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Abstract

Maximum-sized results are an important part of matroid theory, and results

currently exist for various classes of matroids. Archer conjectured that the

maximum-sized golden-mean matroids fall into three distinct classes, as op-

posed to the one class of all current results. We will prove a partial result

that we hope will lead to a full proof.

In the second part of this thesis, we look at secret sharing matroids, with a

particular emphasis on the class of group-induced p-representable matroids,

as introduced by Matúš. We give new proofs for results of Matúš’, relating

to M(K4), F7 and F−7 . We show that the techniques used do not extend

in some natural ways, and pose some unanswered questions relating to the

structure of secret sharing matroids.
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Chapter 1

Introduction

A rank-r simple matroid from a class of matroids is said to be maximum-

sized if none of the other rank-r simple matroids from the class have more

elements than the original matroid.

The question of maximum-sized matroids is an important one in matroid

theory, with many classes already classified, such as regular matroids [12],

dyadic matroids [14, 16], sixth-root-of-unity matroids [21], and near-regular

matroids [21].

However, maximum-sized golden-mean matroids have not yet had such a

characteristion. Semple [24] and Archer [1] have made progress towards a

result for low ranks, while Archer has conjectured the complete characteri-

sation.

Conjecture 1.0.1 (Archer, 2005). Let M be a maximum-sized golden-mean

matroid. If r(M) = 3 then M ∼= B11, otherwise M is isomorphic to one of

1



CHAPTER 1. INTRODUCTION 2

GIr(M), GPr(M) or T 2
r(M).

We will not prove this conjecture in this thesis. However, we will prove a

weaker result.

Theorem 1.0.2. Let M be a simple rank-r golden-mean matroid with no

F=
7 or S10\f minor. Then

|E(M)| ≤
(
r + 3

2

)
− 5.

Furthermore, equality in this bound is attained if and only if M ∼= T 2
r .

The work in Part I of this thesis is original, with guidance from Dillon May-

hew. The techniques used were developed by Oxley, Vertigan and Whittle

in [21]. No non-original proofs are given, and credit is given for such results

as they appear.

Part II of this thesis deals with secret sharing matroids. Secret sharing

schemes were independently introduced by Blakley [3] and Shamir [30]. A

secret sharing matroid captures the essence of an ideal secret sharing scheme,

and, as such, is of interest to various groups of people, including matroid

theorists and information theorists.

Almost nothing is known about the structure of secret sharing matroids, and

we will give new proofs of a few results by Matúš [19] in this area.

As such, there is little original work in this part of the thesis. Theorem 5.1.4

can be found in [6]. All results from Sections 5.1.2, 5.2, and 5.3 are originally
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by Matúš [19]. However, new proofs are given here. The work in Section 5.4

is all original. As in Part I, credit is given where old results are used.

The reader is referred to Matroid Theory by Oxley [20] for an introduction

to the fundamental concepts in matroid theory. All undefined notation in

this thesis will follow [20].

The following definition formalises various intuitive concepts arising from

geometry, that will be used throughout this thesis.

Definition 1.0.3. A point of a matroid is a rank one flat. A line of a

matroid is a rank two flat. A long line of a matroid is a rank two flat that

contains at least three points. A very long line of a matroid is a rank two

flat that contains at least four points. The length of a line is the number of

points on the line.



Part I

Golden-mean Matroids

4



Chapter 2

Introduction

Partial fields were introduced by Semple and Whittle [27]. However, we will

follow the treatment of Van Zwam [34], starting from a ring.

Definition 2.0.4 (Van Zwam [34]). A partial field is a pair (R,G), where

R is a commutative ring, and G is a subgroup of the group of units of R such

that −1 ∈ G.

If P = (R,G) is a partial field, and p ∈ R, then we say that p is an element

of P, denoted p ∈ P, if p = 0 or p ∈ G. Note that if p, q ∈ P then pq ∈ P, but

p+ q need not be an element of P.

Example 2.0.5. Consider the partial field U0 = (Z, {−1, 1}), known as the

regular partial field. Then 1 · 1 ∈ {−1, 1}, but 1 + 1 /∈ {−1, 1}. ♦

Definition 2.0.6. A matroid M is said to be representable over the

partial field P if there is a matrix M such that all non-zero subdeterminants

5



CHAPTER 2. INTRODUCTION 6

of M are in P and a labelling of the columns of M by E(M) such that

any subset {x1, . . . , xk} is independent in M if and only if the submatrix

[x1, . . . , xk] contains a k × k subdeterminant that is non-zero in P. We say

that M is a P-matrix , and that M is a P-matroid .

We are interested in characterising the maximum-sized matroids for classes

of matroids representable over partial fields.

Definition 2.0.7 (Kung [15]). Let M be a collection of matroids. A mem-

ber M ofM is extremal in M if M is simple and there is no single element

simple extension of M that has the same rank as M and is isomorphic to a

member of M.

A member M of M is maximum-sized in M if M is simple and every

rank-r(M) simple matroid in M has a groundset that is no larger than the

groundset of M .

Characterisations of the maximum-sized matroids representable over various

partial fields are already known.

Recall the regular partial field U0 from Example 2.0.5. The next theorem

follows from work done by Heller [12].

Theorem 2.0.8. Let M be a simple rank-r regular matroid. Then

|E(M)| ≤
(
r + 1

2

)
.
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Furthermore, equality in this bound is attained if and only if M ∼= M(Kr+1).

�

Definition 2.0.9 (Kung and Oxley [16], Section 6.10 of Oxley [20]). Let

{ω1, . . . , ωn} be a basis of an n-dimensional vector space over GF (3). The

ternary Dowling geometry Qn(GF (3)∗) is the ternary geometry of rank

n consisting of the points ω1, . . . , ωn and the points ωi − ωj and ωi + ωj,

where i < j.

The dyadic partial field is D = (Q, 〈−1, 2〉). The next theorem follows from

work done by Kung [14] and Kung and Oxley [16].

Theorem 2.0.10. Let M be a simple rank-r dyadic matroid. Then

|E(M)| ≤ r2.

Furthermore, equality in this bound is attained if and only if M ∼=

Qr(GF (3)∗). �

The near-regular partial field is U1 = (C(ξ), 〈−1, ξ, 1− ξ〉), where ξ is a

transcendental. The sixth-roots-of-unity ( 6
√

1) partial field is S = (C, 〈ζ〉),

where ζ is a root of x2 − x + 1. Maximum-sized characterisations for both

near-regular and 6
√

1 matroids were provided by Oxley, Vertigan, and Whittle

[21], using the following two results. The matroid Tr is obtained by adding

a point freely on a three point line of M(Kr+2), contracting that point, and

simplifying the resulting matroid.
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Theorem 2.0.11. Let M be a simple rank-r 6
√

1-matroid. Then

|E(M)| ≤


(
r+2
2

)
− 2 if r 6= 3;

9 if r = 3.

Moreover, equality is attained in this bound if and only if M ∼= Tr, when

r 6= 3, or M ∼= AG(2, 3) when r = 3. �

Corollary 2.0.12. Let M be a simple rank-r near-regular matroid. Then

|E(M)| ≤
(
r + 2

2

)
− 2.

Moreover, equality is attained in this bound if and only if M ∼= Tr. �

There are an infinite number of maximum-sized characterisations for classes

of matroids, as the maximum-sized rank-r matroid representable over the

field GF (q) is the projective geometry PG(r − 1, q).

2.1 Maximum-sized Golden-mean Matroids

Definition 2.1.1. The golden-mean partial field, denoted G, is (R, 〈−1, φ〉),

where φ is the positive root of x2 − x− 1. A matroid is golden-mean if it

has a G-representation.

The following theorem is an unpublished result of Vertigan. In his masters

thesis, Semple [24] proved that (ii) implies (iii). For a proof, see Pendavingh
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Figure 2.1: The Betsy Ross

and Van Zwam [22, Theorem 1.3].

Theorem 2.1.2. Let M be a matroid. The following are equivalent:

(i) M is representable over both GF (4) and GF (5);

(ii) M is golden-mean;

(iii) M is representable over GF (p) for all primes p such that p = 5 or

p ≡ ±1 mod 5, and also over GF (p2) for all primes p. �

The Betsy Ross matroid, or B11, was introduced by Brylawski and Kelly [5].

It was shown by Semple [24] that B11 is an extremal rank-three golden-mean

matroid. Using computer software, Archer [1] was able to show that B11 is

the unique maximum-sized rank-three golden-mean matroid.
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Figure 2.2: GI3

A geometric representation for B11 is given in Figure 2.1. It has the following

G representation.


1 0 0 1 1 0 0 1 1 1 1

0 1 0 1 φ 1 1 0 0 φ φ2

0 0 1 1 φ2 1 φ −φ 1 1 φ2

 .

The GIr family of matroids was introduced by Archer in his PhD thesis [1].

A geometric representation of GI3 is shown in Figure 2.2.

Let Dm denote the m ×
(
m
2

)
matrix whose columns consist of all m-tuples

with two non-zero entries, with the first being 1 and the second being −1.

Let 0n
m denote the n×m matrix consisting entirely of zeroes. Let I0m denote

the m× (m+ 1) matrix [Im|0]. Let k = r− 2. Then the GI matroid of rank
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Figure 2.3: T 2
3

r, for r > 2, denoted GIr, is defined by the following matrix.



−φ −φ −φ 0 · · · 0 φ · · · φ 1 · · · 1 0 · · · 0 0 · · · 0 0 · · · 0

1 φ φ2 0 · · · 0 0 · · · 0 0 · · · 0 φ · · · φ 1 · · · 1 0 · · · 0

0k
3 Ik Ik I0k Ik I0k Dk


.

The T k
r family of matroids was introduced by Semple in his PhD thesis [25].

We are only interested in the T 2
r family, a representation of which is given

below. A geometric representation of T 2
3 is given in Figure 2.3.



1 0 · · · 0 1 · · · 1 φ · · · φ φ2 · · · φ2 0 · · · 0

0

... In−1 In−1 In−1 In−1 Dn−1

0


.
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Figure 2.4: GP3

As we will be interested in the T 2
r family of matroids later, note that all

five-point lines in T 2
r pass through a common point, and there are r− 1 such

lines. Also, note that the number of elements in T 2
r is

∣∣E(T 2
r )
∣∣ =

(
r + 3

2

)
− 5.

The GPr family of matroids was introduced by Archer in his PhD thesis [1].

Note that the matrix given here is different from one that was introduced

by Archer, as the original matrix has errors. This altered matrix is due to

Archer (private correspondence).

First of all, GP1
∼= GP2

∼= U2,5. Recall that k = r − 2. Then GPr is

represented by the following matrix. A geometric representation of GP3 is
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given in Figure 2.4.



0 · · · 0 −1 1 · · · 1 0 · · · 0 φ · · · φ 1 · · · 1 0 · · · 0

0 · · · 0 φ 0 · · · 0 φ · · · φ φ · · · φ φ2 · · · φ2 0 · · · 0

I0k I0k I0k I0k I0k Dk



In his PhD thesis, Archer [1] put forward the following conjecture.

Conjecture 2.1.3 (Archer, 2005). Let M be a maximum-sized golden-mean

matroid. If r(M) = 3 then M ∼= B11, otherwise M is isomorphic to one of

GIr(M), GPr(M) or T 2
r(M).

This conjecture is as yet unsolved. However, we will prove a weaker result.



Chapter 3

Results

Let F=
7 be the matroid represented over G by the matrix below. A geometric

representation is shown in Figure 3.1. It is obtained by relaxing a circuit-

hyperplane of the non-Fano.

Figure 3.1: F=
7

14
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Figure 3.2: S10\f


0 1 1 0 0 1 1

1 1 φ 1 1 φ φ2

0 1 φ2 1 φ 1 φ2


S10\f is the matroid obtained by deleting the unique point on multiple

three point lines and any other point from the Betsy Ross. A geometric

representation is shown in Figure 3.2. We will only consider matroids that

have no F=
7 or S10\f minor.

The main theorem that will be proved is the following.

Theorem 3.0.4. Let M be a simple rank-r golden-mean matroid with no

F=
7 or S10\f minor. Then

|E(M)| ≤
(
r + 3

2

)
− 5.

Furthermore, equality in this bound is attained if and only if M ∼= T 2
r .

We will prove this theorem inductively, using techniques found in Oxley,

Vertigan and Whittle [21].
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Firstly, we need to show that T 2
r is in fact golden-mean. Note that this result

also follows from work by Semple [26].

Lemma 3.0.5. For all r ≥ 2, T 2
r is a golden-mean matroid.

Proof. We will argue by induction on r. By definition, T 2
2 is U2,5, which, by

page 640 of Oxley [20], is representable over all fields of size greater than or

equal to four. In particular, it is representable over GF (4) and GF (5), and

so by Theorem 2.1.2, is golden-mean.

Recall that T 2
r is represented over G by the following matrix.

Tr =



1 0 · · · 0 1 · · · 1 φ · · · φ φ2 · · · φ2 0 · · · 0

0

... Ir−1 Ir−1 Ir−1 Ir−1 Dr−1

0



In order to show that Tr is a G-matrix, we need to show that every non-zero

subdeterminant of Tr falls into the set {±φi | i ∈ Z}. Now assume that

r > 2 and that Tr−k is a G-matrix for all k ∈ {1, . . . , r − 2}. Let X be an

n× n submatrix of Tr. Since the matrix [Ir−1|Dr−1] is a totally unimodular

matrix representation of M(Kr), we may assume that X meets row 1 of Tr.

Furthermore, if X avoids some row of Tr, then either X has two columns

such that one is a scalar multiple of the other, or X can be obtained from a

submatrix of Tr−1 by multiplying some columns by −1, φ, or φ2. In either

case, we can deduce that det(X) is in the desired set. Hence we can assume
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that n = r.

Now assume that X has a row with at most one non-zero entry. Then

det(X) is obtained by multiplying the determinant of a submatrix of Tr−1

by some member of {0, 1,−1, φ,−φ, φ2,−φ2}. Thus det(X) is in the desired

set. Therefore we may assume that every row of X has at most two non-zero

entries. However, by inspection, we can see that every column of X has at

most two non-zero entries. Thus X has exactly 2n non-zero entries, two per

row and two per column. Then, after permuting some rows and columns and

multiplying some rows or columns by −1, we can get the matrix



x 0 0 0 y

1 1 0 0 0

0 −1 1 0 0

0 0 −1 0 0

. . .

0 0 0 1 0

0 0 0 −1 1



,

where x ∈ {1, φ, φ2} and y ∈ {φ, φ2}. The determinant of this matrix is

x + (−1)1+ny(−1)n−2, that is x − y. For all six possible values of x and y,

the set {±φi | i ∈ Z}contains x− y, and so det(X) is in the desired set.

Therefore, by induction, Tr is a G-matrix and therefore T 2
r is a golden-mean

matroid. �
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We also need to show that T 2
r has no F=

7 or S10\f minor.

Lemma 3.0.6. For all r ≥ 3, T 2
r has no F=

7 or S10\f minor.

Proof. We will prove this lemma by induction on r. The base case, when

r = 3, follows immediately from Lemma 3.1.1. Recall that T 2
r is represented

over G by the following matrix.



1 0 · · · 0 1 · · · 1 φ · · · φ φ2 · · · φ2 0 · · · 0

0

... Ir−1 Ir−1 Ir−1 Ir−1 Dr−1

0



When we contract the first element of this matrix,

[
1 0 . . . 0

]T
, after

simplifying we get the following matrix

[
Ir−1 Dr−1

]
.

This is the matrix for M(Kr), and is therefore regular. As neither F=
7 nor

S10\f is regular, this contraction does not give a F=
7 or S10\f minor.

When we contract any other element from the standard basis of this matrix,
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we get the following matrix upon simplification



1 0 · · · 0 1 · · · 1 φ · · · φ φ2 · · · φ2 0 · · · 0

0

... Ir−2 Ir−2 Ir−2 Ir−2 Dr−2

0


.

This is isomorphic to T 2
r−1, which has no F=

7 or S10\f minor by induction.

Likewise, when we contract any element from the identity submatrices headed

by 1, φ, and φ2, we get a matrix equivalent to the following upon simplifica-

tion



1 0 · · · 0 1 · · · 1 φ · · · φ φ2 · · · φ2 0 · · · 0

0

... Ir−2 Ir−2 Ir−2 Ir−2 Dr−2

0


.

