclT (X). We claim that

X ∪ (
⋃m
i=1Xi) is fully closed. Suppose that X ∪ (

⋃m
i=1Xi) is not fully closed.

Then there is a non-empty T -weak subset Xm+1 of E− (X ∪ (
⋃m
i=1Xi)) such

that X ∪ (
⋃m+1
i=1 Xi) is k-separating. Hence (Xi)

m+1
i=1 is a partial k-sequence,

and X ∪ (
⋃m
i=1Xi) ( X ∪ (

⋃m+1
i=1 Xi); a contradiction because (Xi)

m
i=1 is

maximal. Thus X ∪ (
⋃m
i=1Xi) is a fully-closed k-separating set that contains

X, so fclT (X) ⊆ X ∪ (
⋃m
i=1Xi). Therefore fclT (X) = X ∪ (

⋃m
i=1Xi), as

required.

We shall abbreviate “maximal partial k-sequence” to “k-sequence”.

Let T be a tangle of order k in a connectivity system (E, λ). We extend

the relation T -equivalent to the set of T -strong k-separations of λ in the natu-

ral way. Let (X, Y ) and (X ′, Y ′) be T -strong k-separations of λ. Then (X, Y )

is T -equivalent to (X ′, Y ′) if {fclT (X), fclT (Y )} = {fclT (X ′), fclT (Y ′)}. We

note that, when the tangle T is clear from the context, we shall abbreviate

“T -equivalent” to “equivalent”.

The following lemma is straightforward to prove. We omit the details.

Lemma 3.3.8. Let T be a tangle of order k in a connectivity system (E, λ).

Then the binary relation T -equivalent is an equivalence relation on the set of

T -strong k-separations of λ.
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We note that if M is a 3-connected matroid on ground set E, and T is

the unique tangle of order three in the connectivity system (E, λM), then the

relation T -equivalent for exact 3-separating partitions is precisely the relation

“equivalent” defined by Oxley, Semple, and Whittle [23]. Similarly, if M is

a 4-connected matroid on ground set E, and T is the unique tangle of order

four in the connectivity system (E, λM), then the relation T -equivalent for

exact 4-separating partitions is precisely the relation “2-equivalent” defined

by Aikin [1].

Let T be a tangle of order k in a connectivity system (E, λ), and let X

be a T -strong k-separating set in λ. We say that E − X is T -sequential

if fclT (X) = E. A k-separation (X, Y ) is T -sequential if X or Y is a T -

sequential k-separating set. When the tangle T is clear from the context,

we shall use “sequential” and “non-sequential” instead of “T -sequential” and

“not T -sequential” respectively.

We note that, for a tangle T of order k in a connectivity system (E, λ),

if X is a T -strong k-separating set, but (X,E − X) is not a T -strong

k-separation, then it is easy to see that (X,E − X) is a T -sequential

k-separation. Thus every non-sequential k-separation is a T -strong k-

separation.

The remainder of this section is devoted to developing some useful lemmas

about k-separations of a connectivity function λ that are equivalent with

respect to a fixed tangle T of order k.

Lemma 3.3.9. Let T be a tangle of order k in a connectivity system (E, λ).

Let (R,G) be a T -strong k-separation of λ, and let A ⊆ G be a non-empty

T -weak set. If R ∪ A is k-separating and G− A is T -strong, then (R,G) is

T -equivalent to (R ∪ A,G− A).

Proof. Suppose that R∪A is k-separating and that G−A is T -strong. Then

the single-term sequence (A) is a partial k-sequence for both R and G− A,

so fclT (R) = fclT (R ∪ A) and fclT (G− A) = fclT (G) by Corollary 3.3.6.

The following lemma is used frequently.
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Lemma 3.3.10. Let T be a tangle of order k in a connectivity system (E, λ).

Let (R,G) be a non-sequential k-separation of λ, and let A ⊆ G be a non-

empty T -weak set. If R∪A is a k-separating set, then (R,G) is T -equivalent

to (R ∪ A,G− A).

Proof. Assume that R ∪A is a k-separating set. By Lemma 3.3.9, it suffices

to show that G − A is T -strong. Seeking a contradiction, suppose that

G − A is T -weak. Then the sequence (A,G − A) is a partial k-sequence

for R, so E = fclT (R) by Corollary 3.3.6; a contradiction because (R,G) is

non-sequential. Thus G − A is T -strong, so the result follows from Lemma

3.3.9.

The following lemma provides an economical test of equivalence for non-

sequential k-separations. It extends a result of Oxley, Semple, and Whittle

[23, Lemma 3.3].

Lemma 3.3.11. Let T be a tangle of order k in a connectivity system (E, λ),

and let (A,B) and (C,D) be two non-sequential k-separations of λ. Then

(A,B) is equivalent to (C,D) if and only if either fclT (A) = fclT (C) or

fclT (A) = fclT (D).

Proof. In one direction the lemma is trivial. For the other direction, assume

that fclT (A) = fclT (C) = Y . Set X = E − Y . Then X is a T -strong k-

separating set, since (A,B) is non-sequential. Let (Ai)
m
i=1 be a k-sequence

for A and (Ci)
n
i=1 be a k-sequence for C. Then it follows from Lemma 3.3.7

that A∪(
⋃m
i=1Ai) = fclT (A) and C∪(

⋃n
i=1Ci) = fclT (C). Then (Am−i+1)

m
i=1

and (Cn−i+1)
n
i=1 are partial k-sequences for X, so B = X ∪ (

⋃m
i=1Am−i+1) ⊆

fclT (X) and D = X ∪ (
⋃n
i=1Cn−i+1) ⊆ fclT (X) by Lemma 3.3.5. By Lemma

3.3.3, and since X is a subset of both B and D, we have fclT (B) = fclT (X) =

fclT (D), so (A,B) is indeed equivalent to (C,D).

Lemma 3.3.12. Let T be a tangle of order k in a connectivity system (E, λ).

If (R,G) is a non-sequential k-separation of λ, then (fclT (R), E − fclT (R))

is a non-sequential k-separation of λ that is equivalent to (R,G).
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Proof. Suppose that (R,G) is a non-sequential k-separation of λ. Then

E − fclT (R) is a T -strong k-separating set. Thus (fclT (R), E − fclT (R))

is a T -strong k-separation. Moreover, it follows from Lemma 3.3.3 that

fclT (E − fclT (R)) ⊆ fclT (G) 6= E and fclT (fclT (R)) = fclT (R) 6= E, so (E −
fclT (R), fclT (R)) is non-sequential. Then (R,G) and (fclT (R), E − fclT (R))

are non-sequential k-separations, and fclT (fclT (R)) = fclT (R), so (R,G) is

T -equivalent to (fclT (R), E − fclT (R)) by Lemma 3.3.11.

Lemma 3.3.13. Let T be a tangle of order k in a connectivity system (E, λ),

and let K be an equivalence class of non-sequential k-separations of λ. If

(X1, Y1), (X2, Y2) ∈ K and fclT (X1) = fclT (X2), then there is a non-sequential

k-separation (X3, Y3) ∈ K such that X3 ⊆ X1 ∩X2.

Proof. Assume that (X1, Y1), (X2, Y2) ∈ K and fclT (X1) = fclT (X2).

Thus fclT (Y1) = fclT (Y2). Then E − fclT (Y1) ⊆ X1 ∩ X2, and (E −
fclT (Y1), fclT (Y1)) ∈ K by Lemma 3.3.12.

Lemma 3.3.14. Let T be a tangle of order k in a connectivity system (E, λ),

and let (R,G) be a non-sequential k-separation of λ. If X is a k-separating

set such that E − fclT (G) ⊆ X ⊆ R, then (X,E − X) is T -equivalent to

(R,G).

Proof. Suppose that X is a k-separating set such that E − fclT (G) ⊆ X ⊆
R. Then fclT (E − fclT (G)) ⊆ fclT (X) ⊆ fclT (R) by Lemma 3.3.3, and so

fclT (X) = fclT (R) by Lemma 3.3.12. Then from the fact that E− fclT (G) ⊆
X ⊆ R it follows that G ⊆ E −X ⊆ fclT (G), so fclT (G) = fclT (E −X) by

Lemma 3.3.3. Thus (X,E −X) is T -equivalent to (R,G).

Lemma 3.3.15. Let T be a tangle of order k in a connectivity system (E, λ),

and let (X, Y ) and (R,G) be non-sequential k-separations of λ. If R ⊆ X,

then there is a non-sequential k-separation (R′, G′) that is T -equivalent to

(R,G) such that R′ ⊆ (E − fclT (Y )).

Proof. Assume that R ⊆ X. Then Y ⊆ G, so fclT (Y ) ⊆ fclT (G) by

Lemma 3.3.3. Thus E − fclT (G) ⊆ E − fclT (Y ), and the k-separation

(E − fclT (G), fclT (G)) is T -equivalent to (R,G) by lemma 3.3.12.



CHAPTER 3. FLOWERS 40

3.4 Flowers in a tangle

Let T be a tangle of order k in a connectivity system (E, λ), and let n be

a positive integer. A T -strong partition (P1, . . . , Pn) of E is a k-flower in

T with petals P1, . . . , Pn if, for all i, both Pi and Pi ∪ Pi+1 are k-separating

sets, where all subscripts are interpreted modulo n.

We note two features of this definition. First, recall that Aikin and Oxley

in [2] defined a k-flower in connectivity function λ on E to be a partition

(P1, . . . , Pn) of E such that, for all i, both Pi and Pi ∪ Pi+1 are exactly

k-separating, where all subscripts are interpreted modulo n. Thus, every k-

flower in T is also a k-flower in λ. However, in this thesis the main purpose

of a k-flower in T is to “display” a collection of inequivalent non-sequential

k-separations, and so, given our definition of equivalence of k-separations, it

is natural to require the petals of a k-flower in T to be T -strong sets. Second,

we note that, if M is a 3-connected matroid on ground set E, and T is the

unique tangle of order three in (E, λM), then a 3-flower in T is a flower in

M as defined by Oxley, Semple, and Whittle [23].

We next define some of the fundamental notions for k-flowers in T . Most

of these are natural extensions of the analogous notions for flowers in 3-

connected matroids given in [23].

Let T be a tangle of order k in a connectivity system (E, λ), and let

Φ = (P1, . . . , Pn) be a k-flower in T . A k-separating set X or k-separation

(X,E − X) is said to be displayed by Φ if X is a union of petals of Φ.

For a non-empty subset I of [n], we write PI for
⋃
i∈I Pi. A k-flower Φ =

(P1, . . . , Pn) in T is called a k-anemone if PI is k-separating for any non-

empty subset I of [n], and a k-daisy if PI is k-separating for precisely those

non-empty subsets I of [n] whose members form a consecutive set in the

cyclic order (1, . . . , n). As every k-flower in T is a k-flower in the connectivity

function λ, we have the following immediate consequence of [2, Theorem 1.1].

Corollary 3.4.1. Every k-flower in T is either a k-anemone or a k-daisy.

Recall that a quasi-order is a reflexive and transitive relation. Let T be a
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tangle of order k in a connectivity system (E, λ). We define a relation 4 on

the set of k-flowers in T as follows. Let Φ1 and Φ2 be k-flowers in T . We say

that Φ1 4 Φ2 if, for every non-sequential k-separation displayed by Φ1, there

is some T -equivalent k-separation displayed by Φ2. It is straightforward to

verify that the relation 4 is a quasi-order on the set of k-flowers in T . If

Φ1 4 Φ2 and Φ2 4 Φ1, we say that Φ1 and Φ2 are T -equivalent k-flowers.

Thus, T -equivalent k-flowers display, up to T -equivalence of k-separations,

exactly the same non-sequential k-separations. As with the other notions

of equivalence that we have developed, when the tangle T is clear from the

context, we shall abbreviate “T -equivalent” to “equivalent”.

Let Φ = (P1, . . . , Pn) be a k-flower in T . If Φ is a k-anemone and σ

is an arbitrary permutation of the set [n], then it is easy to see that Φ′ =

(Pσ(1), . . . , Pσ(n)) is a k-flower in T that is equivalent to Φ. Similarly, if

Φ = (P1, . . . , Pn) is a k-daisy and σ is a permutation of the set [n] that

corresponds to a symmetry of a regular n-gon, then it is easy to see that

Φ′ = (Pσ(1), . . . , Pσ(n)) is a k-flower in T that is equivalent to Φ. We say that

Φ and Φ′ are equal up to labels . We will often use the phrase “up to labels”

to mean “by an appropriate permutation of the petals”.

We now describe a fundamental method of obtaining new k-flowers in T
from old. Let Φ = (P1, P2, . . . , Pn) be a k-flower in T . Then the ordered

partition Φ′ = (P ′1, P
′
2, . . . , P

′
m) is a concatenation of Φ if there are indices

0 = j0 < j1 < j2 < · · · < jm = m such that P ′i = Pji−1+1 ∪ · · · ∪ Pji for all

i ∈ [m]. If Φ′ is a concatenation of Φ, then Φ refines Φ′.

We will use the following result later without reference. We omit the

details of the straightforward proof.

Lemma 3.4.2. Let T be a tangle of order k in a connectivity system (E, λ).

If Φ = (P1, P2, . . . , Pn) is a k-flower in T , and Φ′ = (P ′1, P
′
2, . . . , P

′
m) is a

concatenation of Φ, then Φ′ is a k-flower in T .

The following is an economical way to show that a T -strong partition of

E is a k-flower in T .
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Lemma 3.4.3. Let T be a tangle of order k in a connectivity system (E, λ).

