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Abstract

This thesis is about estimation bias of longitudinal data when there is correlation between

the explanatory variable and the individual effect. In our study, we firstly introduce what is

longitudinal data, then we introduce the commonly used estimation methods for the general

linear model: the least squares method and maximum likelihood method. We apply these

estimation methods to three simple general models which are commonly used to analyse

longitudinal data. Secondly, we use frequentist and Bayesian analysis to explore the esti-

mation bias theoretically and empirically, with an emphasis on the heterogeneity bias. This

bias occurs where random effect estimation is used to analyse data with nonzero correlation

between explanatory variables and the individual effect. We then empirically compare the

estimated value with the true value. In this way, we demonstrate and verify the theoret-

ical formulation which can be used to determine the size of the bias [Mundlak, 1978]. In

order to avoid the estimation bias, the fixed effect estimation should be used to get the bet-

ter solution under nonzero correlation situation. The Hausman test is used to confirm this.

However, the bias not only occurs when we use frequentist analysis, but also exist by us-

ing the Bayesian estimation of random effect model. Finally, we follow the Mundlak [1978]

idea, then define the special Bayesian model which can be used as Hausman test and as a

comparable model. We also prove that it is best fit model among the random effect, fixed

effect and pooled model if there is correlation between explanatory variables and individ-

ual effect. Throughout this thesis, we illustrate this ideas using examples based on real and

simulated data.
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Chapter 1

Introduction

1.1 Longitudinal Study

A longitudinal study is a study that involves repeated observations of the same individual

over time (or over different locations, etc.). Cross sectional study is a study that involves

observations of a population or a sample that are made at one single time point. Because

longitudinal studies are the repeated observation on the same individual, it may be thought

as a repeated cross section. Therefore, longitudinal data analysis can be applied in various

of field.

Longitudinal data is used in a wide range of fields: economics, biology, public health,

business, social sciences, education, etc. Econometricians call it panel data. Longitudinal

data consist of repeated observations of an outcome variable y on a set of individuals. These

individuals may be people, animals, plants, businesses, field plots etc. And usually are a

sample from a population. The repeated measurements are often taken at different times,

however they may instead be at different locations (e.g. within an agricultural trial, the

unit being experimental plots) or other form of replicates within an experiment. For most

data described as longitudinal the replicates have a unique ordering (such as ordering in

time), but longitudinal analysis methods may also be applied to unordered data, and are

frequently used in spatial analyses such as small area estimation.

Methods exist for the analysis of continuous, discrete (count) and binary longitudinal

data. If a longitudinal data set has all individuals have the same number of observations,

taken at time points which are also the same for all individuals, this data set is called bal-

anced longitudinal data. Otherwise it is called unbalanced longitudinal data. In this thesis

we concentrate on balanced longitudinal data with continuous outcome variable, and will
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assume underlying normality whenever a distributional assumption is required.

1.2 Objective of the Thesis

Our basic model for longitudinal data therefore is

yit = xT
itβ + εit (1.1)

where yit is the observed value of the outcome variable for individual i at time t. A set

of K explanatory variables xit are also observed at the same time, and these are associated

with a set of K coefficients β, which are to be estimated. For each observation we have a

disturbance/error term εit. These error terms have mean zero, are independent between

individuals, but may be correlated within individuals. If it is correlated within individuals,

one way to define the error term is

εit = αi + uit i = 1, · · · , N t = 1, · · · , T (1.2)

where αi is called individual effect and random variable uit is independent and identically

distributed (iid) with mean zero and variance σ2
u. In many data sets of interest, individuals

are unlike one another; that is, they are heterogeneous. The αi is used to model the individ-

ual behaviour, so if it is within the model, the model is called heterogeneous otherwise it is

called homogeneous model.

A fundamental aim of longitudinal analysis is to characterise within and between in-

dividual variation. Variation within individuals is accounted for by any time dependent

covariates xit and the error term εit. Variation between individuals is accounted for by the

full set of covariates xit and also by individual effects which may modelled as fixed effect

or random effect. There are two common assumptions made about the individual effect αi,

fixed effect assumption and random effect assumption. If the individual effect αi are cor-

related with the explanatory variables or are treated as fixed, we should use fixed effects

model. If the individual effect αi are treated as draws from an unknown population or as

a random effect, we should use random effects model. But if we use the random effect es-

timation to the case that the explanatory variable X is correlated with the individual effect

α, the estimator is biased in estimating β. This is called heterogeneity bias. Figure 1.1 and

1.2 show these two cases graphically as examples: with and without correlation between
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explanatory variable and individual effects, respectively. Figure 1.1 shows the intercept of

individuals are step increasing and Figure 1.2 shows the intercepts for individuals are inde-

pendent although they start at same place.
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Figure 1.1: Figures of Correlated x and individual effect α

3



−0.4 −0.2 0.0 0.2 0.4

−1
0

1
2

3

X

Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Population averaged relationship
Individual relationship

Figure 1.2: Figures of uncorrelated x and individual effect α with same start point for each
individual

Hsiao [2003] gave more elaboration on when the heterogeneity bias exist. Rosenzweig

and Schultz [1983] showed the problem of heterogeneity bias in a study of child health pro-

duction and the demand for child health inputs. Also several researchers have indicated the

gender wage and earning differences have attempted to heterogeneity bias using as PSID

data [Johnson and DiNardo, 2007]. However, these studies leave some important question

unanswered. Most of important findings from these studies are identify the heterogeneity

bias, then use instrumental variable estimator (see Chapter 5 for detail) to obtain unbiased

estimates. Mundlak [1978] produced a formulation for the model with correlation between

the individual effects and the explanatory variables to theoretically prove there is biased. In

our thesis, we empirically prove the bias exist and then look into the bias, eg. how the degree

of the correlation affects the bias and at what stage the correlation exits but is insufficient to

produce the bias, etc.

There are wide variety of analytical methods developed by econometricians and statis-

ticians for modelling the behaviour of longitudinal data. Approaches to random effect and

fixed effect estimation with longitudinal data fall broadly into three categories:
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• Least squares based methods – including ordinary and weighted least squares;

• Likelihood based methods – including maximum likelihood (ML) and restricted max-

imum likelihood (REML);

• Bayesian hierarchical approaches.

Social scientists prefer the random effect estimation based on likelihood method (refer to

Diggle et al. [2002]), the reason for that might be health and social scientists have designed

experiments with randomisation that may break down the correlation between the explana-

tory variable and individual effect (or it may be because social scientists unknown this is a

problem).

Econometricians prefer to use the least squares based methods to obtain the fixed effect

estimation (Johnson and DiNardo [2007], Wooldridge [2009] and Verbeek [2004] discussed

this case a lot). That might be because econometricians are more concerned with causa-

tion than association: may be more concerned with correct quantitative values for β. Thus,

when the explanatory variable X is correlated with the individual effect α, the fixed effect

estimation is preferred, because the random effect estimation has bias in estimating β.

In this thesis we:

• Demonstrate the occurrence of bias in two cases:

– Omitted variables bias case

– Heterogeneity bias case.

• We show theoretically and empirically (via simulation) how and when these bias occur

in each case.

• We discuss the standard Hausman test [?] for deciding if a Random Effects or Fixed

Effects estimation is more appropriate.

• We investigate Bayesian alternative formulations of this problem to determine whether

such solutions also suffer from the same bias.

• We investigate the model selection criterion under frequentist and Bayesian approaches

to see whether they produce the same conclusion.
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1.3 Overview of the Thesis

This thesis is organized as follows:

• In Chapter 2, we describe the two commonly used analysis methods, least squares

based method, likelihood based method and their extensions.

• In Chapter 3, we describe three simple types of longitudinal data models and the Haus-

man test which can be used to compare the fixed effect estimation and random effect

estimation. Also, we prove that the compound symmetry model and random intercept

model with iid error term are equivalent models.

• In Chapter 4, we program the different longitudinal datasets generator in R, ie. random

effect data with iid or AR(1) or compound symmetry structure, fixed effect data and

pooled data (cross sectional data) with different variance-covariance structures, and

also program the data generator for the correlated explanatory variable and individual

effect case.

• In Chapter 5, we use a simple case to see the bias in omitted variables model and pro-

vide a theoretical and empirical investigation via simulation. Then we use the same

strategy to investigate the heterogeneity bias when there is correlation between ex-

planatory variable and individual effect. Finally, we use the Hausman test we describe

in Chapter 3 to compare the fixed effect estimator and random effect estimator under

two cases, with correlation case and without correlation case. And we introduce in-

strumental variable estimator as an alternative way to obtain the unbiased estimator

when correlation exits.

• In Chapter 6, we empirically investigate whether random effect estimator has the

same bias under correlation assumption by using Bayesian approach. Then we de-

scribe a full Bayesian formulation of the Hausman test under Bayesian approach to

test whether the random effect estimator or the fixed effect estimator is more appro-

priate under correlation case.

• In Chapter 7, we describe two model selection criteria, AIC based on likelihood ap-

proach and DIC based on Bayesian approach. Then we compare the results obtained

from these two methods with the result from the Hausman test and the full Bayesian

formulation by using the real data and simulated data.
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• In Chapter 8, we conclude with the discussion, and present directions of future re-

search of our study.

Throughout the thesis, we will illustrate the ideas using examples based on real data and

simulated data. Statistical programming software R and WinBugs are used to model and

analyse data (the functions are built in or programmed by using R).

1.4 Notation

Before we analyse the longitudinal data, let’s define some notation:

yit, i = 1, . . . , N, t = 1, . . . , T,

xk
it, i = 1, . . . , N, t = 1, . . . , T, k = 1, . . . , K

where i is the observation dimension, t is the time dimension and k is explanatory variable

dimension; since we restrict the study on the balanced panels, thus the total number of

observations is NT . y is the value of the dependent variable and x is value of the explanatory

variable.

yi =





yi1

yi2

...

yiT




, Xi =





x1
i1 x2

i1 . . . xK
i1

x1
i2 x2

i2 . . . xK
i2

...
... . . . ...

x1
iT x2

iT . . . xK
iT




(1.3)

Often the longitudinal data are in vector as

y =





y1

y2
...

yN




, X =





X1

X2

...

XN




(1.4)

where y is NT×1 and X is NT ×K .

A general longitudinal data standard linear model is written as

y = Xβ + ε. (1.5)
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Where

β =





β1

β2

...

βK





is the coefficient matrix for explanatory variables. And the error term can be written as

εi =





εi1

εi2

...

εiT




and ε =





ε1

ε2

...

εN




(1.6)

where ε is NT× 1 vector.
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Chapter 2

Estimating Methods for General Linear

Models

In this chapter, we introduce the standard estimation methods for longitudinal data, ie. the

ordinary least squares method, the generalized least squares method and the maximum

likelihood method. These methods are commonly used to estimate the parameters in the

general linear model. We use them throughout the thesis.

2.1 Least Squares

One of the powerful estimating method in statistics is least squares which assumes that the

best fit model that has the minimal sum of the deviations squared from a given set of data.

The least squares approach is based on the criterion which makes as small as possible the

sum squared errors between the data and fitted model. And this method is widely used by

scientists and mathematician in early times.

2.1.1 Ordinary Least Squares

In statistics and econometrics, ordinary least squares (OLS) is a method based on least square

theory which can be applied on a linear regression model. The OLS method minimizes the

sum of squared differences between the observed value and prediction value obtained from

the linear approximation. In order to use the OLS method to obtain a meaningful result,

there are a few assumptions to be made on the linear regression model. Assume a simple

linear regression model (in this thesis means standard linear regression) with independent

9



error term is

y = Xβ + ε (2.1)

then the OLS assumptions based on this model which might be made are (from [Hayashi,

2000])

• OLS-A1: Strict exogeneity.

E[ε|X] = 0

• OLS-A2: No multicollinearity. The regressors in X must all be linearly independent.

• OLS-A3: Spherical errors, ie. homoscedastic and uncorrelated error ε

Var(ε|X) = σ2I

• OLS-A4: Normality

ε ∼ N(0, σ2I)

All but the OLS-A4 assumption are necessary assumptions for the OLS method. But under

this assumption that the errors are normally distributed, OLS can be derived as a maximum

likelihood estimator (see proof in section 2.3). The OLS estimator is valid when the regres-

sors are exogenous and there is no multicollinearity, also when the errors are homoscedastic

and serially uncorrelated.

Now we can derive the OLS estimate for β̂ in Eq.(2.1) and define a vector of residuals e

as

e = y−Xβ̂

Apply the least squares principle to choose β̂ to minimize the residual sum of squares (RSS),

eT e

RSS = (y−Xβ)T (y−Xβ)

= yT y− βT XT y− yT Xβ + βT XT Xβ

= yT y− 2βT XT y + βT XT Xβ

The first derivative of RSS gives

∂RSS

∂β
= −2XT y + 2XT Xβ = 0

10



So the estimator β̂ is

β̂ = (XT X)−1XT y (2.2)

The β̂ is unbiased, since

E(β̂) = β

(see Section 3.1 for the proof).

The variance covariance matrix of β̂ is

Var(β̂) = σ2(XT X)−1 (2.3)

and an unbiased estimator of σ2 is

σ̂2 =
eT e

N −K

where N is the number of the observations and K is the number of variables (see Section 3.1

for the proof).

2.1.2 Generalized Least Squares Estimation

In statistics, generalized least squares (GLS) is applied when the variances of the observa-

tions are heteroscedastic (not equal), or when there is a certain degree of correlation between

the observations. This means the OLS-A3 assumption is violated. The model is changed to

y = Xβ + ε, (2.4)

where E[ε|X] = 0 and Var(ε|X) = σ2Ω where it is assumed that the variance of Y given X is

a known matrix Ω which is positive definite and its inverse is positive definite as well. Thus,

we are able to find a non-singular matrix P that has the following equation

Ω−1 = P T P (2.5)

Now we let ỹ = Py, X̃ = PX and ε̃ = Pε, then we apply OLS estimator to the new equation

ỹ = X̃β + ε̃ (2.6)

11



This is because if ε̃ = Pε for ε ∼ N(0, σ2Ω) the

Var(ε̃) = Var(Pε)

= PVar(ε)P T

= Pσ2ΩP T

= σ2P (P T P )−1P T

= σ2PP−1(P T )−1P T

= σ2I

which indicates these are homoscedastic errors. Then we can apply OLS to Eq.(2.6), so that

we obtain

β̂ = (X̃T X̃)−1X̃T ỹ

= [(PX)T (PX)]−1(PX)T (Py)

= (XT P T PX)−1XT P T Py

Then the generalized least squares (GLS) estimator by using Eq.(2.5), we have

β̂GLS = (XT Ω−1X)−1XT Ω−1y (2.7)

Var(β̂GLS) = σ2(X̃T X̃)−1

= σ2(XT Ω−1X)−1 (2.8)

The unbiased estimator of the unknown σ2 in Eq.( 2.8) is

σ̂2 =
(ỹ− X̃β̂GLS)T (ỹ− X̃β̂GLS)

N −K

=
(y−Xβ̂GLS)T Ω−1(y−Xβ̂GLS)

N −K
(2.9)

So GLS estimation is equivalent to OLS estimation of the transformed data by using a non-

singular matrix (Johnson and DiNardo [2007] give more details of the proof). There are

number of choices of disturbances or error term structure which are listed below.
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Covariance structure

Suppose we have T observations for a given individual i:

yi = Xiβ + εi

The vector of disturbances or error term

εi = [εi1, · · · , εiT ]T

has a T × T (symmetric, positive definite) variance-covariance matrix as

Var [εi] =





σ2
1 σ12 · σ1T

σ12 σ2
2 · σ2T

...
... . . . ...

σ1T σ2T · σ2
T




(2.10)

Then there are 1
2T (T + 1) possible covariance parameters with the variance-covariance ma-

trix, since this matrix is symmetric. Also a variance-covariance matrix can have following

possible structures:

• Independence has a single parameter σ2:

Var [εi] = σ2





1 0 · 0

0 1 · 0
...

... . . . ...

0 0 · 1




(2.11)

• Compound Symmetry has a fixed correlation between all observations, regardless of

lag: (two parameters σ2, ρ):

Var [εi] = σ2





1 ρ ρ · ρ

ρ 1 ρ · ρ
...

... . . . ...

ρ ρ ρ · 1




(2.12)

• First-Order Autoregressive AR(1) has two parameters σ2, ρ. We define the error terms

13



as

εit = ρεi,t−1 + uit (2.13)

where uit has following distribution

uit ∼ iid(0, σ2)

Note: iid means independent and identically distributed.

Var [εi] = σ2





1 ρ ρ2 · ρT−1

ρ 1 ρ · ρT−2

...
... . . . ...

ρT−1 ρT−2 ρT−3 · 1




(2.14)

There are many other possibilities, eg, unstructured covariance, power law covariance struc-

ture, exponential covariance structure, etc. In this thesis, we only consider the indepen-

dence, AR(1) and compound symmetry covariance structure. The covariance structures are

introduced here follow by Arnold and Liu [2004].

2.1.3 Feasible Generalized Least Squares Estimation

GLS assumes the Ω matrix is known. However, in practice, the true variance covariance is

not known directly. Then the feasible generalized least squares (FGLS) estimator is intro-

duced, where unknown parameters in Eq.(2.4) σ2Ω can be replaced by unbiased estimates

V which can be obtained by using the OLS estimator [Johnson and DiNardo, 2007]. Recall

Eq.(2.2) for homoscedastic errors

β̂ = (XT X)−1XT y

and we can obtain the variance covariance matrix V by using OLS method to calculate the

residuals for each individual. Then we use the estimates of the residuals as the diagonal

elements of matrix to construct the variance covariance matrix V . Now we replace the un-

known σ2Ω in Eq.(2.7). The estimator β̂FGLS can be written as

β̂FGLS = (XT V −1X)−1XT V −1y
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The variance of β̂FGLS is

V̂ar(β̂FGLS) = σ2(XT V −1X)−1

This method is called the FGLS method, the estimator obtain by this method is called the

FGLS estimator (some context written as FGLSE), β̂FGLS .

2.2 Weighted Least Squares Estimation

Recall the OLS-A3 assumption (homoscedastic errors), if this assumption is unsatisfied, the

OLS estimation method can’t be used. In such cases, we can use the GLS estimation in-

stead of OLS estimation as in section 2.1.2. In this section, we suppose the variances of the

observed values are unequal (heteroscedastic) but all the off-diagonal entries are 0, so that

there are no correlations exist among the observed values. Then the weighted least squares

(WLS) estimate is introduced to solve this problem. This assumption can be written as

Var(ε) = σ2V

Then the distribution of y is

Y ∼ N(Xβ, σ2V )

The weighted least squares method use a symmetric weight matrix W , then apply the least

squares principle to choose a β̂W to minimise

RSSW = (y −Xβ)T W (y −Xβ)

Follow the same procedure as in section 2.1.1 , β̂W can be expressed as

β̂W = (XT WX)−1XT Wy (2.15)

then the variance of β̂W is

Var(β̂W ) = σ2(XT WX)−1 (2.16)

Since E(Y ) = Xβ, the weighted least squares estimator is unbiased, whatever the choice of

W . Diggle et al. [2002] gave two example of choice of W :
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• If W = I , the identity matrix, the WLS estimator is identical to the OLS estimator

β̂I = (XT X)−1XT y

and

V ar(β̂I) = σ2(XT X)−1.

• If W = V −1, the estimator becomes

β̂ = (XT V −1X)−1XT V −1y

with

V ar(β̂) = σ2(XT V −1X)−1

Note that for empirical data, the appropriate W may be unknown and must be estimated

by using Feasible Generalized Least Squares (FGLS) estimation. The weighted least squares

estimation is unlike least squares, it gives each term a weight, so that takes the influence of

each observation into account.

2.3 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is another popular statistical method which is used

for fitting a statistical model to data and providing estimates for the parameters in the model.

Definition 2.1. Let y = [Y1, ...,YN ]T denote a random vector and let the joint probability

density function of the Yi’s be

f(y; θ)

which depends on the vector of parameters θ = [θ, · · · , θk, · · · , θK ]T . The likelihood

function L(θ; y) is algebraically the same as the joint probability density function f(y; θ)

but the change in notation reflects a shift of emphasis from the random variables y, with

θ fixed, to the parameters θ with y fixed. Since L is defined in terms of the random vector

y, it is itself a random variable. The maximum likelihood estimator of θ is the value θ̂
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which maximizes the likelihood function, that is

L(θ̂) ≥ L(θ; y) for all θ

[Dobson, 2002]

Since f(y; θ) > 0 and the logarithm is a monotonic function on the positive real line, θ̂ is also

the value which maximizes the log-likelihood function

)(θ; y) = log L(θ; y)

The estimator θ̂ can be obtained by differentiating the log-likelihood function with respect

to each element θk of θ and solving the simultaneous equations

∂)(θ; y)

∂θk
= 0 for k = 1, ..., K

To check the solutions do return the maximum )(θ; y), we have to verify the second deriva-

tive with respect to each element θk of θ is negative.

[
∂2)(θ; y)

∂θ2
k

]

θk=θ̂k

< 0 for k = 1, ..., K

Here the θ̂ that maximizes )(θ; y) will also maximize L(θ; y). The derivative of )(θ; y) is

known as the score, s(θ; y).

Property 2.1. The major properties of MLEs are large-sample, or asymptotic, ones. They

hold under fairly general conditions.

1 Consistency

lim
N→∞

(θ̂) = θ

2 Asymptotic normality

θ̂
a∼ N(θ, I−1(θ))

This states that the asymptotic distribution of θ̂ is normal with mean θ and variance
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given by the inverse of I(θ). I(θ) is the information matrix and is defined as

I(θ) = E

[(
∂)

∂θ

) (
∂)

∂θ

)T
]

3 Asymptotic efficiency

If θ̂ is the MLE of a single parameter θ, the previous property means that

√
n(θ̂ − θ)

d→ N(0, σ2)

for some finite constant σ2. The MLE has minimum variance in the class of consis-

tent, asymptotically normal estimators.

4 Invariance.

If θ̂ is the MLE of θ and g(θ) is a continuous function of θ, then g(θ̂) is the MLE of

g(θ).

[Johnson and DiNardo, 2007]

2.3.1 MLE of simple regression model

By using the definition and properties of MLE, a simple regression model

y = Xβ + ε (2.17)

with

ε ∼ N(0, σ2I)

can be written in the normal density form for ε if the sample size is N is

f(ε; β, σ2) =
1

(2πσ2)
N
2

e−( 1
2σ2 )(εT ε)

The log-likelihood function is

)(β, σ2; y, X) = −N

2
log2π − N

2
logσ2 − 1

2σ2
εT ε

= −N

2
log2π − N

2
logσ2 − 1

2σ2
(y −Xβ)T (y −Xβ) (2.18)
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In order to get the estimators β̂ and σ̂2, we take the partial derivatives of Eq.(2.18)

∂)

∂β
= − 1

σ2
(−XT y + XT Xβ) (2.19)

∂)

∂σ2
= − N

2σ2
+

1

2(σ2)2
(y −Xβ)T (y −Xβ) (2.20)

Then we set Eq.(2.19) and (2.20) are equal to zero, the MLEs are

β̂ = (XT X)−1XT y (2.21)

and

σ̂2 =
1

n
(y −Xβ)T (y −Xβ) =

eT e

N
(2.22)

The MLE β̂ is the OLS estimator and σ̂2 is eT e
N . The LS theory gives

E(
eT e

N −K
) = σ2 (2.23)

where N is the number of observation and K is the number of variables in the model (see

Chapter 3 for details of proof). Thus

E(σ̂2) =
σ2(N −K)

N
(2.24)

So that σ̂2 is biased for σ2, but β̂ is unbiased for β.

The MLE β̂ is identical to OLS estimator from Eq. (2.2). From the properties of the MLE,

we can infer that the OLS estimator is consistent (unbiased) and is asymptotically efficient

(with minimum variance) if the normality assumption is satisfied.

Now we can extend the above knowledge into the linear model with non-spherical (het-

eroscedastic) disturbances.

y = Xβ + ε with ε ∼ N(0, σ2Ω)

where Ω is a positive define matrix of order N . The normal density for ε is

f(ε) = (2π)−
N
2 |σ2Ω|− 1

2 e−
1

2σ2 εT (Ω)−1ε
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We can rewrite this as

f(ε) = (2π)−
N
2 σ−N |Ω|− 1

2 e−
1

2σ2 εT (Ω)−1ε

since |σ2Ω|=σ2N |Ω|.

The log-likelihood function is

) = −N

2
log2π − N

2
log σ2 − 1

2
log |Ω| − 1

2σ2
(y −Xβ)T Ω−1(y −Xβ) (2.25)

By differentiating with respect to β and σ2, we have

∂)

∂β
= − 1

σ2
(−XT Ω−1y + XT Ω−1Xβ)

∂)

∂σ2
= − N

2σ2
+

1

2σ4
(y −Xβ)T Ω−1(y −Xβ)

Then the ML estimators for non-spherical disturbances model are

β̂ = (XT Ω−1X)−1XT Ω−1y (2.26)

σ̂2 =
1

N
(y −Xβ̂)T Ω−1(y −Xβ̂) (2.27)

The MLE β̂ for non-spherical disturbances model is the same as the GLS estimator β̂GLS.

There are more complex models, Frees [2004] described this by assuming y ∼ N(Xβ, ν)

where ν = V (τ) = Vi.

The log likelihood of a single individual is

)i(β, τ) = −1

2

(
Tilog(2π) + log|Vi(τ)| + (yi −Xiβ)T Vi(τ)−1(yi −Xiβ)

)
(2.28)

Then the full data log likelihood is

L(β, τ) =
N∑

i=1

)i(β, τ)

Then the estimators of β and τ can be obtained by maximize the L(β, τ), take the

first derivatives with respect to β and τ , and set the equations equal to zero. We
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have

∂

∂β
L(β, τ) =

N∑

i=1

∂

∂β
)i(β, τ)

= −1

2

N∑

i=1

∂

∂β
(yi −Xiβ)T Vi(τ)−1(yi −Xiβ)

=
N∑

i=1

XT
i Vi(τ)−1(yi −Xiβ).

Therefore, the estimator of β is

βMLE =

(
N∑

i=1

XT
i Vi(τ)−1Xi

)
N∑

i=1

XT
i Vi(τ)−1yi

Hence, the fixed covariance τ of MLE is the same as the GLS estimation [Frees,

2004].

2.4 Restricted Maximum Likelihood Estimation

In statistics, the restricted maximum likelihood (REML) approach is a way of estimating

variance components (see Patterson and Thompson [1971] for definition) which was intro-

duced by Patterson and Thompson [1971]. In contrast to the maximum likelihood estima-

tion introduced earlier, REML can produce unbiased estimates of variance and covariance

parameters.

Recall the general linear model Eq.(2.17) with independent errors

y = Xβ + ε

with

ε ∼ N(0, σ2I)

Then the distribution of Y is

Y ∼ N(Xβ, σ2I). (2.29)

In this case, Y is an N dimensional vector with known covariate values, and X is N × K

matrix, where K is the number of variables of β . It also assumes that all observations are
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independent. So the maximum likelihood estimator for σ2 is Eq.(2.22)

σ̂2 =
1

N
(y −Xβ)T (y −Xβ) (2.30)

which is biased downward by
N −K

N
. See Eq. (2.24) for detail.

Now we introduce REML estimator which is defined by Diggle et al. [2002] as a maxi-

mum likelihood estimator based on a linearly transformed set of data Y ∗ = MT Y where M

is N × (N − K) matrix. So the distribution of Y ∗ does not depend on β, then it follows a

normal distribution with mean zero and variance covariance matrix σ2MT M . Now using

the MLE method on the transformed data, the estimated σ2 is

σ̂2 =
1

N −K
(y −Xβ)T (y −Xβ) (2.31)

which is unbiased for σ2.

Note: one way to achieve this is by taking M to be a subset of N−P linearly independent

columns from the matrix P which converts Y to OLS residuals,

M = I −X(XT X)−1XT . (2.32)

Therefore,

σ̂2 =
(Y−X(XT X)−1XT Y)T (Y−X(XT X)−1XT Y)

N −K

which is the mean squared error, unbiased for σ2. It used as the estimator for the residual

variance in linear regression. There are more details of proof from [Diggle et al., 2002].

In summary, maximum likelihood and REML estimators will often give very similar

estimates for β. But when K is relatively large, the result of ML and REML may differ.

However, when they do differ substantially, REML estimators should be unbiased or less

biased [Diggle et al., 2002]. It has been recommended by some authors (eg. [Arnold and Liu,

2004]), that the REML can be used to select an appropriate variance covariance structure; ML

then be used to select significant terms in a longitudinal model by using AIC (see definition

of AIC in section 7.2); and then finally model estimates be estimated using REML estimation

in the selected model.

Remark: In this thesis, we consider model where n >> p, so the distinction between ML

and REML estimators is not important. We therefore do not consider REML estimation.
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Chapter 3

Models for Longitudinal Data

In this chapter, we apply the methods from the general linear model presented in chapter

2 to the case of longitudinal data. We now introduce a general longitudinal data standard

linear model that can be written in three different forms:

• Full data form:

y = Xβ + ε (3.1)

where the dimensions of parameters are y is NT× 1, X isNT× K, β is K × 1 and ε is

NT × 1.

• Vector or individual form:

yi = Xiβ + εi i = 1, · · · , N (3.2)

where the dimensions of parameters are yi is T × 1, Xi is T ×K, β is K × 1 and εi is T

× 1.