This is isomorphic to T 2
r−1, which has no F=

7 or S10\f minor by induction.

Finally, when we contract any point from the Dr−1 section, we also get a

matrix equivalent to the following upon simplification



1 0 · · · 0 1 · · · 1 φ · · · φ φ2 · · · φ2 0 · · · 0

0

... Ir−2 Ir−2 Ir−2 Ir−2 Dr−2

0


.
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Figure 3.3: P\c

Figure 3.4: IK

This is isomorphic to T 2
r−1, which has no F=

7 or S10\f minor by induction.

Therefore, no matter what point in T 2
r we contract, we do not get a F=

7 or

S10\f minor. Hence T 2
r has no F=

7 or S10\f minor. �
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3.1 Lemmata used in the proof of Theorem

3.0.4

3.1.1 Computer Result

In order to get a base case for our induction, we need to know what all

the rank-three golden-mean matroids with no F=
7 or S10\f minor are. To

that end, we use a computer search, utilising Sage [32] and Mathematica

[36]. This result was independently verified by a different computer search

undertaken by Pendavingh (private correspondence).

Lemma 3.1.1. The extremal rank-three golden-mean matroids with no

F=
7 or S10\f minor are as follows:

• T 2
3 (Figure 2.3)

• P\c (Figure 3.3)

• IK (Figure 3.4)

Proof Sketch. The code used is in Appendix A, along with discussion on how

it functions.

When the code is run, a list of 3588 rank-three G-matrices is output. As iso-

morphism testing was not implemented, a large amount of pencil-and-paper

calculation is required to gain the desired result. Firstly, one must remove

all matroids that contain F=
7 or S10\f as a restriction. Then, starting from
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the largest matrix still remaining in the list, check to see if it is isomorphic

to a matroid in the list of extremal matroids. If it is, remove it, and all

restrictions of it, from the list of possible matroids. If it is not, add it to the

list of extremal matroids and remove it, and all restrictions of it, from the

list of possible matroids. Repeat this process until there are no matroids left

on the list of possible matroids. Once this stage has been reached, the list of

extremal matroids is complete, and the desired result follows. �

3.1.2 Spikes

Definition 3.1.2 (Ding et al. [7]). For n ≥ 3, a simple matroid M is an

n-spike with tip t if it satisfies the following properties.

(i) the ground set is the union of n lines, L1, . . . , Ln, all having three points

and passing through a common point t;

(ii) for all k in {1, 2, . . . , n− 1}, the union of any k of L1, . . . , Ln has rank

k + 1; and

(iii) r(L1 ∪ · · · ∪ Ln) = n.

We will refer to an n-spike with tip t as an n-spike.

We need to completely characterise the 4-spikes representable over GF (4).

To that end, we use the following result.

Theorem 3.1.3 (Wu, Theorem 1.2 [37]). For each integer n ≥ 3, the num-

ber of distinct quaternary n-spikes is b(n2 + 6n+ 24)/12c. �
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Corollary 3.1.4. There are exactly five distinct quaternary 4-spikes. �

Let S be an n-spike with tip t representable over a field F. If we choose

a basis {1, . . . , n} containing exactly one element from each of the lines Li,

then S can be represented in the form



1 2 3 ··· n t

1 0 0 · · · 0 1 1 + x1 1 1 · · · 1

0 1 0 · · · 0 1 1 1 + x2 1 · · · 1

0 0 1 · · · 0 1 1 1 1 + x3 · · · 1

...
...

...
. . .

...
...

...
...

...
. . .

...

0 0 0 · · · 1 1 1 1 1 · · · 1 + xn


where x1, . . . , xn are non-zero elements of F.

Lemma 3.1.5. All 4-spikes representable over GF (4) either have F=
7 as a

minor or are not representable over GF (5).

Proof. We will treat each spike separately. Note that GF (4) consists of the

elements {0, 1, α, α2}, where α2 = α + 1.

Sublemma 3.1.5.1. The matroid S1, as represented over GF (4) by the ma-
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trix below, is not representable over GF (5).



1 2 3 4 5 6 7 8 9

1 0 0 0 1 0 1 1 1

0 1 0 0 1 1 0 1 1

0 0 1 0 1 1 1 0 1

0 0 0 1 1 1 1 1 0


Subproof. Contract any point (except for the point represented by[
1 1 1 1

]T
) and simplify the resultant matroid. It is not too hard to

see that this gives the Fano matroid. It is well known (page 643 of Oxley

[20] for instance) that the Fano matroid is only representable over fields of

characteristic 2, so S1 cannot be GF (5) representable. �

Sublemma 3.1.5.2. The matroid S2, as represented over GF (4) by the ma-

trix below, is not representable over GF (5).



1 2 3 4 5 6 7 8 9

1 0 0 0 1 0 1 1 1

0 1 0 0 1 1 α2 1 1

0 0 1 0 1 1 1 α2 1

0 0 0 1 1 1 1 1 α2



Subproof. Contract the point represented by

[
0 1 1 1

]T
and simplify the

resultant matroid. It is not too hard to see that this gives the Fano matroid,



CHAPTER 3. RESULTS 25

so S2 cannot be GF (5) representable. �

Sublemma 3.1.5.3. The matroid S3, as represented over GF (4) by the ma-

trix below, has F=
7 as a minor.



1 2 3 4 5 6 7 8 9

1 0 0 0 1 0 1 1 1

0 1 0 0 1 1 0 1 1

0 0 1 0 1 1 1 α2 1

0 0 0 1 1 1 1 1 α



Subproof. Contract the point represented by

[
1 1 α2 1

]T
and simplify

the resultant matroid. It is not too hard to see that this gives F=
7 . �

Sublemma 3.1.5.4. The matroid S4, as represented over GF (4) by the ma-

trix below, has F=
7 as a minor.



1 2 3 4 5 6 7 8 9

1 0 0 0 1 0 1 1 1

0 1 0 0 1 1 0 1 1

0 0 1 0 1 1 1 α 1

0 0 0 1 1 1 1 1 α



Subproof. Contract the point represented by

[
0 0 1 0

]T
and simplify the

resultant matroid. It is not too hard to see that this gives F=
7 . �
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Figure 3.5: Illustration of S5

Sublemma 3.1.5.5. The matroid S5, as represented over GF (4) by the ma-

trix below, is not representable over GF (5).



1 2 3 4 5 6 7 8 9

1 0 0 0 1 α 1 1 1

0 1 0 0 1 1 α 1 1

0 0 1 0 1 1 1 α 1

0 0 0 1 1 1 1 1 α



Subproof. A geometric representation of S5 is given in Figure 3.5. We can

see that S5 is the free spike of rank four. As such, it follows from [11, Lemma

11.6] that S5 is not GF (5)-representable. �

Sublemma 3.1.5.6. S1, S2, S3, S4, and S5 are all distinct.

Subproof. S1 has eight 4-element circuit-hyperplanes. They are {1, 2, 3, 9},

{1, 2, 4, 8}, {1, 3, 4, 7}, {1, 7, 8, 9}, {2, 3, 4, 6}, {2, 6, 8, 9}, {3, 6, 7, 9}, and

{4, 6, 7, 8}. S2 has four 4-element circuit-hyperplanes, with one element, 6,

on all four of them. Therefore S1 � S2. S3 and S4 both have four 4-element
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circuit-hyperplanes, but neither of them have an element on four 4-element

circuit hyperplanes. Therefore S2 � S3, S2 � S4, S1 � S3, and S1 � S4.

S4 also has the property that picking a non-tip element and looking at the

4-element circuit hyperplanes that it is in, there is a different non-tip ele-

ment of S4 that is in the same 4-element circuit hyperplanes. S3 does not

have this property. Therefore S3 � S4. Finally, S5 has no 4-element circuit

hyperplanes. Therefore S5 � Si, for i ∈ {1, 2, 3, 4}. �

Because of Corollary 3.1.4, we know that there are exactly five distinct qua-

ternary 4-spikes. Sublemma 3.1.5.6 shows that we indeed have five distinct

quaternary 4-spikes. The five sublemmata 3.1.5.1 – 3.1.5.5 show that all of

them either have a F=
7 minor or are not representable over GF (5). �

Corollary 3.1.6. There are no golden-mean 4-spikes with no F=
7 or

S10\f minor. �

3.2 Proof of Theorem 3.0.4

The remainder of this part of the thesis will be dedicated to the proof of

Theorem 3.0.4.

Recall that Theorem 3.0.4 is

Theorem 3.0.4. Let M be a simple rank-r golden-mean matroid with no
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F=
7 or S10\f minor. Then

|E(M)| ≤
(
r + 3

2

)
− 5.

Furthermore, equality in this bound is attained if and only if M ∼= T 2
r .

Proof. We will use induction on r. We will simultaneously prove the bound

and the characterisation of the matroids that attain equality in this bound.

For r < 3, the result is trivial. The case when r = 3 follows from Lemma

3.1.1.

So let M be a rank-r maximum-sized golden-mean matroid with no F=
7 or

S10\f minor, where r ≥ 4. Then

|E(M)| ≥
∣∣E(T 2

r )
∣∣ =

(
r + 3

2

)
− 5. (3.2.0.1)

3.2.1 Connectivity

Definition 3.2.1. Let M = (E, r) be a matroid and let k > 1 be an integer.

A k-separation of M is a partition (X, Y ) of E with the property that

|X| , |Y | ≥ k, and r(X) + r(Y ) − r(M) < k. The separation is an exact

k-separation if r(X) + r(Y ) − r(M) = k − 1. If M has no n-separations

for all n ≤ k, then M is (k+1)-connected .

This result of Seymour is used in the proofs of various lemmata.

Lemma 3.2.2 (Seymour, Theorem 3.1 [28]). If x, y are elements of a non-
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binary 3-connected matroid M , then M has a U2,4 minor using both x and y.

�

Lemma 3.2.3. Let M be a rank-r maximum-sized golden-mean matroid with

no F=
7 or S10\f minor. Then M is 2-connected.

Proof. Assume that M is not 2-connected. Then there exists an exact 1-

separation (X1, X2) of M . Let r(Xi) = ri. As Xi is simple and golden-

mean, by the induction hypothesis, Xi can be no larger than T 2
ri

. Hence

|Xi| ≤
(
ri+3
2

)
− 5, for i ∈ {1, 2}. So

|E(M)| = |X1|+ |X2|

|E(M)| ≤
(
r1 + 3

2

)
+

(
r2 + 3

2

)
− 10

=
1

2

(
r21 + r22 + 5r1 + 5r2 − 8

)
. (3.2.3.1)

As M is maximum-sized of rank r, it must be at least as big as T 2
r . Hence

|E(M)| ≥
(
r + 3

2

)
− 5

=

(
r1 + r2 + 3

2

)
− 5

=
1

2

(
r21 + r22 + 5r1 + 5r2 + 2r1r2 − 4

)
. (3.2.3.2)

Combining (3.2.3.1) and (3.2.3.2), we get
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1

2

(
r21 + r22 + 5r1 + 5r2 − 8

)
≥ 1

2

(
r21 + r22 + 5r1 + 5r2 + 2r1r2 − 4

)
−8 ≥ 2r1r2 − 4.

As both r1 and r2 are positive, this is a contradiction. Therefore M is 2-

connected. �

Lemma 3.2.4. Let M be a rank-r maximum-sized golden-mean matroid with

no F=
7 or S10\f minor. Then M is 3-connected.

Proof. Assume that M is not 3-connected. By Lemma 3.2.3, M is 2-

connected, so there are no exact 1-separations. Hence there exists an exact

2-separation (X1, X2) of M . Let r(Xi) = ri. As M |Xi is simple and golden-

mean, then, by the induction hypothesis, Xi can be no larger than T 2
ri

. Hence

|Xi| ≤
(
ri+3
2

)
− 5, for i ∈ {1, 2}. So

|E(M)| = |X1|+ |X2|

≤
(
r1 + 3

2

)
+

(
r2 + 3

2

)
− 10

=
1

2

(
r21 + r22 + 5r1 + 5r2 − 8

)
. (3.2.4.1)

As M is maximum-sized of rank r, it must be at least as big as T 2
r . Hence
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|E(M)| ≥
(
r + 3

2

)
− 5

=

(
(r1 + r2 − 1) + 3

2

)
− 5

=
1

2

(
r21 + r22 + 3r1 + 3r2 + 2r1r2 − 8

)
. (3.2.4.2)

Combining (3.2.4.1) and (3.2.4.2), we get

1

2

(
r21 + r22 + 5r1 + 5r2 − 8

)
≥ 1

2

(
r21 + r22 + 3r1 + 3r2 + 2r1r2 − 8

)
2r1 + 2r2 ≥ 2r1r2

r1 + r2 ≥ r1r2

If ri = 1, then M contains a parallel class, and is therefore not simple,

contradicting the definition of M .

Hence r1 = r2 = 2. Then r(M) = 3, so, as M is maximum-sized, by Lemma

3.1.1, M is isomorphic to T 2
r . In this case, it is easy to see that M is 3-

connected, a contradiction.

Therefore M is 3-connected. �

Definition 3.2.5. Let M be a 3-connected matroid. If every 3-separation

(X, Y ) of M has the property that min {r(X), r(Y )} ≤ 2, then M is verti-

cally 4-connected .
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The following result is well known. A proof is given here for completeness.

Lemma 3.2.6. Let M be a vertically 4-connected matroid, and let e ∈ E(M)

be an element of M . Then si(M/e) is 3-connected.

Proof. Firstly, we will show that si(M/e) is 2-connected.

Sublemma 3.2.6.1. The matroid si(M/e) is 2-connected.

Subproof. Assume that si(M/e) is not 2-connected. Then there exists a 1-

separation, (X
′′
1 , X

′′
2 ) of si(M/e). This induces a 1-separation, (X ′1, X

′
2) of

M/e. We now consider what happens to this partition in M . Let (X1, X2)

be this partition in M . Without loss of generality, we can assume that

e ∈ X1. Then rM(X1) − rM/e(X1) = 1, and rM(X2) − rM/e(X2) is at most

one. If rM(X1)− rM/e(X1) = rM(X2)− rM/e(X2) = 1, then

rM(X1) + rM(X2)− rM(M) = 1.

Therefore (X1, X2) is a 2-separation of M , contradicting the fact that M is

3-connected. Hence si(M/e) must be 2-connected. �

Now assume that si(M/e) is not 3-connected. Then there exists a 2-

separation, (X
′′
1 , X

′′
2 ) of si(M/e). By putting back parallel elements and

coloops, there is a 2-separation, (X ′1, X
′
2) of M/e. We now consider what

happens to this 2-separation in M . Let (X1, X2) be this 2-separation in

M . If rM(X1) = rM/e(X
′
1) + 1 and rM(X2) = rM/e(X

′
2), then (X1, X2)



CHAPTER 3. RESULTS 33

is a 2-separation of M , contradicting the 3-connectedness of M . Hence

rM(X1) = rM/e(X
′
1) + 1 and rM(X2) = rM/e(X

′
2) + 1. Then

rM(X1) + rM(X2)− rM(M) = rM/e(X
′
1) + rM/e(X

′
2)− (rM/e(M/e) + 1) + 2

= 1− 1 + 2

= 2.

So (X1, X2) is a 3-separation of M . However, in si(M/e), the rank of X
′′
1 and

the rank of X
′′
2 are both at least two, as it is simple. So in M the rank of

X1 and the rank of X2 are both at least three. This is a contradiction to M

being vertically 4-connected, so si(M/e) must be 3-connected. �

Lemma 3.2.7. Let M be a rank-r maximum-sized golden-mean matroid with

no F=
7 or S10\f minor. Then M is vertically 4-connected.

Proof. Let P = PG(r − 1, 4). Assume that M has an exact vertical 3-

separation (X1, X2). View M as a restriction of P . Now,

r(clP (X1) ∩ clP (X2)) ≤ r(clP (X1)) + r(clP (X2))− r(clP (X1) ∪ clP (X2))

≤ r(X1) + r(X2)− r(X1 ∪X2)

= r(X1) + r(X2)− r(M)

= 2.

So the closures of X1 and X2 in P meet in a line L of P . Let ri = r(Xi).

As (X1, X2) is a vertical 3-separation of M , both r1 and r2 must be at least
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three.