Let n ≥ 4, and let Φ = (P1, . . . , Pn) be a T -strong partition of E. If Pi∪Pi+1

is k-separating for each i ∈ [n− 1], then Φ is a k-flower in T .

Proof. Suppose that Pi ∪ Pi+1 is k-separating for each i ∈ [n − 1]. We first

show that Pn ∪ P1 is k-separating. If n = 4, then Pn ∪ P1 is k-separating

because P2 ∪ P3 is k-separating and λ is symmetric. If n > 4, the sets

P2 ∪ P3 and P3 ∪ P4 are k-separating, and their intersection is the set P3.

Since the partition (P3, E − P3) is T -strong, we deduce that λ(P3) ≥ k by

(T2). Then P2 ∪ P3 ∪ P4 is k-separating by uncrossing P2 ∪ P3 and P3 ∪ P4.

By repeated uncrossings, we deduce that P2 ∪ · · · ∪ Pn−1 is k-separating, so

the complement E − (P2 ∪ · · · ∪ Pn−1) = Pn ∪ P1 is k-separating. Thus the

union of any two members of Φ that are consecutive in the cyclic order is k-

separating. Furthermore, for each i ∈ [n], the set Pi is the intersection of the

k-separating sets Pi−1∪Pi and Pi∪Pi+1, where all subscripts are interpreted

modulo n. Since n ≥ 4, the partition (Pi−1∪Pi∪Pi+1, E−(Pi−1∪Pi∪Pi+1)) is

T -strong, so λ(Pi−1∪Pi∪Pi+1) ≥ k by (T2). Thus the set Pi is k-separating

by uncrossing Pi−1 ∪ Pi and Pi ∪ Pi+1. Therefore Φ is a k-flower in T .

The order of a k-flower Φ in T is the minimum number of petals in a

k-flower equivalent to Φ. Up to equivalence of k-separations, a k-flower of

order one displays no non-sequential k-separations, a k-flower of order two

displays exactly one non-sequential k-separation, and a k-flower of order at

least three displays at least two non-sequential k-separations. A k-flower is

tight if it is not equivalent to a k-flower with fewer petals.

Let n ≥ 2, and let Φ = (P1, . . . , Pn) be a k-flower in T . The petal Pi

of Φ is T -loose if Pi ⊆ fclT (Pσ(i+1)) for some permutation σ of [n] such that

σ(i) = i and (Pσ(1), . . . , Pσ(n)) is equal to Φ up to labels. The next result

shows that k-flowers in T that have T -loose petals are not tight.

Lemma 3.4.4. Let T be a tangle of order k in a connectivity system (E, λ).

Let n ≥ 2, and let Φ = (P1, . . . , Pn) be a k-flower in T . If P1 ⊆ fclT (P2),

then the concatenation Φ′ = (P1 ∪ P2, P3, . . . , Pn) of Φ is T -equivalent to Φ.
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Proof. Assume that P1 ⊆ fclT (P2), and let Φ′ = (P1 ∪ P2, P3, . . . , Pn). Since

Φ refines Φ′, it is immediate that Φ′ 4 Φ. Assume that (R,G) is a non-

sequential k-separation displayed by Φ. If P1 and P2 are both contained in

either R or G, then (R,G) is displayed by Φ′. Thus we may assume, up to

switching R and G, that P1 ⊆ G and P2 ⊆ R. We claim that the partition

(R ∪ P1, G − P1) is a non-sequential k-separation that is T -equivalent to

(R,G). The set R ∪ P1 is the union of the k-separating sets P1 ∪ P2 and

R, and their intersection is P2. Thus, by uncrossing P1 ∪ P2 and R, the

set R ∪ P1 is k-separating. Moreover, G − P1 contains some petal of Φ

because P1 ⊆ fclT (P2) ⊆ fclT (R) by Lemma 3.3.3, and (R,G) is a non-

sequential k-separation. Thus (R ∪ P1, G − P1) is a T -strong k-separation.

Now from Lemma 3.3.3 it follows that fclT (R ∪ P1) = fclT (R) and fclT (G−
P1) ⊆ fclT (G), so (R ∪ P1, G − P1) is a non-sequential k-separation. Hence

(R ∪ P1, G − P1) T -equivalent to (R,G) by Lemma 3.3.11. Then Φ 4 Φ′,

since (R∪P1, G−P1) is displayed by Φ′. Thus Φ and Φ′ are indeed equivalent

k-flowers.

The remainder of this section is devoted to proving some lemmas about

k-flowers in T that will be applied in Section 3.7 and Chapter 4. Since the

results are not used in the main goal of this Chapter, the proof of Theorem

3.6.1, the reader seeking a more direct path to this goal may proceed to

Section 3.5.

Lemma 3.4.5. Let T be a tangle of order k in a connectivity system (E, λ).

If Φ = (P1, P2, . . . , Pn) is a k-flower in T of order at least two, then

fclT (Pi) 6= E for all i ∈ [n].

Proof. Seeking a contradiction, suppose that Φ is a k-flower of order at

least two and that fclT (P1) = E. Let (R,G) be a k-separation displayed

by Φ. Up to switching R and G, we may assume that P1 ⊆ R. Then

E = fclT (P1) ⊆ fclT (R) by Lemma 3.3.3, so fclT (R) = E. Thus (R,G) is a

T -sequential k-separation. Since (R,G) was an arbitrary k-separation dis-

played by Φ, it follows that every k-separation displayed by Φ is T -sequential;
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a contradiction because Φ has order at least two.

Lemma 3.4.6. Let T be a tangle of order k in a connectivity system (E, λ),

and let Φ = (P1, P2, . . . , Pn) be a k-flower in T of order at least two, with no

T -loose petals. If X ⊆ E − P1 is a non-empty T -weak set such that P1 ∪X
is k-separating, then Pj −X is T -strong for all j ∈ [2, n].

Proof. Let X ⊆ E − P1 be a non-empty T -weak set such that P1 ∪ X is

k-separating.

3.4.6.1. There is some j ∈ [2, n] such that Pj −X is T -strong.

Subproof. Seeking a contradiction, assume that Pj −X is T -weak for all j ∈
[2, n]. Then, for i ∈ [2, n−1], the set P1∪P2∪· · ·∪Pi∪X is the union of the k-

separating sets P1∪P2∪· · ·∪Pi and P1∪X. The set P1∪(X∩(P1∪P2∪· · ·∪Pi))
is the intersection of P1 ∪ P2 ∪ · · · ∪ Pi and P1 ∪X, and the partition

(P1 ∪ (X ∩ (P1 ∪ P2 ∪ · · · ∪ Pi)), ((P2 ∪ · · · ∪ Pi)−X) ∪ Pi+1 ∪ · · · ∪ Pn)

is T -strong, so λ(P1 ∪ (X ∩ (P1 ∪ P2 ∪ · · · ∪ Pi))) ≥ k by (T2). Thus, for all

i ∈ [2, n − 1], the set P1 ∪ P2 ∪ · · · ∪ Pi ∪ X is k-separating by uncrossing

P1 ∪ P2 ∪ · · · ∪ Pi and P1 ∪ X. Thus (X,P2 − X, . . . , Pn − X) is a partial

k-sequence for P1. By Lemma 3.3.5, we have X ∪ (P2−X)∪· · ·∪ (Pn−X) ⊆
fclT (P1), so fclT (P1) = E; a contradiction of Lemma 3.4.5.

Assume that Pi − X is T -weak for some i ∈ [2, n]. Since there is some

j ∈ [2, n] such that Pj−X is T -strong by 3.4.6.1, we may assume, by reversing

the order of the petals P2, . . . , Pn of Φ if necessary, that i ∈ [2, j − 1]. The

set P1 ∪ · · · ∪ Pi−1 ∪ X is the union of the k-separating sets P1 ∪ X and

P1 ∪ · · · ∪ Pi−1, whose intersection is P1 ∪ (X ∩ (P2 ∪ · · · ∪ Pi−1)). Now, the

partition

(P1 ∪ (X ∩ (P2 ∪ · · · ∪ Pi−1)), ((P2 ∪ · · · ∪ Pi−1)−X) ∪ Pi ∪ · · · ∪ Pn)

is T -strong, so λ(P1 ∪ (X ∩ (P2 ∪ · · · ∪ Pi−1))) ≥ k by (T2). Thus P1 ∪
· · · ∪ Pi−1 ∪ X is k-separating by uncrossing P1 ∪ X and P1 ∪ · · · ∪ Pi−1.
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Another uncrossing argument with the k-separating sets P1 ∪ · · · ∪ Pi−1 ∪X
and Pi−1 ∪ Pi, whose union is a T -strong set that avoids the T -strong set

Pj −X, shows that their intersection Pi−1 ∪ (Pi ∩X) is k-separating. Then

(Pi∩X,Pi−X) is a partial k-sequence for Pi−1, so Pi ⊆ fclT (Pi−1) by Lemma

3.3.5; a contradiction because Φ has no T -loose petals.

The next lemma relates equivalence of k-separations and equivalence of

k-flowers in T .

Lemma 3.4.7. Let Φ = (P1, . . . , Pn) be a k-flower in T of order at least

two, with no T -loose petals. Let X ⊆ E − P1 be a non-empty T -weak set

such that P1 ∪X is k-separating. Then Φ′ = (P1 ∪X,P2 −X, . . . , Pn −X)

is a k-flower in T that is equivalent to Φ. Moreover, if we let (P ′1, . . . , P
′
n) =

(P1 ∪X,P2 −X, . . . , Pn −X), then fclT (P ′i ) = fclT (Pi) for all i ∈ [n].

Proof. We first show that Φ′ is a k-flower in T . It follows from Lemma

3.4.6 that the partition Φ′ is T -strong. It remains, then, to show that both

any member of Φ′ and the union of any two consecutive members of Φ is

k-separating. If n = 2, then this follows from Lemma 3.3.9. Assume that

n = 3. Then, for each i ∈ {2, 3}, it follows from uncrossing E−Pi and P1∪X
that (P1 ∪X) ∪ (Pj −X) is k-separating for j ∈ {2, 3} − {i}. Thus Φ′ is a

k-flower. We may therefore assume that n ≥ 4. The set P1∪X ∪ (P2−X) is

the union of the k-separating sets P1 ∪ P2 and P1 ∪X whose intersection is

P1∪ (P2∩X). The partition (P1∪ (P2∩X), E− (P1∪ (P2∩X))) is T -strong,

so λ(P1 ∪ (P2 ∩ X)) ≥ k by (T2). Thus P1 ∪ X ∪ (P2 − X) is k-separating

by uncrossing P1 ∪ P2 and P1 ∪X. Moreover, for each i ∈ [2, n− 1], the set

(Pi−X)∪ (Pi+1−X) is the intersection of the k-separating sets E− (P1∪X)

and Pi∪Pi+1, whose union is a T -strong set that avoids the T -strong set P1,

so (Pi−X)∪ (Pi+1−X) is k-separating by uncrossing. Thus Φ′ satisfies the

hypotheses of Lemma 3.4.3, so Φ′ is indeed a k-flower in T .

We now show that Φ′ is T -equivalent to Φ. Suppose that (R,G) is a

non-sequential k-separation displayed by Φ. Then, up to switching R and G,

we may assume that P1 ⊆ R. Then R ∪X is the union of the k-separating
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sets P1 ∪X and R, whose intersection is P1 ∪ (R ∩X). Since the partition

(P1 ∪ (R ∩ X), G ∪ (R − (P1 ∪ X))) is T -strong, it follows from (T2) that

λ(P1 ∪ (R ∩ X)) ≥ k. Thus R ∪ X is k-separating by uncrossing P1 ∪ X
and R. Thus (R ∪ X,G − X) is an equivalent k-separation to (R,G) by

Lemma 3.3.10. Moreover, the k-separation (R ∪ X,G − X) is displayed by

Φ′. Thus Φ 4 Φ′. Now suppose that (R,G) is a non-sequential k-separation

that is displayed by Φ′. Then, up to switching R and G, we may assume that

P1∪X ⊆ R. Let I = {i ∈ [2, n] | Pi−X ⊆ G}. Then it is easy to check that

PI is a k-separating set. It now follows that G ∪ (X ∩ PI) is k-separating

by uncrossing G and PI , so (G ∪ (X ∩ PI), R − (X ∩ PI)) is a k-separation

displayed by Φ that is equivalent to (R,G) by Lemma 3.3.10. Thus Φ′ 4 Φ.

This establishes the first part.

For the second part, let (P ′1, . . . , P
′
n) = (P1∪X,P2−X, . . . , Pn−X). Then,

for all i ∈ [2, n], we observe that (Pi ∩X) is a partial k-sequence for Pi−X.

Then it follows immediately from Corollary 3.3.6 that fclT (P ′i ) = fclT (Pi) for

all i ∈ [n].

The next result shows that certain concatenations of tight k-flowers in T
have no T -loose petals.

Lemma 3.4.8. Let Φ = (P1, . . . , Pn) be a tight k-flower in T of order at least

three, and let j ∈ [2, n−1]. If (P1∪· · ·∪Pj, Pj+1∪· · ·∪Pn) is a non-sequential

k-separation, then the concatenation Φ′ = (P1 ∪ · · · ∪ Pj, Pj+1, . . . , Pn) of Φ

has no T -loose petals.

