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Abstract 

Butyrivibrio proteoclasticus B316
T
 is a Gram-positive, lignocellulose degrading 

bacterium that is prevalent in the rumen of animals grazing pasture, and is one of only 

a few rumen microbes known to degrade and utilise xylan in vitro. Xylan is a 

hemicellulose that comprises up to 45% of the polysaccharide component of ruminant 

forages. Often as little as 30% of the total energy content of forages is utilised by the 

ruminant due to poor hemicellulose degradation by the fibrolytic rumen microbes. An 

opportunity exists to improve forage degradation in the rumen, which is predicted to 

improve the productivity of forage fed ruminants. A clearer understanding of the 

strategies employed by fibrolytic rumen microbes to degrade and utilise lignocellulose 

is important in realising this goal. 

Almost 10% of the B. proteoclasticus genome encodes proteins involved in 

polysaccharide metabolism and transport, which includes 134 fibrolytic enzymes that 

are active upon plant fibre. Many of these are clustered into one of 36 polysaccharide 

utilisation loci that also contain transmembrane transporters, transcriptional regulators, 

environmental sensors and genes involved in further polysaccharide metabolism. Gel-

based and gel-free proteomic analyses of the cytosolic, cell-associated, and secreted 

fractions of cells grown on xylan were used to identify proteins involved in the 

degradation, assimilation, and metabolism of hemicellulose. A set of 416 non-

redundant proteins were identified, which included 12 extracellular and 24 cytosolic 

polysaccharidases, and 59 proteins involved in the uptake and further metabolism of 

polysaccharide degradation products, many of which were substrate-binding protein 

components of ATP-driven transporter systems. In cells grown on xylan, several of 

these proteins displayed significant protein abundance changes relative to cells grown 

on the monomeric sugar xylose, in a pattern that reflected the growth substrates used.  

A model of xylan degradation by B. proteoclasticus based on these results 

hypothesises that B. proteoclasticus attacks the xylan backbone and main substituent 

groups of hemicellulose in the extracellular space, assimilates the 

xylooligosaccharides and performs the final stages of degradation within the cell. 

These results provide insight into a xylan degrading enzyme system that has evolved 

to efficiently degrade and utilise hemicellulose, extend our understanding of the 

enzymes that are likely to play important roles in hemicellulose degradation, and 

support the notion that Butyrivibrio species are important contributors to rumen fibre 

degradation. 
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1.1 Overview 

In 2007, 26% of the world‟s land area was devoted to agricultural pasture that 

provided forage for more than 1.3 billion cattle, and 1.8 billion sheep and goats. In the 

same year 46% of the New Zealand landmass was being used for year round grazing 

of 9.7 million cattle and 38.6 million sheep and goats, producing almost 1.5 million 

tonnes of meat and approximately 15 billion litres of milk. The economic value of 

agricultural production to the New Zealand economy is more than $14 billion per 

annum, and by 2050 the worldwide demand for meat and milk products is expected to 

double.  

New Zealand agriculture relies heavily on pasture-based forages for feeding 

ruminant livestock, with very little supplementary feed material such as grains or high 

energy concentrates. Although pasture-based forages and grains contain almost the 

same amount of total energy per unit of dry matter, the net energy value of forages is 

significantly lower and often highly variable (Barriere et al., 2003, van Soest, 1994). 

The difference results mainly from the high lignocellulose content of forage material, 

and the inefficient degradation of this fibrous and insoluble component of the plant 

cell wall within the ruminant digestive tract. In some cases as little as 30% of the total 

energy content of forages is utilised by the ruminant (Barriere et al., 2003). 

Furthermore, if the degradation rate is very slow, intact forage accumulates in the 

rumen and limits voluntary feed intake (Dado and Allen, 1995, Ellis, 1978).  

An opportunity therefore exists to improve lignocellulose degradation in the rumen, 

and it is predicted that such an improvement will lead to the enhanced productivity of 

ruminant livestock that rely on forage as their primary source of nutrition. This 

scenario is supported by several studies showing that enhanced in vivo degradation of 

high fibre forage diets leads to improved ruminant performance in terms of both 

animal weight gain and milk production (Beauchemin et al., 1995, Cruywagen and 

van Zyl, 2008, Titi and Lubbadeh, 2004). Maximising lignocellulose degradation in 

the rumen and therefore improving the conversion of low quality, high fibre forages to 

premium quality animal products for human consumption is of paramount importance 

to the New Zealand agricultural sector and the New Zealand economy.  

1.2 The ruminant digestive tract 

The Pecora or true ruminants include cattle, sheep, goats, deer; also antelope, 

gazelles, and giraffes. Their digestive tract is characterised by a highly specialised 
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fore-stomach comprised of a rumen, reticulum, omasum, and abomasum (Figure 1.1). 

The rumen is the first and largest of the fore-stomach compartments, at 100 L or more 

in cattle and up to 10 L in sheep. The reticulum is considered a simple rumen 

extension, and is connected to the omasum by a short tunnel-like structure. The 

abomasum is the ruminant‟s true stomach, and histologically is similar to that of 

monogastric mammals. The proximal location of the rumen facilitates the 

regurgitation of partially digested lignocellulose for further mastication (rumination). 

This process triggers the flow of copious amounts of saliva from the mouth to the fore-

stomach, which in pasture-grazed ruminants buffers the rumen at pH 6.5-6.8, and is 

essential for efficient rumen function.  

 

Figure 1.1. Simplified schematic diagram of the ruminant digestive tract. The 

passage of ingested material from the oesophagus to the small intestine, via the 

rumen, reticulum, omasum, and abomasum is shown by the green arrows. 

1.2.1 Ruminant microbial symbiosis 

The rumen environment permits a unique symbiosis between the ruminant and a 

wide variety of polysaccharilytic, proteolytic, and fermentative microorganisms, 

which allows the host to utilise energy rich and highly abundant lignocellulosic 

material as the main dietary component. The rumen is the primary site of microbial 

mediated lignocellulose degradation and fermentation, which generates large 

quantities of short chain volatile fatty acids (SCVFAs) and supports microbial growth 

and cell turnover.  

Almost all the acetic, butyric, and propionic acids that are produced as microbial 

fermentation end products are absorbed by the ruminant across the rumen epithelium 

and transported to the liver and other body tissues. Acetic acid is oxidised in most 

Abomasum

Omasum

Rumen

Reticulum

Small intestine Oesophagus
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body tissues to generate ATP, and is the major source of acetyl-CoA for ruminant lipid 

synthesis. Most butyric acid is absorbed from the rumen wall as β-hydroxybutyric 

acid, and is oxidised in many tissues for energy production. Propionic acid is utilised 

almost exclusively in the liver, where it is a major substrate for gluconeogenesis.  

Microbial biomass that is flushed distally from the rumen to the small intestine 

provides the ruminant with more than half of the total source of high quality protein 

(Ulyatt et al., 1980). The digestion and uptake of microbial protein is of particular 

significance because ingested plant protein cannot be utilised directly by the ruminant. 

Plant-derived protein is hydrolysed and deaminated to ammonia and will be rapidly 

excreted by the ruminant unless assimilated by rumen microorganisms (Cotta and 

Hespell, 1986).  

1.2.2 Factors affecting ruminant digestion and energy supply 

Four interconnected factors are recognised as limiting lignocellulose degradation 

and microbial cell turnover in the rumen and each is the focus of intensive research. 

They are: (1) host factors that mediate the availability of nutrients through mastication, 

salivation and digesta kinetics; (2) the chemical composition and degradability of the 

insoluble component of plant material; (3) the diet-dependent composition of the 

rumen microbial ecosystem; (4) the polysaccharilytic capability of the rumen 

microbial ecosystem (Cheng et al., 1991). The fibre intake rate and extent of 

mastication by ruminants affect the rate of passage through the digestive tract, with 

higher intakes resulting in lower overall fibre digestion (Russell et al., 1992a). The 

effect of the chemical composition on plant cell wall digestibility is highlighted by 

studies of brown-midrib mutants of maize (Barriere et al., 2004), which have 

demonstrated that improved fibre degradability can lead to improved animal 

performance. Recently, rumen inoculation of genetically and non-genetically modified 

bacteria harbouring improved fibrolytic or metabolic capabilities has been attempted 

with the aim of improving the composition and fibrolytic capability of the rumen 

ecosystem (Gobius et al., 2002, Krause et al., 1999, Krause et al., 2001, Varel et al., 

1995). Most of these attempts have been empirical and have not translated into 

improved fibre degradation in vivo or improved ruminant performance, and it has 

become clear that our current understanding of the composition and polysaccharilytic 

capability of the rumen microbial ecosystem is highly superficial in comparison to its 

ecological complexity.  
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The purpose of this research project is to contribute to our understanding of the 

polysaccharilytic capability of the rumen microbial ecosystem. A better understanding 

of the metabolic processes performed by the fibrolytic rumen microbiota is expected to 

generate new opportunities to enhance forage degradation, manipulate rumen function, 

and improve the productivity of forage fed ruminants. 

1.3 The plant cell wall 

Plant cell walls contribute up to 80% of the dry weight of plant material, which is 

the principal source of nutrition for forage fed ruminants. In all plants, the cell wall is 

a complex network of cellulose fibres surrounded by a matrix of non-cellulosic 

structural polysaccharides, proteins, phenolic compounds, and lignin, the amounts and 

chemical composition of which vary greatly between plant species, cell types, and 

stages of maturity (Carpita and Gibeaut, 1993, Carpita, 1996). A better understanding 

of fibre degradation and assimilation by the fibrolytic rumen microbiota necessitates a 

description of the structural and chemical complexity of plant polysaccharides. 

1.3.1 Type-I and Type-II plant cell walls 

The primary cell wall of flowering plants can be divided into two broad categories 

that possess significantly different chemical and structural properties (Table 1.1) 

(Smith and Harris, 1999, Stinard and Nevins, 1980). Type-I cell walls, comprised of 

cellulose microfibrils embedded in a xyloglucan (XyG) rich hemicellulose as well as 

significant amounts of pectin and structural proteins, are found in dicotyledonous and 

noncommelinoid monocotyledonous plants and gymnosperms. Type-II cell walls, 

comprised of cellulose embedded in large quantities of glucuronoarabinoxylan (GAX), 

moderate levels of phenolic compounds, and low levels of pectin and structural 

proteins, are distinct in that they are found only in commelinoid monocotyledonous 

plants such as the grasses (Poaceae). The primary cell wall of grasses may also contain 

significant levels of mixed linkage glucans (MLGs) (Jung, 2003, MacAdam and 

Grabber, 2002). The secondary cell wall of grasses can contribute up to 50% of dry 

weight (Brown and Saxena, 2000) and is composed mainly of cellulose, GAX, and 

lignin.  

1.3.2 Cellulose 

Cellulose is the energy rich, structural polysaccharide that provides tensile strength 

to the plant cell wall, and can comprise up to 40% of the dry weight. Cellulose is 
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synthesised as single strands of up to 15,000 (1→4)-β-D-glucose monomers 

(Figure 1.2) that spontaneously form insoluble microfibrils (Pizzi and Eaton, 1985). In 

plants, these microfibrils are 3-5 nm wide and contain a variable number of cellulose 

chains that are held in a crystalline structure by numerous intra- and inter-chain 

hydrogen bonds and van der Waals forces (Cousins and Brown, 1995). Individual thin 

microfibrils may also associate with one another to form a larger single microfiber (Ha 

et al., 1998). The outer parts of the cellulose microfibrils are often less crystalline 

(more amorphous) than the core regions, which may be due to interactions with 

surrounding polymers, or the imperfect association of the individual cellulose chains 

(O‟Sullivan, 1997). Broad microfibrils also tend to have a lower percentage of 

amorphous regions compared to thinner ones, which is in agreement with the 

amorphous regions being found predominantly at the surface (O‟Sullivan, 1997). 

Cellulose provides the structural framework of the plant cell wall, and is in intimate 

association with a number of non-cellulosic cell wall components.  

Table 1.1. Estimated composition of Type-I and Type-II primary and secondary plant 

cell walls.
a
 

Cell wall component Primary wall Secondary wall 

 Type-I Type-II  Type-I Type-II  

Cellulose 15-30b,c,d 20-30
b,e 45-50

b
 35-45

b,f 

Hemicellulose     

Glucuronoarabinoxylans 5
b
 20-40

c
 20-30

b,g 40-50
b,g

 

Mixed linkage glucans None 10-30
c
 None Minor 

Xyloglucans 20-25 1-5
b,c

 Minor Minor 

Mannans/glucomannans 5-10
c
 Minor 3-5

g
 Minor 

Pectin 20-35
c
 5

b
 0.1

b
 0.1

b
 

Structural proteins 10
c,d

 1
c
 Minor Minor 

Phenolic compounds Minor 1-5
b,c

 Minor 0.5-1.5
b
 

Lignin Minor Minor 7-10
b
 20

b
 

Silica None None Variable 5-15
b
 

 
a Values are the percentage of plant cell-wall dry weight. The table was adapted from (Vogel, 2008). 

Estimates were obtained from a number of sources as detailed.  
b (Ishii, 1997).  
c (O'Neil and York, 2003).  
d (Zablackis et al., 1995).  
e (Mitchell et al., 2007). 
f (Hatfield et al., 1999). 
g (Ebringerova et al., 2005). 
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Figure 1.2. Simplified chemical structure of cellulose (A), glucuronoarabinoxylan 

(B), xyloglucan (C), and mixed linkage glucans (D). Dotted lines denote potential 

hydrogen bonds. Ac., O-acetyl; Af, α-L-arabinofuranose; Fe, ferulic acid; G, glucose; 

4-Gu, 4-O-methyl-D-glucuronic acid; Gu, glucuronic acid; X, xylopyranose (xylose).  

B Glucuronoarabinoxylan 

A Cellulose 

C Xyloglucan 

D Mixed linkage glucan 
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1.3.3 Hemicellulose 

Hemicellulose comprises 20%-35% of total plant biomass, and is poorly soluble in 

water or dilute acids. Unlike cellulose, it is a family of chemically heterogeneous and 

highly branched polymers of pentoses, hexoses, and sugar acids that interlace with one 

another and strengthen the plant cell wall (Kabel et al., 2007, Linder et al., 2003). The 

types and relative amounts of hemicellulose vary significantly with plant type, cell 

type, and growth state (Table 1.1). Hemicellulose interacts with neighbouring 

cellulose microfibrils in a structurally dependent manner (Nakamura et al., 2002a), 

and may also interact with surrounding pectins (Atalla et al., 1993). The interaction of 

hemicelluloses (and other non-cellulosic cell wall structural polymers) with cellulose 

is referred to as the sticky network model (Cosgrove, 2000), which describes the 

tethering of hemicellulose to the cellulose microfibrils by two mechanisms: being 

trapped in the microfibril during crystallisation, and formation of multiple hydrogen 

bonds between hemicellulose and cellulose after polymer deposition. Evidence also 

suggests that hemicellulose plays a regulatory role during the initial phase of cellulose 

microfibril formation (Whistler and Richards, 1970).  

1.3.3.1 Glucuronoarabinoxylan  

GAX in grasses consists of a homopolymeric backbone of (1→4)--D-

xylopyranose monomers (Aspinall, 1980, Kulkarni et al., 1999, Li et al., 2000) 

substituted to varying degrees with (1→2)-α-linked and (1→3)-α-linked L-

arabinofuranosyl groups (Vietor et al., 1992), O-acetyl, and (1→2)-α-D-glucuronic 

acid or 4-O-methyl-D-glucuronic acid groups (Borneman et al., 1990, Hartley et al., 

1990b, Mueller-Harvey et al., 1986). The α-L-arabinofuranosyl side groups may also 

be esterified at the O-2 and/or O-5 positions with phenolic polymers such as ferulic 

acid and to a lesser extent, its non-methoxylated analogue p-coumaric acid (Kulkarni 

et al., 1999).  

The level of arabinosyl substitution decreases as cell elongation stops, and a 

concomitant increase in the percentage of ferulated arabinosyl units is observed 

(Carpita and Gibeaut, 1993, Carpita, 1996). GAX of grasses and annual plants exhibit 

extensive a-L-arabinan and/or a-L-arabinofuranosyl substitution (Hartley and Ford, 

1989, Mueller-Harvey et al., 1986), and high levels of ferulic and p-coumaric acids 

(Akin et al., 1990c). The cell walls of warm season grasses such as Bermuda and 

Switchgrass are particularly rich in arabinofuranose linked phenolic acids (Brillouet 

and Joseleau, 1987).  
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GAX in cereals are substituted mainly with (1→2)-α-glucuronic or 4-O-methyl-D-

glucuronic acids and arabinose (Grabber et al., 1995, Grabber et al., 2000, Iiyama et 

al., 1994, Kamisaka et al., 1990, Lam et al., 1992, MacAdam and Grabber, 2002), and 

the starchy endosperm of cereal grains contains mainly α-L-arabinans. The 

hemicellulose substituent groups sterically inhibit the aggregation of the xylan 

backbone leading to the formation of an extended, asymmetrical cell wall matrix (Dea 

et al., 1973). In particular, the extent of arabinose and/or glucuronic acid substitution 

of xylans from different sources has been shown to correlate with the water solubility 

of the polymer (Andrewartha et al., 1979, Hespell and Cotta, 1995).  

1.3.3.2 Xyloglucan 

Xyloglucan is the main hemicellulose in the primary cell wall of many 

dicotyledonous plants, and is found at low levels in Type II primary cell walls. The 

xyloglucan backbone consists of a repeating pattern of four (1→4)-β-D-glucose 

monomers that are substituted with (1→6)-α-xylopyranose residues. In Type-I cell 

walls the xylose residues are often further substituted with (1→2)-α-D-galactose and 

(1→2)-α-L-fucose monomers, but no evidence for such substitution in Type-II cell 

walls has been presented. Most xyloglucans are tightly hydrogen bonded to 

neighbouring cellulose microfibrils (Pauly et al., 1999). Mannan based xylans, such as 

glucomannan (a heteropolymer of D-glucose and D-mannose) and 

galactoglucomannan (a heteropolymer of D-galactose, D-glucose, and D-mannose) 

constitute up to 10% of Type-I cell walls, and a minor component of Type-II walls.  

1.3.3.3 Mannans and glucomannans 

In spite of mannans and glucomannans comprising only minor fractions of Type-II 

primary and secondary cell walls, they are suggested to play important functional 

roles. Although mannan and glucomannan chemical composition is highly species- 

and growth stage specific, they are predominantly straight chain polysaccharides 

characterised by a backbone of (1→4)-β-linked D-mannose and D-glucose monomers 

in a ratio of approximately 1.6:1 (Katsuraya et al., 2003). Depending on the plant 

species, mannose residues within the main chain may be substituted with galactose 

monomers, or be acetylated. Glucomannans are one of the few structural polymers that 

are enriched in the walls of maize coleoptile epidermal cells compared to mesophyll 

cells, and the interactions between glucomannans and surrounding highly substituted 

GAX are implicated in stem elongation (Carpita et al., 2001). The wall of barley 
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endosperm cells also contains significant amounts of mannose containing 

polysaccharides (Lazaridou et al., 2008). The ratio of glucomannans to total 

polysaccharide content is positively influenced by environmental factors such as high 

mean temperature and rainfall, and their presence may be a determinant of cell – cell 

interaction, and overall endosperm strength and rigidity.  

1.3.3.4 Mixed linkage glucans 

MLGs are widely spread among the Poales (the taxonomic order that contains the 

grasses) but are not found in other plants (Carpita, 1996), and are a rare example of a 

developmental stage-specific structural polysaccharide (Staudte et al., 1983, 

Woodward and Fincher, 1983). They are unbranched glucose homo-polymers 

containing both (1→3)-β-D-linked and (1→4)-β-D-glucose monomers (Figure 1.2). 

Approximately 70% of the polymer consists of (1→4)-β-linked cellotriose units 

connected by single (1→3)-β-linkages (Carpita and Gibeaut, 1993). The remainder 

contains longer cellodextrins that are also connected by (1→3)-β-linkages. MLGs are 

tightly integrated with cellulose and non-cellulosic polysaccharides (Kim et al., 2000), 

and are found in the primary walls of elongating cells where they reach maximum 

abundance during the period of maximum growth rate (Carpita et al., 2001). As the 

rate of cell elongation slows, the MLGs are degraded and are no longer a major 

component of the plant cell wall. Consequently, MLGs found in the primary cell wall 

of grasses are believed to play a role in cell wall growth and remodelling (Meier and 

Reid, 1982). MLGs are also a major component of endosperm cells, where they act as 

storage carbohydrates that are hydrolysed during seed germination (Ridley et al., 

2001).  

1.3.4 Pectin 

Pectin is the most structurally complex family of polysaccharides in nature, and is 

implicated in a broad range of functions including cell wall structure and expansion, 

plant defence, cell-cell signalling, and leaf abscission (Jarvis, 1984). In grasses, pectin 

is found mainly in the primary cell wall where there are two types (O‟Neill et al., 

1990). Homogalacturonan (HG) is a linear chain of (1→4)-α-D-galacturonic acid 

(GalA) residues that may be partially methylesterified or O-acetylated (Carpita, 1989, 

Shibuya and Nakane, 1984). Rhamnogalacturonan I (RG-I) is a more complex 

heteropolymer comprised of a backbone of repeating (1→2)-α-L-rhamnosyl-(1→4)-α-

D-GalA subunits. The RG-I backbone can be heavily substituted with complex side 



 

11 

chains containing large amounts of arabinofuranosyl units and arabinogalactans 

(Saulnier and Thibault, 1999). Arabinogalactans are heterogeneous but may have a 

backbone of (1→3)-β-linked D-galactose residues substituted with (1→6)-β-D-

galactose and/or (1→3)-α-L-arabinofuranose. Furthermore, similar to GAX the side 

chains of RG-I may be esterified with ferulic and p-coumaric acids (Coenen et al., 

2007, Nakamura et al., 2002b). Arabinogalactan can be present in large amounts in the 

cell wall of grasses, and may also be classified as a hemicellulose although it 

originates from the side chains of pectin. It is believed that pectic polysaccharides are 

covalently cross-linked to one another, probably by their backbones (Duan et al., 

2004, Nakamura et al., 2002a). It is also possible that both HG and RG-I are 

covalently linked to, or very tightly associated with, other plant cell wall 

polysaccharides including hemicellulose (Nakamura et al., 2002a) and cellulose 

(Zykwinska et al., 2007).  

1.3.5 Cell wall structural proteins 

Cell wall structural proteins (CWP) comprise only 1% of the primary call wall of 

grasses, but may play a strengthening and stabilising role following cell elongation. 

They are thought to form an independent network that assists in assembly and 

restructuring of the cell wall. The threonine-hydroxyproline-rich glycoproteins 

(THPRG) are the grass homologue of the ubiquitous extensin family of proteins. Upon 

secretion into the cell wall they rapidly become insoluble and may form intramolecular 

cross-links (Cassab and Varner, 1987, Lamport, 1986), and may interact with 

surrounding cellulose microfibrils (Qi et al., 1995) and pectin (Showalter, 1993). 

Glycine-rich (GRP) and proline-rich proteins (PRP) are often co-localised, and may 

form tyrosine dependent intra- and inter-molecular linkages. Isodityrosine cross-links 

may also form between PRP and THPRG (Ye and Varner, 1991). Furthermore, both 

GRP and PRP have been implicated as potential nucleation sites for cell wall 

lignification (Showalter, 1993), and the PRP may also interact ionically with 

surrounding pectin molecules (Chabannes et al., 2001, Jones et al., 2001).  

1.3.6 Lignin 

Lignin is an integral component of the secondary cell wall of grasses and is crucial 

for maintaining cell structural integrity (Barriere et al., 2003), water transport and 

protecting against plant pathogens (Ralph et al., 2001). Furthermore, it is impervious 

to enzymatic degradation by the rumen microbiota, and its presence in the grass cell 
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wall is believed to be a contributing factor to the recalcitrance of ruminant forages. 

Lignins are comprised mainly of guaiacyl and syringyl subunits (Grabber et al., 2004), 

and grass lignin also contains a moderate quantity of p-hydroxyphenyl units that are 

found in minimal levels in dicotyledonous plants (Campbell and Sederoff, 1996). The 

quantity and composition of lignin varies considerably between plant species, cell 

types, and cell wall layers, and with plant maturity, and is controlled by a variety of 

developmental and environmental cues (Grabber et al., 1998a). Importantly, ferulic 

acids are also incorporated into grass lignins in a structurally dependent manner during 

development (Ralph et al., 1995) via ether bonds involving the ferulic acid hydroxyl 

groups (Kondo et al., 1990, Scalbert et al., 1985).  

1.4 Lignocellulose degradation 

The variable structure and chemical composition of lignocellulosic material 

necessitates the concerted action of several types of polysaccharide degrading 

enzymes (polysaccharidases) for its complete degradation. These enzymes are either 

O-glycoside hydrolases (GH) that hydrolyse glycosidic bonds between carbohydrate 

monomers or between carbohydrate and non-carbohydrate moieties, carbohydrate 

esterases (CE) which hydrolyse the ester linkages of ferulic acid or acetate side chains, 

or polysaccharide lyases (PL) that hydrolyse polysaccharide chains by β-elimination. 

GH hydrolysis takes place via general acid catalysis leading to an overall retention or 

inversion at the site of catalytic activity (Henrissat, 1991, Henrissat and Davies, 1997, 

Henrissat, 1998), while CEs are divided into two classes, those in which the sugar 

behaves as an acid or alcohol, such as pectin methyl esterases and acetylxylan 

esterases respectively (for review see Lynd et al., (2002)). Polysaccharidases are 

classified by the International Union of Biologists and Molecular Biologists (IUBMB) 

(Barrett, 1999) and designated by Enzyme Commission (EC) number 

(http://www.chem.qmul.ac.uk/iubmb/enzyme/). A second classification system 

utilising hydrophobic cluster analysis catalogues GHs into 118 GH families (as of 

August 2010) (Carbohydrate Active enZYmes Database, http://www.cazy.org/) 

(Cantarel et al., 2009). CAZy family members exhibit common catalytic domain 

tertiary structure and hydrolytic stereospecificity, which permits confident functional 

prediction of newly identified enzymes. The types of fibre degrading enzymes 

important for rumen forage degradation, and the chemical bonds hydrolysed by each 

class of enzyme are summarised in Table 1.2 and Figure 1.3 respectively.  
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Table 1.2. Summary of the types of hemicellulolytic and cellulolytic enzymes 
important for lignocellulose degradation. 

Enzyme Substrate CAZy family
a
 EC number

b
 

Endo-β-1,4-xylanase (1→4)-β-D-Xylan 
GH5, 8, 10, 11, 
43 

3.2.1.8 

Exo-β-1,4-xylosidase 
(β-xylosidase) 

(1→4)-β-D-Xylooligomers, 
xylobiose 

GH3, 30, 39, 43, 
51, 52, 54 

3.2.1.37 

α-L-Arabino-

furanosidase 

α-L-Arabinofuranosyl (1→2) or 

(1→3) xylooligomers 

GH3, 43, 51, 54, 

62 
3.2.1.55 

α-Glucuronidase 
Glucuronic acid, and 4-O-methyl-

D-glucuronic acid 
GH4, 67, 115 3.2.1.139 

Acetyl xylan esterase O-Acetyl xylan 
CE 1, 2, 3, 4, 5, 

6, 7 
3.1.1.72 

Ferulic/p-coumaric acid 
esterase 

Ferulic/p-coumaric acid esterified 
arabinofuranosyl xylooligomers 

CE 1 3.1.1.73 

α-Galactosidase (1→6)-α-D-Galactose 
GH4, 27, 36, 57, 
110 

3.2.1.22 

Endo-β-1,4-glucanase (1→4)-β-D-Glucose 
GH5, 6, 7, 8, 9, 
12, 44, 45, 48, 

51, 61, 74 

3.2.1.4 

Cellodextrinase 
Cellobiohydrolase 

(1→4)-β-D-Glucose 
GH1, 3 
GH5, 6, 9, 48 

3.2.1.74 
3.2.1.91 

β-Glucosidase 
(1→4)-β-D-Cellodextrins and 

cellobiose 
GH1, 3, 9 3.2.1.21 

 
a CAZy database classification (http://www.cazy.org/). 
b Enzyme commission number (http://www.chem.qmul.ac.uk/iubmb/enzyme/). 

1.4.1 Cellulose degradation 

Three types of enzymes catalyse cellulose hydrolysis to glucose. Endo-β-1,4-

glucanases (EC 3.2.1.4) cleave (1→4)-β-D-glycosidic bonds at internal positions along 

the cellulose chain generating cellodextrins of variable chain lengths. Exoglucanases 

such as cellodextrinases (EC 3.2.1.74) and cellobiohydrolases (3.2.1.91) act on the 

reducing or non-reducing ends of cellulose in a processive manner, which liberates 

glucose and cellobiose, respectively (Barr et al., 1996). Exoglucanases are also 

capable of degrading microcrystalline cellulose, possibly by stripping cellulose 

microfibrils from the microcrystalline structure (Teeri, 1997). -Glucosidases 

(3.2.1.21) complete the degradation process by hydrolysing soluble cellobiose and 

cellodextrins to glucose.  
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Figure 1.3. Summary of the enzyme activities important for the degradation of rumen forage material. Sites of attack are shown for the enzymes 

involved in the hydrolysis of GAX (A), xylobiose (B), cellulose (C), cellobiose (D), and xyloglucan (E). Ac., O-acetyl; Af, α-L-arabinofuranoside; 

Fe, ferulic acid; G, glucose; 4-Gu, 4-O-methyl-D-glucuronic acid; Gu, glucuronic acid; X, xylopyranose.  
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1.4.2 Hemicellulose degradation 

Efficient hemicellulose hydrolysis requires a variety of enzymes with overlapping 

but different substrate specificities (Wong et al., 1988), which reflects the complex 

and diverse chemical structure of the polysaccharide. (1→4)-β-D-

xylanxylanohydrolases (endoxylanases) (EC 3.2.1.8) cleave internal linkages within 

the xylan backbone (Mackenzie et al., 1987), generating xylobiose and 

xylooligosaccharides, which are further degraded to xylobiose and/or xylose by 

(1→4)-β-D-xylan-xylohydrolases (β-D-xylosidases) (3.2.1.37) acting on non-reducing 

polysaccharide chain ends. The diverse range of hemicellulose substituents are 

hydrolysed from the xylan backbone by the activity of α-D-glucuronidases (EC 

3.2.1.139), α-L-arabinofuranosidases (EC 3.2.1.55), acetylxylan esterases (EC 

3.1.1.72), ferulic acid (EC 3.2.1.73) and p-coumaric acid esterases (EC3.2.1.-). Ferulic 

acid esterases may be particularly important in ruminant fibre degradation in that they 

hydrolyse the ester bond between ferulic acids and hemicellulose substituents, which 

is hypothesised to result in increased accessibility of hemicellulose to other fibre 

degrading enzymes (Black et al., 1996, Janecek et al., 2003). Microbial expressed 

endoxylanases are classified within GH families 5, 8, 10, 11 and 43 with members of 

families 10 and 11 being the most prevalent and well characterised. The activity of 

family 10 and 11 endoxylanases upon hemicellulose appears to be strongly influenced 

by the site of xylopyranosyl unit substitution. Depending on the type of xylan 

backbone substitution, GH 10 enzymes are capable of cleaving (1→4)--linkages 

immediately adjacent to the substituted xylopyranosyl residue, while family 11 

enzymes are capable of cleaving the (1→4)--linkage two positions away from the site 

of substitution only (Biely et al., 1997).  

1.4.3 Pectin degradation 

Three classes of enzymes are required for complete pectin degradation. 

Depolymerases act directly upon the pectin backbone, and are subdivided into lyases 

(acting by β-elimination) and hydrolases (Sakai et al., 1993), while esterases hydrolyse 

acetyl, methyl, or ferulic acids substituents from the main chains of the (1→4)-α-

galacturonic acids. Pectate lyases (EC 4.2.2.2) are a key enzyme in bacterial pectin 

hydrolysis and are involved in the initial stages of degradation (Kluskens et al., 2003). 

Pectate lyases cleave the (1→4)-α-linkages between galacturonic acids and may 

preferentially attack regions of unmethylated polygalacturonate (pectate), although 

they can be active upon regions with low levels of methylation (Tardy et al., 1997). 
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Pectate lyases are classified in five of the 22 polysaccharide lyase CAZy database 

families (1, 2, 3, 9, and 10), with the largest number of enzymes present in the PL1 

family. The hydrolases involved in pectin degradation include endopolygalacturonases 

(EC 3.2.1.15), exopolygalacturonases (EC 3.2.1.67) and exo-poly-α-galacturonases 

(EC 3.2.1.82), and rhamnogalacturonases (EC 3.2.1.-). The former three enzymes 

cleave at random internal positions, and at the non-reducing chain ends in 

polygalacturonans, while rhamnogalacturonases hydrolyse bonds between D-

galacturonic acid and L-rhamnose in Rhamnogalacturonan I. The majority of 

hydrolases are classified in the GH28 family, and members of the GH2, GH53, GH78, 

GH88, GH105 families also target pectin. Acetylesterases (EC 3.1.1.6) remove C-2 

and C-3 attached acetyl groups, and methylesterases act on methoxylated galacturonic 

acids releasing methanol, which can then be used as a substrate by methanogens and 

acetogenic bacteria. Acetylesterase activity is enhanced when esterified pectins are 

pre-treated with methylesterase, suggesting there is an optimised sequence of esterase 

activities for pectin degradation (Shevchik and Hugouvieux-Cotte-Pattat, 2003).  

1.5 Recalcitrance of rumen forages to microbial degradation 

An array of covalent linkages between hemicellulose substituents, and between 

hemicellulose and components of the surrounding structural polymers creates a 

formidable structural barrier to degradation of the lignocellulose component of forages 

by rumen microbes.  

1.5.1.1 Diferulate cross-linking within grass hemicellulose 

In grasses, dimerisation of ferulic acid residues attached to arabinosyl side chains 

extensively cross-link neighbouring hemicellulose backbone chains (Figure 1.4A). The 

first diferulate cross-link identified was the (5→5)-dehydrodimer (Harris and Hartley, 

1976), and since then many alternative diferulates have been identified and 

characterised (Ralph et al., 1994). More recently, the presence of arabinoxylan-bound 

esterified ferulate trimers, tetramers, and larger oligoferulates in maize bran and maize 

culture cells have been reported (Burr and Fry, 2009, Fry et al., 2000, Rouau et al., 

2003). The latter two studies found that the oligoferulates were up to 4-fold more 

prevalent than diferulate cross-links, which led the authors to propose that 

oligoferulates were the main contributors to hemicellulose cross-linking in maize cell 

walls. Arabinoxylan-bound ferulate linkages are thought to play an important role in 
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cell wall stiffening and growth cessation (MacAdam and Grabber, 2002), and 

pathogen resistance (Lyons et al., 1993).  

 

Figure 1.4. Simplified chemical structure of several of the inter-polymer cross-links 

found in lignocellulose. Af, α-L-arabinofuranoside; Fe, ferulic acid; Gl, Guaiacyl 

lignin monomer; Gu, glucuronic acid; X, xylopyranose.  

1.5.1.2 Diferulate cross-links between grass hemicellulose and lignin 

The bifunctional ability of arabinoxylan-bound ferulic acids to form ester and 

phenol coupling reactions allows the formation of polysaccharide-ferulate-lignin 

complexes (Figure 1.4C) (Jacquet et al., 1995, Scalbert et al., 1985). The presence of 

ether linkages between ferulated arabinoxylans and lignin in wheat was confirmed 

after hot alkaline treatment of the cell walls released ether-linked ferulates (Lam et al., 

1992). Ralph et al (1995) demonstrated in ryegrass that ferulated arabinosyl residues 

actively coupled with both syringyl and guaiacyl lignin subunits, and Lam et al (2001) 

subsequently determined that the majority of arabinosyl-linked ferulic acids in mature 

oat internodes are ester-linked at the benzyl position of lignin side chains. 

Furthermore, model studies have shown that (5→5)-coupled diferulates are also 

capable of copolymerising with the coniferyl alcohol monomers (Grabber et al., 2002). 

The ferulate monomers attached to a-L-arabinofuranosyl residues are believed to play 

an important role as initiation sites for lignin deposition, and in anchoring lignin 

within the cell wall (Ralph et al., 1995, Trethewey et al., 2005). In addition, there is 

evidence for the existence of direct ester linkages between the carboxyl groups of 
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uronic acids, such as glucuronic acid in GAX in grasses, and free hydroxyl groups in 

lignin (Figure 1.4B) (Iiyama et al., 1994).  

1.5.1.3 The impact of feruloylation on lignocellulose degradation 

The di- and oligoferulate cross-links within hemicellulose, and between 

hemicellulose and the surrounding lignin are believed to be a primary determining 

factor in the degradability of high fibre forage material, by restricting the accessibility 

of polysaccharide degrading enzymes to their substrate. Hartley (1972) was the first to 

demonstrate a negative correlation between the extent of hemicellulose and/or lignin 

feruloylation on the one hand, and grass cell wall digestibility on the other, and 

subsequent studies have confirmed this relationship.  

Jung et al (1991) used synthetically ferulated oat-spelt xylan to show that 

hemicellulose degradability by rumen fluid was negatively correlated with the 

concentration of esterified phenolic acids, and Lam et al (2003) extended the 

correlation to degradation of the complete cell wall of two common forage grass 

species. Furthermore, Lam et al (2003) concluded that the phenolic acid concentration 

was a stronger determinant of cell wall degradability than lignin content. Vailhe et al. 

(2000) showed in tall fescue that the youngest cells had the lowest ferulic acid content, 

and the highest degradability, and determined that hemicellulose feruloylation had a 

greater impact on the rate, rather than the extent of tall fescue cell wall degradation, 

although both variables were significantly impacted.  

The correlation between the prevalence of ferulated arabinoxylans in Bermudagrass 

and cell wall degradation by rumen bacteria was demonstrated using UV absorption 

and histochemical staining (Akin et al., 1990a, Akin et al., 1990b, Ames et al., 1992, 

Hartley et al., 1990a). Cells that had a spectral or staining pattern characteristic of high 

levels of cell wall phenolic acids showed slow and partial degradation by rumen 

microorganisms, while cell walls with little or no phenolics were rapidly and 

extensively degraded. The fact that chemical treatments that specifically cleave 

diferulate linkages enhance grass cell wall digestibility in vitro supports these studies 

(Fritz et al., 1991, Jung et al., 1992, Morrison, 1991).  

Grabber et al. (1998a) confirmed the influence of diferulate linkages by artificially 

increasing ferulate dimerisation in the walls of non-lignified maize cell suspensions 

from 18 to 40%, which significantly reduced the enzymatic hydrolysis of xylan, 

cellulose, and pectin. Subsequent inhibition of diferulate bridge formation in 

synthetically lignified maize cell suspensions led to a concomitant increase in cell wall 
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digestibility (Grabber et al., 1998b). Furthermore, using vacuole-targeted expression 

of an Aspergillus niger ferulic acid esterase (FAE) in Italian ryegrass and tall fescue, 

the release of monomeric and dimeric ferulic acids from cell walls following cell death 

and a concomitant increase in cell wall digestibility was observed in both species 

(Buanafina et al., 2006, Buanafina et al., 2008). The common conclusion drawn by 

each of these research groups, that hemicellulose cross-linking is a determining factor 

in the rate and extent of plant fibre degradation, is in agreement with earlier kinetic 

studies demonstrating that cellulose hydrolysis by rumen microbes is a first order 

reaction in terms of cellulose concentration, implying that cellulose concentration is 

the rate limiting factor (Fisher et al., 1989, Maglione et al., 1997, van Soest, 1973, 

Waldo et al., 1972, Weimer et al., 1990). Cellulose digestion is therefore not limited 

by either the composition or fibrolytic capability of the cellulolytic microbial 

population, but rather the surface area of cellulose exposed to the rumen microbiota 

(Weimer, 1998). Consequently, processes that improve the access of rumen 

cellulolytic bacteria to cellulose, such as enhancing hemicellulose digestion and 

hydrolysis of diferulate cross-links between cell wall polymers, are predicted to 

improve the overall rate and extent of fibre degradation. For these reasons, rumen 

microbes that have the capacity to degrade the hemicellulosic component of grass cell 

walls are an important focus of research, and are potential targets for the manipulation 

of rumen function with the aim of enhancing ruminant productivity.  

1.6 The rumen microbial ecosystem 

The rumen microbiota consists mainly of obligate anaerobes that act synergistically 

to rapidly degrade and ferment lignocellulosic biomass. Cell numbers in the bovine 

rumen can reach a remarkable 10
11

 bacterial cells, 10
9
 methanogenic archea, 10

6
 

protozoa, and 10
3
 anaerobic fungi per millilitre of rumen fluid (Flint, 2004, Hobson, 

1989). Culture dependent methods have identified at least 370 bacterial and archeal 

species, 40 protozoal, and five fungal species (Orpin and Joblin, 1997, Stewart et al., 

1997, Williams and Coleman, 1997).  

1.6.1 Rumen microbial diversity 

In spite of the wealth of information generated by culture dependent analyses, 

cultivation-independent molecular surveys have recently revealed the true extent of the 

microbial diversity with the rumen ecosystem, and have demonstrated that as little as 

11% of the total bacterial taxa have been cultured (Cho et al., 2006, Edwards et al., 
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2004, Janssen and Kirs, 2008, Shin et al., 2004a, Shin et al., 2004b, Shin et al., 2004c, 

Skillman et al., 2006, Tajima et al., 1999, Wright et al., 2007). Several hundred to 

thousands of uncultivated individual species are believed to be present in the rumen, 

with the majority falling within either the low G+C Gram-positive Firmicutes or the 

Gram-negative Bacteroidetes (Figure 1.5). The Firmicutes are represented mainly by 

the Clostridial clusters XIVa, IV, and IX, while Prevotella spp. are particularly 

numerous members of the Bacteroidetes (Edwards et al., 2004). Through these 

studies, it has become apparent that the presently cultivated and characterised rumen 

microorganisms may not accurately represent the numerically dominant nor 

functionally significant members of the microbial community (Attwood et al., 2008). 

Consequently, our knowledge of the bacterial species that are important contributors to 

rumen fibre degradation and by extension our understanding of the enzyme systems 

used by these bacteria to degrade lignocellulose is at best rudimentary. Examination of 

the fibrolytic system of novel rumen microbes that are capable of degrading 

lignocellulosic material, in particular the hemicellulosic component, will provide a 

clearer understanding of the metabolic processes involved in plant cell wall 

degradation by the fibrolytic rumen microbiota. 

 

Figure 1.5. Bacterial diversity in the rumen microbial ecosystem. The percentage of 

16S rRNA gene sequences represented by cultivated (dark grey) and uncultivated 

(light grey) bacteria is shown for the two predominant phyla, and minor or unknown 

phyla. Figure adapted from Edwards et al., (2008). 
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rumen liquor (planktonic phase); 2) microbes loosely or tightly associated with 

ingested plant material (adherent phase); and 3) microbes associated with the rumen 

epithelium. Microbial attachment is a key process in lignocellulose degradation 

(McAllister et al., 1994) and bacteria and protozoa have been shown to attach to plant 

material within five minutes of ingestion (Bonhomme, 1990, Koike et al., 2003a). 

Adherence to plant particles has been shown to be a prerequisite for efficient 

degradation of plant cell wall polysaccharides (Jun et al., 2007, Miron et al., 1998, 

Mosoni and Gaillard-Martinie, 2001), with adhesion defective mutants typically 

displaying reduced or abolished cellulolytic capability (Devillard et al., 2004, Koike et 

al., 2003a). Fibre adherent bacteria account for 70-80% of the total microbial biomass, 

and are estimated to be responsible for approximately 90% of the cellulase and 

xylanase activity, 70% of the amylase activity, and 75% of the protease activity in the 

rumen (Akin, 1980, Craig et al., 1987, Minato et al., 1993). Consequently, fibre 

adherent bacteria are considered the predominant degraders of lignocellulosic plant 

material in the rumen (Flint, 2004, Foroozandeh et al., 2009). The rumen protozoa and 

fungi undoubtedly play important fibrolytic roles, especially during the initial stages of 

degradation of large substrate particles (van Soest, 1994).  

Molecular surveys of the bacterial composition of the three rumen microbial 

fractions have demonstrated that they are markedly different from each other, with 

representatives of the Firmicutes accounting for up to 75% of the adherent population 

while the planktonic phase is dominated by the Bacteroidetes (Cho et al., 2006, 

Tajima et al., 1999). Culture-independent studies focused only on fibre adherent 

bacteria confirmed the prevalence of Firmicute species within the fibre adherent 

microbiome, especially when ruminants were fed an all-grass diet, and surprisingly 

also found that the commonly cultivated fibrolytic species were often not detected 

(Koike et al., 2003b, Larue et al., 2005).  

Current understanding of the enzymatic processes that mediate rumen forage 

degradation is derived mainly from molecular and biochemical in vitro analyses of 

single genes and/or gene products produced by culturable microbes. These analyses 

have mostly been conducted on single bacterial species grown in pure culture, and 

have demonstrated that relatively few bacteria are capable of efficiently degrading the 

cellulosic component of plant cell walls. Still fewer are capable of degrading and 

utilising the non-cellulosic components such as hemicellulose and pectin (Stewart et 

al., 1997). The bacteria currently considered the predominant fibrolytic bacteria in the 
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rumen of cattle fed a high forage diet are summarised in Table 1.3. It should be noted 

that Table 1.3 does not constitute an exhaustive list, as less well characterised bacteria 

such as other Butyrivibrio and Pseudobutyrivibrio sp., Clostridium sp., Eubacterium 

ruminantium and Lachnospira multipara are also present and undoubtedly play an 

important role in rumen fibre degradation.  

Table 1.3. Summary of the major lignocellulose degrading bacteria of the bovine 

rumen.  

Phylum Species 
Predominant 

Substrate
a 

Predominant 

niche 
Main fermentation products

b 

Firmicutes 
(Gram-

positive) 

Butyrivibrio 
fibrisolvens 

P, S, X Solid Formate/butyrate/acetate/lactatec 

Ruminococcus 
flavefaciens 

C, P, X Solid Formate/succinate 

Ruminococcus 
albus 

C, P, X Solid Formate/succinate 

Eubacterium 

cellulosolvens 
C, X Solid Lactate/formate 

Bacteroidetes 

(Gram-

negative) 

Prevotella 

ruminicola 
P, S, X Liquid Propionate/succinate 

Prevotella 

bryantii 
P, S, X Liquid Propionate/succinate 

Fibrobacter 
(Gram-

negative) 

Fibrobacter 
succinogenes 

C, P Solid Formate/succinate 

Fibrobacter 
intestinalis 

C Solid Formate/succinate 

 
a C, cellulose; P, pectin; S, starch; X, xylan. 
b Formate is converted to acetate through the metabolic activity of resident acetogens. Succinate is 

converted to propionate through the action of bacteria such as Selenomonas ruminantium (Weimer, 

1998). 
c Different B. fibrisolvens species give different predominant fermentation products. 

1.6.3 The hemicellulolytic rumen bacteria  

1.6.3.1 Butyrivibrio fibrisolvens 

Butyrivibrio fibrisolvens belongs to the genetically diverse 

Butyrivibrio/Pseudobutyrivibrio genus (Clostridial cluster XIVa) (family 

Lachnospiraceae) and is considered the most efficient degrader of hemicellulose 

amongst the presently culturable rumen bacteria (Kopecny et al., 2001, Orpin et al., 

1985). Furthermore, members of the Butyrivibrio/Pseudobutyrivibrio are the 

predominant butyrate producing bacteria in the rumen (Asanuma et al., 2005), and 

utilise exclusively one of two butyrate synthesis pathways (Diez-Gonzalez et al., 1999, 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=186803&lvl=3&p=mapview&p=has_linkout&p=blast_url&p=genome_blast&keep=1&srchmode=1&unlock
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Paillard et al., 2007a). Isolates with Butyrivibrio-like phenotypic and metabolic 

qualities were originally all classified as Butyrivibrio fibrisolvens, although individual 

cultures were known to have diverse characteristics. As taxonomic methods have been 

refined this group of cultures have been reclassified into the Butyrivibrio and 

Pseudobutyrivibrio genera, both of which now contain several different species. 

(Kopecny et al., 2001, Moon et al., 2008).  

B. fibrisolvens cells are prevalent in the rumen ecosystem (Reilly et al., 2002), 

especially so when the animal is grazed on high fibre forage (Mrazek et al., 2006). 

Many strains produce an array of fibrolytic enzymes that collectively degrade the 

xylan backbone of hemicellulose (Lin and Thomson, 1991a, Lin and Thomson, 1991b, 

Mannarelli et al., 1990, Utt et al., 1991) and hydrolyse the majority of substituent 

groups that mediate the interaction between hemicellulose and the surrounding cell 

wall polymers (Dalrymple and Swadling, 1997, Hespell and Obryan, 1992, Utt et al., 

1991). In particular, a number of arabinofuranosidases and esterases have been 

characterised that are likely to hydrolyse the di- and oligoferulate linkages that 

negatively influence forage degradation by the rumen microbiome (Dalrymple and 

Swadling, 1997, Hespell and Obryan, 1992, Hespell and Cotta, 1995, McSweeney et 

al., 1998, Utt et al., 1991). 

B. fibrisolvens strains are versatile in their ability to degrade xylans from a variety 

of intact forages with differing chemical and physical properties (Coen and Dehority, 

1970, Hespell and Cotta, 1995, Miron and Benghedalia, 1993, Miron et al., 1994). 

Hespell and Cotta (1995) showed that both the rate and extent of xylan degradation by 

B. fibrisolvens H17c are not negatively influenced by either the type of xylan 

backbone substitution or the water solubility of the polymer. They also demonstrated 

that xylans containing high proportions of arabinose and/or glucuronic acids, as well 

as xylans of variable solubility were all rapidly and extensively degraded. 

B. fibrisolvens strains are also capable of growing on a range of simple sugars and 

plant polysaccharides including pectins, mannans, and starch, in addition to 

hemicellulose (Hespell, 1991, Kasperowicz, 1994, Marounek and Duskova, 1999), 

although in spite of producing a number of cellulose degrading enzymes (Berger et al., 

1989, Berger et al., 1990) all strains are incapable of utilising cellulose in vitro 

(Attwood and Reilly, 1995). Recently, culture independent analyses have shown that 

the majority of the rumen B. fibrisolvens population adheres to the solid-fraction of the 
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rumen contents (Koike et al., 2003b, Tajima et al., 1999, Whitford et al., 1998), 

although the mechanisms of substrate attachment are currently unknown.  

A feature of many B. fibrisolvens strains is a high proteolytic activity primarily of 

the serine type (Attwood and Reilly, 1995, Cotta and Hespell, 1986, Sales et al., 

2000). Cotta and Hespell (1986) examined the relative proteolytic activity in several 

Butyrivibrio and Pseudobutyrivibrio species, and found the highest levels in strains 

including B. fibrisolvens H17c and 12, and Pseudobutyrivibrio sp. 49. In most strains 

the majority of the proteolytic activity was detected in the culture medium rather than 

being cell associated or cytosolic.  

1.6.3.2 Prevotella bryantii and Prevotella ruminicola  

Many prevalent rumen microbes that are unable to degrade intact plant cell walls 

thrive by metabolic cross-feeding, deriving energy from the initial degradation 

products of carbohydrates released by the primary fibre degraders, or from the 

conversion of fermentation products (Osborne and Dehority, 1989). The non-

cellulolytic, Gram-negative Prevotella bryantii (Dehority, 1966) is such a species. 

Although it is considered an important contributor to hemicellulose degradation, the 

ability to utilise xylan is limited strictly to soluble substrates (Miyazaki et al., 1997). 

The related P. ruminicola also degrades insoluble xylan in vitro (Dodd et al., 2009) 

although evidence of insoluble xylan degradation in liquid culture is lacking. 

Furthermore, P. ruminicola preferentially degrades and utilises soluble 

xylooligosaccharides over intact xylan, and at a rate exceeding that of other 

xylanolytic rumen bacteria (Cotta, 1993). Prevotella species are capable of utilising 

other non-cellulosic cell wall polymers such as pectin (Kasperowicz, 1994, Marounek 

and Duskova, 1999) and mixed linkage glucans (Fields et al., 1998).  

Both P. bryantii and ruminicola produce multiple xylanolytic enzymes, including 

endoxylanases (Flint et al., 1997, Gasparic et al., 1995b, Whitehead, 1993), an α-L-

arabinofuranosidase (Gasparic et al., 1995a), an oxygen sensitive β-xylosidase 

(Gasparic et al., 1995b) and a bi-functional xylanase-ferulic acid esterase (Dodd et al., 

2009). Recently, transcriptomic analysis of xylan degradation by P. bryantii exposed a 

cluster of genes that are up-regulated by growth on wheat arabinoxylan relative to a 

mixture of its monosaccharide components, and led to the functional characterisation 

of a novel GH5 endoxylanase that was previously annotated as a hypothetical protein 

(Dodd et al., 2010). Fractionation studies of P. bryantii demonstrate that the majority 

of xylanolytic activity is located within the cell membrane or periplasm, and not at the 
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cell surface, which is in keeping with the hypothesis that this organism utilises smaller 

soluble oligosaccharides rather than actively degrading intact plant cell walls. Support 

for this hypothesis comes from the fact that no polysaccharide attachment mechanism 

has been identified in Prevotella spp., and that cells are found most abundantly in the 

rumen liquor.  

1.6.4 The cellulolytic rumen bacteria 

1.6.4.1 Ruminococcus flavefaciens, Ruminococcus albus, and Fibrobacter 

succinogenes 

The Gram-positive Ruminococcus flavefaciens and R. albus (Antonopoulos et al., 

2003, Hungate, 1957) of Clostridial cluster IV (family Ruminococcaceae) (Aurilia et 

al., 2000, Doerner and White, 1990, Flint et al., 1993, Pettipher and Latham, 1979) 

and the Gram-negative Fibrobacter succinogenes (Bryant and Doetsch, 1955) are 

together considered the predominant rumen cellulose degraders. Strains of all three 

species produce many well characterised cellulolytic enzymes that are active upon 

plant-derived cellulose and cellooligosaccharides. Growing F. succinogenes cultures 

are known to degrade cellulose at a rate superior to that of most other organisms 

(Halliwell and Bryant, 1963, Maglione et al., 1997).  

The draft genome sequences of R. flavefaciens FD-1 (Berg Miller et al., 2009) and 

F. succinogenes (Morrison et al., 2003) have revealed the presence of 95 and more 

than 100 coding sequences (CDSs) encoding polysaccharide degrading enzymes, 

respectively, the majority of which are responsible for the degradation of cellulosic 

substrates. Strains of all three cellulolytic species also produce enzymes that may 

degrade non-cellulosic components of lignocellulose, therefore enhancing the 

cellulolytic activity of the bacteria (Aurilia et al., 2000, Flint et al., 1993, Matte and 

Forsberg, 1992, McSweeney et al., 1998, Nakamura et al., 2002c, Paradis et al., 1993, 

Romaniec et al., 1989, Zhang and Flint, 1992).  

Real-time PCR assays have recently confirmed that all three cellulolytic species 

cells are enriched in the fibre adherent fraction of the rumen microbiome (Yang et al., 

2009). A feature of R. flavefaciens is the presence of a large molecular weight multi-

enzyme complex termed the cellulosome (Lamed et al., 1983), which retains high 

concentrations of fibrolytic enzymes on the bacterial cell surface, and promotes 

synergy between cellulolytic and/or non-cellulolytic enzymes recognising different 

polysaccharide substrates (Murashima et al., 2002a). A carbohydrate-binding module 

(CBM) within at least one of the enzymes comprising the R. flavefaciens cellulosome 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=541000&lvl=3&p=mapview&p=has_linkout&p=blast_url&p=genome_blast&keep=1&srchmode=1&unlock
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facilitates attachment of the bacterial cell to cellulose (Rincon et al., 2001). 

R. flavefaciens also utilises a distinct cell surface associated carbohydrate-binding 

protein that also mediates attachment of the bacterial cell to crystalline cellulose 

(Rincon et al., 2007).  

R. albus appears to use a variety of modes of attachment to cellulosic substrates. A 

cellulosome-like complex that contained at least 15 proteins was identified in strain F-

40 (Ohara et al., 2000a), and characterised F-40 fibrolytic enzymes contain the 

requisite dockerin and CBMs suggestive of bacterial cell attachment to cellulose 

(Ohara et al., 2000b, Taguchi et al., 2004a). Cellulose adhesion defective R. albus 8 

mutants have been generated that lack two cell-bound cellulolytic enzymes, neither of 

which contain dockerin domains, which suggests that non-cellulosome associated 

secreted fibrolytic enzymes may play a direct role in cell attachment to cellulose 

(Devillard et al., 2004). Furthermore, in certain growth conditions R. albus 8 is 

capable of adhesion to crystalline cellulose, and also synthesises a Type IV fimbrial 

(Pil) protein that is localised to the outer surface of the cell membrane (Pegden et al., 

1998). In the presence of a soluble cellulose analogue both the cell- and Pil-protein 

attachment to crystalline cellulose is diminished, suggesting that the cell-associated 

Pil-protein constitutes a third method of cell/substrate interaction.  

F. succinogenes binds tightly to the plant cell wall, although there is no evidence 

that cells produce a cellulosome complex. Differential abundance analysis of outer 

membrane proteins extracted from wild-type and adhesion defective mutants (Jun et 

al., 2007) demonstrated that F. succinogenes S85 expresses a Type IV fimbrial similar 

to that expressed by R. albus (Pegden et al., 1998) which may play a role in cell 

adhesion to crystalline cellulose. Furthermore, at least one cell associated cellulose 

binding protein (Gong et al., 1996) and one endoglucanase (Jun et al., 2007) appear to 

mediate interaction with crystalline and amorphous cellulose respectively.  

1.6.4.2 Eubacterium cellulosolvens  

Eubacterium cellulosolvens (family Lachnospiraceae) is an abundant cellulolytic 

bacterium in the rumen of forage fed animals (van Gylswyk, 1990) that produces large 

amounts of lactic acid, as well as formic and butyric acids, and utilises acetic and 

propionic acids when grown in the presence of cellulose (van Gylswyk and van der 

Toorn, 1986). Some strains are capable of growth on xylan, xylose, and arabinose, but 

these substrates do not support high fermentation rates, and no lactic acid is produced 

(van Gylswyk and van der Toorn, 1986).  

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=186806&lvl=3&p=mapview&p=has_linkout&p=blast_url&p=genome_blast&keep=1&srchmode=1&unlock
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When E. cellulosolvens cells are cultured in cellulose-only containing medium, they 

produce a large extracellular protuberance that binds to cellulose and contains 

cellulase activity (Blair and Anderson, 1999). Separate studies have characterised four 

cellulose degrading proteins including a secreted endoglucanase (Cel5A) versatile in 

its ability to degrade a range of cellulosic substrates, as well as oat-spelt xylan, and 

two cell associated enzymes displaying enzymatic activity characteristic of typical 

endoglucanases (Taguchi et al., 2008, Toyoda and Minato, 2002, Toyoda et al., 2005, 

Yoda et al., 2005). Cel5A possesses cellulose binding ability that is important for the 

catalytic function of the enzyme (Yoda et al., 2005), and the remaining two enzymes 

are capable of binding a range of cellulosic substrates as well as oat-spelt xylan 

(Yoshimatsu et al., 2007). Cell wall-binding domains in the later two proteins are 

likely to mediate the attachment of the enzymes to the bacterial cell surface and 

consequently adherence of the cells to insoluble substrate (Toyoda et al., 2003, 

Toyoda et al., 2005).  

1.7 Butyrivibrio proteoclasticus B316
T
 

Butyrivibrio proteoclasticus B316
T
 (formerly Clostridium proteoclasticum) 

(Attwood et al., 1996, Moon et al., 2008) is a low G+C, butyrate-producing anaerobic 

bacterium that is prevalent in the rumen of animals grazing fresh pasture and silage-

based diets (Paillard et al., 2007b, Reilly and Attwood, 1998), and commonly detected 

in rumen bacterial 16S rDNA libraries (Edwards et al., 2004). Cells are rod-shaped 

with a single sub-polar flagellum, and have a Gram-positive cell wall architecture 

although established cultures appear Gram-negative (Figure 1.6) (Attwood et al., 

1996).  

B. proteoclasticus cells were first isolated from the rumen contents of a New 

Zealand cow grazing on ryegrass-clover pasture (Attwood and Reilly, 1995) and had 

high cell-associated and/or cytosolic proteolytic activity, mainly of the serine type, 

although lower amounts of cysteine and metalloprotease activity were also detected 

(Attwood et al., 1996). Rapid plant protein degradation in the rumen can lead to up to 

50% loss of available protein and inefficient utilisation of pasture nitrogen (Macrae 

and Ulyatt, 1974). As a consequence B. proteoclasticus was examined initially with 

the view of being a target for improving protein utilisation in New Zealand ruminants.  

Based on near full-length 16S rRNA gene sequence analysis, B. proteoclasticus is 

taxonomically most closely related to the fibrolytic Butyrivibrio/Pseudobutyrivibrio 
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group of bacteria (family Lachnospiraceae), which belongs to the Clostridial rRNA 

subcluster XIVa (Figure 1.7). DNA G+C content was determined to be 40.04 mol%, 

which is very similar to that of closely related Butyrivibrio strains DSM 10304, and 

H17c(SA) that was subsequently reclassified as a B. proteoclasticus strain (Moon et 

al., 2008).  

 

Figure 1.6. Ultrastructure of B. proteoclasticus B316T cells. Electron micrographs of 

negatively stained B. proteoclasticus cells showing the sub-polar flagellum (A), and 

thin-sectioned cells showing the Gram-positive cell wall structure (B). 

Figure courtesy of Attwood et al. (1996).  

1.7.1 Growth substrate utilisation and fermentation 

The initial characterisation of B. proteoclasticus together with more recent studies 

have demonstrated that cells growing in vitro display substrate utilisation and 

fermentative profiles similar to closely related Butyrivibrio species (Attwood et al., 

1996, Moon et al., 2008). B. proteoclasticus cells can utilise a variety of soluble 

mono- and disaccharides including arabinose, cellobiose, galactose, glucose, 

rhamnose, sucrose, and xylose. Furthermore, the bacterium is one of a small number 

of rumen fibrolytic microbes capable of efficiently degrading and utilising the 

insoluble, complex polysaccharide xylan, and is capable of utilising pectin and starch 

also (Attwood et al., 1996, Moon et al., 2008). Notably, B. proteoclasticus is unable to 

degrade or utilise crystalline cellulose in vitro.  

A metabolic footprinting approach was used to examine the growth substrate 

utilisation pattern of B. proteoclasticus cells cultured in medium containing glucose, 

xylan, and pectin as the major substrates (Villas-Boas et al., 2006). After a 24 hour 

culture period B. proteoclasticus generated increased levels of xylose, rhamnose, -

B A 
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mannoside, and -arabinoside which indicated that xylan and pectin were rapidly 

degraded. When compared to the metabolic footprint of the fibrolytic B. fibrisolvens 

AR10, B. proteoclasticus degraded more fibre, liberated more than 10-fold the amount 

of xylose, and utilised almost 10-fold more glucose than its close relative.  

 

Figure 1.7. Summary of the 16S rRNA gene phylogeny of B. proteoclasticus and 

closely related strains within the Clostridial subcluster XIVa. Percentage bootstrap 

values are shown at nodes if >50%. GenBank accession numbers for each species are 

shown in brackets. Bar = 0.02 nucleotide substitutions per site. Figure adapted from 

Moon et al. (2008). 

1.7.2 The B. proteoclasticus genome sequence 

The 4.4 Mb B. proteoclasticus genome has recently been sequenced by the Rumen 

Microbial Genomics laboratory, Grasslands Research Centre, Palmerston North, New 

Zealand (Kelly et al., 2010). It encodes 3813 CDSs that are distributed among the 

main chromosome (BPc1), a chromid (BPc2) (Harrison et al., 2010) and two 

megaplasmids (pCY360 and pCY186) (Table 1.4 and Figure 1.8).  

