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Abstract

This thesis introduces new NMR techniques which use the inhomogeneous in-
ternal magnetic fields present in the pore space of a porous medium exposed
to an external magnetic field to obtain information about the pore size and
heterogeneities of the the sample. Typically internal field inhomogeneities are
regarded as unwanted due to their effect on various material properties such
as relaxation and diffusion. However, in the experiments presented here, we
choose samples specifically for their inhomogeneous internal fields and use
multi-dimensional NMR methods and simulations to obtain our pore space and
heterogeneity information.

We first describe software developed to specifically simulate the internal
magnetic field and diffusion through the pore space of a simple sphere pack
system. This software generates a sphere pack and calculates the internal mag-
netic field generated by z-aligned magnetic dipoles placed at the center of each
sphere. The internal magnetic field gradient is also calculated in the pore space.
From there, a random walk method is developed and a realistic reflection off a
sphere is introduced. We work through the development of this software and
the mathematics behind the algorithms used. This simulation is used in all sub-
sequent experimental chapters.

We then use a two-dimensional exchange experiment to separate the sus-
ceptibility induced line broadening with the broadening caused by diffusion
through the inhomogeneous field. We observe off-diagonal line broadening as
the mixing time increases. We attempt to quantify this off-diagonal growth by
selecting points on either side of the off-diagonal maximum and plotting their
average as a function of mixing time. A biexponential fit to the average inten-
sities with respect to mixing time results in a characteristic time and from that
a characteristic length as a fraction of bead diameter. This experiment is simu-
lated and a biexponential growth is also observed in the simulated off-diagonal



with characteristic lengths comparable to experiment.
To obtain a correlation length directly from experiment and not deduce one

from a characteristic time, we add a spatial dimension to our exchange experi-
ment in the form of a propagator dimension. This dimension allows us to select
2D spectra based on their Z-displacement. We observe off-diagonal growth due
to both an increase in Z-displacement and an increase in mixing time. We move
away from the biexponential fit and move to a relationship based on mixing
time, effective diffusion, and Z-displacement to directly calculate a characteris-
tic length. We see these same traits in the simulated data which agrees well with
experiment.

Lastly, we move away from exchange experiments and move to correlating
the transverse relaxation time with the internal field offset. We find that there
is correlation at large magnetic field offsets and small T2 times which appear to
be indicative of sample heterogeneities. To confirm this we use a highly hetero-
geneous rock core sample which increases the correlations seen at the previous
offsets and times. This experiment is more qualitative than the previous two as
we do not have a concrete value for the heterogeneity of our samples. The simu-
lation used throughout the thesis, while showing a definite correlation between
field offset and T2 relaxation, is unable to accurately simulate the experiment
and requires more development.
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Chapter 1

Introduction

The study of porous materials using nuclear magnetic resonance (NMR) has
always been of interest due to the non-invasiveness NMR affords. A porous
medium is anything which contains void spaces, or pores within the material.
Examples include such wide-ranging materials as breads, sponges, bones, and
rocks, and can range in size from zeolites to aquifers. Porous media is of partic-
ular interest in the oil industry, since oil reservoirs are comprised of rock with
oil in the pore space.

When a porous material is placed in an external magnetic field, such as that
found in an NMR machine, an inhomogeneous magnetic field arises in the pore
space of the sample. The strength of this field is dependent on a property of the
material known as the magnetic susceptibility, which we will discuss in more
detail in chapter 4. In this thesis, we seek to exploit the inhomogeneous mag-
netic field to characterize the pore space of the material. To do this, we will use
two samples of monodisperse glass beads of two different bead diameters, and
a sandstone rock core.

The thesis is split into two major parts. The first part is made up of three
chapters which will be comprised of a review of NMR and porous media. First
we will introduce what NMR is and the theory behind the phenomenon. Then
we will review some of the major pulse sequences used to measure properties
such as the spin-spin and transverse relaxation times and diffusion. Then we
will introduce how these properties change when inside the boundaries of a
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2 CHAPTER 1. INTRODUCTION

pore.

The second part of the thesis will describe the development of a simulation
and the three internal magnetic field experiments. First, we will summarize the
creation of random walk program used to generate a random pack of spheres
and simulate the inhomogeneous internal magnetic field, diffusion through the
pore space, and transverse relaxation. Then we discuss a two-dimensional ex-
change experiment where we use the line broadening due to diffusion through
the internal field to characterize the pore space of our two monodisperse glass
bead samples. From there we move on to include a propagator dimension to
this exchange experiment which will allow us to separate the exchange spectra
according to the Z-displacement of the diffusing spins in the pore space. Finally
we describe a correlation experiment where we correlate transverse relaxation
with the inhomogeneous internal magnetic field.

This thesis is comprised of 9 chapters, including this introductory chapter.
Short summaries of the other chapters are as follows:

In chapter 2 we provide an overview of nuclear magnetic resonance in which
we give both a classical and quantum mechanical description of magnetic reso-
nance and review some basic tenets needed to fully understand this thesis. We
first start with introducing the nuclear spin and magnetic moment, and con-
tinue on to a quantum mechanical description, and then a classical description.
From there we describe how we detect a signal and review spin-spin and trans-
verse relaxation. Finally, we describe two major mathematical tools used in this
thesis, the Fourier transform and the inverse Laplace transform.

Chapter 3 includes descriptions of some basic fundamental pulse sequences
frequently used in NMR, and is split into two major parts: one-dimensional
pulse sequences and two-dimensional pulse sequences. The one-dimensional
section will cover the major 1D sequences such as the free induction decay,
inversion recovery, spin and stimulated echoes, the Carl-Purcell-Meiboom-Gill
method and the use of pulsed field gradients. The two-dimensional section will
introduce exchange and correlation experiments.

Porous media and the important aspects of porous media and NMR are sum-
marized in chapter 4. We first discuss the major properties of porous media such
as porosity, permeability, wettability, the surface to volume ratio, and the sur-
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face relaxivity. We discuss the properties of internal magnetic fields and internal
field gradients in the pore space and discuss how this effects relaxation in the
pore space. Finally we review restricted diffusion and how diffusion in porous
media varies from free diffusion.

Chapter 5 reviews the development of the Monte Carlo simulation used for
the subsequent chapters. We first discuss the creation of the bead pack and the
generation of the internal magnetic field and internal magnetic field gradient in
the pore space of this bead pack. The drawbacks to a random walk along the
xyz-axis are discussed and a random walk which steps along a varying angle
is introduced. We then go into the mathematics of reflecting a tracer point off a
circle and apply a similar method to reflection off a sphere. Finally we add relax-
ation to the simulation and describe how we generate two-dimensional spectra.

We present our results for a two-dimensional NMR experiment in chapter 6
in which we describe a method to observe water molecules diffusing through
the pore space of a monodisperse bead pack. We use two different samples of
monodisperse beads and run the experiment at two different field strengths of
400 MHz and 900 MHz. Finally we simulate the results of the larger diameter
bead pack.

We expand the experiment from the previous chapter and in chapter 7 we
include a propagator dimension so as to add a spatial dimension. The addition
of a spatial dimension allows us to obtain 2D exchange spectra that are defined
both by mixing time and displacement. In this chapter we present the results of
this new experiment using a single monodisperse bead pack and field strength
of 400 MHz. We then again use our program to simulate the results of this
experiment, including both the propagators and the 2D spectra.

In our final experimental chapter, chapter 8, we use a correlation experi-
ment to correlate the transverse relaxation time with the internal magnetic field.
For this experiment we again use the same monodisperse bead pack as in the
previous chapter, and also use a sandstone rock core. As for the previous two
chapters, we simulate the results of the experiment, but due to the limitations of
our software, we are unable to get an exact representation of experiment.

We conclude the thesis in chapter 9 with a short summary of the results ob-
tained and include possibilities for future continuation of the research.
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Chapter 2

Introduction to NMR

2.1 Introduction

Nuclear magnetic resonance was discovered by F. Bloch [1] and E.M. Purcell [2]
in 1946. For their discovery, they were jointly awarded the Nobel Prize for
physics in 1952. In the beginning, NMR was dominated by the traditional meth-
ods of spectroscopy, and utilized a slow field sweep to measure the sample’s
spectrum, known as a “continuous wave” spectrum. The use of short frequency
pulses to excite the sample were relegated mainly to relaxation measurements.

In the 1970s, the development of Fourier spectroscopy and two-dimensional
spectroscopy by Ernst earned him the Nobel Prize in chemistry in 1991. These
developments allowed spectra to be measured in a shorter period of time us-
ing short radio frequency pulses. The introduction of inexpensive computers in
the late-1960s made Fourier spectroscopy practical and today this type of spec-
troscopy has replaced nearly all continuous wave spectrometers. The addition
of a second dimension in NMR measurements allowed more information to be
obtained from samples.

NMR is particularly useful for researching porous media. As we are most
interested in the fluid within the pores of the medium, be it hydrocarbon, water,
or a mixture of both, NMR is a noninvasive method to study this fluid. Prop-
erties of the resultant NMR signal can give us information about the pore space
such as pore size, pore composition, and the structure of the sample. There

5



6 CHAPTER 2. INTRODUCTION TO NMR

are various ways of processing the signal including the Fourier transform and
Inverse Laplace transform. The development of new NMR methods to study
porous media is valuable to many industries including the oil industry, biology,
and chemical engineering.

We begin this thesis with an introduction describing how NMR works using
both a quantum mechanical description and a semi-classical description. There
are many sources for this information, however we have found Callaghan [3, 4],
Levitt [5], Keeler [6], and Becker [7] particularly useful.

2.2 Nuclear Spin and the Magnetic Moment

Atoms posses two types of angular momentum, orbital angular momentum
which arises from the motion of the particle and is dependent on the particle’s
history, and spin, I , which is unrelated to the motion of the particle or its history.
Quantum orbital angular momentum can be analogous to its classical counter-
part, but it’s important to note that unlike classical spin, quantum spin is not
caused by the rotation of the particle but is rather an intrinsic property of the
particle itself. Atomic nuclei have a characteristic spin which may have either
integer or half integer values ranging from −I to I . For example, the spin of a
hydrogen proton, 1H is 1

2
while the spin of a deuterium proton, 2H is 1. For this

thesis, we will focus mostly on spin-1
2

as our experiments involve only 1H .

A spin-1
2

particle will have I values of ±1
2
, which can also be written as ↑ for

the “spin up” state, 1
2

and ↓ for the “spin down” state, −1
2
. A single hydrogen

proton will have two spin states, either spin up or spin down, whereas a pair of
hydrogen protons can have a combination of four spin states: ↑↑, ↑↓, ↓↑, and ↓↓.
Each of these states will correspond to an energy level, where the ground state
is the state which possesses the lowest energy.

Any particle which possesses spin will also have a magnetic dipole moment,
µ, which is proportional to the particle’s spin by a factor γ, known as the gyro-
magnetic ratio. If this magnetic dipole moment is exposed to an external mag-
netic field, it will experience a torque, µ × B, and precess about the field. A
positive γ results in µ aligning in the same direction as I , whereas a negative γ
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results in µ aligning antiparallel to I . However, it is important to note that the
spin polarization itself does not align with the field but rather precesses about
the field at a frequency ω0, known as the Larmor frequency. The Larmor fre-
quency is given by

ω0 = γB0 (2.1)

where B0 is the external magnetic field at the site of the spin system. The direc-
tion of precession is given by the sign of γ where a negative gamma will result in
a counterclockwise precession and a positive gamma will result in a clockwise
precession as shown in figure 2.1.

B0 γ > 0 γ < 0
B0 γ > 0 γ < 0

Figure 2.1: Spin precession in an external magnetic field, B0. A positive gyromagnetic

ratio, γ causes the magnetic moment, µ to precess clockwise about B0. If

γ < 0, µ will precess counterclockwise.

Placing a proton (γ = 2.675× 108 rad s−1 T−1) in a laboratory magnet with a
magnetic field strength, B0 of 9.4T will result in a cyclic Larmor frequency (ω0

2π
)

of 400 MHz.

2.3 The Spin Hamiltonian and the Zeeman Interac-

tion

A spin-1
2

particle has two eigenstates, |m〉, given by |+ 1
2
〉 or |− 1

2
〉, which we write

as |α〉 and |β〉 respectively. A spin in state |α〉 is polarized along the +z-axis and
a spin in state |β〉 is polarized along the -z-axis.
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The state of a particle, |Ψ〉 is given by

|Ψ〉 =
∑
m

am|m〉 (2.2)

so a spin-1
2

particle will have the state

|Ψ〉 = aα|α〉+ aβ|β〉 (2.3)

where aα and aβ are the complex amplitudes of each eigenstate.
To learn about the dynamics of the spin system we use the Schrödinger equa-

tion

i~
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(0)〉 (2.4)

where Ĥ is the Hamiltonian operator, and Ψ(t) is the state of the particle at time
t, given by equation 2.2. Using this equation with knowledge of the Hamilto-
nian operator and the initial state Ψ(0) allows us to predict future states of the
particle. When B0 is orientated along the z-axis, the Hamiltonian has the form

Ĥ = −γ~B0Iz (2.5)

which is known as the Zeeman Hamiltonian.
Outside an external magnetic field, a spin is (2I + 1)-fold degenerate, mean-

ing that a value of I = 1
2

will have two substates of the same energy, and a value
of I = 1 will have three substates of the same energy. To break this degeneracy,
we can place the spin system inside a magnetic field. In an external magnetic
field, the spin-1

2
particle will split into two energy levels as seen in figure 2.2a,

and the spin-1 particle will split into 3 energy levels as seen in figure 2.2b. No
matter the value of I the energy level separation is given by the Zeeman Hamil-
tonian as −γ~B0. This is known as Zeeman splitting.

Suppose we know the state of a spin in an external field B0 at time t = 0 and
wish to know the state of a spin at some other time t. If Ĥ is constant with time,
we can find the state Ψ(t) from equation 2.4

|Ψ(t)〉 = Û(t)|Ψ(0)〉 (2.6)
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Figure 2.2: a). Zeeman splitting of an I = 1
2 spin. Upon exposure to an external

magnetic field, B0, the particle splits into two energy levels separated by

E = γ~B0. b). Zeeman splitting of an I = 1 particle which when ex-

posed to an external magnetic field splits into three energy levels separated

by E = γ~B0.

where Û(t) is the evolution operator given by

Û(t) = exp(−iĤt/~). (2.7)

Combining equations 2.5 and 2.7 we have an evolution operator U(t) =

exp(iγB0Izt) which is equivalent to a clockwise rotation about the z-axis at an
angle γB0t. From equation 2.1, this translates to a precession about the z-axis at
the Larmor frequency, ω0.

2.4 Populations and Coherences

So far we’ve described what happens to a single spin, however, as stated before,
in NMR we are concerned with what happens in a typical sample where we
have large ensemble of spins in a variety of quantum states |Ψ〉. We can break
this ensemble up into subensembles of equal quantum states |Ψ〉, where each
ensemble has a probability pΨ.We define the operator ρ̂ as the density matrix to
generalize the method of ensemble averaging. ρ̂ can be written mathematically
as
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ρ̂ =
∑

Ψ

pΨ|Ψ〉〈Ψ| (2.8)

The spin density operator can be thought of as the quantum mechanical equiva-
lent to the classical mechanical density in that it describes the number of points
in phase space. However it has nothing to do with the physical density of the
sample. We can use ρ̂ to describe the full state of the system rather than hav-
ing to define each subensembles’ quantum state. Thus if we want to make a
measurement on the system, we only need two spin operators, ρ̂ and the spin
operator for the measured observable.

The evolution of ρ̂ is given by the Liouville equation which is found by sim-
ply using the Schrödinger equation

i
δρ̂

δt
= [Ĥ, ρ̂] (2.9)

where [Ĥ, ρ̂] is the commutator given by [Ĥ, ρ̂] = Ĥρ̂− ρ̂Ĥ .
For an ensemble of spin-1/2, the matrix representation of ρ̂ is

ρ̂ =

(
ραα ραβ

ρβα ρββ

)
=

(
aαaα∗ aαaβ∗
aβaα∗ aβaβ∗

)
(2.10)

where the diagonal components (ραα and ρββ) are called the populations of states
|α〉 and |β〉, and the off-diagonal components (ραβ and ρβα) are called the coher-
ences between states |α〉 and |β〉. Since the state of each spin is normalized, the
sum of the two populations must be unity. The difference between the two pop-
ulations indicates the net longitudinal spin polarization, or magnetization in the
sample.

A state where the population in |α〉 is greater than that in state |β〉means that
the net magnetization is parallel to the external field, a state which has a greater
population in the |β〉 state means that the net magnetization is antiparallel to
the external field. If the population in the two states is equal, that means there
is no net magnetization the direction of the external field in the sample.

The coherences give us information about the net transverse polarization to
the external field, that is to say the net spin polarization perpendicular to the
external field. ραβ and ρβα are complex numbers, which means they have both
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an amplitude and a phase. Physically we can picture this as a vector in the
transverse, or xy-plane, where the phase indicates the direction of the vector,
while the amplitude determines the vector’s magnitude.

2.5 Thermal Equilibrium

If we want to take a measurement of Iz in the sample, we begin with the equa-
tion for the expectation value, found by calculating 〈m|Iz|m〉, so the expectation
value of Iz in a state |Ψ〉 given by equation 2.3 is

〈Ψ|Iz|Ψ〉 = α|aα|2 + β|aβ|2. (2.11)

To measure an ensemble of spins in a sample we expand this equation to
include all the subensembles

〈Ψ|Îz|Ψ〉 =
∑

Ψ

pΨ〈Ψ|Îz|Ψ〉. (2.12)

For a sample of spin-1
2

particles in an NMR machine, we know that the spins
will split into two eigenstates |α〉 and |β〉 as given by the Zeeman Hamiltonian,
equation 2.5. Using equations 2.2, 2.11, and 2.12 we have

〈Ψ|Îz|Ψ〉 =
1

2
(|aα|2 − |aβ|2). (2.13)

What this equation tells us is that the average Iz depends on the difference in
population of the two different energy levels. As first mentioned in section 2.4,
this difference in population gives us information about the polarization of the
sample.

If we allow the N spins in the system to reach thermal equilibrium, the pop-
ulation in each energy level is given by the Boltzmann distribution [8]:

Ni

N
=

exp−Ei/kBT∑
i exp−Ei/kBT

(2.14)

where Ni/N is the number of spins in state i, Ei is the energy of state i, kB =

1.381 × 10−13JK−1 is the Boltzmann constant, and T is the temperature mea-
sured in K. For a spin-1

2
system, we know that there will be two energy levels
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whose energy is given from the Zeeman splitting as −γ~B0. Using equation 2.1
and 2.14 we calculate the Bolzmann distribution for a spin-1

2
system:

|a± 1
2
|2 =

exp(±~ω0/2kBT )

exp(−~ω0/2kBT ) + exp(~ω0/2kBT )
. (2.15)

The difference between the two populations depends on energy level differ-
ence ~ω0 and the Boltzmann energy kBT . At room temperature the difference
between ~ω0 and kBT is on the order of five magnititudes. This small difference
allows us to simplify equation 2.15 to

|a± 1
2
|2 =

1

2
[1± ~ω0/2kBT ] . (2.16)

The Boltzmann equation tells us that the lower energy state is more pop-
ulated than the higher energy state. This can be seen in figure 2.3, where we
have an ensemble of spins in thermal equilibrium in an external magnetic field,
B0, which is aligned along the z-axis. From the Boltzmann equation, we have a
higher population of spins in the lower |α〉 state than in the |β〉 state. Which in
turn results in a net polarization along the z-axis known as the bulk magnetiza-
tion vector, M.

2.6 Classical Description

Now that we have shown how the bulk magnetization arises, we can move
away from the quantum mechanical description of NMR and instead use a clas-
sical description. The bulk magnetization as first introduced in section 2.5, will
experience a torque when exposed to a magnetic field, this torque will change
M by a rate given by

dM

dt
= γM×B (2.17)

Solving this equation for B = B0 gives us equation 2.1.
This bulk magnetization is roughly four orders of magnitude smaller than

the external magnetic field, making detection in the B0 direction impractical. To
detect the bulk magnetization, a transverse magnetic field, B1 is applied which
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β〉|

α〉|
B0

M
Figure 2.3: A spin ensemble in thermal equilibrium within a magnetic field. A net polar-

ization forms parallel to the direction of B0. This net polarization is known

as the bulk magnetization vector, M .

oscillates at the Larmor frequency, ω0 of the bulk magnetization. This transverse
magnetic field is given by the equation

B1(t) = 2B1 cosω0t̂i (2.18)

which is comprised of two counter rotating components

B1(t) = B1 cosω0t̂i−B1 sinω0tĵ

B1(t) = B1 cosω0t̂i+ B1 sinω0tĵ.
(2.19)

One of these two components in equation 2.19 rotates in synchrony with the
spins and is able to interact with and reorient them. The other, counter rotating
component, rotates opposite to the spins and its effect averages to zero.

We can find the evolution of M using equation 2.17 and the initial condition
M(0) = M0k̂ which gives
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Mx = M0 sinω1t sinω0t

My = M0 sinω1t cosω0t

Mz = M0 cosω1t

(2.20)

where ω1 = γB1. Equation 2.20 tells us that when we apply a transverse mag-
netic field B1 oscillating at ω0, the bulk magnetization vector will precess about
the longitudinal fieldB0 at a frequency ω0 and simultaneously precess about the
transverse field B1 at a frequency ω1. This transverse magnetic field is known
as a radiofrequency, or r.f. pulse. The duration of the r.f. pulse defines the flip
angle of the magnetization vector. This flip angle, β, is given by the equation

β = ω1tp (2.21)

where tp is the pulse duration. The longer the pulse duration, the larger the
flip angle. If we change our frame of reference from the laboratory frame to a
frame which rotates around B0 at the same frequency as B1, in other words, at
frequency ω1, the application of an r.f. pules simply rotates the magnetization
vector about the B1 vector by angle β as seen in figure 2.4.

z

x y

β

M

z

x y

β

M

B
1

Figure 2.4: The magnetization vector in the rotating frame following an r.f. pulse. The

magnetization vector will rotate about B1 by an angle β.
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2.7 Signal Detection

It is shown by equation 2.20 that the application of an r.f. pulse will cause the
bulk magnetization vector to precess around the longitudinal field B0. This can
also be expressed as an excitation of nuclear spins where they transition from
the ground state energy level to a higher energy level.

If we have a solenoidal or saddle shaped r.f. coil whose winding axis is
perpendicular to the B0 field, we can detect the precessing transverse magneti-
zation which will generate an electric current in the coil. This oscillating current
is known as the NMR signal or free induction decay (FID). The FID will be dis-
cussed further in section 3.2.1.

2.8 Relaxation and the Bloch Equations

As discussed in section 2.5, the sample’s thermal equilibrium state has a magne-
tization vector aligned with the longitudinal magnetic field,B0, along the z-axis.
An r.f. pulse will cause this magnetization vector to leave thermal equilibrium
and precess in the transverse plane. As the magnetization vector is in the trans-
verse plane it is exchanging energy with its surroundings which brings it back to
thermal equilibrium. This process is known as longitudinal or spin-lattice relax-
ation, where the spin’s surroundings is known as the “lattice”. This relaxation
has the form

dMz

dt
=
− (Mz −M0)

T1

(2.22)

where T1 is known as the spin-lattice or longitudinal relaxation time.
The nuclear spins in the sample also return to thermal equilibrium with

themselves. This is known as spin-spin, or transverse relaxation which corre-
sponds to the phase coherence between the spins. The transverse relaxation has
the form

dMx,y

dt
=
−Mx,y

T2

(2.23)

where T2 is known as the spin-spin or transverse relaxation time.
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Combining equations 2.17, 2.22, and 2.23 results in a set of equations in the
rotating frame known as the Bloch equations

dMx

dt
= γ (MyB0 +MzB1 sinωt)− Mx

T2

dMy

dt
= γ (MzB1 cosωt−MxB0)− My

T2

dMz

dt
= γ (−MxB1 sinωt−MyB1 cosωt)− (Mz −M0)

T1

.

(2.24)

IfM is restored to thermal equilibrium along the z-axis there will be no mag-
netization present in the transverse plane and thus T2 may be equal to or less
than T1, but can never be greater than T1. However, it is important to note that
the spins can also dephase due to inhomogeneities in B0. This gives rise to an
effective T2, referred to as T ∗2 and is related to T2 through the relationship

1

T ∗2
=

1

T2

+ γ∆B0 (2.25)

where ∆B0 is the spread in B0. The effect of T ∗2 on the NMR signal will be
discussed further in section 3.2.1.