Proof. Suppose that (P1 ∪ · · · ∪ Pj, Pj+1 ∪ · · · ∪ Pn) is a non-sequential k-

separation, and let J = [j]. Let Φ′ = (PJ , Pj+1, . . . , Pn) be the concatenation

of Φ. If j = n − 1, then the lemma immediately holds, so we may assume

that j < n − 1. Seeking a contradiction, suppose that Φ′ has a T -loose

petal. Then Φ has no T -loose petals by Lemma 3.4.4, so we may assume

that Pj+1 ⊆ fclT (PJ). Let (Xi)
m
i=1 be a k-sequence for PJ . Then Pj+1 ⊆⋃m

i=1Xi. The partition (PJ ∪ Pj+1 ∪X1, E − (PJ ∪ Pj+1 ∪X1)) is T -strong

because E − (PJ ∪ Pj+1 ∪X1) contains the T -strong set E − fclT (PJ). Thus
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λ(PJ ∪ Pj+1 ∪X1) ≥ k by (T2). It now follows from uncrossing PJ ∪X1 and

Pj∪Pj+1, whose union is PJ∪Pj+1∪X1, that Pj∪(Pj+1∩X1) is k-separating.

This process can clearly be repeated, so that Pj ∪ (
⋃`
i=1(Pj+1 ∩ Xi)) is k-

separating for all ` ∈ [m]. Then, up to removing any empty terms, the

sequence (Pj+1 ∩Xi)
m
i=1 is a partial k-sequence for Pj, so Pj+1 ⊆ fclT (Pj) by

Lemma 3.3.5; a contradiction because Φ has no T -loose petals.

Lemma 3.4.9. Let Φ = (P1, . . . , Pn) be a k-flower in T of order at least

three, and let (A,B) and (C,D) be inequivalent non-sequential k-separations

of λ that are displayed by Φ. If (A′, B′) is T -equivalent to (A,B), and A′ ⊆
C, then there is a k-separation (A′′, B′′) that is T -equivalent to (A,B) and

displayed by Φ with A′′ ⊆ C.

Proof. Suppose that (A′, B′) is T -equivalent to (A,B) and that A′ ⊆ C. We

may assume, up to labels, that C = P1 ∪ · · · ∪ Pj for some j ∈ [n − 1]. Let

I ⊆ [n] be the set of indices such that PI = A, and let J = [j]. Then A′ ⊆ PJ ,

so it follows from Lemma 3.3.13 that K = I ∩ J is non-empty. Moreover, it

is easily seen that PK is a k-separating set. Then, since A ∩ A′ ⊆ PK ⊆ A,

it follows from Lemma 3.3.14 that (PK , E − PK) is a k-separation displayed

by Φ that is T -equivalent to (A,B), and that PK ⊆ C.

3.5 Conformity

Recall that the main goal of this chapter is to prove Theorem 3.6.1, which,

loosely stated, is to show that if T is a tangle of order k that satisfies a certain

robustness condition, then every non-sequential k-separation conforms with

a tight maximal flower in T . In this section, we study how the non-sequential

k-separations of λ interact with k-flowers in T , and we develop the necessary

lemmas to prove Theorem 3.6.1.

To avoid cumbersome statements we assume throughout this section that

T is a tangle of order k in a connectivity system (E, λ).

We begin with the following easy lemmas about certain subsets of petals

of a k-flower Φ in T .
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Lemma 3.5.1. Let n ≥ 2, and let I be a proper non-empty subset of [n].

Let Φ = (P1, . . . , Pn) be a k-flower in T . If X ⊆ PI is a T -strong set, then

λ(X) ≥ k.

Proof. Suppose that X ⊆ PI is a T -strong set. Then there is some i ∈ [n]−I,

so Pi ⊆ E − X. Thus (X,E − X) is a T -strong partition, so λ(X) ≥ k by

(T2).

Lemma 3.5.2. Let n ≥ 2, and let I be a proper non-empty subset of [n]. Let

Φ = (P1, . . . , Pn) be a k-flower in T . If X ⊆ PI and λ(X) < k, then X ∈ T .

Proof. Suppose that X ⊆ PI and λ(X) < k. Then X or E −X belongs to

T by (T2), and E −X is T -strong, so X ∈ T .

Let n ≥ 2, and let I ⊆ [n] be a proper non-empty subset. Let Φ =

(P1, . . . , Pn) be a k-flower in T . A k-separation (R,G) of λ crosses a union

of petals PI of Φ if both PI ∩ R and PI ∩ G are non-empty sets. We say

that PI is strongly crossed by (R,G) if both PI ∩R and PI ∩G are T -strong

sets, and that PI is weakly crossed by (R,G) if both PI ∩ R and PI ∩G are

T -weak sets.

A T -strong k-separation (R,G) is said to conform with a k-flower Φ in

T if either (R,G) is T -equivalent to a k-separation that is displayed by Φ or

(R,G) is T -equivalent to a k-separation (R′, G′) with the property that R′

or G′ is contained in a petal of Φ.

Let Φ be a k-flower in T , and let (R,G) be a non-sequential k-separation

that does not conform with Φ. Then it is easy to see that it crosses some

petal of Φ. We would like show that there is a k-flower that both refines Φ

and displays a k-separation that is equivalent to (R,G).

A T -strong k-separation (R,G) called Φ-minimum if, among the k-

separations that are T -equivalent to (R,G), it crosses a minimum number of

petals of Φ.

Lemma 3.5.3. Let n ≥ 2, and let Φ = (P1, . . . , Pn) be a k-flower in T . Let

I be a proper non-empty subset of [n] such that PI is a k-separating, and
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let (R,G) be a Φ-minimum non-sequential k-separation that crosses PI . If

λ(PI ∩R) ≥ k, then PI ∩G is T -strong.

Proof. Assume that λ(PI ∩ R) ≥ k. Seeking a contradiction, suppose that

PI ∩ G is T -weak. Then PI ∪ R is k-separating by uncrossing PI and R, so

(R,G) is T -equivalent to (R∪PI , G−PI) by Lemma 3.3.10. But (R∪PI , G−
PI) crosses fewer petals of Φ than (R,G); a contradiction because (R,G) is

Φ-minimum.

Lemma 3.5.4. Let n ≥ 2, and let Φ = (P1, . . . , Pn) be a k-flower in T . Let

I be a proper non-empty subset of [n] such that PI is k-separating, and let

(R,G) be a Φ-minimum non-sequential k-separation that crosses PI . If PI is

weakly crossed by (R,G), then:

(i) PI ∩G and PI ∩R are both members of T .

(ii) PI is a sequential k-separating set.

Proof. For (i), we show that λ(PI ∩ R) < k and λ(PI ∩ G) < k. Seeking a

contradiction, assume, up to switching R and G, that λ(PI ∩ R) ≥ k. Then

PI ∩ G is T -strong by Lemma 3.5.3; a contradiction because PI is weakly

crossed by (R,G). Thus λ(PI ∩ R) < k and λ(PI ∩ G) < k. It now follows

from Lemma 3.5.2 that PI ∩G,PI ∩R ∈ T .

We now prove (ii). The set E−PI is a T -strong k-separating set because

I is a proper non-empty subset of [n] such that PI is k-separating. Moreover,

PI∩G and PI∩R are T -weak sets, and λ((E−PI)∪(PI∩G)) = λ(PI∩R) < k

by (i), so (PI ∩ G,PI ∩ R) is a partial k-sequence for E − PI . Thus PI ⊆
fclT (E − PI) by Lemma 3.3.5, and so fclT (E − PI) = E.

The next lemma shows that a k-separating proper non-empty union

of petals of Φ is either strongly or weakly crossed by a Φ-minimum non-

sequential k-separation (R,G).

Lemma 3.5.5. Let n ≥ 2, and let Φ = (P1, . . . , Pn) be a k-flower in T . Let I

be a proper non-empty subset of [n] such that PI is k-separating. If (R,G) is
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a Φ-minimum non-sequential k-separation that crosses PI , then PI is either

strongly or weakly crossed.

Proof. Assume that (R,G) is a Φ-minimum non-sequential k-separation that

crosses PI . If λ(PI ∩ R) < k and λ(PI ∩G) < k, then (R,G) weakly crosses

PI by Lemma 3.5.2. Thus we may assume, up to switching R and G, that

λ(PI∩R) ≥ k. Then PI∩G is T -strong by Lemma 3.5.3. Thus λ(PI∩G) ≥ k

by Lemma 3.5.1. Then PI ∩ R is also T -strong by Lemma 3.5.3. Therefore

(R,G) strongly crosses PI .

The next lemma shows that if a non-sequential k-separation does not

conform with a tight k-flower Φ in T of order two, then there is a k-flower

in T that refines Φ.

Lemma 3.5.6. Let Φ = (P1, P2) be a tight k-flower in T . If (R,G) is a

non-sequential k-separation that does not conform with Φ, then there is a

k-flower Φ′ that refines Φ and displays a k-separation equivalent to (R,G).

Proof. Suppose that (R,G) is a non-sequential k-separation that does not

conform with Φ. We may assume, by possibly replacing (R,G) by an

equivalent k-separation, that (R,G) is Φ-minimum. Both P1 and P2 are

crossed by (R,G) because it does not conform with Φ. We claim that

Φ′ = (P1 ∩G,P1 ∩R,P2 ∩R,P2 ∩G) is a k-flower in T . Since Φ is tight, the

k-separation (P1, P2) is non-sequential, so it follows from Lemma 3.5.4 (ii)

that both P1 and P2 are strongly crossed by (R,G). Thus Φ′ is a T -strong

partition. Furthermore, the union of any two consecutive petals of Φ′ is a

member of {R,G, P1, P2}, and so k-separating. Thus Φ′ a k-flower in T by

Lemma 3.4.3.

Let n ≥ 2, and let Φ = (P1, . . . , Pn) be a k-flower in T . Let (R,G) be a Φ-

minimum non-sequential k-separation that does not conform with Φ. Let I be

a proper non-empty subset of [n] such that PI is k-separating. We say that PI

is (R,G)-strong if either PI is not crossed by (R,G) or PI is strongly crossed

by (R,G), and that PI is (R,G)-weak if PI is weakly crossed by (R,G). By
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Lemma 3.5.5, PI is either (R,G)-weak or (R,G)-strong. Evidently, if a petal

Pi of Φ is (R,G)-strong, then Pi ∩R or Pi ∩G is T -strong.

The next lemma shows that (R,G)-weak petals of Φ are the only obsta-

cles to finding a k-flower that refines Φ and displays a k-separation that is

equivalent to (R,G).

Lemma 3.5.7. Let n ≥ 3, and let Φ = (P1, P2, . . . , Pn) be a k-flower in

T . Let (R,G) be a Φ-minimum non-sequential k-separation that does not

conform with Φ. If every petal of Φ is (R,G)-strong, then there is a k-flower

that refines Φ and displays (R,G).

Proof. Suppose that every petal of Φ is (R,G)-strong. Then, up to labels,

we may assume that (R,G) crosses P1. Let P ′3 = P3 ∪ · · · ∪ Pn.

3.5.7.1. Up to switching R and G, both P2 ∩R and P ′3 ∩G are T -strong.

Subproof. If (R,G) crosses P2, then both P2 ∩ R and P2 ∩ G are T -strong.

Up to switching R and G, we may assume that P ′3 ∩G is T -strong, so both

P2 ∩R and P ′3 ∩G are T -strong. Thus we may assume that (R,G) does not

cross P2. Then, up to switching R and G, we can assume that P2 ⊆ R, so

P2∩R is T -strong. Now if G avoids P ′3, then G ⊆ P1; a contradiction because

(R,G) does not conform with Φ. Thus G meets P ′3, so Pi ∩G is T -strong for

some i ∈ [3, n]. Hence P ′3 ∩G is T -strong.

Assume that labels are chosen such that P2∩R and P ′3∩G are T -strong.

3.5.7.2. Φ′ = (P1 ∩G,P1 ∩R,P2, . . . , Pn) is a k-flower in T .

Subproof. The members of the partition Φ′ are T -strong. Furthermore, (P1∩
G)∪(P1∩R) is k-separating, and Pi∪Pi+1 is k-separating for all i ∈ [2, n−1].

Thus, by Lemma 3.4.3, it suffices to show that (P1 ∩R)∪P2 is k-separating.

Now λ(P1 ∪ P2 ∪ R) = λ(P ′3 ∩ G) ≥ k by Lemma 3.5.1, so, by uncrossing

P1 ∪ P2 and R, we see that (P1 ∪ P2) ∩ R is k-separating. Furthermore

λ(P2∩R) ≥ k by Lemma 3.5.1, so (P1∩R)∪P2 is k-separating by uncrossing

P2 and (P1 ∪ P2) ∩R.
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It now follows from 3.5.7.2 and an induction on the number of petals of

Φ crossed by (R,G) that there is a k-flower Φ′ that refines Φ and displays

(R,G).

For tight k-flowers we only need two (R,G)-strong petals to guarantee

that every petal is (R,G)-strong. To show this we first need the following

technical lemma.

Lemma 3.5.8. Let n ≥ 3, and let Φ = (P1, . . . , Pn) be a k-flower in T . Let

(R,G) be a Φ-minimum non-sequential k-separation that does not conform

with Φ. If P1 is (R,G)-weak and there is a concatenation (P1, A,B) of Φ

such that both A and B are (R,G)-strong, then Φ is equivalent to the k-

flower Φ′ = (P1 ∪ P2, P3, . . . , Pn).

Proof. Suppose that P1 is (R,G)-weak, and that (P1, A,B) is a concatenation

of Φ such that both A and B are (R,G)-strong.