Butyrivibrio proteoclasticus H17c(SA) (AF125902)

Butyrivibrio proteoclasticus DSM 10304 (X89975)

Butyrivibrio proteoclasticus B316
T
 (U37378)

Butyrivibrio proteoclasticus DSM 10301 (X89976)

Butyrivibrio proteoclasticus UC142 (AJ428552)

Butyrivibrio sp. NCDO 2222 (X69971)

Butyrivibrio sp. NCDO 2434 (X89974)

Butyrivibrio hungatei AR10 (U77398)

Butyrivibrio hungatei JK 615T (AJ428553)

Butyrivibrio hungatei DSM 10295 (X89972)

Butyrivibrio fibrisolvens ATCC 19171T (U41172)

Butyrivibrio fibrisolvens WV1 (AF396927)

Butyrivibrio fibrisolvens C219a (EU346756)

Butyrivibrio fibrisolvens C211 (AF396926)

Clostridium aminophilum FT (L04165)

Butyrivibrio crossotus NCDO 2416T (X89981)

53

100

81

88

100

98

63

99

52

99

99 100

94

97

0.02
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Table 1.4. Summary of the four replicons comprising the B. proteoclasticus genome, 
and distribution of genes involved in plant carbohydrate metabolism and transport.

a
 

 BPc1 BPc2 pCY360 pCY186 Total 

Size (bp) 3 554 804 302 358 361 399 186 325 4 404 886 

G+C% 40.21 40.04 38.95 38.10 39.33 

CDSs 2939 251 425 198 3813 

rRNAs 4 2 - - 6 

tRNAs 47 2 - 1 50 

GHs 89 15 - - 104 

CEs 19 - - - 19 

GH/CEb 4 - - - 4 

PLs 1 1 - - 2 

GTs 2 - - - 2 

Other carbohydrate active proteins  83 6 - - 89 

Transporter proteins 85 11 - - 96 

 
a Table adapted from Kelly et al. (2010). 
b Enzymes contain multiple catalytic domains annotated as GH or CE. 



 

 

3
1
 

 

 

Figure 1.8. The genome atlas of Butyrivibrio proteoclasticus B316
T
. The four replicons that make up the B. proteoclasticus genome and the 

location of the genes predicted to encode proteins involved in polysaccharide degradation are shown. The four rRNA operons on the main 

chromosome and the two on BPc2 are also shown. The colour coding of the genomic features in circle 2 represents the different Clusters of 

Orthologous Groups (COG) categories. Figure from of Kelly et al. (2010).  
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1.7.2.1 The B. proteoclasticus glycobiome 

A feature of the genome sequence that is consistent with the growth characteristics 

and substrate utilisation patterns of the bacterium is the set of genes devoted to the 

breakdown and reassembly of complex polysaccharides (glycobiome). As of August 

2009, the glycoside hydrolase content of the B. proteoclasticus genome ranked tenth 

among the 841 bacterial genome sequences recorded in the CAZy database, while the 

glycosyl transferase (GT) content was greater than all other recorded bacterial species 

(Kelly et al., 2010). The B. proteoclasticus genome encodes 316 proteins involved in 

carbohydrate metabolism and transport, 134 of which contain one or more GH, CE, or 

PL or GT catalytic domains that target plant structural polysaccharides. More than 

89% of these are located on chromosome 1, with the remainder found on BPc2 

(Table 1.4). The megaplasmids are hypothesised to encode properties important for 

survival in the rumen environment, but make no detectable contribution to the 

B. proteoclasticus glycobiome.  

Based on their catalytic domains each of these polysaccharidases are classified into 

44 different CAZy families, which exceeds the number of CAZy families represented 

in the cellulolytic R. flavefaciens (Berg Miller et al., 2009) as well as the fibre-

adherent rumen metagenome (Brulc et al., 2009). The GH2, GH3, GH13, GH43 

families are the most highly represented, with 43 enzymes classified within the four 

families alone. In addition, five polysaccharidases are currently not matched to any 

CAZy family, and three genes are present that encode carbohydrate-binding proteins 

that may also play a role in carbohydrate degradation. B. proteoclasticus encodes five 

GH25 lysozymes that are likely to be involved in microbial cell wall hydrolysis, but 

not lignocellulose degradation.  

1.7.2.2 Polysaccharide utilisation loci 

Almost half the genes in the B. proteoclasticus genome that encode lignocellulose 

degrading enzymes are clustered within one of 36 regions (Figure 1.8, Circle 1) 

termed polysaccharide utilisation loci (PULs) (Bjursell et al., 2006). The starch 

utilisation system (Sus) locus of the Gram-negative gut bacterium Bacteroides 

thetaiotaomicron was the first PUL to be identified (Reeves et al., 1997), and was later 

shown to encode a set of proteins that formed a cell-envelope associated multiprotein 

system that enabled the bacterium to bind and degrade starch (Bjursell et al., 2006). A 

feature of the Sus locus was the coordinated action of several gene products involved 

in substrate-binding and degradation (Bjursell et al., 2006, Martens et al., 2008). It is 
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now recognised that PULs encode cell envelope systems that usually include one or 

more polysaccharide degrading enzymes, together with energy dependent, cell-

associated transmembrane transporters, transcriptional regulators, environmental 

sensors and genes involved in further polysaccharide metabolism. Despite the 

abundance of PULs in Bacteroides species, the substrate specificities of all but the Sus 

PUL and a homologous starch specific PUL in Bacteroides fragilis (Spence et al., 

2006) remain poorly defined. The clustering of genes involved in oligosaccharide 

breakdown presumably allows coordinated control of enzyme production, substrate 

transport and intracellular metabolism, and highlights the fact that the synergistic 

activity of several proteins can be more sophisticated and effective than their 

individual functions in isolation. Although it is becoming apparent that the presence 

and activity of PULs are a common strategy in fibrolytic Gram-positive (Berg Miller 

et al., 2009) and Gram-negative (Martens et al., 2009a) bacteria, B. proteoclasticus is 

the first member of the Butyrivibrio/Pseudobutyrivibrio assemblage in which PULs 

have been identified. Collectively the B. proteoclasticus PUL clustered proteins 

comprise 7.2% of the total proteome. Similar to B. thetaiotaomicron most of the 

B. proteoclasticus PULs contain components of ATP-binding cassette (ABC) transport 

systems, transcriptional regulators such as AraC and LacI family proteins, 

environmental sensors including two-component histidine kinases and response 

regulator proteins, and genes involved in further oligosaccharide metabolism.  

1.8 Proteomics 

The proteome is „the entire protein complement encoded by a genome, cell, tissue, 

or organism. It is the set of proteins produced by an organism at a given time, in 

response to a defined set of environmental conditions, and includes all protein 

isoforms and post-translationally modified proteins. The development of high 

throughput DNA sequencing technologies has led to the rapid accumulation of large 

volumes of genome sequence data for many bacterial species, and has dramatically 

advanced our understanding of many cellular processes. In spite of this, functional 

genomics does not provide information of the physiological processes occurring at a 

specific point in time, which are performed by the highly dynamic set of synthesised 

proteins. Expression proteomics aims to identify and quantify the abundance of all 

proteins encoded by a genome, assess their cellular location, and examine potential 

post-translational modifications. As a complement to functional genomics, expression 
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proteomics is vital to enhancing our understanding of cellular function. The 

foundations of contemporary proteomics lie with the development of two-dimensional 

electrophoresis (2-DE) by Klose (1975) and O‟Farrell (1975), and methods to 

efficiently convert large, intact biomolecules into volatile gas phase ions such that they 

may be analysed by mass spectrometry (MS). 

1.8.1 Two-dimensional electrophoresis 

The power of 2-DE is the ability to separate complex protein mixtures into single 

protein species using each protein‟s unrelated properties of isoelectric point (pI) and 

molecular weight (MW). 2-DE can resolve hundreds to thousands of proteins on a 

single polyacrylamide gel, and can rapidly expose differences in protein abundance, 

identify protein isoforms, and elucidate the presence of post-translational 

modifications (PTM‟s) such as phosphorylation and glycosylation. The development 

of immobilised pH gradient (IPG) strips has had a major impact on the utility of the 2-

DE technique (Bjellqvist et al., 1982). Wide and medium range IPG strips such as 

IPGs 3–10, 4–9, or 4–7 are excellent for the analysis of simple proteomes or when an 

overview of more complex proteomes is required, while narrow range overlapping 

IPG strips enhance the resolving power of the first dimension focusing. Using this 

approach, Cho et al (2003) resolved 1237 individual protein species between pI 3.5 

and 5.5 when analysing a cytosolic protein sample of the halophilic bacterium 

Halobacterium salinarum. When a Saccharomyces cerevisiae total protein extract was 

analysed using a series of IPG strips covering as little as one pH unit per IPG strip, 

2286 individual protein spots were visualised, compared with 755 when using a 

standard single pH 3-10 gradient IPG strip (Wildgruber et al., 2000).  

1.8.2 Mass spectrometry 

In recent years MS technologies have evolved as the dominant method of protein 

identification within the field of proteomics. Two "soft ionisation" methods, matrix-

assisted-laser-desorption-ionisation (MALDI) (Karas and Hillenkamp, 1988) and 

electrospray ionisation (ESI) (Fenn et al., 1989) are used routinely to introduce 

analytes into mass spectrometers. MALDI relies on the co-crystallisation of a peptide 

sample with acidified matrix upon a sample plate. Sample preparation for MALDI 

based mass spectrometry is straightforward and sample ionisation is robust in the 

presence of contaminating substances such as salts and detergents. Furthermore, the 

crystallised sample is stable and can be re-analysed if required. ESI requires the 
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solubilised sample to be maintained in the liquid phase and is considerably more 

sensitive to contaminating substances. Furthermore, the liquid phase nature of the 

preparation means the sample cannot be re-analysed. The major benefits of ESI 

include the high ionisation efficiency relative to MALDI, and the ability to interface 

the ESI-MS to a high-resolution liquid-chromatographic separation apparatus. 

1.8.2.1 Peptide mass fingerprinting 

MALDI ionisation is most often coupled to a Time-of-Flight (TOF) mass analyser 

(MALDI-TOF), and used to rapidly measure peptide masses and identify the parent 

protein by a process termed peptide mass fingerprinting (PMF). The underlying 

principle of PMF is the comparison of experimentally derived peptide masses with 

theoretically calculated peptide masses generated through in silico digestion of 

translated genomic sequences, using the expected cleavage specificities of site-specific 

proteolytic enzymes (Yamazaki and Tove, 1977, Yates et al., 1993). PMF search 

algorithms perform protein database searches and return a list of possible protein 

matches ranked according to variables including the number of matched peptide 

masses, the size of the individually matched peptides, the peptide mass error, the 

database size, and the number of non-matched masses. Molecular Weight Search 

(MOWSE) (Pappin et al., 1993) is a sophisticated scoring algorithm implemented in 

the PMF search algorithms Mascot (http://www.matrixscience.com) (Perkins et al., 

1999), and Protein Prospector (http://prospector.ucsf.edu/prospector/mshome.htm) 

(Clauser et al., 1999). ProFound is a commonly used PMF search algorithm 

(http://prowl.rockefeller.edu) (Zhang and Chait, 2000), which uses the Bayesian 

theory to rank search results according to their probability of occurrence. An 

evaluation of the commonly used PMF algorithms concluded that Mascot and 

ProFound were superior to Protein Prospector (Chamrad et al., 2004).  

A limitation of PMF for unambiguous protein identification is the probabilistic 

nature of the search process. Measured peptide masses can randomly match to 

peptides from a sequence database due to the necessity to set a maximum allowable 

mass tolerance, and as a result there is always a risk of obtaining false-positive protein 

identification. This probabilistic approach also necessitates the analysis of peptides 

derived from single protein species wherever possible, which is why 2-DE is often 

coupled with MALDI-TOF. When several proteins are identified as being present in a 

single gel-plug, manual analysis of the individual identifications is necessary. 

Furthermore, MALDI ionisation is biased towards arginine carboxy-terminating 

http://www.matrixscience.com/
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peptides, and typically results in only 30-45% coverage of the complete protein 

sequence (Resing and Ahn, 2004). 2-DE is also biased against hydrophobic proteins, 

basic proteins, and proteins below 15 kDa. An alternative to the 2-DE MALDI-TOF 

approach is to maintain protein or peptide mixtures in the liquid phase, separate the 

components using high-pressure liquid chromatography (HPLC), and analyse the 

eluate using tandem mass spectrometry (MS/MS). 

1.8.2.2 Liquid chromatography-tandem mass spectrometry 

The power of liquid chromatography tandem mass spectrometry (LC-MS/MS) is 

the ability to obtain peptide sequence data that is difficult and sometimes impossible to 

generate by MALDI-TOF. Comparison of MS/MS spectral data with predicted peptide 

sequences by peptide fragmentation fingerprinting (PFF) can be used to identify 

proteins with high confidence, sometimes when as few as two peptides are matched to 

the parent protein. Furthermore, it is often possible to identify proteins by LC-MS/MS 

that are difficult to detect using a 2-DE MALDI-TOF approach, such as hydrophobic 

(Wolff et al., 2008), basic, and low molecular weight proteins (Kuntumalla et al., 

2009).  

Quantitative LC-MS/MS based proteomic analyses typically use either isotopic 

protein labelling prior to chromatographic separation, such as isobaric tagging for 

relative and absolute quantitation (iTRAQ) (Ross et al., 2004) and stable isotope 

labelling with amino acids in cell culture (SILAC) (Ong et al., 2002), or a label-free 

approach that uses data acquired during separation and analysis to derive an estimation 

of relative protein abundances (Old et al., 2005). A benefit of the latter approach is the 

elimination of potential bias induced by variable protein labelling or detection of 

labelled sample. Label-free quantitation utilises measurement of variables such as 

mass spectral peak intensities (Chelius and Bondarenko, 2002) and spectral counting 

(Zhang et al., 2006). Peak intensities of peptide ions can correlate with protein 

abundances, while spectral counting methods estimate protein abundance by 

comparing the number of MS/MS spectra assigned to each protein, based on the 

assumption that the number of observed peptides correlates with protein abundance 

(Rappsilber et al., 2002). LC-MS/MS is routinely used to identify single protein 

species within complex mixtures without prior subcellular fractionation (Francis et al., 

2005, Wang et al., 2004).  
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1.8.3 Bacterial proteomics 

Proteomic technologies have been used to examine the proteomes of many 

industrially and medically important bacteria cultured under a variety of defined 

conditions. The model Gram-negative and Gram-positive organisms, Escherichia coli 

and Bacillus subtilis have naturally been the focus of extensive proteomic 

examination, as have other important Bacillus species such as B. anthracis and B. 

licheniformis (Chitlaru and Shafferman, 2009, Deutscher and Saier, 2005, Gilois et al., 

2007, Hecker et al., 2008, Ohlmeier S, 2000, Tam et al., 2006, Voigt et al., 2007). 

Several groups have demonstrated the utility of a combined gel-based and gel-free 

proteomic approach in achieving improved proteome coverage of Bacillus species and 

other Gram-positive bacteria (Hahne et al., 2008, Jungblut et al., 2010, Schmidt et al., 

2004, Wolff et al., 2006).  

Proteomic technologies have been utilised in the analysis of several important 

human gastrointestinal bacteria, including Fusobacterium varium and Lactobacillus 

plantarum, as well as the polysaccharilytic Bifidobacterium longum (Cohen et al., 

2006, Potrykus et al., 2008, Yuan et al., 2006). In particular, analyses of the cytosolic, 

exported, and cell envelope proteins of B. longum, and the adaptation of cells to low 

pH environments has revealed important insights into the glycosyl hydrolases 

produced by this bacterium (Ruiz et al., 2009, Sanchez et al., 2007, Sanchez et al., 

2008, Yuan et al., 2006). An LC-MS/MS label-free quantitative proteomics approach 

was used recently to examine the cytosolic proteomes of B. longum strains differing in 

their heat shock resistance (Guillaume et al., 2009).  

1.8.3.1 Proteomics of fibrolytic bacteria 

Proteomics approaches have been used with success to investigate the fibrolytic 

enzyme systems of a number of polysaccharide degrading bacteria. Murashima and 

co-workers indentified several cellulosomal enzymes expressed by the cellulolytic soil 

bacterium Clostridium cellulosolvens (Murashima et al., 2002b), and subsequently 

demonstrated using 2-DE/MALDI-TOF that the cellulosome composition and relative 

enzyme abundance are both regulated by the growth substrate (Han et al., 2004, Han 

et al., 2005). Similarly, the cellulosome composition of C. cellulolyticum, and the 

effect of polymeric substrates on the organisation of extracellular multienzyme 

complexes in Paenibacillus curdlanolyticus have recently been determined (Blouzard 

et al., 2007, Waeonukul et al., 2008). The effect of growth substrates on the relative 

abundance of fibrolytic enzymes has also been examined for a diverse range of 
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bacteria including Bacillus sp. K1, Cellulomonas flavigena, and the marine bacterium 

Saccharophagus degradans (Chu et al., 2000, Sanchez-Herrera et al., 2007, Sato et 

al., 2007, Taylor et al., 2006).  

1.8.3.2 Rumen proteomics 

In spite of the variety of gut bacteria having been the subject of intensive proteomic 

efforts, and the importance of the rumen microflora to the energy supply of the host, 

the application of proteomic technologies to the study of the prevalent fibrolytic 

bacteria of the bovine rumen has been limited. Devillard et al (2004) used 2-DE and 

MALDI-TOF MS to investigate the mechanisms underlying attachment of 

Ruminococcus albus 8 to cellulosic substrates. Later, the group used a similar 

approach to demonstrate the increased abundance of the molecular chaperone GroEL 

within the cell-membrane associated proteome when cells were exposed to linoleic 

and conjugated linoleic acids (Devillard et al., 2006). Following the publication of the 

completed genome sequence of the Gram-negative, non-fibrolytic, succinic acid 

producing rumen bacterium Mannheimia succiniciproducens (Hong et al., 2004), the 

proteome of this bacterium has been the subject of recent attention. 2-DE reference 

maps of the whole cellular, membrane, and secreted proteins allowed the identification 

of more than 200 proteins, and revealed important insights into growth phase 

dependent physiological alterations (Lee et al., 2006). This information was 

subsequently used to engineer a mutant strain that harbours improved succinic acid 

producing capability (Lee and Lee, 2010). There are currently no reports of proteomics 

being applied to the analysis of the polysaccharide degrading enzyme systems of 

fibrolytic rumen bacteria. 

1.9 The theoretical total proteome of B. proteoclasticus 

The pI value and size of the 3813 B. proteoclasticus protein products ranges from 

3.17 to 13.41, and 3.4 kDa to 656 kDa, respectively (Kelly et al., 2010). When each 

protein is plotted on a theoretical 2-DE map (Figure 1.9) a bimodal pI distribution and 

a moderate acidic skew is observed, with 73% of the proteins predicted to have a pI 

value below 7. Twenty-two percent of the theoretical proteome has pI values between 

8 and 11, and a region of fewer proteins (5.2% of the total) is found between pI 7 and 

8. Only 28 proteins have a pI value greater than 11. The size distribution of the total 

proteome is consistent with other Gram-positive bacteria (Voigt et al., 2007, Wolff et 

al., 2007), with 92% of all proteins predicted to fall within 10 to 150 kDa.  
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Figure 1.9. The theoretical 2-DE total proteome of B. proteoclasticus. The pI and 

size values for each protein were calculated using the Emboss analysis package 

(http://emboss.sourceforge.net/index.html). Each spot represents a single predicted 

protein. The y-axis is presented in logarithmic scale to represent separation of 

proteins by 2-DE.  

1.9.1 Protein function classification of the predicted B. proteoclasticus proteome 

Using a combination of Pfam (http://pfam.sanger.ac.uk/), Basic Local Alignment 

Search Tool (BLASTp) (http://blast.ncbi.nlm.nih.gov/Blast.cgi), and Tigrfam 

(http://blast.jcvi.org/web-hmm/), and analysis of the full length protein sequences, 

each protein has been categorised into one of 21 functional groups (Kelly et al., 2010) 

(summarised in Appendix A, Table A.1), which demonstrates that 5.7% (220 proteins) 

of the B. proteoclasticus proteome is devoted to carbohydrate metabolism. This set of 

proteins consists of 131 polysaccharide degrading enzymes, 44 enzymes involved in 

glycolysis, gluconeogenesis, or the pentose phosphate pathway, and others that are 

active upon monosaccharides and aminosugars, or involved in glycogen biosynthesis. 

Two-hundred and eighty-two proteins were predicted to be involved in cellular 

transport, 96 of which were elements of systems involved in the transmembrane 

transport of sugars or oligosaccharides. The genes encoding 80 of these transporter 
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proteins were also components of a PUL. B. proteoclasticus may produce 39 proteins 

mediating protein degradation, including one subtilisin family and two Htra family 

serine proteases, three cysteine proteases, and at least six metallopeptidases. Notably, 

45% of the B. proteoclasticus proteome is currently annotated as hypothetical or 

encodes proteins with no known function (Figure 1.10).  

1.9.2 Subcellular distribution of the predicted B. proteoclasticus proteome 

Within the set of 220 proteins involved in carbohydrate metabolism, 82% are 

predicted to be localised to the cytosol (Figure 1.10), of which 91 are lignocellulose-

degrading enzymes that collectively represent 34 GH, CE, PL or GT families. Within 

the cytosol, members of the GH2, GH3, GH13, GH31, and GH43 families are the 

most prevalent. Notably, all of the GH2 and GH31 family enzymes and most of the 

GH3, GH13, and GH43 enzymes are localised to the cytosol. In addition, all five 

polysaccharidases unmatched to a CAZy family are also predicted cytosolic enzymes.  

 

Figure 1.10. Summary of the predicted subcellular location of the carbohydrate 

active proteins produced by B. proteoclasticus. Total bar height shows the frequency 

of carbohydrate active proteins localised to each subcellular compartment. Light grey 

portion of each bar denotes the frequency of polysaccharide degrading enzymes. This 

data was compiled with the assistance of Dr. Bill Kelly and Dr. Sinead Leahy. 

All 38 carbohydrate metabolising proteins that are predicted to be secreted are plant 

polysaccharidases, and are dominated by members of the GH3, GH5, GH10, and 

GH13 families. All members of the GH5 and GH10 families are secreted, as well as 

both carbohydrate binding proteins. Furthermore, 35% of the proteins predicted to be 

involved in the transmembrane-transport of oligosaccharides are predicted to be 
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secreted into the periplasmic or extracellular space. The two membrane bound 

polysaccharidases are the GH3 β-glucosidase Bgl3D, and the GH115 α-glucuronidase 

Gh115A, which have three, and one, transmembrane domain (TMD) respectively, and 

no identifiable signal peptide.  

1.10 Project aims 

It is predicted that a proteomic examination of the fibre degrading enzyme system 

of B. proteoclasticus will be a step toward mapping the complex conversion of plant 

biomass into milk and meat for human consumption. It is hypothesised that 

B. proteoclasticus cells grown on GAX synthesise a consortium of polysaccharide 

processing proteins that enable them to rapidly degrade and assimilate the substrate, 

and that the abundance of many of these proteins is sensitive to growth substrate. We 

anticipate that some of the proteins involved in polysaccharide processing may be 

similar to those produced by other prevalent hemicellulose degrading microbes, and 

that the production of novel fibrolytic enzymes will be found. 

The goals of this research were 1) to identify B. proteoclasticus proteins that are 

involved in the degradation, assimilation, and metabolism of hemicellulose; and 2) to 

examine the relative abundance of those proteins in cells grown in vitro in the 

presence of GAX and the soluble monomeric sugar xylose. A combination of gel-

based and gel-free proteomic analyses were used to examine the cytosolic and 

extracellular fractions of B. proteoclasticus cells. Central to achieving these goals was 

the sequencing and in silico translation of the B. proteoclasticus genome, which was 

completed by the AgResearch Rumen Microbial Genomics team at the Grasslands 

Research Centre, Palmerston North, New Zealand. The functionally annotated protein 

sequence database used throughout this research was “B316_GOLD_June2008”.  

The predicted subcellular distribution of the carbohydrate active proteins produced 

by B. proteoclasticus dictated that the scope of this PhD project was limited to the 

analysis of the cytosolic and extracellular compartments. In a parallel study, a 

proteomic analysis of the membrane compartment of B. proteoclasticus was conducted 

by Dr. Judy Bond. 





 

 

Chapter 2 

Materials and Methods 
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2.1 Materials 

Congo red was purchased from Ajax Finechem (NSW, Australia). MALDI-TOF 

MS Peptide Mass Fingerprint (PMF) Calibration Mixture 2 was obtained from 

Applied Biosciences (Foster City, CA, USA). Ultra-filtered water (18.3 MΩ.cm
-1

) was 

obtained from a Barnstead EasyPure UV filtration system (Barnstead International, 

Dubuque, IA, USA). Acetone, ammonium hydrogen carbonate, ammonium sulphate, 

bromophenol blue, CBB G-250, orthophosphoric acid, and TCA were purchased from 

BDH Laboratory Supplies (Poole, England, UK). Acrylamide, ammonium 

persulphate, DTT, Flamingo™ Fluorescent Stain Reagent, glycine, iodoacetamide 

(IAA), SDS, TEMED, Tris, and Tween
®

 20 were purchased from Bio-Rad (Hercules, 

CA, USA). Microtitre plates (96 well) were obtained from Corning Life Sciences 

(Corning, NY, USA). Perfect-Pure
®
 C18 tips were purchased from Eppendorf AG 

(Hamburg, Germany). Ammonium citrate, apple pectin (76282), Avicel
®

 PH-101, 

cellulase (from Aspergillus niger), phenol, and TFA were obtained from Fluka (Buchs, 

Switzerland). DryStrip cover fluid, Immobiline DryStrips (pI 3-10, non-linear (NL), pI 

3-5.6 NL, pI 5.3- 6.5 NL and pI 6- 11 NL), IPG buffer, and 2D Quant kit were 

purchased from GE Healthcare (Uppsala, Sweden). LDS sample buffer (4x), sample 

reducing agent (10x), electrophoresis running buffer antioxidant, Benchmark
™

 and 

Peppermint Stick
™

 molecular weight standards, MOPS electrophoresis running buffer 

(20x), NuPAGE
®

 Novex 4-12% Bis-Tris ZOOM
®
 2-DE gels, and NuPAGE

®
 Novex 

4-12% Bis-Tris 10 well and 12 well 1-DE (one-dimensional electrophoresis) gels were 

from Invitrogen (Carlsbad, CA, USA). HPLC-grade ACN, formic acid, glacial acetic 

acid, glycerol, HPLC-grade methanol, ProteoExtract™ protein precipitation kit, and 

HPLC-grade water were purchased from Merck (Darmstadt, Germany). Centricon
®

 

Ultracel
®
 YM-10 Centrifugal Concentrator units were from Millipore (Billerica, MA, 

USA). Complete
®
 Protease Inhibitor and Modified Sequencing-Grade Trypsin (Cat 

#11 521 187 001) were purchased from Roche Applied Science (Mannheim, 

Germany). CHAPS, CHCA, EDTA, D-(−)-fructose (F0127), pectinase (from 

Aspergillus aculeatus, P2611), Sephadex G-250
®
, thiourea, urea, xylanase (from 

Thermomyces lanuginosus, X2753), xylan (from oat-spelts, 95590), and xylose 

(X0627) were from Sigma-Aldrich (St. Louis, MO, USA).  
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2.2 Bacterial strains and culture conditions  

Butyrivibrio proteoclasticus cells were used in all experiments and all cultures were 

prepared by Mr. Dong Li within the Rumen Functional Genomics Laboratory, 

AgResearch Limited, Grasslands Research Centre (Palmerston North, New Zealand). 

Cells were grown under strictly anaerobic conditions at 37°C, in modified M704 

culture medium (500 mL) supplemented with either 0.1% xylan, 0.5% xylose, or in 

unsupplemented modified M704 medium. Cell cultures were harvested at mid-log 

phase (optical density 600 nm = 0.5) or stationary phase (optical density 600 nm = 

0.7). Three biological replicate cultures were prepared for each growth substrate, 

harvested at each time point.  

2.2.1 Modified M704 medium 

Modified M704 medium was prepared by Mr. Dong Li and contained the following 

components: 0.075% (w/v) K2HPO4, 0.2% (w/v) trypticase peptone (BBL), 0.2% 

(w/v) yeast extract, 0.0001% (w/v) haemin, 0.4% (w/v) Na2CO3, 0.0001% (w/v) 

resazurin, 0.025% (w/v) cysteine-HCl x H2O, 0.025% (w/v) Na2S x 9 H2O, 0.09% 

(w/v) NaCl, 0.045% (w/v) (NH4)2SO4, 0.012% CaCl2 x 2 H2O, 0.02 (w/v) MgSO4 x 7 

H2O, 0.17% (v/v) acetic acid, 0.06% (v/v) propionic acid, 0.04% (v/v) butyric acid, 

0.01% (v/v) n-valeric acid, 0.01% (v/v) iso-butyric acid, 0.01% (v/v) DL-2-methyl 

butyric acid, and 0.01% (v/v) iso-valeric acid.  

All ingredients except cysteine-HCl x H2O, Na2S x 9 H2O, and Na2CO3 were 

dissolved in water and the medium was adjusted to pH 6.7 with 1 M HCl. The medium 

was boiled for 5 min and then cooled to room temperature under CO2 gas flow. The 

Na2CO3 and cysteine-HCl x H2O was then added and the medium was equilibrated 

with CO2 to pH 6.8. The medium was then dispensed under CO2 into 250 mL serum 

bottles, which were sealed and autoclaved at 121 °C for 15 min. Immediately before 

inoculation a sterile solution of Na2S x 9 H2O (1% w/v) was prepared separately and 

added to the medium (2.5% v/v).  
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2.3 B. proteoclasticus subcellular fractionation 

B. proteoclasticus secreted, cell-associated, and cytosolic subcellular fractions were 

prepared as summarised in Figure 2.1.  

2.3.1 Secreted protein extraction 

The secreted protein of B. proteoclasticus cultures was harvested by centrifugation 

at 3,000 x g for 30 min at 4°C. The culture medium was collected and Complete
®

 

Protease Inhibitor was added immediately (one tablet per 50 mL culture volume) to 

minimise proteolysis. The medium was separated into 50 mL aliquots and frozen 

immediately at -80°C. All subsequent sample handling was performed at 4°C.  

 

Figure 2.1. Summary of the three-step B. proteoclasticus cell fractionation procedure 

used to obtain secreted, cell-associated, and cytosolic subcellular protein fractions. 

For simplicity, one set of flasks depicts mid-log and stationary phase growth 

conditions.  

2.3.2 Optimisation of B. proteoclasticus cell-associated protein extraction 

The performance of five buffers for extraction of cell-associated proteins from the 

external surface of the B. proteoclasticus cell was examined. The bacterial cell pellet 

obtained after harvesting the culture supernatant (section 2.3.1) was resuspended in 5 

mL of ice-cold 50 mM Tris-HCl buffer (pH 7.0), and divided into five 1 mL aliquots. 

Each aliquot was centrifuged at 5,000 x g for 10 min at 4°C, and the supernatant 
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removed. Each cell pellet was then resuspended in 2.6 mL of one of five extraction 

buffers (Table 2.1). Each cell suspension was incubated at 4°C for 30 min with end-

over-end mixing. Intact cells were pelleted by centrifugation at 13,600 x g for 30 min 

at 4°C. The supernatant removed, separated into 400 µL aliquots and stored at -80°C. 

Cell-associated extracts were purified as described in Section 2.4.2 and were analysed 

by 1-D and 2-DE to identify the most efficient extraction method. Routine extractions 

of B. proteoclasticus cell-associated proteins following optimisation were performed 

by Mr Dong Li. 

Table 2.1. Composition of the buffers tested for cell-associated protein extraction. 

Buffer Supplement
a
 Reference 

Ice-cold 50 mM Tris-HCl buffer 
(pH 7.0) 

2% CHAPS and Complete
®

 

Protease Inhibitor 

Hansmier et al., (2004) using 
CHAPS in place of SDS 

200 mM Glycine (pH 2.2) Complete
®

 Protease Inhibitor McCoy et al., (1975) 

5 M Lithium chloride Complete
®

 Protease Inhibitor Lortal et al., (1992) 

8 M Urea None Wright et al., (2005) 

Ice-cold 50 mM Tris-HCl buffer 
(pH 7.0) 

50 mM EDTA and Complete
®

 

Protease Inhibitor 
Wright et al., (2005) 

 
a Complete

®
 Protease Inbibitor was used at a concentration of 1 tablet/10ml buffer volume. 

2.3.3 B. proteoclasticus cytosolic protein extraction  

The cell pellet remaining after extraction and harvest of the cell-associated proteins 

(section 2.3.2) was resuspended in 10 mL of ice-cold 50 mM Tris-HCl (pH 7.0) lysis 

buffer containing 2% (w/v) CHAPS and Complete® Protease Inhibitor. Silicone beads 

(100 mg) were added to the cell suspension, and the resuspended cells were lysed by 

bead-beating for 5 min, using a FastPrep FP120-230 bead beater (MP Biomedicals, 

Irvine, CA, USA). The disrupted cell suspension was centrifuged at 13,600 x g for 30 

min at 4°C to pellet the silicone beads and insoluble material. The supernatant was 

removed, separated into 400 µL aliquots, and stored immediately at -80°C. Routine 

extraction of B. proteoclasticus cytosolic proteins was performed by Mr Dong Li.  

2.3.3.1 B. proteoclasticus soluble protein extraction  

The soluble fraction of the B. proteoclasticus proteome was harvested using a two 

phase extraction summarised in Figure 2.2. The bacterial cell pellet obtained after 

harvest of the culture supernatant (Section 2.3.1) was resuspended in 10 mL of ice-

cold 50 mM Tris-HCl (pH 7.0) lysis buffer containing 2% (w/v) CHAPS, Complete
®
 



 

48 

Protease Inhibitor, and 100 mg of silicone beads, and the cells lysed by bead-beating 

for 5 min. The disrupted cell suspension was centrifuged at 13,600 x g for 30 min at 

4°C to pellet the silicone beads and membrane fraction. The supernatant was removed 

and stored immediately at -80°C. The membrane fraction was also stored at -80°C for 

future analysis, which was performed by Dr. Judy Bond. 

 

Figure 2.2. Summary of the two-step procedure for the harvest of soluble proteins. 

For simplicity, one set of flasks depicts mid-log and stationary phase growth 

conditions. 

2.4 Sample purification 

2.4.1 Optimisation of B. proteoclasticus secreted protein purification 

Three methods suitable for the purification of low concentration protein from large 

solution volumes were trialled for purification of B. proteoclasticus secreted protein.  

2.4.1.1 Protein precipitation using TCA  

This method was essentially as described by Voigt et al. (2006). Aliquots of 

secreted proteins were thawed on ice and centrifuged at 6,000 x g for 60 min at 4°C to 

remove any cell debris. The cleared culture medium (45 mL) was transferred to a fresh 

50 mL Falcon tube, and protein precipitation was affected by the step-wise addition of 

ice cold 100% TCA (w/v) to a TCA final concentration of 10% (w/v), followed by 

overnight incubation at 4°C. Precipitated protein was pelleted by centrifugation at 

6,000 x g for 60 min, washed three times with ice-cold 90% ethanol, and allowed to 

air dry overnight at room temperature. For 2-DE analysis, each dry protein pellet was 

resuspended in 7 M urea, 2 M thiourea, 2% (w/v) CHAPS and 50 mM DTT, and 

incubated at 4°C overnight with vigorous shaking to ensure maximal protein re-

suspension. 
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2.4.1.2 Protein precipitation using ammonium sulphate  

Ammonium sulphate precipitation was as described by Jiang et al (2004), using 

60% (w/v) ammonium sulphate final concentration. Aliquots of secreted proteins were 

thawed on ice and centrifuged at 6,000 x g for 60 min, and 45 mL of the cleared 

culture medium was transferred to a fresh 50 mL Falcon tube. Protein precipitation 

was affected by the slow addition of 16.6 g of ammonium sulphate, over a 60 min 

period, with vigorous shaking. The mixture was incubated overnight at 4°C. 

Precipitated protein was pelleted by centrifugation at 6,000 x g for 60 min, washed 

three times with ice-cold 90% ethanol, and air dried overnight at room temperature.  

2.4.1.3 Centrifugal concentration 

B. proteoclasticus secreted protein purification was performed using a Centricon® 

Centrifugal Concentrator unit with a 10,000 molecular weight cut-off ultra-filter 

membrane (Millipore, Billerica, MA). To equilibrate the concentrator prior to use, 2 

mL of HPLC-grade water was loaded and centrifuged at 5,000 x g until the liquid 

volume had reduced to 100 to 200 µL. Cleared culture medium (2 mL) was then 

loaded and centrifuged until the solution volume had reduced to 100 to 200 µL. The 

concentrator was recharged with another 2 mL of cleared culture medium, and 

centrifuged again. This process was repeated until up to 20 mL of cleared culture 

medium had passed though the concentrator. Dialysis of the culture medium solution 

against a 2-DE compatible urea solution was achieved by loading the device with 2 

mL of 7 M urea, and centrifuging at 5,000 x g until the solution volume was no greater 

than 100 µL. The device was then inverted and centrifuged at 5,000 x g for 10 min to 

collect the purified protein solution. The protein preparation was stored immediately at 

-80°C.  

2.4.2 B. proteoclasticus cell-associated protein purification 

Cell-associated protein was precipitated using the TCA/acetone procedure, as 

described by Schwarz et al (2007). The cell-associated protein extract was mixed with 

4 x volumes of -20°C acetone containing 10% TCA (w/v), vortexed vigorously for 5 

min, and incubated overnight at -20°C. The precipitated protein was pelleted by 

centrifugation at 13,600 x g for 60 min at 4°C. The protein pellet was washed 3 x 60 

min in ice-cold 90% acetone at -20°C with regular vortexing. Care was taken to ensure 

the pellet was removed from the wall of the tube, and fully disrupted during this 
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process. The washed pellet was allowed to dry in a stream of clean air at room 

temperature for 10 min.  

2.4.3 Optimisation of B. proteoclasticus cytosolic protein purification  

The performance of two methods for purification of the B. proteoclasticus cytosolic 

and soluble proteins was examined. These were the TCA/acetone procedure described 

in Section 2.4.2, and the phenol/methanol/ammonium acetate procedure as described 

by Carpentier et al. (2005). The cytosolic or soluble protein extract was mixed with an 

equal volume of ice-cold Tris-HCl buffered phenol (pH 8.0) and vortexed vigorously 

for 30 min at 4°C. The mixture was centrifuged at 8,000 x g for 5 min to separate the 

phases, and the protein containing phenolic phase was removed and placed in a fresh 

1.5 mL microcentrifuge tube. An equal volume of ice-cold 50 mM Tris-HCl Buffer 

(pH 7.0) was added to the phenol and the mixture vigorously vortexed for 30 min at 

4°C. The mixture was centrifuged at 8,000 x g for 5 min and the phenol phase 

removed and placed in a fresh 1.5 mL microcentrifuge tube. Proteins were precipitated 

by the addition of 4 x volume of -20°C methanol containing 100 mM ammonium 

acetate. The mixture was vigorously vortexed for 60 sec and incubated overnight at -

20°C. The precipitated protein was pelleted by centrifugation at 13,600 x g for 60 min 

at 4°C, and the protein pellet was air-dried in a fume cupboard overnight. The protein 

pellet was resuspended in 7 M urea, 2 M thiourea, 2% (w/v) CHAPS and 50 mM DTT 

and incubated overnight at 4°C with shaking.  

2.5 2-DE of B. proteoclasticus cytosolic subcellular fractions 

An overview of each B. proteoclasticus cytosolic subcellular fraction (Section 2.3) 

was obtained by 2-DE using pI 3-10 NL 7 cm IPG strips. Analytical technical 

replicate
1
 gels were run in triplicate for each biological replicate

2
 sample using narrow 

range pI 3-5.6 NL and 5.3-6.5 7 cm IPG strips. The presence of low abundance basic 

B. proteoclasticus proteins was examined by 2-DE using pI 6-11 7 cm IPG strips. All 

IEF was performed using an IPGphor II IEF unit with a 12-lane IEF manifold (GE 

Healthcare, Uppsala, Sweden).  

                                                

 
1 A technical replicate gel is the 2-DE separation of the same protein sample isolated from a single 

bacterial culture. 
2 A biological replicate gel is the 2-DE separation of independently isolated samples from replicate 

bacterial cultures. 
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2.5.1 Rehydration and IEF of pI 3-5.6 NL, 5.3-6.5, and 3-10 NL IPG strips 

When pI 3-5.6 NL, 5.3-6.5, and 3-10 NL 7 cm IPG strips were used, the total 

protein concentration of each sample was assayed immediately prior to IPG strip 

rehydration using the 2D Quant kit (GE Healthcare, Uppsala, Sweden), as per the 

manufacturer‟s instructions. Fresh IEF Rehydration Buffer containing 7 M urea, 2 M 

thiourea, 2% CHAPS (w/v), 20 mM DTT, and a trace amount of bromophenol blue 

was added to each sample to achieve a final concentration of 0.8 µg. µL
-1

. IPG Buffer 

(the pI range of which was matched to the pI range of the IPG strips) was added to 

each sample to a final concentration of 0.5% (v/v). Each sample was vortexed 

vigorously for 60 sec, and centrifuged at 13,000 x g for 5 min to pellet any remaining 

insoluble material, and 125 µL applied to a dehydrated IPG strip using an IPG strip-

reswelling tray (GE Healthcare, Uppsala, Sweden). Care was taken to avoid trapping 

air bubbles against the gel surface of the strip. Each strip was then covered with 3 mL 

of mineral oil to prevent rehydration buffer crystallisation, and passively rehydrated at 

room temperature for 16 h. Following rehydration, each IPG strip was checked for 

uniform reswelling and if acceptable was subjected to IEF. The IPGphor II unit was 

set up according to the manufacturer‟s instructions for passively rehydrated IPG strips, 

using anode and cathode paper wicks blotted with 150 µL of HPLC-grade water. IEF 

was conducted for 9-11 kVh as detailed in Table 2.2.  

Table 2.2. Running conditions for Immobiline DryStrip IEF on IPGphor II unit.
a
  

IPG strip range (pI) Phase Voltage
b
 kVh

c
 

3 – 10 NL 

3 – 5.6 NL 

1- Step 

2- Gradient 

3- Gradient 

4 Step 

200 

1000 

5000 

5000 

200 

300 

4500 

4000 

5.3 – 6.5 1- Step 

2- Gradient 

3- Gradient 

4 Step 

200 

1000 

5000 

5000 

200 

300 

4500 

6000 

6-11 1- Step 

2- Gradient 

3- Gradient 

4 Step 

200 

1000 

5000 

5000 

400 

600 

4500 

6000 

 
a All IPG strips were run at 20 ºC, and a maximum current 50 mA per strip.  
b This value is the maximum potential voltage attained during each phase. The actual voltage at end of 

phase may have been lower.  
c Phase concluded when kVh target achieved. 
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2.5.2 Rehydration and IEF of pI 6-11 IPG strips 

When pI 6-11 IPG strips were used each was rehydrated with 125 µL of 7 M urea, 

2 M thiourea, 2% (w/v) CHAPS, 10% (v/v) isopropanol, 5% (v/v) glycerol, 3% (w/v) 

DTT, 0.5% (v/v) IPG buffer, and a trace of bromophenol blue. Strips were covered 

with 3 mL of mineral oil and allowed to rehydrate at room temperature for 16 h. 

Immediately prior to IEF, the concentration of each protein sample was assayed using 

a 2D Quant kit, and 7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 10% (v/v) 

isopropanol, 5% (v/v) glycerol, 3% (w/v) DTT, and a trace of bromophenol blue was 

added to achieve a final protein concentration of 2.4 µg. µL
-1

. IPG Buffer (pI 6-11) 

was then added to the protein sample to a final concentration of 0.5% (v/v). Each 

sample was vortexed vigorously for 60 sec, and centrifuged at 13,200 x g for 5 min. 

The IPGphor II unit was set up according to the manufacturer‟s instructions for cup-

loaded strips, using anode and cathode paper wicks blotted with 150 µL HPLC-grade 

water, and fresh pI 6-11 IEF Rehydration Buffer containing 3% (w/v) DTT 

respectively. Each sample (125 µL) was cup-loaded onto each IPG strip, and IEF 

conducted for 11.5 kVh as summarised in Table 2.2.  

2.5.3 IPG strip equilibration and second-dimension electrophoresis 

Immediately following IEF, each IPG strip was placed in a 15 mL Falcon tube, and 

focused proteins were reduced for 15 min using 2 mL of Invitrogen 1x LDS Buffer 

containing 1x Reducing Agent, then alkylated for 15 min using 2 mL of 1x LDS 

Sample Buffer containing 100 mM iodoacetamide. Each strip was rinsed briefly in 1x 

NuPAGE MOPS electrophoresis running buffer, then positioned on top of a 1 mm 

thick, NuPAGE
®

 Novex 4-12% Bis-Tris ZOOM
®

 gel. Standard IPG strip orientation 

was with the anode end to the left. Second dimension electrophoresis was performed 

using an Invitrogen NuPAGE
®
 MOPS Buffer system at constant 200 V until the dye 

front reached 1 mm from the base of the gel.  

2.6 Protein detection 

All 2-DE gels used for total protein abundance analysis were stained with colloidal 

CBB G-250 (Anderson et al., 1991). Several analytical 1-DE and 2-DE gels were 

stained using the Flamingo™ Fluorescent Gel Staining Reagent, which permits total 

protein visualisation below the detection limit of colloidal CBB G-250 and other 

fluorescent based stain reagents (Berkelman, 2006).  
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2.6.1 Colloidal CBB G-250 total protein staining 

Following 2-DE, technical replicate gel sets were placed in a clean, air-tight 

container and fixed overnight in 50% (v/v) EtOH: 2% (v/v) orthophosphoric acid with 

gentle shaking. The fixative was then discarded and the gels washed 3 x 30 min with 

ultra-filtered water. Proteins were visualised by staining with 0.1% (w/v) CBB G-250 

in 34% (v/v) methanol, 2% (v/v) orthophosphoric acid containing 17% (w/v) 

ammonium sulphate for five days with gentle shaking. Immediately prior to protein 

visualisation, colloidal CBB G-250 stained gels were washed 3 x 60 min in ultra-

filtered water.  

2.6.2 Flamingo™ fluorescent total protein staining  

Following electrophoresis, gels to be stained using the Flamingo™ Fluorescent Gel 

Stain were placed in a clean, airtight container and fixed overnight in 40% (v/v) 

ethanol: 10% (v/v) acetic acid with gentle shaking. The fixative was then discarded 

and the gels washed 3 x 10 min in ultra-filtered water. This washing step was not 

included in the protocol supplied by the manufacturer, but significantly enhanced the 

staining uniformity. A working stain solution was prepared by diluting one volume of 

10x Flamingo™ Fluorescent Gel Stain Stock Solution with nine volumes of ultra-

filtered water, and 50 mL of this solution was used per gel. Gels were stained at room 

temperature overnight in the dark, with gentle shaking. Immediately prior to protein 

visualisation, each gel was washed for 10 min in the dark with 100 mL of 0.1% (v/v) 

Tween 20, then 2 x 10 min in ultra-filtered water. This was an optional step suggested 

by the manufacturer, and enhanced background stain removal.  

2.7 Image acquisition 

The apparatus used for image acquisition was dependent on the staining method 

used to visualise 1-DE and 2-DE separated protein.  

2.7.1 Colloidal CBB G-250 stained gel image acquisition 

Colloidal CBB G-250 stained gels were scanned using a Molecular Dynamics 

Personal Densitometer SI (Sunnyvale, CA, USA) at 12 bits per pixel digital resolution 

and 50 µm pixel size. Technical replicate gels were always imaged in a single scan. 

Immediately after scanning, gels were placed in re-sealable plastic bags containing 5 

mL of HPLC-grade water and stored at 4 ºC.  
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2.7.2 Flamingo™ stained gel image acquisition  

A Fujifilm FLA-5100 Fluorescent Imaging system was used to scan Flamingo™ 

Fluorescent total protein stained gels at an excitation wavelength of 532 nm (SHG 

green laser). The imaging system was controlled by Image Reader FLA 5,000 Series 

(Version 1.0) software. Laser intensity of 600 V was optimal for all applications.  

2.8 Image analysis  

2.8.1 Protein spot detection  

Image Master
TM

 2D Platinum software (Version 5.0) (GE Healthcare, Uppsala, 

Sweden) was used for image analysis of all 2-DE gels in this project. Automatic spot 

detection parameters for colloidal CBB G-250 stained gels were set at “smooth”
1
 equal 

to two, “saliency”
2
 equal to 0.5, and “minimum pixel area”

3
 equal to 100. Automatic 

spot detection parameters for Flamingo™ total protein stained gels were set at smooth 

equal to three, saliency equal to 0.8, and minimum pixel area equal to 100. These 

parameters were decided upon after extensive analysis of the effect of small changes 

in each of the three parameters on spot border detection accuracy and spot resolving 

power.  

2.8.2 Protein spot editing 

Automatic spot detection was performed, followed by manual deletion of dust spots 

and the molecular weight marker lane. Gel regions that contained horizontally smeared 

proteins were retained to maintain the total protein detected on each gel. When 

necessary, manual splitting of highly abundant overlapping spots was performed. 

Manual editing was performed with caution to minimise loss of data.  

                                                

 
1 The “smooth” parameter fixes the number of times ImageMaster™ will smooth the image before 

detecting spots, using a smooth-by-diffusion algorithm. The “smooth” parameter was optimised to 

detect all real spots and split as many as possible overlapping spots, without being concerned about 

artifact spots. 
2 The “saliency” parameter is a measure of spot curvature, and indicates how far a spot stands out with 

respect to its local environment. In general, real spots have high saliency values and background and 

artefact spots have low saliency values. Saliency is highly dependent on the gel image, and must be 

optimised accordingly. 
3 The “minimum pixel area” is the number of pixels used to depict each spot. Artifact spots, for example 

dust particles, that have an area smaller than a specified threshold (expressed as the number of pixels) 

are not detected. 
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2.9 2-DE gel image matching strategy  

A hierarchical spot matching process was used to generate matched protein spot 

groups between substrate or growth phase-dependent 2-DE biological replicate gel sets 

(Figure 2.3).  

 

Figure 2.3. Summary of the hierarchical procedure used to match technical and 

biological replicate gels. Numbers (1-3) represent biological replicate gel sets, and 

numbers with subscript letters (A-C) represent technical replicate gels. Note that the 

technical replicates are nested beneath the biological replicates.  

2.9.1 Technical replicate gel image matching 

Protein spots were first matched between technical replicate gels (n = 3) 

(Figure 2.4). Three to five carefully selected spots were used as landmark groups to 

initiate gel matching. Four criteria were used to select landmark spots- a) spots were 

present in all technical and biological replicate gels for a given pI range; b) spots were 

widely separated on the gel image; c) spots clearly corresponded between all gel 

images; d) spots were small, sharp, and well defined. The most clearly resolved 2-DE 

image of each technical replicate gel set was chosen as the set reference gel and the 

landmark spots matched between gels. All spots present in the reference gel were then 

automatically matched to the two remaining technical replicate gels. In cases where 

localised gel deformation caused small regions of spot mismatching, incorrectly 

matched groups were deleted. A landmark spot group was created in the deformed 

region and a second automatic matching cycle performed. All technical replicate spot 

groups were examined manually, and where necessary additional manual spot group 

matching performed.  

1A 1B 1C 2A 2B 2C 3A 3B 3C

1 2 3

Xylan

Growth condition dependent 

spot group dataset

1A 1B 1C 2A 2B 2C 3A 3B 3C

1 2 3

Xylose

1A 1B 1C 2A 2B 2C 3A 3B 3C

1 2 3

No added carbon
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Figure 2.4. Definition of matched protein spot groups. Broken lines indicate 

grouping of equivalent protein spots between two or more replicate 2-DE gels.  

2.9.2 Biological replicate gel image matching 

Using the reference gel for each technical replicate gel set, spot groups were 

matched between biological replicate gel sets (n = 3). As above, a reference gel was 

selected, and all spots present in this gel were automatically matched to the two 

remaining gels. Finally, using the reference gel selected for each biological replicate 

gel set, biological replicate spot groups were automatically matched between growth 

conditions, thus generating a growth condition dependent spot group dataset for each 

detected protein species (Figure 2.3). Each growth condition was matched to all others 

to ensure proteins unique to a particular growth condition were characterised.  

2.10 Differential protein abundance analysis 

Statistical analysis of matched biological replicate spot groups was performed using 

SPSS 14.0 (SPSS, Chicago, IL, USA). Parametric and non-parametric tests were used 

to characterise statistically significant substrate and growth phase dependent changes 

in B. proteoclasticus protein abundance profiles.  

2.10.1 Data extraction, missing values and data imputation 

Raw protein spot volumes were exported from Image Master Platinum V5.0 to 

Microsoft Excel. A biological replicate spot group was deemed reliable for statistical 

analysis if no more than 2 spots within a potential spot group were undetected across 

all biological replicate gels, and no greater than one missing value was derived from 

the same technical replicate gel set. If these conditions were met, it was assumed the 

undetected spots were most likely due to them being below the limit of detection. 

Consequently, the missing values for each matched protein spot group were imputed 

by inserting the lowest raw spot volume (threshold) value detected on the gel that 

generated the missing value, which is similar to the method employed by Meleth et al. 
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(2005). Matched protein spot groups containing more than two missing values were 

removed from the automated statistical analysis.  

2.10.2 Raw spot volume normalisation 

To correct for technical variability between 2-DE replicate gels, each raw spot 

volume was normalised to the sum of all detectable spot volumes derived from the 

respective gel, according to Equation 2.1.  

Normalised spot volume (Vi) = raw spot volume/total detectable spot volume 

Equation 2.1 Normalisation of raw spot volume values against total detectable protein. 

2.10.3 Data transformation 

Data normalisation using a constant sum constraint creates a compositional dataset, 

which consequently presents problems for parametric testing due to the introduction of 

artificial correlations between previously unrelated variables. To account for this 

phenomenon, Aitchison (1982) proposed a log-ratio transformation for compositional 

data after demonstrating transformation of this kind produced a dataset exhibiting a 

multivariate normal distribution. Log10 transformation of the normalised raw spot 

volumes was performed as described in Equation 2.2. To ensure the normalised spot 

volume data was suitable for parametric statistical testing, other transformation 

methods were also tested. These were power
1/3

 and power
1/5

 transformations according 

to Equation 2.3 and Equation 2.4. 

log10 Vi = log10 [Vi/(100- Vi)] 

where Vi = individual spot volume. 

Equation 2.2. Log10 transformation of normalised spot volumes, to account for the 

creation of a compositional dataset. 

log
1/3

 Vi = [Vi/(100- Vi)]
1/3

 

where Vi = individual spot volume. 

Equation 2.3. Power
1/3

 transformation of normalised spot volumes, to account for the 

creation of a compositional dataset. 
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log
1/5

 Vi = [Vi/(100- Vi)]
1/5

 

where Vi = individual spot volume. 

Equation 2.4. Power
1/5

 transformation of normalised spot volumes, to account for the 

creation of a compositional dataset. 

2.10.4 Statistical analysis assumption testing 

The parametric tests used to investigate significant substrate and growth phase 

dependent protein abundance changes carry two assumptions; that the sample groups 

being compared are derived from populations that exhibit normal distributions, and 

display equality of variance (homoscedasity). The normal distribution of the log10 

transformed normalised spot volumes for each spot group within a growth condition 

dependent spot group dataset was assessed using the Shapiro-Wilk Goodness of Fit 

test (Shapiro and Wilk, 1965a), which is considered suitable for small sample sizes. 

Homoscedasity of matched protein spot groups was assessed by constructing scatter 

plots of standard deviations as a function of the means of the untransformed, and log10 

transformed normalised spot group volumes. A Pearson Correlation co-efficient was 

calculated for each plot and used to report the standard deviation versus means 

dependency.  

2.10.5 Parametric statistical testing 

The decision making process for appropriate statistical testing is summarised in 

Figure 2.5. If each biological replicate spot group within a growth condition dependent 

spot group dataset generated a Shapiro-Wilk test p value > 0.05, the dataset for that 

spot was deemed suitable for parametric testing. When biological replicate spot groups 

were detected in three or more growth conditions, a two-factor nested ANOVA was 

used to detect statistically significant differences between spot group means. A nested 

ANOVA was used to account for the relationship between technical and biological 

replicates for each growth condition. A probability p < 0.01 was chosen as the cut-off 

for statistical significance. For each nested ANOVA, a Levene‟s Homogeneity-of-

Variance test (Levene, 1960) was also conducted to ensure samples were derived from 

homoscedasic populations. Spot group datasets with a ANOVA p < 0.01, and a 

Levene-test p value > 0.05, were submitted to Bonferroni-adjusted Multiple 

Comparison Post-hoc testing (Hochberg, 1988) to characterise the growth condition 

dependent protein abundance changes. Bonferroni Correction is a stringent method of 
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addressing the multiple testing problem, that is, the unacceptably high accumulation of 

type I errors (rejecting H0 when H0 is true) when performing multiple statistical 

testing, thus controlling the family-wise error rate. The correction adjusts the 

significance level for each test according to the total number of statistical tests being 

performed. Spot groups datasets failing the homogeneity-of-variance assumption 

(Levene-test p value < 0.05), were submitted to Tamhane‟s T2 Post-hoc testing 

(Tamhane, 1979). Tamhane‟s T2 conducts conservative t-test-based pairwise 

comparisons, but does not assume equality of variance between sample groups. In the 

event that biological replicate spot groups were detected in only two growth 

conditions, an independent samples Students t-test was conducted. If the Levene-test p 

value > 0.05, the equality of variance test statistic was used. If the p value < 0.05, the 

unequal variance test statistic was used.  

 

Figure 2.5. Flow chart summarising decision making process for statistical testing of 

protein abundance profiles.  

2.10.6 Non-parametric statistical testing 

When at least one member of a growth condition dependent spot group exhibited a 

Shapiro–Wilk test p value < 0.05, the growth condition dependent dataset was deemed 

unsuitable for parametric statistical testing. As such, the non-parametric Kruskal-

Wallis one-way ANOVA and Wilcoxon-Mann-Whitney U tests were used to assess 
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the statistical significance of changes detected between B. proteoclasticus protein 

abundance profiles, depending on whether three or more, or two biological replicate 

spot groups were detected across all growth conditions, respectively. 

2.10.7 Protein abundance fold change calculation 

The fold change ratio for significant protein abundance changes was reported 

relative to the growth substrate eliciting the greater abundance level.  

Fold change ratio = (larger mean normalised spot volume – 1x standard 

deviation)/(lesser mean normalised spot volume + 1x standard deviation) 

Equation 2.5 Calculation of protein abundance fold change ratio for statistically 

significant protein abundance changes. 

2.11 Protein digestion and peptide purification  

All solutions used for in-gel protein digestion were HPLC-grade. CBB G-250 

stained protein spots were excised using a One Touch Plus Manual Spot Picking 

pipette (The Gel Company, San Francisco, CA, USA), with a tip internal diameter of 

1.5 mm. The majority of excised gel plugs were processed for mass spectrometry 

using an Ettan™ Digester Robotic Digestion Platform (GE Healthcare, Uppsala, 

Sweden). A number of gel plugs were also processed manually; in which case an in-

gel protein digestion protocol based on that of Shevchenko et al (1996) was used with 

modifications. Excised gel plugs were placed in either a 96 well microtitre plate (for 

robotic digestion), or a 0.65 mL microcentrifuge tube (for manual digestion) and the 

protein digested and peptides extracted as indicated in Table 2.3.  
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Table 2.3. Summary of the robotic and manual in-gel protein digestion protocols.
a
  

Phase Step Robotic Digestion Manual digestion 

Pre-digest Destain 45 min x 3 60 min x 3 

  
50 mM NH4HCO3: 50% MeOH 

(v/v) 

50 mM NH4HCO3: 50% ACN 

(v/v) 

 Dehydration Air-dry 100% ACN 

Digestion Trypsin 10 µL trypsin (6 nm/µL) in 20 

mM NH4HCO3 

2 µL trypsin (25 nm/µL) in 50 

mM NH4HCO3 

 Digest 
buffer 

None 50 mM NH4HCO3 (10 µL) 

 Time 5 h Overnight 

Peptide 

extraction 

Extraction 1 40 µL 0.1% TFA : 50% ACN 

(v/v) 

40 µL 0.1% TFA : 50% ACN 

(v/v) 

 Extraction 2 
40 µL 0.1% (v/v) TFA : 50% 

ACN (v/v) 
40 µL 0.1% TFA (v/v) 

 Extraction 3 
40 µL 0.1% TFA : 50% ACN 

(v/v) 
40 µL 100% ACN 

 Drying Air-dry, room temperature Vacuum centrifuge, 37ºC 

 
a Modified Sequencing-Grade Trypsin (Cat #11 521 187 001), Roche Applied Science (Mannheim, 

Germany). 

2.12 MALDI-TOF mass spectrometry 

2.12.1 Sample preparation 

CHCA was used as the matrix for analysis of extracted peptides. Saturated CHCA 

matrix solution was prepared fresh by the addition of 10 mg of CHCA to 1 mL of 

0.1% (v/v) TFA: 50% (v/v) ACN. The matrix solution was spiked with 0.75 µL of 

PMF Calibration Mixture 2 to provide peptide masses for internal calibration. The 

mixture was vortexed vigorously for 60 sec and centrifuged at 13,600 x g for 5 min to 

pellet un-dissolved CHCA crystals. The saturated matrix solution (200 µL) was 

carefully removed and placed in a fresh 0.65 mL microcentrifuge tube. Robotically 

digested samples were resuspended in 1.25 µL of saturated CHCA matrix solution, 

and the peptide/matrix mixture spotted onto a stainless steel, 96 well MALDI-TOF 

target plate (Foster City, CA, USA). The mixture was allowed to crystallise in a 

stream of clean air at room temperature. PerfectPure
®

 C18 purified peptide mixtures 

were mixed 1:1 with saturated CHCA matrix solution and carefully vortexed to ensure 

maximal sample/matrix mixing. The peptide/matrix mixture (2 µL) was spotted onto 

the MALDI-TOF target plate and allowed to crystallise in a stream of clean air at 

room temperature.  
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2.12.2 Peptide mass fingerprinting 

Positive ion tryptic PMF were acquired using a Voyager DE Pro MALDI-TOF 

mass spectrometer (Applied Biosystems, Foster City, CA, USA) equipped with a 337 

nm nitrogen laser operating at 3 Hz. The following instrument settings were optimised 

for the tryptic peptide mass range: 20 kV acceleration voltage, 75% grid voltage, 

0.02% guide wire voltage, 180 ns delay time, reflectron detector, 650 m/z low mass 

gate. PMF were obtained by averaging 200 individual mass spectra measuring across a 

700 to 3500 m/z mass range. A minimum of three PMF were acquired from every 

tryptic peptide mixture analysed.  

2.12.3 PMF processing and database interrogation 

All PMF were processed manually using Data Explorer software, Version 4.0 

(Applied Biosystems, Forster City, CA, USA). The two highest quality spectra from 

the minimum three obtained from each tryptic peptide mixture were selected for 

protein database interrogation. Internal calibration against the three Calibration 

Mixture 2 peaks, observed at m/z 1296.6853, 2093.0867, and 2465.1989 was 

performed. When internal calibration was not possible due to an inability to detect all 

three Calibration Mixture 2 peaks, external calibration against a closely positioned 

Calibration Mixture 2 sample, followed by internal calibration against one or two 

observable Calibration Mixture 2 peaks was performed. The protonated monoisotopic 

peak mass list was then derived from each PMF, using the Data Explorer peak 

deisotoping function. Finally, monoisotopic masses matching at two decimal places to 

Bovine Trypsin Autolytic Peptide or CHCA matrix masses (Harris et al., 2002) were 

discarded. Each peak mass list was analysed in-house against the B. proteoclasticus 

“B316_GOLD_June2008” protein sequence database using the MASCOT search 

engine (http://www.matrixscience.com/) (Perkins et al., 1999), which incorporates the 

MOWSE scoring algorithm (Pappin et al., 1993). The “B316_GOLD_June2008” 

database was constructed from the closed and functionally annotated 

B. proteoclasticus genome sequence, and contained the translated amino acid 

sequences of the 3813 B. proteoclasticus CDSs, plus the 3813 randomised protein 

sequences of the same size and amino acid composition.  

Search parameters used were: maximum one missed tryptic cleavage site, 

monoisotopic peptides only, maximum +/- 50 ppm mass tolerance, and 

carbamidomethylation of cysteine residues as a fixed modification. Database searches 

were initially performed with no variable modifications permitted. If a positive protein 
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match was obtained, the search was subsequently performed allowing for oxidised 

methionine residues as a variable modification. Each PMF was simultaneously 

searched against a randomised sequence decoy database of the same length as that for 

B. proteoclasticus. While this method is not a true indicator of the false positive match 

rate, it is informative especially for protein identifications with a MOWSE score close 

to the significance threshold (Elias et al., 2005). When a PMF obtained from a spot 

excised from a secreted protein 2-DE separation did not return a positive 

identification, the PMF was then searched against the eukaryotic division of the NCBI 

non-redundant database. This was done in an attempt to clarify whether spots that 

were visible in 2-DE separations of secreted proteins did not originate from proteins 

that may have been present in the culture medium prior to use. 

2.12.4 Positive protein match criteria 

A positive protein match was considered reliable only when both PMF derived 

from a single sample generated a MOWSE score above the minimum threshold, which 

was set at 62. This value was chosen as Mascot predicts the following false positive 

identification rates: 5% at a score of 52, 0.5% at 62, 0.05% at 72, and 0.0005% at 92. 

