
Randomness and
Computability

by

Adam Richard Day

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the requirements for the degree of

Doctor of Philosophy

Victoria University of Wellington
2011

This thesis is dedicated to Heather.

Abstract
This thesis establishes significant new results in the area of algorithmic ran-
domness. These results elucidate the deep relationship between randomness
and computability.

A number of results focus on randomness for finite strings. Levin intro-
duced two functions which measure the randomness of finite strings. One
function is derived from a universal monotone machine and the other func-
tion is derived from an optimal computably enumerable semimeasure. Gács
proved that infinitely often, the gap between these two functions exceeds the
inverse Ackermann function (applied to string length). This thesis improves
this result to show that infinitely often the difference between these two func-
tions exceeds the double logarithm. Another separation result is proved for
two different kinds of process machine.

Information about the randomness of finite strings can be used as a com-
putational resource. This information is contained in the overgraph. Much-
nik and Positselsky asked whether there exists an optimal monotone machine
whose overgraph is not truth-table complete. This question is answered in the
negative. Related results are also established.

This thesis makes advances in the theory of randomness for infinite binary
sequences. A variant of process machines is used to characterise computable
randomness, Schnorr randomness and weak randomness. This result is ex-
tended to give characterisations of these types of randomness using truth-
table reducibility. The computable Lipschitz reducibility measures both the
relative randomness and the relative computational power of real numbers. It
is proved that the computable Lipschitz degrees of computably enumerable
sets are not dense.

Infinite binary sequences can be regarded as elements of Cantor space.
Most research in randomness for Cantor space has been conducted using the
uniform measure. However, the study of non-computable measures has led to
interesting results. This thesis shows that the two approaches that have been
used to define randomness on Cantor space for non-computable measures:
that of Reimann and Slaman, along with the uniform test approach first in-
troduced by Levin and also used by Gács, Hoyrup and Rojas, are equivalent.
Levin established the existence of probability measures for which all infinite

sequences are random. These measures are termed neutral measures. It is
shown that every PA degree computes a neutral measure. Work of Miller is
used to show that the set of atoms of a neutral measure is a countable Scott set
and in fact any countable Scott set is the set of atoms of some neutral measure.
Neutral measures are used to prove new results in computability theory. For
example, it is shown that the low computable enumerable sets are precisely
the computably enumerable sets bounded by PA degrees strictly below the
halting problem.

This thesis applies ideas developed in the study of randomness to com-
putability theory by examining indifferent sets for comeager classes in Cantor
space. A number of results are proved. For example, it is shown that there
exist 1-generic sets that can compute their own indifferent sets.

Acknowledgments

Foremost thanks go to my wife Heather Day and my supervisor Rod Downey.
Heather has provided me with amazing love and support throughout this
long and frugal undertaking. Rod has been immensely generous. He has not
just supervised this thesis but he has tried to teach me how to be a mathemati-
cian and I could not wish for better tuition.

Noam Greenberg has assisted the supervision of this thesis. Not only has
Noam improved the quality of this thesis, he has made the production of it
much more fun. The same can be said for my co-authors: Joseph Miller and
Jan Reimann.

I would like to thank Péter Gács for his interest in, and comments on, re-
sults in this thesis. I also appreciate the work of the anonymous reviewers of
the published material in this thesis who have made many useful comments.
I thank Ian Haken for alerting me to an error in an early draft.

The postdocs and students at Victoria have provided a simulating environ-
ment in which to conduct research and I would like to thank: George Barm-
palias, Laurent Bienvenu, Paul Brodhead, Andrew Fitzgerald, Asher Kach,
Keng Meng Ng and Dan Turetsky.

I greatly benefited from traveling to France, Germany, Singapore and the
U.S.A. during the course of this thesis. This was assisted by generous sup-
port from various institutions and individuals for which I would like to
thank: Laurent Bienvenu, Mingzhong Cai, Peter Cholak, Chi Tat Chong, Denis
Hirschfeldt, Steffen Lempp, Wolfgang Merkle, Joseph Miller, André Nies, Jan
Reimann, Alexander Shen, Richard Shore, Steve Simpson, Bob Soare, Klaus
Ambos-Spies, and Yue Yang.

One pleasure of this thesis has been meeting and discussing mathematics
with a wide range of people working in algorithmic randomness and related
fields. In addition to those mentioned above, I would like to thank Eric Allen-
der, David Diamondstone, Johanna Franklin, Rupert Hölzl, Greg Igusa, Ted
Slaman, Nikolai Vereshchagin, Paul Vitányi, Guohua Wu, Liang Yu, and the
students and teachers at the 2010 Singapore Summer School.

The School of Mathematics, Statistics and Operations Research has been

vi

very helpful for which I particularly thank the Head of School Megan Clark.
Thanks also go to the School Manager, Ginny Whatarau, and the school ad-
ministrative staff for minimising the administrative burden of undertaking
this thesis. The Tertiary Education Commission has been the primary funder
of this thesis through one of their last Top Achiever Doctoral Scholarships.
The Victoria University Scholarships Office has ably administered this schol-
arship and special thanks go to the always helpful and proficient Barry Lewis.
Additional funding was provided by Victoria University through a Faculty
Strategic Grant and a Postgraduate Research Excellence Award.

Finally I would like to thank my parents, for everything.

Contents

1 Introduction 1

1.1 Summary . 1

1.2 Conventions and background . 7

I Randomness and Computability for Finite Strings 13

2 Varieties of Kolmogorov Complexity 15

2.1 Descriptive complexities . 15

2.2 Algorithmic probability . 20

2.3 Relationship between complexities 22

2.4 Initial segment complexity . 24

3 Process Complexity 27

3.1 Strict process complexity and process complexity 27

3.2 Process complexity is not subadditive 33

4 Difference in Monotone Complexities 37

4.1 Overview . 37

4.2 Examining the domain of U . 43

4.3 The main algorithm . 45

4.4 Verification of algorithm . 54

4.5 A lower bound on the difference 63

5 The Computational Power of Random Strings 67

5.1 Overview . 67

5.2 The overgraph of optimal monotone machines 69

5.3 Strict process complexity . 81

5.4 Open questions . 89

viii CONTENTS

II Randomness and Computability in Cantor Space 91

6 Characterisations of Randomness 93
6.1 Overview . 93
6.2 Quick process machines and randomness 95
6.3 Quick process machines and truth-table functionals 106

7 Non-Computable Measures 109
(with J. Miller)
7.1 Defining randomness . 109
7.2 Probability measures . 112
7.3 Neutral measures . 117
7.4 Locating neutral measures . 121
7.5 Open questions . 127

8 Relative Randomness and PA Degrees 129
(with J. Reimann)
8.1 Independence and relative randomness 129
8.2 Computably enumerable sets and PA degrees 136

9 Computable Lipschitz Reducibility 139
9.1 Overview . 139
9.2 Proof strategy . 141
9.3 Diagonalisation intervals and blocks 147
9.4 Basic algorithm . 153
9.5 The priority tree . 156
9.6 Construction . 159
9.7 Verification . 162

10 Indifferent Sets for Comeager Classes 167
10.1 Overview . 167
10.2 Background and notation . 169
10.3 Universal indifferent sets . 172
10.4 Indifference and 1-genericity . 175
10.5 Sparsity of indifferent sets . 178
10.6 1-generic sets that compute their own indifferent sets 179
10.7 Indifferent sets for weakly 1-generic sets 194
10.8 Open questions . 198

Chapter 1

Introduction

1.1 Summary

This thesis continues an area of research, termed algorithmic randomness,
that began in the 1960s and has seen significant interest in the last decade.
The central tenet of this research area is that a precise mathematical definition
of randomness can be given using computability theory. The main theme of
this thesis is the deep interplay between algorithmic randomness and classical
computability theory. While the field of algorithmic randomness was estab-
lished by using computability theory to define randomness, recent research
has used ideas and results from the study of algorithmic randomness to fur-
ther develop computability theory.1 This thesis makes a number of advances.
It uncovers new facts about the relationship between different Kolmogorov
complexities and how they can be used to characterise random sequences.
Random strings are regularly used in algorithm design and this thesis solves
a question related to the computational power of these strings. It also pro-
vides a solid basis for studying randomness for non-computable probability
measures by unifying and extending previous work on this topic. Addition-
ally, this thesis uses results and ideas from algorithmic randomness to prove
new theorems in classical computability theory, particularly in the study of
1-generic and weakly 1-generic sequences.

To understand how algorithmic randomness differs from probability the-
ory, consider the set of binary strings of length 20. If an element of this set is
selected by flipping a fair coin 20 times, then probability theory tells us that
each string is equally likely to occur. However, it does not tell us anything
about the intrinsic randomness of the strings themselves. The string

00000000000000000000,

1For example, Downey and Greenberg have used ideas in algorithmic randomness to
prove that there is a CEA operator that does not avoid upper cones.

2 CHAPTER 1. INTRODUCTION

certainly seems less random than the following string, which was obtained by
coin flips,

11111010110101110010.

Research in algorithmic randomness is motivated by a desire to under-
stand when an object, e.g. a finite binary string or an infinite binary sequence,
can be called random. In the case of infinite binary sequences, one approach
is to consider a sequence to be random if it obeys standard statistical laws.
For example, consider the law of large numbers. If we flip a fair coin repeat-
edly then as a consequence of this law, the ratio of heads to tails should tend
to 1 as the number of coin flips increases. Hence it is reasonable to expect
a random infinite binary sequence to have this property. In 1919, von Mises
suggested calling a sequence random if it obeys the law of large numbers, and
additionally, the law of large numbers holds for certain subsequences as well
[90]. However, von Mises was not specific about which subsequences should
be considered and it would take the development of the field of computability
theory to provide a sensible answer to this question.

In the late 1930s, Church and Turing independently solved the Entschei-
dungsproblem posed by Hilbert [18, 19, 85, 86].2 They showed that there was
no algorithm that could be used to determine the truth or falsity of any state-
ment in arithmetic. An essential component of resolving Hilbert’s problem
was to provide a mathematically robust definition of an algorithm. Turing
resolved this problem by defining an abstract computing device, the Turing
machine, and defining an algorithm to be any function computable on such a
machine. Church’s approach used a mathematically equivalent definition of
an algorithm. One outcome of this work was the proof of the existence of a
universal partial computable function.

Church suggested adapting von Mises’s approach and calling an infinite
binary sequence random if all its partial computable subsequences obeyed the
law of large numbers [20]. These sequences are now termed Church stochastic.
Ville showed that Church stochastic sequences exist which do not obey other
standard statistical tests such as the law of the iterated logarithm [89].

The question of which statistical tests to use in the definition of a random
sequence was resolved by Martin-Löf. Martin-Löf used partial computable
functions to generalise the notion of a statistical test [63]. A Martin-Löf test is
a type of computable null set. For example, those sequences that fail to obey
the law of large numbers can be captured in a Martin-Löf test. He defined
a random sequence as one that was not contained in any such test. These

2Entscheidungsproblem is German for ‘decision problem.’

1.1. SUMMARY 3

sequences are called Martin-Löf random sequences.3

Contemporary with Martin-Löf, and within quick succession of one an-
other, Solomonoff, Kolmogorov and Chaitin realised that a universal partial
computable function could be used to quantify the information content of a
finite binary string [14, 15, 46, 84]. This led to the identification of the ran-
dom strings as those strings with maximal information content. The intuition
behind this idea is that random strings are incompressible. We will term the
functions that quantify the information content of binary strings Kolmogorov
complexities.

Early researchers in this area saw the connection between this approach
and that of Martin-Löf. An early question was whether Kolmogorov com-
plexity could be used to characterise Martin-Löf random sequences. Levin
and Schnorr independently gave a positive answer to this question [55, 80].

The last decade has seen a significant upsurge in work in algorithmic ran-
domness initiated by papers of Calude, Coles, Hertling, Khoussainov and
Wang [12, 13]. This work has led to major developments both in the underly-
ing theory of randomness and also in applications to other areas of mathemat-
ics. The success of recent research in this area can be seen by the fact that two
extensive treatises on this subject have recently been published: Randomness
and Computability by Nies in 2009, and Algorithmic Randomness and Complexity
by Downey and Hirschfeldt in 2010.

In Part I of this thesis we investigate the relationship between randomness
and computability for finite strings. In Chapter 2 we will see that there are
many different types of Kolmogorov complexities. Two of these complexities,
plain complexity and prefix-free complexity, have been extensively studied.
However, we pay particular attention to some of the less well-known varieties.
What these other varieties have in common is that they are all based on con-
tinuous transformations. Hence we will term these continuous Kolmogorov
complexities. These continuous Kolmogorov complexities have been less well
studied, partly because they are technically more difficult to make use of. Nev-
ertheless, the close link between continuous Kolmogorov complexities and
measures means that these complexities are well suited for studying random-
ness.

Process machines are computable functions which preserve the natural
partial ordering on finite strings. Chapter 2 draws a distinction between two
definitions of process machine that exist in the literature. In Chapter 3 we take
a closer look at the complexity measures generated by the different types of

3We will provide precise definitions of all terms used in this section in Section 1.2 and
Chapter 2.

4 CHAPTER 1. INTRODUCTION

process machine. We prove that these two definitions of process machine give
rise to two different continuous Kolmogorov complexities.

A fundamental question to ask about any Kolmogorov complexity mea-
sure is whether or not it is subadditive. A Kolmogorov complexity is subaddi-
tive if for any pair of finite binary strings σ and τ , the complexity of the string
σ concatenated with τ is less than the sum of the complexities of σ and τ plus
some fixed constant. In Chapter 3 we also show that neither of these process
complexities is subadditive. The work in Chapter 3 has been published in the
Chicago Journal of Theoretical Computer Science [24].

Levin introduced two types of continuous Kolmogorov complexities [55].
One of these complexities,Km, is an application of the idea that the complexity
of a string can be measured by its shortest description. The other complexity,
KM , has a measure-theoretic definition. These complexities are interesting
because Km is an application of the principle of Occam’s razor, and Levin
observed that KM is a natural candidate for any a priori probability used in
Bayesian statistics. Results about the relationship between these two complex-
ities can also be seen as relating these two philosophical principles.

Levin conjectured that theKm andKM complexities measures might agree
within some additive constant. Gács proved, 25 years ago, that infinitely often,
the gap between these two functions exceeds the inverse Ackermann function
(applied to string length), an extremely slow growing function [36]. In Chap-
ter 4 we adapt and enhance Gács’s techniques to show that infinitely often the
difference exceeds the double logarithm. The work in Chapter 4 has been ac-
cepted for publication in the Transactions of the American Mathematical Society.

There are two fundamental computably enumerable sets associated with
any Kolmogorov complexity. These are the set of non-random strings and the
overgraph. The overgraph of a Kolmogorov complexity is the set of pairs 〈σ, n〉
such that the complexity of the finite string σ does not exceed the natural num-
ber n. Chapter 5 investigates the computational power of these sets. It follows
work of Kummer, Muchnik and Positselsky, and Allender and co-authors. It
is easy to show that both the overgraph and the set of non-random strings
have the same Turing complexity as the halting problem. The main question
is whether this is still true under more refined reductions. Kummer showed
that the set of non-random strings defined by plain Kolmogorov complexity
is truth-table complete [50]. Muchnik proved that for prefix-free Kolmogorov
complexity the set of non-random strings is truth-table complete for some uni-
versal machines and not for others [66]. Allender, Buhrman, Koucký, van
Melkebeek and Ronneburger established a link between sets of non-random
strings and complexity classes. They showed that sets of strings of high Kol-

1.1. SUMMARY 5

mogorov complexity are complete for several complexity classes under prob-
abilistic and non-uniform reductions [2].

Muchnik and Positselsky asked whether there exists an optimal monotone
machine whose overgraph is not truth-table complete [66]. This chapter an-
swers this question in the negative by proving that the overgraph of any con-
tinuous Kolmogorov complexity is truth-table complete. For strict process ma-
chines, it is shown that there is a universal machine whose set of non-random
strings is not truth-table complete. The work in Chapter 5 has been published
in the Annals of Pure and Applied Logic [22].

In Part II we examine randomness and computability in Cantor space. In
Chapter 6 we investigate a type of process machine considered by Levin in
his doctoral dissertation [58]. We call this a quick process machine. We use
quick process machines to provide new and simple Kolmogorov complexity-
based characterisations of computable randomness, Schnorr randomness and
weak randomness. A new technique for building process machines and quick
process machines is presented. This technique is similar to the KC theorem
for prefix-free machines. Using this technique, a method of translating com-
putable martingales to quick process machines is given. This translation forms
the basis for these new randomness characterisations. Quick process ma-
chines are closely linked to truth-table reductions. This relationship allows
us to characterise computable randomness, Schnorr randomness, and weak
randomness purely in terms of truth-table reducibility.

In Chapter 7, which is joint work with Joseph Miller, we examine random-
ness for non-computable probability measures. Different approaches have
been taken to defining randomness for non-computable probability measures.
We will explain the approach of Reimann and Slaman, along with the uniform
test approach first introduced by Levin and also used by Gács, Hoyrup and
Rojas [38, 40, 57, 74, 73]. We will show that these approaches are fundamen-
tally equivalent.

Levin showed that there exist probability measures for which all sequences
are random [57]. Gács termed these neutral measures. We show that every PA
degree computes a neutral measure. We also show that a neutral measure
has no least Turing degree representation and explain why the framework of
the continuous degrees (a substructure of the enumeration degrees studied by
Miller [64]) can be used to determine the computational complexity of neu-
tral measures. This allows us to show that the Turing ideals below neutral
measures are exactly the Scott ideals. This provides us with a complete un-
derstanding of the possible sets of atoms of a neutral measure. One simple
consequence is that every neutral measure has a Martin-Löf random atom.

6 CHAPTER 1. INTRODUCTION

The work in Chapter 7 has been accepted for publication in the Transactions of
the American Mathematical Society.

In Chapter 8, which is joint work with Jan Reimann, we continue our in-
vestigation of randomness for non-computable measures. We examine which
pairs of infinite binary sequences are relatively random with respect to some
probability measure µ such that neither sequence is an atom of µ. We show
that if a computably enumerable set is random with respect to some probabil-
ity measure, and the set is not an atom of the measure, then that computably
enumerable set together with the measure can compute the halting problem.
This has some important implications to classical computability theory. For
example, it is shown that the low computable enumerable sets are precisely
those c.e. sets which are bounded by a set of PA degree strictly below the halt-
ing problem.

A natural question to ask when studying randomness is when is one in-
finite binary sequence more random than another. One possible way of or-
dering sequences according to randomness is given by the computable Lips-
chitz reducibility introduced by Downey, Hirschfeldt and LaForte [31]. This
reducibility links computability and randomness because it measures both rel-
ative randomness and relative computational power. In Chapter 9 we prove
that the computable Lipschitz degrees of computably enumerable sets are not
dense. An immediate corollary is that the Solovay degrees of strongly c.e. reals
are not dense. This is also an important result in terms of classical computabil-
ity theory. Barmpalias and Lewis established that the ordering induced on the
c.e. sets by a stronger reducibility, the identity-bounded Turing reducibility,
is not dense. The orderings induced on the c.e. sets by weaker reducibilities
like weak truth-table reducibility and general Turing reducibility are dense as
shown by Ladner and Sasso, and Sacks respectively [54, 77]. Hence this result
lies at the boundary between where density and non-density hold. The work
in Chapter 9 has been published in the Annals of Pure and Applied Logic [23].

Many results about randomness can be regarded as results about forcing
with closed sets of positive measure. There are many other types of forc-
ing and often analogous results hold. For example, van Lambalgen’s theo-
rem is a measure-theoretic version of a result which holds for Cohen gener-
ics. Figueira, Miller, and Nies showed that given any Martin-Löf random se-
quence X , there is an infinite set I such that no matter how X is changed on
the positions specified by I , the resulting sequence remains Martin-Löf ran-
dom [34]. Such a set I is called an indifferent set. In Chapter 10 we look at
indifferent sets for comeager classes in Cantor space. The comeager classes
were defined by Baire to capture the notion of a topologically large set. This is

1.2. CONVENTIONS AND BACKGROUND 7

an alternative notion of largeness to that provided by measure theory. In par-
ticular, we focus on the comeager classes of 1-generic and weakly 1-generics
sequences.

Some previous results in this area have been established by Jockusch and
Posner [43]. These can be improved using recent work of Cai and Shore [10].
We prove a number of results about indifferent sets for 1-generic sequences
and weakly 1-generic sequences. Some of the results have counterparts in ran-
domness. For example, indifferent sets for 1-generic sequences must be hyper-
immune as is the case with indifferent sets for Martin-Löf random sequences.
However, many results exhibit striking differences. For example, indifferent
sets for Martin-Löf random sequences must compute the halting problem but
there are indifferent sets for 1-generic sequences which are low. Further, we
will show that there exist 1-generic sequences that can compute their own
indifferent sets (the analogous problem for Martin-Löf random sequences re-
mains open). Using a powerful new permitting technique of Downey and
Greenberg [26], we establish that there is a broad class of computably enu-
merable sets that compute such a 1-generic sequence.

1.2 Conventions and background

In this section we will briefly review the basic concepts in computability the-
ory, measure theory and algorithmic randomness that we will make use of.

Computable functions. We take ω = {0, 1, 2, . . .} to be the set of natural num-
bers. Given A ⊆ ω, we will regularly equate A with its characteristic function
writing A(x) = 1 if x ∈ A and A(x) = 0 if x 6∈ A. We call a partial function
f : ω → ω computable if there is some Turing machine that on input n halts if
and only if f(n) is defined, and further if the Turing machine halts, it does so
with output f(n). There exists a universal Turing machine. This provides us
with a computable enumeration of all partial computable functions:

ϕ0, ϕ1, ϕ2,

We will write ϕe(x) ↓ if the eth Turing machine halts on input x and ϕe(x) ↑
otherwise. We call A ⊆ ω computable enumerable, or c.e., if A is the range of
a total computable function. The most natural c.e. set is {e ∈ ω : ϕe(e) ↓}. This
is known as the halting problem and it is denoted ∅′.

Relative computational power. Turing machines can also be used to deter-
mine the relative computational power of sets. An oracle Turing machine is

8 CHAPTER 1. INTRODUCTION

a Turing machine with an additional infinite read-only input tape. There is a
universal oracle Turing machine which provides us with a computable enu-
meration Φ0,Φ1, . . . of all oracle Turing machines. If X ⊆ ω, we will write
ΦX
e (z) to denote the result of the computation of the eth oracle Turing machine

with input z and oracle X written on the input tape. If for all z, ΦX
e (z) halts

and ΦX
e (z) ∈ {0, 1} then we will equate ΦX

e with the set {z ∈ ω : ΦX
e (z) = 1}.

At times we will write Φe(X; z) and Φe(X) for ΦX
e (z) and ΦX

e respectively. We
will use the following types of computational reducibility.

(i). Turing reducibility: A ≤T B if there is an oracle Turing machine Φ such
that ΦB = A.

(ii). Weak truth-table reducibility: A ≤wtt B if there is an oracle Turing machine
Φ such that ΦB = A, and a computable function ϕ(n) such that the com-
putation of ΦB(n) only makes queries of the oracle B for values less than
or equal to ϕ(n).

(iii). Truth-table reducibility: A ≤tt B if there is an oracle Turing machine Φ

such that ΦB = A and ΦC is total for any oracle C.

We can define a degree structure on the subsets of ω using any of these re-
ducibilities. For example, we say A ≡T B if A ≤T B and B ≤T A. We define
the Turing degree of A to be deg(A) = {B : A ≡T B}. The class of all Tur-
ing degrees is a partially ordered set under ≤T where deg(A) ≤T deg(B) is
defined to hold if A ≤T B. If we only consider those degrees that have a
computably enumerable member, then we can talk about the Turing degrees
of c.e. sets. Similarly we can also talk about the weak truth-table degrees or
the truth-table degrees. Given A ⊆ ω, we define the Turing jump of A to be
the set A′ = {e ∈ ω : ΦA

e (e) ↓}. We can also relativise the definition of com-
putable enumerability. We call a set X c.e. in A if X is the range of a total
A-computable function i.e. the range of ΦA

e for some e. The Shoenfield Limit
Lemma tells us that if A ⊆ ω, then A ≤T ∅′ if and only if then there is a total
computable function f : ω × ω → {0, 1} such that for all x, lims f(x, s) exists
and A(x) = lims f(x, s). The function f is called a computable approximation
to A. If A is c.e. then A has a computable approximation f such that for all x
and s, if f(x, s) = 1 then f(x, s+ 1) = 1. The c.e. sets are also known as Σ0

1 sets,
and the sets Turing below ∅′ are also known as ∆0

2 sets due to the fact these are
characterisations of these levels of the arithmetic hierarchy.

Sequences and strings. We will denote the set of binary strings of length
n by {0, 1}n and we will take 2<ω to be the set of all finite binary strings. The

1.2. CONVENTIONS AND BACKGROUND 9

relation� on 2<ω×2<ω is defined by σ � τ if σ is an initial segment of τ . We say
σ ≺ τ if σ � τ and σ 6= τ . The relations � and � are defined to be the inverse
relations of � and ≺ respectively. If σ � τ or τ � σ then σ and τ are said to be
comparable. This will be written σ ≈ τ . Otherwise, σ and τ are incomparable
and this will be written σ | τ . The empty string will be represented by λ. If
σ ∈ 2<ω, let |σ| be the length of σ and if i ∈ ω with 0 ≤ i < |σ| let σ(i) be the
ith bit of σ. The operation of appending a string τ to the end of a finite string
σ, will be represented by στ . We will take 〈.〉 : 2<ω → ω to be the bijection
that maps λ, 0, 1, 00, 01, 10, 11, 000, . . . to 0, 1, 2, 3, 4, 5, 6, 7, . . . respectively. This
allows us to apply the computability properties of ω to 2<ω e.g. we can talk
about c.e. subsets of 2<ω.

Cantor space. We will regard Cantor space as the set of all infinite binary
sequences and denote this space by 2ω. If A ∈ 2ω, and A = a0a1a2 . . ., then
we will use A(x) to refer to ax. We will also identify Cantor space with P(ω)

by the bijection that maps A ∈ 2ω to {x ∈ ω : A(x) = 1}. We will extend
the relation ≺ to 2<ω × 2ω by saying σ ≺ A if σ is an initial segment of A. If
A ∈ 2ω and n ∈ ω then A � n is the finite string of length n that forms an
initial segment of A. Further if σ ∈ 2<ω and A ∈ 2ω we will write σA to be the
sequence formed by appending A to σ. We will place a topology on Cantor
space by taking {[σ] : σ ∈ 2<ω} (where [σ] = {σA : A ∈ 2ω}) as a basis of open
sets. If X ⊆ 2<ω, then [X] =

⋃
σ∈X [σ].

Measures and premeasures. Let X be a set and X ⊆ P(X). We call X a
σ-algebra if:

(i). ∅ ∈ X .

(ii). A ∈ X implies X \ A ∈ X .

(iii). X is closed under countable unions.

A measure space is a triple (X,X , µ) such that X is a σ-algebra on X and µ is a
function µ : X → R≥0

(where R≥0
is the extended non-negative real numbers).

The function µ is called a measure and we require it to have the properties
that:

(i). µ(∅) = 0.

(ii). If {Xi}i∈ω is a countable collection of pairwise disjoint subsets of X then
µ
⋃
iXi =

∑
i µXi.

10 CHAPTER 1. INTRODUCTION

If µX = 1 then we call µ a probability measure. In this thesis we will restrict
our attention to measures on Cantor space. The σ-algebra will be the Borel
algebra, which is the smallest σ-algebra including {[σ] : σ ∈ 2<ω}. We will also
require our measures to be finite, i.e. that the measure of the whole space is not
infinite. We will define a premeasure as a function f : {[σ] : σ ∈ 2<ω} → R≥0

such that for all σ ∈ 2<ω,

f([σ]) = f([σ0]) + f([σ1]). (1.2.1)

We will often abuse notation and write f(σ) for f([σ]). By the Carathéodory
extension theorem we can extend any premeasure to a measure. By the Hahn
extension theorem this extension is unique because for any premeasure f(λ) <

∞. Hence there is a natural bijective correspondence between premeasures
and measures. By the uniform or Lebesgue measure on Cantor space, we
mean the unique measure µ with the property that for all σ ∈ 2<ω, µ[σ] = 2−|σ|.

Σ0
1 and Π0

1 classes. Let X ⊆ 2ω. We call X a Σ0
1 class if X = [W] for some

c.e. set W ⊆ 2<ω. We call X a Π0
1 class if the complement of X is a Σ0

1 class.
The Σ0

1 classes can be regarded as effectively open sets in Cantor space and
the Π0

1 classes as effectively closed sets. We relativise this definition and call
X a Σ0

1(A) class if there is some c.e. in A set of strings W with X = [W] and
similarly X a Π0

1(A) class if its complement is Σ0
1(A).

Martin-Löf randomness. Let µ be the uniform measure on Cantor space. A
Martin-Löf test is uniform sequence {Un}n∈ω of Σ0

1 classes such that for all n,
µUn ≤ 2−n. Given a Martin-Löf test {Un}n∈ω, we say that X ∈ 2ω passes the
test if X 6∈

⋂
n Un. We say that X ∈ 2ω is Martin-Löf random if it passes all

Martin-Löf tests. We denote the class of all Martin-Löf random sequences by
MLR. There exists a single Martin-Löf test {Un}n∈ω such that MLR = 2ω\

⋂
n Un

and such a test is termed a universal Martin-Löf test.

Effective real numbers. We will use the following notion of effectiveness for
real numbers. The dyadic rationals are Q2 = {z2−n : z ∈ Z, n ∈ ω}. We say
that x ∈ R is left-c.e. if {q ∈ Q2 : q < x} is a computably enumerable set.
Note that it can be shown that x is left-c.e. if and only if x = limn→∞ qn, for
some nondecreasing computable sequence of {qn}n∈ω of dyadic rationals. A
function f : ω → R is uniformly left-c.e., if there is a computable function
f̂ : ω × ω → Q2, nondecreasing in the second variable such that for all a ∈ ω,
f(a) = limn→∞ f̂(a, n). We call f̂ : ω × ω → Q2 an enumeration of f : ω → R.

1.2. CONVENTIONS AND BACKGROUND 11

Other. We define log x to be the least y ∈ ω such that 2y ≥ x. We take 〈·, ·〉
to be a computable bijection 〈·, ·〉 : ω × ω → ω such as the Cantor pairing
function 〈x, y〉 = 1

2
(x + y)(x + y + 1) + y. Given two real valued functions

f, g on a set X we say that f multiplicatively majorizes g if for some positive
c ∈ R, for all x ∈ X , f(x) > c · g(x). For functions f, g : ω → ω, we write:
f(n) ≤ g(n) + O(1), or g(n) ≥ f(n) − O(1) if there is some c ∈ ω such that for
all n ∈ ω, f(n) ≤ g(n) + c.

Further information. For further information on: computability theory see
Odifreddi [71], Rogers [75], or Soare [83]; algorithmic randomness see
Downey and Hirschfeldt [30], Li and Vitányi [60], or Nies [70]; and measure
theory see Bartle [8] or Munroe [67].

12 CHAPTER 1. INTRODUCTION

Part I

Randomness and Computability for
Finite Strings

13

Chapter 2

Varieties of Kolmogorov Complexity

The main results in Part I are based on continuous Kolmogorov complexities.
In this chapter, we will introduce the continuous Kolmogorov complexities
used, as well as plain and prefix-free Kolmogorov complexity. We will exam-
ine the relationship between these complexities and see how they can be used
to characterise the Martin-Löf random sequences.

2.1 Descriptive complexities

A Kolmogorov complexity is a means of quantifying the information content
of a string. One approach to defining a Kolmogorov complexity is to quan-
tify the information content of a string in terms of the length of its shortest
description. Take σ, τ ∈ 2<ω, and let F be a mapping from 2<ω to itself. We
say τ is an F -description of σ if F (τ) = σ. The length of an F -description of σ
quantifies the information content of σ, because from the description and the
function F we can determine σ. Hence we define the complexity of the string
σ with respect to F as:

CF (σ) =

min{|τ | : F (τ) = σ} if (∃τ ∈ 2<ω)(F (τ) = σ)

∞ otherwise.