3.5.8.1. Up to switching R and G, both A ∩R and B ∩G are T -strong.

Subproof. Assume first that (R,G) crosses A, so both A ∩ R and A ∩G are

T -strong. Then, up to switching R and G, we may assume that B ∩ G is

T -strong. Thus both A ∩ R and B ∩ G are T -strong. Now assume that

(R,G) does not cross A. Then, up to switching R and G, we may assume

that A ⊆ R, so A ∩ R is T -strong. If B ⊆ R, then G ⊆ P1; a contradiction

because (R,G) does not conform with Φ. Thus either (R,G) crosses B or

B ⊆ G, so B ∩G is T -strong.

Assume that R and G are labelled such that both A ∩ R and B ∩G are

T -strong. Then λ(A ∩ R) ≥ k and λ(B ∩ G) ≥ k by Lemma 3.5.1. Since

P1 ∪A ∪R avoids B ∩G, the set (P1 ∪A) ∩R is k-separating by uncrossing

P1∪A and R. Another uncrossing argument with (P1∪A)∩R and A, whose

intersection is A ∩ R, shows that their union A ∪ (P1 ∩ R) is k-separating.

Finally, P2 ∪ (P1 ∩R) is the intersection of the k-separating sets P1 ∪P2 and

A ∪ (P1 ∩ R), whose union is A ∪ P1, so P2 ∪ (P1 ∩ R) is k-separating by

uncrossing P1 ∪ P2 and A ∪ (P1 ∩ R). Then (P1 ∩ R,P1 ∩ G) is a partial
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k-sequence for P2, so P1 ⊆ fclT (P2) by Lemma 3.3.5. Thus Φ is equivalent

to the k-flower (P1 ∪ P2, P3, . . . , Pn) by Lemma 3.4.4.

The next lemma shows that we only need to prove that a tight k-flower

has two (R,G)-strong petals.

Lemma 3.5.9. Let n ≥ 3, and let Φ = (P1, . . . , Pn) be a tight k-flower

in T . Let (R,G) be a Φ-minimal non-sequential k-separation that does not

conform with Φ. If Φ has two (R,G)-strong petals, then every petal of Φ is

(R,G)-strong.

Proof. Assume that Φ has two (R,G)-strong petals. Seeking a contradiction,

suppose that Φ has an (R,G)-weak petal. Then, up to labels, we may assume

that P1 is (R,G)-weak, and that P2 is (R,G)-strong. Then Pj is (R,G)-

strong for some j /∈ [1, 2], so E− (P1∪P2) is (R,G)-strong. Now (P1, P2, E−
(P1 ∪ P2)) is a concatenation of Φ such that P1 is (R,G)-weak, and both P2

and E − (P1 ∪ P2) are (R,G)-strong. Thus Φ is equivalent to the k-flower

Φ′ = (P1∪P2, P3, . . . , Pn) by Lemma 3.5.8; a contradiction because Φ is tight.

Thus every petal of Φ is (R,G)-strong.

As a consequence of Lemma 3.5.9 and Lemma 3.5.4 we can refine tight

k-flowers with three petals.

Lemma 3.5.10. Let Φ = (P1, P2, P3) be a tight k-flower in T . If (R,G) is

a non-sequential k-separation that does not conform with Φ, then there is a

k-flower that refines Φ and displays a k-separation equivalent to (R,G).

Proof. Assume that (R,G) is a Φ-minimum non-sequential k-separation that

does not conform with Φ. As Φ is a tight k-flower in T of order three, it

displays at least two inequivalent non-sequential k-separations. By Lemma

3.5.4 (ii) non-sequential k-separations displayed by Φ are strongly crossed

by (R,G), so we may assume that P1 and P2 are (R,G)-strong. Then all

petals of Φ are (R,G)-strong by Lemma 3.5.9. It follows from Lemma 3.5.7

that there is a k-flower that refines Φ and displays a k-separation that is

equivalent to (R,G).
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In fact, we can do one better than Lemma 3.5.9.

Lemma 3.5.11. Let n ≥ 3, and let Φ = (P1, . . . , Pn) be a tight k-flower in

T . Let (R,G) be a Φ-minimum non-sequential k-separation that does not

conform with Φ. If Φ has one (R,G)-strong petal, then every petal of Φ is

(R,G)-strong.

Proof. If Φ has two (R,G)-strong petals, then the lemma immediately follows

from Lemma 3.5.9. Assume towards a contradiction that Φ has exactly one

(R,G)-strong petal. Then, up to labels, we can assume that P2 is (R,G)-

strong. Since Φ is a tight k-flower of order at least three, it displays some

non-sequential k-separation (X, Y ) that is not equivalent to (P2, E − P2).

By Lemma 3.5.4 (ii) both X and Y are (R,G)-strong, so they must contain

at least two petals of Φ. Then we can assume that the petals of Φ and

(X, Y ) are labelled such that P2 is (R,G)-strong and P1, P2 ⊆ X. Now

Y ⊆ E − (P1 ∪P2), so E − (P1 ∪P2) is also (R,G)-strong. Thus (P1, P2, E−
(P1 ∪ P2)) is a concatenation of Φ such that P1 is (R,G)-weak, and both

P2 and E − (P1 ∪ P2) are (R,G)-strong. Then it follows from Lemma 3.5.8

that Φ′ = (P1 ∪ P2, P3, . . . , Pn) is a k-flower equivalent to Φ; a contradiction

because Φ is tight. Thus Φ has two (R,G)-strong petals, so by Lemma 3.5.9

every petal of Φ is (R,G)-strong.

3.6 Robustness

Unfortunately, Lemma 3.5.11 is as much as we can say for arbitrary tangles

in a connectivity system. Consider the 8-element rank-4 matroid R8 that is

represented geometrically by a cube (see, for example, [22, pp. 508]).

The 4-point planes of R8 are the six faces of the cube and the six diagonal

planes. Let E = [8] be the ground set of R8, and let r be the rank function

of R8. For each positive integer `, define a function f` on the subsets X of

E by
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Figure 3.1: The matroid, R8.

f`(X) =

0 X = ∅.

r(X) + ` otherwise.

It is straightforward to prove that f` is a polymatroid on E = [8]. Let

λ` be the connectivity function of f`, that is, λ`(X) = f`(X) + f`(E −X)−
f`(E) + 1 for all X ⊆ E. Then T = {{i} | i ∈ [8]} ∪ {∅} is the unique tangle

in (E, λ`) of order ` + 3. With notation as in Figure 3.1, the partition Φ =

({1, 2}, {3, 4}, {5, 6}, {7, 8}) is a tight maximal (`+ 3)-flower in T . However,

the non-sequential (`+3)-separation ({1, 3, 5, 7}, {2, 4, 6, 8}) does not conform

with Φ.

We can obtain analogous matroid examples by a standard construction

where matroid elements are freely added to each polymatroid element.

Let k be a positive integer, and let T be a collection of subsets of E

satisfying the axioms (T1), (T2), and (T4). Then T is a robust tangle in

(E, λ) of order k if T satisfies:

(RT3) If A1, A2, . . . , A8 ∈ T , then A1 ∪ A2 ∪ · · · ∪ A8 6= E.

Note that every robust tangle of order k in (E, λ) is certainly a tangle of

order k in (E, λ).

A k-flower Φ in T is maximal if it is maximal in the quasi-order 4. We

are now in position to achieve the main goal of this chapter.
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Theorem 3.6.1. Let T be a robust tangle of order k in a connectivity system

(E, λ). If Φ is a tight maximal k-flower in T , then every non-sequential k-

separation of λ conforms with Φ.

Proof. Let Φ = (P1, P2, . . . , Pn) be a tight maximal k-flower in T . Assume

that the theorem fails, and that (R,G) is a Φ-minimum non-sequential k-

separation that does not conform with Φ. Then clearly n ≥ 2, and by Lemma

3.5.6 and Lemma 3.5.10, we may assume that n ≥ 4. Assume towards a

contradiction that every petal of Φ is (R,G)-weak. For each i ∈ [n − 3], let

Ai = P2 ∪ P3 ∪ · · · ∪ Pn−i−1 and let Bi = Pn ∪ · · · ∪ Pn−i+1, and consider

the concatenation Φi = (P1, Ai, Pn−i, Bi) of Φ. The petals of Φi are either

(R,G)-weak or (R,G)-strong by Lemma 3.5.5, and they cannot all be (R,G)-

weak because T satisfies (RT3). For each i ∈ [n − 3], the petals P1 and

Pn−i are (R,G)-weak, so Ai or Bi must be (R,G)-strong. Moreover, both

A1 and Bn−3 are (R,G)-strong because both B1 = Pn and An−3 = P2 are

(R,G)-weak. Thus there is a smallest index j ≥ 2 such that Bj is (R,G)-

strong. Then Bj−1 is (R,G)-weak, so Aj−1 is (R,G)-strong by (RT3). Now

(P1, Aj−1, Bj) is a concatenation of Φ such that both Aj−1 and Bj are (R,G)-

strong, so it follows from Lemma 3.5.8 that Φ′ = (P1 ∪ P2, P3, . . . , Pn) is a

k-flower equivalent to Φ; a contradiction because Φ is tight. Thus Φ has an

(R,G)-strong petal. It now follows from Lemma 3.5.11 that every petal of

Φ is (R,G)-strong. Then, by Lemma 3.5.7, there is a k-flower that refines Φ

and displays a k-separation that is equivalent to (R,G); a contradiction of

the maximality of Φ.

We will later make use of the following conditions that are equivalent to

(RT3) but are easier to verify. The proof is a simple extension of [9, Lemma

3.1].

Lemma 3.6.2. Let (E, λ) be a connectivity system, and let T be a collection

of subsets of E satisfying the axioms (T1), (T2), and (T4). Then T is a

robust tangle of order k in (E, λ) if and only if it satisfies the following

conditions:
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(RT3a) If A ⊆ B, B ∈ T , and λ(A) < k, then A ∈ T .

(RT3b) If (A1, A2, . . . , A8) is a partition of E, then T cannot contain all eight

of A1, . . . , A8.

Proof. If T is a robust tangle of order k in λ, then it satisfies (RT3a) and

(RT3b). Conversely, suppose that T satisfies (RT3a) and (RT3b). If T is

not a robust tangle, then there are A1, A2, . . . , A8 ∈ T such that A1 ∪ A2 ∪
· · ·∪A8 = E. Choose such A1, . . . , A8 so that

∑
1≤i<j≤8 |Ai∩Aj| is minimum.

Then
∑

1≤i<j≤8 |Ai∩Aj| > 0 by (RT3b), so we may assume, up to relabelling

A1, A2, . . . , A8, that |A1∩A2| > 0. Then λ(A1−A2) +λ(A2−A1) ≤ λ(A1) +

λ(A2), so we may assume, up to relabelling A1 and A2, that λ(A1−A2) < k.

Then A1−A2 ∈ T by (RT3a). Let B1 = A1−A2 and let Bi = Ai for i ∈ [2, 8].

Then B1, . . . , B8 cover E, and
∑

1≤i<j≤8 |Bi ∩ Bj| <
∑

1≤i<j≤8 |Ai ∩ Aj|,
contradicting our choice of A1, . . . , A8.

3.7 Accumulating connectivity

For a 3-connected matroid, if Φ = (P1, . . . , Pn) is a tight flower of order at

least three, and 2 ≤ j ≤ n − 1, then P1 ∪ · · · ∪ Pj is a non-sequential 3-

separating set [23, Lemma 5.9 (ii)]. The aim of this section is to prove the

existence of a bound on the number of petals in a sequential k-separating set

displayed by a tight k-flower Φ in a tangle T .

Let Φ = (P1, P2, . . . , Pn) be a k-flower of order at least two with no T -

loose petals, and assume that
⋃`
i=1 Pi is sequential for some ` ∈ [n− 1].

We first need the following corollary of Lemma 3.4.7.

Corollary 3.7.1. Let T be a tangle of order k in a connectivity system

(E, λ). If Φ = (P1, P2, . . . , Pn) is a k-flower in T of order at least two,

with no T -loose petals, and (Xi)
m
i=1 is a partial k-sequence for P1, then Φ′ =

(P ′1, P
′
2, . . . , P

′
n) = (P1 ∪ (

⋃m
i=1Xi), P2 − (

⋃m
i=1Xi), . . . , Pn − (

⋃m
i=1Xi)) is a

k-flower that is equivalent to Φ. Moreover, fclT (Pi) = fclT (P ′i ) for all i ∈ [n].
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Proof. Assume that Φ = (P1, P2, . . . , Pn) is a k-flower in T of order at least

two, with no T -loose petals. Assume that (Xi)
m
i=1 is a k-sequence for P1. We

proceed by induction on m. If m = 1, then it follows from Lemma 3.4.7 that

the partition Φ1 = (P 1
1 , P

1
2 , . . . , P

1
n) = (P1 ∪ X1, P2 − X1, . . . , Pn − X1) is a

k-flower in T that Φ1 is equivalent to Φ, and that fclT (Pi) = fclT (P 1
i ) for

all i ∈ [n]. Thus we may assume that m ≥ 2, and that the result holds for

m− 1. Then (Xi)
m−1
i=1 is a partial k-sequence for P1, so by induction there is

a k-flower Φm−1 = (Pm−1
1 , Pm−1

2 , . . . , Pm−1
n ), where Pm−1

1 = P1 ∪ (
⋃m−1
i=1 Xi)

and Pm−1
j = Pj − (

⋃m−1
i=1 Xi) for j ∈ [2, n], such that Φm−1 is equivalent to

Φ, and fclT (Pi) = fclT (Pm−1
i ) for all i ∈ [n]. Thus Φm−1 has order at least

two, and no T -loose petals. Now, by applying Lemma 3.4.7 to the k-flower

Φm−1 and the T -weak set Xm, it follows that Φm = (Pm
1 , P

m
2 , . . . , P

m
n ) is a

k-flower in T , where Pm
1 = P1 ∪ (

⋃m
i=1Xi) and Pm

j = Pj − (
⋃m
i=1Xi) for all

j ∈ [2, n], such that Φm is equivalent to Φm−1, and hence is equivalent to Φ,

and fclT (Pm
i ) = fclT (Pm−1

i ) = fclT (Pi) for all i ∈ [n].