2.9 Mathematical Tools

2.9.1 Fourier Transform

The NMR signal in the time domain may have features that are not easily recog-
nizable by the human eye, such as the existence of multiple frequencies. There
exists a mathematical tool known as the Fourier transform (FT) by which we
can convert the NMR signal from the time domain to the frequency domain.
Mathematically the FT of the function f(t) is given by

F (ω) =
1√
2π

∫ ∞
−∞

f(t) expiωt dt (2.26)

with the inverse FT giving f(t) as

f(t) =
1√
2π

∫ ∞
−∞

F (ω) exp−iωt dω. (2.27)
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The FT of a complex signal will result in a spectrum of both real and imag-
inary parts, as shown in figure 2.5b. The real signal will take the form of a
Lorentzian, shown by the blue solid line, and the imaginary signal will take the
form of an dispersion spectrum.
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Figure 2.5: a). A simple example NMR signal. b). The Fourier transform of the signal

shown in a). The real signal has a Lorentzian lineshape and is shown by the

blue solid line. The imaginary signal is shown by the red dashed line and

has the shape of an dispersion spectrum.

2.9.2 Inverse Laplace Transform

In cases where we seek to obtain characteristic decay times from NMR data
rather than frequencies, we use the inverse Laplace transform, which is given
by [9]

f(s) =
1

2πi

∫ +i∞

−i∞
exp(st)F (t) dt. (2.28)

where the Laplace transform is given by
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F (t) =

∫ ∞
0

exp(−st)f(s) ds. (2.29)

The inverse Laplace transform (equation 2.29) is part of a class of integrals
known as “Fredholm integrals of the first kind” [10] which have the form

F (t) =

∫ b

a

K(t, s)f(s) ds (2.30)

where K(t, s) is the “kernel” of the function. What we wish to do is find the
function f(s) given our experimental data F (t) and our kernel.

Multiexponential NMR data typically is in the form of a Fredholm integral
of the first kind [11, 12]

Mi(t) =

∫ b

a

(f(T2) exp(−ti/T2) + εi(t)) dT2, i = 1, 2, ..., N (2.31)

where f(T2) is the unknown amplitude of the spectral component at a relaxation
time T2. The limits a and b are chosen such that the logarithm of the expected
values of the relaxation are contained within these limits. K(t, s) is given by
exp(−ti/T2), which can be changed depending on the data being analyzed. For
example, for diffusion data, we use the kernel exp(−γ2Dδ2(∆ − δ/3)g2 which
will be explained in section 3.2.6. Finally, ε is the experimental noise of the
measurement.

What makes the inverse Laplace transform different from the Fourier trans-
form is that an increase in exp(st) can cause divergence in the solution f(s). This
divergence is exacerbated by noise in F (t) and by finite precision errors. An-
other way of looking at it, is if we add the function sin(ωs) to f(s), the Riemann-
Lebesque lemma [13, 14] states that for any kernel K(t, s),

lim
ω→∞

∫ b

a

K(t, s) sin(ωs)ds = 0. (2.32)

This means that even for small errors ε in F (t) and an arbitrarily large amplitude
A, there still exists an ω such that f(s) = A sin(ωs) is a solution to equation 2.30
within the error ε. This means we have an infinite solution set, which means we
have no unique solution, thus making this an ill-posed problem.
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In 1982, Provencher [15] developed a method to solve the inverse Laplace
transform using three main strategies: 1). Absolute prior knowledge of the sys-
tem, for example we know that the function f(s) is non-negative. 2). Statistical
prior knowledge of the system forces an optimal solution to be found in which
the mean-squared error is minimized. 3). The principle of parsimony says that
out of the solutions remaining after the first two strategies have been applied,
we must select the simplest one. In other words, we must select the solution
that has the least amount of unknown information to minimize the possibility
of artifacts. Provencher uses these three strategies in his ILT program known as
CONTIN [16].

To satisfy the principle of parsimony, Provencher makes use of Tikhonov
regularization [17]. Then we discretize the integral and treat the solution f(s) as
a vector f , the signal as a vector F, and the kernel as a matrix K, equation 2.30
becomes

F = Kf . (2.33)

Using a least squares fit for f , the residual will be ‖Kf −F‖2. Tikhonov regu-
larization adds a term Γf to the residual, so we want to minimize the expression

χ2(α) = ‖Kf − F‖2 + α2‖Γf‖2 (2.34)

where α2 is called the regularization parameter. Γ is chosen such that the prin-
ciple of parsimony is retained, i.e. we wish to have the minimum number of
peaks in our inversion, for example, we can set our smoothness parameter to
incorporate the second derivative of the solution

‖Γf‖2 =

∫ smax

smin

[f ′′(s)]2 ds (2.35)

where smin and smax are the bounds of our solution vector.
From equation 2.33 equation 2.34 becomes

χ2(α) =
N∑
i

M∑
j

(Fi −K(ti, sj)fj)
2 + α2

M∑
j

(2fj − fj+1 − fj−1)2. (2.36)

where the last term is the numerical form of the second derivative of f(s).
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We know our solution must be non-negative, so using that information , we
seek to minimize χ2 for a range of α such that the value of χ2 is just approaching
its “heel” as shown in figure 2.6a at around α−1 = 105. A value of α chosen
at a greater value of χ2 will result in an overly smoothed inversion as seen in
figure 2.6b, and an α after the heel can result in an under smoothed inversion
which is unstable as shown in figure 2.6d. An extremely narrow T2 distribution
is indicative of an undersmoothed inversion and can result in pearling effects,
which break the distribution up into multiple shark peaks. Figure 2.6c shows
the inversion generated by choosing an α near the heel of figure 2.6a.
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Figure 2.6: a). The regularization parameter, α−1 is chosen by selecting the value of α−1

which just minimizes χ2. b). An ILT for a single exponential with α−1 = 104.

c). Same as b). but with α−1 = 106. d). As for b). with α−1 = 108.



Chapter 3

Pulse Sequences

3.1 Introduction

Pulse sequences are the series of radio frequency pulses, delay times, and oc-
casionally magnetic field gradient pulses which allow us to measure various
characteristics of the spin system. In this section we introduce some of the fun-
damental pulse sequences of NMR. These pulse sequences range from the most
basic FID comprised of a single r.f. pulse and an acquisition time to a Cotts se-
quence which uses multiple r.f. pulses, gradient pulses, and delay times. The
knowledge of these fundamental pulse sequences will allow us to develop our
own pulse sequences later on.

3.2 One Dimensional NMR

All one dimensional pulse sequences are made up of two parts: preparation and
acquisition. In the preparation phase we bring the spin system to a desired state
and then detect the resultant signal during the acquisition phase.

3.2.1 Free Induction Decay

The most basic NMR pulse sequence is comprised of a single 90◦ pulse which
rotates the magnetization vector into the transverse plane (figure 3.1). The mag-

21
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netization vector after this r.f. pulse is given by the equation

M(t) = [M0 cosω0t̂i+M0 sinω0tĵ] exp(−t/T2) (3.1)

which shows that the magnetization after the pulse oscillates at the Larmor

90
o

tt

t

r.f.

imaginary
signal

real
signal

Figure 3.1: The FID pulse sequence. This produces a real signal and an imaginary signal

as shown by the blue and red lines respectively.

frequency, ω0, and decays at a rate T2. The x and y components of the magneti-
zation generate two signals in the receiver called Mx and My, which are known
as the real and imaginary part of the signal respectively. To present this data
in the frequency domain rather than the time domain, we can apply a Fourier
transform as introduced in section 2.9.1. In the frequency domain, the real data
will appear as a Lorentzian peakshape centered at the Larmor frequency, with
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a full width half maximum (FWHM) of 1/πT2. This peakshape is also known
as the absorption spectrum which is shown in figure 2.5b. The imaginary signal
in the frequency domain will produce a dispersion Lorentzian also shown in
figure 2.5b, which is slightly broader than the absorption spectrum.

It is important to note that an NMR sample in an external magnetic field, B0,
will experience magnetic field inhomogeneities, and the FID signal will decay
faster than it would just from the T2 relaxation alone. The resultant time con-
stant from these field inhomogeneities is known as T ∗2 to differentiate it from
the relaxation due to coherence loss, T2. This line broadening caused by T ∗2 is
known as inhomogeneous broadening, and this coherence loss due to the in-
homogeneous magnetic field is able to be “corrected” by refocusing, whereas
homogeneous broadening caused by coherence loss due to relaxation is irre-
versible as it is caused by the random motion of the spins.

3.2.2 Inversion Recovery

As defined in section 2.8, longitudinal relaxation, T1 is caused by the exchange
of energy of a precessing nuclear spin in an external magnetic field with its
surroundings. Solving equation 2.22, the magnetization’s return to equilibrium
is given by

Mz(t) = Mz(0) exp(−t/T1) +M0(1− exp(−t/T1)). (3.2)

A common way to measure T1 is via a pulse sequence known as inversion re-
covery [18] shown in figure 3.2a.

This pulse sequences begins with a single 180◦ pulse which brings the mag-
netization into the −z-axis. After a time τ , a 90◦ pulse brings the magnetization
into the transverse plane where it is detected. The signal amplitude during this
pulse sequence is given by the equation

M(t) = M0 [1− 2 exp (−τ/T1)] . (3.3)

This tells us that at short τ , the signal amplitude is negative, and as τ in-
creases, this amplitude passes through zero and becomes positive, eventually
reaching a plateau at M0 (see figure 3.2b).
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Figure 3.2: a). The inversion recovery sequence used to measure T1 relaxation. b). The

signal amplitude increases with τ and eventually reaches a plateau at M0.

The point where the signal becomes positive is equal to 0.6931T1.

3.2.3 Spin Echo

As mentioned in section 3.2.1 we stated that the FWHM of the absorption spec-
trum is given by 1/πT2. However, due to inhomogeneous broadening caused
by macroscopic field inhomogeneities in the sample, we cannot use the FWHM
of an FID spectrum to measure T2. A method to separate the inhomogeneous
broadening with the homogeneous relaxation based broadening was developed
by Hahn in 1950 [19].

As discussed in section 2.8, the spins in the sample will eventually lose phase
coherence due to interactions with their neighboring spins and the inhomoge-
neous magnetic field. Hahn discovered that this decoherence due to the mag-
netic field inhomogeneity is reversible upon application of a second r.f. pulse.

Referring to figure 3.3, if we apply a 180◦ pulse at a time τ after the initial 90◦
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pulse, a refocusing of the phase coherence will appear at a time 2τ after the 90◦

pulse.

90
o

180
o

τ 2τ

Figure 3.3: The spin echo pulse sequence. A spin echo will appear at a time 2τ after the

180◦ pulse.

3.2.4 CPMG

As stated above, the spin echo gives us a method to separate broadening caused
by T2 from broadening caused by macroscopic field inhomogeneities, however,
after the echo peak we will lose the phase coherence of the spins. Therefore, to
measure T2 using the pulse sequence shown in figure 3.3, we must repeat the
measurement, increasing τ each time. A more efficient way of measuring T2

was developed in 1954 by Carr and Purcell [20], in which they added a train
of 180◦ pulses after the initial 90◦ pulse. If the 180◦ pulses in the train are not
exact, small angle errors will occur which will cause an error in the result. To
compensate for this, Meiboom and Gill in 1958 [21] add a 90◦ phase shift to the
initial 90◦ pulse. This is known as a Carr-Purcell-Meiboom-Gill, or CPMG pulse
sequence and is shown in figure 3.4. The envelope of the spin echoes produced
by the CPMG will decay at a rate of T2.

3.2.5 Stimulated Echo

In materials where T2 is much shorter than T1, we can “store” the coherence over
a time interval, T , for later recall. This method could be used for an application
such as tracking how far spins have moved in a sample. The stimulated echo
pulse sequence is shown in figure 3.5.



26 CHAPTER 3. PULSE SEQUENCES
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Figure 3.4: The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence used for measuring

T2. The envelope produced by the spin echoes will decay at a rate of T2.

Note, the phase difference between the 90◦ and 180◦ pulses must be π/2 as

this will cancel out any accumulating phase errors if the 180◦ pulse is not

exact.

A 90◦ r.f. pulse brings the magnetization into the transverse plane where it
experiences dephasing. A second 90◦ rf pulse at time τ brings it into longitudinal
polarization along the z-axis. After a time T , a third 90◦ pulse brings it back to
the transverse plane where a stimulated echo appears at a time T + τ .

Essentially the big difference between a spin echo and a stimulated echo is
that for a stimulated echo a storage pulse is used to store the transverse magne-
tization along the z-axis. This is typically used in materials where the motion is
very slow and T2 is much shorter than T1. This means that the spin polarization
lasts longer than the spin coherence. It’s this long lasting spin polarization that
allows us to take advantage and store it along the z-axis.

90
o

90
o

90
o

τ T τ+T

Figure 3.5: The stimulated echo pulse sequence. The splitting of the 180◦ pulse into two

90◦ pulses allows us to store the magnetization along the z-axis between

time τ and T and eliminate effects of T2 relaxation. The stimulated echo will

appear at a time τ + T after the initial 90◦ pulse.
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3.2.6 PGSE

From equation 2.1, we know that the frequency a spin precesses at is dependent
upon the external magnetic field. We can apply a linearly varying magnetic
field which is much smaller than the polarizing field, B0. Applying this known
magnetic field gradient to the sample does two things: 1) because the applied
gradient is much smaller than the longitudinal field, B0, only those components
of the gradient parallel to B0 will affect the Larmor frequency. 2). components
of the gradient orthogonal to the z-axis will serve to slightly rotate the net field
direction. As the slight rotation has a negligible effect, we can write the Larmor
frequency under an applied magnetic field gradient as

ω(r) = γB0 + γg · r (3.4)

where g is the grad of the applied magnetic field gradient parallel to B0 and r is
the nuclear spin position.

Since the applied gradient will impart a Larmor frequency on the spins as a
function of position, we can use the gradient to encode the spatial distribution
of spins. Gradients can be thought to add phase to spins. The use of gradi-
ents in information storage with spin echoes was first described by Anderson
in 1955 [22], and further refined by McCall in 1963 [23], in which they suggest
the use of gradients to measure the self-diffusion coefficient. In 1965, Stejskal
and Tanner demonstrated the use of a pulsed gradient spin echo (PGSE) pulse
sequence (figure 3.6) as a way of measuring the self-diffusion coefficient.

The first 90◦ excitation pulse brings the spins into the transverse plane. The
applied gradient will change the Larmor frequency of the spins of the system
along the gradient. So spins at position z1 have a Larmor frequency of ω1and
spins at position z2 have a Larmor frequency ω2. These different frequencies will
cause the spins to lose coherence, another way to look at this is that the spins
gain a phase φ1. After the 180◦ pulse is applied, a second gradient is applied
which ”reverses” the dephasing the first gradient caused. In other words, after
the second gradient, if the spins have remained in the same position, they will
lose the phase φ1. However, if a spin has changed position or diffused during
time ∆, that spin will still have a phase shift after the second gradient. This
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90
o

180
o

g

rf
τ 2τ

Δ

g

δ

Figure 3.6: PGSE pulse sequence used to measure the self-diffusion coefficient.

phase will contribute to echo attenuation.
Given a volume of nuclear spins dV at position r, the local spin density will

be ρ(r), which means there are ρ(r)dV spins in the volume dV . We can write the
NMR signal as

dS(g, t) = ρ(r)dV exp[i(γB0 + γg · r)t]. (3.5)

Since the reference frequency is γB0, the signal obtained oscillates at g · r.
This means that we can neglect the B0 term in the above equation which gives
us our integrated signal amplitude:

S(t) =

∫∫∫
ρ(r) exp[iγg · rt] dr. (3.6)

Formation of an echo in the presence of a field gradient depends on the as-
sumption that the nuclear spins experience the same Larmor frequency during
the dephasing and rephasing parts of the sequence. This assumption requires
that the nuclei don’t have any translational motion along the gradient direction.
In liquids, translational motion is inevitable due to molecular self-diffusion.
This movement will lead to random fluctuations in Larmor frequency and thus
a distribution of residual phase shifts at the echo center.

Self-diffusion can be thought of as a “random walk” where motion is re-
solved in the direction of the field gradient. In a random walk, a molecule has
an equal probability of moving to the left or right for a given step. Given an
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r.m.s displacement of ξ for each step and a mean step time of τs, the distance
traveled after n jumps at a time t = nτs is given by

Z(n, τs) =
n∑
i=1

ξai (3.7)

where ai is a random number equal to ±1. Z is the z-axis displacement of the
molecules.

The self-diffusion constant in one dimension is defined as

D = ξ/2τs (3.8)

and

Z2(t) = 2Dt. (3.9)

We can use the attenuation of the spin echo from diffusive dephasing under
the influence of a pulsed gradient to measure molecular self-diffusion by using
a pulsed gradient spin echo (PGSE) technique (see Figure 3.6) first developed
by Stejskal and Tanner in 1965 [24]. The Stejskal-Tanner equation for the echo
attenuation is given by

S(g)/S(0) = E(g) = exp[−γ2g2δ2D(∆− δ/3)]. (3.10)

We can find the self-diffusion coefficient,D by plotting ln(E(g)) as a function
of γ2g2δ2(∆− δ/3) and fitting a straight line to the resulting trend. D will be the
slope of the fit line. Units are m2s−1.

Torrey [25] recognized that diffusion would affect the magnetization and
added a diffusion term to the Bloch equations (equation 2.24) to create the Bloch
equations with diffusion, also known as the Bloch-Torrey equations

dMx

dt
= γ (MyB0 +MzB1 sinωt)− Mx

T2

+∇ ·D∇Mx

dMy

dt
= γ (MzB1 cosωt−MxB0)− My

T2

+∇ ·D∇My

dMz

dt
= γ (−MxB1 sinωt−MyB1 cosωt)− (Mz −M0)

T1

+∇ ·D∇Mz.

(3.11)



30 CHAPTER 3. PULSE SEQUENCES

3.2.7 PGSTE

Using PGSE for measurement of the self-diffusion coefficient over a long storage
time, ∆, can be limited by phase coherence loss due to T2 relaxation. By splitting
the 180◦ pulse into two 90◦ pulses, we can convert the spin echo PGSE to a
stimulated echo which will allow us to eliminate the effects of T2 relaxation by
storing the magnetization along the z-axis. The spins will still be affected by
T1 relaxation, which is slower than transverse relaxation. This method was first
proposed by Tanner in 1970 [26], and is advantageous in situations where a
long ∆ is needed, such as a sample which is highly viscous, which will result in
a short T2 and low self-diffusion coefficient, or simply when a long ∆ time is of
interest. The technique is known as a pulsed gradient stimulated echo (PGSTE)
and is shown in figure 3.7.
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Figure 3.7: PGSTE pulse sequence, similar to figure 3.6, but uses a stimulated echo

rather than a spin echo r.f. sequence.

3.2.8 Bipolar Gradients

In samples where there are large internal magnetic field inhomogeneities present
the measurement of diffusion can become inaccurate due to a loss of signal from
a decrease in T2 relaxation, causing the T2 time to shorten. In 1970, Packer et
al [27] showed empirically that the addition of two gradient pulses in a CPMG
sequence could be used to measureD provided diffusion was slow. This method
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was expanded upon by Williams et al in 1978 [28] in which the gradients are
placed in specific places in the CPMG train which allows one to measureD inde-
pendently of background gradients. In 1980, Karlicek and Lowe [29] developed
the alternating PFG (APFG) technique which is comprised of 2 180◦ pulses be-
tween which are placed gradients of alternating signs. Cotts et al [30] expanded
upon this idea of bipolar gradients and combines them with a stimulated echo
sequence to produce the 13-interval sequence most commonly used to eliminate
effects of internal magnetic gradients. This sequence is shown in figure 3.8.
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Figure 3.8: The 13-interval Cotts sequence, used to reduce the interaction of magnetic

field inhomogeneities present in the sample and the pulsed field gradients

used in the pulse sequence.

The spin echo parts around the 180◦ r.f. pulse obviously refocuses the effects
of inhomogeneous local fields, but in addition, cross terms between the applied
gradient pulses and the inhomogeneous field are also eliminated. This latter
effect depends upon the gradient pulses being symmetrically placed within the
echo interval [30].

3.2.9 Propagators and q-space

By making the time, δ, of the applied gradients in figure 3.6 very small with
respect to ∆, we can neglect diffusion of the spins over δ and we can get in-
formation about general translational motion, not just diffusion but also infor-
mation about the velocity correlation function vz(0)vz(t) and the propagator, Ps
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described later. In this thesis, we do not make much use of the velocity correla-
tion function, so we will not expand upon it here.

The first pulsed gradient will give the spins a phase shift of γδg · r for a spin
located at position r at the time of the pulse. A change in position to r′ at the
time of the second gradient pulse will impart a net phase shift of γδg · (r′ − r)

causing an attenuation of the echo signal, E(g,∆), defined as the maximum
amplitude at the center of the echo. The total signal is a superposition of phases,
exp[iγδg · (r′ − r)] each weighted by the probability of a spin to move from r to
r′, ρ(r)Ps(r|r′, t). Therefore we have

E(g,∆) =

∫
ρ(r)

∫
Ps(r|r′,∆) exp[iγδg · (r′ − r)] dr′ dr. (3.12)

We define a reciprocal space q

q = γδg (3.13)

and define R = r′ − r, we can rewrite equation 3.12 as

E(q,∆) =

∫
P s(R,∆) exp(iq ·R) dR. (3.14)

From equation 3.14 we can see there is a Fourier relationship betweenE(q,∆)

and P s(R,∆). By acquiring the signal in q-space we are able to get information
about the propagator, P s(R,∆).

Ps(R,∆) is known as the propagator, or the probability a molecule has dif-
fused a distance R during time ∆. Ps(R,∆) can be written as [31]

Ps(R,∆) = (4πD∆)−3/2 exp(−R2/4D∆). (3.15)

Short times result in a narrow propagator, which will broaden with increasing
∆.

3.3 Two-Dimensional NMR

Two-dimensional NMR was first proposed by Jeener [32] at the Ampere Interna-
tional Summer School II. Unfortunately this was never published in a scientific



3.3. TWO-DIMENSIONAL NMR 33

journal, however, Ernst’s group review Jeener’s proposal in 1976 while giving
full credit to Jeener [33]. 2D NMR is also covered in detail by Ernst [34]. There
are times in which we cannot fully characterize a system by a one dimensional
spectrum alone. In these cases we can expand the measurement into two di-
mensions by adding a second domain. In general, a 2D NMR experiment can be
split up into four parts: preparation, evolution, mixing, and detection.

During the preparation time, we prepare the spin system by exciting it into
the transverse plane. This may involve something as simple as a single π/2

pulse or something more complex such as polarization transfer or enhancement
of polarization. We then allow the system to evolve during the evolution time,
t1 which comprises the first time domain in our 2D experiment. Following the
evolution time we have the mixing time. The mixing time is used to amplify
the information gained from the experiment. It can be just a time, τm or can
include pulses. Finally, the detection time, t2, is the time when the NMR signal
is acquired.

The application of a 2D Fourier transformation to the time domain data t1
and t2, will produce a 2D spectra with frequencies f1 and f2 with peaks at var-
ious frequencies. Peaks along the diagonal indicate areas where the signal did
not change frequency between times t1 and t2. An off-diagonal peak indicates a
change in frequency between the evolution and detection times. The appearance
of these off-diagonal peaks is dependent on the mixing time, without which
there would be only on-diagonal peaks.

3.3.1 Two-Dimensional Exchange Experiments

Two-dimensional exchange spectroscopy (EXSY) allows us to be able to track the
exchange of spins within a system [34, 35]. By frequency tagging spins during
the evolution time, t1, allowing them to exchange during the mixing time τm,
and measuring the exchange during the acquisition time, t2, we are able to track
the migration of molecules in the sample.

Relaxation exchange spectroscopy (REXY) was first presented by Lee in 1993 [36]
who developed a pulse sequence which detects exchange between two species
in a heterogeneous system. Diagonal peaks are formed by spins that have not
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undergone exchange during the mixing time, in other words, those spins whose
T2 remains the same before and after the mixing time. Off-diagonal peaks are
formed when spins undergo sufficient exchange to change the T2 rate. They
tested the pulse sequence on samples of urea and water and found that they do
see diagonal and off-diagonal peaks due to proton exchange.

In 2005, McDonald et al [37] extended Lee’s work to studying cement pastes.
In a preliminary experiment, they looked at the exchange of water between gel
and capillary pores in cement gels that are hydrated between 1 and 4 days. This
work was built upon and expanded in 2006 by Monteilhet et al [38] in which
they simulated T2 − T2 exchange spectra for mixing times and exchange rates.
They found that with a high exchange rate off-diagonal peaks do not appear
and instead there is one diagonal peak at a location given by the average T2. In-
creasing τm results in a decreasing intensity across all peaks due to T1 relaxation.
The simulations were also run with added levels of noise and a baseline error to
see how this would affect the Laplace inversion. They found that adding noise
will not affect the position of the peaks, but would affect the intensity of the off-
diagonal peaks. Adding a baseline error plus noise would change the position
of some of the peaks, particularly the peaks occurring at both short T 1

2 and short
T 2

2 times. Experiments were run on 4 day old cement paste samples at differ-
ent mixing times. By analyzing the locations and intensities of the off-diagonal
peaks, Monteilhet estimated the dominant pore sizes in the cement paste and
calculated the water diffusivity.