• Scalar form:

yit = xT
itβ + εit i = 1, · · · , N t = 1, · · · , T (3.3)

where the dimensions of parameters are yit is 1 × 1, xT
it is 1 × K and is known, β is K

× 1 and εit is 1 × 1.

where i is the individual specification and t is the observation specification. There are dif-

ferent assumptions can be made on the error term structure of this general model.

If we assume that ε ∼ iid (0, σ2I), that means we ignore the correlation structure of the

data for a given individual, observations within individual are assumed to be uncorrelated;
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and across individuals and time, the errors are homoscedastic. Then the simplest model has

been defined.

If we don’t ignore the relationship between observations for a given individual and time,

then one way to define the error term is

εit = αi + uit i = 1, · · · , N t = 1, · · · , T (3.4)

The first term of the right side of Eq.(3.4) is called an individual unobserved effect. It varies

across individuals, but is constant across time; this part may or may not be correlated with

the explanatory variables Xi. These two assumptions can be made about the individual

unobserved effect correspond to two different models:

• Random effects model: αi ∼ iid (0, σ2
α) and are uncorrelated with Xi

• Fixed effects model: αi are constant over time and may be correlated with Xi.

The second term of the right side of Eq.(3.4), uit is assumed to be a random disturbance,

that is uncorrelated with Xit (although the uit may be correlated amongst themselves for a

particular individual). It varies independently across individuals and may vary across time.

Note: In this chapter, we state three models which are following Johnson and DiNardo

[2007].

3.1 Pooled Model

Longitudinal data can be modelled as a pooled model. The pooled model stacks data over

individuals and time. The estimator derived based on this model is called the pooled esti-

mator.

The pooled estimator can be derived in two ways based on the model

y = Xβ + ε. (3.5)
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3.1.1 Ordinary Least Squares (OLS) Estimation for pooled model

The least squares principle is used to find an estimate β̂ to minimize the residual sum of

squares (RSS), eT e where e = y−Xβ̂

RSS = (y−Xβ̂)T (y−Xβ̂)

= yT y− β̂T XT y− yT Xβ̂ + β̂T XT Xβ̂

= yT y− 2β̂T XT y + β̂T XT Xβ̂

The first derivative of RSS gives

∂RSS

∂β
= −2XT y + 2XT Xβ = 0

Estimation of β :

β̂ = (XT X)−1XT y (3.6)

substituting for y gives

β̂ = (XT X)−1XT (Xβ + ε) = β + (XT X)−1XT ε

from which

β̂ − β = (XT X)−1XT ε

Taking the expectation,

E(β̂ − β) = (XT X)−1XT E(ε) = 0

giving

E(β̂) = β (3.7)
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Thus, under the assumptions of this model, the LS coefficients are unbiased estimates of the

β parameters. The variance-covariance matrix of the OLS estimates is established as

Var(β̂) = E[(β̂ − β)(β̂ − β)T ]

= E[(XT X)−1XT εεT X(XT X)−1]

= (XT X)−1XT E[εεT ]X(XT X)−1

= (XT X)−1XT σ2IX(XT X)−1

= σ2(XT X)−1

So

Var(β̂) = σ2(XT X)−1 (3.8)

Estimation of σ2 :

The residuals from the OLS regression can be expressed as

e = y− ŷ = y−Xβ̂ = y−X(XT X)−1XT y = My

The symmetric matrix M is defined as:

M = I −X(XT X)−1XT

M is idempotent matrix, we have MM = M and MX = 0.

Proof: To prove M is idempotent matrix, then

MM = (I −X(XT X)−1XT )(I −X(XT X)−1XT )

= I −X(XT X)−1XT −X(XT X)−1XT + X(XT X)−1XT X(XT X)−1XT

= I −X(XT X)−1XT −X(XT X)−1XT + X(XT X)−1XT

= I −X(XT X)−1XT

= M
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Also we have

MX = (I −X(XT X)−1XT )X

= X −X(XT X)−1XT X

= X −X = 0

Then we can write e = My = M(Xβ + ε) = Mε. And we utilize the fact that the trace of a

scalar is the scalar. Thus,

E(eT e) = E(εT MT Mε)

= E(εT Mε)

= E[tr(εT Mε)]

= E[tr(εTεM)]

= tr(E[(εTεM ])

= tr(σ2E[M ])

= σ2tr(M)

= σ2trI − σ2tr[X(XT X)−1XT ]

= σ2trI − σ2tr[(XT X)−1(XXT )]

= σ2(NT −K)

So

σ2 =
E(eT e)

NT −K

Thus, the unbiased estimator of σ2 is

σ̂2 =
eT e

NT −K
(3.9)

3.1.2 Maximum Likelihood Estimation for Pooled Model

In Chapter 2, we derived the maximum likelihood estimators in Eq. (2.21) and Eq. (2.22) by

assuming the ε ∼ N (0, σ2I). Now we apply the same theory on pooled model. We have

β̂MLE = (XT X)−1XT y
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The β̂MLE is the same as the OLS estimator β̂. And

σ̂2
MLE =

1

NT
(y−Xβ̂MLE)T (y−Xβ̂MLE) =

eT e
NT

where e=y-Xβ̂MLE and is the OLS residual vector. The Ordinary Least Squares estimation

assumes only ε ∼ iid (0, σ2I) and gives

E(
eT e

NT −K
) = σ2

This property is still true for normal errors. Thus,

E(σ̂2
MLE) =

σ2(NT −K)

NT

So that σ̂2
MLE is biased for σ2, although β̂MLE is unbiased for β. And an unbiased estimator

by using MLE method is

σ̂2 =
NT

NT −K
σ̂2

MLE

3.2 Fixed Effects (FE) Model

The fixed effects model is defined as

yit = xT
itβ + αi + uit i = 1, · · · , N t = 1, · · · , T (3.10)

where time invariant individual unobserved effect αi is a fixed parameter which is repre-

senting the effects of those variables is constant over time and may be correlated with Xi.

Note: Hsiao [2003] gives an alternative and equivalent formulation of Eq.(3.10) is to in-

troduce a “mean intercept,” µ, so that

yit = µ + xT
itβ + αi + uit i = 1, · · · , N t = 1, · · · , T (3.11)

Because both µ and αi are fixed constants, without additional restriction, they are not sepa-

rately identifiable or estimable. One way to identify µ and αi is to introduce the restriction
∑N

i=1 αi. Then the individual effect αi represents the deviation of the ith individual from

the common mean µ. But both formulation lead to the same least-squares estimator [Hsiao,

2003]. In this thesis, we only concentrate on the formulation Eq.(3.10).
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In vector form, Eq. (3.10) can be written as

yi = Xiβ + 1T αi + ui i = 1, · · · , N (3.12)

where yi = [yi1, · · · , yiT ]T , Xi = [xi1, · · · , xiT ]T , ui = [ui1, · · · , uiT ]T and 1T is a T × 1 dummy

vector. Note: By using the FE model, the estimator β only can calculate the time variant

variables. The time invariant variables are not estimable, thus Xi is a subset of variables

which are time varying.

We make two assumptions on the fixed effect model Eq. (3.10)

A1.

E(ui|Xi, αi) = 0

A2.

Var(ui|Xi, αi) = σ2IT

The assumption A1 means the disturbance term ui are uncorrelated with explanatory vari-

able Xi over time, that means all the explanatory variables are strictly exogenous.

The assumption A2 is the common homoscedastic assumption, under this assumption,

the OLS estimation of model (3.12) is unbiased.

There are three approaches to the fixed effect estimator that we introduce below.

3.2.1 Within Estimation for fixed effect model

In the first approach, we calculate the mean values of the variables in the observations for

each given individual. The mean of yi averaged over time is

yi =
1

T
1T yi

=
1

T
1T (XT

i β + αi + ui)

= Xi
T
β + αi + ui i = 1, · · · , N

the matrices are defined same as Eq.(3.12) and subtracted from Eq.(3.10) for that individual

gives

yit − yi = (Xit −Xi)
T β + (uit − ui) i = 1, · · · , N
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Applying the OLS method, we obtain the estimator

β̂W =

[
N∑

i=1

T∑

t=1

(Xit −X i)(Xit −X i)
T

]−1 [
N∑

i=1

T∑

t=1

(Xit −X i)(yit − yi)

]
(3.13)

We also can write the model (3.10) in full data form

y = Xβ + Zα + u (3.14)

where y = (yT
1 , · · · , yT

N)T , u = (uT
1 , · · · , uT

N)T are NT × 1 vectors and

Z =





1T×1 0 0

0
. . . 0

0 0 1T×1





NT×T

and α = (α1, · · · , αN)T . Z can be written as

Z = IN ⊗ 1T

where IN is an identity matrix of dimension N, 1T is a vector of ones of dimension T and

⊗ denotes Kronecker product (which is an production on two matrices resulting in a block

matrix.). Then we can derive

ZZT =





11T 0 0

0
. . . 0

0 0 11T





=





JT 0 0

0
. . . 0

0 0 JT





N

= IN ⊗ JT
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(ZT Z)−1 =





1T
T×11T×1 0 0

0
. . . 0

0 0 1T
T×11T×1





−1

=
1

T





1 0 0

0
. . . 0

0 0 1





T

=
1

T
IT

where JT = 11T . Thus

P = Z(ZT Z)−1ZT

=
1

T
IN ⊗ JT

= IN ⊗ JT

Let Q = INT − P , the matrix P and Q have the following properties:

• Idempotent: P T = P and P 2 = P ; Q2 = Q.

Proof: P is idempotent matrix, then

P T = [Z(ZT Z)−1ZT ]T

= (ZT )T
[
(ZT Z)−1

]T
(Z)T

= (ZT )T (ZT Z)−1(Z)T

= P

So P T = P .

P 2 = Z(ZT Z)−1ZT Z(ZT Z)−1ZT = Z(ZT Z)−1ZT = P

So P 2 = P

QQ = (I − P )(I − P )

= I − P − P + PP

= I − P

= Q
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So QQ = Q.

• P and Q are orthogonal: PQ = 0 and Q and Z are orthogonal: QZ = 0

Proof:

PQ = P (I − P ) = P − P 2 = P − P = 0

So PQ = 0.

QZ = (I − P )Z = Z − PZ = Z − Z(ZT Z)−1ZT Z = Z − Z = 0

So QZ = 0

• Additive identity: P + Q = INT .

Proof: Since we defined Q = I − P , thus P + Q = INT .

We now transform y using Q; by premultiplying Eq.(3.14) by Q

Qy = QXβ + QZα + Qu

= QXβ + 0 + Qu

This transformation eliminates the time invariant variable α and any time independent vari-

ables. Now we rewrite in standard linear model form

ỹ = X̃β + ũ (3.15)

where

ỹ = Qy = (INT −
1

T
ZZT )y

= y− 1

T
ZZT y

= y− y
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with

y =





y11

y21
...

yN1





and ũ = Qu and X̃ = QX are in the same form. These can be interpreted as individual

deviations which measuring are the difference between individuals and its individual mean

over time.

By using the least squares theory, we can derive the following estimator:

β̃W = (X̃T X̃)−1X̃T ỹ (3.16)

= [(QX)T (QX)]−1(QX)T (Qy)

= (XT QX)−1XT Qy (3.17)

E(β̃W ) = (XT QX)−1XT QXβ

= β (3.18)

So β̃W is an unbiased estimator for β often referred to as the the within or fixed effects

estimator, with

β̃W = β̂FE (3.19)

Var(β̂FE) = σ2(XT QX)−1 = σ2(X̃T X̃)−1 (3.20)

Let

ûW = ỹ− X̃β̃W

Then we have the estimator of σ2
u

σ̂2
W =

ûT
W ûW

NT −K
(3.21)

However, since the transformation matrix eliminated the time invariant variable αi where

i = 1, · · · , N , there is a loss of N degrees of freedom. Therefore, we have to adjust the de-

nominator of Eq.(3.21) . The correct calculation should be NT observations minus N means
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and K parameters. Thus, the correct unbiased estimator of σ̂2
u is

(σ̂2
u)FE =

ûT
W ûW

NT −N −K
= σ̂2

W
NT −K

NT −N −K
(3.22)

The α can be estimated as

α̂W = y−Xβ̃W

This is known as the within estimator. The within estimator is only one possible fixed effects

estimator.

Note: In fact, model (3.15) does not satisfy the OLS assumption, because after transfor-

mation the residual ũ = Qu are no longer uncorrelated

E[(Qu)(Qu)T ] = σ2Q != σ2I.

So we introduce the OLS estimation below.

3.2.2 OLS Estimation for fixed effect model

The alternative way to derive the fixed effect estimator by using OLS method with a parti-

tioned design matrix W =
[
X Z

]
and an augmented parameter vector γ =



β

α



 In order

to use this method, we rewrite the Eq.(3.14) as

y =
[
X Z

]


β

α



 + u = Wγ + u (3.23)

By using the Least squares theory, the estimator of γ is

γ̂ =



β̂

α̂



 = (W T W )−1W T y (3.24)

Eq.(3.24) will give the same estimate of β̂ as Eq.(3.17). To prove this we have to use blockwise

matrix inversion method which is given in Appendix A.
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Proof:

Since W =
[
X Z

]
, then W T =



XT

ZT



.

W T W =



XT X XT Z

ZT X ZT Z





(W T W )−1 =



0 0

0 (ZT Z)−1



 +



 IP×P

−(ZT Z)−1ZT X



 (XT X −XT Z(ZT Z)−1ZT X)−1

[
IP×P −XT Z(ZT Z)−1

]

=



A B

C D





where

A = (XT X −XT Z(ZT Z)−1ZT X)−1

= (XT (I − Z(ZT Z)−1ZT )X)−1

= (XT QX)−1

B = −XT Z(ZT Z)−1(XT X −XT Z(ZT Z)−1ZT X)−1

= −XT Z(ZT Z)−1(XT (I − Z(ZT Z)−1ZT )X)−1

= −XT Z(ZT Z)−1(XT QX)−1

C = −(ZT Z)−1ZT X(XT X −XT Z(ZT Z)−1ZT X)−1

= −(ZT Z)−1ZT X(XT (I − Z(ZT Z)−1ZT )X)−1

= −(ZT Z)−1ZT X(XT QX)−1
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D = (ZT Z)−1 + (ZT Z)−1ZT XXT Z(ZT Z)−1(XT X −XT Z(ZT Z)−1ZT X)−1

= (ZT Z)−1 + (ZT Z)−1ZT XXT Z(ZT Z)−1(XT (I − Z(ZT Z)−1ZT )X)−1

= (ZT Z)−1 + (ZT Z)−1ZT XXT Z(ZT Z)−1(XT QX)−1

Now Eq.(3.24) can be written as

γ̂ =



β̂

α̂



 = (W T W )−1W T y =



A B

C D







XT

ZT



 y

Thus, the OLS estimate of β̂ and α̂

β̂OLS = [AXT + BZT ]y

= (XT QX)−1(XT −XT Z(ZT Z)−1ZT )y

= (XT QX)−1XT (I − Z(ZT Z)−1ZT )y

= (XT QX)−1XT Qy (3.25)

α̂OLS = [CXT + DZT ]y

= −(ZT Z)−1ZT X(XT QX)−1XT + (3.26)

(ZT Z)−1ZT + (ZT Z)−1ZT XXT Z(ZT Z)−1ZT (XT QX)−1y

= (ZT Z)−1ZT [−X(XT QX)−1XT + I + XXT P (XT QX)−1]y

= (ZT Z)−1ZT [I − (XT QX)−1(−XXT P + XXT )]y

= (ZT Z)−1ZT y− (ZT Z)−1ZT X(XT QX)−1XT (I − P )y

Since α = ZαOLS =





α11
...

αN1




Therefore

α̂ (3.27)

= y− X(XT QX)−1XT Qy

= y− Xβ̂OLS (3.28)
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Where Q = I − Z(ZT Z)−1ZT = I − P ,

y = (ZT Z)−1ZT y =
1

T
ZT y =





y11

y21
...

yN1





and

X = (ZT Z)−1ZT X =
1

T
ZT X =





X11

X21
...

XN1





So the OLS estimator gives the same formulation as the within group estimator.

3.2.3 Maximum Likelihood Estimation for fixed effects model

The maximum likelihood estimator of fixed effects model (3.23) is the same as perform MLE

on a simplest model by assume ui ∼ N(0, σ2
u). Thus the MLE are same as OLS estimator,

recall Eq.(3.25):

β̂MLE = (XT X)−1XT y

and the estimator of σ̂2
u follows by the definition is:

σ̂2
MLE =

1

NT
(y−Xβ)T (y−Xβ) =

eT e
NT

where e = y − Xβ̂MLE and is the residual vector refer to section 2.3. The ordinary least

squares estimation gives

E(
eT e

NT −N −K
) = σ2

Thus

E(σ̂2
MLE) =

σ2(NT −N −K)

NT

So that σ̂2
MLE is biased for σ2, although β̂MLE is unbiased for β. The adjusted estimator is

σ̂2 =
NT

NT −N −K
σ̂2

MLE
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Note: if ui ∼ N(0, D) where D is diagonal, the MLE estimator follows by Eq.(2.2) is

β̂WLS = (XT D−1X)−1XT D−1y

If D is not diagonal, then the MLE estimator follows Eq.(2.7) is

β̂GLS = (XT V −1X)−1XT V −1y

The proofs of WLS and GLS is similar to OLS case.

3.3 Random Effects (RE) Model

The major difference between random effects model and the fixed effects model is the indi-

vidual unobserved effect αi is random and uncorrelated with Xi. The model follows Eq.(3.3)

and Eq. (3.4) structure, it can be defined most generally as

• Scalar form:

yit = xT
itβ + ZT

itαi + uit i = 1, · · · , N t = 1, · · · , T

where the dimensions of parameters are yit is 1 × 1, xT
it is 1 × K, β is K × 1, ZT

it is 1 ×

P , αi is P × 1 and uit is 1 × 1. xT
it and ZT

it are known covariates.

• Vector or individual form:

yi = Xiβ + Ziαi + ui i = 1, · · · , N (3.29)

where the dimensions of parameters are yi is T× 1, Xi is T×K, β is K × 1, Zi is T× P ,

αi is P × 1 and ui is T × 1.

• Full data form:

y = Xβ + Zα + u (3.30)

where the dimensions of parameters are y is NT× 1, X is NT×K, β is K × 1, Z is NT×

NP and Z can be written as Z = IN ⊗ 1T , α is NP × 1 where αT = [αT
1 , αT

2 , · · · , αT
N ]

(αi is P×1) and u is NT × 1.

There are three components in random effect model, eg, in model (3.29): the fixed effect

term Xiβ with K variables and the random effect term Ziαi with P explanatory variables;
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the last term is a vector of residual components. This is sometimes called mixed effects

model because it includes both fixed effects (β) and individual random effects (αi).

Now we assume ui ∼ iid (0, Ri) for some covariance matrix R; the structure of R encodes

the correlation among the uit. We have several choices for this structure, for example, it can

be independent, AR(1), have a compound symmetry structure or be unstructured (refer to

Chapter 2). And Ri is a (T × T ) covariance matrix.

Also, αi is assumed to be normally distributed as iid (0, Gi) which are independent with

ui. Gi is a (P × P ) covariance matrix with (k, l) element Gkl = Glk, for simplest model, Gi

can be

Gi =





σ2
α1

0 · · · 0

0 σ2
α2

· · · 0

0 0 · · · σ2
αp




for i = 1 · · ·N.

Following the assumptions, conditional on the random effect, yi is normally distributed as

N(Xiβ, ZiGZT
i + Ri), the proof is below.

Proof

E(yi) = E(Xiβ + Ziαi + ui) = Xiβ

Since

E(Xiβ) = Xiβ

E(Ziαi) = ZiE(αi) = 0

E(ui) = 0; E(αi) = 0

Var(yi) = Var(Xiβ + Ziαi + ui)

= ZiVar(αi)Z
T
i + Var(ui)

= ZiGiZ
T
i + Ri

because

Cov(αi, ui) = 0
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3.3.1 Two special types of Random Effect Model

Recall the random effect model Eq.(3.29):

yi = Xiβ + Ziαi + ui

For longitudinal data, the simplest random effect models are:

• Random Intercept Model

yi = Xiβ + 1T αi + ui i = 1, · · · , N (3.31)

where αi is 1 × 1, Zi = 1T where 1T is a vector of ones of length T. In Eq.(3.31), obser-

vations collected on an individual are attributable to a individual“level”, or random

intercept.

• Random Intercept and Slope Model (Random Trend Model)

yi = Xiβ + αi0 + Ziαi1 + ui i = 1, · · · , N (3.32)

In Eq.(3.32), each individual has an individual “trend”, or follows a random linear

trajectory with its own random intercept αi0 and slope αi1.

Note: the random effect model we are going to discuss most in this thesis is random intercept

model with independent covariance, i.e. Var(ui) = σ2
uIT and Var(αi) = σ2

α.

3.3.2 Generalized Least Squares Estimation for random effect model

Recall the model (3.29)

yi = Xiβ + Ziαi + ui i = 1, · · · , N

ui ∼ iid (0, Ri)

αi ∼ iid (0, Gi)

u1 · · ·uN , α1 · · ·αN are independent

In this thesis, we are interested in the random intercept model. So we assume Ri to be equal

to σ2
uIT where IT is the T dimensional identity matrix. And let Gi to be equal to σ2

α and Zi
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equal to 1T . So the model can be written as Eq. (3.31)

yi = Xiβ + 1T×1αi + ui i = 1, · · · , N

Basically, random effect model can be considered as an extension of the fixed effect model.

We need to make another three assumptions based on the fixed effect model assumptions.

In addition to

A1.

E(ui|Xi, αi) = 0

A2.

Var(ui|Xi, αi) = σ2IT

We assume:

A3. αi ∼ iid (0, σ2
α)

A4. Cov (αi, Xit) = 0

A5. ui|Xi ∼ iid (0, σ2
uIT + σ2

α11T )

The assumption A3 assume the unobserved individual effect is randomly independently

distributed with mean zero and variance σ2
α. The assumption A4 assume the αi can not be

correlated with the explanatory variable Xit. The assumption A5 assume the αi and uit are

independent and this is guaranteed by our assumptions

ui ∼ iid (0, σ2
uIT )

αi ∼ iid (0, σ2
α)

The covariance matrix of the error term can be derived by using the given assumptions listed

above. We have

εi = 1T αi + ui,

and we can write the error covariance of each individual cross-section unit as

Vi = E[εiε
T
i ] = σ2

uIT + σ2
α11T (3.33)
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The proof of this can be found in Section: 3.5. When the data are organized as stacked form,

the covariance of the error term for whole data set can be written as

Ω = IN ⊗ Vi = E[εεT ] =





V1 0 · · · 0

0 V2 · · · 0
...

... . . . ...

0 0 · · · VN





where Vi = E[εiεT
i ] is a T × T matrix.

Now we derive the estimator based on model (3.30). The GLS estimator of random effect

model is

β̂RE = (XT Ω̂−1X)−1XT Ω̂−1y (3.34)

The variance of β̂RE is

Var (β̂RE) = (XT Ω̂−1X)−1 (3.35)

This can be written as

β̂RE =

(
N∑

i=1

XT
i V −1

i Xi

)−1 N∑

i=1

XT
i V −1

i yi

and

Var (β̂RE) = σ2
u

N∑

i=1

(XT
i V −1

i Xi)
−1 (3.36)

The GLS estimation assumes known σ2
u and σ2

α. In fact, we don’t know the two param-

eters in the real data analysis. So we have to estimate these two parameters first, then sub-

stitute these two into the GLS estimator in order to obtain the estimation of random effect

coefficient. This method is called FGLS (”feasible” GLS) estimation.

Since the within group estimator is an unbiased estimator, we can use the fixed effect

model to estimate the residual variance σ2
u. That’s because the fixed effect estimator elimi-

nated the unobserved individual effect already, it would not affect our estimation of σ2
u. Let

the fixed effect residual be

ûit = (yit − yi)− (Xit −X i)β̂FE

where

yi =
1

T

T∑

t=1

yit =
1

T
1T yi
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Xi =
1

T

T∑

t=1

Xit =
1

T
1T Xi

ui =
1

T

T∑

t=1

uit =
1

T
1T ui

Thus,

σ̂2
u =

N∑
i=1

T∑
t=1

û2
it

NT −N −K
. (3.37)

Then we apply the OLS estimation on model

yi = X iβ + γi + ui

We define the combined variance

σ2
B = Var(αi + ui)

= Var(αi) + Var(ui)

= σ2
α +

1

T
σ2

u

and hence estimates of these variances are related by (σ̂2
B can be calculated by using Eq.(3.42))

σ̂2
B = σ̂2

α +
1

T
σ̂2

u

We combine the σ̂2
B and σ̂2

u result, we have

σ̂2
α = σ̂2

B −
1

T
σ̂2

u (3.38)

Now we could substitute these two estimators into Eq. (3.33) to use the GLS estimator Eq.

(3.34) to get the estimation of β̂RE . This estimator is called FGLS estimator.

3.3.3 Between Estimation for random effect model

The between estimator converts all the data into individual averages and performs OLS on

the following equation:

yi = Xiβ + αi + ui i = 1, · · · , N

43



where the ith term yi is

yi =
1

T

T∑

t=1

yit =
1

T
1T yi

and X i is defined as the vector of ith individual means of the explanatory variables. Let

RSS to be the sum of squared residuals, then we have

RSS =
N∑

i=1

ui
T ui =

N∑

i=1

(yi −Xiβ −αi)
T (yi −Xiβ −αi)

Take the partial derivatives of RSS with respect to αi and let it equal to zero, we have

α̂ = y−Xβ

Then take the partial derivatives with respect to β and substitute α̂i into it and let this equal

to zero, we have

β̂B =

{
N∑

i=1

(X i −X)(X i −X)T

}−1 {
N∑

i=1

(X i −X)(yi − y)

}

This estimator is just as the OLS estimator on the cross-sectional equation with αi as the

intercept. The between estimator ignores important information on how the individuals

changed over time and is biased if αi is correlated with Xi (see Chapter 7 for more detail).

Now we put this expression in matrix terms. We define a projection matrix P as the

transform matrix to get the estimator. The random effect model is

y = Xβ + Zα + u (3.39)

where Z is the matrix of N dummy variables corresponding to each cross-section unit. As

we defined P = Z(ZT Z)−1ZT in matrix form, this is a symmetric and idempotent matrix.

Premultiply the model (3.29) by this matrix transforms the data into the means over time

form.

Py = PXβ + PZα + Pu
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where

Py = Z(ZT Z)−1ZT y

=
1

T
Z

[
T∑

t=1
y1 · · ·

T∑
t=1

yN

]T

= Z
[
y1 · · · yN

]T

=





y11T

...

yN1T





= y

and PX = X , Pu = u and PZ = 0. Thus,

y = Xβ + u

By using the least squares theory as above, we have

β̂B = (X
T
X)−1X

T y

This estimator β̂B is called the between estimator and also can be written as

β̂B = ((XT P T )PX)−1(XT P T )(Py) = (XT PX)−1XT Py (3.40)

Let

ûB = y−Xβ̂B (3.41)

Then we have the estimator of σ2
B

σ̂2
B =

ûT
BûB

N −K
(3.42)

where ûB is the residual vector obtained by using between estimator.

3.3.4 Maximum Likelihood Estimation for random effect model

To use the maximum likelihood estimation method, we assume the αi and uit are normally

distributed. Thus,

y ∼ N(µ, Ω) with µ = Xβ
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(See proof from Section 3.5) The probability equation of the random effect model is

f(y|µ, Ω) = (2π)−
NT
2 |Ω|− 1

2 exp [−1

2
(y− µ)T Ω−1(y− µ)]

where Ω = IN ⊗ V . Recall the vector form model (3.31), then the log likelihood function of

random effect model is written as

log L = −NT

2
log 2π − N

2
log |V |

−1

2

N∑

i=1

(yi −Xiβ)T V −1(yi −Xiβ)

= −NT

2
log 2π − N(T − 1)

2
log σ2

u −
N

2
log (σ2

u + Tσ2
α)

− 1

2σ2
u

N∑

i=1

(yi − 1T αi −Xiβ)T Q(yi − 1T αi −Xiβ) (3.43)

− 1

2(σ2
u + Tσ2

α)

N∑

i=1

(yi −Xiβ)T 1

T
11T (yi −Xiβ)

= −NT

2
log 2π − N(T − 1)

2
log σ2

u −
N

2
log (σ2

u + Tσ2
α)

− 1

2σ2
u

N∑

i=1

(yi −Xiβ)T Q(yi −Xiβ)

− T

2(σ2
u + Tσ2

α)

N∑

i=1

(yi −Xiβ)2 (3.44)

where

|V | = σ2(T−1)
u (σ2

u + Tσ2
α)

from Hsiao [2003].

V −1 =
1

σ2
u

[
IT −

σ2
u

Tσ2
α + σ2

u

11T

]
=

1

σ2
u

[
Q +

σ2
u

Tσ2
α + σ2

u

1

T
11T

]

and Q = IT − 1
T 11T as before. The result is obtained from Hsiao [2003].

To get the estimators, we take the first derivative of the log-likelihood of random effect
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model and then set each equation is equal to zero.