We consider |L ∩ E(M)|, noting that it is at most five, as this is the maximum

line length in a quaternary matroid. The strategy of the proof is to consider,

for each i ∈ {1, 2}, a simple rank-ri minor Mi of M , obtained by deleting

and contracting elements from the complement of Xi, that is spanned by Xi,

contains (X1∪X2)∩L, and has the maximum number of points among such

minors. Thus, for {i, j} = {1, 2}, Mi is obtained from M by contracting

elements in Xj so that as many points in Xj as possible are projected into

the span of Xi. Clearly we may view Mi as a restriction of P |(L ∪Xi).

Sublemma 3.2.7.1. Mi is non-binary, for i ∈ {1, 2}.

Subproof. Let {i, j} = {1, 2}. Now assume that Mi is binary. Then, by

Theorem 6.6.3 of Oxley [20], asMi is golden-mean and therefore representable

over GF (5), it is regular. Then, by Theorem 2.0.8, the maximum size for Mi

is
(
ri+1
2

)
. Also, as Mj is simple and golden-mean, then, by induction, it is no

larger than T 2
rj

. Hence |E(Mj)| ≤
(
rj+3
2

)
−5. Clearly E(M) can be no bigger

than |E(Mi)|+ |E(Mj)|. So

|E(M)| ≤ |E(Mi)|+ |E(Mj)|

≤
(
ri + 1

2

)
+

(
rj + 3

2

)
− 5

=
1

2
(r2i + r2j + ri + 5rj − 4) (3.2.7.1)

Also, as M is maximum-sized and golden-mean, it must be at least as big as
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T 2
r . Hence

|E(M)| ≥
(

(ri + rj − 2) + 3

2

)
− 5

=
1

2
(r2i + r2j + ri + rj + 2rirj − 10) (3.2.7.2)

Combining (3.2.7.1) with (3.2.7.2), we get

1

2
(r2i + r2j + ri + rj + 2rirj − 10) ≤ 1

2
(r2i + r2j + ri + 5rj − 4)

rirj − 2rj ≤ 3 (3.2.7.3)

However, as (X1, X2) is a vertical 3-separation of M , both ri and rj must be

at least three. Hence the only solution for (3.2.7.3) is ri = rj = 3. Therefore

r = 4. So, by (3.2.0.1), |E(M)| ≥ 16. This implies that |E(Mi)| = 6 and

|E(Mj)| = 10, which are the maximum sizes possible. Now, by Theorem

2.0.8, as Mi is a rank-three regular matroid with six elements, it must be

isomorphic to M(K4). Contracting any element of this, in M , leads to a

rank-three golden-mean matroid with more than 10 elements, contradicting

Lemma 3.1.1. Therefore Mi is non-binary. �

Now

|E(M)| = |X1|+ |X2|

= (|E(M1)| − |(E(M1) ∩ L)−X1|)

+ (|E(M2)| − |(E(M2) ∩ L)−X2|).
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As Mi is simple and golden-mean, by induction, it can be no larger than T 2
ri

.

Hence |E(Mi)| ≤
(
ri+3
2

)
− 5. Thus

|E(M)| ≤
(
r1 + 3

2

)
+

(
r2 + 3

2

)
− 10

− (|(E(M1) ∩ L)−X1|+ |(E(M2) ∩ L)−X2|) .

But M is maximum-sized, and therefore at least as big as T 2
r , so

|E(M)| ≥
(

(r1 + r2 − 2) + 3

2

)
− 5.

So

1

2
(r1 + r2)(r1 + r2 + 1) ≤ 1

2
((r1 + 2)(r1 + 3) + (r2 + 2)(r2 + 3))− 5

− (|(E(M1) ∩ L)−X1|+ |(E(M2) ∩ L)−X2|).

Expanding out gives

1

2
(r21 + r22 + 2r1r2 + r1 + r2) ≤

1

2
(r21 + r22 + 5r1 + 5r2 + 2)

− |(E(M1) ∩ L)−X1| − |(E(M2) ∩ L)−X2| .

Hence

r1r2 − 2r1 − 2r2 − 1 ≤ −(|(E(M1) ∩ L)−X1|+ |(E(M2) ∩ L)−X2|).
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And so

(r1 − 2)(r2 − 2) ≤ 5− (|E(M1) ∩ L| − |X1 ∩ L|+ |E(M2) ∩ L| − |X2 ∩ L|) .

(3.2.7.4)

But

|E(Mi) ∩ L| ≥ |(X1 ∪X2) ∩ L| (3.2.7.5)

= |X1 ∩ L|+ |X2 ∩ L| ,

so, for each i ∈ {1, 2},

(r1 − 2)(r2 − 2) ≤ 5− |E(Mi) ∩ L| . (3.2.7.6)

Next we take a basis B1 for X1 and extend it to a basis B for M . Then

|B −B1| = r(M)−r(X1) = r(X2)−2. It follows that rM/(B−B1)(X2−B) = 2.

This means that M1 can be assumed to satisfy

|E(M1) ∩ L| ≥ 2. (3.2.7.7)

This means that we can always project at least two points from X2 into the

span of X1 by contracting only points in X2 −X1.
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Similarly,

|E(M2) ∩ L| ≥ 2. (3.2.7.8)

Combining (3.2.7.7) and (3.2.7.8) with (3.2.7.6), we get

(r1 − 2)(r2 − 2) ≤ 3. (3.2.7.9)

If r1 and r2 are both at least four, then (3.2.7.9) is a contradiction. Therefore,

we can assume that r1 = 3. So (3.2.7.9) becomes r2 ≤ 5.

Now suppose |(X1 ∪X2) ∩ L| ≥ 3.

Sublemma 3.2.7.2. If |(X1 ∪X2) ∩ L| ≥ 3, then M1 and M2 are 3-

connected.

Subproof. Let M ′
1 = M |(X1 ∪ (X2 ∩ L)). Note that by definition, X1 spans

L. Now

r(M ′
1) = r(M |(X1 ∪ (X2 ∩ L)))

= r(M |X1)

= r(X1).

If (Y1, Y2) is a k-separation of M ′
1 for some k ≤ 2, then r(Y1)+r(Y2)−r(X1) ≤
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k − 1, and, as r(X1) = r(M)− r(X2) + 2,

r(Y1) + r(Y2)− r(M) + r(X2)− 2 ≤ k − 1. (3.2.7.10)

Without loss of generality, we may assume that |Y1 ∩ L| ≥ 2. Then

r(Y1 ∪X2) ≤ r(cl(Y1) ∪ cl(X2))

≤ r(cl(Y1)) + r(cl(X2))− r(cl(Y1) ∩ cl(X2))

≤ r(Y1) + r(X2)− r(cl(Y1) ∩ cl(X2)).

Observe that cl(Y1) ∩ cl(X2) contains L, so r(cl(Y1) ∩ cl(X2)) ≥ 2. Hence

r(Y1 ∪X2) ≤ r(Y1) + r(X2)− 2. (3.2.7.11)

Combining (3.2.7.10) with (3.2.7.11) gives r(Y2)+r(Y1∪X2)−r(M) ≤ k−1,

so (Y2, (Y1 ∪X2) − Y2) is a k-separation of M , a contradiction. Thus M ′
1 is

3-connected, and as M1 is obtained from M ′
1 by adding elements that are not

loops, coloops or in parallel classes, M1 is also 3-connected. Similarly, M2 is

3-connected. �

Sublemma 3.2.7.3. If |(X1 ∪X2) ∩ L| ≥ 3, then |(X1 ∪X2) ∩ L| ≥ 4, and

r1 = r2 = 3.

Subproof. By Sublemma 3.2.7.1, Mi is not binary. Hence by Lemma 3.2.2,

for {i, j} = {1, 2}, the matroid Mi has a U2,4 minor using (X1 ∪X2)∩L and
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so |E(Mj) ∩ L| ≥ 4.

Firstly, assume that |E(M1) ∩ L| = |E(M2) ∩ L| = 4. Then (3.2.7.4) be-

comes

r2 ≤ 7 + |X1 ∩ L|+ |X2 ∩ L| − 4− 4

= |X1 ∩ L|+ |X2 ∩ L| − 1 (3.2.7.12)

If |X1 ∩ L|+ |X2 ∩ L| < 4, then (3.2.7.12) becomes r2 ≤ 2, contradicting the

fact that (X1, X2) is a vertical 3-separation of M .

If |X1 ∩ L| + |X2 ∩ L| = 5, then |E(M1) ∩ L| = |E(M2) ∩ L| = 5, and

(3.2.7.6) implies that r1, r2 ≤ 2, contradicting the fact that (X1, X2) is a

vertical 3-separation of M .

Hence |X1 ∩ L| + |X2 ∩ L| = 4, and (3.2.7.12) becomes r2 ≤ 3, and the fact

that (X1, X2) is a vertical 3-separation of M implies that r2 = 3.

Next, assume that |E(M1) ∩ L| = 4 and |E(M2) ∩ L| = 5. Then (3.2.7.4)

becomes

r2 ≤ 7 + |X1 ∩ L|+ |X2 ∩ L| − 4− 5

= |X1 ∩ L|+ |X2 ∩ L| − 2 (3.2.7.13)

L is a line of the projective geometry PG(r−1, 4), so it contains at most five

elements. Hence |X1 ∩ L| + |X2 ∩ L| ≤ 5, and so (3.2.7.13) becomes r2 ≤ 3,

and the fact that (X1, X2) is a vertical 3-separation of M implies that r2 = 3.
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Next, assume that |E(M1) ∩ L| = |E(M2) ∩ L| = 5. Then (3.2.7.4) becomes

r2 ≤ 7 + |X1 ∩ L|+ |X2 ∩ L| − 5− 5

= |X1 ∩ L|+ |X2 ∩ L| − 3 (3.2.7.14)

L is a line of the projective geometry PG(r−1, 4), so it contains exactly five

elements. Hence |X1 ∩ L| + |X2 ∩ L| ≤ 5, and so (3.2.7.14) becomes r2 ≤ 2,

contradicting the fact that (X1, X2) is a vertical 3-separation of M .

So 3 ≤ |X1 ∩ L|+ |X2 ∩ L| = |(X1 ∪X2) ∩ L| ≤ 4, and r1 = r2 = 3. �

We will now show that |(X1 ∪X2) ∩ L| can be neither three nor four.

Sublemma 3.2.7.4. |(X1 ∪X2) ∩ L| 6= 4.

Subproof. If |(X1 ∪X2) ∩ L| = 4, then, as M |Xi is simple and golden-mean

of rank-three, by induction it has at most ten elements. Furthermore, as M

is maximum-sized and golden-mean of rank four it must have at least sixteen

elements. Hence |X1 − L| = |X2 − L| = 6, and so M |(Xi ∪L), for i ∈ {1, 2},

is isomorphic to T 2
3 .

But T 2
3 has no line of exactly four points, so there is no way to obtain M by

identifying two copies of T 2
3 along a four-point line. Hence |(X1 ∪X2) ∩ L| 6=

4. �

Sublemma 3.2.7.5. |(X1 ∪X2) ∩ L| 6= 3.

Subproof. If |(X1 ∪X2) ∩ L| = 3, then, as M |Xi is simple and golden-mean

of rank-three, by induction, it has at most ten elements. Furthermore, as
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M is simple and golden-mean of rank four it must have at least sixteen

elements. Hence we can assume that |X1 ∪ L| is 10 and |X2 ∪ L| is 9 or

10. So (X1 ∪ L) ∼= T 2
3 . Furthermore, X2 ∪ L is isomorphic to either T 3

2

(see Figure 2.3) or T 3
2 \f (where f is any point not on four 3-point lines).

In both cases, it is easy to see that two extra points can be projected onto

L, meaning that |E(M1) ∩ L| = 5, which is a contradiction to (3.2.7.6). So

|(X1 ∪X2) ∩ L| 6= 3. �

Hence |(X1 ∪X2) ∩ L| ≤ 2. Then (3.2.7.4) becomes

3 ≤ r2 ≤ 7− |E(M1) ∩ L| − |E(M2) ∩ L|+ |(X1 ∪X2) ∩ L| . (3.2.7.15)

We will now show that there is no possible value for |(X1 ∪X2) ∩ L|.

Sublemma 3.2.7.6. |(X1 ∪X2) ∩ L| 6= 0.

Subproof. Assume that |(X1 ∪X2) ∩ L| = 0. From (3.2.7.7) and (3.2.7.8) we

know that both |E(M1) ∩ L| and |E(M2) ∩ L| are at least two. Combining

this information with (3.2.7.15), we see that r2 = 3 and both |E(M1) ∩ L|

and |E(M2) ∩ L| must be exactly two. By induction, |E(M)| ≥ 16, so,

without loss of generality, |X2| ≥ 8. As M |(X2) is GF (5)-representable, if

M |(X2) has no U2,4-minor, then it is regular, and so it must be no larger

than M(K4). If M |(X2) has a U2,4-minor, then it is possible to contract a

point from M |(X2) and put four points on L, so |E(M1) ∩ L| = 4, which is

a contradiction to |E(M1) ∩ L| being equal to two. Hence |M |(X2)| ≤ 6, a

contradiction to |X2| ≥ 8. So |(X1 ∪X2) ∩ L| cannot equal zero. �
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Sublemma 3.2.7.7. |(X1 ∪X2) ∩ L| 6= 1.

Subproof. Assume that |(X1 ∪X2) ∩ L| = 1, and suppose that r2 = 3.

Then r = 4. Then, by (3.2.7.7), (3.2.7.8), and (3.2.7.15), we see that

2 ≤ |E(Mi) ∩ L| ≤ 3, for i ∈ {1, 2}. So, as M is maximum-sized and golden-

mean, it must be at least as large as T 2
4 . So |X1 ∪X2| ≥ 16. Hence, without

loss of generality, |X1| ≥ 8. Now pick x ∈ X1−L. As |E(M2) ∩ L| ≤ 3, there

can be no more than three lines passing through x. No matter how we place

the remaining points on those lines, we always get a four point line. Now con-

tract an element not on that line, giving |E(M2) ∩ L| = 4, a contradiction.

So r2 6= 3. From (3.2.7.7) and (3.2.7.8), we know that both |E(M1) ∩ L| and

|E(M2) ∩ L| are at least two. Combining this information with (3.2.7.15),

we see that r2 = 4, and |E(Mi) ∩ L| = 2, for i ∈ {1, 2}. So r = 5. As M

is maximum-sized and golden-mean, it must be at least as large as T 2
5 . So

|X1 ∪X2| ≥ 23. By induction, M |X2 can be no larger than T 2
4 , so |X2| ≤ 16.

Therefore |X1| ≥ 7. Now pick x ∈ X1 − L. Because |E(M2) ∩ L| = 2, x is

on at most two lines. Therefore, one of these lines has at least four points

and we can contract an element on the other line to get |E(M2) ∩ L| = 4, a

contradiction. So |(X1 ∪X2) ∩ L| cannot equal one. �

Sublemma 3.2.7.8. |(X1 ∪X2) ∩ L| 6= 2.

Subproof. Assume |(X1 ∪X2) ∩ L| = 2. So (3.2.7.15) becomes

3 ≤ r2 ≤ 9− |E(M1) ∩ L| − |E(M2) ∩ L| . (3.2.7.16)
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Assume that |E(Mj) ∩ L| = 2, and let E(Mj) ∩ L = {s, t}. Then pick

x ∈ Xi − L. As |E(Mj) ∩ L| = 2, everything in Xi must be on a line

with x and either s or t. So ri = 3. Hence rj can be 3, 4, or 5. If

rj = 3, then, as M is maximum-sized and golden-mean, it must be at

least as large as T 2
4 . Hence |E(M)| ≥ 16, so |Xj ∪ ((X1 ∪X2) ∩ L)| ≤ 10,

and therefore |Xi ∪ ((X1 ∪X2) ∩ L)| ≥ 8. Using the same reasoning, we

see that if rj = 4, then |Xi ∪ ((X1 ∪X2) ∩ L)| ≥ 9, and if rj = 5, then

|Xi ∪ ((X1 ∪X2) ∩ L)| ≥ 10. In all three cases, both lines through x must

have at least three points on them, and we contract a point from Xi−{x, s, t}

to project at least three points onto L, implying that |E(Mj) ∩ L| ≥ 3, a con-

tradiction.

So now it follows from (3.2.7.7), (3.2.7.8), and (3.2.7.16) that |E(M1) ∩ L| =

|E(M2) ∩ L| = 3, and r2 = 3. As M is maximum-sized and golden-mean,

it must be at least as large as T 2
4 , so |E(M)| ≥ 16. Then, without loss

of generality, |X1| ≥ 8. Pick x ∈ X1 − L. Then, as |E(M2) ∩ L| = 3, the

element x can be on at most three lines. However we place the remaining five

points, we will always get one of these lines having at least four points, which

can be projected onto L, implying that |E(Mj) ∩ L| ≥ 4, a contradiction.