Washburn and Callaghan [39] in 2006 used REXSY to investigate pore-pore
exchange in Castlegate sandstone. To ensure that the off-diagonal peaks appear
due to pore to pore exchange they used quantitative analysis. They found that
growth of off-diagonal peaks and decay of diagonal peaks match nicely with
theory.

Most recently, Kuntz et al [40] proposed a simple exchange experiment to
study the frequency exchange in a water-filled glass bead sample and a polystyrene
sample. For their experiments they used two glass bead packs with a mean di-
ameter of 31 µm and standard deviations of 5.6 µm and 9.3 µm. The polystyrene
sample had a mean diameter of 9.1 µm and a standard deviation of 1.2 µm. They
found growth along the diagonal, however their spectra for the glass beads were
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slightly asymmetrical, most likely as a result of the high standard deviation of
their samples. The resultant spectra of the water for the polystyrene spheres
were highly asymmetrical, which Kuntz attributed to the heterogeneous pore
space due to the rough surface of the polystyrene found by SEM of the spheres.

3.3.2 Two-dimensional Correlation Experiments

Two-dimensional correlation spectroscopy (COSY) gives us a way to investi-
gate the structure of the spin system by utilizing coherence transfer [34]. The 2D
spectra obtained from COSY can give information about the coherence transfer
pathways of the sample. In chemistry and biology, COSY is often used to deter-
mine the structure of complex molecules such as proteins. Coherence transfer
is the exchange of coherence from one transformation to the other. J-couplings
cause precession of simple magnetization into higher order terms in the density
matrix (e.g. Ix → IyIz). A second r.f. pulse applied to the sample can be thought
of as applying a rotation operator, R, to the density matrix ρ of the sample. For
example, the rotation operator for a β rotation about the x-axis is given by

Rx(β) = exp(−iβIx). (3.16)

The application of an r.f. pulse to, for example, IyIz, results in the generation
of new coherences. This transfer of coherence results in cross peaks in a COSY
spectrum. The intensity of the peaks is dependent on the amount of coherence
transfer.

In porous media, we can use COSY to give us information about the sam-
ple’s structure. For example, we can use a diffusion diffusion correlation ex-
periment (DDCOSY) [41] to give us information about samples that are macro-
scopically isotropic but microscopically anisotropic such as lamellar phase liq-
uid crystals [42, 43, 44], hollow capsules [45], or plant tissues [46]. By applying
successive gradients that are either parallel or perpendicular with one another,
we obtain either diagonal or off-diagonal features. Applying parallel gradients
will result in measuring a distribution of molecular diffusion according to the
direction between the applied gradient and the local principal axes, D‖, while
applying orthogonal gradients result in a different sensitivity to the distribution.
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Diagonal peaks arise during an application of a collinear gradient because we
have repeated the same experiment twice. Upon an application of orthogonal
gradients, off-diagonal intensities grow due to the local anisotropies in the sys-
tem, with some spins having their local D‖ aligned with the first gradient pulse
pair but orthogonal to the second pair. Others will, by chance, have similar dif-
fusion for both pairs, and so contribute diagonal peaks. The pattern obtained
tells us about the nature of local anisotropy.

Diffusion relaxation correlation spectroscopy (DRCOSY) allows us to corre-
late T2 with corresponding diffusion coefficients which can enable us to distin-
guish between two fluids such as oil and water [47] or can allow us to determine
where water is located within a porous medium such as hollow capsules [45] or
plant structures [46]. For example, the T2 distributions of oil and water are often
similar, and their corresponding diffusion distributions are different since water
typically diffuses faster than oil. By correlatingD and T2, we are able to separate
the water or oil signal contribution in the T2 distribution, thus allowing one to
distinguish between the two fluids.

Relaxation relaxation correlation spectroscopy (RRCOSY) [48] correlates T1

with T2 which is another way to investigate the pore space in porous media.
This method has been used to study enzymes [49], muscle tissue [50], water
filled rocks [51], and cements [37, 38]. By correlating T1 with T2, one can find the
T1/T2 ratio, and probe the exchange of protons within the porous system.



Chapter 4

Porous Media

4.1 Introduction

Nearly all materials can be classified as porous in some way. Some examples of
porous media include wood, rocks, bones, and even foods such as cake. Many
industries are interested in the characterization of porous materials to gain more
information about them. For example, the oil industry is interested in the pore
size distribution and the fraction of the pore space containing oil or water in
an oil reservoir, medical researchers can use information about the pore size of
bones to diagnose osteoporosis. In this chapter we introduce some basic prop-
erties of porous materials and how the pore space affects NMR measurements.
Some helpful books and reviews on porous media include [52, 53, 54, 55].

4.2 Properties of Porous Media

Of course, the major characteristic of a porous medium is that it’s porous, in
other words, it’s comprised of two phases, a solid phase and a fluid (or vacuum)
phase, which are also known as the matrix and pore space, respectively. How-
ever, we can describe porous media in terms of its various properties, including
porosity, permeability, formation factor, tortuosity, wettiblity, and the pore size
distribution. In this section we give a brief review of what these properties are
in terms of the study of porous media.

37
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4.2.1 Porosity and Representative Elementary Volume

Porosity, φ, is simply defined as the ratio of empty space in the material to that
of the bulk volume. This value can vary from near zero to near unity depending
on the material being examined.

Porosity can be determined using a variety of methods such as the direct
method, where the bulk volume of material is measured and then pulverized
to destroy all pore space. The volume of pulverized material is then measured
via fluid displacement. Another method of measurement is the mercury injec-
tion method where the porous sample is placed in a vessel containing a known
volume of mercury under a known pressure. The bulk volume of the sample
is found by the displaced volume of mercury. To find the pore volume, the
pressure in the vessel is increased by a volumetric pump so that the mercury
saturates the pore space of the sample. Finally, it can also be measured via NMR
where the porosity is proportional to the signal intensity of the fluid in a satu-
rated sample.

Before continuing on to describe other porous media characteristics, it is im-
portant to define a representative elementary volume (REV). This is defined to
be smallest volume over which we can make a statistical analysis around a point
P . It must also be smaller than the entire sample, otherwise we will not have
a meaningful analysis of what happens at P . One way to define the REV is by
using the porosity of the sample. A good description of this can be found in
Bear’s book [54].

First we take a sample volume ∆Vi centered at a point P and calculate the
porosity of this volume as φi = (∆Vv)i)/∆Vi where (∆Vv)i is the volume of pore
space within ∆Vi. We repeat this for a series of ∆Vi where i = 1, 2, 3, ... and each
successive volume is smaller than the last, i.e. ∆V1 > ∆V2 > ∆V3 and so on.

Referring to figure 4.1, if we begin at large values of ∆Vi, and slowly reduce
the volume, the value of φi is fairly constant but may undergo slight changes if
the observed domain is inhomogeneous. As we keep decreasing ∆Vi we reach
a region where φi begins to exhibit large fluctuations due to the dimensions of
∆Vi reaching the size of a single pore. Finally, as ∆Vi → 0, φi will converge to
one if P is in the matrix, or zero if P is in a pore space.
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Figure 4.1: Finding the representative elementary volume. Adapted from [54].

If the pore space of a porous sample is distributed in an ordered or disor-
dered fashion such that pore morphologies are indistinguishable, the sample is
known as homogeneous and will approach φ with increasing ∆Vi. However, if
the pore space morphology varies in such a way that one is able to correlate pore
size with position over the space of a few pores, the medium is then known as
heterogeneous and will deviate slightly from φ depending on the pore geome-
try. Figure 4.2a shows an example of a homogeneous medium where the pore
sizes do not depend on location. Contrasting this, in figure 4.2b, is an example
of a heterogeneous medium where we have four clusters of smaller pores with
a small pore separation that are dependent on pore location.

4.2.2 Permeability

The permeability, Kp of a porous medium is a measure of how easily a fluid is
able to flow through the medium. This value is dependent on the pore structure
and the viscosity of the fluid and is given in units of darcy. A porous material
has a permeability of 1 darcy if a pressure difference of 1 atm will cause a flow
rate of 1 cm3/s of a fluid with a viscosity of 1 cP through a cube of side 1 cm. Kp
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a). b).

Figure 4.2: a). homogeneous pore structure. b). heterogeneous pore structure. Repro-

duced from [52].

is defined by Darcy’s Law [4]:

〈vz〉 = −Kp

η

dp

dz
(4.1)

where η is the fluid viscosity, and 〈vz〉 is the average flow rate (velocity) along
the pressure gradient, dp/dz. The average flow rate is calculated from the volu-
metric flow rate across an area A as Q̇ = 〈vz〉A.

While permeability can be measured using a steady state flow through a
sample, these measurements can have a high experimental error. Due to its
non-invasiveness, convenience and accuracy, NMR can be used as an alternative
method of permeability measurement [56].

4.2.3 Formation Factor and Tortuosity

The formation factor, F , is an electrical property of fluid-filled porous media
and is defined as [57]

F =
ρo
ρw

(4.2)

where ρo is the resistivity of a porous sample filled with an ionic fluid (typically a
NaCl solution with a concentration greater than 10 g/L), and ρw is the resistivity
of a bulk volume of the same fluid. The formation factor is always greater than
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unity and is also related to the porosity of a sample by [58]

F =
D0

φDeff

(4.3)

where D0 is the bulk diffusion coefficient, and Deff is the effective diffusion
which is further discussed in section 4.4 and corresponds to the measured value
after some particular diffusion time. For that reason, Deff is also referred to as
D(t). We can use the formation factor to find the tortuosity, α of the sample,
which is a measure of the deviation from the macroscopic flow in a sample, in
other words, a measure of flow direction changes. The tortuosity is given by

α = Fφ. (4.4)

For the particular case of a bead pack, α ' 1/
√
φ [58], a result that will be used

in chapter 7.

4.2.4 Wettability

Wettability is a measure of how easily a liquid adheres to a surface. A “wetting”
surface will cause a small contact angle, θ between the liquid and the surface,
whereas a “nonwetting” surface will cause a liquid to have a large contact an-
gle with the surface as shown in figure 4.3. The surface will be fully wetting
when θ = 0 and fully nonwetting when θ = π. This contact angle becomes diffi-
cult to measure in irregular surfaces such as those found in reservoir rocks and
therefore the wettability in these materials cannot be measured directly.

However, one way of measuring wettability in porous media was first pro-
posed by Brown and Fatt in 1956 [59], where the T1 of water wet and oil wet
sand packs was found to be shorter in water wet systems. If we assume that
the water molecules at the surface of the solid are in rapid exchange with those
molecules in the bulk fluid, the T1 is given by [60]

1

T1

=
1− f
T1b

+
f

T1s

(4.5)

where T1b is the relaxation time of the bulk fluid, T1s is the relaxation time of the
fluid at the surface, and f is the fraction of fluid molecules in contact with the
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Figure 4.3: The critical angle, θ, and its relationship with wettability. A non-wetting

surface will have a small θ as seen on the left, whereas a wetting surface will

have a large θ, as seen on the right.

surface. Typically, f � 1. Wettability is characterized by the relaxation rate due
to surface effects, 1/T1 − 1/T1b, a faster relaxation indicates a more water wet
surface or a more relaxing surface [61].

4.2.5 Surface to Volume Ratio and Surface Relaxivity

We know the average T1 in a pore is given by equation 4.5. If the thickness of f
is given by h, the pore surface area is S and the pore volume is V , we can rewrite
equation 4.5 as [62]

1

T1

=
1

T1b

+
Sh

V

(
1

T1s

− 1

T1b

)
(4.6)

which reduces to [63]
1

T1

=
1

T1b

+ ρ1
S

V
. (4.7)

where ρ1 is the surface relaxivity for spin-lattice relaxation. The surface relaxiv-
ity is a constant and represents the velocity at which the nuclear magnetization
leaves the fluid at the pore surface and typically has units in the range of a few
µm/s [64] and can be measured using PFG methods [65, 66]. In the fast diffu-
sion regime, in which molecules diffuse rapidly across local pores in the time t,
the combination of surface relaxation and restricted diffusion in the presence of
a field gradient cause the magnetization decay with respect to ρ during a PFG
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experiment as given by Lipsicas [67]

− ln
M(t)

M(0)
∼ t

T2B

+

(
27

20
ρ2t2γ2g2δ2

)1/3

. (4.8)

By plotting − lnM(t)/M(0) with respect to (gδ)2/3, ρ can be found from the
slope.

Note that in the slow diffusion regime, the T2 relaxation is dependent on
only the internal field gradient rather than both the internal field gradient and
surface relaxivity [25]

1

T ′2
=

1

T2

+ γ2g2t2
D

3
. (4.9)

If the value of ρ1 or ρ2 is known, the surface to volume ratio can be calculated
by the rate of T1 or T2 relaxation. Since the relaxation time of water in the pore
space is generally much shorter than that of bulk water we can neglect the bulk
first term in equation 4.7:

1

T1

= ρ1
S

V
. (4.10)

Similarly for T2

1

T2

= ρ2
S

V
. (4.11)

If ρ is known, equations 4.10 and 4.11 allow us to use the rate of T1 or T2 re-
laxation to find S/V . Assuming a spherical pore, the pore radius a, is given by
S/V = 3/a [68].

Another method of determining the surface to volume ratio involves using
the diffusion constant rather than the T1 or T2 relaxation. In 1992, Mitra et al [69]
developed an expression for the surface to volume ratio which is independent of
surface relaxivity by utilizing random walk simulations in porous media which
allow for surface relaxivity and assume a smooth pore surface. They derive the
following equation for short times, t→ 0

D(t)

D0

= 1− 4

3d
√
π

(
S

V

)
(D0t)

1/2 +O(D0t). (4.12)

where d is the spatial dimension. This relationship will be discussed further in
section 4.4.1.
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4.2.6 Pore Size Distribution

We can define the “pore size” in a sample as a pore with diameter d such that
d defines the largest sphere that contains the point of observation inside a pore
and is still entirely within the surrounding pore space. If we assign a pore di-
ameter to each pore in the sample we can define a pore size distribution as α(d),
where α is the fraction of total pore space volume with a pore diameter between
d and d+ δd where lim δd→ 0. Since the geometric shape of a pore is often hard
to define, for simplicity we can envision the pore system as a series of spheres
connected by capillary tubes.

Due to the variation in pore sizes in porous materials, there will also be a
distribution of relaxation times which from equation 4.11 the magnetization will
follow

M(t) =
∑
i

Mi exp

[
−ρ2

(
S

V

)
i

t

]
(4.13)

where each i represents a pore and where Mi is proportional to the volume of
fluid in each pore.

The pore size distribution can be obtained by taking an inverse Laplace
transform (section 2.9.2) of equation 4.13, and scaling with ρ2.

4.3 Internal Magnetic Fields

4.3.1 Internal Magnetic Field Calculations

As discussed in section 4.2, all porous media are made up of two phases: the
solid phase and the fluid, or empty phase. Each of these phases will have an
associated magnetic susceptibility, χ, and the difference in χ between these two
phases, δχ, will cause inhomogeneities in the internal magnetic field roughly on
the order of δω = γδχB0. This will cause line broadening in the one-dimensional
NMR spectrum. This line broadening was first investigated by Brown [70] in
1961, in which he studied the line broadening caused by ferromagnetic micron-
sized grains suspended in water with 5% carboxy-methylcellulose. In 1962 this
work was expanded upon by Drain [71] who looked at magnetic resonance line
broadening in powdered samples.
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Figure 4.4: Simulated Bi
z for a random pack of spheres. The spheres have a radius of

48.6 µm. Details on its calculation are given in section 5.3. Note frequency is

in dimensionless units.

We can calculate these internal magnetic fields by first considering a sample
porous medium whose matrix is of magnetic susceptibility χb and is filled with
a fluid of magnetic susceptibility χf , and then exposed to an external magenetic
field, B0. The difference in χ, |χb − χf | = δχ will cause pertubations in B0(r) at
a position r′ where the offset, ∆B(r′) is given by

∆B(r′) =
µ0

4π

∫
V

[
3
M(r) · (r′ − r)

|r′ − r|5
(r′ − r)− M(r)

|r′ − r|3

]
dr (4.14)

where M(r) is the local magnetization given by

M(r) =
1

µ0

χ(r)B0k̂ (4.15)

provided χ� 1.
An example of this is shown in figure 4.4.
In this thesis, we are mostly concerned with the internal magnetic field par-

allel to B0, which we label Bi
z.

The value of Bi
z is dependent on the pore shape and size and has been stud-

ied by various groups. Sen and Axelrod [72] examined the positional depen-
dence of Bi

z in an array of cylinders assuming a point dipole at the center of
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each cylinder and used a combination of a position dependent discrete sum in-
side a Lorentz cavity and an integral outside the cavity. They find that Bi

z varies
over the length scale of the pores. Cho [73] used MRI on an array of cylinders
and found similar results to Sen.

Audoly et al. [74] examine the structure of the Bi field in a dense random
pack of non-penetrating spheres. They treat each bead as a dipole and calculate
the total field in the bead pack as a superposition of the fields from each sphere.
Similarly to Sen et al, they find that that the variation of Bi

z occurs over the
length of a pore. Plotting a distribution of the Bi

z field shows a nearly symmet-
rical distribution showing an average Bi

z field of zero across the bead pack due
to the isotropy of the randomly packed beads. The maximum Bi

z occurs where
there are two beads close to one another that are also parallel to the applied ex-
ternal magnetic field, B0. Minimum Bi

z occurs where two beads are close to one
another perpendicular to B0.

Chen et al. [75] created a simulation of the internal magnetic fields in a fully
water saturated and partially water and air saturated Berea sandstone based on
the pore structure of a thin slice of Berea. They find results similar to Audoly [74]
that the internal field is proportional to B0 and ∆χ and that the Bi variation
occurs over the length of a pore. They also find that theBi distribution is similar
for both fully and partially saturated pores.

4.3.2 Relaxation Due to Diffusion in Internal Magnetic Fields

Molecular diffusion through the inhomogeneous field will cause irreversible de-
phasing (i.e. phase change from an echo) which will cause an increase in trans-
verse relaxation such that T2 � T1. The change in transverse relaxation is de-
pendent on the local frequency fluctuations, ∆ω0(t), which can be characterized
by defining a correlation time

τc =

∫ ∞
0

〈∆ω0(t+ τ)∆ω0(t)〉
〈∆ω2

0〉
dτ (4.16)

where 〈∆ω2
0〉 is the second moment of the linewidth as τ → ∞. We also use

τc to define “rapid fluctuations” and “slow fluctuations” as τ−1
c �

√
〈∆ω2

0〉
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Figure 4.5: S(t) and E(2τ) (E(2τ) = E(t)) in the fast (left) and intermediate (right)

fluctuation regimes. Adapted from [4].

and τ−1
c �

√
〈∆ω2

0〉 respectively. Rapid fluctuations will produce homoge-
neous broadening which is irreversible and decays at a relaxation time, T2, of
(〈ω2

0〉τc)−1. The slow fluctuations produce inhomogeneous broadening which is
reversible and,using a Gaussian assumption, decays at a relaxation time T ∗2 , of
exp(−1

2
〈∆ω2

0〉t2).
We can determine the behavior of the FID and spin echo decays by using the

Anderson-Weiss theory [76] and the fluctuating field correlation function

gω(τ) =
〈∆ω0(t+ τ)∆ω0(t)〉

〈∆ω2
0〉

. (4.17)

For random processes this correlation is typically given by

gω(τ) = exp(−|τ |/τc). (4.18)

This will give us an FID decay, S(t) and spin echo amplitude, E(2τ) of [3]

S(t) = exp(−〈∆ω2
0〉τ 2

c (exp(−t/τc)− 1 + t/τc))

E(2τ) = exp(−〈ω2
0〉τ 2

c (4 exp(−τ/τc)− exp(−2τ/τc) + 2τ/τc − 3))
(4.19)

Figure 4.5 shows equation 4.19 in both the slow and intermediate fluctuation
regimes. We define the relaxation times at these regimes as T ∗2 and T †2 , respec-
tively [77].

The internal magnetic field inhomogeneities can be used to characterize the
pore space of a sample. In 2000, Song et al [78] developed a method to obtain
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characteristic pore sizes and pore size distributions in porous materials such as
glass bead packs and sandstone and carbonate rocks using the Bi fields gener-
ated by susceptibility differences. They used a combination of the echo signal,
E, obtained from applying a stimulated echo and the initial amplitude of an FID
signal, R, where the phase contribution from the Bi field has been eliminated.
By combining these two signals, they found the signal decay produced from the
Bi field alone. By plotting the ratio of E/R to the mixing time used in the stim-
ulated pulse sequence, and applying an inverse Laplace transform, Song was
able to obtain a pore size distribution for the sample.

Another method to approximate pore size using internal fields is demon-
strated by Cho [79] in 2008. They use pulsed field gradient NMR to obtain
propagators for which the internal field is nullified, P , and for which the inter-
nal field is allowed to effect the stimulated echo, P ′. Experiments are performed
on two samples of randomly packed monodisperse glass beads. By plotting
the ratio of the two propagators, P/P ′ with Z-displacement, Cho found that a
minimum occurs at z ∼ 1.5r0 where r0 is the radius of a glass bead. These exper-
imental results are compared with a numerical simulation that treated the field
as a superposition of dipoles which are located at the center of each bead. They
found reasonable agreement with experiment.

4.3.3 Gradients Due to Internal Magnetic Fields

We can also characterize inhomogeneities in Bi
z by studying the magnitude of

the local magnetic field gradient, g = |∇Bi
z|. Like the internal field, g scales

with the linewidth, γδχB0, but the largest gradients, gmax are found at the pore
surface [80, 75], and are generally proportional to (∆χB0)3/2 [81]. The value of
gmax can also give us information about the smoothness of the pore walls, where
a large value of gmax indicates a rough pore surface [82].

Sun and Dunn [83] correlate internal field gradients with T2 relaxation in two
different sandstone samples of varying permeabilities. Using the assumption
that a short T2 time corresponds to a small pore size, they find that gradient
strengths are highest in smaller pores.
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4.4 Diffusion in the Pore Space

Diffusion is first discussed in section 3.2.6, where we first defined the diffusion
constantD as a function of the r.m.s. displacement and diffusion time. When we
place the bulk fluid in a restrictive medium, such as a pore space, the diffusion of
the molecules within this geometry is inhibited by the walls of the pore, which
means we cannot assign a single diffusion coefficient to this behavior, but we
must use a time-dependent value of diffusion, D(t), which can give us informa-
tion about the pore structure. Restricted diffusion was first studied by Woessner
in 1962 [84] where he studied the D(t) of water and silica suspensions, water in
sandstone, and benzine imbibed into rubber. A very good tutorial on usingD(t)

to study pore geometry is written by Sen [85]. Callaghan’s books [3, 4] are also
recommended resources for information about restricted diffusion.

We can define D(t) using the mean squared displacement given by Ein-
stein [86] as

D(t) =
〈(r(t)− r(0))2〉

6t
(4.20)

where r is the position of a molecule. If we take the limit of t→ 0, D(t) will ap-
proach the same value as that of bulk diffusion,D0 since with a smaller timestep,
the molecules are less likely to encounter a pore wall, therefore for short diffu-
sion times, ∆, D(t) will be similar to the bulk diffusion coefficient, D0. How
short ∆ needs to be will be dependent on the pore geometry. Given a charac-
teristic structural length, l, which is the mean distance between the pore walls,
unrestricted diffusion will occur at

√
D0∆/l � 1, and if

√
D0∆/l � 1, D(t) will

become asymptotic.

4.4.1 Diffusion in the Short Time Limit

From the short-time limit, we can get information about the surface to volume
ratio of the pore space. During short times,

√
Dt � l, the only molecules that

will come into contact with the wall are those that are close to the surface. The
thickness of this layer is on the order of the root mean squared diffusive dis-
tance which is

√
D0t. Given the total surface area exposed to these molecules, S,

the total volume of molecules within this is given by S
√
D0t. Therefore the vol-
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ume fraction over the entire pore space for these surface molecules is given by
S
√
D0t/V where V is the total pore volume. We can then assume that D(t)/D0

will be given by

D(t)

D0

= 1− S
√
D0t

V
. (4.21)

From this, Mitra et al [69, 87] derive D(t) for short times

D(t)

D0

= 1− 4

9
√
π

S

V

√
D0t−

S

12V

〈
1

R1

+
1

R2

〉
D0t+

1

6

ρS

V
D0t+O[(D0t)

3/2]. (4.22)

whereR1 andR2 are the principal radii of curvature over the pore surface, and ρ
is the surface relaxivity. For a flat reflecting wall, equation 4.22 simplifies to 4.12.