We call a string σ ∈ 2<ω random with respect to F if CF (σ) ≥ |σ|. The in-
tuition behind this definition is that random strings are incompressible. For
all n, a simple counting argument establishes that there is a random string of
length n. There are 2n binary strings of length n and 2n − 1 descriptions of
length less than n.

This approach does not give an absolute notion of randomness for strings.
For any string σ, a function could be defined that has a very short descrip-
tion of σ. It is possible, however, to define a notion of randomness up to a

16 CHAPTER 2. VARIETIES OF KOLMOGOROV COMPLEXITY

constant. First we will restrict ourselves to effective descriptions by only con-
sidering partial computable functions. We call a partial computable function
U : 2<ω → 2<ω optimal if for any other partial computable function F : 2<ω →
2<ω, there is some constant d such that CU(σ) ≤ CF (σ) + d for all σ. The exis-
tence of an optimal partial computable function U can be established by taking
an enumeration F1, F2, . . . of all partial computable functions from 2<ω to 2<ω.
U is then defined by U(1e0τ) = Fe(τ). This ensures that CU(σ) ≤ CFe(σ)+e+1

for all σ. This approach was first suggested by Solomonoff [84], Kolmogorov
[46] and Chaitin [14, 15]. As well as being optimal, U is a universal partial com-
putable function because for all partial computable functions V , there is some
string σ such that for all τ ∈ 2<ω, we have that U(στ) = V (τ).

If we take a different optimal partial computable function V , then we get
a different complexity CV . However, as both U and V are optimal, the com-
plexities CU and CV can differ only by a constant.

We will often refer to partial computable functions from 2<ω to 2<ω as ma-
chines. This terminology comes from the fact that a partial computable func-
tion can be computed by a Turing machine.

Definition 2.1.1. The plain Kolmogorov complexity is C(σ) = CU(σ) where U is
a universal machine.

We callC(σ) the plain Kolmogorov complexity of σ because there are many
other varieties of Kolmogorov complexity. These varieties arose early in the
study of algorithmic randomness. A significant impetus towards their de-
velopment was to characterise the Martin-Löf random sequences in terms of
initial segment complexity. On first thought, it might seem X ∈ 2ω should be
a Martin-Löf random sequence if all of its initial segments are random strings.
Using plain complexity this would mean that C(X � n) ≥ n−O(1). However,
Martin-Löf showed that no X ∈ 2ω has this property!

Theorem 2.1.2 (Martin-Löf, see Li and Vitányi [60]). For allX ∈ 2ω, for all c ∈ ω,
there exists some n ∈ ω such that C(X � n) ≤ n− c.

This theorem can be proved by building a machine that on input τ uses
both the bits of τ and additionally the length of τ to determine its output. The
proof of this theorem exposes a limitation of plain Kolmogorov complexity.
The intention behind Kolmogorov complexity is that C(σ) quantifies the in-
formation content of σ. This would imply that if U(τ) = σ, then solely the
information in the bits of τ is used by U to produce σ. The fact that the ma-
chine can use the length of τ as well, indicates that our definition may need
modification.

2.1. DESCRIPTIVE COMPLEXITIES 17

The varieties of plain Kolmogorov complexity we will consider avoid this
problem and arguably capture the original spirit behind Kolmogorov com-
plexity. The principle behind our next definitions is to restrict our attention to
subclasses of Turing machines which can only use the bits of the description
to determine the output. The types of complexity we will look at derive from:
prefix-free machines, process machines and monotone machines. We will see
in Theorem 2.4.1 that all the complexities we introduce can be used to give
simple characterisations of Martin-Löf randomness.

The first subclass we will look at is the subclass of all prefix-free machines.
Prefix-free machines were developed by Levin [56], Gács [35] and Chaitin [16].
A subset A ⊆ 2<ω is prefix-free if for all τ1, τ2 ∈ A, τ1 6≺ τ2. A natural example of
a prefix-free set is the set of all telephone numbers. Given any two telephone
numbers, it is not possible for one number to be an initial segment of another.
The information about the length of the telephone number is included in the
number itself. This is why prefix-free sets are sometimes called self-delimiting.

Definition 2.1.3. A prefix-free machine is a partial computable function M :

2<ω → 2<ω such that the domain of M is prefix-free.

We can enumerate all partial computable prefix-free machines {Me}e∈ω and
create a universal prefix-free machine U by U(1e0τ) = Me(τ).

Definition 2.1.4. The prefix-free complexity is K(σ) = CU(σ) where U is a uni-
versal prefix-free machine.

One reason prefix-free complexity has provided significant insight into al-
gorithmic randomness is the ease with which prefix-free machines can be cre-
ated. This is a result of the following effective version of the Kraft inequal-
ity [47].

Theorem 2.1.5 (Kraft Computable Theorem). If D = {di}i∈ω is a computable
sequence in ω such that

∑∞
i=0 2−di ≤ 1, then there exists a function fD : ω → 2<ω

such that:

(i). The range of fD is prefix-free.

(ii). For all i, |fD(i)| = di.

(iii). For all i, fD(i) is computable from d0, . . . , di.

Given this theorem, it is possible to turn any c.e. set of pairs 〈σi, ni〉i∈ω such
that

∑
i 2
−ni ≤ 1 into a prefix-free machine M with the property that for all i,

there is some τi of length ni and M(τi) = σi (thus CM(σi) ≤ ni).

18 CHAPTER 2. VARIETIES OF KOLMOGOROV COMPLEXITY

The next subclass of Turing machines that we will look at is the subclass of
all process machines. The main idea behind a process machine is that it must
preserve the ordering of 2<ω.

Definition 2.1.6. A process machine is a partial computable function M : 2<ω →
2<ω such that if τ, τ ′ ∈ dom(M), and τ ′ � τ , then M(τ ′) �M(τ).

A natural example of a process is given by the recordings of moves in a
game of chess, e.g. 1. e4 e5, 2. Nf3 Nc6 etc. Given the descriptions of the first
n moves, it is possible to replay the game up until that point. If we extend the
description, we can extend the replay of the game by adding new moves, but
we cannot change any moves already defined.

This definition of a process machine is due to Schnorr [80], who compared
a process to a book and noted that: “he who wants to understand a book will
not read it backwards, since the comments or facts which are given in the first
part will help him to understand the subsequent chapters (this means they
help him to find regularities in the rest of the book).” Schnorr’s definition of
a process differs slightly from that given by Levin in his thesis [58]. We will
use the term strict process machine for Levin’s definition.

Definition 2.1.7. A strict process machine is a partial computable function M :

2<ω → 2<ω such that if τ ∈ dom(M) and τ ′ � τ , then τ ′ ∈ dom(M) and
M(τ ′) �M(τ).

Both of these definitions of process machines have merit. Schnorr’s defini-
tion corresponds to a homomorphism of the domain of M . Levin’s definition
has the following very natural model. This model is almost identical to one
described in the first paper on algorithmic randomness by Solomonoff [84].
Take a three-tape Turing machine M with a read-only one-way input tape, a
one-way write-once output tape, and a work tape. The first square of the input
tape is blank and the input head starts on that square. Let the machine run.
If at any stage M wants to move the input head of the tape, first we define
M(τ) = σ, where τ is the input string read so far and σ is the current output
on the output tape.

Schnorr established the existence of a universal process machine, then used
this to introduce process complexity.

Definition 2.1.8. The process complexity is KMD
(σ) = CU(σ) where U is a uni-

versal process machine.

The notation of KMD
to denote process complexity follows Downey and

Hirschfeldt [30].

2.1. DESCRIPTIVE COMPLEXITIES 19

Process machines have not been extensively used in the study of random-
ness. One of the main reasons for this is that they are combinatorially more
difficult than prefix-free machines. Strict process machines are often simpler
to use because they must keep their domain closed downwards under �. In
Theorem 5.1.8 we will see how this can be used to prove that there exists a uni-
versal strict process machine such that the set of strings random with respect
to this machine is not truth-table complete. This proof does not generalise to
process machines. In Theorem 6.2.4 we will establish a technique for building
strict process machines that is related to the KC theorem.

Hence we will consider what happens if we use strict process machines to
define a variant of process complexity. This is a new definition because Levin
did not use strict process machines to define a notion of complexity in the
same way as Schnorr.

Definition 2.1.9. The strict process complexity is KMS
(σ) = CU(σ) where U is a

universal strict process machine.

The final type of machine which we will examine is the monotone machine.
Monotone machines fit into the picture differently. They are not a subclass of
Turing machines. Monotone machines can be thought of as process machines
that are allowed to describe both finite and infinite binary strings. The idea is
that if 0e1 is the index of a machine that computes an infinite sequence, then
0e1 is a description of all initial segments of that sequence. It can be argued
that monotone machines are more suited for characterising the complexity
of real numbers as non-computable reals can be considered as limits of com-
putable reals rather than limits of strings [11]. Monotone machines and the
associated complexities were first introduced by Levin [55].

Definition 2.1.10. A monotone machine L is a computably enumerable set of
pairs of finite binary strings 〈τ, σ〉 such that if 〈τ1, σ1〉, 〈τ2, σ2〉 ∈ L and τ1 � τ2,
then σ1 ≈ σ2.

For example, given a computable sequence X , a monotone machine L

could be created by enumerating 〈τ,X � n〉 into L at stage n. In this case,
τ is a finite description of X .

For monotone machines, we say that τ is a description of σ if 〈τ, σ′〉 is an
element of the monotone machine for some σ′ extending σ. With this small
difference in mind, we define the monotonic descriptive complexity of a string
to be the length of its shortest description.

Definition 2.1.11. Let L be a monotone machine. The monotone complexity of a

20 CHAPTER 2. VARIETIES OF KOLMOGOROV COMPLEXITY

binary string σ with respect to L is:

KL
m(σ) = min{|τ | : ∃σ′ ∈ 2<ω such that 〈τ, σ′〉 ∈ L and σ � σ′}.

We call a monotone machine U optimal if for all monotone machines L
there is a constant d such thatKU

m(σ) ≤ KL
m(σ)+d. If L is a monotone machine,

we take an enumeration of L and define Lt to be the result of enumerating
L for t steps. Again we can take an enumeration L0, L1, . . . of all monotone
machines and define a universal monotone machine U as follows, we add
〈0e1τ, σ〉 to Ut if and only if 〈τ, σ〉 ∈ Let for some e ≤ t.

Definition 2.1.12. The monotone complexity is Km(σ) = KU
m(σ) where U is a

universal monotone machine.

2.2 Algorithmic probability

We will now examine a different approach to defining the Kolmogorov com-
plexity of a finite string. Instead of considering the shortest description of a
universal machine, we will look at the probability that a universal machine
outputs a string on some random input. We will start with prefix-free ma-
chines.

Definition 2.2.1. Let P be a prefix-free machine. The discrete algorithmic proba-
bility with respect to P is mD

P (σ) = µ{X ∈ 2ω : (∃τ ≺ X)P (τ) = σ}.

If we regard 2<ω as a discrete space, then the discrete algorithmic probabil-
ity mD

P is a finite measure on this space.

Definition 2.2.2. A c.e. discrete semimeasure on 2<ω is a function mD : 2<ω →
R≥0 such that:

(i).
∑

σ∈2<ω m
D(σ) ≤ 1.

(ii). mD(σ) is a uniformly left-c.e. real.

For any prefix-free machine P , mD
P is a c.e. discrete semimeasure. In fact,

this is the only way to create a c.e. discrete semimeasure. Given any c.e. dis-
crete semimeasure mD, it is not too difficult to construct a prefix-free machine
P, such that mD = mD

P .
The relationship between c.e. discrete semimeasures and prefix-free ma-

chines does not end here. The coding theorem tells us that if U is a univer-
sal prefix-free machine, then K and − logmD

U agree within an additive con-
stant. Thus prefix-free complexity and discrete semimeasures are really dif-
ferent ways of looking at the same thing.

2.2. ALGORITHMIC PROBABILITY 21

Theorem 2.2.3 (The Coding Theorem, Solomonoff [84], Levin [58, 56], Chai-
tin [16]). K(σ) = − log(mD

U (σ)) +O(1).

For monotone machines, the relationship between algorithmic probability
and descriptive complexity is very different.

Definition 2.2.4. A c.e. continuous semimeasure is a uniformly left-c.e. function
m : 2<ω → R≥0 such that:

(i). m(λ) ≤ 1.

(ii). For all τ ∈ 2<ω, m(τ) ≥ m(τ0) +m(τ1).

Observe the similarity between the second condition above and the re-
quirement (1.2.1) on a function to be a premeasure. We noted that any c.e.
discrete semimeasure could be described by a prefix-free machine. The follow-
ing theorem, due to Levin, shows that monotone machines play an analogous
role for c.e. continuous semimeasures.

Theorem 2.2.5 (Levin [58, 94]). (i). If L is a monotone machine, then the func-
tion ML : 2<ω → R≥0 defined by ML(σ) = µ[{τ : (∃σ′ � σ)(〈τ, σ′〉 ∈ L)}] is
a c.e. continuous semimeasure.

(ii). If m is a c.e. continuous semimeasure, then there exists a monotone machine L
such that ML = m.

(iii). If U is a universal monotone machine, then MU multiplicatively majorizes all
c.e. continuous semimeasures.

A full proof of this theorem is given in Downey and Hirschfeldt [30]. If
U is a universal monotone machine, we call MU(σ) the monotonic algorithmic
probability. Now if the coding theorem could be adapted to monotone ma-
chines and c.e. continuous semimeasures as well, then we would have that
Km(σ) = − logMU(σ) + O(1). Gács showed this is false [36]. Hence there are
two types of complexity that arise from monotone machines. It is easier to con-
sider − logMU so we make the following definition, again due to Levin [55].

Definition 2.2.6. The a priori entropy is KM(σ) = − logMU(σ) where U is a
universal monotone machine.

The term a priori entropy is commonly used for this complexity [30, 87].
This is because the word entropy is often used for a universal complexity func-
tion and monotonic algorithmic probability is also known in the literature as

22 CHAPTER 2. VARIETIES OF KOLMOGOROV COMPLEXITY

a priori probability. One example of where the complexity KM has been used
is Reimann’s proof of Frostman’s Lemma [72].

Both process machines and monotone machines maintain the initial seg-
ment relation on 2<ω. Because of this they both induce continuous functions.
For example, if P is a process machine then let A = {X ∈ 2ω : (∀c)(∃n) |P (X �

n)| > c}. The function f : A → 2ω defined by f(X) =
⋃
n∈ω P (X � n) is

a continuous mapping. Hence we will refer to KMS
, KMD

, Km and KM as
continuous Kolmogorov complexities.

2.3 Relationship between complexities

Table 2.1 lists the varieties of Kolmogorov complexity that we have defined.
It is natural to ask how they relate to one another. Both Levin and Solovay
established a number of theorems relating plain and prefix-free complexity
though as these require additional definitions we will not present these result
here [30, 58]. The main question we are interested in is, given two complexities
Q and P , is it true that Q(σ) ≤ P (σ) + O(1) (a situation we will describe by
saying P additively majorizes Q)?

Complexity Notation
Plain C

Prefix-free K

Process KMD

Strict process KMS

Monotone Km

A priori entropy KM

Table 2.1: Varieties of Kolmogorov complexity

Some complexities obviously additively majorize others. First any strict
process machine is a process machine. Secondly any process machine is both
a Turing machine and a monotone machine. Finally, a prefix-free machine can
be considered as a strict process machine. This is done as follows. Suppose
M : 2<ω → 2<ω is a prefix-free machine. We define a strict process machine M ′

as follows:

M ′(σ) =


M(σ) if σ ∈ dom(M)

λ if there exists σ′ � σ and σ′ ∈ dom(M)

undefined otherwise.

2.3. RELATIONSHIP BETWEEN COMPLEXITIES 23

It can be shown that if M is partial computable then so is M ′. Additionally,
with the exception of the empty string, the complexities generated by the two
machines agree. These observations show us that:

Km(σ) ≤ KMD
(σ) +O(1) ≤ KMS

(σ) +O(1) ≤ K(σ) +O(1),

and further that C(σ) ≤ KMD
(σ) +O(1).

For any σ, KM(σ) ≤ Km(σ) because if Km(σ) = n then there is some τ
of length n and σ′ � σ such that 〈τ, σ′〉 ∈ U so MU(σ) ≥ µ[τ] = 2−n thus
KM(σ) ≤ − log 2−n = n. Figure 2.1 shows these relationships between these
Kolmogorov complexities. An arrow points from complexity P to complexity
Q if P additively majorizes Q.

C

KM Km

KMD KMS K

Figure 2.1: Relationship between complexities

It is not immediately apparent that these are the only such relationships be-
tween these complexities. However, this is indeed the case. First the following
results are not difficult to establish.

Proposition 2.3.1. (i). Km does not additively majorize C.

(ii). C does not additively majorize KM .

(iii). KMS
does not additively majorize K .

Proof. (i). This holds because for some c, for all n, Km(1n) ≤ c.
(ii). This will be shown in Corollary 2.4.2.
(iii). We can build a strict process machine that maps σ to 1n where n = 〈σ〉.
This means that KMS

(1n) ≤ log(n) + O(1). However, if K(1n) ≤ log(n) + O(1)

this would imply that

1 ≥
∑
n

2−K(1n) ≥
∑
n

2− log(n)−c =
∑
n

2−c
1

n
,

which is impossible as the harmonic series diverges.

24 CHAPTER 2. VARIETIES OF KOLMOGOROV COMPLEXITY

For further details on (i) and (ii) see Uspensky and Shen’s paper Relations
Between Varieties of Kolmogorov Complexities [87]. Uspensky and Shen’s paper
also discusses Loveland’s decision complexity which we will not define here.

If P does not additively majorize Q then we can examine the difference
Q − P . We call a non-decreasing function h an upper-bound for Q − P if
Q(σ) − P (σ) ≤ h(|σ|) + O(1). We call a non-decreasing function l a lower-
bound for Q− P if there are infinitely many σ ∈ 2<ω such that Q(σ)− P (σ) >

l(|σ|). Uspensky and Shen’s paper also contains a great deal of information
about the upper and lower bounds between: C, K, Km, KM and decision
complexity [87].

In Chapter 3 we will prove that the complexities KMD
and KMS

are dif-
ferent, i.e. KMD

does not additively majorize KMS
. We will provide a lower

bound by showing that for any a ∈ R with 0 < a < 1, there are infinitely many
σ such that KMS

(σ) − KMD
(σ) > a log log |σ|. Gács proved that KM does not

additively majorize Km [36]. Gács’s proof established that some version of the
inverse Ackermann function is a lower bound for Km−KM . In Chapter 4 we
will extend this result to show that for any a ∈ R with 0 < a < 1, there are
infinitely many σ such that Km(σ) − KM(σ) > a log log |σ|. While this lower
bound is the same as that for KMS

(σ)−KMD
(σ) the proof is significantly more

difficult.

2.4 Initial segment complexity

Theorem 2.1.2 states that any X ∈ 2ω has initial segments whose plain Kol-
mogorov complexity is arbitrarily less than their length. This result is not true
for the other varieties of Kolmogorov complexity we have defined. In fact,
all these other varieties can be used to characterise the Martin-Löf random
sequences. The first such characterisations were established by Schnorr and
Levin. The techniques they used generalise to any complexity other than C

and so we attribute the following theorem to them.

Theorem 2.4.1 (Levin, Schnorr [55, 80]). If Q is any of the complexities: K, KMS
,

KMD
, Km or KM then for any X ∈ 2ω, X is Martin-Löf random if and only if

Q(X � n) ≥ n−O(1).

We note that Miller and Yu have established that it is possible to char-
acterise Martin-Löf randomness in terms of plain Kolmogorov complexity,
though presenting this result would take us too far afield [65]. We can use
these characterisations to show that C does not additively majorize KM .

Corollary 2.4.2. For all c ∈ ω there exists σ ∈ 2<ω such that KM(σ) ≥ C(σ) + c.

2.4. INITIAL SEGMENT COMPLEXITY 25

Proof. TakeX ∈MLR. There is some d such that for all n, KM(X � n) ≥ n−d.
By Theorem 2.1.2, for any c there is some nc such that C(X � nc) ≤ nc − c− d.
Hence KM(X � nc) ≥ nc − d ≥ C(X � nc) + c.

Any complexity measure can be used to place an ordering on Cantor space.
LetQ be any Kolmogorov complexity and take A,B ∈ 2ω. We say that A ≤Q B
if Q(A � n) ≤ Q(B � n) +O(1). Note that the ordering ≤Q is not a reducibility:
if A ≤Q B, then it is not necessarily true that A can be computed from B. In
Chapter 9 we will examine an ordering of 2ω in terms of randomness which is
also a reducibility.

It is not difficult to show that if A is a computable sequence, then A ≤Q B

for any sequence B. Hence the computable sequences can be regarded as hav-
ing minimal information content. A natural question to ask is whether there
are any non-computable sequences with this same property. A sequence is
≤Q below all sequences if and only if it is ≤Q below any fixed computable
sequence. Hence we will fix 1ω as the computable sequence we use for com-
parison and we will consider the set {A ∈ 2ω : A ≤Q 1ω}. For any complexity
measure Q, we will write Q(n) to refer to Q(1ω � n). Hence asking if A ≤Q 1ω

is the same as asking if Q(A � n) ≤ Q(n) + O(1). Chaitin proved that the
sequences with this property, when Q is taken to be C, are precisely the com-
putable sequences.

Theorem 2.4.3 (Chaitin [17]). Given any X ∈ 2ω, the following are equivalent:

(i). C(X � n) ≤ C(n) +O(1).

(ii). C(X � n) ≤ log n+O(1).

(iii). X is computable.

We can give a simple corollary to this theorem.

Corollary 2.4.4. Given any X ∈ 2ω, the following are equivalent:

(i). KMD
(X � n) ≤ KMD

(n) +O(1).

(ii). KMS
(X � n) ≤ KMS

(n) +O(1).

(iii). X is computable.

Proof. We observed in the proof of Proposition 2.3.1 that KMS
(n) ≤ log n +

O(1). If for some X ∈ 2ω, we have that KMS
(X � n) ≤ KMS

(n) +O(1), then

C(X � n) ≤ KMS
(X � n) +O(1) ≤ KMS

(n) +O(1) ≤ log n+O(1)

so X is computable. The same argument holds for process complexity.

26 CHAPTER 2. VARIETIES OF KOLMOGOROV COMPLEXITY

For the complexities Km and KM it is not difficult to see that X ∈ 2ω is
computable if and only if KM(X � n) = O(1) if and only if Km(X � n) = O(1).
Thus all the complexities examined have simple characterisations of the com-
putable sequences except for prefix-free complexity. Surprisingly there are
non-computable sequences A such that A ≤K 1ω. This was first established
in unpublished work of Solovay (see Downey and Hirschfeldt [30]). Such
sequences are known as K-trivial. The class of all K-trivials has some re-
markable properties. As this class is not central to this thesis, we will simply
mention one key characterisation of the K-trivials. A sequence A is called low
for Martin-Löf randomness if the set of Martin-Löf random sequences relative to
A is just the set of Martin-Löf random sequences. Intuitively a sequence is low
for Martin-Löf randomness if it has no power to compress information. Nies
showed that the class of K-trivials coincides with the class of sequences low
for Martin-Löf randomness [69].

Chapter 3

Process Complexity

(The results of this chapter appeared in the paper: On Process Complexity, Chicago
Journal of Theoretical Computer Science, Vol 2010, Issue 4, June 2010. An initial
version of this paper was presented at CATS 2009: Fifteenth Computing: The Aus-
tralasian Theory Symposium.)

In this chapter we will prove two theorems about process complexities. In
Section 3.1 we will show that process complexity and strict process complex-
ity are different. We will also establish a lower bound for this difference. In
Section 3.2 we will prove that neither process complexity nor strict process
complexity is subadditive.

3.1 Strict process complexity and process complexity

In this section we will show that strict process complexity and process com-
plexity are in fact different. As the universal strict process machine is a process
machine, there is some constant d such that for all σ ∈ 2<ω:

KMD
(σ) ≤ KMS

(σ) + d.

We want to show that this inequality cannot be reversed and so strict pro-
cess complexity and process complexity do not agree within an additive con-
stant. To show this, we will make use of the fact that the universal strict pro-
cess machine has a computable approximation. Let U be a universal strict
process machine. Because U is a strict process machine, we can take our ap-
proximation to have the property that if Us(τ) ↓= σ and τ ′ ≺ τ then there is
some σ′ � σ such that Us(τ ′) ↓= σ′.

In Lemma 3.1.2, we will show that for any i ∈ ω, we can construct a pro-
cess machine fi such that there exists a string σi with Cfi(σi) + i < KMS

(σi).
Once we have done this, it will not be too difficult to combine these machines

28 CHAPTER 3. PROCESS COMPLEXITY

to prove that strict process complexity and process complexity do not agree
within an additive constant.

To understand the ideas behind the proof of Lemma 3.1.2, let us take the
case i = 1 as an example. We will construct a process machine f1. When we
construct this machine, we are able to first define f1 for all strings of length 3.
Then at a later stage, we have the option of defining f1 for strings of length
2 and even later for strings of length 1. This option is not available to the
universal strict process machine U . Once a string τ is added to the domain of
U , all initial segments of τ must be added as well. Our definition of f1 starts as
follows. First let τ = abc be any binary string of length 3, i.e. a, b, and c are the
first, second and third bits of τ respectively. We define f1 by f1(abc) = a8b16c

e.g. f1(010) = 0000000011111111111111110. We can consider this as ‘stretching’
all but the last bit of the string abc.

Now we wait until some stage s1, when for all τ ∈ {0, 1}3, CUs1 (f1(τ)) ≤ 4.
If this never happens then we have finished because for some τ ∈ {0, 1}3,

KMS
(f1(τ)) = lim

s→∞
CUs(f1(τ))

> 4

= |τ |+ 1

= Cf1(f1(τ)) + 1.

So assume such a stage s1 occurs. For all τ ∈ {0, 1}3, let ρτ be some string
in the domain of Us1 such that |ρτ | ≤ 4 and Us1(ρτ) = f1(τ). Let A1 be the set
of all such ρτ . Note that A1 must be a prefix-free set and |A1| = 23. If A1 is
not prefix-free, then there is some τ, υ ∈ {0, 1}3 with: τ 6= υ; ρτ , ρυ ∈ A1; and
ρτ � ρυ. But this would mean that f1(τ) = Us1(ρτ) � Us1(ρυ) = f1(υ) which
contradicts our definition of f1. It follows that µ[A1] ≥ |A1|2−4 = 1

2
.

We will now define f1 for all binary strings of length 2. Given any two
bit binary string ab, there must be some string a8bk with 1 ≤ k ≤ 16 such
that CUs1 (a8bk) > 3. This is true because there are at most 15 strings whose
complexity is less than or equal to 3 (as there are only 15 such descriptions).
Now we define f1(ab) = a8bk. Consider for a moment how the universal strict
process machine can respond to this. Because U is a strict process machine, if
τ is any initial segment of a string in A1, then U(τ)[s1] ↓. So if |τ | ≤ 3, then
U(τ) 6= f1(ab) for any a, b ∈ {0, 1}. This means that in order to reduce the
complexity of f1(ab) to 3 or less, U needs to find a short description that is not
an initial segment of an element of A1.

Again we wait until some stage s2, when for all τ ∈ {0, 1}2, CUs2 (f1(τ)) ≤ 3.
If this never happens then again our objective is achieved. If this stage does

3.1. STRICT PROCESS COMPLEXITY AND PROCESS COMPLEXITY 29

occur then for all τ ∈ {0, 1}2, let ρτ be some string in the domain of Us2 such
that |ρτ | ≤ 3 and Us2(ρτ) = f1(τ). Let A2 be the set of all such ρτ . Again
µ[A2] ≥ |A2|2−3 = 1

2
. We want to show that [A1] ∩ [A2] = ∅. Take any ρ1 ∈ A1

and ρ2 ∈ A2. First |U(ρ1)| > |U(ρ2)| so we know that ρ1 6� ρ2. Now let us
show that U(ρ2)[s1] ↑. If U(ρ2)[s1] ↓, then CUs1 (U(ρ2)) ≤ |ρ2| ≤ 3. So by our
construction of f1, f1(ab) 6= U(ρ2) for any a, b ∈ {0, 1}. This is a contradiction
and so U(ρ2)[s1] ↑. As U(ρ1)[s1] ↓ so it must be that ρ2 6≺ ρ1 because U is a strict
process machine. Hence ρ1 and ρ2 are incomparable and so µ[dom(Us2)] ≥
µ[A1] + µ[A2] = 1.

Finally we define f1(0) = 0k for some 1 ≤ k ≤ 8 such that CUs2 (0k) > 2

(there must be some k as there are only 7 possible descriptions of length less
than or equal to 2). Consider any υ ∈ 2<ω. As µ[A1 ∪ A2] = 1, either υ is
an initial segment, or an extension, of some element ρ ∈ A1 ∪ A2. If υ > ρ

and U(υ) ↓ then U(υ) � U(ρ) and so U(υ) 6= f1(0). If υ � ρ, then U(υ)[s2] ↓
so if U(υ) = f1(0) then it must be that |υ| > 2 (as we chose f1(0) so that
CUs2 (f1(0)) > 2). Hence:

Cf1(f1(0)) + 1 = 1 + 1

< CU(f1(0))

= KMS
(f1(0)).

The main idea is that if the universal strict process machine attempts to
respond each time strings are added to the domain of f1, then it will run out
of measure. The key point is that during the construction of f1, we can reuse
measure by using initial segments of strings already in the domain of f1. On
the other hand, U needs to add new measure into its domain at each response.
To adapt this argument to hold for any i, let us start with a lemma giving a
lower bound on the measure of the domain of a strict process machine.

Lemma 3.1.1. If {(τ1, σ1), . . . , (τn, σn)} is a set of ordered pairs such that for all
i, j ∈ ω, 1 ≤ i, j ≤ n, U(τi) = σi; and if i 6= j then:

(i). σi 6= σj ; and

(ii). σi � σj implies that there exists an s such that Us(τi) ↓ and Us(τj) ↑;

then µ[dom(U)] ≥
∑n

i=1 2−|τi|.

Proof. We will show that the τi form a prefix-free set. Choose any i 6= j. If
σi | σj then as U is a process machine, τi | τj . If σi � σj then there exists an
s such that Us(τi) ↓ and Us(τj) ↑, so as U is a strict process machine τj is not

30 CHAPTER 3. PROCESS COMPLEXITY

an initial segment of τi. Further τj cannot extend τi as this would imply that
σj � σi. Hence τi | τj . Similarly if σj � σi then τi | τj as well.

We will formalise the notion of stretching a string as follows. If g : ω → ω,
then ĝ : 2<ω → 2<ω is defined by:

ĝ(τ) = τ(0)g(0)τ(1)g(1) . . . τ(|τ | − 1)g(|τ |−1).

For example if g(x) = x+ 1, then ĝ(0101) = 01120314 = 0110001111.

Lemma 3.1.2. For all i ∈ ω, there exists a process machine fi and a string σi such
that:

Cfi(σi) + i < KMS
(σi).

Proof. Again we take U to be the universal strict process machine. We looked
at the case f1 as an example. In this case we started by defining f1 for strings of
length 3, and then for strings of progressively shorter lengths. For the general
case, we will start by defining fi for strings of length 2i+1. If necessary we will
define fi for strings of length 2i, 2i− 1, 2i− 2 and so on. Our prompt to extend
the domain of fi is if at some stage s, the universal strict process machine has
made CUs(σ) ≤ Cfi(σ) + i for all elements σ in the domain of fi at stage s.

We define gi : ω → ω by gi(n) = 2n+i+2. The construction of fi proceeds as
follows. At stage 0, first set l0 = 2i + 1. Then for all τ ∈ {0, 1}l0 set fi(τ) =

ĝi(τ � (|τ | − 1))τ(|τ | − 1) i.e. we use gi to stretch all but the last bit of τ .
At stage s+ 1, if there exists some τ ∈ {0, 1}ls such that CUs(fi(τ)) > |τ |+ i,

then set ls+1 = ls and go to the next stage.
Otherwise, we know that for all τ ∈ {0, 1}ls , CUs(fi(τ)) ≤ |τ | + i. Now we

will extend the domain of fi. We set ls+1 = ls − 1. For all τ ∈ {0, 1}ls+1 and
for all k ∈ ω, 1 ≤ k ≤ gi(|τ | − 1) let στ,k = ĝi(τ � (|τ | − 1))τ(|τ | − 1)k. As there
are 2|τ |+i+1 possible values of k, it follows that for any τ , there must be some k
such that: CUs(στ,k) > |τ |+ i because there are only 2|τ |+i+1 − 1 descriptions of
length less than or equal to |τ |+ i. For all τ ∈ {0, 1}ls+1 , let στ = στ,k for such a
k and set fi(τ) = στ .