∂ log L

∂β
=

1

σ2
u

N∑

i=1

(yi −Xiβ)T QXi

− 1

σ2
u

Tσ2
u

σ2
u + Tσ2

α

N∑

i=1

(yi −Xiβ)Xi

= 0

∂ log L

∂σ2
u

= −N(T − 1)

2σ2
u

− N

2(σ2
u + Tσ2

α)

+
1

2σ4
u

N∑

i=1

(yi −Xiβ)T Q(yi −Xiβ)

+
T

2(σ2
u + Tσ2

α)2

N∑

i=1

(yi −Xiβ)2 = 0

∂ log L

∂σ2
α

= − NT

2(σ2
u + Tσ2

α)
+

T 2

2(σ2
u + Tσ2

α)2

N∑

i=1

(yi −Xiβ)2 = 0

Solve the above partial derivative, we obtain the estimators as

β̂ =

{
N∑

i=1

XT
i

[
IT −

σ2
u

Tσ2
α + σ2

u

11T

]
Xi

}−1 {
N∑

i=1

XT
i

[
IT −

σ2
u

Tσ2
α + σ2

u

11T

]
yi

}

σ̂2
u =

1

N(T − 1)

N∑

i=1

(yi − 1T αi −Xiβ)T Q(yi − 1T αi −Xiβ)

σ̂2
α =

1

N

N∑

i=1

(yi −Xiβ)2 − 1

T
σ̂2

u

Hence, to get the estimation of the maximum likelihood estimator, we can iterate between β

and σ2
u, σ2

α until convergence.

3.4 Hausman Test

We have described two estimators, random effects (RE) estimator and fixed effects (FE) es-

timators that have different properties depending on the correlation between unobserved

individual effect αi and the explanatory variable xit ([Hsiao, 2003]). ? has named a test

called Hausman test for H0 null hypothesis : αi and Xit are uncorrelated.

47



Testing FE vs. RE

We can test whether a fixed or random effects model is appropriate using a Hausman test.

H0 : αi ⊥ Xit

Ha : αi !⊥ Xit

1. If the effects are uncorrelated with the explanatory variables, the H0 is true, the random

effects (RE) estimator and the fixed effects (FE) estimator is unbiased but the random

effects (RE) estimator is the one that should be adopted as it is efficient (random effect

estimation has smaller variance than fixed effect estimation).

2. If the effects are correlated with the explanatory variables, the Ha is true, the fixed

effects estimator is unbiased and efficient but the random effects estimator is biased

(see proof in Chapter 5).

The test statistic is

H = (β̂RE − β̂FE)T (ΣFE − ΣRE)−1(β̂RE − β̂FE) (3.45)

where ΣFE is the covariance of βFE refer to Eq.(3.20) and Eq.(3.36). ΣRE is the covariance of

βRE refer to Eq.(3.34) and Eq.(3.35). This test statistics will be distributed asymptotically as

χ2 with K degrees of freedom under the null hypothesis that the random effects estimator

is true where K is the number of β parameters in the model.

3.5 Special Case: Equivalent Model

We note that two important models of interest are equivalent: compound symmetry model

and random intercept model with independent error term. A model without random effect,

but with compound symmetry variance structure (refer to Eq.(2.12)), we call it compound

symmetry model and the random effect model with only random intercept, we call it ran-

dom intercept model. The proof is below:

Proof of Equivalence

• Compound symmetry model:

yi = Xiβ + ui i = 1, · · · , N
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with

ui ∼ N(0, σ2V )

and

V =





1 ρ · · · ρ

ρ 1 · · · ρ
...

... . . . ...

ρ ρ · · · 1





E(yi) = E(Xiβ + ui) = Xiβ

Var(yi) = Var [ui] = σ2





1 ρ · · · ρ

ρ 1 · · · ρ
...

... . . . ...

ρ ρ · · · 1





• Random intercept model with i.i.d ui:

yi = Xiβ + Ziγi + ui

= Xiβ +





1

1
...

1




γi + ui

= Xiβ + 1γi + ui i = 1, · · · , N

with

ui ∼ N(0, σ2
uI)

and

γi ∼ N(0, σ2
γ)

E(yi) = E(Xiβ + Ziγi + ui) = Xiβ; Zi = 1
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Var(yi) = Var(1γi) + Var(ui)

= 1Var(γi)1
T + σ2

uI

= σ2
γ11T + σ2

uI

= σ2
γ





1 1 · · · 1
...

... . . . ...

1 1 · · · 1




+ σ2

u





1 0 · · · 0
...

... . . . ...

0 0 · · · 1





=





σ2
γ + σ2

u σ2
γ · · · σ2

γ

...
... . . . ...

σ2
γ σ2

γ · · · σ2
γ + σ2

u





= (σ2
γ + σ2

u)





1
σ2

γ

σ2
γ + σ2

u

· · ·
σ2

γ

σ2
γ + σ2

u
...

... . . . ...
σ2

γ

σ2
γ + σ2

u

σ2
γ

σ2
γ + σ2

u

· · · 1





= σ2





1 ρ · · · ρ

ρ 1 · · · ρ
...

... . . . ...

ρ ρ · · · 1





where σ2 = σ2
γ + σ2

u and ρ =
σ2

γ

σ2
γ + σ2

u

Both models end up with the same distribution of y. So the random intercept model is

identical to the compound symmetry model, but is derived from a different perspective.
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Chapter 4

Simulation of longitudinal data

In this chapter, we define the simulation functions in R for several common models. For

example, random trend model, random intercept model, fixed effects model and pooled

model. Within the fixed effect model section, we define two simulation functions: one for

the case without correlation between individual effects and explanatory variables and one

for the case with such correlation. We also give a special case of random intercept model

function which may look like there is correlation between individual effects and explana-

tory variables. But actually there no such correlation. We then graphically present these

models by given the true values for each model, we also indicate the different features of

each model. Finally, we define the simulated functions for three simple types of covariance

structures, i.e. i.i.d or with serial correlation - AR(1) or compound symmetry. In this section,

we assume there is only one explanatory variable. And we only generate the small dataset

to demonstrate the features by plot the data for each model with i.i.d as covariance structure

only. At the end of this chapter we give the R codes included in this chapter. In the later

chapters, we are going to use these functions to generate the data for fixed effects model

with correlation and random intercept model without correlation, then we could investigate

whether there is estimation bias by using different estimation methods on these two models.

4.1 Random Trend Model

The random effect model for a single covariate X with random slope and intercept, also

called the random trend model is defined as:

Yij = β0 + β1xit + α0i + α1ixit + εit (4.1)
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where i = 1, · · · , N and t = 1, · · · , T ; β0 and β1 are fixed effect intercept and slope respec-

tively, and α0i and α1i are random effect intercept and slope for ith individual respectively.

First we randomly sample the N values xi1 from a uniform distribution U(a, b) as the first

observation of X for each individual.

xi1 ∼ U(a, b)

We then let the observations xit (for t = 2, · · · , T ) be the order statistics of T-1 draws from

the uniform distribution U(xit, xit + δ) for some δ.

Next, the random distribution εit is simulated. For independent errors, we have

εit ∼ i.i.d(0, σ2
ε ) (4.2)

and we assume this is a Normal distribution with mean 0 and variance σ2
ε . As noted in chap-

ter 2, it also can be other structure, i.e. AR(1) (first order autoregressive) or CS (compound

symmetry). We discuss simulation of such errors later.

The random effect α0i and α1i is multivariate normal distribution with zero mean and

covariance G where σ2
0 for α0i and σ2

1 for α1i.



α0i

α1i



 ∼ MVN (0, G) (4.3)

where G =



σ2
0 σ01

σ01 σ2
1



 and we set σ01 = 0.

To simulate from this distribution, we define the rmvnorm function as following (in our

case, we always set µ0 = 0 and µ1 = 0): Choose the centre of Multivariate (bivariate) Normal

distribution at (µ0,µ1) with a standard deviation in the (σ0, σ1) direction. Define a mean

difference vector u.

u = x− µ =



x0 − µ0

x1 − µ1



 =



u0

u1



 , u0, u1 ∼ N(0, 1)

then we define a variance matrix D and derive Du as

D =



σ0 0

0 σ1




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

σ0 0

0 σ1



 u =



σ0u0

σ1u1



 = Du

Now we rotate it with certain angle θ, using matrix

R =



cos θ − sin θ

sin θ cos θ





RDu =



cos θ − sin θ

sin θ cos θ







σ0u0

σ1u1



 (4.4)

y = µ + RDu

Note:

Var(α) = Var(RDu) = RDVar(u)DT RT

= RDIDT RT

= G

Note, the σ0 and σ1 in this function are practical components which are not equal to σ0α and

σ1α unless θ = 0.

Alternatively, we can simply call the rmvnorm function from R built in function to simu-

late the individual effect.

Finally, we simulate the random effect data by calling the function sim.RE with parame-

ters N , T , a, b, δ, µ, G, σε, β0 and β1. The true value for these parameters are

N = 12, T = 5, a = 1, b = 5,

δ = 5, µ =
[
0 0

]
, G =



100 0

0 50



 ,

σε = 10, β0 = 0 and β1 = 1.

Figure 4.1 shows an example of a random trend model with spherical errors. Data points

for a single individual i are connected with lines for i = 1 · · ·N . There are 12 simulated

individuals and each individual has 5 observations.
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Figure 4.1: Figures of an example of a random trend model with spherical errors data

From Figure 4.1, we can see the most of the individual slopes are positive as most of

individuals have upward trend, there are a few individuals have negative slope as a few

of them have downwards trend. Especially, the bottom individual has the biggest negative

slope.

4.2 Random Intercept Model

The random effect model with random intercept only is a special case of random trend

model where α1i = 0 for all i, i = 1, · · · , N and is defined as:

Yit = β0 + β1xit + α0i + εit (4.5)

where i = 1, · · · , N and t = 1, · · · , T ; β0 and β1 are fixed effect intercept and slope respec-

tively, and α0i is the only random effect for ith individual.
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In R program, we called the sim.RE function. We set the parameter α1i with zero mean and

zero variance which means σ2
1 = 0. Now, all the α1i for i = 1, · · · , N are equal to zero. The

random trend model simplifies to Eq.(4.5) – the random effect model with random intercept

only. We call this the random intercept model. Now we simulate the random intercept data

by setting the parameters of sim.RE function as

N = 10, T = 5, a = 1, b = 5,

δ = 5, µ =
[
0 0

]
, G =



100 0

0 0



 ,

σε = 1, β0 = 0 and β1 = 1.

Figure 4.2 shows an example of a random intercept model with spherical errors. Data points

for a single individual i are connected with lines for i = 1 · · ·N . There are 10 simulated

individuals and each individual has five observation.
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Figure 4.2: Figures of an example of a random intercept model with spherical errors data
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From Figure 4.2, we can see all of the individuals have positive slopes and the trends are

parallel with different intercept.

4.3 Fixed Effect Model

We have defined the random trend model (or we can call it individual effect model) in

Eq.(4.1) with

εit ∼ N(0, σ2
ε)

and 

α0i

α1i



 ∼ N(0, G)

For random intercept model, we have α1i = 0 and α0i ∼ N(0, σ2
0). The fixed effect model is a

special case of random intercept model where α1i = 0 and α0i is constant over time that may

be correlated with Xi and defined as:

Yit = β0 + β1xit + α0i + εit (4.6)

where i = 1 · · ·N and t = 1 · · ·T ; β0 and β1 are fixed effect intercept and slope respectively.

Note, the random effect model simplifies to the Eq.(4.6) – without any random effect. The

fixed effects simulated data set has the same setting as the random intercept model but the

definition of α0i is different.

4.3.1 Fixed effects model without correlation

Firstly, we generate the data for the fixed effect model without correlation by setting the

parameters as below

N = 10, T = 5, a = −5, b = 5,

δ = 5, µ =
[
0 0

]
, G =



20 0

0 0



 ,

σε = 1, β0 = 0 and β1 = 1.

In R program, we call the sim.RE function and then set α1i equal to zero that means the

random slope with zero mean and also set the variance of α1i σ2
1α1

= 0 in order to eliminate

the random effects slope. We don’t have to change the setting of α0i, because α0i is random
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and is not correlated with Xi .

The model is Eq.(4.6) with

Cov(xit, α0i) = 0

Figure 4.3 shows 10 simulated individuals with constant individual effect.
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Figure 4.3: Figures of an example of a fixed effect model with Cov(xit, α0i) = 0 data

From Figure 4.3, we can see all of the individuals have positive slopes and the trends are

parallel. The data characteristic is hard to distinguish between random intercept model data

and fixed effect model data without correlation.

4.3.2 Fixed effect model with correlation

In this section, we generate data of the fixed effects model with correlation. The model is

yit = β0 + β1xit + α0i + εit (4.7)
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with

Cov(Xit, α0i) = ρ != 0

Set the correlation equation by following Mundlak formulation [Mundlak, 1978] as

α0i = Xiρ + wi (4.8)

where

wi ∼ N(0, σ2
w) (4.9)

The correlation means the explanatory variable xit is correlated with the individual effect

α0i.

Now we define the generator of fixed effects model with correlation in R. Compare with

the sim.RE function, the only part of program we need to change is the way of generate indi-

vidual effect α0i. Firstly, we generate N random numbers of wi to follow Eq.(4.9). Then we

calculate Xi and define a constant ρ as the correlation coefficient or degree of the correlation.

Finally, we follow the Eq.(4.8), we obtain α0i random generator.

We call this R program function as sim.cor with parameters N , T , a, b, δ, ρ, σε, σw, β0

and β1. Figure 4.4 shows 10 simulated individuals with Cov(xit, α0i) != 0 by setting the

parameters as

N = 10, T = 5, a = −5, b = 5,

δ = 10, σε = 1, σw = 1,

ρ = 3, β0 = 0 and β1 = 1.
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Figure 4.4: Figures of an example of a random intercept model with spherical errors and
Cov(X, α0) != 0

From Figure 4.4, we can see all of the individuals have positive slopes and the trends

are parallel. The intercepts of each individual are step increasing. This indicate that there is

positive correlation between individual effects and covariate X .

4.4 Pooled Model

The pooled model with no individual effects is a special case of fixed effect model where

α0i = 0 for all i, i = 1 · · ·N and defined as:

Yit = β0 + β1xit + εit (4.10)

where i = 1 · · ·N and t = 1 · · ·T ; β0 and β1 are fixed effect intercept and slope respectively.

Call the function sim.RE and we set α0i and α1i to equal to zero that means both random in-
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tercept and slope with zero mean and zero variances. Now the random effect model simpli-

fies to Eq.(4.10) – the pooled model without individual effect. Now we simulate the pooled

data by setting the parameters of sim.RE function as

N = 10, T = 5, a = −5, b = 5,

δ = 5, µ =
[
0 0

]
, G =



0 0

0 0



 ,

σε = 10, β0 = 0 and β1 = 1.

Figure 4.5 shows 10 simulated individuals with no individual effect and each individual has

5 observations.
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Figure 4.5: Figures of an example of a pooled model with spherical errors data

From Figure 4.5, we can see the individuals distribute randomly. There is a slightly

upward trend.
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4.5 Error Structure

In this section, we present three simple types of error structures, independent covariance,

AR(1) covariance and compound symmetry covariance (refer to Chapter 2). The εi is dis-

tributed as normal distribution with zero mean and V as covariance. We set V = Var(εi).

4.5.1 Independence covariance

The independence covariance matrix is the simplest of all covariance matrix. The model

with spherical errors have independence covariance. σ2 is the only parameter in the matrix

(refer to Chapter 2), and

V = σ2I

with no correlation between observations. The independence matrix is common useful co-

variance matrices. In this thesis unless individual effects are included, the simulations for

different models we introduce in previous sections are all defined with independence ma-

trix. There are other choices for the covariance matrix that we introduce below.

4.5.2 First Order Autoregressive AR(1) covariance

The first order autoregressive processes, AR(1), have the following structure, recall Eq.(2.13):

εt = ρεt−1 + ut (t = 0,±1, ...)

where {ut} is a sequence of independent N (0, σ2) random variables and |ρ| < 1.

The ε0 is distributed as N (0, σ2/(1− ρ2)) to proof that we express the AR(1) as

εt =
∞∑

j=0

ρjut−j

E[εt] = E[
∞∑

j=0

ρjut−j]

=
∞∑

j=0

ρjE[ut−j]

= 0
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and

Var[εt] = Var[
∞∑

j=0

ρjut−j]

=
∞∑

j=0

ρ2jVar[ut−j]

= σ2
∞∑

j=0

ρ2j

=
σ2

1− ρ2

Since E[ut] = 0 ∀ t and E [usut] = 0 unless s = t, E[u2
t ]= Var[ut]=σ2.

So ∀t, εt is normal distributed with mean 0 and variance σ2

1−ρ2 by the property of the normal

distribution. Then ε0 is normal distributed with mean 0 and variance σ2

1−ρ2 by the property

of the normal distribution.

So AR(1) covariance has two parameters in the matrix, ρ and σ2. In R, we firstly random

generate a number from normal distribution as the zero term in AR(1) process with zero

mean and standard deviation σ√
1−ρ2

by using rnorm function. Then we generate T innova-

tion terms (ut) by using the same R function rnorm with zero mean and Seps as standard

deviation. Now by following Eq.(2.13) we have T+1 terms. In order to get T terms, we have

to eliminate the ε0, finally return ε as the AR(1) process simulation. For a given individual,

the T number of observations follow the AR(1) structure. So we call it ar1 function which

have parameters T, ρ, σε.

4.5.3 Compound Symmetry (CS) covariance

Compound symmetry (CS) is another simple form for the variance-covariance matrix. Eq.(2.12)

shows the matrix form of this structure which has two parameters (σ2 and ρ). The first pa-

rameter is the variance of the individuals and is constant across time. The parameter ρ is the

correlation between any two observations from the same individual which represents the

degree of association of the longitudinal data within individuals, and specifically indicates

the proportion of variance in the data attributable to individuals (refer to chapter 2).

Follow the definition of compound symmetry, we have

εi ∼ CS(ρ, σ2)
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For each individual, the covariance matrix has σ2 as the common variance; within the in-

dividual pairs of observations have the same ρ. In R, we define the diagonal matrix as

(1, · · · , 1), the off diagonal elements are ρ and we define it in two parts: lower.tri(corr) and

upper.tri(corr). Then combine them, we have the covariance matrix for multivariate normal

distribution. Now we use rmvnorm function to generate N ×T dimension of data. We called

the full compound symmetry generator as cov.cs.

Alternatively, in Chapter 3, we prove a special case the Random intercept model with

iid structure is identical to the simple regression with compound symmetry covariance, it is

derive from different perspectives. We can use R to generate random intercept data for the

simple regression with compound symmetry covariance model and we call the function as

comp. For example, the model follows this perspective can be

Yit = β0 + β1xit + α0i + εit (4.11)

And we generate α0i with zero mean and ρ ∗ σ2 variance

α0i ∼ N(0, σ2
α0

) (4.12)

then we generate εi with zero mean and (1− ρ) ∗ σ2 variance

εi ∼ N(0, σ2
ε) (4.13)

where

σ2
α0

= ρσ2 (4.14)

σ2
ε = (1− ρ)σ2 (4.15)

Finally, we combine two terms together α0i + εi. Then we gather it with other simulated val-

ues as the simple regression with compound symmetry covariance model dataset. There-

fore, in this section, we introduce the way of generate random numbers with compound

symmetry covariance and present a special case to create the compound symmetry struc-

ture.
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4.6 Special random intercept model without correlation

In this section, we generate data of the random intercept model with same Xi1. This kind

of data may look like there is correlation between the individual effects and explanatory

variables, but actually there is no such correlation. The model is the same as the random

intercept model, recall Eq.(4.5)

Yit = β0 + β1xit + α0i + εit (4.16)

But

xi1 is same for all individuals

Now we define the generator of this special random intercept model in R. Firstly, we gener-

ate N random numbers of ε from normal distribution as ε ∼ N(0, σ2
ε). Then we generate one

random number xi1 from a uniform distribution with a and b as xi1 ∼ U(a, b), then repeated

it N times as the starting points for each individual. We define an increment column vector

for each individual, combine the column and row vector using outer function to create the

design matrix X . Finally we generate N random numbers of α0i from normal distribution

as α0i ∼ N(µ, σ2
α).

Follow the random intercept model as Eq.(4.5), we obtained Yit. We call this R program

function as sim.RI.ss with parameters N, T, a, b, delta, mu, sigma, Seps, beta0, beta1. Note: This

is different compare with the fixed effects model with correlation. The difference is that we

generate X and α0 separately. So for this special model Cov(xit, α0i) = 0.

Figure 4.6 shows 10 simulated individuals of random intercept model with same same

xi1 and Cov(xit, α0i) = 0 by setting the parameters as

N = 10, T = 5, a = −5, b = 5,

δ = 10, µ = 0, σα = 1,

σε = 1, β0 = 0 and β1 = 1.
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Figure 4.6: Figures of an example of a random intercept model with same xi1

From Figure 4.6, we can easily see all of the individuals have the same xi1. The slops of

each individuals are positive and parallel on average.

4.7 R Codes

4.7.1 sim.RE function

sim.RE<-function(N,T,a,b,delta,mu,G,Seps,beta0,beta1){

#define the matrix we need

xM<-matrix(rep(NA,N*T),nrow=N,ncol=T)

yM<-matrix(rep(NA,N*T),nrow=N,ncol=T)

idM<-matrix(rep(NA,N*T),nrow=N,ncol=T)

timeM<-matrix(rep(NA,N*T),nrow=N,ncol=T)

gammaM0<-matrix(rep(NA,N*T),nrow=N,ncol=T)

gammaM1<-matrix(rep(NA,N*T),nrow=N,ncol=T)

#generate X_{i1} as start point for each individual
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xM[,1]<-runif(N,a,b)

#generate the individual effect

gammaM<-rmvnorm(N,mu,G)

#generate the error term with indep covariance

epsM<-matrix(rnorm(N*T,0,Seps),nrow=N,ncol=T)

#define the length of observations for each individual

D <- delta*seq(from=0, to=1, length=T)

#follow the model eq. calculate Y_{ij}

for(i in 1:N){

for(j in 1:T){

xM[i,j]<-xM[i,1]+D[j]

yM[i,j]<-beta0+beta1*xM[i,j]

+gammaM[i,1]+gammaM[i,2]*xM[i,j]

+epsM[i,j]

idM[i,j]<-i

timeM[i,j]<-j

gammaM0[i,]<-gammaM[i,1]

gammaM1[i,]<-gammaM[i,2]

}

}

id<-matrix(t(idM),nrow=N*T,ncol=1)

time<-matrix(t(timeM),nrow=N*T,ncol=1)

x<-matrix(t(xM),nrow=N*T,ncol=1)

y<-matrix(t(yM),nrow=N*T,ncol=1)

gamma0<-matrix(t(gammaM0),nrow=N*T,ncol=1)

gamma1<-matrix(t(gammaM1),nrow=N*T,ncol=1)

eps<-matrix(t(epsM),nrow=N*T,ncol=1)

idtext<-factor(id)

#combine values as a data frame

data.df<-data.frame(id=id,idtext=idtext,time=time,

x=x,y=y,gamma0=gamma0,gamma1=gamma1,eps=eps)

return(data.df)

}

sim.cor<-function(N,T,a,b,delta,rate,Seps,Weps,beta0,beta1){

xM<-matrix(rep(NA,N*T),nrow=N,ncol=T)

yM<-matrix(rep(NA,N*T),nrow=N,ncol=T)

idM<-matrix(rep(NA,N*T),nrow=N,ncol=T)

timeM<-matrix(rep(NA,N*T),nrow=N,ncol=T)

epsM<-matrix(rnorm(N*T,0,Seps),nrow=N,ncol=T)
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w<-rnorm(N,0,Weps)

xM[,1]<-runif(N,a,b)

inc<-delta*c(0,sort(runif(T-1,0,1)))

xM<-outer(xM[,1],inc,"+")

gammaM0<-matrix(rep(NA,N*T),nrow=N,ncol=T)

for(i in 1:N){

gammaM0[i,1]<-rate*mean(xM[i,])+w[i]

}

gammaM0<-outer(gammaM0[,1],rep(1,T))

for(i in 1:N){

for(j in 1:T){

yM[i,j]<-beta0+beta1*xM[i,j]

+gammaM0[i,j]+epsM[i,j]

idM[i,j]<-i

timeM[i,j]<-j

}

}

id<-matrix(t(idM),nrow=N*T,ncol=1)

time<-matrix(t(timeM),nrow=N*T,ncol=1)

x<-matrix(t(xM),nrow=N*T,ncol=1)

y<-matrix(t(yM),nrow=N*T,ncol=1)

gamma0<-matrix(t(gammaM0),nrow=N*T,ncol=1)

eps<-matrix(t(epsM),nrow=N*T,ncol=1)

idtext<-factor(id)

data.df<-data.frame(id=id,idtext=idtext,

time=time,x=x,y=y,gamma0=gamma0,eps=eps)

return(data.df)

}

4.7.2 AR(1)

ar1<-function(T,rho,Seps){

#generate the eps_0

eps<-rnorm(1,0,Seps/sqrt(1-rhoˆ2))

#generate the T innovation terms

innov<-rnorm(T,0,Seps)

for(j in 1:T){

#generate T+1 terms
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eps<-c(eps,rho*eps[j]+innov[j])

}

#eliminate the eps_0

eps<-eps[-1]

return(eps)

}

4.7.3 Compound Symmetry – cov.cs function

cov.cs<-function(N,sigmaCS,rho,T){

#diagonal matrix is defined

corr <- diag(T)

#off diagonal is defined

corr[lower.tri(corr)] <- sqrt(rho)

corr[upper.tri(corr)] <- sqrt(rho)

#covarianc matrix is defined

sigmarho <- sqrt(sigmaCS)*corr

#mean of multivariate normal distribution

mean <- rep(0,T)

#generate NT values

rmvnorm(N,mean,sigmarho)

}

4.7.4 Compound Symmetry – comp function

comp<-function(N,T,rho,sigma){

#generate alpha with zero mean and

#rho*sigmaˆ2 variance

alpha<-rnorm(N,0,sqrt(rho)*sigma)

random<-matrix(rep(NA,N*T),nrow=N,ncol=T)

eps<-matrix(rep(NA,N*T),nrow=N,ncol=T)

for(i in 1:N){

for(t in 1:T){

#generate error term with zero mean and

#(1-rho)*sigmaˆ2 variance

eps[i,t]<-rnorm(1,0,sqrt(1-rho)*sigma)

#combine two terms together as random term

random[i,t]<-alpha[i]+eps[i,t]

}

}

return(random)
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}

sim.RI.ss<-function(N,T,a,b,delta,mu,sigma,

Seps,beta0,beta1){

xM<-matrix(rep(0,N*T),nrow=N,ncol=T)

yM<-matrix(rep(NA,N*T),nrow=N,ncol=T)

idM<-matrix(rep(NA,N*T),nrow=N,ncol=T)

timeM<-matrix(rep(NA,N*T),nrow=N,ncol=T)

gammaM0<-matrix(rep(NA,N*T),nrow=N,ncol=T)

gamma<-rnorm(N,mu,sigma)

epsM<-matrix(rnorm(N*T,0,Seps),nrow=N,ncol=T)

xM[,1]<-rep(runif(1,a,b),N)

inc<-delta*c(0,sort(runif(T-1,0,1)))

xM<-outer(xM[,1],inc,"+")

for(i in 1:N){

for(j in 1:T){

yM[i,j]<-beta0+beta1*xM[i,j]

+gamma[i]+epsM[i,j]

idM[i,j]<-i

timeM[i,j]<-j

gammaM0[i,]<-gamma[i]

}

}

id<-matrix(t(idM),nrow=N*T,ncol=1)

time<-matrix(t(timeM),nrow=N*T,ncol=1)

x<-matrix(t(xM),nrow=N*T,ncol=1)

y<-matrix(t(yM),nrow=N*T,ncol=1)

gamma0<-matrix(t(gammaM0),nrow=N*T,ncol=1)

eps<-matrix(t(epsM),nrow=N*T,ncol=1)

idtext<-factor(id)

data.df<-data.frame(id=id,idtext=idtext,

time=time,x=x,y=y,gamma0=gamma0,eps=eps)

return(data.df)

}
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Chapter 5

Estimation Bias

As in all statistical modelling there is a risk of model misspecification which may lead to

(a) biased estimates of coefficients, and (b) biased estimates of variance components. In this

chapter, we firstly show the omitted variables bias which maybe exists when we ignore the

variable that is correlated with explanatory variables or maybe it is a determinant variable

of the outcome variable and discuss what determines the size of this bias. Then we show

theoretically and empirically the heterogeneity bias exists in particular where the correlation

exists between the explanatory variables and individual effects. The bias exists under two

models, the random effects model and the pooled model. But biases in the coefficient esti-

mates can be tolerable if they are small compared to the standard errors in those coefficients.

We also fit a model which use the Mundlak formulation. We empirically prove this model

can provide unbiased estimates under the correlation case. Then we investigate estimation

bias exists by using simulated data which are generated by using the R functions defined in

chapter 4. In this chapter, we also use the Hausman test to compare the fixed effect estimator

and random effect estimator, then we found the Hausman test is good to use to decide the

best estimation which provide unbiased and efficient estimation.

5.1 Omitted variables bias

Omitted variables bias is due to the correlation between the outcome variables and those

variables that should be include in the equation but are not, either because we ignore the

variable that is correlated with explanatory variables included in the equation or because of

unavailability of data.