In figure 4.6 we show an example of the change in 〈(r(t) − r(0))2〉/6 with
respect to l and ∆. We use a simulated random pack of spheres and vary the
sphere radius, R, to increase or decrease l. Larger values of R will result in
smaller values of l. Free diffusion, D0, is given by the dashed line.

4.4.2 Diffusion in the Long Time Limit

As t→∞ in well-connected porous media,D(t) = D0/α, where α is the tortuos-
ity as described in section 4.2.3. In simple systems such as a random bead pack,
α =
√
φ [58]. In more complicated structures, from equation 4.3, D(t) = D0/Fφ.

We can also get information about the pore space from how the long-time
limit D0/α is reached. de Swiet and Sen [88] found that in general, for a porous
medium with non-penetrating walls, for long times

√
Dt � l, the diffusion co-

efficient will approach its long-time limit as

D(t)

D0

→ 1

α
+

β

D0t
− γ

(D0t)3/2
+ ... as t→∞ (4.23)

where α, β, and γ are dependent on the pore geometry and cannot be predicted
as part of a general theory.
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Figure 4.6: 〈(r(t)− r(0))2〉/6 in the short time limit with respect to l and ∆. Data is gen-

erated using a random walk through a matrix of randomly packed spheres.

To decrease l, the sphere radius, R is increased resulting in a greater devia-

tion of 〈(r(t)−r(0))2〉/6 from the free diffusion curve as given by the dashed

line or the solid blue line where R = 10−12 m.
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Figure 4.7: D(t)/D0 for 4 mm beads with a Xe gas pressure of 6.41 bar. The solid line

is the Padé approximation given by equation 4.24. The dashed line shows

the short-time diffusion behavior as given by
√
D0t [69, 87]. Adapted from

reference [91].

4.4.3 Diffusion in the Intermediate Time Limit

To interpolate between the short and long time diffusion regimes we make use
of the two-point Padé approximation [89, 90]

D(t)

D0

= 1−
(

1− 1

α

)
c
√
t+ (1− 1/α)t/θ

(1− 1/α) + c
√
t+ (1− 1/α)t/θ

(4.24)

where c = (4/9
√
π)(S/V )

√
D0 and θ has dimensions of time. In bead packs, θ

will be proportional to the pore separation, b. For general porous media, θ has
not been found to have a geometrical equivalent but is used as fitting parameter.
Mair et al [91] performed a series of experiments of xenon gas diffusion through
random packs of monodisperse glass beads. D(t)/D0 for a sample of diameter
4 mm under a Xe gas pressure of 6.41 bar is shown in figure 4.7

The change in mean squared displacement over time will also have an effect
on the shape of the propagator. Propagators are first introduced in section 3.2.9
and are the probability a molecule has diffused a distance R during time t. In
free diffusion, the propagator is Gaussian in shape, however, with restrictive
diffusion, the propagator’s shape may become time dependent depending on
the pore geometry. Tanner [92] calculated D(t) for a system comprised of a
series of permeable barriers and found that the propagator would cease to be
gaussian at t ∼ a2/D where a is the pore radius.
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4.4.4 Diffusive Diffraction

Given an ensemble of molecules in a single pore, as t→∞, the starting point of
molecules in the pore space will become unimportant as molecules will be found
everywhere in the pore no matter what their starting point. This will cause
P (r|r,∆) to reduce to the pore molecular density function, ρ(r′). The average
propagator will become

Ps(R,∞) =

∫
ρ(r + R)ρ(r) dr (4.25)

which is the autocorrelation function of ρ(r). The Wiener-Kintchine theorem [93],
which states that the Fourier transform of an autocorrelation function is the fre-
quency power spectrum, thus

E∞(q) = |S(q)|2. (4.26)

where q is the reciprocal space defined by equation 3.13. Cory and Garroway [94]
pointed out that this result is analogous to the echo amplitude being equivalent
to the diffraction pattern produced by a single slit in optics.

If we expand this single pore system to a multi-pore system with intercon-
nected pores that allow the molecules to diffuse to different pores, this single
slit experiment analogy will expand to a multiple slit experiment where the
elements of the “diffraction grating” are defined by probability of a molecule
diffusing to a different pore during ∆ [95]. A good example of this “diffraction
effect” is from Callaghan et al [95] where they perform a series of PGSE experi-
ments on a loose randomly packed glass bead matrix of pore spacing 15.8 µm at
∆ times ranging from 20 to 110 ms. They find a coherence peak at q ≈ (16µm)−1

for values of ∆ ≥ 70ms as shown in figure 4.8.

4.5 This Thesis

In this thesis we seek to characterize porous media by exploiting the inhomo-
geneous internal magnetic field generated by susceptibility differences between
the solid matrix and fluid filled pores as discussed in section 4.3.1 of this chapter.
We will use three different experiments to achieve this goal: the first is frequency
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Figure 4.8: Echo intensities E(q) for a glass bead matrix of pore spacing 15.8 mu m. A

coherence peak is located at q ≈ (16µm)−1 for values of ∆ ≥ 70ms.Adapted

from reference [95].
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exchange where use a two-dimensional exchange experiment to separate the
line broadening caused by the susceptibility difference in a monodisperse bead
pack and the line broadening caused by diffusion through the inhomogeneous
field. For our second experiment, we expand upon the first experiment and
add a third dimension in the form of a propagator. What the propagator di-
mension will allow us to do is separate exchange spectra by the Z-displacement
of the spins in the pore space of the system. Finally, we move away from ex-
change experiments and switch to a correlation experiment, where we correlate
the transverse relaxation decay, T2 with the inhomogeneous magnetic field, and
vary the echo spacing between pulses.

Before we describe our experiments, however, we first want to review the
development of a random-walk simulation specifically developed for these ex-
periments. We use this simulation not only to simulate the exchange and corre-
lation spectra, but to simulate the displacement propagators and visualize the
internal magnetic field and the internal gradient field.
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Chapter 5

Simulation

5.1 Introduction

An important part of this thesis concerns creating software which we can use to
simulate our multi-dimensional NMR experiments. Since all our experiments
will involve diffusion through an inhomogeneous magnetic field, we require
that our program calculate an internal magnetic field and also simulate diffu-
sion. To do these things, we first generate a dense random pack of spheres,
place a point dipole aligned along the z-direction at the center of each sphere
then calculate the internal magnetic field in the void space as a superposition of
all dipoles in the system. The magnetic field outside a charged sphere is exactly
the same as that outside a point dipole [97], and as we are only concerned with
the field in the pore space, using a superposition of point dipoles in the bead
pack will give us an accurate representation of the internal field. We look at
two different methods of simulating diffusion, both random walk methods; but
one method restricts the walk to discrete jumps along the xyz-axes, while the
other allows for a random step at any orientation. Later on we also add a basic
method to include T2 relaxation within the simulation.

57
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5.2 Creating the Bead Pack

To generate our random bead pack we use an algorithm written by Jackson [96]
in which we define a cylinder of diameter Dcyl and length Lcyl, whose bottom
face is centered at the origin and the cylinder is aligned along the z-axis. Then
spheres of radius Rsphere are randomly packed inside the cylinder by selecting
a random point at z = 0 and then random walking mostly in the +z direction
until the sphere is outside the rest of the bead pack. The sphere will then follow
a downwards random walk until it reaches a local potential energy minimum.
Essentially, the beads are dropped one by one into a cylinder. This will result in
a list of coordinates for the beadpack in units of sphere diameter.

For the beadpack used in this simulation, we use a cylinder of height 20Rsphere

and with a radius of 10Rsphere. This beadpack is shown in figure 5.1.

x
y

z

Figure 5.1: The actual beadpack used in the simulation. The cylinder has a radius of

10Rsphere and a height of 20Rsphere.

5.3 Simulating the Internal Magnetic Field

To simulate our internal magnetic field, Bi
z, we place a magnetic dipole at the

center of each sphere and align it with the z-axis. This method has been used
previously by Audoly [74]. The magnetic field at a distance R from a dipole
with magnetic moment m is given by equation 5.56 in Jackson [97]

Bi
z(r) =

µ0

4π

[
3n(n ·m)−m

|r|3

]
(5.1)
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where n is the unit vector in the direction of r. The magnetic field of the z-
component is given by

Bi
z(r)ẑ =

µ0

4π

m(3 cos2 θ − 1)

|r|3
=
µ0

4π
m

[
3z2

r5
− 1

r3

]
(5.2)

where m = |m| ∝ R3
sphere, r = |r|, and θ is the polar inclination angle from the

dipole to the point of measurement.

These points of measurement will be our tracer points. Initially, these points
were placed in the pore space along a 120 × 120 × 120 mesh cube with a side
of approximately 4 bead diameters which was centered inside the bead cylin-
der. The size of this cube was chosen so as to ensure no tracers would diffuse
outside the bead pack. This was a rather simplistic method, and has since been
upgraded so that tracers are placed randomly through the pore space of the
bead pack rather than along a set mesh cube. First we place a large number of
tracers, Ntracer, typically on the order of 2.5× 106, inside our cylindrical bound-
ary which is defined as having a radius 1 sphere diameter smaller than that of
the bead pack. The reason for this is to eliminate edge effects which will be
discussed in further detail later. Given a cylinder which is aligned along the z-
axis, the cylindrical coordinates, (ritrac, θ

i
trac, z

i
trac) for each of the tracer particles

i = 1, · · · , Ntracer are given by

ritrac = rmax ∗ randi

zitrac = zmin + randj ∗ zmax
θitrac = 2π ∗ randk

(5.3)

where rmax, zmin, and zmax are defined by the boundary conditions, and the
randi,j,k comprise 1×Ntracer vectors of uniformly distributed random numbers
between 0 and 1.

After we have placed our tracers inside our selected boundary conditions,
we check each one to make sure it is not inside a bead by comparing each tracer
position with the bead coordinates. If a tracer is within a bead radius of a bead
center coordinate, that tracer is dropped. We can find the simulated sphere pack
porosity, φpack by Npore/Ntracer where Npore is the number of tracers in the pore
space of the sphere pack.
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Now that we have our tracers randomly placed in the pore space, we can
use these as our points of measurement for equation 5.2. From the values of
Bi
z for each tracer, we can calculate the 1D spectrum of the field as shown in

figure 5.2. The resultant field map, Bi
z is shown in figure 5.3. In contrast to how

we calculate our 2D spectra (described at the end of the chapter), which uses
tracers that are randomly placed in the pore space of the bead pack, the magnetic
field (and later, gradient) maps are generated using tracers placed along a 1000
× 1000 mesh which is centered at y = 0 and aligned along the xz-plane. Only
tracers on the mesh which are located in the pore space are used.

−4 −3 −2 −1 0 1 2
frequency

 

 

Boundaries within the pack
Boundaries as the outside of the pack

Figure 5.2: Effects of boundary condition choice on the 1D spectrum. The solid blue line

shows the 1D spectrum if boundary conditions are chosen to be within a sin-

gle bead diameter of the outside of the cylindrical bead pack. The dashed

red line is the 1D spectrum if boundary conditions are selected to be the

outer edge of the cylindrical bead pack. Note that the frequency is dimen-

sionless.

In this calculation, χ < 0, therefore the strongest negative field is found at
the z-poles, while the strongest positive field is found around the equator of the
beads. This field distribution is due to the fact we have a dipole oriented along
the z-direction at the center of each sphere.

At this point it is important to discuss the importance of selecting bound-
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Figure 5.3: The internal magnetic field. A 1000 × 1000 mesh is centered at y = 0 and

aligned along the xz-plane. Tracers are placed on the mesh in the pore space

and the internal field at that point is calculated using equation 5.2. The

spheres in this figure have a radius of 48.6 µm.

ary conditions that incorporate enough of the sample to produce meaningful
results, while being small enough to avoid edge effects from the outside of the
bead pack. If we define the boundary conditions as the edges of the cylinder,
we see in the 1D spectrum a negative shoulder as shown by the dashed red line
in figure 5.2. Defining the boundary conditions as a bead diameter less than the
total cylindrical diameter and height, we find the 1D spectrum no longer has
the shoulder as shown in figure 5.2. For best results, we seek to maximize the
volume of bead pack simulated while not setting the boundary conditions so
large that we have significant edge effects in our simulated data, therefore we
set the boundary conditions to be within a bead diameter of the edge of the bead
pack. We find a slight negative skew and an average field value of -0.0146. This
is most likely due to edge effects from the size of the simulated bead pack. In an
infinite bead pack, we would expect the average field value to be zero.

In figure 5.4 we correlate the internal field with tracer position. At left is the
Bi
z-z correlation, and at right is the Bi

z-r correlation. The Bi
z-z correlation shows
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Figure 5.4: The correlations between the internal magnetic field and position. Left: The

internal magnetic field and z position correlation. Right: The internal mag-

netic field and r position correlation. Contour lines range from 200 to 1800

with intervals of 200. Red contours indicate higher intensity.
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that the negative field is sensitive to the vertical spacing of the beads, and at
low values of z, we see a slight oscillation at negative offsets. This oscillation
is likely due to a regularity in the spheres due to the way the sphere pack is
constructed with a bottom layer of spheres that rest along a flat bottom parallel
to the xy-plane at z = 0. We also note that at r = rmax, there is more radial
ordering, which may affect the resultant simulated field. Indeed, we see a slight
increase towards more positive magnetic field offsets at large values of r. The
use of an infinite pack would eliminate the chance of ordering along the edges
affecting the calculation of the internal magnetic field.

5.4 Simulating the Magnetic Field Gradient

The internal magnetic field gradient describes the change in internal mag-
netic field over a specific distance. Given information about position and the
corresponding magnitude of the internal magnetic field at that position, we can
calculate the values for the internal magnetic field gradient inside the pore space
of the bead pack.

The magnetic field gradient magnitude is given by the equation

|∇Bi
z| =

√(
∂Bi

z

∂x

)2

+

(
∂Bi

z

∂y

)2

+

(
∂Bi

z

∂z

)2

. (5.4)

Numerically simulating |∇Bi
z| requires an additional 6 points per tracer placed

along the x−, y−, and z−axis on either side of the tracer. Using these points
we can solve equation 5.4 as the average of Bi+

z and Bi−
z where Bi+

z and Bi−
z are

the value of the internal magnetic field at the points above and below the tracer
point along the x−, y−, and z− axis. These values are given by

|∇Bi+
z | =

√(
Bi+

z −Bi
z

x+−x

)2

+
(
Bi+

z −Bi
z

y+−y

)2

+
(
Bi+

z −Bi
z

z+−z

)2

|∇Bi−
z | =

√(
Bi

z−B
i−
z

x−x−

)2

+
(
Bi

z−B
i−
z

y−y−

)2

+
(
Bi

z−B
i−
z

z−zi

)2
(5.5)

where x+, y+, and z+ are the coordinate values of the points above the tracer
along the xyz-axes and x−, y−, and z− are the coordinate values of the points
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below the tracer along the xyz-axes. The resultant gradient map for points at a
distance of 0.1Rsphere from the tracer are shown as the left plot in figure 5.5.

The addition of 6 points for every tracer in the simulation will cause an in-
crease in calculation time. Also, determining what distance from the tracer is the
best choice for calculation introduces another variable to the simulation. A dis-
tance too close or too far from the tracer will give an unrealistic representation
of the gradient field. Rather than calculating the value of |∇Bi

z| numerically, we
can also calculate it analytically by combining equations 5.4 and 5.2. We obtain

|∇Bi
z| =

µ0

4π

√(
3xm

[
5z2

r7
− 1

r5

])2

+

(
3ym

[
5z2

r7
− 1

r5

])2

+

(
3zm

[
5z2

r7
− 3

r5

])2

(5.6)
Note that the magnitude of the internal magnetic field gradient is also given

by the notation |g|. The results for the analytically calculated gradient are shown
in the right plot in figure 5.5. Note that the results for the analytic and numeric
gradient are indistinguishable from one another.

Figure 5.5: Left: Internal field gradient map calculated numerically using equation 5.5.

The points x+, y+, etc are at a distance of 0.1Rsphere from each tracer. Right:

Internal field gradient map calculated analytically using equation 5.6. The

color scale represents gradient magnitude.
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5.5 Random Walk Along xyz-axes

The core of our simulation is the random walk procedure which we use to sim-
ulate the diffusion of our spins through the bead pack. We first start out with a
simple random walk in which we step a set length L along either the x−, y−, or
z− directions. In these early stages, L is set to be a fraction of the bead diameter.
The change of position for each tracer during each diffusion step is given by

∆x = +L or -L

∆y = +L or -L

∆z = +L or -L.

(5.7)

If a tracer encounters a sphere at any point during the random walk, the last
step is thrown out and the final step location will be the same as the initial step
location. The step length is calculated from 〈L〉 = 2Dt.

To calculate magnetic frequency exchange, this simple simulation is suffi-
cient. However, with the addition of a propagator dimension, the shortcomings
of this method soon become apparent.

As defined in section 3.2.9, the propagator is the probability a molecule has
diffused a distance R during time ∆. In our simulation, we are concerned with
the Z-displacement of the tracers in the system, so this method will produce two
problems:

1. Since we are only concerned with the Z-displacement, having a step that
is only along the z-axis results in a Z-displacement that is discretized to
±step length.

2. For lower number of steps, this discrete step length is glaringly obvious.

Figure 5.6 shows the propagators generated for an increasing number of dif-
fusion steps, j. For j = 1, which is a single diffusion step, there are two peaks
whose maxima correspond to the step length, L, used in the simulation. The
value at 0 displacement is non-zero which corresponds to those tracers which
have encountered a bead and thus have a final step position equal to the starting
step position, which for j = 1 will be equal to a zero Z-displacement.
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Figure 5.6: The propagators generated for a random walk which is stepped only along

the xyz axes. The variable j signifies the number of random walk steps. The

discretization of the random walk can be seen at lower j values. At j = 1

three values of displacement can be seen at±L and 0. The oscillatory nature

of the propagators lessens as the number of steps is increased.

As the value of j is increased, the oscillation in the propagators will lessen as
the descretization of the Z-displacements averages out as more diffusion steps
begin to increase the range of maximum Z-displacement. It is also possible
to reduce the oscillations for the desired diffusion times by reducing L so that
a higher number of j will be required for each ∆. However, oscillations will
still be present for small values of j, and decreasing L will result in a longer
computational time.

5.6 Random Walk with Random Angle

An alternative to stepping along the x-, y- and z- axes is to step along a random
direction, which has the requirement that any single step has an equal chance
of falling at any point on the sphere of radius Rsphere centered on x0, y0, and z0.
See the right of figure 5.7, which shows a sample start point and 100 examples
of possible steps that could be taken which originate from the start point. The
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green triangle is the start point centered at (0,0,0), and each magenta square
represents an end point corresponding to a sample step length of length 1. The
right of figure 5.7 shows the Z-displacement for 100,000 tracers with a sample
step length L of 1. Note that the Z-displacements span the entire range of ±L.
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Figure 5.7: Left: An example of 100 random steps a tracer could take starting from

point (0,0,0). The green triangle represents the start point, and the ma-

genta squares represent various end points. Right A histogram of the Z-

displacements of 100,000 tracers, each with a step length of 1. Note that the

Z-displacements span the entire range of ±L. The probability is approxi-

mated independent of Z, as expected.

Rather than defining the step length, L, as a fraction of a sphere, it is now
dependent on three variables: the diffusion coefficient, D, which is 2× 10−9, the
total diffusion time, ∆, and the total number of diffusion steps, N . L is given by
the equation

L =

√
6D

∆

N
, (5.8)

and the change in position for each tracer for each diffusion step is given by the
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equations

∆x = L cos(φ)
√

1− b2

∆y = L sin(φ)
√

1− b2

∆z = Lb

(5.9)

where φ is a random angle between 0 and 2π, corresponding to the azimuthal
angle in the xy-plane, and b is a random number between -1 and 1, and repre-
sents cos(θ) , where θ is the zenith angle.

Allowing the tracer step angle to vary along a sphere will remove the de-
scretization of the Z-displacement, since the Z-displacement for each step will
have the equal probability of falling anywhere between ±L as shown in the
right of figure 5.7, which shows the Z-displacement values for the left of fig-
ure 5.7. This means that the propagator at j = 1 will no longer have 3 values
but a range of values between ±L. Another major benefit with this procedure is
that diffusion time, ∆ is no longer calculated as a number based on 〈L〉, but is a
value hard coded in the simulation to be consistent with a diffusion coefficient
of 2×10−9 m2s−1 making it more comparable with experiment.

Another problem with the original simulation is in the treatment of the tracer
reflection off the spheres. Originally, when a tracer encountered a bead, that step
was reset to the starting point. It is possible that a tracer can stay at its starting
point for a number of steps if it repeatedly encounters a sphere in subsequent
steps. To eliminate this possibility as well as make a more realistic simulation
we change the procedure so that when a tracer encounters a sphere it will re-
alistically reflect off the sphere surface rather than reflect back to its original
position. This reflection needs to be accomplished with knowledge of only the
sphere center, the tracer start point, and tracer end point.

As a first step, we reflect off a circle, then expand the method learned here to
reflect off a sphere.

5.6.1 Reflection Off A Circle

We begin with a circle of radius Rcircle and a starting tracer point, S, located at
(xstart, ystart, zstart), and generate a test end point, B, located at (xtest, ytest, ztest)
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that is inside the circle centered at A (x0, y0, z0). The step angle θ, is a random
number between 0 and 2π, and is the angle of the vector

−→
SB, where we treat the

point S as the origin (see figure 5.8. The length of
−→
SB is given by the step length,

L. To obtain the tracer end point after reflection, E, located at (xend, yend, zend),
we need to find the point on the circle where the tracer will reflect off of.

This point will be C, located at (xC ,yC ,zC).

As L � Rcircle, we can treat this as a simple reflection problem where the
angle of incidence θi is equal to the angle of reflection θr about a normal line
drawn from A through C.

S = tracer starting point, (xstart, ystart, zstart)
A = circle center, (x0, y0, z0)
B = tracer end test point, (xtest, ytest, ztest)
C = reflection point, (xC ,yC ,zC)
E = tracer reflected end point, (xend, yend, zend)

A diagram of the circle is shown on the left side of figure 5.8. The labeling
of sides and angles formed by the triangle ABC is shown on the right side of
figure 5.8.

We know the location of points S, A, andB and want to find point C. We can
find the length, c, of side AB by the norm of vector

−→
AB. We also know that the

length, b, of side AC will be Rcircle no matter the location of A. We can find the
cosine of angle β between vector

−→
AB and vector

−→
SB by using the dot product:

cos β =

−→
SB ·

−→
AB

|
−→
SB||

−→
AB|

(5.10)

Now that we know cos(β), and the lengths b and c we can use the law of
cosines to find the length, a of side BC. The law of cosines is given by the
equation

b2 = a2 + c2 − 2ac cos(β) (5.11)

Rearranging the above equation gives

0 = a2 − 2a cos(β) + c2 − b2 (5.12)
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which is similar to a 2nd degree polynomial. We can use the quadratic equa-
tion to solve for a. In this case the correct value of a will be the positive one
since a length cannot be negative. From figure 5.8, we can see that a = |

−−→
BC|.

Therefore, we can find point C as

Cx = Bx + a cos(θ − π)

Cy = By + a sin(θ − π).
(5.13)

The normal from point C is just the extension of vector
−→
AC outside the

sphere. We can see from figure 5.8 that the angle between this extension through
pointC and vector

−→
SC is equal to angle γ. Therefore the reflection angle between

point S and E will be 2γ. Now that we have the length of a we can again use
the law of cosines to find the angle γ.

A

B C

S

E

bc

a

α

β
γ

2γ
θ
θ

θ

C
S

Figure 5.8: Diagram representing the circle centered at A and the tracer with start point

S, end point B, and point C located on the surface of the circle. At right are

the same points but with lengths a, b, and c and angles α, β, and γ labeled.

γ = cos−1

(
a2 + b2 − c2

2ab

)
. (5.14)

The reflection angle, in other words, the angle between
−→
CS and

−−→
CE, is always

2γ, however whether the reflection will occur clockwise (θE = (θ − π) − 2γ) or
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counter clockwise (θE = (θ − π) + 2γ) from the line
−→
CS, depends on where the

reflection point C is relative to the starting point, S. In general, we can simply
compare the polar angle, θC of point C to that of the polar angle, θS of point S.
If θC < θS , then the reflection would occur clockwise, if θC > θS , the reflection
would occur counterclockwise. However, there are two special cases where this
does not hold.