Lemma 3.7.2. Let T be a tangle of order k in a connectivity system (E, λ).

If Φ = (P1, P2, . . . , Pn) is a k-flower of order at least two, with no T -loose

petals, and
⋃`
i=1 Pi is sequential for some ` ∈ [n − 1], then there is a k-

flower Φ′ = (P ′1, . . . , P
′
n) that is equivalent to Φ with no T -loose petals such

that
⋃`
i=1 P

′
i sequential, and, for each i ∈ [n − 1], P ′i ∩ fclT (P ′j) = ∅ for all

j ∈ [i+ 1, n].

Proof. We describe a sequence of k-flowers in T obtained by applying

Corollary 3.7.1. Assume that (Xi)
m
i=1 is a k-sequence for P2, so P2 ∪

(
⋃m
i=1Xi) = fclT (P2) by Lemma 3.3.7. Then, by Corollary 3.7.1, the par-

tition Φ′ = (P ′1, P
′
2, . . . , P

′
n) = (P1 − fclT (P2), fclT (P2), . . . , Pn − fclT (P2)) is

a k-flower equivalent to Φ. Moreover, we have fclT (Pi) = fclT (P ′i ) for all

i ∈ [n]. Now repeat this process with successive petals. In particular, af-

ter n − 1 iterations, we obtain a k-flower Φ′′ = (P ′′1 , P
′′
2 , . . . , P

′′
n ) with no

T -loose petals that is equivalent to Φ, where P ′′1 = P1 − (
⋃n
i=2 fclT (Pi)),

P ′′j = fclT (Pj) − (
⋃n
i=j+1 fclT (Pi)) for 2 ≤ j ≤ n − 1, and P ′′n = fclT (Pn).

Moreover, we have fclT (P ′′i ) = fclT (Pi) for all i ∈ [n]. Thus, for each
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i ∈ [n − 1], P ′′i ∩ fclT (P ′′j ) = ∅ for all j ∈ [i + 1, n]. It follows from the

fact that
⋃n
i=`+1 Pi ⊆

⋃n
i=`+1 P

′′
i and Lemma 3.3.3 that

⋃`
i=1 P

′′
i is a sequen-

tial k-separating set displayed by Φ′′ with ` petals.

Let Φ = (P1, P2, . . . , Pn) be a k-flower of order at least two, with no T -

loose petals, and assume that
⋃`
i=1 Pi is sequential for some ` ∈ [n−1]. Then

it follows from Lemma 3.7.2 that, by possibly replacing Φ by an equivalent k-

flower Φ′ = (P ′1, P
′
2, . . . , P

′
n) that has no T -loose petals and that also displays

a sequential k-separating set
⋃`
i=1 P

′
i , we may assume that, for each i ∈ [n−1],

Pi ∩ fclT (Pj) = ∅ for all j ∈ [i+ 1, n].

We now obtain a bound on the number of petals in a sequential k-

separating set displayed by a k-flower in T of order at least two with no

T -loose petals.

Lemma 3.7.3. Let Φ = (P1, P2, . . . , Pn) be a k-flower of order at least two

with no T -loose petals. If
⋃`
i=1 Pi is a sequential k-separation for some ` ∈

[n− 1], then ` ≤ k.

Proof. Suppose that
⋃`
i=1 Pi is a sequential k-separation for some ` ∈ [n−1].

It follows from Lemma 3.7.2 that, by possibly replacing Φ by an equivalent k-

flower Φ′ = (P ′1, P
′
2, . . . , P

′
n) that has no T -loose petals and that also displays

a sequential k-separating set with ` petals, we may assume, for each i ∈
[n−1], that Pi∩fclT (Pj) = ∅ for all j ∈ [i+1, n]. Since

⋃`
i=1 Pi is a sequential

k-separation, there is a k-sequence (Xi)
m
i=1 for P[`+1,n]. Let X = X1.

3.7.3.1. X meets P1.

Subproof. Seeking a contradiction, suppose that X avoids P1. Let i ∈ [2, `]

be the smallest index such that X ∩ Pi is non-empty, so X ⊆ P[i,`]. Then

P[i+1,n]∪X is the union of the k-separating sets P[`+1,n]∪X and P[i+1,n]. The

intersection of P[`+1,n]∪X and P[i+1,n] is P[`+1,n]∪ (X−Pi), and the partition

(P[`+1,n] ∪ (X − Pi), E − (P[`+1,n] ∪ (X − Pi))) is T -strong, so λ(P[`+1,n] ∪
(X − Pi)) ≥ k by (T2). Thus, by uncrossing P[`+1,n] ∪ X and P[i+1,n], the

set P[i+1,n] ∪ X is k-separating. Now, Pi+1 ∪ (X ∩ Pi) is the intersection
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of the k-separating sets Pi ∪ Pi+1 and P[i+1,n] ∪ X, whose union is P[i,n], so

Pi+1∪ (X ∩Pi) is k-separating by uncrossing Pi∪Pi+1 and P[i+1,n]∪X. Then

(X ∩ Pi) is a partial k-sequence for Pi+1, so X ∩ Pi ⊆ fclT (Pi+1) by Lemma

3.3.5; a contradiction because Pi ∩ fclT (Pi+1) = ∅.

3.7.3.2. X meets Pi for all i ∈ [`].

Subproof. Seeking a contradiction, suppose that X avoids some petal of Pi

for some i ∈ [`]. By 3.7.3.1 the set P1 ∩X is non-empty, so i ∈ [2, `]. Now,

Pn ∪ (P1 ∩ X) is the intersection of the k-separating sets P[`+1,n] ∪ X and

Pn ∪ P1, whose union is P1 ∪ P[`+1,n] ∪ X. Since E − (P1 ∪ P[`+1,n] ∪ X)

contains Pi, the partition (P1 ∪P[`+1,n] ∪X,E− (P1 ∪P[`+1,n] ∪X)) is clearly

T -strong. Then λ(P1 ∪ P[`+1,n] ∪ X) ≥ k by (T2), so Pn ∪ (P1 ∩ X) is k-

separating by uncrossing P[`+1,n]∪X and Pn∪P1. Thus (P1∩X) is a partial

k-sequence for Pn, so P1 ∩ X ⊆ fclT (Pn) by Lemma 3.3.5; a contradiction

because P1 ∩ fclT (Pn) = ∅.

By 3.7.3.2, the set X ∩ Pi is non-empty for all i ∈ [`].

3.7.3.3. For each i ∈ [`− 1],

(i) P[i] −X ∈ T ; and

(ii) λ(P[i] −X) > 0.

Subproof. For (i), by Lemma 3.5.2, it suffices to show that λ(P[i] −X) < k.

Seeking a contradiction, suppose that λ(P[i] − X) ≥ k for some i ∈ [` − 1].

Now, the set P`+1 ∪ (P[i+1,`] ∩X) is the intersection of the k-separating sets

P[`+1,n]∪X and P[i+1,`+1]. The union of P[`+1,n]∪X and P[i+1,`+1] is P[i+1,n]∪X,

whose complement is P[i] −X. Thus P`+1 ∪ (P[i+1,`] ∩X) is k-separating by

uncrossing P[`+1,n]∪X and P[i+1,`+1]. Then (P[i+1,`]∩X) is a partial k-sequence

for P`+1, so P[i+1,`]∩X ⊆ fclT (P`+1) by Lemma 3.3.5; a contradiction because

P[i+1,`] ∩ fclT (P`+1) is empty.

For (ii), suppose that λ(P[i]−X) ≤ 0 for some i ∈ [`−1]. Then P[i]−X ∈ T
by (i). Moreover, the set Pi+1 ∪ (P[i] − X) is k-separating since, by the
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submodularity of λ, we have λ(Pi+1∪ (P[i]−X)) ≤ λ(Pi+1)+λ(P[i]−X) ≤ k.

Thus, (P[i] −X) is a partial k-sequence for Pi+1, so P[i] −X ⊆ fclT (Pi+1) by

Lemma 3.3.5; a contradiction because P[i] ∩ fclT (Pi+1) = ∅.

3.7.3.4. If i ∈ [`− 1], then λ(P[i] −X) ≥ i.

Subproof. We proceed by induction on i. If i = 1, then the result follows from

3.7.3.3 (ii). Let i ≥ 2, and assume for induction that λ(P[i−1] −X) ≥ i− 1.

Suppose that λ(P[i] −X) ≤ i− 1. Then λ(P[i−1] −X) ≥ λ(P[i] −X). Thus,

by submodularity, it follows that

λ(P[i−1] ∪ (Pi −X)) ≤ λ(P[i−1]) + λ(P[i] −X)− λ(P[i−1] −X) ≤ k.

Now, the set Pi−X is T -weak by 3.7.3.3 (ii). Moreover, the set Pi−1∪(Pi−X)

is the intersection of the k-separating sets Pi−1 ∪ Pi and P[i−1] ∪ (Pi − X),

whose union is P[i], so Pi−1∪ (Pi−X) is k-separating by uncrossing Pi−1∪Pi
and P[i−1] ∪ (Pi−X). Thus (Pi−X,Pi ∩X) is a partial k-sequence for Pi−1,

so Pi ⊆ fclT (Pi−1) by Lemma 3.3.5; a contradiction because Φ has no T -loose

petals. Thus λ(P[i] −X) ≥ i, as required.

Thus, by 3.7.3.4, we have λ(P[`−1] − X) ≥ ` − 1. But we also have

λ(P[`−1] −X) < k by 3.7.3.3(i) and (T1). Thus ` ≤ k, as required.



Chapter 4

Tree decomposition

In this chapter, we show that, for every robust tangle of order k in a connec-

tivity system (E, λ), there is an associated tree that displays, up to equiva-

lence, all of the non-sequential k-separations of λ.

4.1 Partial k-trees

The tree used to obtain the tree decomposition of 3-connected matroids in

[23] was a π-labelled tree called a maximal partial 3-tree. We will use an

analogous π-labelled tree to obtain the tree decomposition in Theorem 4.2.1.

The exposition given here will therefore closely follow that of [23].

Let T be a tangle of order k in a connectivity system (E, λ), and let π be

a partition of E. Recall that we allow members of π to be empty. Let T be a

tree such that every member of π labels a vertex of T . Some vertices may be

unlabelled and no vertex is multiply labelled. We say that T is a π-labelled

tree for T . The vertices of T labelled by the members of π are called bag

vertices , and the members of π are called bags . A terminal bag is a bag that

labels a leaf of T .

Let T be a π-labelled tree for T . We now define some partitions of E

that are induced by certain subgraphs of T . Let T ′ be a subtree of T . The

union of those bags that label vertices of T ′ is the subset of E displayed by

62
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T ′. Let e be an edge of T . The partition of E displayed by e is the partition

displayed by the connected components of T\e. Let v be a vertex of T that

is not a bag vertex. Then the partition of E displayed by v is the partition

displayed by the connected components of T − v. The edges incident with

v are in natural one-to-one correspondence with the connected components

of T − v, and hence with the members of the partition of E displayed by v.

In what follows, if a cyclic ordering is imposed on the edges incident with v,

then we cyclically order the members of the partition of E displayed by v in

the corresponding order.

Let v be a vertex of T that is not a bag vertex, and let (e1, . . . , en) be a

cyclic ordering of the edges incident with v. Then v is a k-flower vertex if the

partition (P1, . . . , Pn) of E displayed by v, in the cyclic order corresponding

to (e1, . . . , en), is a k-flower in T . The k-separations displayed by the k-flower

corresponding to a k-flower vertex are called the k-separations displayed by

v. A k-separation is displayed by T if it is displayed by some edge or some

k-flower vertex of T . A k-separation (X, Y ) conforms with T if either (X, Y )

is T -equivalent to a k-separation displayed by T , or (X, Y ) is T -equivalent

to a k-separation (X ′, Y ′) with the property that X ′ or Y ′ is contained in a

bag of T .

Let T be a tangle of order k in a connectivity system (E, λ). A partial

k-tree for T is a π-labelled tree for T , where π is a partition of E such that

the following properties hold:

(P1) For each edge e of T , the partition (X, Y ) of E displayed by e is a

T -strong k-separation, and, if e is incident with two bag vertices, then

(X, Y ) is a non-sequential k-separation.

(P2) Each non-bag vertex v of T is labelled either D or A. Moreover, if v

is labelled by D, then there is a cyclic ordering on the edges incident

with v.

(P3) If a vertex v if labelled by A, then the partition of E displayed by v is

a k-anemone of order at least three with no T -loose petals.
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(P4) If a vertex v is labelled by D, then the partition of E displayed by v,

in the cyclic order induced by the cyclic ordering on the edges incident

with v, is a k-daisy of order at least three with no T -loose petals.

(P5) Every non-sequential k-separation conforms with T .

Note that we may suppress the labels D or A on non-bag vertices when

they are clear from the context.