To illustrate the omitted variables bias, suppose we have two models, full model Eq.(5.1)
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which is the true model and reduced model Eq.(5.2) with Xi only, which is the omitted

variable model (incorrect model with bias):

Yi = β0 + β1Xi + γSi + εi (5.1)

Yi = β0 + β1Xi + εi (5.2)

where γ and β0 and β1 are regression parameters; S and X are random variables and the

sample size is n. Now we define Eq.(5.1) and Eq.(5.2) in the matrix form as

Full model: Y = Xfβf + ε (5.3)

Omitted variable model: Y = Xrβr + ε (5.4)

Xf =
[
1 x s

]
; Xr =

[
1 x

]

βf =





β0

β1

γ




; βr =



β0

β1





The least squares estimates for both models refer to chapter 2 are given by

β̂f = (XT
f Xf )

−1XT
f Y (5.5)

β̂r = (XT
r Xr)

−1XT
r Y (5.6)

And we know that in truth

Y ∼ N(Xfβf , σ
2I)

Then using this true model, we can derive the mean and variance of estimator βf and βr by

using Eq. (5.5) and Eq. (5.6) are

E
[
β̂f

]
= (XT

f Xf )
−1XT

f E [Y] = (XT
f Xf )

−1XT
f Xfβf = βf (5.7)

Var(β̂f ) = σ̂2(XT
f Xf )

−1 (5.8)

ie. β̂f is unbiased.
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For the omitted variable model we have

XT
r Xr =



1T

xT




[
1 x

]

=



 n 1T x

xT 1 xT x





=



 n
∑

X
∑

X
∑

X2





(XT
r Xr)

−1 =
1

n
∑

X2 − (
∑

X)2




∑

X2 −
∑

X

−
∑

X n





XT
r Xf =



1T

xT




[
1 x s

]

=



1T 1 1T x 1T s

xT 1 xT x xT s





=



 n
∑

X
∑

S
∑

X
∑

X2
∑

XS





therefore,

(XT
r Xr)

−1XT
r Xf =

1

n
∑

X2 − (
∑

X)2




∑

X2 −
∑

X

−
∑

X n







 n
∑

X
∑

S
∑

X
∑

X2
∑

XS





=





1 0

∑
X2

∑
S −

∑
X

∑
XS

n
∑

X2 − (
∑

X)2

0 1
n

∑
XS −

∑
X

∑
S

n
∑

X2 − (
∑

X)2





And

S̄ =
1

n

∑
S

X̄ =
1

n

∑
X

SXS =
∑

XS − 1

n

∑
X

∑
S

SXX =
∑

X2 − 1

n
(
∑

X)2
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SXX S̄ − SXSX̄ =
1

n

∑
S

∑
X2 − 1

n

∑
X

∑
XS

So the expectation and variance of estimator βr are

E
[
β̂r

]
= (XT

r Xr)
−1XT

r E [Y]

= (XT
r Xr)

−1XT
r Xfβf

=





1 0

∑
X2

∑
S −

∑
X

∑
XS

n
∑

X2 − (
∑

X)2

0 1
n

∑
XS −

∑
X

∑
S

n
∑

S2 − (
∑

X)2









β0

β1

γ





=



β0 + γA

β1 + γB



 (5.9)

Var(β̂r) = Var((XT
r Xr)

−1XrY)

= (XT
r Xr)

−1XrVar(Y)(XT
r Xr)

−1Xr

= σ̂2(XT
r Xr)

−1 (5.10)

And let

A =
∑

S
∑

X2 −
∑

X
∑

XS

n
∑

X2 − (
∑

X)2

=
nSXX S̄ − nSXSX̄

nSXX

=
SXX S̄ − SXSX̄

SXX

B =
n

∑
XS −

∑
X

∑
S

n
∑

X2 − (
∑

X)2

=
nSXS

nSXX

=
SXS

SXX

Then we can derive the bias of estimator



β̂0r

β̂1r



 by using Eq. (5.9) minus the first two
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elements of Eq. (5.7), then we have:

Bias



β̂0r

β̂1r



 = E[β̂r]− E[β̂f ]12

=



β0 + γA

β1 + γB



−



β0

β1





=



γA

γB





= γ





SXX S̄ − SXSX̄

SXX

SXS

SXX




(5.11)

So there is a bias in the coefficient estimate above and the bias can be positive or negative.

If SXS = 0, that means the covariance of X and S is zero, there is no bias for the slope β̂1

estimate; the bias of β̂0 is S̄. Now we define a simulated dataset to show the bias empirically.

5.1.1 Simulated Example

In this section and following section, we use simulated data and real data to demonstrate

when the omitted variable bias exists and how it effects our estimates. We assume S to

be a Bernoulli random variable with probability of success p, and X to follow a Beta(a, b)

distribution conditional on S with a(S) = λ(S + 1
2) and b(S) = λ(−S + 3

2)

S ∼ Bern(p)

X|S ∼ Beta(a, b)

Now we can derive the mean and variance for each distribution.

E[S] =
∑

s

s P (S = s) = p

E[S2] =
∑

s

s2 P (S = s) = p

Var[S] = E[S2]− (E[S])2 = p− p2 = p(1− p)
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E[X|S] =
α(s)

α(s) + β(s)

=
λ(s + 1

2)

λ(s + 1
2) + λ(−s + 3

2)

= 1
2(s + 1

2)

Var[X|S] =
a(s)b(s)

(a(s) + b(s))2(a(s) + b(s) + 1)

=
λ(s + 1

2)× λ(−s + 3
2)

(λ(s + 1
2) + λ(−s + 3

2))
2(λ(s + 1

2) + λ(−s + 3
2) + 1)

=
(s + 1

2)(
3
2 − s)

8λ + 4

=
−s2 + s + 3

4

8λ + 4

E[XS] =

∫ ∑

s

xsP (S = s)f(x|s)dx

=
∑

s

s

∫
xf(x|s)dx P (S = s)

=
∑

s

sE[X|S] P (S = s)

=
3

4
p (5.12)

E[X] =
∑

s

E[X|S] P (S = s) =
1

4
+

p

2
(5.13)

Cov[X, S] = E[XS]− E[X]E[S] =
p

2
(1− p) (5.14)

By using the property of Variance

Var[X] = E[Var[X|S]] + Var[E[X|S]]

= E[
s− s2 + 3

4

8λ + 4
] + Var[

1

2
(s +

1

2
)]

=
p− p + 3

4

8λ + 4
+

1

4
p(1− p)

=
3
4

8λ + 4
+ 1

4p(1− p) (5.15)

Then we have the E[X2] is

E[X2] = Var[X] + E[X]2 (5.16)
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In Figure 5.1 and Figure 5.2, we demonstrate the situation when there is and isn’t bias. In

Figure 5.1, we generate n samples for two groups of data (S = 0 or 1) with one explanatory

variable X with Cov(X, S) = ρ = p
2(1 − p) from above derivation. The two groups of data

are generated in R by using function covXS (R code is in section 5.5). We generate S as

S ∼ Bern(p)

and X as a Beta (a, b) distribution conditional on S with a = λ(S + 1
2) and b = λ(−S + 3

2) The

true values in this function are

p = 0.5, n = 300, a = 0, b = 1, λ = 5,

σε = 0.5, β0 = 0, β1 = 1, γ = 3

In Figure 5.1 and Figure 5.2, the black lines are true model lines. The red lines are the full

model fitted lines by using Eq.(5.1) and the green line is the omitted variable model fitted

line by using Eq.(5.2). In Figure 5.1, we can see two full model fitted lines are parallel with

small positive slope. The omitted variable model only has one fitted line also can indicate

that has positive slope, but it is different from the true slope.
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Figure 5.1: Figures of Omitted variable fitting with Cov(X, S) > 0

In Figure 5.2, we generate the n samples by using function indepXS (refer to 5.5) without

any correlation between S and X , ie. Cov(X, S) > 0 . Here we generate S and X separately.

X ∼ N(a, b)

There is no bias. The green line is the omitted variable model fitted line by using Eq.(5.2)

and the red lines are the full model fitted lines by using Eq.(5.1). The black lines are the true

lines, the data is generated based on Eq.(5.1). From Figure 5.2, we can see there is not much

difference among the true slope, the omitted variable model slope and full model slope. So

there is no bias. The parameters are used to generate this data are:

p = 0.5, n = 300 a = 0 b = 0.1

σε = 0.5, β0 = 0, β1 = 1, γ = 3

Compare with the correlation exists case, the R generation function just modify the way of

generate X , in the no correlation case, ie. X ∼ N(a, b).
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Figure 5.2: Figures of Parallel data fitting with Cov(X, S) = 0

Now we define modelfit function to follow the above derivations with parameters n, p, λ, a, b, σε, β0, β1, γ

which also return the estimates β0 and β1 for both full model and omitted variables model

(R program of this function can be found in section 5.5). Then we repeat each sample simu-

lation 1000 times and also store the estimates for each replication.

Finally, we calculate the mean and variance of estimator β1 for full model and omit-

ted variable model by calling the R function cal which is defined following the derivations

above. The true parameters for each sample are

n = 100, p = 0.5, λ = 5,

a = 0, b = 1, σε = 0.5,

β0 = 0, β1 = 1, γ = 3.

We compare results of the full model with omitted variables model based on the simulated
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estimates and theoretical estimates. Figure 5.3 and Figure 5.4 show the value of the bias for

β0 and β1 respectively. The bias is horizontal distance between the two vertical lines on the

graph. There are two vertical lines for each model. One is simulated estimates and the other

is theoretical mean estimates.

−2.0 −1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
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3.
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Beta_0 comparison

N = 1000   Bandwidth = 0.02735

De
ns

ity

Full Model (FM)
Omitted variables Model (OM)

true mean of FM estimated mean of FM

true mean of OMestimated mean of OM

Figure 5.3: Figures of β̂0 estimates for both models
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Figure 5.4: Figures of β̂1 estimates for both models

The vertical lines on both Figure 5.3 and Figure 5.4 show the estimated mean and the-

oretical mean for estimates (of intercept and slope) where the true mean for intercept and

slope are β0 = 0 and β1 = 1 respectively. On Figure 5.3, we can see the intercept estimate for

full model is merely equal to the true intercept value (β0 = 0). But there is bias between the

omitted variables model intercept estimate and true intercept value. The bias of intercept is

Bias(β̂0) = −0.85

which is calculated following Eq.(5.11).

From Figure 5.4, we compare the slope estimate between the full model with the true

slope where β1 = 1, there is no bias between them. The simulated and theoretical estimate of

full model is approximately equal to the true slope. Then we compare between the omitted
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variables model and the true slope. There is significant bias, the bias is

Bias(β̂1) = 4.72

which is calculated following Eq.(5.11).

Note the theoretical mean is calculated by using cal function is based on equations from

Eq. (5.12) to Eq. (5.16) and substitute them into Eq. (5.9).

5.1.2 Real Data Example

Girth, Height and Volume for Black Cherry Trees We now demonstrate the effect of omit-
ted variable on a real dataset. The data is sourced from R [Atkinson, 1985]. This data set
provides measurements of the girth, height and volume of timber in 31 felled black cherry
trees. Girth is measured in inches, Height in ft and V olume in cubic ft. The data is given as

> data(trees)

> trees

Girth Height Volume

1 8.3 70 10.3

2 8.6 65 10.3

3 8.8 63 10.2

4 10.5 72 16.4

5 10.7 81 18.8

6 10.8 83 19.7

7 11.0 66 15.6

8 11.0 75 18.2

. . . .

. . . .

. . . .

Then we use function pairs(trees) to plot the data shows in Figure 5.5.
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Figure 5.5: Figures of black cherry data

Figure 5.5 shows the correlations between three variables. There is strong correlation

between Girth and V olume. The correlation between Girth and Height is weaker.

Now we fit five simple model to black cherry trees data. The models in R are defined as

• Model 1 (M1): full model with Girth and Height and their interaction

M1 <- lm(Volume ˜ Girth*Height, data=trees)

• Model 2 (M2): additive model with Girth and Height

M2 <- lm(Volume ˜ Girth+Height, data=trees)

• Model 3 (M3): girth only model

M3 <- lm(Volume ˜ Girth, data=trees)

• Model 4 (M4): height only model
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M4 <- lm(Volume ˜ Height, data=trees)

• Model 5 (M5): intercept only

M5 <- lm(Volume ˜ 1, data=trees)

The coefficients of the estimates for each model are shown, also with the confidence intervals

for each parameter:

Table 5.1: The coefficients of the estimates for Model 1

Estimate Std. Error t value Pr(>|t|)
(Intercept) 69.40 23.84 2.91 0.01

Girth -5.86 1.92 -3.05 0.01
Height -1.30 0.31 -4.19 0.00

Girth:Height 0.13 0.02 5.52 0.00

Table 5.2: The coefficients confidence interval of the estimates for Model 1

2.5 % 97.5 %
(Intercept) 20.49 118.30

Girth -9.80 -1.91
Height -1.93 -0.66

Girth:Height 0.08 0.18

Table 5.3: The coefficients of the estimates for Model 2

Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.99 8.64 -6.71 0.00

Girth 4.71 0.26 17.82 0.00
Height 0.34 0.13 2.61 0.01

Table 5.4: The coefficients confidence interval of the estimates for Model 2

2.5 % 97.5 %
(Intercept) -75.68 -40.29

Girth 4.17 5.25
Height 0.07 0.61

83



Table 5.5: The coefficients of the estimates for Model 3

Estimate Std. Error t value Pr(>|t|)
(Intercept) -36.94 3.37 -10.98 0.00

Girth 5.07 0.25 20.48 0.00

Table 5.6: The coefficients confidence interval of the estimates for Model 3

2.5 % 97.5 %
(Intercept) -43.83 -30.06

Girth 4.56 5.57

Table 5.7: The coefficients of the estimates for Model 4

Estimate Std. Error t value Pr(>|t|)
(Intercept) -87.12 29.27 -2.98 0.01

Height 1.54 0.38 4.02 0.00

Table 5.8: The coefficients confidence interval of the estimates for Model 4

2.5 % 97.5 %
(Intercept) -146.99 -27.25

Height 0.76 2.33

Table 5.9: The coefficients of the estimates for Model 5

Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.17 2.95 10.22 0.00

Table 5.10: The coefficients confidence interval of the estimates for Model 5

2.5 % 97.5 %
(Intercept) 24.14 36.20

In this example, the outcome variable is V olume and the predictors are Girth and Height.

In order to investigate the omitted variable bias, we assume that the model including these
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two predictors (with their interaction) Model 1 is the true model, and define reduced models

omitting the interaction Model 2 and simple model omitting Height Model 3.

The estimates of Model 1 are βintercept = 69.4 and βGirth = −5.86), the estimates of Model 2

are βintercept = −57.99 and βGirth = 4.71) and the estimates of Model 3 are βintercept = −36.94

and βGirth = 5.07). The confidence intervals of three models are shown in Figure 5.6 and

Figure 5.7 for both intercept and Girth estimates.
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Figure 5.6: Figures of intercept estimate for Model 1, 2, 3, 4 and Model 5

Figure 5.6 shows if Model 1 is the true model, then the reduced models which omit

variable Height leads to a significant bias. The middle point on Figure 5.6 is the estimate of

intercept for the five fitted models.
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Figure 5.7: Figures of Girth estimate for Model 1, 2 and Model 3

Figure 5.7 shows slightly difference between Model 2 and Model 3. That’s because the

correlation between the Girth and Height is weaker. But compare with Model 1, there is sig-

nificant bias. That’s because the interaction term has significant effects. So we can conclude

the bias can be decided by the degree of correlation between two explanatory variables.

Empirical results are often criticized on the grounds that the researcher has not explicitly

recognized the effects of omitted variables that are correlated with the included explanatory

variables (the omitted variable Height in the black cherry and S from the simulated data

which are correlated with the include variable). So the researcher should be more careful to

deal with the effect of the omitted variables.

5.2 Heterogeneity Bias

In order to investigate the random effect estimation bias (heterogeneity bias), we first list the

models and their estimators we have introduced in Chapter 3.
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• Pooled model

y = Xβ + ε.

Pooled OLS Estimation Recall Eq. (3.6, 3.7, 3.8 and 3.9) in Chapter 3:

β̂ = (XT X)−1XT y

And

E(β̂) = β

Var(β̂) = σ̂2(XT X)−1

σ̂2 =
eT e

NT −K

where

e = y−Xβ̂

• Fixed effect model

y = Xβ + Zα + u

Fixed Effect Estimation Recall Eq. (3.17) in Chapter 3

β̂FE = (XT QX)−1XT Qy

where

Q = INT −
1

T
ZZT

and Z is a set of N dummy variables (one for each individual).

Z =





1T×1 0 0

0
. . . 0

0 0 1T×1





NT×N

And Eq. (3.18 and 3.20 and 3.22) in Chapter 3 gives

E(β̂FE) = β

Var(β̂FE) = σ̂2(XT QX)−1
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σ̂2 =
ûT û

NT −N −K

where

û = Qy−QXβ̂

• Random effect model

y = Xβ + Zα + u

with

ε = Zα + u

Random Effect Estimation Recall Eq. (3.34) in Chapter 3:

β̂RE = (XT Ω̂−1X)−1XT Ω̂−1y

And Eq. (3.35) in Chapter 3 has

Var(βRE) = (XT Ω̂−1X)−1

where

Ω = IN ⊗ V = E[εεT ] =





V 0 · · · 0

0 V · · · 0
...

... . . . ...

0 0 · · · V





V = E[εiε
T
i ] = σ2

uIT + σ2
α11T .

Therefore, the estimator V̂ is

V̂ = σ̂2
uIT + σ̂2

α11T

Recall Eq.( 3.37, 3.38 and 3.42), we have

σ̂2
u =

ûT
W ûW

NT −N −K

σ̂2
α = σ̂2

B −
1

T
σ̂2

u

σ̂2
B =

ûT
BûB

N −K
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where

ûW = Qy−QXβ̂RE

Also, Eq.(3.40 and 3.41) give

β̂B = (XT PX)−1XT Py

ûB = y−Xβ̂B

5.2.1 Theoretical Derivation

From Chapter 3, we know the variance-covariance matrix for random effect model is

V = E[εiε
T
i ] = σ2

uIT + σ2
α11T

Its inverse is

V −1 =
1

σ2
u

[IT −
σ2

α

σ2
u + Tσ2

α

11T ] (5.17)

(see [Hsiao, 2003] for detail). We can easily verify V −1V = I (details can be found in Ap-

pendix B). We could rewrite the inverse of V −1 as

V −1 =
1

σ2
u

[IT − (
1

T
− 1

T
ψ)11T ]

=
1

σ2
u

[IT −
1

T
(1− ψ)11T ]

=
1

σ2
u

[IT −
1

T
11T +

1

T
ψ11T ]

=
1

σ2
u

[Q + ψP ]

where

ψ =
σ2

u

σ2
u + Tσ2

α

Now we express the Generalized Least Squares Estimator (GLSE) as a combination of two

components, known as the within group estimator and the between group estimator,

β̂GLS = [XT (Q + ψP )X]−1[XT (Q + ψP )y]

= [WXX + ψBXX ]−1[WXy + ψBXy]
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where

TXX = XT X, TXy = XT y

BXX = XT PX, BXy = XT Py

WXX = TXX −BXX = XT QX, WXy = TXy −BXy = XT Qy

We then define ∆ and 1−∆ as

∆ = [WXX + ψBXX ]−1ψBXX

1−∆ = [WXX + ψBXX ]−1WXX

Now the GLS estimator is

β̂GLS = ∆β̂B + (1−∆)β̂W

where

β̂W = W−1
XXWXy

β̂B = B−1
XXBXy

If both within group estimator and between group estimator are unbiased, then the GLSE

is unbiased estimator as well. But if there is correlation between the unobserved effect α

and explanatory variable X, the between group estimator will be biased. That means if the

correlation exists between the individual effect and explanatory variable, the random effect

estimator will be biased. Mundlak [1978] showed the random effect estimator will be biased

if there is such correlation exist. To prove this (refer to Hsiao [2003]), Mundlak assumes that

αi = XT
i a + wi

where wi ∼ N(0, σ2
w) and a is K × 1 matrix and Xi is K × 1 matrix where K is number of

explanatory variables have random effect (we assume all the explanatory variables within

random effects model have random effect). Now we recall Eq. (3.29) the individual form of

random intercept model

yi = Xiβ + Ziαi + ui
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Then we substitute αi into the equation to have the new formulation for random intercept

model, without assuming αi and X are uncorrelated.

yi = Xiβ + Zi(X
T
i a + wi) + ui

where ui ∼ N(0, σ2
uIT ). We express the equation as

yi = Xiβ + ZiX
T
i a + Ziwi + ui (5.18)

We also can write this in stack form





y1
...

yN




=





X1

...

XN




β +





1xT
1

...

1xT
N




a +





1
...

0




w1 + · · · +





0
...

1




wN +





u1

...

uN





It follows that

E(Ziwi + ui) = 0

The new variance-covariance matrix would be

Ṽij = E[(Ziwi + ui)(Zjwj + uj)
T ]

= E[uiuT
j + uiZ

T
i wj + ZwiuT

j + ZiwiwjZ
T
i ]

If i = j, Ṽ = σ2
uIT + σ2

wZiZT
i = σ2

uIT + σ2
w11T ; If i != j, Ṽ = 0. Using the same method as

above we derive the inverse of this matrix is

Ṽ −1 =
1

σ2
u

[IT −
σ2

w

σ2
u + Tσ2

w

11T ]

Now we can write the vector equation as the full data form

y = Xβ + Zα + u

where

Zα = PXa + PW
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We assume PX is NT × K , PW is NT× 1 (W =





w1

...

wN




), P = Z(ZT Z)−1ZT , PP = P =

P T = P T P and Q = I − P as defined in Chapter 3, and a is K × 1.

And the GLS estimator of random effects model is

β̂GLS = ∆β̂B + (1−∆)β̂W .

We now separately compute the expected value of β̂B and β̂W . The expectation value for

between estimation and within estimation are

E[β̂B] = E[(XT PX)−1XT Py

= E[(XT PX)−1XT P (Xβ + PXa + PW + u)]

= E[(XT PX)−1XT PXβ] + E[(XT PX)−1XT PPXa] +

E[(XT PX)−1XT PPW] + E[(XT PX)−1XT Pu]

= β + E[(XT PX)−1XT PXa]

= β + a

where a is a constant numerical vector and by assumptions W is

E[Xu] = 0; E[XW] = 0

E[β̂W ] = E[(XT QX)−1XT Qy

= (XT QX)−1XT Q(Xβ + PXa + PW + u)]

= E[(XT QX)−1XT QXβ] + E[(XT QX)−1XT QPXa]

+E[(XT QX)−1XT QPW] + E[(XT QX)−1XT Qu]

= β (5.19)

So the bias in β̂B is a by using random effect estimation if there is correlation between α and

X . Therefore, we can derive the expectation of β̂GLS as

E[β̂GLS] = ∆(β + a) + (1−∆)β = β + ∆a (5.20)
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Similarly, if we use the pooled estimation or OLS estimation, the pooled estimation still has

bias, to see this, rewrite the pooled estimator as

β̂ = (XT X)−1XT y

= (XT X)−1XT (Xβ + PXa + PW + u)

= (XT X)−1XT Xβ + (XT X)−1XT PXa

+(XT X)−1XT PW + (XT X)−1XT u

= β + (XT X)−1XT PXa + (XT X)−1XT PW + (XT X)−1XT u

then find the expectation of this, we have

E(β̂) = β + E[(XT X)−1XT PXa] (5.21)

since

E(Xu) = 0 E(XW ) = 0

So the bias is E[(XT X)−1XT PXa] by using the pooled estimation if a != 0. Although the

random effect estimation and pooled estimation give the bias estimation, the fixed effect

estimator does provide the unbiased estimator when there is correlation between α and X .

To prove this, we can use GLS method and within estimator. We write the model in full data

form as

y =
[
X PX

]


β

a



 + PW + u

Let K =
[
X PX

]
, then KT =



 XT

XT P T



; δ =



β

a



 and ε = PW + u. Then

y = Kδ + ε (5.22)

By apply the GLS method, we have

δ̂ = (KT K)−1KT y
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Hsiao [2003] shows using the expression of the inverse of a partitioned matrix (refer to Ap-

pendix A), we obtain the GLS estimator of β and a as

β̂
∗
GLS = β̂W

â∗GLS = β̂B − β̂W

(Details of this proof can be found in Appendix C). Alternatively, we could use the within

estimation method to premultiply Eq. (5.18) by Q. We have

Qy = QXβ + QPXa + QPW + Qu

Since

QP = (I − P )P = P − P = 0

implies QPXa = 0 and QPW = 0. Now we have

Qy = y = QXβ + Qu.

We obtain the estimator

β̂
∗
RE = β̂W

So the within group method and GLS method applied on Mundlak formulation provide

unbiased estimates for the fixed effect model.

5.2.2 Simulated Data Deviation

Now we use simulated data to demonstrate heterogeneity bias and the size of the bias for

both random effect estimation and pooled estimation, and also demonstrated that the fixed

effect estimator is unbiased. We assume our model is

Yit = β0 + β1xit + α0i + εit (5.23)

where i = 1, · · · , N and t = 1, · · ·T,; β0 and β1 are fixed effect intercept and slope respec-

tively. We assume xi1 ∼ N(0, σ2
X). We then let the observations xit (for t = 2, · · · , T ) be the

order statistics of T-1 draws from the uniform distribution U(xit, xit + δ) for some δ.

α0i is the only random effect for ith individual, according to the Mundlak formulation
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(1978), we have

α0i = XT
i ρ + wi

where ρ is a fixed numerical value and wi ∼ N(0, σ2
w). In R, we generate the α0i without wi

(we generate in next step) by given a constant ρ = Cov(Xi, αi) and calculate Xi =
T∑

t=1
xit.

Finally, we return xit and α0i with individual and time specification. We call this function

newsim.cor.

Next, we define two functions called modelfit.mle, this function is a fitting function

which have three models being fitted: random intercept model, fixed effects model and

pooled model. We use MLE to fit three different models by call the function lme from nlme

package and glm function in R. Note: a −1 is used in the model formula to prevent the de-

fault inclusion of an intercept term in the model. Finally, save the slopes for each model.

The function is given in section 5.5.

Also, we define a function by using the least square method to calculate the slope of three

different models. The estimators are listed at the beginning of this chapter. Then functions

slope.re, slope.fe and slope.sr are defined based on these equations in R (details of these

functions can be found in section 5.5).

We next generate simulated data sets for a fixed set of Xi values. For each dataset we

generate ui and wi follow ui ∼ N(0, σ2
u) and wi ∼ N(0, σ2

w), then recall the random intercept

model equation Eq. (3.3) to obtain Yit. Combine the newsim.cor function values with Yij ,

uit and wi values as the full data frame. Then we call the functions modelfit.mle, slope.re,

slope.fe and slope.sr to calculate the slope for each model by using two method (LS method

and MLE method). Then we define a new function which combine these functions together,

this way we could easily call the function at once. We call this combination function fit-

ting.cor. Here we assume R replications. That means we replicate function fitting.cor R times

to get the estimates distribution for each model.

Now using the Eq. (5.20) and Eq. (5.21), we can calculate the bias theoretically as

Bias Pooled = E[(XT X)−1XT PXρ]

= ρ× (XT X)−1XT PX

and

Bias RE = ∆ρ
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where

∆ = [XT QX + ψXT PX]−1ψXT PX

Since

ψ =
σ2

u

σ2
u + Tσ2

α

,

and

σ2
α = Var(α0i) = Var(Xiρ + wi)

= ρ2Var(Xi) + Var(wi)

= ρ2σ2
X

T
+ σ2

w

Note: Xi and wi are independent.

We substitute σ2
α into ψ, it becomes

ψ =
σ2

u

σ2
u + Tσ2

α

=
σ2

u

σ2
u + T (ρ2 σ2

X
T + σ2

w)

=
σ2

u

σ2
u + ρ2σ2

X + Tσ2
w

In R, the calculation function is defined following these equations. Now if we assume the

true parameters N , T , ρ, σu, σX , σw, β0, β1 and R to be

N = 20, T = 5, ρ = 1, δ = 1, σu = 1, σX = 1,

σw = 1, β0 = 0, β1 = 1 and R = 1000

The estimates distribution of three models (random effect model (RI), fixed effect model (FE)

and pooled model (PL)) are shown in Figure 5.8.
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Figure 5.8: Figures of estimates comparison between RI, FE and PL by using LS estimation
and MLE with correlation

Figure 5.8 shows the estimates comparison between RI, FE and PL by two different esti-

mation method: least squares estimation (LSE) and maximum likelihood estimation (MLE).

From Figure 5.8, we can see both methods give the exactly same distribution for fixed effect

model and for pooled model as well, since the lines overlap. There is slightly different be-

tween MLE and LSE for random intercept (RI) model. For the estimates of RI model, the dot

line (LSE) is slightly flatter than the solid line (MLE) and on the peak of the distribution the

LSE is above the MLE. The reason is that by using MLE we iterate to obtain the estimation

which is not a linear estimation.

From Figure 5.8, The vertical lines are the estimate mean, theoretical mean and the true

mean. The actual value of true mean is β1 = 1, and the estimates for each model (MLE and

LSE are identical) are E[β̂1RI ] = 1.703, E[β̂1FE ] = 1.008 and E[β̂1PL ] = 1.963. The theoretical

mean are approximately equal to the mean estimates and true mean. Since the lines overlap

and are the average of fitted values. There is not much difference between the theoretical
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mean (from LSE and MLE) and estimated mean (from LSE and MLE) for β̂1 random effect

model and also for pooled model as well.