Case 1: Referring to figure 5.9a, the start point, S, shown by the green triangle,
occurs in the first quadrant of the circle which corresponds to a θS where
0 < θS < π/2, and the surface reflection point, C, shown by the red square,
occurs in the forth quadrant corresponding to a θC of 3π/2 < θC < 2π. In
this case, θC > θS , which will result in the reflection occurring clockwise.
A clockwise reflection will cause the final reflection point E to reflect into
the circle, as shown by the yellow square. In this case, a counter clockwise
reflection is required to obtain the correct final reflection point, shown by
the cyan square.

Case 2: The reverse of Case 1. Referring to figure 5.9b, we have a start point S,
shown by the green triangle in the forth quadrant corresponding to a θS
where 3π/2 < θS < 2π and the surface reflection point C, shown by the
red square occurs in the first quadrant with a θC where 0 < θC < π/2.
Here θC < θS , which will result in a clockwise reflection. A clockwise
reflection will result in the final reflection point falling inside the circle as
shown by the yellow square. In this case, we need a counterclockwise
reflection which will cause the tracer to reflect correctly and result in the
final reflection point shown by the cyan square.

We apply a test in the program which checks for these two cases and should
either situation arise, both θC and θS are offset by a value of 2π − Θ, where
Θ = θC for case 1, and Θ = θS for case 2. This offset will correct the inequality
comparison between θS and θC so that θE will be calculated properly as shown
by the cyan square in both figure 5.9a and b.

We have the reflection angle, and now we need the length between the re-
flection point and the end point. This will simply be equal to the length of side
a.
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Figure 5.9: a). An example of Case 1 as described above. The start point, shown by the

green triangle, falls in the first quadrant, resulting in 0 > θS > π/2. The

surface reflection point, shown by the red point results in 3π/2 < θC < 2π.

In this case θC > θS , which normally would result in a clockwise reflection

which produces a final reflection point inside the circle as shown by the

yellow square. However, our simulation will correct for this situation as

described above and will result in the correct final reflection point as shown

by the cyan square. b). As for a)., but showing the situation of Case 2.
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The results of this method are shown in figure 5.10a, where we place a circle
of radius Rcircle = 1 around the origin, then generate random start points and
step them in such a way that they will encounter the circle and thus bounce back.
The tracer start points are shown by the green triangles, the reflection point on
the surface of the circle is given by the red squares, and the final reflected tracer
point is given by the cyan square. We repeat this in figure 5.10b which is the
same as a, except the circle has been moved to be centered around (1,1) and has
a radius Rcircle = 0.5.
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Figure 5.10: Tracer reflection off a circle. a). A circle of radius Rcircle = 1 centered about

the origin. Random tracers are generated and stepped into the sphere and

bounced off. Tracer start points are given by the green triangle, the point

of reflection on the surface of the circle is given by the red square, and the

final reflected tracer point is given by the cyan square. b). As for a)., but

with a circle of radius Rcircle = 0.5 centered about (1,1).

5.6.2 Reflection off a Sphere

Now that we’re able to reflect off a circle, we can move on to reflection off a
sphere. The points A, B and S all fall on the same plane, which is essentially a
map of the circle above, which we will refer to as the “circle plane” from now
on. The final point E will also fall on this plane. The first step is to map these
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starting points onto this plane.
Since we have the points A, B and S in Cartesian coordinates, this is easy.

We define a point K that will always sit on the circle plane at x = Rsphere and
y = 0 or in polar coordinates, r = Rsphere and θ = 0◦. To find where this point
will fall on the sphere we find θplane, the angle of the line of intersection between
the circle plane and the xy-plane by

θplane = tan−1

(
(−→n ×−→m)ĵ
(−→n ×−→m )̂i

)
, (5.15)

where −→n is the normal vector to the circle plane given by −→n =
−→
BA×

−→
SB and −→m

is the normal vector to the xy-plane, and the subscripts î and ĵ represent the x
and y components, respectively. The location of pointK on the sphere will be, in
cylindrical components, r = Rsphere, θK = θplane, and z = 0. Now that we know
the location of point K on the sphere, we can find the values of θSK and θBK on
the circle plane by simply using the dot product as in equation 5.10. The values
of rSplane and rBplane are given by |

−→
SA| and |

−→
BA| , respectively. See figure 5.11.

We find point Cplane by using the law of cosines similarly to how we found
point C in the original circle in the previous section. After we find Cplane we
must map it back to the sphere. Referencing figure 5.12, we know the Cxplane
and Cyplane, and θCplane. rC will be Rsphere for both the sphere and circle.

Since we know the angle between the circle plane and the xy-plane, φA, given
by

φA = cos−1

( −→n · −→m
|−→n ||−→m|

)
, (5.16)

we can find the point Cz on the sphere by

Cz = Cyplane sin (φA) . (5.17)

Points Cx and Cy are a bit trickier. Refer to figure 5.12 for the variable names
in finding points Cx and Cy. First we find the radius of C as a projection onto
the xy-plane, and label it ρ, which is found by

ρ =
√
Rsphere − C2

z . (5.18)
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Figure 5.11: A figure of the circle plane showing some of the variables used to calculate

Cplane.
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Figure 5.12: A figure of some of the variables used in mapping the surface reflection

point C from the circle plane to the sphere.
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The y-value of C on the xy-plane relative to point K is given as yCK and the
x-value will be the same as Cxplane. yCK is given by

yCK =
√
C2
yplane − C2

z . (5.19)

The angle between pointK and C on the xy-plane is given by θTC and can be
found by taking the inverse sine of the ratio of yCK and ρ. To find θC we simply
add the angles θKC and θT together. The elevation angle to C, φC is given by the
inverse sine of Cz/Rsphere. To review, the spherical coordinates of the reflection
point C on the sphere are given by

RC = Rsphere

θC = sin−1

(
yCK
ρ

)
φC = sin−1

(
Cz

Rsphere

)
.

(5.20)

Now that we have the reflection point, C, we can find the reflection angle to
determine E similarly to how we found point C.

First we find Eplane using the same method by which we found the reflection
point E on the circle in section 5.6.1. Once we have the Cartesian coordinates
for Eplane, we can find the three dimensional coordinates for point E using the
same method by which we found the surface reflection point, C.

The results of this method are shown in figure 5.13. Figure 5.13a shows a
sphere centered about the point (1, 1, 1) with a radius of 0.5. The sphere’s center
is given by the black square. Our tracer start point is given by the green triangle,
the original end point inside the sphere is given by the blue circle, the reflection
point on the surface of the sphere is given by the red square, and the subsequent
reflected end point is given by the cyan square. Point K as described above is
given by the black triangle. The circle plane is also plotted in this figure. Note
all points fall on this circle plane. b). As for a). but without the circle plane
plotted to allow for a better visual of the tracer points. c). The circle plane itself.

To ensure that our points are occurring where they should we have set up a
series of error checks in the software. These tests include:

1. Ensuring all points are on the circle plane.
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2. The surface reflection point, C, is on the surface of the sphere.

3. The surface reflection point, C, is on the line SB.

4. The final reflection point, E is not inside the sphere.

5. The angle between
−→
CS and

−−→
CE is 2γ.

6. The distance between points C and E is equal to the distance between
points C and B.

Note that to eliminate the chance of a tracer reflecting into another sphere,
the sphere radii are reduced from their original radius of 50 µm which is used
to construct the bead pack, to a radius of 48.6 µm, ensuring the closest distance
between two sphere is 2L. While this will slightly increase the porosity of the
bead pack and slightly decrease the maximum gradient magnitude, it will not
have a large effect on the simulation results.

5.7 Adding Relaxation

The total nuclear magnetization of a sample is given by [98]

M(t) = M(0)
∞∑
n=0

In exp(−t/Tn). (5.21)

where n refers to the mode number, and a mode is a single exponential decay.
Physically, this equation represents the discretized magnetization decay due to
T2 relaxation.

For planar geometry

In = 4 sin2 ξn/ξn[2ξn + sin(2ξn)] (5.22)

and
Tn = a2/Dξ2

n. (5.23)

The values of ξn are given by the positive roots of the transcendental equation

ξn tan (ξn) =
ρa

D
, (5.24)
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Figure 5.13: a). A test sphere centered about point A shown by the black square at

(1,1,1). A start tracer shown by the green triangle has an end point inside

the sphere at point B, shown by the blue circle. Therefore, the tracer is

reflected off the sphere at reflection point C given by the red square and

ends up at the final reflection point, E, given by the cyan square. Point K

is shown by the black triangle. The circle plane is plotted with its relation

to the sphere to show that all points lie on the plane. b). As for a). but

without the circle plane so as to better show reflection off the sphere. c).

The circle plane itself.
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where a is the characteristic length of the system, D is the diffusion coefficient
and ρ is a measure of the relaxivity of the system and is always positive. We can
use this information to incorporate relaxation into our simulation.

First we need to find the probability that a tracer a distance L from the sphere
surface will “relax”, i.e. the tracer will be removed from the simulation system.
This probability has been calculated in the 3D case by Hunter [99].

A particle a distance z from the sphere surface with a step length Lwill make
a random step given by equations 5.8 and equation 5.9.

The probability that a tracer particle within a distance z of a wall will step
into the wall is given as a fraction of the surface area of the part of the sphere
intersecting the wall, Ah, versus the surface area of the entire sphere, At. Ah is

Ah =

∫ φ

0

∫ 2π

0

L2 sinφ dθdφ = 2πL2(1− cosφ). (5.25)

Given that cosφ = z/L and At = 4πL2, the probability that a tracer a distance z
from the wall will step into the wall is

Ph =
1

2
− z

2L
. (5.26)

Next we need to define the distribution, P of tracers within a distance L of the
wall, the distribution should be uniform so that

P =
1

L
. (5.27)

To determine the total number of particles within L of the wall to hit the wall,
Ptot, is

Ptot =

∫ L

0

PPh dz =

∫ L

0

(
1

2
− z

2L

)
1

L
dz =

1

4
(5.28)

We can define the measure of relaxivity in the system, ρ, as the rate of particles
hitting the wall multiplied by the probability of a particle dying, k. We know
that the rate of particles hitting the wall is given by PtotL/δt, where δt = ∆/N .
So we can define ρ as

ρ = k
1

4

L

δt
. (5.29)

Solving for k:

k =
4ρL

6D
. (5.30)
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We now have an expression for the probability of a particle dying after hit-
ting a sphere surface, however we still need to determine a value of ρ. In 1979,
Brownstein and Tarr [98] derived a method to estimate the value of ρa/D in the
slow diffusion regime as

T0

Ti
=
αρa

D
(5.31)

where a is the structural characteristic length, which we treat as the distance
between tracer barriers, a sphere diameter, α is a constant with a value of 0.41,
and Ti and To are the initial and long time decay times in a decay curve. To
find the values of Ti and To to use in our simulation, we fit a double exponential
decay curve to a CPMG decay curve for the 100 µm diameter bead pack we seek
to simulate and find values of 24.5 ms for Ti and 66.9 ms for To. The CPMG
decay and the double exponential fit is shown in figure 5.14. Using these values
in equation 5.31, we determine k to be 0.05.

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

12

14
x 10

4

time (s)

am
pl

itu
de

 (
a.

u.
)

Figure 5.14: A double exponential decay fit to an experimental CPMG experiment of a

100 µm monodisperse bead pack used to find ρ in equation 5.31. In this fit

we find Ti = 24.5 ms and To = 66.9 ms.

The value of the probability a tracer will relax when encountering a sphere,
k, only affects the average position of the T2 distribution, and not the width.
In figure 5.15, we have run a simulation with approximately 50,000 tracers and
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vary the value of k from 0.05 to 0.95. Rather than use an inverse Laplace trans-
form on the simulated signal decay, we make a histogram of the number of
tracers that have relaxed at specific times in the simulation. From this figure,
we can see that increasing the value of k will lead to a decrease in the average
T2 distribution and a decrease in the distribution’s amplitude. The amplitude
decrease is due to the rapid loss of tracers at short times as k increases. This
rapid loss of tracers at short times as k increases also causes the non-continuity
in the T2 distribution at short times. This non-continuity is due to the T2 times
used for data binning being logarithmically spaced from 1 × 10−4 to 1 × 100 in
100 bins for the histogram.
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Figure 5.15: T2 histograms varying the probability a tracer will relax when encountering

a sphere. The number of tracers used is approximately 50,000. k varies

from 0.05 to 0.95.

5.8 Creating Simulated 2D Spectra

Given our vectors for the initial internal magnetic field, the internal magnetic
field after diffusion, the internal magnetic field gradients, and the relaxation
times for each tracer, we can develop 2D spectra to simulate our experimen-
tal data. The simulated 2D spectra are simply two-dimensional histograms of
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the desired correlation or exchange spectrum. To simulate our experiments, we
have three types of 2D spectra, the first is frequency exchange (chapter 6), given
by a histogram of the initial internal magnetic field and and the internal mag-
netic field after diffusion, secondly |g|-Bi

z correlation, (chapter 8) which uses the
initial internal magnetic field and the internal magnetic field gradient, and fi-
nally the T2-Bi

z correlation (chapter 8) which is given by the relaxation times for
each tracer and the internal magnetic field after diffusion.

A special case is made for the propagator resolved frequency exchange data
(chapter 7). Rather than using solely the simulated initial and post-diffusion in-
ternal magnetic field vectors, we incorporate the Z-displacement of the tracers,
given by zf − zi where zi is the initial z position and zf is the z position after dif-
fusion. Using this Z-displacement information, we bin the internal field vectors
into a range of Z-displacements from 0 to 55 µm in 5 µm increments. We then
proceed to construct the 2D histograms corresponding to those tracers which
have diffused a specific Z-displacement.

The 2D spectral results of the simulation will be shown in subsequent exper-
imental chapters.

5.9 Conclusions

The development of the simulation used for all subsequent experimental chap-
ters in this thesis was described in this chapter. In it we first show how we gen-
erate a randomly packed dense bead matrix, and then show that a simple ran-
dom walk along the xyz-axis is insufficient to portray diffusion through the pore
space of this bead pack. This is made evident through the use of simulated prop-
agators, which show oscillatory properties when the diffusion method used is
along the xyz-axes. We incorporate a diffusion stepping method based on a ran-
dom walk with the inclusion of more reflection off a bead in cases where a tracer
has stepped across the surface of a sphere. Using this diffusion method, we are
able to simulate more realistic propagators. We also include a simple method
to add T2 relaxation by the use of a probability constant that a tracer encoun-
tering a sphere will cease to contribute to the simulation – therefore, the tracer
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will have “relaxed”. By using the information output from the initial tracer po-
sitions and the final tracer positions after the diffusion stepping, we are able to
generate multi-dimensional simulated spectra to compare to experiment.



Chapter 6

Frequency Exchange

6.1 Introduction

Now that we have introduced the basics of NMR and explained how our sim-
ulation works, we now move on to the experimental part of the thesis. The
following three chapters will cover the use of multiexponential NMR to try to
utilize the inhomogeneous internal magnetic field to characterize the pore space
of a sample.

One of the important questions in porous media physics concerns the rate
at which imbibed fluid molecules diffuse from pore to pore. In petrophysics,
this is particularly relevant as it bears on the question of rock permeability. A
number of NMR methods allow for an investigation of fluid diffusion. Pulsed
Gradient Spin Echo NMR [24] allows for a direct measurement of molecular
translational motion as do spin echo experiments in which one observes signal
attenuation due to diffusion in the locally inhomogeneous magnetic field [78].
In 2005 and 2006, a two-dimensional T2 exchange method was proposed [37, 39]
in which one labels molecules in a local pore by virtue of the pore size depen-
dent T2 value. Being an exchange method, the technique senses changes in T2

values as evidenced by the growth of off-diagonal intensity following a mix-
ing time during which molecules are allowed to diffuse. This method relies on
the use of two-dimensional Laplace inversion [100] and is one of a number of
2D separation, correlation and exchange methods [36, 37, 51, 101, 42, 83, 102]

85
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based on this type of analysis. However there are difficulties associated with
the inverse Laplace transform because of pearling effects [103]. This can lead to
some ambiguity when it comes to interpreting peak locations. Kuntz et al [40]
have proposed a new 2D exchange experiment which involves only the Fourier
transformation. This simple exchange method in principle allows one to inves-
tigate exchange between pores of imbibed fluid molecules, simply as a result of
changes in local Larmor frequencies.

It is well known that porous media in an applied magnetic field will expe-
rience internal magnetic field inhomogeneities due to susceptibility differences
between the matrix and the pore space. The magnetic field variations will in
turn give rise to an inhomogeneous broadening of the NMR lineshape. Such
local field inhomogeneity was investigated many years ago by Brown [70] us-
ing ferromagnetic grains suspended in water with 5% carboxy-methylcellulose,
and expanded upon by Drain [71] who examined the broadening of magnetic
resonance lines in powdered samples. More recently, the internal field has been
studied in more depth by Audoly et. al. [74] using a Finney pack of non-penetrating
spheres. They find that the variation of the internal magnetic field occurs over
the length scale of the pore size in the bead pack, and that its distribution is
approximately symmetrical due to the superposition of the field from multiple
spheres. Chen et. al. [75] simulate the internal magnetic field for both a fully and
partially water saturated Berea sandstone and find similar results to Audoly et.
al.

In this chapter, we consider water molecules distributed through the pore
space of a porous medium placed in an external magnetic field. As these molecules
diffuse, they will experience fluctuations in the local internal magnetic fields
arising from inhomogeneities caused by the magnetic susceptibility difference
of the matrix and water. For frequency-encoding times that are small compared
with the time to diffuse a significant distance in the pore geometry, the 1D spec-
trum is characteristic of the inhomogeneously broadened line associated with
the static distribution of molecule locations. Of course the characteristic time is
here associated with the frequency spread associated with the inhomogeneous
linewidth, τ−1

c ∼ δω. Hence, motional narrowing will occur when the character-
istic length, l, over which a representative variation of magnetic field is found,
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is such that l2δω/D � 1, where D is the self diffusion coefficient of the liquid
molecule. In the slow motion limit, l2δω/D � 1, frequency encoding of spins
gives a good sense of spatial location. By contrast in the fast motion case, spatial
localization is lost. This means that the experiment we propose works best for
large field inhomogeneity and/or large pores. However, as we shall show here,
even when the slow motion condition is relaxed, good estimates of pore-pore
exchange times can be made.

The work of Kuntz et al [40] involved a polydisperse glass bead pack in
which significant exchange occurred during the frequency encoding time. In
this thesis we extend that work to investigate frequency exchange in a monodis-
perse glass bead pack and using a B0 up to 21 T (900 MHz), thus ensuring the
criterion l2δω/D � 1.

6.2 Method

In an exchange experiment we seek to monitor the migration of molecules
to different field positions. This is done by using a pulse sequence similar to a
NOESY [35] with two independent frequency-encoding times, t1 and t2, which
lead to frequencies f1 and f2 which are separated by a mixing time. Ideally the
frequency encoding times will be short compared to the mixing period. Fig-
ure 6.1 shows the relevant sequence.

90
o

x
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o

x
t
2

m
τ

n

90
o

x

t
1

Figure 6.1: 2D Pulse sequence used for local field exchange experiment. The evolution

time, t1, is increased incrementally for each n. The mixing time, τm, is kept

constant for each repetition, but varies for each experiment.

An initial excitation 90◦ pulse rotates the magnetization to the transverse
plane. After an evolution time, t1, a second storage 90◦ pulse brings the mag-
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netization back to the z-axis. This inhibits T2 relaxation, although the magneti-
zation will still experience T1 relaxation. Following this storage pulse, we wait
a mixing time τm, and then apply the third 90◦ pulse which rotates the magne-
tization back to the transverse plane. We then acquire signal over a sampling
time labelled t2. Phase cycling is used to ensure that the only signal obtained is
from that transverse magnetization which derived from the initial 90◦ excitation
pulse.

This pulse sequence is repeated n times such that for each n, the evolution
time t1 is incrementally increased by an addition of a time equal to 1/band-
width. Because of the dephasing that occurs during t1, the signal occurs as an
echo in the t2 domain and with each increment in t1, that echo appears at later
times with decreasing intensity, a consequence of molecular diffusion, even at
the shortest exchange time, τm. Nonetheless, the echo is always captured in
the acquisition window and the attenuation effect leads to some broadening of
the spectrum in the f1 Fourier domain. However, once the exchange time is in-
creased, the broadening grows significantly as molecules migrate to positions in
which the local fields substantially differ. It is the growth of off-diagonal inten-
sity, as a function of mixing time τm, which we exploit in these measurements

The pulse sequence of figure 6.1 produces an n ×m data matrix where m is
given by the number of points acquired during t2. From here we apply a 2D
Fourier transform to obtain the 2D frequency spectra shown in the next section.
Data was processed using Matlab (The MathWorks, Natick, MA). Samples used
were two randomly packed monodisperse glass beads (Duke Scientific Prod-
ucts, Fremont, CA) with diameters of 100 microns and 10 microns. The 100
micron beads were soda lime glass and the 10 micron beads were borosilicate
glass.

6.3 Experimental

The experiments were performed using Bruker 400 MHz and 900 MHz spec-
trometers and the proton NMR signal from water imbibed in a randomly packed
matrix of monodisperse glass spheres. Specifically, two different samples of
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monodisperse glass beads were used. These had diameters of 100 microns and
10 microns and a standard deviation of 3.6 µm and 1.5 µm, respectively. Differ-
ent ranges of mixing times were used for each sample depending on bead size.
At 400 MHz, the bandwidth in both the evolution and detection periods is 20
kHz, with 256 data points being acquired. This leads to a total evolution time
less than 13 ms, thus ensuring the diffusive motion of water molecules during
the encoding times is much smaller than the bead size in the 100 micron sphere
diameter case, and comparable with the sphere size in the 10 micron case. Each
experiment took roughly 45 minutes to run with both n and m = 256.

For comparison, experiments were also performed on a Bruker 900 MHz
spectrometer at the University of Queensland in Australia. The higher mag-
netic field and greater inhomogeneous linewidth allowed us to increase the
bandwidth, resulting in a shorter evolution time during frequency encoding.
Temperature was held constant at 25◦C for all experiments.

6.4 Results and Discussion

6.4.1 100 micron Bead Pack

400 MHz

The 1D spectrum of the 100 micron bead pack at 400 MHz is shown in fig-
ure 6.2a. Full line width at half maximum (FWHM) is roughly 5.2 kHz. Taking
the characteristic length to be the bead diameter, d, d2δω/D ≈ 2 × 104 ensuring
that we are in the slow motion limit.

For the 100 micron bead pack, 8 mixing times ranging from 1 to 640 ms were
employed. We were unable to use longer mixing times due to decreased signal-
to-noise ratio. Figure 6.3 shows the 2D spectra obtained using 256 data points at
20 kHz acquisition and evolution bandwidths. However, to better compare with
simulation, we have converted from Hertz to ppm. The longest evolution time
is thus 12.8 ms, corresponding to a diffusion length of around 7 microns. Note
that each 2D spectrum has been normalized to constant total intensity so as to
remove T1 relaxation effects. We note that unlike [40], the 2D spectra obtained
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Figure 6.2: a). 1D 1H NMR spectra obtained from water in 100 micron bead pack at 400

MHz with a 20 kHz bandwidth. b). as for a). but for 900 MHz and 200 kHz

bandwidth.

here are very symmetric.

A clear growth of off-diagonal intensity is observed as the mixing time is
increased. This growth is evident as a broadening of the 2D spectrum in the
off-diagonal direction. To quantify this growth, we take an average of two in-
tensities on either side of the off-diagonal corresponding to a total frequency
offset equal to a fraction of the FWHM of the 1D spectrum and centered in the
diagonal spectrum. Since we normalize the spectra for a constant total intensity,
noise can effect the intensity of the center peak. To mitigate this, we take the first
row of the n×m raw data matrix and take the first and last 30 data points which
are comprised of only experimental noise. We take an average of these 60 points
to get an average noise value, and subtract this value from all data in the 256 ×
256 matrix. To ensure that when we select a point on the off-diagonal that isn’t
within a peak or trough, we take the surrounding 9 points and average them
together to get the intensity point. To find the error bars we take the standard
deviation and standard error of the first and last 9 points of the first row which
will have zero signal.