The Mascot prediction is based on ideal mass spectra and does not consider trypsin-

derived or other frequently occurring mass peaks. Proteins with maximum MOWSE 

scores between 52 and 62 were manually examined, considering the following 

additional criteria: (i) the expectation score, (ii) the orders of magnitude between the 

expectation of the top ranked match, and subsequent possible matches (iii) the number 

of matching peptides and the resultant full length protein sequence coverage (iv) the 

proportion of identified peptides with missed cleavage sites (v) the root mean square 

error of the identified peptides (vi) the correlation between the theoretical and 

observed pI and molecular weight of the protein identification (vii) identifications 

obtained from the decoy database and (viii) the number of modified peptides 

contributing to the protein identification. All instances of multiple proteins identified 

in a single gel plug were also manually examined, and the criteria described above was 

also used to assess the significance of the one protein identification independent of the 

other. In particular, the correlation between the theoretical pI and molecular weight of 

both proteins was examined, and identifications were accepted only when these 

protein parameters were in agreement. Furthermore, the set of unique peptides 

contributing to the protein identification was determined. If two or more peptides were 

not unique the protein identification with the lower MOWSE score was discarded. 
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2.13 Reverse phase HPLC and MS/MS (1-D LC-MS/MS) 

1-DE and 2-DE separated proteins were analysed by 1-D reverse phase HPLC-ESI 

MS/MS. All lyophilised tryptic peptide mixtures, irrespective of digestion method, 

were prepared for 1-D HPLC-MS/MS analysis by Perfect Pure C18 tip purification as 

described in Section 2.9.1. Peptides were eluted from the C18 tip into 5 µL 70% (v/v) 

ACN : 0.1% (v/v) formic acid, to which was added 65 µL 0.1% (v/v) formic acid. 

Each sample was vortexed for 30 sec and centrifuged at 13,600 x g for 10 min to pellet 

any remaining particulate material. An aliquot (65 µL) was carefully removed and 

placed in a 200 mL HPLC sample vial and care was taken to avoid trapping air 

bubbles at the base of the vial. 

1-D reverse phase HPLC was conducted using a Dionex UltiMate
®
 3,000 Nano 

HPLC system (LC Packings, The Netherlands) fitted with an Acclaim
®
 PepMap

TM 

silica based C18 stationary phase analytical nano-column (75 µm i.d. x 15 cm, 100 Å 

pore size). 65 µL of each sample was automatically injected using a Well Plate 

Autosampler equipped with a dual-needle 100 µL syringe set for full loop injection. 

Peptides were loaded onto the C18 nano-column at a flow rate of 200 nL.min
-1

. 

Separation of 1-DE derived peptide mixtures was achieved using a mobile phase 

gradient constructed from 0.1% formic acid (Buffer A) and 0.1% formic acid in 80% 

ACN (Buffer B): linear gradient 0 to 15% Buffer B over 25 min; 15 to 35% Buffer B 

25 to 67 min; 35 to 70% Buffer B 67 to 111 min; 70 to 100% Buffer B 111 to 126 min. 

Separation of 2-DE derived peptide mixtures was achieved using a mobile phase 

gradient constructed from 0.1% formic acid (Buffer A) and 0.1% formic acid in 80% 

ACN (Buffer B): 0 to 15% linear gradient Buffer B over 25 min; 15 to 35% linear 

gradient Buffer B 25 to 67 min; 35 to 100% linear gradient Buffer B 67 to 77 min. On-

line peptide identification was achieved using a Finnigan LTQ™ Linear Ion-trap 

equipped with a nano-spray ion source (Thermo Scientific, Waltham, MA, USA). 

Automated Data Dependent™ MS/MS was performed where the five most abundant 

precursor ions detected within a single full MS scan from m/z 400 to m/z 2,000 were 

selected for Pulsed Q-dissociation analysis, using 35% collision energy. Dynamic 

exclusion was utilised to prevent repeated MS/MS analysis of high abundance 

peptides.  

2.13.1 1-DE LC–MS/MS 

1-DE analysis was performed using a NuPAGE MOPS Buffer system (Invitrogen, 

Carlsbad, CA, USA) according to the manufacturer‟s instructions. Each sample was 
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mixed 2.6:1 with 4 x LDS Sample Buffer. 10 x Sample Reducing Agent (Invitrogen, 

Carlsbad, CA, USA) was then added to achieve a 1x final concentration. Each sample 

was vortexed vigorously for 60 sec then heated for 10 min at 70°C. All samples were 

centrifuged at 13,600 x g for 2 min to pellet any insoluble material, and 40 µL of each 

was loaded into a well of a 1.5 mm NuPAGE
®
 Novex 4-12% Bis-Tris 10-well 

ZOOM
®
 Gel. Electrophoresis was performed at constant 200 V until the dye front 

reached 1 mm from the base of the gel. Each gel was then removed from the plastic 

casing and processed immediately for colloidal CBB G-250 staining as described in 

Section 2.6. After gels were stained and imaged, the 1-DE lanes of interest was 

dissected into 40-45 slices of 1.5 to 2 mm thickness. Each gel slice was placed in a 

well of a 96 well microtitre plate, and protein digestion and extraction performed using 

an Ettan™ Digester Robotic Digestion platform as described in Section 2.11. Each 

tryptic peptide digest was then prepared for LC–MS/MS analysis as described in 

Section 2.14. 

2.13.2 MS/MS data analysis  

Raw MS/MS data files were processed using BioWorks 3.3.1. MS/MS ion searches 

were performed against the B. proteoclasticus sequence database using MASCOT. 

Search parameters were maximum 1 missed tryptic cleavage site, 

carbamidomethylation of cysteine residues as a fixed modification, methionine 

oxidation as a variable modification, no specific quantitation, maximum 2 Da peptide 

mass tolerance, maximum 0.5 Da MS/MS mass tolerance, 2+ and 3+ monoisotopic 

peptide charge. No precursor ion m/z was defined, and a decoy database was used to 

obtain an estimation of the false discovery rate. 

2.14 Polysaccharide adsorption assay 

2.14.1 Substrate preparation 

Washed microcrystalline cellulose was prepared by incubating 100 mg of Avicel
®

 

PH-101 with 5 mL of ice-cold 50 mM phosphate buffer (pH 7.0) for 15 min with 

vortexing. The suspension was centrifuged at 5,000 x g for 5 min, and the wash 

process repeated for a total of three washes. Sephadex G-250
®
 was prepared by 

incubating 100 mg of Sephadex G-250
®
 with 5 mL of room temperature 50 mM 

phosphate buffer (pH 7.0) for 24 h with gentle mixing. The suspension was 

centrifuged at 1,000 x g for 20 min, and washed twice using the same buffer for 20 

min.  
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2.14.2 B. proteoclasticus secreted proteome polysaccharide adsorption assay 

Secreted protein harvested at stationary phase from xylan B. proteoclasticus was 

assayed for plant structural polysaccharide binding potential. Stationary phase growth 

medium (50 mL) was thawed on ice and supplemented with 50 mL of 250 mM 

phosphate buffer (pH 7.0). The buffered stationary phase growth medium was then 

mixed directly with 100 mg of washed microcrystalline cellulose. A second aliquot of 

stationary phase growth medium (50 mL) was incubated with 100 mg of washed 

Sephadex G-250
®
 which acted as a negative control. Protein/substrate adsorption was 

achieved by incubating the mixture for 120 min at 4°C with gentle end over end 

mixing. Following incubation, the cellulose was recovered by centrifugation at 5,000 x 

g for 20 min at 4°C, and washed 5 x 30 min with 2 mL of ice-cold 50 mM sodium 

phosphate buffer (pH 7.0). The Sephadex G-250
®
 was recovered by centrifugation at 

1,000 x g for 20 min at 4°C, and washed 5 x 30 min with 2 mL of ice-cold 50 mM 

sodium phosphate buffer (pH 7.0). Each of the wash fractions was recovered and 

stored at -20°C. Substrate bound proteins were eluted in 2 mL of 1 x LDS (Invitrogen, 

Carlsbad, CA) sample buffer containing 20 mM DTT for 60 min at 4°C with vigorous 

shaking. The supernatant was recovered from the cellulose by centrifugation at 5,000 x 

g for 20 min at 4°C and stored at -20°C. The supernatant was recovered from the 

Sephadex G-250
®

 by centrifugation at 1,000 x g for 20 min at 4°C and stored at -20°C. 

Proteins present in each wash and elution fraction were precipitated using the 

ProteoExtract™ protein precipitation kit, according to the manufacturer‟s instructions. 

Precipitated protein was pelleted by centrifugation at 13,600 x g for 60 min at 4°C, 

washed twice in 70% ethanol, and air-dried for 30 min before resuspension in 20 µL 

1x LDS buffer containing 20 mM DTT in preparation for 1-DE. Immediately prior to 

1-DE the samples were denatured by heating at 70°C for 10 min. Gels were stained 

using colloidal CBB G-250 as described in Section 2.6.1. 

2.15 Bioinformatics 

Signal peptides were predicted by SignalP 3.0 (www.cbs.dtu.dk/services/SignalP/) 

(cut-off score p > 0.5), LipoP 1.0 (http://www.cbs.dtu.dk/services/LipoP/), and pattern 

searching as described by Sutcliffe and Harrington for Gram-positive bacteria 

(Bendtsen et al., 2004, Juncker et al., 2003, Sutcliffe and Harrington, 2002). 

Membrane-spanning domains were predicted using the TMHMM 2.0 

(www.cbs.dtu.dk/services/TMHMM-2.0/) and SOSUI/G (http://bp.nuap.nagoya-

u.ac.jp/sosui/sosuiG/sosuigsubmit.html) utilities (Hirokawa et al., 1998, Krogh et al., 
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2001). Proteins containing at least one membrane spanning domain distinct from the 

N-terminal signal peptide were defined as integral membrane proteins. Protein 

isoelectric point and molecular weight values were calculated using Emboss iep 

(http://emboss.sourceforge.net/index.html) and Protein Molecular Weight 

(http://www.bioinformatics.org/sms2/protein_mw.html) respectively. Functional 

domains were identified using Pfam, Tigrfam, and BLASTp analysis (Altschul et al., 

1990, Finn et al., 2008, Haft et al., 2003). Protein sequence alignments were 

performed, and phylograms constructed using ClustalW (Larkin et al., 2007) Settings 

for sequence alignment were gap penalty = 10, end gaps excluded, gap extension 

penalty = 0.2, and gap separation penalty = 4. The Gonnet250 database was used for 

each multiple alignment.  

The codon adaptation index (CAI) was calculated as follows: A codon usage table 

for 40 highly expressed B. proteoclasticus reference genes (translation elongation 

factors tufA, tsf, fusA, and 37 ribosomal protein encoding genes rplA-rplF, rplI-rplT, 

rpsB-rpsT, as used by Sharp et al. (2005)) was created by Emboss-CUSP 

(http://bioweb.pasteur.fr/docs/EMBOSS/cusp.html), which was then used to calculate 

a CAI value for each predicted protein by Emboss-CAI 

(http://emboss.sourceforge.net/apps/release/5.0/emboss/apps/cai.html). The genome 

was then ranked by descending CAI value, and the top 382 genes (10% of the genome) 

were designated predicted highly expressed (PHX) genes.  





 

 

Chapter 3 

The extracellular B. proteoclasticus proteome  
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3.1 Introduction 

The size and insolubility of lignocellulosic material dictates that the degradation to 

soluble oligo- and monosaccharides takes place in the extracellular environment, 

which requires the secretion of a variety of polysaccharide degrading enzymes across 

the bacterial cell wall. Utilisation of the released oligosaccharides and soluble sugars 

necessitates uptake across the bacterial cell wall, which in Gram-positive bacteria is 

mediated by a variety of extracellular substrate-binding proteins linked to dedicated 

sugar transport systems. Secreted proteins may also play important roles in processes 

such as substrate attachment, cell-cell interactions, and defence. An examination of the 

secreted and cell-associated components of the B. proteoclasticus proteome, herein 

referred to as the extracellular proteome, is therefore an important step to 

characterising the fibre degrading enzyme system of the bacterium.  

3.1.1 Secreted polysaccharidases  

The majority of fibre degrading enzymes secreted by anaerobic rumen bacteria 

have a distinctive modular architecture that contains one or more catalytic domains in 

association with a variety of non-catalytic modules (Figure 3.1).  

 

Figure 3.1. Schematic representation of a hypothetical fibrolytic enzyme synthesised 

by an anaerobic bacterium. The modular structure of a hypothetical anaerobic 

bacteria secreted glycosyl hydrolase is shown, which may contain many or all of the 

following domains; Doc, dockerin module; Ig, bacterial Ig-like domain; GH/CE/PL, 

glycosyl hydrolase/carbohydrate esterase/polysaccharide lyase catalytic domains 

respectively; Fn3, fibronectin Type-III module; CBM, carbohydrate binding domain; 

SLH, CWB, cell wall binding repeats. Domain size, location, and arrangement are 

representative only. Figure adapted from Schwarz et al. (2004). 

In addition to signal peptides, the non-catalytic modules can be any of the 

following; dockerin domains (Doc), immunoglobulin (Ig)-like domains, fibronectin 

type III (Fn3) domains, CBMs, cell wall binding (CWB) repeat regions, and domains 

of unknown function (DUF). They can be positioned anywhere within the enzyme, 

although CBM and CWB domains are in most cases found towards the C-terminus.  

SP Doc Ig GH/CE/PL Fn3 CBM CWB
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3.1.1.1 Carbohydrate-binding modules 

CBMs are well characterised domains of 35 to 180 residues that target the enzyme 

to different regions of the insoluble polysaccharide, dramatically increasing enzyme 

concentration at the site of catalysis, and improving enzyme substrate interaction and 

activity (Black et al., 1996, Bolam et al., 1998). As with catalytic GH domains, CBMs 

are classified into functional families based on amino acid similarity and three 

dimensional structure (Sun et al., 1998), and there are currently 61 CBM families 

catalogued in the CAZy database. CBMs recognise a variety of lignocellulose 

degrading enzymes including crystalline cellulose, non-crystalline cellulose, chitin, 

(1→3)-β-D-glucans and mixed linkage glucans, xylans, mannans, galactan and starch, 

while some CBMs display „lectin-like‟ specificity and bind to a variety of cell-surface 

glycans. The ligand specificity of the CBM may or may not be identical to the 

substrate specificity of the associated catalytic module (Sun et al., 1998). Such an 

arrangement is likely to target the enzyme to multiple regions of complex insoluble 

polysaccharides, therefore enhancing overall catalytic potential.  

CBMs have also been grouped into three types based on structural and functional 

similarities. Type-I CBMs are “surface-binding” modules that bind to the surface of 

highly crystalline cellulose and/or chitin in a thermodynamically dependent manner 

(Creagh et al., 1996); Type-II “glycan-chain-binding“ modules interact with insoluble 

and soluble glycan chains rather than crystalline surfaces, and bind to extended 

grooves of clefts. The binding ability is influenced by the degree of polymerisation, 

with increased substrate affinities up to hexasaccharides and weak interaction with 

oligosaccharides of three monomers or less (Notenboom et al., 2001a). Type-III CBM 

modules lack the extended binding site ability of Type-II modules, and instead have 

lectin-like properties that bind optimally to mono-, di- or trisaccharides. Notably, all 

members of the CBM9 family are all Type-III molecules, and have so far been 

discovered exclusively in xylanases.  

3.1.2 Uptake of lignocellulose derived soluble sugars-ABC transporters 

The rapid assimilation of oligosaccharides and soluble sugars liberated from 

lignocellulose by the activity of secreted polysaccharidases are important to rumen 

bacterial metabolism. ATP Binding Cassette (ABC) transporter systems couple solute 

transport against a concentration gradient with the energy derived from ATP 

hydrolysis. The frequency of ABC transporter encoding genes in the 

B. proteoclasticus genome indicates the bacterium relies heavily on these systems for 
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sugar uptake in the rumen. ABC transport systems are ubiquitous among prokaryotes 

and comprise one of the largest known paralogous protein superfamilies (Dassa and 

Bouige, 2001). ABC uptake systems mediate the translocation of a wide variety of 

essential nutrients and osmoprotectants, including mono- and oligosaccharides, amino 

acids and oligopeptides, organic and inorganic ions, metal ions, and vitamins. They 

comprise four “core” domains; two hydrophobic TMDs that form the substrate 

translocation channel, and two highly conserved, hydrophilic nucleotide-binding 

domains (NBDs) that are located on the cytoplasmic face of the cell membrane 

(Schneider and Hunke, 1998). Bacterial ABC uptake systems also utilise a high-

affinity substrate-binding protein (SBP), which in Gram-positive bacteria SBPs are 

often soluble lipoproteins that are tethered to the external surface of the cell wall by N-

terminal cysteine acylation, or fused directly to the membrane transporter (van der 

Heide and Poolman, 2002).  

SBPs are essential for efficient transmembrane transport irrespective of the external 

solute concentration (Dabard et al., 2001, Davidson et al., 1992). They restrict 

substrate diffusion away from the cell and therefore enhance substrate interaction with 

the membrane bound translocation machineries (Monedero et al., 2008). Moreover, 

SBP/substrate interaction improves SBP/transporter affinity (Chen et al., 2001), and 

conformational changes in SBPs induced by substrate-binding also stimulates NBD 

ATP hydrolysis, both of which enhance the activity of the associated transporter 

system (Davidson et al., 1992).  

SBP dependent ABC transporter uptake systems comprise two sub-families 

(http://www.tcdb.org/) (Saier et al., 2009), which are differentiated by the nature of 

their substrates, core subunit composition, and conserved sequence motifs. Members 

of the Carbohydrate Uptake Transporter 1 (CUT1) family transport a variety of di- and 

oligosaccharides, and are composed of the four core domains plus the SBP, while 

systems belonging to the CUT2 family transport almost exclusively monosaccharides 

and possess single copies of the TMD and NBD plus the SBP. The wide variety of 

substrates assimilated by ABC transporter uptake systems is mediated primarily by 

SBP specificity, although TMDs may also possess low affinity substrate-binding 

domains (Shuman, 1982). Most SBPs bind one or a family of related substrates, for 

example the CUT1 family maltose and xylooligosaccharide transporters of 

Lactobacillus casei (Shulami et al., 2007) and Geobacillus stearothermophilus 

(Doeven et al., 2004) respectively. Some SBP dependent import systems also show 
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versatility in their ability to handle a variety of structurally unrelated substrates. Such 

versatility may be achieved by a single SBP interacting with a variety of substrates 

(Higgins and Ames, 1981, van der Heide and Poolman, 2002), or promiscuous 

membrane bound transporter complexes interacting with several SBPs of variable 

specificity (Stephenson, 2005). 

3.2 Results 

3.2.1 Theoretical 2-DE 

A Type-I or Type-II N-terminal secretory signal peptide was detected in 537 

B. proteoclasticus proteins, 200 of which were predicted to be transmembrane proteins 

due to the presence of at least one membrane-spanning domain distinct from the signal 

peptide. The theoretical pI distribution of the remaining 337 secreted proteins showed 

a strong skew towards the acidic pI range (Figure 3.2A), where 294 proteins (87%) 

had a pI value between 3 and 5.6. The theoretical size distribution of the secretome 

ranged between 6 and 371 kDa and 94% of the proteins were between 10 and 150 

kDa. Examination of the predicted protein function demonstrated that almost a quarter 

of the B. proteoclasticus secretome is devoted to lignocellulose degradation and the 

uptake of released soluble sugars (Figure 3.2B). The B. proteoclasticus secretome 

included 35 polysaccharide-degrading enzymes that contained catalytic domains 

collectively representing 14 GH, four CE, and two PL families. The GH3, 5, 10, and 

13 classifications are the most well represented, and the complete repertoire of 

secreted enzymes contains catalytic domains classified within 21 different CAZy 

families. There are representatives of all three types of enzymes (GHs, CEs, and PLs) 

necessary for the complete lignocellulose degradation. All three carbohydrate binding 

proteins encoded by the B. proteoclasticus genome are also predicted to be secreted 

proteins.  

All but three of secreted polysaccharidases had a theoretical pI value below 5.5, and 

all were between 40 and 294 kDa (Figure 3.2A). More than 16% of the secretome 

were components of one or more ABC transport systems and included 34 sugar-

specific SBPs, some of which are likely to mediate the uptake of lignocellulose 

derived soluble sugars. Strikingly, all 34 SBPs had a theoretical pI value below 4.7. 

Almost 5% of the secretome was involved in protein processing, but surprisingly for a 

highly proteolytic bacterium, only one extracellular protease and one peptidase were 

predicted. More than half the B. proteoclasticus secretome consisted of hypothetical 

proteins or proteins of unknown function.  
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Figure 3.2. Summary of the theoretical B. proteoclasticus secreted proteome. 

Theoretical 2-DE (A) and protein function summary (B) of the 337 predicted 

B. proteoclasticus secreted proteins. Red symbols in (A) represent predicted secreted 

polysaccharide-degrading enzymes.  

The codon adaptation index (CAI) (Sharp and Li, 1987) is a measure of the extent 

of synonymous codon usage bias, and in bacterial genomes is positively correlated 

with mRNA expression and relative protein abundance (Futcher et al., 1999, Goetz 

and Fuglsang, 2005, Ishihama et al., 2008, Jansen et al., 2003, Kanaya et al., 1999). A 

CAI value for each predicted secreted protein was calculated using 40 highly 

expressed B. proteoclasticus reference genes, which were used as an estimator of 

relative protein abundance.  
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Relative protein abundance estimation using the CAI demonstrated that 20% of the 

secretome were the products of predicted highly expressed genes, and almost half of 

these were either polysaccharide-degrading enzymes or ABC transporter solute 

binding proteins. The predicted highly expressed polysaccharidases included enzymes 

targeting the xylan backbone, xylooligomers, and backbone substituents, as well as 

cellulose, starch, and pectin. Secreted proteins that were the products of predicted non-

highly expressed genes were dominated by hypothetical proteins, proteins of unknown 

function, and those involved in cell envelope biogenesis. 

3.2.2 Gel-based analysis of the B. proteoclasticus secreted proteome 

2-DE protein separation in combination with MALDI-TOF mass spectrometry and 

ESI-MS/MS was used to identify B. proteoclasticus secreted proteins, and proteins 

that may be attached to the external cell surface. To examine the effect of simple and 

complex plant polysaccharides on secreted protein abundance patterns, cells were 

grown in vitro in modified M704 culture medium supplemented with either 0.1% 

xylan or 0.5% xylose. The effect of growth in each of these conditions was analysed in 

cells harvested at mid-log and stationary phase.  

3.2.2.1 Optimisation of B. proteoclasticus secreted protein purification 

Three methods suitable for the purification of low concentration protein from large 

solution volumes were trialled for purification of B. proteoclasticus secreted proteins. 

The proteins present in 45 mL of freshly thawed B. proteoclasticus culture medium 

harvested from xylan grown cells were precipitated using either TCA at a final 

concentration of 10% (w/v) as described by Voigt et al. (2006), or ammonium 

sulphate at a final concentration of 60% (w/v) as described by Jiang et al (2004). In 

both cases the precipitation was performed overnight at 4°C. After harvesting and 

washing the precipitated proteins, each protein pellet was resuspended in 20 µL of 1 x 

SDS sample buffer (containing 20 mM DTT) and analysed by 1-D SDS-PAGE. 

Secreted protein purification was also attempted using a Centricon
®
 Centrifugal 

Concentrator unit with a 10,000 Dalton cut-off ultra-filter membrane. After repeated 

attempts this method was found to be unsuitable because the filter membrane of the 

device rapidly clogged and prevented the passage of the fluid through the device. 

Furthermore, the retained sample became progressively contaminated with particulate 

matter that was likely to be undigested oat-spelt xylan suspended in the culture 

medium. As a consequence this method was discarded from the optimisation analysis. 
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Loading the total protein mass precipitated by the TCA and ammonium sulphate 

methods allowed direct comparison of the efficiency of each procedure, and a clear 

quantitative difference between the two methods was found (Figure 3.3). Replicate 

experiments confirmed that the TCA precipitation method was significantly more 

effective for the precipitation of B. proteoclasticus secreted proteins and was therefore 

selected as the most appropriate method for the preparation of secreted proteins for all 

future analyses. 

 

Figure 3.3. 1-DE analysis of the effect of methods for the purification of proteins 

from the culture medium of B. proteoclasticus cells. Total protein recovered from 45 

mL of culture medium harvested from xylan grown, mid-log phase harvested cells by 

TCA and ammonium sulphate was analysed by 1-D SDS-PAGE, and the gel was 

stained with CBB-G250.  

3.2.2.2 2-DE of proteins recovered from the B. proteoclasticus culture medium  

The pI 3-10 2-DE spot pattern of proteins recovered from the culture medium of 

xylan-grown, mid-log phase harvested cells was similar to the theoretical secretome 

2-DE map, with approximately 70% of the detectable proteins focused between pI 3.0 

and 5.6. Consequently, B. proteoclasticus secreted proteins recovered from the culture 

medium of mid-log phase (Figure 3.4 and Figure 3.5) and stationary phase (Figure 3.6 
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and Figure 3.7) harvested cells grown in the presence of xylan (Figure 3.4 and 

Figure 3.6) and xylose (Figure 3.5 and Figure 3.7), were separated by 2-DE using pI 

3.0-5.6 IPG strips.  

In each gel set an average of 195 individual protein spots were detected, 111 of 

which were identified as the products of 74 B. proteoclasticus CDSs. Thirty of these 

non-redundant gene products contained a Type-I or Type-II N-terminal signal peptide, 

which included five polysaccharidases and two carbohydrate-binding proteins (CBPs) 

(Figure 3.4-Figure 3.7, and Table 3.1). All but two of these were the product of a 

predicted highly expressed gene. The five secreted polysaccharide-degrading enzymes 

were identified by matching at least 13 peptide masses to the full-length protein 

sequences with a maximum mass error of 50 ppm, and achieving a minimum 20% 

sequence coverage. The B. proteoclasticus genome encodes two secreted CBPs at loci 

Bpr_I0736 and Bpr_I1599 (chromosome 1), and both were detected with 15% and 

16% coverage respectively. All seven carbohydrate active proteins contained a Type-I 

signal peptide (probability score = 1) and none contained an identifiable TMD. In 

addition, 16 ABC transporter system substrate-binding proteins were identified, four 

of which were detected in one or more protein spots that were between 3.7 and 7.6-

fold more abundant in the 2-DE separations of protein harvested from xylan grown 

cells, or were unique to the xylan condition. Although the SBP product of Bpr_I1720 

was identified in spot 18 that was detected uniquely in the xylan growth condition, the 

protein was also identified in several other spots that were not differentially abundant 

between growth conditions, and was therefore deemed to not be a differentially 

abundant protein in the B. proteoclasticus extracellular proteome. The only secreted 

subtilisin family serine protease, one cell-surface protein, and three hypothetical 

proteins were also identified (Figure 3.4-Figure 3.7, and Table 3.2). 

The majority of the 44 predicted cytosolic proteins identified in the 

B. proteoclasticus culture medium (Appendix B, Table B.1) were involved in 

carbohydrate utilisation, energy metabolism, nucleotide and nucleic acid metabolism, 

and protein synthesis. Relative abundance analysis of the complete set of identified 

proteins demonstrated that the 20 most abundant 2-DE protein spots were all secreted 

proteins. Furthermore, theoretical protein abundance estimation using the CAI showed 

that 75% of the identified cytosolic proteins were the products of predicted highly 

expressed genes.  
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In an attempt to clarify whether unidentified protein spots that were visible in the 2-

DE separations of secreted proteins originated from proteins that may have been 

present in the culture medium prior to use, each unidentified PMF was searched 

against the eukaryotic division of the NCBI non-redundant database. In no case was a 

positive identification obtained.  
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Figure 3.4. Narrow-range 2-DE of B. proteoclasticus secreted proteins harvested at mid-log phase from cells grown in the presence of 0.1% xylan. 

Red, blue, and gold circles denote spots with increased, decreased, and unchanged abundance respectively in the xylan growth condition relative to 

xylose. Circled spots are summarised in Table 3.1 and Table 3.2.  
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Figure 3.5. Narrow-range 2-DE of B. proteoclasticus secreted proteins harvested at mid-log phase from cells grown in the presence of 0.5% 

xylose. Red, blue, and gold circles denote spots with increased, decreased, and unchanged abundance respectively in the xylan growth condition 

relative to xylose. Circled spots are summarised in Table 3.1 and Table 3.2. 
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Figure 3.6. Narrow-range 2-DE of B. proteoclasticus secreted proteins harvested at stationary phase from cells grown in the presence of 0.1% 

xylan. Red, blue, and gold circles denote spots with increased, decreased, and unchanged abundance respectively in the xylan growth condition 

relative to xylose. Circled spots are summarised in Table 3.1 and Table 3.2. 
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Figure 3.7. Narrow-range 2-DE of B. proteoclasticus secreted proteins harvested at stationary phase from cells grown in the presence of 0.5% 

xylose. Red, blue, and gold circles denote spots with increased, decreased, and unchanged abundance respectively in the xylan growth condition 

relative to xylose. Circled spots are summarised in Table 3.1 and Table 3.2. 
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Table 3.1. Secreted carbohydrate active proteins identified in the mid-log and stationary phase harvested B. proteoclasticus culture medium.
a
 

Spot Protein Locus EC PHX
b
 Score

c
 pI kDa Pep.

d
  Cov.

d
 ML

e
 Stat

e
 

1 Endo-1,4--glucanase, Cel5C Bpr_I1710 3.2.1.4 Y 1.2-09 4.6 61.1 16/54 36% n/c -5.7±1.7 (0.002) 

2 Endo-1,4--glucanase, Cel5C Bpr_I1710 3.2.1.4 Y 7.4e-07 4.6 61.1 13/46 28% -17.2±4.8 (0.008) -12.1±5.3 (0.008) 

3 Endo-1,4--xylanase, Xyn10B Bpr_I0026 3.2.1.8 Y 1.2e-14 4.3 136.9 24/45 20% xylan n/d 

4 Endo-1,4--xylanase, Xyn10B Bpr_I0026 3.2.1.8 Y 9.6e-14 4.3 136.9 24/55 25% xylan 17.5±2.5 (0.000) 

5 Endo-1,4--xylanase, Xyn10B Bpr_I0026 3.2.1.8 Y 1.5e-09 4.3 136.9 20/53 20% xylan n/d 

6 Pectate lyase, Pel1A Bpr_I2372 4.2.2.2 N 3.0e-13 4.4 115.5 19/56 28% n/d xylose 

7 Pectin methyl-esterase, Pme8B Bpr_I2473 3.1.1.11 Y 2.4e-10 4.2 294.1 24/58 14% n/d n/c 

8 
Xylosidase/arabinofuranosidase, 

Xsa43J 
Bpr_I2935 - Y 3.0e-18 4.2 251.9 31/61 17% xylan n/c 

9 Carbohydrate-binding protein Bpr_I0736 - N 1.0e-05 4.1 57.5 6/20 15% n/c n/c 

10 Carbohydrate-binding protein Bpr_I1599 - Y 4.8e-08 4.1 76.9 11/21 16% n/c n/c 

 
a Secretory signal-peptides were predicted using SignalP (Ver. 3.0) (www.cbs.dtu.dk/services/SignalP/) and LipoP (Ver. 1.0) (http://www.cbs.dtu.dk/services/LipoP/). 
b PHX, predicted highly expressed gene. 
c Score value is the statistical expectation that the top ranked protein match is a false positive identification.  
d Pep, the number of matched peptides masses/searched peptides masses; Cov, Protein sequence coverage of the matched peptides. 
e ML, culture medium harvested at mid-log phase (OD600 = 0.5); Stat, culture medium harvested at stationary phase (OD600 = 0.7). Mean fold-change ± SEM calculated from 

three biological replicate experiments is shown. p-values are shown in brackets. Xylan/xylose denotes uniquely detected in culture medium harvested from xylan / xylose grown 

cells respectively; n/d, not detected in either growth condition; n/c, no protein abundance change between growth conditions. 
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  Table 3.2. Predicted non-carbohydrate active secreted proteins identified in the mid-log and stationary phase harvested B. proteoclasticus culture 

medium. 

Spot Protein Locus Func.
a
 PUL PHX

b
 Score

c
 SigP

d
 pI kDa Pep.

b
 Cov.

b
 ML

e
 Stat

e
 

11 
3-hydroxybutyryl-CoA dehydrogenase, 
Hbd 

Bpr_I2486 E - Y 1.2e-08 SpI 5.4 31.5 11/47 41% n/c n/c 

12 ABC transporter SBP Bpr_I1600 T - N 4.8e-05 SpII 4.2 93.5 13/46 16% n/c n/c 

13 Amino acid ABC transporter SBP Bpr_I2466 T - Y 4.9e-06 SpII 4.1 32.4 6/15 29% xylose xylose 

14 
Bmp family protein 

Sugar ABC transporter SBP 

Bpr_I1560 

Bpr_I1667 

U 

T 

- 

- 

Y 

Y 

1782 

1094 

SpI 

SpII 

3.9 

4.1 

40.7 

47.8 

4 

5 

10% 

14% 
n/c n/c 

15 Cell surface protein Bpr_I2508 I - N 1.1e-06 SpI 4.6 141.4 12/31 13% xylose n/c 

16 
Hypothetical protein 

Hypothetical protein 

Bpr_I0139 

Bpr_I0188 

H 

H 

- 

3 

N 

N 

3.0e-08 

3.9e-05 

SpI 

SpI 

4.7 

5.1 

26.7 

27.0 

8/34 

934 

33% 

39% 
n/c n/c 

17 Hypothetical protein Bpr_I2628 H - Y 1.5e-14 SpI 7.8 31.8 12/34 39% 
-8.2±2.8  
(0.004) 

n/c 

18 

Oligopeptide ABC transporter SBP, 
OppA1 

Peptide/nickel ABC transporter 
periplasmic protein 

Sugar ABC transporter SBP 

Sugar ABC transporter SBP 

Bpr_I1276 
 

Bpr_I2750 
 

Bpr_I0313 

Bpr_I1720 

T 
 

T 
 

T 

T 

- 

 

- 

- 

5 

16 

Y 
 

Y 

 

Y 

Y 

3195 
 

1303 

 

5047 

3195 

SpII 
 

SpII 

 

SpII 

SpII 

4.3 
 

4.1 

 

4.0 

4.2 

83.3 
 

58.2 

 

55.3 

50.0 

10 
 

7 

 

9 

10 

15% 
 

12% 

 

11% 

15% 

Xylan Xylan 

19 
Oligopeptide ABC transporter SBP, 
OppA1 

Bpr_I1276 T - Y 7.6e-20 SpII 4.3 83.3 24/40 36% n/c n/c 

Table continues             
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Spot Protein Locus Func.
a
 PUL PHX

b
 Score

c
 SigP

d
 pI kDa Pep.

b
 Cov.

b
 ML

e
 Stat

e
 

20 

Oligopeptide ABC transporter SBP, 
OppA1 

Oligopeptide ABC transporter SBP, 

OppA2 

Bpr_I1276 
 

Bpr_III023 

T 
 

T 

- 
 

- 

Y 
 

Y 

8794 
 

1252 

SpII 
 

SpII 

4.3 
 

4.3 

83.3 
 

77.5 

12 
 

7 

17% 
 

10% 

n/c n/c 

21 
Oligopeptide ABC transporter SBP, 
OppA1 

Bpr_I1276 T - Y 1.5e-27 SpII 4.3 83.3 28/38 42% n/c n/c 

22 Serine protease subtilisin family Bpr_I2629 P - Y 6.1e-08 SpI 4.0 153.2 26/89 24% n/c n/c 

23 

Sugar ABC transporter SBP 

Sugar ABC transporter SBP 

Sugar ABC transporter SBP 

Bpr_I0313 

Bpr_I2010 

Bpr_I2344 

T 

T 

T 

5 

20 

24 

Y 

Y 

Y 

4180 

1.9e-8 

1152 

SpII 

SpII 

SpII 

4.0 

4.0 

4.1 

55.3 

47.6 

52.4 

9 

6 

5 

10% 

29% 

14% 

n/c 
3.7±1.7 

(0.034) 

24 Sugar ABC transporter SBP Bpr_I0182 T 3 Y 3.8e-10 SpII 4.4 63.5 15/54 29% Xylan Xylan 

25 Sugar ABC transporter SBP Bpr_I0182 T 3 Y 1.2e-9 SpII 4.4 63.5 14/47 35% 
7.6±3.0 
(0.010) 

5.3±0.2 
(0.000) 

26 

Sugar ABC transporter SBP 

Sugar ABC transporter SBP 

Sugar ABC transporter SBP 

Bpr_I0237 

Bpr_I0313 

Bpr_I1589 

T 

T 

T 

4 

5 

13 

Y 

Y 

Y 

1087 

1682 

2260 

SpII 

SpII 

SpII 

4.1 

4.0 

4.2 

65.1 

55.3 

61.2 

5 

5 

10 

10% 

5% 

18% 

n/c n/c 

27 Sugar ABC transporter SBP Bpr_I0937 T 9 Y 1.0e-5 SpII 4.4 61.5 12/41 24% n/c n/c 

28 Sugar ABC transporter SBP Bpr_I0937 T 9 Y 3.8e-9 SpII 4.4 61.5 16/53 32% n/c n/c 

29 Sugar ABC transporter SBP Bpr_I1720 T 16 Y 4737 SpII 4.2 50.0 9 20% n/c n/c 

30 Sugar ABC transporter SBP Bpr_I1720 T 16 Y 3706 SpII 4.2 50.0 7 18% n/c n/c  

Table continues             
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  Spot Protein Locus Func.

a
 PUL PHX

b
 Score

c
 SigP

d
 pI kDa Pep.

b
 Cov.

b
 ML

e
 Stat

e
 

31 Sugar ABC transporter SBP Bpr_III244 T 34 Y 2.4e-10 SpII 4.3 35.3 11/34 48% 
-4.5±0.6 

(0.005) 

-3.6±1.5 

(0.010) 

32 Xylose ABC transporter SBP Bpr_I1173 T 10 Y 3.0e-8 SpII 4.4 38.6 10/34 34% 
-4.8±1.1 

(0.009) 

-3.3±1.7 

(0.010) 

 
a E, Energy metabolism; H, Hypothetical; I, Cell envelope biogenesis; P, Protein fate; T, Transporters; U, Unknown function. 
b PHX, predicted highly expressed gene; SigP, contains a signal peptide; Pep, the number of matched peptides masses/searched peptides masses; Cov, protein sequence coverage 

of the matched peptides.  
c Score value is the statistical expectation that the top ranked match is a false positive identification. MOWSE scores are given for LC-MS/MS identifications. 
d Secretory signal-peptides were predicted using SignalP (Ver. 3.0) (www.cbs.dtu.dk/services/SignalP/) and LipoP (Ver. 1.0) (http://www.cbs.dtu.dk/services/LipoP/). 
e ML, culture medium harvested at mid-log phase (OD600 = 0.5); Stat, culture medium harvested at stationary phase (OD600 = 0.7). Mean fold-change is shown ± SEM. p-values 

are shown in brackets. Xylan / xylose denotes uniquely detected in culture medium harvested from xylan / xylose grown cells respectively; n/d, not detected in either growth 

condition; n/c, no protein abundance change between growth conditions. 
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3.2.3 The effect of growth substrate on the secreted proteome of B. proteoclasticus 

To examine the effect of simple and complex plant carbohydrates on protein 

abundance patterns B. proteoclasticus secreted proteins, cells were grown in vitro in 

modified M704 culture medium supplemented with either 0.1% xylan or 0.5% xylose. 

Preliminary experiments demonstrated that very little protein could be recovered from 

cells grown in unsupplemented modified M704 medium; therefore the 

unsupplemented growth condition was not used in this analysis. The effect of growth 

in xylan and xylose containing medium was analysed in cells harvested at mid-log and 

stationary phase using gel-based proteomics.  

3.2.3.1 Abundance patterns of secreted polysaccharidases 

The endoxylanase Xyn10B is the product of a predicted highly expressed gene and 

was the most abundant polysaccharide degrading enzyme detected in the 

B. proteoclasticus secretome at mid-log and stationary phase time points (Table 3.1, 

Figure 3.4 and Figure 3.6). In the 2-DE separations of proteins extracted from xylan-

grown, mid-log phase harvested cells Xyn10B was identified in three distinct spots 

that together comprised 5.6% of the total detectable protein (Figure 3.4). The most 

abundant of the three spots containing Xyn10B was spot 4, which contributed more 

than 80% of the total Xyn10B abundance at mid-log phase. During stationary phase, 

the enzyme was identified in a single spot at the same 2-DE position as the mid-log 

phase detected spot 4, and represented 8.7% of the total protein (Figure 3.6).  

In contrast to the abundance of Xyn10B in the secreted protein recovered from 

xylan grown cells, the enzyme was undetectable at mid-log phase when cells were 

grown in the presence of xylose as a sole carbon source (Figure 3.5), and was only 

weakly detectable during stationary phase growth (Figure 3.7). Differential abundance 

analysis showed Xyn10B was 17.5-fold more abundant in the secreted protein of 

xylan-grown cells during stationary phase growth compared to growth on xylose.  

The xyn10B gene is predicted to encode a 136.9 kDa mature protein, which is 

similar to the observed 2-DE positions of spot 4 and spot 5, and smaller than the 

position of spot 3 (Figure 3.4 and Figure 3.6). Examination of the peptide mass 

fingerprints (Figure 3.8) and MASCOT sequence coverage results (Figure 3.9) of 

spots 3, 4, and 5 showed that six well resolved peptides detected in spot 3 that matched 

to the 110-residue C-terminal region of the Xyn10B were not detectable in spots 4 or 5 

(Figure 3.9 A, black boxes). Furthermore, MS/MS analysis of protein extracted from 

spot 4 identified 21 peptides matching to Xyn10B, but also failed to detect peptides 
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matching to the C-terminal region (Figure 3.10). These results suggest that spot 3 is 

the full-length form of Xyn10B and spots 4 and 5 represent C-terminal truncated 

forms.  

 

Figure 3.8. MALDI-TOF peptide mass fingerprints of protein extracted from spot 3 

(A), spot 4 (B), and spot 5 (C). Peptide masses unique to spot 3 are marked with 

asterisks. 
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Figure 3.9. MASCOT summary of peptide sequence coverage of protein extracted 

from spot 3 (A), spot 4 (B), and spot 5 (C). Each was identified as the endoxylanase 

Xyn10B. 

B  

A  

C  



 

90 

 

Figure 3.10. MASCOT summary of MS/MS Xyn10B identification (A) and peptide 

sequence coverage (B) after analysis of protein extracted from spot 4.  

Xyn10B is between 40% and 44% identical to several uncharacterised gene 

products produced by Roseburia and Butyrivibrio isolates. The GH10 and CBM9 

domains in Xyn10B also display good homology to corresponding domains found in 

XynA of Eubacterium ruminantium (Q47871_9FIRM) (42% and 57% respectively), 

and in the XynA precursor of Thermoanaerobacterium thermosulfurigenes 

(Q60046_THETU) (32% and 32% respectively), both of which have been 

experimentally examined. The GH10 consensus sequence (Henrissat and Bairoch, 

1993) containing the conserved catalytic residues are present at positions E535 and 

B 

A 
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E650 in Xyn10B (Figure 3.11 and Figure 3.12, denoted by “*”), as are the highly 

conserved aromatic residues and residues involved in hydrogen bonding (Figure 3.13, 

denoted by “#” and “+” respectively) that mediate CBM9 attachment to cellulose 

(Notenboom et al., 2001b).  

During mid-log phase, the 252 kDa xylosidase/arabinofuranosidase Xsa43J was 

also detected in the secreted protein recovered from xylan-grown cells only 

(Figure 3.4, spot 8). In contrast, at stationary phase Xsa43J was detected at equal 

intensity in the culture medium harvested from cells grown on both substrates 

(comparison of Figure 3.6 and Figure 3.7). The 2-DE position of Xsa43J corresponded 

well with the theoretical pI and size of the enzyme and the masses of several clearly 

resolved peptides were matched to the N- and C-terminal regions of the mature protein 

sequence (Figure 3.14), which together indicate the excised spot represented the full-

length protein species.  

Three polysaccharidases with predicted hydrolytic activities towards cellulose or 

pectin were identified in the culture supernatant of xylan- or xylose-grown cells. 

Cel5C is predicted to be a 62 kDa endocellulase that contains a GH5 endoglucanase 

catalytic domain located between residues 55 and 363, and a C-terminal CBM2a 

domain beginning at residue 456 (Figure 3.25). At both time points Cel5C was 

detected in two spots located at approximately 60 kDa and 52 kDa (Figure 3.4-

Figure 3.7, spot 1 and spot 2 respectively). Spot 1 was detected at equal abundance 

during mid-log phase, but during stationary phase was significantly less abundant in 

the secreted protein of xylan-grown cells. Furthermore, at both time points spot 2 was 

more than 12-fold less abundant in the secreted protein recovered from xylan-grown 

cells. Peptide sequence coverage of the two Cel5C protein forms confirmed in both 

cases the presence of several contiguous peptides spanning the catalytic domain 

(Appendix C, Figure C.1). One peptide derived from the full length protein which was 

not present in the lower mass form matched to the N-terminal end of the CBM2a 

domain. As no tryptic peptides were matched to either the N- or C-terminus, it difficult 

to predict where a protein truncation might occur in order to account for the presence 

of the lower molecular weight spot.  
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Figure 3.11. CLUSTALW multiple sequence alignment of the GH10 domain (N- terminal and central regions) in B. proteoclasticus Xyn10B with 

the top 10 ranking BLASTp homologues. Asterisk denotes the catalytic glutamate residues within the GH10 consensus sequence. Proteins are 

arranged by BLASTp expectation score.  

*
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Figure 3.12. CLUSTALW multiple sequence alignment of the GH10 domain (C-terminal region) containing region of B. proteoclasticus Xyn10B 

with the top 10 ranking BLASTp homologues. Asterisk denotes the catalytic glutamate residues within the GH10 consensus sequence. Proteins are 

arranged by BLASTp expectation score.  

*
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Figure 3.13. CLUSTALW multiple sequence alignment of the CBM9 domain containing region of B. proteoclasticus Xyn10B with the top 10 

ranking BLASTp homologues. “#” and “+” symbols denote the conserved aromatic residues and residues involved in hydrogen bonding 

respectively. Proteins are arranged by BLASTp expectation score. 

# + + +

+ + + #



 

95 

 

Figure 3.14. MS identification of Xsa43J in the B. proteoclasticus culture medium. 

MALDI-TOF peptide mass fingerprints of protein extracted from spot 8 (A) and 

MASCOT peptide sequence coverage summary of Xsa43J identification (B).  
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During stationary phase only, two pectinolytic enzymes secreted by cells grown in 

the presence of xylan or xylose were detected at low-abundance. The 294 kDa pectin 

methylesterase Pme8B was identified in spot 7 (Figure 3.6 and Figure 3.7) and 

appeared to be the full length form of the constitutively expressed enzyme (Appendix 

C, Figure C.2). In contrast, spot 6 was detected only in xylose-grown, stationary phase 

cells, and was matched to the pectate lyase, Pel1A, which contains a PL family 1 

catalytic domain (Figure 3.25). The 2-DE spot position of spot 6 was approximately 

45 kDa smaller than the predicted size of the full-length size of the enzyme. The PMF 

sequence coverage showed that all 20 peptide masses contributing to the MASCOT 

identification were matched to the N-terminal half of the protein sequence (Appendix 

C, Figure C.3), which suggests the 2-DE detected protein was an N-terminal fragment. 

The B. proteoclasticus genome encodes two secreted CBPs that lack any 

identifiable catalytic domains. Both proteins were identified in the culture medium of 

xylan and xylose grown cells at equivalent levels. Protein spot 9 and spot 10 

(Figure 3.4-Figure 3.7) were matched to the predicted products of loci Bpr_I0736 and 

Bpr_I1599, respectively, and the abundance of both proteins was unaffected by growth 

substrate. The product of locus Bpr_I1599 in particular was detected at low relative 

abundance at both time points. 

3.2.3.2 Abundance patterns of non-carbohydrate degrading secreted proteins 

Several proteins with predicted functions other than polysaccharide degradation 

exhibited differential abundance patterns between the culture supernatants of xylan 

and xylose-grown cells. An ABC transporter SBP (Bpr_I0182) was the most abundant 

protein present in both the mid-log and stationary phase harvested xylan-grown culture 

medium where it constituted 8.1% and 17% of the total detectable protein respectively 

(Figure 3.4 and Figure 3.6, spot 25). At mid-log and stationary phase growth, the SBP 

was 7.2-fold and 5.4-fold more abundant in xylan-grown cells respectively, compared 

to the secreted protein recovered from cells grown on xylose. Bpr_I0182 is most 

similar to a family 1, extracellular solute-binding protein (SBPbac1, PF01547) 

secreted by Geobacillus sp. Y412MC10 (Table 3.5), and also shows similarity to 

several other SBPbac1 proteins produced by Gram-positive bacteria. Protein spot 24 

also contained the product of Bpr_I0182 and was detected only in xylan-grown cells 

harvested at both mid-log and stationary phases of growth. During stationary phase, 

spot 23 was more abundant in the culture medium of xylan grown cells, and contained 

three ABC transporter SBPs, two of which also contained SBPbac1 domains 
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(Bpr_I0313 and Bpr_I2344) (Table 3.2). Several Peripla_BP_1 (PF00532) sugar 

binding proteins were significantly more abundant in xylose-grown cells at both 

mid-log and stationary phases of growth. Consistent with the culture conditions used, 

protein extracted from the spot 31 and 32 (Figure 3.5 and Figure 3.7) was identified as 

ABC transporter sugar binding proteins specific for simple sugars (RbsB) 

(Bpr_III244) and xylose (Bpr_I1173) respectively (Table 3.2). During stationary 

phase, B. proteoclasticus cells grown in the presence of xylose also secreted an 

abundant 32 kDa amino acid ABC transporter substrate-binding protein (Bpr_I2466) 

that was undetectable in the secreted protein recovered from cells grown on xylan 

(Figure 3.7, spot 13). This protein was similar to polar amino acid substrate-binding 

proteins produced by Clostridial species, and may be involved in glutamine transport. 

The single subtilisin-family serine protease (EC3.4.1.62) encoded by the 

B. proteoclasticus genome was identified from protein spot 22, and was 33% identical 

to a peptidase synthesised by Thermoanaerobacter sp. X514. No detectable peptide 

masses were matched to the first 250 N-terminal residues, which contains 12 potential 

tryptic peptides larger than 800 kDa, indicating a portion of the N-terminal region may 

be missing from the excised protein. The protease was detected at a slightly greater 

abundance in xylose-grown cells at both time points and was considerably more 

abundant during stationary phase growth.  

3.2.4 Gel-based analysis of the B. proteoclasticus cell-associated proteome  

3.2.4.1 Optimisation of B. proteoclasticus cell-associated protein extraction 

Five buffers were tested for B. proteoclasticus cell-associated protein extraction. 

Freshly harvested mid-log phase, xylan grown cells (cell mass pelleted from 50 mL of 

culture medium) were resuspended in 2.6 mL of one of the five buffers and incubated 

at 4°C for 30 min. After TCA/acetone precipitation of the extracted protein, 50 mg of 

each purified sample was analysed by 1-DE, except for the 0.2M glycine extract, 

where the total sample volume was analysed (Figure 3.15).  

A 20 mM Tris-HCl buffer containing 1% SDS has been demonstrated to be 

effective for the extraction of S-layer proteins from the cell surface of the Gram-

positive anaerobe Peptostreptococcus anaerobius (Kotiranta et al., 1995). CHAPS 

detergent causes less cell membrane disruption than SDS, and is more compatible with 

2-DE. As a consequence, the 2% CHAPS in ice-cold 50 mM Tris-HCl buffer (pH 7.0) 

with Complete
®
 Protease Inhibitor was used as the benchmark extraction buffer for 

this analysis. The 200 mM Glycine (pH 2.2) buffer extracted no detectable protein. 
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The remaining four buffers extracted approximately equal amounts of total protein, 

although quantitative differences were evident between the protein profiles of each 

buffer extract.  

 

Figure 3.15. 1-DE analysis of the effect of buffers used for B. proteoclasticus cell-

associated protein extraction. 50 µg of extracted protein was loaded per lane, except 

for the 200 mM glycine (pH 2.2) buffer, where the total extraction was loaded. The 

gel was stained with CBB-G250. The red arrow indicates the most abundant protein 

in the 2% CHAPS extract. Blue arrow indicates the most abundant protein in the 

50 mM EDTA buffer extract.  

The most abundant protein in the 2% CHAPS and 8M urea extracts (red arrow) was 

weakly detected in the 50 mM EDTA and 5 M LiCl extracts. Conversely, the most 

abundant protein in the 50mM EDTA extract (blue arrow) was also highly abundant in 

the 2% CHAPS extract, but only weakly detectable in the 5 M LiCl and 8 M urea 

extracts. Several low molecular weight proteins were efficiently extracted by 5 M LiCl 

that were only weakly detectable in all other extracts. In spite of these differences, a 

marked improvement over the 2% CHAPS buffer extract could not be achieved with 

any of the other buffers tested. Furthermore, 2% CHAPS extracted several highly 

abundant proteins that were not as abundant in the other buffers tested, which 
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suggested that these may be cell-associated proteins. Consequently, the 2% CHAPS 

buffer was selected as the most appropriate buffer for routine extraction of 

B. proteoclasticus cell-associated proteins.  

3.2.4.2 2-DE of proteins recovered from the B. proteoclasticus cell-associated 

extract 

Narrow range 2-DE separations of the proteins harvested by 2% CHAPS extraction 

of cells grown in the xylan- (Figure 3.16), xylose- (Figure 3.17), and no added carbon 

(Figure 3.18) growth conditions were used in an attempt to identify cell-associated 

B. proteoclasticus proteins. One hundred and sixty two protein spots were excised 

from the mid-log and stationary phase separations covering the pI 3-5.6 and pI 5.3-6.5 

ranges, in-gel trypsin digested, and analysed by MALDI-TOF MS or LC-MS/MS. 

Each tryptic-PMF or LC-MS/MS data file was searched against the B. proteoclasticus 

protein sequence database using the MASCOT search algorithm (described in Section 

2.12.3). Proteins were identified in 118 spots, which were the products of 61 genes 

(Appendix B, Table B.4). This set of 61 non-redundant gene products contained 17 

proteins that were associated with carbohydrate metabolism, and 10 with the transport 

of polysaccharide degradation products. Three polysaccharide-degrading enzymes 

were identified in five spots in the 2% CHAPS extraction of B. proteoclasticus cells 

grown in the presence of xylan (Figure 3.16 and Table 3.3, above the solid dividing 

line), and no additional polysaccharidases were identified in the alternate growth 

conditions.  
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Figure 3.16. Polysaccharide degrading enzymes and proteins uniquely identified in the B. proteoclasticus cell-associated fraction by pI 3-5.6 2-

DE/MALDI-TOF MS. Polysaccharidases, and proteins uniquely identified in the cell-associated fraction are circled in red and blue respectively.  
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Figure 3.17. Colloidal CBB G-250 stained 2-DE separation of proteins harvested by 2% CHAPS extraction of mid-log phase, xylose grown cells. 

Polysaccharidases, and proteins uniquely identified in the cell-associated fraction are circled in red and blue respectively.  
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Figure 3.18. Colloidal CBB G-250 stained 2-DE separation of proteins harvested by 2% CHAPS extraction of mid-log phase, no added carbon 

grown cells. Polysaccharidases, and proteins uniquely identified in the cell-associated fraction are circled in red and blue respectively.  

pI 5.63

k
D

a

10

20

50

70

160

220

120

100

80

60

40

30

CA3

CA80

CA456

CA478



 

103 

C
h
a
p
ter 3

T
h
e extra

cellu
la

r B
. p

ro
teo

cla
sticu

s p
ro

teo
m

e
 

The α-amylase Amy13A (Bpr_I1087) was identified in two protein spots in the pI 

3-5.6 2-DE separation of proteins harvested by 2% CHAPS extraction of mid-log 

phase, xylan grown cells (Figure 3.16, spot CA7 and spot CA8). Neither spot was 

detected in the xylose or no added carbon growth conditions (Figure 3.17 and 

Figure 3.18 respectively), indicating that the abundance of Amy13A may be 

influenced by growth substrate. Protein spot CA7 (Figure 3.16) had apparent pI and 

size values of 3.8 and 160 kDa respectively, which are similar to the predicted pI and 

size values of Amy13A (Table 3.3). Spot CA8 had a more basic pI value and was 

approximately 10 kDa smaller. Manual analysis of the protein sequence coverage data 

from spot CA7 and spot CA8 (Figure 3.19 A and B) showed that a similar set of 

peptides extracted from the two Amy13A protein spots were matched to the full-length 

protein sequence, and none were matched to the N- or C-termini. This sequence 

coverage makes it difficult to predict the reason for the presence of spot CA8. 

Nonethless, Amy13A was not identified in any growth condition or time point in the 

2-DE analysis of protein present in the culture medium, and therefore adds to the set of 

polysaccharidases confirmed as being present in the B. proteoclasticus extracellular 

proteome.  

Xyn10B and Xsa43J (Figure 3.16) were also identified in the pI 3-5.6 2-DE 

separation of proteins harvested by 2% CHAPS extraction of mid-log phase 

B. proteoclasticus cells. Xyn10B was detected in two spots in the separation of 

proteins harvested from xylan grown cells (Figure 3.16, spot CA6 and spot CA9), but 

could not be detected in either the xylose or no-added carbon growth conditions. 

Protein spot CA6 had an apparent size of 160 kDa, and spot CA9 was a lower 

abundant spot with a size approximately 10 kDa smaller and slightly more acidic. This 

Xyn10B spot distribution and relative abundance pattern mimics the pattern detected 

for Xyn10B in the 2-DE separations of proteins present in the culture medium. 

Examination of the PMF and protein sequence coverage of protein extracted from spot 

CA6 (Figure 3.20 A and B respectively) showed that 33 well resolved tryptic peptide 

masses were matched to a large region of the protein, and was similar to the sequence 

coverage pattern obtained for Xyn10B extracted from spot 3 in the secreted protein 

analysis (Figure 3.9 A). Furthermore, the sequence coverage pattern of Xyn10B 

extracted from spot CA9 (Figure 3.20 C) was also very similar to the coverage 

determined for the secreted spot 4 (Figure 3.9 B), including the absence of peptides 

matching to the C-terminus. This supports the hypothesis that the lower molecular 
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weight spot identified as Xyn10B is a C-terminally truncated fragment of the full-

length enzyme.  

Examination of the full set of proteins identified in the 2-DE separations of 2% 

CHAPS proteins extracts confirmed extensive contamination with cytosolic proteins 

(Appendix B, Table B.4). Despite numerous replicate experiments to ensure the 

cytosolic protein contamination was not an experimental error, the contamination of 

extracted cell-associated proteins could not be reduced. Quantitative analysis of 

relative protein abundance would be affected by sample contamination. For this 

reason, together with the fact that no non-carbohydrate active secreted proteins were 

uniquely detected in the B. proteoclasticus cell-associated proteome during the initial 

analysis, an examination of the differentially abundant secreted or cell-associated 

proteins based on the 2-DE separations of 2% CHAPS proteins extracts was not 

conducted. Furthermore, only three other proteins identified in the cell-associated 

extracts were not identified in the cytosolic proteome (Table 3.3, below the solid 

dividing line), and all three were cytosolic proteins. A rigorous examination of all 

cytosolic protein abundance changes was therefore performed using 2-DE separations 

of cytosolic protein extracts.  
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Table 3.3. Summary of the polysaccharidases and proteins uniquely identified in the B. proteoclasticus cell-associated fraction
a
.  

Spot Protein Locus EC PHX
b
 Score SigP

c
 pI kDa Pep.

a
 Cov.

a
 

CA7 α-Amylase, Amy13A Bpr_I1087 3.2.1.1 Y 1.3e-05 SpI 4.1 139.1 12 14% 

CA8 α-Amylase, Amy13A Bpr_I1087 3.2.1.1 Y 3.0e-07 SpI 4.1 139.1 15 17% 

CA6 Endo-1,4-β-xylanase, Xyn10B Bpr_I0026 3.2.1.8 Y 4.8e-13 SpI 4.3 136.9 33 31% 

CA9 Endo-1,4-β-xylanase, Xyn10B Bpr_I0026 3.2.1.8 Y 1.5e-08 SpI 4.3 136.9 21 22% 

CA3 Xylosidase/arabinofuranosidase, Xsa43J Bpr_I2935 - Y 1.9e-07 SpI 4.2 251.9 15 9% 

CA478 DegV family protein Bpr_I1462  N 1217 - 4.5 31.9 4 14% 

CA456 L-ribulokinase, AraB Bpr_I2815 2.7.1.16 Y 1.5e-11 - 4.6 58.2 15 29% 

CA80 Oxidoreductase GFO/IDH/MOCA family Bpr_I0422  N 6.5e-07 - 5.0 36.9 11 29% 

 
a Polysaccharidases, and proteins uniquely identified are shown above and below the solid line respectively. 
b PHX, predicted highly expressed gene; Pep, the number of matched peptides masses/searched peptides masses; Cov, Protein sequence coverage of the matched peptides.  
c Secretory signal-peptides were predicted using SignalP (Ver. 3.0) (www.cbs.dtu.dk/services/SignalP/) and LipoP (Ver. 1.0) (http://www.cbs.dtu.dk/services/LipoP/). 
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Figure 3.19. MASCOT summary of MALDI-TOF Amy13A identification of protein 

excised from spot CA7 (A) and spot CA8 (B).  
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Figure 3.20. MS identification of Xyn10B from the cell-associated fraction. MALDI-

TOF peptide mass fingerprint (A) and peptide sequence coverage (B) of protein 

extracted from spot CA6. (C) Peptide sequence coverage of protein extracted from 

spot CA9. 
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3.2.5 Cellulose affinity assay of B. proteoclasticus secreted proteins 

The presence of CBMs in the polysaccharide-degrading enzymes and non-catalytic 

secreted proteins identified in the B. proteoclasticus extracellular proteome stimulated 

an examination of the cellulose-binding ability of proteins secreted by xylan-grown, 

stationary phase harvested B. proteoclasticus cells. Phosphate buffered, stationary 

phase harvested growth medium was mixed with Avicel
®
 PH-101, and proteins 

present in the culture medium were allowed to adsorb to the substrate over a two hour 

period. After removal of the culture medium and washing the cellulose pellet, proteins 

were eluted in 1 x LDS sample buffer and analysed by 1-DE (Figure 3.21).  

 

Figure 3.21. 1-DE analysis of polysaccharide adsorption assay of xylan-grown 

B. proteoclasticus secreted proteins. Avicel, Wash 1, and Wash 2 lanes show 

proteins removed by the final two phosphate buffer washes of Avicel
™

; Avicel LDS, 

LDS elution of proteins bound to Avicel
™

; Sephadex LDS, LDS elution of proteins 

bound to Sephadex (negative control). Annotated bands are summarised in Table 3.4.  

No proteins were detected in the phosphate buffer wash fractions, or the Sephadex 

LDS elution used as the negative control. In contrast, 14 well resolved protein bands 
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were detected exclusively in the LDS eluted fraction. Each band was excised, trypsin 

digested, and analysed by MALDI-TOF MS. Each of the 10 proteins that were 

identified in 10 of the fourteen excised bands were secreted proteins (Table 3.4), and 

included the previously identified Xyn10B (Band SB1, and Figure 3.22) and Cel5C 

(identified as part of a mixture in Band SB10). In addition, two secreted 

polysaccharidases were identified, Xyn10C (Figure 3.23) and Mxy10-43A (Figure 

3.24) that had eluded detection in the 2-DE analysis of the B. proteoclasticus 

extracellular proteome. Proteins present in bands SB5, SB9, SB13, and SB14 were not 

identified. 

All proteins other than Mxy10-43A were detected in the 1-DE separation at the 

expected size, which indicated that each cellulose bound protein was the full-length 

form. Xyn10C is a 109.5 kDa polysaccharidase that contains a GH10 and EstD 

domain located at the N- and C-terminal respectively, separated by central CBM13 

and CMB2a domains (Figure 3.25). Xyn10C was identified in a band of 105 kDa 

(Figure 3.21, band SB2) which is similar to the theoretical protein size, and in a 

second band that was approximately 5 kDa smaller (Figure 3.21, band SB3). 

Examination of the sequence coverage results confirmed that one peptide of m/z 

1844.90 was detected in band SB2 and matched to the N-terminal region of Xyn10C 

that was not detected in protein extracted from band SB3. This data supports the 

possibility that band SB3 contained Xyn10C that was missing the N-terminus.  

Mxy10-43A has a theoretical size of 151 kDa, but was detected in a band at 

approximately 75 kDa. The enzyme contains an N-terminal GH43 domain and a GH10 

domain beginning at residue 710, as well as two centrally located CBM6 domains, and 

single CBM13 and CBM2a domains at the C-terminus (Figure 3.25). Examination of 

the MASCOT sequence coverage showed that the 13 peptides contributing to the 

Mxy10-43A identification were all matched to the C-terminal region (Figure 3.24). 