Therefore |(X1 ∪X2) ∩ L| 6= 2. �

Therefore, by Sublemmata 3.2.7.4 – 3.2.7.8, there are no possible values for

|(X1 ∪X2) ∩ L|, so our original assumption, that M has an exact vertical

3-separation, is incorrect. Therefore M is vertically 4-connected. �
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3.2.2 Intersecting Very Long Lines

In this section we consider the case that M , our maximum-sized golden-mean

matroid with no F=
7 minor, has intersecting very long lines.

We often consider the matroid obtained by restricting to the long lines

through e, contracting e and then simplifying.

Definition 3.2.8. Let M be a matroid, and let e be an element of M , and

let L be the set of the long lines of M . Let X = {e} ∪ {f ∈ E(M) | ∃L ∈

L with e, f ∈ L}. Then L(M, e) is defined to be si((M |X)/e).

Lemma 3.2.9. Let M be a maximum-sized golden-mean matroid with no

F=
7 or S10\f minor. If e ∈ E(M) is on at least two very long lines, then

M/e is regular.

Proof. Let L1 and L2 be very long lines containing e and assume that M/e

is non-regular. By Theorem 6.6.3 of Oxley [20], any matroid that is repre-

sentable over GF (2) and GF (5) is regular. Then M/e is non-binary. By

Lemma 3.2.7, M is vertically 4-connected, so, by Lemma 3.2.6, si(M/e) is

3-connected. Let x1 ∈ L1 − e and x2 ∈ L2 − e. We can assume that x1 and

x2 are points of si(M/e). Then, by Lemma 3.2.2, si(M/e) has a four-point

line minor using {x1, x2}. Hence there exists a subset I of E(M/e) such that

(M/e)/I has rank two, and contains at least four points. Moreover, L1 − e

and L2−e are parallel classes of (M/e)/I. Then M/I is a rank-three matroid

containing two very long lines and one four-point line, contradicting Lemma

3.1.1. Hence M/e is regular. �
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Note that L(M, e) is a restriction of M/e, so it is also regular.

Lemma 3.2.10. Let M be a maximum-sized golden-mean matroid with no

F=
7 or S10\f minor and let e be a point of M on at least two very long lines.

Then all the circuits in the regular matroid L(M, e) have size exactly three.

Proof. Let C be a circuit of L(M, e) such that |C| ≥ 4. Let c1, . . . , c4 be

distinct elements of C. Let L1, . . . , L4 be long lines of M such that e, ci ∈ Li

for i ∈ {1, 2, 3, 4}. Then (M/(C − {c1, . . . , c4}))|(L1 ∪ · · · ∪ L4) obviously

contains a 4-spike, contradicting Corollary 3.1.6. Hence there can be no

circuit in L(M, e) of size greater than three, so all circuits have size at most

three. As L(M, e) is simple by definition, all circuits have size at least three.

Therefore all circuits in L(M, e) have size exactly three. �

Corollary 3.2.11. Let M be a maximum-sized golden-mean matroid with

no F=
7 or S10\f minor that has a point, e ∈ E(M), on at least two very

long lines. Then all the circuits in the regular matroid L(M, e) are pairwise

disjoint.

Proof. From Lemma 3.2.10, we know that all circuits in L(M, e) have size

three. Let C1 and C2 be two circuits of L(M, e) such that C1 ∩ C2 6= ∅.

Because L(M, e) is simple and binary, C1 and C2 meet at a single point, x,

and (C1∪C2)−{x} is a disjoint union of circuits, so is therefore itself a circuit.

However, |(C1 ∪ C2)− {x}| = 4, contradicting Lemma 3.2.10. Therefore

C1 ∩ C2 = ∅ and all circuits in L(M, e) are pairwise disjoint. �
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Lemma 3.2.12. Let M be a rank-r maximum-sized golden-mean matroid

with no F=
7 or S10\f minor, and let e ∈ E(M) be a point on at least two

very long lines. Then L(M, e) is a collection of coloops.

Proof. As M is maximum-sized and has rank r, it must be at least as large

as T 2
r . So

|E(M)| ≥
(
r + 3

2

)
− 5. (3.2.12.1)

By Lemma 3.2.9, si(M/e) is regular, and by Theorem 2.0.8 the maximum

size of a simple regular matroid of rank s is
(
s+1
2

)
. Hence

|E(si(M/e))| ≤
(
r

2

)
. (3.2.12.2)

Combining (3.2.12.1) with (3.2.12.2), we get

|E(M)| − |E(si(M/e))| ≥
(
r + 3

2

)
− 5−

(
r

2

)
= 3r − 2. (3.2.12.3)

Let k be the number of long lines that go through e, and let the ith long

line have length wi. Then when e is contracted and the resulting matroid

simplified, e and every element bar one from each of the long lines through

e are removed, for a total of

1 +
k∑

i=1

(wi − 2)
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points. Hence

|E(M)| − |E(si(M/e))| = 1 +
k∑

i=1

(wi − 2). (3.2.12.4)

Combining (3.2.12.3) with (3.2.12.4), we get

k∑
i=1

wi ≥ 3r + 2k − 3. (3.2.12.5)

Recall from Lemma 3.2.10 that every circuit in L(M, e) has size exactly three.

Sublemma 3.2.12.1. Let C = {c1, c2, c3} be a circuit of L(M, e), such that

ci ∈ Li for i ∈ {1, 2, 3}. Then w1 = w2 = w3 = 3.

Subproof. M |(L1 ∪ L2 ∪ L3) is a rank-three matroid, with three long lines

passing through a point. Looking at Figure 3.4, we can see that IK has no

point on three long lines. Looking at Figures 2.3 and 3.3, we can see that T 2
3

has exactly one point on three long lines, while P\c has two such points. In

all cases, all three lines have length three. It follows from Lemma 3.1.1 that

w1 = w2 = w3 = 3. �

Let B be a basis of L(M, e). Then |B| ≤ r − 1. Suppose C is a circuit of

L(M, e), and |C −B| > 1. Let x ∈ C − B. Then B ∪ x contains a circuit

C ′, with x ∈ C ′. As |C ′ −B| = 1, C 6= C ′, but C ∩ C ′ 6= ∅, contradicting

Corollary 3.2.11. Therefore every circuit in L(M, e) is a fundamental circuit

with respect to B, so there are |E(L(M, e))| − |B| circuits in L(M, e). Then
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as k = |E(L(M, e))|, there are at least k− r+ 1 circuits in L(M, e). Now let

c be the number of circuits in L(M, e). Then

k ≤ r + c− 1. (3.2.12.6)

As L(M, e) is representable over GF (4), the maximum value for wi is five.

Combining this with Sublemma 3.2.12.1, we get

k∑
i=1

wi ≤ 3(3c) + 5(k − 3c)

= 5k − 6c (3.2.12.7)

Combining (3.2.12.5) with (3.2.12.7), we get

5k − 6c ≥ 3r + 2k − 3

3k ≥ 3r + 6c− 3

k ≥ r + 2c− 1.

Together with (3.2.12.6), this implies

c ≥ 2c.

Hence we deduce that c = 0, so L(M, e) is a collection of coloops. �

Corollary 3.2.13. Let M be a rank-r maximum-sized golden-mean matroid
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with no F=
7 or S10\f minor, and let e ∈ E(M) be a point on at least two very

long lines. Then there are exactly r − 1 lines through e, all of length five.

Proof. As in the proof of Lemma 3.2.12, let k be the number of lines through

e, and let the ith long line have length wi.

Now assume that k < r − 1. Then k = (r − 1) − t, where t > 0, and so

(3.2.12.7) becomes
k∑

i=1

wi ≤ 5r − 5t− 5. (3.2.13.1)

Also, (3.2.12.5) becomes

k∑
i=1

wi ≥ 3r + 2(r − 1− t)− 3

= 5r − 2t− 5. (3.2.13.2)

Combining (3.2.13.1) with (3.2.13.2), we see that

5r − 5t− 5 ≥ 5r − 2t− 5

−5t ≥ −2t

t ≤ 0.

This contradicts our definition of t. Hence k ≮ r − 1, and so

k ≥ r − 1. (3.2.13.3)



CHAPTER 3. RESULTS 51

By Lemma 3.2.12, there are no circuits in L(M, e), so (3.2.12.6) becomes

k ≤ r − 1. (3.2.13.4)

Now, (3.2.13.3) combined with (3.2.13.4) implies that k = r− 1, so there are

exactly r − 1 lines through e.

Combining this new information with (3.2.12.5) and (3.2.12.7), we see that

k∑
i=1

wi = 5k,

and so every line through e has length five. �

Lemma 3.2.14. Let M be a rank-r maximum-sized golden-mean matroid

with no F=
7 or S10\f minor, and let e ∈ E(M) be a point on at least two

very long lines. Then si(M/e) ∼= M(Kr).

Proof. As M is maximum-sized, it must be at least as big as T 2
r . Hence

|E(M)| ≥
(
r + 3

2

)
− 5.

It follows from Corollary 3.2.13 that

|E(M)| − |E(si(M/e))| = 3r − 2.

So

|E(si(M/e))| ≥
(
r + 3

2

)
− 5− 3r + 2 =

(
r

2

)
.
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Figure 3.6: Forbidden Configuration from Lemma 3.2.15

However, by Lemma 3.2.9, si(M/e) is regular, and it has rank at most r− 1,

so it follows from Theorem 2.0.8 that

|E(si(M/e))| ≤
(
r

2

)
.

Hence

|E(si(M/e))| =
(
r

2

)
and it follows from Theorem 2.0.8 that si(M/e) ∼= M(Kr). �

Lemma 3.2.15. Let M be a rank-r maximum-sized golden-mean matroid

with no F=
7 or S10\f minor, and let e ∈ E(M) be a point on at least two

very long lines. Then any two elements in L(M, e) will be on a triangle in

si(M/e).

Proof. Firstly, note that it follows from Lemma 3.2.12 that the elements of

L(M, e) form a basis of si(M/e). Now let x be an element from si(M/e) that

is not in a triangle with two elements from L(M, e). If Li and Lj are any



CHAPTER 3. RESULTS 53

long lines containing e, then r(Li ∪ Lj) = 3, and r(Li ∪ Lj ∪ x) = 4. Hence

rM/x(Li∪Lj) = 3, so L1, . . . , Lr−1 are distinct lines of M/x. Hence L(M/x, e)

has r − 1 points and rank at most r − 2, so L(M/x, e) contains a circuit,

C. If |C| = 3, then there exists a configuration in rank-three that looks like

Figure 3.6, a contradiction to Lemma 3.1.1. If |C| ≥ 4, then using the same

technique as in Lemma 3.2.10 a 4-spike can be found, contradicting Corollary

3.1.6. Hence C does not exist, so x must be on a triangle with two elements

from L(M, e). As si(M/e) is isomorphic to M(Kr), and L(M, e) is a basis of

si(M/e), any two elements in L(M, e) will be on a triangle in si(M/e). �

Lemma 3.2.16. Let M be a rank-r maximum-sized golden-mean matroid

with no F=
7 or S10\f minor, with a point e on at least two very long lines.

Then M ∼= T 2
r .

Proof. We are going to construct a GF (4)-representation for M . Let Li and

Lj be lines passing through e. Then there is a unique element f ∈ si(M/e)

that is on the line between the point corresponding to Li − e and the point

corresponding to Lj − e. Let us consider M restricted to the union of Li, Lj,

and f . This has rank-three, and contains two lines of length five. When we

contract f , we must get a copy of U2,5 since M is representable over GF (5).

This means that f is on four different triangles. So the rank-three restriction

is just a copy of T 2
3 , as in Figure 2.3.

Now pick an arbitrary element xi ∈ Li. For every other line Lj consider

the element fi,j that is on the line between Li − e and Lj − e in si(M/e).

Let xj be the element of Lj that is contained in a triangle with xi and fi,j.
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Then {e, x1, . . . , xr−1} is a basis of M , and so we get the identity matrix. By

Lemma 3.2.12 every line through e has length five so there are three extra

points needed. There are no extra dependencies in these points, so we require

three sections of the matrix headed by 1’s and consisting of scaled identity

elements. Over GF (4), there are only three possible ways to do this, so our

sections are In−1, α(In−1), and α2(In−1). Now all that is left is the regular

matroid. From Lemma 3.2.15, we know that any two basis elements are on a

triangle in the regular matroid, which gives us the last section of the matrix,

Dn−1. So this matrix has the form



1 0 · · · 0 1 · · · 1 1 · · · 1 1 · · · 1 0 · · · 0

0

... In−1 In−1 α(In−1) α2(In−1) Dn−1

0


.

Now consider the following G-matrix for T 2
r , as given in Lemma 3.0.5.



1 0 · · · 0 1 · · · 1 1 · · · 1 1 · · · 1 0 · · · 0

0

... In−1 In−1 φ(In−1) φ2(In−1) Dn−1

0


.

It is easy to check that f , as defined below, is a homomorphism from G to
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GF (4).

f : 0 7−→ 0

f : 1 7−→ 1

f : φk 7−→ αk.

We now apply f to the G-matrix given earlier, giving us the constructed

GF (4)-matrix. As the G-matrix represents T 2
r , the GF (4)-matrix must also,

and so M is isomorphic to T 2
r . �

3.2.3 No Intersecting Very Long Lines

Now we consider the case where M has no intersecting very long lines. There

are two subcases. The first is that there are no very long lines, and the

second is that the very long lines in M are pairwise disjoint. We consider

each subcase in turn.

We make use of the following result multiple times in this section.

Lemma 3.2.17 (Bixby, Theorem 1 [2]). Let M be a 3-connected matroid on

E, and let a ∈ E. Then either co(M\a) or si(M/a) is 3-connected. �

3.2.3.1 No Very Long Lines

This section deals with golden-mean matroids that have no very long lines.

So every line has length at most three.
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Lemma 3.2.18. Let M be a rank-r maximum-sized golden-mean matroid

with no F=
7 or S10\f minor, with no very long lines. Then every point of M

must be on at least r + 1 long lines.

Proof. Let e be an element of M . As M is maximum-sized of rank r, it must

be at least as big as T 2
r . Hence

|E(M)| ≥
(
r + 3

2

)
− 5

=
1

2
(r + 2)(r + 3)− 5

=
1

2
(r2 + 5r − 4).

Now consider si(M/e). It has rank at most r − 1, so, by the induction

hypothesis, it can be no larger than T 2
r−1. Hence

|E(si(M/e))| ≤
(
r + 2

2

)
− 5

=
1

2
(r + 1)(r + 2)− 5

=
1

2
(r2 + 3r − 8).

Now, when si(M/e) is constructed, the number of elements removed by sim-

plification is at least

|E(M)| − |E(si(M/e)| ≥ 1

2
(r2 + 5r − 4)− 1

2
(r2 + 3r − 8)

=
1

2
(2r + 4)
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= r + 2

So we must remove at least r+1 points and e from M . As the lines through e

have length at most three, we can only remove one point for each line. Hence

there must be at least r + 1 long lines through e. �

Lemma 3.2.19. Let M be a rank-r maximum-sized golden-mean matroid

with no F=
7 or S10\f minor having no very long lines, and let e be an element

of M . Then all circuits in L(M, e) have size exactly three.

Proof. Let C be a circuit of L(M, e) such that |C| ≥ 4. Let c1, . . . , c4 be

distinct elements of C. Let L1, . . . , L4 be long lines of M such that e, ci ∈ Li

for i ∈ {1, 2, 3, 4}. Then (M/(C − {c1, . . . , c4}))|(L1 ∪ · · · ∪ L4) obviously

contains a 4-spike, contradicting Corollary 3.1.6. Hence there can be no

circuit in L(M, e) of size greater than three, so all circuits have size at most

three. As L(M, e) is simple, all circuits have size at least three. Therefore

all circuits in L(M, e) have size exactly three. �

Corollary 3.2.20. Let M be a rank-r maximum-sized golden-mean matroid

with no F=
7 or S10\f minor having no very long lines, and let e be an element

of M . Then all circuits in L(M, e) are pairwise disjoint.