To verify the construction we will first show that for all s, ls > 0. We will
prove this by showing that the alternative implies that U runs out of measure.
If ls = 0 for some s, then for all τ ∈ 2<ω such that 1 ≤ |τ | ≤ 2i+1, KMS

(fi(τ)) ≤
|τ | + i because this is the condition to extend the domain of fi. So for all such
τ we can choose a string ρτ such that (i) |ρτ | ≤ |τ | + i, (ii) U(ρτ) = fi(τ) and
such that no other string with properties (i) and (ii) halts before U(ρτ) halts.

Now take the set A = {(ρτ , fi(τ)) : τ ∈ 2<ω, 1 ≤ |τ | ≤ 2i + 1}. Consider
any τ1, τ2 ∈ 2<ω, 1 ≤ |τ1|, |τ2| ≤ 2i + 1, and τ1 6= τ2. First fi(τ1) 6= fi(τ2) as fi is

3.1. STRICT PROCESS COMPLEXITY AND PROCESS COMPLEXITY 31

injective. If fi(τ1) ≺ fi(τ2) then by construction this implies that τ1 ≺ τ2. Now
fi is defined for τ1 after fi is defined for τ2. Further if fi(τ1) is first defined at
stage t+ 1, it must be that:

(1) CUt(fi(τ2)) ≤ |τ2|+ i.

(2) CUt(fi(τ1)) > |τ1|+ i.

(1) follows as this is required to extend the domain of fi to strings of length
< |τ2|. (2) follows by our choice of fi(τ1). Now by (i) and (ii), (1) implies that
Ut(ρτ2) ↓ and (2) implies thatUt(ρτ1) ↑. The setA therefore meets the conditions
of Lemma 3.1.1 and this implies that:

µ[dom(U)] ≥
∑

τ∈2<ω ,1≤|τ |≤2i+1

2−|ρτ |

≥
∑

τ∈2<ω ,1≤|τ |≤2i+1

2−|τ |−i

= 2−i(2i + 1) > 1.

A contradiction and so for all s, ls > 0.

Let n = min{ls : s ∈ ω}. It follows that for some τ ∈ {0, 1}n, for all s,
CUs(fi(τ)) > |τ |+i and henceKMS

(fi(τ)) > |τ |+i. Thus we can take σi = fi(τ),
and we have that Cfi(σi) + i = |τ |+ i < KMS

(σi).

Finally, we will show that fi is a process machine. Take any τ1, τ2 ∈ dom(fi)

such that τ1 ≺ τ2. We have that: fi(τ1) � ĝi(τ1) � ĝi(τ2 � (|τ2| − 1)) � fi(τ2).

Note that Lemma 3.1.2 is uniform.

Theorem 3.1.3. KMD
and KMS

do not agree within an additive constant.

Proof. Define a process machine f by f(0i1τ) = f2i(τ). Let c be the length
of the index of f in the universal process machine. Now given any d, take
i = 2(c + d + 1). By Lemma 3.1.2, there exists some σi such that Cfi(σi) + i <

KMS
(σi), so:

KMD
(σi) + d ≤ Cf (σi) + d+ c

≤ Cfi(σi) + d+ c+
i

2
+ 1

= Cfi(σi) + i

< KMS
(σi).

32 CHAPTER 3. PROCESS COMPLEXITY

In fact we can go further and prove that this constant can be replaced with
a function of order log log(n) where n is string length. First note that we can
determine an upper bound on the length of the σi from Lemma 3.1.2. Because
σi = fi(τ) for some τ with |τ | ≤ 2i + 1, and as we stretch all but the last bit of
τ we know that:

|σi| ≤ 1 +
2i−1∑
n=0

gi(n)

= 1 +
2i−1∑
n=0

2n+i+2

= 1 + 2i+2(22i − 1)

< 22i+i+2.

It will be easier to express this as log |σi| < 2i + i+ 2.

Theorem 3.1.4. Given any a ∈ R, 0 < a < 1, then there exist infinitely many σ
such that:

KMS
(σ)−KMD

(σ) > a log log |σ|.

Proof. Given any such a choose k ∈ ω such that a < 1 − 1
k
. Now define a

process f : 2<ω → 2<ω by f(0i1τ) = f2ki(τ). Let c be the length of the index
of f in the universal process machine. Choose any d ∈ ω such that 2k − 1

divides c + d + 1. Now let i = 2k(c+d+1)
2k−1

. Hence i is a positive integer, and
i = c + d + 1 + i

2k
. This implies that i

2k
is a positive integer too. Let σd = σi

from Lemma 3.1.2. We know that:

KMD
(σd) + d ≤ Cf (σd) + c+ d

= Cfi(σd) + c+ d+ 1 +
i

2k

= Cfi(σd) + i

< KMS
(σd).

Also we know that:

log |σd| < 2
2k(c+d+1)

2k−1 +
2k(c+ d+ 1)

2k − 1
+ 2

= c1 +
2k

2k − 1
d+ c2 · 2

2k
2k−1

d

where c1 and c2 are constant. Let j = k
(2k−1)(2k−2)

. As there are infinitely many
d that we can choose, we can consider those d such that

2jd ≥ max(c1 +
2k

2k − 1
d, c2, 2).

3.2. PROCESS COMPLEXITY IS NOT SUBADDITIVE 33

So we have that:

log |σd| < 2jd + 2jd2
2k

2k−1
d

= 2jd(1 + 2
2k

2k−1
d)

≤ 2jd(2
2k

2k−1
d+jd)

= 2
2k

2k−1
d+2jd

= 2
k
k−1

d.

The last step follows because:

2k

2k − 1
+ 2j =

2k

2k − 1
+

2k

(2k − 1)(2k − 2)

=
4k2 − 2k

(2k − 1)(2k − 2)

=
k

k − 1
.

So log log |σd| < k
k−1

d and hence we have that:

a log log |σd| <
k − 1

k
log log |σd| < d.

For these such d, we have that KMD
(σd) + d < KMS

(σd). This implies that
KMD

(σd)+a log log |σd| < KMS
(σd) and rearranging givesKMS

(σd)−KMD
(σd) >

a log log |σd|. There are infinitely many d that meet the conditions we require
so the result follows.

Theorem 3.1.4 gives a lower bound on KMS
−KMD

. A basic upper bound
on the difference between these complexities is that KMS

(σ) − KMD
(σ) ≤

2 log |σ| + O(1). This holds because K − KM is bounded above by the same
amount and bothKM(σ) ≤ KMD

(σ)+O(1) andKMS
(σ) ≤ K(σ)+O(1) [60, 87].

This leaves an open question with respect to the difference between these two
complexities – which of these two bounds can be improved?

3.2 Process complexity is not subadditive

A fundamental question about any complexity measure is whether or not it
is subadditive. A complexity measure is subadditive if there is some constant
d such that for all strings σ, τ the complexity of στ is less than or equal to
the sum of the complexity of σ plus the complexity of τ plus d. Prefix-free
complexity is subadditive. This is proved by observing that there is a prefix-
free machineM that on input ρ tries to find two strings ρ0, ρ1 such that ρ = ρ0ρ1

and ρ0, ρ1 are both in the domain of the universal prefix-free machine U . Then

34 CHAPTER 3. PROCESS COMPLEXITY

we let M(ρ) = U(ρ0)U(ρ1). One reason this proof works is that if such a ρ0, ρ1

are found for ρ, then these must be the unique strings with this property.

Martin-Löf’s proof of Theorem 2.1.2 can be adapted to show that plain
Kolmogorov complexity is not subadditive. That is to say, for any d there
exists strings σ, τ such that C(στ) > C(σ) + C(τ) + d. We can take a random
finite string υ that has an initial segment σ with C(σ) < |σ| − d. Now if τ is
chosen so that στ = υ then C(στ) ≥ |σ|+ |τ | > C(σ) + d + C(τ)− i where i is
the length of the index of the identity function in U . As i is fixed we can make
d− i arbitrarily large. Thus we have that plain Kolmogorov complexity is not
subadditive.

We will now establish that both process complexity and strict process com-
plexity are not subadditive. The proof Martin-Löf used for plain complexity
cannot be adapted to process complexity. This is because given a Martin-Löf
random sequence X , it is true that KMD

(X � n) ≥ n − O(1) i.e. there are no
arbitrary drops in initial segment complexity. Thus the question as to whether
these complexities are subadditive requires new techniques. In particular, we
need to use non-random strings. The new techniques used for building and
analysing process machines introduced here may well have wider application.

We will present the proof for process complexity but it holds without mod-
ification for strict process complexity as well.

Theorem 3.2.1. Let U be a universal process machine. For any d ∈ ω, there exist
σ, τ ∈ 2<ω such that:

KMD
(στ) > KMD

(σ) +KMD
(τ) + d.

We will prove this theorem by giving short descriptions to a lot of strings.
We will argue combinatorially that one of these strings σ, must have an exten-
sion στ such that the desired property holds. The following lemma expresses
a basic combinatorial fact about process machines.

Lemma 3.2.2. If A ⊆ 2<ω is a prefix-free set, then:∑
σ∈A

2−KMD (σ) ≤ 1.

Proof. Consider B = {τσ : σ ∈ A} where τσ is a shortest description of σ with
respect to the universal process machine U . If τ1, τ2 are distinct elements of
B, then U(τ1) and U(τ2) are incomparable (as they are both in A). Therefore
because U is a process machine we have that τ1 6� τ2. Hence B is a prefix-free
set as well and the result follows because:

3.2. PROCESS COMPLEXITY IS NOT SUBADDITIVE 35

∑
σ∈A

2−KMD (σ) =
∑
τ∈B

2−|τ | = µ[B] ≤ 1.

Let g : ω → ω be the constant function g(x) = 2. Now the function ĝ :

2<ω → 2<ω is a process (recall the definition of ĝ in Section 3.1). For all i,
we can define Ai = {ĝ(τ) : τ ∈ {0, 1}i}. So A0 = {λ}, A1 = {00, 11}, A2 =

{0000, 0011, 1100, 1111}, etc.
Because ĝ is a process, there exists a constant cg, such that for all ρ ∈ Ai,

KMD
(ρ) ≤ i + cg = |ρ| − i + cg. The Ai’s are our sets of strings with short

descriptions.
For all m, i such that m ≥ 2i+ 2, we define

Bm
i = {σ ∈ {0, 1}m : ∃ρ ∈ Ai(ρ01 � σ or ρ10 � σ)}.

The Bm
i ’s are the sets of extensions that we will examine. It is important to

note that we have constructed the Bm
i ’s so that if i 6= j then Bm

i ∩ Bm
j = ∅.

We will explain the reason for this using an example. Consider σ = 00110100.
Because σ extends an element of A2, 0011, we want to place σ in B8

2 and not
in B8

1 even though σ extends 00 as well. This is because if we break σ into the
strings 0011 and 0100 then the difference between the length of the first string
0011, and the length of its ĝ description is 2 (ĝ(01) = 0011). This is larger than
the difference between the length of 00 and the length of its ĝ description. We
need to use the larger difference for the following argument to hold.

Note that |Bm
i | = |Ai| · 2 · 2m−2i−2 = 2m−i−1. Now we will use the following

lemma to find the extension we want.

Lemma 3.2.3. Given any e ∈ ω, there exist m, i ∈ ω, and σ ∈ Bm
i such that

KMD
(σ) > |σ| − i+ e.

Proof. Take m = 2e+3 and assume that no such i, σ exist. If so, then:

∑
σ∈{0,1}m

2−KMD (σ) ≥
m
2
−1∑

i=0

∑
σ∈Bmi

2−KMD (σ) ≥
m
2
−1∑

i=0

∑
σ∈Bmi

2−|σ|+i−e =

m
2
−1∑

i=0

|Bm
i |2−m+i−e.

But as,
m
2
−1∑

i=0

|Bm
i |2−m+i−e =

m
2
−1∑

i=0

2m−i−12−m+i−e =
(m

2

)
2−e−1 > 1,

we derive a contradiction by Lemma 3.2.2 as {0, 1}m is a prefix-free set.

36 CHAPTER 3. PROCESS COMPLEXITY

Proof of Theorem 3.2.1. Because the identity function is a process, there exists
a constant c such that for all σ ∈ 2<ω, KMD

(σ) ≤ |σ| + c. Now given any d,
choose e = d+ c+ cg. From the previous lemma, there exists some m, i, υ with
υ ∈ Bm

i such that KMD
(υ) > |υ| − i + e. Now set σ = υ � 2i so σ ∈ Ai and

thus KMD
(σ) ≤ |σ| − i + cg. Choose τ so that στ = υ. Now KMD

(τ) ≤ |τ | + c.
Combining these results gives us that:

KMD
(σ) +KMD

(τ) + d ≤ |σ| − i+ cg + |τ |+ c+ d

= |στ | − i+ e

< KMD
(στ).

Chapter 4

Difference in Monotone Complexities

The work in this chapter has been accepted for publication in the Transactions of the
American Mathematical Society.

4.1 Overview

In this chapter we investigate the relationship between the Kolmogorov com-
plexities Km and KM . We saw in Chapter 2 that these complexities are both
based on monotone machines. Km is the descriptive complexity and KM is
the negative logarithm of the algorithmic probability. The relationship be-
tween these two complexities has interesting philosophical implications. The
complexity Km is an application of the principle of Occam’s razor: the sim-
plest, or in this case the shortest, description is preferred. Levin observed that
KM is a natural candidate for any a priori probability used in Bayesian statis-
tics because of its universal properties. Levin conjectured that an analogue of
the coding theorem might hold for monotonic complexity i.e. that KM and
Km would agree within an additive constant [55]. Gács showed that Levin’s
conjecture is false.

Theorem 4.1.1 (Gács). Given any d ∈ ω, there exists σ ∈ 2<ω, such that Km(σ) −
KM(σ) > d.

One is naturally led to investigate the relationship between a given d and
the corresponding σ. Now Gács’s proof of Theorem 4.1.1 was set in the con-
text of integer strings (as opposed to binary strings). However, out of the con-
struction of the proof Gács developed the following lower bound for binary
strings [37].

38 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

Theorem 4.1.2 (Gács). There exists a computable unbounded function A−1, where
A−1 is some version of the inverse Ackermann function, such that for infinitely many
σ, Km(σ)−KM(σ) > A−1(|σ|).

The inverse Ackermann function is extremely slow growing. If the differ-
ence between these two complexities was no more than A−1 then the differ-
ence might be seen as essentially negligible. The following theorem gives an
upper bound on the difference between the two complexities [37, 87]. First we
inductively define logk x by log1 x = log x and logn+1 x = log logn x.

Theorem 4.1.3. For any k ∈ ω, ε ∈ R>0, with k ≥ 1:

Km(σ)−KM(σ) ≤ K(|σ|) +O(1)

≤ log |σ|+ log log |σ|+ . . .+ (1 + ε) logk |σ|+O(1).

The gap between the upper and lower bounds provided by Theorems 4.1.3
and 4.1.2 is enormous. In general, the upper and lower bounds between most
Kolmogorov complexities are very close [60, 87]. This theorem is still true if
Km is replaced by K [87]. It would be surprising if this upper bound was tight
as it would imply a prefix-free machine was just as good as approximating
KM as a monotone machine.

Since Gács’s result, over twenty-five years ago, an important open question
in algorithmic randomness has been whether either of these bounds on the
difference between Km and KM can be improved. In this chapter we will
establish a very strong lower bound by proving the following theorem.

Theorem 4.1.4. If c ∈ R, and c < 1, then there exist infinitely many σ ∈ 2<ω such
that:

Km(σ)−KM(σ) > c log log |σ|.

To prove Theorem 4.1.4 we will develop a proof of Theorem 4.1.1. The
improvement in the lower bound follows from the construction used in the
proof. While this proof builds on the original work of Gács, it does have a
number of new features, in particular, the algorithm at the heart of the proof
works on sets of strings as opposed to individual strings. It is fair to say that
Gács’s theorem is not well understood. We hope that the new proof, as well
as improving the bound, clarifies the main ideas as to why Km and KM are
different.

From now on we will refer to a c.e. continuous semimeasure as just a c.e.
semimeasure. We will also drop the word monotonic and just talk about de-
scriptive complexity and algorithmic probability. We know that MU majorizes

4.1. OVERVIEW 39

all c.e. semimeasures. So, if it was true that Km(σ) ≤ KM(σ) + O(1), then for
any c.e. semimeasure m that we could construct, there would be some con-
stant c such that Km(σ) ≤ −log(m(σ)) + c. The general approach of the proof
will be to build a c.e. semimeasure for which this is false. This means con-
structing a c.e. semimeasure m with the property that for all c ∈ ω, there exists
σ ∈ 2<ω, such that Km(σ) > −log(m(σ)) + c.

Of course we want to do more than this and prove Theorem 4.1.4. This
result will come out of the construction used in the proof. For now we will just
focus on showing that Km and KM are different. We will leave the analysis of
the size of the difference until later.

Another way to look at this problem is to consider whether for any n ∈ ω,
we can construct a semimeasure m such that m(λ) ≤ 2−n and there exists a σ
such that Km(σ) > − log(m(σ)). Viewing the problem this way helps simplify
the proof a little. This is because we can build a c.e. semimeasure a(σ) such
that:

(i). a(1) ≤ 1
2
, a(01) ≤ 1

8
, and for all i ∈ ω, a(0i1) ≤ 2−2i−1.

(ii). For all i ∈ ω, a(0i) =
∑

j∈ω a(0i+j1).

(iii). For all i ∈ ω there exists a σ such that Km(0i1σ) > − log(a(0i1σ)).

Then we can scale the semimeasure a to construct a new semimeasure m
with the desired properties.

Proposition 4.1.5. If such a semimeasure exists then Theorem 4.1.1 holds.

Proof. From a we define a c.e. semimeasure m. For all σ ∈ 2<ω, i ∈ ω, let
m(0i1σ) = 2ia(0i1σ) and additionally let m(0i) =

∑
j∈ωm(0i+j1). From this

definition for all σ, m(σ) ≥ m(σ0) +m(σ1). Also

m(λ) =
∑
i∈ω

m(0i1) =
∑
i∈ω

2ia(0i1) ≤
∑
i∈ω

2i2−2i−1 ≤ 1

so m is a c.e. semimeasure. As MU majorizes all c.e. semimeasures, there is
some d, such that MU(σ) ≥ 2−dm(σ). Thus KM(σ) ≤ − log(2−d · m(σ)) =

− log(m(σ)) + d. Now given any c ∈ ω, choose i ≥ c+ d. By our hypothesis on
a, there is some σ such that,

Km(0i1σ) > − log(a(0i1σ))

= − log(2−im(0i1σ))

= − log(m(0i1σ)) + i

≥ − log(m(0i1σ)) + c+ d

≥ KM(0i1σ) + c.

40 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

Note that we could use the recursion theorem to determine the constant d
in the above proof. However, this is not necessary for our construction.

4.1.1 The game: c.e. semimeasures vs monotone machines

In this chapter we will need a computable approximation to Km so we will
take Km,t to be defined as per Km except with Ut in place of U . We will also
want to form a set of strings by concatenating all elements in one set with all
elements in another. Hence if Σ,Υ ⊆ 2<ω, then we define

ΣΥ = {συ : σ ∈ Σ and υ ∈ Υ}.

The semimeasure a is c.e. so we can construct it in stages depending on
some computable enumeration of the universal monotone machine U . We will
start with a(σ, 0) = 0 for all σ ∈ 2<ω. At each stage t+ 1, we have the option of
choosing a single string ρ and a positive integer x such that a(λ, t) + 2−x ≤ 1,
and defining a(σ, t+ 1) as follows:

a(σ, t+ 1) =

a(σ, t) + 2−x if σ � ρ

a(σ, t) otherwise.

In the rest of the proof we will simply write a(ρ, t + 1) = a(ρ, t) + 2−x to
refer to this process. If we select ρ at stage t+1 and a(ρ, t) = 0 we will simplify
the notation further and write a(ρ, t+ 1) = 2−x. If no such ρ is chosen at stage
t+ 1 then this simply means that a(σ, t+ 1) = a(σ, t) for all σ.

Our objective is to construct a c.e. semimeasure a that meets the following
requirements for all i ∈ ω:

Ri: a(0i1) ≤ 2−2i−1 and (∃σ ∈ 2<ω)(Km(0i1σ) > − log(a(0i1σ))).

For most of this proof we will focus on meeting a single requirement Ri

for some arbitrary i. Once we can achieve a single requirement, it will be
relatively easy to meet all requirements.

A natural way to view this construction is as a game between us construct-
ing the semimeasure and an opponent constructing the universal monotone
machine. For example, in order to meet the requirement that there is some
string 1σ such that Km(1σ) > −log(a(1σ)) we could choose a string σ and set
a(1σ, 1) = 2−r. Then we could wait and see if a pair 〈τ, 1σ′〉 is enumerated
into U where |τ | ≤ r and σ � σ′. If such a pair is not enumerated into U then
the requirement is met because Km(1σ) > r = − log(a(1σ)). If such a pair
is enumerated into U then we can make another change to a at some future
stage.

4.1. OVERVIEW 41

We need to develop a construction of a such that no matter how our op-
ponent enumerates U , the requirements on a are met. We only have a finite
amount of measure that we can use, and similarly, our opponent only has a
finite number of descriptions of any length. Our goal is make our opponent
run out of suitable descriptions before we run out of measure. There are some
fundamental concepts used by Gács in his proof of Theorem 4.1.2 that we will
make use of. We will introduce one of these with the following example.

Example 4.1.6. We choose a string σ and set a(σ, 1) = 2−4. Now our opponent
must respond to this by ensuring that Km(σ) ≤ 4. To do this, the opponent
must enumerate some pair 〈τ, σ′〉 into U where |τ | ≤ 4, and σ′ � σ. Let us
suppose that the opponent enumerates 〈0000, σ〉 into U . Here comes the trick.
Either it is possible for the opponent to add 〈000, σ〉 into U or not. If not, we
can set a(σ, 2) = a(σ, 1) + 2−4 = 2−3. Now as it is not possible for the opponent
to add 〈000, σ〉 to U , the opponent must find a new string, say 001, and add
〈001, σ〉 to U . However, in this case, the opponent has used both 0000 and 001

to describe σ, a waste of resources. Alternatively, assume that the opponent
can enumerate 〈000, σ〉 into U . We can think of our opponent as holding 000

as a description in reserve for σ. Now we make this reservation useless. This
is achieved by:

(i). Never again adding measure to a string comparable with σ.

(ii). Only using units of measure of size at least 2−3 from now on.

As we are using increments of measure of size 2−3 or more, our opponent
must always respond with strings of length at most 3. However, our opponent
cannot use 000 because 000 can only be used to describe a string comparable
with σ. Hence, if we never increase the measure on a string comparable with
σ our opponent can never use 000. This makes 0001 a gap in the domain of U
as it cannot be used to respond to any of our increments in measure. Again
this is a waste of our opponent’s resources.

A proof of Theorem 4.1.1 can be developed by generalising the approach
of this example. A first step towards this generalisation is the following. We
take a string σ. We have two integer parameters r, g with 0 < r < g. We want
to increase the measure on σ in increments of 2−g. Each time we increase the
measure we want the opponent to respond. To do this, we do not increase the
measure on σ directly but on some extension of σ. Let Ξ = {σ}{0, 1}g−r. We
will take some ξ ∈ Ξ and increase the measure on ξ instead. A first attempt at
the algorithm we need is as follows.

42 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

Algorithm 1. Let t be the current stage in the enumeration ofU . Choose
some ξ ∈ Ξ that has not been used before (so a(ξ, t) = 0). If there is
some description of a string σ′ with σ′ � σ in the domain of Ut that can
be shortened to a description of length r, then terminate the algorithm.
Otherwise, we increase the measure on ξ by 2−g, and wait until a stage
t′ when the opponent describes ξ with a string of length at most g. If we
have not used all elements of Ξ, then we let t = t′ and repeat. If we have
used all elements of Ξ, then the measure on σ must be |Ξ|2−g = 2−r so
we wait until the opponent uses a string of length r to describe σ.

If we apply this algorithm, then the opponent must either use a string of
length r to describe σ, or have some string that describes a string comparable
with σ that can be shortened to a string of length r. The crucial fact is at some
point, we increased the measure on σ by just 2−g, and the opponent had to
respond by finding a new string of length r. The string is new in the sense that
it is not an initial segment of a string already used.

As it stands, this algorithm can only make a small gap between Km and
KM . The hard part is amplifying it. Amplification can be done by using the
algorithm recursively. In the algorithm above, we act by setting a(ξ, t) = 2−g

for some ξ at some stage t. However, rather than just directly increasing the
measure on ξ, we could instead run the algorithm again on some extension of
ξ. This would have the effect of increasing the measure on ξ while forcing the
opponent to waste even more resources. However, to achieve this a number
issues need to dealt with:

• We want to make sure our algorithm increases the measure enough. Al-
gorithm 1 will increase the measure on σ somewhere between 2−g and
2−r. This is too great a range.

• We need to ensure that any gaps the algorithm makes in the domain of
U are never used again. The algorithm above does not address this.

• Each time we use an extension of a string, we go deeper into the tree of
binary strings. We would like to minimise the depth that we go to in
order to get the best possible lower bound on the difference between Km

and KM .

The concepts in Example 4.1.6 and Algorithm 1 were used by Gács in his
original proof of Theorem 4.1.2. The approach of this chapter is still based on
these ideas but differs from that of Gács in how the problems listed above are
addressed.

4.2. EXAMINING THE DOMAIN OF U 43

The algorithm that we will present will make decisions based on the do-
main of U . The question of whether there is a description of σ that can be
shortened will be crucial (e.g. whether or not 0000 could be shortened to 000

in Example 4.1.6). First we will define certain subsets of the domain of U . We
will prove some technical lemmas about how these sets change as the param-
eters defining them change. These lemmas will be crucial to the verification
of the proof. Secondly, we will present the algorithm that establishes a gap
between Km and KM . Thirdly, we will verify the algorithm works. Finally,
we will analyse the algorithm to show how it improves the lower bound.

4.2 Examining the domain of U

At any stage t, Ut tells us the options our opponent has left. In particular, Ut
tells us what our opponent can and cannot use certain strings for. We need a
more exact notion for the idea of the opponent shortening an existing descrip-
tion. In his original proof, Gács came up with the notion of a string τ being
reserved as a description for σ. The idea is not just that the opponent can use
τ to describe σ, but additionally that the opponent cannot use τ to describe
a string incomparable with σ. For τ to be reserved for σ, the opponent must
have already used a string comparable with τ to describe an extension of σ.

There are really two ideas in this definition that are worth separating out
and making more explicit. First we will say that a string τ is fragmented by σ
if some string comparable to τ describes an extension of σ. This means the
opponent cannot use τ to describe a string incomparable with σ (otherwise U
would not be a monotone machine). Second, a string τ is incompatible with σ

if some string comparable with τ describes a string incomparable with σ. This
means that τ cannot be used to describe σ. Hence another way of saying a
string τ is reserved for σ is that τ is fragmented by σ but τ is not incompat-
ible with σ. As we are not so much interested in particular descriptions, but
descriptions of a certain length, we will make the following definitions.

Definition 4.2.1. (i). The strings of length r fragmented by σ at stage t are:

Fr(σ, t) = {τ ∈ {0, 1}r : ∃〈τ ′, σ′〉 ∈ Ut((τ ′ ≈ τ) ∧ (σ � σ′))}.

(ii). The strings of length r incompatible with σ at stage t are:

Ir(σ, t) = {τ ∈ {0, 1}r : ∃〈τ ′, σ′〉 ∈ Ut((τ ′ ≈ τ) ∧ (σ | σ′))}.

(iii). The strings of length r reserved for σ at stage t are:

Rr(σ, t) = Fr(σ, t) \ Ir(σ, t).

44 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

Example 4.2.2. Assume at stage t, Ut = {〈00, 11〉, 〈000, 1〉, 〈000, 11〉, 〈001, 11〉,
〈011,01〉, 〈100,01〉, 〈110, 011〉,〈111, 1〉}. If we consider the strings of length 2,
working through the definitions will establish that: F2(01, t) = {01, 10, 11},
I2(01, t) = {00, 11}, and R2(01, t) = {01, 10}.

The definitions given for Fr and Ir can be extended to sets of strings.

Definition 4.2.3. If Σ is a set of finite strings, then:

(i). Fr(Σ, t) =
⋃
σ∈Σ Fr(σ, t).

(ii). Ir(Σ, t) =
⋂
σ∈Σ Ir(σ, t).

We will explain later why we take the intersection in the definition of
Ir(Σ, t). The following lemmas show how the sets Fr(σ, t), Ir(σ, t), Fr(Σ, t),
and Ir(Σ, t) change as the parameters that define them vary.

Lemma 4.2.4. The following hold:

(i). If r0 ≤ r1 then [Fr0(σ, t)] ⊇ [Fr1(σ, t)] and [Ir0(σ, t)] ⊇ [Ir1(σ, t)].

(ii). If σ0 � σ1 then [Fr(σ0, t)] ⊇ [Fr(σ1, t)] and [Ir(σ0, t)] ⊆ [Ir(σ1, t)].

(iii). If t0 ≤ t1 then [Fr(σ, t0)] ⊆ [Fr(σ, t1)] and [Ir(σ, t0)] ⊆ [Ir(σ, t1)].

Proof. (i) If α ∈ [Fr1(σ, t)] then α � r1 ∈ Fr1(σ, t), so there are τ ≈ α � r1

and σ′ � σ such that 〈τ, σ′〉 ∈ Ut. Now as r0 ≤ r1, τ ≈ α � r0 we have
α � r0 ∈ Fr0(σ, t) and hence α ∈ [Fr0(σ, t)]. Similarly [Ir0(σ, t)] ⊇ [Ir1(σ, t)].
(ii) If τ ∈ Fr(σ1, t) then there are τ ′ ≈ τ and σ � σ1 such that 〈τ ′, σ〉 ∈ Ut. As
σ � σ1 � σ0 we have τ ∈ Fr(σ0, t). If τ ∈ Ir(σ0, t) then there exist τ ′ ≈ τ and
ρ | σ0 such that 〈τ ′, ρ〉 ∈ Ut. As σ1 � σ0, we have σ1 | ρ and thus τ ∈ Ir(σ1, t).
(iii) Follows because Ut0 ⊆ Ut1 .

In summary [Fr(σ, t)] and [Ir(σ, t)] are both increasing in t and decreasing in
r. In length of σ, [Fr(σ, t)] is decreasing and [Ir(σ, t)] is increasing. To establish
similar results for Fr(Σ, t), and Ir(Σ, t), we need to define a relationship �
between sets of strings.

Definition 4.2.5. If Σ0,Σ1 ⊆ 2<ω, then Σ0 � Σ1 if for all σ1 ∈ Σ1, there exists a
σ0 ∈ Σ0 such that σ0 � σ1.

Lemma 4.2.6. The following hold:

(i). If r0 ≤ r1 then [Fr0(Σ, t)] ⊇ [Fr1(Σ, t)] and [Ir0(Σ, t)] ⊇ [Ir1(Σ, t)].

(ii). If Σ0 � Σ1 then [Fr(Σ0, t)] ⊇ [Fr(Σ1, t)] and [Ir(Σ0, t)] ⊆ [Ir(Σ1, t)].

4.3. THE MAIN ALGORITHM 45

(iii). If t0 ≤ t1 then [Fr(Σ, t0)] ⊆ [Fr(Σ, t1)] and [Ir(Σ, t0)] ⊆ [Ir(Σ, t1)].

Proof. (i) If α ∈ [Fr1(Σ, t)], then for some σ ∈ Σ, α ∈ [Fr1(σ, t)] thus by the
previous lemma α ∈ [Fr0(σ, t)] ⊆ [Fr0(Σ, t)]. If α ∈ [Ir1(Σ, t)], then for all σ ∈ Σ,
α ∈ [Ir1(σ, t)] thus by the previous lemma α ∈

⋂
σ∈Σ[Ir0(σ, t)] = [Ir0(Σ, t)].