In figure 6.4 these intensities are plotted against mixing time. We have re-
peated these measurements of off-diagonal intensity versus mixing time for a
range of frequency offsets: 0.6, 0.8, 1.0 and 1.2 FWHM. In each case we fit the
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Figure 6.3: 2D 1H NMR exchange spectra obtained from water in 100 micron bead pack

at 400 MHz with a 20 kHz bandwidth. Frequency has been converted from

Hertz to ppm to better compare with simulation. The 8 examples show mix-

ing times ranging from 1 to 640 ms. Contours range from 4×10−5 to 4×10−4

in 2×10−5 intervals with blue contours indicating lower intensities and red

contours indicating higher intensities.
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data to a bi-exponential growth relation a0 + a1 exp(−t
τ1

) + a2 exp(−t
τ2

). While the
precision of the data justify a fit to more than one exponential, we acknowledge
that a bi-exponential model may be simplistic and that a continuum of charac-
teristic times may exist. Table 6.1 shows the values of the parameters obtained.
Note that we have large values of a0 due to diffusion during our encoding time
contributing to off-diagonal broadening. However, there is a remarkable con-
sistency of behaviors for whatever frequency offset is chosen for the analysis.
In particular, we find characteristic times of τ1 ≈ 6 - 11 ms and τ2 ≈ 250 - 900
ms, the short time component (a1) dominates at smaller offsets and the long
time constant component (a2) dominates at large offsets. Note that the τ1 and
τ2 time constants correspond roughly with 1D diffusive distances of 0.05 - 0.06
and 0.32 - 0.60 bead diameters respectively given a bulk diffusion constant of
D0 = 2× 10−9 m2s−1.
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Figure 6.4: Mean normalized intensities located at equidistant points of the center peak

along the off-diagonal of spectra shown in figure 6.3 with respect to mixing

time. The solid green line is a fit to a bi-exponential growth a0 +a1 exp(−tτ1 )+

a2 exp(−tτ2 ).
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0.6 FWHM 0.8 FWHM 1.0 FWHM 1.2 FWHM

a0 4.7×10−5 4.1×10−5 3.0×10−5 2.2×10−5

a1 -9.9×10−6 -8.0×10−6 -8.0×10−6 -4.6×10−6

a2 -2.8 ×10−6 -9.9 ×10−6 -9.0 ×10−6 -7.4 ×10−6

τ1 6.7 ms 11.0 ms 9.7 ms 9.8 ms
τ2 333 ms 870 ms 402 ms 278 ms

Table 6.1: Parameters obtained for figure 6.4 with the bi-exponential growth relation

a0 + a1 exp(−tτ1 ) + a2 exp(−tτ2 ).

900 MHz

As we stated in section 6.2, we want to minimize the diffusion that occurs during
the evolution time. By increasing the magnitude of the external magnetic field,
we can increase the internal magnetic field inhomogeneity and thus increase
the broadening of the spectrum. This broadening will allow us to increase the
spectral width which in turn will reduce the size of the t1 increments. For the
900 MHz experiments, evolution and acquisition bandwidth was increased by
an order of magnitude to 200 kHz while n was increased to 512 for a maximum
t1 of less than 3 ms, helping minimize the maximum diffusion distance during
the evolution time to around 3 microns. Mixing times cover a range from 1
to 640 ms. Figure 6.2b shows the 1D spectrum and figure 6.5 shows the 2D
spectra obtained. Even though the bandwidth is 200 kHz, these figures show
a bandwidth of 40 kHz to better display the spectra. The FWHM 1D spectrum
is approximately 11.8 kHz, which is roughly 9/4 broader than the 1D spectrum
at 400 MHz, yielding d2δω/D ≈ 5 × 104. All 2D spectra are normalized with
respect to total intensity.

One of the most noticeable qualities of the 900 MHz data is the improved
signal-to-noise ratio at longer mixing times. However, we do see a vertical
spread of very low intensities in the f1 dimension likely due to phase cycling
errors. As with the 400 MHz data, we see a growth of off-diagonal intensity as
mixing time is increased indicated by a line broadening in the off-diagonal di-
rection. We quantify this broadening by taking the mean intensity of two points
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Figure 6.5: 2D 1H NMR exchange spectra obtained from water in 100 micron bead pack

at 900 MHz with a 200 kHz bandwidth. The bandwidth shown is 40 kHz.

The 8 examples show mixing times ranging from 1 to 640 ms. Intensities

range from 1×10−4 to 2×10−3 with intervals of 1×10−4. Blue contour lines

indicate lower intensities, with red contour lines indicating higher intensi-

ties.
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equidistant from the center peak, again at a frequency offset equal to the in-
homogeneous linewidth. These mean intensities are shown in figure 6.6 along
with a fit to the biexponential growth model.

The biexponential growth observed here is similar to that obtained from the
400 MHz experiments. Mean intensities are greater for the 900 MHz results than
the 400 MHz results due to the higher signal to noise ratios at this magnetic field.
Characteristic bi-exponential growth times are again on the order of 7.85 ms and
177 ms. These correspond to water molecule rms diffusion distances of 0.06 and
0.27 bead diameters respectively.

6.5 Simulation

The simulation we use is described in depth in the previous chapter. We take
approximately 1.2 million tracers in the pore space of our sample cylinder for a
tracer density of about 7 tracers per 10 µm3. After the internal magnetic field is
calculated at the tracer starting positions, the tracers diffuse randomly through
the pore space for a maximum simulation time of 640 ms to replicate the exper-
iment. The final tracer positions are recorded at simulation times equivalent to
the experimental times. Using the final tracer positions, the final internal mag-
netic field for each mixing time is calculated and by use of both the final and
initial fields a two-dimensional simulated spectrum for each mixing time can be
created as shown in figure 6.7. Since the simulated frequency is dimensionless,
it is converted to ppm to better compare to experiment.

As in the experiment, the simulated data shows an increase in off-diagonal
intensity with increasing mixing time. The simulated off-diagonal intensity
growth is much more obvious compared to that in figure 6.3, due to no experi-
mental noise, no influence of T1 relaxation and no diffusion during the encoding
time as the simulation only diffuses tracers for a time equivalent to τm. As be-
fore, to quantify the off-diagonal intensity growth we take the mean intensity of
two points which are equidistant from the main center point. The same FWHMs
as the 400 MHz experiment using 100 µm beads are used and are shown in fig-
ure 6.8. The mean intensities at each mixing time are shown by the blue circles
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and are fit to a biexponential. The resultant fits are shown by the solid green
lines and the values for these fits are shown in table 6.2. Similar to experiment,
simulated characteristic times range from 9 - 15 ms and 100 - 250 ms which
correspond to 0.06 - 0.08 bead diameters and 0.21 - 0.32 bead diameters, respec-
tively.
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Figure 6.8: Mean normalized intensities located at equidistant points of the center peak

along the off-diagonal of spectra shown in figure 6.7 with respect to mixing

time. The solid green line is a fit to a bi-exponential growth a0 +a1 exp(−tτ1 )+

a2 exp(−tτ2 ).

6.5.1 10 micron Bead Pack

For porous media for which the slow limit, l2δω/D � 1, does not apply, fre-
quency exchange during the encoding periods t1 and t2 will lead to severe broad-
ening of the 2D spectra even at the shortest mixing times employed. Nonethe-
less, the effect of an increasing mixing time may be sufficient to slightly enhance
this broadening in the case where extreme motional averaging does not apply.
For that reason we have attempted to carry out our 2D exchange experiments
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0.6 FWHM 0.8 FWHM 1.0 FWHM 1.2 FWHM

a0 4.5×10−3 3.6×10−3 2.3×10−3 1.8×10−3

a1 -4.4e-5×10−3 -2.2×10−3 -8.2×10−4 -2.1×10−4

a2 -2.0 ×10−4 -1.6 ×10−3 -1.9 ×10−3 -1.6 ×10−3

τ1 8.8 ms 13.0 ms 14.7 ms 14.5 ms
τ2 233 ms 100 ms 106 ms 103 ms

Table 6.2: Parameters obtained for figure 6.8 with the bi-exponential growth relation

a0 + a1 exp(−tτ1 ) + a2 exp(−tτ2 ).

for beads of 10 micron diameter. The diffusion distances at longest evolution
time, 7 microns and 3 microns, for 400 and 900 MHz, correspond to a significant
fraction of one bead diameter.

400 MHz

The 1D spectrum for the 10 micron bead pack at 400 MHz gives a half height
width of 2.9 kHz, smaller than that seen for the 100 micron beads presum-
ably due to a different diamagnetic susceptibility for this particular glass. Here
d2δω/D ≈ 102.

For the 10 micron bead pack, 12 mixing times are employed ranging from
1 to 40 ms. The smaller range of mixing times is needed because it takes less
time for a water molecule to diffuse through the smaller pore space in the 10
micron bead pack compared to the larger pore space of the 100 micron bead
pack. The resultant spectra can be seen in figure 6.9. These 2D spectra have also
been normalized to constant total intensity in order to remove T2 relaxation ef-
fects. Because of the rapid motional averaging occurring during the frequency
encoding times, the 2D spectra are very broad, even at the shortest mixing time.
Consequently, the growth of off-diagonal spectral characteristics is not as notice-
able as found for the 100 micron beads. The shortest mixing time lacks a sharply
diagonal spectrum. Even during the 1 ms mixing time, significant diffusion has
taken place compared to that for the 100 µm sample. Nonetheless, some addi-
tional broadening is visible over mixing times from 1 to 20 ms, just enough for
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Figure 6.9: 2D 1H NMR exchange spectra obtained from water in 10 micron bead pack

at 400 MHz with a bandwidth of 20kHz. The 12 examples show mixing

times ranging from 1 to 40 ms. Intensities range from 2×10−5 to 1.6×10−4

with intervals of 1.75×10−5. Blue contour lines indicate lower intensities,

with red contour lines indicating higher intensities.
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us to be able to observe pore exchange effects. This residual visibility results
from the fact that it takes about 25 ms for a water molecule to diffuse one bead
diameter. The line broadening can again be quantified by taking the average
of two intensities at equidistant points from the center peak and plotting them
against mixing time, shown in figure 6.10. Again we see a growth, albeit over a
shorter time scale than that of the 100 micron bead pack.
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Figure 6.10: Mean normalized intensities located at equidistant points of the center

peak along the off-diagonal of 400 MHz spectra shown in figure 6.9 with

respect to mixing time. The solid green line is a fit of biexponential growth.

900 MHz

The same 12 mixing times were used for the 10 micron sample at 900 MHz at
a bandwidth of 200 kHz and an n of 512. The maximum t1 for the 900 MHz
experiments is less than 3 ms, comparable to a 3 to 4 micron diffusion distance.
The 1D spectrum has a FWHM of roughly 6.2 kHz. The 2D spectra are shown
in figure 6.11, and again have a vertical skew along the f1 direction likely due
to phase cycling errors. All spectra have have been plotted with a display band-
width of 40 kHz rather than their full 200 kHz to better observe the broadening
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Figure 6.11: 2D 1H NMR exchange spectra obtained from water in 10 micron bead pack

at 900 MHz with a bandwidth of 200kHz. Bandwidth shown in the figure

is 40 kHz. The 12 examples show mixing times ranging from 1 to 40 ms.

Intensities range from 1×10−4 to 1.1×10−3 with intervals of 9×10−5. Blue
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with respect to increasing mixing time. All 2D spectra have been normalized
with respect to integrated intensity to compensate for T1 relaxation over the mix-
ing time. Most noticeable in comparing the 400 MHz and 900 MHz spectra is
the decrease in noise due to the higher magnetic field. Off-diagonal broadening
indicates an increase in off-diagonal intensity. Quantification of this intensity
with respect to mixing time is shown in figure 6.12.
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Figure 6.12: Mean normalized intensities located at equidistant points of the center

peak along the off-diagonal of 900 MHz spectra shown in figure 6.11 with

respect to mixing time. The solid green line is a fit of biexponential growth.

The growth of off-diagonal for the 10 micron beads at 900 MHz shows a
trend similar to that found for 10 microns at 400 MHz. In both cases charac-
teristic times of 1 - 2 ms and 8 - 18 ms, corresponding to 0.02 and .05 - .08
bead diameters. However given the large amount of exchange which occurs
during the encoding periods, we are cautious in attributing significance to these
parameters.
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6.6 Conclusion

In this chapter we introduced the first of our experiments, a simple 2D exchange
experiment which allowed us to separate the line broadening due to the suscep-
tibility differences between that of the line broadening due to diffusion through
an inhomogeneous field. We found that as mixing time is increased, the off-
diagonal broadening due to diffusion through the inhomogeneous field is in-
creased. To quantify this off-diagonal broadening we take the mean intensity
of two points on either side of the off-diagonal maximum. The two points are
chosen as a fraction of the FWHM of the 1D spectrum which are the best com-
promise between noise and sensitivity to exchange and are plotted with respect
to mixing time. We then fit a biexponential to these intensities to obtain char-
acteristic times from which we can deduce a mean displacement to give some
insight into the pore size.

In the next chapter, to better obtain information about the pore size, we add
a spatial dimension in the form of a propagator which will give Z-displacement
information about the spins in the pore space directly from experiment rather
than from a calculation of characteristic time as we have done in this chapter.
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Chapter 7

Propagator Resolved Frequency
Exchange

7.1 Introduction

In this chapter we move on to an extension of the inhomogeneous local field ex-
change experiment from the previous chapter and add a third displacement di-
mension. In the earlier 2D version of the experiment, the off-diagonal intensity
arises from all molecules which have changed their local field value, irrespec-
tive of the distance travelled. By including the propagator dimension we are
now able to distinguish molecules which have diffused different distances along
the field gradient axis. Hence, rather than measuring an off-diagonal intensity
which is a function of mixing time alone, we add a displacement dimension,
allowing a spatio-temporal analysis of the diffusion between sites of differing
field. Of course the connection between space and time, in this context, is pro-
vided by the diffusion rate, and the characteristic length scale over which local
fields change significantly, as measured by the spread of Larmor frequencies
in the NMR spectrum. The ability to access the spatial information therefore
provides a more robust check on any model used to interpret our experimental
results. It is this use of a well-defined spatial dimension which differentiates
our method from earlier local field exchange methods such as DDIF or the 2D
method described in chapter 6.

105
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The new data we acquire consist of two-dimensional spectra where axes are
labelled by the frequency spread corresponding to the inhomogeneous field. We
then focus our attention to the off-diagonal intensity of these spectra at some
particular frequency offset. This is done to establish the degree of exchange that
is occurring during the mixing period. We then measure the intensity as a func-
tion of molecular displacement, Z, and mixing time, τm, using the label I(Z, τm).
We adopt two approaches in the interpretation of our data. First, we model
the internal fields in a random bead pack and simulate the restricted diffusive
motion of molecules within that pack, thus gaining estimates of I(Z, τm). Sec-
ond, we adopt a simple analytic model for the migration of NMR signal away
from the spectral diagonal by assuming an isotropic Gaussian propagator with
effective diffusion coefficient Deff , and a measure of the degree of randomiz-
ing of the NMR frequency within the inhomogeneous field spectrum which de-
pends on total displacementR as 1−exp(−R2/2l2c) where lc is some characteristic
length scale.

While our new method has strong links with prior work, such as DDIF and
T2-exchange methods [78, 39, 104, 105], it is distinct in a number of regards.
First it is “many-dimensional”, having both evolution and acquisition frequency
domains, f1 and f2, a mixing time dimension, and a displacement dimension.
Second, the use of pulsed field gradient encoding allows direct determination
of molecular displacements, rather than via an indirect deduction based on a
known diffusion time and an assumed effective diffusion coefficient, as implied
in DDIF. Finally, the multitude of dimensions allows for different modes of anal-
ysis, by selecting different “planes” of parameters, or, as we shall show, by com-
paring with model predictions, we produce a two-dimensional surface, rather
than a one-dimensional graph.

7.2 Method

7.2.1 Experimental

As in the previous chapter, all experiments were performed at 22◦C on a 400
MHz Bruker spectrometer using the proton signal from distilled water in a ran-
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dom dense pack of monodisperse glass spheres. The glass beads are the same
100 µm beads as described in the previous chapter.

7.2.2 Pulse Sequence
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Figure 7.1: Pulsed sequence used for the propagator-resolved field exchange experi-

ment.

The pulse sequence used is shown in figure 7.1. To prevent interaction be-
tween the applied gradients and the internal magnetic field gradients of the
sample [30], we use bipolar pulsed field gradients of strength g with a storage
time ∆ measured between the beginnings of each gradient pair. For each n, we
step the applied gradients p times to a maximum strength of 13.5 G cm−1 and
incrementally increase the frequency encoding time, t1 by a increment equal to
1/bandwidth, in our case (20 kHz)−1 or 50 µs. Since we want to keep the storage
time ∆ constant for all n, we include a spin echo sequence before the diffusion
measurement to allow us to increment t1. Note that the initial spin echo pro-
duced from this spin echo sequence will appear at a time t1 after the first 180◦.
The time between the first and second 180◦ is 1.01 ms. Due to the inhomoge-
neously broadened 1D spectrum, the signal from this echo will have decayed
e−1 at a t1 of 61.2 µs. Thus we will only forfeit a small amount of resolution in
our final 2D spectrum. After the first applied gradient pair, a 90◦ pulse stores the
magnetization along the z axis to eliminate any effect from T2 relaxation, how-
ever, the protons still undergo T1 relaxation. After a mixing time, τm, which is
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approximately ∆, the magnetization is brought back to the transverse plane and
the second pair of gradients are pulsed to complete the diffusion measurement.
We acquire for a time t2 following a time δ after the final 90◦ pulse. To ensure
the resultant signal is only that derived from the initial 90◦ pulse, we utilize a 16
step phase cycling.

This pulse sequence produces anm×n×p data matrix wherem is the number
of acquisition points, n the number of time evolution steps and p the number
of q-gradient steps. For all experiments we acquire for 128 points (acquisition
time 6.4 ms), increment t1 64 times (evolution time 3.3 ms) and step our applied
gradients 33 times for a data matrix of size 128 × 64 × 33 which we zero fill to
256× 256× 64 and apply a 3D fast Fourier transform. The total experiment time
is about 15 hours.

The one-dimensional NMR spectrum for the water/beadpack sample is shown
in figure 7.2a, and has a full width half maximum (FWHM) of 5.2 kHz or 12.9
ppm.
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Figure 7.2: a). The measured 1D 1H NMR spectrum for the water in glass bead pack

at 400 MHz. The spectrum has an FWHM of 5.2 kHz (12.9 ppm). b). The

simulated NMR spectrum for a random bead pack. Frequency units are

dimensionless and the spectrum has an FWHM of 0.91 (13 ppm). Both 1D

spectra are plotted in units of ppm for easy comparison.
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7.3 Experimental and Simulation Results

The simulation used in this chapter is previously described in chapter 5. In it,
we generate an internal magnetic field by placing a z-aligned magnetic dipole
at the center of each sphere in a matrix of randomly packed spheres. We then
allow approximately 12.4 million tracers to diffuse through the pore space of the
system, for a tracer density of approximately 80 tracers per 10 µm3. The reason
for using such a high density of tracers is due to the fact that we will be separat-
ing tracers in to bins with respect to their Z-displacement distances, therefore,
we need to have a large amount of tracers to ensure an adequate amount of trac-
ers are represented in each Z-displacement. After diffusion, the magnetic field
at the final position for each tracer is recorded. From the initial and final posi-
tions of the tracers, we are able to simulate a propagator, which is essentially a
histogram of tracer Z-displacements in the program. Using knowledge of these
Z-displacements, we can construct simulated 2D exchange spectra which are
comprised only of tracers which have diffused a certain Z-displacement.

Figure 7.3 shows the Z-displacement propagator for a mid-range mixing
time of 160 ms. This corresponds to a ∆ of 162 ms. The experimentally mea-
sured propagator is shown by the solid line and has a resolution of 3.5 µm. For
molecules diffusing in a random pore glass with pore separation b, the expected
echo attenuation is the diffusive-diffraction behavior, as given in the pore hop-
ping model [106] by

E(q,∆) = |S0(q)|2 exp

(
−6Deff∆

b2

[
1− sin(qb)

qb

])
(7.1)

where |S0(q)|2 is the pore structure factor and the q vector magnitude is γδg. For
asymptotic conditions, Deff∆ � b2, this expression reduces to exp (−q2Deff∆)

for which the asymptotic propagator is given by the Gaussian

P (Z,∆) = (4πDeff∆)−1/2 exp

(
− Z2

4Deff∆

)
(7.2)

where Z represents displacements along the gradient axis.
Given ∆ = 162 ms, and fitting to the low q2 limit of the echo attenuation

E(q) (i.e. from the mean-squared displacement Deff = 〈Z2〉/2∆), we find an
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Figure 7.3: Propagator for a mixing time of 160 ms. The experimental data is shown

by the solid line. The calculated theoretical propagator as given by equa-

tion 7.2 using an effective diffusion of 0.65D0 is shown by the dashed line.

The simulated propagator is shown by the dotted line. The markers N, �,

and � indicate Z-displacements of 0 µm, 25 µm, and 45 µm respectively. The

experimental and theoretical propagators have a resolution of about 8.7 µm,

but the echo attenuations are zero filled to 64 points before Fourier transfor-

mation.
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effective diffusion of Deff = 0.65D0 where D0 is the diffusion coefficient of bulk
water. The theoretical propagator is shown by the dashed line and agrees mod-
erately well with experiment. The slightly different experimental propagator
shape probably arises because the asymptotic conditions for diffusion have not
quite been reached at 160 ms, and therefore the actual propagator is not yet
gaussian. The dotted line is the propagator found by simulation at a mixing
time of 160 ms. Again, to determine an effective diffusion coefficient, we derive
E(q) from the simulated propagator and fit for q2 in the low q limit. For the sim-
ulations,the effective diffusion coefficient at 162 ms is found to be 0.82D0 where
D0 is the bulk diffusion constant.

Figure 7.4 shows the approach to asymptotic conditions as the mixing time
is increased of Deff for both experiment and simulations. For both the experi-
ments and simulation, asymptotic conditions have not been fully reached at 640
ms, however the limit is sufficiently close that a reasonable estimate can be made
for the purpose of calculating porosity. In a bead pack the expected asymptotic
diffusion coefficient is

√
φD0 where φ is the porosity [58]. For the experiments,

where we find φ = 0.436, this agrees well with this expected limit. The simulated
bead pack has a porosity of 0.45, suggesting an asymptotic Deff of 0.67D0. This
estimate is slightly lower than what is shown in figure 7.4, and suggests that
asymptotic conditions have not yet been reached at 162 ms or 642 ms in the case
of the simulations. It is possible that the size of the simulated cylindrical bead
pack may have been insufficient to obtain a representative elementary volume.
In fact, we find the average of the Bz field in figure 7.2b to be 0.0146 suggesting
we do not have full anisotropy in the sample, as full anisotropy would give us
an average Bz of 0. We are constrained by computer memory with regards to
the size of this sample, however the simulations presented do provide a useful
comparison.

We can select 2D spectra along the propagator dimension which correspond
to spectra containing the NMR signals from molecules which have diffused a
specific range of Z-displacements. The top row of figure 7.5 shows the exper-
imental spectra obtained at τm = 160 ms for Z-displacements of 0 µm, 25 µm,
and 45 µm which correspond to the markers N, �, and � on the experimental
propagator in figure 7.3.
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Figure 7.4: a). The ratio of effective diffusion to bulk diffusion for a 100 µm beadpack

from experiment using the pulse sequence shown in figure 7.1 using a maxi-

mum gradient of 5 G/mm and without t1 stepping. b). The ratio of effective

diffusion to bulk diffusion for the simulation. Note error bars are inside the

markers.

Since a molecule diffusing for a greater distance has a greater chance of
changing its local magnetic field value, we expect the off-diagonal of the spec-
trum to grow in intensity with increasing displacement. In the top row of fig-
ure 7.5, we see that for a Z-displacement of 0 µm, there is a narrow off-diagonal.
Of course, zero Z-displacement does not mean that a spin-bearing molecule has
not changed its local field during τm. The possibility remains that that some
molecules will have diffused to a different field in the transverse (X , Y ) dis-
placement plane during ∆, but remained at or returned to their initial z-position
at the end of the diffusion measurement. This will result in some broadening
along the off-diagonal even at 0 µm Z-displacement. Increasing τm (and hence
∆) makes such broadening even more pronounced as X and Y displacements
grow.

To quantify the off-diagonal intensity for each τm and Z, we average together
two points on either side of the maximum of the off-diagonal slice as we did in
the previous chapter. These two points are chosen to be the equivalent of a
fraction of the FWHM of the 1D inhomogeneous spectrum. In this chapter, we
will look at two different widths, 0.8 FWHM and 1.0 FWHM, the equivalent of
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Figure 7.5: 2D spectra for a τm of 160 ms. Top row: obtained using experimental data.
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4.3 kHz (10.75 ppm) and 5.2 kHz (12.9 ppm). This choice is consistent with the
compromise between the signal to noise ratio and the sensitivity to exchange
as found previously. The average intensities at these offsets are plotted in fig-
ure 7.6a-b as a function of both τm and Z, referred to as I(Z, τm).
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Figure 7.6: I(Z, τm) for a τm of 160 ms and at different displacements Z. The spectra

are normalized to a common total intensity in order to make a visual com-

parison. a). For experimental data at 0.8 FWHM. b). For experimental data

at 1.0 FWHM. c). For simulated data at 0.8 FWHM. d). For simulated data

at 0.8 FHWM. The blue colors indicate lower intensities while the red colors

indicate higher intensities.