This data suggested that the polypeptide present in band SB6 was the C-terminal half 

of Mxy10-43A beginning no closer to the C-terminus than residue 732, which 

contained the CBM13 and CBM2a domains. Based on the sequence coverage data it is 

not possible to ascertain if the protein fragment contains the intact GH10 domain. The 

calculated pI and size of this C-terminal fragment were 4.87 and 72.8 kDa 

respectively, which is in agreement with the apparent size of the 1-DE band identified 

as Mxy10-43A.  
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To examine the possibility that proteins secreted by xylan-grown, stationary phase 

harvested B. proteoclasticus cells possessed xylan-binding ability the polysaccharide 

adsorption assay was conducted in the same manner as described above, but using oat-

spelt xylan in place of Avicel
®
 PH-101 as the insoluble substrate. After 1-DE analysis 

of the 1 x LDS sample buffer eluted fraction no proteins present in the 

B. proteoclasticus extracellular proteome were detected as being capable of binding to 

oat-spelt xylan.  
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Table 3.4. Summary of the identified secreted proteins capable of binding to crystalline cellulose  

Band Protein Locus EC PHX
a
 Score

b
 SigP

c
 pI kDa Pep.

a
 Cov.

a
 

SB1 Endo-1,4-β-xylanase, Xyn10B Bpr_I0026 3.2.1.8 Y 5.3e-04 Y 4.3 136.9 13 11% 

SB2 Endo-1,4-β-xylanase, Xyn10C Bpr_I1008 3.2.1.8 N 6.1e-08 Y 5.5 109.5 17 22% 

SB3 Endo-1,4-β-xylanase, Xyn10C Bpr_I1008 3.2.1.8 N 3.3e-05 Y 5.5 109.5 16 23% 

SB4 Oligopeptide ABC transporter substrate-binding protein, OppA1 Bpr_I1276 - Y 9.6e-10 Y 4.0 83.1 15 21% 

SB6 Endo-1,4-β-xylanase and xylosidase, Mxy10-43A Bpr_I0737d 3.2.1.8 Y 5.8e-07 Y 5.0 150.7 13 12% 

SB7 Sugar ABC transporter substrate-binding protein Bpr_I0182 - Y 3.8e-13 Y 4.1 63.3 18 33% 

SB8 Sugar ABC transporter substrate-binding protein Bpr_I1589 - Y 3.2e-06 Y 3.9 61.1 8 20% 

SB10 
Sugar ABC transporter substrate-binding protein Bpr_I2443 - Y 

1.5e-10 
Y 4.0 57.0 10 22% 

Endo-1,4-β-glucanase, Cel5C Bpr_I1710 3.2.1.4 Y Y 4.6 61.1 10 19% 

SB11 Carbohydrate binding protein Bpr_I0736 - N 3.0e-07 Y 3.8 57.6 6 16% 

SB12 Sugar ABC transporter substrate-binding protein Bpr_I1720 - Y 2.0e-04 Y 4.0 49.3 6 18% 

 
a PHX, predicted highly expressed gene; Pep, the number of matched peptides masses/searched peptides masses; Cov, Protein sequence coverage of the matched peptides. 
b Score value is the statistical expectation that the top ranked protein match is a false positive identification. MOWSE score is given for Mxy10-43A that was identified by LC-

MS/MS. 
c Secretory signal-peptides were predicted using SignalP (Ver. 3.0) (www.cbs.dtu.dk/services/SignalP/) and LipoP (Ver. 1.0) (http://www.cbs.dtu.dk/services/LipoP/). 
d Predicted C-terminal fragment.  
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Figure 3.22. MS identification of Xyn10B after cellulose affinity assay. MALDI-

TOF peptide mass fingerprints (A) and MASCOT sequence coverage summary (B) 

of protein extracted from band SB1 and identified as Xyn10B.  
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Figure 3.23. MS identification of Xyn10C after cellulose affinity assay. PMF (A) and 

MASCOT sequence coverage summary (B) of protein extracted from band SB2. (C) 

MASCOT sequence coverage summary (B) of protein extracted from band SB3. 

Protein in both bands was identified as Xyn10C.  
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Figure 3.24. MS identification of Mxy10-43A after cellulose affinity assay. PMF (A) 

and MASCOT sequence coverage summary (B) of protein extracted from band SB6, 

which was identified as the endo-1,4-β-xylanase and xylosidase Mxy10-43A.  
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3.2.6 Bioinformatics of the polysaccharidases and differentially abundant sugar 

substrate-binding proteins identified in the B. proteoclasticus extracellular 

proteome 

The SignalP 3.0 (www.cbs.dtu.dk/services/SignalP/), LipoP 1.0 

(http://www.cbs.dtu.dk/services/LipoP/), pattern searching, TMHMM 2.0 

(www.cbs.dtu.dk/services/TMHMM-2.0/) and SOSUI/G (http://bp.nuap.nagoya-

u.ac.jp/sosui/sosuiG/sosuigsubmit.html) utilities were used to analyse each enzyme for 

the presence of an N-terminal secretory signal peptide and transmembrane helices. 

Pfam analysis was used to examine the identity and location of carbohydrate active 

domains within each polysaccharidase. Where significant Pfam matches were not 

found, NCBI protein BLASTp alignments to TIGR or COG classifications were used. 

Functional domains characteristic of secreted carbohydrate active proteins are present 

in all 10 gene products (Figure 3.25). Xsa43J and Mxy10-43A were distinct in that 

they each contained two dissimilar GH domains, while the remainder each possessed a 

single catalytic module. Five of the eight identified secreted polysaccharidases 

possessed Type-I cell wall binding repeat regions (CWBD1, PF01473) at their C-

termini. Single copies of family 2 and family 9 carbohydrate binding domains (CBMs) 

were detected in Cel5C and Xyn10B respectively, and pairs of CBMs were identified 

in both CBPs. The functional domains identified in the 6 differentially abundant SBPs 

identified in the B. proteoclasticus culture medium formed two distinct groups (Figure 

3.26). The four SBPs that were more abundant in the xylan growth condition each 

contained a CUT1 domain, represented by either a SBP_Bac_1 domain (PF 01547) or 

a MalE domain (COG2182), while the two remaining SBPs both detected in lower 

abundance in xylan grown cells contained a Peripla_BP_1 domain (PF00532).  
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Figure 3.25. Functional domains of the polysaccharidases and carbohydrate binding 

proteins identified in B. proteoclasticus extracellular proteome. SP, signal peptide; 

GH5, GH family 5 (PF00150); GH10, GH family 10 (PF00331); GH13, GH family 

13 (PF00128); GH43, GH family 43 (PF04616); CE8, CE family 8 (PF01095); EstD, 

Esterase D domain (PF00756); PL1, PL family 1 (PF00544); CWB, Type-I cell wall 

binding domain (PF01473); Big4, bacterial Ig-like domain-group 4 (PF07532); SBD, 

Uncharacterised sugar-binding domain (PF07554); CBM2a, CBM6, CBM9, and 

CBM13, family 2a (PF00553), family 6 (PF03422), family 9 (IPR010502), and 

family 13 (PF00652) carbohydrate binding modules, respectively. Residue length is 

indicated to the right of each enzyme. Note that Pme8B and Xsa43J are shown at 

two-thirds relative scale. 
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Figure 3.26. Functional domains of differentially abundant substrate-binding proteins 

identified in the B. proteoclasticus culture medium. Values to the right of each 

depicted protein denote number of amino acid residues. LP, lipobox motif; SP, signal 

peptide. Domains shown in green and gold are associated with proteins more 

abundant in the xylan and xylose growth conditions respectively.  
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 Table 3.5. BLASTp homology of the predicted secreted proteins identified in the mid-log and stationary phase harvested B. proteoclasticus culture 

medium. 

B. proteoclasticus protein Locus Homologue Organism gi Expect Identity Region 

Carbohydrate active proteins        

α-Amylase, Amy13A Bpr_I1087 α-amylase Butyrivibrio fibrisolvens 144153 1e-180 99% 1-975 

Endo-1,4-β-glucanase, Cel5C Bpr_I1710 Endoglucanase Butyrivibrio fibrisolvens 39473 1e-180 99% 1-547 

Endo-1,4-β-xylanase and xylosidase, 
Mxy10-43A 

Bpr_I0737 β-1,4-xylanase 
Butyrivibrio fibrisolvens 

16/4 
291519800 1e-180 69% 707-1386 

Pectate lyase, Pel1A Bpr_I2372 Pectate lyase Ruminococcus albus 8 294639839 1e-180 55% 48-745 

Pectin methyl-esterase, Pme8B Bpr_I2473 
Fibronectin Type-III domain-

containing protein 
Clostridium 

phytofermentans ISDg 
160881987 1e-180 49% 

1468-
2452 

Xylosidase/arabinofuranosidase, Xsa43J Bpr_I2935 Cna B domain protein 
Clostridium 

saccharolyticum WM1 
302386974 1e-180 42% 879-2064 

Endo-1,4-β-xylanase, Xyn10B Bpr_I0026 
Putative carbohydrate binding 

domain protein 
Roseburia intestinalis L1-82 257413505 1e-180 44% 338-1068 

Endo-1,4-β-xylanase, Xyn10C Bpr_I1008 
Endo-1,4-β-xylanase and 

xylosidase Mxy10-43A 

Butyrivibrio proteoclasticus 

B316 
302670102 1e-180 66% 34-689 

Carbohydrate-binding protein Bpr_I0736 
Carbohydrate-Binding Module 

family 2 with two N-terminal 

CBM2 domains 

Eubacterium rectale 238922693 8e-53 43% 1-253 

Carbohydrate-binding protein Bpr_I1599 1,4-β-cellobiosidase A 
Butyrivibrio fibrisolvens 

16/4 
291519773 2e-44 34% 320-708 

Table continues        
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B. proteoclasticus protein Locus Homologue Organism gi Expect Identity Region 

Non-carbohydrate active proteins       

3-hydroxybutyryl-CoA dehydrogenase 

Hbd 
Bpr_I2486 

β-hydroxybutyryl-CoA 

dehydrogenase 
Butyrivibrio fibrisolvens 52421176 3e-127 78% 1-290 

ABC transporter SBP Bpr_I1600 
Extracellular solute-binding 

protein family 1 
Ruminococcus flavefaciens 

FD-1 
268611735 1e-47 32% 332-821 

Amino acid ABC transporter SBP Bpr_I2466 
Amino acid ABC transporter 

substrate-binding protein, PAAT 

family 

Butyrivibrio fibrisolvens 
16/4 

291518760 1e-133 79% 1-300 

Bmp family protein Bpr_I1560 Nucleoside-binding protein 
Butyrivibrio fibrisolvens 

16/4 
291519926 3e-154 79% 50-393 

Cell surface protein Bpr_I2508 Cell surface protein 
Butyrivibrio proteoclasticus 

B316 
302671437 4e-173 38% 167-1179 

Hypothetical protein Bpr_I0139 
Uncharacterized protein in bglA 

3'region precursor 
Butyrivibrio fibrisolvens 140270 1e-46 97% 24-119 

Hypothetical protein Bpr_I0188 No homologue - - - - - 

Hypothetical protein Bpr_I2628 Hypothetical protein 
Butyrivibrio fibrisolvens 

16/4 
291519088 5e-52 44% 23-280 

Oligopeptide ABC transporter SBP, 

OppA1 
Bpr_I1276 Hypothetical protein 

Roseburia inulinivorans 

DSM 16841 
225375060 1e-180 54% 1-757 

Oligopeptide ABC transporter SBP, 
OppA2 

Bpr_III023 
Extracellular solute-binding 

protein family 5 
Paenibacillus sp. JDR-2 251797709 2e-88 33% 1-687 

Table continues        
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 B. proteoclasticus protein Locus Homologue Organism gi Expect Identity Region 

Peptide/nickel ABC transporter 
periplasmic protein 

Bpr_I2750 
Extracellular solute-binding 

protein 
Alkaliphilus metalliredigens 

QYMF 
150389816 3e-162 56% 47-533 

Serine protease subtilisin family Bpr_I2629 
Bacterial Ig-like domain (group 

2) / Subtilase family. 
Butyrivibrio fibrisolvens 

16/4 
291519087 1e-180 62% 1-1347 

Sugar ABC transporter substrate-

binding protein 
Bpr_I2344 

ABC-type sugar transport system, 

periplasmic component 

Butyrivibrio fibrisolvens 

16/4 
291518407 1e-180 81% 1-474 

Sugar ABC transporter SBP Bpr_I0182 
ABC-type sugar transport system, 

periplasmic component 

Butyrivibrio fibrisolvens 

16/4 
291518643 1e-180 63% 1-568 

Sugar ABC transporter SBP Bpr_I0237 
ABC-type sugar transport system 

periplasmic component-like 
protein 

Geobacillus sp. Y412MC10 261408632 4e-63 30% 7-575 

Sugar ABC transporter SBP Bpr_I0313 
Extracellular solute-binding 

protein, family 1 
Epulopiscium sp. 'N.t. 

morphotype B' 
168334645 8e-58 36% 74-497 

Sugar ABC transporter SBP Bpr_I0937 
ABC-type sugar transport system, 

periplasmic component 
Roseburia intestinalis 

M50/1 
291535091 1e-180 73% 3-547 

Sugar ABC transporter SBP Bpr_I1589 
Putative bacterial extracellular 

solute-binding protein 
Roseburia intestinalis L1-82 257413330 7e-88 39% 1-555 

Sugar ABC transporter SBP Bpr_I1667 
Bacterial extracellular solute-

binding protein 
Turicibacter sp. PC909 293376212 6e-58 34% 3-419 

Sugar ABC transporter SBP Bpr_I1720 
Extracellular solute-binding 

protein family 1 

Acetivibrio cellulolyticus 

CD2 
302592083 5e-69 34% 1-455 

Sugar ABC transporter SBP Bpr_I2010 
Carbohydrate ABC transporter 

substrate-binding protein, CUT1 

family 

Coprococcus sp. ART55/1 295094446 1e-55 38% 1-413 

Table continues        
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B. proteoclasticus protein Locus Homologue Organism gi Expect Identity Region 

Sugar ABC transporter SBP Bpr_III244 
Monosaccharide ABC transporter 

substrate-binding protein, CUT2 

family 

Eubacterium siraeum 

V10Sc8a 
291558050 9e-141 75% 2-330 

Xylose ABC transporter SBP Bpr_I1173 
Putative solute-binding 

component of ABC transporter 
Clostridium 

phytofermentans ISDg 
160879730 4e-161 80% 19-359 
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3.3 Summary 

Gel-based analysis of B. proteoclasticus proteins present in the culture medium 

after growth to mid-log or stationary phase was successful in identifying 30 Type-I or 

Type-II N-terminal signal peptide containing proteins, which included the 

endoxylanase Xyn10B and the xylosidase/arabinofuranosidase Xsa43J, the pectate 

lyase Pel1A and pectin methylesterase Pme8B, and the endoglucanase Cel5C. Two 

carbohydrate-binding proteins were also identified, which were the products of 

Bpr_I0736 and Bpr_I1599. Relative protein abundance analysis demonstrated that 

during mid-log phase growth Xyn10B was detected in the culture medium of xylan 

grown cells only, where it comprised 5.6% of the total detectable protein. Similarly, 

during stationary phase Xyn10B comprised 8.7% of the total detectable protein in the 

culture medium of xylan grown cells, and was 17.5-fold more abundant relative to 

xylose grown cells. In contrast, Cel5C and Pel1A were both less abundant in the 

culture medium of xylan grown cells, relative to those grown in the presence of 

xylose.  

Gel-based analysis of B. proteoclasticus cell-associated proteome added to the 

inventory of identified polysaccharidases. The α-amylase Amy13A was identified in 

mid-log phase, xylan grown cells, but not in cells grown in any other growth 

condition, which indicates that the abundance of Amy13A may be influenced by 

growth substrate. Xyn10B and Xsa43J were also identified in the cell-associated 

proteome of mid-log phase B. proteoclasticus cells, and the Xyn10B relative 

abundance pattern supported that detected in the culture medium.  

Using a cellulose affinity assay it was demonstrated that in vitro, at least 10 

proteins secreted by xylan-grown, stationary phase harvested B. proteoclasticus cells 

are able to adsorb to crystalline cellulose. These proteins included Xyn10B and Cel5C, 

as well as two additional secreted polysaccharidases, which were the endoxylanase 

Xyn10C, and the endoxylanase and xylosidase Mxy10-43A. Both these 

polysaccharidases are distinctive in that they are two of only three identified secreted 

enzymes that contain multiple GH domains.  

The identified secreted enzymes that target hemicellulose contain GH domains that 

hydrolyse (1→4)-β-D-linkages within the xylan backbone, or between the backbone 

and arabinose side chain groups. Polysaccharidases that target other hemicellulose 

substituents such as glucuronic acid, ferulic acid, and acetate groups were not detected 

in the culture medium of B. proteoclasticus cells. 



 

 

Chapter 4 

The cytosolic B. proteoclasticus proteome 
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4.1 Introduction 

The activity of secreted and cell-associated polysaccharide degrading enzymes such 

as the endo-1,4-β-xylanase Xyn10B and xylosidase/arabinofuranosidase Xsa43J, and 

of a variety of ABC transporter proteins identified in the B. proteoclasticus culture 

medium is likely to result in the assimilation of substituted xylooligosaccharides and 

monosaccharides into the cytosol. Prior to entering the central metabolic pathways, 

these polymers must be further degraded to their constituent monomeric sugars by the 

action of cytosolic polysaccharidases. The B. proteoclasticus genome encodes 2854 

cytosolic proteins, including 94 polysaccharidases representing 26 GH, 8 CE, and two 

GT families. Analysis of the cytosolic proteome will assist in understanding the 

processes that B. proteoclasticus uses to degrade and utilise polysaccharides in the 

rumen, and of the subsequent conversion of the fibrolytic end products to energy 

sources that can be utilised by the host.  

4.2 Results 

A theoretical two-dimensional map of the B. proteoclasticus cytosolic proteome 

was constructed and used to assist with targeting subsequent 2-DE analyses to the pI 

regions of specific interest. Proteomic analysis of the B. proteoclasticus cytosol was 

performed using 2-DE MALDI-TOF and 1-D HPLC MS/MS.  

4.2.1 The theoretical cytosolic proteome of B. proteoclasticus 

The theoretical 2-DE map of the B. proteoclasticus cytosolic proteome (Figure 4.1) 

showed an acidic pI distribution that was similar to that of the theoretical total 

proteome. Of the 2854 proteins that are localised to the cytosol, 79% (2242 proteins) 

possessed a predicted pI less than 7, and 90 of the 94 cytosolic polysaccharide-

degrading enzymes encoded by the B. proteoclasticus genome had a predicted pI value 

below 6.8 (Figure 4.1, red spots). A particularly dense cluster of polysaccharidases 

was found between pI 4 and 5.6 (81 enzymes). The protein size distribution of the 

cytosolic proteome was similar to that of the total proteome. Ninety percent of the 

cytosolic proteome (2575 proteins) possessed a theoretical size between 10 and 150 

kDa. All cytosolic polysaccharidases had a predicted size between 26 and 134 kDa. 

Furthermore, 148 cytosolic proteins (5.2%) were identified as components of a PUL. 

One-hundred and thirty-five PUL proteins had a pI value less than 6.5, and 145 were 

between 10 and 150 kDa in size. The set of 802 proteins with a predicted pI value 

greater than 6.5 were dominated by hypothetical proteins and mobile elements 
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(transposases), and proteins involved in nucleic acid metabolism, protein synthesis, 

transcriptional regulation, and cell envelope biogenesis.  

 

Figure 4.1. Theoretical 2-DE map of the B. proteoclasticus cytosolic proteins. Red 

spots and blue open circles represent predicted polysaccharide-degrading enzymes, 

and all other cytosolic proteins respectively. The y-axis is presented in logarithmic 

scale to represent separation of proteins by 2-DE.  

Protein function analysis of the predicted cytosolic proteome demonstrated a 

similar distribution to the total proteome. The major differences were an increase in 

the relative proportion of proteins involved in amino acid biosynthesis, carbohydrate 

degradation, nucleic acid and nucleotide metabolism, and protein synthesis, with a 

concomitant decrease of proteins involved in signal transduction, and transporter 

proteins. Proteins of unknown function were increased in the cytosolic proteome, and 

hypothetical proteins were decreased.  

4.2.2 Gel-based analysis of the B. proteoclasticus cytosolic proteome 

To obtain an overview of the B. proteoclasticus cytosolic proteome, soluble 

proteins (100 µg) extracted and purified from xylan and xylose grown 

B. proteoclasticus cells harvested at mid-log phase were separated on a pI 3-10 IPG 

strip followed by a NuPAGE
®
 Novex 4-12% Bis-Tris second-dimension gel. After 

colloidal CBB G-250 staining, an acid pI distribution was observed in the cytosolic 

proteomes of both the xylan (Figure 4.2 A) and xylose (Figure 4.2 B) grown cells with 
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almost all detectable protein possessing a pI value below approximately seven. A 

small number of weakly detectable spots were detected above pI 7.  

 

Figure 4.2. 2-DE analysis (pI 3-10) of cytosolic proteins extracted from differentially 

cultured, mid-log phase harvested B. proteoclasticus cells. Cytosolic proteins were 

extracted from xylan (A) and xylose (B) grown, mid-log phase harvested 

B. proteoclasticus cells, and purified by phenol/methanol/ammonium acetate 

precipitation. Each gel was stained with colloidal CBB G-250.  

Consequently, IPG strips covering the pI ranges 3-5.6 and 5.3-6.5 were used to 

examine further the cytosolic proteome of B. proteoclasticus, and to investigate the 

effect of growth substrate on the protein abundance profiles of identified proteins. IPG 

strips covering the pI 6-11 range were also used to identify proteins that may have a 

basic isoelectric point.  

4.2.2.1 2-DE spot detection replicate gel matching 

Following 2-DE and image acquisition, protein spots were detected using Image 

Master™ 2D Platinum. Automated spot detection parameters were optimised for 
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maximum spot resolution and minimal detection of artefacts such as colloidal CBB G-

250 precipitate and dust particles. Any spots detected around the borders of each gel, 

or within the molecular weight marker region were not considered in the analysis. In 

each growth condition, the mean total spot number per gel was consistent within each 

pI range, and in all growth conditions, the majority of proteins were detected in the pI 

3-5.6 region (Figure 4.3). A slightly larger number of spots were detected in the mid-

log growth phase compared to the stationary phase pI 3-5.6 gel sets (1264 and 1180 

spots, respectively). 

 

Figure 4.3. Mean number of spots detected in the cytosolic 2-DE analyses. Mean 

spot number detected in the mid-log (A) and stationary (B) phase cytosolic 2-DE 

analyses are shown. Error bars represent one standard deviation. Xn, xylan; Xl, 

xylose, C-, no added carbon. *The SD for the pI 6-11 xylose gel set was 0.7.  

A matched spot group was defined as a group of spots where the spot was present 

in the reference gel and was also present in at least six of the eight other replicate gels. 

The percentage cumulative frequency of spot groups that possessed between two and 

nine spots per group was plotted for the mid-log phase (Figure 4.4A) and stationary 
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phase (Figure 4.4B) pI 3-5.6 gels sets. Within each pI range, the proportion of 

complete spot groups (proteins matched in all nine replicate gels per group) is similar 

across each growth condition. An increase in the cumulative frequency of spot groups 

occurred as the number of spots per group decreased. In the pI 3-5.6 mid-log gel sets 

for instance, an average of 71.6% and 79.9% of matched spot groups possessed at least 

eight and seven contributing spots, respectively.  

 

Figure 4.4. The percentage cumulative frequency of matched spot groups in the 2-DE 

analyses. Mid-log (A) and stationary phase (B) pI 3-5.6 gel sets, having the indicated 

number of matched spots per group (including the reference gel) are shown C-, no 

added carbon.  
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4.2.2.2 Polysaccharide degrading enzymes identified by MALDI-TOF in the 

B. proteoclasticus cytosolic proteome 

2-DE separations of the cytosolic subcellular fraction harvested from xylan-grown 

cells were used to identify cytosolic proteins produced by B. proteoclasticus. In 

addition, spots present in the xylose, or no added carbon growth conditions that were 

absent in the xylan grown condition were also analysed. In total, 625 protein spots 

were excised from the xylan, xylose, and no added carbon, mid-log and stationary 

phase separations covering the pI 3-5.6, pI 5.3-6.5, and pI 6-11 ranges, and in-gel 

trypsin digested. Using the MASCOT search algorithm, each tryptic-PMF was 

searched against the B. proteoclasticus protein sequence database, which was 

constructed from the functionally annotated B. proteoclasticus genome sequence, and 

contained the translated amino acid sequences of the 3813 CDSs, plus the 3813 

randomised protein sequences of the same size and amino acid composition (described 

in Section 2.12.3). Proteins were identified in 485 of the 625 spots analysed, which 

were the products of 223 genes. Within this set were 48 proteins devoted to 

carbohydrate metabolism, and 11 to the transport of polysaccharide degradation 

products. The presence of 20 polysaccharide-degrading enzymes within the cytosol of 

B. proteoclasticus cells grown in the presence of xylan was confirmed (Figure 4.5, 

Figure 4.6, and Table 4.1), and no additional enzymes were identified in either the 

xylose or no added carbon growth conditions. Nineteen of the 20 polysaccharidases 

were identified from the pI 3-5.6 2-DE separation (Figure 4.5). No polysaccharidases 

were identified in the pI 5.3-6.5 2-DE separation, but the glycogen debranching 

enzyme Glgx2 (Bpr_I1494) was identified in the pI 6-11 separation (Figure 4.6). The 

2-DE spot positions for all but the glycoside hydrolase family 30 enzyme Gh30A 

(Bpr_I2937) (spot C644) agreed with the predicted pI and size value. Four 

polysaccharidases were identified in more than one spot, while spot C1120 and spot 

C1147 both contained more than one enzyme. Surprisingly, spot C1147 contained -

galactosidase Bga2B, -glucosidase Bgl3C, and -mannosidase Man2A. Analysis of 

the sequence coverage results confirmed that other than the m/z 876.46 peptide shared 

between Bga2B and Man2A, the sets of well resolved peptide masses matched to each 

protein were unique (Figure 4.7). The theoretical pI and size of the three enzymes 

identified in spot C1147 were similar, supporting the likelihood that each was present 

in the 2-DE spot from which it was identified. Likewise, sequence coverage of the 

PMF obtained from spot C1120 and the resulting sequence coverage of each identified 

enzyme showed that apart from the peptide mass at m/z 1022.52, a unique set of 
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peptides contributed to the identification of the β-galactosidase, Bga35B (Bpr_I2006) 

and the β-xylosidase Xyl3A (Bpr_I0184) (Figure 4.8). Furthermore, the probability 

that the identification of both enzymes in spot C1120 was a false positive result was 

1.9e-20. 
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Figure 4.5. Polysaccharide degrading enzymes identified in the B. proteoclasticus cytosol by pI 3-5.6 2-DE/MALDI-TOF MS. Shown is a 

colloidal CBB G-250 stained 2-DE separation of cytosolic proteins harvested from mid-log phase, xylan grown cells. Circled spots denote the the 

polysaccharidases present in the set of 485 proteins from the cytosolic proteome, and are summarised in Table 4.1. 
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Figure 4.6. Polysaccharide degrading enzymes identified in the B. proteoclasticus cytosol by pI 6-11 2-DE/MALDI-TOF MS. Shown is a colloidal 

CBB G-250 stained 2-DE separation of cytosolic proteins harvested from mid-log phase, xylan grown cells. Circled spots are summarised in 

Table 4.1. 
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Table 4.1 continued. 

 

 

1
3
3
 

Table 4.1. Summary of the polysaccharidases identified by 2-DE/MALDI-TOF in the B. proteoclasticus cytosol.  

Spot Protein Locus EC PHX
a
 Expect

b
 SigP

c
 pI kDa Pep.

a
 Cov.

a
 

C1122 -Galactosidase, Aga27A Bpr_I0205 3.2.1.22 N 2.4e-16 N 4.6 66.8 12 18% 

C1054 -Galactosidase, Aga36C Bpr_III065 - N 1.2e-21 N 5.1 83.2 27 37% 

C1082 -D-Glucuronidase, Agu67A Bpr_I0177 3.2.1.139 N 3.0e-22 N 4.9 76.1 27 37% 

C901 -Galactosidase, Bga2A Bpr_I0279 3.2.1.23 N 1.5e-12 N 4.7 118.7 20 24% 

C1147 

-Galactosidase, Bga2B Bpr_III209 - N 

1.9e-18 

N 4.8 91.1 11 16% 

-Glucosidase, Bgl3C Bpr_I0138 3.2.1.21 N N 4.9 91.5 13 18% 

-Mannosidase, Man2A Bpr_III237 - N N 4.8 95.9 20 28% 

C1120 
-Galactosidase, Bga35B Bpr_I2006 3.2.1.23 N 

1.9e-27 
N 4.9 83.2 17 24% 

-Xylosidase, Xyl3A Bpr_I0184 3.2.1.37 Y N 4.8 78.2 25 37% 

C671 -Glucosidase, Bgl3B Bpr_I0847 - N 1.2e-30 N 4.7 103.7 22 24% 

C1136 -Glucosidase, Bgl3B Bpr_I0847 - N 2.4e-14 N 4.7 103.7 26 25% 

C760 -Glucosidase, Bgl3C Bpr_I0138 3.2.1.21 N 1.5e-12 N 4.9 91.5 17 21% 

C761 -Glucosidase, Bgl3C Bpr_I0138 3.2.1.21 N 6.1e-13 N 4.9 91.5 18 21% 

C762 Cellobiose phosphorylase, Cbp94A Bpr_I2447 2.4.1.20 Y 9.6e-11 N 5.1 91.5 15 23% 

C1035 Feruloyl esterase, Est1E Bpr_I2870 - N 2.4e-12 N 5.2 27.8 13 61% 

C1017 Acetyl-xylan esterase, Est2A Bpr_I2939 - N 3.0e-07 N 4.8 42.4 13 33% 

Table continues          
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 Spot Protein Locus EC PHX

a
 Expect

b
 SigP

c
 pI kDa Pep.

a
 Cov.

a
 

C656 Acetyl-xylan esterase Bpr_I0174 - N 1.5e-09 N 4.6 75.1 16 22% 

C644 Glycoside hydrolase family 30, GH30A Bpr_I2937 - N 7.6e-13 Y 4.3 67.0 15 25% 

C679 Glycoside hydrolase family 31, GH31C Bpr_I1974 3.2.1.- Y 3.0e-15 N 4.7 78.2 21 27% 

C680 Glycoside hydrolase family 31, GH31C Bpr_I1974 3.2.1.- Y 7.6e-18 N 4.7 78.2 25 35% 

C1207 Glycogen debranching enzyme, Glgx2 Bpr_I1494 3.2.1.- N 8.2e-05 N 6.8 76.2 8 10% 

C637 Pullulanase, Pul13A Bpr_III161 3.2.1.41 N 1.5e-09 Y 4.4 99.7 20 22% 

C638 Pullulanase, Pul13A Bpr_III161 3.2.1.41 N 1.8e-06 Y 4.4 99.7 11 11% 

C1075 Xylosidase/arabinofuranosidase, Xsa43A Bpr_I0302 3.2.1.55 N 7.6e-11 Y 4.3 57.5 17 33% 

C1027 Xylosidase/arabinofuranosidase, Xsa43E Bpr_I2319 3.2.1.37 N 3.8e-08 N 4.3 35.3 11 46% 

 
a PHX, predicted highly expressed gene; Pep, the number of matched peptides masses/searched peptides masses; Cov, Protein sequence coverage of the matched peptides. 
b Expectation score is the statistical probability of the top ranked protein match being a false positive identification, p < 0.05.  
c Secretory signal-peptides were predicted using SignalP (Ver. 3.0) (www.cbs.dtu.dk/services/SignalP/) and LipoP (Ver. 1.0) (http://www.cbs.dtu.dk/services/LipoP/). 
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Figure 4.7. MS identification of Bga2B, Bgl3C, and Man2A. MALDI-TOF peptide 

mass fingerprint derived from spot C1147 (A) and MASCOT sequence coverage 

summary of the identified Bga2B (B), Bgl3C (C), and Man2A (D). Note that all 

peptide masses except m/z 876.46 were unique to the respective enzymes. 
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Figure 4.8. MS identification of Bga35B and Xyl3A. MALDI-TOF peptide mass 

fingerprint derived from spot C1120 (A) and MASCOT sequence coverage summary 

of the identified Bga35B (B) and Xyl3A (C). Note that all peptide masses except m/z 

1022.52 were unique to the respective enzymes. 
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three biological replicate samples of each growth condition that were analysed by 2-

DE MALDI-TOF (Table 5.1) were purified by phenol/methanol/ammonium acetate 

precipitation, and in-solution trypsin digested. Each peptide mixture was concentrated 

using a C18 pipette tip, then bound to an HPLC-C18 reverse phase column, and eluted 

using a 77-minute LC gradient at a 200 nL.min
-1

 flow rate. Peptide analysis was 

achieved using an LTQ MS/MS (ThermoFinnigan, San Jose, CA) operating in data 

dependent acquisition mode. Each biological replicate was analysed five times to give 

15 replicate raw data files per growth substrate.  

4.2.3.1 1-D LC-MS/MS protein identification and control of false positive 

identification rate 

Each 1-D LC-MS/MS raw data file was searched in-house against the 

B. proteoclasticus protein sequence database using BioWorks (Ver. 3.1) (Thermo 

Finnigan, San Jose, CA). The peptide false discovery rate (FDR), defined as the 

proportion of significant matches that are null (Weatherly et al., 2005), was 

determined by calculating the ratio of the number of unique peptides matched to the 

reverse-, and forward protein sequences, respectively (Elias et al., 2005). BioWorks 

search parameters were empirically optimised to obtain a peptide FDR of less than 1% 

for each 1-D LC-MS/MS raw data file. Following peptide to protein assignment, the 

protein expectation value (less than 1.0e-4), cross correlation score (greater than 10), 

and minimum number of matched peptides per protein (minimum 2) were used as 

filters to obtain an average protein FDR rate across all technical replicate search 

results of below 1%. Protein FDR was calculated as the ratio of the number of protein 

identifications obtained from the reverse and forward protein sequences, respectively. 

The mean peptide and protein FDR values for each of the six biological replicate 1-D 

LC-MS/MS BioWorks results files is summarised in Table 4.2.  

Proteins were included in the BioWorks identification dataset only if they were 

identified with statistical significance in at least two of the three biological replicate 

samples. Three-hundred and twenty-one proteins were identified in one or both culture 

conditions using the BioWorks search algorithm. Of these, 80% were identified in all 

three biological replicate samples of at least one growth condition, which signified a 

low level of analytical variation between the replicate 1-D LC-MS/MS analyses.  
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Table 4.2. Mean peptide and protein false positive rates for the BioWorks and 
Scaffold2™ analysis of the 1-D LC-MS/MS raw data files. 

 BioWorks Scaffold2™ 

Sample name Mean peptide FDR Mean protein FDR Mean protein FDR 

Xylan Rep_021107 0.45±0.14 0.53±0.64 0.52±0.01 

Xylose Rep_021107 0.37±0.26 0.38±0.62 0.46±0.01 

Xylan Rep_150108 0.45±0.24 0.92±0.32 0.52±0.01 

Xylose Rep_150108 0.21±0.09 0.38±0.40 0.45±0.02 

Xylan Rep_280508 0.43±0.17 0.10±0.23 0.49±0.04 

Xylose Rep_280508 0.28±0.11 0.28±0.41 0.45±0.02 

Scaffold2™ (Ver. Scaffold_2_01_02) (Proteome Software, Portland, OR) was also 

used to analyse the MS/MS based peptide and protein identifications. The five 

technical replicate raw data files for each biological replicate were uploaded to the 

Scaffold2™ software, condensed into a single file, and used to interrogate the 

B. proteoclasticus protein sequence database. Peptide identifications were accepted if 

they were established at greater than 95% probability. Protein identification was 

accepted only if it was established at greater than 95% probability and contained at 

least two top ranking peptide hits. Peptide and protein probabilities were assigned by 

the Protein Prophet algorithm (Nesvizhskii et al., 2003). The mean protein FDR for 

each biological replicate set of Scaffold2™ output files are shown in Table 4.2, and 

demonstrate that the mean FDR values for each biological replicate are well below the 

1% level. As with the BioWorks analysis, proteins were included in the Scaffold2™ 

dataset only if they were identified with statistical significance in at least two of the 

three biological replicate samples. Scaffold2™ identified 237 proteins in the cytosolic 

proteome of cells grown in the presence of xylan or xylose, of which 77% were 

identified in all three biological replicates in at least one growth condition.  

In total, 329 non-redundant proteins were identified in the cytosol of cells grown in 

the presence of xylan or xylose, which included 50 proteins involved in carbohydrate 

metabolism. The importance of using multiple search algorithms to analyse MS/MS 

data is demonstrated by the fact that only 70% of the 329 1-D LC-MS/MS identified 

proteins were present in both datasets (Figure 4.9). Furthermore, only 35 of the 50 

carbohydrate active proteins were identified by both search algorithms. Notably, the 

BioWorks search algorithm identified 93 proteins that were not identified by 
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Scaffold2™. In contrast, eight proteins were uniquely identified by the Scaffold2™ 

algorithm.  

 

Figure 4.9. Protein identification overlap between BioWorks and Scaffold2™ 

analysis of the mid-log phase, cytosolic B. proteoclasticus proteome. Bracketed 

values denote the number of proteins predicted to be involved in carbohydrate 

metabolism. 

4.2.3.2 Polysaccharide degrading enzymes identified by 1-D LC-MS/MS  

The 1-D LC-MS/MS dataset contained 20 polysaccharide-degrading enzymes, eight 

of which had not been previously identified by the gel-based analyses (Table 4.3; the 

eight polysaccharidases unique to the 1-D LC-MS/MS dataset are shown in bold). 

Strikingly similar to the pattern observed in the gel-based analyses, all 20 1-D LC-

MS/MS identified enzymes had a predicted pI value within a narrow range between 

4.1 and 6.0. As predicted by the search algorithm protein identification overlap 

summarised in Figure 4.9, 19 of the 20 identified enzymes were identified using 

BioWorks, 13 of which were also identified by the Scaffold2™ algorithm. The GH78 

-L-rhamnosidase (Bpr_I1686) was the only enzyme identified uniquely by the 

Scaffold2™ search algorithm. In this case, the protein identification probability 

assigned by Scaffold2™ was 99.9%. The poorest false positive expectation value for 

the identification of each of the 19 other enzymes was almost two orders of magnitude 

lower than the cut-off score that yielded a protein FDR below 1% for the complete 

dataset. The false positive expectation value for the majority of the enzymes identified 

by BioWorks was at least six orders of magnitude below the cut-off score.  
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Table 4.3. Summary of polysaccharide degrading enzymes identified in the mid-log phase harvested B. proteoclasticus cytosolic proteome by 1-D 
LC-MS/MS.

a
 

Protein Locus EC PHX
b
 Expect. SigP

c
 pI kDa Algorithm Pep.

b
 % Cov.

b
 

-Galactosidase, Aga36C Bpr_III065 - N 9.3e-05 N 5.1 83.2 BioW 7 4 

-D-Glucuronidase, Agu67A Bpr_I0177 3.2.1.139 N 4.9e-11 N 4.9 76.1 BioW/Sc 22 13.9 

-Amylase, Amy13G Bpr_I0729 - N 1.7e-11 N 4.7 60.3 BioW 3 3.4 

-L-Arabinofuranosidase, Arf51A Bpr_I0329 3.2.1.55 N 1.1e-15 N 5.2 57.0 BioW/Sc 14 14.6 

-Galactosidase, Bga2A Bpr_I0279 3.2.1.23 N 1.5e-12 N 4.7 118.7 BioW/Sc 8 6.1 

-Galactosidase, Bga35B Bpr_I2006 3.2.1.23 N 3.1e-10 N 4.9 83.2 BioW/Sc 4 3.8 

-Glucosidase, Bgl3A Bpr_I0693 - Y 2.5e-06 Y 4.1 115.6 BioW 23 3.9 

-Glucosidase, Bgl3B Bpr_I0847 - N 2.6e-11 N 4.7 103.7 BioW/Sc 7 6.7 

-Glucosidase, Bgl3C Bpr_I0138 3.2.1.21 N 8.1e-07 N 4.9 91.5 BioW/Sc 2 5.5 

Cellobiose phosphorylase, Cbp94A Bpr_I2447 2.4.1.20 Y 1.1e-16 N 5.1 91.5 BioW/Sc 6 11 

Cellodextrinase, Cel9B Bpr_I1593 3.2.1.4 N 1.0e-30 N 4.6 61.0 BioW/Sc 22 18.3 

Feruloyl esterase, Est1E Bpr_I2870 - N 1.3e-10 N 5.2 27.8 BioW/Sc 5 12.5 

Glycoside hydrolase family 31, GH31C Bpr_I1974 3.2.1.- Y 1.0e-11 N 4.7 78.2 BioW/Sc 32 22.1 

Glycogen phosphorylase, Glgp2 Bpr_I2847 2.4.1.1 N 1.8e-10 N 6.0 94.8 BioW/Sc 10 10.4 

-Mannosidase, Man2A Bpr_III237 - N 3.1e-11 N 4.8 95.9 BioW 7 4.1 

Pullulanase, Pul13A Bpr_III161 3.2.1.41 N 1.1e-10 Y 4.4 99.7 BioW 7 6.3 

-L-Rhamnosidase, Rha78A Bpr_I1686 3.2.1.40 N 99.9 N 4.8 85.0 Sc 3 9.3 

Table continues           
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Protein Locus EC PHX
b
 Expect. SigP

c
 pI kDa Algorithm Pep.

b
 % Cov.

b
 

Xylosidase/arabinofuranosidase and esterase, 

Xsa43H 
Bpr_I0301 - N 1.6e-08 N 4.7 107.9 BioW/Sc 7 3.1 

-Xylosidase Xyl3A Bpr_I0184 3.2.1.37 Y 8.9e-15 N 4.8 78.2 BioW/Sc 42 23.1 

Endo-1,4--xylanase and esterase Xyn10D Bpr_I1083 3.2.1.8 N 3.6e-10 N 5.0 79.7 BioW 5 7.4 

 
a Proteins shown in bold were uniquely identified by 1D LC-MS/MS. Where possible, the expectation values, and the number of top ranking matched peptides and percentage 
sequence coverage from the BioWorks (Ver. 3.1) are given. Scaffold2™ values denote protein identification probability (section 4.2.3.1) 
b PHX, predicted highly expressed gene; Pep, the number of matched peptides masses/searched peptides masses; Cov, Protein sequence coverage of the matched peptides. 
c Secretory signal-peptides were predicted using SignalP (Ver. 3.0) (www.cbs.dtu.dk/services/SignalP/) and LipoP (Ver. 1.0) (http://www.cbs.dtu.dk/services/LipoP/). 
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4.2.4 Bioinformatics of the identified B. proteoclasticus cytosolic proteome  

Using the combination of gel-based and gel-free protein separation techniques, 

coupled to two mass spectrometry techniques, 28 polysaccharidases were identified in 

the cytosol of B. proteoclasticus cells grown in the presence of xylan or xylose. 

Secretory signal peptides were predicted by SignalP 3.0 

(www.cbs.dtu.dk/services/SignalP/), LipoP 1.0 

(http://www.cbs.dtu.dk/services/LipoP/), and pattern searching for Gram-positive 

bacteria (Bendtsen et al., 2004, Juncker et al., 2003, Sutcliffe and Harrington, 2002). 

Membrane-spanning domains were predicted using the TMHMM 2.0 

(www.cbs.dtu.dk/services/TMHMM-2.0/) and SOSUI/G (http://bp.nuap.nagoya-

u.ac.jp/sosui/sosuiG/sosuigsubmit.html) utilities (Hirokawa et al., 1998, Krogh et al., 

2001). Pfam analysis was used to examine the identity and location of carbohydrate 

active domains within each polysaccharidase. Where significant Pfam matches were 

not found, BLASTp and Tigrfam alignments were examined for significant matches.  

4.2.4.1 Subcellular distribution of the polysaccharidases identified in the 

B. proteoclasticus cytosol 

Among the set of 28 polysaccharidases identified in the B. proteoclasticus cytosol 

(summarised in Table 4.1 and Table 4.3) the -glucosidase Bgl3A (Bpr_I0693), 

glycoside hydrolase family 30 Gh30A (Bpr_I2937), pullulanase Pul13A (Bpr_III161), 

and the xylosidase/arabinofuranosidase Xsa43A (Bpr_I0302) were each predicted to 

contain an N-terminal secretory signal peptide (Figure 4.11). Bgl3A and Pul13A also 

contained a single transmembrane helix within the C-terminal region, beginning at 

residues 1038 and 880 respectively, and it was therefore probable that Bgl3A and 

Pul13A were membrane-anchored proteins that had their N-terminal portions 

including the catalytic domains located outside the cell. GH30A and Xsa43A both 

contained lipobox motifs at their N-terminus, and were therefore likely to be 

lipoproteins that were tethered to the external surface of the cell wall. The four 

secretory signal peptide-containing enzymes were classified into four distinct GH 

families. Bgl3A, the GH30 family glycosyl hydrolase, and the 

xylosidase/arabinofuranosidase Xsa43A contained catalytic domains that were similar 

to domains found in other enzymes of the same GH families, but the pullulanase 

Pul13A contained a catalytic domain dissimilar to those found in any other identified 

enzymes.  
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Figure 4.10. Functional domains of predicted secreted polysaccharidases identified in 

the B. proteoclasticus cytosol. Predicted GH domain active sites are shown where 

possible. Residue length is indicated to the right of each enzyme. CBM, carbohydrate 

binding module; LP, lipobox motif; PUD, bacterial pullulanase-associated domain; 

SP, secretory signal peptide; TMD, transmembrane domain. 

4.2.4.2 Functional domains in the cytosolic polysaccharidases  

Considering the 24 enzymes identified in the B. proteoclasticus cytosol that were 

predicted to be retained in the cytosol, collectively they represented 14 GH and two 

CE families (Figure 4.11 and Figure 4.12). They included three members each of the 

GH2 and GH3 families. The GH13 and GH43 families were each represented by two 

enzymes, and a single example of an additional 11 GH families was identified. Several 

carbohydrate esterases, a glycogen debranching enzyme Glx2 (Bpr_I1494) and a 

glycogen phosphorylase (Bpr_I2447) classified within the GT35 family were also 

identified. Furthermore, the CE2 domain containing acetyl-xylan esterase (Bpr_I0174) 

identified in spot C656 (Figure 4.5) was one of the five polysaccharidases within the 

predicted B. proteoclasticus proteome that are unmatched to a CAZy Database family.  

Several enzymes contained more than one catalytic domain; including the four GH3 

family enzymes that were notable in that they all contained catalytic domains 

matching to the same two Pfam families. The -galactosidase Bga2A (Bpr_I0279) was 

distinct in that it was the only enzyme identified in the B. proteoclasticus that 

contained three catalytic domains. A distinguishing feature of the endo-1,4-β-xylanase 

and esterase Xyn10D (Bpr_I1083) and the xylosidase/arabinofuranosidase and 

esterase Xsa43H (Bpr_I0301) within the set of enzymes identified in the cytosol was 

that the two catalytic domains in each enzyme were predicted to be active upon 

different substrates. Of the remaining 18 enzymes, each contained a single catalytic 

Bgl3A (I0693) 1067

GH3C GH3SP TMD

D940

GH30A (I2937) 607

GH30SP

LP E313 E414

Xsa43A (I0302) 536
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GH13CBM48 TMDSP CBM41

Y443 D486
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D557 E586 D672



 

144 

domain. The two CE2 domain-containing esterases contained a catalytic module that 

matched to the same Pfam family, as did the two -galactosidases.  

Several enzymes contained additional domains that may play a role in carbohydrate 

breakdown. The membrane anchored GH13 pullulanase and secreted GH43 

xylosidase/arabinofuranosidase contained family 48 and family 6 CBMs, respectively. 

CBM48 modules are often found in combination with GH13 catalytic domains, and 

mediate enzyme attachment to -1,4 linked glucose monomers, while CBM6 domains 

have been shown to target the parent enzyme to cellulose, xylan, and mixed linkage 

glucans. Furthermore, the GH13 pullulanase contained an N-terminal CBM41 

pullulanase-associated domain that may also possess the ability to adsorb to 

carbohydrates. A CBMX domain and a CelD domain were found within the N-

terminal region of the GH94 cellobiose phosphorylase and the GH9 cellodextrinase, 

respectively. Both domains are often associated with these types of enzymes, and both 

may play a role in enzyme/substrate attachment. The acetyl xylan esterase 

(Bpr_I0174) that was not classified to a CAZy family contained domains of unknown 

function (DUF) on either side of the esterase catalytic domain that both matched to the 

same protein family. In bacteria, DUFs are often found within sialic acid-specific 9-O-

acetylesterases or acetylxylan esterases. 
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Figure 4.11. Functional domains of polysaccharidases identified in the 

B. proteoclasticus cytosol. Predicted GH domain active sites are shown where 

possible. Residue length is indicated to the right of each enzyme.  
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Figure 4.12. Functional domains of polysaccharidases identified in the 

B. proteoclasticus cytosol. Predicted GH domain active sites are shown where 

possible. Residue length is indicated to the right of each enzyme. CBM, 

Carbohydrate-binding module; DUF, Domain of unknown function.  
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4.2.4.3 BLASTp analysis of the polysaccharidases identified in the cytosolic B. 

proteoclasticus proteome 

BLASTp analysis of each of 28 enzymes identified in the B. proteoclasticus cytosol 

demonstrated that all but the α-galactosidase Aga27A (Bpr_I0205) had a top ranking 

match to a carbohydrate active protein produced by an organism of the Clostridiales 

order (Table 4.4). Several enzymes including the GH9 cellodextrinase (Bpr_I1593), 

and GH10 endo-1,4--xylanase and esterase (Bpr_I1083) were at least 96% identical 

to homologues produced by B. fibrisolvens H17c(SA) (Berger et al., 1990, Lin and 

Thomson, 1991a), and the CE1 feruloyl esterase (Bpr_I2870) was 68% identical to a 

cinnamoyl ester hydrolase produced by B. fibrisolvens E14 (Dalrymple et al., 1996). 

Percentage identities between the B. proteoclasticus polysaccharidase and the top 

ranking BLASTp homologue ranged from 99% in the case of the GH9 cellodextrinase, 

to 34% for the -glucosidase Bgl3A.  

4.2.4.4 The predicted function of all identified cytosolic proteins 

The predicted function of all 395 proteins identified in the B. proteoclasticus 

cytosol is summarised in Figure 4.13. The combination of gel-based and gel-free 

analyses of the B. proteoclasticus cytosol was successful in identifying a 

disproportionately large number of proteins involved in carbohydrate metabolism, 

which was almost 3-fold greater than the number predicted by the analysis of the 

theoretical total proteome (Appendix A, Table A.1), and signifies the utility of a 

multifaceted proteomic approach for examination of the fibre degrading enzyme 

system of B. proteoclasticus.  

The majority of the 36 non-polysaccharide degrading proteins predicted to be 

involved in carbohydrate metabolism were components of the glycolytic or pentose 

phosphate pathways. The second most abundant functional category comprised 

proteins involved in protein synthesis, and significant proportions of the identified 

proteome were involved in amino acid biosynthesis, energy metabolism, and 

transmembrane transport. In particular, the 29 transporter proteins identified were 

comprised of 20 involved in carbohydrate transport, five that facilitated amino acid 

transport, and four that were not classified. Approximately 17% (71 proteins) of all 

identified cytosolic proteins were either hypothetical proteins, or proteins of unknown 

function.  



 

Table 4.4 continued. 
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 Table 4.4. BLASTp analysis of the 28 polysaccharide degrading enzymes identified in the mid-log and stationary phase B. proteoclasticus cytosolic 

proteomes by 2-DE/MALDI-TOF. 

B. proteoclasticus protein Locus Homologue
a
 Organism

b
 gi Expect

c
 Identity Region

d
 

-L-Arabinofuranosidase, Arf51A Bpr_I0329 α-N-arabinofuranosidase 2 
Bryantella formatexigens 

DSM 14469 
255279950 1e-180 67% 1-497 

-Galactosidase, Aga27A Bpr_I0205 Unknown Picea sitchensis 148905920 3e-30 41% 28-220 

-Galactosidase, Aga36C Bpr_III065 α-Galactosidase 
Roseburia intestinalis 

M50/1 
291537311 1e-180 61% 1-729 

-D-Glucuronidase, Agu67A Bpr_I0177 α-Glucuronidase 
Clostridium 

phytofermentans ISDg 
160881284 1e-180 56% 3-668 

-Amylase, Amy13G Bpr_I0729 α-Glucosidase 
Subdoligranulum 

variabile DSM 15176 
261366636 1e-174 58% 1-523 

-Galactosidase, Bga2A Bpr_I0279 β-Galactosidase/ β-glucuronidase 
Ruminococcus obeum 

A2-162 
295110864 1e-180 53% 1-1039 

-Galactosidase, Bga2B Bpr_III209 β-Galactosidase 
Bryantella formatexigens 

DSM 14469 
255280767 1e-180 41% 1-810 

-Galactosidase, Bga35B Bpr_I2006 Galactosidase 
Cellulosilyticum 

ruminicola 
280977827 1e-180 52% 12-733 

-Glucosidase, Bgl3A Bpr_I0693 β-Glucosidase-related glycosidases 
Ruminococcus obeum 

A2-162 
295108656 4e-160 34% 2-1066 

-Glucosidase, Bgl3B Bpr_I0847 
Glycoside hydrolase family 3 domain-

containing protein sp. gb 
Ruminococcus sp. 

5_1_39B_FAA 
253579190 1e-180 52% 6-924 

-Glucosidase, Bgl3C Bpr_I0138 β-Glucosidase (EC 3.2.1.21) Butyrivibrio fibrisolvens 144162 1e-180 98% 1-780 

Table continues        
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B. proteoclasticus protein Locus Homologue
a
 Organism

b
 gi Expect

c
 Identity Region

d
 

Cellobiose phosphorylase, Cbp94A Bpr_I2447 Cellobiose phosphorylase 
Butyrivibrio fibrisolvens 

16/4 
291518248 1e-180 76% 1-816 

Cellodextrinase, Cel9B Bpr_I1593 Cellodextrinase Butyrivibrio fibrisolvens 580767 1e-180 98% 1-547 

Feruloyl esterase, Est1E Bpr_I2870 CinI Butyrivibrio fibrisolvens 1622732 9e-90 64% 1-248 

Acetyl-xylan esterase, Est2A Bpr_I2939 GDSL family lipase 
Clostridium 

cellulovorans 743B 
242260714 3e-101 51% 4-372 

Acetyl-xylan esterase Bpr_I0174 
Protein of unknown function DUF303 

acetylesterase putative 

Anaerocellum 

thermophilum DSM 

6725 

222530666 1e-105 36% 4-655 

Glycoside hydrolase family 30, GH30A Bpr_I2937 Xylosidase/arabinofuranosidase Xsa43J 
Butyrivibrio 

proteoclasticus B316 
302672287 2e-174 64% 

169-

606 

Glycoside hydrolase family 31, GH31C Bpr_I1974 Glucosidase 
Cellulosilyticum 

ruminicola 
280977791 1e-180 72% 1-674 

Glycogen phosphorylase, Glgp2 Bpr_I2847 
Glycogen/starch/alpha-glucan 

phosphorylases 
Ruminococcus obeum 

A2-162 
295108762 1e-180 73% 8-824 

Glycogen debranching enzyme, Glgx2 Bpr_I1494 
Type II secretory pathway, pullulanase PulA 

and related glycosidases 
Ruminococcus obeum 

A2-162 
295110262 5e-115 37% 1-607 

-Mannosidase,Man2A Bpr_III237 Putative β-mannosidase protein 
Bryantella formatexigens 

DSM 14469 
255281532 1e-180 57% 1-820 

Pullulanase,Pul13A Bpr_III161 Pullulanase 
Butyrivibrio crossotus 

DSM 2876 
260438049 1e-180 46% 1-869 

Table continues        
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 B. proteoclasticus protein Locus Homologue

a
 Organism

b
 gi Expect

c
 Identity Region

d
 

-L-Rhamnosidase,Rha78A Bpr_I1686 α-L-rhamnosidase 
Subdoligranulum 

variabile DSM 15176 
282600761 1e-180 48% 18-753 

Xylosidase/arabinofuranosidase, 

Xsa43A 
Bpr_I0302 Endo-1,4-β-xylanase D 

Roseburia intestinalis 

L1-82 
240144521 6e-173 55% 2-533 

Xylosidase/arabinofuranosidase, 
Xsa43E 

Bpr_I2319 Carbohydrate-binding family 6 protein 
Clostridium 

thermocellum ATCC 

27405 

125974681 3e-107 65% 11-303 

Xylosidase/arabinofuranosidase and 
esterase, Xsa43H 

Bpr_I0301 Xylosidase/arabinosidase 
Roseburia intestinalis 

L1-82 
240144576 1e-180 70% 

506-
968 

-Xylosidase, Xyl3A Bpr_I0184 
Glycoside hydrolase, family 3 domain-

containing protein 
Ruminococcus sp. 

5_1_39B_FAA 
253579611 1e-180 63% 3-707 

Endo-1,4--xylanase and esterase 
Xyn10D 

Bpr_I1083 β-1,4-D-xylanase Butyrivibrio fibrisolvens 48963 1e-180 96% 1-635 

 
a BLASTp top ranked homologous protein. 
b Organism that expresses the BLASTp top ranked homologous protein. 
c Expectation score is the statistical probability of the top ranked protein match being a false positive identification, p < 0.05. 
d Values denote the first and last residues of the homologous region of the identified in B. proteoclasticus protein. 
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Figure 4.13. Protein function summary of all proteins identified in the 

B. proteoclasticus cytosol. Data compiled with the assistance of Dr. Bill Kelly and 

Dr. Sinead Leahy. 

The 367 non-polysaccharide degrading enzymes proteins identified in the 

B. proteoclasticus cytosolic proteome are summarised in Appendix B, Table B.2 and 

Table B.3. The predicted pI values of the set of proteins range between 3.7 and 11.9, 

with a median value of 4.9. Two-hundred and sixty-six proteins had a predicted pI less 

than 5.6, 34 were between 5.6 and 6.5, and the remaining 67 had a pI value greater 

than 6.5. The smallest and largest proteins had a predicted size of 5.9 kDa and 195.3 

kDa, respectively. SignalP analysis showed that 33 proteins contained an N-terminal 

secretory signal peptide, more than half of which were substrate-binding proteins 

associated with ABC-transporter systems. Notably, almost one third of the predicted 

secreted proteins were either hypothetical or proteins with no predicted known 

function. Six proteins identified in the B. proteoclasticus cytosol contained between 

five and nine TMDs. Strikingly all six were identified by 1-D LC-MS/MS analysis 

only (Appendix B, Table B.3). Three of these transmembrane proteins were permease 

proteins associated with ABC transport systems; one was a PTS system II ABC 

fructose-specific family protein, and the remaining two were proteins of unknown 

function.  
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4.2.4.5 Comparative analysis of the gel-based and gel-free datasets 

Using two proteomic techniques to analyse the B. proteoclasticus cytosolic 

proteome offered the opportunity to compare and contrast the protein identification 

datasets obtained by each. The advantage of using a multi-technique approach to 

achieve improved proteome coverage is shown clearly in Figure 4.14.  

Of the 395 proteins identified by either proteomic technique, only 40% were 

common to both. The gel-free analysis identified almost 50% more proteins than was 

identified by 2-DE MALDI-TOF, and increased the cytosolic proteome coverage by 

77%. Furthermore, using both analytical techniques increased the number of proteins 

predicted to be involved in carbohydrate metabolism by more than 30%, and the 

number of identified proteins predicted to be involved in polysaccharide degradation 

and assimilation was increased by 40%, relative to the number achieved by either 

technique alone.  

 

Figure 4.14. Protein identification overlap between the 2-DE MALDI-TOF and 1-D 

LC-MS/MS analyses. Bracketed values denote the number of proteins predicted to be 

involved in polysaccharide degradation and assimilation. 

A two-dimensional plot of the proteins identified by 2-DE only, 1-D LC-MS/MS 

only, and those common to both datasets was constructed (Figure 4.15), which showed 

that 83% of all proteins identified in the B. proteoclasticus cytosol had a theoretical pI 

value below 6.5. In spite of the gel-based analyses focusing predominantly on the pI 3-

6.5 region, 43% of all proteins that had a predicted pI value below 6.5 were identified 

by 1-D LC-MS/MS only. A small cluster of proteins with a pI value greater than 9.5 

was identified by 1-D LC-MS/MS only, and was dominated by low molecular weight 

ribosomal proteins.  

2DE MALDI-TOF
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Figure 4.15. Two-dimensional plot of all proteins identified by 2-DE and/or 1-D LC-

MS/MS analysis of the mid-log phase harvested B. proteoclasticus cytosol. The y-

axis is presented in logarithmic scale to represent separation of proteins by 2-DE. 

The predicted acidic skew was observed in the identified cytosolic proteome. A 

negative correlation between pI value and maximum protein size was also observed 

under experimental conditions (r = -0.92). Although the pI distribution of the 1-D LC-

MS/MS identified proteins was comparable to that seen in the 2-DE analyses, the size 

distribution was noticeably different. To investigate whether the gel-free technique 

was biased towards the identification of lower molecular weight proteins, the mean 

molecular weights for the proteins identified by 2-DE only, 1-D LC-MS/MS only, and 

those common to both datasets were calculated and plotted (Figure 4.16). The sizes of 

the proteins identified by 1-D LC-MS/MS was significantly smaller than the sizes of 

the proteins identified by either 2-DE only, or those common to both techniques 

(p<0.01). No significant difference in protein size was found between the sets of 

proteins identified by 2-DE only and those common to both techniques.  

Analysis of the protein identification frequency within the gel-based and gel-free 

identified datasets, as a function of predicted biological activity (Figure 4.17), showed 

that 1-DE LC-MS/MS identified a much greater number of proteins involved in amino 

acid biosynthesis, lipid metabolism, protein synthesis, transcription, and 

transmembrane transport. Furthermore, proteins with unknown function were almost 

five-fold more prevalent in the 1-D LC-MS/MS dataset. Proteins involved in 

carbohydrate metabolism were one of the few categories not preferentially identified 

by either technique.  
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Figure 4.16. Analysis of the mean protein size for the subsets of cytosolic proteins 

identified by one or both proteomic techniques. Data shows that mean protein size of 

proteins identified by 1-D LC-MS/MS only was significantly smaller than proteins 

identified by 2-DE MALDI-TOF only, or by both techniques. Error bars are one 

standard error of the mean. Double asterisks denote significant Students t-tests 

(p<0.01).  

 

Figure 4.17. Summary of the number of proteins identified in the cytosolic proteome 

by 2-DE MALDI-TOF only, 1-D LC-MS/MS only, and common to both techniques, 

grouped according to predicted biological function. 
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4.2.4.6 Codon adaptation index, protein pI, and protein identification 

The positive correlation between codon adaptation index (CAI) (Sharp and Li, 

1987) and relative protein abundance in bacteria (Futcher et al., 1999, Goetz and 

Fuglsang, 2005, Ishihama et al., 2008, Jansen et al., 2003, Kanaya et al., 1999) was 

used to examine whether there was a relationship between CAI and pI value, and 

whether predicted relative protein abundance may have contributed to the acidic 

pattern observed in the 2-DE analyses of the B. proteoclasticus cytosolic proteome. A 

CAI value for each predicted cytosolic protein was calculated using 40 highly 

expressed B. proteoclasticus reference genes, and were used as an estimator of relative 

protein abundance. Ten percent of the cytosolic proteome had a CAI value greater than 

0.595 and were consequently defined as predicted highly abundant proteins. The set of 

predicted highly expressed proteins was dominated by proteins involved in 

carbohydrate metabolism, energy metabolism, and protein synthesis. Notably, almost 

11% of the predicted highly abundant proteins were hypothetical proteins. 

Ranking the predicted cytosolic proteins in descending order of CAI value, and 

using the mean of 1200 protein spots routinely visualised in the 2-DE-based cytosolic 

separations as a guide, a CAI value of 0.454 was predicted to be the threshold for 

likely protein spot detection in the 2-DE separations. A scatter plot of the CAI value as 

a function of pI value for each predicted cytosolic protein was then constructed to 

obtain a visual representation of the correlation between predicted relative protein 

abundance and pI value (Figure 4.18). 