(ii) If α ∈ [Fr(Σ1, t)] then for some σ1 ∈ Σ1, α ∈ [Fr(σ1, t)]. There exists σ0 ∈ Σ0

such that σ0 � σ1, by the previous lemma α ∈ [Fr(σ0, t)] ⊆ [Fr(Σ0, t)].

If α ∈ [Ir(Σ0, t)] then for all σ0 ∈ Σ0, α ∈ [Ir(σ0, t)]. Now if σ1 ∈ Σ1 then
for some σ0 ∈ Σ0, σ0 � σ1. Because α ∈ [Ir(σ0, t)], by the previous lemma
α ∈ [Ir(σ1, t)]. Thus α ∈

⋂
σ1∈Σ1

[Ir(σ1, t)] = [Ir(Σ1, t)].

(iii) If τ ∈ Fr(Σ, t0), then for some σ ∈ Σ, τ ∈ Fr(σ, t0) thus by the previous
lemma τ ∈ Fr(σ, t1) ⊆ Fr(Σ, t1).

If τ ∈ Ir(Σ, t0), then for all σ ∈ Σ, τ ∈ Ir(σ, t) thus by the previous lemma
τ ∈

⋂
σ∈Σ Ir(σ, t1) = Ir(Σ, t1).

4.3 The main algorithm

We are going to describe an algorithm that can be used to prove Theorems
4.1.1 and 4.1.4. The algorithm will be allocated a certain amount of amount of
measure to spend on the construction of the c.e. semimeasure a. It will also
be given a set of strings Σ, and it will only be able to increase the measure
on extensions of these. Ultimately we want the algorithm to establish some
difference between Km(ρ) and − log(a(ρ)) for some string ρ that extends some
element of Σ. We will argue that if this does not happen, then some contra-
diction must ensue. The basic idea is to make the opponent run out of short
descriptions. Formalising this idea is a little difficult. We want to be able to
say that if we spend 2−r of measure on extensions of Σ, and we do not es-
tablish a difference between Km and − log(a), then we can cause x amount of
something to happen to U (where U is the universal machine controlled by
the opponent). We will refer to this x, whatever it is, as the gain made by the
algorithm.

Now the most obvious measurement to use would be µ([Π1(Ut)]) (where
Π1(Ut) is the projection of Ut on the first coordinate) because this is analogous
to the domain of Ut. However, remember that part of idea is to leave gaps in
U that the opponent cannot do anything useful with. The problem with this
measurement is that it does not account for gaps. An alternative is Fr(Σ, t), the
strings of length r that are fragmented by elements of Σ. This will count gaps
as well. This is almost what we need. The size of this set must be at most 2r.

46 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

So if the algorithm ends at t1, and we could ensure that |Fr(Σ, t1)| ≥ k for an
arbitrary k we would be done. However, it is still more complicated than this.
We will end up using the algorithm we define recursively. When verifying the
algorithm we do not want to double-count any gain made. To make the veri-
fication possible, we will subtract [Ir′(Σ, t0)] from [Fr(Σ, t1)], where r′ ≥ r and
t0 is the time the algorithm starts. This is what we will use to determine the
gain made by the algorithm. The following definition, G is for gain, codifies
this idea.

Definition 4.3.1. If Σ ⊆ 2<ω, and r, r′, t0, t1 ∈ ω such that r ≤ r′ and t0 ≤ t1

then Gr′
r (Σ; t0, t1) = [Fr(Σ, t1)] \ [Ir′(Σ, t0)].

Gr′
r (Σ; t0, t1) can be thought of as the gain the algorithm obtains using the

strings in Σ between stages t0 and t1, and using units of measure between r

and r′. With this definition in hand, we can define what sort of algorithm is
needed. Note that we describe an algorithm that works on a set of strings.

Definition 4.3.2. If r, f ∈ ω, and Σ is a finite prefix-free subset of 2<ω, then an
(r, f,Σ)-strategy is an algorithm that if implemented at stage t0, ensures that
either:

(i). (a) There is some σ ∈ Σ such that for some σ′ extending σ, Km(σ′) >

− log(a(σ′)), and

(b) For all stages t, for all σ ∈ Σ, a(σ, t) < 5
4
2−r; or

(ii). At some stage t1, for some r′ ≥ r computable from (r, f):

(a) For all σ ∈ Σ, 2−r ≤ a(σ, t1) < 5
4
2−r, and

(b) µ(Gr′
r (Σ; t0, t1)) ≥

(
1 + f

2

)
a(Σ, t1), and

(c) For all Σ̂ ⊆ Σ,
µ(Gr′

r (Σ̂; t0, t1)) ≥
(
1 + f

2

) (
a(Σ, t1)− 2a(Σ \ Σ̂, t1)

)
where a(Σ, t) =

∑
σ∈Σ a(σ, t).

This definition is complicated so we will take some time to explain it. The
input parameters for the strategy are r,f and Σ. Σ is a finite prefix-free set
of binary strings. These are the strings that the algorithm will work on. The
parameter r determines the measure that the algorithm should spend on every
string in Σ. The parameter f determines the amount of gain that the algorithm
should make. First we will establish the existence of an (r, 0,Σ)-strategy for
any appropriate r, then we will inductively establish the existence of (r, f +

1,Σ)-strategies assuming the existence of (r, f,Σ)-strategies.

4.3. THE MAIN ALGORITHM 47

The definition gives two possible outcomes to a strategy. Outcome (i) is the
preferred outcome. If outcome (i) occurs, then we have established a differ-
ence between Km and KM . However, if we do not achieve this, then outcome
(ii) is at least a step in the right direction. Provided f > 0, outcome (ii) ensures
that some difference between µ(Gr′

r (Σ; t0, t1)) and a(Σ, t1) is created.
In outcome (ii), condition (b) says that the gain on the set of strings Σ is

bounded below. We do not want the gain to be too concentrated on some par-
ticular subset of Σ. The gain achieved need not be evenly distributed among
the elements of Σ, but it is important that this distribution is not too skewed.
This is the reason for condition (c). Condition (c) ensures that no individual
string in Σ contributes too much to the overall gain made. We need condi-
tion (c) because when we use the algorithm recursively, we will not be able to
count the gain that occurs on some individual elements of Σ. Hence we do not
want an individual element of Σ providing too much of the overall gain. Note
that (c) implies (b) by taking Σ̂ = Σ.

It is also important to observe that for all σ ∈ Σ, if the strategy is running
at stage t, then a(σ, t) is bounded above in outcomes (i) and (ii). In outcome
(ii) there is also a lower bound for a(σ, t1). This lower bound is essential for
using strategies recursively because we want these strategies to increase the
measure on strings, as well as establish some gain. If we can implement an
(r, f,Σ)-strategy with an arbitrarily high f then (ii) is not a possible outcome
as the measure would be greater than 1. This would force outcome (i).

The other parameter in the above definition to discuss is r′. The parameter
r′ dictates where the strategy should make its gain. In practice, what it will
mean is that 2−r

′ will be the minimum sized increment in measure that the
strategy will make to a. In other words, each time the strategy increases the
measure on some string, the amount increased will be at least 2−r

′ . The idea is
that if any previous strategy has created a gap of measure less that 2−r

′ , then
the current strategy will not interfere with it.

4.3.1 A basic strategy

The idea behind the basic (r, 0,Σ)-strategy is simple. For every σ ∈ Σ we
set a(σ) = 2−r. The opponent is then forced to respond by setting Km(σ) ≤
r. To do this, the opponent must find some string τ of length at most r and
enumerate 〈τ, σ〉 into U . The only difficulty is in showing that this basic idea
meets our rather elaborate definition of a strategy.

Proposition 4.3.3. If Σ is a finite prefix-free subset of 2<ω, r ∈ ω, and t0 is the
current stage in the construction of a, such that a(Σ, t0) = 0, and |Σ|2−r ≤ 1, we can

48 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

implement an (r, 0,Σ)-strategy with r′ = r.

Proof. Let Σ = {σ1, . . . , σn}. This strategy can be implemented by first for
all i ∈ ω, 1 ≤ i ≤ n setting a(σi, t0 + i) = 2−r (we know that a(σi, t0 + i −
1) = 0 because Σ is prefix-free). This ensures that a(Σ, t0 + n) = |Σ|2−r. The
second step is to wait until a stage t1, when the opponent responds by setting
Km,t1(σ) ≤ r for all σ ∈ Σ. If this never happens, then for some σ ∈ Σ,
Km(σ) > r = − log(2−r) = − log(limt→∞ a(σ, t)) = − log(a(σ)) so outcome (i)
occurs.

If at some stage t1, Km,t1(σ) ≤ r for all σ ∈ Σ, then for all i ∈ ω, such that
1 ≤ i ≤ n, our opponent must have enumerated some 〈τi, σ′i〉 into Ut1 where
si = |τi| ≤ r and σ′i � σi. In this case we will show that outcome (ii) occurs.
First (a) holds as a(Σ, t1) = a(Σ, t0 + n).

For any i, let τr be any extension of τi of length r. By definition, τr ∈
Fr(σi, t1) so τr ∈

⋃
σ∈Σ Fr(σ, t1) = Fr(Σ, t1). If τr ∈ Ir(σi, t0), then for some

τ ′ comparable with τr and some ρ incomparable with σi, 〈τ ′, ρ〉 ∈ Ut0 ⊆ Ut1

but this would contradict the definition of a monotone machine as it implies
both τ ′ ≈ τi and ρ | σ′i. So τr 6∈ Ir(σi, t0) and thus τr 6∈

⋂
σi∈Σ Ir(σi, t0) =

Ir(Σ, t0). Hence Gr
r(Σ; t0, t1) which by definition is [Fr(Σ, t1)] \ [Ir(σ, t0)] con-

tains all infinite extensions of τr and hence all infinite extensions of τi. So
[τi] ⊆ Gr

r(Σ; t0, t1). Now if i 6= j [τi] ∩ [τj] = ∅ because if they are comparable
then σi and σj must be comparable but Σ is a prefix-free set. Thus

µ(Gr
r(Σ; t0, t1)) ≥

n∑
i=1

µ[τi] =
n∑
i=1

2−si ≥
n∑
i=1

2−r = |Σ|2−r = a(Σ, t1)

and as a(Σ, t1) = (1 + 0
2
)a(Σ, t1), we have that (b) holds.

Let Σ̂ ⊆ Σ. Let I = {1, . . . , n} and J = {i ∈ I : σi ∈ Σ̂}. By the same logic,

µ(Gr
r(Σ̂; t0, t1)) ≥

∑
j∈J

2−r = |I|2−r − (|I \ J |)2−r = a(Σ, t1)− a(Σ \ Σ̂, t1)

and as a(Σ, t1)− a(Σ \ Σ̂, t1) ≥ (1 + 0
2
)(a(Σ, t1)− 2a(Σ \ Σ̂, t1)) so (c) holds and

outcome (ii) occurs.

4.3.2 Using strategies sequentially

We are going to work up to developing an (r, f + 1,Σ)-strategy, using (r, f,Σ)-
strategies. Before we present the main algorithm that does this, there is some
more preparatory work to do. Ideally, when we implement a strategy, we want
to achieve outcome (i). However, if this does not happen then at some stage
the strategy will terminate and we can start a new strategy. We want to en-
sure that if the second strategy also achieves outcome (ii), then the gain from

4.3. THE MAIN ALGORITHM 49

running the strategies sequentially is at least the sum of the minimum gain ex-
pected from the strategies individually. The definition of the (r, f,Σ)-strategy
is designed to allow this as Proposition 4.3.5 will show. Before proving this
proposition, we need the following lemma.

Lemma 4.3.4. If σ0 | σ1 then Fp(σ0, t) ⊆ Ip(σ1, t).

Proof. If τ ∈ Fp(σ0, t) then there exists 〈τ ′, σ′0〉 ∈ Ut such that τ ′ ≈ τ and σ′0 �
σ0. Now this implies that σ′0 | σ1 and so τ ∈ Ip(σ1, t).

Proposition 4.3.5. If r0 ≤ r1 ≤ . . . ≤ rn and t0 ≤ t1 ≤ . . . ≤ tn are sequences
in ω, and Σ0,Σ1, . . . ,Σn−1 are pairwise disjoint prefix-free subsets of 2<ω, and Σ =

Σ0 ∪ Σ1 ∪ . . . ∪ Σn−1 is also prefix-free, then:

µ(Grn
r0

(Σ; t0, tn)) ≥
n−1∑
i=0

µ(Grn−i
rn−1−i

(Σi; ti, ti+1)).

Proof. First if i ∈ ω and 0 ≤ i < n, then Σ � Σi so by chaining together
Lemma 4.2.6 [Frn−i−1

(Σi, ti+1)] ⊆ [Fr0(Σi, ti+1)] ⊆ [Fr0(Σ, ti+1)] ⊆ [Fr0(Σ, tn)]

and additionally [Irn(Σ, t0)] ⊆ [Irn(Σ, ti)] ⊆ [Irn(Σi, ti)] ⊆ [Irn−i(Σi, ti)].
Hence [Fr0(Σ, tn)] \ [Irn(Σ, t0)] ⊇ [Frn−i−1

(Σi, ti+1)] \ [Irn−i(Σi, ti)] which by
definition means that Grn

r0
(Σ; t0, tn) ⊇ G

rn−i
rn−i−1(Σi; ti, ti+1). Now assume 0 ≤ i <

j < n. We have that:

[Frn−i−1
(Σi, ti)] ⊆ [Frn−j(Σi, tj)] ⊆ [Irn−j(Σj, tj)].

The first inclusion is by Lemma 4.2.6. The second inclusion follows because
if τ ∈ Frn−j(Σi, tj), then τ ∈ Frn−j(σi, tj) for some σi ∈ Σi. But for all σj ∈ Σj ,
σj is incomparable with σi. So τ ∈ Irn−j(σj, tj) by Lemma 4.3.4. Thus τ ∈⋂
σj∈Σj

Irn−j(σj, tj) = Irn−j(Σj, tj). So we can conclude that:

([Frn−i−1
(Σi, ti+1)] \ [Irn−i(Σi, ti)]) ∩ ([Frn−j−1

(Σj, tj+1)] \ [Irn−j(Σj, tj)]) = ∅.

This by definition means that Grn−i
rn−i−1(Σi; ti, ti+1) ∩Grn−j

rn−j−1(Σj; tj, tj+1) = ∅.

Buried in the above proof is the reason that we define Ir(Σ, t) to be the
intersection of Ir(σ, t) for all σ ∈ Σ. The reason is this. Take Σ0 and Σ1 to be
disjoint sets whose union is prefix-free. If τ ∈ Fr(Σ0, t) then τ is fragmented
by some string in Σ0. As all strings in Σ0 are incomparable with all strings in
Σ1, we have τ ∈ Ir(Σ1, t). This is why the above proposition works as it avoids
double counting any gains.

Example 4.3.6. To illustrate why this proposition is useful, we will show how
we can use it to gradually increase the measure on a string without losing any

50 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

gain made along the way. Consider the following implementation of three
strategies in sequence and assume that they all have outcome (ii). Take some
r0 ∈ ω. Fix an f ∈ ω and assume we have an (r, f,Σ) strategy for any appro-
priate r and Σ. Let r1 be the r′ computable from (r0, f). Similarly let r2 be the
r′ computable from (r1, f) and r3 be the r′ computable from (r2, f). Take any
string σ and let Σ2 = {σ00}, Σ1 = {σ01}{0, 1}r1−r0 , Σ0 = {σ1}{0, 1}r2−r0 and
Σ = Σ0 ∪ Σ1 ∪ Σ2.

Starting at stage t0, first we implement an (r2, f,Σ0)-strategy. When this
finishes at stage t1, we implement an (r1, f,Σ1)-strategy. Finally when it fin-
ishes at stage t2, we implement an (r0, f,Σ2)-strategy. Let t3 be the stage that
this final strategy finishes. Now from Proposition 4.3.5,

µ(Gr3
r0

(Σ; t0, t3)) ≥
2∑
i=0

µ(Gr3−i
r3−1−i

(Σi; ti, ti+1))

≥
2∑
i=0

(
1 +

f

2

)
a(Σi, ti+1)

=

(
1 +

f

2

)
a(Σ, t3).

The last step follows provided we do not increase the measure on any other
string comparable with a string in Σ except as required by the strategies. Now
a(σ) ≥ a(Σ) ≥ |Σ0|2−r2 + |Σ1|2−r1 + |Σ2|2−r0 = 3 · 2−r0 . This approach has
allowed us to use strategies to increase the measure on σ in three increments of
2−r0 without losing any of the gain made by the three strategies individually.
This ability to increase the measure on a string in small increments will be
exploited in the main proof.

4.3.3 Implementing more difficult strategies

We have seen that we can use strategies sequentially without losing any gain.
However, we need to do better than this. We need to be able to combine strate-
gies in such a way as to increase the gain we make. To do this, we will make
use of reservations. Our goal is to implement an (r, f + 1,Σ)-strategy using a
finite sequence of (ri, f,Σi)-strategies.

We will improve Algorithm 1. The basic idea remains the same. When we
assign measure to a string, e.g. if at stage t0 we set a(σ, t0) = 2−g, then our
opponent has to respond by allocating a string of length at most g to describe
σ. Say in response to our setting a(σ, t0) = 2−g, our opponent enumerates
〈τ, σ〉 into Ut1 where |τ | = g. Take p < g and let τp be the first p bits of τ . If
τp 6∈ Rp(σ, t), then τp ∈ Ip(σ, t) so our opponent can never enumerate 〈τp, σ〉

4.3. THE MAIN ALGORITHM 51

into U . So if we set a(σ, t1) = 2−p, our opponent must find some new string υ
of length at most p to describe σ. The original τ description of σ is effectively
a waste of resources.

On the other hand while τp ∈ Rp(σ, t), we also have a gain because our
opponent can only use τp to describe a string comparable with σ. If we only
increase measure on strings incomparable with σ, then our opponent cannot
use τp in response. If we only use increments of measure of size at least 2−p,
then our opponent cannot make use of any extension of τp (it would be too
long to be useful). Note that this is why we need an r′ in the definition of an
(r, f,Σ)-strategy. The r′ is the smallest amount of measure this strategy needs.
Being able to compute r′ means we know how much space strategies need
in terms of units of measure. With this knowledge, we can ensure that the
smallest amount of measure needed by a strategy will not interfere with any
reservations established by previous strategies.

We noted earlier that part of the problem with Algorithm 1, was that the
amount of measure that it assigned to a string ranged between 2−g and 2−r.
This range was too great to allow the algorithm to be used recursively. Hence
our algorithm has two objectives: create a certain amount of gain, and ensure a
certain amount of measure is allocated. These two objectives will be achieved
by splitting the algorithm into two phases. In the first, the advantage phase,
the objective will be to force our opponent to reserve a number of strings of
length p. We do not know how much measure we will need to use before our
opponent makes this many reservations. If we do not use enough measure,
then we proceed with the second phase, the spend phase. The spend phase
is where we make sure that we have placed enough measure on each string
so that the strategies can be used recursively. The use of these two phases is
another new feature of this proof.

The spend phase must occur after the advantage phase because only then
will we know how much more measure we need to allocate. Accordingly, the
spend phase will use larger units of measure than the advantage phase. From
r we will compute a p, q and r′ such that r < p < q < r′. The advantage
phase will use units of measure between q and r′ while the spend phase will
use units of measure between r and p (see Figure 4.1). This gives us a bit of
problem. During the advantage phase we can only require reservations of
length at most p. If p is much larger than r, then we will need to make a lot
of reservations in order to achieve anything. To get around this problem, we
define Υ = Σ{0}{0, 1}p−r (where Σ is the set of input strings for the algorithm).
Note that the purpose of the {0} in the definition of Υ is just to separate the
strings used by the advantage phase from those used by the spend phase.

52 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

We will run the algorithm on the strings in Υ until enough of these have a
reservation of length p. An important new idea in this proof is to run each
pass of the algorithm simultaneously on all the strings in Υ that do not have a
reservation.

Like in Algorithm 1, we will not increase the measure on the elements of
Υ directly, but rather we will make a series of small increments of measure on
some extensions of them. We will let Ξ = Υ{0, 1}e (e depends of f and will be
defined shortly). The idea is this. If υ ∈ Υ and ξ0, . . . ξ2e−1 are the elements of
Ξ that extend υ, then we will sequentially set the measure of each ξi to 2−p−e

until a reservation of size p occurs for υ. If we do this for all such ξi, then the
measure on υ will be 2−p and the opponent must allocate a string of length
p to describe υ. However, it is not quite that simple. We want to increase the
measure on ξi by running some strategy on it. Every time we run a strategy we
need to use larger units of measure. So instead what we will do is take many
extensions of ξ0. Then we can run our first strategy on all these extensions,
spending a little bit of measure on each. Then we will take fewer extensions
of ξ1, and run a strategy that spends a little more measure on each of these
extensions, and so on. This is just like what we did in Example 4.3.6. This
gives us sets Ψ0,Ψ1, . . ., where Ψi is the ith set of extensions of elements of Ξ

that we want to increase measure on. The sets used by the advantage phase
are shown in Figure 4.2. In this figure arrows represent extensions of strings.

The algorithm would ideally achieve a reservation of length p for every
element of Υ but there is a problem. Once a reservation is achieved for some
υ ∈ Υ, we do not want to increase the measure on that υ. However, reserva-
tions are not monotonic, they can appear at one stage and then disappear the
next. Consider υ1, υ2 ∈ Υ. Say we increase the measure on both υ1, υ2 by 2−p−e

and then the opponent responds by giving a p reservation to υ1, but not υ2.
Then we could increase the measure on υ2 and the opponent might respond
by giving a p reservation to υ2 but taking away the p reservation from υ1. By
adopting this sort of tactic, the opponent could force us to make a lot of sep-
arate increases in measure in order to achieve reservations for all elements of
Υ. Every time we increase the measure on some subset of Υ we need a new
Ψi. The more Ψi’s we need, the deeper we need to go into the binary tree. To
improve the lower bound, we want to limit the number of Ψi’s we need. Each
time we increase the measure, we do so simultaneously on all the elements
of some subset of Υ. We want to make sure that this subset includes at least
one-quarter of the elements of Υ. To do this, we will terminate the advantage
phase of the algorithm when we have a reservation for three-quarters of the
elements of Υ.

4.3. THE MAIN ALGORITHM 53

The spend phase is similar but simpler. In this phase we will identify those
elements σ ∈ Σ that do not have enough measure. We will increase the mea-
sure on σ in increments of 2−r−3 until we have exceeded 2−r. Again like Ex-
ample 4.3.6, we will not increase the measure directly on σ but rather on some
set of extensions of it. These extensions will form the sets Φ0, . . . ,Φ7.

4.3.4 The S function

The length of extensions that we take to form the sets Ψi and Φi is governed by
the space that a strategy needs to run, in terms of quantities of measure. The
function S(f) is used to determine this space. We will show that there exist
(r, f,Σ)-strategies such that r′ = r + S(f). From our base strategy we can set
S(0) = 0 because in this case r = r′.

In the process of determining S(f + 1) we will also compute all the other
variables we need for the main algorithm. These are illustrated in Figure 4.1.
To determine S(f + 1), first we compute an increasing sequence r0 ≤ r1 ≤
. . . ≤ r8 by r0 = r + 3 and ri+1 = ri + S(f). This gives us room for the spend
phase. Let p = r8. Let e = dlog(20 + 10f)e. We use this value of e so that
5
2
2−e
(
1 + f

2

)
≤ 1

8
.

Let q = p + e. Now compute an increasing sequence r∗0 ≤ r∗1 ≤ . . . ≤ r∗n,
where r∗0 = q, n = 2e+2 and r∗i+1 = r∗i + S(f). This gives us room for the
advantage phase. Finally let r′ = r∗n, and S(f +1) = r′−r. This is well-defined
as S(f + 1) does not depend on the initial choice of r.

r r0 r1 . . . r8 = p

Spend Phase e Advantage Phase

q = r∗0 r∗1 . . . r∗n = r′

Figure 4.1: Algorithm parameters

4.3.5 An f+1 strategy algorithm

We are finally ready to present the main algorithm. We are given r, f ∈ ω

and a prefix-free set of strings Σ such that |Σ|5
4
2−r ≤ 1. We let t0 be the stage

that the algorithm starts and we require that a(Σ, t0)=0. In order to implement
an (r, f + 1,Σ)-strategy first we determine all the values n, p, q, e, ri, r∗i , r′ as
shown in Figure 4.1. In the algorithm Υ′ represents those elements of Υ whose
measure we will increase in the current pass through the advantage phase of

54 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

the algorithm. Now with all the values that we need computed, the algorithm
that we will use to implement an (r, f + 1,Σ)-strategy is as follows:

Advantage Phase. Let t be the current stage.
Let Υ = Σ{0}{0, 1}p−r. Let Ξ = Υ{0, 1}e. Let Υ′ = {υ ∈ Υ : Rp(υ, t) = ∅}.
If |Υ′| < 1

4
|Υ|, then move to the spend phase.

For each υ ∈ Υ′, choose a ξυ ∈ Ξ such that ξυ � υ and a(ξυ, t) = 0.
Let Ξ′ = {ξυ : υ ∈ Υ′}. Choose the least i ∈ {0, . . . , n − 1} that has
not been used previously. Let Ψi = Ξ′{0, 1}r∗n−i−1−q and implement an
(r∗n−i−1, f,Ψi)-strategy. If this strategy finishes at stage t′, then wait until
stage t′′ such that Km,t′′(υ) ≤ p for all υ ∈ Υ such that a(υ, t′) ≥ 2−p.
Repeat the advantage phase.

Spend Phase. Let t be the current stage. Let Σ′ = {σ ∈ Σ : a(σ, t) <

2−r}. If Σ′ is the empty set then terminate the algorithm. Otherwise
choose the least i ∈ {0, . . . , 7} such that i has not been used previously in
the spend phase. Let Φi = Σ′{1}{0i1}{0, 1}r7−i−r−3 and run a (r7−i, f,Φi)-
strategy. Repeat the spend phase.

4.4 Verification of algorithm

The algorithm starts at stage t0. We will define the following parameters as-
suming that the algorithm does terminate at some stage t1. Let na be the num-
ber of times the advantage phase is run. Let ns be the number of times the
spend phase is run. For all 0 ≤ i < na, let t∗i be the stage the ith strategy in
the advantage phase begins (starting with i = 0). Let tmid be the stage when
then the algorithm completes the advantage phase and let t∗na = tmid. For all
0 ≤ i < ns, let t′i be the stage the ith strategy in the spend phase begins (start-
ing with i = 0). Let t′ns = t1. Let Φ = Φ0 ∪ . . .∪Φns−1 and Ψ = Ψ0 ∪ . . .∪Ψna−1.

The first step in the verification is to prove that the algorithm runs without
error. To prove this, we need to show that each time we ‘choose’ something
in the algorithm, there is something valid to choose. First we note that the
opponent cannot add a description of σ of length p or less without making a
reservation of length p.

Lemma 4.4.1. If t, p ∈ ω, and σ ∈ 2<ω, with Km,t(σ) ≤ p, then Rp(σ, t) 6= ∅.

4.4. VERIFICATION OF ALGORITHM 55

Ψ̂0 Ψ0

...

Ψn−1Ψ̂n−1

Ξ

ΥRΥ̂ Υ

Σ̂ Σ

Figure 4.2: Algorithm strings

Proof. If Km,t(σ) ≤ p, then there exists 〈τ, σ′〉 ∈ Ut such that s = |τ | ≤ p and
σ′ � σ. Consider τ ′ = τ0p−s. As |τ ′| = p, τ � τ ′ and σ′ � σ, so τ ′ ∈ Fp(σ, t).
If τ ′ ∈ Ip(σ, t) then there would exist τ ′′ ≈ τ ′ and ρ | σ such that 〈τ ′′, ρ〉 ∈ Ut.
However, then τ ′′ ≈ τ and ρ | σ′ so this would contradict the definition of a
monotone machine. Thus τ ′ 6∈ Ip(σ, t) and so τ ′ ∈ Rp(σ, t).

Proposition 4.4.2. The advantage phase of the algorithm never runs out of choices
for ξυ or i, and the spend phase never runs out of choices for i.

Proof. First we will show that there is always a choice for ξυ. Take any υ ∈ Υ.
Take any j ∈ ω such that 0 ≤ j < na. If we assume that for any ξ ∈ Ξ extending
υ, we have a(ξ, t∗j) 6= 0, then given any such ξ there is some i < j such that
an (r∗n−i−1, f,Ψi)-strategy has been implemented with {ξ}{0, 1}r∗n−i−1−q ⊆ Ψi.
There are 2r

∗
n−i−1−q extensions of ξ in Ψi so

a(ξ, t∗j) ≥ 2r
∗
n−i−1−q2−r

∗
n−i−1 = 2−q.

Hence a(υ, t∗j) ≥ 2e2−q = 2−p, because there are 2e extensions of υ in Ξ. This
means that at the end of the iteration of the previous advantage phase, the
algorithm will wait until a stage t when the opponent uses a string of length
at most p to describe υ before running the advantage phase again. As this

56 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

implies that Rp(υ, t
∗
j) 6= ∅ by Lemma 4.4.1, it follows that no choice of ξυ will

be needed.
The advantage phase stops if |Υ′| < 1

4
|Υ|. So each time the phase is run,

at least 1
4
|Υ| elements of Ξ are selected. This can only happen 4 · 2e = 2e+2

times (otherwise the algorithm would run out of choices for some ξυ) so there
is always a choice for i.

The spend phase will terminate if a(σ, t′i) ≥ 2−r for all σ ∈ Σ. During each
iteration through the phase, a(σ, t′i+1) ≥ a(σ, t′i) + 2−r−3 (if it is not greater than
2−r already) so after a maximum of 8 steps, a(σ, t) ≥ 2−r for all σ ∈ Σ and so
the algorithm will not run out of choices for i.

The next step in the verification is to show that the required bounds on the
measure that the algorithm uses are met.

Proposition 4.4.3. For all σ ∈ Σ, if the algorithm terminates at stage t1, then 2−r ≤
a(σ, t1) < 5

4
2−r.

Proof. As a(σ, t0) = 0, any measure placed on σ by stage tmid must be due to
an increase on measure on some ψ ∈ Ψ where ψ � σ. Hence for any σ ∈ Σ,
a(σ, tmid) =

∑
ψ∈Ψ,ψ�σ a(ψ, tmid). If ψ ∈ Ψi, then we increase the measure on ψ

by less than 5
4
2−r

∗
n−i−1 . Now if ψ � σ then |ψ| = |σ|+ 1 +p− r+ e+ r∗n−i−1− q =

|σ|+1−r+r∗n−i−1 so r∗n−i−1 = |ψ|−|σ|−1+r. Thus a(ψ, tmid) <
5
4
2−(|ψ|−|σ|−1+r).

All such ψ form a prefix free set above σ0 so:

a(σ, tmid) = a(σ0, tmid) =
∑

ψ∈Ψ,ψ�σ0

a(ψ, tmid)

<
∑

ψ∈Ψ,ψ�σ0

5

4
2−|ψ|+|σ0|−r

≤ 5

4
2−r.

The spend phase will only run if a(σ) < 2−r. Each iteration of the spend
phase increases the measure on σ by less than 5

4
2−r−3 < 2−r−2, so at then end

of spend phase 2−r ≤ a(σ, t1) < 2−r + 2−r−2 = 5
4
2−r.

Note that as a(Σ, t1) < |Σ|5
4
2−r ≤ 1, we do not run out of measure. There

are two possible outcomes to a (r, f + 1,Σ)-strategy. These are related to
whether or not the algorithm terminates.

Proposition 4.4.4. If the algorithm does not terminate then outcome (i) is achieved.

Proof. The number of times any phase is repeated is bounded so if the algo-
rithm does not terminate, then this must be caused by waiting for a response

4.4. VERIFICATION OF ALGORITHM 57

from the opponent or while waiting for another strategy to finish. Using the
basic strategy as an inductive base case, this can only be caused if for some
σ ∈ Σ, there is a σ′ � σ with Km(σ′) > − log(a(σ′)). Hence (i) (a) holds. Now
(i) (b) holds by Proposition 4.4.3 because if the algorithm does not exceed the
measure upper bound when it terminates, then it will not exceed the upper
bound if it takes no action from some point onwards.