The random effect model and Pooled model have bias on mean estimates. It is calculated

by using Eq. (5.20) and Eq. ( 5.21) for random effect model and pooled model respectively.

We can see the biases, the numerical results from simulation match the theoretical formula

exactly. The FE model gives the exactly same estimate mean (from LSE and MLE) as the true

value. Its estimate mean is calculate by using Eq. (5.19).

Figure 5.9 and 5.10 are shown the estimate variance comparison between RI, FE and PL

by using MLE and LSE for Cov(X, α) != 0 case.
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Figure 5.9: Figures of Var(β̂1) comparison between RI, FE and PL by using MLE and
Cov(X, α) != 0
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Figure 5.10: Figures of Var(β̂1) comparison between RI, FE and PL by using LSE and
Cov(X, α) != 0

Since Figure 5.9 and 5.10 are approximately identical, we only comment on Figure 5.9 be-

low. In Figure 5.9, we see the fixed effect estimation has the highest variance, then random

effect estimation, then pooled estimation. Because there is a correlation between αi and Xi,

the only appropriate model to fit is the FE model, which has a high variance Var(β̂1FE) =

0.071, also the RI model which severely underestimate Var(β̂1RI ) = 0.021 and even worse

the pooled model Var(β̂1PL) = 0.005. However, if the variance components are poorly esti-

mated it may lead to inefficient estimation (standard errors overestimated, leading to Type

II errors), or unrealistically precise estimation (standard errors underestimated, leading to

Type I errors). In the simulation, we have shown the estimated variance for random effect

estimate and pooled estimate are unrealistically precise estimation and the Type I error rate

is increased.

Therefore, fixed effect estimation should be used as an unbiased and efficient method

when there is correlation between the explanatory variable and the individual effect.
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When there is no correlation, what would happen to the three models? And which es-

timation should be used when there is no correlation? Now we can find this answer via

simulating the data by setting rate = 0, which gives no correlation.
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Figure 5.11: Figures of estimates comparison between RI, FE and PL by using LSE and MLE
without correlation

Figure 5.11 shows the mean estimates for three model are approximately equal to the

true mean, E[β̂1RI ] ≈ E[β̂1FE ] ≈ E[β̂1PL ] ≈ 1 = E[β1true ]. Then the three estimators are all

unbiased.

Now we compare the variances for each method. Figure 5.12 and 5.13 show the estimates

variance comparison between RI, FE and PL by using MLE and LS when Cov(X, α) = 0.
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Figure 5.12: Figures of estimates variance comparison between RI, FE and PL by using MLE
and Cov(X, α) = 0
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Figure 5.13: Figures of estimates variance comparison between RI, FE and PL by using MLE
and Cov(X, α) = 0

In both Figure 5.12 and 5.13, they show approximately the same distribution, so we only

comment on Figure 5.12 below. In Figure 5.12, we see the fixed effect estimation has the high-

est variance, then random effect estimation, then pooled estimation. Because there is no cor-

relation between αi and Xi, the only appropriate model to fit is the RI model, which has vari-

ance Var(β̂1RI ) = 0.013, also the PL model which severely underestimate Var(β̂1PL) = 0.004

and FE model which overestimate the variance Var(β̂1FE) = 0.025. However, if the variance

components are poorly estimated it may lead to inefficient estimation (standard errors over-

estimated, leading to Type II errors), or unrealistically precise estimation (standard errors

underestimated, leading to Type I errors). In this simulation, we have shown the estimated

variance for fixed effect estimate is inefficient which gives a loss of statistical power and may

lead to Type II errors. Pooled estimate is unrealistically precise estimation and may lead to

Type I error.

Hence, the random effect estimation as an unbiased and efficient method should be used

when there is no correlation between the explanatory variable and the individual effect.

Although, the fixed effect estimator and pooled estimator are all unbiased, the random effect
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estimation is the best one should be used in this case.

We summarise the empirical results as: if there are no individual effects, the pooled

model gives the best fit; if there are individual effects which are correlated with explanatory

variables, the fixed effects model gives the best fit; if there are individual effects, but they

are not correlated with explanatory variables, the random intercept model gives the best fit.

5.3 Hausman Test on Model selection

In practice, the true model is unknown, so the question is now to select the best model. In

order to decide which is the appropriate model, especially between random effect model

and fixed effect model for longitudinal data, we could turn the question to identify whether

there is correlation exist between explanatory variables and individual effect. The Hausman

test is the common test to use in this case (discussed in section 3.4 and more discussion about

Hausman test [?] can be found in Cameron and Trivedi [2005]), as it can used to select the

unbiased and efficient estimation method. So it can identify the correlation. No correlation

means the random effect estimation is unbiased and efficient, while correlation means the

fixed effect method is unbiased. In this section, we not only empirically and theoretically

prove the correlation exist, but we also demonstrate how the correlation affects the choice

of random effect and fixed effect estimation. For the two models, one with and one without

correlation, we generate 1000 replicate datasets. We then fit the FE and RI models for each

replicate, and compute the Hausman test statistic (by using Eq. (3.45)). Our expectation is

the Hausman test is sensitive enough to detect the correlation between explanatory variables

and individual effects.

Figure 5.14 and Figure 5.15 show the distribution of Hausman statistic for with correla-

tion and without correlation cases where the degree of the correlation can be expression as

ρ = Cov(αi, X i).
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Figure 5.14: Figures of distribution of Hausman statistic - no correlation ρ = 0
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Figure 5.15: Figures of distribution of Hausman statistic - with correlation (ie. ρ = 1)

Since we only have one variable in the model, the degrees of freedom of the Hausman

statistic is 1, and the corresponding critical value for 5% significance is 3.841. We draw this

critical value on Figure 5.14 and Figure 5.15 as a vertical line. Figure 5.14 is the distribution

of the Hausman statistic for the case where there is no correlation, the ρ = 0 (ρ is a scalar to

measure the degree of the correlation). In Figure 5.14, 95.6 % of the distribution is on the left

hand side of the vertical line for a 5 % of significance level. The area under the distribution

of left hand side is the probability (or proportion) of the acceptance (accept H0 rate), if this

probability is high, that means we accept H0 a lot for no correlation case. That indicates

the random effect estimation should be used. Figure 5.15 shows the opposite situation. The

proportion of acceptance is low, since most of the distribution area is on the right hand side

of the vertical line. So when there is correlation, we are more likely to reject the H0 than

accept. In this case, we should use fixed effect estimation.

Note:
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• Figure 5.14 shows there is the Type I error on right hand side of the vertical line, which

4.4 % of chance we fail to accept H0.

• Figure 5.15 shows there is Type II error on the left hand side of the vertical line, which

caused by 0.4 % we fail to reject H0.

To investigate how the correlation rate (or the degree of the correlation) effects the propor-

tion of acceptance, we repeat the simulation for each case 100 times with 100 different rate

value from 0 to 1 in order. For each rate, we do the same calculation as before, we calcu-

late the test statistic H for single data set and find the proportion of acceptance (calculate

by using the number of H < 3.841 out of 1000 simulation). So far, for each rate, we have a

proportion of acceptance as its probability (the highest probability is 95 % and lowest is 0%).

We show the ρ vs. proportion of acceptance on Figure 5.16.
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Figure 5.16: Figures of rate vs. proportion of acceptance

Figure 5.16 shows when the ρ is increasing, the proportion of acceptance is decreasing.

Although the proportions fluctuate, it shows a consistent downward trend. It also suggest
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that for ρ < 0.1 that random effect estimator is still ok and for even small correlation the

Hausman test is sensitive enough to detect this correlation. Now we use simulated data

and real data to demonstrate how Hausman test works. In the following examples, we only

use likelihood approach to estimate, because we have proved least squares based approach

produces the similar estimates as likelihood based approach for RE model and produces

exactly same estimates as likelihood based approach for FE and PL model. We also fit a new

model called Mundlak formulation model (MF Model), because we proved it is unbiased

and is a special case of the RE model. Hence, the MF estimates should be unbiased for both

correlation and none correlation case.

5.3.1 Simulated Data Example

The simulation data sets we use in this section is generated by using the R functions defined

in Chapter 4. There are two types of datasets, one has no the correlation between individual

effect α and explanatory variable Xij called RINOCOR which is randomly generated by

using sim.RE function and setting the true parameters for RINOCOR dataset as

N = 20, T = 4, a = −10, b = 10,

δ = 3, µ =
[
0 0

]
, G =



0.6 0

0 0



 ,

σε = 1, β0 = 0 and β1 = 1.

The other is with such correlation called RICOR which is randomly generated by using

sim.cor function and setting the true parameters for RICOR dataset as

N = 20, T = 5, a = −5, b = 5,

σw = 1, δ = 1

σε = 1, β0 = 0 and β1 = 1.

The candidate models are

1. Random intercept model (RE Model):

Yit = β0 + β1xit + α0i + εit

107



εit ∼ N(0, σ2
ε)

α0i ∼ N(0, σ2
α)

Where i = 1 · · ·N and t = 1 · · ·T , for N = 20 and T = 4; β0 is intercept. In R, we fit RE
Model as

RE <-lme(fixed = y ˜ x, random = ˜ 1 | idtext, data=data.df)

The estimates for RE Model are obtained by using R for two datasets and are listed as

Table 5.11: Estimates β̂k of RE model for RINOCOR dataset, k = 0, 1

Value Std.Error DF t-value p-value
(Intercept) 0.072 0.180 59.000 0.400 0.691

x 1.011 0.033 59.000 30.394 0.000

Table 5.12: Estimates Var(β̂k) of RE model for RINOCOR dataset, k = 0, 1

(Intercept) x
(Intercept) 0.074 -0.018

x -0.018 0.039

The estimates of RINOCOR: σε is 1.022 and σα is 0.620.

Table 5.13: Estimates β̂k of RE model for RICOR dataset, k = 0, 1

Value Std.Error DF t-value p-value
(Intercept) 0.246 0.272 79.000 0.905 0.368

x 1.594 0.198 79.000 8.061 0.000

Table 5.14: Estimates Var(β̂k) of RE model for RICOR dataset, k = 0, 1

(Intercept) x
(Intercept) 0.074 -0.018

x -0.018 0.039

The estimates of RICOR: σε is 1.063 and σα is 0.964.
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2. Fixed effect model (FE Model)

Yit = β1xit + α0i + εit

εit ∼ N(0, σ2
ε)

α0i are fixed constant

Where i = 1 · · ·N and t = 1 · · ·T , for N = 20 and T = 5. Here we define the simplest
FE model only. No correlation with Xi is assumed, but we may detect this. The corre-
lations case will be introduced by using Mundlak formulation. In R, we fit FE Model
as

FE <- glm(y ˜ x + idtext, data=data.df)

The estimates for FE Model are obtained by using R for two datasets and are listed as

Table 5.15: Estimates β̂1 of FE model for RINOCOR dataset

Estimate Std. Error t-value p-value
x 1.016 0.103 9.865 0.000

The estimates of RINOCOR: σε is 1.061 and Var(β̂1FE)= 0.011.

Table 5.16: Estimates β̂1 of FE model for RICOR dataset

Estimate Std. Error t-value p-value
x 1.018 0.312 3.260 0.002

The estimates of RICOR: σε is 0.898 and Var(β̂1FE)= 0.098.

3. Pooled model (PL Model)

Yit = β0 + β1xit + εit

εit ∼ N(0, σ2
ε)

Where i = 1 · · ·N and t = 1 · · ·T , for N = 20 and T = 4; β0 is intercept. In R, we fit PL
Model as

PL <-glm(y ˜ x, data=data.df)
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The estimates for PL Model are obtained by using R for two datasets and are listed as

Table 5.17: Estimates β̂k of PL model for RINOCOR dataset, k = 0, 1

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.072 0.133 0.543 0.589

x 1.011 0.025 39.914 0.000

Table 5.18: Estimates Var(β̂k) of PL model for RINOCOR dataset, k = 0, 1

(Intercept) x
(Intercept) 1.76e-02 -2.31e-04

x -2.31e-04 6.41e-04

The estimates of RINOCOR: σε is 1.401.

Table 5.19: Estimates β̂k of PL model for RICOR dataset, k = 0, 1

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.116 0.150 0.772 0.442

x 1.881 0.130 14.480 0.000

Table 5.20: Estimates Var(β̂k) of PL model for RICOR dataset, k = 0, 1

(Intercept) x
(Intercept) 0.022 -0.008

x -0.008 0.017

The estimates of RICOR: σε is 1.896.

4. Mundlak Formulation (MF Model)

Yit = β0 + β1xit + αi + εit

α0i = ρX i + wi

εit ∼ N(0, σ2
ε)
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wi ∼ N(0, σ2
w)

Where i = 1 · · ·N and t = 1 · · ·T , for N = 20 and T = 4; β0 is intercept; ρ is scalar. In
R, we fit MF Model as

MF <-lme(fixed = y ˜ x+barX, random = ˜ 1 | idtext, data=data.df)

The estimates for MF Model are obtained by using R for two datasets and are listed as

Table 5.21: Estimates β̂k and ρ of MF model for RINOCOR dataset, k = 0, 1

Value Std.Error DF t-value p-value
(Intercept) 0.072 0.181 59.000 0.400 0.691

x 1.016 0.103 59.000 9.865 0.000
barX -0.005 0.109 18.000 -0.049 0.961

Table 5.22: Estimates Var(β̂k) of MF model for RINOCOR dataset, k = 0, 1

(Intercept) x
(Intercept) 3.26e-02 -2.71e-18

x -2.71e-18 1.06e-02

The estimates of RINOCOR: σε is 1.030 and σw is 0.620.

Table 5.23: Estimates β̂k and a of MF model for RICOR dataset, k = 0, 1

Value Std.Error DF t-value p-value
(Intercept) 0.081 0.268 79.000 0.302 0.764

x 1.018 0.312 79.000 3.260 0.002
barX 0.939 0.394 18.000 2.383 0.028

Table 5.24: Estimates Var(β̂k) of MF model for RICOR dataset, k = 0, 1

(Intercept) x
(Intercept) 7.16e-02 -2.43e-17

x -2.43e-17 9.76e-02

The estimates of RICOR: σε is 1.007 and σw is 0.948.
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Now we have to decide which estimator give the unbiased estimation and efficient estima-

tion between random effect estimator and fixed effect estimator. We use Hausman test Eq.(

3.4) to compare the random effect estimator and fixed effect estimator.

• H0: There is no correlation between the individual effect and the explanatory variable;

• Ha: There is correlation between the individual effect and the explanatory variable.

The test statistic is

H = (β̂RE − β̂FE)T (ΣFE − ΣRE)−1(β̂RE − β̂FE) ∼ χ2
1

where ΣFE is the covariance of β̂FE and ΣRE is the covariance of β̂RE . We use S2
RE to rep-

resent the estimated covariance for the random effect estimator and S2
FE to represent the

estimated covariance for the fixed effect estimator.

In the RINOCOR case, the true value of the β1 is 1. β̂RE = 1.011 and SE(β̂RE) = 0.033;

β̂FE = 1.015 and SE(β̂FE) = 0.103; β̂PL = 1.011 and SE(β̂PL) = 0.025 and β̂MF = 1.016 and

SE(β̂MF ) = 0.103, all of estimates of β1 give the close estimates to the true value. That means

they are all unbiased. There is not very much difference between fixed effect estimate and

random effect estimate. This indicates there is no correlation between the individual effects

and the explanatory variable. Now we use Hausman test to apply on this dataset.

In RINOCOR case, the test statistic is 0.003 with 1 degree of freedom (we only have one

variable here), thus P(H > 0.003) = 0.959, so we accept H0, there is no correlation between

X and α at 5% significance level. Hausman test identify the random effect estimator is

appropriate estimation to use for RINOCOR data.

Note: Our RINOCOR data is generated by random effect model, therefore, the Hausman

test gives the correct conclusion.

In the RICOR case, the true value of the β1 is 1. β̂RE = 1.594 and SE(β̂RE) = 0.198;

β̂FE = 1.018 and SE(β̂FE) = 0.312; β̂PL = 1.881 and SE(β̂PL) = 0.130 and β̂MF = 1.018 and

SE(β̂MF ) = 0.312. The fixed effect estimate is close to the true value. The MF estimate is the

same as the fixed effect estimate. So the FE estimator and MF estimator give unbiased esti-

mates. RE and PL estimates are different from true value, so they produce biased estimates

as proved before. The fixed effect estimate is unbiased and there is a difference between the

fixed effect estimate and the random effect estimate. This also indicates there is correlation

between the individual effects and the explanatory variable. Now we use Hausman test to

confirm this finding.
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In RICOR case, The test statistic is 4.762 with 1 degree of freedom, thus P(H > 4.762) =

0.029, so we reject H0 at 5% significance level, there is correlation between X and α. Haus-

man test confirm that the fixed effect estimator is appropriate estimation to use for RICOR

data.

Note: Our RICOR data is generated by MF model, MF model give the same estimate

as the fixed effect model. Therefore, the Hausman test gives the correct conclusion. And

we should conclude both MF and FE estimators are appropriate estimation use for RICOR

data.

5.3.2 Real Data Example

In this section, we apply the random effect estimation and fixed effect estimation on WAGE

dataset (this dataset can be obtain from Wooldridge [2009]) and compare the estimates. Then

we could choose an appropriate estimator and also we use the Hausman test to confirm

the result. Therefore, the Hausman test no only can compare the estimator, but also can

indicate whether there is correlation between the explanatory variables and the individual

effects. The data are sourced from the National Longitudinal Survey held in USA. There are

545 full-time working males who have completed their education by 1980 and follow over

the period until 1987. The males in the sample with an age in 1980 ranging from 17 to 23

and entered the labour market recently, with an average of 3 years of experience. The data

and specifications we define is the same as in Wooldridge [2009]. Log wages are explained

by years of education, years of experience and its square, dummy variables for being a

union member, working in the public sector and being married and two racial dummies

(the variables in the model are selected same as on Verbeek [2004]). The models we fit are

given as

• Random intercept Model (RE)

lwageit = β0 + β1educit + β2experit + β3expersqit + β4unionit

+β5marriedit + β6blackit + β7hispit

+β8pubit + αi + εit (5.24)

εit ∼ N(0, σ2
ε )

αi ∼ N(0, σ2
α)
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where k = 0, 1 · · ·K, i = 1 · · ·N and t = 1 · · ·T for K = 8, N = 545 and T = 8. In R, we
fit RE Model as

RE <- lme(fixed =lwage˜educ+black+hisp

+exper+expersq+union+married+pub,

random = ˜ 1 | nr,na.action=na.omit

data=males)

The estimates for RE Model are obtained by using R and are listed as

Table 5.25: Estimates β̂k of RE model for WAGE dataset, k = 0, 1 · · · 8

Value Std.Error DF t-value p-value
(Intercept) -0.105 0.112 3810.000 -0.931 0.352

educ 0.101 0.009 541.000 11.152 0.000
black -0.144 0.048 541.000 -2.975 0.003
hisp 0.020 0.043 541.000 0.456 0.648

exper 0.112 0.008 3810.000 13.556 0.000
expersq -0.004 0.001 3810.000 -6.877 0.000
union 0.106 0.018 3810.000 5.910 0.000

married 0.062 0.017 3810.000 3.695 0.000
pub 0.030 0.036 3810.000 0.832 0.405

Table 5.26: Estimates Var(β̂k) of RE model for WAGE dataset, k = 0, 1 · · · 8

(Intercept) educ black hisp exper expersq union married pub
(Intercept) 1.26e-02 -9.79e-04 -6.21e-04 -1.28e-03 -1.42e-04 5.16e-06 -7.47e-05 1.14e-04 1.40e-04

educ -9.79e-04 8.21e-05 2.76e-05 7.96e-05 -4.45e-06 5.96e-07 7.22e-07 -8.04e-06 -8.90e-06
black -6.21e-04 2.76e-05 2.34e-03 3.51e-04 -9.13e-06 2.73e-07 -5.16e-05 6.48e-05 5.64e-06
hisp -1.28e-03 7.96e-05 3.51e-04 1.88e-03 4.20e-06 -3.55e-07 -1.83e-05 4.40e-06 -1.88e-05

exper -1.42e-04 -4.45e-06 -9.13e-06 4.20e-06 6.82e-05 -4.65e-06 -9.97e-07 -3.13e-05 -1.50e-05
expersq 5.16e-06 5.96e-07 2.73e-07 -3.55e-07 -4.65e-06 3.49e-07 1.88e-07 1.10e-06 5.14e-07
union -7.47e-05 7.22e-07 -5.16e-05 -1.83e-05 -9.97e-07 1.88e-07 3.19e-04 -9.65e-06 -4.11e-05

married 1.14e-04 -8.04e-06 6.48e-05 4.40e-06 -3.13e-05 1.10e-06 -9.65e-06 2.82e-04 -1.00e-05
pub 1.40e-04 -8.90e-06 5.64e-06 -1.88e-05 -1.50e-05 5.14e-07 -4.11e-05 -1.00e-05 1.33e-03

The estimates σε is 0.351 and σα is 0.332.

• Fixed effects Model (FE Model)

lwageit = β1experit + β2expersqit + β3unionit

+β4marriedit + β5hispit

+β6pubit + αi + εit (5.25)
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εit ∼ N(0, σ2
ε )

where k = 1 · · ·K, i = 1 · · ·N and t = 1 · · ·T for K = 8, N = 545 and T = 8. In R, we
fit FE Model as

FE<-glm(lwage˜-1+nr+educ+exper+expersq

+union+married+black+hisp+pub,

data=males)

The estimates for FE Model are obtained by using R and are listed as

Table 5.27: Estimates β̂k of FE model for WAGE dataset, k = 2, 3, 4, 5, 8

Estimate Std. Error t value Pr(>|t|)
exper 0.116 0.008 13.813 0.000

expersq -0.004 0.001 -7.083 0.000
union 0.081 0.019 4.204 0.000

married 0.045 0.018 2.463 0.014
pub 0.035 0.039 0.905 0.366

Table 5.28: Estimates Var(β̂k) of FE model for WAGE dataset, k = 2, 3, 4, 5, 8

exper expersq union married pub
exper 7.11e-05 -4.86e-06 1.12e-08 -3.75e-05 -1.66e-05

expersq -4.86e-06 3.67e-07 1.32e-07 1.34e-06 5.26e-07
union 1.12e-08 1.32e-07 3.73e-04 -9.01e-06 -3.77e-05

married -3.75e-05 1.34e-06 -9.01e-06 3.35e-04 -8.42e-06
pub -1.66e-05 5.26e-07 -3.77e-05 -8.42e-06 1.49e-03

Table 5.29: F-test of FE model for WAGE dataset

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 4359 1236.53

nr 544 664.48 3815 572.05 0.0000
educ 0 0.00 3815 572.05
exper 1 91.80 3814 480.25 0.0000

expersq 1 6.99 3813 473.26 0.0000
union 1 2.30 3812 470.96 0.0000

married 1 0.76 3811 470.20 0.0134
black 0 0.00 3811 470.20
hisp 0 0.00 3811 470.20
pub 1 0.10 3810 470.10 0.3657
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Note: Table 5.29 shows no estimated effect of educ, black and hisp. The fixed effect

estimator eliminates the time invariant variables from the model (ie. educ, black and

hisp), so FE Model can’t detect time invariant variables. The estimates σε is 0.123

• Pooled Model (PL Model)

lwageit = β0 + β1educit + β2experit + β3expersqit + β4unionit

+β5marriedit + β6blackit + β7hispit

+β8pubit + εit (5.26)

εit ∼ N(0, σ2
ε)

where k = 0, 1 · · ·K, i = 1 · · ·N and t = 1 · · ·T for K = 8, N = 545 and T = 8; β0 is the
intercept. In R, we fit PL Model as

PL<-glm(lwage˜educ+exper+expersq

+union+married+black+hisp+pub,

data=males)

The estimates for PL Model are obtained by using R and are listed as

Table 5.30: Estimates β̂k of PL model for WAGE dataset, k = 0, 1 · · · 8

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.034 0.065 -0.531 0.595

educ 0.099 0.005 21.219 0.000
exper 0.089 0.010 8.807 0.000

expersq -0.003 0.001 -4.023 0.000
union 0.180 0.017 10.451 0.000

married 0.108 0.016 6.853 0.000
black -0.144 0.024 -6.104 0.000
hisp 0.016 0.021 0.752 0.452
pub 0.004 0.037 0.095 0.925
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Table 5.31: Estimates Var(β̂k) of PL model for WAGE dataset, k = 0, 1 · · · 8

(Intercept) educ exper expersq union married black hisp pub
(Intercept) 4.18e-03 -2.59e-04 -2.41e-04 1.01e-05 -5.21e-05 1.01e-04 -9.38e-05 -2.96e-04 1.32e-04

educ -2.59e-04 2.19e-05 -5.63e-06 7.50e-07 1.15e-06 -7.23e-06 4.17e-06 1.75e-05 -7.91e-06
exper -2.41e-04 -5.63e-06 1.02e-04 -6.86e-06 -7.18e-06 -2.64e-05 -9.06e-06 6.60e-06 -1.62e-05

expersq 1.01e-05 7.50e-07 -6.86e-06 5.01e-07 5.93e-07 8.79e-07 2.53e-07 -5.26e-07 7.26e-07
union -5.21e-05 1.15e-06 -7.18e-06 5.93e-07 2.96e-04 -1.37e-05 -4.86e-05 -1.69e-05 -6.66e-05

married 1.01e-04 -7.23e-06 -2.64e-05 8.79e-07 -1.37e-05 2.47e-04 5.76e-05 4.39e-06 -1.76e-05
black -9.38e-05 4.17e-06 -9.06e-06 2.53e-07 -4.86e-05 5.76e-05 5.55e-04 8.34e-05 7.54e-06
hisp -2.96e-04 1.75e-05 6.60e-06 -5.26e-07 -1.69e-05 4.39e-06 8.34e-05 4.33e-04 -1.89e-05
pub 1.32e-04 -7.91e-06 -1.62e-05 7.26e-07 -6.66e-05 -1.76e-05 7.54e-06 -1.89e-05 1.40e-03

The estimates σε is 0.231.

• Mundlak formulation Model (MF Model)

lwageit = β0 + β1educi + β2experit + β3expersqit + β4unionit

+β5marriedit + β6blacki + β7hispi

+β8pubit + αi + εit (5.27)

εit ∼ N(0, σ2
ε)

wi ∼ N(0, σ2
w)

αi = ρ1experi + ρ2expersqi + ρ3unioni

+ρ4marriedi + ρ5pubi + wi (5.28)

Note: here we wipe out the time invariant variables in Eq. (5.28), because they are time

invariant variables, the mean of its variable is just itself .

where k = 0, 1 · · ·K, i = 1 · · ·N , p = 1 · · ·P and t = 1 · · ·T for P = 5, K = 8, N = 545

and T = 8; β0 is the intercept. In R, we fit MF Model as

MF<-lme(fixed = lwage˜educ+exper+expersq+union+married

+black+hisp+pub+barexper+barexpersq+barunion

+barmarried+barpub, random = ˜ 1 | nr, data=males)

Note: barexper, barexpersq, barunion, barmarried and barpub are the mean for each

variable over time.

The estimates for ML Model are obtained by using R and are listed as
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Table 5.32: Estimates β̂k and ρp of ML model for WAGE dataset, k = 0, 1 · · · 8 and p = 1, · · · , 5

Value Std.Error DF t-value p-value
(Intercept) 0.490 0.221 3810.000 2.217 0.027

educ 0.095 0.011 536.000 8.682 0.000
exper 0.116 0.008 3810.000 13.813 0.000

expersq -0.004 0.001 3810.000 -7.083 0.000
union 0.081 0.019 3810.000 4.204 0.000

married 0.045 0.018 3810.000 2.463 0.014
black -0.139 0.049 536.000 -2.845 0.005
hisp 0.005 0.043 536.000 0.128 0.898
pub 0.035 0.039 3810.000 0.905 0.366

barexper -0.167 0.051 536.000 -3.263 0.001
barexpersq 0.009 0.003 536.000 2.873 0.004
barunion 0.193 0.051 536.000 3.792 0.000

barmarried 0.099 0.045 536.000 2.204 0.028
barpub -0.091 0.116 536.000 -0.789 0.431

Table 5.33: Estimates Var(β̂k) of ML model for WAGE dataset, k = 0, 1 · · · 8

(Intercept) educ exper expersq union married black hisp pub
(Intercept) 4.89e-02 -1.52e-03 1.20e-17 -6.62e-19 -2.42e-18 -1.27e-18 1.69e-04 -1.56e-03 1.00e-18

educ -1.52e-03 1.19e-04 -4.08e-19 1.82e-20 -1.46e-20 -6.67e-20 1.77e-06 6.71e-05 4.07e-20
exper 1.20e-17 -4.08e-19 7.11e-05 -4.86e-06 1.12e-08 -3.75e-05 4.51e-21 -4.29e-19 -1.66e-05

expersq -6.62e-19 1.82e-20 -4.86e-06 3.67e-07 1.32e-07 1.34e-06 2.16e-21 2.54e-20 5.26e-07
union -2.42e-18 -1.46e-20 1.12e-08 1.32e-07 3.73e-04 -9.01e-06 2.61e-20 2.92e-20 -3.77e-05

married -1.27e-18 -6.67e-20 -3.75e-05 1.34e-06 -9.01e-06 3.35e-04 -9.89e-20 -1.62e-20 -8.42e-06
black 1.69e-04 1.77e-06 4.51e-21 2.16e-21 2.61e-20 -9.89e-20 2.39e-03 3.57e-04 3.39e-21
hisp -1.56e-03 6.71e-05 -4.29e-19 2.54e-20 2.92e-20 -1.62e-20 3.57e-04 1.83e-03 2.71e-20
pub 1.00e-18 4.07e-20 -1.66e-05 5.26e-07 -3.77e-05 -8.42e-06 3.39e-21 2.71e-20 1.49e-03

The estimates σε is 0.351 and σw is 0.325.