We now define a relation 4 on the set of partial k-trees for T . Let T and

T ′ be partial k-trees for T . If, for each non-sequential k-separation displayed

by T , there is some T -equivalent k-separation displayed by T ′, then T 4 T ′.

If T 4 T ′ and T ′ 4 T , then T is T -equivalent to T ′. It is straightforward

to prove that 4 is a quasi-order on the set of partial k-trees for T . As with

the other notions of equivalence we have developed, when the tangle T is

clear from the context, we shall abbreviate “T -equivalent” to “equivalent”.

A partial k-tree is maximal if it is maximal in the quasi-order 4. A partial

k-tree for T is trivial if it does not display any non-sequential k-separations.

Let Φ = (P1, . . . , Pn) be a k-flower in T . Then there is a Φ-labelled tree

for T that we can associate with Φ. If n = 1, then T consists of a single

bag-vertex labelled by the bag P1. If n = 2, then T consists of two adjacent

bag vertices labelled by P1 and P2 respectively. Assume that n ≥ 3. Then

we let T be the graph with vertex set {v, v1, . . . , vn}, where v is adjacent to

each vi and each vi is labelled by the bag Pi. Finally, if Φ is a k-daisy, then

the edges incident with the non-bag vertex v are given the cyclic ordering

(vv1, . . . , vvn). If Φ is a tight k-flower in T , then it is easily seen that the

associated Φ-labelled tree for T satisfies the first four partial k-tree axioms.

Moreover, we have the following immediate consequence of Theorem 3.6.1.

Corollary 4.1.1. Let T be a robust tangle of order k in a connectivity sys-

tem (E, λ). If Φ is a tight maximal k-flower in T , then the Φ-labelled tree

associated with Φ is a partial k-tree for T .

The next result is used in the proof of Theorem 4.2.1.



CHAPTER 4. TREE DECOMPOSITION 65

Lemma 4.1.2. Let T be a tangle of order k in a connectivity system (E, λ).

If (R,G) is a non-sequential k-separation of λ, then there is a tight maximal

k-flower in T that displays a k-separation T -equivalent to (R,G).

Proof. Assume that (R,G) is a non-sequential k-separation of λ. Then Φ =

(R,G) is a tight k-flower in T , and evidently Φ displays (R,G). Let Φ′ be

a maximal k-flower in T such that Φ′ < Φ, and let Φ′′ be a tight k-flower

in T that is equivalent to Φ′. Then Φ′′ is a tight maximal k-flower in T ,

and Φ′′ < Φ, so Φ′′ displays a k-separation (R′, G′) that is T -equivalent to

(R,G).

The remainder of this section is devoted to developing the preliminary

lemmas needed to prove the following lemma, which is the main component

in the proof of Theorem 4.2.1.

Lemma 4.1.3. Let T a robust tangle of order k in a connectivity system

(E, λ), and let T be a non-trivial partial k-tree for T . If there is a non-

sequential k-separation (R,G) that is not T -equivalent to any k-separation

displayed by T , then there is a partial k-tree T ′ such that T ′ < T and T ′

displays some non-sequential k-separation that is not displayed by T .

Let T be a partial k-tree for T . If B is a terminal bag of T such that

the partition (B,E −B) is a non-sequential k-separation, then B is called a

non-sequential terminal bag of T . The main step towards a proof of Lemma

4.1.3 is to show that if T has a non-sequential terminal bag B, and (C,E−C)

is a non-sequential k-separation such that fclT (B) = fclT (C), then there is

some partial k-tree T ′ equivalent to T such that C is a terminal bag of T ′.

Recall that two separations (A,B) and (C,D) of T cross if the inter-

sections A ∩ C, A ∩ D, B ∩ C, and B ∩ D are all non-empty. A set S of

separations of T is laminar if no two separations in S cross. We have the

following straightforward lemma. We omit the details.

Lemma 4.1.4. If T is a partial k-tree for T , then the set of k-separations

displayed by edges of T is laminar.
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Lemma 4.1.5. Let T be a partial k-tree for T , and let B be a terminal bag

of T . If Φ = (P1, P2, . . . , Pn) is a k-flower corresponding to a k-flower vertex

v of T , then, up to labels, B ⊆ P1.

Proof. Suppose that u is the bag vertex of T labelled by B. Then u is in

some component of T − v, and hence B is contained in some member of the

partition of E displayed by v. The members of the partition of E displayed

by v are precisely the petals of Φ, so, up to labels, we may assume that

B ⊆ P1.

Let T be a partial k-tree for T , and let B be a non-sequential terminal

bag of T . Suppose that X ⊆ E − B is a T -weak set such that B ∪ X is

k-separating. We next show that there is a partial k-tree T ′ equivalent to T

with terminal bag B ∪X.

Lemma 4.1.6. Let T be a partial k-tree for T , and let B be a non-sequential

terminal bag of T labelling a leaf w of T . If X ⊆ E − B is a non-empty T -

weak set such that B ∪ X is k-separating, then there is a partial k-tree T ′

equivalent to T such that B ∪X is a non-sequential terminal bag of T ′.

Proof. Suppose that X ⊆ E−B is a non-empty T -weak set such that B∪X
is k-separating. If Φ = (P1, . . . , Pn) is a k-flower in T corresponding to a

k-flower vertex of T , then we may assume that the petals of Φ are labelled

such that B ⊆ P1 by Lemma 4.1.5. Let T ′ be the π-labelled tree obtained

by relabelling T such that:

(i) the leaf w of T ′ is labelled by the bag B ∪ X, and, if u 6= w is a bag

vertex of T labelled by the bag B′, then u is a bag vertex of T ′ labelled

by the bag B′ −X; and

(ii) if v is a non-bag vertex of T labelled by X ∈ {D,A}, then v is a non-bag

vertex of T ′ labelled by X. Moreover, if a cyclic ordering is imposed

on the edges of T that are incident with v, then the cyclic ordering is

imposed on the edges of T ′ that are incident with v.
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It is clear that T and T ′ have the same bag vertices and non-bag vertices. We

also see that B ∪X is a non-sequential terminal bag of T ′ by (i) and Lemma

3.3.10. It remains, then, to show that T ′ is a partial k-tree for T that is

equivalent to T . It follows immediately from (ii) that T ′ satisfies (P2). In

the following three sublemmas we show that T ′ satisfies the remaining partial

k-tree axioms.

4.1.6.1. If v is a non-bag vertex of T ′, and Φ is the k-flower corresponding to

the k-flower vertex v of T , then the partition of E displayed by the compo-

nents of T ′− v is a k-flower Φ′ that is T -equivalent to Φ and has no T -loose

petals.

Subproof. Assume that the vertex v of T ′ is a non-bag vertex, and that

Φ = (P1, P2, . . . , Pn) is the k-flower corresponding to the k-flower vertex v

of T . Then the partition of E displayed by T ′ − v, with the same ordering

of the components as T − v, is Φ′ = (P1 ∪X,P2 −X, . . . , Pn −X). The set

P1∪X is the union of the k-separating sets P1 and B∪X, whose intersection

is B∪(P1∩X). Since both B∪(P1∩X) and E−(B∪(P1∩X)) are T -strong,

it follows from (T2) that λ(B ∪ (P1 ∩X)) ≥ k. Thus, by uncrossing, the set

P1∪X is k-separating. It now follows from Lemma 3.4.7 that Φ′ is a k-flower

that is equivalent to Φ, and that Φ′ has no T -loose petals.

4.1.6.2. If e is an edge of T ′, then the partition of E displayed by the

components of T ′\e is a T -strong k-separation. Moreover, if e is incident with

two bag vertices of T ′, then the partition of E displayed by the components of

T ′\e is a non-sequential k-separation that is T -equivalent to the k-separation

displayed by the components of T\e.

Subproof. Let e be an edge of T ′. If e is incident with a k-flower vertex of T ′,

then the partition of E displayed by the components of T ′\e is a T -strong

k-separation by 4.1.6.1. We may therefore assume that e is incident with two

bag vertices of T ′. Then e is also incident with two bag vertices of T , so the

k-separation (R,G) displayed by the components of T\e is non-sequential by
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(P1). Now (B,E −B) is also a k-separation displayed by an edge of T , so it

follows from Lemma 4.1.4 that (B,E − B) does not cross (R,G). Thus we

may assume, up to switching R and G, that B ⊆ R because B is a bag of T .

Then (R ∪X,G −X) is the partition of E displayed by the components of

T ′\e, and R∪X is k-separating by uncrossing B∪X and R, so (R∪X,G−X)

is T -equivalent to (R,G) by Lemma 3.3.10.

4.1.6.3. Every non-sequential k-separation of λ conforms with T ′.

Subproof. Seeking a contradiction, suppose that (R,G) is a non-sequential

k-separation of λ that does not conform with T ′. Then (R,G) conforms

with T because T is a partial k-tree, so, by possibly replacing (R,G) by a

T -equivalent k-separation, we may assume that either (R,G) is displayed

by T or R is contained in a bag of T . If (R,G) is displayed by T , then it

follows immediately from 4.1.6.1 and 4.1.6.2 that there is some k-separation

equivalent to (R,G) that is displayed by T ′. Thus we may assume that

R ⊆ B′ for some bag B′ 6= B of T . We may further assume that both

R ∩ (B′ − X) and R ∩ X are non-empty, since B′ − X is a bag of T ′. We

now show that (R,G) is T -equivalent to the k-separation (R − X,G ∪ X).

Since B ⊆ G, the set G ∪X is k-separating by uncrossing B ∪X and G, so,

by Lemma 3.3.10, the k-separation (R −X,G ∪X) is equivalent to (R,G).

But R−X ⊆ B′ −X, so (R,G) conforms with T ′; a contradiction.

It follows from 4.1.6.1, 4.1.6.2, and 4.1.6.3 that T ′ is a partial k-tree for

T . Moreover, it follows from 4.1.6.1 and 4.1.6.2 that T and T ′ are equivalent

partial k-trees.

Corollary 4.1.7. Let T be a partial k-tree for T , and let B be a non-

sequential terminal bag of T . If (Xi)
m
i=1 is a partial k-sequence for B, then

there is a k-tree T ′ equivalent to T such that B ∪ (
⋃m
i=1Xi) is a terminal bag

of T ′.

Proof. Assume that (Xi)
m
i=1 is a partial k-sequence for B. We proceed by

induction on m. If m = 1, then there is a partial k-tree T1 equivalent to
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T with non-sequential terminal bag B ∪X1 by Lemma 4.1.6. Thus we may

assume that m ≥ 2, and that the result holds for m − 1. Then (Xi)
m−1
i=1

is a partial k-sequence for B, so by induction there is a partial k-tree Tm−1

equivalent to T with non-sequential terminal bag B∪(
⋃m−1
i=1 Xi). Then Xm is

a non-empty T -weak subset of E− (B ∪ (
⋃m−1
i=1 Xi)) such that B ∪ (

⋃m
i=1Xi)

is k-separating, so, by Lemma 4.1.6, there is a partial k-tree Tm equivalent to

Tm−1, and hence equivalent to T , such that B∪ (
⋃m
i=1Xi) is a non-sequential

terminal-bag of Tm, as required.

We have seen that if a partial k-tree T has a non-sequential terminal

bag B, then there is a partial k-tree equivalent to T that has terminal bag

B ∪ (
⋃m
i=1Xi) for any partial k-sequence (Xi)

m
i=1 for B. We next show that

if (Xi)
m
i=1 is a partial k-sequence for E − B, then there is a partial k-tree

equivalent to T that has terminal bag B − (
⋃m
i=1Xi).

Lemma 4.1.8. Let T be a partial k-tree for T , and let B be a non-sequential

terminal bag of T . If X ⊆ B is a non-empty T -weak set such that B −X is

k-separating, then there is a partial k-tree T ′ equivalent to T such that B−X
is a non-sequential terminal bag of T ′.

Proof. Assume that X ⊆ B is a non-empty T -weak set such that B −X is

k-separating. Let u be the bag vertex of T that is labelled by B. We modify

T to produce a π-labelled tree T ′ by adding a new vertex v adjacent to u,

relabelling the vertex u by the bag X, and labelling v by B−X. Then B−X
is a terminal bag of T ′, and B − X is non-sequential by Lemma 3.3.10. It

is easily verified that T ′ satisfies the first four partial k-tree axioms, (P1)-

(P4). Assume that T ′ does not satisfy the axiom (P5). Then there is a

non-sequential k-separation (R,G) that does not conform with T ′. Since T

is a partial k-tree and T ′ only differs from T by adding v and changing the

bag B, we may assume, by possibly replacing (R,G) by a T -equivalent k-

separation, that R ⊆ B and that both R∩X and R∩(B−X) are non-empty.

Now, the set G∪X is the union of the k-separating sets (E−B)∪X and G.

Since ((E−B)∪X)∩G contains E−B, and E−(((E−B)∪X)∩G) contains
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R, the partition (((E−B)∪X)∩G,E− (((E−B)∪X)∩G)) is T -strong, so

λ(((E−B)∪X)∩G) ≥ k by (T2). Thus G∪X is k-separating by uncrossing

(E−B)∪X and G, and so (R,G) is equivalent to (R−X,G∪X) by Lemma

3.3.10. But R − X ⊆ B − X, so (R,G) conforms with T ′; a contradiction.

Thus T ′ is indeed a partial k-tree. We now show that T and T ′ are equivalent

partial k-trees. It is clear that T 4 T ′. On the other hand, with the exception

of (B−X,E−(B−X)), every non-sequential k-separation displayed by T ′ is

also displayed by T . But (B−X,E− (B−X)) is T -equivalent to (B,E−B)

by Lemma 3.3.10, and (B,E − B) is displayed by T . Thus we also have

T ′ 4 T , so T and T ′ are indeed equivalent partial k-trees for T .