Now for the difficult stage of the verification. Let Σ̂ ⊆ Σ. Let us examine
what happens if the algorithm does terminate. We are going to look at the
gain made during the advantage phase and the spend phase separately. This
is because we know from Proposition 4.3.5, that the overall gain is at least the
sum of the gain which occurs during these phases. That is:

µ(Gr′

r (Σ̂; t0, t1)) ≥ µ(Gr′

p (Σ̂{0}; t0, tmid)) + µ(Gp
r(Σ̂{1}; tmid, t1)).

We know what we can expect from the spend phase of the algorithm be-
cause this is just a series of (r, f,Φi)-strategies. However, in the advantage
phase we have to show that the overall gain is increased by the fact that some
reservations of length p are made i.e. for some υ ∈ Υ, Rp(υ, tmid) 6= ∅.

First let us look at the spend phase. For all i ∈ ω, 0 ≤ i < ns, let Φ̂i = {φ ∈
Φi : ∃σ ∈ Σ̂, φ � σ}. Note that Σ̂{1} � Φ̂i. Let Φ̂ = Φ̂0 ∪ . . . ∪ Φ̂ns−1.

Proposition 4.4.5. If the algorithm terminates then:

µ(Gp
r(Σ̂{1}; tmid, t1)) ≥

(
1 +

f

2

)(
a(Σ{1}, t1)− 2a(Σ{1} \ Σ̂{1}, t1)

)
.

Proof. From Proposition 4.3.5 and the inductive hypothesis of the existence of
(r, f,Σ)-strategies we know that:

µ(Gp
r(Σ̂{1}; tmid, t1)) ≥

ns−1∑
i=0

µ(Gr8−i
r7−i

(Φ̂i; t
′
i, t
′
i+1))

≥
ns−1∑
i=0

(1 +
f

2
)(a(Φi, t

′
i+1)− 2a(Φi \ Φ̂i, t

′
i+1))

= (1 +
f

2
)(a(Σ{1}, t1)− 2a(Σ{1} \ Σ̂{1}, t1)).

The second inequality is a consequence of condition (c) of outcome (ii).
The final equality is due to the fact that we only increase measure on exten-
sions of Σ{1} during the spend phase, and that the sets Φ0,Φ1, . . . ,Φns−1 are
incomparable.

Before we examine the advantage phase, we need some more definitions.
We need to define those subsets of Υ that have p reservations, or extend ele-
ments of Σ̂, or both.

58 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

(i). Let ΥR = {υ ∈ Υ : Rp(υ, tmid) 6= ∅}.

(ii). Let Υ̂ = {υ ∈ Υ : ∃σ ∈ Σ̂, υ � σ}.

(iii). Let Υ̂R = ΥR ∩ Υ̂.

For all υ ∈ Υ̂R, we choose a specific τυ in Rp(υ, tmid).
The gain made during the advantage phase can be broken down into two

parts. Firstly, for every υ ∈ Υ̂R, [τυ] ⊆ Gr′
p (Σ̂{0}; t0, tmid). This is true because

τυ ∈ Rp(υ, tmid) = Fp(υ, tmid) \ Ip(υ, tmid). As υ � σ0 for some σ ∈ Σ̂ we
have τυ ∈ Fp(σ0, tmid) ⊆ Fp(Σ̂{0}, tmid). Additionally, τυ 6∈ Ip(σ0, tmid), so
τυ 6∈ Ip(Σ̂{0}, tmid) ⊇ Ip(Σ̂{0}, t0). Now as [Ip(Σ̂{0}, t0)] ⊇ [Ir′(Σ̂{0}, t0)] we
have [τυ] ∩ [Ir′(Σ̂{0}, t0)] = ∅. Thus:

[τυ] ⊆ [Fp(Σ̂{0}, tmid)] \ [Ir′(Σ̂{0}, t0)] = Gr′

p (Σ̂{0}; t0, tmid).

Secondly, we can count the gains made by the recursive use of the strate-
gies in the advantage phase as:

na−1⋃
i=0

G
r∗n−i
r∗n−i−1

(Ψ̂i; t
∗
i , t
∗
i+1) ⊆ Gr′

p (Σ̂{0}; t0, tmid).

We would like to combine these to say:

µ(Gr′

p (Σ̂{0}; t0, tmid)) ≥ µ(
⋃
υ∈Υ̂R

[τυ]) + µ(
na−1⋃
i=0

G
r∗n−i
r∗n−i−1

(Ψ̂i; t
∗
i , t
∗
i+1)).

However we cannot do this as given υ and i, [τυ] and G
r∗n−i
r∗n−i−1

(Ψ̂i; t
∗
i , t
∗
i+1)

are not necessarily disjoint. Our goal is to find some subsets Ψ̂R
i ⊆ Ψ̂i, such

that for all υ ∈ Υ̂R, 0 ≤ i < na we have that [τυ] and G
r∗n−i
r∗n−i−1

(Ψ̂i \ Ψ̂R
i , t
∗
i , t
∗
i+1)

are disjoint. To this end we define Ψ̂R
i = {ψ ∈ Ψ̂i : ∃υ, τυ ∈ Fp(ψ, t∗i+1)}.

Lemma 4.4.6. For all υ ∈ Υ̂R, 0 ≤ i < na we have that [τυ] and G
r∗n−i
r∗n−i−1

(Ψ̂i \
Ψ̂R
i , t
∗
i , t
∗
i+1) are disjoint.

Proof. Assume that ψ ∈ Ψ̂i \ Ψ̂R
i . By definition it must be that τυ 6∈ Fp(ψ, t∗i+1)

and hence [τυ] ∩ [Fr∗n−i−1
(ψ, t∗i+1)] = ∅. This implies that [τυ] ∩ G

r∗n−i
r∗n−i−1

(Ψ̂i \
Ψ̂R
i , t
∗
i , t
∗
i1

) = ∅.

Our objective now is to figure out how much we lose by removing these
sets Ψ̂R

i . To do this we want to move everything down to the level of the Υ

strings. We define Υ̂R
i = {υ ∈ Υ̂R : τυ ∈ Fp(Ψ̂R

i , t
∗
i+1)}.

Lemma 4.4.7. If τυ ∈ Fp(ψ, t∗i+1) then υ � ψ.

4.4. VERIFICATION OF ALGORITHM 59

Proof. If υ 6� ψ then υ | ψ so τυ ∈ Ip(υ, t
∗
i+1) (Lemma 4.3.4) which means

τυ 6∈ Rp(υ, tmid).

Lemma 4.4.8. |Ψ̂R
i | ≤ 2r

∗
n−i−1−q|Υ̂R

i |.

Proof. If ψ ∈ Ψ̂R
i , then for some υ, τυ ∈ Fp(ψ, t∗i+1). This implies that υ � ψ and

further υ ∈ Υ̂R
i . The result follows as for any υ ∈ Υ there are at most 2r

∗
n−i−1−q

extensions of τυ in Ψi.

Lemma 4.4.9. If i 6= j, then Υ̂R
i ∩ Υ̂R

j = ∅.

Proof. Assume that i < j ≤ na and υ ∈ Υ̂R
i . We have that τυ ∈ Fp(Ψ̂

R
i , t
∗
i+1).

This means that for some ψ ∈ Ψ̂R
i , τυ ∈ Fp(ψ, t

∗
i+1) which implies that υ � ψ

(Lemma 4.4.7) so τυ ∈ Fp(υ, t∗i+1) ⊆ Fp(υ, t
∗
j).

Now as τυ ∈ Rp(υ, tmid) it must be that τυ 6∈ Ip(υ, tmid) which implies that
τυ 6∈ Ip(υ, t

∗
j). This gives us that τυ ∈ Rp(υ, t

∗
j). Now during the advantage

phase, our algorithm only chooses those elements of Υ that do not currently
have a reservation of length p. As υ does have a reservation of length p at
stage t∗j , υ is not picked as so there is no extension of υ in Ψj ⊇ Ψ̂R

j . Hence by
Lemma 4.4.7 we have that τυ 6∈ Fp(Ψ̂R

j , t
∗
i+1). This means υ 6∈ Υ̂R

j .

The final lemma that we need is a lower bound on the size of |Υ̂R|.

Lemma 4.4.10. |Υ̂R| ≥ (3
4
|Σ| − |Σ \ Σ̂|)2p−r.

Proof. Note that |ΥR| ≥ 3
4
|Υ| = 3

4
|Σ|2p−r as this is the condition for the algo-

rithm to move to the spend phase. Additionally, |Υ \ Υ̂| = |Σ \ Σ̂|2p−r. Hence:

|Υ̂R| = |ΥR|+ |Υ̂| − |ΥR ∪ Υ̂|

≥ |ΥR|+ |Υ̂| − |Υ|

= |ΥR| − |Υ \ Υ̂|

≥ 3

4
|Σ|2p−r − |Σ \ Σ̂|2p−r

= (
3

4
|Σ| − |Σ \ Σ̂|)2p−r.

Proposition 4.4.11. If the algorithm terminates and if Σ̂ ⊆ Σ, then:

µ(Gr′

p (Σ̂{0}; t0, tmid)) ≥
(

1 +
f

2

)(
a(Σ{0}, t1)− 2a(Σ{0} \ Σ̂{0}, t1)

)
+

5

8
|Σ|2−r − |Σ \ Σ̂|2−r.

60 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

Proof. Lemma 4.4.6 shows that the sets [τυ] and G
r∗n−1+1

r∗n−i
(Ψ̂i \ Ψ̂R

i ; ti, ti+1) are
disjoint. So:

µ(Gr′

p (Σ̂{0}; t0, tmid)) ≥
∑
υ∈Υ̂R

µ([τυ]) +
na−1∑
i=0

µ(G
r∗n−i
r∗n−i−1

(Ψ̂i \ Ψ̂R
i ; t∗i , t

∗
i+1)).

This is the point that we use part (c) of outcome (ii). We know that the
amount of gain that occurs on Ψ̂R

i is bounded. So if we subtract it from Ψ̂i,
we can determine the maximum amount we can lose. Note that as Ψ̂i ⊆ Ψi, it
follows that: Ψi \ (Ψ̂i \ Ψ̂R

i) is the disjoint union of Ψi \ Ψ̂i and Ψ̂R
i . With this

identity we can determine that:

µ(G
r∗n−i
r∗n−i−1

(Ψ̂i \ Ψ̂R
i ; t∗i , t

∗
i+1))

≥(1 +
f

2
)(a(Ψi, t

∗
i+1)− 2a(Ψi \ (Ψ̂i \ Ψ̂R

i), t∗i+1))

=(1 +
f

2
)(a(Ψi, t

∗
i+1)− 2a(Ψi \ Ψ̂i, t

∗
i+1)− 2a(Ψ̂R

i , t
∗
i+1)).

The first inequality comes from part (c) of outcome (ii) applied to our
(r, f,Ψi)-strategies. Hence we can combine these results along with the facts
that a(Ψi, t

∗
i+1) = a(Ψi, t1) and

∑
υ∈Υ̂R µ([τυ]) = |Υ̂R|2−p to get that:

µ(Gp
r(Σ̂{0}; t0, tmid)) ≥|Υ̂R|2−p +

na−1∑
i=0

(1 +
f

2
)a(Ψi, t1)

−
na−1∑
i=0

(1 +
f

2
)2a(Ψi \ Ψ̂i, t1)

−
na−1∑
i=0

(1 +
f

2
)2a(Ψ̂R

i , t1). (4.4.1)

These terms can be simplified. First:

na−1∑
i=0

(1 +
f

2
)a(Ψi, t1)−

na−1∑
i=0

(1 +
f

2
)2a(Ψi \ Ψ̂i, t1)

=(1 +
f

2
)(a(Σ{0}, t1)− 2a(Σ{0} \ Σ̂{0}, t1)). (4.4.2)

Further a(Ψ̂R
i , t1) < 5

4
2r
∗
n−i−1|Ψ̂R

i | by condition (b) of outcome (ii). Hence:

na−1∑
i=0

(1 +
f

2
)2a(Ψ̂R

i , t1) ≤
na−1∑
i=0

(1 +
f

2
)2 · 5

4
· 2r∗n−i−1 |Ψ̂R

i |

≤ 5

2
(1 +

f

2
)
na−1∑
i=0

|Υ̂R
i |2−q

≤ 5

2
(1 +

f

2
)|Υ̂R|2−q. (4.4.3)

4.4. VERIFICATION OF ALGORITHM 61

The second and third inequalities are consequences of Lemmas 4.4.8 and 4.4.9
respectively. Putting (4.4.1), (4.4.2) and (4.4.3) gives that:

µ(Gr′

p (Σ̂{0}; t0, tmid)) ≥ (1 +
f

2
)(a(Σ{0}, t1)− 2a(Σ{0} \ Σ̂{0}, t1))

+|Υ̂R|2−p − 5

2
(1 +

f

2
)|Υ̂R|2−q. (4.4.4)

Now because |Υ̂R| ≥ (3
4
|Σ| − |Σ \ Σ̂|)2p−r (Lemma 4.4.10), q = p + e, and by

choice of e, 5
2
2−e(1 + f

2
) ≤ 1

8
, it follows that:

|Υ̂R|2−p − 5

2
(1 +

f

2
)|Υ̂R|2−q = |Υ̂R|2−p(1− 5

2
2−e(1 +

f

2
))

≥ |Υ̂R|2−p7

8

≥ (
3

4
|Σ| − |Σ \ Σ̂|)2p−r2−p7

8

≥ 5

8
|Σ|2−r − |Σ \ Σ̂|2−r. (4.4.5)

The proposition follows from (4.4.4) and (4.4.5).

Proposition 4.4.12. If the algorithm terminates then:

µ(Gr′

r (Σ̂; t0, t1)) ≥ (1 +
f + 1

2
)(a(Σ, t1)− 2a(Σ \ Σ̂, t1)).

Proof. Proposition 4.3.5 tells us that:

µ(Gr′

r (Σ̂; t0, t1)) ≥ µ(Gr′

p (Σ̂{0}; t0, tmid)) + µ(Gp
r(Σ̂{1}; tmid, t1)). (4.4.6)

All we need to do now is to combine and simplify Propositions 4.4.5 and
4.4.11. We have the following terms to deal with: (1 + f

2
)a(Σ{1}, t1), −(1 +

f
2
)2a(Σ{1} \ Σ̂{1}, t1), (1 + f

2
)a(Σ{0}, t1), −(1 + f

2
)2a(Σ{0} \ Σ̂{0}, t1), 5

8
|Σ|2−r

and −|Σ \ Σ̂|2−r.
Firstly, grouping the positive terms gives that:

(1 +
f

2
)a(Σ{1}, t1) + (1 +

1

2
)a(Σ{0}, t1) +

5

8
|Σ|2−r

=(1 +
f

2
)a(Σ, t1) +

1

2

5

4
|Σ|2−r

>(1 +
f

2
)a(Σ, t1) +

1

2
a(Σ, t1)

=(1 +
f + 1

2
)a(Σ, t1). (4.4.7)

62 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

Secondly, the negative terms give that:

(1 +
f

2
)2a(Σ{1} \ Σ̂{1}, t1) + (1 +

f

2
)2a(Σ{0} \ Σ̂{0}, t1) + |Σ \ Σ̂|2−r

=(1 +
f

2
, t1)2a(Σ \ Σ̂, t1) + |Σ \ Σ̂|2−r

≤(1 +
f

2
)2a(Σ \ Σ̂, t1) + a(Σ \ Σ̂, t1)

=(1 +
f + 1

2
)2a(Σ \ Σ̂, t1). (4.4.8)

Both inequalities in the above arguments follow from Proposition 4.4.3.
The lemma follows by combining (4.4.6), (4.4.7) and (4.4.8) along with Propo-
sitions 4.4.5 and 4.4.11.

Proposition 4.4.13. If the algorithm terminates then outcome (ii) occurs.

Proof. By Proposition 4.4.3 condition (ii) (a) holds. By Proposition 4.4.12 con-
dition (ii) (c) holds. This implies condition (ii) (b) by taking Σ̂ to be Σ.

Hence we have established the existence of an (r, f + 1,Σ)-strategy. By
induction we can assert the existence of an (r, f+1,Σ)-strategy for any f, r ∈ ω
such that |Σ|5

4
2−r < 1.

Proposition 4.4.14. If r ≥ 1 and f2−r−1 ≥ 1, then for any σ ∈ 2<ω such that
a(σ, t0) = 0, an (r, f, {σ})-strategy achieves outcome (i).

Proof. Because |{σ}|5
4
2−r < 1 we have sufficient measure to implement such a

strategy. However, if the algorithm terminates at some stage t1, then:

µ(Gr′

r ({σ}; t0, t1)) ≥ (1 +
f

2
)a(σ, t1) ≥ (1 +

f

2
)2−r = 2−r + f2−r−1 > 1.

This is impossible so outcome (i) must occur.

4.4.1 Construction of the semimeasure a

We can run a countable number of winning strategies in our construction of a.
To do so, at stage s we find the least prime p that divides s. If p is the ith prime
then we run one step of the ith strategy.

Proposition 4.4.15. There is a c.e. semimeasure a such that for all i, a(0i1) ≤ 2−2i−1

and there exists a σi such that Km(0i1σi) > − log(a(0iσi)).

Proof. The semimeasure a can be constructed by for all i running a (2i+2, 22i+3,

{0i1})-strategy. Then for all i, a(0i1) < 5
4
2−2i−2 < 2−2i−1. Also by Proposition

4.4.14 because 22i+32−2i−2−1 = 1, the strategy achieves outcome (i) and hence
there is some σi such that Km(0i1σi) > − log(a(0i1σi)).

Now Theorem 4.1.1 holds by Proposition 4.1.5 and Proposition 4.4.15.

4.5. A LOWER BOUND ON THE DIFFERENCE 63

4.5 A lower bound on the difference

To determine a lower bound on the difference between Km and KM , we need
to determine the maximum string length used by an (r, f,Σ)-strategy. We
will approach this by determining an upper bound for the number of bits ap-
pended to a string in Σ by the strategy. If f = 0, then the strategy does not
use any extensions of strings in Σ so the number of extra bits appended is 0. If
f > 0, an upper bound is the number of bits needed to extend a string in Σ to a
string in Ψ0. This requires 1+r∗n−1−r = 1+r′−r−S(f−1) = 1+S(f)−S(f−1)

bits (the extra 1 corresponds to the use of a 0 or 1 to distinguish between the
advantage and spend phases).

Now an upper bound on the maximum string length used can be obtained
by taking the maximum length l of any string in Σ and adding the upper
bound for the number of bits added by an (r, i,Σ) strategy for all i, 1 ≤ i ≤ f .
Hence we get that the maximum possible string length is:

l +

f∑
i=1

(1 + S(i)− S(i− 1)) = l + f + S(f)− S(0) = l + f + S(f).

Lemma 4.5.1. If n is sufficiently large, then S(n+ 1) ≤ 22n logn.

Proof. Unraveling the definition of S(n) gives that: S(0) = 0, and S(n + 1) =

(8 + 2e+2)S(n) + e+ 3 where e = dlog(20 + 10n)e. So for all n ∈ ω,

S(n+ 1) ≤ (23(20 + 10n))S(n) + log(20 + 10n) + 4.

So there is someN such that for all n ≥ N , S(n+1) < 81nS(n). Hence for such
n,

S(n+ 1) < S(N) · 81n−N
n!

(N − 1)!
< (81S(N))nnn.

Thus the lemma holds if n ≥ 81S(N) as in such cases S(n+ 1) < n2n = 22n logn.

We will now prove our main theorem.

Proof of Theorem 4.1.4. To prove this, we need to generalise Proposition 4.1.5 a
little. Fix any d ∈ ω, the series

∑
i∈ω 2−

i
d converges by the ratio test so we can

take k ∈ ω to be such that 2k is larger than the sum of this series. Now we
can construct a semimeasure a such that for all i ∈ ω, a(0i1) ≤ 2−(1+ 1

d
)i−k. We

construct a by for all j ∈ ω, running a (j(d + 1) + k + 1, 2j(d+1)+k+2, {0jd1})-

64 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

strategy. We do not exceed the bound on the measure for a because:

a(0jd1) <
5

4
2−j(d+1)−k−1

< 2−j(d+1)−k

= 2−(1+ 1
d

)jd−k.

As f2−r−1 = 2j(d+1)+k+22−j(d+1)−k−2 = 1, the strategy achieves outcome (i).
Thus for all j ∈ ω, there is some σj � 0jd1, such that Km(σj) > − log a(σj).
We can apply the same scaling to a, to construct a semimeasure m i.e. for all
σ ∈ 2<ω, m(0iσ) = 2ia(0iσ). Again:

m(λ) =
∑
i∈ω

m(0i1)

=
∑
i∈ω

2ia(0i1)

≤
∑
i∈ω

2−
i
d
−k

= 2−k
∑
i∈ω

2−
i
d ≤ 1.

We now get that for all j ∈ ω, there is some σj � 0jd1 such that Km(σj) >

− log a(σj) = − log(2−jdm(σj)) = − logm(σj) + jd. By the discussion at the
start of this section, |σj| ≤ |0jd1| + S(n) + n where in this case n = 2j(d+1)+k+2.
If j is large enough, then by Lemma 4.5.1, the maximum string used by this
strategy is less than:

jd+ 1 + 22(2j(d+1)+k+2(j(d+1)+k+2)).

Again if j is large enough this term is less than 22j(d+2) . Hence for infinitely
many j, there exists a string σj such that |σj| < 22j(d+2) or log log |σj| < j(d +

2). As MU majorizes all c.e. continuous semimeasures, there must be some
constant bd such that Km(σj)−KM(σj) > jd− bd. So:

Km(σj)−KM(σj) > jd
j(d+ 2)

j(d+ 2)
− bd

>
d

(d+ 2)
log log |σj| − bd.

Hence for any c < 1, there is a d such that d
(d+2)

> c+ ε for some ε ∈ R>0. Now
for sufficiently large j it must be that ε log log |σj| > bd. Hence:

Km(σj)−KM(σj) > (c+ ε) log log |σj| − bd
> c log log |σj|.

4.5. A LOWER BOUND ON THE DIFFERENCE 65

While it has been significantly reduced, there is still a gap between the best
known upper bound on the difference between KM and Km, and this new
lower bound. Hence there is further work that could be done lowering the
upper bound, or potentially improving on the approach presented here.

66 CHAPTER 4. DIFFERENCE IN MONOTONE COMPLEXITIES

Chapter 5

The Computational Power of Random
Strings

(The results of this chapter appeared in the paper: On the computational power of
random strings, Annals of Pure and Applied Logic, Vol 160 (2009), no. 2, pp. 214 –
228.)

5.1 Overview

Any variety of Kolmogorov complexity gives rise to two fundamental, com-
putably enumerable sets.

Definition 5.1.1. Let Q be a standard complexity measure, e.g. C, K, KMD
,

KMS
, Km, or KM , and U an optimal machine for that complexity measure,

then:

(i). The set of non-random strings is R̄U
Q = {σ ∈ 2<ω : QU(σ) < |σ|}.

(ii). The overgraph OU
Q is {〈σ, n〉 ∈ 2<ω × ω : QU(σ) ≤ n}.

The focus of this chapter is to investigate the computational power of these
sets. This topic has seen significant recent interest with papers by Kummer
[50], Muchnik and Positselsky [66], and Allender and co-authors [1, 2], which
have looked at the power of these sets both in terms of computability theory
and complexity theory.

The thesis that randomness can be used as a resource to enable efficient
computation has been under intensive development in recent years by the
computer science community. As an illustration, Allender, Buhrman, Koucký,
van Melkebeek and Ronneburger have shown that sets related to these are
complete for several complexity classes under probabilistic and non-uniform
reductions [2].

68 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

If r is a reducibility, a computably enumerable set A is said to be r-complete
if for any computably enumerable set W , W ≤r A. A simple way to show
that a c.e. set A is r-complete is to show that ∅′ ≤r A where ∅′ is the halting
problem. Of course completeness with respect to a more restrictive or stronger
reducibility implies greater computational power.

For any complexity measure, both the set of non-random strings and the
overgraph are easily seen to be weak truth-table complete [50]. The question
is whether they are computationally stronger than this. This relatively long-
standing question was answered by Kummer for plain Kolmogorov complex-
ity [50].

Theorem 5.1.2 (Kummer). If U is any optimal Turing machine, then R̄U
C is tt-

complete.

Kummer’s proof is interesting because it is non-uniform, and uses con-
junctive queries that grow exponentially in size.1 The computational power
of the set of non-random strings and the overgraph has also been examined
for prefix-free complexity. Muchnik established the following surprising re-
sult [66].

Theorem 5.1.3 (Muchnik). There exist universal prefix-free machines U and V such
that OU

K is tt-complete and OV
K is not tt-complete.

Muchnik’s result left open the question of whether there existed an optimal
prefix-free machine for which the set of non-random strings is tt-complete.
Allender, Buhrman and Koucký resolved this question [1].

Theorem 5.1.4 (Allender, Buhrman and Koucký). There exists a universal prefix-
free machine U such that R̄U

K is tt-complete.

The technique used in the proof of Theorem 5.1.4 can be easily adapted to
construct universal machines with tt-complete sets of non-random strings for
the following classes of machines:

• Prefix-free machines.

• Strict process machines.

• Process machines.
1The reader may wonder if these sets are complete under even more powerful reducibil-

ities such as ≤m, ≤bT , or ≤btt, where for example ≤bT is a Turing reducibility that is only
allowed to ask a fixed number of queries of the oracle. The answer is no as Muchnik proved
that the overgraph of any Kolmogorov complexity function is not bT -complete [66]. However,
the question for polynomial reducibilities is still open (see [1]).

5.2. THE OVERGRAPH OF OPTIMAL MONOTONE MACHINES 69

• Monotone machines (for both Km and KM complexities).

This chapter continues this work. In Section 5.2, the overgraphs of other
types of universal machines are investigated. This section proves the follow-
ing theorem.

Theorem 5.1.5. For any optimal monotone machine U , the overgraph OU
Km

is tt-
complete via a reduction that is non-uniform in ∅′.

The construction used in the proof of Theorem 5.1.5 can be generalised to
obtain the following corollaries.

Corollary 5.1.6. For any optimal monotone machine U the overgraph OU
KM is truth-

table complete.

Corollary 5.1.7. For any optimal process machine U , or any optimal strict process
machine V , the overgraphs OU

KMD
and OV

KMS
are truth-table complete.

Hence, of the varieties of Kolmogorov complexity considered in this chap-
ter, it is only prefix-free complexity for which there is an optimal machine
whose overgraph is not tt-complete. In Section 5.3 we will shift our attention
to the set of non-random strings. We will prove the following theorem.

Theorem 5.1.8. There exists a universal strict process machine V such that R̄V
KMS

is
not tt-complete.

An important initial stage in this proof is showing that there exists a uni-
versal strict process machine whose set of non-random strings is closed under
extension.

5.2 The overgraph of optimal monotone machines

The goal for this section is to answer a question of Muchnik and Positselsky
by showing that for any optimal monotone machine U , the overgraph is truth-
table complete [66]. Let us fix an optimal monotone machine U .

In order to prove Theorem 5.1.5 we will build a monotone machine N that
ensures ∅′ ≤tt OU

Km
. To give this proof the widest possible applicability, we

will require N to be a strict process machine. For our construction, we would
like to know some constant c such that KU

m(σ) ≤ CN(σ) + c (where Km = KU
m).

Note that in this equation we compare the monotone complexity Km to the
standard descriptive complexity of Section 2.1.

To achieve this we will uniformly construct a family of strict process ma-
chines L0, L2, L4, We will combine these machines to form N by defining

70 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

N(0k) = λ and N(0k1σ) = L2k(σ). As Km(σ) ≤ CN(σ) + c, it follows that
Km(σ) ≤ CLd(σ) + d

2
+ 1 + c and so if d

2
≥ c+ 1, then Km(σ) ≤ CLd(σ) + d.

In effect, each machine Ld is guessing that its constant with respect to U is
no more than d. As U is an optimal monotone machine, for some machine Ld,
the guess will be correct.

From now on let us just fix some d and refer to Ld as L. In addition to L, we
need to build a corresponding truth-table reduction Γ. The reduction Γ will
work if the following inequality holds:

Km(σ) ≤ CL(σ) + d. (5.2.1)

To avoid excessive superscripts, we will write Γ(Z;x) for ΓZ(x).
For this proof we will omit the Km subscript and write OL for OL

Km
. This

allows us to reuse the subscript position to define:

OL
k = {σ ∈ 2<ω : 〈σ, k〉 ∈ OL} = {σ : CL(σ) ≤ k}.

In this proof, we will consider the strict process machine L that we are
building as both a partial computable function L : 2<ω → 2<ω, and a c.e. set of
ordered pairs where 〈τ, σ〉 ∈ L if and only if L(τ) = σ. We will use Ls to be the
sth stage in the enumeration of L. Further we will also consider L as defining a
c.e. semimeasure ML, where ML([σ]) = µ[{τ : 〈τ, σ′〉 ∈ L and σ � σ′}]. Finally
MLs is the semimeasure obtained by using Ls instead of L.

The truth-table reduction that we will construct will work as follows. For
each x ∈ ω, a set of strings Sx will be specified. The reduction will determine
which of these strings are in OU

d+x and make a decision as to whether or not
x ∈ ∅′ based on this information.

The simplest thing to do would be to try and encode x ∈ ∅′ by adding all
such strings to OU

d+x i.e. making Sx ⊆ OU
d+x. However, this will not work be-

cause if we consider an opponent controlling both the optimal machine and
∅′, then the opponent could wait until Sx was defined, then add it to OU

d+x

and withhold x from ∅′. In fact, given any truth-table reduction Γ, the oppo-
nent could choose an x, wait until the truth-table used by Γ(x) is defined, and
then adopt a winning strategy to ensure either Γ(OU ;x) = 0 or Γ(OU ;x) = 1.
By adding x to ∅′ in the first case and keeping it out in the second case, the
opponent could ensure Γ(OU ;x) 6= ∅′(x).

To overcome this problem, we make the reduction non-uniform by allow-
ing it to be wrong on some initial segment of ∅′. The reduction will be con-
structed in such a way that the cost to the opponent of making the reduction
incorrect for any x is so significant, that the reduction can only be incorrect a
finite number of times.

5.2. THE OVERGRAPH OF OPTIMAL MONOTONE MACHINES 71

The machine L we use for adding pairs to the overgraph must be a strict
process machine. L will be constructed as follows. For each τ ∈ {0, 1}x we
will choose some στ , such that {στ : τ ∈ {0, 1}x} is a prefix-free set. The pairs
〈τ, στ 〉 are candidates for addition into our machine, and Sx will be defined as
{στ : τ ∈ {0, 1}x}. Further we will make sure that if τ ′ ≺ τ , then either:

(i). στ ′ ≺ στ , or

(ii). If στ ′ 6≺ στ , then the pair 〈τ ′, στ ′〉 is never added to our machine.

If we decide to add 〈τ, στ 〉 to our machine, then assuming (5.2.1) holds,
Km(στ) ≤ |τ |+ d = x+ d and hence στ ∈ OU

d+x.
Now our opponent has the ability to add στ toOU

d+x as well. If the opponent
does this, then the opponent must have added some pair 〈ρ, σ〉 with σ � στ

into U with |ρ| ≤ d+ x at a certain stage s. If we consider the c.e semimeasure
defined by U , MU , then this implies that MU([στ]) ≥ 2−d−x. Now provided we
have not described any extension of στ with Ls, then MLs([στ]) = 0. We will
show how under these conditions, we can ‘bypass’ the measure spent by the
optimal machine on στ . Bypassing measure is a key idea in this proof. If the
opponent has spent 2−d−x of measure on the string στ , then this measure can-
not be reassigned by the c.e. semimeasure MU to any strings that are incom-
parable with στ . Our strategy is to avoid using any extensions of στ when we
define Sy for some new y. If there is no extension of στ in Sy, then the opponent
cannot use the measure placed on στ to add any element of Sy into OU

d+y (i.e.
to add elements of Sy to OU

d+y the opponent will need to find descriptions that
are incomparable with any descriptions of στ). Hence if the opponent wants
to affect Γ(OU ; y), then the opponent must use additional measure. Because
we have not described any extension of στ with Ls, we have not committed
any measure to στ and so we have not lost any measure in this action. This is
called bypassing measure because some of the opponent’s measure has been
left stranded on στ .