Now we have to decide which estimator give the unbiased estimation and efficient esti-

mation between random effect estimator and fixed effect estimator. In our case, the variables

educ, black and hisp are cancelled out by using fixed effect model. Thus, we only need to

compare the remaining five variables that are time varying in both models. Theoretically,

if the zero correlation assumption is satisfied, then random effect estimator and fixed effect

estimator should present the same results which are unbiased. The random effect estimator

is more efficient (with smaller variance). If there is correlation, the fixed effect estimator

produces unbiased estimator, and the random effect estimator is biased. We can see the es-

timates in Table 5.27, 5.28, 5.25 and 5.26 that they are significant different, eg. the estimates

118



of married for fixed effect estimator and random effect estimator are

β̂RE = 0.062, SE(β̂RE) = 0.017

β̂FE = 0.045, SE(β̂FE) = 0.018

we can see that

β̂RE != β̂FE

and

SE(β̂RE) < SE(β̂FE)

So this indicates the fixed effect estimator should be used in this case.

Also, we use Hausman test introduced in section 3.4 to do the test in order to confirm the

conclusion we made based on the Tables.

• H0: There is no correlation between the individual effect and the explanatory variable;

• Ha: There is correlation between the individual effect and the explanatory variable.

The test statistic is

H = (β̂RE − β̂FE)T (ΣFE − ΣRE)−1(β̂RE − β̂FE) ∼ χ2
5

where ΣFE is the covariance of β̂FE and ΣRE is the covariance of β̂RE . We use S2
RE to repre-

sent the estimate covariance for random effect estimator and S2
FE to represent the estimate

covariance for fixed effect estimator.

In order to calculate the test statistic, we firstly find the difference in coefficients for time

varying covariates between β̂RE and β̂FE . Then we calculate the estimated variance covari-

ance difference between S2
RE and S2

FE . Now use the test statistic formula to calculate the

Hausman test statistic is 27.10. That means the difference in the coefficients on experience,

experience squared and the union, married and public sector dummies are significant or at

least one is significant. Under the null hypothesis, the test statistic follows a Chi-squared

distribution with 5 degrees of freedom and the critical value for χ2
5 is 11.07 , so that we have

to reject the null hypothesis at 5% significance level since the test statistic is 27.10 (p-value

<0.001 ) and > 11.07. So there is correlation between the individual effect and explanatory

variables exper , union and married, etc. Vella and Verbeek [1998] concentrate on the im-

pact of endogenous union status on the wages and consider some complicated estimators
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to solve the problem. Johnson and DiNardo [2007] also describe endogenous X: the marital

status and year of experiences, married and exper are correlated with the individual effect.

These variables may capture other unobserved difference between married and unmarried

and year of experiences of workers. In this case, the fixed effect estimator is good to use to

eliminate the individual effect in order to avoid the heterogeneity biased estimation.

Note: The Hausman test statistic is calculate based on ΣFE is the covariance of β̂FE and ΣRE

is the covariance of β̂RE . We use S2
RE to represent the estimate covariance for random ef-

fect estimator and S2
FE to represent the estimate covariance for fixed effect estimator. There

are more details of covariance calculation described in Wooldridge [2002]. Here we use R

to extract the covariance S2
FE and S2

RE which are shown in Table 5.28 and 5.26 respectively

from their summary statistics by using cov.scaled (not cov.unscaled which give without dis-

persion) and varF ix.

Verbeek [2004] gives a slightly different value of the test statistic, 31.75, obtained by using

Stata (Data Analysis and Statistical Software). Because Stata adjusts the covariance of the

estimator in order to avoid a negative test statistic value and make sure the difference of

covariance between two estimators is the positive definite. Details of how Stata does this

are given at http://www.stata.com/.

Caution: There are other sorts of misspecification (ie. simultaneity bias, measurement

errors, selection bias, etc.) which may also cause Hausman test rejection, but in this thesis

we only concentrate on the correlation between the explanatory variable and the individual

effect.

5.4 Instrumental Variable (IV) Estimator

The fixed effect estimator provides unbiased estimates when there is correlation between

the individual effects and the explanatory variables which also eliminates the time invariant

variables from the model. That is a high price to pay for allowing such correlation. There

is an alternative method called Instrumental Variable (IV) estimator which gives unbiased

estimates when the explanatory variables are correlated with the individual effects. The

instrumental variable (IV) estimator can be seen as in between the random effect estimator

and fixed effect estimator. To prove this, we first recall Eq.(3.13).

β̂W =

[
N∑

i=1

T∑

t=1

(Xit −X i)(Xit −X i)
T

]−1 [
N∑

i=1

T∑

t=1

(Xit −X i)(yit − yi)

]
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We could rewrite this equation as

β̂W =

[
N∑

i=1

T∑

t=1

(Xit −X i)XT
it

]−1 [
N∑

i=1

T∑

t=1

(Xit −X i)yit

]
(5.29)

We could write Eq.(5.29) in full data form

β̂W = (ZT X)−1ZT y

This can be interpreted as each explanatory variable is instrumented by its value in deviation

from the individual specific mean. That is, Xit is instrumented by Zit = Xit − X i [Verbeek,

2004]. Then Z is the instrument variable. The choice of an instrumental variable Z is one

that is correlated with the explanatory variable but not with the error term or the individual

effects. The IV estimator may also be seen as two stage least squares (2SLS) [Johnson and

DiNardo, 2007]:

Stage 1: Regress each of the variables in the X matrix on Z to obtain a matrix of fitted

values X̂ :

X̂ = Z(ZT Z)−1ZT X = PZX

Stage 2: Regress y on X̂ to obtain the estimated β vector

β̂2SLS = (X̂T X̂)−1X̂T y

= (XT PZX)−1(XT PZy)

= β̂IV

Thus the IV estimator can be obtained by a two-stage least-squares procedure. The variance-

covariance matrix is

Var(β̂IV ) = σ2(XT PZX)−1

and the error variance may be estimated consistently from

σ̂2 =
(y−Xβ̂IV )T (y−Xβ̂IV )

N −K

Note: see more details of these from Johnson and DiNardo [2007]. In this thesis, we do not

concentrate on the IV estimator, we only describe the method here to let the reader know
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there is another option to deal with the correlation between the individual effects and the

explanatory variables.

5.5 R codes

5.5.1 Omitted variables bias

covXS <- function(prob,n,a,b,lambda,sigmaE,beta0,beta1,gamma){

s <- rbinom(n, 1, prob)

alpha <- (s+1/2)*lambda

beta <- (-s+3/2)*lambda

u <- rbeta(n,alpha,beta)

x <- a+(b-a)*u

eps <- rnorm(n,0,sigmaE)

y <- beta0+beta1*x+gamma*s+eps

d.f <- data.frame(x=x,y=y,s=s)

return(d.f)

}

indepXS <- function(prob,n,a,b,sigmaE,beta0,beta1,gamma){

x <- rnorm(n,a,b)

s <- rbinom(n, 1, prob)

eps <- rnorm(n,0,sigmaE)

y <- beta0+beta1*x+gamma*s+eps

d.f <- data.df<-data.frame(x=x,y=y,s=s,eps=eps)

return(d.f)

}

modelfit <- function(prob,n,a,b,lambda,sigmaE,beta0,beta1,gamma){

s <- rbinom(n,1,prob)

alpha <- (s+1/2)*lambda

beta <- (-s+3/2)*lambda

u <- rbeta(n,alpha,beta)

x <- a+(b-a)*u

eps <- rnorm(n,0,sigmaE)

y <- beta0+beta1*x+gamma*s+eps

data.df <- data.frame(x=x,y=y,s=s)

fit <- glm(y˜x+s,data=data.df)

b0 <- summary(fit)$coef[1]

b1 <- summary(fit)$coef[2]

bs <- summary(fit)$coef[3]

b0s <- summary(fit)$cov.scaled[1]
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b1s <- summary(fit)$cov.scaled[5]

bss <- summary(fit)$cov.scaled[9]

disp <- summary(fit)$dispersion

fitted <- glm(y˜x,data=data.df)

b0r <- summary(fitted)$coef[1]

b1r <- summary(fitted)$coef[2]

b0rs <- summary(fitted)$cov.scaled[1]

b1rs <- summary(fitted)$cov.scaled[4]

dispr <- summary(fitted)$dispersion

bbeta <- c(b0,b0s,b1,b1s,bs,bss,b0r,b0rs,

b1r,b1rs,disp,dispr)

return(bbeta)

}

cal <- function(beta0,beta1,prob,lambda,gamma,a,b){

Varx <- (3/(4*(8*lambda+4)))*(b-a)ˆ2+(prob*(1-prob)/4)*(b-a)ˆ2

Exs <- (a+(b-a)*3/4)*prob

Ex <- (1/4*(b-a)+a)*(1-prob)+(3/4*(b-a)+a)*prob

Covxs <- Exs-Ex*prob

Ex2 <- Varx+Exˆ2

A <-(Ex2*prob-Ex*Exs)/Varx

B <- Covxs/Varx

Mb0r <- beta0+gamma*A

Mb1r <- beta1+gamma*B

M<-c(Mb0r,Mb1r)

return(M)

}

5.5.2 Heterogeneity Bias

newsim.cor <- function(N,T,delta,rate,Xsigma){

xM <- matrix(rep(NA,N*T),nrow=N,ncol=T)

idM <- matrix(rep(NA,N*T),nrow=N,ncol=T)

timeM <- matrix(rep(NA,N*T),nrow=N,ncol=T)

xM[,1] <- rnorm(N,0,Xsigma)

inc <- delta*c(0,sort(runif(T-1,0,1)))

xM <- outer(xM[,1],inc,"+")

gammaM0 <- matrix(rep(NA,N*T),nrow=N,ncol=T)

for(i in 1:N){

gammaM0[i,1] <- rate*mean(xM[i,])

}

gammaM0 <- outer(gammaM0[,1],rep(1,T))
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for(i in 1:N){

for(j in 1:T){

idM[i,j] <- i

timeM[i,j] <- j

}

}

id <- matrix(t(idM),nrow=N*T,ncol=1)

time <- matrix(t(timeM),nrow=N*T,ncol=1)

x <- matrix(t(xM),nrow=N*T,ncol=1)

gamma0 <- matrix(t(gammaM0),nrow=N*T,ncol=1)

idtext <- factor(id)

data.df <- data.frame(id=id,idtext=idtext,

time=time,x=x,gamma0=gamma0)

return(data.df)

}

modelfit.mle <- function(data.df){

randomint.inc <- lme(fixed = y ˜ x,

random = ˜ 1 | id, data=data.df)

slope <- summary(randomint.inc)$coef$fixed[2]

fix.iid <- glm(y ˜ -1+x+idtext,data=data.df)

slope1 <- summary(fix.iid)$coef[1,1]

sr.iid <- glm(y ˜ x,data=data.df)

slope2 <- summary(sr.iid)$coef[2,1]

return(c(slope,slope1,slope2))

}

slope.sr <- function(data.df){

x <- data.df$x

y <- data.df$y

b.sr <- sum((x-mean(x))*(y-mean(y)))/sum((x-mean(x))ˆ2)

return(b.sr)

}

slope.fe <- function(data.df,N,T){

x <- data.df$x

y <- data.df$y

id <- data.df$id

X <- matrix(rep(NA,N),N,1)

Y <- matrix(rep(NA,N*T),N,1)

for(i in 1:N){

X[i] <- mean(x[id==i])

Y[i] <- mean(y[id==i])
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}

denom <- sum(xˆ2)-T*sum(Xˆ2)

b.fe <- (sum(x*y)-T*sum(X*Y))/(denom)

return(b.fe)

}

slope.re <- function(data.df,N,T,rate){

xx <- matrix(rep(NA,N),N,1)

ww <- matrix(rep(NA,N),N,1)

for(i in 1:N){

xx[i] <- mean(data.df$x[data.df$id==i])

ww[i] < -mean(data.df$w[data.df$id==i])

}

Esigma <- sqrt(var(data.df$eps))

Xsigma <- sqrt(var(xx))

Wsigma <- sqrt(var(ww))

Asigma <- sqrt(Wsigmaˆ2+rateˆ2*Xsigmaˆ2/T)

phi <- Esigmaˆ2/(Esigmaˆ2+T*Asigmaˆ2)

x <- data.df$x

y <- data.df$y

id <- data.df$id

X <- matrix(rep(NA,N),N,1)

Y <- matrix(rep(NA,N),N,1)

XM <- matrix(rep(NA,N*T),N,T)

YM <- matrix(rep(NA,N*T),N,T)

for(i in 1:N){

X[i] <- mean(x[id==i])

Y[i] <- mean(y[id==i])

for(j in 1:T){

XM[i,j] <- X[i]

YM[i,j] <- Y[i]

}

}

denom1 <- sum(xˆ2)-T*sum(Xˆ2)

denom2 <- phi*T*sum((X-mean(x))ˆ2)

denom3 <- sum(x*y)

denom4 <- T*sum(X*Y)

denom5 <- phi*T*sum((X-mean(x))*(Y-mean(y)))

b.re <- (denom3-denom4+denom5)/(denom1+denom2)

return(b.re)

}
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fitting.cor <- function(N,T,data.df,R,beta1,Wsigma,Esigma,rate){

result <- matrix(rep(NA,3*R),nrow=R,ncol=3)

slope.re <- matrix(rep(NA,R),nrow=R,ncol=1)

slope.fe <- matrix(rep(NA,R),nrow=R,ncol=1)

slope.sr <- matrix(rep(NA,R),nrow=R,ncol=1)

epsM <- matrix(rep(NA,N*T*R),R,N*T)

WM <- matrix(rep(NA,N*T*R),R,N*T)

yM <- matrix(rep(NA,N*T*R),nrow=R,ncol=N*T)

scor <- NULL

x <- data.df$x

gamma0 <- data.df$gamma0

for(i in 1:R){

epsM[i,] <- rnorm(N*T,0,Esigma)

WM[i,] <- rep(rnorm(N,0,Wsigma),each=T)

}

for(s in 1:R){

yM[s,] <- beta1*x+gamma0+epsM[s,]+WM[s,]

scor[[s]] <- data.frame(data.df,y=yM[s,],

eps=epsM[s,],w=WM[s,])

slope.sr[s] <- slope.sr(scor[[s]])

slope.fe[s] <- slope.fe(scor[[s]],N,T)

result[s,] <- modelfit.mle(scor[[s]])

slope.re[s] <- slope.re(scor[[s]],N,T,rate)

}

beta <- data.frame(result,slope.re,slope.fe,slope.sr)

return(beta)

}
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Chapter 6

Bayesian Estimation

As an alternative to the Hausman test, we can model the entire possible set of dependencies,

introducing parameters for possible correlation between individual effects and covariates.

We then test for this correlation using hypothesis tests on the parameters. The Bayesian

approach provides a natural hierarchical framework for such modelling. In a Bayesian ap-

proach, we can fit longitudinal data with random effects model, fixed effects model, pooled

model and Mundlak formulation model. In this chapter, we are only interested in how the

Bayesian approach works for longitudinal data fitting and show the performance of this

approach by using the WinBUGS software. We develop a full Bayesian formulation as an

alternative to the Hausman test to do model comparison between random effect model and

fixed effect model. To see this, we empirically illustrate the idea using our simulated data

and real data WAGE.

6.1 Bayesian Analysis

In the Bayesian analysis, prior probability distributions are used to describe the uncertainty

of all unknown parameters prior to seeing the data. After observing the data, the posterior

distribution provides a summary of the remaining uncertainty of the data which is relevant

for parameter estimation. Bayesian analysis can be implemented in WinBUGS [Thomas

et al., 2000]. The computational program takes samples from the posterior distribution of

the parameter θ given y by using the Markov Chain Monte Carlo (MCMC) method where

“Monte Carlo” implies the random sampling. “Markov chain” refers to the method of gen-

erating the random samples. There is a sequence of random variables, each variable is

conditional on the previous variable in the sequence θt−1, such a distribution is known as
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a Markov chain. MCMC algorithms are constructed in such a way that sufficiently large

samples from the Markov chain are equivalent to samples from the required posterior dis-

tribution.

6.1.1 Markov Chain Monte Carlo (MCMC)

MCMC methods provide a convenient and generally applicable means of summarising pos-

terior distribution in Bayesian Analysis, and are a useful method for sampling from a com-

plicated distribution. The Metropolis algorithm is one of the widely used and simplest

MCMC algorithms. The following describes how the Metropolis algorithm obtains sam-

ples from the distribution of a single parameter, but we can easily extend to the multiple

parameter simulation.

6.1.2 Metropolis Algorithm

The Metropolis algorithm is defined by McCarthy [2007] as below

Start with an initial arbitrary value for the parameter θ0, which is the first value

of the Markov chain. We are interested in obtaining subsequent values of θt such

that they are samples of a random variable with certain probability density func-

tion.

A new possible value (θ∗) is generated by drawing it from an arbitrary symmetric

probability distribution. This proposal distribution is defined by its probability

density function; given the current values θt, the probability of drawing the value

of θ∗ as the possible next value of the Markov chain is equal to q(θ∗|θt).

Next, the acceptance probability is equal to

R(θ∗|θt) = min[1,
p(θ∗)

p(θt)
]. (6.1)

In a Bayesian application, the ratio depends on the posterior probability density

function at two different points p(θ∗) and p(θt). Based on Bayes’ rule, these two

values are equal to:

p(θ∗) =
π(θ∗)L(θ∗)

∫ −∞
∞ π(θ)L(θ)dθ

and

p(θt) =
π(θt)L(θt)∫ −∞

∞ π(θ)L(θ)dθ
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where π is the prior probability density function and L is the likelihood function.

Because both expressions have the same denominator, the ratio of the two values

is simply equal to the ratio of the prior probabilities and likelihoods; the integral

is not calculated. Therefore, if the ratio of the posterior probability is greater than

or equal to 1 (i.e. p(θ∗) ≥ p(θt)), then θ∗ is chosen as the next value of the Markov

chain (θt+1 = θ∗). If otherwise, p(θ∗) < p(θt), then θ∗ is chosen as the next value of

the Markov chain with probability p(θ∗)/p(θt), and θt is chosen otherwise.

Hastings [1970] modified the Metropolis algorithm to permit non-symmetric distributions

to be used for generating the new possible values. The new algorithm is called Metropolis-

Hastings algorithm. It defines the acceptance probability as equal to

R(θ∗|θt) = min(1, r) = min[1,
p(θ∗)× q(θt|θ∗)
p(θt)× q(θ∗|θt)

] (6.2)

There is another algorithm called Gibbs sampling that is a special case of Metropolis-Hastings

algorithm in which q() is chosen to be the full conditional probability and the R (ratio of the

posterior probability) is always equal to 1. We illustrate it by using a bivariate distribution.

• The target density for a bivariate distribution is p(θ1, θ2) = p(θ1|θ2)× p(θ2)

• We need to propose (θ∗1, θ
∗
2) from q(θ∗1, θ

∗
2|θ1, θ2)

• We break q into 2 pieces:

– propose θ∗1 first from q1(θ∗1|θ1, θ2)

– then propose θ∗2 from q2(θ∗2|θ1, θ2)

or propose θ∗2 from q2(θ∗2|θ∗1, θ2)

where at each step of the chain we only update one parameter, then each new point is

selected using a proposal density that along the line is p(θ2|θ1) or p(θ1|θ2), this is called

full conditonal density.

• The proposal density is q(θ1|θ2) = p(θ1|θ2) or q(θ2|θ1) = p(θ2|θ1).

r =
p(θ∗1, θ

∗
2)× q(θ1, θ2|θ∗1, θ∗2)

p(θ1, θ2)× q(θ∗1, θ
∗
2|θ1, θ2)
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When we update θ1, θ∗1 is drawn from f(θ1|θ2) and θ∗2 = θ2. So we have r to become

r =
p(θ∗1, θ2)× p(θ1|θ2)

p(θ1, θ2)× p(θ∗1|θ2)

=
p(θ∗1|θ2)× p(θ2)× p(θ1|θ2)

p(θ1|θ2)× p(θ2)× p(θ∗1|θ2)

= 1

ie. the ratio R(θ∗|θt) = min(1, r)= 1 = acceptance probability, that means we always accepted

for Gibbs sampling proposals.

Gibbs Sampling

In Gibbs sampling samples are drawn from a multivariate distribution by taking successive

samples from the full conditional distribution of each element of the parameter space. This

is more straight forward in many cases than sampling from the joint distribution.

When updating an arbitrary parameter θj , we fix the other parameters and select θj from

π(θj|other parameters) which is called full conditional distribution. So the proposal density

comes directly from the target density.

Gibbs Sampler

Suppose that a sample has distribution depending on a parameter vector θ ∈ Θ

of length d. For a joint distribution π(θ1, . . . , θd) with full conditionals π1, . . . , πd

where πj is the distribution of θj conditional on (θ1, . . . , θj−1, θj+1, . . . , θd), the

Gibbs sampler simulates successively from all conditionals, modifying one com-

ponent of θ at a time.

Initialization: Start with an arbitrary value θ(0) = (θ(0)
1 , . . . , θ(0)

d )

Iteration t: Given (θ(t−1)
1 , . . . , θ(t−1)

d ), generate

1. θt
1 according to π1(θ1|θ(t−1)

2 , . . . , θ(t−1)
d ),

2. θt
2 according to π2(θ2|θt

1, θ
(t−1)
3 , . . . , θ(t−1)

d ),
...

d. θt
d according to πd(θd|θt

1, . . . , θ
t
d−1)

Marin and Robert [2007].

Use of the above algorithms has three main consequences. The first consequence is that

θt+1 typically depends on θt. The dependence means that each new sample provides a frac-
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tion of the information about the posterior distribution compared to an uncorrelated sample.

An extremely large number of samples will be needed to obtain a good estimate of the pos-

terior distribution if there is strong correlation between samples.

The second main consequence is that the initial value does influence the Markov chain,

so the first part of the chain needs to be discarded as a “burn-in” until the influence of the

initial value is no longer apparent.

The third main consequence is that the proposal density may have parameters which

need tuning. If step size is too large (taking θ∗ a long way from θt) proposals may be rejected

often, and the chain will stick and will not mix (explore the density) efficiently. If step size

is too small proposals may be accepted with high probability. The chain will mix too slowly,

ie. it will take a long term to explore the density.

From the theory of Markov chains, we expect the chains to eventually converge to the

target distribution. In order to see whether the chain appears to be converged, we can use

Gelman-Rubin diagnostics. Gelman and Rubin diagnostics is introduced by Gelman and

Rubin [1992] and Brooks and Gelman [1997] provide graphical methods which can be used

as a visual inspection to test convergence. This diagnostic is based on analyzing multiple

simulated MCMC chains by comparing the variances within each chain and the variance be-

tween chains. If within and between chain variation values are both close to 1, that indicate

convergence. If there is large deviation between these two variances, that indicates noncon-

vergence, then we need to run out a longer chain. Alternatively, we could use the trace plot

which is a plot of the iteration number against the value of the draw of the parameter at each

iteration. By using this plot, we can visually inspect whether the chain gets stuck in certain

areas of the parameter space, if so it indicates nonconvergence.

Note: a Markov chain has Optimal performance when the possible values θ∗ are not too

far from θt and with appropriate length of “burn-in“.

6.2 WinBUGS Implementation

We implement the models in WinBUGS which use the Gibbs sampling to sample from the

full conditional distribution and run two chains for the model from different starting places,

to see whether they end up in the same place. We store samples after a 5000 burn-in. We

check for convergence by using the Gelman-Rubin diagnostics (bgr diagnostics).
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Definition 6.1. The posterior density of the vector of unobservables θA in the model A

is

p(θA|y, A) =
p(θA|A)p(y|θA, A)

p(y|A)
(6.3)

The expression in the denominator of Eq.(6.3) is the marginal likelihood. In many cir-

cumstances it suffices to know just the shape of the posterior density p(θA|y, A) and it is

costly to evaluate p(y|A). In this case it is useful to exploit the fact that

p(θA|y, A) ∝ (θA|A)p(y|θA, A) (6.4)

The expression on the right side of Eq.(6.4) is a kernel of the posterior density, we call it

kernel posterior density. [Geweke, 2005]

Also we produce the kernel posterior density for the estimators to check their distribution.

Here we assume all parameters prior distributions are normal and their variance are inverse

gamma distributions.

6.2.1 Simulation Example

The simulation data sets RINOCOR and RICOR that we use are generated in Chapter 5.

The candidate models are

1. Random intercept model (RE Model):

Yit = β0 + β1xit + α0i + εit

εit ∼ N(0, σ2
ε)

α0i ∼ N(0, σ2
α)

Prior distributions are

β0 ∼ N(0, σ2
β0

)

β1 ∼ N(0, σ2
β1

)

1

σ2
ε

∼ Gamma(ν, τ)

1

σ2
α

∼ Gamma(ν, τ)

where σ2
β0

and σ2
β1

are large numbers, because they are uninformative and then we
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assume ν and τ are small number. Since the variance of a variable is positive and

Gamma is a built in function in WinBUGS that can sample values between 0 and +∞.

In order to properly draw from gamma distribution in practice, we assume ν and τ are

small number, ie. ν = τ = 0.0001. Here i = 1 · · ·N and t = 1 · · ·T .

2. Fixed effect model (FE Model)

Yit = β1xit + α0i + εit

εit ∼ N(0, σ2
ε)

Prior distributions are

β1 ∼ N(0, σ2
β1

)

Here we define the simplest FE model only. No correlation with Xi is assumed, but we

may detect this. The correlations case will be introduced in section 6.10 below.

α0i ∼ N(0, σ2
α)

1

σ2
ε

∼ Gamma(ν, τ)

where σ2
β1

and σ2
α are large number and ν and τ are small numbers. Here i = 1 · · ·N

and t = 1 · · ·T . In FE model, we could include the time independent covariates, but it

may cause the nonconvergence problem. The best idea is to exclude the time invariant

variables. We compare FE model with the RE model, we can see there is a definite

difference on the prior distribution of α0i. For RE model, the inverse variance of α0i,
1

σ2
α

draws from gamma distribution with smaller numbers of ν and τ . But for FE model,

we draw α0i directly from a normal distribution with zero mean and large variance σ2
α.

3. Pooled model (PL Model)

Yit = β0 + β1xit + εit

εit ∼ N(0, σ2
ε)

Prior distributions are

β0 ∼ N(0, σ2
β0

)

β1 ∼ N(0, σ2
β1

)
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1

σ2
ε

∼ Gamma(ν, τ)

where σ2
β0

and σ2
β1

are large numbers and ν and τ are small number. Here i = 1 · · ·N

and t = 1 · · ·T .

4. The full Bayesian model of Mundlak formulation (MF) is defined as

Yit = β0 + β1xit + αi + εit

α0i = ρX i + wi

εit ∼ N(0, σ2
ε)

wi ∼ N(0, σ2
w)

Prior distributions are

β0 ∼ N(0, σ2
β0

)

β1 ∼ N(0, σ2
β1

)

1

σ2
ε

∼ Gamma(ν, τ)

1

σ2
w

∼ Gamma(ν, τ)

ρ ∼ N(0, σ2
ρ)

where σ2
β0

, σ2
β1

and σ2
ρ are large numbers and ν and τ are small numbers. Here i =

1 · · ·N and t = 1 · · ·T .

RINOCOR dataset

The following code is used to implement the random intercept model in WinBUGS.

model {

for(i in 1:N){

for(t in 1:T){

Y[i,t] ˜ dnorm(mu[i,t],tau.e)

mu[i,t] <- beta0+beta1*X[i,t]+alpha[i]

}

alpha[i] ˜ dnorm(0,tau.a)

}

#prior distribution
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beta0 ˜ dnorm(0.0,0.0001)

beta1 ˜ dnorm(0.0,0.0001)

tau.e ˜ dgamma(0.0001,0.0001)

tau.a ˜ dgamma(0.0001,0.0001)

}

The Gelman-Rubin diagnostics are shown on Figure 6.1.

Figure 6.1: Gelman-Rubin diagnostics of β0, β1, σε and σα for RINOCOR

The chain of convergence chains are shown on Figure 6.2.
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Figure 6.2: Convergence chains of β0, β1, σε and σα for RINOCOR

Figures 6.1 and 6.2 are used to check the convergence. From Figure 6.1, the Gelman-

Rubin diagnostics compare within and between chain variation the lines are all close to

1 which indicate the convergence. Figure 6.2 shows two chains for each estimator in RE

Model are converging to the same place or converging to its mean within certain standard

variance indicate we have appropriate initial value, the length of burn-in and sample size is

satisfied. Thus, the result are acceptable.