Corollary 4.1.9. Let T be a partial k-tree for T , and let B be a non-

sequential terminal bag of T . If (Xi)
m
i=1 is a partial k-sequence for E − B,

then there is a partial k-tree T ′ equivalent to T with non-sequential terminal

bag B − (
⋃m
i=1Xi).

Proof. Assume that (Xi)
m
i=1 is a partial k-sequence for E − B. We proceed

by induction on m. If m = 1, then it follows from Lemma 4.1.8 that there is

a partial k-tree T1 for T that is equivalent to T with non-sequential terminal

bag B −X1. Thus we may assume that m ≥ 2, and that the result holds for

m−1. Then (Xi)
m−1
i=1 is a partial k-sequence for E−B, so by induction there

is a partial k-tree Tm−1 for T that is equivalent to T with non-sequential

terminal bag B − (
⋃m−1
i=1 Xi). Then Xm is a non-empty T -weak subset of

B− (
⋃m−1
i=1 Xi) such that B− (

⋃m
i=1Xi) is k-separating, so, by Lemma 4.1.8,

there is a partial k-tree Tm for T that is equivalent to Tm−1, and hence

equivalent to T , such that B − (
⋃m
i=1Xi) is a non-sequential terminal bag of

Tm, as required.

Lemma 4.1.10. Let T be a partial k-tree for T , and let B be a non-sequential

terminal bag of T . If (C,E − C) is a non-sequential k-separation such that

fclT (B) = fclT (C), then there is a partial k-tree T ′ equivalent to T with

terminal bag C.
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Proof. Assume that (C,E−C) is a k-separation such that fclT (B) = fclT (C).

Then (C,E−C) is T -equivalent to (B,E−B) by Lemma 3.3.11. Let (Xi)
n
i=1

be a k-sequence for B, and let (Yi)
m
i=1 be a k-sequence for C. Then fclT (B) =

B ∪ (
⋃n
i=1Xi) and fclT (C) = C ∪ (

⋃m
i=1 Yi) by Lemma 3.3.7. By Corollary

4.1.7, there is a partial k-tree T ′ for T that is equivalent to T such that

fclT (B) is a non-sequential terminal bag of T ′. Now (Ym−i+1)
m
i=1 is a partial

k-sequence for E − fclT (B), so, by Corollary 4.1.9, there is a partial k-tree

T ′′ for T that is equivalent to T ′, and hence equivalent to T , with terminal

bag C, as required.

4.2 Proof of the main theorem

We can now prove Lemma 4.1.3, from which Theorem 4.2.1 will easily follow.

Proof of Lemma 4.1.3. Suppose that (R,G) is a non-sequential k-separation

of λ that is not equivalent to any k-separation displayed by T . Then (R,G)

conforms with T , so we may assume, by possibly replacing (R,G) by an

equivalent k-separation, that R is properly contained in a bag B of T . Let u

be the vertex of T labelled by B. We distinguish two cases:

(I) u is a leaf of T ; and

(II) u is not a leaf of T .

Consider case (I).

4.2.0.1. (B,E −B) is a non-sequential k-separation of λ.

Subproof. If u is adjacent to a bag vertex, then the result follows immediately

from (P1). Assume that u is adjacent to a k-flower vertex v, and let Φ =

(P1, . . . , Pn) be the k-flower corresponding to v. Then B is contained in a

petal of Φ while E−B is contained in G, so it follows from Lemma 3.4.5 and

Lemma 3.3.3 that (B,E −B) is non-sequential.
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Now by Corollary 4.1.9 and Lemma 3.3.15, we may assume, by possi-

bly replacing T by an equivalent partial k-tree and replacing (R,G) by an

equivalent k-separation, that E − B is fully closed with respect to T . Let

Z be a k-separating set that is maximal with respect to the property that

R ⊆ Z ( B. Let (W,Z) = (E − Z,Z).

4.2.0.2. (W,Z) is a non-sequential k-separation that is not equivalent to any

k-separation displayed by T .

Subproof. Since W ⊆ G and Z ( B, it follows from Lemma 3.3.3 that (W,Z)

is a non-sequential k-separation. Now, seeking a contradiction, suppose that

(W,Z) is equivalent to a k-separation (W ′, Z ′) that is displayed by T , where

fclT (Z) = fclT (Z ′). Since (W ′, Z ′) is non-sequential, and fclT (Z) = fclT (Z ′),

it follows that Z ′ meets Z, and so Z ′ meets B. But Z ′ is a union of bags

of T , so B is contained in Z ′. Thus fclT (Z) = fclT (B) by Lemma 3.3.3. By

Lemma 3.3.11, we also have fclT (W ) = fclT (E − B). But E − B is fully

closed, so it follows that W ⊆ E − B; a contradiction because E − B ( W

by the choice of (W,Z).

We note that, by 4.2.0.2, the set B ∩ W is T -strong, so the partition

(B ∩W,E − (B ∩W )) is T -strong. Hence λ(B ∩W ) ≥ k by (T2).

4.2.0.3. If B ∩W is not k-separating, then there is a partial k-tree T ′ such

that T ′ < T and T ′ displays (W,Z).

Subproof. Assume that B ∩W is not k-separating. Let T ′ be the tree that

is obtained from T by adjoining a new leaf v adjacent to u such that v is a

bag vertex labelled by Z, and u is relabelled by B ∩W . It is easily verified

that T ′ satisfies the first four partial k-tree axioms, (P1)-(P4). Assume that

it does not satisfy (P5). Then there is a non-sequential k-separation (X, Y )

that does not conform with T ′. Since (X, Y ) conforms with the partial k-

tree T , and T ′ only differs from T by adding v and changing the bag B, we

may assume, by possibly replacing (X, Y ) by a T -equivalent k-separation,

that X ( B and that both X ∩ Z and B ∩W ∩X are non-empty. Assume
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first that λ(X ∩ Z) < k. Since E − (X ∩ Z) is T -strong, it follows that

X ∩ Z is a member of T by (T2). Then (Z −X,E − (Z −X)) is T -strong,

since (Z,E − Z) is non-sequential, so λ(Z − X) ≥ k by (T2). Now by

uncrossing Y and Z, whose intersection is Z − X, we see that Y ∪ Z is k-

separating. Thus (X, Y ) is T -equivalent to (X−Z, Y ∪Z) by Lemma 3.3.10.

But (X − Z, Y ∪ Z) conforms with T ′; a contradiction. Thus we may now

assume that λ(X ∩Z) ≥ k. Then X ∪Z is k-separating by uncrossing X and

Z. If X ∪Z is properly contained in B, then X ∪Z contradicts our choice of

Z. Thus we may assume that X ∪Z = B, and hence that B ∩W = W ∩X.

Then λ(W ∩ X) = λ(B ∩W ) > k. Thus λ(W ∪ X) < k by uncrossing X

and W , and W ∪ X is T -strong, so its complement Z − X is a member of

T by (T2). It now follows from Lemma 3.3.10 that (X, Y ) is equivalent to

(B,E −B). But (B,E −B) is displayed by T ′, so (X, Y ) conforms with T ′;

a contradiction. It follows from this contradiction that T ′ is indeed a partial

k-tree. Clearly T ′ < T . Moreover, the non-sequential k-separation (W,Z) is

displayed T ′ but not T .

Thus, by 4.2.0.3, we may now assume that B ∩W is k-separating. Then

Φ = (Z,B∩W,E−B) is a k-flower in T . Let Φ′ = (P1, P2, . . . , Pn) be a tight

maximal k-flower in T such that Φ′ < Φ. Then Φ′ displays a k-separation

(C,E − C) that is T -equivalent to (B,E − B). Thus we may assume that

fclT (B) = fclT (C). We observe that, since E − B is fully closed, the set B

is contained in C. Hence Z is contained in C. We may also assume, up to

labels, that C = P1 ∪ · · · ∪ Pj for some j ∈ [n − 1]. Now Φ′ also displays a

k-separation (W ′, Z ′) that is T -equivalent to (W,Z). Since (C,E − C) and

(W ′, Z ′) are inequivalent non-sequential k-separations, and Z ⊆ C, we may

assume, by Lemma 3.4.9, that Z ′ ⊆ C. Thus, both (C,E − C) and (W ′, Z ′)

are displayed by the k-flower Φ′′ = (P1, . . . , Pj, Pj+1 ∪ · · · ∪ Pn).

By Lemma 4.1.10 there is a partial k-tree T ′ equivalent to T with terminal

bag C labelling the vertex u. We now let T ′′ be the π-labelled tree that is

obtained from T ′ as follows: we first adjoin a new flower vertex v adjacent

to u; then adjoin bag vertices v1, . . . , vj adjacent to v labelling these by
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P1, . . . , Pj respectively; label v by D or A according to the type of Φ′′, and, if

necessary, we impose the cyclic order (vv1, . . . , vvj, vw) on the edges incident

with v; finally, we relabel u by ∅. We claim that T ′′ is a partial k-tree such

that T ′′ < T and that T ′′ displays a k-separation that is T -equivalent to

(W,Z).

It is easily verified that (P1) and (P2) hold for T ′′. It is also clear that

the partition of E displayed by T ′′−v is the k-flower Φ′′ = (P1, . . . , Pj, Pj+1∪
· · · ∪ Pn), and we have seen that Φ′′ displays at least two inequivalent non-

sequential k-separations, so Φ′′ has order at least 3. Moreover, it follows from

Lemma 3.4.8 that Φ′′ has no T -loose petals. Thus it follows that the axioms

(P3) and (P4) hold for T ′′. Assume that T ′′ does not satisfy (P5). Then

there is some non-sequential k-separation (X, Y ) that does not conform with

T ′′. Since (X, Y ) conforms with T ′, and T ′′ only differs from T ′ by changing

the bag C, it follows that, by possibly replacing (X, Y ) by an equivalent

k-separation, we may assume that X ⊆ C, and that X is not contained in

the bag Pi of T ′′ for any i ∈ [j]. Because Φ′ is a tight maximal flower in the

robust tangle T , it follows from Theorem 3.6.1 that (X, Y ) conforms with Φ′.

Thus there is a k-separation (X ′, Y ′) equivalent to (X, Y ) such that either:

(i) (X ′, Y ′) is displayed by Φ′; or

(ii) X ′ or Y ′ is contained in a petal of Φ′.

Assume first that (i) holds. Then, by Lemma 3.4.9 and since X ⊆ C, we

may assume that X ′ ⊆ C. Then (X ′, Y ′) is displayed by Φ′′, and hence is

displayed by T ′′; a contradiction. Thus we may assume that (ii) holds, and

that fclT (X) = fclT (X ′). Suppose that X ′ is contained in a petal of Φ′. Then,

by Lemma 3.3.13, the set X ∩X ′ is non-empty, and X ⊆ C, so X ′ ⊆ Pi for

some i ∈ [j]. Hence X ′ is contained in a bag of T ′′; a contradiction. Assume

then that Y ′ is contained in a petal Pi of Φ. If i ∈ [j], then Y ′ is contained

in a bag of T ′′. Assume i ∈ [j + 1, n]. Then X ⊆ C ⊆ X ′, so (C,E − C) is

a k-separation that is T -equivalent to (X ′, Y ′) by Lemma 3.3.3 and Lemma

3.3.11. But (C,E − C) is displayed by T ′′, so (X, Y ) conforms with T ′′; a
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contradiction. Thus every non-sequential k-separation of λ conforms with

T ′′. Therefore T ′′ is indeed a partial k-tree. Clearly T ′′ < T ′, so T ′′ < T .

Moreover, T ′′ displays a k-separation that is equivalent to (W,Z). Therefore

the lemma holds for case (I).

Consider case (II). Choose a k-separating set Z that is maximal with

respect to the property that R ⊆ Z ⊆ B. Clearly (Z,E − Z) is a non-

sequential k-separation. Let T ′ be the π-labelled tree obtained from T by

adjoining a new leaf v adjacent to u such that v is a bag vertex labelled by

Z, and u is relabelled by B − Z.

4.2.0.4. T ′ is a partial k-tree for T , and T 4 T ′.

Subproof. The first four partial k-tree axioms, (P1)-(P4), hold immediately

for T ′. Assume that (P5) does not hold for T ′. Then there is a non-sequential

k-separation (Y,E − Y ) that does not conform with T ′. Since (Y,E − Y )

conforms with T , and T ′ only differs from T by adding v and changing the

bag B, we may assume, by possibly replacing (Y,E − Y ) by a T -equivalent

k-separation, that Y ⊆ B and that both Y ∩ Z and Y ∩ (B − Z) are non-

empty. Assume that Y ∩Z is T -weak. It follows that λ(Z−Y ) ≥ k, since the

k-separation (Z,E −Z) is non-sequential. But Z − Y = E − (Y ∪ (E −Z)),

so Y ∩ (E − Z) = Y − Z is k-separating by uncrossing the k-separating

sets Y and E − Z. Then, by Lemma 3.3.10, the k-separation (Y,E − Y ) is

equivalent to (Y − Z,E − (Y − Z)). But (Y − Z,E − (Y − Z)) conforms

with T ′; a contradiction. Thus we may assume that Y ∩Z is T -strong. Then

(Y ∩ Z,E − (Y ∩ Z)) is T -strong, so λ(Y ∩ Z) ≥ k by (T2). Then Y ∪ Z
is k-separating by uncrossing Y and Z; a contradiction of the maximality of

Z. Thus T ′ satisfies (P5), so T ′ is a indeed a partial k-tree, and it is clear

that T 4 T ′.