Proof. From Lemma 3.2.19, we know that all circuits in L(M, e) have size

three. Let C1 and C2 be two circuits of L(M, e) such that C1 ∩ C2 6= ∅. If

|C1 ∩ C2| > 1, then L(M, e) has a U2,4 restriction. Let X1, . . . , X4 be the

parallel classes in M/e that correspond to the points in the U2,4 restriction.
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Then M restricted to the union of X1, . . . , X4 and e has rank-three, and

contains four lines of length three that pass through e. By Lemma 3.1.1,

this matroid must be a restriction of T 2
3 , which contains two lines of length

four. Hence M contains two lines of length four, which is a contradiction as

M has no four point lines by definition. Therefore |C1 ∩ C2| = 1, so we can

assume that C1 = {c1, c2, x} and C2 = {d1, d2, x}. Then {c1, c2, d1, d2} is also

a circuit of L(M, e), contradicting Lemma 3.2.19. Therefore C1 ∩ C2 = ∅

and all circuits in L(M, e) are pairwise disjoint. �

Lemma 3.2.21. Let M be a 3-connected golden-mean matroid with no

F=
7 or S10\f minor having no very long lines, and let e be an element of

M . Then L(M, e) has at most one circuit.

Proof. Assume that L(M, e) has more than one circuit. Let two of these

circuits be CX and CY . Then r(L(M, e)|(CX ∪ CY )) = 4, as if it is three,

then it is possible to find a four element circuit in L(M, e), contradicting

Lemma 3.2.19. In M , these circuits correspond to 3-spikes, X and Y . Note

that M |(X ∪ Y ) has rank five. Consider the closure of X ∪ Y . If there is

an element x not in this closure, then by Lemma 3.2.17, either si(M/x) or

co(M\x) is 3-connected, and has M |(X ∪ Y ) as a restriction. By repeating

this argument, we find a minor N of M such that N is 3-connected and

has M |(X ∪ Y ) as a restriction. It follows that N has an element f such

that f /∈ (clN(X) ∪ clN(Y )), as otherwise N would not be 3-connected.

Thus si(N/f) is a 3-connected golden-mean matroid of rank four having two

distinct 3-spike restrictions such that the tip of one is the tip of the other.
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B

Figure 3.7: Schematic for Lemmata 3.2.22 and 3.2.26

In the contraction, either one line of X and one line of Y merge, or they do

not. This is because if f lies in the span of more than one pair of lines, then

M |(X ∪ Y ) must have rank four, contradicting the fact that it has rank five.

In either case we get a 4-spike, which is not golden-mean by Corollary 3.1.6.

This contradiction means that there can be at most one circuit. �

Lemma 3.2.22. Let M be a maximum-sized golden-mean matroid with no

F=
7 or S10\f minor having no very long lines, and let e be an element of this

matroid. Then L(M, e) must have at least two circuits.

Proof. By Lemma 3.2.18, M has at least r+1 lines through e. So L(M, e) has

at least r+1 points in at most rank r−1 space. Let B be a basis of L(M, e).

Then |B| = r(L(M, e)) ≤ r − 1, so there are at least two points outside of

B, each with a fundamental circuit. This situation is illustrated by Figure

3.7. So L(M, e) has at least two circuits. �

Corollary 3.2.23. There is no maximum-sized golden-mean matroid with

no F=
7 or S10\f minor having no very long lines.
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e

Figure 3.8: rank-three restriction from Lemma 3.2.24

e

Figure 3.9: P7

Proof. Combining Lemmata 3.2.21 and 3.2.22, we see that if M is a

maximum-sized golden-mean matroid with no F=
7 or S10\f minor having no

very long lines, and e is an element of M , then L(M, e) must have at most

one and at least two circuits. This travesty cannot happen, so L(M, e), and

therefore M cannot exist. Hence, there is no maximum-sized golden-mean

matroid with no F=
7 minor having no very long lines. �
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e

Figure 3.10: N , the rank four restriction from Lemma 3.2.24

e

y

Figure 3.11: Rank four minor from Lemma 3.2.24
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3.2.3.2 Pairwise Disjoint Very Long Lines

In this section, we consider golden-mean matroids with pairwise disjoint very

long lines.

Lemma 3.2.24. Let M be a rank-r golden-mean matroid with no F=
7 or

S10\f minor such that all very long lines are pairwise disjoint. Then M has

no four point lines.

Proof. Let e be a point in M that is on a four point line. Construct L(M, e).

When e is contracted in M , by the same argument as in Lemma 3.2.18, at

least r + 2 elements need to be removed after simplification. So e is also on

at least r−1 three point lines, and M has a rank-three restriction that looks

like Figure 3.8, but with some extra dependencies. By Lemma 3.1.1, M must

have P7 (see Figure 3.9) as a rank-three restriction. By Lemma 3.1.1, the

four point line that e is on cannot be in this plane. Thus M has N , as shown

in Figure 3.10, as a rank four restriction. Consider the closure of N in M .

If there is an element x that is not in this closure, then by Lemma 3.2.17,

either si(M/x) or co(M\x) is 3-connected, and has N as a restriction. By

repeating this argument, we see that M has a 3-connected rank four minor

with N as a restriction, as shown in Figure 3.11. Contracting y leads to a

rank-three minor of M with an element in at least three long lines, one of

which is very long, contradicting Lemma 3.1.1. Hence M can have no four

point lines. �

Lemma 3.2.25. Let M be a rank-r golden-mean matroid with no F=
7 or



CHAPTER 3. RESULTS 63

S10\f minor such that all very long lines are pairwise disjoint. Then

L(M, e) has no four point lines.

Proof. Assume that L(M, e) has a four point line. Suppose that the parallel

classes that correspond to this line in M/e are X1, . . . , X4. The restriction

of M to the union of X1, . . . , X4 and e has rank-three, and contains four

lines of length three passing through e. Hence, by Lemma 3.1.1, it must be

a restriction of T 2
3 , and therefore it contains at least one line of length four,

contradicting Lemma 3.2.24. Hence L(M, e) has no four point lines. �

Lemma 3.2.26. Let M be a rank-r golden-mean matroid with no F=
7 or

S10\f minor such that all very long lines are pairwise disjoint. Then every

element of M is on exactly one five point line.

Proof. Let e be an element of M such that e is not on any five point lines.

Then, as M is at least as large as T 2
r ,

|E(M)| ≥
(
r + 3

2

)
− 5.

Also, as si(M/e) is no larger than T 2
r−1,

|E(si(M/e))| ≤
(
r + 2

2

)
− 5.

Therefore, when we contract e, we lose at least r+ 2 points, so e must be on

at least r + 1 lines.

From Lemma 3.2.25 we know that L(M, e) has no four-point lines. So
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Figure 3.12: rank-three restriction from Lemma 3.2.27

Figure 3.13: N , the rank four restriction from Lemma 3.2.27

L(M, e) has at least two disjoint three element circuits, as in Figure 3.7.

From this, using the same technique as in Lemma 3.2.21, we can show that

M has a 4-spike as a minor, contradicting Corollary 3.1.6. Hence such a

point e can not exist, and, as all very long lines of M are pairwise disjoint,

every element of M is on exactly one line of length five. �

Lemma 3.2.27. Let M be a rank-r golden-mean matroid with no F=
7 or

S10\f minor such that all very long lines are pairwise disjoint. Then

L(M, e) has no circuits.
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y

Figure 3.14: Rank four minor from Lemma 3.2.27

Proof. Let e be any element of M and assume that L(M, e) has a circuit. By

Lemma 3.2.25, we know that this circuit must have size three. This means

thatM has either the matroid shown in Figure 3.12 as a rank-three restriction

or N , as shown in Figure 3.13, as a rank four restriction. Note that there may

be extra dependencies within the rank-three parts of both restrictions. In the

first case, by Lemma 3.1.1, there is no rank-three golden-mean matroid with

a line of length five and two lines of length three all going through a common

point, so this case is contradictory. In the second case, consider the closure

of N in M . If there is an element x not in this closure, then by Lemma 3.2.17

either si(M/x) or co(M\x) is 3-connected, and has N as a restriction. By

repeating this argument, we see that M has a 3-connected rank four minor

with N as a restriction, as shown in Figure 3.14. Contracting y leads to a

rank-three minor akin to Figure 3.12, contradicting Lemma 3.1.1, as before.

Therefore L(M, e) can no have circuits. �

Lemma 3.2.28. Let M be a rank-r golden-mean matroid with no F=
7 or

S10\f minor such that all very long lines are pairwise disjoint. Then M is
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e

Figure 3.15: Schematic drawing for Lemma 3.2.28.

not maximum-sized.

Proof. By Lemma 3.2.27, L(M, e) has no circuits. Therefore, L(M, e) has at

most r − 1 points. So, in M , e is on at most r − 2 lines of length three and

one line of length five. So, when e is contracted and the resulting matroid

simplified, r− 2 + 4 points are lost, meaning that si(M/e) is at least as large

as T 2
r−1. Therefore, by the induction assumption, it must be isomorphic to

T 2
r−1. In T 2

r−1, no five point lines are pairwise disjoint. Since |E(M)| ≥ 16,

there must be at least four lines of length five in M , looking something like

Figure 3.15. As is clear in that Figure, e must be on two very long lines,

contradicting the definition of M . Therefore M is not maximum-sized. �

3.2.4 Conclusion

We will now complete the proof of Theorem 3.0.4.

The lemmata in Section 3.2.2 show that, if M has a point on at least two
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very long lines, then M is isomorphic to T 2
r . In Section 3.2.3, we show that

if M does not have a point on at least two very long lines, then M is not

maximum-sized. The theorem follows immediately from these observations.�



Appendix A

Code

The basic idea behind this computer search is to take a golden-mean repre-

sentation of U3,5 and add on normalised GF (4) vectors, checking for GF (5)

representability each time. This works as it follows from work by Whittle

[35], using ideas developed by Kahn [13], that U3,5 is a stabiliser for GF (4)

matroids.

The code itself runs in Sage [32], with Mathematica [36] being called in order

to check for GF (5) representability.

# Set initial variables

mathematica(’SetSystemOptions [" ReduceOptions" ->

  "MaxModularPoints" -> 999999999999999999] ’);

FOUR.<alpha > = GF(4, ’alpha ’); # Set GF(4) to be

generated by alpha

68
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FIVE = GF(5) # Set GF(5)

FOURLIST = matrix(FOUR , [[1,0,1],[1,0, alpha],

[1,0,alpha +1],[1,1,0],[1,1, alpha],[1,1,alpha+1],

[1,alpha ,0],[1,alpha ,1],[1,alpha ,alpha],

[1,alpha +1,0],[1, alpha +1,1],[1, alpha+1,alpha],

[1,alpha+1,alpha +1],[0,1,1],[0,1, alpha],

[0,1,alpha +1],[1,1,1],[1,alpha ,alpha +1]]); # all

possible GF(4) vectors

FOURLIST = FOURLIST.transpose ();

var(’a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,

  r,s,t,u,v,w,x,y’);

FIVELIST = matrix ([[1,0,a],[1,0,b],[1,0,c],[1,d,0],

[1,e,f],[1,g,h],[1,i,0],[1,j,k],[1,l,m],[1,n,0],

[1,o,p],[1,q,r],[1,s,t],[0,1,u],[0,1,v],[0,1,w],

[1,1,1],[1,x,y]]); # all possible GF(5) vectors

FIVELIST = FIVELIST.transpose ();

This code sets the initial variables.

def real_one(guess): # This takes a mathematica

object , and checks to see if it is {} or not.

if (guess == mathematica(’{}’)):

blank = 0 # I should make it do *something*

else:

return true
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return false

This function, real one, takes a Mathematica object, and checks to see if it

is {} or not. If it is, then false is returned, otherwise true is returned. It

is needed because if Mathematica returns {} as a possible solution for rep-

resentation over GF (5), then the matroid being checked is not representable

over GF (5).

def what_gf5(M,N): # This takes a matrix over GF(4)

(M), and one over GF(5), (N) and returns all

possible solutions for the representability

of N over GF(5)

equations = []

ncols = M.ncols ();

combin = range(0, ncols);

# 3x3 first - they’re the easiest

delta = combinations(combin ,3);

for stuff in delta:

littleM = M.matrix_from_columns(stuff);

littleN = N.matrix_from_columns(stuff);

deter = det(littleM );

if deter == 0:

# the equivalent submatrix in the GF(5)

matrix has determinant = 0

equations.append(det(littleN) == 0);



APPENDIX A. CODE 71

else:

equations.append(det(littleN) != 0);

# now the 2x2 - lots to do here.

line = combinations(combin ,2);

for stuff in line:

oblongM = M.matrix_from_columns(stuff);

oblongN = N.matrix_from_columns(stuff);

topM = oblongM [0:2]; # rows 1 and 2

topN = oblongN [0:2];

middleM = oblongM [0:3:2]; # rows 1 and 3

middleN = oblongN [0:3:2];

bottomM = oblongM [1:3]; # rows 2 and 3

bottomN = oblongN [1:3];

deter = det(topM)

if deter == 0:

# the equivalent submatrix in the GF(5)

matrix has determinant = 0

equations.append(det(topN) == 0)

else:

equations.append(det(topN) != 0);

deter = det(middleM );

if deter == 0:

# the equivalent submatrix in the GF(5)
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matrix has det = 0

equations.append(det(middleN) == 0)

else:

equations.append(det(middleN) != 0);

deter = det(bottomM );

if deter == 0:

# the equivalent submatrix in the GF(5)

matrix has determinant = 0

equations.append(det(bottomN) == 0)

else:

equations.append(det(bottomN) != 0);

# Now I solve the bunch of equations

return equations

This function, what gf5, takes two matrices – one that is a submatrix of

FOURLIST over GF (4), and an equivalent one that is a submatrix of FIVELIST

over GF (5). It takes the GF (4) matrix, M, and calculates all 3× 3 and 2× 2

subdeterminants. It then checks to see if the subdeterminant is zero or not.

If it is, the equivalent subdeterminant from the GF (5) matrix, N, is set to

equal zero. If not, the equivalent subdeterminant from N is set to not equal

zero. These inequations are collected for all subdeterminants, and a system

of inequations, equations is returned.

def what_variables(vectors ): # This takes a tuple ,

and outputs the variables used in said tuple.
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used_vars = [x,y];

if 0 in vectors:

used_vars.append(a)

if 1 in vectors:

used_vars.append(b)

if 2 in vectors:

used_vars.append(c)

if 3 in vectors:

used_vars.append(d)

if 4 in vectors:

used_vars.append(e)

used_vars.append(f)

if 5 in vectors:

used_vars.append(g)

used_vars.append(h)

if 6 in vectors:

used_vars.append(i)

if 7 in vectors:

used_vars.append(j)

used_vars.append(k)

if 8 in vectors:

used_vars.append(l)

used_vars.append(m)
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if 9 in vectors:

used_vars.append(n)

if 10 in vectors:

used_vars.append(o)

used_vars.append(p)

if 11 in vectors:

used_vars.append(q)

used_vars.append(r)

if 12 in vectors:

used_vars.append(s)

used_vars.append(t)

if 13 in vectors:

used_vars.append(u)

if 14 in vectors:

used_vars.append(v)

if 15 in vectors:

used_vars.append(w)

return used_vars

If we look at FIVELIST, we can see that it mostly consists of variables. This

function, what variables, takes a submatrix of FIVELIST and returns the

variables used in that submatrix. It is required because solving for all vari-

ables is too time-consuming.

def is_gm (): # This does everything
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combin = range (16) # as there are 16 columns to

add on

answer = []

for stuff in combin:

toy = combinations(combin , stuff +1)

count = 0;

while count < len(toy):

vects = toy[count];

variables = what_variables(vects);

vects.append (16);

vects.append (17);

test4 = FOURLIST.matrix_from_columns(vects)

test5 = FIVELIST.matrix_from_columns(vects)

equations = what_gf5(test4 , test5)

sys = mathematica(equations );

eqns = mathematica(variables );

solution = sys.FindInstance(eqns ,

’Modulus ->5’);

if real_one(solution ):

answer.append(vects)

count = count + 1;

mathematica(’Clear[a,b,c,d,e,f,g,h,i,j,k,l,

        m,o,p,q,r,s,t,u,v,w,x,y]’)
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return answer

This function systematically goes through all possible submatrices of

FOURLIST and passes them, along with the equivalent FIVELIST submatrix,

to what gf5(), which gives a system of equations. This system is then con-

verted to Mathematica format, and passed to Mathematica’s FindInstance

function, which solves the system over GF (5), returning a possible solution,

solution. Finally, solution is passed to real one(), to determine whether

the possible solution is a real solution or not. Once all possible submatrices

of FOURLIST have been checked, we have our list of vectors, answer, corre-

sponding to all rank-three golden-mean matroids.