The posterior distribution of estimators and their estimates are shown on Figure 6.3 and

Table 6.1.
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Figure 6.3: Distribution of estimates of β0, β1, σε and σα forRINOCOR

Figure 6.3 shows the kernel density of the posterior distribution for the parameter esti-

mators β0, β1, σε and σα. The true values, the posterior estimates and their credible intervals

are listed as

Table 6.1: Table of estimates of RINOCOR for RE Model

True value Bayesian Estimate
mean std.err 2.5% Credible Interval 97.5% Credible Interval

β0 0 0.071 0.178 -0.284 0.424
β1 1 1.011 0.033 0.945 1.076
σε 1 1.060 0.105 0.880 1.291
σα 0.6 0.552 0.226 0.084 0.994

Table 6.1 shows the Bayesian estimates are approximately equal to the true value. Then

credible intervals for each estimator show the inclusion of the true value. Therefore, the

Bayesian approach perform just as good as frequentist approach.

Implementation for other models see Appendix D and the Gelman-Rubin diagnostics

and convergence chains for each model list in Appendix E. The result for other models can

be found in Section 6.4. The result of PL Model is acceptable. Because the Gelman-Rubin

diagnostics and convergence chains of PL Model are converge. The result of FE Model is

acceptable as well. Note, the FE Model we fit is without the intercept term in order to get

the convergence of the Gelman-Rubin diagnostics and convergence chains. The intercept

term is confounded with αi, since it is time invariant. So we eliminate intercept term. At this

point, we can see WinBUGS can’t automatically wipe out the time invariant variable, but R

can wipe out the time invariant variable automatically. Thus, when we fit the fixed effect

model in WinBUGS, we have to get rid of the time invariant variables.
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Note: To detect whether there are correlation between αi and Xi, we could use BMF

model to investigate which is introduced in section 6.3.

RICOR dataset

Now we fit another simulated data set RICOR. The programs for four candidate models

(time invariant variable in fixed effect model has been removed) of WinBUGS are the same

as codes introduced in the RINOCOR data example. In WinBUGS, we only need to change

the dataset. Implementation codes for four models see Appendix D. The Gelman-Rubin di-

agnostics and convergence diagnostics for each model list in Appendix E. And the results of

four models can be found in Section 6.4. The convergence of the four models are acceptable

by the Gelman-Rubin convergence and chains convergence.

6.2.2 Real Data Example

In this section we use WinBUGS to apply to the real data by fitting the random effect model,

fixed effect model and pooled model. Three models we fit are given as

1. Random effect Model (RE)

lwageit = β0 + β1educi + β2experit + β3expersqit + β4unionit

+β5marriedit + β6blacki + β7hispi

+β8pubit + αi + εit (6.5)

εit ∼ N(0, σ2
ε)

αi ∼ N(0, σ2
α)

Prior distributions are

β0 ∼ N(0, σ2
β0

)

βk ∼ N(0, σ2
β)

1

σ2
ε

∼ Gamma(ν, τ)

1

σ2
α

∼ Gamma(ν, τ)

where σ2
β0

and σ2
β are large number and ν and τ are small number. Here k = 1 · · ·K,

i = 1 · · ·N and t = 1 · · ·T for K = 8, N = 545 and T = 8.

138



2. Fixed effect Model with time varying covariates only (FE)

lwageit = β1experit + β2expersqit + β3unionit

+β4marriedit + β5pubit + αi + εit (6.6)

εit ∼ N(0, σ2
ε)

Prior distributions are

µ ∼ N(0, σ2
µ)

βp ∼ N(0, σ2
β)

αi ∼ N(0, σ2
α)

1

σ2
ε

∼ Gamma(ν, τ)

where σ2
β and σα are large number and ν and τ are small number. Here p = 1 · · ·P ,

i = 1 · · ·N and t = 1 · · ·T for P = 5, N = 545 and T = 8.

3. Pooled Model (PL)

lwageit = β0 + β1educit + β2experit + β3expersqit + β4unionit

+β5marriedit + β6blackit + β7hispit

+β8pubit + εit (6.7)

εit ∼ N(0, σ2
ε)

Prior distributions are

β0 ∼ N(0, σ2
β0

)

βk ∼ N(0, σ2
β)

1

σ2
ε

∼ Gamma(ν, τ)

where σ2
β0

and σ2
β are large number and ν and τ are small number. Here k = 1 · · ·K,

i = 1 · · ·N and t = 1 · · ·T for K = 8, N = 545 and T = 8.

4. The full Bayesian model of Mundlak formulation (MF Model) for WAGE data is de-
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fined as

lwageit = β0 + β1educi + β2experit + β3expersqit + β4unionit

+β5marriedit + β6blacki + β7hispi

+β8pubit + αi + εit (6.8)

εit ∼ N(0, σ2
ε)

wi ∼ N(0, σ2
w)

αi = ρ1experi + ρ2expersqi + ρ3unioni

+ρ4marriedi + ρ5pubi + wi (6.9)

Note: here we wipe out the time invariant variables in Eq. (5.28), because they may

cause the convergence problem.

Prior distributions are

β0 ∼ N(0, σ2
β0

)

βk ∼ N(0, σ2
β)

ρp ∼ N(0, σ2
ρ)

1

σ2
ε

∼ Gamma(ν, τ)

1

σ2
w

∼ Gamma(ν, τ)

where σ2
β0

, σ2
β and σρ are large number and ν and τ are small number. Here k = 1 · · ·K,

i = 1 · · ·N , p = 1 · · ·P and t = 1 · · ·T for P = 5, K = 8, N = 545 and T = 8.

Here is WinBUGS code for random effect model:

model{

for(i in 1:N){

for(t in 1:T){

L[i,t] ˜ dnorm(mu[i,t],tau.e)

mu[i,t] <- beta0+beta[1]*S[i,t]+beta[2]*E[i,t]

+beta[3]*E2[i,t]+beta[4]*U[i,t]+beta[5]*M[i,t]

+beta[6]*B[i,t]+beta[7]*H[i,t]+beta[8]*P[i,t]+alpha[i]

}
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alpha[i] ˜ dnorm(0,tau.a)

}

#prior distribution

beta0 ˜ dnorm(0.0,0.0001)

for(k in 1:8){

beta[k] ˜ dnorm(0.0,0.0001)

}

tau.e ˜ dgamma(0.0001,0.0001)

tau.a ˜ dgamma(0.0001,0.0001)

For the other three candidate models, the codes of WinBUGS are able to find in Appendix

D. The Gelman-Rubin convergence diagnostics for each model are listed in Appendix E,

and the results of four models are acceptable and can be found in Section 6.4. Since the

Gelman-Rubin diagnostics and convergence chains show convergence.

6.3 Full Bayesian Formulation

In Chapter 5, we introduced the Mundlak formulation to show that there is bias when we

use a random effects model when the explanatory variable are correlated with individual

unobserved effect. Empirically, we use the Hausman test to test whether the fixed effect

and random effect estimators are significant different. If there is a significantly difference,

the fixed effect estimator is unbiased. Now in a Bayesian approach, we follow the Mundlak

formulation idea to define a new model called full Bayesian model which is the MF Model

under Bayesian approach. Then we fit this model in WinBUGS to obtain the posterior dis-

tribution of ρ. If the mean of this distribution is close to zero, then we may conclude there

is no correlation between the explanatory variables and the individual unobserved effects.

Otherwise, there is a correlation. This model works just as the Hausman test. In this sec-

tion, we use simulated data and real data to demonstrate how this full Bayesian formulation

works as the equivalent to a Hausman test, then we compare this method with AIC, DIC

and Hausman test in Chapter 7 to see whether it works just as well as other model selection

methods.

6.3.1 Simulated Data

Now we use the simulated data RINOCOR and RICOR to demonstrate how the full Bayesian

model works as Hausman test to select between fixed effect estimator and random effect es-
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timator. Recall the full Bayesian model (MF Model) in section 6.2.1

Yit = β0 + β1xit + αi + εit

α0i = ρX i + wi

εit ∼ N(0, σ2
ε)

wi ∼ N(0, σ2
w)

Prior distributions are

β0 ∼ N(0, σ2
β0

)

β1 ∼ N(0, σ2
β1

)

1

σ2
ε

∼ Gamma(ν, τ)

1

σ2
w

∼ Gamma(ν, τ)

ρ ∼ N(0, σ2
ρ)

where σ2
β0

, σ2
β1

and σ2
ρ are large numbers and ν and τ are small numbers. Here i = 1 · · ·N

and t = 1 · · ·T .

RINOCOR data

Now we apply the full model to RINOCOR data by using WINBUGS to fit this full Bayesian

model .
The WinBUGS code of this model is

model{

for(i in 1:N){

for(t in 1:T){

Y[i,t]˜dnorm(mu[i,t],tau.e)

mu[i,t]<-beta0+beta*X[i,t]+alpha[i]

}

alpha[i]<-rho*mean(X[i,])+w[i]

}

#prior distribution

for(i in 1:N){

w[i]˜dnorm(0,tau.w)

}
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beta0˜dnorm(0.0,0.0001)

beta˜dnorm(0.0,0.0001)

rho˜dnorm(0,0.0001)

tau.e˜dgamma(0.0001,0.0001)

tau.w˜dgamma(0.0001,0.0001)

}

In section 6.2.1, we have checked the Gelman-Rubin diagnostics and convergence diagnos-

tics for all estimators show convergence. Then the result we have are all valid. The posterior

distribution of ρ is given in Figure 6.4.

Figure 6.4: Posterior distribution of ρ for RINOCOR data

Figure 6.4 shows the estimate mean of ρ is -0.005. The 95 % of posterior credible interval

for ρ is (-0.228, 0.217). The true value of ρ is zero which is within the credible interval and

the estimate mean of ρ is approximately equal to zero. This indicates there is no correlation

between explanatory variable X and individual effect α within RINOCOR data. Thus, the

random effect estimator should be used for RINOCOR data.

RICOR data

The RICOR dataset is generated by using the Mundlak formulation, ie. Eq.(4.8). We apply

the full model to RICOR dataset by using the WINBUGs. The program code is the same

as we quote in RINOCOR example. The only difference is we use RICOR data instead of

RINOCOR data.

In section 6.2.1, the Gelman-Rubin diagnostics and convergence diagnostics for all esti-

mators show convergence. Then the result we have are all valid. The posterior distribution
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of ρ is given in Figure 6.5.

Figure 6.5: Posterior distribution of ρ for RICOR data

Figure 6.5 shows the estimate mean of ρ is 0.94. The 95 % posterior credible interval for ρ

is (0.135, 1.742). The true value of ρ is 1. Here ρ is the degree of the correlation between the

individual effects αi and the explanatory variable Xi. The estimate of ρ != 0 indicates there

is correlation exists. Therefore, the fixed effects model would produce unbiased estimates

for RICOR dataset.

6.3.2 Real Data: WAGE

Now we use real data WAGE to demonstrate how does this full Bayesian model works as
Hausman test. We use the full Bayesian formulation (MF Model) for WAGE data which is
defined in section 6.2.2. The WinBUGS code of this model is

model{

for(i in 1:N){

for(t in 1:T){

L[i,t] ˜ dnorm(mu[i,t],tau.e)

mu[i,t] <- beta0+beta[1]*S[i,t]+beta[2]*E[i,t]

+beta[3]*E2[i,t]+beta[4]*U[i,t]+beta[5]*M[i,t]

+beta[6]*B[i,t]+beta[7]*H[i,t]+beta[8]*P[i,t]

+alpha[i]

}

alpha[i] <- rho[1]*mean(E[i,])+rho[2]*mean(E2[i,])

+rho[3]*mean(U[i,])+rho[4]*mean(M[i,])

+rho[5]*mean(P[i,])+w[i]
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}

for(i in 1:N){

w[i] ˜ dnorm(0.0,tau.w)

} }

#prior distribution

for(k in 1:8){

beta[k] ˜ dnorm(0.0,0.0001)

}

for(p in 1:8){

rho[p] ˜ dnorm(0.0,0.0001)

}

beta0 ˜ dnorm(0.0,0.0001)

tau.e ˜ dgamma(0.0001,0.0001)

tau.w ˜ dgamma(0.0001,0.0001)

}

We have checked the Gelman-Rubin diagnostics and convergence diagnostics for all estima-

tors show convergence. Then the result we have are all valid. The posterior distribution of

ρ is given in Figure 6.6.

Figure 6.6: Posterior distribution of ρp for exper, expersq, union, married and pub respec-
tively in WAGE data where p = 1, 2, 3, 4, 5
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Figure 6.6 shows the estimate mean of ρp for exper, expersq, union, married and pub

are -0.165, 0.009, 0.190, 0.097 and -0.096 respectively. The 95 % credible intervals for exper,

expersq, union, married,and pub are (-0.265, -0.063), (0.003, 0.016), (0.089, 0.293), (0.010, 0.186)

and (-0.320, 0.127) respectively. These indicate the ρp != 0 for p = 1, 2, 3, 4, we say they are

different from zero, but ρ5 ( for pub ) has zero within the 95 % credible interval. That means

there is correlation between individual effect αi and explanatory variables (exper, union,

married and expersq). The random effect estimation is biased. The fixed effect estimator

should be used.

Now we define a new equation

αi = λ1educi + λ2experi + λ3expersqi + λ4unioni

+λ5marriedi + λ6blacki + λ7hispi + λ8pubi + wi (6.10)

where the mean of educit, blackit and hispit are educi, blacki and hispi,since they are time

independent variables. Then we substitute Eq. (6.10) into Eq. (5.27), then we rearrange it.

We have

lwageit = β0 + (β̃1 + λ1)educi + β2experit + β3expersqit + +β4unionit

+β5marriedit + (β̃6 + λ6)blackit + (β̃7 + λ7)hispit + β8pubit

+λ2experi + λ3expersqi + λ4unioni + λ5marriedi

+λ8pubi + wi + εit (6.11)

We can implement both models Eq. (5.27) and Eq. (6.11) in WinBUGS. Then estimates of

coefficient for time independent variables in Eq. (5.27) and Eq. (6.11) have the following

relationship

β̃p + λp = βp for p = 1, 6, 7

λp = ρp for p = 2, 3, 4, 5, 8

Now we verify this by using real data WAGE.
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Table 6.2: Table of result comparison from BMF model and BMF model with time indepen-
dent variables in Mundlak formulation

educ black hisp
BMF 0.095 -0.138 0.008

BMF (λ) 0.553 -0.732 0.398
λ -0.458 0.593 -0.393

BMF-BMF(λ) -0.458 0.594 -0.390

Table 6.2 shows the estimates of time independent variables from BMF model and BMF

model with time independent variables in Mundlak formulation are the same. But in Win-

BUGS, we still use the Eq. (5.27), the Eq. (6.11) cause non-convergence. The standard error

are overestimated, that lead to inefficient estimation and the Type II error rate is increased.

6.4 Results Comparison

In this section, we compare the results we produce by using computer program R and Win-

BUGS. Firstly, we compare the simulation datasets RINOCOR and RICOR results, then we

compare the real dataset WAGE result to see whether there is difference between R and Win-

BUGS results for four models. On the Figures, we define RE, FE, PL and MF to represent

the MLE estimates results, then we define BRE, BFE, BPL and BMF as Bayesian approach

random effects model, fixed effects model, pooled model and full Bayesian model.

6.4.1 Simulation Example

RINOCOR

The result of RINOCOR from R and WinBUGS are obtained by two different approaches is

showed on Table 6.3.
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Table 6.3: Table of estimates comparison of RINOCOR
R WinBUGS

Model Estimate MLE Bayesian

RE β1 1.011 1.011
s.e 0.033 0.033

FE β1 1.015 1.017
s.e 0.103 0.103

PL β1 1.011 1.011
s.e 0.025 0.026

MF
β1 1.016 1.015
s.e 0.103 0.108

Figure 6.7 shows the Table 6.3 results graphically.
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Figure 6.7: Table of estimates comparison of RINOCOR

In Table 6.3 and Figure 6.7, we can see there is not much difference among two ap-

proaches results for the β1 estimate and its standard error of RE model, FE model, PL model

and MF model. The true value of β1 = 1. All of the estimates of β1 for each model give

close estimate. That means all of the model give unbiased estimates. This indicates there is

no correlation. In Chapter 5, the Hausman test suggest there is no correlation between the

individual effects and the explanatory variable as well. The random effect estimator should

be used in this example. The full Bayesian formulation method also confirm this.
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RICOR

The result of RICOR from R and WinBUGS obtain by different approaches is showed on

Table 6.4.

Table 6.4: Table of estimates comparison of RICOR
R WinBUGS

Model Estimate MLE Bayesian

RE β1 1.594 1.589
s.e 0.225 0.282

FE β1 1.018 1.019
s.e 0.312 0.321

PL β1 1.881 1.880
s.e 0.130 0.131

MF β1 1.018 1.018
s.e 0.312 0.318

●

●

●

●

●

●

●

●

Model

ββ

RE FE PL MF BRE BFE BPL BMF

0.
5

1.
0

1.
5

2.
0

Figure 6.8: Table of estimates comparison of RICOR

In Table 6.4 and Figure 6.8, we can see there is not much difference among two ap-

proaches result of the β1 estimate and its standard error. The true value of β1 = 1. MF

model and FE model have similar estimates close to the true value. The other estimates of

β1 give biased estimates. This indicates there is correlation, since FE estimate and RE esti-

mate are different. In Chapter 5, the Hausman test suggest there is correlation between the
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individual effects and the explanatory variable. The fixed effect estimator should be used in

this example. The full Bayesian formulation method also confirm this. Since the MF model

gives the unbiased estimates similar as FE model’s estimate, we could also use MF model.

6.4.2 Real Data Example

WAGE

The result of WAGE from R and WinBUGS obtain by two approaches is shown in Table 6.5.

Table 6.5: Table of estimates comparison of WAGE
Variables R WinBUGS

RE FE PL MF BRE BFE BPL BMF

constant -0.104 - -0.034 0.490 -0.111 - -0.035 0.488
0.111 - 0.065 0.221 0.112 - 0.064 0.218

education 0.101 - 0.099 0.095 0.102 - 0.099 0.095
0.009 - 0.005 0.010 0.009 - 0.005 0.011

experience 0.112 0.116 0.089 0.116 0.112 0.117 0.089 0.117
0.008 0.008 0.010 0.008 0.008 0.008 0.010 0.008

experience2 -0.0041 -0.0043 -0.0028 -0.0043 -0.0041 -0.0043 -0.0028 -0.0043
0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0007 0.0006

union member 0.106 0.081 0.180 0.081 0.106 0.082 0.180 0.082
0.018 0.019 0.017 0.019 0.018 0.019 0.017 0.019

married 0.063 0.045 0.108 0.045 0.063 0.045 0.108 0.045
0.017 0.018 0.016 0.018 0.017 0.018 0.016 0.018

black -0.144 - -0.144 -0.139 -0.140 - -0.144 -0.138
0.048 - 0.024 0.049 0.048 - 0.024 0.049

hispanic 0.020 - 0.016 0.005 0.021 - 0.016 0.008
0.043 - 0.021 0.043 0.044 - 0.021 0.044

public sector 0.030 0.035 0.004 0.035 0.029 0.035 0.004 0.035
0.036 0.039 0.037 0.039 0.036 0.039 0.038 0.039

Note: the second row in each block is the standard error of the estimator.

We also can graphically present the estimates which is shown on Figure 6.9 – 6.13.
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Table 6.5 and Figure 6.9 – 6.13 show there is not much difference between the R estimation

and WinBUGS estimates for each model. The FE model and MF model have the similar

estimates. In Chapter 5, Hausman test gives the result that the random effects estimator is

biased and we should use FE Model for WAGE data. The full Bayesian formulation method

also suggests the fixed effect estimator is appropriate. The estimates means of ρp for exper,

union, married, hisp and pub have been calculated in section 6.3 which are -0.165, 0.009,

0.190, 0.097 and -0.096 respectively. The 95 % credible intervals for exper, union, married,

hisp and pub are (-0.265, -0.063), (0.003, 0.016), (0.089, 0.293), (0.010, 0.186) and (-0.320, 0.127)

respectively. These indicate there is certain correlation between the covariates and individ-

ual effect, so the fixed effect estimator must be used in this case. MF model gives similar

estimates as fixed effect estimates, it should be another option.
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Discussion From the simulation data and real data comparison, we can see there is not

much difference between the R and WinBUGs estimates for each model. Both of the com-

puter softwares give the similar results. That means the frequentist and Bayesian statistical

analysis give the same estimation results. And Bayesian estimation also suffer the bias when

we use the random effect model to fit the data with correlation between explanatory variable

and individual effect. The full Bayesian formulation we use in this chapter is just working

as good as Hausman test and also it is easy to use compared with the Hausman test. For

Hausman test, sometimes it is hard to find the inverse of the differenced covariance of ran-

dom effect estimator and fixed effect estimator or in some case, the Hausman test statistic

may be negative. The full Bayesian formulation do not need to worry about these problem.

So the full Bayesian formulation is more easy to use to identify the correlation between the

explanatory variables and the individual effects.
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Chapter 7

Model Comparison

In Chapter 3, we describe three simple models which are commonly used to fit the longitu-

dinal data. And in Chapter 5 we define a new model follow the Mundlak formulation, then

we introduce the Hausman test to compare the random effect estimation and fixed effect

estimation. In Chapter 6 we develop a ways to decide whether the random effect model is

good or the fixed effect model is good to use for fitting based on Bayesian approach. In this

chapter, we describe two commonly used model selection criteria, AIC and DIC from two

approaches, and then we compare them with Hausman test and the one we developed in

Chapter 6. In order to see how these methods work, we use real data and simulated data to

demonstrate these methods.

7.1 Model Comparison

For generalised linear models we have the deviance as a measure of goodness of fit. For lon-

gitudinal data model fitting, if the models are nested we can use the deviance to compare the

model where nested models means one model is a strict subset of the other. But in this thesis,

the models (pooled model, fixed effect model and random effect model) we are comparing

are not nested models, so we can’t use deviance to do the non-nested model comparison. For

non-nested models, we could compare the models by using AIC (was developed by Akaike

[1974]) based on likelihood approach and DIC (was introduced by Spiegelhalter et al. [2002])

based on Bayesian approach. Note, for non-nested models for example comparison of mod-

els with different correlation structures, (eg. AR(1) or compound symmetry), we can’t use

the deviance to do the model comparison as well.
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7.2 Akaike Information Criterion (AIC)

Akaike’s information criterion, developed by Hirotsugu Akaike under the name of ”an in-

formation criterion” (AIC) in 1971 and proposed in Akaike [1974], is a measure of the good-

ness of fit of an estimated statistical model and measures the amount of information lost

when using a model to approximate reality. This approach measures how well different

models approximate reality even though the reality may be unknown. Models that lose

the least amount of information will tend to make the best predictions of datasets. Akaike

demonstrated a relationship between the expected information content of a model and the

log-likelihood at its maximum point.

Definition 7.1. Based on this criterion, the model should be chosen such that

AIC = 2k − 2)max (7.1)

where k is the number of parameters in the statistical model, and )max is the maximized

value of the likelihood function for the estimated model.

[Demidenko, 2004].

By definition, AIC not only rewards goodness of fit, but also includes a penalty that is an in-

creasing function of the number of estimated parameters. Hence the model with the smaller

AIC value is preferred. The AIC methodology attempts to find the model that best explains

the data with a minimum of parameters.

In order to use AIC as a tool for model selection, we have to define the rule to assess the

difference in AIC values between two compared models. Burnham and Anderson [2002]

developed rules of thumb for assessing differences in AIC values between a given model

i and the model with the smallest AIC (the best model among those tested). These differ-

ences are given by ∆AICi (Table 7.1). All models with AIC differences of less than 2 have a

substantial level of empirical support, while those within 2-4 might be regarded as the more

likely candidates, those within 4-7 substantially less support, and greater than 10 essentially

no support.
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Table 7.1: Interpretation of the level of AIC values from Burnham and Anderson [2002]
∆ AICi Level of Empirical Support of Model i
0–2 Substantial
2–4 Equal likely
4–7 Considerable less
>10 Essentially none

Note, AIC is not an overall goodness of fit test, only a comparison of relative goodness

of fit.

7.2.1 Real Data Example: MILK data

Now we use MILK data to illustrate how AIC works to identify the best model for longitu-

dinal data. The data were from Ms Alison Frensham (from Diggle et al. [2002]). Milk was

collected weekly from 79 Australian cows to analyse for its protein content and time is mea-

sured in weeks, and the experiment was continued for 19 weeks. The cows were maintained

on one of three diets: barley, a mixture of barley and lupins, or lupins alone. The dataset is

shown in Figure 7.1.
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Figure 7.1: Figure of MILK data

Note, Figure 7.1 shows the data without the first few observations: a washout period

from the previous diet.

Figure 7.1 displays the three subsets of the data corresponding to each of the three diets.

The repeated measurements on each cow are joined to accentuate the longitudinal nature of

the data set. From the figure, the barley gives higher values than the mixture, which in turn

gives higher values than lupins alone.

To do the model comparison, firstly, we have to specify the models: we select the possible

models we could fit for MILK data with appropriate covariance structure (ie. iid and AR(1)).

The six models are defined in R as below

• Model 1: pooled model without any covariate (PLNO)

lm1 <- glm(protein ˜ 1, data=milk))

• Model 2: pooled model (PL)
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lm2 <- glm(protein ˜ diet, data=milk)

• Model 3: fixed effect model with iid errors (FE – iid)

lm3 <- glm(protein ˜ id + diet, data=milk)

• Model 4: fixed effect model with AR(1) (FE – AR (1))

lm4 <- gls(protein ˜ diet, na.action=na.omit,

correlation=corCAR1(form=˜time|id),

data=milk)

Note, in Model 3 and 4, there are some levels eliminated here, because diet is time

invariant variable.

• Model 5: random intercept model with iid errors (RI – iid)

lm5 <- lme(fixed = protein ˜ diet, random = ˜ 1 | id,

data=milk,na.action=na.omit)

• Model 6: random intercept model with AR(1) (RI – AR (1))

lm6 <- lme(fixed = protein ˜ diet, random = ˜ 1 | id,

corr=corCAR1(form=˜time|id),data=milk,

na.action=na.omit)

Secondly we select covariates need to be included, here the diet is the only covariate avail-

able. Actually time is also available which can be involved. But we don’t take time into

account here, because we prefer models only involving diet as a significant covariate (see

Table 7.2). The AICs of six models is shown in Table 7.2.

Table 7.2: Table of AIC comparison for MILK data
Model AIC ∆AIC
PLNO 846.82 689.00

PL 750.73 592.91
FE-iid 423.00 265.18

FE-AR(1) 158.87 1.05
RI-iid 507.58 249.76

RI-AR(1) 157.82 0.00
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Figure 7.2: Figure of AIC comparison of MILK data

From Table 7.2, we first compare the PLNO Model has no covariate with PL Model has

diet as covariate, we can see the PL Model has smaller AIC than PLNO Model, so the diet is

the significant covariate. And then we compare FE – iid Model with FE – AR (1) Model, the

FE – AR (1) Model has the smaller AIC, therefore, there is time series correlation. Then we

compare RE – iid Model with RI – AR (1) Model, the RI – AR (1) Model has the smaller AIC,

therefore, we confirm again there is time series correlation exits. Finally, we compare the RI

– AR (1) with FE – AR (1), the RI – AR (1) Model has the smallest AIC. This indicate there

is no correlation between diet and individual effects. The random effect estimator should be

used in this case.

Note, we can’t do a Hausman test here: diet is a time invariant variable, so we can’t fit FE

Model including it. Although this case is not good enough, but it shows when the Hausman

test does not work, we could use AIC as alternative method.

Then we can use it to calculate ∆ AIC, the ∆ AIC of FE – AR (1) Model is 1.05 which

is less than 2. According to Table 7.1, FE – AR (1) Model and RI – AR (1) Model have
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comparable AIC, they are the best models among these. We have tested, and are as good as

each other. Since the RI – AR(1) Model have the smallest AIC, we choose Model RI – AR (1)

as our best fit model. Either we do the pairwise comparison or do the overall comparison,

the conclusion is the same.

Finally, we refit the data by using the model with the smallest AIC based on maximum

likelihood method (if the best model is random effect model we use REML method to refit

it). So we refit data by using RI – AR (1) Model, the estimates obtained by R are listed below:

Table 7.3: Estimates of RI – AR (1) Model for MILK data

Value Std.Error DF t-value p-value
(Intercept) 3.55 0.04 1260 97.10 0.0000

dietL -0.21 0.05 76 -4.08 0.0001
dietM -0.10 0.05 76 -1.94 0.0562

The correlation ρ = 0.627, the error standard deviation is σε = 0.319 and the random

effect standard deviation is σα = 0.108.

7.3 Deviance Information Criterion (DIC)

[Spiegelhalter et al., 2002] proposed an alternative to AIC, known as the deviance informa-

tion criterion (DIC) designed for use with Bayesian models where the posterior distributions

of the models have been obtained by Markov chain Monte Carlo (MCMC) simulation. And

it can be calculated easily in WinBUGS. It has a very similar form to AIC and is given by:

DIC = D̂ + 2pD = D + pD (7.2)

• D̂ is the deviance when using the mean of the posterior distributions for the parame-

ters and is given by

D̂ = −2 log(p(y|θ)) + C (7.3)

where y are the data, θ are estimated as the posterior mean of the parameter and p(y|θ)

is the likelihood function. C is a constant, which does not need to be known.

• D is the mean deviance over the chain or the posterior mean of the deviance and pD is
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the effective number of estimated parameters and is given by

pD = D̄ − D̂ (7.4)

• pD is the posterior mean of the deviance minus the deviance of the posterior means. In

hierarchical model for normal data, pD = tr(H) where H is the “hat” matrix that maps

the observed data to their fitted values.