Bypassing measure allows us to ensure the reduction works on all but a
finite set. We wait until an appropriate stage s when we have some bound on
the measure that we can bypass. When we define Ss, we ensure that for any
υ ∈ {0, 1}s, συ does not extend στ . Instead we will set συ to extend some ρτ
incomparable with στ .

However, our opponent still has one last trick up its sleeve. Before it adds
some string στ to OU

d+x, it will try to force us to enumerate some 〈τ ′, στ ′〉 into
our machine L with στ ′ � στ . This action would make us commit some mea-
sure of ML to στ and prevent us from bypassing the measure on στ . Our strat-
egy to deal with this is complicated and will be detailed in the proof. The basic

72 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

idea is that if the opponent prevents us bypassing the measure on στ in this
way, then either something has been added to ∅′, or the opponent has spent
measure somewhere else. The following reduction is designed to ensure that
if the opponent has spent measure somewhere else we can bypass this instead,
and to limit the impact of adding elements to ∅′.

The Γ reduction

Γ will be defined as follows. First Γ(0) = 0. If x 6= 0, then at stage x in the
construction, a set Sx will be defined. This set will have 2x elements and will
be indexed by {0, 1}x so for all τ ∈ {0, 1}x there is a unique string στ ∈ Sx.
To determine if x ∈ ∅′, Γ runs the construction until Sx is defined and then
determines which elements of the set Sx are in OU

d+x. If Sx ⊆ OU
d+x, then Γ(x) =

0. Otherwise Γ lexicographically orders {0, 1}x with 0 < 1, and finds the lex
least τ ∈ {0, 1}x such that either:

(i). Exactly one of στ and στ̄ are in OU
d+x, in which case Γ(x) = 1; or

(ii). Neither στ nor στ̄ are in OU
d+x, in which case Γ(x) = 0.

Where the string τ̄ is obtained from τ by setting all 0’s in τ to 1 and all 1’s to 0.
The reduction can be thought of as checking pairs in some order. For ex-

ample consider S3. First the reduction checks if σ000, and σ111 are in OU
d+3. If

they are not both in then the reduction can give an answer immediately. If
they are both in, then the reduction checks if σ001, and σ110 are in and so on.
This can be described by simply looking at the indices of the σ’s involved e.g.
first 000 and 111; then 001 and 110; then 010 and 101; and finally 011 and 100.

Let us see how this would work in practice. The optimal monotone ma-
chine U is defined by a c.e. set so we will take Us to be the set obtained by
enumerating U for s steps. We define ∅′s similarly. We will take OUs to be the
overgraph of Us and OUs

k = {σ ∈ 2<ω : 〈σ, k〉 ∈ OUs}. Note that if s < t, then
OUs ⊆ OUt and OUs

k ⊆ OUt
k . We can regard the construction of the reduction as

a game between us and the opponent each with the ability to add strings to
OUs
k .

As an example consider a game around Γ(3). Assume that S3, the set of
strings used by Γ(3) has been defined. Further assume that at stage 0, 3 6∈ ∅′0
and S3 ∩ OU0

d+3 = ∅. This means that Γ(OU0 ; 3) = 0 = ∅′0(3). Now suppose
that at some stage s0, the opponent enumerates σ000 into O

Us0
d+3. This would

cause Γ(OUs0 ; 3) = 1. So we would add the pair 〈111, σ111〉 to our machine L at
the following stage. If we assume that this description appears in the optimal
machine at stage s1, then Γ(OUs1 ; 3) = 0. Now if at a later stage s2, 3 ∈ ∅′s2 , then

5.2. THE OVERGRAPH OF OPTIMAL MONOTONE MACHINES 73

we would add 〈001, σ001〉 to L. If at any stage now the opponent adds σ110 to
OU
d+x then we will respond by adding 〈010, σ010〉, to L.

Note that for a given x, Γ(x) can be changed from 0 to 1, and back again
by adding a single string of Sx to OU

d+x (provided Sx 6⊆ OU
d+x). If at some stage

s of the construction Γ(OUs ;x) = 0, then there are two possible choices of
string for changing the reduction to 1. While if Γ(OUs ;x) = 1 there is only one
possible string that can be enumerated into the overgraph to change Γ(x) to 0

again. Also note that if 〈τ, στ 〉 is enumerated into L, then the only reason to
enumerate 〈τ̄ , στ̄ 〉 into L would be because we want to keep L a strict process
machine.

Now, if we get to a stage swhere for some x, Sx ⊆ OUs
d+x and x ∈ ∅′s, then we

no longer have any ability to change the reduction. At this point we give up
making the reduction work for x, in fact we go further and give up trying to
make the reduction work on any value below s + 2. We have a marker which
points to a value after which the reduction works. We move the marker to
point to s + 1 and call s + 1 a marker move stage. The reason that the marker
cannot be moved infinitely often, is that now when we define Ss+1, we can
do it in such a way as to avoid extending some of the strings that have been
enumerated into the optimal machine by our opponent and thus bypassing
some of our opponent’s measure.

In looking for strings that have measure we can bypass, we do not just
consider those strings in Sx. We consider all strings στ , where τ can have any
length, such that for all ρ that occur no later than τ in the search order of Γ,
σρ ∈ OUs

d+|τ |(e.g. {000, 111, 001, 110} all occur no later than 110 in the search
order). From this set of strings S, we set T to be the set of indices describing
the strings in S. We use T instead of S because it is easier to deal with. As
Sx ⊆ OUs

d+x, we have that Sx ⊆ S so {0, 1}x ⊆ T and hence µ[T] = 1. From the
set T we consider the set of maximal strings under the � order and use these
to form a prefix-free set T̂ .

We can find some lower bound on µ[T̂]. This is because given any length,
there can be at most two strings of that length that are in T , not in T̂ and are
not covered by [T̂]. Hence the difference between µ[T] = 1 and µ[T̂] can be
bounded.

We define B to be those strings in T̂ which index strings enumerated into
the overgraph by the opponent and whose measure we can bypass. Again we
can find a lower bound on µ[B] because nearly half the strings in T̂ must be
in B. The reason for this is twofold. First it will be shown that if τ ∈ T̂ , then
τ̄ ∈ T̂ . Secondly, we are unlikely to add both 〈τ, στ 〉 and 〈τ̄ , στ̄ 〉 to our machine
L. The only reason we would do this would be to maintain L as a strict process

74 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

machine. Say we added 〈τ, στ 〉 to L to keep L a strict process machine, then
there exists some τ ′ � τ with τ ′ ∈ dom(L). Further as τ ′ 6∈ T (as τ ∈ T̂), it must
be that we added 〈τ ′, στ ′〉 to L in order to encode some x entering ∅′. However,
this scenario can only affect a certain number of elements of T̂ . This is what
we will use to find a lower bound for µ[B].

For the verification of the proof, it is useful to formalise the ‘order’ that the
reduction Γ uses the strings in Sx. This is done by defining a relation on {0, 1}k

as follows: τ1 ≤Γ τ2 if the min(τ1, τ̄1) ≤lex min(τ2, τ̄2) where the minimum is
with respect to the lexicographical order. Further τ1 <Γ τ2 is defined to hold if
τ1 ≤Γ τ2 but not τ2 ≤Γ τ1.

One way to think of the relation ≤Γ is as follows. Partition {0, 1}k into
equivalence classes each with two elements. If τ ∈ {0, 1}k, then the equiv-
alence class of τ is {τ, τ̄}. Lexicographically order these equivalence classes
using the element of each equivalence class that starts with 0. Then τ1 ≤Γ τ2 if
and only if the equivalence class of τ1 is lexicographically less than or equal to
the equivalence class of τ2.

Note that while ≤Γ is reflexive and transitive it is not a pre-order as anti-
symmetry fails. However, if τ ≤Γ ρ and ρ ≤Γ τ , then either ρ = τ , or ρ = τ̄ .
The relation ≤Γ is total in the sense that for all τ, ρ ∈ {0, 1}k, τ ≤Γ ρ or ρ ≤Γ τ .
Note that this implies that if τ 6≤Γ ρ then ρ <Γ τ . The following lemma will be
used in the verification of the proof.

Lemma 5.2.1. If τ1, τ2, υ1, υ2 ∈ 2<ω with |τ1| = |τ2| < |υ1| = |υ2| and τ1 ≺ υ1, and
τ2 ≺ υ2, then τ1 <Γ τ2 implies υ1 <Γ υ2.

Proof. If τ1 <Γ τ2, then τ1 6= λ and so either τ1 or τ̄1 begins with 0. Without
loss of generality let us assume that τ1 starts with 0. If τ1 <Γ τ2, then by
definition we have that τ1 <lex τ2 and τ1 <lex τ̄2. Now as υ1 � τ1 and υ2 � τ2

it follows that υ1 <lex υ2 and υ1 <lex ῡ2. Hence min(υ1, ῡ1) <lex min(υ2, ῡ2) and
so υ1 <Γ υ2.

In the construction and verification that follow we will assume that OLs
k ⊆

OUs
d+k and thus {〈σ, d + n〉 : 〈σ, n〉 ∈ OLs} ⊆ OUs . The reason we can make this

assumption is that after we add some pair 〈τ, σ〉 to Ls, we can wait until a stage
s′ such that 〈σ, |τ | + d〉 enters OUs′ . If (5.2.1) holds then we know such a stage
s′ must occur. If (5.2.1) does not hold then we could be waiting forever. In this
case the construction presented below may stall at the end of some stage s. If
this occurs then we can still verify that L is a strict process machine and so N
will be a strict process machine too.

5.2. THE OVERGRAPH OF OPTIMAL MONOTONE MACHINES 75

Construction

At stage 0: Set σλ = 0 and S0 = {σλ}. S0 is only used to start the construction
and will not be used by Γ as Γ(Z; 0) = 0 for any oracle Z by definition. Let
L0 = {〈λ, σλ〉}. Let C0 = {0}. The set Cs is used to determine the position of
the marker at stage s.

Stage s + 1: Let cs, the marker, be the largest element of Cs. First we need
to define Ss+1. If s+ 1 6= cs, then s+ 1 is not a marker move stage. In this case,
for all τ ∈ {0, 1}s choose four extensions στ0, στ1, ρτ0, ρτ1 of στ that are pairwise
incomparable, and not in OUs

d+s+1. This is possible because OUs
d+s+1 is finite. Let

Ss+1 = {στ : τ ∈ {0, 1}s+1}.
If cs = s+1 then s+1 is a marker move stage. The construction of Ss+1 will

be done in such a way as to avoid extending some στ that have been added to
OUs
d+|τ | by the opponent thus bypassing measure. The procedure for finding στ

to avoid is as follows. First for k ∈ ω with 1 ≤ k ≤ s, set:

T s+1
k = {τ ∈ {0, 1}k : ∀τ ′ ∈ {0, 1}k, if τ ′ ≤Γ τ, then στ ′ ∈ OUs

d+k}.

T s+1
k is defined this way because this is the order that the reduction Γ examines

the strings in Sk. Set T s+1 =
⋃

1≤k≤s T
s+1
k . We want to work with a prefix-free

set so let T̂ s+1 = {τ ∈ T s+1 : ∀τ ′ � τ, τ ′ 6∈ T s+1}. Note that this is a set of
maximal elements of T s+1, while prefix-free sets are usually constructed using
minimal elements.

Finally, to ensure that we can bypass descriptions, let Bs+1 = {τ ∈ T̂ s+1 :

∀τ ′ � τ, τ ′ 6∈ dom(Ls)}. For all υ ∈ Bs+1, let {υ0, . . . , υn} be the set of exten-
sions of υ of length s+ 1. Choose συ0 , ρυ0 , . . . , συn , ρυn that are pairwise incom-
parable, not inOUs

d+s+1 and all extend ρυ. For all τ ∈ {0, 1}s+1 that do not extend
some υ ∈ Bs+1, choose a στ and a ρτ which are incomparable, not in OUs

d+s+1

and extend στ ′ where τ ′ = τ � (|τ | − 1). Again let Ss+1 = {στ : τ ∈ {0, 1}s+1}.
Secondly, we need to determine which descriptions to commit to our ma-

chine L. Let Xs = {x ∈ ω : cs < x < s and Γ(OUs ;x) 6= ∅′s(x)}. If Xs = ∅,
set Ls+1 = Ls. If Xs 6= ∅, and for some x ∈ Xs Sx ⊆ OUs

d+x, then set Cs+1 =

Cs ∪ {s + 2} and set Ls+1 = Ls. This will cause the marker to be moved at the
next stage.

Otherwise let xs be the least element of Xs, choose τ ∈ {0, 1}xs such that
στ 6∈ OUs

d+xs
and for all τ ′ <Γ τ , στ ′ ∈ OUs

d+xs
. We are going to add 〈τ, στ 〉 to

Ls+1. However, we want to make L a strict process machine so we need to
ensure that dom(Ls+1) is closed under substrings. Let υ be the longest initial
segment of τ such that υ ∈ dom(Ls). Consider any τ ′ such that υ ≺ τ ′ � τ . If
|τ ′| ≤ cs, then we will set Ls+1(τ ′) = Ls(υ). Otherwise if |τ ′| > cs, we will set
Ls+1(τ ′) = στ ′ . We also set Cs+1 = Cs because the marker has not moved.

76 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

Verification

First we will show that L is a strict process machine. To do this, we need the
following lemma.

Lemma 5.2.2. If τ1 ≺ τ2 and L(τ1) = στ1 , then στ1 ≺ στ2 .

Proof. Assume τ1 ≺ τ2. If στ1 6≺ στ2 , then there must be some marker move
stage s + 1 with |τ2| ≥ s + 1 > |τ1| and στ2 � ρτ0 where τ1 � τ0 and τ0 ∈ Bs+1.
This implies that τ1 6∈ dom(Ls) by definition of Bs+1. However, this means
that for all stages t > s, Lt(τ1) 6= στ1 because once the marker has moved past
|τ1|, if τ1 is added to the domain of Lt, then Lt(τ1) = συ for some υ ≺ τ1 so
Lt(τ1) 6= στ1 . The result follows from the contrapositive.

Lemma 5.2.3. L is a strict process machine.

Proof. To prove this we induct on the stages of the construction. Clearly L0

is a strict process machine. Now if Ls is a strict process machine then the
construction ensures that Ls+1 is at least a function whose domain is closed
downward under �. This is because if Ls+1 6= Ls, then Ls+1 is formed by tak-
ing, some τ 6∈ dom(Ls) and finding the longest υ ≺ τ such that υ ∈ dom(Ls).
The strings that we add to the domain of Ls+1 are exactly those strings τ ′ such
that υ ≺ τ ′ � τ .

We also need to show that Ls+1 is a process. In the construction, Ls+1 is
defined to be: Ls∪{〈τ ′, Ls(υ)〉 : υ ≺ τ ′ � τ and |τ ′| ≤ cs}∪{〈τ ′, στ ′〉 : υ ≺ τ ′ � τ

and |τ ′| > cs}.
Let P1 = Ls ∪ {〈τ ′, Ls(υ)〉 : υ ≺ τ ′ � τ and |τ ′| ≤ cs}. P1 is a process. Let

P2 = {〈τ ′, στ ′〉 : υ ≺ τ ′ � τ and |τ ′| > cs}. P2 is a process because for any τ1, τ2

with υ � τ1 ≺ τ2 � τ , we have that στ1 ≺ στ2 since the marker has not been
moved since στ1 was defined.

To show that the union of these two processes is a process, consider any
τ1 ≺ τ2 with τ1 in the domain of P1 and τ2 in the domain of P2. If τ1 � υ then
P1(τ1) � P1(υ). Otherwise υ ≺ τ1 and so P1(τ1) = P1(υ). Now by construction
there must be some υ′ � υ such that Ls(υ) = Ls(υ

′) = συ′ . Hence as υ′ � τ2, the
previous lemma implies that συ′ ≺ στ2 . Hence P2(τ2) = στ2 � συ′ = Ls(υ) =

P1(υ) � P1(τ1).
If (5.2.1) does not hold then the construction could stall at the end of some

stage. In this case L = Ls for some s and hence L is a strict process machine.
If the construction does not stall then L =

⋃
s∈ω Ls. In this case L must be

a strict process machine because otherwise for some s, Ls would fail to be a
strict process machine.

5.2. THE OVERGRAPH OF OPTIMAL MONOTONE MACHINES 77

From now on we will assume that (5.2.1) holds.

Lemma 5.2.4. If there are only a finite number of marker move stages, then for all but
finitely many x, Γ(OU ;x) = ∅′(x).

Proof. If there are only a finite number of marker move stages, then let s0 be
the last marker move stage. Choose any x0 > s0. Let s1 + 1 be a stage such
that:

(i). s1 > x0.

(ii). ∅′s1 � (x0 + 1) = ∅′ � (x0 + 1).

(iii). For all x ≤ x0, Sx ∩OU
d+x = Sx ∩O

Us1
d+x.

This last condition implies that Γ(OUs1 ;x) = Γ(OU ;x) for all x ≤ x0. If
x0 ∈ Xs1 , then as the marker does not move again, there must be some x with
x ≤ x0 such that for some τ ∈ {0, 1}x with στ 6∈ O

Us1
d+x, 〈τ, στ 〉 is added to Ls1+1.

But this would add στ to OU
d+x, a contradiction as Sx ∩OU

d+x = Sx ∩O
Us1
d+x for all

x ≤ x0. Hence x0 6∈ Xs1 and so Γ(OU ;x0) = Γ(OUs1 ;x0) = ∅′s1(x0) = ∅′(x0).

Now it is necessary to show that the number of marker move stages is fi-
nite. The reason for this is that each time the marker is moved, a portion of the
measure that the optimal machine has spent is bypassed by the construction,
and can no longer be used to affect Γ. By showing that there is a lower bound
on the amount of measure that is bypassed each time the marker is moved, it
follows that the marker can only be moved a finite number of times otherwise
the optimal machine will run out of measure. For any x there is a direct re-
lation between the index of a string in Sx and the measure needed to add the
string to OU

d+x. Hence to determine a lower bound on the amount of measure
bypassed, it is useful to find a lower bound on µ[Bs]. The first step towards
achieving this will be to find a lower bound on µ[T̂ s].

For the rest of the verification, fix s to be a particular marker move stage.
As s is fixed, Tk will be used for T sk .

Lemma 5.2.5. For all k ∈ ω with 1 ≤ k < s, if τ, ρ ∈ {0, 1}k with τ ∈ Tk and
ρ ≤Γ τ then ρ ∈ Tk.

Proof. If ρ 6∈ Tk, then for some υ ∈ {0, 1}k such that υ ≤Γ ρ, συ 6∈ OUs
d+k. How-

ever, by the transitivity of the ≤Γ relation, υ ≤Γ τ and so τ 6∈ Tk.

Note that this lemma implies that if τ ∈ Tk, then τ̄ ∈ Tk as well.

Lemma 5.2.6. For all k, j ∈ ω, if 1 ≤ k < j < s, then [Tk] ⊆ [Tj] or [Tj] ⊆ [Tk].

78 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

Proof. If [Tj] 6⊆ [Tk], then there is some υ ∈ Tj such that if τ = υ � k, τ 6∈ Tk.
Now if τ ′ ∈ Tk, then τ ′ <Γ τ (because the relation is total and if τ ≤Γ τ

′ then
by definition τ ′ 6∈ Tk). Now let υ′ be any extension of τ ′ such that |υ′| = j. By
Lemma 5.2.1, υ′ <Γ υ, and hence υ′ ∈ Tj by Lemma 5.2.5. Thus [Tk] ⊆ [Tj].

Take x to be the maximum integer such that Sx ⊆ OUs
d+x. By the construction

such an x exists, as this is the reason for a marker move stage. Additionally,
x is greater than the previous marker move stage. From the previous lemma,
there exists an increasing integer sequence j(0) < j(1) < · · · < j(n) such
that j(0) = x and j(n) < s with [Tj(0)]) . . .) [Tj(n)] and for all l ∈ ω, if
j(i) < l ≤ j(i + 1) for some i, then [Tl] ⊆ [Tj(i+1)]. We have that j(n) < s

because the set Ss is chosen to ensure that T ss is empty.
If 0 ≤ i < n, let T̂j(i) = {τ ∈ Tj(i) : ∀τ ′ ∈ Tj(i+1), τ

′ 6� τ}. Let T̂j(n) = Tj(n).

Lemma 5.2.7. For all i ∈ {0, 1, 2, . . . , n−1}, µ[T̂j(i)] ≥ µ([Tj(i)]\[Tj(i+1)])−2−j(i)+1.

Proof. We know that [Tj(i)]) [Tj(i+1)], so let τ be a element of Tj(i) such that
there exists some υ � τ , with |υ| = j(i + 1) and υ 6∈ Tj(i+1), but for all τ ′ <Γ τ

for all υ′ � τ ′ with |υ′| = j(i+ 1), υ′ ∈ Tj(i+1).
Now take any τ ′ ∈ Tj(i) such that τ <Γ τ

′. For any υ′ of length j(i+ 1), such
that υ′ � τ ′ it follows by Lemma 5.2.1 that υ <Γ υ′ and hence υ′ 6∈ Tj(i+1) by
Lemma 5.2.5. Thus τ ′ ∈ T̂j(i).

Thus for all τ ′ ∈ Tj(i), if τ ′ <Γ τ , then [τ ′] ⊆ [Tj(i+1)]. If τ <Γ τ ′ then
[τ ′] ⊆ [T̂j(i)]. If neither τ ′ <Γ τ nor τ <Γ τ

′, then τ ′ must be one of τ or τ̄ .
This shows that [T̂j(i)] ⊇ ([Tj(i)] \ [Tj(i+1)]) \ [{τ, τ̄}]. The result follows as

µ[{τ, τ̄}] = 2−j(i)+1.

The following lemma shows us that the set T̂ s defined in the construction
(now referred to as T̂ because s is fixed) is just the same as

⋃n
i=0 T̂j(i).

Lemma 5.2.8. T̂ =
⋃n
i=0 T̂j(i).

Proof. If τ ∈ T̂ , then by definition for all τ ′ ∈ T, τ ′ 6� τ . Hence τ ∈ Tj(i) for
some i and ∀τ ′ � τ , τ ′ 6∈ Tj(i+1). Thus τ ∈ T̂j(i), so T̂ ⊆

⋃n
i=0 T̂j(i).

For the other direction, first note that T̂j(n) = Ts−1 ⊆ T̂ because any maxi-
mal length element must be a maximal element under�. If for some i, 0 ≤ i <

n, τ ∈ T̂j(i), then for all τ ′ ∈ Tj(i+1), τ
′ 6� τ . Now for all l > j(i), [Tl] ⊆ [Tj(i+1)],

thus for all τ ′ ∈ Tl, τ ′ 6� τ and so τ ∈ T̂ . Hence
⋃n
i=0 T̂j(i) ⊆ T̂ .

Now as j(0) = x and Sx ⊆ OUs
d+x, it follows that µ[Tj(0)] = 1. We can assume

that x ≥ 4 because x is greater than any previous marker move stage and so
this will be true after at most 3 marker move stages. This gives us that:

5.2. THE OVERGRAPH OF OPTIMAL MONOTONE MACHINES 79

µ[T̂] =
n∑
i=0

µ[T̂j(i)]

≥
n−1∑
i=0

(µ([Tj(i)] \ [Tj(i+1)])− 2−j(i)+1) + µ[Tj(n)]

= µ[Tj(0)]−
n−1∑
i=0

2−j(i)+1

>
3

4
.

Now we have achieved the first step by finding a lower bound on µ[T̂].
The next step is to find a lower bound for µ[Bs]. Recall that Bs was defined in
the construction to be {τ ∈ T̂ : ∀τ ′ � τ, τ ′ 6∈ dom(Ls−1)}.

Lemma 5.2.9. If τ ∈ T̂ then τ̄ ∈ T̂ .

Proof. If τ ∈ T̂ , then for some i, τ ∈ T̂j(i). So τ ∈ Tj(i), and thus τ̄ ∈ Tj(i). Now
if ῡ � τ̄ and |ῡ| = j(i+ 1), then υ � τ and hence υ 6∈ Tj(i+1) (as τ ∈ T̂j(i)). Thus
ῡ 6∈ Tj(i+1) and so τ̄ ∈ T̂j(i).

Lemma 5.2.10. If τ ∈ T̂ and τ, τ̄ 6∈ Bs, then there exists υ ∈ dom(Ls−1) with υ � τ

or υ � τ̄ .

Proof. This lemma follows from the fact that we only add descriptions to L

for two reasons. The first is to change the reduction and the second is to
ensure that the domain is closed under substrings. Assume that there is no
υ ∈ dom(Ls−1) with υ � τ or υ � τ̄ . In this case there is no need to add τ or τ̄
to the domain of Ls−1 in order to close it under substrings. So if τ 6∈ Bs, then it
must be that τ ∈ dom(Ls−1). Further we must have added τ to the domain of
Ls−1 to change the reduction Γ. In this case there is no reason why we should
add τ̄ to change the reduction as well. Hence τ̄ 6∈ dom(Ls−1) so τ̄ ∈ Bs.

Lemma 5.2.11. If τ1, τ2 ∈ T̂ with |τ1| = |τ2| and τ1 ≺Γ τ2, then at least one of τ2 ,τ̄2

are in Bs.

Proof. First we know by Lemma 5.2.9 that τ̄1, τ̄2 ∈ T̂ . We will assume that
τ2, τ̄2 6∈ Bs and derive a contradiction.

By the last lemma if τ2, τ̄2 6∈ Bs, then there must be some υ2 ∈ dom(Ls−1)

such that υ2 � τ2 or υ2 � τ̄2. We will assume without loss of generality that
υ2 � τ2 and that |υ2| is maximal.

Let k = |υ2|. Note that k < s. As υ2 ∈ dom(Ls−1), then for all υ <Γ υ2,
συ ∈ OUs

d+k as this is how the construction chooses pairs to add to L. Hence for

80 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

all υ <Γ υ2, υ ∈ Tk. Take any υ1 extending τ1 with |υ1| = k. Because τ1 <Γ τ2,
Lemma 5.2.1 gives us that υ1 <Γ υ2 and thus υ1 ∈ Tk. Thus [τ1] ⊆ Tk and so
τ1 6∈ T̂ which contradicts our initial assumption.

We can use this last lemma to put a lower bound on the measure of Bs.

Lemma 5.2.12. If s is a marker move stage then µ[Bs] ≥ 1
4
.

Proof. The previous lemma tells us that for any given length l, if there exists a
τ ∈ T̂ of length l such that neither τ nor τ̄ are in Bs, then for any string υ ∈ T̂
of length l such that υ 6= τ and υ 6= τ̄ , either υ or ῡ are in Bs. Thus:

µ[Bs] ≥ 1

2

(
µ[T̂ s]−

m∑
i=0

2 · 2−j(i)
)
>

1

2
(
3

4
− 1

4
) =

1

4
.

Now for all τ ∈ Bs, στ ∈ OUs
d+|τ | and so MU([στ]) ≥ 2−d−|τ |. Additionally,

by construction, as Bs is a prefix-free set, so is {στ : τ ∈ Bs}. Hence it follows
that:

MU([{στ : τ ∈ Bs}]) =
∑
τ∈Bs

MU([στ])

≥
∑
τ∈B

2−d−|τ |

= 2−d
∑
τ∈B

µ[τ]

≥ 2−dµ[Bs] ≥ 2−d−2.

Lemma 5.2.13. If s1 and s2 are both marker move stages and s1 6= s2, then the sets
[{στ : τ ∈ Bs1}] and [{στ : τ ∈ Bs2}] are disjoint.

Proof. Take any τ ∈ Bs1 , and υ ∈ Bs2 . From the construction, |τ | < s1, and
the length of υ is larger than any previous marker move stage so in particular
|υ| > s1 > |τ |. Now if υ 6� τ , then the construction ensures that συ and στ are
incomparable. If υ � τ , then again by construction συ � ρτ and hence συ and
στ are incomparable.

Proof of Theorem 5.1.5. By Lemma 5.2.3, for any k ∈ ω, L2k is a strict process
machine and hence N defined by N(0k) = λ and N(0k1σ) = L2k(σ) is a strict
process machine. The argument at the start of this section shows that for some
Ld, (5.2.1) holds. If we let Γ be the reduction constructed with Ld then by
Lemma 5.2.4, if there are a finite number of marker moves then Γ(OUs ;x) =

∅′(x) for all but finitely many x. Now there can only be a finite number of

5.3. STRICT PROCESS COMPLEXITY 81

marker move stages because if C is the set of all marker move stages, then by
the previous lemma:

MU([λ]) ≥
∑
s∈C

MU([{στ : τ ∈ Bs}]) ≥ |C|2−d−2.

Hence |C| ≤ 2d+2 and in particular C is finite.
This construction is non-uniform in ∅′. This is because C is finite so ∅′ can

determine the size of it by simply asking does another element enter enough
times. The non-uniformity is due to the fact that the initial segment, and a d
such that (5.2.1) holds, still need to be guessed.

It is interesting to note that the construction used in Kummer’s proof of
Theorem 5.1.2 to show that for any universal machine is R̄U

C is tt-complete is
different. This construction uses a finite set of sequences S1, . . . , Sn. The key
to unraveling the construction is to determine the maximum i such that Si
is infinite. This cannot be done using a ∅′ oracle. Additionally, as some ini-
tial segment still needs to be guessed, Kummer’s construction is non-uniform
in ∅′′.

Proof of Corollary 5.1.6. The proof of theorem still works if OU
Km

is replaced by
OU
KM . First, if the construction enumerates some pair 〈σ, n〉 into L, this adds
〈σ, n+ d〉 to OU

KM as well as OU
Km

because OU
Km
⊆ OU

KM .
During the verification of the construction, we proved by contradiction

that the opponent could not force the reduction to be incorrect at a infinite
number of points. During this proof, we did not consider the length of any
description made by the opponent. We only considered the overall measure
placed on elements of Sx. In fact we treated the opponent like a semimea-
sure. Hence as KM is the complexity derived from a optimal semimeasure,
the same contradiction will ensue if OU

Km
is replaced by OU

KM .

Proof of Corollary 5.1.7. An optimal process machine is also a monotone ma-
chine. Hence the limitations exploited in the proof of an optimal monotone
machine also apply to an optimal process machine. The machine N con-
structed in the proof is a strict process machine.

5.3 Strict process complexity

In this section we will look at universal strict process machines. We will
present a proof that there exists a universal strict process machine whose set
of non-random strings is not tt-complete. For this section we will use R̄M for
R̄M
KMS

.

82 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

First we will show that it is possible to construct a universal strict process
machine whose set of non-random strings is closed under extension. In this
section, we will take U to be a universal strict process machine. Again we
will regard U as a c.e. set and as a function. We will take {Us}s∈ω to be an
enumeration of U . Because U is a strict process machine, we can take our
approximation to have the property that if 〈τ, σ〉 ∈ Us and τ ′ ≺ τ then there is
some σ′ � σ such that 〈τ ′, σ′〉 ∈ Us. This can be done by simply waiting until
〈τ ′, σ′〉 is enumerated into U . We will write Us(τ) ↓ if τ is an element of the
domain of Us and Us(τ) ↑ otherwise.

Theorem 5.3.1. There exists a universal strict process machine V such that R̄V is
closed upwards under � i.e. if σ ∈ R̄V and σ′ � σ then σ′ ∈ R̄V .

Proof. In this proof, we construct V from a standard universal strict process
machine U . We let 0 be the index of U in V , i.e. we set V (0τ) = U(τ) for
all τ ∈ 2<ω. We use strings in the domain of V starting with 1 to get the
desired closure property. If at some stage s, Us(τ) ↓= σ and |τ | ≤ |σ| − 2, then
V (0τ) ↓= σ with |0τ | < |σ|. This means that σ ∈ R̄V . We want to make sure
that all extensions of σ are added to R̄V . Because we are dealing with a strict
process machine, we know that if τ ′ ≺ τ then Us(τ ′) ↓. We let τ ′ be the shortest
initial segment of τ such that |Us(τ ′)| ≥ |τ ′| + 2. Let υ = Us(τ

′). We need to
make all extensions of υ non-random (σ must be one of these extensions). We
do this by ensuring for all π ∈ 2<ω, that V (1τ ′π) = υπ.