Mean normalized intensities increase as both τm andZ increase. Off-diagonal
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line broadening occurs because water molecules, whose spectra were acquired
during t1 evolution encoding (a total period of up to 3.3 ms) are diffusing through
inhomogeneous fields to a new local field value at the time of acquisition (which
occurs over 6.4 ms). For the purpose of the present analysis we ignore any mo-
tional averaging spectral effects which may result from the finite evolution and
acquisition times, since these are generally lower than the τm values used in this
work. Of course, we expect an increase of off-diagonal intensity with increas-
ing Z since the increase in positional displacement increases the possibility of a
water molecule having moved to a different local field. For increasing τm, both
Z and X, Y displacements contribute, further increasing the likelihood of an
altered local field, and thus increasing off-diagonal intensity, I(Z, τm).

The simulated propagator-resolved 2D spectra are calculated by including
only those particles which have diffused a designated Z-displacement within
the bead pack. The bottom row of figure 7.5 shows the calculated simulated
spectra for a τm of 160 ms, and Z of 0 µm, 25 µm, and 45 µm. Also shown, in
figure 7.6c-d, are the off-diagonal I(Z, τm) data obtained from the simulation
at 0.8 FWHM offset and 1.0 FWHM offset. The addition of displacement in-
formation allows us to develop a theory incorporating both mixing time and
displacement, rather than extracting exchange times by simple single or double
exponential fitting, as in the previous method.

In the previous chapter, where no spatial resolution was incorporated, all
spins were included no matter what their displacements. By integrating the cur-
rent data over all Z we should be able to approximate the off-diagonal intensity
growth expected for the non-spatially resolved method. Figure 7.7a shows the
result for both experimental FWHMs from figure 7.6a-b, and figure 7.7b shows
the result for both simulated FWHMs from figure 7.6c-d. In chapter 6, we were
able to achieve shorter mixing times, down to 1 ms, because of the absence of
displacement-encoding gradient pulses. In the present work, these timing con-
straints enforced a lower mixing time limit of 20 ms. For times above this, both
sets of data are comparable. In both cases we have attempted fits to an exponen-
tial rise. Here, for the more limited range of τm values available, we fit a single
exponential of the form

∫
I(Z, τm)dZ = A exp (−τmτ−1) + C and obtain charac-

teristic times of 83 ms for both the 0.8 FWHM and 1.0 FWHM widths for the
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Figure 7.7: a). Mean normalized off-diagonal intensities summed for all ∆Z. The

solid lines represent a single exponential curve fit to
∫
I(Z, τm)dZ =

A exp (−τm/τ) + C. b). Simulated mean normalized off-diagonal intensities

integrated over all ∆Z. The solid lines represent a fit to the same function

as in a). Note in b). error bars are smaller than the data markers.

spatially resolved method, which corresponds to a mean squared displacement
of 0.18 bead diameters. For the non-spatially resolved method, we obtain the
characteristic times of 402 and 870 ms respectively. These characteristic times
correspond to a range of 0.40 and 0.59 bead diameters. Indeed these exponen-
tial fits are not particularly good, and may not be justified by theory, as we shall
later demonstrate.

In the case of the simulations, off-diagonal intensities are obtained from 2D
spectra in a similar fashion to the experiments. Note in figure 7.6c-d, that the
minimum τm simulated is 20 ms. At shorter mixing times, off-diagonal intensi-
ties were too weak and dominated by noise. As in the case of the experiments
(figure 7.6a-b), the simulated intensities shown in figure 7.6c-d exhibit a growth
of intensity with increasing τm and Z.

Again, integrating the simulated data over all Z for each τm also results in
a growth similar to that calculated experimentally as in figure 7.7a. Figure 7.7b
shows the simulated curves fit to the same expression from which we obtain
characteristic times of 80 ms and 84 ms for 0.8 FWHM and 1.0 FWHM respec-
tively. These characteristic times correspond to mean squared displacements of
around 0.18 bead diameters.
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7.4 Theory

We assume that the mean intensity, I(Z, τm), of the off-diagonal grows as molecules
diffuse to the new local fields. We define, for convenience, a soft well given by
(1− exp (−R2/2l2c)), where lc is a characteristic length (see figure 7.8). This func-
tion represents the conditional probability of a molecule changing its local field
so as to contribute to the off-diagonal intensity. It is zero for R = 0 and 1 as
R → ∞ as required. In the Z-resolved experiment, R2 is the total distance a
molecule has diffused such that it ends on a plane of fixed displacement, Z,
along the gradient direction, Z. In other words, R2 = Z2 + r2 where r is the
distance traveled transverse to the magnetic field gradient. Given an a priori
knowledge of Z at any time τm, I(Z, τm) is given by

I(Z, τm) ∝
∫ ∞

0

2πrdr (4πDeffτm)−1 exp

(
− r2

4Deffτm

)(
1− exp

(
−Z

2 + r2

2l2c

))
= const ∗

(
1− 2l2c

2l2c + 4Deffτm
exp

(
−Z

2

2l2c

))
.

(7.3)

Weighting I(Z, τm) by the propagator P (Z, τm) and integrating over Z, we ob-
tain the expected result for the non-spatially resolved experiment,

I(τm) = const ∗

(
1−

[
2l2c

2l2c + 4Deffτm

]3/2
)
. (7.4)

Interestingly, this function differs considerably from the naı̈ve exponential rise
assumed earlier and represents the experimental data with fewer fit parameters,
as shown in figure 7.9a, where a fit to lc yields 21 µm and 22 µm for both 0.8
FWHM and 1.0 FWHM, respectively. We repeat this fit for the simulated data
as shown in figure 7.9b and obtain an lc of 23 to 25 µm for 0.8 FWHM and 1.0
FWHM respectively. This characteristic length will give us an idea of distance a
molecule needs to travel in order to sample a significant range of local fields.

We might expect the ”propagator-summed” data presented in figures 7.7
and 7.9 to be equivalent to data obtained in an experiment with no propagator
dimension, as in chapter 6 where we used a different pulse sequence in which no
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Figure 7.9: a). Calculated off-diagonal intensities from experiment using equation 7.4

with a characteristic length of 21 µm and 22 µm for 0.8 FWHM and 1.0

FWHM respectively. b). The same as a). but with simulated data. Charac-

teristic lengths are 21 and 32 µm for 0.8 FWHM and 1.0 FWHM respectively.
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gradient pulses were included. However, the fit to that earlier data using equa-
tion 7.4 results in a much shorter length scale, lc ' 6 µm. This discrepancy may
be due to motional averaging effects during frequency encoding. We note that
our earlier method used a longer frequency encoding time (and hence greater
spectral resolution) than that employed in the present work (12.8 ms compared
to 6.4 ms total t2 acquisition time and 12.8 compared to 3.2 ms total t1 evolution
time). We should observe that the soft well model which led to equation 7.4 is
simplistic and does not accurately represent the complexity of the local field dis-
tribution. For example, we can see from figure 7.10 that we have a large change
in field in the pore throats, which corresponds to a large local magnetic field gra-
dient. A water molecule does not have to diffuse a large distance to experience a
large change in magnetic field and thus a corresponding increase in off-diagonal
intensity. This means that the ensemble of molecules will exhibit multiple length
scales for field exchange, depending on starting position. Hence it is not surpris-
ing that different pulse sequences may return different length scales. However
we do find internal consistency within the pulse sequence used here, when we
compare fits for propagator-summed and propagator-resolved experiments.

Figure 7.10: The simulated internal magnetic field of an xz-plane slice centered at y = 0.

Using the effective diffusion coefficient measured for for each τm, and our
Z-displacements which range from approximately 0 to 50 µm, we plot I(Z, τm)

as given by equation 7.3 in figure 7.11. The best representation of our experi-
mental and simulated 2D surfaces shown in figure 7.6 is found by choosing lc in
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the range 20 to 30 µm. An lc value of around 20 µm is comparable with a typ-
ical pore dimension in a 100 µm diameter bead pack. We note that Stapf [107]
found correlation lengths of 0.35 - 0.4 bead diameters for simulated diffusion
in a monodisperse bead pack. Audoly et al [74] suggest that it is the pore di-
mension which provides the relevant length scale for internal field variations.
Finally, we note that the correspondence between lc values obtained for both
the experiment and the simulation found in our study is encouraging, and pro-
vides some support for the simple physical concepts used in the analysis of our
results.
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Figure 7.11: Calculated off-diagonal intensities using equation 7.3 with a characteristic

length of 25 µm.

7.5 Conclusions

In this chapter, we present results of a propagator-resolved field exchange ex-
periment. By adding a displacement dimension to the previous frequency ex-
change experiment, we are able to separate 2D spectra by both spatial displace-
ment and mixing time rather than just by mixing time alone. We find off-
diagonal intensities increase with increasing Z and τm which is to be expected.
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The results of a simulation also produce similar results. A simple theory based
on a characteristic length over which significant changes in local field occur,
gives good agreement with both experiment and simulations. The new insight
here concerns the use of a spatio-temporal approach which has the advantage of
yielding a characteristic length from an exchange experiment in a more natural
manner.
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Chapter 8

T2-Biz Correlation

8.1 Introduction

Two-dimensional correlation experiments allow us to correlate two material
properties, for example, answering the question as to what diffusion coefficients
correspond to what transverse relaxation values in a system. The correlation
spectrum can give us information about the structure of the sample.

Diffusion-relaxation correlation spectroscopy (DRCOSY) allows us to corre-
late T2 with corresponding diffusion coefficients. This can enable us to distin-
guish between two fluids such as oil and water [47] or can allow us to determine
where water is located within a porous medium such as hollow capsules [45] or
plant structures [46]. For example, the T2 distributions of oil and water are often
similar, but their corresponding diffusion distributions are different since water
typically diffuses faster than oil. By correlatingD and T2, we are able to separate
the water or oil signal contribution in the T2 distribution, thus allowing one to
distinguish between the two fluids.

Relaxation-relaxation correlation spectroscopy (RRCOSY) [48] correlates T1

with T2 which provides another way to investigate the pore space in porous
media. This method has been used to study enzymes [49], muscle tissue [50],
water filled rocks [51], and cements [37, 38]. By correlating T1 with T2, one can
find the T1/T2 ratio, which provides information about the rotational mobility
of a molecule, and which can also provide information about the exchange of

123
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protons within a porous system.

In this chapter we present a simple method which correlates the inhomo-
geneous internal magnetic field with the T2 relaxation. By using a CPMG echo
train in which the echo decay is also acquired, we can find the T2 values that cor-
respond to specific frequency offsets. A related experiment was carried out in
2002 by Sun and Dunn [83] where the T2 and internal magnetic field gradient, g
were correlated. They found that the largest gradients in a sample correspond to
the smallest pores. We know from our simulation and simulations by others [74]
that the change in the shape of the internal magnetic field within the pore space
of a monodisperse bead pack is independent of pore and grain size. However,
by varying the echo spacing in our CPMG echo train, we can obtain informa-
tion about the internal field gradients, which we know are dependent on pore
and grain size. Beginning with a simulated cubic pack of 6 beads, then build-
ing to our simulated random bead pack as described in section 5.2, we show
how the shape of a correlation between the magnetic field offset and the mag-
nitude of the magnetic field gradient gives an indication of sample pore shape,
grain size, pore size heterogeneity and grain heterogeneity. We then move on to
running a T2-Bi

z correlation experiment with varying τ using a simple sample
of a monodisperse bead pack and a more complicated sample of a Bentheimer
sandstone, and find confirmation of our simulated results.

8.2 Simulating the |g|-Bi
z Correlation

We first start with a series of simplistic 6 bead structures to create a pore whose
size and anisotropy we can control. We use four different bead packs, shown in
the top row of figure 8.1. From left to right, we have a small pore using closely
packed beads, a larger pore using loosely packed beads, an anisotropic pore
with a horizontal long axis created by shifting the four outer beads oriented
parallel to the xy-plane out and moving the two beads parallel to the z-axis
closer together, and finally, we have an anisotropic pore with a vertical long axis
created by moving the beads parallel to the y- and z-axis outwards and moving
the beads parallel to the x-axis inwards. These beads allow us to see how the
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internal magnetic field and the magnitude of the magnetic field gradient are
correlated when we change properties of the pore such as pore size and pore
anisotropy.

Figure 8.1: Top row: The four simple bead packs used which are comprised of 6

spheres each. From left to right the structures are: closely packed (small

pore), loosely packed (large pore), horizontally stretched pore, and verti-

cally stretched pore. Bottom row: As for the top row but the bead packs are

rotated so that the beads previously parallel to the z-axis now lie along the

body diagonal of a cube of side 8 centered about (4,4,4).

The corresponding field and gradient maps for the bead packs in the top
row of figure 8.1 are shown in figure 8.2. The field maps are shown in the top
row, and the gradient magnitude maps are shown in the bottom row. In the field
maps, we see that for the closely packed and loosely packed shape, the magnetic
field offset is zero at the center of the pore which is to be expected. However in
the horizontally and vertically stretched pores we either have a strongly neg-
atively offset field as in the horizontally stretched pore, or a strongly positive
offset field as in the vertically stretched pore. We can correlate the simulated
field and gradient, and these correlations are shown in figure 8.3. What these
correlations tell us is that the diagonal “wings” which protrude off the edge of
the spectrum correspond to regions of high gradient intensity which occur in
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Figure 8.2: Top row: Simulated magnetic field maps for the bead packs shown in the

top row of figure 8.1. Bottom row: The simulated magnetic gradient field

magnitude for the same bead packs.

regions of large magnetic field offsets. Comparing figures 8.3a and b, we see
that the |g|-Bi

z correlations could possibly be indicative of pore size, as the diag-
onal wings corresponding to the smaller pore are more pronounced than those
which correspond to the larger pore. Similarly, comparing figures 8.3c and d,
we see that the diagonal wings on the correlations could be indicative of pore
anisotropy, as a horizontally stretched pore results in high gradients correlated
with large negative offsets and vice versa for vertically stretched pores.

To make the pores more complex, we rotate the bead packs so that the beads
which were originally parallel to the z-axis are now aligned along the body di-
agonal of a cube of side 8 centered about the point (4,4,4). These rotated bead
packs are shown in the bottom row of figure 8.1, and their corresponding sim-
ulated internal magnetic field and gradient maps are shown in figure 8.4. The
resultant |g|-Bi

z correlations are shown in figure 8.5.

The |g|-Bi
z correlations of the rotated bead packs show that rotating the bead

packs has resulted in an greater amount of large magnitude gradients to be cor-
related with more positive field offsets. The closely packed bead pack in fig-
ure 8.5a still displays a greater quantity of gradient magnitude at large offsets
compared to that of the loosely packed spheres in b, due to the fact that smaller
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Figure 8.3: |g|-Bi
z correlations for the beadpacks shown in the top row of figure 8.1.

Contour levels range from 0.1 to 1.0 in intervals of 0.1. Red indicates higher

intensities.

pores will exhibit greater gradient magnitudes. We also see from c and d that
we no longer see any evidence of the pore anisotropy after rotation of the bead
packs. These figures indicate that while this method may not be sensitive to
pore anisotropy unless the pores are aligned along the xy-, xz-, or yz-plane, it is
somewhat sensitive to pore size.

Moving on from our simplistic single pore models, we calculate the |g|-Bi
z

correlation of our simulated random bead pack as described in section 5.2. Com-
prised of many pores, this simulated bead pack will be a more realistic study of
the interplay between magnetic field gradients and the field offset.

The maps of the resultant internal magnetic field and gradient magnitudes
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Figure 8.4: Top row: Simulated magnetic field maps for the bead packs shown in the

bottom row of figure 8.1. Bottom row: The simulated magnetic gradient

field magnitude for the same bead packs.

are shown in figure 8.6. Similar to the field and gradient maps of our single
pore systems, we can see that areas of high gradient appear to occur most fre-
quently near areas of large internal field offset, particularly at the surface of the
spheres at the z-direction poles. When we take the correlation between the two,
shown in figure 8.7, there are two things to notice. One, a diagonal wing ap-
pears which correlates large values of gradient magnitude with regions of large
frequency offsets. This is to be expected due to the fact that from figure 8.6, box
B, we see that regions of large frequency offset correspond to regions of high
magnetic field gradient. Note that this spectrum does not have the large, pro-
nounced diagonal wings that were present in the single pore correlations. This
is probably in part due to the fact that this bead pack is comprised of reason-
ably close-packed monodisperse beads, therefore the contribution of all pores
in the system will be similar in size and also to the effect of averaging many
pore shapes and orientations.

Another trait of figure 8.7 is that there is a negative distortion wherein the
largest magnitude gradients occur at regions of large negative field offset. This
negative distortion corresponds to the skew in the 1D field spectrum which
arises due to the more strongly negative region around the z-direction poles
of the spheres which take up a smaller volume than the equatorial regions of



8.3. SUMMARY OF |G|-BI
Z CORRELATION SPECTRA 129

Closely Packed

B
zi

0 0.04 0.08
−0.25

−0.15

0

0.15

0.25
Loosely Packed

0 0.04 0.08
−0.25

−0.15

0

0.15

0.25

Horizontally Stretched Pore

B
zi

|g|
0 0.04 0.08

−0.25

−0.15

0

0.15

0.25
Vertically Stretched Pore

|g|
0 0.04 0.08

−0.25

−0.15

0

0.15

0.25
d).

b).a).

c).

Figure 8.5: |g|-Bi
z correlations for the beadpacks shown in the bottom row of figure 8.2.

Contour levels range from 0.1 to 1.0 in intervals of 0.1. Red indicates higher

intensities.

positive field values. However, the average field is near zero with a value of
-0.0191. We suspect the slight negative value may be due to edge effects caused
by bead ordering along the flat bottom of the bead pack.

8.3 Summary of |g|-Bi
z Correlation Spectra

In general, the |g|-Bi
z correlation will generate two different types of spectra. The

first type is a peak which has diagonal wings that correlate larger field offsets
with larger field gradients as shown schematically in figure 8.8a. The second
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Figure 8.6: Left: The simulated internal magnetic field for the center y slice of the cylin-

drical bead pack. Box A shows a low magnetic field offset corresponding

to loosely packed beads. Box B shows a large magnetic field offset corre-

sponding to tightly packed beads. Right: The simulated internal magnetic

field gradient along the same slice of the left figure. Box A shows a region

of loosely packed beads and thus a relatively low gradient magnitude. Box

B shows a region of tightly packed beads resulting in a relatively high mag-

netic field gradient.

type of peak as shown in figure 8.8b, is a peak which rather than displaying
diagonal wings, has horizontal wings, indicating that there is gradient growth
without a change in field offset. Horizontal wings arise when |g| is independent
of field offset which occurs when there are smaller distances involved. Smaller
distances are associated with smaller grains being present in the sample. Al-
though the range of field offsets will remain the same, smaller grains mean that
there will be much larger gradients as seen in figure 8.9. In this figure, two
different size beads are displayed. The left column shows a bead of radius 0.5
units, and the right column shows a bead of radius 1 unit. The top row shows
the simulated magnetic field generated by placing a z-oriented magnetic dipole
at the center of each sphere. The field offset for both spheres ranges from ap-
proximately -2 to 1 frequency units. However, looking at the simulated gradient
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Figure 8.8: Schematic representations of a). The |g|-Bi
z spectrum type with diagonal

wings which correspond to large gradient magnitudes at large field offsets.
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magnitudes for each sphere in the bottom row, we see the smaller sphere has a
maximum gradient magnitude of about 12, while the larger bead has a maxi-
mum gradient about half that at about 6. Therefore, horizontal wings are in-
dicative of large grain heterogeneity, where we have the presence of both large
grains and groups of smaller grains.

Figure 8.9: Left column: Field (top) and gradient (bottom) maps for a sphere of radius

0.5 units. Right column: As for right column but with a sphere of radius 1

unit. Note that while the range of field offsets are similar for both beads, the

maximum gradient values are twice as large for the smaller bead than that

of the larger bead.

From here, we move away from our simulation and move on to our T2-Bi
z

experiment with varying τ .
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8.4 Pulse Sequence

The pulse sequence used is shown in figure 8.10 and is a simple CPMG train
as originally discussed in section 3.2.4. We start our pulse sequence with a 90◦

pulse to bring our magnetization into the transverse plane. Following a time
τ , we apply a 180◦ pulse, and wait another time τ and repeat our 180◦ pulse n
times. We then acquire from the spin echo maximum to a time t1 over m points.
The values of τ , m, n, and t1 depend on the sample being used. For a 100 µm
monodisperse bead pack, τ ranges from 62.5µs to 1 ms with corresponding n

values ranging from 8196 and 512 for a total echo train time of ∼ 1s for all τ
values. We also acquire an m value of 512 decay points in each echo. For a
Bentheimer sandstone, τ values range from 125 µs to 1mswith corresponding n
values of 16384 and 512, for an echo train time of∼ 4s for all τs, with anm value
of 256. We select p echoes out of each echo train. For both samples p = 256. This
results in an m×p matrix with m points of echo decay and p echoes. By taking a
Fourier transform along the echo decay dimension we acquire a spectrum of the
broadened NMR frequency spectrum due to susceptibility differences between
the solid matrix of our sample and its fluid filled pore space. The application
of an inverse Laplace transform as described in section 2.9.2 along the CPMG
dimension will allow us to obtain the T2 distribution of our sample. This means
we have a 2D data set that requires a combination of Fourier transform and
inverse Laplace transform for analysis.

90
o 180

o

τ 2τ

n

t1180
o

3τ

x y y

Figure 8.10: The CPMG pulse sequence used for T2-Bi
z correlation. Note we acquire

from the echo maximum to a time t1. τ is kept constant for all n.
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8.5 Relaxation in the Inhomogeneous Magnetic Field

The resulting magnetization decay from the pulse sequence of figure 8.10 will
be a function of the inhomogeneous field and the transverse relaxation decay,
T2. Without diffusion, the magnetization due to T2 relaxation is given by

M(tT2)

M0

=

∫
P (T2) exp(−tT2/T2) dT2. (8.1)

where tT2 is the time associated with T2. The magnetization decay due only to
diffusion through the inhomogeneous magnetic field is

M(tT2)

M0

=

∫
P (g2) exp(−γ2g2τ 2DtT2/3) dg2 (8.2)

The total magnetization relaxation decay from diffusion through the inhomoge-
neous field is obtained by combining equations 8.1 and 8.2. We first define the
relaxation time , T ′2 which is a function of g2

1

T ′2(g2)
=

1

T2

+ γ2g2τ 2D

3
. (8.3)

Then the total magnetization relaxation decay from diffusion through the inho-
mogeneous field is given by

M(tT2)

M0

=

∫
P (T ′2(g2)) exp

(
−tT ′2

1

T ′2

)
dT ′2(g2). (8.4)

We also need to take into account the line broadening from the inhomogeneous
field. We know the magnetization for a distribution of spins freely precessing in
an external magnetic field is

M(tω)

M0

=

∫
P (ω) exp(−i∆ωtω) dω (8.5)

where tω is the time associated with the frequency. We can describe the magne-
tization following the pulse sequence as a combination of equations 8.4 and 8.5

M(tω, tT ′2)

M0

=

∫∫
P (ω, T ′2(g2)) exp

(
−tT ′2

1

T ′2

)
exp(−i∆ωtω) dωdT ′2(g2)

+ ε(tω, tT ′2)

(8.6)
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where P (ω, T ′2(g2)) is the joint probability density and ε(tω, tT ′2) is the experimen-
tal noise. The joint probability density will be our correlation spectrum. In order
to retrieve this value from equation 8.6, we need to use a Fourier transform fol-
lowed by an inverse Laplace transform.

8.6 Analysis of FT-ILT Data

There are two main ways to analyze FT-ILT data, namely univariate and mul-
tivariate. Univariate processing, first described by Morris and Johnson [108],
uses a simple 1D FT and then an iterative 1D ILT. This method is best used
for samples which have a single species. Multivariate processing is first pub-
lished by Stilbs [109] in which they use a global method called CORE-NMR
for COmponent REsolved NMR spectroscopy. Unlike simply taking a Fourier
transform and incrementally applying an Inverse Laplace, the CORE method
uses the common echo attenuation for each component in the frequency spec-
trum to fit a global self-diffusion coefficient for each frequency spectrum com-
ponent. In other words, the univariate method treats each signal as a separate
decay, while the multivariate method fits the entire spectra simultaneously.