The minimum DIC model is the best model, in the same spirit as Akaike’s criterion. Very

roughly, those DIC values within 5 of the smallest DIC values might be regarded as equiv-

alent models, while those within 5-10 might be regarded as likely candidates and those

greater than 10 might be regarded as poor fit models, compared to the best fit model.

The idea is that models with smaller DIC should be preferred to models with larger DIC.

Models are penalized both by the value of D̄, which favours a good fit, but also (in common

with AIC) by the effective number of parameters pD. Since D̄ will decrease as the number

of parameters in a model increases, the pD term compensates for this effect by favouring

models with a smaller number of parameters.

The advantage of DIC over other criteria, for Bayesian model selection, is that the DIC

is easily calculated from the samples generated by a Markov chain Monte Carlo simulation.

AIC requires calculating the likelihood at its maximum over θ, which is not readily available

from the MCMC simulation in some computer software like WinBUGS.

7.4 Simulated Data Example

In this section, we use two kinds of dataset RINOCOR and RICOR to illustrate the two

model comparison methods: AIC is based on likelihood approach and DIC is based on

Bayesian approach. The four models we are interested are defined in section 5. Note: When

we present result graphically, we define RE, FE, PL and MF to represent the four models

based on frequentist approach, then we define BRE, BFE, BPL and BMF as Bayesian ap-

proach.

7.4.1 RINOCOR data

The AICs and DICs from two approaches for RINOCOR data are list in Table 7.4.
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Table 7.4: Table of AIC and DIC comparison for RINOCOR data
Model AIC ∆AIC DIC ∆DIC

RE 254.52 3.15 248.66 0.00
FE 251.37 0.00 255.14 6.48
PL 258.00 6.63 258.07 9.41
MF 256.52 5.15 251.85 3.19

We also separately compare the AIC and DIC on Figure 7.3 and Figure 7.4
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Figure 7.3 shows the AIC method indicates FE model is the best fit model, since the

FE model provides the smallest AIC. So we choose FE model as best fit model based on

likelihood approach.

FE model and RE model have similar AICs. Since our true dataset is generated by using

RE model, the FE model and RE model give similar AIC indicate there is no correlation

between the individual effects and the explanatory variables. So the RE model should be the

best model. But AIC method choose the FE model as the best model, maybe the reason is RE

model have more parameters then FE model and both models provide unbiased estimates,

AIC penalize the model with more parameters.

MF model AIC is slightly bigger than RE model. MF model is a special case of RE model,

it suppose to improve the estimates, but with more parameters. Therefore, for no correlation

case, both RE and MF model provide unbiased estimates, the RE model would be the best

model compare with MF model.

From Figure 7.4, the DIC method indicates that RE model is the best fit model, since

it gives smallest DIC. And MF model gives similar DIC. The true dataset does not have
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correlation. So the DIC gives the correct result.

In Chapter 5, the Hausman test gives the result that the RE estimator is the unbiased and

efficient, so the RE model is chosen in this case.

In chapter 6, we use the full Bayesian formulation method to compare the RE model and

FE model, the full Bayesian formulation indicates there is no correlation, so the RE estimator

should be used.

Thus, except AIC method, the conclusions from Hausman test, full Bayesian formulation

and DIC method are consistent, the RE model is the best fit model. The true dataset has no

correlation. So the DIC, Hausman test and full Bayesian formulation give the correct result.

7.4.2 RICOR data

The AICs and DICs from two approaches for RICOR data are listed in Table 7.5.

Table 7.5: Table of AIC and DIC comparison for FE data
Model AIC ∆ AIC DIC ∆ DIC

RE 321.53 28.08 297.28 2.83
FE 293.45 0.00 296.42 1.97
PL 351.73 58.28 351.77 57.32
MF 317.78 24.33 294.45 0.00

We also separately compare the AIC and DIC on Figure 7.5 and Figure 7.6
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data

The result from Table 7.5 is achieved by using R and WinBUGs. From Figure 7.5, the AIC

method indicates FE model is the best model based on likelihood approach, since FE model
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has the smallest ∆ AIC.

From Figure 7.6, the DIC method indicates RE model, FE model and MF model are all

acceptable, however, the MF model provides the smallest DIC, so we choose MF model as

our best fit model for RICOR data based on Bayesian approach.

In Chapter 5, Hausman test shows the FE estimator is unbiased, so the FE model should

be used to fit this data.

In Chapter 6, the full Bayesian formulation method indicates there is correlation, so the

FE model is the best fit model.

The MF model we fit is our true model where the RICOR data is generated from. The

MF model should be used in this case. The AIC, full Bayesian formulation method and

Hausman test give the consistent result, there is correlation, the FE model is the best fit

model. DIC method seems to give a incorrect result, although it choose MF as best fit model.

But similar DICs for RE, FE and MF model indicate there is no correlation. So DIC fails to

differentiate the important feature when there is correlation (see Figure 7.6).

7.5 Real Data Example: WAGE data

Although DIC method and AIC method have something in common, we still need to inves-

tigate whether they give the same suggestion on model selection for same longitudinal data.

Here we use the same real data – WAGE data (introduce in Chapter 5) again to demonstrate

how AIC and DIC work in model selection. We fit four models that are defined in section

6.2.2.

The AICs and DICs of four models obtained by likelihood method and Bayesian ap-

proach respectively are listed in Table 7.6.

Table 7.6: Table of AIC and DIC comparison for WAGE data
Model AIC ∆AIC DIC ∆DIC

RE 4407.88 643.67 3737.53 3.99
FE 3764.21 0.00 3801.61 68.07
PL 5998.42 2234.21 5998.38 2264.88
MF 4390.39 626.18 3733.54 0.00

We also present the AICs and DICs on Figure 7.7 and Figure 7.8.
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Figure 7.8: DICs comparison for WAGE
data

Figure 7.7 shows the FE model has the smallest AIC among four models and MF model

gives smaller AIC than RE model, this means MF model slightly improve the fitting. FE

model gives enormous different AIC to compare with RE model AIC. This indicates there is

correlation between the individual effects and the explanatory variables.

Figure 7.8 shows MF model has the smallest DIC, so it is the best model among four

models. RE model gives similar DIC as MF model. This indicates there is no correlation.

In Chapter 5, we use Hausman test to compare the RE estimator and FE estimator which

gives that we reject the null hypothesis at 5% of significant level (refer to Chapter 5).

In Chapter 6, we use the full Bayesian formulation method to compare the random effect

model and fixed effect model. This method suggests that there is correlation, so the best fit

model is the FE Model.

Therefore, the results are obtained from AIC based on likelihood method is consistent

with the result obtain from Hausman test and the full Bayesian formulation method. The

result from DIC may be incorrect.

Summary We summarise the results from the AIC, DIC, Hausman test (H-T) and full

Bayesian formulation method (B-MF) for simulated datasets and the WAGE data in Table

7.8 and Table 7.7.
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Table 7.7: Table of result comparison of four methods for simulated data
True Model Model Fit AIC DIC H-T B-MF

RE
RE !∗ ! ! !
FE !
PL - -
BM !∗ - -

FE
RE !∗
FE ! !∗ ! !
PL - -
BM ! - -

Table 7.8: Table of result comparison of four methods WAGE
Model Fit AIC DIC H-T B-MF

RE !∗
FE ! ! !
PL - -
BM ! - -

Note:

! means this is the selected model using the relevant criterion.

!∗ means this model give a similar values.

−means this combination of model selection criterion was not done.

As we show on the Table 7.7, these four methods not always return the same result. Gen-

erally, AIC is not working very well when there is no correlation between the covariates and

the individual effects. It seems AIC is more prefer the FE model than RE model. DIC gives

incorrect result when there is correlation. e.g, for the WAGE data, Hausman test suggests

the FE estimator is the best one (explained in detail in chapter 5). And the DIC is given that

the RE model as the best fit. Hence we can’t rely on DIC as model selection method, instead

of this, we could use the full Bayesian formulation method. The full Bayesian formulation

method is working very well in both real data case and simulated data cases. This method

can indicate whether there is correlation between the covariates and the individual effects

or not, by doing this, we can use it as model selection method. Therefore, in order to specify

the best model for longitudinal data, do not just rely on a single method when do the model

comparison.
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Chapter 8

Conclusions

In this thesis, we have explored the estimation bias in the situation where a correlation ex-

ists between the explanatory variables and individual effects in longitudinal data. The main

objectives of our research is to demonstrate the occurrence of bias in two cases, omitted vari-

able bias by using frequentist statistic and heterogeneity bias, by using frequentist statistics

and Bayesian statistics. We state the structure of the longitudinal data used in this thesis and

describe two popular analysis estimation methods, least square estimation and maximum

likelihood estimation. Then we describe the properties of three simple models random effect

model, fixed effect model and pooled model by using these two approaches. The difference

of these two approaches for each model have been compared and discussed in Chapter 3.

We also proved the bias exists empirically (via simulation), we use the R software to gen-

erate the dataset with and without correlation case in Chapter 4. In Chapter 5 and Chapter

6, we used frequentist and Bayesian statistics to show theoretically and empirically the bias

exists in particular cases.

In Chapter 5, we considered the omitted variables bias and heterogeneity bias.

• Omitted variables: we showed the bias does exist when we fit a omitted variable

model. We proved the bias is affected by the size of the covariance of the explana-

tory variable and the omitted variable. If this covariance is zero, there is no bias for the

coefficient of the explanatory variable. However, the bias for the intercept still existed

and the size of this is the mean of the omitted variable. We assume a particular case,

then used the R software to simulate the dataset 1000 times, the estimations we got

confirmed our finding. Then a real data example is used to confirm the covariance of

explanatory variable and the omitted variable does have an effect on estimation.

• Heterogeneity bias: we proved the random effect estimator is unbiased and consistent

166



compare with fixed effect estimator and pooled estimator when there is no correlation

between explanatory variable and individual effect. When we assumed there is such

correlation, we had used the formula introduced by Mundlak on 1978 to prove the

bias exists and derived the formulation of this bias for random effect estimation. Also,

we derived the bias formulation for the pooled estimation. However, when there is

correlation, the fixed effect estimation is unbiased. So it is the appropriate estimation

which should be used under this situation. Then we used the simulation data and real

data to demonstrate this theory is correct by fitting four simple models, random ef-

fects model, fixed effects model, pooled model and Mundlak formulation model. The

simulated two datasets RINOCOR and RICOR are generated by using the function

defined in Chapter 4. The real data is from the popular National Longitudinal Sur-

vey held in USA [Wooldridge, 2009]. And we proved the Mundlak formulation model

gives unbiased estimates when there is correlation, although it is a special case of ran-

dom effects model. The Hausman test which we used also confirmed the fixed effect

estimator is more appropriate in this case. Then we use the Hausman test to study

how the degree of correlation affects the choice of using fixed effect estimator. Then

we found when the correlation is small, the random effect estimator still can be used

as unbiased estimator. This conclusion is made based on our empirical result. Finally,

we use the simulated data and real data to demonstrate how the Hausman test works

as a model comparison method.

In Chapter 6, we firstly discuss the principle idea of the WinBUGS software and we show

how the Bayesian estimation works. Then we investigated whether the Bayesian estimation

did suffer from the same bias as the random effect estimation in frequentist analysis. Sec-

ondly, we used the Mundlak formula to propose a computational approach to check whether

there is a correlation between the explanatory variables and the individual effects. Then we

used WinBUGS to apply this approach on the real data (WAGE) and simulated data gener-

ated in Chapter 5. Finally, we compared the estimates from frequentist and Bayesian analy-

sis which showed there is not much different on estimates from both analysis approaches.

In Chapter 7, we used the AIC based on likelihood method and DIC based on Bayesian

method to do the model comparison. And then we compare these two method with Haus-

man test result and the full Bayesian formulation method result which we defined by fol-

lowing Mundlak’s formulation. AIC, Hausman test and full Bayesian formulation methods

all confirmed the fixed effect model is the best model when there is correlation between the
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explanatory variables and the individual effects. But DIC gives different conclusion which

has been proved is incorrect. So we couldn’t rely on the DIC method.

In this thesis, we demonstrated this conclusion theoretically and empirically. We also in-

vestigate the Bayesian approach suffer the same bias when use the random effect model un-

der correlation situation. By using the common model selection method DIC under Bayesian

approach, we found the DIC can’t produce the correct result. But we developed a full

Bayesian model as Hausman test, to compare the fixed effects model and random effects

model under no correlation and correlation cases. And we have proved it works as good as

Hausman test. Therefore, this thesis study the correlation affects on bias and compare the

frequentist approach with Bayesian approach on estimates and model comparison methods.

If there is correlation between the explanatory variables and individual effects, the fixed ef-

fect estimator is the appropriate estimator which is unbiased and efficient. Otherwise, the

random effect estimator is unbiased and efficient. Of course, this conclusion is based on a

certain assumption about the correlation between the explanatory variables and the individ-

ual effects only and more study are required under the other assumptions (i.e. the error term

is correlated with the explanatory variables). In future, we could investigate the Mundlak

formulation under other assumptions for both frequentist and Bayesian approaches to see

whether it still gives the unbiased estimation under certain assumption.
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Appendix A

Blockwise Matrix Inversion

Let a block matrix be



A B

C D



. Then the inverse of this block matrix is



A B

C D




−1

=



 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1





Now we verify this result.



A B

C D







A B

C D




−1

=



A B

C D







 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1





=



E F

G H



 =



I 0

0 I



 = I

where

E = A(A−BD−1C)−1 −BD−1C(A−BD−1C)−1

= (A−BD−1C)−1(A−BD−1C) = I

F = −A(A−BD−1C)−1BD−1 + BD−1 + BD−1C(A−BD−1C)−1BD−1

= BD−1[−A(A−BD−1C)−1 + I + BD−1C(A−BD−1C)−1]

= BD−1[I − (A−BD−1C)−1(A−BD−1C)]

= BD−1[I − I] = 0
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G = C(A−BD−1C)−1 −DD−1C(A−BD−1C)−1

= (A−BD−1C)−1[C −DD−1C]

= 0

H = −C(A−BD−1C)−1BD−1 + DD−1 + DD−1C(A−BD−1C)−1BD−1

= DD−1 − C(A−BD−1C)−1BD−1 + DD−1C(A−BD−1C)−1BD−1

= I − C(A−BD−1C)−1BD−1 + C(A−BD−1C)−1BD−1

= I

Therefore, the inverse of the block matrix



A B

C D



 is



A B

C D




−1

=



 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1




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Appendix B

Verification of Inverse Matrix V −1

To verify the V −1V = I , we have to use the Eq. (5.17) from Chapter 5.

V −1 =
1

σ2
u

[IT −
σ2

α

σ2
u + Tσ2

α

11T ]

Then we could rewrite the inverse of V −1 as

V −1 =
1

σ2
u

[IT − (
1

T
− 1

T
ψ)11T ]

=
1

σ2
u

[IT −
1

T
(1− ψ)11T ]

=
1

σ2
u

[IT −
1

T
11T +

1

T
ψ11T ]

=
1

σ2
u

[Q + ψP ]

where

ψ =
σ2

u

σ2
u + Tσ2

α

We also write V as

V = σ2
u[IT − (

1

T
− 1

T
ψ−1)11T ]

= σ2
u[IT −

1

T
(1− ψ−1)11T ]

= σ2
u[IT −

1

T
11T +

1

T
ψ−111T ]

= σ2
u[Q + ψ−1P ]

So V −1V is

V −1V = QQ + ψPQ + ψ−1PQ + PP = Q + P = I
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where QQ = Q, PP = P 2 = P and PQ = 0 from Chapter 3. Therefore, V −1V = I .
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Appendix C

GLSE for Mundlak Formulation

Refer to section 3.2.2, we use the similar way to prove the GLSE for Mundlak formulation.

C.1 Proof:

Since K =
[
X PX

]
, then KT =



 XT

XT P T



.

KT K =



 XT X XT PX

XT P T X XT P T PX





(KT K)−1 =



0 0

0 (XT P T PX)−1



 +



 I

−(XT P T PX)−1XT P T X



 (XT X −XT PX(XT P T PX)−1XT P T X)−1

[
I −XT PX(XT P T PX)−1

]

=



A B

C D




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where

A = (XT X −XT PX(XT PT PX)−1XT PT X)−1

= (XT X −XT PX(XT PX)−1XT PT X)−1

= (XT X −XT PT X)−1

= (XT X −XT PX)−1

= (XT (I − P )X)−1

= (XT QX)−1

B = −XT PX(XT PT PX)−1(XT X −XT PX(XT PT PX)−1XT PT X)−1

= −XT PX(XT PX)−1(XT X −XT PX(XT PX)−1XT PT X)−1

= −(XT QX)−1

C = −(XT PT PX)−1XT PT X(XT X −XT PX(XT PT PX)−1XT PT X)−1

= −(XT PT X)−1XT PT X(XT X −XT PX(XT PX)−1XT PT X)−1

= −(XT QX)−1

D = (XT PT PX)−1 + (XT PT PX)−1XT PT XXT PX(XT PT PX)−1

(XT X −XT PX(XT PT PX)−1XT PT X)−1

= (XT PX)−1 + (XT PT X)−1XT PT XXT PX(XT PX)−1

(XT X −XT PX(XT PT X)−1XT PT X)−1

= (XT PX)−1 + (XT QX)−1

Now Eq.(5.22) can be written as

δ̂ =



β̂

â



 = (KT K)−1KT y =



A B

C D







 XT

XT P T



 y

Thus, the GLS estimate of β̂ and â

β̂ = [AXT + BXT P T ]y

= (XT QX)−1XT − (XT QX)−1XT P T )y

= (XT QX)−1XT (I − P )y

= (XT QX)−1XT Qy

174



â = [CXT + DXT P T ]y

=
[
−(XT QX)−1XT + (XT PX)−1XT P T + (XT QX)−1XT P T

]
y

= (XT PX)−1XT P T y−
[
(XT QX)−1XT (I − P )

]
y

= (XT PX)−1XT Py− (XT QX)−1XT Qy

= β̂B − β̂W

Therefore, the GLS for Mundlak formulation gives

β̂ = β̂W

â = β̂B − β̂W
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Appendix D

WINBUGS Codes

D.1 RINOCOR and RICOR

D.1.1 RE Model

model {

for(i in 1:N){

for(t in 1:T){

Y[i,t] ˜ dnorm(mu[i,t],tau.e)

mu[i,t] <- beta0+beta1*X[i,t]+alpha[i]

}

alpha[i] ˜ dnorm(0,tau.a)

}

#prior distribution

beta0 ˜ dnorm(0.0,0.0001)

beta1 ˜ dnorm(0.0,0.0001)

tau.e ˜ dgamma(0.0001,0.0001)

tau.a ˜ dgamma(0.0001,0.0001)

}

D.1.2 FE Model

model{

for(i in 1:N){

for(t in 1:T){
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Y[i,t]˜dnorm(mu[i,t],tau.e)

mu[i,t]<-beta1*X[i,t]+alpha[i]

}

alpha[i]˜dnorm(0,0.001)

}

#prior distribution

beta1˜dnorm(0,0.0001)

tau.e˜dgamma(0.0001,0.0001)

s.e<-sqrt(1/tau.e)

}

D.1.3 PL Model

model{

for(i in 1:N){

for(t in 1:T){

Y[i,t]˜dnorm(mu[i,t],tau.e)

mu[i,t]<-beta0+beta1*X[i,t]

}

}

#prior distribution

beta0˜dnorm(0.0,0.0001)

beta1˜dnorm(0,0.0001)

tau.e˜dgamma(0.0001,0.0001)

s.e<-sqrt(1/tau.e)

}

D.1.4 MF Model

model{

for(i in 1:N){

for(t in 1:T){

Y[i,t]˜dnorm(mu[i,t],tau.e)

mu[i,t]<-beta0+beta1*X[i,t]+alpha[i]

}
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alpha[i]<-rho*mean(X[i,])+w[i]

}

#prior distribution

for(i in 1:N){

w[i]˜dnorm(0,tau.w)

}

beta0˜dnorm(0.0,0.0001)

beta1˜dnorm(0.0,0.0001)

rho˜dnorm(0,0.0001)

tau.e˜dgamma(0.0001,0.0001)

tau.w˜dgamma(0.0001,0.0001)

}

D.2 WAGE

D.2.1 RE Model

model{

for(i in 1:N){

for(t in 1:T){

L[i,t]˜dnorm(mu[i,t],tau.e)

mu[i,t]<-beta0+beta[1]*S[i,t]+beta[2]*E[i,t]

+beta[3]*E2[i,t]+beta[4]*U[i,t]+beta[5]*M[i,t]

+beta[6]*B[i,t]+beta[7]*H[i,t]+beta[8]*P[i,t]

+alpha[i]

}

alpha[i]˜dnorm(0,tau.a)

}

#prior distribution

for(v in 1:8){

beta[v]˜dnorm(0.0,0.0001)

}

beta0˜dnorm(0.0,0.0001)

tau.e˜dgamma(0.0001,0.0001)
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tau.a˜dgamma(0.0001,0.0001)

}

D.2.2 FE Model

model{

for(i in 1:N){

for(t in 1:T){

L[i,t]˜dnorm(mu[i,t],tau.e)

mu[i,t]<-beta[1]*E[i,t]+beta[2]*E2[i,t]

+beta[3]*U[i,t]+beta[4]*M[i,t]+beta[5]*P[i,t]

+alpha[i]

}

alpha[i]˜dnorm(0,0.0001)

}

#prior distribution

for(v in 1:5){

beta[v]˜dnorm(0.0,0.0001)

}

tau.e˜dgamma(0.0001,0.0001)

s.e<-1/sqrt(tau.e)

}

D.2.3 PL Model

model{

for(i in 1:N){

for(t in 1:T){

L[i,t]˜dnorm(mu[i,t],tau.e)

mu[i,t]<-beta0+beta[1]*S[i,t]+beta[2]*E[i,t]

+beta[3]*E2[i,t]+beta[4]*U[i,t]+beta[5]*M[i,t]

+beta[6]*B[i,t]+beta[7]*H[i,t]+beta[8]*P[i,t]

}

}

#prior distribution
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for(v in 1:8){

beta[v]˜dnorm(0.0,0.0001)

}

beta0˜dnorm(0.0,0.0001)

tau.e˜dgamma(0.0001,0.0001)

}

D.2.4 MF Model

model{

for(i in 1:N){

for(t in 1:T){

L[i,t] ˜ dnorm(mu[i,t],tau.e)

mu[i,t] <- beta0+beta[1]*S[i,t]+beta[2]*E[i,t]

+beta[3]*E2[i,t]+beta[4]*U[i,t]+beta[5]*M[i,t]

+beta[6]*B[i,t]+beta[7]*H[i,t]+beta[8]*P[i,t]

+alpha[i]

}

alpha[i] <- rho[1]*mean(E[i,])+rho[2]*mean(E2[i,])

+rho[3]*mean(U[i,])+rho[4]*mean(M[i,])

+rho[5]*mean(P[i,])+w[i]

}

for(i in 1:N){

w[i] ˜ dnorm(0.0,tau.w)

} }

#prior distribution

for(k in 1:8){

beta[k] ˜ dnorm(0.0,0.0001)

}

for(p in 1:8){

rho[p] ˜ dnorm(0.0,0.0001)

}

beta0 ˜ dnorm(0.0,0.0001)

tau.e ˜ dgamma(0.0001,0.0001)
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tau.w ˜ dgamma(0.0001,0.0001)

}
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Appendix E

WINBUGs Output

E.1 RINOCOR

E.1.1 RE Model

The Gelman-Rubin diagnostics for each estimate are

Figure E.1: Gelman-Rubin diagnostics of β0, β1, σε and σα

The convergence chains for each estimate are
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Figure E.2: Convergence chains of β0, β1, σε and σα

The posterior distribution for each estimate are

Figure E.3: Posterior distribution of β0, β1, σε and σα
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E.1.2 FE Model

The Gelman-Rubin diagnostics for each estimate are

Figure E.4: Gelman-Rubin diagnostics of β1 and σε

The convergence chains for each estimate are

Figure E.5: Convergence chains of β1 and σε

The posterior distribution for each estimate are

Figure E.6: Posterior distribution of β1 and σε

E.1.3 PL Model

The Gelman-Rubin diagnostics for each estimate are
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Figure E.7: Gelman-Rubin diagnostics of β0, β1 and σε

The convergence chains for each estimate are

Figure E.8: Convergence chains of β0, β1 and σε

The posterior distribution for each estimate are
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Figure E.9: Posterior distribution of β0, β1 and σε

E.1.4 MF Model

The Gelman-Rubin diagnostics for each estimate are

Figure E.10: Gelman-Rubin diagnostics of β0, β1, σε and σα

Figure E.11: Gelman-Rubin diagnostics of ρ

The convergence chains for each estimate are
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Figure E.12: Convergence chains of β0, β1, σε and σα

Figure E.13: Convergence chains of ρ

The posterior distribution for each estimate are
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Figure E.14: Posterior distribution of β0, β1, σε and σα

Figure E.15: Posterior distribution of ρ

E.2 RICOR

E.2.1 RE Model

The Gelman-Rubin diagnostics for each estimate are

Figure E.16: Gelman-Rubin diagnostics of β0, β1, σε and σα

The convergence chains for each estimate are
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Figure E.17: Convergence chains of β0, β1, σε and σα

The posterior distribution for each estimate are

Figure E.18: Posterior distribution of β0, β1, σε and σα
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E.2.2 FE Model

The Gelman-Rubin diagnostics for each estimate are

Figure E.19: Gelman-Rubin diagnostics of β1 and σε

The convergence chains for each estimate are

Figure E.20: Convergence chains of β1 and σε

The posterior distribution for each estimate are

Figure E.21: Posterior distribution of β1 and σε

E.2.3 PL Model

The Gelman-Rubin diagnostics for each estimate are
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Figure E.22: Gelman-Rubin diagnostics of β0, β1 and σε

The convergence chains for each estimate are

Figure E.23: Convergence chains of β0, β1 and σε

The posterior distribution for each estimate are
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Figure E.24: Posterior distribution of β0, β1 and σε

E.2.4 MF Model

The Gelman-Rubin diagnostics for each estimate are

Figure E.25: Gelman-Rubin diagnostics of β0, β1, σε and σα

Figure E.26: Gelman-Rubin diagnostics of ρ

The convergence chains for each estimate are
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Figure E.27: Convergence chains of β0, β1, σε and σα

Figure E.28: Convergence chains of ρ

The posterior distribution for each estimate are
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Figure E.29: Posterior distribution of β0, β1, σε and σα

Figure E.30: Posterior distribution of ρ

E.3 WAGE

E.3.1 RE Model

The Gelman-Rubin diagnostics for each estimate are

Figure E.31: Gelman-Rubin diagnostics of β0, σε and σα
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Figure E.32: Gelman-Rubin diagnostics of βk, k = 1, · · · , 8

The convergence chains for each estimate are
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Figure E.33: Convergence chains of β0, σε and σα
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Figure E.34: Convergence chains of βk, k = 1, · · · , 4

197



Figure E.35: Convergence chains of βk, k = 5, · · · , 8

The posterior distribution for each estimate are

Figure E.36: Posterior distribution of β0, σε and σα
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Figure E.37: Posterior distribution of βk, k = 1, · · · , 8

E.3.2 FE Model

The Gelman-Rubin diagnostics for each estimate are
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Figure E.38: Gelman-Rubin diagnostics of βk, k = 2, 3, 4, 5, 8 and σε

The convergence chains for each estimate are

Figure E.39: Convergence chains of βk, k = 2, 3, 4
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Figure E.40: Convergence chains of βk, k = 5, 8 and σε

The posterior distribution for each estimate are

Figure E.41: Posterior distribution of βk, k = 2, 3, 4, 5, 8 and σε
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E.3.3 PL Model

The Gelman-Rubin diagnostics for each estimate are

Figure E.42: Gelman-Rubin diagnostics of β0 and σε

Figure E.43: Gelman-Rubin diagnostics of βk, k = 1, · · · , 8

The convergence chains for each estimate are
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Figure E.44: Convergence chains of β0 and σε

Figure E.45: Convergence chains of βk, k = 1, · · · , 4
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Figure E.46: Convergence chains of βk, k = 5, · · · , 8

The posterior distribution for each estimate are

Figure E.47: Posterior distribution of β0 and σε
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Figure E.48: Posterior distribution of βk, k = 1, · · · , 8

E.3.4 MF Model

The Gelman-Rubin diagnostics for each estimate are

Figure E.49: Gelman-Rubin diagnostics of β0, σε and σw
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Figure E.50: Gelman-Rubin diagnostics of βk, k = 1, · · · , 8

Figure E.51: Gelman-Rubin diagnostics of ρp, p = 1, · · · , 5

The convergence chains for each estimate are
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Figure E.52: Convergence chains of β0, σε and σw
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Figure E.53: Convergence chains of βk, k = 1, · · · , 4
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Figure E.54: Convergence chains of βk, k = 5, · · · , 8
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Figure E.55: Convergence chains of ρp, p = 1, · · · , 3

Figure E.56: Convergence chains of ρp, p = 4, 5

The posterior distribution for each estimate are

210



Figure E.57: Posterior distribution of β0, σε and σw

Figure E.58: Posterior distribution of βk, k = 1, · · · , 8
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Figure E.59: Posterior distribution of ρp, p = 1, · · · , 5
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