Of the 1200 predicted cytosolic proteins that had a CAI value greater than 0.454, 

85% had a pI value less than 7 (Figure 4.18, spots falling above the dotted line). The 

15% of proteins above the CAI detection threshold that had a theoretical pI value 

greater than 7 were dominated by ribosomal proteins. Conversely, examination of the 

641 predicted cytosolic proteins that had a predicted pI value greater than 7, 71% of 

the proteins had a CAI value below the predicted threshold (0.454) for likely detection 

by 2-DE, and were dominated by hypothetical proteins and proteins of unknown 

function (53%), proteins involved in exopolysaccharide synthesis (12%) and nucleic 

acid metabolism (8%). Examination of the CAI values of the identified cytosolic 

proteins showed that 86% had a CAI value greater than the 0.454 threshold for likely 

detection by 2-DE (Figure 4.18, red spots falling above the dotted line). Furthermore, 

the CAI value distribution of the identified cytosolic proteins differed markedly to that 

of the complete predicted cytosolic proteome (Figure 4.19).  
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Figure 4.18. Scatter plot of the relationship between cytosolic protein codon 

adaptation index and pI value. Red spots represent cytosolic proteins identified in the 

cytosolic proteome, and blue open circles represent all unidentified cytosolic 

proteins.  

 

Figure 4.19. The frequency distribution of B. proteoclasticus cytosolic proteins as a 

function of codon adaptation index. Comparison of the frequency distribution of all 

cytosolic proteins with the set of identified cytosolic proteins shown. 
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4.3 Summary 

The combination of gel-based and gel-free analysis of the cytosolic B. 

proteoclasticus proteome successfully identified 395 proteins, which included 24 

cytosolic polysaccharidases, as well as four secreted enzymes that were not detected in 

the culture medium. This analysis raised the tally of polysaccharidases proven to be 

synthesised by cells grown in xylan containing culture medium to 36, which is 26% of 

the full catalogue of polysaccharidases encoded by the B. proteoclasticus genome. 

Present within the set of B. proteoclasticus cytosolic polysaccharidases are several 

classes of side chain removing enzymes that target substituent groups that the analysis 

of the B. proteoclasticus culture indicates may not be removed in the extracellular 

space. In particular, enzymes such as the α-L-arabinofuranosidase Arf51A, the α-D-

glucuronidase Agu67A, and the feruloyl esterase Est1E contained GH domains that 

are predicted to target arabinofuranose, glucuronic acid, and ferulic acid side groups 

were all identified. Many of the identified cytosolic polysaccharidases were predicted 

to be components of a PUL, and two-thirds of the B. proteoclasticus PULs contained 

at least one identified protein. Collectively this data supports the likelihood that PULs 

are important to B. proteoclasticus mediated fibre degradation.  

Supplementing the gel-based analysis of the B. proteoclasticus cytosolic proteome 

with the gel-free analysis increased the number of protein identifications more than 

75% and made an important contribution to the examination of B. proteoclasticus 

hemicellulose degradation. Notably, the gel-free analysis increased the total number of 

identified polysaccharidases by almost 50%, and identified five polysaccharidases 

predicted to be involved in hemicellulose degradation, that were not detected in the 

gel-based analysis.  





 

 

Chapter 5 

The effect of growth substrate on the B. proteoclasticus 

cytosolic proteome 
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5.1 Introduction 

The combination of gel-based and gel-free proteomics identified an array of 

cytosolic polysaccharidases that will enable B. proteoclasticus cells to utilise the 

assimilated oligomers of extracellular GAX degradation. Collectively, 14 GH and two 

CE families were represented including three members of both the GH2 and GH3 

families, two examples of each of the GH13 and GH43 families, and an unclassified 

CE2 family acetyl-xylan esterase. Differential expression proteomics was therefore 

used to examine the relative abundance of each of these polysaccharidases, so as to 

gain a clearer insight into the relative importance of each of the GH families, and in 

particular those containing several enzymes, to the overall process of GAX 

degradation by B. proteoclasticus.  

To examine the effect of cultivation in the presence of simple and complex plant 

carbohydrates on cytosolic protein abundance patterns B. proteoclasticus cells were 

grown in vitro, in modified M704 culture medium supplemented with either 0.1% 

xylan or 0.5% xylose, or in unsupplemented modified M704 medium. The effect of 

cultivation in each of these conditions was analysed in cells harvested at mid-log and 

stationary phase using 2-DE. Differential protein abundance patterns in cells harvested 

at mid-log phase were also examined using gel-free, 1-DE LC-MS/MS. 

5.2 Statistical analysis of differential protein abundance patterns 

5.2.1 Narrow pI range analysis of the B. proteoclasticus cytosolic proteome 

Three biological replicate samples for each growth condition were used to examine 

the substrate dependent protein abundance profiles of cells harvested at mid-log and 

stationary phase (Table 5.1).  

Each biological replicate was analysed three times using pI 3-5.6 IPG strips, and 

each gel was loaded with 100 µg of total protein. Due to limited sample amounts some 

biological replicates were analysed twice using pI 5.3-6.5 IPG strips as indicated 

(Table 5.1). Only the stationary phase harvested samples were analysed using pI 6-11 

IPG strips, and each strip was loaded with 300 µg of total protein in an attempt to 

resolve low abundance proteins in this region. Limited sample dictated that each 

biological replicate was only analysed once using pI 6-11 IPG strips.  
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Table 5.1. Summary of the biological replicate samples and pI ranges used to examine 
the cytosolic proteome of mid-log phase harvested, B. proteoclasticus cells.

 a
 

Growth 

phase 
Substrate 

pI 

range 

Biological 

replicate 1 

Biological 

replicate 2 

Biological 

replicate 3 

Mid-log 

Xylan 
3-5.6 Rep_021107 Rep_150108 Rep_280508 

5.3-6.5 Rep_260606 Rep_021107 Rep_150108 

Xylose 
3-5.6 Rep_021107 Rep_150108 Rep_280508 

5.3-6.5 Rep_260606 Rep_021107 Rep_150108 

No added 

carbon 

3-5.6 Rep_021107 Rep_150108 Rep_280508 

5.3-6.5 Rep_260606 Rep_021107 Rep_150108 

Stationary 

Xylan 

3-5.6 Rep_180407 Rep_060607 Rep_070707 

5.3-6.5 Rep_180407 Rep_060607 Rep_070707 

6-11 Rep_060607 Rep_070707  

Xylose 

3-5.6 Rep_180407 Rep_060607 Rep_070707 

5.3-6.5 Rep_180407 Rep_060607 Rep_070707 

6-11 Rep_060607 Rep_070707  

No added 

carbon 

3-5.6 Rep_180407 Rep_060607 Rep_070707 

5.3-6.5 Rep_180407 Rep_060607 Rep_070707 

6-11 Rep_060607 Rep_070707  

 
a pI 3-5.6 and pI 5.3-6.5 IPG strips were loaded with 100 µg total protein per strip. pI 6-11 IPG strips 

were loaded with 300 µg total protein per strip. Biological replicates (n = 3) of all pI 3-5.6 and pI 5.3-
6.5 2-DE separations were analysed using three technical replicates per sample. 
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5.2.2 2-DE spot volume normalisation 

Normalisation of raw spot volumes prior to comparative examination of protein 

abundance profiles between samples of interest is important for quantitative 2-DE 

analysis. Small variations in total protein load, IEF, first-to-second-dimension transfer, 

gel staining, and image acquisition can cause spot volume variation between technical 

and biological replicate gels. Raw spot volumes for each 2-DE separation were 

extracted from Image Master™ 2D Platinum. The total spot volume for each 

separation was calculated, and each spot volume was normalised against the amount of 

total protein per gel. Normalised spot volumes were then subjected to log-ratio 

transformation (Aitchison, 1982, Beddek et al., 2008). To assess the effect of 

normalisation, box-and-whisker plots of the log10 transformed spot volume values 

before and after normalisation were constructed for all matched protein spots 

(minimum seven of nine matched spots) from the mid-log phase, xylan grown 

cytosolic pI 3.-5.6 gel set. Without normalisation (Figure 5.1A) considerable variation 

exists in the median, upper and lower quartiles and minimum values across the nine 

replicate gels. Comparison of Figure 5.1A and Figure 5.1B shows that normalising the 

raw spot volume values against the total detectable protein in each 2-DE separation 

reduced analytical variation between replicate gels.  

 

Figure 5.1. The efficiency of normalisation in correcting for differences in mean spot 

volume values due to analytical variation. Box-and-whisker plots are shown for the 

log10 transformed spot volumes (A) and the log10 transformed normalised spot 

volumes (B) for all matched spot groups (minimum eight spots from a possible nine) 

from the B. proteoclasticus mid-log phase, xylan grown cytosolic replicate gel set.  
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5.2.3 Distribution of missing values in 2-DE 

The occurrence of missing values (spots missing in one or more replicate gels) is a 

common problem in 2-DE proteomic analyses, and causes problems for statistical 

analysis of quantitative 2-DE experiments because the power of the parametric tests 

used to assess statistical significance of abundance changes is reduced when 

comparing groups of unequal sample size (Albrecht et al., 2010). Prior to performing 

statistical testing, the presence of missing values should be examined and dealt with in 

an appropriate manner. To investigate the likely cause of the majority of missing 

values in the 2-DE data set the relationship between mean spot volume and the rate of 

missing values per spot group was examined (Figure 5.2). The plot shows that spot 

groups with one or more missing values had a mean normalised spot volume 

approximately five-fold less than those with no missing values. The relationship 

between mean spot volume and missing value rate suggested that the majority of 

missing values were most likely a result of spots being below the limit of detection, 

and is in agreement with the findings of Grove et al. (Grove et al., 2006). 

Consequently, missing data values were imputed with the minimum spot volume value 

detected from each 2-DE image giving rise to the missing value, which is similar to 

the method used by Meleth et al. (2005). 

 

Figure 5.2. The relationship between the number of missing values per matched spot 

group, and the mean normalised spot volume. Matched spot groups from the B. 

proteoclasticus xylan grown, mid-log phase harvested cytosolic gel set were grouped 

according to the number of missing values per spot group.  
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5.2.4 Missing value substitution rate in 2-DE 

To investigate the missing value rate across all matched spot groups in the pI 3-5.6 

gel sets, the number of missing values as a proportion of the total number of data 

points was calculated at each missing value level. Figure 5.3 demonstrates that 

imputing data values into matched spot groups in the pI 3-5.6 gel sets containing no 

more than two missing value would result in a final data substitution rate of 5.6%, 

which is less than that previously reported for proteomic analyses (Ahmad et al., 2006, 

Chang et al., 2004), and is also less than that advised for microarray data (Ahmad et 

al., 2006). For statistical analysis of protein abundance profiles, data values were 

therefore imputed into spot groups containing no more than two missing values in the 

pI 3-5.6 gel sets, and spot groups containing three or more missing values were 

removed from the analysis.  

 

Figure 5.3. Analysis of the proportion of imputed data values as a function of 

missing value frequency per spot group.  

Data values were also substituted into mid-log phase pI 5.3-6.5 spot groups that 

contained no more than two missing values, and matched spot groups containing three 

or more missing values were deleted. No data values were substituted into stationary 

phase pI 5.3-6.5 spot groups because the gel sets comprised six replicate gels and 

imputing values into spots groups with at least one missing value would have lead to 

an imputation rate greater than 10%. All spot groups with one or more missing values 

were removed from the analysis. Respectively, a total of 492 and 459 individual data 

points were imputed into the mid-log and stationary phase cytosolic pI 3-5.6 datasets, 

and 133 data points were imputed into the mid-log pI 5.3-6.5 dataset. The total number 

0

5

10

15

20

25

30

1 2 3 4 5 6 7Missing values / spot group1 2 3 4 5 6 7
0

5

Missing values per spot group

%
 o

f 
im

p
u

te
d

 d
a
ta

 v
a
lu

e
s

10

15

20

25

30



 

165 

C
h
a
p
ter 3

T
h
e extra

cellu
la

r B
. p

ro
teo

cla
sticu

s p
ro

teo
m

e
 

of matched spot groups suitable for statistical analysis of protein abundance profiles 

on account of the number of missing values was consistent across each replicate gel 

set (Table 5.2). The larger number of total matched spot groups present in the mid-log 

phase gel sets is due to the larger number of mean total spots detected in the mid-log 

phase gel set.  

Table 5.2. Total numbers of matched spot groups per cytosolic pI 3-5.6 and pI 5.3-6.5 

replicate gel sets submitted for statistical analysis of protein abundance profiles.  

 Mid-log Stationary 

Sample pI 3-5.6 pI 5.3-6.5 pI 3-5.6 pI 5.3-6.5 

Xylan 540 75 464 79 

Xylose 484 86 399 100 

No added carbon 464 127 399 105 

5.2.5 2-DE data transformation 

Parametric testing was used where possible to examine the significance of 

differential abundance patterns of proteins matched between growth conditions. The 

validity of these tests is dependent on a number of assumptions being satisfied, and it 

was therefore necessary to ensure that these assumptions were satisfied prior to 

conducting statistical analysis of differential protein abundance profiles. Parametric 

tests assume that the experimental data being tested is obtained from normally 

distributed populations, and that no significant correlation exists between the mean 

and variance of each set of data. Transformation is often required to improve the 

distribution characteristics of the data in order to satisfy both assumptions. In 

proteomics, log10 transformation has often been shown to stabilise variance versus 

mean dependency. The effect of log10 transformation was examined using scatter plots 

of the variance versus mean dependency of spot groups in the stationary phase 

harvested, xylan grown pI 3-5.6 data set. The high positive correlation of the 

untransformed data (Figure 5.4A) is reduced by log10 transformation (Figure 5.4B). 

For data sets of these sizes, small correlation coefficients can be significant; therefore 

a more effective transformation was sought in an attempt to reduce the variance versus 

mean correlation further. After iterative testing, a power
1/5

 transformation was optimal 

for the 2-DE data set (Figure 5.4C). Pearson correlation coefficients of the spot group 

variance versus mean relationship were calculated for each data set before and after 

power
1/5

 transformation (Table 5.3). In each data set no significant correlation was 
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found after transformation, and the assumption of variance versus mean independence 

was deemed to be satisfied.  

 

Figure 5.4. The efficiency of different transformations in correcting for variance 

versus mean dependency. Variance versus mean scatter plots of the stationary phase 

harvested, xylan grown 2-DE data set show the normalised data exhibited a strong 

variance versus mean dependency before transformation (A), which was reduced by 

log10 transformation (B), and reduced further by power
1/5

 transformation (C).  
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Table 5.3. Effect of power
1/5

 transformation on the variance versus mean dependency 
of spot groups in the 2-DE data sets.

a
 

 Mid-log phase Stationary phase 

Sample Normalised
b
 Normalised

1/5c
 Normalised Normalised

1/5
 

Xylan 0.788 -0.109 0.735 0.010 

Xylose 0.479 -0.088 0.758 0.094 

No added carbon 0.884 -0.111 0.690 -0.005 

 
a Values are the Pearson correlation coefficient for mean versus variance before and after 

transformation, for all matched spot groups in the mid-log and stationary harvested cytosolic proteome 

separations. Spot groups with at least eight data values were included in the analysis. 
b Pearson correlation coefficient for mean against variance of normalised spot volumes. 
c Pearson correlation coefficient for mean against variance of log10 transformed normalised spot 

volumes. 

Prior to statistical testing the normality of every spot group after power
1/5

 

transformation was tested using the Shapiro-Wilk test (Shapiro and Wilk, 1965b), 

which is a goodness-of-fit test used to assess whether a sample is drawn from a normal 

distribution and was developed for small sample sizes. Spot groups with a significance 

score less that 0.05 were considered to exhibit a non-normal distribution. In these 

cases the Mann-Whitney U test (Mann and Whitney, 1947), which does not assume 

population normality, was used to assess statistical significance of protein abundance 

changes. The proportion of spot groups that failed the normality test in each power
1/5

 

transformed data set is summarised in Table 5.4.  

Table 5.4. Normality of matched spot groups after power
1/5

 transformation using the 
Shapiro-Wilk goodness-of-fit test.

a
  

 Mid-log phase Stationary phase 

 pI 3-5.6 pI 5.3-6.5 pI 3-5.6 pI 5.3-6.5 

Xylan 7.2 18.8 9.1 6.0 

Xylose 6.6 18.1 9.8 10.5 

No added carbon 11.9 31.0 12.5 22.2 

 
a Values are the percentage of spot groups that failed the normality test for each data set. 

5.2.6 Multiple hypothesis testing and controlling the false discovery rate 

Two-tailed Student‟s t-tests were performed for each spot group matched between 

xylan and xylose, or xylan and no added carbon growth conditions, in the mid-log and 

stationary phase gels sets. The mean normalised spot volume for each biological 

replicate gel set was calculated using the technical replicate gels. These mean values 
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were then used to calculate statistical significance of protein abundance changes 

between growth conditions.  

When conducting a large number of simultaneous hypothesis tests, the multiple 

hypothesis testing problem is concerned with controlling the Type-I error rate (the rate 

of false positive outcomes), while maximising the power of the test (the ability to 

detect a difference when one truly exists). The family-wise-error-rate (FWER), or the 

probability of generating one or more false positives out of all the hypotheses tested is 

a commonly controlled parameter, using a method such as the Bonferroni-Holm 

correction (Holm, 1979). The FWER is extremely conservative and can lead to a 

significant loss of statistical power. It has been suggested that a more suitable 

approach for discovery based proteomics experiments is to control the false discovery 

rate (FDR) (Benjamini and Hochberg, 1995), which is the proportion of false positives 

among the abundance changes identified as being significant. A q-value (Storey, 2002) 

(http://www.genomine.org/qvalue/) is calculated for each p-value, which can then be 

used to establish a q-value threshold for the individual experiment, and consequently 

obtain a balance between the FDR and power of an analysis (Storey and Tibshirani, 

2003). The cumulative frequency of significant tests and the expected number of false 

positives at q-value thresholds ranging between 0.02 and 0.1 is summarised in 

Table 5.5.  

Table 5.5. Estimation of the differential abundance false discovery rate.
a
 

q-value 

threshold 
FDR Number of significant spots

b Estimated number of false positives
c 

  Mid-log Stationary Mid-log Stationary 

0.02 2% 5 2 0 0 

0.04 4% 9 5 0 0 

0.06 6% 20 8 1 0 

0.08 8% 30 13 2 1 

0.1 10% 41 20 4 2 

 
a The q-value was used to estimate the number of false positive significant differential expression results 

at the designated q-value thresholds, in the mid-log and stationary phase cytosolic 2-DE analyses. 
b Cumulative values are given for the combined total of significant spots between the xylan and xylose 
and/or xylan and no added carbon growth conditions. 
c The cumulative number of estimated false positive differentially expressed results is calculated as 

FDR multiplied by the total number of significant spots. 

http://www.genomine.org/qvalue/
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Plotting the cumulative frequency of significant tests and expected false positives 

as a function of percentage FDR allowed guided selection of the most appropriate 

q-value cut-off for the cytosolic 2-DE analysis. At a 5% FDR, a near maximal 

separation between the total number of significant tests and the expected number of 

false discoveries occurred (Figure 5.5). At this level, the number of expected false 

discoveries was less than one. Selecting a 6% FDR would have resulted in the number 

of expected false discoveries rising to two. Therefore, calling significant all tests with 

a q-value below 0.05 maximised the balance between the statistical power of the 2-DE 

analyses, and the total number of expected false discoveries.  

 

Figure 5.5. The cumulative frequency of 2-DE significant tests and expected false 

discoveries as a function of percentage FDR. At 5% FDR (dotted line) the significant 

tests (black line, primary y-axis), and the expected number of false discoveries (blue 

line, secondary axis) were 17 and less than 1, respectively. All tests with a q-value 

below 0.05 were designated significant in the cytosolic 2-DE analyses. 
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5.3 Relative abundance analysis of the mid-log phase cytosolic 

proteome by 2-DE MALDI-TOF 

The outcome of the differential abundance analysis of the mid-log and stationary 

phase B. proteoclasticus cytosolic proteomes are summarised in Table 5.6. During 

mid-log or stationary phase growth, a total of 17 spot group pairs were at least 2-fold 

more abundant in the xylan growth condition, relative to either the xylose or no added 

carbon growth conditions. In addition, between two and 15 spots were uniquely 

detected in one of the three growth conditions at mid-log or stationary phase, many of 

which were of very low abundance.  

Table 5.6. Summary of the differential abundance analysis of the mid-log and 

stationary phase B. proteoclasticus cytosolic proteomes at a 5% false discovery rate.
a
 

 Mid-log Stationary 

 Matched 

groups 

Increased 

abundance 

Decreased 

abundance 

Matched 

groups 

Increased 

abundance 

Decreased 

abundance 

Xylan/Xylose 429 3 (3) 6 (6) 361 1 (1) 1 (1) 

Xylan/No 
added carbon 

430 1 (1) 1 (1) 349 4 (4) 0  

 Unique Unique 

Xylan 15 (7) 14 (5) 

Xylose 12(2) 2(0) 

No added 

carbon 
3(0) 4(0) 

 
a The upper portion of the table shows the total number of differentially expressed spots (FDR = 5%) in 

the xylan growth condition, relative to the xylose and/or no added carbon growth conditions for each 

growth phase. In the lower portion, the number of spots unique to each growth phase is shown. 

Bracketed values denote the number of identified proteins for each group of differentially expressed 

proteins. 

In the B. proteoclasticus mid-log phase proteome the abundance of 10 spots was 

significantly different between xylan and xylose grown cells at the 5% FDR 

(Figure 5.6 and Figure 5.7). Four were more abundant in the xylan growth condition 

relative to xylose, and the remaining six were detected at lower abundance in xylan-

grown cells. Proteins were identified in all 10 spots of interest, and are summarised in 

Table 5.7. The theoretical pI and size of each differentially abundant protein matched 

closely with the observed position on the 2-DE map.  
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Figure 5.6. Differentially abundant spots between the mid-log phase harvested xylan grown cytosolic proteome and the alternate two growth 

conditions. A representative pI 3-5.6 2-DE colloidal CBB G-250 stained reference gel of cytosolic proteins harvested from mid-log phase, xylan 

grown B. proteoclasticus cells is shown. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan 

growth condition. Circled spots are summarised in Table 5.7. 

pI 5.63

k
D

a

10

20

50

70

160

220

120

100

80

60

40

30

C638 C637

C1072

C1135 C654

C733
C837

C853C792

C709

C1010

C1027

C1074



 

 

 1
7
2
 

 

Figure 5.7. Differentially abundant spots between the mid-log phase harvested xylan and xylose grown cytosolic proteomes. A representative pI 3-

5.6 2-DE colloidal CBB G-250 stained reference gel of cytosolic proteins harvested from mid-log phase, xylose grown B. proteoclasticus cells is 

shown. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. Circled spots are 

summarised in Table 5.7. 
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Figure 5.8. Differentially abundant spots between the mid-log phase harvested xylan and no added carbon grown cytosolic proteomes. A 

representative pI 3-5.6 2-DE colloidal CBB G-250 stained reference gel of cytosolic proteins harvested from mid-log phase, B. proteoclasticus 

cells grown in unsupplemented medium is shown. Red and blue circles denote spots with increased and decreased abundance respectively in the 

xylan growth condition. Circled spots are summarised in Table 5.7. 
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 Table 5.7. Summary of the differentially abundant proteins between xylan and xylose, or xylan and no added carbon growth conditions, identified in 

the mid-log phase cytosolic proteome. 

Spot Protein Locus Function
a Expect. pI kDa Pep. Cov.  

Fold-

change
b 

p value/q 

value 

C853 Adenylosuccinate lyase, PurB Bpr_I2212 O 1.2e-10 5.4 53.7 16 28% -3.1±0.6 0.001/0.020 

C1135 Amino acid ABC transporter substrate-binding protein Bpr_I1826 T 5.8e-04 4.0 31.6 7 21% Xylan n/a 

C1010 

Anti-sigma factor antagonist/phosphotransferase domain-
containing protein 

Bpr_I0249 R 
3.0e-30 

4.6 49.8 20 48% 
-12.0±0.7 0.001/0.029 

Ribosomal protein S1, RpsA Bpr_I2035 Q 4.6 41.9 19 42% 

C654 DNA-directed RNA polymerase  subunit, RpoA Bpr_I0623 W 3.0e-17 4.4 35.1 16 57% -8.7±4.3 0.002/0.049 

C837 Fructose-1,6-bisphosphate aldolase, FbaA Bpr_I2903 C 3.0e-13 5.1 30.5 14 49% -2.1±0.2 0.002/0.048 

C733 
IMP cyclohydrolase, PurO Bpr_I0731 O 

1.5e-18 
4.7 32.2 10 39% 

2.3±0.5 0.001/0.029 
Translation elongation factor Tu, TufA Bpr_I2364 Q 4.82 43.6 14 50% 

C792 NADPH-dependent glutamate synthase, GltA3 Bpr_I1306 A 1.9e-04 5.0 49.3 8 20% -15.8±6.3 0.000/0.001 

C637 Pullulanase, Pul13A Bpr_III161 C 1.5e-09 4.4 99.7 20 22% 2.8±0.3 0.000/0.017 

C638 Pullulanase, Pul13A Bpr_III161 C 1.8e-06 4.4 99.7 11 11% Xylan n/a 

C709 Ribosomal protein S1, RpsA Bpr_I2035 Q 9.6e-19 4.6 41.9 19 42% -4.1±1.1 0.001/0.020 

C1072 Serine protease subtilisin family Bpr_I2629 P 3.8e-08 3.8 153.3 10 9% 5.8±1.3 0.000/0.017 

C1074 Sugar ABC transporter substrate-binding protein Bpr_I0182 T 1.5e-08 4.12 63.3 14 31% Xylan n/a 

C1027 Xylosidase/arabinofuranosidase, Xsa43E Bpr_I2319 C 3.8e-08 4.3 35.3 11 46% Xylan n/a 

 
a A, Amino acid biosynthesis; C, Carbohydrate metabolism; O, Nucleotide metabolism; P, Protein fate; Q, Protein synthesis; R, Regulation; T, Transporters; W, Transcription.  
b Fold-change was calculated as the ratio of the mean normalised protein spot volumes in the xylan/xylose or xylan/ no added carbon growth conditions as stated. Positive values 

denote proteins with increased mean normalised spot volume in xylan grown cells. Xylan / xylose denotes the protein was uniquely detected in culture medium harvested from 

xylan / xylose grown cells respectively. 



 

175 

C
h
a
p
ter 3

T
h
e extra

cellu
la

r B
. p

ro
teo

cla
sticu

s p
ro

teo
m

e
 

Spots C733 and C1010 each contained two proteins. In both spots, the detected 

proteins were identified with no overlap between the subsets of peptide masses 

matched to each protein, and the false positive identification score for each pair was 

1.5e-18 and 3.0e-30 respectively. In the remaining eight differentially abundant spots a 

single protein was identified. Two of the nine differentially abundant spots were also 

significantly different between the xylan and no added carbon growth conditions 

(Figure 5.6 and Figure 5.8). The direction of change between the xylan and xylose or 

xylan and no added carbon growth condition was the same in both these cases. At the 

5% FDR, no spots were significantly different between the xylan and no added carbon 

growth conditions only.  

In addition to the differentially abundant spot pairs, 15 spots detected in the xylan 

growth condition were undetected in both the xylose and no added carbon conditions, 

and proteins were identified in seven of them. It is possible that each of these spots is 

uniquely produced by cells grown in the presence of xylan, or that the corresponding 

spots in the xylose and/or no added carbon conditions are below the limit of detection 

using colloidal CBB G-250 total protein staining. The identity of three of these 

proteins was of particular interest. The amino acid ABC transporter substrate-binding 

protein (Bpr_I1826) and the xylosidase/arabinofuranosidase Xsa43E (Bpr_I2319) 

detected in spots C1135 and C1027 respectively, were the only proteins unique to the 

xylan growth condition at either the mid-log or stationary growth phase that were not 

identified in any other spots in any other growth condition or growth phase (Figure 5.6 

and Table 5.7). Both proteins were detected in all nine replicate gels of the xylan 

growth condition. The SBP product of Bpr_I0182 was the only protein identified in 

the differentially or uniquely abundant spots in the mid-log phase B. proteoclasticus 

cytosol that was a component of a polysaccharide utilisation locus.  

The remaining eight protein spots unique to the xylan growth condition were 

unidentified due to poor quality PMF, which was a consequence of their low 

abundance. The majority of the protein spots uniquely detected in either the xylose or 

no added carbon growth conditions were unidentified for the same reason, and those 

that were identified were not unique to the growth condition in which they were 

detected.  

The most strongly up- and down regulated proteins in the mid-log phase proteome 

of xylan grown cells relative to either alternate condition were the subtilisin family 

serine protease (Bpr_I2629) (spot C1072) and the glutamate synthase (NADPH) GltA 
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(Bpr_I1306) (spot C792), respectively. Proteins identified in seven of the differentially 

abundant spots were predicted to be involved in cellular metabolism. In particular, the 

pullulanase Pul13A (Bpr_III161) and xylosidase/arabinofuranosidase Xsa43E 

(Bpr_I2319) which were identified in spots C637 and C638, and C1027 respectively 

were predicted to be involved in the degradation of plant carbohydrates. 

A complex protein spot pattern of the spots identified as the 99.7 kDa pullulanase, 

Pul13A (Bpr_III161) was seen between the mid-log (Figure 5.9 A) and stationary 

phase (Figure 5.9) time points.  

 

Figure 5.9. Effect of growth substrate and growth phase on pullulanase, Pul13A 

(Bpr_III161) abundance. (A) Corresponding regions of the mid-log phase xylan, 

xylose and no added carbon reference gels showing the abundance profiles of spots 

C637 and C638, which were both identified as pullulanase, Pul13A (Bpr_III161). (B) 

Corresponding regions of the stationary phase xylan, xylose and no added carbon 

reference gels showing the abundance profiles of spots C638 and C1024. 

During mid-log phase, spot C637 was up-regulated 2.8-fold (p<0.00) in the xylan 

growth condition relative to xylose (Figure 5.9A and B). A closely neighbouring spot 

(spot C638) was also identified as pullulanase, Pul13A (Bpr_III161) and was detected 

as being unique to the mid-log phase xylan growth condition (Figure 5.9B). Both were 

located at approximately pI 4.2 and 100 kDa, which corresponded closely with the 

theoretical values for the enzyme. During stationary phase, spot C637 became 

undetectable in all three culture conditions, but a new spot not detected during mid-log 

A 

B 
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phase, and approximately 5 kDa smaller than spot C637 was also identified as 

pullulanase, Pul13A (Bpr_III161) (Figure 5.9C, spot C1024). Manual analysis of the 

PMF derived from spots C637 (mid-log phase) and C1024 (stationary phase) showed 

two peptides matched to the C-terminal region of spot C637 that were undetected in 

the PMF of the spot C1024, suggesting a possible C-terminal truncation of the protein 

detected in spot C1024 during stationary phase. Spot C1024 was detected during 

stationary phase at equivalent abundance in all culture conditions. Similarly, the 

abundance of spot C638 during stationary phase was equivalent in all three culture 

conditions. 

5.4 Relative abundance analysis of the stationary phase cytosolic 

proteome by 2-DE  

In the stationary phase harvested B. proteoclasticus cytosolic proteome, the 

abundance of two spots was significantly different in xylan-grown cells relative to 

xylose-grown cells at the 5% FDR (Figure 5.10 and Figure 5.11, spot C601, spot 

C1057, and spot C1074). An additional four spots were differentially abundant 

between the xylan and no added carbon growth conditions, none of which changed 

significantly between the xylan and xylose growth states (Figure 5.10 and Figure 5.12, 

spot C704, spot C784, spot C785, and spot C1120). Five of these six differentially 

abundant proteins were detected at greater abundance in xylan-grown cells, relative to 

either the xylose or no added carbon culture conditions. Proteins were identified in all 

six spots of interest and are summarised in Table 5.8 

. In addition, 14 spots were detected in the xylan growth condition that were 

undetected in both the xylose and no added carbon conditions, five of which were 

identified. Of these, the sugar ABC transporter substrate-binding protein (Brp_I0182, 

spot C1074), and the amino acid ABC transporter substrate-binding proteins 

(Bpr_I1826, spot C1135) were the only proteins not detected in any other spots in any 

other stationary phase growth condition. Collectively, five of the total of 11 proteins 

identified in the eight differentially abundant protein spots during stationary phase 

growth were predicted to be involved in carbohydrate metabolism and transport. 

BLASTp analysis of each of the non-polysaccharide degrading differentially abundant 

proteins during stationary phase growth is summarised in Table 5.10 and Appendix B, 

Table B.6. 

MALDI-TOF MS showed that three of the eight differentially abundant spots of 

interest each contained two proteins (spot C704, spot C785, and spot C1120), while in 
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the remaining five spots a single protein was identified. Spot C1120 that contained the 

-galactosidase Bga35A (Bpr_I2006) and -xylosidase Xyl3A (Bpr_I0184) was 4.3-

fold more abundant in xylan grown cells during stationary phase, when compared to 

cells grown in the no added carbon condition. Compared to xylose grown cells, spot 

C1120 was also 6.1-fold more abundant in xylan growth condition, but at the 5% FDR 

the q-value of 0.063 fell marginally outside the 5% level of significance.  

Two ABC transporter SBPs were differentially abundant between the xylan and 

two alternate growth conditions. The SBP product of Bpr_I0182 was detected at high 

abundance in xylan grown cells, could not be detected at all in xylose grown cells, and 

was weakly abundant in the cytosol of cells grown in unsupplemented culture 

medium. The reverse was true for the xylose SBP product of Bpr_I1173, which was 

3.9-fold less abundant in xylan grown cells relative to xylose. The abundance pattern 

of both SBPs is in good agreement with the pattern detected in the B. proteoclasticus 

culture medium during mid-log phase. Surprisingly, by 2-DE analysis the SBP product 

of Bpr_I0182 was the only protein that was detected as being differentially abundant 

between the xylan and alternate two growth conditions at both mid-log and stationary 

phase time points.  

Strikingly, two proteins whose genes are located at adjacent loci (Bpr_I2455 and 

I2456) were up-regulated in xylan grown cells. In particular, the U62 family peptidase 

identified in spot C784 (Bpr_I2456) was 35.9-fold more abundant in xylan grown cells 

relative to cells grown in unsupplemented medium, and was the most strongly up-

regulated protein in the xylan grown stationary phase harvested cytosolic proteome. 

This peptidase was up to 51% identical to many Clostridial zinc-dependent proteases 

and U62 family peptidases that modulate DNA gyrase activity. Although locus 

Bpr_I2455 is currently annotated as encoding a hypothetical protein (Table 5.8), 

BLASTp analysis demonstrated that the translated protein sequence is also most 

homologous to several Clostridial U62 family peptidases (Appendix B, Table B.6).  
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Figure 5.10. Differentially abundant spots between the stationary phase harvested xylan grown cytosolic proteome and the alternate two growth 

conditions. A representative pI 3-5.6 2-DE colloidal CBB G-250 stained reference gel of cytosolic proteins harvested from stationary phase, xylan 

grown B. proteoclasticus cells is shown. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan 

growth condition. Circled spots are summarised in Table 5.8. 
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Figure 5.11. Differentially abundant spots between the stationary phase harvested xylan and xylose grown cytosolic proteomes. A representative pI 

3-5.6 2-DE colloidal CBB G-250 stained reference gel of cytosolic proteins harvested from stationary phase, xylose grown B. proteoclasticus cells 

is shown. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan growth condition. Circled spots are 

summarised in Table 5.8. 
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Figure 5.12. Differentially abundant spots between the stationary phase harvested xylan and no added carbon grown cytosolic proteomes. A 

representative pI 3-5.6 2-DE colloidal CBB G-250 stained reference gel of cytosolic proteins harvested from stationary phase, no added carbon 

grown B. proteoclasticus cells is shown. Red and blue circles denote spots with increased and decreased abundance respectively in the xylan 

growth condition. Circled spots are summarised in Table 5.8. 
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 Table 5.8. Summary of the differentially abundant proteins between xylan and xylose, or xylan and no added carbon growth conditions, identified in 

the stationary phase cytosolic proteome. 

Spot Protein Locus Function
a PUL Expect pI kDa Pep. Cov. 

Fold-

change
b 

p value/q 

value 

C1135 
Amino acid ABC transporter substrate-binding 
protein 

Bpr_I1826 T - 5.8e-04 4.0 31.6 7 21% Xylan n/a 

C785 

Aminotransferase DegT/DnrJ/EryC1/StrS 
family 

Bpr_I2311 I - 
1.5e-10 

5.0 51.0 11 23% 
4.2±1.1 0.000/0.013 

Xylulokinase, XylB Bpr_I0173 C 3 4.9 53.7 12 26% 

C1120 
-Galactosidase, Bga35B Bpr_I2006 C 20 

1.9e-27 
4.9 83.2 25 37% 

4.5±0.8 0.000/0.013 
-Xylosidase, Xyl3A Bpr_I0184 C 3 4.8 78.2 17 24% 

C704 
Hypothetical protein Bpr_I2455 H - 

7.6e-22 
4.7 47.7 16 42% 

2.3±0.1 0.001/0.020 
Phosphoribosylamine-glycine ligase, PurD Bpr_I0870 O - 4.7 46.3 12 29% 

C601 
Oligopeptide ABC transporter substrate-

binding protein, OppA1 
Bpr_I1276 T - 1.9e-13 4.0 83.1 17 23% 2.3±0.5 0.001/0.046 

C784 Peptidase U62 family Bpr_I2456 P - 6.1e-09 4.8 52.3 15 33% 35.9±7.2 0.001/0.023 

C1074 
Sugar ABC transporter substrate-binding 

protein 
Bpr_I0182 T 3 7.6e-07 4.12 63.3 13 27% Xylan n/a 

C1057 
Xylose ABC transporter substrate-binding 

protein 
Bpr_I1173 T - 9.6e-12 4.2 38.4 14 57% -3.9±1.1 0.000/0.046 

 
a C, Carbohydrate metabolism; H, Hypothetical; I, Cell envelope; O, Nucleotide metabolism; P, Protein fate; T, Transporters.  
b Calculated as the ratio of the mean normalised protein spot volumes in the xylan/xylose or xylan/ no added carbon growth conditions as stated. Positive values denote proteins 

with increased mean normalised spot volume in xylan grown cells. “Xylan” denotes the protein was uniquely detected in culture medium harvested from xylan grown cells. 
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5.5 Relative abundance analysis of the mid-log phase cytosolic 

proteome by 1-D LC-MS/MS  

Gel-free quantitative proteomic analysis utilises a variety of automatically observed 

1-D LC-MS/MS parameters such as the peptide count (Gao et al., 2003), spectrum 

count (Liu et al., 2004), and sequence coverage (Florens et al., 2002), to measure 

changes in relative protein abundance. Scaffold2™ was used to examine the 

differential abundance profiles of 1-D LC-MS/MS identified proteins using spectral 

counting. Protein quantitation by spectral counting operates on the assumption that for 

MS/MS data obtained under equivalent conditions (e.g. equal protein load, unbiased 

sampling) the ratio of MS/MS spectra assigned to the same protein in two samples is 

directly proportional to the relative quantitative abundance of that protein. The 

Scaffold2™ output files containing the quantitative spectrum counts for each 1-D LC-

MS/MS replicate analysis were extracted and filtered prior to protein abundance 

profiling. Proteins detected in less than 12 of the 15 technical replicate samples were 

removed from the analysis. Furthermore, spectral counting of low abundance proteins 

may produce statistically unreliable results due to the low number of counts obtained 

from one or both samples (Old et al., 2005), therefore proteins with fewer than 45 total 

spectrum counts per protein per sample (an average of at least three counts per 

technical replicate), were filtered from the dataset. Of the 281 protein pairs identified 

in both xylan and xylose growth conditions by Scaffold2™, 108 fulfilled this criteria 

and were therefore considered suitable for statistical analysis of their differential 

abundance profiles. Prior to testing, each quantitative spectrum count was normalised 

against the total spectrum counts per sample, and log10 transformed as recommended 

by Carvalho et al. (2008). A scatter plot of spectrum count variance as a function of 

spectrum count mean for each protein in the xylan grown data set showed a significant 

variance versus mean dependency remained after log10 transformation (Figure 5.13 A). 

A more effective transformation was therefore sought, and after iterative testing a 1/3 

power transformation was optimal for the 1-D LC-MS/MS dataset (Figure 5.13 B).  
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Figure 5.13. The transformation efficiency in correcting for variance versus mean 

dependency in the LC-MS/MS data set by log10 transformation. Variance versus 

mean scatter plots of the mid-log phase harvested, xylan grown LC-MS/MS data set 

after log10 transformation (A) shows a moderate correlation between the two 

variables still exists. After 1/3 power transformation (B) a low correlation exists 

between the two variables.  

The mean of the 1/3 power transformed normalised spectral count was then 

calculated for each of the three biological replicate samples, and two tailed Student‟s t-

tests were performed for each protein pair that passed the Shapiro-Wilk test of 

normality. As for the 2-DE analysis, a q-value was then calculated for each test, and 

used to determine the FDR threshold. Plotting the number of significant tests and the 

number of expected false positives as a function of percentage FDR (Figure 5.14) 

showed that the most suitable balance between statistical power and the incidence of 

false discoveries occurred at 5% FDR. At this level, the relative abundance of nine 
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proteins was significantly different between the xylan and xylose growth conditions 

(Table 5.9), and the number expected of false positive discoveries was less than 1.  

 

Figure 5.14. Cumulative frequency of 1-DE LC-MS/MS significant tests and 

expected number of false discoveries as a function of percentage FDR. A 5% FDR 

was chosen for the cytosolic 1-DE LC-MS/MS analysis (dotted line), which resulted 

in nine significant tests (black line, primary y-axis), and less than 0.5 expected false 

discoveries (blue line, secondary axis). 
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Table 5.9. Summary of proteins differentially or uniquely abundant between xylan and xylose growth conditions, identified in the mid-log phase 
cytosolic proteome by 1-D LC-MS/MS. 

Protein Locus Function
a PUL Expect. pI kDa 

Unique 

pep.
b 

Cov.
c 

Fold 

change
d 

p value/q 

value 

ATP synthase F1  subunit, AtpD2 Bpr_I1162 E - 3.0e-08 4.5 50.9 2 6.3% Xylose n/a 

β-Xylosidase, Xyl3A
e
 Bpr_I0184 C 3 8.9e-15 4.8 78.2 17 36% Xylan n/a 

Bmp family proteinf Bpr_I1560 U - 1.5e-11 3.7 40.7 3/3 18%/18% 2.2±0.2 0.005/0.020 

DNA-binding proteinf Bpr_II236 N - 4.0e-11 11.1 9.6 6/7 53%/57% -6.3±5.2 0.005/0.020 

DNA-directed RNA polymerase  subunit, 
RpoA 

Bpr_I0623 W - 3.3e-15 4.4 35.1 16/12 61%/49% -2.1±0.4 0.025/0.050 

Fatty acid/phospholipid synthesis protein, 
PlsXf 

Bpr_I1576 L - 1.6e-11 6.2 35.8 2 15% Xylose n/a 

Orotate phosphoribosyltransferase, PyrE1f Bpr_I0863 O - 1.1e-15 4.7 25.4 4/4 28%/36% -3.0±1.0 0.004/0.020 

PTS system HPr phosphocarrierf Bpr_I2105 T 21 3.6e-14 4.3 9.3 3/4 55%/69% -2.1±0.8 0.013/0.039 

Sugar ABC transporter substrate-binding 

proteinf 
Bpr_I0117 T 2 1.0e-30 6.2 57.5 7 22% Xylan n/a 

Sugar ABC transporter substrate-binding 

protein 
Bpr_I1667 T - 1.0e-30 3.9 47.8 11/8 39%/28% 2.9±0.1 0.000/0.000 

Sugar ABC transporter substrate-binding 
protein 

Bpr_I1720 T 16 1.1e-15 4.0 49.3 10/5 38%/18% 2.0±0.2 0.008/0.026 

Sugar ABC transporter substrate-binding 
protein 

Bpr_I2443 T 25 1.0e-30 4.0 57.0 13/5 50%/21% 7.5±3.6 0.018/0.041 

Sugar ABC transporter substrate-binding 
proteinf 

Bpr_I2264 T 23 1.1e-16 3.9 47.5 7/5 29%/21% 6.8±1.0 0.001/0.006 

Table continues           
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Protein Locus Function
a PUL Expect. pI kDa 

Unique 

pep.
b 

Cov.
c 

Fold 

change
d 

p value/q 

value 

Xylose ABC transporter ATP-binding proteinf Bpr_I1174 T 10 2.7e-13 5.2 68.4 14 43% Xylose n/a 

 
a C, Carbohydrate metabolism; E, Energy metabolism; L, Lipid metabolism; N, Nucleic acid metabolism; O, Nucleotide metabolism; T, Transporters; U, Unknown function; W, 

Transcription.  
b Values denote the number of unique peptides matched to Scaffold2™ identified proteins in xylan/xylose samples. 
c Values denote the maximum percent sequence coverage of Scaffold2™ identified proteins in xylan/xylose samples. 
d Calculated as mean ratio of normalised spectrum counts obtained from xylan/xylose biological replicate analyses. Xylan / xylose denotes the protein was uniquely detected in 

culture medium harvested from xylan / xylose grown cells respectively. 
e Differentially expressed in the 2-DE MALDI-TOF analyses. 
f Not identified in the 2-DE MALDI-TOF analyses 
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Five of the nine proteins were more abundant in the xylan growth condition relative 

to growth on xylose, and the abundance fold changes ranged between 2.0±0.2 and 

7.5±3.6. Notably, four of the five xylan stimulated proteins were substrate-binding 

components of ABC transporter systems (Figure 5.15). In addition, five proteins were 

detected in cells grown in only one of the two culture conditions (Table 5.9). Three 

proteins were detected only in cells grown in xylose supplemented culture medium, 

and included the ABC transporter ATP binding protein (Bpr_I1174) that is a 

component of a xylose specific ABC transporter system. This ATP binding protein is 

coded for by a gene located immediately downstream of the gene that encodes the 

differentially abundant xylose ABC transporter substrate-binding protein (Bpr_I1173). 

As demonstrated by 2-DE MALDI-TOF, the abundance of the substrate-binding 

protein was 3.9-fold greater in xylose grown cells relative to the xylan growth 

condition during stationary phase growth.  

The two proteins detected only in the xylan stimulated growth condition were both 

involved in carbohydrate metabolism and transport, and included the -xylosidase 

Xyl3A (Bpr_I0184). This enzyme was one of two differentially abundant proteins 

detected by both the 1-D LC-MS/MS and 2-DE MALDI-TOF techniques. The 

direction of the abundance change was the same in both proteomic techniques. It is 

noteworthy that the -xylosidase Xyl3A (Bpr_I0184) was identified in the 2-DE 

MALDI-TOF analyses in a single protein spot that also contained -galactosidase 

Bga35B (Bpr_I2006). Surprisingly, eight of the 14 proteins found as being 

differentially abundant or unique to either growth substrate by the 1-D LC-MS/MS 

were not identified by 2-DE MALDI-TOF in any growth condition at either time 

point. Three of these eight proteins were uniquely detected in one or other growth 

condition. Two of the remaining five proteins were more abundant in the xylan growth 

condition, where the absolute fold changes ranged between 2.1 and 6.8. BLASTp 

analysis of the differentially abundant proteins detected by 1-D LC-MS/MS is 

summarised in Appendix B, Table B.7.  

5.6 Bioinformatics of the differentially abundant sugar substrate-

binding proteins identified in the B. proteoclasticus cytosol  

The combination of 2-DE MALDI-TOF and 1-DE LC-MS/MS analysis of the B. 

proteoclasticus cytosol showed that the relative abundance patterns of seven SBP and 

one ATP-binding protein components of sugar ABC transporter systems were 
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significantly different between the xylan and alternate growth conditions Table 5.7, 

Table 5.8, and Table 5.9).  

During stationary phase the substrate-binding protein containing the PBP1_xylose 

(Cd01538) domain (Bpr_I1173) constituted almost 3% of the total detectable protein 

in cells grown in the presence of xylose as the sole supplementary carbon source, and 

was 3.9±1.1-fold more abundant relative to cells grown in xylan containing culture 

medium (Table 5.9). A similar abundance pattern was observed during mid-log phase, 

but the large variance in spot abundance in the xylose growth condition contributed to 

the mean 5.7±3.1-fold change not being statistically significant at the 5% FDR. The 

Periplasmic Binding Protein Type-I domain comprising almost the full length of the 

protein was 82% identical to the corresponding domain of a putative periplasmic 

xylose binding protein produced by the cellulolytic anaerobe Clostridium 

phytofermentans ISDg.  

The abundance of both proteins containing amino acid binding domains was 

significantly greater in the xylan growth condition relative to xylose. Indeed the SBP-

Bac_3 domain containing protein (Brp_I1826) was undetectable in either the xylose or 

no added carbon growth conditions at both time points. Furthermore, spot C1060 

which was located approximately 5 kDa below spot C601 (Figure 5.6) and also 

identified as the oligopeptide binding protein OppA1 (Bpr_I1276) was 4.9±2.4-fold 

more abundant in xylan grown cells relative to xylose. The statistical significance of 

this change was marginally outside the 5% FDR confidence level. The functional 

domains of both amino acid binding proteins were homologous to substrate-binding 

proteins produced by proteolytic, pathogenic Streptococcus sp.  

Collectively, the set of 12 differentially abundant ABC transporter proteins that 

were comprised of 11 SBPs and one ATP-binding protein (Figure 3.26 and 

Figure 5.15) displayed a distinctive pattern of relative abundance change. Regardless 

of the sub-cellular compartment in which each ABC transporter associated sugar SBP 

was identified, the common feature of all nine SBPs that were more abundant in the 

xylan growth condition was the presence of a CUT1 family substrate-binding domain, 

and eight of the nine contained a SBP_Bac_1 (PF 01547) domain. Conversely, the two 

SBPs and that were less abundant in xylan grown cells contained a Peripla_BP_1 

domain (PF00532) which a classified as a CUT2 family module.  
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Figure 5.15. Functional domains of differentially abundant ABC transporter system 

proteins identified in the B. proteoclasticus cytosol. Values to the right of each 

depicted protein denote number of amino acid residues. LP, lipobox motif; SP, 

secretory signal peptide. Domains shown in green are associated with proteins more 

abundant in the xylan growth conditions. The nine conserved ATP-binding sites 

within the N-terminal ABC transporter ATP-binding domain (PF00005) are shown in 

Bpr_I1174. SP, secretory signal peptide. 

The degree of primary sequence homology between each of the differentially 

abundant SBP_Bac_1 domain containing proteins was examined using CLUSTALW 

multiple sequence alignment. A neighbour-joining phylogram using each of the 

differentially abundant SBP protein sequences supported the distinct pattern of protein 

abundance change (Figure 5.16). Two clusters were formed by the nine SBP_Bac_1 

(Figure 5.16, green box) and two Peripla_BP_1 domain containing proteins 

respectively. Nonetheless, the mean branch length of 0.42586 for the set of 

SBP_Bac_1 containing SBPs indicated only moderate homology between this group 
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of proteins, which was confirmed by examination of the CLUSTALW multiple 

sequence alignment (Figure 5.17 and Figure 5.18). The primary sequence divergence 

between the B. proteoclasticus differentially abundant SBP-Bac_1 proteins is reflected 

in the fact that each protein has a highest scoring BLASTp homologue produced by a 

different bacterium (Table 3.5 and Table 5.10).  

 

Figure 5.16. CLUSTALW neighbour-joining phylogram of the differentially 

abundant SBPs identified in the B. proteoclasticus proteome. The green box denotes 

the set of SBPs that were significantly more abundant in the culture medium or 

cytosol of B. proteoclasticus cells grown in the presence of xylan. Values to the right 

of the SBP locus number denote branch distances. Score type = proportional 

variability, where 1 = 100%.  
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Figure 5.17. CLUSTALW multiple sequence alignment of the N-terminal half of the differentially abundant SBP_Bac_1 domain containing SBPs 

identified in the B. proteoclasticus proteome. Proteins are arranged by B. proteoclasticus gene locus. 
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Figure 5.18. CLUSTALW multiple sequence alignment of the C-terminal half of the differentially abundant SBP_Bac_1 domain containing SBPs 

identified in the B. proteoclasticus proteome. Proteins are arranged by B. proteoclasticus gene locus.  



 

 

 1
9
4
 

Table 5.10. BLASTp analysis of the differentially abundant SBPs identified in the B. proteoclasticus cytosol.
a
 

B. proteoclasticus protein Locus Homologue
b
 Organism

c
 gi Expect Identity Region 

Sugar ABC transporter 
SBP 

Bpr_I0117 
Putative bacterial extracellular solute-binding 
protein 

Roseburia intestinalis L1-82 240144557 1e-166 48% 25--617 

Sugar ABC transporter 
SBP 

Bpr_I0182 
ABC-type sugar transport system, 
periplasmic component 

Butyrivibrio fibrisolvens 16/4 291518643 1e-180 63% 1-568 

Xylose ABC transporter 
SBP 

Bpr_I1173 
Putative solute-binding component of ABC 
transporter 

Clostridium phytofermentans 
ISDg 

160879730 4e-161 80% 19-359 

Sugar ABC transporter 
SBP 

Bpr_I1667 Bacterial extracellular solute-binding protein Turicibacter sp. PC909 293376212 6e-58 34% 3-419 

Sugar ABC transporter 

SBP 
Bpr_I1720 Extracellular solute-binding protein family 1 Acetivibrio cellulolyticus CD2 302592083 5e-69 34% 1-455 

Sugar ABC transporter 

SBP 
Bpr_I2264 Extracellular solute-binding protein, family 1 

Ruminococcus sp. 

5_1_39B_FAA 
253579691 6e-120 49% 1-441 

Sugar ABC transporter 

SBP 
Bpr_I2443 Extracellular solute-binding protein family 1 

Clostridium lentocellum DSM 

5427 
296441832 1e-40 30% 1-522 

 
a Differentially abundant SBPs identified in the cytosol of mid-log or stationary phase harvested cells by a combination of 2-DE MALDI-TOF and 1-DE LC-MS/MS. 
b BLASTp top ranked homologous protein. 
c Organism that expresses the BLASTp top ranked homologous protein. 
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5.7 Summary 

Using the combination of gel-based and gel-free differential expression proteomics 

has confirmed that the relative abundance of several B. proteoclasticus cytosolic 

polysaccharidases, and a significant number of substrate-binding proteins, is 

modulated in response to growth substrate. Similar to relative abundance changes 

detected in the extracellular proteome, the relative abundance changes detected in the 

B. proteoclasticus cytosol accurately reflect the growth conditions used. During mid-

log phase, growth in the presence of long-chain GAX relative to cells grown on xylose 

elicited the increased abundance of the β-xylosidase Xyl3A, the 

xylosidase/arabinofuranosidase Xsa43E, which both target xylooligosaccharides, as 

well as the pullulanase Pul13A, which targets starch. During stationary phase, Xyl3A 

was also detected in one spot that was more than four-fold more abundant in xylan 

grown cells. The relative abundance changes detected in this analysis imply that 

within the consortia of enzymes detected in the cytosol, Xyl3A and Xsa43E may play 

a particularly important role in the cytosolic degradation of assimilated 

xylooligosaccharides. 

The relative abundance of seven ABC-transporter SBPs detected in the 

B. proteoclasticus cytosol was also significantly different between growth substrates. 

This result raised the total number of differentially abundant ABC-transporter 

associated proteins within the B. proteoclasticus proteome to 11, nine of which were 

more abundant in cells grown on xylan. These changes imply that B. proteoclasticus 

modulates the set of SBPs in response to growth substrate, which may provide an 

ecological advantage to B. proteoclasticus by allowing cells to rapidly assimilate the 

products of its extracellular polysaccharide-degrading activity rather than having them 

lost to other members of the complex rumen microbial ecosystem.  

 





 

 

Chapter 6 

Discussion  
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6.1 Overview 

B. proteoclasticus falls within the Butyrivibrio/Pseudobutyrivibrio assemblage and 

was the first member of the genus to have its genome fully sequenced (Kelly et al., 

2010). Butyrivibrio/Pseudobutyrivibrio species are metabolically versatile gut 

bacteria, but their primary role in the rumen is thought to the degradation of plant 

hemicelluloses. Using a combination of gel-based and gel-free proteomics, 416 non-

redundant proteins present in the secreted, cell-associated, or cytosolic sub-cellular 

compartments were detected, which represent 14% of the B. proteoclasticus 

extracellular and cytosolic theoretical proteins. Present in this set of proteins were 12 

predicted extracellular, and 24 predicted cytosolic polysaccharidases. Collectively, 

these enzymes represent 26% of the total predicted fibrolytic potential of the 

bacterium. An additional 59 identified proteins were predicted to be involved in the 

assimilation and further metabolism of polysaccharide degradation products. This 

study has confirmed the hypothesis that B. proteoclasticus produces an extensive array 

of polysaccharidases that enable it to degrade and assimilate GAX, and that the 

abundance of many of these proteins is sensitive to growth substrate. The results of the 

study support the notion that B. proteoclasticus is an important contributor to 

degradation and utilisation of the types of hemicelluloses that are abundant in 

ruminant forages. Furthermore, this study demonstrated that the abundance of 

B. proteoclasticus secreted and cytosolic fibrolytic enzymes and proteins that are 

likely to be involved in the translocation of hemicellulose degradation products are 

responsive to the substrates that cells encounter in the external environment.  

An overview of the predicted catalytic activity of the set of 36 identified 

polysaccharidases identified in the B. proteoclasticus proteome predicts that these 

enzymes are likely to be active upon a range of plant-derived oligosaccharides 

(Table 6.1 and Table 6.2). Furthermore, the experimentally determined catalytic 

activities for homologues of the majority of the identified B. proteoclasticus 

polysaccharidases support these predictions. Clustering of the 36 polysaccharidases by 

function signifies that 11 and 18 distinct hydrolytic activities are predicted to be 

present within the B. proteoclasticus extracellular and cytosolic proteomes 

respectively. These predictions do not include the three identified B. proteoclasticus 

polysaccharidases whose GH domains are currently unclassified.  
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Table 6.1. Predicted catalytic activity of the identified extracellular B. proteoclasticus polysaccharidases.
a
 

Protein Locus Substrate Reaction catalysed
b
 

-Amylase, Amy13A Bpr_I1087 Starch and glycogen Endohydrolysis of (14)--D-glucosidic linkages. 

-Glucosidase, Bgl3A Bpr_I0693 -D-Glucosides 
Hydrolysis of terminal, non-reducing -D-glucosyl residues 

with release of -D-glucose. 

Endo-1,4-β-glucanase, Cel5C Bpr_I1710 Cellulose cereal β-D-glucans Endohydrolysis of (14)-β-D-glucosidic linkages.  

Glycoside hydrolase family 30, GH30A Bpr_I2937 Unknown Unknown. 

Endo-1,4-β-xylanase and xylosidase, Mxy10-43A Bpr_I0737 
α-L-Arabinofuranose containing 

xylans 
Endohydrolysis of (14)-β-D-xylosidic linkages, and 
hydrolysis of terminal, non-reducing D-xylose residues. 

Endo-1,4-β-xylanase, Xyn10B 

Endo-1,4-β-xylanase, Xyn10C 

Bpr_I0026 

Bpr_I1008 
Xylan Endohydrolysis of (14)-β-D-xylosidic linkages. 

Pectate lyase, Pel1A Bpr_I2372 Pectate 
Cleavage of (14)-α-D-galacturonan. Favours pectate over 

the methyl ester pectin.  

Pectin methylesterase, Pme8B Bpr_I2473 Pectin Hydrolysis of pectin yielding pectate and methanol.  

Pullulanase, Pul13A Bpr_III161 
Pullulan, amylopectin and 

glycogen 
Hydrolysis of (16)- linkages. 

Xylosidase/arabinofuranosidase, Xsa43A Bpr_I0302 -L-Arabinofuranosides 
Hydrolysis of terminal, non-reducing D-xylose or -L-
arabinofuranoside residues. 

Xylosidase/arabinofuranosidase, Xsa43J Bpr_I2935 

Xylooligosaccharides and α-L-

arabinofuranose containing 

xylans 

Hydrolysis of (14)-β-D-linkages, releasing D-xylose 

residues from the non-reducing termini/Hydrolysis of 

terminal non-reducing α-L-arabinofuranoside residues.  

 
a Bold text denotes enzymes that were more abundant in the culture medium of cells grown on xylan, relative to those grown on xylose or no added carbon. 
b Swiss Institute of Bioinformatics Enzyme nomenclature (http://us.expasy.org/enzyme/). 
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Table 6.2. Predicted catalytic activity of the identified cytosolic B. proteoclasticus polysaccharidases.
a
  

Protein Locus Substrate Reaction catalysed
b
 

-Galactosidase, Aga27A 

-Galactosidase, Aga36C 

Bpr_I0205 

Bpr_III065 
-D-Galactosides Hydrolysis of terminal, non-reducing -D-galactose residues. 

-D-Glucuronidase, Agu67A Bpr_I0177 Glucuronoxylans Hydrolysis of glucuronic acid substituted xylooligosaccharides. 

-Amylase, Amy13G Bpr_I0729 Starch and glycogen Endohydrolysis of (16)--D-glucosidic linkages. 

-L-Arabinofuranosidase, Arf51A Bpr_I0329 -L-Arabinofuranosides 
Hydrolysis of terminal, non-reducing -L-arabinofuranoside 
residues. 

-Galactosidase, Bga2A 

-Galactosidase, Bga2B 

-Galactosidase, Bga35B 

Bpr_I0279 

Bpr_III209 

Bpr_I2006 

-D-Galactosides Hydrolysis of terminal, non-reducing -D-galactose residues. 

-Glucosidase, Bgl3B 

-Glucosidase, Bgl3C 

Bpr_I0847 

Bpr_I0138 
-D-Glucosides 

Hydrolysis of terminal, non-reducing -D-glucosyl residues 

with release of -D-glucose. 

Cellobiose phosphorylase, Cbp94A Bpr_I2447 Cellobiose Hydrolysis of cellobiose. 

Cellodextrinase, Cel9B Bpr_I1593 
Cellulose, lichenin and cereal -

D-glucans 
Endohydrolysis of (14)--D-glucosidic linkages. 

Feruloyl esterase, Est1E Bpr_I2870 Esterified oligosaccharides Deferuloylation of esterified oligosaccharides. 

Acetyl-xylan esterase, Est2A Bpr_I2939 
Acetylated xylans and xylo-

oligosaccharides 
Deacetylation of xylans and xylo-oligosaccharides. 

Acetyl-xylan esterase Bpr_I0174 Unknown Unknown. 

Glycoside hydrolase family 31, GH31C Bpr_I1974 Unknown Unknown. 

Glycogen phosphorylase, Glgp2 Bpr_I2847 1,4--D-Glucans Exohydrolysis and phosphorylation of (14)--D-glucan. 

Table continues    
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Protein Locus Substrate Reaction catalysed
b
 

Glycogen debranching enzyme, Glgx2 Bpr_I1494 1,6--D-Glucans Deglycosylation of (16)--linked glucose monomers. 

-Mannosidase, Man2A Bpr_III237 -D-Mannosides Hydrolysis of terminal, non-reducing -D-mannose residues. 

-L-Rhamnosidase, Rha78A Bpr_I1686 -L-Rhamnosides Hydrolysis of terminal, non-reducing -L-rhamnose residues. 

Xylosidase/arabinofuranosidase, Xsa43E Bpr_I2319 -L-Arabinofuranosides 
Hydrolysis of terminal, non-reducing D-xylose or -L-

arabinofuranoside residues. 

Xylosidase/arabinofuranosidase and esterase, 
Xsa43H 

Bpr_I0301 
-L-Arabinosides and 

triacylglycerols 

Hydrolysis of terminal, non-reducing D-xylose or -L-

arabinofuranoside residues/hydrolysis of triacylglycerols with 

release of a diacylglycerol and a carboxylate. 

-Xylosidase, Xyl3A Bpr_I0184 1,4--D-Xylans Hydrolysis of terminal, non-reducing D-xylose residues. 

Endo-1,4--xylanase and esterase, Xyn10D Bpr_I1083 1,4--D-Xylans Endohydrolysis of (14)--D-xylosidic linkages. 

 
a Bold text denotes enzymes that were more abundant in the cytosol of cells grown on xylan, relative to those grown on xylose or no added carbon.  
b Swiss Institute of Bioinformatics Enzyme nomenclature (http://us.expasy.org/enzyme/). 
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The functional diversity within the set of polysaccharidases synthesised by 

B. proteoclasticus grown on xylan most likely reflects the chemical complexity of the 

polysaccharide. Hemicellulose, of which GAX is the predominant form found in 

ruminant forage crops (Ebringerova et al., 2005, Ishii, 1997), is a chemically 

heterogeneous and extensively branched polymer of pentoses, hexoses, and sugar 

acids that are linked to each other and to surrounding structural polymers by a variety 

of glycosidic linkages (Kabel et al., 2007, Linder et al., 2003). Efficient GAX 

degradation requires the cooperative action of a variety of enzymes, including 

endoxylanases, β-xylosidases, α-D-glucuronidases α-L-arabinofuranosidases, 

acetylxylan esterases, and ferulic acid esterases. Examples of each of these classes of 

hemicellulolytic enzymes were identified in the B. proteoclasticus proteome. 