Since we are only measuring the NMR spectrum of distilled water in the pore
space of a sample, we can use the univariate method rather than a multivariate
method. To be sure that the univariate method will capture any overlapping
peaks we may have in the projections along the frequency or T ′2, we apply the
univariate method to a simulated data matrix with a known test spectrum. This
model spectrum first involves generating a test spectrum from which we can
create a data matrix and then subsequently apply an FT and an iterative ILT to
try to replicate the original test spectrum. This will involve 4 steps:

1. Create a 2D test spectrum, T (T ′2, ω), using a combination of a Gaussian
peak along the linear (frequency domain) axis, and a lognormal peak along
the logarithmic (relaxation time domain) axis.

2. Apply a forward Laplace transform along the to T (T ′2, ω) to obtain part of
the data matrix D(tT ′2 , ω).
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3. Apply an inverse Fourier transform to D(tT ′2 , ω) to obtain the final data
matrix, D(tT ′2 , tω).

4. To generate the calculated spectrum, S(T ′2, ω), to be compared with T (T ′2, f),
apply an FT and then an iterative ILT to D(tT ′2 , ω).

8.6.1 Generating the Test Spectrum

The test spectrum is meant to replicate the frequency-T ′2 plots of the T ′2-Bi
z cor-

relation experiment. Since frequency is typically displayed on a linear scale,
and T ′2 displayed on a logarithmic scale, we need a solution spectrum that has a
linear dimension and a logarithmic dimension.

One of the concerns with taking a Fourier transform of the data and then do-
ing a 1D inverse Laplace transform sequentially along the CPMG time domain
is that correlation of information between the individual rows will be lost. In
other words each individual row is treated independently. So for our test spec-
tra, we use Gaussian peaks which span a number of frequencies and T ′2 times to
test if any information is lost between the rows when we analyze our data. That
is, we will be seeking to establish whether the Gaussian shape of the spectrum
is retained along the relaxation time dimension.

To make our peaks, we use a combination of a Gaussian peak along the linear
axis (the frequency domain) which we designate as the y-axis, and a lognormal
peak along the logarithmic x-axis (the transverse relaxation domain). The equa-
tion for a 1D non-normalized Gaussian is given by

f(y) = exp

(
−(y − y0)2

2σ2
y

)
(8.7)

where y0 defines the center of the Gaussian and σ2
y is the variance of the function.

The 1D lognormal function has a similar form to that of the Gaussian

f(x) = exp

(
−(log(x)− log(x0))2

2σ2
x

)
(8.8)

where x0 is the center of the distribution on a logarithmic scale and σ2
x is the

variance of the function.
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The equation for the 2D lognormal-normal non-correlated distribution will
be given by the product of equations 8.7 and 8.8:

f(x, y) = exp

(
(y − y0)2

2σ2
y

− (log(x)− log(x0))2

2σ2
x

)
. (8.9)

This equation will give us a peak like that shown in figure 8.11a. To add multiple
peaks, we simply sum together their associated functions.

To generate an ellipsoidal peak that is oriented along an angle to the x- and
y-axis, we add a correlation function to equation 8.9

f(x, y) = exp

(
(y − y0)2

2σ2
y

− (log(x)− log(x0))2

2σ2
x

− b

4

(log(x)− log(x0))(y − y0)

σ2
xσ

2
y

)
(8.10)

where the value b/4 defines the eccentricity of the ellipse which must be a value
between 0 and 1. This equation will produce a peak such as that shown in
figure 8.11b.
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Figure 8.11: a). An example of a non-correlated Gaussian peak using equation 8.9. b).

An example of a correlated skewed Gaussian peak using equation 8.10.

For our different test spectra, we use three spectra, two of which will result in
the same projections along the x- and y-axis to ensure that our analysis method
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is able to distinguish between the placement of the two peaks in the spectrum
when the projections are the same. These two spectra are shown in figure 8.12a
and b. The third spectrum has a projection which includes overlapping peaks
in both the x- and y- axis, as shown in figure 8.12c.
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Figure 8.12: a). Two peaked solution spectrum with similar projections in the x and y

directions. b). As for a). but in a different orientation. c). Test spectrum

with overlapping peaks in the x and y projections.
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8.6.2 Creating and Processing the Data Matrix from the Test

Spectra

Our test matrix, defined as T, is anm×nmatrix withm points of linearly spaced
frequency values and n points of logarithmically spaced T ′2 values. Our desired
data matrix, D is defined by the matrix equation

D = F−1TTK (8.11)

where K is the kernel function which is an n × p matrix of exponential decays
exp(−ti/Tj), where p is the number of ti, and F−1 is the inverse Fourier trans-
form of TTK. D will be a matrix of size m× p.

Now that we have D we proceed with the combined Fourier-inverse Laplace
transform to see if we can reproduce the sample spectra of figure 8.12. First we
take the magnitude of the Fourier transform alongm and sequentially apply the
inverse Laplace transform to each row in the Fourier transformed matrix. The
same regularization parameter, α is used for each inverse Laplace transform.

The results of this processing are shown in figure 8.13, where the top row
shows the starting test spectra and the bottom row shows the results of the pro-
cessed data matrix. The calculated results show slight broadening with respect
to T ′2 compared to the solution spectra, and the calculated spectrum of the right-
most column shows a loss of signal in the shortest T ′2 peak. Overall, these spectra
show that information is not lost using this processing method and that it will
be appropriate to use for our T ′2-Bi

z correlation data. It is important to note that
in the rightmost column of spectra the shortest T ′2 peaks in both the test and
calculated spectra appear to have two different intensities due to slight broad-
ening along the T ′2 domain for the calculated spectrum. When both peaks are
integrated with respect to frequency and T ′2, they are found to have equivalent
total intensities.
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Figure 8.13: Top row: Test spectra from figure 8.12. Bottom row: Calculated spectra af-

ter processing by the FT-sequential ILT method. Note that for the rightmost

column, the intensities for all peaks are the same. The apparent decrease

in intensity for the short T ′2 peak in the calculated spectrum is due to the

slight broadening along the T ′2 domain.
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8.7 T2-Bi
z Correlation for a Monodisperse Glass Bead

Pack

Using the same 100 µm monodisperse bead pack as described in chapter 6, we
perform a set of 9 T ′2-Bi

z correlation experiments each with a different value
of τ ranging from a minimum of 62.5 µs to a maximum of 1 ms. A spectral
width of 100 kHz is used and 512 points are acquired after the maximum of the
last echo in the CPMG train. The values of n range from 512 to 8192 with 256
echoes selected from each CPMG train. We select only the even echoes so as to
eliminate the odd-even echo effect. All experiments are performed at a constant
temperature of 25◦C. These results are shown in figure 8.14.

From figure 8.14, we can see that for τ values from 500 µs and greater, there
is some slight structure on the short T ′2 side of the peak which we would ex-
pect to arise from the increasing role of internal field gradients as the echo time
τ is increased. What we immediately notice in the case of τ = 1ms is the ap-
pearance of horizontal “wings”. Such wings, as we have argued earlier, are
indicative of grain size heterogeneity. Why then do we observe such effects in a
monodisperse bead pack? While our bead pack only has one bead size and two
susceptibilities arising from the water and glass, heterogeneities can arise from
the randomness in packing. For example, more loosely packed beads will have
a smaller magnetic field gradient since the length scale over which changes in
field occur will be larger. Such a region is shown in the right plot in figure 8.6,
box A. By contrast, more densely packed areas (as shown by box B), will ex-
perience the same field change but over a shorter distance, leading to a larger
value of field gradient. Of course, inspection of the corresponding field map
(right plot in figure 8.6), also shows that more loosely packed spheres (box A)
also have a smaller average field offset and more densely packed spheres (box
B), have a larger average field offset. Therefore, in a heterogeneous sample we
might expect that lower gradients correspond with smaller field offsets. This
is the basis of the “diagonal wings” argument, and indeed, such features are
apparent in the broadly triangular map obtained in the simulation itself, fig-
ure 8.7. But closer inspection of this figure shows that at the highest gradients,
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τ = 62.5 µs
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Figure 8.14: The T′2-B correlation for a monodisperse 100 µm glass bead pack. Band-

width shown is 50 kHz. τ values range from 62.5 µs to 1 ms. Note that

at the longest τ value internal field gradients have more significant influ-

ence on T ′2 contributing to extended peak structure at the shorter T ′2 values.

Contour levels range from 0.1 to 1.0 in intervals of 0.1. Red indicates higher

intensities.
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a horizontal “flattening” occurs. This is consistent with the “similar fields but
different length scales” picture. However the effect is subtle, both in our simula-
tion and in the bead pack experiments. In heterogeneous materials much larger
variations in gradient will arise through changes in characteristic local length
scales, and much more pronounced horizontal wings may arise. Thus we see
the T ′2-Bi

z correlation experiment as potentially providing a signature for the de-
gree of grain size heterogeneity. This we test in an experiment on a rock sample
as described in the next section.

Before leaving our discussion of the monodisperse bead pack, we need to
address the differences apparent in the simulation shown in figure 8.7 and the
experimental results shown in figure 8.14. First, note that they are plotted in a
different way, as |g|-Bi

z maps in the former and T ′2-Bi
z maps in the latter. Still as

τ becomes large we would expect the T ′2-Bi
z map to be indicative of |g|-Bi

z, albeit
with horizontal inversion, i.e. shorter T ′2 indicating larger |g|. It may be that
recalculating the T ′2-Bi

z maps as |g|-Bi
z maps might bring about a greater corre-

spondence. This we have not attempted here due to time constraints, but such
analysis could be the basis of future work. However, we have also to acknowl-
edge that the simulated bead pack and the actual experimental bead pack are
different, and indeed have different porosities. Hence we would not necessarily
expect identical local gradient patterns, especially since these are derived from
a spatial derivative which may be highly sensitive to structure.

The important point we wish to establish is that these simple T ′2-Bi
z exper-

iments can provide a signature for length scale heterogeneity. That this is so
becomes very clear when we apply the experiment to a real rock sample.

8.8 T ′2-Bi
z Correlation for a Bentheimer Sandstone Core

To observe a greater correlation between T ′2 and ∆Bz
i , we need a sample with

larger heterogeneity than a monodisperse glass bead pack. We select a Ben-
theimer sandstone core of diameter 12.3 mm and length 40 mm and saturate it
with a 3% weight KCl brine solution. In preliminary experiments using a 5 mm
diameter core, the long duration of our frequency resolved CPMG experiments
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caused evaporation of the brine out of the core which then condensed on the in-
side of our sample tube resulting in a change in resonance frequency and CPMG
decay as the experiment progressed even with temperature control. To eliminate
this evaporation we sealed a new core in Perspex acrylic. Xray-CT has been used
to create a tomogram of a Bentheimer core (shown in figure 8.15) and has also
been used to determine the material components of the sandstone [110]. Ben-
theimer is comprised of equal parts of the mineral kaolinite (Al2[Si2O5](OH)4)
and diamagnetic clay regions. The placement of these clay regions within the
core determines the total heterogeneity of the sample.

5.9 mm

Figure 8.15: X-ray tomogram of a 5 mm diameter Bentheimer sandstone. The resolution

per voxel is (2.8 µm)3.

For our Bentheimer experiments, we use τ times ranging from 125 µs to 1 ms.
Additional experiments of 2 and 4 ms were also performed, but the data quality
was very poor due to the large echo attenuation. All experiments are performed
at a constant temperature of 25◦C. The full width half maximum (FWHM) of the
Betheimer is approximately 1.7 kHz, so we used a spectral width of 20 kHz in
our experiment. Our n values range from 16384 to 512 with 256 echoes selected
from each CPMG train.

The results are shown in figure 8.16 and again, similar to the 100 µm bead
pack, there is structure at larger values of τ , however, unlike the bead pack,
the structure for Bentheimer is more pronounced, and can be seen as early as
250 µs, indicating larger heterogeneity in the rock core. This heterogeneity can
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arise from different materials present in the core, such as paramagnetic grains or
different pore sizes. There is a much sharper point at long T ′2 values compared
to the bead pack, also indicating larger heterogeneity.
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Figure 8.16: The T ′2-B correlation for a Bentheimer. Bandwidth shown is 20 kHz. τ

values range from 125 µs to 1 ms. Contour levels range from 0.1 to 1.0 in

intervals of 0.1. Red indicates higher intensities.

From figures 8.14 and 8.16, it is clear that this experiment can be used to
indicate pore and grain heterogeneities in a sample. In rock the lobes of the
inhomogeneous field spectrum are much more pronounced compared to those
of the bead pack due to the different reasons for heterogeneities in the samples.
In both samples, heterogeneities are caused by packing and pore size, whereas
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the rock, unlike the bead pack, is also made of different materials, and therefore
can have different regions of susceptibility differences which in turn can cause
larger internal field changes which will arise in larger field gradient values. Also
note that the wings in the correlation remain at the same offset, indicating a
large grain and pore heterogeneity since in general, the shape of the internal
magnetic field remains the same independent of pore size, however, smaller
pores will have larger gradients. Therefore, a growth in gradient intensity along
a constant magnetic field offset indicates strong pore and grain heterogeneity.

8.9 Simulating the T2-Bi
z Correlation in the Bead Pack

The addition of relaxation to our simulation was discussed in depth in Chapter
5, section 5.7. However, it is important to note that our simulation is rather sim-
plistic and treats relaxation as a function of proximity of tracer to bead. Namely,
if a tracer reflects off a bead, there is a small probability k that a tracer will “re-
lax” and no longer contribute to the simulation. Since the internal magnetic
field is only calculated as a function of position in the pore space before and
after diffusion, we do not directly simulate the echo shape, therefore we will be
unable to exactly simulate the experiment’s dependence on τ . However, we can
simulate an overall correlation between T2 and Bi

z, and acquire an exponential
decay which can be inverted using the ILT to generate a 1D T2 decay.

It is important to note that in this section we refer specifically to the T2 re-
laxation caused by surface relaxation, and not the T ′2 relaxation which is also a
function of field gradient. This is due to the method used to simulate relaxation
as described in section 5.7 where we calculate our simulated T2 from a constant
probability k that a tracer will disappear if encounters a sphere, and we do not
include relaxation due to diffusion through an inhomogeneous field.

Note that, our simulated T2 distribution will look different from the T ′2 distri-
bution as measured in the experiment except at the time τ → 0, where T ′2(g2)→
T2. The k value chosen is 0.05, using the biexponential CPMG echo train fit as
outlined in section 5.7. One way to determine the simulated T2 distribution is by
taking an ILT of the simulated echo amplitude decay. This decay can be found
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by cumulatively summing over the number of tracers that have not relaxed after
each diffusion step. The echo amplitude decay for our simulation is shown in
left figure in figure 8.17 with the subsequent T2 distribution shown in the right
figure in figure 8.17. As expected, comparing this distribution directly to ex-
periment shows that the simulated T2 distribution is slightly more broad and
has a longer average T2 time than that of the experimental distribution. Recall
that the chosen k value was based on the Brownstein-Tarr spherical pore calcu-
lation. It is not surprising that in the case of a bead pack, where the pores are far
from spherical, there will be an incompatibility of the calculated T2 distribution
and the biexponential approximation to the CPMG echo decay, used to fit for
k. Since the work here primarily concerns the shape of the 2D distribution, we
can live with the mean T2 offset, allowing that the overall spread in simulated
T2 values approximately matches the experimental data.
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Figure 8.17: Left: The simulated echo amplitude decay. Right: The T2 distribution of

the simulated echo decay from left is shown by the solid blue line. The T2

distribution for the monodisperse bead pack with a τ of 62.5 µs is shown

by the dotted red line. The value of τ is sufficiently short that T ′2(g2)← T2,

as indicated by the τ independence of the T ′2 distribution for τ < 500 µs.

While this method of determining the T2 distribution is straightforward, it
does not give us any information about the internal field for a particular re-
laxation time, therefore we must use another method. The T2-Bi

z correlation is
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simulated by assigning a T2 time for each relaxed tracer as T2 = j∆/N where j
is the number of diffusion steps a tracer has completed, ∆ is the total diffusion
time for the entire simulation, 1.0245 seconds, and N is the maximum number
of diffusion steps, which is 8196 for this simulation. Therefore, for each relaxed
tracer, we have both a T2 time, and the tracer’s position information from which
we can calculate the value of the internal magnetic field at the point where the
tracer relaxed. With this information we can generate a T2-Bi

z correlation map,
shown in figure 8.18.
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Figure 8.18: The simulated T2-Bi
z correlation. Frequency units are dimensionless. Con-

tour levels range from 0.1 to 1.0 in intervals of 0.1. Red indicates higher

intensities.

The most obvious feature of figure 8.18 is that we do not see any strong cor-
relations between T2 relaxation and field offset. This is due to the fact that the T2

in our simulation is driven solely by surface relaxation and does not take into ac-
count the local magnetic field gradient. Again, we have room for improvement
in the relaxation aspect of the simulation. Adding relaxation due to local field
gradients would indeed produce a correlation with likely a triangular shape and
a correlation between short T2 times and large offset as relaxation would occur
not only on the surface of the sphere as is currently being simulated, but also as
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a function of local gradient magnitude. This is a possibility for future work.

8.10 Conclusions

In this chapter we examined the correlation between echo-time dependent trans-
verse relaxation, T ′2, and the internal magnetic field, Bi

z, by using a frequency re-
solved CPMG train on a monodisperse glass bead pack and a core of Bentheimer
sandstone. From our |g|-Bi

z simulations, we find that two types of “wings”
appear, either horizontal, which can be indicative of grain size heterogeneity,
with horizontal wings indicating the presence of differing size grains, or diago-
nal, which is indicative of a wide range of local field strengths. We find in our
monodisperse bead pack correlations hints of horizontal wings at long τ times
which correspond to a strong influence of internal gradients on T ′2. While hori-
zontal wings are indicative of grain size heterogeneity, pore heterogeneities can
appear due to the randomness in packing. The T ′2-Bi

z correlations of the Ben-
theimer sandstone have very clear horizontal wings at long τ times which we
expect not only due to the smaller grains, but the greater range of grain sizes
and the presence of multiple magnetic susceptibilities.

We also simulate T2-Bi
z correlations, however, due to the simplicity of the

implementation of T2 relaxation in the simulation, namely the fact it is depen-
dent on proximity to sphere surface and does not include an internal gradient
dependence, we do not see a strong correlation between T2 and Bi

z. However,
in future work, expanding the simulation to include relaxation due to local field
strength should allow us to accurately simulate the experiment’s dependence
on τ . Future experimental work may also include using rock cores of different
heterogeneities, directly calculating the |g|-Bi

z correlations, and simulating the
Bentheimer rock core used in this chapter. Christoph Arns plans on creating this
simulation in the near future.



150 CHAPTER 8. T2-BI
Z CORRELATION



Chapter 9

Summary and Future Work

It is well known that the magnetic susceptibility difference between the solid
matrix and fluid-filled void space of a porous medium results in an inhomoge-
neous internal magnetic field in the pore space when a sample is exposed to an
external magnetic field, such as that which exists in an NMR machine. These
inhomogeneities will cause line broadening in the 1D NMR spectrum and can
affect the measurements of various properties such as relaxation and diffusion.
In this thesis, we seek to exploit the presence of this inhomogeneous internal
field to glean information about the pore space of the system. To accomplish
this, we purposefully use samples which, upon exposure to an external mag-
netic field, will have large internal magnetic fields such as glass beads imbibed
with water and brine-saturated sandstone. We first develop a program to sim-
ulate a bead pack with an inhomogeneous magnetic field and allow tracers to
diffuse through the pore space via a random walk model. From there we uti-
lize multi-dimensional NMR exchange methods which can allow us to separate
the susceptibility induced broadening from the broadening caused by diffusion
through the pore space. Later we use a 2D correlation method to correlate the
field offset with transverse relaxation.

The most time-consuming work of this thesis was by far the simulation project.
This simulation initially started as tracers generated along a mesh in the pore
space of a cube centered in the cylindrical bead pack. These tracers diffused
as a random walk along the xyz-axis. The cube was made small enough so

151
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that no tracers would encounter the edge of the cylindrical bead pack, and if a
bead was encountered during the random walk, the tracer would bounce back
to its previous step position along the xyz-axis. The internal magnetic field was
calculated by placing a z-oriented magnetic dipole at the center of each sphere.
While sufficient for simulating simple experiments, this program was not robust
enough to accurately represent realistic Z-displacements which would manifest
as propagators with oscillations. We rebuilt the diffusion stepping portion of
the simulation from the ground up. First, to replicate more realistic diffusion,
the random walk was changed to a walk along a random direction. Secondly,
the basic reflection off a bead was changed from the simple bounce back to the
previous tracer point, to a more realistic angled reflection off the sphere surface.
Thirdly, we remove the mesh-based tracer generation and incorporate an algo-
rithm which generates the tracers randomly in the pore space. Lastly, we no
longer use a starting cube centered in the bead cylinder but rather define cylin-
drical boundaries just inside the bead pack which define a reflection boundary
for any tracers which encounter them during diffusion.

For our first experiment, we used a two-dimensional exchange method to
separate the line width broadening due to magnetic susceptibility differences
from the line width broadening due to diffusion through the inhomogeneous
internal magnetic field of the pore space. We found that by quantifying the off-
diagonal intensity growth with τm as an average of two points on either side of
the off-diagonal plotted with respect to mixing time results in a biexponential
curve from which we can obtain a characteristic time and thus a characteristic
length of the pore system. We use two different samples of monodisperse water
filled glass bead packs at two different magnetic field strengths. We find this bi-
exponential growth occurs at both magnetic field strengths and in bead samples
with diameters as small as 10 µm, although since the mean displacement during
the frequency encoding time at this size bead is comparable to a large fraction
of the pore space, we do not put very much weight in the pore characterization
results from this particular sample. However, results from the larger 100 µm
diameter bead pack look promising. Our simulated results also mesh well with
experimental results.

Calculating a characteristic time based on temporal information alone while
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possible, is not precise, due to the fact the characteristic length we calculate is
indirectly based on time and not directly based on spatial information. So for
our next experiment we add a spatial dimension to the frequency exchange ex-
periment in the form of a propagator. What this propagator allowed us to do
is select 2D spectra based on the Z-displacement of the spins in the pore space
of the system. From the propagators we are able to obtain the effective diffu-
sion of the system and derive a theory which moves away from the simplistic
biexponential fit of the previous chapter and directly calculates a characteristic
length using a combination of the Z-displacement, mixing time, and effective
diffusion. It is in this chapter where the simulation really shines. We’re able
to simulate the propagator dimension, and the spatially-resolved 2D exchange
spectra. Again we find our simulation agrees well with experiment.

Finally, we move away from exchange experiments and correlate transverse
relaxation with the inhomogeneous internal field. We find that as we increase
the τ time between 180◦ pulses, correlation between short T2 times and large
magnetic field offsets occurs. This correlation, while subtle in the 100 µm bead
pack, becomes more apparent when we use a brine-filled Bentheimer sandstone
core. This increase in correlation indicates that the transverse relaxation and
internal field correlation may be an indicator of sample heterogeneity. We cor-
relate the internal magnetic field with the transverse relaxation, T2, however, it
is important to note we cannot directly simulate the echo-time dependent trans-
verse relaxation, T ′2 due to the nature of the software currently being unable to
mimic relaxation which is dependent on local magnetic field gradients.

9.1 Future Work

While the work in this thesis comprises a good body of work which covers us-
ing the susceptibility induced inhomogeneous internal magnetic field to obtain
information about the pore space of a sample, there is still more work which can
be done.

One project could be on the continuing improvement of the simulation. In
particular, work could be done with making a more realistic simulated trans-
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verse relaxation which is dependent on the local field gradient rather than solely
on the proximity to bead. This would allow for a proper direct simulation of the
T2-Bi

z correlations of the previous chapter.
Another project could involve using more realistic samples for both the prop-

agator resolved and non-propagator resolved frequency exchange. While the
glass bead samples are a nice model system, it would be interesting to see how
the complexities of rock core samples would manifest themselves in the 2D spec-
tra, particularly the spatially-resolved spectra.

As for the correlation experiment, a spatial dimension could be added to the
T2-Bi

z correlation experiment which could give information on whether or not
correlation seen in this experiment is dependent on Z-displacement. Along the
same vein, one could add a three dimensional propagator to either the correla-
tion experiment or the exchange experiment, but this may be limited by exper-
imental time, as a three dimensional propagator resolved experiment may take
a few days to run.

9.2 Conclusion

In conclusion, the results of this thesis show that by using multi-dimensional
NMR exchange and correlation methods, one can exploit the susceptibility in-
duced inhomogeneous magnetic field present in porous materials to obtain in-
formation about the pore size and heterogeneities of the system. The use of
software for both visualizing the internal field and gradient and for simulating
our experiment has proved to be invaluable for this work. It is hoped that the
methods presented here could be useful as another building block in the study
of porous media with NMR.
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