Part II

Secret Sharing Matroids
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Chapter 4

Introduction

Consider the following scenario, proposed by Liu [17]. You are involved in

top secret research with ten other people, and all your work is kept in a

secure safe. Because of distrust, it has been decided that any group of six or

more researchers can open the safe, but a group of only five people can not

get in. How many locks do you need, and how many keys should each person

carry?

It turns out that you will need 462 locks, with each researcher carrying 252

keys. Since such a situation is obviously impractical, a new approach is

needed. That approach is through secret sharing schemes.

In a secret sharing scheme, we want to share a secret , K, among a bunch

of participants , P . Each participant is a pi. The value of K is chosen

by a special player, D (we assume that D /∈ P), called a dealer , and each

participant receives a share , Spi . The set of all shares is denoted S.
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As the actual details of the secret and the shares are not too important,

the way to distinguish between different secret sharing schemes is by distin-

guishing which subsets of participants are allowed to know the secret. This

definition formalises this concept.

Definition 4.0.1. Let Γ ⊆ ℘(P). Γ is known as an access structure . If

γ ∈ Γ then γ is an authorised subset and is allowed to calculate K.

If γ ∈ ℘(P) is allowed to calculate K, but ξ ⊃ γ is not, then the secret sharing

scheme is rather silly. In other words, gaining some more participants means

that a particular group of people can no longer calculate the secret. An

access structure in which this does not happen has a special property, given

by this definition.

Definition 4.0.2. Let Γ be an access structure, and let γ be an arbitrary

element of Γ. If, for all ξ ∈ ℘(P) such that γ ⊂ ξ, ξ is also in Γ, then Γ is a

monotone access structure .

We will only deal with monotone access structures in this thesis.

Secret sharing schemes were independently introduced by Blakley [3] and

Shamir [30], who both introduced a special kind of scheme, known as a

threshold scheme. A threshold scheme is akin to the one given earlier, in

which t or more participants can calculate K, but fewer than t can not.

Formally, a threshold access structure is Γ = {γ ⊆ P | |γ| ≥ t}.

Definition 4.0.3. A secret sharing scheme is a perfect secret sharing

scheme with access structure Γ if the following two properties hold:
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(i) If γ ∈ Γ, then γ can compute K; and

(ii) If γ /∈ Γ, then γ can determine nothing at all about K (that is, given

the information available to γ, no value of K is more likely than any

other).

Definition 4.0.4. A perfect secret sharing scheme is ideal if |Spi | = |K|.

That is, if the secret and the shares have the same length.

A powerful way to think of ideal secret sharing schemes is as a matrix.

Definition 4.0.5. Let A = [aij | i ∈ I, j ∈ J ] be a finite matrix with entries

from a finite set S such that |S| > 1. For i ∈ I, j ∈ J , and X ⊆ J − {j}, let

n(i, j,X) = {akj | k ∈ I, akx = aix for all x ∈ X} .

Then A is a secret sharing matrix over S if for all j ∈ J and all X ⊆

J − {j}, either n(i, j,X) = S for all i ∈ I, or |n(i, j,X)| = 1 for all i ∈ I.
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Example 4.0.6. This is a secret-sharing matrix with S = {♥,♠}.



D p1 p2 p3 p4 p5

1 ♥ ♠ ♥ ♠ ♥ ♠

2 ♥ ♠ ♠ ♥ ♥ ♥

3 ♥ ♥ ♥ ♥ ♠ ♠

4 ♥ ♥ ♠ ♠ ♠ ♥

5 ♠ ♥ ♥ ♠ ♥ ♥

6 ♠ ♥ ♠ ♥ ♥ ♠

7 ♠ ♠ ♥ ♥ ♠ ♥

8 ♠ ♠ ♠ ♠ ♠ ♠


It is often simple yet tedious to show that a particular matrix is secret-

sharing, so we will only do a few checks.

Firstly, consider j = p3 and X = {D, p1}. Then

n(1, p3, {D, p1}) = {a1p3 , a2p3}= {♠,♥}

n(2, p3, {D, p1}) = {a1p3 , a2p3}= {♠,♥}

n(3, p3, {D, p1}) = {a3p3 , a4p3}= {♥,♠}

n(4, p3, {D, p1}) = {a3p3 , a4p3}= {♥,♠}

n(5, p3, {D, p1}) = {a5p3 , a6p3}= {♠,♥}

n(6, p3, {D, p1}) = {a5p3 , a6p3}= {♠,♥}

n(7, p3, {D, p1}) = {a7p3 , a8p3}= {♥,♠}

n(8, p3, {D, p1}) = {a7p3 , a8p3}= {♥,♠} .
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So n(i, p3, {D, p1}) = {♥,♠} = S for all i ∈ I.

Next, consider j = p3 and X = {p2, p4}. Then

n(1, p3, {p2, p4}) = {a1p3 , a5p3}= {♠}

n(2, p3, {p2, p4}) = {a2p3 , a6p3}= {♥}

n(3, p3, {p2, p4}) = {a3p3 , a7p3}= {♥}

n(4, p3, {p2, p4}) = {a4p3 , a8p3}= {♠}

n(5, p3, {p2, p4}) = {a1p3 , a5p3}= {♠}

n(6, p3, {p2, p4}) = {a2p3 , a6p3}= {♥}

n(7, p3, {p2, p4}) = {a3p3 , a7p3}= {♥}

n(8, p3, {p2, p4}) = {a4p3 , a8p3}= {♠} .

So |n(i, p3, {p2, p4})| = 1 for all i ∈ I. ♦

Let A be a secret sharing matrix, which is public knowledge. Label the

columns of A with {D} ∪ P . Then D picks row q uniformly at random from

A. Without loss of generality, we can assume that the column headed by

D is the first column. Then the secret is aq1, and participant pi gets given

share aqpi . It is not too hard to see that this gives an ideal secret sharing

scheme, with γ ∈ ℘(P) being authorised if |n(i, 1, γ)| = 1 and not authorised

otherwise.

In Example 4.0.6, if we pick row 3, then the secret is ♥. If p2 and p4 get

together, they can combine their knowledge and reduce the possible rows to

3 or 7. However, the secret could still be either ♥ or ♠, so they know nothing
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about the secret. However, if p1 joins in, then they are able to figure out

that the row picked was row 3, and the secret is ♥.

Definition 4.0.7. Let A = [aij | i ∈ I, j ∈ J ] be a secret sharing matrix.

Then X ⊆ J spans j ∈ J −X if |n(i, j,X)| = 1 for all i ∈ I, and Y ⊆ J is

independent if for all j ∈ Y , Y − {j} does not span j.

This Theorem follows from Theorem 1 of Brickell and Davenport [4].

Theorem 4.0.8. Let A = [aij | i ∈ I, j ∈ J ] be a secret sharing matrix, and

let I be the collection of independent sets. Then M = (J, I) is a matroid

with ground set J and independent sets I. M is said to be a secret sharing

matroid, and A is a secret sharing matrix for M . �

It is known that all representable matroids are secret sharing (see [18] for

instance). Also, Seymour [29] has shown that the Vamos matroid is not

secret sharing, so not all matroids are secret sharing. This part of the thesis

is devoted to summarising some of the other known results.

The secret sharing matrix from Example 4.0.6 is actually a secret sharing

matrix for M(K4), with labels as in Figure 4.1.

There is a more natural relation between the secret sharing matrix and the

secret sharing matroid.

Lemma 4.0.9 (Seymour, Theorem 1.1 [29]). Let A = [aij | i ∈ I, j ∈ J ] be

a matrix with entries from some finite set S, and let M be a matroid with

ground set J . Then A is a secret sharing matrix for M if and only if for all

X ⊆ J , the submatrix [aij | i ∈ I, j ∈ X] has exactly |S|r(X) distinct rows. �
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p4 p5

D

p1 p2

p3

Figure 4.1: Examples 4.0.6 and 4.1.5

Note that loops are just columns consisting of one symbol and all entries

from a parallel class have identical columns, so neither element gives any

useful information. Hence we can assume that all matroids in this part of

the thesis are simple.

4.1 Partitions

There are alternate definitions for secret sharing matroids (see [31], for ex-

ample). One of particular interest has been developed by Matúš [19] and

utilises partitions.

Definition 4.1.1. Let Ω be a set. A family $ of nonempty sets is a parti-

tion of Ω if the union of the elements of $ is equal to Ω and the elements of

$ are pairwise disjoint. Elements of $ are called the blocks of the partition.

Definition 4.1.2. Let Ω be a set, and let $ and $′ be two partitions of



CHAPTER 4. INTRODUCTION 85

Ω. If every member of $′ is a subset of some element of $, then $′ is a

refinement of $, denoted $′ ≤ $. We say that $′ is finer than $ and

that $ is coarser than $′.

The “finer-than” relation on the set of partitions of Ω is a partial order, so a

meet can be defined:

Definition 4.1.3. Let S be a set with partial order ≤, and let a and b be

two elements of S. An element m of S is the meet of a and b if:

1. m ≤ a and m ≤ b, and

2. for any n in S, if n ≤ a and n ≤ b, then n ≤ m.

If the meet of a and b exists, it is denoted a ∧ b.

Note that the meet of multiple elements is defined in the obvious way

k∧
i=1

ai = a1 ∧ · · · ∧ ak.

Also note that the meet of two partitions is always defined. If $ and % are

two partitions of a set S, then the blocks of $ ∧ % are defined as

{a ∩ b | a is a block of $, b is a block of %} .

Definition 4.1.4 (Matúš [19]). Let M = (E, r) be a matroid with rank

function r, and let d ≥ 2 be an integer. M is partition representable
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(p-representable) of degree d if there exists a finite set Ω of cardinality dr(M)

and partitions $i of Ω, i ∈ E, such that for every F ⊆ E the meet-partition

$F =
∧
i∈F

$i has dr(F ) blocks all of the same cardinality.

Example 4.1.5. Let Ω = {α, β, γ, δ, ε, ζ, η, ϑ}. Then the following parti-

tions of Ω give a p-representation of M(K4), with labels as in Figure 4.1.

$D = {{α, β, γ, δ} , {ε, ζ, η, ϑ}}

$p1 = {{α, β, η, ϑ} , {γ, δ, ε, ζ}}

$p2 = {{α, γ, ε, η} , {β, δ, ζ, ϑ}}

$p3 = {{α, δ, ε, ϑ} , {β, γ, ζ, η}}

$p4 = {{α, β, ε, ζ} , {γ, δ, η, ϑ}}

$p5 = {{α, γ, ζ, ϑ} , {β, δ, ε, η}}

♦

It was noted without proof by Matúš [19] that p-representable matroids are

exactly the same as secret-sharing matroids. A proof is given here.

Proposition 4.1.6. A matroid is p-representable if and only if it is secret

sharing.

Proof. Let M be a p-representable matroid of degree d. Then there is a finite

set, Ω = {ω1, . . . , ωn}, of cardinality dr(M) and partitions $i, i ∈ E, such that

for every F ∈ ℘(E) the meet-partition $F has dr(F ) equicardinal blocks. In

particular, each $i has dr(i) = d blocks. Without loss of generality, these



CHAPTER 4. INTRODUCTION 87

blocks can be labelled by the integers {1, . . . , d}. Construct a matrix with

columns headed by $i, i ∈ E, and rows labelled by Ω. In the entry of the

matrix defined by $i and ωj, place an integer corresponding to whichever

block of $i contains ωj. For example, if we look at $p2 from Example 4.1.5,

we would put a 1 in the row labelled by ζ. Note that the order of the blocks

does not matter, as we are only interested in distinct rows. Let X be an

arbitrary subset of E. The meet partition $X is defined by the columns of

the matrix headed by {$i | i ∈ X}. The elements of this partition are |X|-

tuples of elements of {1, . . . , d}. This partition has dr(X) equicardinal blocks.

So the submatrix headed by the partitions of the elements of X has dr(X)

distinct rows. Therefore the matrix we have constructed is a secret sharing

matrix for M .

Conversely, let M be a secret-sharing matroid. So there exists a secret-

sharing matrix for M , with entries from some finite set S = {1, . . . , d}. This

matrix must have at least dr(M) rows. If it has more, then it has duplicate

rows, and we can ignore all duplicates without losing the secret-sharing prop-

erty. Therefore the matrix has exactly dr(M) rows. Let B be a basis of M .

Then the submatrix headed by elements of B has dr(B) = dr(M) distinct rows.

These rows are all possible |B|-tuples. Removing one column from this will

leave behind exactly d copies of each (|B| − 1)-tuple, and so on. Hence, if

I is an independent set, then the submatrix headed by the elements of I

has dr(I) rows, all repeated the same number of times. Now let X be an

arbitrary subset of E. If X is independent, then, by the previous argument,
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we are done. So X is dependent. Let I be the largest independent subset

of X. Then the submatrix headed by the elements of I has dr(I) = dr(X)

distinct rows, all repeated the same number of times. Clearly, adding a new

column from X − I to this matrix cannot decrease the number of distinct

rows. As this matrix is secret-sharing, and adding the new column does not

increase the rank, the submatrix with the new column added on also has

dr(X) distinct rows, each repeated the same number of times. This process

can be continued until the submatrix headed by X is created, with the same

condition. As X is an arbitrary subset of E, and the matrix has exactly

dr(M) rows, this matrix is a matrix formed by partitions, as in the earlier

part of the proof. So Ω = {ω1, . . . , ωn} is the set that indexes the rows of

this matrix, with partitions $i, i ∈ E, each having d blocks, defined by the

values in the ith column of the matrix. This is a p-representation of M , so

M is p-representable. �



Chapter 5

Results

5.1 M(K4)

5.1.1 Quadrangle Criterion

The quadrangle criterion is a well-known property (see [6] for instance) of

latin squares, and forms an important link with groups.

Definition 5.1.1 (Euler [8]). A latin square is a n× n matrix over some

set, S, such that |S| = n and all elements of S occur in each row and each

column of the matrix exactly once.

Definition 5.1.2. A 4-tuple, (a, b, c, d) of elements of a matrix M is said to

be a quadrangle if it is of the form (mi,j,mi,k,ml,k,ml,j). That is, if the

four elements are the corners of a rectangular block in M , with at least two

rows and two columns, such that a and c lie on one of the diagonals of the

89
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rectangular block.

Definition 5.1.3 (Frolov [10]). A matrix M is said to satisfy the quadran-

gle criterion if whenever (a, b, c, d) and (a′, b′, c′, d′) are two quadrangles

satisfying a = a′, b = b′, and c = c′; then d = d′.

Theorem 5.1.4. Let M be a latin square of order n. Then M is the mul-

tiplication table of a finite group (of order n) if and only if the quadrangle

criterion holds for M .

Proof. Assume that M is a multiplication table of a finite group. Let

(mi,j,mi,k,ml,k,ml,j) and (mi′,j′ ,mi′,k′ ,ml′,k′ ,ml′,j′) be two quadrangles from

M such that mi,j = mi′,j′ , mi,k = mi′,k′ , and ml,k = ml′,k′ . Then:

ml,j = mlmj

= ml(mkm
−1
k )(m−1i mi)mj

= (mlmk)(mimk)−1(mimj)

= ml,km
−1
i,kmi,j

= ml′,k′m
−1
i′,k′mi′,j′

= (ml′mk′)(mi′mk′)
−1(mi′mj′)

= ml′(mk′m
−1
k′ )(m−1i′ mi′)mj′

= ml′mj′

= ml′,j′

Conversely, we will show that if the quadrangle criterion holds for M , then
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M is a Cayley table of a finite group, G.

For M to be a group table, we need to pick a header and a sideline. Without

loss of generality, we pick the first row and first column, respectively. Then

m1,1 will be e, the identity element of G. Since M is a latin square, e occurs

once in each row and column, so mix = e and ymj = e are soluble for every

choice of mi and mj. Thus inverses exist.

Let a, b, and c be arbitrary elements from M . If one of them is equal to e,

then a(bc) = (ab)c is trivial. So, we can assume that none of them are equal

to e. Consider the following two portions of M :

b bc e c

e b bc b b bc

a ab a(bc) ab ab (ab)c

By the quadrangle criterion, a(bc) = (ab)c and so associativity is satisfied.