If all extensions of υ are non-random, then no string comparable with τ ′

can now be used by U to add a string to R̄V . If ρ ≺ τ ′, then Us(ρ) ↓ so if ρ
made a string non-random with respect to V , we would have chosen ρ instead
of τ ′. If ρ � τ ′ then ρ can only describe extensions of υ which will already be
in R̄V . Hence the set of descriptions that cause strings to be added to R̄V is a
prefix-free set. This means that if for all such τ ′, we set V (1τ ′π) = υπ for all
π ∈ 2<ω and V (1τ ′′) = λ for all τ ′′ ≺ τ ′, then V will remain a strict process
machine. We now give a full construction and verification based on this idea.

Construction. At stage 0, set V0 = {〈λ, λ〉}. This is needed to keep V a strict
process machine.

At stage 2s + 1 we add all descriptions of Us to V by setting V2s+1 = V2s ∪
{〈0τ, σ〉 : 〈τ, σ〉 ∈ Us}.

At stage 2s+2, let Ts = {τ ∈ 2<ω : |τ | ≤ s and Us(τ) ↓ and |τ | ≤ |Us(τ)|−2}.
Let T̂s be the set of minimal elements of Ts under the � relation. Set V2s+2 =

V2s+1 ∪ {〈1τπ, Us(τ)π〉 : τ ∈ T̂s and π ∈ 2<ω and |π| ≤ s} ∪{〈1ρ, λ〉 : ∃τ ∈ T̂s

such that ρ ≺ τ}.

5.3. STRICT PROCESS COMPLEXITY 83

Lemma 5.3.2. V is a universal strict process machine.

Proof. We will show that the set of ordered pairs V defined in the construction
is in fact a strict process machine. We only need to consider pairs of the form
〈1τ, σ〉 because we know that U is a strict process machine. First by construc-
tion, it follows that if 〈1τ, σ〉 ∈ Vs for some stage s, then for all τ ′ ≺ τ there
exists a σ′ � σ such that 〈1τ ′, σ′〉 ∈ Vs.

Thus all we need to show is that the set of ordered pairs is actually a func-
tion. First we will show that if s0 < s1, then T̂s0 ⊆ T̂s1 . Take any τ ∈ T̂s0 . As
τ ∈ T̂s0 , τ ∈ Ts0 and so τ ∈ Ts1 . Now if τ ′ is an initial segment of τ then as
Us0(τ) ↓ we have that Us0(τ ′) ↓. However, τ ′ 6∈ Ts0 and so τ ′ 6∈ Ts1 and thus
τ ∈ T̂s1 .

Let 〈1ρ, σ1〉, 〈1ρ, σ2〉 ∈ V . Let s0 be the stage at which 〈1ρ, σ1〉 first entered
V and s1 the stage at which 〈1ρ, σ2〉 first entered V . Assume, without loss of
generality, that s0 ≤ s1. If σ1 = λ then ρ ≺ τ for some τ ∈ T̂s0 . Now τ ∈ T̂s1 and
consequently we have that σ2 = λ. If σ1 6= λ then 1ρ = 1τπ for some τ ∈ T̂s0
and π ∈ 2<ω so σ1 = U(τ)π. As T̂s0 ⊆ T̂s1 we have that σ2 = U(τ)π as well.
Thus σ1 = σ2 and V is a function.

Lemma 5.3.3. R̄V is closed under extension.

Proof. Assume that σ ∈ R̄V and consider any υ ∈ 2<ω. We will show that συ ∈
R̄V . There must be some description ρ 6= λ such that for some s0, Vs0(ρ) = σ

and |ρ| < |σ|.
If the first bit of ρ is 1 then by construction ρ = 1τπ and σ = Vs0(1τ)π for

some τ ∈ T̂s0 and π ∈ 2<ω. Let s1 = max(s0, 2|πυ|+2). As τ ∈ T̂s1 , we have that
Vs1(1τπυ) = Us1(τ)πυ = Vs0(1τ)πυ = συ. Now |1τπυ| = |ρ| + |υ| < |σ| + |υ| =
|συ|. Hence συ ∈ R̄V .

If the first bit of ρ is 0 then let 0τ = ρ. By construction τ ∈ dom(U) so
let s0 be a stage such that Us0(τ) ↓= σ. As |ρ| < |σ|, |τ | ≤ |σ| − 2 so τ ∈ Ts0

and hence there is some initial segment τ ′ of τ such τ ′ ∈ T̂s0 . Let σ′ = Us0(τ ′).
Because τ ′ ∈ Ts0 , we have that |τ ′| ≤ |σ′| − 2. Let π be such that σ = σ′π. Let
s1 = max(s0, 2|πυ| + 1). As τ ′ ∈ T̂s1 , we have that Vs1(1τ ′πυ) = Us1(τ ′)πυ =

σ′πυ = συ. Now |1τ ′πυ| = 1 + |τ ′|+ |π|+ |υ| < |σ′|+ |π|+ |υ| = |συ|. So again
συ ∈ R̄V .

The argument used does not generalise to process machines. To see why
this is true, consider the following example. Let U be a universal process
machine. Take stages s1 < s2 and assume that at stage s1, Us1(00) = 0000,

84 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

Us1(10) = 0001 and Us1(λ) ↑. Now if we tried to follow the above construc-
tion, we would set V2s1+2(100) = 0000, and V2s1+2(110) = 0001. Now if at stage
s2, Us2(λ) = 00, then we would like to set V2s2+2(1) = 00, and somehow use
extensions of 1 to make all extensions of 00 non-random. However, consider
001. It is not possible to set V2s2+2(10) = 001 or V2s2+2(11) = 001 and keep V as
a process machine and so the argument fails. However, this does not rule out
the possibility that another argument could be used.

For strict process machines, Theorem 5.3.1 allows us to remove a great deal
of information from the set of non-random strings. We can use this theorem
to prove that there exists a universal strict process machine whose set of non-
random strings is not tt-complete. This proof is an adaptation of Muchnik’s
proof of the existence of a universal prefix-free machine whose overgraph is
not tt-complete. However, as readers may not be familiar with this result we
will present the proof in full. This proof technique uses the fact that the out-
come of a finite game can be computably determined.

Consider the following game between two players. The game is played
on a finite acyclic directed graph. Each vertex of the graph has the value 0

or 1. Each edge has a positive cost assigned to it. At any stage of the game
a single vertex represents the game position. The game position begins at a
designated start vertex. Player one and player two take turns. Each player
starts with a finite amount of money. At each turn, a player can either pass
or move the game position. If there is a directed edge from the current game
position to another vertex, then the player can move the game position to that
vertex. However, the player must pay the cost assigned to the edge. Because
the graph is finite and acyclic, there must come a stage when there are no more
moves that can be made, or both players elect to pass from that stage on. If
player one and player two both start with the same amount of money, then
either player one has a winning strategy to ensure that the game ends on a
vertex labeled 0 or not. If not, then by passing on the first move, player one
can adopt player two’s strategy to prevent the game ending on a 0. Hence
as all vertices are labeled, player one has a computable winning strategy to
ensure the game ends on a 1.

We can turn a truth-table reduction from a computably enumerable set
into such a game. Let Γ be a truth-table reduction. Let B be a c.e. set that both
players can add elements to at some cost. Choose a witness n. Consider the
truth-table for Γ(n). Let p1, p2, . . . , pk be the truth-table variables. The directed
graph will be constructed as follows. The vertices represent the rows in the
truth-table. The vertices are labeled with the value of the row, 0 or 1. There
exists an edge from vertex v1 to vertex v2, if it possible to go from the row

5.3. STRICT PROCESS COMPLEXITY 85

associated with v1 to the row associated with v2 by changing some of the truth-
table variables from 0 to 1. The edge cost is the cost to the players of adding
to B the set of variables whose truth-table value changes. The game position
starts at the vertex associated with the row with all variables 0. Players move
by enumerating elements of p1, p2, . . . , pk into B. The fact that player one has
a winning strategy to ensure that either ΓB(n) = 0 or ΓB(n) = 1 will be used
by the following proof to construct a universal strict process machine V such
that R̄V is not tt-complete. In this case we need to play an infinite number of
games in order to diagonalise against all truth-table reductions.

In the proof that follows there will be three roles: the champion, the oppo-
nent and the arbitrator. The champion and the opponent will be players in the
game. They will move by adding strings to R̄V . The arbitrator will make sure
that the set of all non-random strings is closed under extension. The opponent
represents the universal strict process machine. The index of the opponent in
the proof is 000, the index of the champion is 01. We give the champion a
shorter index because it will need more measure (measure will replace money
in the games). The index of the arbitrator will be 1. The arbitrator acts just
as in Theorem 5.3.1. Because the actions of the arbitrator can be determined,
both players know that once a string σ is in R̄V , all extensions of σ will also be
non-random. Hence when we consider R̄Vs , we will act under the assumption
that this has already been closed under extensions.

We are now able to prove the main result of this section.

Proof of Theorem 5.1.8. In order to prove this theorem we will construct a uni-
versal strict process machine V and a c.e. set A ⊆ ω such that A 6≤tt R̄V . For
this proof, we assume that the arbitrator acts behind the scenes and that for all
s, R̄Vs is closed under extensions. Let {Γn}n∈ω be an enumeration of all partial
truth-table reductions.

We will define Ds = {τ ∈ 2<ω : Us(τ) ↓ and |τ | < |Us(τ)| − 3} so if τ ∈
Ds, then Us(τ) ∈ R̄V . We will use Ds to determine how much the opponent
spends in the games. We will show that if the opponent plays a move in a
game between stages s0 and s1, then we can determine a lower bound for
µ[Ds1]− µ[Ds0].

Requirements. We have a requirement Pn for each n ∈ ω.

Pn: There exist i, j such that A(〈n, i, j〉) 6= ΓR̄
V

n (〈n, i, j〉).

The triples 〈n, i, j〉 will be used as follows. The n represents the reduc-
tion to be diagonalised. The i is incremented every time the requirement is
injured by a higher priority requirement. It also provides an upper bound on

86 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

the measure that can be used by the players in the game. The j provides us
with a series of games for each diagonalisation; it will be incremented if our
opponent ever ‘breaks’ the rules of the game by using too much measure.

Construction. At stage 0, set V0 = {〈λ, λ〉, 〈0, λ〉, 〈00, λ〉}. Set A0 = ∅.
At stage 2s+1 do the following. For all n < s, if Pn does not have a witness,

assign 〈n, 0, 0〉 to Pn. For all n < s, let 〈n, in, jn〉 be the witness for Pn. If Pn
does not have a game assigned, run Γn(〈n, in, jn〉) for s steps to see if it returns
truth-table. If it does return a truth-table, let Xn = {σ1, σ2, . . . , σk} be the set of
strings used as variables by this truth-table. For the purpose of this game, we
will assume that higher priority requirements have stopped acting, i.e., that
the associated games are finished. Because of this, we do not want to injure
any higher priority games, so let: Yn = {σ ∈ Xn : for all τ ∈ ∪i<nXi, σ 6� τ

or τ ∈ R̄V2s}. Notice that σ ∈ Xn \ Yn if and only if adding σ to R̄V2s+1 would
change some variable used by a higher priority game (as R̄V2s+1 is closed under
extension).

The game G〈n,in,jn〉 is defined as follows. We will assume that the strings in
Xn \ Yn do not change (if they do change then this will affect a higher priority
game). The vertices in the game correspond to possible truth assignments to
the variables in Yn. The vertices are labeled with the value of the correspond-
ing line in the truth-table (assuming those variables in Xn \Yn retain their cur-
rent values). An edge exists from a vertex v1 to a vertex v2, if it is possible to
go from the row associated with v1 to the row associated with v2 by changing
some of the truth-table variables from 0 to 1. If going from vertex v1 to vertex
v2 requires changing the variables in Σ ⊆ Yn, then the cost associated with the
edge is µ[Σ]. The amount of measure each player has to spend on the game is
2−n−in−6. The game G〈n,in,jn〉, though defined, is said to be uninitialised. We
allow the opponent to move by setting V2s+1 = V2s ∪ {〈000τ, σ〉 : 〈τ, σ〉 ∈ Us}.

At stage 2s + 2, we determine whether there is any game that the cham-
pion needs to attend to. We find all games assigned to requirements, that
are uninitialised, or where the opponent has made a move. The opponent is
considered to have made a move if some new strings used by the truth-table
reduction have been enumerated into R̄V2s+1\R̄V2s . If no such games exist, then
we set V2s+2 = V2s+1. Otherwise let G〈n,in,jn〉 be the highest priority game (i.e.
game with the smallest n) that needs attention. First we reset all lower priority
games. For all p such that n < p ≤ s, let 〈p, ip, jp〉 be the current witness as-
signed toRp. Remove this witness and the associated game and let 〈p, ip+1, 0〉
be the new witness.

If G〈n,in,jn〉 is a game which is uninitialised, then we set the start position

5.3. STRICT PROCESS COMPLEXITY 87

for the game to be the vertex that corresponds to assigning 〈n, in, jn〉 a truth
value of 1 if and only if 〈n, in, jn〉 ∈ R̄V2s+2 . The champion decides whether to
take a winning strategy to ensure that Γn(〈n, in, jn〉) = 0 or Γn(〈n, in, jn〉) = 1.
In the first case we add 〈n, in, jn〉 to As, in the second case we leave it out. We
let Σ be the set of strings that the champion needs to enumerate into R̄Vs+2

for the first step of this strategy. We now say that the game G〈n,in,jn〉 has been
initialised.

If G〈n,in,jn〉 is a game that our opponent has made a move on, then let 2s0

be the stage at which this game was initialised. If µ[Ds] − µ[Ds0] ≥ 2−n−in−6,
then the opponent has exceeded the allocated measure for the game G〈n,in,jn〉.
In this case, remove 〈n, in, jn〉 as a witness for Pn and also remove the game.
Let 〈n, in, jn + 1〉 be the new witness. Let Σ = ∅. If the opponent has not
exceeded the allocated measure then, let Σ be the set of strings that the cham-
pion needs to enumerate into R̄Vs+2 for the next move in the pre-determined
winning strategy.

Now we need to add Σ to R̄Vs+2 in order to make the champion’s next
move. We know that the arbitrator will ensure that R̄Vs+2 is closed under ex-
tensions. We take Σ̂ = {σ1, . . . , σk} to be a prefix-free set formed by taking
the � minimal elements of Σ. The champion only needs to enumerate Σ̂ into
R̄Vs+2 . We will use the Kraft Computable Theorem to find descriptions for
these strings.

We use the Kraft Computable Theorem to request a string τi of length |σi|−
3 for all i, 1 ≤ i ≤ k. We set V2s+2 = V2s+1 ∪ {〈01τi, σi〉 : 1 ≤ i ≤ k} ∪ {〈01τ, λ〉 :

∃i, 1 ≤ i ≤ k such that τ ≺ τi}.
Note that the champion decreases the measure available for future requests

by 23µ[Σ]. However by scaling, we can regard the champion as having 1
8

of
measure to spend, and this move costing the champion µ[Σ].

Verification. The first step in verifying this proof is to show that if the oppo-
nent makes a move then it must pay the cost of the move.

Lemma 5.3.4. If the opponent enumerates a set of strings Σ into R̄V2s1 \ R̄V2s0 , then
µ[Ds1]− µ[Ds0] ≥ 24µ[Σ].

Proof. Let Σ̂ be the set of minimal elements of Σ under the � relation. Let
Σ̂ = {σ1, . . . , σk}. For all i ∈ ω with 1 ≤ i ≤ k, there exists some τi ∈ 2<ω

such that τi 6∈ dom(Us0), and Us1(τi) � σi, |τi| < |Us1(τi)| − 3 (i.e. τi ∈ Ds1). Let
C = {Us1(τi) : 1 ≤ i ≤ k}. Now [C] ⊇ [Σ] so we can let Ĉ be a minimal subset
of C such that [Ĉ] ⊇ [Σ]. Hence µ[Ĉ] ≥ µ[Σ]. For all υ ∈ Ĉ, choose an i such
that U(τi) = υ and let I be the set of all such i. The set {τi : i ∈ I} is prefix-free

88 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

because its image under U is prefix-free and U is a strict process machine. It
follows that:

µ[{τi : i ∈ I}] =
∑
i∈I

2−|τi|

≥
∑
i∈I

24−|Us1 (τi)|

= 24µ[Ĉ]

≥ 24µ[Σ].

Finally take any i ∈ I . If τ � τi, then τ 6∈ dom(Us0), as the domain of a
strict process machine is closed under substrings. So τ 6∈ Ds0 . If τ ≺ τi, and
τ ∈ Ds0 , then Us0(τ) ∈ R̄Vs0 and hence as Us0(τ) � Us1(τi) � σi, σi ∈ R̄Vs0 . But
we assumed that σi 6∈ R̄Vs0 so again τ 6∈ Ds0 . Hence [τi] ∩ [Ds0] = ∅. The result
follows as [{τi : i ∈ I}] ∪Ds0 ⊆ Ds1 .

Again by scaling we can regard the opponent as having measure of 1
16

and
the cost of the move as being µ[Σ].

Lemma 5.3.5. V is a strict process machine.

Proof. U is by assumption a strict process machine, so to check that V is a strict
process machine, we just need to check the strings enumerated into V by the
champion. As the champion is effectively a prefix-free machine, we just need
to show that the champion does not run out of measure.

To do this we divide the games into two sorts, those games G〈n,i,j〉 with
j = 0 and those games with j > 0. We know the champion always keeps
within the rules of the game. Let C be the cost to the champion of playing
those games with j = 0. C is less than the sum of the measure allocated to
each game. Hence C ≤

∑
n∈ω
∑

i∈ω 2−n−i−6 =
∑

n∈ω 2−n−5 = 1
16

.
Now j is only incremented if the opponent exceeds the amount of measure

allocated to a game. Hence the measure the champion spends on these games
is always less than the measure the opponent spends overall. As the opponent
only has 1

16
to spend, it follows that the champion spends less than C+ 1

16
= 1

8
,

the amount of measure available to it. Hence the champion does not run out
of measure and thus V is a strict process machine.

Lemma 5.3.6. All requirements are met.

Proof. Take any requirement Pn. Assume that at some stage s0 all higher pri-
ority requirements have stopped acting. Let 〈n, i, j〉 be the witness assigned to
Pn at stage s0. Because all higher priority requirements have stopped acting,

5.4. OPEN QUESTIONS 89

i is never incremented again. So if the witness is changed, it must be because
j is increased. This in turn must be caused by the opponent exceeding their
allocated measure of 2−n−i−6 in the previous game. This can only happen a
finite number of times otherwise the opponent will run out of measure.

Thus there is some final witness 〈n, in, jn〉 assigned to Pn. If Γn(〈n, in, jn〉)
never halts then the requirement is met. If Γn(〈n, in, jn〉) does halt then the
champion will adopt a winning strategy for the game G〈n,in,jn〉 and so in either
case ΓR̄

V

n (〈n, in, jn〉) 6= A(〈n, in, jn〉).

5.4 Open questions

The results on tt-completeness of the overgraphs and the sets of non-random
strings obtained from the complexity measures: K, KMS

, KMD
, Km, KM and

C can be summarised as follows:

Complexity R̄U tt-complete? OU tt-complete?
K Dependent on machine Dependent on machine
KMS

Dependent on machine Always
KMD

, Km or KM True for some Always
universal machines

C Always Always

This table includes the results of: Kummer; Muchnik and Positselsky; Al-
lender, Buhrman and Koucký. In this table, ‘Always’ means that for every
optimal machine the set in question is tt-complete. ‘Dependent on machine’
means that there exists two different optimal machines such that for one the
set is tt-complete and for the other the set is not tt-complete.

This leaves the following outstanding questions.

Question 5.4.1. Does there exist an optimal monotone machine U such that
R̄U
Km

or is not tt-complete?

Question 5.4.2. Does there exist an optimal monotone machine U such that
R̄U
KM is not tt-complete?

Question 5.4.3. Does there exist an optimal process machineU such that R̄U
KMD

is not tt-complete?

90 CHAPTER 5. THE COMPUTATIONAL POWER OF RANDOM STRINGS

Part II

Randomness and Computability in
Cantor Space

91

Chapter 6

Process and Truth-Table Characterisations
of Randomness

6.1 Overview

In Chapter 1 we defined the Martin-Löf random sequences to be those se-
quences which avoided all Martin-Löf tests. In Chapter 2, we saw that the
Martin-Löf random sequences could be characterised using Kolmogorov com-
plexity. These two approaches are known as the test perspective and the com-
pressibility perspective. In this chapter we will look at randomness from a
third perspective known as the betting perspective. We will see how this per-
spective can be used to define notions of randomness that differ from Martin-
Löf randomness. We will then characterise these notions using a variant of
strict process machines.

The betting perspective is typically formalised using martingales. This
use of martingales has found widespread application. For example, Lutz pio-
neered the use of martingales to study the exponential time complexity classes
[61]. In this chapter, we show how to move between the betting perspective
and the compressibility perspective by translating back and forth between
martingales and a variant of process machines. This allows us to provide con-
sistent compressibility-based definitions of many types of randomness. The
main theorems of this chapter provide new characterisations of computable
randomness, Schnorr randomness and weak randomness. The quick process
machines that we will use come from work of Levin [58, 94].

Definition 6.1.1. A martingale is function d : 2<ω → R≥0 such that for all σ ∈
2<ω we have:

d(σ) =
d(σ0) + d(σ1)

2
. (6.1.1)

A martingale is a strategy for betting on the bits of a sequence. The martin-
gale condition (6.1.1) ensures that the betting is fair. We say that a martingale

94 CHAPTER 6. CHARACTERISATIONS OF RANDOMNESS

succeeds on a sequence X ∈ 2ω if limn→∞ d(X � n) = +∞.
The idea is that a sequence is not random if a gambler could make an in-

finite amount of money betting on the bits of the sequence. For this to work,
we need to place some effectivity constraints on the martingales, and poten-
tially the speed at which the gambler makes money. By changing the con-
straints we get different notions of randomness. Schnorr established that with
appropriate effectivity constraints, martingales could be used to characterise
Martin-Löf randomness [78].

Theorem 6.1.2 (Schnorr [78]). A sequence X ∈ 2ω is Martin-Löf random if and
only if no computably enumerable martingale succeeds on X .

In this chapter we will investigate the following notions of randomness:
computable randomness, Schnorr randomness and weak randomness. These
notions were originally defined in different ways. However, they can all be
characterised in terms of martingales. For simplicity, we will take these mar-
tingale characterisations as our definitions.

Definition 6.1.3. A function h : ω → ω is called an order function if it is com-
putable, non-decreasing, and unbounded.

Definition 6.1.4. (i). A sequence X ∈ 2ω is computably random if no com-
putable martingale succeeds on X .

(ii). A sequence X ∈ 2ω is Schnorr random if for all computable martingales d,
for all orders h, for almost all n, d(X � n) < h(n).

(iii). A sequence X ∈ 2ω is weakly random if for all computable martingales d,
for all orders h, there exists an n such that d(X � n) < h(n).

The definitions of Schnorr randomness and computable randomness are
due to Schnorr [78]. Schnorr argued that the effectivity requirements in the
definition of computable randomness were insufficient. He suggested that to
make the martingale truly effective, the gambler should be able to identify
when they were winning. Weak randomness was first defined by Kurtz [51].
The characterisation in terms of martingales was established by Wang [91].

For Martin-Löf randomness or computable randomness, if d is the mar-
tingale in question, it is only necessary that limsup d(X � n) = +∞. This is
because given such a d, using a simple procedure known as the savings trick,
one can define another martingale d̂ such that limn→∞ d̂(X � n) = +∞. Details
of the savings trick can be found in [30, 70].

We defined strict process machines in Definition 2.1.7 and noted that this
definition was due to Levin. In addition to defining strict process machines,

6.2. QUICK PROCESS MACHINES AND RANDOMNESS 95

Levin defined a strict process machine P as being applicable to a sequence X ,
if there was an order h such that |P (X � n)| ≥ h(n) [58, 94]. We suggest the
following name for a strict process machine that is applicable to all sequences.

Definition 6.1.5. A strict process machine P is a quick process machine, if it is
total and there is an order function h such that for all τ ∈ 2<ω, |P (τ)| ≥ h(|τ |).

Given a quick process machine P , there is a simple procedure to determine
the complexity of any string σ with respect to P , i.e. CP (σ) is a computable
function. This can be done by running P (τ) for all strings such that h(|τ |) ≤
|σ|. If σ has a P -description, it must be one of these strings.

In Theorem 6.2.16, a characterisation of computable randomness, Schnorr
randomness, and weak randomness in terms of quick process machines is
made. These are not the first compressibility characterisations of these types
of randomness. Downey and Griffiths have characterised Schnorr random-
ness in terms of computable measure machines [28]. Mihailović provided
a machine characterisation of computable randomness in terms of bounded
measure machines [30]. Downey, Griffiths and Reid characterised weak ran-
domness in terms of computably layered machines [29]. The value of these
new characterisations lies in their simplicity and consistency.

Underlying Theorem 6.2.16 is a new technique for building strict process
machines. This technique can be thought of as a KC Theorem (Theorem 2.1.5)
for strict process machines. It allows strict process machines to be built by list-
ing the strings that need descriptions, the description length and the relation-
ship between described strings. This technique is presented in Theorem 6.2.4
and Theorem 6.2.6.

Demuth showed that there is a link between truth-table reducibility and
randomness [25]. We provide further evidence for this link. There is a close
relationship between quick process machines and truth-table functionals. We
use this relationship to provide truth-table reducibility characterisations of
computable randomness, Schnorr randomness and weak randomness in The-
orem 6.3.1.

6.2 Quick process machines and randomness

Our goal is to show that quick process machines can be used to characterise
computable randomness, Schnorr randomness and weak randomness. This is
due to the fact that quick process machines are very similar to martingales.

Proposition 6.2.1 shows how to construct a martingale from a quick process
machine. This proof is essentially due to Levin.

96 CHAPTER 6. CHARACTERISATIONS OF RANDOMNESS

Proposition 6.2.1 (Levin [58]). For any quick process machine P , there is a com-
putable martingale d such that for all σ, d(σ) ≥ 2|σ|−C

P (σ).

Proof. Let P be a quick process machine with associated order function h. De-
fine g(n) = min{x : h(x) > n}. If τ ∈ {0, 1}g(n) then |P (τ)| ≥ h(|τ |) = h(g(n)) >

n. We define a computable martingale d as follows. First for any string σ de-
fine Eσ = {τ ∈ {0, 1}g(|σ|) : P (τ) � σ}. Now define d by:

d(σ) =
|Eσ|

2g(|σ|)−|σ|
.

The function d is computable because P is total so Eσ is computable for
all σ. We will now show that d is a martingale. For any σ, Eσ0 and Eσ1 are
disjoint because P is a function. If τ ∈ Eσ0 then τ � g(|σ|) ∈ Eσ because
P (τ � g(|σ|)) � P (τ), σ � P (τ) and |σ| < |P (τ � g(|σ|))| so σ ≺ P (τ � g(|σ|)).
Similarly if τ ∈ Eσ1, then τ � g(|σ|) ∈ Eσ.

Now if τ ∈ Eσ, and τ ′ � τ with |τ ′| = g(|σ| + 1) then it must be that
|P (τ ′)| ≥ h(|τ ′|) = h(g(|σ|+ 1)) > |σ|+ 1. Hence τ ′ ∈ Eσ0 ∪Eσ1. Thus we have
that (|Eσ0|+ |Eσ1|)2g(|σ|)−g(|σ+1|) = |Eσ|. This gives us that:

d(σ) =
|Eσ|

2g(|σ|)−|σ|
=
|Eσ0|+ |Eσ1|
2g(|σ+1|)−|σ| =

1

2

|Eσ0|+ |Eσ1|
2g(|σ+1|)−(|σ|+1)

=
d(σ0) + d(σ1)

2
.

Assume CP (σ) = |σ| − c, and |σ| = n. Then for some τ with |τ | = n − c,
we have that P (τ) = σ. This means that h(|τ |) ≤ n and consequently that
g(n) > |τ |. If τ ′ � τ with |τ ′| = g(n), then P (τ ′) � σ and so τ ′ ∈ Eσ. Hence
|Eσ| ≥ 2g(n)−(n−c). Thus:

d(σ) =
|Eσ|

2g(n)−n ≥ 2c = 2|σ|−C
P (σ).

Our next objective is to build a quick process machine from a martingale.
While Levin showed how to build a strict process machine from a computable
measure [58], Levin’s objective was to show that any computable measure
could be obtained using similar techniques to Proposition 6.2.1. The strict
process machine Levin built was not total but instead applicable to a set of
uniform measure 1. Further, Levin did not relate the complexity of a string σ
with respect to the strict process machine created, to the measure of the basic
clopen set [σ].

Before showing how to build a quick process machine from a martingale,
we will present a new technique for building strict process machines. The
benefit of this technique is that it allows us to build strict process machines
without worrying about which descriptions to use. Instead, like the KC theo-
rem, we request a description length.

6.2. QUICK PROCESS MACHINES AND RANDOMNESS 97

Definition 6.2.2. We call a partial computable function f : ω<ω → 2<ω × ω a
strict process request function, if:

(i). The domain of f is closed downwards.

(ii). For all ρ ∈ dom(f), x ∈ ω, we have 2−f2(ρ) ≥
∑

ρx∈dom(f)

2−f2(ρx).

(iii). If ρ1, ρ2 ∈ dom(f) and ρ1 ≺ ρ2, then f1(ρ1) � f1(ρ2), and f2(ρ1) < f2(ρ2).

In this definition, f1 and f2 are the co-ordinate functions of f , and ω<ω is the
set of all finite strings of elements of ω.

The idea behind this definition is the following. We want to represent the
essential combinatorics of a strict process machine by a tree. Each node of the
tree maps to a pair (σ, n) where σ ∈ 2<ω and n ∈ ω. When we turn this tree
into a strict process machine, this node generates a description of σ of length
n. Suppose we have two nodes ρ1, ρ2. If ρ1 is an initial segment of ρ2, then
the description generated by ρ1 will be an initial segment of the description
generated by ρ2. We need the second condition so that the combined weight
of the descriptions generated by the children of a node, does not exceed the
weight of the description generated by the node itself. We need f1(ρ1) � f1(ρ2)

in order to make a strict process machine. We need f2(ρ1) < f2(ρ2) so that no
two nodes generate the same description.

Definition 6.2.3. A strict process machine P implements a strict process request
function f if for all σ ∈ 2<ω, CP (σ) ≤ min{n : (σ, n) ∈ rng(f)}.

Theorem 6.2.4. Any strict process request function is implemented by some strict
process machine, and any strict process machine implements some strict process re-
quest function.

Proof. Given a strict process machine P , there is a natural strict process request
function f that P implements. We define f by f(τ) = (P (τ), |τ |). In this case
we have dom(f) = dom(P) ⊆ 2<ω.

Given a strict process request function f , each node ρ ∈ dom(f) defines
a prefix-free machine Mρ via the KC theorem in the following manner. Each
time some f(ρx) halts equal to (σ, n) for some x ∈ ω, we add (σ̂, n − f2(ρ))

to our KC request sequence where f1(ρ)σ̂ = σ. Condition (ii) for f to be a
strict process request function ensures that the weight of the requests does not
exceed 1.

Given τ in the domain of Mρ, we can determine the node ρx that made the
request that returned τ . We will call ρx the node associated with τ and Mρ. In
the verification we will make use of the fact that f1(ρ)Mρ(τ) = f1(ρ)σ̂ = f1(ρx).

98 CHAPTER 6. CHARACTERISATIONS OF RANDOMNESS

We will now build a strict process machine P that implements f . If f is
the empty function, then so is P . Otherwise f(λ) halts and so we can define
τ0 = 0f2(λ), and P (τ ′) = f1(λ) for any τ ′ � τ0.

We set P (τ) = σ if at any stage we find a decomposition of τ = τ0τ1 . . . τn,
and a node ρ ∈ ω<ω of length n− 1 with the following properties for all i with
0 ≤ i ≤ n− 1:

(i). τi+1 ∈ dom(Mρ�i).