Now Z labels a leaf of T ′, and R ⊆ Z, so it follows by case (I) that there is

a partial k-tree T ′′ < T ′ such that T ′′ displays a non-sequential k-separation

that is not equivalent to any k-separation displayed by T ′. Hence T ′′ < T
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and T ′′ displays a non-sequential k-separation that is not equivalent to any

k-separation displayed by T .

The following is the main theorem of this thesis.

Theorem 4.2.1. Let T be a robust tangle of order k in a connectivity system

(E, λ). If T is a maximal partial k-tree for T , then every non-sequential k-

separation of λ is equivalent to some k-separation displayed by T .

Proof. Assume that T is a maximal partial k-tree for T . If there are no non-

sequential k-separations of λ, then the theorem holds. Suppose that (R,G)

is a non-sequential k-separation of λ. Then, by Lemma 4.1.2, there is a tight

maximal k-flower in T that displays a k-separation equivalent to (R,G), and

so, by Corollary 4.1.1, there is a partial k-tree T ′ for T that displays a non-

sequential k-separation equivalent to (R,G). Thus we may assume that T is

a non-trivial partial k-tree for T . Then the theorem holds, or else, by Lemma

4.1.3, we contradict the maximality of T .



Chapter 5

Applications

In this chapter, we apply the results obtained in Chapter 3 and Chapter 4

to k-connected and vertically k-connected matroids.

5.1 Tangles in k-connected matroids

Let k ≥ 3, and let M be a k-connected matroid on ground set E. Recall

that a tangle T of order k in M is a tangle of order k in the connectivity

system (E, λM). The next lemma was first proved by Dharmatilake [6]; for

completeness, we prove it here.

Lemma 5.1.1. Let k ≥ 3, and let M be a k-connected matroid having at

least 3(k − 2) + 1 elements. Then T = {X ⊆ E(M) | |X| ≤ k − 2} is the

unique tangle of order k in M .

Proof. We first show that T = {X ⊆ E(M) | |X| ≤ k − 2} is a tangle of

order k in M . Suppose that X ⊆ E(M) and |X| ≤ k − 2. Then λM(X) ≤
rM(X) + 1 ≤ k − 1, so (T1) holds. Suppose that (X, Y ) is a j-separation

for some j ∈ [k − 1]. Since M is k-connected, up to switching X and Y , we

can assume that |X| < j ≤ k − 1, so X ∈ T . Thus (T2) holds. The union

of any three subsets of size less than k − 2 has at most 3(k − 2) elements,

77
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which is less than |E(M)|, so (T3) holds. Finally, for each e ∈ E(M),

|E(M)− e| ≥ 3(k − 2) > k − 2, so E(M)− e /∈ T .

Now suppose that T ′ is a tangle of order k in M . Suppose that there

is some X ∈ T ′ such that |X| ≥ k − 1. We may assume that X is a

maximal member of T ′. Then |E(M)−X| < k−1 because M is k-connected.

Moreover, E(M)−X is non-empty by (T3), so there is some e ∈ E(M)−X.

Then λ(E(M)− (X ∪ e)) < k, and X ∪ e /∈ T ′ because X is maximal. Thus

E(M)− (X ∪ e) ∈ T ′ by (T2). But e, E− (X ∪ e), X ∈ T ′ and their union is

E(M), contradicting (T3). Therefore every member of T ′ has k− 2 or fewer

elements, so it follows from (T2) that T ′ = T .

Let M be a k-connected matroid on E with at least 3(k−2)+1 elements.

Then M has a unique tangle of order k by Lemma 5.1.1. For convenience,

we translate some of the terminology we have developed to this context.

A subset X of M is T -strong if |X| ≥ k − 1; otherwise X is T -weak. A

k-separation (X, Y ) of M is T -strong if both X and Y are T -strong sets, that

is, if |X|, |Y | ≥ k−1. A T -strong k-separating set X is fully closed if X∪Y is

not k-separating for all non-empty Y ⊆ E−X such that |Y | ≤ k−2. The full

closure of a T -strong k-separating set X, denoted fclT (X), is the intersection

of all fully-closed k-separating sets that contain X. It follows from Corollary

3.3.2 that fclT (X) is a fully-closed k-separating set. By Lemma 3.3.7, we

can realise fclT (X) as X ∪ (
⋃m
i=1Xi), where (Xi)

m
i=1 is a maximal sequence

of disjoint subsets of E − X such that |Xi| ≤ k − 2 and X ∪ (
⋃j
i=1Xi) is

k-separating for each j ∈ [m]. Let X be a T -strong k-separating set. Then

E −X is sequential if fclT (X) = E.

Two T -strong k-separations (A,B) and (X, Y ) of M are equivalent if

{fclT (A), fclT (B)} = {fclT (X), fclT (Y )}. In other words, (A,B) and (X, Y )

are equivalent if we can obtain (X, Y ) from (A,B) by moving some sequence

of non-empty subsets, each having k−2 or fewer elements, across the partition

in such a way that, at any step, the result is a k-separation of M . A T -strong

k-separation (X, Y ) is sequential if either X or Y is sequential.

We note that for k = 3, the notions of equivalent and sequential 3-
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separations here are precisely those of Oxley, Semple, and Whittle in [23].

Similarly, for k = 4, the notion of equivalent and sequential 4-separations

here are precisely those developed by Aikin [1].

A partition (P1, . . . , Pn) of E is a k-flower in M with petals P1, . . . , Pn

if, for all i, |Pi| ≥ k − 1, and Pi and Pi ∪ Pi+1 are k-separating, where all

subscripts are interpreted modulo n. We note that, for k = 3, a 3-flower in

M is a flower in M as defined in [23].

Corollary 5.1.2. Let k ≥ 3, and let M be a k-connected matroid having at

least 8(k−2)+1 elements. If T is a tangle of order k in M , then T is robust.

Proof. By Lemma 5.1.1, T = {X ⊆ E(M) | |X| ≤ k − 2}. Thus no eight

members of T can cover E(M).

Thus every k-connected matroid with at least 8(k − 2) + 1 elements has

a unique robust tangle of order k. The next result follows immediately from

Theorem 3.6.1 and Corollary 5.1.2.

Corollary 5.1.3. Let k ≥ 3, and let M be a k-connected matroid with at

least 8(k − 2) + 1 elements. Let Φ be a tight maximal k-flower in M . Then

every non-sequential k-separation of M conforms with Φ.

A partial k-tree for M is a partial k-tree for the unique tangle in M ,

which we defined in Chapter 4. We note that for k = 3, the partial k-tree

we defined in Chapter 4 is also a partial 3-tree as defined in [23].

We have the following immediate corollary of Theorem 4.2.1 and Corollary

5.1.2.

Corollary 5.1.4. Let k ≥ 3, and let M be a k-connected matroid with at

least 8(k−2)+1 elements. If T is a maximal partial k-tree for M , then every

non-sequential k-separation of M is equivalent to a k-separation displayed by

T .

We note that the case k = 3 in Corollary 5.1.4 was proved by Oxley,

Semple, and Whittle [23]. The case k = 4 was proved by Aikin and Oxley

(private communication).



CHAPTER 5. APPLICATIONS 80

5.2 Vertically k-connnected matroids

First, we need the following lemma giving equivalent conditions to (T3).

Lemma 5.2.1. [9, Lemma 3.1] Let λ be a connectivity function on E, and

let T be a collection of subsets of E that satisfies (T1), (T2), (T4), and:

(T3a) If A ⊆ B, B ∈ T , and λ(A) < k, then A ∈ T .

(T3b) If (A,B,C) is a partition of E, then T cannot contain all three of A,

B, and C.

Then T is a tangle of order k in λ.

We now show that vertically k-connected matroids of sufficiently large

rank have a unique tangle of order k.

Lemma 5.2.2. Let k ≥ 3. Let M be a vertically k-connected matroid of rank

at least 3(k − 2) + 1, and let r be the rank function of M . Then T = {X ⊆
E(M) | r(X) ≤ k − 2} is the unique tangle of order k in M .

Proof. We first show that T = {X ⊆ E(M) | r(X) ≤ k − 2} is a tangle

of order k in M . Suppose that X ⊆ E(M) and r(X) ≤ k − 2. Then

λ(X) ≤ r(X) + 1 ≤ k− 1, so (T1) holds. Let (X, Y ) be a separation of order

j for some j < k. Since M is vertically k-connected, up to switching X and

Y , we can assume that r(X) < j ≤ k − 1, so X ∈ T . Thus (T2) holds.

Suppose that A ⊆ B, B ∈ T , and λ(A) < k. Then r(A) ≤ r(B) ≤ k − 2,

so A ∈ T . Thus T satisfies (T3a). Suppose that (A,B,C) is a partition of

E(M). Then r(A) + r(B) + r(C) ≥ 3(k − 2) + 1, by submodularity, so at

least one of A, B, and C has rank at least k − 1. Hence T cannot contain

all three of A, B, and C, and so (T3b) holds. Finally, for each e ∈ E(M),

r(E(M)− e) ≥ 3(k − 2) > k − 2, so E(M)− e /∈ T . Thus (T4) holds.

Now suppose that T ′ is a tangle of order k in M . Suppose that there is

some X ∈ T ′ and r(X) ≥ k−1. We may assume that X is a maximal member

of T ′. Then r(E(M)−X) ≤ k− 2 because M is vertically k-connected. Let
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e ∈ E(M)−X. Then λ(E(M)− (X ∪ e)) < k, and X ∪ e /∈ T ′ because X is

maximal. Thus E(M)− (X ∪ e) ∈ T ′ by (T2). Then e, E − (X ∪ e), X ∈ T ′

and their union is E(M), contradicting (T3). Therefore every member of T ′

has rank at most k−2, so T ′ ⊆ T . It now follows from (T2) and the vertical

k-connectivity of M that T ′ = T .

Let M be a vertically k-connected matroid on E with rank at least 3(k−
2) + 1, and let r be the rank function of M . Then M has a unique tangle of

order k by Lemma 5.2.2. For convenience, we translate some of the theory

we have developed to this context.

A subset X of M is T -strong if r(X) ≥ k − 1; otherwise X is T -weak.

A k-separation (X, Y ) of M is T -strong if both X and Y are T -strong sets,

that is, if r(X), r(Y ) ≥ k − 1. A T -strong k-separating set X is fully closed

if X ∪ Y is not k-separating for all non-empty Y ⊆ E −X such that r(Y ) ≤
k − 2. The full closure of a T -strong k-separating set X, denoted fclT (X),

is the intersection of all fully-closed k-separating sets that contain X. It

follows from Corollary 3.3.2 that fclT (X) is a fully-closed k-separating set.

By Lemma 3.3.7, we can realise fclT (X) as X ∪ (
⋃m
i=1Xi), where (Xi)

m
i=1 is

a maximal sequence of disjoint subsets of E − X such that r(Xi) ≤ k − 2

and X ∪ (
⋃j
i=1Xi) is k-separating for each j ∈ [m]. Let X be a T -strong

k-separating set. Then E −X is sequential if fclT (X) = E.

Two T -strong k-separations (A,B) and (X, Y ) are equivalent if

{fclT (A), fclT (B)} = {fclT (X), fclT (Y )}. In other words, (A,B) and (X, Y )

are equivalent if we can obtain (X, Y ) from (A,B) by moving some sequence

of non-empty subsets, each having rank k − 2 or fewer, across the partition

in such a way that, at any step, the result is a k-separation. A T -strong

k-separation (X, Y ) is sequential if either X or Y is sequential.

A partition (P1, . . . , Pn) of E is a k-flower in M with petals P1, . . . , Pn

if, for all i, r(Pi) ≥ k − 1, and Pi and Pi ∪ Pi+1 are k-separating, where all

subscripts are interpreted modulo n.

Corollary 5.2.3. Let k ≥ 3, and let M be a vertically k-connected matroid



CHAPTER 5. APPLICATIONS 82

with rank at least 8(k − 2) + 1. If T is a tangle of order k in M , then T is

robust.

Proof. By Lemma 5.2.2, we know that T = {X ⊆ E(M) | r(X) ≤ k − 2}.
Thus (T1), (T2), and (T4) hold. Moreover, it is straightforward to check

that (RT3a) and (RT3b) hold.

Thus every vertically k-connected matroid with at least 8(k − 2) + 1

elements has a unique robust tangle of order k. The next result follows

immediately from Corollary 5.2.3 and Theorem 3.6.1.

Corollary 5.2.4. Let k ≥ 3, and let M be a vertically k-connected matroid

with rank at least 8(k − 2) + 1. If Φ is a tight maximal k-flower in M , then

every non-sequential k-separation of M conforms with Φ.

A partial k-tree for M is a partial k-tree for the unique tangle of order k

in M , which we defined in Chapter 4.

We have the following immediate corollary of Theorem 4.2.1 and Corollary

5.2.3.

Corollary 5.2.5. Let k ≥ 3, and let M be a vertically k-connected matroid

with rank at least 8(k − 2) + 1. If T is a maximal partial k-tree for M ,

then every non-sequential k-separation of M is equivalent to a k-separation

displayed by T .

We note that, by duality, everything in this section for vertically k-

connected matroids also holds for cyclically k-connected matroids.
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