Hence M is the multiplication table of some finite group. �

5.1.2 All p-representations of M(K4) arise from a group

Intuitively, two p-representations are the same if one can get from one to

the other by relabelling the partitions. These next definitions formalise the

concept.

Definition 5.1.5. Let $, partitioning Ω = {ω1, . . . , ωn}, be a p-

representation of a matroid, and let f be a function operating on $. We

say that f is $-invariant if ωi and ωj are in the same block of $k, f(ωi)
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2 6

1

4 3

5

Figure 5.1: Example 5.1.8

and f(ωj) must be in the same block of f($k).

Definition 5.1.6. Let $, partitioning Ω$, and %, partitioning Ω%, be two

p-representations of a matroid (E, r). Then $ and % are equivalent if there

exists a bijection f from Ω$ to Ω% such that f($i) = %i for all i ∈ E.

Partitions can get rather unwieldy. It would be good if we could get some

more powerful machinery. For example, groups. This concept was introduced

by Matúš [19].

Definition 5.1.7. A p-representation of a rank-r matroid M is group-

induced (we say it arises from a group) if there is a group G and func-

tions, fi, i ∈ E, from Gr to G, such that the blocks of $i are {(g1, . . . , gr) ∈

Gr | fi(g1, . . . , gr) = g}, for all g ∈ G, giving a p-representation of M that is

equivalent to the original p-representation.
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Example 5.1.8. Consider M(K4), as shown in Figure 5.1, and let G be a

group. Then a group-induced p-representation of M(K4) is defined by the

following functions on G3:

$1 has blocks
{

(g1, g2, g3) ∈ G3 | g1 = h
}

for all h ∈ G

$2 has blocks
{

(g1, g2, g3) ∈ G3 | g2 = h
}

for all h ∈ G

$3 has blocks
{

(g1, g2, g3) ∈ G3 | g3 = h
}

for all h ∈ G

$4 has blocks
{

(g1, g2, g3) ∈ G3 | g1g−12 = h
}

for all h ∈ G

$5 has blocks
{

(g1, g2, g3) ∈ G3 | g2g−13 = h
}

for all h ∈ G

$6 has blocks
{

(g1, g2, g3) ∈ G3 | g3g−11 = h
}

for all h ∈ G ♦

In this example, the first three partitions are defined by the coordinates of

G3. This is a particular type of p-representation, defined as follows.

Definition 5.1.9. Let B = {b1, . . . , br} be a basis of a p-representable ma-

troid, M , and let $ be a p-representation of M , partitioning Gr, where G

is a finite set. Then $ is in coordinate form with respect to B if for all

bi ∈ B, $i has blocks {(g1, g2 . . . , gr) ∈ Gr | gi = h} for all h ∈ G.

Matúš [19] states, but does not prove, the following claim.

Proposition 5.1.10. Let M be a p-representable matroid with basis B, and

let $ be a p-representation of M , partitioning G, a finite set. Then there

exists an equivalent p-representation of M in coordinate form with respect to

B.
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2 1
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Figure 5.2: M(K4) as used in the proof of Proposition 5.1.11

Proof. Let B = {b1, . . . , br}. We label the blocks of $i, where i ∈ {1, . . . , r},

with the integers 1, . . . , d. Now every element x ∈ G is uniquely determined

by the blocks (b1, . . . , br), where bi is the block of $i that contains x. There-

fore there is a one-to-one correspondence between elements of G and r-tuples

with entries from {1, . . . , d}. This induces a p-representation of M on the set

consisting of these tuples, and it is in coordinate form with respect to B. �

Before we prove the following proposition, which is based on Proposition 3.1

of Matúš [19], we will define some notation.

Let $ be a p-representation, partitioning Ω = {ω1, . . . , ωk}. The notation

ωj
i∼ ωk means that ωj and ωk are in the same block of $i.

Proposition 5.1.11. All p-representations of M(K4) arise from a group.

In particular, if the p-representation is in coordinate form with respect to

the basis {1, 2, 3}, taken from Figure 5.2, then f4 = xy−1, f5 = yz−1, and
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f6 = zx−1.

Proof. Let $ be a p-representation of M(K4) (as in Figure 5.2), partitioning

G3, where G is some finite set. The proof of Proposition 5.1.10 explains why

we are able to assume that Ω, the set we are partitioning, has the form Gr,

where G is a set of cardinality d. By Proposition 5.1.10, we can assume that

$ is in coordinate form with respect to the basis {1, 2, 3} – that is, $1 is

the x-coordinate, $2 is the y-coordinate, and $3 is the z-coordinate. Since

{1, 2, 4} is a triangle, if two triples belong to the same block of $1 and $2,

they must belong to the same block of $4. This means that the blocks of

$4 are defined entirely by the x and y coordinates. That is, if (a, b, c) and

(d, e, f) are in the same block of $4, then (a, b, c′) and (d, e, f ′) are also in

this particular block, for all possible choices of c, c′, f , and f ′. By a cyclic

argument, the blocks of $5 are defined entirely by the y and z coordinates,

and the blocks of $6 are defined entirely by the x and z coordinates.

Another way to look at $4 is as a matrix, M4, with rows and columns labelled

by elements of G, and consisting of elements of G. Assign (a, b) and (c, d)

the same symbol in M4 if and only if (a, b, g)
4∼ (c, d, h) for all g, h ∈ G.

This is well-defined because the blocks of $4 are defined entirely by the x

and y coordinates. M5 is constructed in the same way, with (a, b) and (c, d)

being assigned the same symbol in M5 if and only if (g, a, b)
5∼ (h, c, d) for

all g, h ∈ G. Likewise, (a, b) and (c, d) are assigned the same symbol in M6

if and only if (a, g, b)
6∼ (c, h, d) for all g, h ∈ G. The actual symbol is not

important, as we are only concerned with distinct elements, not what those
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elements are.

Example 5.1.11.1. Let G = {♠,♥,♣,♦}. Then a possible M4 is shown

below

M4 =



♠ ♥ ♣ ♦

♠ ♦ ♣ ♥ ♠

♥ ♠ ♦ ♣ ♥

♣ ♥ ♠ ♦ ♣

♦ ♣ ♥ ♠ ♦


This shows that, for example, (♣,♥, a)

4∼ (♠,♦, b) for all a, b ∈ G. ♦

If we look at Example 5.1.11.1, we can see that M4 is a latin square, and all

elements on the diagonal are the same. It turns out that these two properties

are not just a coincidence, as the next two sublemmata show.

Sublemma 5.1.11.2. Mi is a latin square, for i ∈ {4, 5, 6}.

Subproof. We will only show this for M4. It follows by a cyclic argument for

M5 and M6.

Assume that M4 is not a latin square. Then, without loss of generality, (a, b)

and (a, b′) have the same symbol, but b 6= b′. So (a, b, g)
4∼ (a, b′, h) for all

g, h ∈ G. As $1 is defined entirely by the x coordinate, (a, b, g)
1∼ (a, b′, h)

for all g, h ∈ G. As {1, 2, 4} is a triangle, two elements of G3 are in the same

block of $2 if and only if they are in the same block of $1 and the same block

of $4. Hence (a, b, g)
2∼ (a, b′, h) for all g, h ∈ G. As $2 is defined by the y
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coordinate, this implies that b = b′, and so (a, b) = (a, b′), a contradiction.

Therefore, M4 must be a latin square. �

The partition $i contains the diagonal as a block if for all a, b ∈ G, (a, a)

and (b, b) have the same symbol in Mi.

Sublemma 5.1.11.3. $4 and $5 contain the diagonal as a block.

Subproof. Without loss of generality, let (gi, gj,�) be in a block of $4, where

� ranges over all elements of G. By the pigeonhole principle, there exists a

permutation, ς, of G, such that ς(gj) = gi, for all gj and gi in G. If we apply

ς to the y coordinate layer of G3, we see that our block of $4 now contains

(gi, gi,�). This block is known as the xy-diagonal. Likewise, if (�, gi, gj) is

in a block of $5, there exists a permutation, τ , of G, such that τ(gj) = gi.

When we apply τ to the z coordinate layer of G3, we see that our block of

$5 now contains (�, gi, gi). This block is known as the yz-diagonal. �

Sublemma 5.1.11.4. $6 contains the diagonal as a block.

Subproof. By Sublemma 5.1.11.3, we can assume that $4 contains the xy-

diagonal as a block, and $5 contains the yz-diagonal as a block. We use

the notation (a, a,�)
i∼ (a′, a′,�) to mean that (a, a, x)

i∼ (a′, a′, y) for all
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x, y ∈ G.

(a, a, a)
4∼ (a′, a′, a) (As the xy-diagonal is a block of $4)

(a′, a′, a)
4∼ (a′, a′, a′) (As $4 only depends on the x and y coordinates)

(a, a, a)
5∼ (a, a′, a′) (As the yz-diagonal is a block of $5)

(a, a′, a′)
5∼ (a′, a′, a′) (As $5 only depends on the y and z coordinates)

As {4, 5, 6} is a triangle, and (a, a, a) and (a′, a′, a′) are in the same block

of $4 and in the same block of $5, they must also be in the same block of

$6. As the blocks of $6 only depend on the x and z coordinates, (a,�, a)
6∼

(a′,�, a′), and so the xz-diagonal is a block of $6. �

Sublemma 5.1.11.5. The latin squares associated with $4, $5, and $6 are

identical.

Subproof. To begin with, we show that if (�, a, b)
5∼ (�, a′, b′) then (a,�, b)

6∼

(a′,�, b′).

(�, a, b)
5∼ (�, a′, b′) (By assumption)

(a, a, b)
5∼ (a′, a′, b′) (Special case of the previous statement)

(a, a, b)
4∼ (a′, a′, b′) (As the xy-diagonal is a block of $4)

(a, a, b)
6∼ (a′, a′, b′) (As $6 cannot refine $4 ∧$5)

(a,�, b)
6∼ (a′,�, b′) (As $6 only depends on the x and z coordinates)

The converse follows a similar argument. So, (�, a, b)
5∼ (�, a′, b′) if and only
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if (a,�, b)
6∼ (a′,�, b′). Using a cyclic argument, we can see that (a, b,�)

4∼

(a′, b′,�) if and only if (a,�, b)
6∼ (a′,�, b′), and that (a, b,�)

4∼ (a′, b′,�)

if and only if (�, a, b)
5∼ (�, a′, b′). So, if we view $4, $5, and $6 as latin

squares, they are identical. We express this using the notation $4 l $5 l

$6. �

Sublemma 5.1.11.6. $4, $5, and $6 are closed under transposition. That

is, if (a, b) and (a′, b′) have the same symbol in Mi, then (b, a) and (b′, a′)

also have the same symbol in Mi.

Subproof. As normal, we will only show this for $4, with $5 and $6 following

via a cyclic argument.

(a, b,�)
4∼ (a′, b′,�) (By assumption)

(a, b, a)
4∼ (a′, b′, a′) (As $4 only depends on the x and y coordinates)

(a, b, a)
6∼ (a′, b′, a′) (As the xz-diagonal is a block of $6)

(a, b, a)
5∼ (a′, b′, a′) (As $5 cannot refine $4 ∧$6)

(�, b, a)
5∼ (�, b′, a′) (As $5 only depends on the y and z coordinates)

(b, a,�)
4∼ (b′, a′,�) (As $4 l $5)

This shows that (a, b,�)
4∼ (a′, b′,�) if and only if (b, a,�)

4∼ (b′, a′,�). In

other words, the xy coordinates of the blocks of $4 are closed under trans-

position. Under a cyclic argument, the same thing happens with the blocks

of $5 and $6. �
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Note that this does not imply that (a, b) and (b, a) have the same symbol.

For example, if we look at Example 5.1.11.1, we can see that it possesses

this property. For example, (♣,♥) and (♦,♣) have the same symbol, as do

(♥,♣) and (♣,♦), but (♣,♥) and (♥,♣) have different symbols.

Sublemma 5.1.11.7. G is a group. Furthermore, the blocks of $4 are

{(x, y, z) ∈ G3 | xy−1 = g, g ∈ G}.

Subproof.

(a, c,�)
4∼ (a′, c′,�) (By assumption)

(a, d,�)
4∼ (a′, d′,�) (By assumption)

(b, c,�)
4∼ (b′, c′,�) (By assumption)

(d, a,�)
4∼ (d′, a′,�) (As blocks of $4 are closed under transposition)

(d, a, c)
4∼ (d′, a′, c′) (As $4 only depends on the x and y coordinates)

(�, a, c)
5∼ (�, a′, c′) (As $4 l $5)

(d, a, c)
5∼ (d′, a′, c′) (As $5 only depends on the y and z coordinates)

(d, a, c)
6∼ (d′, a′, c′) (As $6 cannot refine $4 ∧$5)

(d,�, c)
6∼ (d′,�, c′) (As $6 only depends on the x and z coordinates)

(d, c,�)
4∼ (d′, c′,�) (As $6 l $4)

(d, c, b)
4∼ (d′, c′, b′) (As $4 only depends on the x and y coordinates)

(�, b, c)
5∼ (�, b′, c′) (As $4 l $5)

(�, c, b)
5∼ (�, c′, b′) (As blocks of $5 are closed under transposition)

(d, c, b)
5∼ (d′, c′, b′) (As $5 only depends on the y and z coordinates)
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(d, c, b)
6∼ (d′, c′, b′) (As $6 cannot refine $4 ∧$5)

(d,�, b)
6∼ (d′,�, b′) (As $6 only depends on the x and z coordinates)

(d, b,�)
4∼ (d′, b′,�) (As $6 l $4)

(b, d,�)
4∼ (b′, d′,�) (As blocks of $4 are closed under transposition)

This shows that if (a, c,�)
4∼ (a′, c′,�), (a, d,�)

4∼ (a′, d′,�), and (b, c,�)
4∼

(b′, c′,�), then (b, d,�)
4∼ (b′, d′,�). In terms of the latin square representa-

tion of $4, this is the quadrangle criterion.

Now, by Theorem 5.1.4, M4 is a group table. Without loss of generality, we

can assume that the entry in the diagonal is the identity of this group. Fur-

thermore, we can take the first row and the first column to be the header and

the sideline. If we consider the sideline to be g1, . . . , gn, where n = |G|, then,

as the identity element fills the diagonal, the header is g−11 , . . . , g−1n . There-

fore this table is constant under the function xy−1. Hence the blocks of $4

are {(x, y, z) ∈ G3 | xy−1 = g, g ∈ G}. Because of the symmetry of M(K4),

the blocks of $5 are {(x, y, z) ∈ G3 | yz−1 = g, g ∈ G} and the blocks of $6

are {(x, y, z) ∈ G3 | zx−1 = g, g ∈ G}. �

Note that in M6, we pick the header (as opposed to the sideline) to be

g1, . . . , gn. This is for purely aesthetic reasons, and we can freely switch

between f and f−1, where f is a group function. We will make further use

of this ability.

The proof of the proposition follows immediately from Sublemma 5.1.11.7.�
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Figure 5.3: F7 as used in the proof of Proposition 5.2.1

5.2 Fano

The work done in this section is based on work done by Matúš [19].

Take a p-representation, $, of F7, as labelled in Figure 5.3. Transform this

p-representation so that it is in coordinate form with respect to the basis

{1, 2, 3}. Delete $7 to get a p-representation of M(K4). By Proposition

5.1.11, we know that this p-representation must be group-induced. We now

study $7.

Proposition 5.2.1. Let G be a group that defines a p-representation of the

Fano matroid. Then G is a power of Z2.

Proof. Let $ be a p-representation of the Fano matroid in coordinate form

with respect to {1, 2, 3} and let (G, ·) be a finite group defining the six par-

titions of $ as in M(K4). $7, the seventh partition of $, will be treated

as an equivalence,
7∼, on G3. So, if (x, y, z)

7∼ (x′, y′, z′), then (x, y, z) and



CHAPTER 5. RESULTS 103

(x′, y′, z′) are in the same block of $7. Let e be the identity element of (G, ·),

and let a, b, c be arbitrary elements of G.