Liberation of hemicellulose from the surrounding polymers also requires the presence 

of several non-xylanolytic polysaccharidases, and several of these are also present in 

the B. proteoclasticus proteome. 

6.1.1 Proposed mechanism of GAX degradation by B. proteoclasticus  

A distinct pattern of fibrolytic capability has emerged from the analysis of the 

extracellular proteome of B. proteoclasticus. The results suggest that 

B. proteoclasticus attacks primarily the xylan backbone and main substituent groups of 

hemicellulose in the extracellular space, assimilates the variable length substituted or 

un-substituted xylooligosaccharides, and performs the final stages of degradation 

within the cell. The secreted enzymes that are predicted to degrade GAX contain only 

GH10 or GH43 domains that target (1→4)-β-D-linkages within the xylan backbone, or 

between the backbone and arabinose side chain groups. Polysaccharidases necessary 

for the removal of common GAX substituent groups such as glucuronic acid and 

acetate groups, or the hydrolysis of interchain linkages such as ferulic acid esterases 

were not detected in the B. proteoclasticus extracellular proteome. The hypothesis that 

B. proteoclasticus does not perform complete degradation of complex substituted 

GAX in the extracellular space implies that cells must be capable of transporting a 

variety of substituted xylooligomers across the cell wall. This scenario is supported by 

the number of the sugar specific ABC transporter SBPs that were present in the 

B. proteoclasticus secreted proteome. Furthermore, prior to their utilisation within the 

cytosol these assimilated substituted xylooligomers must be degraded to their 

constituent monomers, which is likely to be achieved by the activity of several classes 

of side chain removing enzymes and β-xylosidases identified in the B. proteoclasticus 
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cytosol. This hypothesis is in general consistent with the transcriptome data obtained 

by microarray analysis of the B. proteoclasticus genes involved in hemicellulose 

degradation (Kong, 2007). Comparison of cells grown in xylan or xylose 

supplemented culture medium showed that several secreted endoxylanases, an 

endocellulase and a feruloyl esterase were up-regulated in cells grown on xylan. In 

contrast, none of the up-regulated β-xylosidases were secreted enzymes. The proposed 

mechanism of GAX hydrolysis is supported by the observations of Cotta and 

Zeltwanger (1995) who demonstrated that the rapid hydrolysis of oat-spelt xylan by 

enzymes derived from B. fibrisolvens H17c caused the accumulation of an 

extracellular pool of soluble, low molecular weight xylooligosaccharides that 

contained significant amounts of xylose, xylobiose and xylotriose, but low amounts of 

glucuronic acids. 

A schematic representation of B. proteoclasticus mediated extracellular 

hemicellulose degradation, and carbohydrate uptake based on the data obtained in this 

project is presented in Figure 6.1 and Figure 6.2. A schematic representation 

summarising the degradation of internalised xylooligosaccharides is given in 

Figure 6.3. The enzymatic degradation of pectins is also depicted in view of the fact 

that these complex polysaccharides can contribute up to 5% of the cell walls of 

grasses, and are implicated in cross-linking surrounding structural cell wall polymers.  

It should be noted that four of the 12 identified polysaccharidases that are predicted 

to be secreted enzymes were identified only in the cytosol. Although the presence of a 

Type-I or Type-II N-terminal secretory signal peptide was identified with high 

statistical probability in each of these enzymes, it is not possible to conclude with 

certainty that these enzymes are secreted in vivo. Nonetheless, for the purposes of 

clarity these enzymes are discussed based on the assumption that they act on insoluble 

polysaccharides in the extracellular space.  
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Figure 6.1. A simplified schematic representation of extracellular plant 

polysaccharide metabolism by B. proteoclasticus. The simplified structure of xylan 

and cellulose (A), pectin (B) and amylopectin (C) showing the predicted sites of 

hydrolysis by the identified B. proteoclasticus secreted polysaccharide-degrading 

enzymes. Dashed lines denote intra- and inter-polymer hydrogen bonds. Ac., O-

acetyl group; Af, α-L-arabinofuranose; Fe, ferulic acid; G, glucose; GalA, D-

galacturonic acid; Gu, 4-O-methyl-D-glucuronic acid; X, xylopyranose (xylose).  
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Figure 6.2. A simplified schematic representation of the ATP-driven transport 

systems likely to mediate the assimilation of xylan derived soluble sugars. Ac., O-

acetyl group; Af, α-L-arabinofuranose; CUT1 and CUT2, Carbohydrate Uptake 

Transporter family 1 and family 2 respectively; Fe, ferulic acid; Gu, 4-O-methyl-D-

glucuronic acid; X, xylopyranose (xylose).  
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Figure 6.3. A simplified schematic representation of intracellular 

xylooligosaccharide degradation by B. proteoclasticus. Simplified structure of 

partially degraded GAX (A), xylobiose (B), and arabinogalactan (C) showing the 

predicted sites of hydrolysis by the identified B. proteoclasticus cytosolic 

polysaccharidases Ac., O-acetyl group; Af, α-L-arabinofuranose; Fe, ferulic acid; G, 

glucose; Gal, D-galacturonic acid, Gu, 4-O-methyl-D-glucuronic acid; X, 

xylopyranose (xylose).  
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6.2 A proteomic view of extracellular fibre degradation by B. 

proteoclasticus 

6.2.1 The role of secreted xylanolytic enzymes 

The size and insolubility of forage derived polysaccharides dictates that they are 

degraded in the extracellular environment before the released soluble oligo- and 

monosaccharides can be assimilated and utilised by microbial cells. This requirement 

necessitates the secretion of a variety of polysaccharide degrading enzymes across the 

bacterial cell wall, where they may be covalently or non-covalently tethered to the 

external cell-surface, or released into the rumen fluid. Assimilation of the released 

soluble sugars necessitates their rapid uptake across the bacterial cell wall, which in 

Gram-positive bacteria is mediated by a variety of extracellular substrate-binding 

proteins linked to dedicated sugar transport systems. An examination of the secreted 

component of the B. proteoclasticus proteome was an important step for 

characterisation of the fibre degrading enzyme system of the bacterium.  

6.2.1.1 Endoxylanase Xyn10B 

The observed differential abundance pattern of Xyn10B in response to growth on 

xylan and xylose, together with the prediction that the 137 kDa endoxylanase is the 

product of a highly expressed gene, suggests that it is the primary xylanolytic enzyme 

in the extracellular polysaccharide-degrading system of B. proteoclasticus. GH10 

endoxylanases are important for xylan breakdown due to their catalytic versatility, 

wide substrate specificity, and ability to hydrolyse heavily substituted 

xylooligosaccharides (Biely et al., 1997). The GH10 and CBM9 domains in Xyn10B 

both display homology to the equivalent domains in XynA of Eubacterium 

ruminantium (Q47871_9FIRM), and the XynA precursor of Thermoanaerobacterium 

thermosulfurigenes (Q60046_THETU). The E. ruminantium XynA exhibited high 

endoxylanase activity against oat-spelt xylan and xylooligosaccharides when 

expressed in E. coli, and the primary degradation products were xylobiose and 

xylotriose (Taguchi et al., 2004b). It is plausible that B. proteoclasticus Xyn10B is an 

endo-1,4--xylanase capable of liberating variable length xylooligomers from 

hemicellulose (Figure 6.1 A).  

The relative abundance pattern of Xyn10B in xylan compared to xylose grown cells 

is similar to the xylan stimulated differential abundance pattern of XynA from 

C. cellulovorans (Han et al., 2004), and implies that Xyn10B abundance is sensitive to 

the available extracellular carbon source. Hespell et al. (1987) observed a significant 
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increase in total secreted endoxylanase activity in several B. fibrisolvens strains grown 

in the xylan containing medium compared to growth on non-xylan carbohydrates, 

which is consistent with our findings. Little is known of the mechanisms controlling 

polysaccharidase expression in rumen bacteria. The expression of a Prevotella bryantii 

B(1)4 xylanase gene cluster containing an extracellular endoxylanase is induced by 

medium to large xylooligosaccharides, and is controlled by the multi-domain 

regulatory protein XynR, which operates via a two-component mechanism (Miyazaki 

et al., 2003, Miyazaki et al., 2005). The gene encoding Xyn10B does not appear to be 

clustered within a polysaccharide utilisation locus, and no corresponding 

transcriptional regulator is located near the xyn10B locus in the B. proteoclasticus 

genome. Therefore, the mechanism by which Xyn10B abundance is increased in the 

presence of xylan, as well at the identity of the inducer molecules remains to be 

elucidated.  

6.2.1.2 Xylosidase/arabinofuranosidase Xsa43J and glycoside hydrolase family 30 

GH30A 

The GH43 family includes -xylosidases, -L-arabinofuranosidases, and 

endoxylanases, and enzymes belonging to this family are necessary for the efficient 

degradation of hemicellulose (Sorensen et al., 2007). In particular, -L-

arabinofuranosidases are important for their ability to cleave arabinose side chains that 

participate in inter- and intra-polymer cross-linking within the plant cell wall (Grabber 

et al., 2000). The constitutively expressed xylosidase/arabinofuranosidase Xsa43J 

contains an N-terminal GH30 domain within the N-terminal region and a C-terminal 

GH43 catalytic domain, and in the CAZy database is classified in the GH30 family. 

Currently, the lack of homology of either GH domain to enzymes in the NCBI 

database with characterised functions makes it difficult to accurately predict the 

catalytic potential of this enzyme, and suggests Xsa43J possesses novel -xylosidase 

or -L-arabinofuranosidase activity in the rumen ecosystem. It is notable that the 

GH30 domain detected in the glycoside hydrolase family 30 Gh30A (Bpr_I2937), 

which is found two CDS downstream of Xsa43J, is most similar to the GH30 domain 

in Xsa43J.  

Xsa43J also contains multiple C-terminal Type-I CWBs, two Big4 (Bacterial Ig-

like domain-group 4) domains, and an uncharacterised sugar-binding domain 

suggesting that the enzyme may interact with insoluble polysaccharides in vivo. 

Xsa43J is one of three polysaccharidases encoded by the B. proteoclasticus genome 
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that is predicted to possess at least one Big4 module, which are present in a variety of 

secreted bacterial GH (Hung and Lee, 1998, Kataeva et al., 2004), but are relatively 

poorly characterised. A Big4 domain in the C. thermocellum CbhA may improve the 

stability of the neighbouring catalytic domain, and is vital to enzyme function as 

deletion of the domain completely abolished CbhA catalytic activity (Kataeva et al., 

2004). The combination of catalytic and binding domains detected in Xsa43J suggests 

that the enzyme may attack glucuronoxylan, but functional analysis of catalytic and 

non-catalytic modules of Xsa43J will be important in assessing the contribution of this 

enzyme to B. proteoclasticus mediated hemicellulose degradation. This will also assist 

in determining the functional role of the glycoside hydrolase family 30 Gh30A. 

6.2.1.3 Xylosidase/arabinofuranosidase Xsa43A 

The xylosidase/arabinofuranosidase, Xsa43A (Bpr_I0302) is a 57.5 kDa enzyme 

that contains an N-terminal secretory signal peptide, a central GH43 catalytic domain, 

and a C-terminal CBM6 domain. The GH43 of Xsa43A is 44% identical to that of the 

XynD secreted by Bacillus subtilis subsp. subtilis ATCC 6051 (Bourgois et al., 2007). 

Expression of recombinant XynD in E. coli produced an enzyme that was highly 

active upon wheat-bran arabinoxylooligosaccharides and intact arabinoxylan. The 

enzyme specifically hydrolysed (1→2)-α-linked and (1→3)-α-linked L-

arabinofuranosyl groups from xylooligosaccharides of varying lengths, and showed a 

strong preference for mono-substituted backbone residues.  

Xsa43A was one of only two identified polysaccharidases that contained a CBM6 

domain. The CBM6 family contains CBM modules that are approximately 120 

residues long, and different members of the family are capable of binding crystalline, 

and amorphous cellulose, as well as xylan. A CBM6 from Clostridium cellulolyticum 

(CcCBM6) recognised xylose either as a monosaccharide, at the non-reducing end of 

xylooligosaccharides, or within the side chain components of xyloglucan (Abbott et 

al., 2009), while several family 6 modules recognise (1→3)-β-D-linkages at the non-

reducing end of β-glucans (Correia et al., 2009, van Bueren et al., 2005). Furthermore, 

a CBM6 produced by Cellvibrio mixtus endoglucanase 5A showed a particularly 

diverse binding repertoire, in that it was capable of attachment to β-(1→3),(1→4)-

mixed linkage glucans and barley β-glucan, cello-oligosaccharides, crystalline 

cellulose, and xylooligosaccharides (Henshaw et al., 2004, Pires et al., 2004). The 

promiscuous substrate recognition may be explained by the presence of multiple 

binding sites within the secondary structure of some CBM6 domains. 
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Family 6 modules appear to have co-evolved with their associated catalytic 

domains to acquire the same substrate specificity (Michel et al., 2009). Xsa43A was 

not identified in the set of proteins that adsorbed to Avicel in vitro. Nonetheless, if the 

substrate preference and hydrolytic activity of the B. subtilis XynD homologue is 

reflected in the hydrolytic activity of the B. proteoclasticus Xsa43A, it is plausible that 

Xsa43A is secreted into the extracellular environment where it acts on intact or 

degraded arabinose containing xylans. It is possible that Xsa43A augments the activity 

of Xsa43J to hydrolyse α-linked L-arabinofuranosyl groups from the xylan backbone 

prior to xylooligosaccharide assimilation.  

6.2.1.4 Endo-1,4-β-xylanase and xylosidase Mxy10-43A, and endo-1,4-β-xylanase 

Xyn10C  

The two endoxylanases identified in the Avicel affinity assay but not by 2-DE were 

predicted to be functionally similar enzymes that may play an important role in 

extracellular GAX degradation. The functional domain arrangement of Xyn10C is 

replicated in the C-terminal region of Mxy10-43A. This similarity is supported by the 

fact that the closest BLASTp homologue to Xyn10C currently in the NCBI database is 

Mxy10-43A, which suggests that a prior gene duplication event may have occurred.  

The GH10 domain of both enzymes is similar to the catalytic domain in the 47 kDa 

GH10 B. fibrisolvens 49 XynA (76% identity). When expressed in E. coli JM83 XynA 

exhibited endoxylanase activity, but no arabinosidase, β-xylosidase or cellulase 

activity (Mannarelli et al., 1990), which is a hydrolytic pattern characteristic of true 

endoxylanases (Reilly, 1981). Based on this similarity and the apparent low abundance 

of Xyn10C and Mxy10-43A in the culture medium, it is plausible to expect that both 

enzymes augment the activity of the highly abundant Xyn10B by similarly attacking 

internal β-1,4 glycosidic linkages within the xylan backbone of hemicellulose.  

Mxy10-43A contains an additional N-terminal GH43 domain and two centrally 

located CBM6 domains that are not present in Xyn10C. The GH10/GH43 combination 

is unique within the Pfam database, suggesting that Mxy10-43A represents a newly 

identified enzyme within the rumen microbial ecosystem. The GH43 domain of 

Mxy10-43A is 45% identical to that found in the 64 kDa GH43 XynD produced by 

Paenibacillus polymyxa. Expression and purification of the xynD gene product in B. 

subtilis produced an enzyme that specifically hydrolysed α-(1→3) linkages between 

arabinose and xylose, and released only arabinose from oat-spelt and wheat flour 

xylans (Morales et al., 1995). The enzyme did not hydrolyse the backbone of 
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xylooligosaccharides. The purified XynD did not require the presence of additional 

xylan backbone degrading enzymes for maximal activity, but enhanced the ability of 

B. subtilis endoxylanases to attack the xylan backbone. 

This data supports the likelihood that Mxy10-43A possesses both endoxylanase and 

arabinosidase activity, and can attack xylose/arabinose side chain linkages as well at 

the backbone of xylooligosaccharide and xylan. The potential synergism between 

these domains may enhance Mxy10-43A fibrolytic potential. Studies have 

demonstrated up to 20-fold positive synergistic affects between endoxylanase and 

arabinofuranosidase activities (Greve et al., 1984, Lee and Forsberg, 1987), possibly 

due to a reduction of arabinose induced stearic hindrance (Brillouet, 1987).  

6.2.2 The possible role of secreted non-xylanolytic enzymes 

In addition to the five xylanolytic enzymes identified in the B. proteoclasticus 

culture medium, the presence of an endoglucanase, a pectin methylesterase, and a 

pectate lyase was also confirmed. B. proteoclasticus is incapable of growth on either 

cellulose or galacturonic acid in vitro (Attwood et al., 1996) therefore the secretion of 

these three non-xylanolytic polysaccharidases suggests they act synergistically with 

the xylanolytic enzymes to enhance the rate and extent of plant cell wall degradation 

(Yu et al., 2003).  

6.2.2.1 Endo-1,4-β-glucanase Cel5C, pectate lyase Pel1A, and pectin 

methylesterase Pme8B 

Extracellular degradation of cellulose requires the presence of endo-β-1,4-

glucanases and cellodextrinases that cleave internal and external (1→4)-β-D-

glycosidic linkages respectively, to produce soluble cellodextrins that can be 

assimilated and degraded to glucose. The full length sequence of Cel5C is 99% 

identical to that of the product of end1 expressed by B. fibrisolvens H17c(SA) (Berger 

et al., 1989), which is now classified as B. proteoclasticus (Moon et al., 2008). When 

cloned and expressed in E. coli End1 was active against several (1→4)-β-D-glycosidic 

linkage containing glucans, but did not hydrolyse (1→3)-β-D-linkages, and was not 

active upon synthetic cellobiose substrates (Berger et al., 1989). It was concluded that 

End1 was a true endoglucanase hydrolysing internal glycosidic bonds within cellulose. 

The presence of the endocellulase Cel5C in the B. proteoclasticus culture medium 

suggests that cells are capable of hydrolysing cellulose to cellotriose and longer 

cellodextrins, but the absence of extracellular cellodextrinases may prevent further 

degradation.  
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B. proteoclasticus cells grown in vitro are able to utilise glucose and cellobiose, but 

not cellulose or dextrin (Attwood et al., 1996). The outer parts of the cellulose 

microfibrils are often more amorphous than the core regions (O‟Sullivan, 1997), and it 

is possible that Cel5C targets these „weaker‟ regions but is unable to attack crystalline 

cellulose directly. Although one predicted extracellular -glucosidase (Bgl3A) was 

identified in the cytosolic compartments, this enzyme has a C-terminal TMD 

indicating that it has limited access to cellodextrins in the external environment and 

may be insufficient to liberate enough glucose to support rapid growth. Cel5C was the 

only member of PUL16 that was identified. PUL16 encodes two cytosolic 

polysaccharidases that are annotated as glycoside hydrolase family 2 Gh2F 

(Bpr_I1699) and glycoside hydrolase family 32 Gh32A (Bpr_I1704), as well as 

several ABC-transporter proteins. Functional analysis of these proteins may assist in 

determining the role of Cel5C in the degradation of forage material by B. 

proteoclasticus. 

Taken together, this data is consistent with the possibility that B. proteoclasticus 

cells lack the transport machinery necessary for the assimilation of cellotriose and 

longer cellodextrins, which supports the proposed synergistic role for Cel5C in 

lignocellulose degradation. Evidence for a possible synergistic role for Cel5C in 

hemicellulose degradation is provided by Murashima et al., (2003) who demonstrated 

that extent of corn cell wall degradation after 15 h incubation with a mixture 

containing xylanase and cellulase enzymes was 61% greater than the degradation 

achieved by xylanase alone. Furthermore, the quantity of both xylo- and 

cellooligosaccharides present after the incubation was significantly greater when 

xylanase and cellulase enzymes were present, which suggested that the activity of each 

enzyme complemented that of the other. That Cel5C is down-regulated during mid-log 

and stationary phase growth in the presence of xylan suggests that accumulation of 

xylan breakdown products in the culture medium may repress Cel5C abundance, 

although further analysis using additional substrates such as short chain 

xylooligosaccharides will be needed to elucidate how abundance of this enzyme is 

controlled.  

The presence of pectin in forage plant cell walls restricts the access of xylanases 

and cellulases to their substrates and hinders lignocellulose degradation (Benshalom, 

1986). Removal of esterified methyl groups from pectin by Pme8B is likely to increase 

the susceptibility of the pectin backbone to degradation by Pel1A, and improve the 
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activity of other polysaccharidases. Although Pel1A was not detected in the culture 

medium of xylan-grown cells during stationary phase, the low abundance in the 

culture medium of xylose-grown means we cannot discount the possibility that Pel1A 

is constitutively expressed. Similar abundance of PelA was observed in the 

supernatant of C. cellulovorans cells grown on a variety of plant polysaccharides 

suggesting that it was constitutively expressed (Han et al., 2004). 

6.2.2.1.1 Pullulanase Pul13A 

Pul13A is the only pullulanase encoded by the B. proteoclasticus genome, and was 

detected in significantly greater abundance in the cytosol of xylan grown cells at mid-

log phase growth. During mid-log phase Pul13A was detected in two spots located at 

approximately pI 4.2 and 100 kDa, which corresponded closely with the theoretical 

values for this enzyme. One of these spots was unique to the xylan growth condition. 

During stationary phase, the differentially abundant spot became undetectable in all 

three culture conditions, but a new spot approximately 5 kDa smaller became 

apparent, and was present in all three growth conditions at comparable abundance. The 

presence of xylan in the culture medium therefore appears to stimulate the up-

regulation of pullulanase Pul13A (Bpr_III161) during mid-log phase growth, but 

during stationary phase the enzyme may be constitutively expressed. 

The genomes of many Gram-positive, polysaccharilytic bacteria encode type I 

pullulanases (Ben Messaoud et al., 2002, Bertoldo et al., 2004, Doman-Pytka and 

Bardowski, 2004, Malle et al., 2006), and pullulanase activity has been detected in 

polysaccharilytic gut isolates including B. fibrisolvens 16/4 (Anderson, 1995, Ramsay 

et al., 2006). Nonetheless, Pul13A is the first pullulanase shown to be endogenously 

synthesised by a rumen bacterium. 

Pullulanases (EC 3.2.1.41) are enzymes capable of hydrolysing α-1,6 glycosidic 

linkages in polymers such as starch, pullulan, and other branched oligosaccharides. On 

the basis of substrate specificity and product profile, pullulanases are classified into 

two groups. Pullulanase type I enzymes (also called debranching enzymes) 

specifically hydrolyse α-1,6 glycosidic bonds in polymers such as amylopectin, and 

belong to the family 13 glycosyl hydrolases. Pullulanase type II enzymes (also called 

amylopullanases) hydrolyse both α-1,4 and α-1,6 linkages in α-glucans such as 

amylose, and fall mostly within the GH57 family. The action of type I and type II 

pullulanases on starch generates α-1,4 linked linear oligosaccharides, and sugars such 

as glucose, maltose, and maltotriose, respectively. Pul13A is 46% identical to a 
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pullulanase encoded by the recently sequenced Butyrivibrio crossotus DSM 2876 

genome, and 38% identical to several pullulanase type I enzymes produced Bacillus 

species. It is therefore likely that Pul13A specifically hydrolyses α-1,6 glycosidic 

linkages in glucooligosaccharides.  

Starch is the main component of the endosperm tissue within the seeds of flowing 

plants, and is an important energy storage polysaccharide and source of nutrition to the 

developing embryo during the early stages of plant development. Starch consists of 

approximately 25% amylose and 75% amylopectin, but these proportions vary 

depending on plant type. Amylose is a water soluble, linear polymer of α-1,4 linked D-

glucose units, while amylopectin is a highly branched polymer of α-1,4-D-glucose 

main chains with α-1,6 linked branch points occurring every 24 to 30 glucose residues. 

Starch is present in large amounts in many nutritionally important plants including 

wheat, maize, barley, sorghum, and oats, but is not a major component of primary or 

secondary plant cell walls. 

The relative abundance pattern of Pul13A is most likely explained by the presence 

of starch in the xylan supplemented culture medium. The oat-spelt xylan used in this 

project was selected because it was considered most similar to GAX that is likely to be 

present in ruminant forage crops. An unavoidable contaminant of the oat-spelt xylan is 

glucooligosaccharides that may be present in quantities as high as 15% of the dry 

mass. This possibility is supported by the induction pattern of Bacillus cereus FDTA-

13 pullulanase activity in response to growth on branched and linear polysaccharides 

(Nair et al., 2007). High pullulanase activity was detected only in medium containing 

branched polysaccharides, and medium containing soluble starch, maltodextrin, and 

amylopectin elicited particularly high enzyme titres. Pullulanase activity was low in 

the culture medium containing glucose or amylose, and was not detected in the 

absence of carbon source, which indicated that pullulanase activity was inducible and 

responsive to the presence of α-1,6 linkage containing branched polysaccharides only.  

6.2.2.1.2 α-Amylase Amy13A 

The N-terminal portion of B. proteoclasticus Amy13A, spanning residues 1-975 

contains the GH13 catalytic domains and is 99% homologous to the full length 

sequence of the α-amylase AmyA synthesised by B. fibrisolvens H17c(SA) (Rumbak 

et al., 1991), now B. proteoclasticus (Moon et al., 2008). Furthermore, this N-terminal 

portion is also 50% and 45% identical to predicted α-amylases encoded within the 

recently sequenced genomes of B. fibrisolvens 16/4 and B. crossotus. When the 



 

215 

C
h
a
p
ter 1

 In
tro

d
u
ctio

n
 

B. fibrisolvens H17c(SA) amy13A was cloned and expressed in E. coli C600, a 107 

kDa enzyme exhibiting α-amylolytic activity was synthesised (Rumbak et al., 1991). 

Regardless of whether the B. fibrisolvens amy13A transfected cells were grown in the 

presence of maltose, glucose, or starch, almost 90% of the α-amylolytic activity was 

associated with the periplasm, with the remainder distributed evenly between the 

cytosol and secreted sub-cellular compartments. The amylolytic activity had a pH 

optimum of 6.8, and was stable between pH 5.5 and 7.5. The optimum temperature for 

enzyme activity was 50ºC, although above 45ºC the enzyme became unstable and was 

completely inactivated at 52ºC. In all conditions examined the α-amylolytic was 

dependent on the presence of CaCl2 in both the growth medium and assay buffers.  

When crude enzyme extracts harvested from B. fibrisolvens amy13A transfected 

E. coli cells were incubated with maltohexose, the major degradation product detected 

was maltotriose, suggesting that the enzyme was an endoamylase (Rumbak et al., 

1991). This hypothesis was confirmed by analysis of starch, amylose, and amylopectin 

degradation, where the initial hydrolysis product was maltotriose, with small amounts 

of maltose (G2) and maltotetraose (G4). After 24 h incubation only a portion of the 

maltotriose was degraded to maltose and glucose. Furthermore, no activity was 

detected against maltose when provided as a substrate. The enzyme appeared unable to 

hydrolyse branched chain maltooligosaccharides, suggesting it was not active upon α-

1,6 branch points, which is a characteristic of endoamylases. 

6.2.3 Extracellular proteins may be localised to the external cell surface in vivo 

Fibrolytic rumen bacteria such as R. flavefaciens and R. albus, and several non-

rumen fibrolytic Clostridial species incorporate many of their secreted glycosyl 

hydrolases into a cell wall associated multienzyme complex termed the cellulosome 

(Bayer et al., 1985, Doi and Tamaru, 2001, Kim et al., 2001, Rincon et al., 2003). 

B. proteoclasticus secreted enzymes lack the scaffoldin/cohesin domains that are 

necessary for cellulosome assembly (Carvalho et al., 2007, Park et al., 2001, Rincon et 

al., 2003), and the set of identified secreted polysaccharides appear to use several 

approaches to tether extracellular enzymes to the cell wall. A feature of Amy13A, 

Pel1A, Pme8B, Xsa43J, and Xyn10B is the presence of multiple CWBD1 domains at 

their C-termini (Kelly et al., 2010). Cell wall binding (CWB) domains are found in 

many extracellular GH where they tether the enzyme to the external surface of the 

bacterial cell wall and are important for polysaccharide degradation (Brechtel et al., 

1999, Burchhardt et al., 1994, Fuchs et al., 2003, Matuschek et al., 1994, Matuschek 
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et al., 1996, May et al., 2006, Sahm et al., 1996). Attachment is via a covalent linkage 

to choline residues of cell wall associated teichuronic acids, or non-covalent 

interaction with pyruvylated cell wall polymers (Mesnage et al., 2000). It is likely that 

the five secreted B. proteoclasticus polysaccharidases are non-covalently attached to 

the external surface of the cell wall in vivo. An additional five predicted secreted 

proteins that also contained CWBD1 domains were identified, which implies that 

CWBD1 modules play an important role in the attachment of secreted proteins to the 

external cell surface of B. proteoclasticus. The presence of these enzymes in the 

culture media may be explained by the activity of extracellular proteases, as 

demonstrated in a number of Bacillus strains (Antelmann et al., 2001, Voigt et al., 

2006), or the ionic composition of the culture medium (Yother and White, 1994).  

6.2.4 Carbohydrate-binding module containing proteins, cellulose adsorption, 

and substrate adherence 

An intriguing feature of the set of identified secreted proteins was the presence of 

the two carbohydrate-binding proteins encoded by the B. proteoclasticus genome 

sequence (products of loci Bpr_I0736 and Bpr_I1599). Both proteins contained 

tandem CBM2a domains that were homologous to those present in the secreted 

B. proteoclasticus endocellulase Cel5C. Furthermore, the gene product of locus 

Bpr_I1599 also contained tandem CBM6 domains (PF03422) located towards the N-

terminus. Neither protein contained an identifiable cell wall binding domain, 

suggesting they are released into the extracellular space rather than being retained on 

the external cell surface, and do not therefore mediate bacterial cell attachment to plant 

polysaccharides. CBMs are known to possess additional non-hydrolytic functions such 

as polysaccharide disruption and surface modification. The CBM2 of the C. fimi 

endoglucanase A was shown to disrupt the structure of cellulose fibres, causing the 

release of small cellulosic particles (Din et al., 1991). The secretion of both 

carbohydrate-binding proteins at equivalent levels by cells grown in the presence of 

xylan and xylose suggests they play a non-hydrolytic role in fibre-degradation and 

may target non-hemicellulosic substrates such as crystalline or amorphous cellulose. It 

is possible that the secreted carbohydrate-binding proteins also act synergistically with 

the secreted polysaccharide-degrading enzymes. Molecular and biochemical 

examination of each of these secreted proteins will be important in understanding their 

roles in vivo, and their relative contributions to the overall process of plant cell wall 

degradation by B. proteoclasticus  



 

217 

C
h
a
p
ter 1

 In
tro

d
u
ctio

n
 

Most of the identified extracellular polysaccharidases and both the secreted non-

catalytic carbohydrate-binding proteins contained one or more carbohydrate binding 

modules. CBMs are well characterised domains that target the associated catalytic 

domain or domains to specific regions of the polysaccharide, which dramatically 

increases enzyme concentration at the site of activity, and improves enzyme substrate 

interaction and catalysis (Black et al., 1996, Bolam et al., 1998). Cellulose adsorption 

assays have been used to examine the substrate specificity and to affinity purify CBM 

containing polysaccharidases from the culture medium of fibrolytic bacteria (Devillard 

et al., 2004, Han et al., 2004, Shoseyov and Doi, 1990),  

Adsorption to Avicel (crystalline cellulose) was used in this project to examine the 

binding potential of B. proteoclasticus proteins present in the growth medium of xylan 

grown, stationary phase harvested cells. Fourteen well resolved 1-DE bands could be 

detected after the Avicel adsorption assay, 10 of which were identified and found to be 

a mixture of four secreted polysaccharidases, one carbohydrate binding protein, and 

several ABC transporter SBPs. The 1-DE separation of extracellular proteins that 

adsorbed to crystalline cellulose showed that Xyn10C was detected in one band at 

approximately 105 kDa, which is similar to the predicted size of the full length 

enzyme, and in a second band of approximately 100 kDa. The peptide sequence 

coverage data indicated the lower size band may have been due to an N-terminal 

truncation. Mxy10-43A was present in one band of approximately 75 kDa that was 

likely to be a C-terminal fragment. The full-length Xyn10C and the C-terminal 

fragment of Mxy10-43A had estimated pI values of 5.5 and 4.9 respectively, which 

together with their observed sizes suggest that they resolve to a region of the 2-DE 

separation that contained few detectable proteins. Therefore, the most likely 

explanation for the fact that neither polysaccharidase was detected in the 2-DE 

separations of proteins harvested from culture medium of xylan grown cells is that the 

abundance was below the limit of detection by colloidal CBB G-250 staining.  

A feature common to three of the four polysaccharidases and the carbohydrate 

binding protein was the presence of at least one CBM2a module. The dissimilar 

enzyme was the CBM9 containing Xyn10B. The CBM2 family is currently the largest 

within the CAZy Database and is subdivided in families 2a and 2b on the basis of 

primary sequence within the substrate-binding region (Tomme et al., 1995). An 

important functional difference between families 2a and 2b is that family 2a CBMs 

bind cellulose, irrespective of the type of enzyme from which they originate, while 
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family 2b CBMs bind xylan. Intriguingly, no CBM2b containing polysaccharidases 

were identified in the B. proteoclasticus genome. The family 2a CBM found within 

the Cellulomonas fimi Xyn10A had a high affinity for crystalline cellulose, but also 

bound to amorphous regions of the polymer (McLean et al., 2000), while the CBM2a 

module of the C. fimi CenA was recently shown to adsorb to crystalline cellulose (Jing 

et al., 2009), using a methodology similar to that used in this project.  

CBM9 domains such as the one present in Xyn10B are found only in xylanases, 

and some possess promiscuous substrate specificity. For instance, the CBM9-2 domain 

in the Thermotoga maritima Xyn10A was able to bind to crystalline and amorphous 

cellulose, xylan, and a range of soluble cello- and xylooligomers (Boraston et al., 

2001). A unique property of the CBM9 modules is their ability to bind specifically to 

the non-reducing ends of cellulose and soluble polysaccharides (Boraston et al., 2001). 

The CBM9 domain in E. ruminantium XynA that is homologous to the 

B. proteoclasticus Xyn10B domain adsorbed to acid swollen cellulose, and to a lesser 

degree xylan (Taguchi et al., 2004b). 

The discovery that several secreted B. proteoclasticus polysaccharidases and one 

carbohydrate binding module are able to absorb specifically to Avicel in vitro is in 

agreement with the previously reported substrate specificities of their associated 

CBMs and implies that they primarily target cellulose containing polymers in vivo. 

Biochemical characterisation of their precise substrate specificities will be essential to 

defining the contribution of each of these enzymes to the fibre degrading system of 

B. proteoclasticus. 

6.2.4.1 Cell adherence to plant polysaccharides  

Adherence to plant material is crucial for efficient degradation of plant cell wall 

polysaccharides (Jindou et al., 2006, Jun et al., 2007, Miron et al., 1998, Mosoni and 

Gaillard-Martinie, 2001), and the fibre adherent bacteria account for approximately 

90% of rumen cellulase and xylanase activity (Akin, 1980, Craig et al., 1987, Minato 

et al., 1993). With the exception of Xyn10B, (Bpr_I0026), a feature of the set of 

polysaccharidases and carbohydrate binding proteins that adsorbed to Avicel was that 

none of the remaining enzymes contain cell wall binding domains and would therefore 

not be expected to be tethered to the external cell surface. In contrast, the four 

polysaccharidases identified by 2-DE that contained no CBMs, and therefore did not 

bind to Avicel in vitro, all possessed multiple cell wall binding domains located at 

their C-termini. This CBM/CWB domain mutual exclusivity implies that none of these 
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extracellular polysaccharidases play a role in bacterial cell attachment to insoluble 

polysaccharides in vivo.  

The B. proteoclasticus genome sequence indicates that the cell has several potential 

mechanism for adhering to plant cell walls, which include flagella, pili, cell surface 

proteins, and exopolysaccharides (Kelly et al., 2010). One of four cell surface proteins 

containing Listeria/Bacteroides repeats (TIGRfam accession number TIGR02543) that 

are encoded in the B. proteoclasticus genome was identified in the culture medium of 

stationary phase harvested xylan and xylose grown cells (Bpr_I2508), and many 

proteins involved in exopolysaccharide synthesis were also identified. Therefore it is 

possible that B. proteoclasticus may use a variety of cell surface proteins as well as 

exopolysaccharide as a means of cell attachment to polysaccharide, although further 

analysis is required as no conclusions can be made based on the proteomic data alone.  

6.2.5 Proteolytic enzymes in the B. proteoclasticus proteome 

B. proteoclasticus was originally isolated from a screen for proteolytic rumen 

bacteria (Attwood and Reilly, 1995), and the cells were found to possess high cell-

associated serine-type proteolytic activity (Attwood et al., 1996). In this project the 

secreted subtilisin family serine protease (Bpr_I2629) was detected in several 

abundant protein spots in culture medium and cytosol, and was the only secreted 

enzyme of the type identified. The protease was one of the most abundant proteins 

detected in the secreted fraction under all growth conditions. It is possible that this 

protein accounted for the proteolytic activity documented in the original study 

(Attwood et al., 1996). Furthermore, in the mid-log phase harvested B. proteoclasticus 

cytosolic fraction, the serine protease was the most strongly up-regulated protein in the 

proteome of xylan grown cells, although this pattern was not reflected in the cytosol of 

stationary phase harvested cells, or in the secreted fraction.  

Despite the 153 kDa subtilisin family serine protease (Bpr_I2629) not being 

directly involved in forage degradation and fermentation, reports suggest that bacterial 

extracellular proteases may play an auxiliary role in plant polysaccharide degradation 

in the rumen (Colombatto and Beauchemin, 2008, Eun and Beauchemin, 2005). 

Treatment of ruminant feed with a commercially prepared protease mixture resulted in 

a significantly increased in vivo fibre digestibility, and concomitant elevation in rumen 

xylanase and endoglucanase activities (Eun and Beauchemin, 2005). Biochemical 

characterisation demonstrated that it was a subtilisin-like serine protease that 

accelerated the rumen fluid induced disappearance of alfalfa hay hemicellulose 



 

220 

(Colombatto and Beauchemin, 2008), but had negligible fibrolytic activity. Cell wall 

structural proteins are implicated in mediating polysaccharide/lignin cross-links 

(Showalter, 1993) and it was hypothesised that cell wall proteolysis allowed rumen 

fibrolytic microbes better access to plant polysaccharides. It is possible that the 

secreted B. proteoclasticus serine protease may play a similar role, targeting cell wall 

structural proteins and acting synergistically with the secreted polysaccharidases to 

enhance the rate and extent of polysaccharide degradation in vivo. Examination of the 

effect of the serine protease on plant fibre, in isolation or in combination with other 

B. proteoclasticus fibrolytic enzymes will be important in understanding the role of 

the 153 kDa subtilisin family serine protease in the extracellular environment. 

6.3 A proteomic view of sugar assimilation and cytosolic degradation 

by B. proteoclasticus 

6.3.1 Polysaccharide utilisation loci  

PULs such as the Sus PUL of the human gut bacterium B. thetaiotaomicron 

(Bjursell et al., 2006, Martens et al., 2009a, Reeves et al., 1997) are co-ordinately 

regulated cell envelope systems that typically comprise polysaccharide degrading 

enzymes and cell associated transmembrane transporter proteins, often together with 

signal transducers, transcriptional regulators, and auxiliary proteins necessary for 

polysaccharide utilisation. PULs have been identified in several Gram-positive (Berg 

Miller et al., 2009) and Gram-negative bacteria. In B. thetaiotaomicron a subset of the 

88 putative PULs were shown to be transcriptionally regulated in response to the 

presence of gut mucin O- and N-glycans (Bjursell et al., 2006, Reeves et al., 1997). 

Almost half the genes in the B. proteoclasticus genome that encode lignocellulose 

degrading enzymes, and many of the sugar specific ABC transporter associated 

proteins are clustered within one of 36 PULs. In complex microbial ecosystems such 

as the rumen where microbes are exposed to a dynamic and diverse range of poly- and 

oligosaccharides, such genetic arrangement presumably allows the rapid and 

coordinated control of enzyme production, substrate transport and intracellular 

metabolism (Kelly et al., 2010).  

The set of 416 proteins identified in the secreted, cell-associated, or cytosolic 

B. proteoclasticus proteomes contained 51 proteins (12% of the identified proteome) 

that were predicted to be components of a polysaccharide utilisation locus. 

Furthermore, proteomic analysis of the B. proteoclasticus membrane fraction 

performed by Dr. Judy Bond confirmed the presence of 10 additional PUL proteins, 
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nine of which were not detected in this project. Collectively, these 60 proteins were 

components of 24 of the 36 B. proteoclasticus PULs (Table 6.3). Despite the fact that 

none of the 36 PULs were fully represented in the complete B. proteoclasticus 

proteomic dataset, the proportion of PULs containing at least one identified protein 

together with the prevalence of differentially abundant polysaccharidases and transport 

proteins strongly supports the notion that PULs are an important component of the 

fibre degradation and assimilation system of B. proteoclasticus. 

The 17 polysaccharidases within the set of PUL proteins represented 13 different 

GH families, and also included the acetyl-xylan esterase unmatched to a CAZy family. 

Notably, only one of the 20 sugar specific ABC transporter proteins identified in 

B. proteoclasticus proteome (Bpr_I1667) was not a predicted PUL component. Of the 

set of 46 differentially abundant proteins detected in all subcellular fractions at either 

mid-log or stationary phase, 17 were PUL components that were associated with 13 of 

the 36 PULs. Of the 17 differentially abundant PUL proteins, 12 were more abundant 

in the cytosol of cells grown in the presence of xylan, relative to either of the alternate 

growth substrates. These results are similar to those obtained from transcriptional 

analysis of mucosal glucan usage by B. thetaiotaomicron (Martens et al., 2008), where 

it was found that 44% of all differentially regulated genes were PUL components, and 

these were distributed across 43 of the 88 PULs. It is possible that the differences in 

PUL protein response between the B. thetaiotaomicron study and this project are in 

part due to the transcript versus proteomic profiling, together with the undoubted 

chemical complexity and heterogeneity of gut mucins relative to oat-spelt xylan.  
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Table 6.3. Predicted polysaccharide utilisation proteins identified in the 
B. proteoclasticus proteome.

a
 

PUL Protein Locus Function
b Size

c
 

2 Sugar ABC transporter substrate-binding protein Bpr_I0117 T 5 

3 

Xylulokinase, XylB 

Acetyl-xylan esterase 

-D-Glucuronidase, Agu67A 

Sugar ABC transporter permease protein 

Sugar ABC transporter substrate-binding protein 

-Xylosidase, Xyl3A 

L-Fucose isomerase related protein 

Hypothetical protein 

UTP-glucose-1-phosphate uridylyltransferase, GalU 

UDP-galactose 4-epimerase, GalE 

Bpr_I0173 

Bpr_I0174 

Bpr_I0177 

Bpr_I0180 

Bpr_I0182 

Bpr_I0184 

Bpr_I0185 

Bpr_I0188 

Bpr_I0191 

Bpr_I0192 

C 

C 

C 

T 

T 

C 

C 

H 

C 

C 

23 

4 Sugar ABC transporter substrate-binding protein Bpr_I0237 T 6 

5 

Xylosidase/arabinofuranosidase and esterase, 
Xsa43H 

Xylosidase/arabinofuranosidase, Xsa43A 

Sugar ABC transporter substrate-binding proteind 

NHL repeat-containing proteind 

Hypothetical proteind 

Sugar ABC transporter substrate-binding protein 

Bpr_I0301 
 

Bpr_I0302 

Bpr_I0305 

Bpr_I0308 

Bpr_I0310 

Bpr_I0313 

C 
 

C 

T 

U 

H 

T 

15 

7 -Glucosidase, Bgl3A Bpr_I0693 C 16 

9 

5-Keto 4-deoxyuronate isomerase, KduI 

2-Deoxy-D-gluconate 3-dehydrogenase, KduD 

2-Keto-3-deoxygluconate 6-phosphate aldolase/2-

keto-4-hydroxyglutarate aldolase 

2-Dehydro-3-deoxygluconokinase, KdgK 

Sugar ABC transporter substrate-binding protein 

Bpr_I0929 

Bpr_I0930 

Bpr_I0931 

 

Bpr_I0932 

Bpr_I0937 

C 

C 

C 

 

C 

T 

10 

10 Endo-1,4-β-xylanase and esterase, Xyn10D Bpr_I1083 C 4 

11 

Xylose ABC transporter substrate-binding 

protein 

Xylose ABC transporter ATP-binding protein 

Bpr_I1173 

 

Bpr_I1174 

T 

 

T 

8 

12 
Two-component system response regulatord 

Chemotaxis protein CheWd 

Bpr_I1234 

Bpr_I1237 

S 

B 
6 

14 

Sugar ABC transporter substrate-binding protein 

Glucuronate isomerase, UxaC 

Cellodextrinase, Cel9B 

Bpr_I1589 

Bpr_I1591 

Bpr_I1593 

T 

C 

C 

13 

15 -L-Rhamnosidase, Rha78A Bpr_I1686 C 11 

16 Endo-1,4-β-glucanase, Cel5C Bpr_I1710 C 12 

17 Sugar ABC transporter substrate-binding protein Bpr_I1720 T 5 

19 Aldose 1-epimerase family protein Bpr_I1782 C 7 

Table continues    
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PUL Protein Locus Function
b Size

c
 

21 
-Galactosidase, Bga35B 

Sugar ABC transporter substrate-binding protein 

Bpr_I2006 

Bpr_I2010 

C 

T 
8 

22 

Transcriptional regulator DeoR familyd 

1-Phosphofructokinase, PfkB 

PTS system IIABC fructose-specific family 

PTS system HPr phosphocarrier 

PTS system I PEP-phosphotransferase 

Bpr_I2102 

Bpr_I2103 

Bpr_I2104 

Bpr_I2105 

Bpr_I2106 

R 

C 

T 

T 

T 

12 

23 

Sugar ABC transporter substrate-binding proteind 

Methyl-accepting chemotaxis protein McpLd 

Glycogen phosphorylase GlgP1d 

Bpr_I2116 

Bpr_I2117 

Bpr_I2118 

T 

B 

C 

7 

24 Sugar ABC transporter substrate-binding protein Bpr_I2264 T 6 

25 Sugar ABC transporter substrate-binding protein Bpr_I2344 T 6 

26 

Sugar ABC transporter substrate-binding protein 

Sugar ABC transporter permease protein 

Cellobiose phosphorylase, Cbp94A 

Bpr_I2443 

Bpr_I2444 

Bpr_I2447 

T 

T 

C 

5 

29 Feruloyl esterase, Est1E Bpr_I2870 C 4 

31 

Xylosidase/arabinofuranosidase, Xsa43J 

Glycoside hydrolase family 30, Gh30A 

Oxidoreductase aldo/keto reductase family 

Acetyl-xylan esterase Est2A 

Bpr_I2935 

Bpr_I2937 

Bpr_I2938 

Bpr_I2939 

C 

C 

U 

C 

5 

34 -Galactosidase, Bga2B Bpr_III209 C 5 

36 

-Mannosidase, Man2A 

HTH domain-containing protein 

Sugar ABC transporter substrate-binding protein 

Bpr_III237 

Bpr_III238 

Bpr_III244 

C 

R 

T 

14 

 
a Bold text denotes enzymes that were more abundant in cells grown on xylan, relative to those grown 

on xylose or no added carbon.  
b B, Cellular processes; C, Carbohydrate metabolism; H, Hypothetical; R, Regulation; S, Signal 

transduction; T, Transporters; U, Unknown function. 
c The number of genes predicted to contribute to the PUL. 
d Tabulated data includes proteins identified in the B. proteoclasticus membrane proteome analysis 

performed by Dr. Judy Bond. 

6.3.2 Polysaccharide utilisation locus 3 

When B. proteoclasticus is grown in xylan containing culture medium, the 

hydrolytic activity of the secreted GH10 endoxylanase Xyn10B is expected to liberate 

variable length xylooligomers that may be substituted with (1→2)-α-linked and 

(1→3)-α-linked L-arabinofuranosyl groups (Vietor et al., 1992), O-acetyl, and (1→2)-

α-D-glucuronic acid or 4-O-methyl-D-glucuronic acid groups (Borneman et al., 1990, 

Hartley et al., 1990b, Mueller-Harvey et al., 1986). The α-L-arabinofuranosyl side 

groups may also be esterified at the O-2 and/or O-5 positions with phenolic polymers 
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such as ferulic acid (Kulkarni et al., 1999). Subsequent assimilation and utilisation of 

the substituted oligosaccharides requires the expression of genes encoding 

transporters, α-D-glucuronidase, and enzymes that convert xylooligosaccharides to 

xylose. PUL 3 appears to harbour most of the metabolic machinery necessary to affect 

the extensive degradation and subsequent utilisation of substituted oligosaccharides 

(Figure 6.4). PUL3 comprises three identified polysaccharidases, two ABC transporter 

system proteins, and the first two key xylose metabolism genes (L-fucose isomerase 

and XylB) (Kelly et al., 2010), together with an unidentified α-D-glucuronidase 

(Gh115A), feruloyl esterase (Est1C), several AraC transcriptional regulators.  

 

Figure 6.4. Organisation of the B. proteoclasticus PUL 3. Arrow size indicates the 

relative length of each protein. Filled and empty arrows indicate identified and 

unidentified proteins respectively. 2-hd, 2-hydroxyacid dehydrogenase; Hypo, 

hypothetical protein; perm., permease; SBP, substrate-binding protein; TCS, Two-

component system; TP, transposase; TR/AraC, transcriptional regulator AraC family.  

6.3.2.1 -xylosidase Xyl3A  

During stationary phase, C1120 was 4.3-fold more abundant in xylan grown cells 

relative to cells grown in the no added carbon condition. Furthermore, a 6.1-fold 

abundance increase was detected cells grown in xylan relative to xylose, although at a 

5% FDR this increase was only marginally above the level of statistical significance (q 

= 0.63). The MALDI-TOF MS data indicated that spot C1120 contained the -

galactosidase Bga35A (Bpr_I2006) and the -xylosidase Xyl3A (Bpr_I0184). The two 

proteins have very similar sizes and pI values, and the likelihood that the dual protein 

identification was a false positive result was 1.9e-27. Taking the 2-DE protein 

abundance data alone, it is not possible to conclude whether one or both enzymes 

contributed to the differential abundance pattern.  
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1-D LC-MS/MS analysis of the cytosolic fraction showed that the differential 

abundance pattern of spot C1120 was most likely due to a difference in relative 

amounts of -xylosidase Xyl3A. Xyl3A was identified with high statistical 

probability, a large number of matched peptides, and high protein sequence coverage 

in all three biological replicate fractions extracted from mid-log phase harvested xylan 

grown cells (Table 5.9). Furthermore, when proteins identified in the xylan grown 

cytosolic fraction were ranked according to relative protein abundance, Xyl3A was 

within the top 15% most abundant proteins. In contrast, Xyl3A was not detected in any 

replicate fraction harvested from xylose grown cells. The -galactosidase Bga35A was 

undetected in both cytosolic fractions by 1-DE LC-MS/MS. Taking the 2-DE and LC-

MS/MS datasets together, it is likely that the relative abundance of -xylosidase 

Xyl3A was modulated by growth substrate, and positively regulated by the presence of 

xylan in the extracellular environment. This conclusion is supported by the results of 

the B. proteoclasticus microarray analysis that detected a >10-fold up-regulation of 

xyl3A during growth on xylan (Kong, 2007). 

Xyl3A comprises two non-homologous GH3 functional domains located towards 

the N- (residues 30-273, pfam00933) and C-termini (residues 340-579, pfam01915) of 

the 709 amino acid long, full-length protein, and is between 54% and 63% identical to 

several GH family 3 domain-containing enzymes expressed by Firmicute phylum. 

Despite the fact that the GH3 family is one of the largest in the CAZy database 

(currently greater than 2000 entries) none of close homologues of Xyl3A have been 

examined experimentally. The strongest homologue for which there is biochemical 

and molecular biology data is the β-xylosidase B (Bxl3B) produced by Clostridium 

stercorarium NCIMB 11754 (Q8GJ42_CLOSR, 53% identical and 71% similar across 

the full-length protein sequence) (Adelsberger et al., 2004). Bxl3B is a 715 amino acid 

long enzyme that has a predicted pI and size of 5.38 and 79.3 kDa respectively, which 

are similar to the corresponding values of B. proteoclasticus Xyl3A (pI 4.8 and 78.2 

kDa). Bxl3B encodes a predicted cytosolic enzyme that contains a single GH3 

catalytic module spanning residues 2-715. Recombinant Bxl3B was expressed in 

E. coli and isolated from the cell lysate as an 80 kDa band that had an activity towards 

pNP-β-xyloside
1
 of 440 U.mg

-1
(Adelsberger et al., 2004). At an optimal temperature 

of 50-55°C and an optimal pH of 6.0, Bxl3B rapidly and completely hydrolysed 

                                                

 
1 pNP-β-xyloside is a synthetic, chromogenic, p-Nitrophenol conjugated oligoxyloside used to assay for 

β-xylosidase activity in vitro, by measurement of liberated p-Nitrophenol.  
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xylobiose, and released xylose from the non-reducing end of xylotriose. The enzyme 

liberated only small amounts of xylose from pNP-α-arabinofuranoside, and did not 

hydrolyse xylose from intact arabinoxylan, or arabinose substituted 

xylooligosaccharides. Furthermore, Bxl3B showed very low or no detectable activity 

towards substrates such as pNP-β-glucoside, pNP-α-mannoside, 

carboxymethylcellulose, and barley β-glucan. This data suggests that the 

B. proteoclasticus Xyl3A may act exclusively on the non-reducing ends of short chain 

xylooligosaccharides.  

The differential abundance pattern of protein spot C1120, containing 

B. proteoclasticus Xyl3A, after growth on xylan and xylose is similar to the induction 

pattern observed for C. stercorarium Bxl3B (Adelsberger et al., 2004) and several 

other Gram-positive and Gram-negative bacteria. Compared to xylose grown cultures, 

a 2.3-fold increase in the transcription of the C. stercorarium bxl3B was detected in 

cells grown in arabinoxylan, which was accompanied by a concomitant 2.2-fold 

increase in cytosolic C. stercorarium-xylosidase activity (Adelsberger et al., 2004). 

The transcription of all other C. stercorarium-xylosidase genes assayed was 

unchanged between xylan and xylose grown cells, indicating the enhanced cytosolic -

xylosidase activity was likely due to an increased abundance of Bxl3B. In addition, 

relative to xylose grown cells, a two-fold-reduction in cytosolic -xylosidase activity 

was observed when C. stercorarium cells were grown in glucose containing medium, 

which suggests bxl3B was subject to glucose repression. Consequently, Bxl3B was 

proposed to play a direct role in arabinoxylan hydrolysis by the degradation of 

xylooligosaccharides. Cytosolic -xylosidase activity in several other Gram-positive 

xylanolytic bacteria including Thermoanaerobacterium saccharolyticum and Bacillus 

stearothermophilus has also been shown to be stimulated by growth on xylan or long-

chain xylo-oligosaccharides (Cho and Choi, 1998, Lee et al., 1993). Furthermore, the 

-xylosidase gene xynB of the Gram-negative P. bryantii, together with its cytosolic 

transcription product are positively regulated in the presence of medium to large 

xylooligosaccharides (Miyazaki et al., 2003, Miyazaki et al., 2005).  

6.3.2.2 α-D-Glucuronidase Agu67A  

The α-D-glucuronidase, Agu67A (Bpr_I0177) is a 76.1 kDa enzyme containing a 

C-terminal GH67 domain, and was identified with very high statistical confidence in 

the B. proteoclasticus cytosol using 2-DE and 1-D LC-MS/MS techniques. α-D-
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Glucuronidases (EC 3.2.1.139) cleave the α-1,2-glycosidic linkage between 4-O-

methyl-D-glucuronic acid and the xylan backbone, and are necessary for the complete 

degradation of hemicelluloses such as GAX. Currently, the structural and functional 

properties of nine bacterial GH67 enzymes have been examined, including the AguA 

enzymes produced by Geobacillus stearothermophilus T-1 (Golan et al., 2004, 

Shallom et al., 2004) and Paenibacillus sp strain JDR-2, which are 51% and 56% 

identical to the B. proteoclasticus α-D-glucuronidase respectively. The Geobacillus 

stearothermophilus T-1 AguA released 4-O-methyl-D-glucuronic acid from synthetic 

4-O-methyl-D-glucuronoyl oligosaccharides, and was distinctive in that it possessed a 

homodimeric organisation that was 240-fold more active than a monomeric mutant 

counterpart (Shallom et al., 2004). Subtle conformation changes within the substrate-

binding region induced by dimer formation were predicted to account for the marked 

difference in catalytic activity. In the 2-DE separations of cytosolic proteins Agu67A 

was detected at a size that corresponded with the monomeric form of the enzyme, 

which may have been due to the reducing conditions used in the analysis. Non-

reducing 2-DE in conjunction with enzyme activity assays may assist in determining 

whether Agu67A exists as a dimer in vivo.  

The Paenibacillus sp strain JDR-2 homologue of the B. proteoclasticus Agu67A is 

a 77.8 kDa enzyme encoded as part of an eight component aldouronate utilization gene 

cluster that also encodes a cytosolic GH10 endoxylanase, a GH43 β-xylosidase/α-

arabinofuranosidase, and several ABC transporter components and signal transduction 

regulatory proteins (Chow et al., 2007). The gene cluster operates as a regulon, and 

expression of these genes as well as a downstream, cell-associated GH10 

endoxylanase is induced by growth on methylglucouronoxylan, and repressed by 

glucose. When expressed in E. coli the Paenibacillus enzyme hydrolysed the α-1,2-

glycosidic bond between the 4-O-methylglucuronic acid residues and the xylan 

backbone in methyglucuronoxylan (Nong et al., 2005). Paenibacillus AguA contains 

the highly conserved catalytic aspartate and glutamate residues characteristic of GH67 

α-D-glucuronidases, which are homologues of Asp355 and Glu383 in the 

B. proteoclasticus. Taken together, this data provides good evidence that the 

B. proteoclasticus Agu67A is likely to remove 4-O-methylglucuronic acid residues 

from the backbone of assimilated methyglucuronoxylooligosaccharides.  
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6.3.3 Polysaccharide utilisation locus 5 

PUL5 is a 15 component gene cluster that encodes a GH5 endoglucanase/xylanase 

Cel5A (Bpr_I0299), a GH10 endoxylanase (Bpr_I0304), and the GH43 

xylosidase/arabinofuranosidase Xsa43A (Bpr_I0302), all of which are secreted 

enzymes (Figure 6.5). A second GH43 xylosidase/arabinofuranosidase Xsa43H 

(Bpr_I0301) is clustered in PUL5 and is localised to the cytosol (Kelly et al., 2010). 

Both GH43 xylosidase/arabinofuranosidases were identified in the B. proteoclasticus 

cytosol, although the secreted Xsa43A could not be detected at either time point in the 

B. proteoclasticus culture medium. The low relative abundance of Xsa43A in the 

cytosol might explain why the detection of the secreted form was not possible by 2-

DE. An ABC transporter protein SBP belonging to PUL5 was also present in the B. 

proteoclasticus proteome, which together with the identification of three additional 

PUL5 proteins in the membrane proteome analysis (Dr. Judy Bond, personal 

communication) made PUL5 the second most prevalent PUL in the B. proteoclasticus 

proteome.  

 

Figure 6.5. Organisation of the B. proteoclasticus PUL 5. Arrow size indicates the 

relative length of each protein. Filled and empty arrows indicate identified and 

unidentified proteins respectively. AraC, transcriptional regulator AraC family; AT, 

acetyltransferase GNAT family; Con. hypo, conserved hypothetical protein; NHL, 

NHL repeat-containing protein; perm., permease; SBP, substrate-binding protein. 

6.3.3.1 Xylosidase/arabinofuranosidase Xsa43H  

Xsa43H (Bpr_I0301) is encoded by the gene found immediately upstream of the 

extracellular Xsa43A, and is a 107.9 kDa cytosolic protein that contains an N-terminal 

family 10 carbohydrate esterase domain in association with a C-terminal GH43 

domain. The enzyme was identified by 1-D LC-MS/MS only, where seven distinct 

peptides were matched to 3.1% of the full-length protein sequence. The C-terminal, 

GH43 domain of Xsa43H was at least 65% identical to several Roseburia and 
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Clostridium species. A C. stercorarium homologue (XylA) was particularly interesting 

in that at an optimal pH of 7.0 it exhibited xylosidase and arabinofuranosidase activity 

apparently within a single GH43 domain (Sakka et al., 1993). XylA was incapable of 

degrading xylan, which was in keeping with the cytosolic location and predicted role 

in the degradation of arabinofuranosyl xylooligosaccharides, and contrasts with the 

predicted activity of the B. proteoclasticus Xsa43A. If the B. proteoclasticus Xsa43H 

GH43 domain has similar catalytic activity to that of C. stercorarium XylA, it is 

possible that in the cytosol Xsa43H acts synergistically with the PUL3 associated 

Xyl3A to affect the removal of arabinofuranose substituents from assimilated 

xylooligosaccharides, prior to subsequent hydrolysis of the xylooligomers to 

monomeric xylose.  

The N-terminal CE10 domain of Xsa43H is one of two CE10 domains present in 

polysaccharidases detected in the B. proteoclasticus cytosol, the other being the 

endoxylanase and esterase Xyn10D (Bpr_I1083). Examination of the BLASTp 

homologues of the Xsa43H CE10 domain provides few clues to the specific function 

of this domain. Nonetheless, no identifiable BLASTp homologue within the NCBI 

database possessed a similar domain arrangement, which implies that Xsa43H might 

be a novel enzyme that possesses unique catalytic activity within the rumen 

microbiome, and a good candidate for further biochemical and biophysical analysis. 

6.3.4 Polysaccharide utilisation locus 10 

PUL10 is a small cluster of genes that contains the α-glucuronidase Gh115B 

(Bpr_I1081), the endo-1,4-β-xylanase and esterase Xyn10D (Bpr_I1083), and the 

pectin methylesterase Pme8A (Bpr_I1084), all of which are predicted cytosolic 

enzymes (Figure 6.6). In addition, PUL10 contains a single secreted hypothetical 

protein (Bpr_I1082). The locus does not appear to encode any other proteins, and only 

the endo-1,4-β-xylanase and esterase Xyn10D was identified in the B. proteoclasticus 

proteome. 

 

Figure 6.6. Organisation of the B. proteoclasticus PUL 10. Arrow size indicates the 

relative length of each protein. Filled and empty arrows indicate identified and 

unidentified proteins respectively. Hypo, hypothetical protein.  

PUL10
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6.3.4.1 Endo-1,4-β-xylanase and esterase Xyn10D  

The endo-1,4-β-xylanase and esterase, Xyn10D (Bpr_I1083) is a 79.7 kDa 

cytosolic enzyme that was one of eight polysaccharide degrading enzymes identified 

by 1-D LC-MS/MS only. The relative abundance of the enzyme was not influenced by 

the growth conditions used in this project. Xyn10D contains an N-terminal GH10 

catalytic domain, and a C-terminal CE10 domain, and the full-length protein is 97% 

identical to the 73 kDa product of the xynB gene found in B. fibrisolvens H17c(SA), 

now B. proteoclasticus (Lin and Thomson, 1991a, Moon et al., 2008). When the 

B. fibrisolvens xynB gene was expressed in E. coli up to 94% of the detected 

endoxylanase activity was retained in the cytosol, which is in agreement with the 

predicted subcellular location of the B. proteoclasticus Xyn10D. It was concluded that 

the B. fibrisolvens Xyn10D was able to cleave the backbone of xylooligomers close to 

sites of arabinose substitution. These substitutions can block cleavage of the xylan 

backbone by other endoxylanases, which makes Xyn10D a key enzyme for the 

cytosolic degradation of high arabinose content hemicelluloses commonly found in 

forage material. Lin and Thomson (1991a) found no evidence for the presence of the 

CE10 domain in xynB, which might be explained by the fact that the cloned enzyme is 

missing a portion of the C-terminus that is present in the predicted B. proteoclasticus 

enzyme (635 vs. 692 amino acids respectively). The homology of B. proteoclasticus 

Xyn10D to other bacterial polysaccharide degrading enzymes is considerably lower 

than to the B. fibrisolvens xynB gene product. As a result, information describing the 

possible catalytic function of the CE10 domain in B. proteoclasticus is not available. 

The CE10 classification within the CAZy database contains an assortment of catalytic 

activities, including several that are active upon non-carbohydrate substrates. 