(a, a, e)
3∼ (e, e, e) (As $3 only depends on the z coordinate)

(a, a, e)
4∼ (e, e, e) (As blocks of $4 are constant under xy−1)

(a, a, e)
7∼ (e, e, e) (As $7 cannot refine $3 ∧$4)

(e, e, e)
1∼ (e, b, b) (As $1 only depends on the x coordinate)

(e, e, e)
5∼ (e, b, b) (As blocks of $5 are constant under yz−1)

(e, e, e)
7∼ (e, b, b) (As $7 cannot refine $1 ∧$5)

(e, b, b)
2∼ (c, b, bc) (As $2 only depends on the y coordinate)

(e, b, b)
6∼ (c, b, bc) (As blocks of $6 are constant under zx−1)

(e, b, b)
7∼ (c, b, bc) (As $7 cannot refine $2 ∧$6)

(a, a, e)
7∼ (c, b, bc) (As

7∼ is transitive)

(a, a, e)
7∼ (a, a, a2) (Let b = a and c = a)

(a, a, e)
4∼ (a, a, a2) (As blocks of $4 are constant under xy−1)

(a, a, e)
3∼ (a, a, a2) (As $3 cannot refine $4 ∧$7)

But $3 is completely defined by the z coordinate layer. So if (a, a, a2) and

(a, a, e) are in the same block of $3, then a2 = e, and, as a is an arbitrary

element of G, g2 = e for all g ∈ G. It follows from Theorem 5.1.9 of Scott

[23] that the group must be a power of Z2. �

As Zn
2 is abelian, we will use additive notation.
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Proposition 5.2.2. The blocks of $7 are defined by x+y+z. Or, a+b+c =

a′ + b′ + c′ if and only if (a, b, c)
7∼ (a′, b′, c′).

Proof. To begin with, we show that if (a, b, c)
7∼ (a′, b′, c′), then a + b + c =

a′ + b′ + c′.

(a, b′, b+ c− b′) 1∼ (a, b, c) (As $1 only depends on the x coordinate)

(a, b′, b+ c− b′) 5∼ (a, b, c) (As blocks of $5 are constant under y + z)

(a, b′, b+ c− b′) 7∼ (a, b, c) (As $7 cannot refine $1 ∧$5)

(a, b, c)
7∼ (a′, b′, c′) (By assumption)

(a, b′, b+ c− b′) 7∼ (a′, b′, c′) (As
7∼ is transitive)

(a, b′, b+ c− b′) 2∼ (a′, b′, c′) (As $2 only depends on the y coordinate)

(a, b′, b+ c− b′) 6∼ (a′, b′, c′) (As $6 cannot refine $2 ∧$7)

a+ b+ c− b′ = a′ + c′ (As blocks of $6 are constant under x+ z)

a+ b+ c = a′ + b′ + c′

Conversely, let |G| = n. Then $7 has n blocks, all of cardinality n2. Let b

be one of the blocks of $7, and arbitrarily pick (a, b, c) from b. Let (a′, b′, c′)

be any other triple from b. As (a, b, c) and (a′, b′, c′) are in the same block of

$7, a+ b+ c = a′+ b′+ c′ = k. As we chose (a′, b′, c′) arbitrarily from b, this

statement is true for all triples in b. Therefore b ⊆ {(x, y, z) | x+ y + z = k}.

Furthermore, |{(x, y, z) | x+ y + z = k}| = n2, as any choice of x and y

determines what z must be. Therefore b = {(x, y, z) | x+ y + z = k}, and
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Figure 5.4: M(K4) labelled for Example 5.3.1

this is true for all choices of b ∈ $7. �

5.3 non-Fano

The work done in this section is based on work done by Matúš [19].

We wish to apply a permutation to G3, and we are interested in how this

will affect our functions that define blocks of a partition of G3. Let σ be

a permutation of G3. Then (a, b, c) ∼ (a′, b′, c′) if and only if σ(a, b, c) ∼

σ(a′, b′, c′). Let g be a function on G3 such that g(a, b, c) = g(a′, b′, c′) if and

only if (a, b, c) ∼ (a′, b′, c′). Then there exists some other function on G3, g′,

such that g′(σ(a, b, c)) = g(a, b, c). Therefore g′ = g ◦ σ−1.

Let f be a function from G3 to G that defines the blocks of a partition of G3.

Recall from the proof of Proposition 5.1.11 that we are able to freely switch

between f and f−1, and this does not affect the blocks of our partition.
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xy−1 z

y

x yz−1

xz−1

Figure 5.5: Functions defining blocks before application of σ

xy yz

y

x z

xyz

Figure 5.6: Functions defining blocks after application of σ
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Figure 5.7: F−7 for Proposition 5.3.2

Example 5.3.1. Consider a p-representation of M(K4), labelled as in Fig-

ure 5.4, with blocks defined by functions as shown in Figure 5.5. Let ς be a

permutation of G3 such that ς(x, y, z) = (x, y−1, yz−1). Then the blocks of

our p-representation are defined by the functions shown in Figure 5.6. Note

that we sometimes pick the inverse function for aesthetic reasons. ♦

Take a p-representation, $, of F−7 , as labelled in Figure 5.7. Transform this

p-representation so that it is in coordinate form with respect to the basis

{1, 2, 3}. Delete $7 to get a p-representation of M(K4). Apply ς as in

Example 5.3.1 to get a p-representation of M(K4) that is coordinate form

with respect to the basis {1, 2, 5}. By Proposition 5.1.11, we know that this

p-representation must be group-induced. We now study $7.

Proposition 5.3.2. Let G be a group that defines a p-representation of the

non-Fano matroid. Then G is abelian.
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Proof. Let $ be a p-representation of the non-Fano matroid in coordinate

form with respect to {1, 2, 5} and let (G, ·) be a finite group defining the six

partitions of $ as in Example 5.3.1. $7, the seventh partition of $, will be

treated as an equivalence,
7∼, on G3. Let e be the identity element of (G, ·),

and let a and b be arbitrary elements of G.

(e, e, e)
2∼ (a−1b−1, e, ba)

(As $2 only depends on the y coordinate)

(e, e, e)
6∼ (a−1b−1, e, ba)

(As blocks of $6 are constant under xyz)

(e, e, e)
7∼ (a−1b−1, e, ba) (As $7 cannot refine $2 ∧$6)

(a−1b−1, e, ba)
3∼ (a−1b−2, b, a) (As blocks of $3 are constant under yz)

(a−1b−1, e, ba)
4∼ (a−1b−2, b, a) (As blocks of $4 are constant under xy)

(a−1b−1, e, ba)
7∼ (a−1b−2, b, a) (As $7 cannot refine $3 ∧$4)

(e, e, e)
3∼ (b−1, b, b−1) (As blocks of $3 are constant under yz)

(e, e, e)
4∼ (b−1, b, b−1) (As blocks of $4 are constant under xy)

(e, e, e)
7∼ (b−1, b, b−1) (As $7 cannot refine $3 ∧$4)

(b−1, b, b−1)
2∼ (b−1a−1b−1, b, a)

(As $2 only depends on the y coordinate)

(b−1, b, b−1)
6∼ (b−1a−1b−1, b, a)

(As blocks of $6 are constant under xyz)

(b−1, b, b−1)
7∼ (b−1a−1b−1, b, a) (As $7 cannot refine $2 ∧$6)
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(b−1a−1b−1, b, a)
7∼ (a−1b−2, b, a) (As

7∼ is transitive)

(b−1a−1b−1, b, a)
3∼ (a−1b−2, b, a) (As blocks of $3 are constant under yz)

(b−1a−1b−1, b, a)
4∼ (a−1b−2, b, a) (As $4 cannot refine $3 ∧$7)

Now, we know that blocks of $4 are constant under the function xy. Hence

b−1a−1b−1 · b = a−1b−1b−1 · b

b−1a−1 = a−1b−1

Hence · is commutative, and therefore G is abelian. �

As G is abelian, we will use additive notation.

Proposition 5.3.3. The blocks of $7 are defined by x + 2y + z. That is,

a+ 2b+ c = a′ + 2b′ + c′ if and only if (a, b, c)
7∼ (a′, b′, c′).

Proof. To begin with, we show that if (a, b, c)
7∼ (a′, b′, c′), then a+ 2b+ c =

a′ + 2b′ + c′.

(a, b, c)
7∼ (a′, b′, c′) (By assumption)

(a′, b′, c′)
2∼ (a+ b− b′, b′, a′ + b′ + c′ − a− b)

(As $2 only depends on the y coordinate)

(a′, b′, c′)
6∼ (a+ b− b′, b′, a′ + b′ + c′ − a− b)

(As blocks of $6 are constant under x+ y + z)
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(a′, b′, c′)
7∼ (a+ b− b′, b′, a′ + b′ + c′ − a− b)

(As $7 cannot refine $2 ∧$6)

(a, b, c)
7∼ (a+ b− b′, b′, a′ + b′ + c′ − a− b)

(As
7∼ is an equivalence relation)

(a, b, c)
4∼ (a+ b− b′, b′, a′ + b′ + c′ − a− b)

(As blocks of $4 are constant under x+ y)

(a, b, c)
3∼ (a+ b− b′, b′, a′ + b′ + c′ − a− b)

(As $3 cannot refine $4 ∧$7)

b+ c = b′ + a′ + b′ + c′ − a− b

(As blocks of $3 are constant under y + z)

a+ 2b+ c = a′ + 2b′ + c′

Conversely, let |G| = n. Then $7 has n blocks, all of cardinality n2. Let b be

one of the blocks of $7, and arbitrarily pick (a, b, c) from b. Let (a′, b′, c′) be

any other triple from b. As (a, b, c) and (a′, b′, c′) are in the same block of $7,

a+2b+c = a′+2b′+c′ = k. As we chose (a′, b′, c′) arbitrarily from b, this state-

ment is true for all triples in b. Therefore b ⊆ {(x, y, z) | x+ 2y + z = k}.

Furthermore, |{(x, y, z) | x+ 2y + z = k}| = n2, as any choice of x and y

determines what z must be. Therefore b = {(x, y, z) | x+ 2y + z = k}, and

this argument works for all choices of b ∈ $7. �

Proposition 5.3.4. The group must have odd order.

Proof. Assume G has even order. Then it follows from Theorem 11.6 of
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Fraleigh [9] that there are elements y and y′ of G such that y is not equal to

y′, but y + y = y′ + y′. Then the triples (x, y, z) and (x, y′, z) belong to the

same block of $1, because the blocks of $1 are defined by the x coordinate.

Furthermore, they belong to the same block of $5, as the blocks of $5 are

defined by the z coordinate. As {1, 5, 7} is a basis, they must also belong to

different blocks of $7. Hence, as Proposition 5.3.3 shows that the blocks of

$7 are defined by x+y+y+z, it follows that y+y 6= y′+y′, a contradiction

to our definition of y. Hence G cannot have even order, so it must have odd

order. �

5.4 Other Results

5.4.1 Representable Matroids

It is well known ([18] for instance) that all representable matroids are also p-

representable. A natural question to ask is which representable matroids also

have a group-induced p-representation. In this section, we show that all ma-

troids representable over a prime field have a group-induced p-representation.

Definition 5.4.1. Let M be a matrix of rank r. If M = [Ir|A], where Ir is

the identity matrix, then M is said to be in standard form .

Proposition 5.4.2. Every matroid representable over a prime field has a

group-induced p-representation.
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Figure 5.8: F7+ as used in Example 5.4.3

Proof. Let M be a matroid that is representable over a prime field and let G

be the additive group of said field. Then by results in Section 2.2 of Oxley

[20], there exists a matrix in standard form such that M = M [Ir|A]. For

i ∈ {1, . . . , r}, let the blocks of $i be {(x1, . . . , xr) ∈ Gr | xi = g, g ∈ G}.

The remaining blocks of the p-representation are generated from elements of

A. Let v = [v1 · · · vr]T be an element from A. Then the blocks of $v are

{(x1, . . . , xr) ∈ Gr |
∑
vixi = g, g ∈ G}, where vixi = xi + · · ·+ xi︸ ︷︷ ︸

vitimes

. This is

obviously a p-representation of M . �

This construction fails for matroids not representable over a prime field, as

multiplication is not just repeated addition in such fields. In fact, matroids

not representable over a prime field do not need to have a group-induced

p-representation, as the next example shows.

Example 5.4.3. Let F7+ be the matroid shown in Figure 5.8. Note that F7+

is only representable over GF (2n), where n ≥ 2. So F7+ is not representable
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over any prime field.

Take a p-representation, $, of F7+ , partitioning G3, where G is some finite

set. Transform this p-representation so that it is in coordinate form with

respect to the basis {1, 2, 3}. Delete $8 to get a p-representation of F7. By

Proposition 5.2.1, we know that this p-representation is group induced, and

the group that induces this p-representation is Zn
2 , for some n ∈ Z+ ∪ {0}.

Also, we find that the blocks of $1 are defined by x, the blocks of $3 are

defined by z and the blocks of $6 are defined by x+ z.

Consider $8. In particular, consider the function that defines blocks of $8.

As it cannot refine $1 ∩ $6, it can only have x and z as variables. Since

x + z is taken by $6, it cannot be this. Hence, it must have extra terms. If

we add on more variables, say x+ x+ z, as the order of every element in Zn
2

is two, x + x = 0, and we are just left with z, which implies that $8 = $3,

a contradiction. So we must add some constant, k, from the group. Hence

the blocks of $8 are defined by x + z + k, where k 6= 0. But then the meet

partition between 6 and 8 will have |G| blocks, when it needs to have |G|2

blocks. Hence there can be no function that defines blocks of $8, and so F7+

has no group-induced p-representations. ♦

5.4.2 Uniqueness

Another natural question is whether functions defining blocks of a p-

representation are unique or not. The following example answers this ques-
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Figure 5.9: Labelling of O7 as used in Example 5.4.4

xy−1 z

y

x yz−1

zx−1

Figure 5.10: Functions defining blocks of O7

tion.

Example 5.4.4. Let O7 be the matroid displayed in Figure 5.9, with blocks

defined by functions as shown in Figure 5.10. Let G = Z5. Then the blocks

of $7 can be defined by either xz or x2z. It is not too hard to see that these

two p-representations are not equivalent. ♦
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So, the functions defining blocks of group-induced p-representable matroids

do not need to be group induced.

5.4.3 Uniform Matroids

We now consider one last family of matroids.

It is well known, see [33] for example, that Ur,n is secret sharing, and that

one needs n− r mutually orthogonal latin r-hypercubes of order |S| in order

to construct a secret sharing matrix for Ur,n over a set S. To construct such

a matrix, we take all possible |S|-tuples from S and assign them to the first

|S| columns of our matrix. This defines a coordinate system, with which

we assign coordinates to our latin hypercubes, and place the entries from

the hypercubes in the obvious place in the matrix, until we have the n rows

required.

For example, if we want to construct a secret sharing matrix for U2,4 over the

set S = {0, 1, a, b}, then we will need two mutually orthogonal latin squares,

as given here.

0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

0 1 a b

0 0 a b 1

1 1 b a 0

a a 0 1 b

b b 1 0 a
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Then the secret sharing matrix is as follows.



0 0 0 0

0 1 1 a

0 a a b

0 b b 1

1 0 1 1

1 1 0 b

1 a b a

1 b a 0

a 0 a a

a 1 b 0

a a 0 1

a b 1 b

b 0 b b

b 1 a 1

b a 1 0

b b 0 a



Note that this is not a group-induced p-representation, as the second latin

square is not a group table, as it has four elements, but is not commutative.
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Open Questions

There are many open questions remaining in the realm of secret sharing

matroids. We will give a small sample of them here.

These first two questions are the natural questions posed by matroid structure

theorists, and neither has been answered. The first question was posed by

Matúš [18] in the language of p-representable matroids.

Question 1. Are secret sharing matroids closed under duality?

Question 2. Are secret sharing matroids minor closed?

The largest known class of matroids that is contained within secret sharing is

multilinear matroids, as defined by Simonis and Ashikhmin [31]. This class

has more structure than general secret sharing matroids, but it is unknown

whether there exist secret sharing matroids that are not multilinear. This

first question was posed in [31]. The second question is deliberately vague.

117
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Question 3. Are all secret sharing matroids multilinear?

Question 4. Is there a naturally defined class of matroids that is identical

to secret sharing matroids, yet has more structure?

In this thesis, we often consider word functions from Gk to G, where G is a

group.

Question 5. If f is a word function from Gk to G, when are the sets

{f(g1, . . . , gk) = g | g ∈ G} equicardinal? If f1, . . . , fn is a sequence of

such equations, when do the partitions {(fi(g1, . . . , gk) = g | g ∈ G} for

i = 1, . . . , n induce a p-representation of a matroid?
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