Bifunctional polysaccharide degrading enzymes can act synergistically upon 

hemicellulose derived substrates (Levasseur et al., 2005), therefore if the catalytic 

activity of the B. proteoclasticus Xyn10D is similar to that of the B. fibrisolvens 

homologue, Xyn10D may play an important role in the cytosolic degradation of 

internalised esterified xylooligomers, and is an excellent candidate for future 

biochemical and biophysical characterisation. Furthermore, no single enzyme in the 

CAZy database contains catalytic domains homologous those found in the 

B. proteoclasticus Xyn10D, which implies that the GH10/CE10 is a novel catalytic 

combination.  
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6.3.5 Polysaccharide utilisation locus 29 

In grasses, dimerisation of ferulic acid residues attached to arabinosyl side chains 

extensively cross-link neighbouring hemicellulose backbone chains (Harris and 

Hartley, 1976); (Ralph et al., 1994), and arabinoxylan-bound ferulic acids may also 

form ester-lignin bonds with surrounding lignin (Jacquet et al., 1995, Scalbert et al., 

1985). Collectively these covalent cross-links create a formidable structural barrier to 

degradation of the lignocellulose in the rumen, and are a determining factor in the 

degradability of high fibre forage material, by restricting the accessibility of 

polysaccharide degrading enzymes to their substrate. Polysaccharidases that target 

these linkages act synergistically with xylanases to hydrolyse the hemicellulose 

component of forage material (Hashimoto and Nakata, 2003), and are likely to be 

particularly important targets for improving microbial mediated rumen forage 

digestion. PUL 29 (Figure 6.7) is a four-component gene cluster that encodes a single 

feruloyl esterase that is predicted to target feruloyated xylooligosaccharides.  

 

Figure 6.7. Organisation of the B. proteoclasticus PUL 29. Arrow size indicates the 

relative length of each protein. Filled and empty arrows indicate identified and 

unidentified proteins respectively. ATP, ATPase; RR, response regulator; TCS, Two-

component system.  

6.3.5.1 Feruloyl esterase Est1E  

The feruloyl esterase Est1E (Bpr_I2870) is a 27.8 kDa cytosolic enzyme that was 

detected at equivalent abundance in the cytosol of B. proteoclasticus cells grown in 

xylan, xylose, and unsupplemented culture medium. Although Est1E is one of four 

feruloyl esterases encoded by the B. proteoclasticus genome (two cytosolic and two 

secreted), it was the only enzyme of its type identified in this study. Est1E is also the 

only polysaccharidase clustered in PUL29, which suggests that PUL29 may mediate 

the degradation and assimilation of feruloyl xylooligosaccharides. The structure of 

Est1E was recently determined to 1.6 Å resolution in the apo- and ligand-bound forms 

(Goldstone et al., 2010) and was the first B. proteoclasticus polysaccharidase to be 

structurally characterised. A lid domain within the active site that is novel within the 

PDB database was discovered, which indicated a dynamic mechanism for substrate-
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binding and release. When incubated with esterified synthetic substrates or purified 

rye-grass hemicellulose, Est1E released ferulic and p-coumaric acids. Furthermore, a 

variety of ester linkages were hydrolysed and phenolic compounds released when 

Est1E was incubated with birch-wood xylan, suggesting that the enzyme has wide 

substrate specificity. Est1E is 64% identical to CinI produced by B. fibrisolvens E14 

which also released ferulic acid from wheat bran extracted ferulated arabinofuranose 

(Dalrymple et al., 1996). 

Information describing the induction patterns and the nature of inducer molecules 

of bacterial feruloyl esterases is limited. Examination of the Gram-positive soil 

bacterium Streptomyces avermitilis has demonstrated that feruloyl esterase production 

is induced by the presence of oat-spelt xylan in the culture medium (Garcia et al., 

1998). The expression of a second B. fibrisolvens E14 esterase gene that is similar to 

CinI is also induced by the presence of intact hemicelluloses but not hemicellulose 

derived simple sugars (Dalrymple and Swadling, 1997). In view of the fact that Est1E 

was present at equivalent abundance in the cytosol of cells grown in all three 

conditions, oat-spelt xylan or its degradation products do not appear to be an inducer 

molecule for B. proteoclasticus Est1E. Previous reports analysed the expression and 

synthesis of secreted feruloyl esterases, whereas the B. proteoclasticus Est1E is 

predicted to be a cytosolic enzyme. Est1E is the only polysaccharidase component of 

PUL29, which also contains an unidentified ABC transporter ATP-binding protein 

(Bpr_I2869) and two two-component system regulatory proteins (Bpr_I2867 and 

Bpr_I2868). Additional experiments will be needed to identify the nature of the 

inducer molecules. Nonetheless, identification of feruloyl esterase Est1E in the 

B. proteoclasticus cytosol, together with the novel structure and wide substrate 

specificity implies that it is an important contributor to hemicellulose degradation by 

B. proteoclasticus.  

6.3.6 ABC transporter mediated uptake of xylooligosaccharides  

The tally and differential abundance patterns of the ABC transporter substrate-

binding proteins (SBPs) detected in the B. proteoclasticus proteome signifies the 

importance that SBP dependent ATP-driven active transport of oligo- and 

monosaccharides plays in B. proteoclasticus growth. In Gram-positive bacteria, SBPs 

are often lipoproteins that are tethered to the external surface of the cell wall or fused 

directly to the membrane transporter (Davidson et al., 2008, van der Heide and 

Poolman, 2002). Lipoproteins in B. subtilis are translocated by the general secretory 
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(Sec) pathway proteins, lipid modified by the diacylglycerol transferase Lgt, and 

cleaved by the type II signal peptidase LspA (Leskela et al., 1999). Homologues of 

each of these proteins are encoded by the B. proteoclasticus genome (Kelly et al., 

2010). 

The proportion of SBPs identified in this study is comparable to that identified in 

proteomic analyses of other highly fibrolytic Gram-positive bacteria such as Bacillus 

licheniformis and B. subtilis (Bunai et al., 2004, Voigt et al., 2006). Furthermore, the 

abundance of many of these proteins is regulated depending on the growth substrate 

encountered, which is likely to provide an advantage within the complex rumen 

microbial ecosystem allowing B. proteoclasticus to efficiently utilise the products of 

its polysaccharide-degrading activity. Within the secreted, cell-associated and 

cytosolic fractions, 14 sugar specific ABC transporter SBPs were identified, 11 of 

which were differentially abundant between the xylan and xylose, or xylan and no 

added carbon growth conditions.  

The common feature of the nine SBPs that were more abundant in the xylan growth 

condition was the presence of a Carbohydrate Uptake Transporter 1 (CUT1) family 

substrate-binding domain. The CUT1 family comprises a large and diverse collection 

of SBP-dependent ABC transporter systems that are dominated by those that mediate 

the uptake of di- and oligosaccharides. The maltose/maltodextrin transporter of E. coli 

represents the paradigm for CUT1 family and ABC transporters in general (Boos and 

Shuman, 1998). Substrate recognition is mediated primarily by the high-affinity 

maltose/maltodextrin SBP MalE, which contains two opposing lobes that move 

towards each other and trap the substrate in the binding pocket. Interaction with the 

membrane spanning domains triggers ATP-hydrolysis and substrate translocation. The 

expression of all components of the maltose/maltodextrin transport system of E. coli is 

controlled by the positive transcriptional regulator MalT, which is activated by the 

presence of maltotriose (Dardonville and Raibaud, 1990). The aldouronate transporter 

(LplABC) of Paenibacillus sp strain JDR-2 (Chow et al., 2007) is also a CUT1 family 

member, and is part of the aldouronate utilization gene cluster that contains the 

homologue of the B. proteoclasticus polysaccharidase Agu67A. The Paenibacillus 

gene cluster is strongly induced by methylglucouronoxylan, only weakly by xylose, 

and is repressed by glucose (Chow et al., 2007). It appears likely that the B 

proteoclasticus CUT1 family SBP-dependent ABC transporters are sensitive to 
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extracellular oligosaccharides in a manner that is similar to the well characterised 

members of the CUT1 family.  

The 2-DE protein abundance pattern of the SBP product of the PUL3 gene 

Bpr_I0182 implies that this SBP might play a particularly important role in the 

assimilation of GAX derived oligosaccharides, which supports the hypothesis that 

PUL3 is an integral component of the fibre degrading enzyme system of B. 

proteoclasticus. The 63.5 kDa ABC transporter substrate-binding protein was the only 

protein of its type identified in PUL3 (Kelly et al., 2010), and was the most abundant 

protein detected in both the mid-log and stationary phase harvested xylan-grown 

culture medium. In both the culture medium and cytosol, the SBP was at least 5-fold 

more abundant in xylan grown cells relative to those grown on xylose, at both mid-log 

and stationary phase. This differential abundance pattern was the largest consistent 

abundance change among the SBPs identified in the B. proteoclasticus proteome. 

Furthermore, the product of Bpr_I0182 was detected with high probability by 1-D LC-

MS/MS as the 11
th
 most abundant protein in the cytosol of xylan grown cells. The 

protein was detected at very low relative abundance in the cytosol of xylose grown 

cells, and in less biological replicates that necessary to permit reliable statistical 

analysis of the relative abundance change. Nonetheless, this data supports that 

obtained by 2-DE. The substrate-binding protein was 63% identical to the recently 

released sequence of the B fibrisolvens 16/4 ABC transporter system SBP (gi 

291518643) and 34% identical to several family 1 extracellular solute binding protein 

(SPBbac1, Pfam 01547) secreted by Geobacillus and Paenibacillus species.  

6.3.6.1 Polysaccharide utilisation locus 11 

Using proteomics in isolation it is not possible to predict with certainty the 

substrate specificity of the differentially abundant SBPs. Although many show a 

moderate to high identity with SBPs produced by other Gram-positive bacteria, very 

few of the homologues have been experimentally characterised. Structural and 

biochemical examination of the differentially abundant SBPs, as well as the chemical 

nature of the inducing molecules will be necessary in determining the precise role and 

importance of these proteins in affecting the assimilation of xylooligosaccharides by 

B. proteoclasticus. 

PUL11 is a small gene cluster that contains three sugar specific substrate-binding 

proteins, ATP binding and permease proteins, a pair of two-component signal 

transduction proteins, and an EAL-domain containing protein (Figure 6.8) (Kelly et 
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al., 2010). PUL 11 contains no identifiable polysaccharide degrading proteins and no 

regulatory proteins. The fact that the identified SBP and ATP-binding protein are both 

significantly more abundant in cells growth on xylose relative to xylan suggests a role 

for PUL11 in the uptake of xylose monomers from the extracellular environment.  

 

Figure 6.8. Organisation of the B. proteoclasticus PUL 11. Arrows indicate the 

length of each protein. Filled and empty arrows indicate identified and unidentified 

proteins respectively. AraC, transcriptional regulator AraC family; ATP, ATPase; 

EAL, EAL domain-containing protein; perm, permease; SBP, substrate-binding 

protein; TCS, Two-component system.  

The xylose ABC transporter SBP (Bpr_I1173) and the xylose ABC transporter 

ATP-binding protein (Bpr_I1174) were the only components of PUL11 identified. The 

xylose ABC transporter SBP was identified as being between 3.3-fold and 4.8-fold 

more abundant in the secreted and cytosolic compartments of xylose grown cells 

respectively. The ATP-binding protein was detected uniquely in the cytosol of xylose 

grown cells by 1-D LC/MS, which indicated that when xylose is actively utilised by 

the bacterium the Bpr_I1174 product is present in the cytosol at low concentration.  

In addition to being 80% identical to a putative solute-binding component of ABC 

transporter synthesised by Clostridium phytofermentans ISDg, the B. proteoclasticus 

xylose ABC transporter SBP (Bpr_I1173) was 68% identical to the recently sequenced 

B. fibrisolvens and Ruminococcus sp CUT2 family substrate-binding proteins 

(GenBank CBK73023 and CBL20170.1 respectively), and the B. proteoclasticus ATP-

binding protein (Bpr_I1174) is 63% identical to ATP-binding proteins encoded by the 

same organisms. Taken together this data implies that the B. proteoclasticus PUL11 

SBP and ATP-binding proteins form part of a CUT2 family ABC transporter system 

that is specific for xylose assimilation. The CUT2 family is a large collection of 

microbial ABC transporter systems that almost exclusively assimilate 

monosaccharides (Schneider, 2001). The ribose and galactose transporters of E. coli 

and S. typhimurium respectively are the most well characterised CUT2 family 

members, and the E. coli and Thermoanaerobacter ethanolicus high-affinity transport 
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systems that are essential for xylose uptake also fall within the CUT2 family. The xylF 

genes encoding the D-xylose binding proteins found in the xylose uptake systems of 

the E. coli and T. ethanolicus systems were induced (up to 70-fold in E. coli K-12) by 

the presence of D-xylose in the culture medium (Erbeznik et al., 1998, Song and Park, 

1997).  

Bpr_I0117 is a component of PUL2 and was one of only two PUL associated SBPs 

encoded by the B. proteoclasticus genome that did not contain a Type-II secretory 

signal peptide and lipobox motif, suggesting that it is not tethered to the external cell 

surface in vivo. PUL2 is a small gene cluster that includes an uncharacterised 

xylosidase enzyme. Together this data suggests that PUL2 may be functionally distinct 

from the majority of other 35 PULs encoded by the B. proteoclasticus genome.  

6.4 Non-PUL polysaccharidases and their role in hemicellulose 

degradation 

At least two polysaccharide degrading enzymes synthesised by B. proteoclasticus 

that are not part of a detectable PUL are either homologous to well characterised 

bacterial enzymes, or contain GH domains, that provide evidence that they are likely 

to be important contributors to hemicellulose degradation in the rumen. 

6.4.1 α-L-Arabinofuranosidase Arf51A  

The α-L-arabinofuranosidase, Arf51A (Bpr_I0329) is a 57 kDa cytosolic enzyme 

that contains a C-terminal GH51 catalytic domain and is likely to play a key role in the 

removal of arabinofuranose side chains from internalised substituted 

xylooligosaccharides that have not been hydrolysed by extracellular arabinosidases 

such as Mxy10-43A and Xsa43A. The enzyme is at least 60% identical to α-L-

arabinofuranosidases produced by several Firmicute species including ArfB of 

C. stercorarium and ArfA of C. cellulovorans (Kosugi et al., 2002, Schwarz et al., 

1995, Zverlov et al., 1998), and is 57% identical to the recently characterised Abf2 of 

B. subtilis (Inacio et al., 2008). All three Arf51A homologues preferentially 

hydrolysed arabinose containing polysaccharides such as wheat arabinoxylan over 

other hemicellulosic substrates. The catalytic activity of the C. stercorarium ArfB was 

distinctive in that it was highly specific for the hydrolysis of non-reducing α-L-

arabinosyl residues and was restricted to the furanose form of arabinose (as opposed to 

the pyranose form) such as that present in arabinoxylan and GAX (Schwarz et al., 

1995). Arabinofuranose liberation from intact hemicellulose could be achieved prior to 
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hydrolysis of the main xylan backbone, and produced linear (1→4)--D-

xylooligosaccharides that could then be degraded further by the action of 

endoxylanases. Moreover, the presence of arabinofuranose side-chains in 

hemicellulosic substrates blocked the activity of C. stercorarium endoxylanases, and 

complete hemicellulose degradation could only be achieved by the subsequent 

addition of ArfB (Schwarz et al., 1995).  

The B subtilis Abf2 displayed a less fastidious substrate specificity than that of the 

C. stercorarium arabinofuranosidase, but assay of wheat hemicellulose hydrolysis 

products indicated Abf2 preferentially attacked (1→2)-α- and (1→3)-α-linked L-

arabinofuranosyl units (Inacio et al., 2008). The expression of Abf2 was responsive to 

the presence of both arabinose and arabinan in a temporal manner with a peak during 

early post-exponential phase (Raposo et al., 2004).  

B subtilis expresses a second cytosolic GH51 α-L-arabinofuranosidase (AbfA) that 

has similar physicochemical properties to the B. subtilis Abf2, but is only 23% 

identical and has a catalytic preference for (1→5)-linkages in linear α-(1→5)-L 

arabinan and α-(1→5)-linked arabinoxylooligomers over the (1→2)-α- or (1→3)-α-

linkages in arabinoxylan (Inacio et al., 2008). The catalytic disparity between the two 

enzymes suggests B. subtilis is equipped to accomplish optimal utilisation of arabinose 

containing polysaccharides such as arabinooligomers and glucuronoarabinoxylan. 

BLASTp searches of the B. proteoclasticus genome verified that the B subtilis AbfA 

was 60% identical to the only other cytosolic GH51 arabinofuranosidase Arf51B, 

which is located at Bpr_I0017. Arf51B has very similar pI, size, and solubility 

characteristics to Arf51A, but was not identified in this project. Nonetheless, Arf51B 

was identified with high statistical probability in a 1-DE LC-MS/MS analysis of the 

B. proteoclasticus membrane proteome (Dr. Judy Bond, personal communication). It 

appears therefore that B. proteoclasticus may utilise a similar cytosolic 

arabinofuranosidase enzyme system to that of B. subtilis, employing two catalytically 

divergent α-L-arabinofuranosidases to hydrolyse the variety of α-linkages found in 

arabinose containing hemicelluloses. It is likely that B. proteoclasticus makes a 

significant contribution to the conversion of α-L-arabinosyl containing hemicelluloses 

to utilisable energy in the rumen.  

6.4.2 Xylosidase/arabinofuranosidase Xsa43E  

The 35.3 kDa product of the Xsa43E gene (Bpr_I2319) was identified in a single 

spot in the 2-DE separation of protein extracted from mid-log phase harvested cells 
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grown in the presence of xylan. The enzyme could not be detected in any other mi-log 

phase harvested growth condition, and it could not be detected in any growth condition 

during stationary phase. Xsa43E contained a single GH43 catalytic domain that 

spanned 92% of the full length protein sequence (residues 13-300), and was 65% and 

58% identical to catalytic domains of GH43 family enzymes produced by Clostridium 

thermocellum ATCC 27405 (YP_001038591) and Clostridium acetobutylicum ATCC 

824 (NP_149278) respectively. Both homologues, as well as several more distantly 

related enzymes, were predicted to be secreted proteins that also contained CBM6 

domains within their C-terminal regions. No domains corresponding to these regions 

were detected in the B. proteoclasticus Xsa43E protein sequence. Furthermore, none 

of the close BLASTp homologues of Xsa43E have been experimentally examined. It 

is therefore not possible to determine the specific activity or substrates of Xsa43E. The 

GH43 domain of Xsa43E is no greater than 33% identical to the GH43 domains in the 

identified B. proteoclasticus Xsa43A, Xsa43J, or Xsa43H enzymes. This observation 

implies that the substrate specificity might be different to any of these enzymes, and as 

a whole this set of β-xylosidases may be capable of hydrolysing glycosidic linkages at 

varied positions along the xylan backbone and between substituent groups. 

Biochemical examination of Xsa43E will be a necessary and important step in 

advancing the understanding of hemicellulose degradation by B. proteoclasticus. 

Xsa43E has been cloned and expressed, and is currently undergoing structural analysis 

(Dr. W. J. Kelly, personal communication). 

6.5 Additional enzymes identified in the B. proteoclasticus proteome 

The presence of a variety of other hemicellulosic and non-hemicellulosic enzymes 

in the B. proteoclasticus proteome when cells are grown in xylan containing culture 

medium implies that they also make an important contribution to lignocellulose 

degradation. Xyloglucan is a hemicellulose that is present at low levels in the primary 

cell walls of plants used as forage crops, but is prevalent in the primary cell wall of 

many dicotyledonous plants. The xyloglucan backbone consists of a repeating pattern 

of four (1→4)-β-D-glucose monomers that are substituted with (1→6)-α-xylopyranose 

residues. In Type-I cell walls the xylose residues are often substituted further with 

(1→2)-α-D-galactose and (1→2)-α-L-fucose monomers. Mannan based xylans, 

including glucomannan (a heteropolymer of D-glucose and D-mannose) and 

galactoglucomannan (a heteropolymer of D-galactose, D-glucose, and D-mannose) 
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comprise up to 10% of Type-I cell walls. Mixed linkage glucans can comprise up to 

30% of the primary cell wall of Type-II plants depending on the developmental stage 

of the plant. Examples of several of the types of enzymes necessary for the 

degradation of these polysaccharides are present in the B. proteoclasticus proteome, 

including the β-mannosidase Man2A (Bpr_III237), and two α-galactosidases, Aga27A 

(Bpr_I0205) and Aga36C (Bpr_III065). The predicted secreted β-glucosidase Bgl3A 

(Bpr_I0693) and the two cytosolic β-glucosidases Bgl3B (Bpr_I0847) and Bgl3C 

(Bpr_I0138), were all detected in the cytosol. Bgl3C is homologous to a B. 

fibrisolvens H17c(SA), now B. proteoclasticus (Moon et al., 2008), β-glucosidase that 

degrades cellooligosaccharides to glucose (Lin et al., 1990). The B. proteoclasticus 

Bgl3C may therefore perform the same function upon cellooligosaccharides 

transported across the bacterial cell wall. In at least one case, β-glucosidases have been 

shown to be important for the hydrolysis of rice bran derived hemicellulose (Harada et 

al., 2005), The collection of B. proteoclasticus β-glucosidases may therefore act in a 

similar manner upon the main chains of both xyloglucans and mixed linkage glucans. 

Several pectin degrading enzymes, including the α-amylase Amy13G and the α-L-

rhamnosidase Rha78A were detected in the B. proteoclasticus cytosol, which implies 

that pectin degradation products may be utilised by B. proteoclasticus, consistent with 

the presence of the pectate lyase and pectin methylesterase enzymes in the culture 

medium. None of these cytosolic enzymes were differentially abundant in B. 

proteoclasticus cells grown in the presence of xylan, xylose, or unsupplemented 

culture medium, suggesting that they are not transcriptionally or post-transcriptionally 

responsive to these growth substrates. The presence of this diverse set of enzymes 

implies that B. proteoclasticus is capable of degrading the majority of hemicellulosic 

and non-hemicellulosic polymers encountered in the rumen, and together with the 

previously determined substrate utilisation profiles (Attwood et al., 1996) implies that 

a variety of catabolic pathways might be active in B. proteoclasticus cells grown in 

vitro. 

6.6 A proteomic view of B. proteoclasticus central metabolism 

6.6.1 Central metabolism 

Within the B. proteoclasticus proteome, components of the catabolic pathways 

necessary for the utilisation of D-arabinose, L-fucose, D-fructose, D-galactose, D-

glucose, L-rhamnose, and D-xylose were all identified, as were pathways for the 

catabolism of galacturonates and glucuronates (Figure 6.9). The first two reactions in 
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the conversion of D-xylose to xylulose 5-phosphate are catalysed by xylose isomerase 

and xylulokinase respectively. The B. proteoclasticus genome encodes at least three 

proteins that may possess xylose isomerase activity, and following the reconstruction 

of the xylose and xyloside utilisation pathways in 24 Firmicute genomes (Gu et al., 

2010) it is predicted that the product of the PUL3 clustered Bpr_I0185 is the most 

likely candidate (Dr. W. J. Kelly, personal communication). The product of Bpr_I0185 

was identified in the cytosol of xylan and xylose grown B. proteoclasticus cells at 

equivalent abundance at mid-log and stationary phase. The B. proteoclasticus genome 

encodes a single xylulokinase, XylB (Bpr_I0173) that is also a PUL3 component, 

which is consistent with the fact in Firmicutes xylulokinase encoding genes are 

frequently clustered with other enzymes involved in xyloside utilisation (Gu et al., 

2010). XylB was 4.2-fold more abundant in the cytosol of xylan grown cells during 

stationary phase, which is consistent with the increased abundance of several other 

PUL3 proteins in the B. proteoclasticus proteome. In C. acetobutylicum the specific 

activity of xylulokinase may be a rate limiting step in xylose utilisation (Gu et al.). If 

this is the case for B. proteoclasticus, then co-regulation of the xylB gene and other 

cytosolic xylooligosaccharide utilisation enzymes such as the β-xylosidase Xyl3A and 

α-D-glucuronidase Agu67A may maximise growth and fermentation when xylan is 

present in the external environment. Taken together, this data supports the hypothesis 

that PUL3 is an important for xylan degradation and utilisation by B. proteoclasticus.  

Galacturonate and glucuronate catabolism proceeds via the common intermediate 

2-keto-3-dexygluconate (KDG), which is ultimately converted to 2-keto-3-

deoxygluconate phosphate (KDGP) by the activity of 2-dehydro-3-

deoxygluconokinase. KDGP is then converted to pyruvate and glyceraldehyde-3-

phosphate (GAP) by 2-keto-3-deoxygluconate 6-phosphate aldolase. The metabolic 

footprint of B. proteoclasticus grown on xylan, pectin and glucose (Villas-Boas et al., 

2006) supports the possibility that galacturonates and glucuronates released by xylan 

and pectin degradation are rapidly consumed by B. proteoclasticus, and are a major 

source of pyruvate for central metabolism. This hypothesis is consistent with the 

presence of at least five pectin degrading enzymes in the B. proteoclasticus proteome. 

The proteomic data obtained in this project supports this argument, and is strengthened 

by the fact that all except one of the genes involved in glucuronate metabolism are 

clustered in PULs and are likely to be coordinated with other gene products involved 

in polysaccharide breakdown (Kelly et al., 2010).  
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A feature of the genome sequence is the apparent absence of a gene coding for 

enolase (phosphopyruvate hydratase, EC4.2.1.11), which is normally a well conserved 

enzyme that converts 2-phosphoglycerate to phosphoenolpyruvate in the penultimate 

step of the Embden-Meyerhof pathway (Kelly et al., 2010). At least one example of all 

other types of enzymes required for the glycolytic conversion of glucose to pyruvate 

was identified in the B. proteoclasticus proteome. Potential alternatives to the 

Embden-Meyerhof pathway are the Entner-Doudoroff pathway and the methylglyoxal 

shunt. The Entner-Doudoroff pathway is common in Gram-negative bacteria, but very 

few Gram-positive bacteria utilise the pathway, and the B. proteoclasticus genome 

sequence suggests that the Entner-Doudoroff pathway is not utilised (Kelly et al., 

2010). The methylglyoxal shunt has been proposed as a strategy allowing rumen 

bacteria to dispose of excess carbohydrate and decrease ATP production (Russell, 

1998). The conversion of dihydroxyacetone phosphate (DHAP) to pyruvate proceeds 

via methylglyoxal and D-lactate (Cooper, 1984), and enzymes catalysing each step in 

the pathway are encoded in the B. proteoclasticus genome. None of the components of 

the methylglyoxal shunt were identified in this proteomic analysis which makes it 

difficult to speculate how B. proteoclasticus achieves the conversion of 

monosaccharides such as D-glucose and L-rhamnose to phosphoenolpyruvate.  



 

 

 2
4
2
 

 

Figure 6.9. A proteomic view of B. proteoclasticus central metabolism. Identified proteins, and proteins with increased and decreased abundance 

in xylan grown cells relative to xylose are shown in green, red, and blue respectively. Figure adapted from Kelly et al. (2010).  
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6.6.2 Butyrate synthesis by B. proteoclasticus  

The main end-products of the fermentative metabolism of B. proteoclasticus are 

butyrate and formate, as well as low amounts of acetate and propionate (Attwood et 

al., 1996). Butyrate synthesis is achieved by the conversion of acetyl-CoA to butyryl-

CoA via four sequential reactions, which are catalysed by thiolase, β-hydroxybutyryl-

CoA dehydrogenase (BHBD), crotonase, and butyryl-CoA dehydrogenase (BCD) 

respectively (Miller and Jenesel, 1979). Butyrivibrio species that use butyrate kinase to 

catalyse the conversion of butyryl-CoA to butyrate in the final stage of butyrate 

synthesis pathway (Type I producers) produce more butyrate than species using an 

alternate pathway (Type II producers), and are important contributors to the ruminant 

energy supply (Shane et al., 1969). For this reason, Type I butyrate producers are 

considered potential targets for the positive manipulation of butyrate production in the 

rumen of forage fed animals (Asanuma et al., 2003, Asanuma et al., 2005). 

Phylogenetically, B. proteoclasticus clusters with a group of closely related 

Butyrivibrio strains that are without exception positive for the butyrate kinase gene 

(Paillard et al., 2007a). All components of the butyrate synthesis pathway, including 

the butyrate kinase (Bpr_I2323), were identified in the B. proteoclasticus proteome 

regardless of growth substrate. The substrates tested did not cause detectable changes 

in the abundance of any members of the pathway. Consequently, the butyrate pathway 

of B. proteoclasticus appears be constitutively active in cells that are growing in 

variable external environments, and may be a convenient potential target for the 

positive manipulation of short-chain volatile fatty acid synthesis and supply to the 

ruminant. These results supports the likelihood that B. proteoclasticus makes an 

important contribution to ruminant energy supply. 

6.7 Features of the complete identified protein dataset 

6.7.1 The B. proteoclasticus acidic proteome signature  

The predicted B. proteoclasticus proteome ranges from pI 3.2 to 13.4, and 3.4 kDa 

to 656 kDa (Kelly et al., 2010). The theoretical 2-DE map of the B. proteoclasticus 

proteome showed a bimodal pI distribution and a moderate acidic skew, with 73% of 

the proteins predicted to have a pI value below 7. The 2-DE examination of the 

secreted and cytosolic proteomes supported the theoretical predictions. In particular, 

the majority of B. proteoclasticus secreted proteins were strongly acidic. Knight et al. 

(2004) revealed a correlation between microbial protein pI distribution and ecological 

niche. Strongly acidic pI distributions have been observed in the secreted and whole 
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cell 2-DE patterns of gastrointestinal (Lee et al., 2008, Sanchez et al., 2008) and non-

polysaccharide-degrading rumen bacteria (Lee et al., 2006). The B. proteoclasticus pI 

distribution raises the possibility that the gastrointestinal environment may exert a 

selective pressure for acidic secreted proteins. An acidic pI is likely to ensure efficient 

protein function even during periods of rumen acidosis, which are especially common 

when fermentation rates are elevated (Ash and Dobson, 1963).  

6.7.2 The importance of a multiplex approach for improved proteome coverage 

2-DE analysis of the B. proteoclasticus cytosolic proteome produced a protein 

dataset containing 223 non-redundant entries, which included 48 proteins involved in 

polysaccharide degradation and assimilation. Augmenting the 2-DE analysis with a 

gel-free 1-D LC-MS/MS examination improved the depth of coverage by more than 

75%, and added significantly to the total number of identified polysaccharidases and 

proteins involved in polysaccharide assimilation. Notably, five of the eight 

polysaccharidases identified only by 1-D LC-MS/MS were predicted to be involved in 

hemicellulose degradation. The 1-D LC-MS/MS analysis also made an important 

contribution in terms of the number of ABC transporter associated proteins mediating 

soluble carbohydrate assimilation, and non-GH proteins involved in carbohydrate 

metabolism, which helped elucidate the number of potentially active catabolic 

pathways. Overall, the 1-D LC-MS/MS of the cytosolic proteome made an important 

contribution to the examination of hemicellulose degradation and utilisation by B. 

proteoclasticus.  

The low overlap between the 2-DE and 1-D LS-MS/MS cytosolic protein datasets 

is a function of the sample preparation requirements (for each method of separation), 

aspects of the separation technologies and to a lesser degree the MS instrumentation. 

Various types of proteins are often difficult to detect by 2-DE. For instance, low 

abundance proteins, or proteins that by chance may resolve to a 2-DE position similar 

to more high abundance proteins, and may therefore be difficult to identify by MALDI 

TOF. This is likely to be the major factor contributing to the low number of proteins 

identified by 2-DE/MALDI-TOF, and supports the use of narrow range IPG strips. 

Hydrophobic proteins or proteins that may have low solubility in 2-DE buffer are also 

difficult to detect using a 2-DE/MALDI-TOF approach. Proteins that digest into a 

small number of large peptides may be difficult to elute from a 2-DE gel plug. 

Furthermore, because most of the proteins separated 2-DE were identified by MALDI-

TOF (single MS in contrast to MS/MS), proteins that digest into a small number of 
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large peptides, or a large number of small peptides may also be difficult to identify. 

Using LC-MS/MS as the means of protein identification circumvents many of these 

problems, including the possibility of high and low abundance proteins co-resolving, 

because protein digestion occurs prior to peptide separation. 

The acidic skew observed in the 2-DE separation of B. proteoclasticus cytosol was 

not predicted by the theoretical 2-DE analysis. Nonetheless the 2-DE spot patterns 

were supported by the plot of the theoretical 2-DE distribution of the cytosolic 

proteins identified by 1D LC-MS/MS. The predicted pI and size of the proteins 

detected by 1-D LC-MS/MS were consistent with the gel positions. The large majority 

of all proteins identified by 1D LC-MS/MS also had a pI value less than 6.5, and the 

majority of those that had a pI greater than 6.5 were small proteins which can 

sometimes be difficult to detect by 2-DE because they are close to the dye front. The 

CAI (Sharp and Li, 1987) is a measure of the level of synonymous codon usage bias, 

which in bacterial genomes is positively correlated with relative protein abundance 

(Futcher et al., 1999, Goetz and Fuglsang, 2005, Ishihama et al., 2008, Jansen et al., 

2003, Kanaya et al., 1999). Examination of protein pI as a function of CAI predicted 

that the majority of the cytosolic proteins that had a theoretical pI value greater than 7 

were present in the B. proteoclasticus cytosolic proteome at low abundance and may 

have been below the detection threshold of CBB-G250. It appears likely therefore that 

the acidic pI pattern detected in the project is a reasonable representation of the 

B. proteoclasticus proteome when cells are grown in the conditions used in these 

experiments.  

It is difficult to explain the low agreement between the sets of mid-log phase 

harvested cytosolic proteins that were detected as being differentially abundant by 2-

DE and 1D LC/MSMS. Fifty percent of the proteins detected as being differentially 

abundant by 2-DE were present in the 1D LC-MS/MS dataset but were not determined 

to be differentially abundant at the 5% FDR. Conversely, only 20% of the 1D LC-

MS/MS differentially abundant proteins were also present in the unchanging 2-DE 

dataset. It should be noted that only the β-xylosidase Xyl3A was present in both 2-DE 

and 1D LC-MS/MS datasets but was determined to be differentially abundant by 1D 

LC-MS/MS only.  
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6.8 Future directions 

Examination of the catalytic properties of the polysaccharidases and transporter 

proteins identified in this project should be an important component of subsequent 

analyses aimed at understanding the hemicellulose degrading enzyme system of B. 

proteoclasticus. These polysaccharidases include the set of secreted enzymes 

identified in cells grown in xylan supplemented culture medium. The presence of 36 

PUL within the B. proteoclasticus genome together with the proportion of PUL 

proteins present in the identified proteome signifies their importance to hemicellulose 

degradation and assimilation by B. proteoclasticus. The cytosolic PUL associated 

polysaccharidases that target the main chain and common substituent groups of 

xylooligosaccharides, which include each of the enzymes discussed above, will also be 

important targets for future analysis. This work has already begun with the 

characterisation of the PUL29 associated ferulic acid esterase Est1E, which has 

uncovered novel structural biology (Goldstone et al., 2010), and the cloning and 

characterisation of several xylosidases and esterases that target hemicelluloses (Dr. W. 

J. Kelly, personal communication).  

The model of glucuronoarabinoxylan degradation by B. proteoclasticus presented is 

in the context of the growth substrates used. It is likely that growth in the presence of 

xylans of different origins, such as wheat-bran, birchwood, or larchwood xylan, will 

stimulate the production of different sets of polysaccharidases that include enzymes 

not identified so far. Different substrates are also likely to elicit changes in the relative 

abundance of some of these polysaccharidases. These differences are evident when 

comparing the proteomic and transcriptomic data (Kong, 2007) from B. 

proteoclasticus grown on oat-spelt or wheat-bran xylan. Growth on wheat-bran xylan 

elicited a 15-fold up-regulation of a secreted feruloyl esterase transcript, the protein 

product of which was unidentified in the proteomic data. In contrast, oat-spelt xylan 

contains almost no alkali extractable ferulic acid, and at least 10-fold less ferulic acid 

than wheat-bran xylan (Faulds et al., 1997, Garcia et al., 1998). It will therefore be 

important to investigate the proteomic profiles of hemicellulose degrading enzymes 

after cultivation of B. proteoclasticus cells on xylans of different origins with different 

chemical and structural properties.  

Several factors can contribute to false positive protein abundance changes in 2DE 

and label free proteomics analyses, and as a consequence the differential protein 

abundance changes detected in this project must be validated by alternative methods. 
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Validation of proteomic data is often performed using 1-DE or 2-DE Western 

Blotting. There are currently few commercially available antibodies with which this 

goal could be achieved, and antibody production is time consuming and expensive. An 

alternative is to use a chemical labelling-based LC-MS/MS approach such as iTRAQ 

(isobaric tags for relative and absolute quantification) (Ross et al., 2004). Unlike 

previous labelled protein approaches for quantitative proteomics, iTRAQ quantitation 

is performed at the peptide level, which means that multiple peptides derived from the 

same protein may be detected, therefore giving multiple quantitation measurements 

per protein and increasing the confidence of protein identification and quantitation. 

LC-MS/MS coupled with iTRAQ has recently been used to analyse the secretomes of 

several lignocellulose degrading microbes, where relative abundance changes in 

several glycoside hydrolases including endoxylanases, α-L-arabinofuranosidases, and 

acetyl xylan esterases were detected between cells grown in differing carbohydrate 

containing media (Adav et al., 2010a, Adav et al., 2010b, Evans et al., 2007).  

The likely importance of PUL associated proteins suggests that future examination 

and characterisation of PUL activity, sugar and linkage specificity, and regulation will 

be necessary to determine the contributions made by each PUL. Cultivation and 

proteomic examination of B. proteoclasticus cells on a wider variety of hemicellulosic 

substrates than was used in this study will be necessary to achieve this goal. An 

interesting feature of the PUL system of B. thetaiotaomicron is the coordinated 

regulation of PUL expression and capsular polysaccharide biosynthesis in cells 

degrading and utilising gut O-mucins (Martens et al., 2009b). It was proposed that the 

coordinated regulation optimises the miscibility of target glycans and other nutrients 

within the capsular layer, and ensures that the chemical nature of capsular 

polysaccharides does not negatively influence the interaction between cell-surface 

bound SBPs and their target sugars. A feature of B. proteoclasticus cells grown in 

liquid media is the production of large amounts of exopolysaccharide, which is also 

visible on the surface of cells grown on plant material (Kelly et al., 2010). 

B. proteoclasticus has 363 genes that encode proteins predicted to be involved in 

exopolysaccharide synthesis, and these genes are clustered into 13 exopolysaccharide 

loci. Although there was no evidence for the differential abundance of 

exopolysaccharide loci proteins during this analysis, it will be important to analyse the 

proteomic profiles of exopolysaccharide proteins in cells grown on a range of 

substrates. It is possible that growth on hemicellulosic substrates not used in this 
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project may elicit protein abundance changes that shed light on the exopolysaccharide 

production and regulation.  

The rumen is a vast source of untapped fibrolytic potential, and potentially novel 

fibrolytic enzymes that are likely to have uses outside the rumen. Bacterial 

polysaccharide degrading enzymes including arabinosidases and feruloyl esterases, 

examples of which are present in the B. proteoclasticus proteome, have industrial and 

biotechnological applications (Topakas et al., 2007). The most demanding and 

potentially rewarding application is the development of efficient processes for the 

solubilisation of lignocellulose material to serve as a renewable energy and carbon 

source (Mielenz, 2001). Bioethanol is currently the most commonly used renewable 

fuel and is produced predominantly from corn grain starch, but further production 

increases will have to be met by other sources because of corn grain supply 

limitations. These factors call for the exploitation of lignocellulose feedstock, such as 

agricultural residues and dedicated crops. Bioethanol production begins with biomass 

thermochemical pre-treatment that reduces particle size, disrupts the cell wall, and 

improves enzyme access to the cell wall polysaccharides. The exposed 

polysaccharides are enzymatically or chemically hydrolysed to release soluble sugars, 

which can be fermented by bacteria, yeast, or filamentous fungi. Since the rate-

limiting steps in the conversion of lignocellulose to ethanol are hemicellulose 

solubilisation and cellulose hydrolysis (Demain et al., 2005), cellulases and 

hemicellulases are vital components of the production process. While cellulases have 

been the targets of successful genetic engineering efforts to improve performance and 

decrease the amount of enzyme needed to degrade lignocellulosic biomass (Bower, 

2005, Day, 2003, Lange et al., 2002, Teter et al., 2004, Wu et al., 2003), 

hemicellulases and hemicellulose engineering for bioethanol production have to date 

received little attention. The set of hemicellulose degrading enzymes identified in this 

project, and in particular those that contain multiple catalytic domains such as the 

endo-1,4-β-xylanase and xylosidase Mxy10-43A, are excellent candidates for 

assessment of their utility in the process of biofuel production.  

6.9 Conclusion 

The research presented in this thesis is biologically significant in several ways. 

Current understanding of the metabolic processes that underpin the microbial mediated 

conversion of polysaccharides to utilisable energy in the rumen, especially in regard to 
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the suite of enzymes that are synthesised in response to conditions commonly 

encountered in the rumen of pasture grazing ruminants, is currently limited. The 

results of this project provide significant insight into a xylan degrading enzyme system 

that has evolved to enable B. proteoclasticus to efficiently degrade and utilise 

glucuronoarabinoxylan, and extend our understanding of the types of enzymes that are 

likely to play important roles in hemicellulose degradation in the rumen. The close 

genetic relationship between B. proteoclasticus and several members of the 

Butyrivibrio/Psuedobutyrivibrio genus suggests that other prominent hemicellulose 

degrading members of this genus may utilise similar sets of enzymes. Examination of 

the protein components of the fibrolytic system of hemicellulose degrading rumen 

microbes provides a clearer understanding of the metabolic processes involved in plant 

cell-wall degradation by the fibrolytic rumen microbiota. In addition, this project has 

demonstrated that the relative abundance of several secreted and cytosolic 

polysaccharide degrading enzymes, as well as substrate-binding proteins that are likely 

to mediate the assimilation of soluble oligosaccharides, is modulated in response to the 

growth conditions encountered by the bacterium. It is therefore plausible to expect that 

B. proteoclasticus possesses the sensory mechanisms that enable cells to monitor the 

polysaccharide status of the external environment, and respond to that status in a 

manner that is likely to maximise the utilisation of available growth substrate.  

The use of exogenous fibrolytic enzymes as feed additives, either by forage 

pretreatment, or fed directly to ruminants, is an emerging technology that holds 

promise as a means of enhancing forage utilisation and improving ruminant 

productivity (Beauchemin et al., 2003, Yang and Xie, 2010). Application of fibrolytic 

enzymes to rumen forage prior to consumption has resulted in increased voluntary 

intake, milk production, and average daily weight gain as a consequence of increased 

forage digestibility (Beauchemin et al., 1995, Cruywagen and van Zyl, 2008, Kung et 

al., 2000, Pinos-Rodriguez et al., 2002, Schingoethe et al., 1999, Titi and Lubbadeh, 

2004, Yang et al., 2000). Direct-fed enzyme cocktails also increase forage degradation 

in vivo, and stimulate the growth of cellulolytic bacteria in forage-fed sheep (Giraldo 

et al., 2008). Nonetheless, results are inconsistent and not always positive (Peters et 

al., 2010, ZoBell et al., 2000). Commercially prepared fibrolytic enzymes for 

ruminant applications are cocktails of crude enzyme extracts that usually contain 

specified levels of several defined enzyme activities such as xylanase or cellulase, and 

are assessed primarily on their capacity to degrade plant cell walls in vitro 
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(Colombatto et al., 2003, Yang and Xie, 2010). Although the majority of enzyme 

cocktails contain a combination of xylanase, cellulase, and β-glucanase activities 

(Colombatto et al., 2003, Yang and Xie, 2010), little attention has been paid to 

specific formulations or the suitability of these formulations for their intended 

purposes. In particular, it has been suggested that side-chain hydrolyzing enzymes 

such as ferulic acid esterases, acetyl-xylan esterases and arabinofuranosidases should 

be incorporated (Yang and Xie, 2010). B. proteoclasticus enzymes could be 

considered good candidates for product development. The results presented in this 

thesis provide a clearer understanding of the classes of enzymes and metabolic 

processes that are utilized by prominent hemicellulose degrading microbes, and may 

assist in achieving the more rational and targeted design of multi-enzyme products 

aimed at enhancing the cell wall degradation of rumen forages.  

This project is the first global proteomic analysis of the fibre degrading enzyme 

system of a polysaccharilytic rumen bacterium. Prior to commencing this project the 

feasibility of applying proteomic technologies to an objective of this nature was 

unknown. The results demonstrate that proteomics is a valuable tool for the 

examination of polysaccharidases synthesised by a prominent fibre degrading rumen 

bacterium. Furthermore, this project has demonstrated that combining gel-based and 

gel-free approaches significantly improves the depth of proteome coverage over a 

single technique. The results of this project will be a valuable benchmark for analyses 

of this type in the future. 

The proteomic data and the proposed model of hemicellulose degradation and 

assimilation elucidated in this project, taken together with information derived from 

the B. proteoclasticus genome sequence project (Kelly et al., 2010), will help to 

provide a platform for the development of new approaches and opportunities to 

improve forage degradation, manipulate rumen function, and maximise the 

productivity of forage fed ruminants with a view to improving the conversion of plant 

biomass into milk and meat for human consumption.  
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Appendix A  

Table A.1. Summary of the functional groups and sub-groups used to classify B. proteoclasticus protein functions. 

Role Designation Function 
Protein 

frequency 

Proportion of 

proteome 

Amino acid 

biosynthesis 
A 

Arginine, aromatic amino acids, aspartate/asparagine, cysteine/methionine, glutamate/glutamine, 

glycine/serine/threonine, histidine, lysine, proline, valine/leucine/isoleucine. 
90 2.4% 

Carbohydrate 
metabolism 

C 
Aminosugars, fucose, galactose, glucuronate, glucuronate, glycogen biosynthesis, 
glycolysis/gluconeogenesis, mannose, other, pentose phosphate pathway, polysaccharide 

degradation, rhamnose. 

220 5.8% 

Cell cycle D Cell division, chromosome replication, genome segregation. 50 1.3% 

Cell envelope I Cell surface proteins, cell wall hydrolysis, exopolysaccharides, other, peptidoglycan biosynthesis. 329 8.6% 

Cellular processes B Chemotaxis, motility, other, oxidative stress response. 96 2.5% 

Central metabolism G One-carbon metabolism, other, polyamine biosynthesis. 13 0.3% 

Energy metabolism E Acetate, ATP synthase, butyrate, electron transport, formate, other, TCA. 100 2.6% 

Hypothetical H Conserved, hypothetical. 1342 35.2% 

Lipid metabolism L Fatty acid biosynthesis, isoprene biosynthesis, other, phospholipid biosynthesis. 41 1.1% 

Mobile elements M Transposases 36 0.9% 

Nucleic acid 

metabolism 
N 

DNA-binding proteins, helicases, other, pyrimidines, recombination and repair, restriction and 

modification, site-specific recombination. 
103 2.7% 

Nucleotide 

metabolism 
O Purines, purines and pyrimidines, pyrimidines, 60 1.6% 

Plasmid functions F Conjugation, other, plasmid replication. 39 1.0% 

Protein fate P Other, protein degradation, protein folding, protein modification, protein secretion. 110 2.9% 

Table continues     
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Role Designation Function 
Protein 

frequency 

Proportion of 

proteome 

Protein synthesis Q Other, ribosomal proteins, RNA processing, translation factors, tRNA aminoacylation. 151 4.0% 

Regulation R Other, protein interactions, RNA interactions, transcriptional regulators. 141 3.7% 

Signal transduction S Other, two-component systems. 155 4.1% 

Transcription W Other, RNA polymerase, transcription factors. 22 0.6% 

Transporters T Amino acids, anions, carbohydrates, cations, other. 282 7.4% 

Unknown function U Enzyme, general. 396 10.4% 

Vitamins and 
cofactors 

V Biotin, cobalamin and heme, coenzyme A, folic acid, nicotinate, other, riboflavin, thiamine. 40 1.0% 
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Appendix B  

Table B.1. Predicted cytosolic proteins identified in the mid-log and stationary phase harvested B. proteoclasticus culture medium. 

Protein Locus PHX Score pI kDa Pep. Cov. 

Amino acid biosynthesis        

Cysteine synthase, CysK Bpr_I1089 N 2.4e-13 5.0 32.3 14 65% 

Diaminopimelate dehydrogenase Bpr_I0298 Y 9.6e-11 5.6 35.8 15 52% 

Glu/Leu/Phe/Val dehydrogenase Bpr_I2129 Y 4.8e-18 5.4 48.6 21 55% 

Carbohydrate metabolism        

2-deoxy-D-gluconate 3-dehydrogenase, KduD Bpr_I0930 Y 3.0e-08 4.6 30.2 10 33% 

Aldose-1-epimerase Bpr_I0228 N 7.6e-12 4.8 38.3 15 56% 

Fructose-1,6-bisphosphate aldolase, FbaA Bpr_I2903 Y 1.2e-13 5.1 30.5 18 65% 

Glucose-6-phosphate isomerase, Gpi Bpr_I0035 Y 2.4e-09 5.0 57.1 14 32% 

Glyceraldehyde-3-phosphate dehydrogenase, Gap Bpr_I2050 Y 2.4e-07 5.7 36.9 15 34% 

Phosphoenolpyruvate carboxykinase, PckA Bpr_I0091 Y 1.5e-14 4.9 59.5 16 29% 

Transaldolase Bpr_I1511 Y 6.1e-11 4.8 23.4 11 57% 

Triosephosphate isomerase, TpiA Bpr_I2048 Y 1.5e-14 4.6 26.8 15 62% 

Xylosidase/arabinofuranosidase, Xsa43E Bpr_I2319 N 2.1e-06 4.3 35.3 9 39% 

Cell cycle        

Single-stranded DNA binding protein, Ssb1 Bpr_I0240 N 5.0e-05 4.7 16.6 7 48% 

Cell envelope        

NAD-dependent epimerase/dehydratase Bpr_I2537 Y 9.6e-12 4.7 36.0 12 43% 

Table continues        
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Protein Locus PHX Score pI kDa Pep. Cov. 

Nucleotide sugar dehydrogenase Bpr_I2538 Y 1.4e-05 4.9 48.6 9 24% 

Energy metabolism        

Butyrate kinase, Buk Bpr_I2323 Y 1.5e-13 5.1 38.7 19 63% 

Butyryl-CoA dehydrogenase, Bcd Bpr_I2485 Y 1.2e-12 6.1 42.5 21 51% 

Crotonase, Crt Bpr_I2487 Y 3.0e-13 4.7 28.0 16 62% 

Electron transfer flavoprotein α-subunit, EtfA Bpr_I2483 Y 1.2e-05 4.8 37.4 8 30% 

Electron transfer flavoprotein β-subunit, EtfB Bpr_I2484 Y 1.9e-09 5.2 28.4 14 47% 

Methylmalonyl-CoA decarboxylase α-subunit, MmdA Bpr_I1226 Y 3.0e-21 4.5 50.9 27 55% 

Phosphate butyryltransferase, Ptb Bpr_I2324 Y 9.6e-08 5.1 33.3 9 34% 

Pyruvate phosphate dikinase, PpdK Bpr_I1154 Y 7.6e-17 4.8 104.3 25 24% 

Thiolase, ThlA1 Bpr_I2488 Y 3.0e-16 5.0 42.0 28 65% 

Hypothetical and unknown function        

Hypothetical protein Bpr_I2329 Y 1.9e-09 4.7 23.5 9 41% 

Hypothetical protein Bpr_I2455 N 1.2e-05 4.7 47.7 8 22% 

Hypothetical protein Bpr_I2744 N 3.8e-08 4.8 28.5 10 47% 

SAM-dependent methyltransferase Bpr_I0663 N 3.8e-08 5.0 32.6 15 54% 

Nucleotide and nucleic acid metabolism        

Adenine phosphoribosyl transferase, Apt Bpr_I1345 Y 4.5e-07 5.1 19.3 8 55% 

Exodeoxyribonuclease III, Xth Bpr_III162 N 1.4e-05 5.6 24.8 9 37% 

IMP cyclohydrolase, PurO Bpr_I0731 N 6.1e-10 4.7 32.2 15 51% 

Table continues        
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Protein Locus PHX Score pI kDa Pep. Cov. 

Purine nucleoside phosphorylase, DeoD2 Bpr_I2948 Y 9.6e-14 5.1 26.1 16 50% 

Uridylate kinase, PyrH Bpr_I0953 N 7.6e-09 5.4 25.5 11 58% 

Protein synthesis and fate        

Chaperone protein, DnaK Bpr_I2625 Y 1.2e-12 4.5 66.8 18 34% 

GTP-binding protein, YchF Bpr_I1872 Y 7.6e-09 4.5 39.9 13 32% 

Peptidase, U62 family Bpr_I2456 N 2.4e-05 4.8 52.3 10 23% 

Peptidyl-prolyl cis-trans isomerase cyclophilin-type Bpr_I0739 Y 5.9e-05 4.5 19.9 10 56% 

Ribosomal protein L10, RplJ Bpr_I2371 Y 5.8e-07 4.6 20.4 11 60% 

Ribosomal protein L4, RplD Bpr_I0595 Y 8.4e-06 10.2 22.9 9 33% 

Ribosomal protein L7/L12, RplL Bpr_I2370 Y 7.6e-08 4.5 13.0 8 55% 

Translation elongation factor EF-G-like protein Bpr_I1098 N 3.8e-17 4.9 77.3 38 51% 

Translation elongation factor G, FusA Bpr_I2365 Y 9.6e-11 4.6 78.0 13 25% 

Translation elongation factor Tu, TufA Bpr_I2364 Y 1.9e-15 4.8 43.6 19 57% 

Vitamins and cofactors        

DNA-directed RNA polymerase α-subunit, RpoA Bpr_I0623 Y 2.4e-11 4.4 35.1 15 44% 
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Table B.2. Summary of the non-polysaccharide degrading proteins identified in the B. proteoclasticus cytosol by 2-DE. 

Protein Locus Location PHX Score pI kDa Pep. Cov. 

Amino acid biosynthesis         

Acetylornithine aminotransferase, ArgD Bpr_I1809 C N 1.7e-04 5.1 43.9 11 34% 

Aspartate/tyrosine/aromatic aminotransferase Bpr_I2631 C N 3.0e-14 4.7 43.8 15 46% 

Aspartate-semialdehyde dehydrogenase, Asd Bpr_I1664 C Y 7.6e-18 5.5 40.1 17 50% 

Branched-chain amino acid aminotransferase, IlvE Bpr_I1650 C N 2.4e-12 5.2 39.2 13 32% 

Cysteine synthase, CysK Bpr_I1089 C N 1.9e-13 5.0 32.3 18 72% 

Diaminopimelate dehydrogenase Bpr_I0298 C Y 9.6e-16 5.6 35.8 16 49% 

Dihydrodipicolinate reductase, DapB Bpr_I2453 C N 2.7e-06 4.9 27.0 9 46% 

Glu/Leu/Phe/Val dehydrogenase Bpr_I2129 C Y 1.2e-30 5.4 48.6 31 64% 

Imidazole glycerol phosphate synthase glutamine amidotransferase subunit Bpr_I1240 C N 8.0e-03 4.7 22.5 8 44% 

Ketol-acid reductoisomerase, IlvC Bpr_I1657 C Y 3.8e-16 5.1 37.3 20 64% 

NADPH-dependent glutamate synthase, GltA3 Bpr_I1306 C Y 1.9e-04 5.0 49.3 8 20% 

OAH/OAS sulfhydrylase Bpr_I2467 C Y 9.6e-19 5.6 45.9 16 56% 

Phosphoserine aminotransferase, SerC Bpr_I1341 C N 2.4e-15 5.0 40.1 20 59% 

Pyrroline-5-carboxylate reductase, ProC Bpr_I2765 C N 4.6e-04 5.2 28.1 7 29% 

Threonine synthase, ThrC Bpr_I1058 C N 1.5e-10 4.8 54.4 17 48% 

Carbohydrate metabolism         

1-phosphofructokinase, PfkB Bpr_I2103 C N 4.8e-13 5.0 32.4 13 56% 

2,3-bisphosphoglycerate-independent phosphoglycerate mutase, GpmA Bpr_I1294 C Y 6.1e-18 4.7 56.5 18 48% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

2-dehydro-3-deoxygluconokinase, KdgK Bpr_I0932 C Y 3.8e-14 5.5 37.2 18 34% 

2-keto-3-deoxygluconate 6-phosphate aldolase/2-keto-4-hydroxyglutarate aldolase Bpr_I0931 C Y 3.0e-14 5.7 34.3 17 62% 

5-keto 4-deoxyuronate isomerase, KduI Bpr_I0929 C Y 8.5e-05 4.8 32.7 13 45% 

6-phosphofructokinase, PfkA1 Bpr_I0224 C N 1.5e-08 7.1 39.0 14 37% 

6-phosphofructokinase, PfkA4 Bpr_I2767 C Y 4.0e-07 8.1 34.8 14 41% 

6-phosphogluconolactonase Bpr_I1331 C Y 6.3e-05 4.8 39.3 8 20% 

Aldose 1-epimerase Bpr_I0228 C N 3.0e-15 4.8 38.3 16 56% 

Aldose 1-epimerase family protein Bpr_I1782 C N 7.6e-13 5.3 33.9 14 46% 

Altronate oxidoreductase, UxaB Bpr_I1275 C Y 2.4e-10 4.6 56.0 16 36% 

Deoxyribose-phosphate aldolase, DeoC Bpr_I1062 C Y 7.6e-16 5.2 24.0 15 77% 

Fructose-1,6-bisphosphate aldolase, FbaA Bpr_I2903 C Y 3.0e-13 5.1 30.5 14 49% 

Galactokinase, GalK Bpr_I2843 C Y 1.4e-03 4.6 43.4 7 16% 

Glucose-6-phosphate isomerase, Gpi Bpr_I0035 C Y 1.2e-15 5.0 57.1 16 41% 

Glyceraldehyde-3-phosphate dehydrogenase, Gap Bpr_I2050 C Y 7.6e-10 5.7 36.9 11 34% 

Lactaldehyde reductase, FucO Bpr_I2065 C Y 1.8e-03 4.7 41.2 9 17% 

L-fucose isomerase related protein Bpr_I0185 C Y 1.5e-11 4.9 55.4 17 39% 

Phosphoenolpyruvate carboxykinase, PckA Bpr_I0091 C Y 1.5e-14 4.9 59.5 18 32% 

Phosphoglycerate kinase, Pgk Bpr_I2049 C Y 6.1e-19 5.4 43.7 22 59% 

Pyruvate kinase, PykA Bpr_I0083 C Y 1.3e-03 4.8 51.7 9 20% 

Transaldolase Bpr_I1511 C Y 5.9e-07 4.8 23.4 11 71% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Transketolase subunit A, TktA3 Bpr_I2813 C Y 3.4e-02 5.4 30.0 6 19% 

Transketolase subunit B, TktB3 Bpr_I2812 C Y 2.4e-07 5.5 33.0 10 37% 

Triosephosphate isomerase, TpiA Bpr_I2048 C Y 1.2e-18 4.6 26.8 18 64% 

UDP-galactose 4-epimerase, GalE Bpr_I0192 C Y 4.8e-14 5.2 37.2 18 47% 

UTP-glucose-1-phosphate uridylyltransferase, GalU Bpr_I0191 C Y 1.9e-20 4.6 45.8 23 56% 

Xylulokinase, XylB Bpr_I0173 C Y 1.5e-10 4.9 53.7 14 38% 

Cell cycle         

DNA polymerase III β-subunit, DnaN Bpr_I0002 C N 1.2e-13 4.7 41.4 17 50% 

Single-stranded DNA binding protein, Ssb1 Bpr_I0240 C N 7.6e-10 4.7 16.6 12 63% 

Cell envelope         

Aminotransferase DegT/DnrJ/EryC1/StrS family Bpr_I0345 C Y 4.8e-11 5.8 44.9 14 33% 

Aminotransferase DegT/DnrJ/EryC1/StrS family Bpr_I2311 C N 3.8e-10 5.0 51.0 18 35% 

Aminotransferase DegT/DnrJ/EryC1/StrS family Bpr_I2543 C N 1.2e-08 5.1 47.3 14 37% 

Cell wall binding domain-containing protein Bpr_I0264 S Y 3.0e-16 4.3 195.3 31 19% 

dTDP-4-dehydrorhamnose 3,5-epimerase, RfbC2 Bpr_I0548 C Y 9.6e-11 4.7 20.6 11 49% 

dTDP-4-dehydrorhamnose reductase, RfbD1 Bpr_I2582 C N 3.0e-07 4.8 32.1 9 41% 

Glycosyl transferase GT2 family Bpr_I2565 C N 2.3e-02 5.2 38.1 8 29% 

NAD dependent epimerase/dehydratase Bpr_I2647 C N 1.5e-14 5.5 38.8 17 48% 

NAD dependent epimerase/dehydratase Bpr_I2930 C N 4.8e-11 8.8 31.5 11 44% 

NAD-dependent epimerase/dehydratase Bpr_I0517 C N 1.9e-21 4.9 42.0 18 51% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

NAD-dependent epimerase/dehydratase Bpr_I2310 C N 1.5e-02 5.0 34.2 10 33% 

NAD-dependent epimerase/dehydratase Bpr_I2537 C Y 1.5e-13 4.7 36.0 14 52% 

Nucleotide sugar dehydrogenase Bpr_I0828 C N 4.7e-02 5.0 46.1 8 18% 

Phosphoglucomutase/phosphomannomutase family protein Bpr_I0554 C Y 7.6e-09 4.7 66.0 15 20% 

S-adenosyl-methyltransferase, MraW Bpr_I1869 C N 1.9e-09 7.0 35.3 13 41% 

Cellular processes         

Chemotaxis protein methyltransferase, CheR Bpr_I2033 C N 1.5e-09 8.4 30.5 14 42% 

Chemotaxis-specific methylesterase, CheB Bpr_I1384 C N 4.6e-06 8.1 38.6 10 32% 

Flagellar hook protein, FlgE1 Bpr_I1367 C Y 1.5e-04 4.2 112.3 12 14% 

Flagellar motor switch protein, FliG Bpr_I1359 C N 9.6e-09 4.3 38.6 9 33% 

Superoxide dismutase, SodA Bpr_I0467 C N 1.9e-13 5.3 24.1 11 61% 

Central metabolism         

Agmatine deiminase, AguA Bpr_I1200 C N 1.2e-08 4.2 49.5 12 30% 

Carboxynorspermidine dehydrogenase Bpr_I1198 C Y 6.9e-02 4.6 47.4 9 20% 

N-carbamoylputrescine amidohydrolase, AguB Bpr_I1201 C N 4.8e-15 5.0 33.8 16 56% 

S-adenosylmethionine synthetase, MetK Bpr_I2769 C Y 4.8e-16 4.9 43.1 16 38% 

Energy metabolism         

2-enoate reductase Bpr_I1763 C N 1.3e-04 7.3 76.0 9 17% 

2-enoate reductase Bpr_I1977 C N 4.8e-02 6.2 77.4 4 12% 

3-hydroxybutyryl-CoA dehydrogenase, Hbd Bpr_I2486 S Y 6.1e-14 5.2 31.2 13 47% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

ATP synthase F1 α-subunit, AtpA1 Bpr_I0166 C N 1.9e-10 5.3 55.0 15 31% 

ATP synthase F1 β-subunit, AtpD1 Bpr_I0168 C Y 4.8e-16 4.6 50.3 15 41% 

Butyrate kinase, Buk Bpr_I2323 C Y 6.1e-22 5.1 38.7 18 66% 

Butyryl-CoA dehydrogenase, Bcd Bpr_I2485 C Y 3.8e-17 6.1 42.5 21 60% 

Crotonase, Crt Bpr_I2487 C Y 1.2e-14 4.7 28.0 19 65% 

Electron transfer flavoprotein α-subunit, EtfA Bpr_I2483 C Y 1.2e-08 4.8 37.4 12 36% 

Electron transfer flavoprotein β-subunit, EtfB Bpr_I2484 C Y 1.5e-11 5.2 28.4 14 53% 

Isocitrate dehydrogenase, Icd Bpr_I1102 C N 4.8e-13 5.1 45.1 18 42% 

Methylmalonyl-CoA decarboxylase α-subunit, MmdA Bpr_I1226 C Y 3.9e-07 4.5 50.9 12 28% 

Phosphate acetyltransferase, Pta Bpr_III011 C Y 1.3e-02 5.2 14.4 7 54% 

Phosphate butyryltransferase, Ptb Bpr_I2324 C Y 4.8e-16 5.1 33.3 19 72% 

Pyruvate formate lyase, PflB Bpr_I0112 C Y 3.0e-24 5.7 84.9 30 50% 

Pyruvate phosphate dikinase, PpdK Bpr_I1154 C Y 7.6e-15 4.8 104.3 28 28% 

Pyruvate:ferredoxin oxidoreductase Bpr_I0269 C Y 2.4e-14 5.2 127.3 25 21% 

Thiolase, ThlA1 Bpr_I2488 C Y 2.4e-14 5.0 42.0 15 51% 

Thiolase, ThlA2 Bpr_I2475 S Y 3.8e-08 6.0 41.0 12 24% 

Thioredoxin-disulfide reductase, TrxB Bpr_I2491 C Y 9.6e-08 4.5 33.7 13 43% 

Hypothetical         

Hypothetical protein Bpr_I0280 C N 3.8e-15 8.4 23.2 16 76% 

Hypothetical protein Bpr_I0417 C N 7.1e-03 4.9 39.8 11 29% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Hypothetical protein Bpr_I0592 C N 6.1e-10 7.3 32.3 11 38% 

Hypothetical protein Bpr_I0874 C N 1.0e-05 4.5 14.8 5 36% 

Hypothetical protein Bpr_I0962 C N 3.8e-09 4.3 17.3 9 49% 

Hypothetical protein Bpr_I1177 C N 2.4e-11 4.3 24.7 12 65% 

Hypothetical protein Bpr_I1179 C Y 1.2e-07 4.7 24.9 11 45% 

Hypothetical protein Bpr_I1180 C Y 9.6e-18 7.4 36.4 18 53% 

Hypothetical protein Bpr_I1213 C Y 1.4e-05 4.3 26.5 8 39% 

Hypothetical protein Bpr_I1281 C N 1.5e-13 4.6 34.1 18 52% 

Hypothetical protein Bpr_I1477 C N 2.9e-04 4.2 19.1 5 49% 

Hypothetical protein Bpr_I1608 C N 3.1e-06 4.6 47.5 10 26% 

Hypothetical protein Bpr_I2291 S Y 7.1e-07 4.2 42.6 8 25% 

Hypothetical protein Bpr_I2455 C N 6.1e-26 4.7 47.7 26 58% 

Hypothetical protein Bpr_I2494 C N 6.1e-08 4.3 33.0 11 41% 

Hypothetical protein Bpr_I2583 S Y 8.7e-06 4.3 44.3 9 24% 

Hypothetical protein Bpr_I2606 C N 4.2e-05 4.8 41.1 13 31% 

Hypothetical protein Bpr_I2608 C N 6.1e-16 7.3 32.8 17 44% 

Hypothetical protein Bpr_I2619 C Y 3.8e-08 4.5 8.6 6 46% 

Hypothetical protein Bpr_I2634 C N 4.8e-07 9.8 16.4 8 50% 

Hypothetical protein Bpr_I2744 C N 2.4e-08 4.8 28.5 10 51% 

Hypothetical protein Bpr_III133 C N 1.6e-03 5.6 57.9 10 16% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Lipid metabolism         

3-oxoacyl-(acyl-carrier-protein) synthase, FabF Bpr_I1268 C N 2.0e-06 5.3 44.5 11 28% 

Glycerol kinase, GlpK Bpr_I1744 C N 3.6e-05 4.9 55.6 9 18% 

Nucleic acid metabolism         

Excinuclease ABC A subunit, UvrA Bpr_I2597 C N 3.8e-12 7.4 106.8 20 26% 

Type I restriction modification system S subunit Bpr_IV100 C N 1.5e-02 6.1 46.5 7 18% 

Nucleotide metabolism         

5-aminoimidazole-4-carboxamide ribonucleotide transformylase Bpr_I0732 C Y 1.5e-12 5.1 44.4 12 38% 

Adenylate kinase, Adk Bpr_I0615 C N 1.5e-10 5.1 23.8 12 72% 

Adenylosuccinate lyase, PurB Bpr_I2212 C Y 1.2e-10 5.4 53.7 16 28% 

Dihydroorotate dehydrogenase, PyrD Bpr_I2788 C N 7.6e-10 5.1 32.3 13 47% 

IMP cyclohydrolase, PurO Bpr_I0731 C N 4.0e-06 4.7 32.2 7 21% 

Inosine-uridine preferring nucleoside hydrolase Bpr_I0724 C N 7.4e-03 4.5 32.9 9 25% 

Phosphoribosylamine-glycine ligase, PurD Bpr_I0870 C N 1.8e-06 4.6 46.3 12 29% 

Phosphoribosylaminoimidazole-succinocarboxamide synthase, PurC Bpr_I1144 C Y 3.8e-18 4.7 33.3 21 75% 

Purine nucleoside phosphorylase, DeoD2 Bpr_I2948 C Y 4.8e-13 5.1 26.1 16 55% 

Purine-nucleoside phosphorylase, DeoD1 Bpr_I1527 C Y 3.0e-12 4.6 29.5 13 67% 

Uridine phosphorylase, Udp Bpr_I1561 C N 9.6e-13 5.4 28.1 14 69% 

Uridylate kinase, PyrH Bpr_I0953 C N 1.9e-13 5.4 25.5 15 55% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Plasmid functions         

Single stranded DNA binding protein, Ssb3 Bpr_II423 C N 1.9e-10 4.7 16.3 12 60% 

Protein fate         

Chaperone protein, DnaK Bpr_I2625 C Y 9.6e-10 4.5 66.8 16 28% 

Chaperonin, GroEL Bpr_I1193 C Y 1.1e-06 5.0 60.0 19 32% 

Oligoendopeptidase, PepF1 Bpr_I0779 C Y 1.9e-13 4.7 68.9 22 32% 

Peptidase M16 family Bpr_I1215 C N 3.0e-39 4.6 111.5 44 46% 

Peptidase U62 family Bpr_I2456 C N 6.1e-09 4.8 52.3 15 33% 

Peptidyl-prolyl cis-trans isomerase FKBP-type Bpr_I1031 C Y 2.5e-06 4.1 33.4 8 25% 

Serine protease subtilisin family Bpr_I2629 S Y 2.8e-05 3.8 153.3 15 12% 

Protein synthesis         

Aspartyl-tRNA synthetase, AspS Bpr_I0140 C Y 3.8e-14 4.7 69.2 23 35% 

Endoribonuclease L-PSP Bpr_I2149 C N 2.8e-05 4.4 13.5 4 56% 

Methionyl-tRNA synthetase, MetG Bpr_I2807 C Y 9.6e-09 4.9 76.4 21 32% 

Polyribonucleotide nucleotidyltransferase Bpr_I0975 C Y 7.6e-15 4.9 76.5 21 37% 

Ribosomal protein L1, RplA Bpr_I2299 C Y 1.2e-12 9.8 24.6 16 58% 

Ribosomal protein L10, RplJ Bpr_I2371 C Y 1.8e-04 4.6 20.4 8 32% 

Ribosomal protein L13, RplM Bpr_I0630 C Y 6.1e-08 9.9 16.2 11 77% 

Ribosomal protein L18, RplR Bpr_I0610 C Y 3.0e-06 10.5 13.5 9 48% 

Ribosomal protein L21, RplU Bpr_I1443 C Y 7.6e-03 10.3 11.3 5 41% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Ribosomal protein L22, RplV Bpr_I0599 C Y 4.4e-06 10.7 15.1 8 56% 

Ribosomal protein L3, RplC Bpr_I0594 C Y 1.9e-24 10.6 24.3 25 84% 

Ribosomal protein L4, RplD Bpr_I0595 C Y 4.0e-07 10.2 22.9 9 47% 

Ribosomal protein L5, RplE Bpr_I0606 C Y 3.8e-11 9.8 20.4 15 63% 

Ribosomal protein L6, RplF Bpr_I0609 C Y 2.4e-15 10.3 19.4 14 60% 

Ribosomal protein S1, RpsA Bpr_I2035 C Y 1.5e-19 4.6 41.9 21 54% 

Ribosomal protein S2, RpsB Bpr_I1395 C Y 9.6e-09 8.4 27.6 11 39% 

Ribosomal protein S3, RpsC Bpr_I0600 C Y 9.6e-08 9.6 24.6 12 53% 

Ribosomal protein S4, RpsD Bpr_I0622 C Y 2.4e-11 10.6 24.1 13 43% 

Ribosomal protein S5, RpsE Bpr_I0611 C Y 3.0e-17 10.5 17.9 15 79% 

Ribosomal protein S7, RpsG Bpr_I2366 C Y 1.2e-11 10.5 17.5 13 70% 

Ribosomal protein S9, RpsI Bpr_I0631 C Y 3.8e-13 11.1 15.4 11 67% 

Single stranded nucleic acid binding protein Bpr_I2957 C Y 3.0e-10 6.3 28.3 14 52% 

Threonyl-tRNA synthetase, ThrZ Bpr_I2374 C Y 1.2e-11 5.0 73.7 22 26% 

Translation elongation factor EF-G-like protein Bpr_I1098 C N 3.0e-26 4.9 77.3 31 46% 

Translation elongation factor G, FusA Bpr_I2365 C Y 9.6e-15 4.6 78.0 21 27% 

Translation elongation factor Ts, Tsf Bpr_I1396 C Y 3.0e-03 4.8 34.9 10 33% 

Translation elongation factor Tu, TufA Bpr_I2364 C Y 3.0e-21 4.8 43.6 19 62% 

tRNA (guanine-N7)-methyltransferase, TrmB Bpr_I2923 C N 4.4e-07 7.6 25.1 10 51% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Regulation         

Anti-sigma factor antagonist Bpr_I0800 C Y 4.9e-07 4.2 10.8 7 89% 

Anti-sigma factor antagonist/phosphotransferase domain-containing protein Bpr_I0249 C N 9.6e-14 4.6 49.8 20 48% 

Cold shock domain protein, CspD1 Bpr_I2451 C Y 2.3e-06 4.6 7.3 5 89% 

Signal transduction         

GGDEF domain-containing protein Bpr_I1183 C N 1.8e-05 4.6 53.0 10 24% 

Hpr kinase/phosphatase, HprK Bpr_I0099 C N 1.3e-04 5.1 35.9 11 40% 

PhoH family protein Bpr_I1309 C N 1.2e-07 8.6 38.6 10 34% 

S-ribosylhomocysteinase, LuxS Bpr_I0033 C Y 7.6e-13 5.0 18.2 11 54% 

Transcription         

DNA directed RNA polymerase β-subunit, RpoB Bpr_I2369 C Y 9.6e-13 4.6 145.5 22 20% 

DNA directed RNA polymerase β'-subunit, RpoC Bpr_I2368 C Y 1.5e-23 6.6 139.3 36 30% 

DNA-directed RNA polymerase α-subunit, RpoA Bpr_I0623 C Y 3.8e-18 4.4 35.1 17 58% 

Transcription antitermination factor, NusB Bpr_I0979 C N 7.3e-07 4.3 15.3 8 57% 

Transporters         

ABC transporter ATP-binding protein Bpr_I2802 C Y 6.1e-11 6.7 41.1 17 43% 

Amino acid ABC transporter substrate-binding protein Bpr_I1826 S Y 5.8e-04 4.0 31.6 7 21% 

Oligopeptide ABC transporter substrate-binding protein, OppA1 Bpr_I1276 S Y 1.2e-20 4.0 83.1 25 35% 

Peptide/nickel ABC transporter periplasmic protein Bpr_I2750 S Y 8.0e-07 3.9 57.9 9 23% 

Peptide/nickel ABC transporter substrate-binding protein Bpr_I1860 S Y 7.6e-11 4.1 58.4 16 41% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Sugar ABC transporter substrate-binding protein Bpr_I0182 S Y 7.6e-07 4.1 63.3 13 27% 

Sugar ABC transporter substrate-binding protein Bpr_I0237 S Y 8.5e-03 3.9 64.8 6 14% 

Sugar ABC transporter substrate-binding protein Bpr_I0313 S Y 1.1e-03 3.8 55.2 7 11% 

Sugar ABC transporter substrate-binding protein Bpr_I0937 S Y 9.6e-14 4.1 61.3 15 35% 

Sugar ABC transporter substrate-binding protein Bpr_I1589 S Y 7.3e-06 3.9 61.1 13 34% 

Sugar ABC transporter substrate-binding protein Bpr_I1667 S Y 7.6e-11 3.9 47.8 11 42% 

Sugar ABC transporter substrate-binding protein Bpr_I1720 S Y 7.4e-04 4.0 49.3 9 18% 

Sugar ABC transporter substrate-binding protein Bpr_I2010 S Y 1.9e-06 3.7 47.3 9 35% 

Sugar ABC transporter substrate binding protein Bpr_I2344 S Y 4.4e-04 3.9 52.3 10 27% 

Sugar ABC transporter substrate-binding protein Bpr_I2443 S Y 1.9e-11 4.0 57.0 16 31% 

Xylose ABC transporter substrate-binding protein Bpr_I1173 S Y 9.6e-12 4.2 38.4 14 57% 

Unknown function         

Acetyltransferase Bpr_I1661 C N 4.8e-08 6.7 24.9 10 49% 

Acetyltransferase GNAT family Bpr_I0656 C N 3.0e-07 6.7 21.0 9 51% 

Aminotransferase domain-containing protein Bpr_I1980 C N 1.5e-11 5.5 48.3 12 24% 

FAD dependent oxidoreductase Bpr_I2038 C N 2.4e-06 6.7 45.2 10 26% 

Hydrolase α/β-fold family Bpr_I2806 C N 6.1e-08 8.6 36.5 14 46% 

NUDIX domain-containing protein Bpr_I1938 C N 7.6e-12 4.2 18.8 12 70% 

Phosphoribulokinase/uridine kinase family protein Bpr_I0923 C N 1.9e-16 6.9 63.1 18 35% 

Pyridoxamine 5'-phosphate oxidase family protein Bpr_I1023 C N 1.2e-05 5.3 15.0 6 61% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

UBA/TS-N domain-containing protein Bpr_III040 C N 4.5e-07 4.5 13.6 8 42% 

Vitamins and cofactors         

Cobalamin biosynthesis protein. CobW1 Bpr_I2021 C Y 3.8e-08 4.4 36.9 9 32% 

FeS assembly protein. SufD Bpr_I0053 C N 7.6e-12 4.5 42.7 11 37% 

Methylenetetrahydrofolate dehydrogenase/cyclohydrolase. FolD Bpr_I1303 C N 1.5e-05 5.0 30.6 9 27% 
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Table B.3. Summary of the non-polysaccharidase degrading proteins identified in the B. proteoclasticus cytosol by 1-D LC-MS/MS. 

Protein Locus Location PHX Score pI kDa Pep. Cov. 

Amino acid biosynthesis         

Anthranilate phosphoribosyltransferase, TrpD Bpr_I0012 C N 1.5e-12 5.1 36.6  26% 

Aspartate/tyrosine/aromatic aminotransferase Bpr_I2631 C N 2.3e-13 4.7 43.8  18% 

Aspartate-semialdehyde dehydrogenase, Asd Bpr_I1664 C Y 8.2e-14 5.5 40.1  54% 

ATP phosphoribosyltransferase regulatory subunit, HisZ Bpr_I1451 C N 2.0e-06 4.5 41.3  11% 

Branched-chain amino acid aminotransferase, IlvE Bpr_I1650 C N 3.4e-08 5.2 39.2  21% 

Chorismate mutase/prephenate dehydratase, PheA Bpr_I1730 C N 1.4e-09 5.0 42.4  13% 

Cysteine synthase, CysK Bpr_I1089 C N 8.9e-09 5.0 32.3  14% 

D-3-phosphoglycerate dehydrogenase, SerA Bpr_I1342 C N 4.4e-13 5.3 42.0  26% 

Diaminopimelate decarboxylase, LysA Bpr_I1243 C N 4.8e-12 4.8 48.0  9% 

Diaminopimelate dehydrogenase Bpr_I0298 C Y 9.9e-15 5.6 35.8  41% 

Diaminopimelate epimerase, DapF Bpr_I2388 C N 2.2e-05 4.4 33.5  6% 

Dihydroxy-acid dehydratase, IlvD Bpr_I1338 C N 1.0e-30 6.0 58.9  30% 

Glu/Leu/Phe/Val dehydrogenase Bpr_I2129 C Y 1.0e-30 5.4 48.6  57% 

Histidinol dehydrogenase, HisD Bpr_I1449 C N 7.8e-09 4.8 47.0  12% 

Ketol-acid reductoisomerase, IlvC Bpr_I1657 C Y 2.2e-15 5.1 37.3  64% 

NADPH-dependent glutamate synthase, GltA3 Bpr_I1306 C Y 1.0e-30 5.0 49.3  17% 

OAH/OAS sulfhydrylase Bpr_I0317 C N 6.4e-11 5.4 45.6  12% 

OAH/OAS sulfhydrylase Bpr_I2467 C Y 2.1e-14 5.6 45.9  25% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Phosphoserine aminotransferase, SerC Bpr_I1341 C N 3.8e-14 5.0 40.1  51% 

Phosphoserine phosphatase/homoserine phosphotransferase bifunctional protein, ThrH Bpr_I1141 C N 1.4e-11 4.5 22.4  10% 

Serine hydroxymethyltransferase, GlyA Bpr_I1796 C Y 8.6e-13 6.2 44.9  21% 

Threonine dehydratase, IlvA Bpr_I1571 C N 5.4e-10 6.0 44.4  8% 

Threonine synthase, ThrC Bpr_I1058 C N 1.1e-16 4.8 54.4  35% 

Tryptophan synthase α-subunit, TrpA Bpr_I0008 C N 2.0e-07 4.6 27.7  10% 

Tryptophan synthase β-subunit, TrpB2 Bpr
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Glucokinase, Glk Bpr_I0100 C N 2.5e-10 4.9 32.9  19% 

Glucose-1-phosphate adenylyltransferase, GlgC1 Bpr_I0290 C N 8.1e-10 4.7 46.9  18% 

Glucose-6-phosphate isomerase, Gpi Bpr_I0035 C Y 1.0e-30 5.0 57.1  53% 

Glucuronate isomerase, UxaC Bpr_I1591 C Y 1.9e-12 5.0 54.4  13% 

Glyceraldehyde-3-phosphate dehydrogenase, Gap Bpr_I2050 C Y 1.0e-30 5.7 36.9  41% 

Glycogen synthase ADP-glucose type, GlgA Bpr_I1257 C N 1.3e-07 5.6 56.0  9% 

Lactaldehyde reductase, FucO Bpr_I2065 C Y 1.1e-15 4.7 41.2  35% 

L-fucose isomerase related protein Bpr_I0185 C Y 1.0e-30 4.9 55.4  62% 

L-ribulose-5-phosphate 4-epimerase, AraD Bpr_I2814 C Y 1.0e-10 6.0 26.0  11% 

Phosphoenolpyruvate carboxykinase, PckA Bpr_I0091 C Y 1.0e-30 4.9 59.5  56% 

Phosphoglycerate kinase, Pgk Bpr_I2049 C Y 1.0e-30 5.4 43.7  69% 

Pyruvate kinase, PykA Bpr_I0083 C Y 1.6e-08 4.8 51.7  9% 

Ribose-phosphate pyrophosphokinase, PrsA1 Bpr_I0286 C Y 2.7e-13 5.7 45.7  22% 

Transaldolase Bpr_I1511 C Y 4.7e-14 4.8 23.4  70% 

Transketolase subunit A, TktA3 Bpr_I2813 C Y 1.1e-16 5.4 30.0  29% 

Transketolase subunit B, TktB3 Bpr_I2812 C Y 1.0e-30 5.5 33.0  37% 

Triosephosphate isomerase, TpiA Bpr_I2048 C Y 1.0e-30 4.6 26.8  84% 

Xylulokinase, XylB Bpr_I0173 C Y 1.8e-14 4.9 53.7  27% 

Cell cycle         

Cell division protein, FtsZ Bpr_I1862 C Y 3.7e-14 5.0 42.9  27% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

DNA polymerase III β-subunit, DnaN Bpr_I0002 C N 5.1e-12 4.7 41.4  25% 

FtsK/SpoIIIE family protein Bpr_I1301 M N 6.7e-05 5.0 105.3  5% 

Single-stranded DNA binding protein, Ssb1 Bpr_I0240 C N 2.2e-14 4.7 16.6  27% 

Cell envelope         

Aminotransferase DegT/DnrJ/EryC1/StrS family Bpr_I0345 C Y 1.1e-16 5.8 44.9  31% 

Aminotransferase DegT/DnrJ/EryC1/StrS family Bpr_I2543 C N 1.9e-11 5.1 47.3  11% 

dTDP-4-dehydrorhamnose 3,5-epimerase, RfbC2 Bpr_I0548 C Y 2.7e-08 4.7 20.6  14% 

dTDP-4-dehydrorhamnose reductase, RfbD1 Bpr_I2582 C N 4.5e-10 4.8 32.1  15% 

dTDP-glucose 4,6-dehydratase, RfbB Bpr_I0545 C Y 2.2e-11 5.5 44.1  20% 

Glycosyl transferase GT28 family Bpr_I2555 C N 9.5e-07 4.9 40.1  9% 

NAD dependent epimerase/dehydratase Bpr_I0348 C Y 3.2e-12 5.9 38.9  17% 

NAD dependent epimerase/dehydratase Bpr_I2647 C N 2.1e-10 5.5 38.8  8% 

NAD-dependent epimerase/dehydratase Bpr_I0517 C N 5.4e-14 4.9 42.0  9% 

NAD-dependent epimerase/dehydratase Bpr_I2537 C Y 1.1e-15 4.7 36.0  23% 

Nucleotide sugar dehydrogenase Bpr_I0828 C N 2.6e-11 5.0 46.1  11% 

Nucleotide sugar dehydrogenase Bpr_I2538 C Y 1.8e-09 4.9 48.6  6% 

Oxidoreductase GFO/IDH/MOCA family Bpr_I0406 C N 2.2e-12 5.6 40.5  9% 

Phosphoglucomutase/phosphomannomutase family protein Bpr_I0554 C Y 1.0e-30 4.7 66.0  38% 

Polysaccharide biosynthesis protein Bpr_I2562 C Y 5.3e-14 5.1 43.6  23% 

Rod shape-determining protein, MreB1 Bpr_I1486 C Y 1.1e-15 5.5 36.6  20% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

UDP-galactopyranose mutase, Glf Bpr_I2305 C N 3.6e-11 4.8 46.2  9% 

Cellular processes         

Flagellin, FliC1 Bpr_I0488 C Y 1.7e-10 5.2 31.4  27% 

Flagellin, FliC2 Bpr_I0489 C Y 1.0e-30 5.2 30.8  28% 

Flavin reductase domain-containing protein Bpr_I0363 C N 7.5e-11 5.1 23.4  18% 

Rubrerythrin, Rbr1 Bpr_I0031 C Y 3.4e-09 5.1 19.7  34% 

Rubrerythrin, Rbr2 Bpr_I0362 C Y 1.6e-12 4.9 21.3  34% 

Superoxide dismutase, SodA Bpr_I0467 C N 1.0e-30 5.3 24.1  67% 

Central metabolism         

Carboxynorspermidine dehydrogenase Bpr_I1198 C Y 2.9e-11 4.6 47.4  9% 

Formate-tetrahydrofolate ligase, Fhs Bpr_I1302 C N 1.0e-30 6.0 60.0  24% 

S-adenosylmethionine synthetase, MetK Bpr_I2769 C Y 1.9e-13 4.9 43.1  57% 

Energy metabolism         

3-hydroxybutyryl-CoA dehydrogenase, Hbd Bpr_I2486 S Y 1.0e-30 5.2 31.2  71% 

Acetate kinase, AckA Bpr_I1580 C Y 7.0e-13 5.9 42.7  29% 

Acetyl-CoA synthetase, AscA Bpr_I1274 C N 2.3e-13 6.0 64.9  9% 

Aconitate hydratase, AcnA Bpr_I2797 C N 5.9e-10 5.3 82.7  8% 

ATP synthase F1 α-subunit, AtpA1 Bpr_I0166 C N 1.9e-12 5.3 55.0  27% 

ATP synthase F1 β-subunit, AtpD1 Bpr_I0168 C Y 6.9e-13 4.6 50.3  45% 

ATP synthase F1 β-subunit, AtpD2 Bpr_I1162 C N 3.0e-08 4.5 50.9  16% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Butyrate kinase, Buk Bpr_I2323 C Y 9.9e-15 5.1 38.7  74% 

Butyryl-CoA dehydrogenase, Bcd Bpr_I2485 C Y 1.0e-30 6.1 42.5  73% 

Crotonase, Crt Bpr_I2487 C Y 1.0e-30 4.7 28.0  55% 

Electron transfer flavoprotein α-subunit, EtfA Bpr_I2483 C Y 1.0e-30 4.8 37.4  46% 

Electron transfer flavoprotein β-subunit, EtfB Bpr_I2484 C Y 2.2e-15 5.2 28.4  44% 

Iron-containing alcohol dehydrogenase Bpr_I1425 C Y 1.0e-30 5.1 44.4  52% 

Isocitrate dehydrogenase, Icd Bpr_I1102 C N 1.1e-15 5.1 45.1  16% 

Malate dehydrogenase, Mdh Bpr_I2277 C N 2.4e-09 4.8 41.4  9% 

Methylmalonyl-CoA decarboxylase α-subunit, MmdA Bpr_I1226 C Y 5.3e-14 4.5 50.9  24% 

Oxaloacetate decarboxylase α-subunit, OadA Bpr_I1230 C Y 1.1e-15 5.2 52.4  18% 

Phosphate acetyltransferase, Pta Bpr_III010 C N 2.2e-16 4.7 22.3  32% 

Phosphate acetyltransferase, Pta Bpr_III011 C Y 7.9e-13 5.2 14.4  59% 

Phosphate butyryltransferase, Ptb Bpr_I2324 C Y 5.6e-16 5.1 33.3  57% 

Pyruvate carboxyltransferase domain-containing protein Bpr_I1100 C N 5.4e-05 5.4 57.2  7% 

Pyruvate formate lyase, PflB Bpr_I0112 C Y 1.0e-30 5.7 84.9  65% 

Pyruvate phosphate dikinase, PpdK Bpr_I1154 C Y 1.0e-30 4.8 104.3  52% 

Pyruvate:ferredoxin oxidoreductase Bpr_I0269 C Y 1.0e-30 5.2 127.3  48% 

Thiolase, ThlA1 Bpr_I2488 C Y 1.0e-30 5.0 42.0  68% 

Thiolase, ThlA2 Bpr_I2475 S Y 1.0e-30 6.0 41.0  66% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Hypothetical         

Hypothetical protein Bpr_I0212 C Y 1.1e-16 5.2 41.6  28% 

Hypothetical protein Bpr_I0219 S Y 8.9e-11 3.9 30.3  5% 

Hypothetical protein Bpr_I0280 C N 2.4e-11 8.4 23.2  15% 

Hypothetical protein Bpr_I0351 C N 3.6e-14 5.0 34.4  6% 

Hypothetical protein Bpr_I0566 M N 5.4e-09 9.9 28.0  5% 

Hypothetical protein Bpr_I0799 C N 1.9e-08 4.1 13.5  14% 

Hypothetical protein Bpr_I0801 C N 1.1e-11 4.3 23.4  21% 

Hypothetical protein Bpr_I0874 C N 2.1e-10 4.5 14.8  13% 

Hypothetical protein Bpr_I0876 S N 2.0e-04 4.2 63.1  3% 

Hypothetical protein Bpr_I0952 C Y 2.2e-15 3.8 37.2  26% 

Hypothetical protein Bpr_I1041 C N 8.1e-12 4.1 9.3  39% 

Hypothetical protein Bpr_I1177 C N 3.6e-13 4.3 24.7  9% 

Hypothetical protein Bpr_I1179 C Y 1.0e-30 4.7 24.9  51% 

Hypothetical protein Bpr_I1180 C Y 1.0e-30 7.4 36.4  66% 

Hypothetical protein Bpr_I1300 C Y 3.6e-12 4.7 21.8  50% 

Hypothetical protein Bpr_I1457 C N 3.8e-09 4.2 25.9  18% 

Hypothetical protein Bpr_I1473 C N 1.8e-10 5.4 24.1  18% 

Hypothetical protein Bpr_I1477 C N 3.5e-12 4.2 19.1  29% 

Hypothetical protein Bpr_I1479 C N 5.8e-07 5.3 15.7  22% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Hypothetical protein Bpr_I2144 C N 1.1e-09 4.8 84.8  5% 

Hypothetical protein Bpr_I2200 S Y 2.1e-09 4.2 37.5  8% 

Hypothetical protein Bpr_I2329 C Y 3.5e-12 4.7 23.5  44% 

Hypothetical protein Bpr_I2455 C N 1.0e-30 4.7 47.7  26% 

Hypothetical protein Bpr_I2606 C N 3.3e-10 4.8 41.1  16% 

Hypothetical protein Bpr_I2619 C Y 1.6e-13 4.5 8.6  43% 

Hypothetical protein Bpr_I2633 C N 1.7e-07 5.9 12.0  34% 

Hypothetical protein Bpr_I2744 C N 2.7e-14 4.8 28.5  30% 

Hypothetical protein Bpr_II050 C N 1.7e-05 8.0 12.6  20% 

Hypothetical protein Bpr_II102 C N 5.3e-11 3.7 5.9  56% 

Hypothetical protein Bpr_III164 C N 6.1e-14 3.9 60.2  18% 

Lipid metabolism         

1-deoxy-D-xylulose-5-phosphate reductoisomerase, Dxr Bpr_I0957 C N 8.3e-09 5.5 41.8  7% 

1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, IspG Bpr_I0959 C N 1.6e-14 6.5 37.6  22% 

2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, IspF Bpr_I1831 C N 1.7e-07 5.0 16.9  11% 

3-oxoacyl-(acyl-carrier-protein) synthase, FabF Bpr_I1268 C N 1.0e-30 5.3 44.5  48% 

Acetyl-CoA carboxylase biotin carboxyl carrier protein, AccB Bpr_I1269 C N 2.2e-15 4.5 15.1  45% 

Fatty acid/phospholipid synthesis protein, PlsX Bpr_I1576 C N 1.6e-11 6.2 35.8  9% 

Glycerol kinase, GlpK Bpr_I1744 C N 1.0e-30 4.9 55.6  25% 

Glycerophosphoryl diester phosphodiesterase Bpr_I2042 C N 1.3e-05 4.3 27.3  21% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Nucleic acid metabolism         

DNA-binding protein Bpr_I1070 C Y 1.0e-12 11.0 9.7  50% 

DNA-binding protein Bpr_II236 C Y 4.0e-11 11.1 9.6  55% 

DNA-binding protein Bpr_III252 C Y 2.0e-11 11.0 9.9  46% 

DNA-binding protein Bpr_IV068 C Y 1.0e-07 11.1 9.9  13% 

DNA-repair protein, RecN Bpr_I0987 C N 1.3e-05 4.5 62.4  0% 

Nucleotide metabolism         

5-aminoimidazole-4-carboxamide ribonucleotide transformylase Bpr_I0732 C Y 2.0e-10 5.1 44.4  12% 

Adenine phosphoribosyl transferase, Apt Bpr_I1345 C Y 3.9e-11 5.1 19.3  26% 

Adenylate kinase, Adk Bpr_I0615 C N 2.8e-10 5.1 23.8  24% 

Adenylosuccinate lyase, PurB Bpr_I2212 C Y 7.3e-13 5.4 53.7  12% 

GMP synthase, GuaA Bpr_I2780 C N 1.6e-08 5.0 57.3  8% 

Hypoxanthine phosphoribosyltransferase, Hpt Bpr_I2906 C Y 8.3e-14 4.8 19.6  25% 

IMP dehydrogenase, GuaB Bpr_I2437 C Y 3.3e-11 6.0 52.2  11% 

Orotate phosphoribosyltransferase, PyrE1 Bpr_I0863 C Y 1.1e-15 4.7 25.4  32% 

Phosphoribosylamine-glycine ligase, PurD Bpr_I0870 C N 1.3e-09 4.6 46.3  12% 

Phosphoribosylaminoimidazole-succinocarboxamide synthase, PurC Bpr_I1144 C Y 6.1e-12 4.7 33.3  20% 

Purine nucleoside phosphorylase, DeoD2 Bpr_I2948 C Y 1.2e-10 5.1 26.1  37% 

Purine-nucleoside phosphorylase, DeoD1 Bpr_I1527 C Y 1.3e-14 4.6 29.5  59% 

Thymidylate synthase, ThyA Bpr_I2288 C N 6.5e-09 5.8 32.7  6% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Uracil phosphoribosyltransferase, Upp Bpr_I0274 C Y 4.0e-11 6.9 24.1  15% 

Uridine phosphorylase, Udp Bpr_I1561 C N 4.9e-11 5.4 28.1  9% 

Uridylate kinase, PyrH Bpr_I0953 C N 3.3e-13 5.4 25.5  41% 

Plasmid functions         

Single stranded DNA binding protein, Ssb3 Bpr_II423 C N 1.4e-11 4.7 16.3  12% 

Protein fate         

Aminoacyl-histidine dipeptidase, PepD Bpr_I0786 C Y 7.9e-10 4.5 51.7  10% 

Chaperone protein, DnaK Bpr_I2625 C Y 6.8e-14 4.5 66.8  23% 

Chaperone protein, GrpE Bpr_I2626 C N 1.3e-08 4.4 26.2  16% 

Chaperonin, GroEL Bpr_I1193 C Y 1.0e-30 5.0 60.0  46% 

Metallopeptidase M24 family Bpr_I1063 C Y 1.1e-15 4.9 68.6  7% 

Oligoendopeptidase, PepF1 Bpr_I0779 C Y 2.5e-12 4.7 68.9  20% 

Peptidase M18 family Bpr_I1080 C Y 1.9e-09 5.0 54.9  14% 

Peptidase M29 family Bpr_I0866 C N 1.9e-09 4.6 81.1  6% 

Peptidase U62 family Bpr_I2456 C N 3.2e-11 4.8 52.3  13% 

Peptidyl-prolyl cis-trans isomerase cyclophilin-type Bpr_I0739 C Y 1.4e-09 4.5 19.9  51% 

Peptidyl-prolyl cis-trans isomerase FKBP-type Bpr_I1031 C Y 3.3e-12 4.1 33.4  9% 

Trigger factor, Tig Bpr_I2409 C Y 1.1e-15 4.6 54.2  25% 

Tripeptide aminopeptidase, PepT Bpr_I1493 C N 2.4e-13 4.7 45.8  12% 

Table continues         
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Protein synthesis         

Alanyl-tRNA synthetase, AlaS Bpr_I1221 C Y 3.8e-11 5.0 96.5  6% 

Asparaginyl-tRNA synthetase, AsnS Bpr_I2782 C Y 5.4e-11 4.9 53.0  13% 

Aspartyl-tRNA synthetase, AspS Bpr_I0140 C Y 1.7e-10 4.7 69.2  21% 

Endoribonuclease L-PSP Bpr_I2149 C N 7.3e-10 4.4 13.5  41% 

Glutamyl-tRNA synthetase, GltX Bpr_I1497 C Y 4.9e-10 4.8 56.3  8% 

GTP-binding protein, YchF Bpr_I1872 C Y 1.9e-11 4.5 39.9  11% 

Leucyl-tRNA synthetase, LeuS Bpr_I2143 C Y 2.6e-14 5.0 92.4  9% 

Lysyl-tRNA synthetase, LysS Bpr_I2757 C Y 1.5e-13 4.8 59.9  22% 

Methionyl-tRNA synthetase, MetG Bpr_I2807 C Y 5.7e-12 4.9 76.4  16% 

Peptide chain release factor 2, PrfB Bpr_I2321 C Y 3.0e-14 4.4 42.6  9% 

Polyribonucleotide nucleotidyltransferase Bpr_I0975 C Y 1.1e-15 4.9 76.5  37% 

Ribosomal protein L1, RplA Bpr_I2299 C Y 5.9e-14 9.8 24.6  34% 

Ribosomal protein L2, RplB Bpr_I0597 C Y 3.5e-12 11.0 30.4  30% 

Ribosomal protein L3, RplC Bpr_I0594 C Y 3.9e-13 10.6 24.3  38% 

Ribosomal protein L4, RplD Bpr_I0595 C Y 1.6e-07 10.2 22.9  23% 

Ribosomal protein L5, RplE Bpr_I0606 C Y 6.8e-11 9.8 20.4  53% 

Ribosomal protein L6, RplF Bpr_I0609 C Y 2.0e-14 10.3 19.4  43% 

Ribosomal protein L7/L12, RplL Bpr_I2370 C Y 1.1e-09 4.5 13.0  30% 

Ribosomal protein L11, RplK Bpr_I2300 C Y 1.0e-30 10.3 14.9  21% 

Table continues         
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Ribosomal protein L13, RplM Bpr_I0630 C Y 7.7e-12 9.9 16.2  47% 

Ribosomal protein L14, RplN Bpr_I0604 C N 3.8e-06 10.8 13.4  44% 

Ribosomal protein L15, RplO Bpr_I0613 C Y 2.6e-09 11.0 15.6  18% 

Ribosomal protein L17, RplQ Bpr_I0624 C Y 8.3e-06 10.7 20.3  7% 

Ribosomal protein L18, RplR Bpr_I0610 C Y 1.2e-12 10.5 13.5  13% 

Ribosomal protein L20, RplT Bpr_I0785 C Y 8.1e-10 11.9 13.2  24% 

Ribosomal protein L21, RplU Bpr_I1443 C Y 3.3e-08 10.3 11.3  44% 

Ribosomal protein L22, RplV Bpr_I0599 C Y 1.4e-09 10.7 15.1  30% 

Ribosomal protein L23, RplW Bpr_I0596 C Y 3.5e-09 10.4 11.1  30% 

Ribosomal protein L29, RpmC Bpr_I0602 C Y 2.8e-09 10.4 7.9  38% 

Ribosomal protein L31, RpmE Bpr_I1823 C Y 2.3e-10 9.0 7.7  53% 

Ribosomal protein S1, RpsA Bpr_I2035 C Y 1.0e-30 4.6 41.9  50% 

Ribosomal protein S2, RpsB Bpr_I1395 C Y 8.6e-07 8.4 27.6  20% 

Ribosomal protein S3, RpsC Bpr_I0600 C Y 4.2e-11 9.6 24.6  22% 

Ribosomal protein S4, RpsD Bpr_I0622 C Y 1.6e-12 10.6 24.1  32% 

Ribosomal protein S5, RpsE Bpr_I0611 C Y 1.7e-09 10.5 17.9  31% 

Ribosomal protein S7, RpsG Bpr_I2366 C Y 6.3e-14 10.5 17.5  60% 

Ribosomal protein S8, RpsH Bpr_I0608 C Y 1.0e-30 10.0 14.5  50% 

Ribosomal protein S9, RpsI Bpr_I0631 C Y 1.9e-10 11.1 15.4  30% 

Ribosomal protein S11, RpsK Bpr_I0621 C Y 3.8e-12 11.6 13.9  31% 

Table continues         
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Ribosomal protein S13, RpsM Bpr_I0620 C N 4.1e-11 11.3 17.6  24% 

Ribosomal protein S15, RpsO Bpr_I0974 C Y 7.5e-12 10.8 10.1  21% 

Ribosomal protein S16, RpsP Bpr_I1565 C Y 5.6e-15 10.7 8.9  40% 

Ribosomal protein S17, RpsQ Bpr_I0603 C Y 2.7e-05 10.8 10.0  13% 

Ribosomal protein S19, RpsS Bpr_I0598 C Y 7.1e-09 11.1 10.6  30% 

Ribosomal protein S20, RpsT Bpr_I2019 C Y 3.7e-11 11.4 9.4  17% 

Ribosome recycling factor, Frr Bpr_I0954 C Y 4.6e-13 6.1 20.9  30% 

RNA binding protein Bpr_I1564 C N 2.4e-07 7.5 8.1  44% 

Seryl-tRNA synthetase, SerS Bpr_I2950 C Y 3.2e-13 5.2 49.3  14% 

Single stranded nucleic acid binding protein Bpr_I2957 C Y 3.8e-13 6.3 28.3  19% 

Threonyl-tRNA synthetase, ThrZ Bpr_I2374 C Y 4.9e-13 5.0 73.7  20% 

Translation elongation factor EF-G-like protein Bpr_I1098 C N 1.1e-16 4.9 77.3  51% 

Translation elongation factor G, FusA Bpr_I2365 C Y 1.4e-15 4.6 78.0  37% 

Translation elongation factor Ts, Tsf Bpr_I1396 C Y 1.1e-15 4.8 34.9  49% 

Translation elongation factor Tu, TufA Bpr_I2364 C Y 1.0e-30 4.8 43.6  73% 

Valyl-tRNA synthetase, ValS Bpr_I2156 C Y 2.4e-14 4.9 102.8  19% 

Regulation         

Anti-sigma factor antagonist Bpr_I0800 C Y 8.4e-07 4.2 10.8  29% 

Arginine repressor, ArgR Bpr_I0986 C N 1.5e-10 4.6 16.7  20% 

Cold shock domain protein, CspD1 Bpr_I2451 C Y 1.0e-30 4.6 7.3  80% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

HTH domain-containing protein Bpr_III238 C N 1.2e-08 4.7 19.7  21% 

Signal transduction         

Hpr kinase/phosphatase, HprK Bpr_I0099 C N 7.1e-12 5.1 35.9  16% 

Phosphocarrier HPr family Bpr_I0104 C Y 2.2e-09 4.8 9.3  27% 

Response regulator domain-containing protein Bpr_I1147 C N 1.9e-09 4.7 29.6  6% 

S-ribosylhomocysteinase, LuxS Bpr_I0033 C Y 9.7e-05 5.0 18.2  23% 

Two-component system response regulator Bpr_I2833 C N 7.4e-07 4.7 27.2  6% 

Transcription         

DNA directed RNA polymerase α-subunit, RpoA Bpr_I0623 C Y 3.3e-15 4.4 35.1  48% 

DNA directed RNA polymerase β-subunit, RpoB Bpr_I2369 C Y 5.9e-14 4.6 145.5  14% 

DNA directed RNA polymerase β'- subunit, RpoC Bpr_I2368 C Y 2.9e-10 6.6 139.3  6% 

RNA polymerase sigma factor sigma-70 family Bpr_I1467 C N 4.3e-08 4.0 29.3  10% 

S1 RNA binding domain-containing protein Bpr_I0204 C Y 4.7e-07 5.8 97.4  5% 

Transcription antitermination factor, NusB Bpr_I0979 C N 3.1e-09 4.3 15.3  27% 

Transcription elongation factor GreA/GreB1 Bpr_I2758 C Y 2.4e-08 4.7 18.1  19% 

Transcription termination/antitermination factor, NusG Bpr_I2301 C Y 9.7e-07 4.4 23.6  11% 

Transporters         

ABC transporter ATP-binding protein Bpr_I1145 C Y 5.3e-04 4.5 61.7  5% 

ABC transporter ATP-binding protein Bpr_I2802 C Y 2.0e-14 6.7 41.1  20% 

ABC transporter permease protein Bpr_I0776 M N 1.5e-11 4.6 131.8  0% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Branched-chain amino acid ABC transporter substrate-binding protein Bpr_I0334 C Y 5.9e-13 4.5 48.5  19% 

Mechanosensitive ion channel protein MscL family Bpr_I1598 M N 1.4e-13 6.5 17.2  10% 

Oligopeptide ABC transporter substrate-binding protein, OppA1 Bpr_I1276 S Y 1.0e-30 4.0 83.1  38% 

Peptide/nickel ABC transporter periplasmic protein Bpr_I2750 S Y 1.1e-13 3.9 57.9  23% 

Peptide/nickel ABC transporter substrate-binding protein Bpr_I1860 S Y 3.5e-12 4.1 58.4  15% 

PTS system HPr phosphocarrier Bpr_I2105 C Y 3.6e-14 4.3 9.3  69% 

PTS system I PEP-phosphotransferase Bpr_I2106 C N 7.9e-13 4.6 62.2  19% 

PTS system IIABC fructose-specific family Bpr_I2104 M Y 4.4e-15 6.8 67.1  9% 

Sugar ABC transporter permease protein Bpr_I0180 M N 1.0e-06 10.1 35.4  5% 

Sugar ABC transporter permease protein Bpr_I2444 M N 9.7e-07 9.8 34.6  5% 

Sugar ABC transporter substrate-binding protein Bpr_I2344 S Y 9.7e-12 3.9 52.3  26% 

Sugar ABC transporter substrate-binding protein Bpr_I0117 S Y 1.0e-30 4.2 68.4  43% 

Sugar ABC transporter substrate-binding protein Bpr_I0182 S Y 1.0e-30 4.1 63.3  66% 

Sugar ABC transporter substrate-binding protein Bpr_I0237 S Y 7.6e-09 3.9 64.8  5% 

Sugar ABC transporter substrate-binding protein Bpr_I0313 S Y 1.0e-30 3.8 55.2  26% 

Sugar ABC transporter substrate-binding protein Bpr_I0937 S Y 4.4e-16 4.1 61.3  54% 

Sugar ABC transporter substrate-binding protein Bpr_I1589 S Y 1.0e-30 3.9 61.1  40% 

Sugar ABC transporter substrate-binding protein Bpr_I1667 S Y 1.0e-30 3.9 47.8  63% 

Sugar ABC transporter substrate-binding protein Bpr_I1720 S Y 1.1e-15 4.0 49.3  48% 

Sugar ABC transporter substrate-binding protein Bpr_I2010 S Y 1.0e-30 3.7 47.3  37% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Sugar ABC transporter substrate-binding protein Bpr_I2264 S Y 1.1e-16 3.9 47.5  29% 

Sugar ABC transporter substrate-binding protein Bpr_I2443 S Y 1.0e-30 4.0 57.0  40% 

Sugar ABC transporter substrate-binding protein Bpr_III244 S Y 1.0e-30 4.1 35.2  60% 

Xylose ABC transporter ATP-binding protein Bpr_I1174 C N 2.7e-13 6.2 57.5  20% 

Xylose ABC transporter substrate-binding protein Bpr_I1173 S Y 1.0e-30 4.2 38.4  56% 

Unknown function         

Acetyltransferase GNAT family Bpr_I0656 C N 1.4e-10 6.7 21.0  31% 

Acetyltransferase GNAT family Bpr_III121 C N 6.6e-11 5.0 30.3  15% 

Acetyltransferase GNAT family Bpr_III122 C N 9.4e-13 6.2 20.1  15% 

Acetyltransferase GNAT family Bpr_III192 C N 2.5e-07 5.4 22.8  14% 

ACT domain-containing protein Bpr_I1609 C Y 3.5e-10 4.5 9.9  16% 

Aminotransferase domain-containing protein Bpr_I1980 C N 7.9e-12 5.5 48.3  11% 

Archaeal ATPase family protein Bpr_I1663 C N 1.2e-06 6.0 53.2  4% 

Bmp family protein Bpr_I1560 S Y 1.5e-11 3.7 40.7  27% 

CoA-binding domain-containing protein Bpr_I1206 C N 1.9e-07 6.7 23.9  11% 

Exopolyphosphatase-related protein Bpr_I1009 C N 7.8e-10 5.0 35.7  23% 

FAD-dependent pyridine nucleotide-disulphide oxidoreductase Bpr_I1742 C N 8.5e-09 5.4 46.2  11% 

HIT domain-containing protein Bpr_I0077 C N 5.2e-13 6.2 14.8  27% 

Hydrolase α/ β-fold family Bpr_I2806 C N 2.2-08 8.6 36.5  16% 

Nonspecific acid phosphatase Bpr_I2643 S N 1.0e-11 4.4 41.3  29% 

Table continues         
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Oxidoreductase aldo/keto reductase family Bpr_I0618 C N 1.2e-10 6.0 38.0  11% 

Oxidoreductase aldo/keto reductase family Bpr_I2938 C Y 7.6e-12 5.2 43.3  18% 

Oxidoreductase NAD-binding domain-containing protein Bpr_I1305 C N 1.4e-10 4.9 31.8  21% 

PilZ domain-containing protein Bpr_I1091 C N 1.7e-11 4.7 13.0  59% 

Pyridoxamine 5'-phosphate oxidase family protein Bpr_I1023 C N 3.6e-09 5.3 15.0  47% 

SAM-dependent methyltransferase Bpr_I0663 C N 1.2e-11 5.0 32.6  22% 

SAM-dependent methyltransferase/acetyltransferase GNAT family Bpr_I2871 C N 3.2e-12 5.2 46.7  7% 

SEC-C domain-containing protein Bpr_I2375 C Y 1.9e-12 4.8 19.4  17% 

SPFH domain/band 7 family protein Bpr_I1185 C N 1.2e-12 5.2 33.8  12% 

SpoVG family protein Bpr_I0292 C N 1.7e-09 4.9 10.9  12% 

Vitamins and cofactors         

Cobalamin biosynthesis protein, CobW1 Bpr_I2021 C Y 2.3e-09 4.4 36.9  6% 

Nicotinate (nicotinamide) nucleotide adenylyltransferase, NadD Bpr_I1438 C N 4.1e-12 6.1 23.0  33% 
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Table B.4. Summary of the non-polysaccharide degrading proteins identified in the B. proteoclasticus cell-associated fraction. 

Protein Locus Location PHX Score pI kDa Pep. Cov. 

Amino acid biosynthesis         

Branched-chain amino acid aminotransferase, IlvE Bpr_I1650 C N 1.2E-07 5.2 39.2  24% 

Cysteine synthase, CysK Bpr_I1089 C N 1.5E-19 5.0 32.3  63% 

Diaminopimelate dehydrogenase Bpr_I0298 C Y 2288 5.6 35.8  35% 

Glu/Leu/Phe/Val dehydrogenase Bpr_I2129 C Y 9.6E-12 5.4 48.6  43% 

Phosphoserine aminotransferase, SerC Bpr_I1341 C N 4.8E-11 5.0 40.1  52% 

Carbohydrate metabolism         

2,3-bisphosphoglycerate-independent phosphoglycerate mutase, GpmA Bpr_I1294 C Y 1131 4.7 56.5  21% 

Aldose 1-epimerase Bpr_I0228 C N 3.8E-09 4.8 38.3  34% 

Endo-1,4-β-xylanase, Xyn10B Bpr_I0026 S Y 4.8e-13 4.3 136.9  31% 

Fructose-1,6-bisphosphate aldolase, FbaA Bpr_I2903 C Y 4172 5.1 30.5  60% 

Glucose-6-phosphate isomerase, Gpi Bpr_I0035 C Y 7.6E-12 5.0 57.1  41% 

Glyceraldehyde-3-phosphate dehydrogenase, Gap Bpr_I2050 C Y 1159 5.7 36.9  22% 

Lactaldehyde reductase, FucO Bpr_I2065 C Y 9.6E-10 4.7 41.2  41% 

Phosphoenolpyruvate carboxykinase, PckA Bpr_I0091 C Y 1479 4.9 59.5  25% 

Transketolase subunit A, TktA3 Bpr_I2813 C Y 1.6E-05 5.4 30.0  26% 

Triosephosphate isomerase, TpiA Bpr_I2048 C Y 7.6E-15 4.6 26.8  47% 

UDP-galactose 4-epimerase, GalE Bpr_I0192 C Y 1.5E-08 5.2 37.2  38% 

Xylosidase/arabinofuranosidase, Xsa43J Bpr_I2935 S Y 1.9e-07 4.2 251.9  9% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Xylulokinase, XylB Bpr_I0173 C Y 1.0E-05 4.9 53.7  17% 

Cell envelope         

NAD-dependent epimerase/dehydratase Bpr_I2537 C Y 340 4.7 36.0  16% 

Central metabolism         

Agmatine deiminase, AguA Bpr_I1200 C N 1018 4.2 49.5  15% 

Energy metabolism         

Aconitate hydratase, AcnA Bpr_I2797 C N 6.1E-14 5.3 82.7  36% 

Butyrate kinase, Buk Bpr_I2323 C Y 2.4E-15 5.1 38.7  55% 

Crotonase, Crt Bpr_I2487 C Y 6726 4.7 28.0  51% 

Electron transfer flavoprotein α-subunit, EtfA Bpr_I2483 C Y 653 4.8 37.4  17% 

Phosphate acetyltransferase, Pta Bpr_III011 C Y 581 5.2 14.4  32% 

Phosphate butyryltransferase, Ptb Bpr_I2324 C Y 9.4E-06 5.1 33.3  38% 

Pyruvate phosphate dikinase, PpdK Bpr_I1154 C Y 1.2E-15 4.8 104.3  20% 

Thiolase, ThlA1 Bpr_I2488 C Y 3815 5.0 42.0  32% 

Hypothetical         

Hypothetical protein Bpr_I2329 C Y 1910 4.7 23.5  43% 

Hypothetical protein Bpr_I2455 C N 2.4E-11 4.7 47.7  34% 

Hypothetical protein Bpr_I2583 S Y 9.6E-15 4.3 44.3  46% 

Hypothetical protein Bpr_I2744 C N 748 4.8 28.5  26% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Lipid metabolism         

3-oxoacyl-(acyl-carrier-protein) synthase, FabF Bpr_I1268 C N 1187 5.3 44.5  16% 

Nucleotide metabolism         

Phosphoribosylamine-glycine ligase, PurD Bpr_I0870 C N 2.4E-07 4.6 46.3  29% 

Purine-nucleoside phosphorylase, DeoD1 Bpr_I1527 C Y 998 4.6 29.5  25% 

Protein fate         

Chaperone protein, DnaK Bpr_I2625 C Y 875 4.5 66.8  13% 

Protein synthesis         

Ribosomal protein S1, RpsA Bpr_I2035 C Y 6.9E-07 4.6 41.9  30% 

Translation elongation factor EF-G-like protein Bpr_I1098 C N 7.6E-12 4.9 77.3  27% 

Translation elongation factor G, FusA Bpr_I2365 C Y 3.8E-21 4.6 78.0  39% 

Translation elongation factor Ts, Tsf Bpr_I1396 C Y 1078 4.8 34.9  26% 

Translation elongation factor Tu, TufA Bpr_I2364 C Y 9.6E-12 4.8 43.6  54% 

Transporters         

ABC transporter ATP-binding protein Bpr_I2802 C Y 1698 6.7 41.1  17% 

Oligopeptide ABC transporter substrate-binding protein, OppA1 Bpr_I1276 S Y 6.1E-21 4.0 83.1  40% 

Peptide/nickel ABC transporter periplasmic protein Bpr_I2750 S Y 1883 3.9 57.9  19% 

Sugar ABC transporter substrate-binding protein Bpr_I2344 S Y 2.4E-09 3.9 52.3  19% 

Sugar ABC transporter substrate-binding protein Bpr_I0117 S Y 2478 4.2 68.4  20% 

Sugar ABC transporter substrate-binding protein Bpr_I0182 S Y 8045 4.1 63.3  46% 

Table continues        
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Protein Locus Location PHX Score pI kDa Pep. Cov. 

Sugar ABC transporter substrate-binding protein Bpr_I0937 S Y 3.0E-10 4.1 61.3  33% 

Sugar ABC transporter substrate-binding protein Bpr_I1589 S Y 3103 3.9 61.1  33% 

Sugar ABC transporter substrate-binding protein Bpr_I1667 S Y 1504 3.9 47.8  20% 

Sugar ABC transporter substrate-binding protein Bpr_I1720 S Y 6565 4.0 49.3  31% 

Sugar ABC transporter substrate-binding protein Bpr_I2010 S Y 3478 3.7 47.3  35% 

Sugar ABC transporter substrate-binding protein Bpr_I2443 S Y 1.2E-06 4.0 57.0  29% 

Sugar ABC transporter substrate-binding protein Bpr_III244 S Y 8046 4.1 35.2  50% 
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Table B.5. BLASTp analysis of the differentially abundant proteins detected in the mid-log phase B. proteoclasticus cytosol by 2-DE. 

Spot B. proteoclasticus protein Locus Homologue
a Organism

b gi Expect
c Identity Region

d 

C853 Adenylosuccinate lyase, PurB Bpr_I2212 Adenylosuccinate lyase 
Ruminococcus sp. 

SR1/5 
291548168 1e-180 83% 1-477 

C1135 
Amino acid ABC transporter substrate-
binding protein 

Bpr_I1826 
Amino acid ABC transporter, 

periplasmic amino acid-binding 

protein 

Faecalibacterium 
prausnitzii A2-165 

257438674 1e-82 62% 62-295 

C1010 

Anti-sigma factor 
antagonist/phosphotransferase domain-

containing protein 

Bpr_I0249 STAS domain-containing protein 
Prevotella ruminicola 

23 
294673555 1e-41 27% 20-430 

Ribosomal protein S1, RpsA Bpr_I2035 
4-hydroxy-3-methylbut-2-enyl 

diphosphate reductase 

Roseburia intestinalis 

L1-82 
240146046 1e-160 76% 1-356 

C654 
DNA-directed RNA polymerase  

subunit, RpoA 
Bpr_I0623 

DNA-directed RNA polymerase, 
alpha subunit 

Clostridium hathewayi 
DSM 13479 

288870169 1e-155 87% 1-313 

C837 
Fructose-1,6-bisphosphate aldolase, 

FbaA 
Bpr_I2903 

Fructose-1,6-bisphosphate aldolase, 

class II, various bacterial and 

amitochondriate protist 

Coprococcus sp. 

ART55/1 
295094301 4e-149 89% 1-287 

C733 IMP cyclohydrolase, PurO Bpr_I0731 IMP cyclohydrolase-like protein. 
Roseburia intestinalis 
XB6B4 Length=242 

291539658 2e-107 77% 48-286 

C733 Translation elongation factor Tu, TufA Bpr_I2364 
Translation elongation factor 1A 

(EF-1A/EF-Tu) 
Butyrate-producing 

bacterium SS3/4 
291562252 1e-180 82% 1-396 

C792 
NADPH-dependent glutamate synthase, 
GltA3 

Bpr_I1306 
Glutamate synthase (NADPH), 

homotetrameric 
Ruminococcus torques 

L2-14 
291550425 1e-180 80% 2-461 

C637 Pullulanase, Pul13A Bpr_III161 Pullulanase 
Butyrivibrio crossotus 

DSM 2876 
260438049 1e-180 46% 1-869 

Table continues         



 

 

3
2
4
 

Spot B. proteoclasticus protein Locus Homologue
a Organism

b gi Expect
c Identity Region

d 

C709 Ribosomal protein S1, RpsA Bpr_I2035 
4-hydroxy-3-methylbut-2-enyl 

diphosphate reductase 
Roseburia intestinalis 

L1-82 
240146046 1e-160 76% 1-356 

C1072 Serine protease subtilisin family Bpr_I2629 
Bacterial Ig-like domain (group 

2)./Subtilase family. 
Butyrivibrio 

fibrisolvens 16/4 
291519087 1e-180 62% 1-1347 

C1027 Xylosidase/arabinofuran-osidase, Xsa43E Bpr_I2319 
Carbohydrate-binding family 6 

protein 

Clostridium 
thermocellum ATCC 

27405 

125974681 3e-107 65% 11-303 

 
a BLASTp top ranked homologous protein. 
b Organism that expresses the BLASTp top ranked homologous protein. 
c Expectation score is the statistical probability of the top ranked protein match being a false positive identification, p < 0.05. 

d Values denote the first and last residues of the homologous region of the identified in B. proteoclasticus protein. 
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Table B.6. BLASTp analysis of the differentially abundant proteins detected in the stationary phase B. proteoclasticus cytosol by 2-DE. 

Spot B. proteoclasticus protein Locus Homologue
a Organism

b gi Expect Identity Region 

C1135 Amino acid ABC transporter SBP Bpr_I1826 
Amino acid ABC transporter, periplasmic 

amino acid-binding protein 
Faecalibacterium 
prausnitzii A2-165 

257438674 1e-82 62% 62-295 

C1120 

-Galactosidase, Bga35A Bpr_I2006 Galactosidase 
Cellulosilyticum 

ruminicola 
280977827 1e-180 52% 12-733 

-xylosidase, Xyl3A Bpr_I0184 
Glycoside hydrolase, family 3 domain-

containing protein 
Ruminococcus sp. 

5_1_39B_FAA 
253579611 1e-180 63% 3-707 

C704 

Peptidase Bpr_I2455 Peptidase U62 modulator of DNA gyrase 
Clostridium 

carboxidivorans P7 
255526201 4e-52 33% 1-422 

Phosphoribosylamine-glycine 

ligase, PurD 
Bpr_I0870 Phosphoribosylamine-glycine ligase 

Butyrivibrio crossotus 

DSM 2876 
260437894 1e-180 81% 1-423 

C784 Peptidase Bpr_I2456 Zn-dependent protease, TldD 
Clostridium 

acetobutylicum ATCC 

824 

15893521 2e-122 51% 1-477 

C601 
Oligopeptide ABC transporter 
SBP, OppA1 

Bpr_I1276 Hypothetical protein  
Roseburia inulinivorans 

DSM 16841 
225375060 1e-180 54% 1-757 

C1057 
Sugar (D-xylose) ABC 
transporter SBP 

Bpr_I1173 
Putative solute-binding component of 

ABC transporter 
Clostridium 

phytofermentans ISDg 
160879730 4e-161 68% 19-359 

C785 

Xylulokinase, XylB1 Bpr_I0173 Xylulokinase 
Roseburia intestinalis L1-

82 
240146123 1e-180 76% 1-489 

Aminotransferase, 
DegT/DnrJ/EryC1/StrS family 

Bpr_I2311 DegT/DnrJ/EryC1/StrS aminotransferase 
Clostridium 

saccharolyticum WM1 
302384934 1e-179 64% 8-453 

 
a BLASTp top ranked homologous protein. 
b
 Organism that expresses the BLASTp top ranked homologous protein. 
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Table B.7. BLASTp analysis of the differentially abundant proteins detected in the mid-log phase B. proteoclasticus cytosol by 1-D LC-MS/MS. 

B. proteoclasticus protein Locus Homologue Organism gi Expect Identity Region 

ATP synthase F1  subunit, ATP D2 Bpr_I1162 ATP synthase F1, β-subunit Clostridium sp. M62/1 283795522 1e-180 82% 1-469 

-Xylosidase Xyl3A Bpr_I0184 
Glycoside hydrolase, family 3 

domain-containing protein 
Ruminococcus sp. 

5_1_39B_FAA 
253579611 1e-180 63% 3-707 

Bmp family protein Bpr_I1560 Nucleoside-binding protein 
Butyrivibrio 

fibrisolvens 16/4 
291519926 3e-154 79% 50-393 

DNA-binding protein Bpr_II236 DNA-binding protein 
Butyrivibrio 

proteoclasticus B316 
302670433 6e-35 86% 1-92 

DNA-directed RNA polymerase subunit, 

RpoA 
Bpr_I0623 

DNA-directed RNA polymerase, 

α-subunit 

Clostridium hathewayi 

DSM 13479 
288870169 1e-155 87% 1-313 

Fatty acid/phospholipid synthesis protein, 

PlsX 
Bpr_I1576 

Phosphate:acyl-(acyl carrier 

protein) acyltransferase 

Ruminococcus torques 

L2-14 
291550075 1e-135 70% 1-334 

Orotate phosphoribosyl-transferase, PyrE1 Bpr_I0863 Orotate phosphoribosyltransferase 
Clostridium cf. 

saccharolyticum K10 
295091343 2e-95 76% 1-225 

PTS system HPr phosphocarrier Bpr_I2105 
Phosphotransferase System HPr 

(HPr) Family 
Butyrivibrio 

fibrisolvens 16/4 
291518288 4e-30 73% 1-87 

Sugar ABC transporter SBP Bpr_I1720 
Extracellular solute-binding 

protein family 1 
Acetivibrio 

cellulolyticus CD2 
302592083 5e-69 34% 1-455 

Sugar ABC transporter SBP Bpr_I2443 
Extracellular solute-binding 

protein family 1 

Clostridium 
lentocellum DSM 

5427 

296441832 1e-40 30% 1-522 

Sugar ABC transporter SBP Bpr_I2264 
Extracellular solute-binding 

protein, family 1 
Ruminococcus sp. 

5_1_39B_FAA 
253579691 6e-120 49% 1-441 

Table continues         
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B. proteoclasticus protein Locus Homologue Organism gi Expect Identity Region 

Sugar ABC transporter SBP Bpr_I0117 
Putative bacterial extracellular 

solute-binding protein 
Roseburia intestinalis 

L1-82 
240144557 1e-166 48% 25-617 

Sugar ABC transporter SBP Bpr_I1667 
Bacterial extracellular solute-

binding protein 
Turicibacter sp. 

PC909 
293376212 6e-58 34% 3-419 

Xylose ABC transporter ATP-binding 

protein  
Bpr_I1174 

D-xylose ABC transporter, ATP-

binding protein 

Bryantella 

formatexigens DSM 

14469 

255505494 1e-180 80% 1-509 
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Appendix C  

 

Figure C.1. Cel5C sequence coverage of tryptic peptides extracted from spot 1 (A) 

and spot 2 (B). Note the absence of peptides matching to the N- of C-terminus of the 

full length protein sequence in both identifications.  

A 
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Figure C.2. MASCOT summary of MALDI-TOF Pme8B identification (A) and 

peptide sequence coverage (B) of protein extracted from spot 7.  

A 

B 
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Figure C.3. MASCOT summary of MALDI-TOF Pel1A identification (A) and 

peptide sequence coverage (B) of protein extracted from spot 6.  

A 

B 