(ii). ρ � (i+ 1) is the node associated with τi+1 and Mρ�i.

(iii). σ = f1(λ)Mρ�0(τ1) . . .Mρ�(n−1)(τn).

To make P a strict process machine, we need to close the domain of P
downwards. To achieve this, we also define P (τ ′) = P (τ0τ1 . . . τn−1) for all τ ′

such that τ0 . . . τn−1 ≺ τ ′ ≺ τ .

If P fails to be a strict process machine, then there must be some τ, π in the
domain of P with τ � π such that P (τ) 6� P (π). Further we can assume that
neither τ nor π were added to the domain of P in order to close the domain
downwards. Let us take the decompositions used by the construction to be
τ = τ0τ1 . . . τm and π = π0π1 . . . πn.

By construction, τ0 = π0 = 0f2(λ). Further, τ1 = π1 because Mλ is a prefix-
free machine. This also means that the node ρ1 associated with τ1 and Mλ,
is the same node associated with π1 and Mλ. Hence τ2 = π2 because Mρ1

is a prefix-free machine. By repeating this argument we establish that π =

τ0 . . . τmπm+1 . . . πn. If π = τ then m = n because πi 6= λ if i ≥ 1 (this is
a consequence of f2 being strictly increasing). In this case P (τ) = P (π). If
m < n, then P (π) � f1(λ)Mρ0(τ1) . . .Mρn−1(τn) = P (τ). Thus P is a strict
process machine.

We will now verify that P implements f . Let τ0 = 0f2(λ). Let ρ ∈ dom(f),
and let (σ, n) = f(ρ). For i ∈ ω, 0 ≤ i < |ρ|, for each machine Mρ�i let τi+1

be the element of the domain of this machine such that the node ρ � (i + 1)

is associated with τi+1 and Mρ�i. For all such i, f1(ρ � i)Mρ�i(τi+1) = f1(ρ �

(i + 1)). Hence we have that f1(λ)Mρ�0(τ1) . . .Mρ�(|ρ|−1)(τ|ρ|) = f1(ρ) = σ. Thus
P (τ0τ1 . . . τn) = σ, and:

|ρ|∑
i=0

|τi| = f2(λ) +

|ρ|∑
i=1

(f2(ρ � i)− f2(ρ � (i− 1))) = f2(ρ) = n.

6.2. QUICK PROCESS MACHINES AND RANDOMNESS 99

The proof shows that the implementation is uniform; given an index for a
strict process request function f , we can compute an index for a strict process
machine P that implements f .

We can do a similar thing for quick process machines. The first two condi-
tions below ensure that the quick process machine we create is total. The third
condition ensures that once we build a process machine there is some order
function h such that for all τ ∈ 2<ω, |P (τ)| ≥ h(|τ |).

Definition 6.2.5. A strict process request function f is a quick process request
function if:

(i). The domain of f is finitely branching.

(ii). For all n ∈ ω,
∑

ρ∈dom(f),|ρ|=n

2−f2(ρ) = 1.

(iii). For some order function h, for all ρ ∈ dom(f), |f1(ρ)| ≥ h(|ρ|).

Theorem 6.2.6. Any quick process request function is implemented by a quick pro-
cess machine, and any quick process machine implements a quick process request func-
tion.

Proof. Given a quick process machine P , the natural quick process request
function that P implements is again defined by f(τ) = (P (τ), |τ |).

Given a quick process request function f , we use Theorem 6.2.4 to con-
struct a strict process machine P which implements f . If we fix n, then the
additional conditions on f mean that there is a finite number of strings of
length n in the domain of f . Further the fact that∑

ρ∈dom(f),|ρ|=n

2−f2(ρ) = 1 (6.2.1)

implies that the domain of f is computable because once sufficient strings
enter the domain of f in order for (6.2.1) to hold, we know that no more strings
of length n will enter the domain of f .

If we use the construction of Theorem 6.2.4, then each string ρ of length
n in the domain of f results in a unique string τ entering the domain of P .
Further because |τ | = f2(σ) and there are only finitely many such τ , in order
for (6.2.1) to hold, we must have that the set of such τ form a covering of 2ω.
Because the domain of P is closed downwards, and |τ | ≥ n we have that the
function P is total.

Let l(x) = max{f2(ρ) : |ρ| = x and ρ ∈ dom(f)}. This function is com-
putable because the domain of f is computable and finitely branching. If

100 CHAPTER 6. CHARACTERISATIONS OF RANDOMNESS

|τ | ≥ l(x), then for some τ ′ � τ we have that P (τ ′) = f1(ρ) for some ρ of
length x. This follows from condition (ii) for f to be a quick process request
function. This means that |P (τ)| ≥ |f1(ρ)| ≥ h(x).

We can define another order function h′ by h′(n) = max{x : l(x) ≤ n}. As
|τ | ≥ l(h′(|τ |)), we have that |P (τ)| ≥ h(h′(|τ |)) and because h ◦ h′ is also an
order function, P is a quick process machine.

We will now present a method for translating from computable martin-
gales to quick process machines. One difficulty is that, when running a com-
putable martingale, the value of d(σ) can increase at any stage, albeit by a very
small amount. However, we can avoid this issue by using the following result
of Schnorr [79].

Proposition 6.2.7 (Schnorr). If d is a computable martingale, then there exists a
computable martingale d̂ such that for all σ ∈ 2<ω:

(i). d(σ) ≤ d̂(σ) ≤ d(σ) + 2.

(ii). d̂(σ) is a computable dyadic rational i.e. there is an integer pair (n, z) uniformly
computable from σ such that d̂(σ) = n2z.

From now on we will assume that all our martingales d are dyadic rational
valued, and further that d(λ) = 1. Given such a computable martingale, we
can define its precision function r : ω → ω by r(n) = min{m ∈ ω : ∀σ ∈
2<ω, |σ| = n⇒ d(σ) is an integer multiple of 2−m}. The precision function of a
computable martingale is computable.

We will also make use of the following lemma.

Lemma 6.2.8. Let (a1, a2, . . . , an) be a tuple of positive integers andm ∈ ω such that
m ≤ ai for all 1 ≤ i ≤ n. If

∑n
i=1 2−ai ≥ 2−m, then for some J ⊆ {1, . . . , n} we have

that
∑

i∈J 2−ai = 2−m.

Proof. We can assume that the elements of the tuple are non-decreasing. Con-
sider the partial sum Sk =

∑k
i=1 2−ai . S1 ≤ 2−m. If Sk < 2−m, it must be that

Sk ≤ 2−m − 2−ak (as Sk is some integer multiple of 2−ak). As ak+1 ≥ ak, we
have that Sk+1 ≤ 2−m. Hence for the least k such that Sk ≥ 2−m, it must be that
Sk = 2−m.

It is not possible to establish a procedure that given any computable mar-
tingale d, constructs a quick process machine P such that for all strings σ,
CP (σ) ≤ |σ| − blog d(σ)c. For example, consider the martingale defined by
d(σ) = 2n if σ = 1n for some n, and d(σ) = 0 otherwise. In this example, for
any n, |1n| − blog d(1n)c = 0 and a process machine has only one description

6.2. QUICK PROCESS MACHINES AND RANDOMNESS 101

of length 0. The problem with this example is that the martingale wins too
quickly on the sequence 1ω. We will restrict ourselves to martingales that do
not win “too quickly” on any sequence.

Our objective is to determine an infinite set M , and build a quick pro-
cess machine P such that for all strings σ such that |σ| ∈ M , CP (σ) ≤ |σ| −
blog d(σ)c. We will take M to be the range of a strictly increasing computable
function. Given a computable martingale d with precision function r, we will
say that a strictly increasing computable function m is a selection function for d
if:

(i). For all n ∈ ω, m(n+ 1) ≥ r(m(n)) + n+ 2.

(ii). For all n ∈ ω, for all σ ∈ 2<ω, |σ| = m(n)⇒ d(σ) ≤ 2n.

Proposition 6.2.9. Let d be a computable martingale and letm be a selection function
for d. There exists a quick process machine P such that for all σ ∈ 2ω with |σ| ∈
rng(m), CP (σ) ≤ |σ| − blog d(σ)c.

Proof. We will assume that m(0) = 0 as this simplifies the exposition of the
proof, and this is all we will need later. We construct P using a quick process
request function f . Let r be the precision function for d. At stage s in the
construction we will define f on all strings ρ in the domain of f of length s.

At stage 0, we set f(λ) = (λ, 0). At stage s + 1, for all σ ∈ 2<ω such that
|σ| = m(s), we let Eσ = {ρ ∈ ωs : f1(ρ) = σ}. We make the following inductive
assumptions on the construction:

(i). For all ρ ∈ Eσ, f2(ρ) ≤ r(m(s)).

(ii).
∑
ρ∈Eσ

2−f2(ρ) = d(σ)2−|σ|.

If s = 0, then Eλ = {λ} and the inductive assumptions hold.
Choose σ ∈ {0, 1}m(s). Let σ0, . . . , σn be all extensions of σ of lengthm(s+1).

Now as d is a dyadic rational valued martingale, for each i, there is a unique
finite set of integers Ai such that∑

a∈Ai

2−a = d(σi)2
−|σi|. (6.2.2)

Hence by applying the martingale condition and the second inductive as-
sumption:

n∑
i=0

∑
a∈Ai

2−a =
n∑
i=0

d(σi)2
−|σi| = d(σ)2−|σ| =

∑
ρ∈Eσ

2−|f2(ρ)|.

102 CHAPTER 6. CHARACTERISATIONS OF RANDOMNESS

Further as d(σi) ≤ 2s+1 (the second condition for m to be a selection func-
tion), we have that for all i, minAi ≥ |σi| − s− 1 > r(m(s)) (the last inequality
follows from the first condition for m to be a selection function). Hence if
ρ ∈ Eσ, then f2(ρ) < minAi. Additionally, maxAi ≤ r(m(s + 1)) because r is
the precision function for d. Let I = {(i, a) : 0 ≤ i ≤ n, a ∈ Ai} be an index
set for the finite sets Ai. By Lemma 6.2.8, we can partition I into subsets Sρ for
each ρ ∈ Eσ, such that ∑

(i,a)∈Sρ

2−a = 2−f2(ρ). (6.2.3)

Now for each such ρ, we define f(ρ〈i, a〉) = (σi, a) if (i, a) ∈ Sρ. We repeat this
step for all σ of length m(s). Once this has been done for all such σ, we move
to the next stage. Note that our first construction assumption is maintained
because f2(ρx) ≤ max{a : (i, a) ∈ I} ≤ r(m(s + 1)). Our second construction
assumption is maintained because of (6.2.2) and because every element of Ai
generates a new node in the domain of f .

This completes the definition of f . First we need to verify that f is a quick
process request function. The construction ensures that the domain of f is
closed downwards, and that each node is finitely branching (as the index set
I is always finite). Additionally f1 is strictly increasing because m is strictly
increasing, and f2 is strictly increasing because f2(ρ) ≤ r(m(|ρ|)) < f2(ρx) for
any x ∈ ω with ρx ∈ dom(f). Equation (6.2.3) ensures that we meet condi-
tion (ii) for f to be a strict process request function and this along with the
fact that f2(λ) = 0 implies we meet condition (ii) for f to be a strict process
request function. From f , we can construct a quick process machine P using
Theorem 6.2.6.

We will establish that P has the desired property. For any n, take any σ

with |σ| = m(n). Let A be the set of integers used for σ in (6.2.2). If a ∈ A, then
there is some description τ such that P (τ) = σ and |τ | = a. For (6.2.2) to hold,
it must be that |σ| − blog d(σ)c ∈ A.

The above construction has an additional property that will be useful when
we consider truth-table reductions.

Lemma 6.2.10. LetX ∈ 2ω, let d be a computable martingale and letm be a selection
function for d. Let P be the quick process machine created by an application of Propo-
sition 6.2.9. Then the set {τ : ∃n, c ∈ ω [P (τ) = X � m(n) and d(X � m(n)) = 2c]}
is a chain with respect to �.

Proof. Assume that there exist τ1, τ2 such that P (τ1) = X � m(n1) and P (τ2) =

X � m(n2) with n1 ≤ n2 and d(X � m(n1)) = 2c for some c ∈ ω.

6.2. QUICK PROCESS MACHINES AND RANDOMNESS 103

By construction, there is some initial segment τ � τ2 such that |P (τ)| =

m(n1) and hence because P is a strict process machine we have that P (τ) =

X � m(n1).
At stage n1 of the construction, we have that X � m(n1) = σi for some i.

Now because d(X � m(n1)) = 2c, we have that |Ai| = 1. Hence τ1 is the unique
element in 2<ω such that P (τ1) = X � m(n1). Thus τ1 = τ � τ2.

We can use Proposition 6.2.9 to build a quick process machine that turns
high martingale values into short descriptions. While this proposition only
works for martingales with selection functions, we will show that this is not a
significant limitation for our purposes. First we consider the case of Schnorr
randomness and weak randomness.

Proposition 6.2.11. Let d be a computable martingale and let h be a computable
order. There exists a computable martingale d̂ and m, a selection function for d̂, such
that for all X ∈ 2ω:

(i). ∀n d(X � n) ≥ h(n)⇒ ∀n d̂(X � m(n)) = 2n.

(ii). ∃∞n d(X � n) ≥ h(n)⇒ ∃∞n d̂(X � m(n)) = 2n.

Proof. We build d̂ by adopting the betting strategy of d unless this strategy
would force d̂(σ) > 2n for some string σ of length m(n). In this case, we
restrain the betting so that d̂(σ) = 2n.

We construct d̂ and m as follows. At stage 0, define m(0) = 0 and d̂(λ) = 1.
At stage s+ 1, define:

m(s+ 1) = max{r(m(s)) + s+ 2,min{x : h(x) ≥ 2m(s)+s+1}}

where r is the precision function for the martingale d. For all σ ∈ 2<ω such that
m(s) ≤ |σ| < m(s+ 1), we inductively define d̂(σ) by:

d̂(σi) =


2s+1 if d(σi) · d̂(σ)

d(σ)
≥ 2s+1

2d̂(σ)− 2s+1 if d(σ(1− i)) · d̂(σ)
d(σ)
≥ 2s+1

d(σi) · d̂(σ)
d(σ)

otherwise.

(6.2.4)

We will say that the construction restrains the betting at σi, if the first case of
(6.2.4) holds when d̂(σi) is defined. Note that if m(s) ≤ |σ| < m(s+ 1) and the
construction restrains the betting at σi, then for all X extending σi we have
that d̂(X � m(s+ 1)) = 2s+1.

To verify the construction first note that the construction ensures that m is
a selection function for d̂. Take any X ∈ 2ω such that for all n, d(X � n) ≥ h(n).

104 CHAPTER 6. CHARACTERISATIONS OF RANDOMNESS

We will inductively show that for all n, d̂(X � m(n)) = 2n. First we have that
d̂(X � m(0)) = d̂(λ) = 20. Assume that d̂(X � m(n)) = 2n. It must be that
d(X � m(n)) ≤ 2m(n) and d(X � m(n + 1)) ≥ h(m(n + 1)). Combining these
facts establishes that

d(X � m(n+ 1)) · d̂(X � m(n))

d(X � m(n))
≥ h(m(n+ 1)) · 2n

2m(n)
> 2n+1.

The final inequality holds because we have that h(m(n + 1)) ≥ 2m(n)+n+1 by
the definition of m. This implies that there are σ ∈ 2ω and i ∈ {0, 1} such that
σi ≺ X with m(n) ≤ |σ| < m(n + 1), and such that d(σi) · d̂(σ)

d(σ)
≥ 2n+1. If we

take such a σ such that |σ| is minimal then this implies that the construction
restrains the betting at σi which means that d̂(X � m(n+ 1)) = 2n+1.

Now assume that there are infinitely many n such that d(X � n) ≥ h(n).
To show that there are infinitely many n such that d̂(X � m(n)) = 2n, it is
sufficient to show that for any c, there exists an n such that d(X � m(n)) ≥ 2n+c.
From this it follows that the construction must restrain the betting at infinitely
many initial segments of X , and thus for infinitely many n, d̂(X � m(n)) = 2n.
Fix any c and choose n such thatm(n−1) ≥ c, then d(X � m(n)) ≥ 2m(n−1)+n ≥
2c+n.

Corollary 6.2.12. (i). If X ∈ 2ω is not Schnorr random, then there exists a quick
process machine P and a computable functionm such that ∃∞n CP (X � m(n))

≤ m(n)− n.

(ii). If X is not weakly random, then there exists a quick process machine P and a
computable function m such that ∀n CP (X � m(n)) ≤ m(n)− n.

Proof. These results follow from combining Propositions 6.2.9 and 6.2.11.

To establish a similar result for computable randomness, we need to vary
the construction slightly. In the previous proposition, there was an order func-
tion that told us what value the martingale “should” have. In that situation
we were able to fix a single value at each stage of the construction and pre-
vent the martingale from exceeding this value. For the case of computable
randomness, we cannot do this because the martingale may win very slowly.
However, we can construct a suitable martingale d̂ by restraining the betting
the first time a martingale exceeds 2n, for any n, along any path.

Proposition 6.2.13. Let d be a computable martingale. There exists a computable
martingale d̂ and m, a selection function for d̂, such that for all X ∈ 2ω, if d succeeds
on X then ∀c ∃n d̂(X � m(n)) = 2c.

6.2. QUICK PROCESS MACHINES AND RANDOMNESS 105

Proof. We define m by m(0) = 0 and m(s+ 1) = r(m(s)) + s+ 2 where r is the
precision function for the martingale d.

We construct d̂ as follows. At stage 0, define d̂(λ) = 1. At stage s + 1, for
all σ ∈ 2<ω such that |σ| = m(s), let nσ = min{n : for all τ � σ, 2n > d̂(τ)}. We
inductively define d̂(σ′) for all σ′ � σ with m(s) ≤ |σ′| < m(s+ 1) by:

d̂(στi) =


2nσ if d(στi) · d̂(σ)

d(σ)
≥ 2nσ

2d̂(στ)− 2nσ if d(στ(1− i)) · d̂(σ)
d(σ)
≥ 2nσ

d(στi) · d̂(σ)
d(σ)

otherwise.

(6.2.5)

Again we will say that the construction restrains the betting at σi, if the first
case of (6.2.5) holds when d̂(σi) is defined.

Fix X ∈ 2ω such that d succeeds on X . We will show that for all c, there
exists an n such that d̂(X � m(n)) = 2c. First d̂(λ) = 20. Assume that d̂(X �

m(n)) = 2c where n is the minimal number with this property. Because d

succeeds on X , there exists a least k > m(n) such that

d(X � k) · d̂(X � m(n))

d(X � m(n))
≥ 2c+1.

The construction ensures that the betting is restrained at X � k and further if
n′ is the least number such that m(n′) ≥ k then we have that d̂(X � m(n′)) =

2c+1.

Corollary 6.2.14. If X ∈ 2ω is not computably random, there exists a quick process
machine P such that for all c, there exists some n with CP (X � n) ≤ n− c.

Proof. Combine Propositions 6.2.9 and 6.2.13.

We are now able to provide characterisations of computable randomness,
Schnorr randomness and weak randomness in terms of quick process ma-
chines. First we establish the following lemma.

Lemma 6.2.15. If m is a strictly increasing computable function, d a computable
martingale and X ∈ 2ω such that for all n, d(X � m(n)) ≥ 2n, then X is not weakly
random.

Proof. Construct a computable martingale d̂ from d by following the betting
strategy of d except that whenever d̂ first exceeds 2n along some path, d banks
half its capital and only bets with the remaining half. In this case if m(2n) ≤
x < m(2(n + 1)), then d̂(X � x) ≥ 2n−1 and so X is not weakly random as
d̂(X � x) ≥ h(x), where h(x) = max{2n−1 : m(2n) ≤ x}.

106 CHAPTER 6. CHARACTERISATIONS OF RANDOMNESS

Theorem 6.2.16. (i). A sequence X ∈ 2ω is not computably random if and only if
there exists a quick process machine P , such that ∀c,∃n CP (X � n) ≤ n− c.

(ii). A sequence X ∈ 2ω is not Schnorr random if and only if there exists a quick
process machine P , and a strictly increasing computable function m, such that
∃∞n CP (X � m(n)) ≤ m(n)− n.

(iii). A sequence X ∈ 2ω is not weakly random if and only if there exists a quick
process machine P , and a strictly increasing computable function m such that
∀n CP (X � m(n)) ≤ m(n)− n.

Proof. The left to right directions are just Corollaries 6.2.12 and 6.2.14 restated.
For the right to left direction, given such a quick process machine P , we use
Proposition 6.2.1 to build a martingale d. Now d(X � n) ≥ 2n−C

P (X�n). Hence
if ∀c ∃nCP (X � n) ≤ n− c, we have that X is not computably random.

If for some strictly increasing computable m, ∃∞nCP (X � m(n)) ≤ m(n)−
n, then let h(x) = max{{0} ∪ {2n : m(n) ≤ x}}. For infinitely many n, d(X �

m(n)) ≥ 2n = h(m(n)) and so X is not Schnorr random.
Finally assume that for some strictly increasing computable m, ∀n CP (X �

m(n)) ≤ m(n) − n. In this case, for all n, d(X � m(n)) ≥ 2n and so by
Lemma 6.2.15, X is not weakly random.

6.3 Quick process machines and truth-table functionals

There is a simple technique to translate between truth-table functionals and
quick process machines that allows further characterisations of computable
randomness, Schnorr randomness and weak randomness in terms of truth-
table reducibility. However, for these characterisations to hold, we need to
be careful about how we define the use of a truth-table reduction. Nerode
observed that a truth-table reduction can be regarded as a Turing reduction
that is total on all oracles [68]. We will take this as our definition of a truth-
table reduction. Given a truth-table reduction Φ we now define φX(n) to be
the largest query made of the oracle X during the computation of ΦX(m) for
any m ≤ n.

Theorem 6.3.1. (i). A sequence X ∈ 2ω is not computably random if and only
if there exist a truth-table functional Φ, and a sequence Y ∈ 2ω, such that
ΦY = X and ∀c ∃nφY (n) ≤ n− c.

(ii). A sequenceX ∈ 2ω is not Schnorr random if and only if there exist a truth-table
functional Φ, a sequence Y ∈ 2ω, and a strictly increasing computable function
m such that ΦY = X and ∃∞n φY (m(n)) ≤ m(n)− n.

6.3. QUICK PROCESS MACHINES AND TRUTH-TABLE FUNCTIONALS 107

(iii). A sequence X ∈ 2ω is not weakly random if and only if there exist a truth-table
functional Φ, a sequence Y ∈ 2ω, and a strictly increasing computable function
m such that ΦY = X and ∀n φY (m(n)) ≤ m(n)− n.

Proof. The right to left direction of the above statements can be established
by constructing a martingale d from a truth-table functional Φ as follows. Let
d(σ) = µ{X : ΦX � σ} · 2|σ|. The fact that Φ is total on all oracles makes
d computable. Now if ΦY = X , then we have that d(X � n) ≥ 2n−φ

Y (n). The
right to left direction for (i) and (ii) follow immediately. For (iii) an application
of Lemma 6.2.15 is needed.

To establish the left to right direction, given a quick process machine P , we
define a truth-table functional Φ that computes ΦX(n) by finding the shortest
initial segment of τ of X such that |P (τ)| > n and setting ΦX(n) to be the nth
bit of this output.

Now if X is not computably random, then by Corollary 6.2.14, there is
some quick process machine P such that ∀c ∃n CP (X � n) = n− c. Further by
applying Lemma 6.2.10, for all c, we can take some τc with P (τc) = X � (|τc|+c)
and such that {τc : c ∈ ω} is a chain. Let Y =

⋃
c τc. Thus ΦY = X and

φY (|P (τc)| − 1) ≤ |P (τc)| − c. If X is Schnorr random or weakly random then
the proof proceeds similarly.

The author would like to note that this characterisation of computable ran-
domness in terms of truth-table reducibility has been independently arrived
at by Laurent Bienvenu and Chris Porter.

108 CHAPTER 6. CHARACTERISATIONS OF RANDOMNESS

Chapter 7

Non-Computable Measures

This chapter is joint work with Joseph Miller of the University of Wisconsin-Madison.
It is based on research undertaken with Miller at the University of Heidelberg in July
2009. The work in this chapter has been accepted for publication in the Transactions
of the American Mathematical Society.

7.1 Defining randomness

Let X be an element of Cantor space and µ a Borel probability measure on
Cantor space. What should it mean for X to be random with respect to µ? If µ
is a computable measure, then early work of Levin showed that µ-randomness
can be seen as essentially a variant on randomness for Lebesgue measure [94].
This leaves the question of how to define randomness if µ is non-computable.
We will show that the two approaches that have previously been used to de-
fine µ-randomness for non-computable measures µ, are equivalent. Later, in
Theorem 7.4.12, we will provide another characterisation of µ-randomness us-
ing the enumeration degrees.

We would like to find a natural generalisation of Martin-Löf randomness to
non-computable probability measures. One approach is to generalise Martin-
Löf tests. This approach immediately runs into the difficult question of what
sort of oracle access a test should have. It is reasonable to expect that a test
for a measure µ should be able to compute the µ-measure of any basic clopen
set. However, there are continuum many Borel probability measures on Can-
tor space, so in order to make these measures accessible to the techniques of
computability theory, we will make use of some basic concepts of computable
analysis. We will define all the concepts we need. For further background
on computable analysis, the reader is referred to Weihrauch [92], who gives
a modern development of the subject. Classical computability theory studies

110 CHAPTER 7. NON-COMPUTABLE MEASURES

Cantor space (2ω) and Baire space (ωω). The main idea behind computable
analysis is to transfer the notions of computability theory to other structures
via representations of those structures. If S is a set, a representation of S is just
a surjective function (possibly partial) ρ : 2ω → S . The representation induces
a computability-theoretic structure on S. We will also use the word “represen-
tation” in another, less standard, sense. If R ∈ 2ω and ρ(R) = x, we call R a
representation of x.

We will take P(2ω) to be the set of all Borel probability measures on Cantor
space. We will let ρ : 2ω → P(2ω) be a representation of P(2ω). In Section 7.2
we will give a detailed definition of such a representation ρ but for now it is
enough to specify that if ρ(R) = µ, then we can uniformly in R compute the µ
measure of any basic clopen set in Cantor space.

As we access measures via representations, one approach is to define ran-
domness in terms of representations. The following definitions, while not
identical, are equivalent to that of Reimann [72] and Reimann and Slaman [73,
74].

Definition 7.1.1. Let µ ∈ P(2ω) and let R ∈ 2ω be a representation of µ.

(i). An R-test is a uniform (in R) sequence {Vi}i∈ω of Σ0
1(R) sets such that

µ(Vi) ≤ 2−i.

(ii). X ∈ 2ω passes an R-test if X 6∈
⋂
i Vi.

(iii). X ∈ 2ω is R-random if it passes all R-tests.

A universal R-test exists for the same reason that a universal Martin-Löf
test exists. Given R, we would like to enumerate all R-tests by enumerating
all (uniform inR) sequences ofR-c.e. sets, halting any enumeration if it would
exceed the measure bound. There is a small technical obstruction. Using R,
we can compute a sequence, approximating from above, the µ-measure of a
basic clopen set. Hence, we can pause an enumeration until a stage when
our approximation from above guarantees that we can add the next element
without exceeding the measure bound. Note that this could cause a problem
if some test {V R

n }n∈ω had V R
i = 2−i for some i. The enumeration of this test

could be paused forever. However, in this case, the test {V R
n+1}n∈ω defines the

same null set and avoids this problem. This shows that we can (essentially)
enumerate allR-tests, uniformly inR, so we can build a universalR-test. Even
better, because the construction is uniform, there is a uniform sequence of c.e.
sets Un such that if UR

n = {[τ] : 〈τ, σ〉 ∈ Un and σ ≺ R}, then {UR
n }n∈ω is a

universal R-test. Call {Un}n∈ω a universal oracle Martin-Löf test.

7.1. DEFINING RANDOMNESS 111

As noted by Reimann, the problem with Definition 7.1.1 is that it is depen-
dent on the representation. Given any measure, it is possible to encode any
sequence into some representation of that measure. Hence for all µ ∈ P(2ω)

and all X ∈ 2ω, there is a representation R of µ such that X is not R-random.
A natural way to overcome this problem is with the following definition.

Definition 7.1.2. A sequenceX ∈ 2ω is µ-random if there exists a representation
R of µ such that X is R-random.

Our goal is to show that, at least in Cantor space, this definition gives the
same class of randoms for a measure as does the concept of a uniform test.
Uniform tests are an alternative approach to randomness for non-computable
measures. They were introduced by Levin and developed by Gács, and also by
Hoyrup and Rojas [38, 40, 57]. While uniform tests can be applied to general
probability spaces, in this chapter, we will only be concerned with Cantor
space. We take {Bi}i∈ω to be an enumeration of open balls in P(2ω). The details
of this enumeration will be provided in the following section.

Definition 7.1.3. Consider a function t : P(2ω)× 2ω → R≥0 ∪ {∞}.

(i). The under-graph of t is {(µ,X, r) : t(µ,X) > r}. We say that the under-
graph of t is c.e. open, if it is equal to

⋃
〈i,σ,q〉∈W Bi × [σ] × [0, q) for some

c.e. set W ⊆ ω × 2<ω ×Q.

(ii). We call t a uniform test if its under-graph is c.e. open and for every µ ∈
P(2ω) we have

∫
t(µ,X) dµ ≤ 1.

(iii). X ∈ 2ω passes a test t for a measure µ if t(µ,X) is bounded.

(iv). X ∈ 2ω is µ-random for uniform tests if it passes all tests for measure µ.

By a straightforward theorem of Gács, later refined by Hoyrup and Rojas,
it is sufficient to consider a single universal uniform test.

Definition 7.1.4. A uniform test t is universal if for all uniform tests t′ there is
a constant c > 0 such that for all µ ∈ P(2ω) and X ∈ 2ω, we have t(µ,X) ≥
c · t′(µ,X).

Theorem 7.1.5 (Gács; Hoyrup and Rojas [38, 40]). There exists a universal uni-
form test.

The following theorem will establish that these two approaches, one based
on representations and the other on uniform tests, are equivalent.

112 CHAPTER 7. NON-COMPUTABLE MEASURES

Theorem 7.1.6. For any measure µ and X ∈ 2ω we have that X is µ-random if and
only if X is µ-random for uniform tests.

Before proving this theorem, we need to take a more detailed look at P(2ω)

and at representations of probability measures.

7.2 Probability measures

In this chapter, we will restrict our investigation to Borel probability measures
on Cantor space. Let µ be such a measure. As observed in Section 1.2, we can
identify µ with the values it takes on the basic clopen sets [σ], where σ ∈ 2<ω.
Hence we will often think of µ as function µ : 2<ω → [0, 1] and write µ(σ)

instead of µ([σ]).

Any measure µ such that
∫
dµ ≤ 1 can be thought of as an element α ∈

[0, 1]ω where α(〈σ〉) = µ(σ). We define the following two subspaces of [0, 1]ω:

(i). M(2ω) = {α ∈ [0, 1]ω : (∀σ ∈ 2<ω) α(〈σ〉) = α(〈σ0〉) + α(〈σ1〉)}.

(ii). P(2ω) = {α ∈M(2ω) : α(〈λ〉) = 1}.

Our primary space of concern is P(2ω), the space of all probability measures
on Cantor space. The space M(2ω), all measures µ such that

∫
dµ ≤ 1, will

be of interest when we investigate neutral measures. We can regard P(2ω)

and M(2ω) as compact subspaces of the topological vector space Rω with the
topology provided by the metric

d(α, β) =
∑
σ∈2<ω

2−〈σ〉|α(〈σ〉)− β(〈σ〉)|. (7.2.1)

There is an alternative approach to topologizing the space P(2ω). We can
topologize this space so that a sequence of measures {µn}n∈ω has limit µ if and
only if µn(B) → µ(B) for all Borel sets B whose boundary has µ-measure 0.
This topology is known as the weak topology.

We can view 2ω as a metric space by using the metric

d2ω(A,B) =

0 if A = B,

2−i where i = min{A4B} otherwise.
(7.2.2)

Cantor space is a compact and separable metric space under d2ω . This fact im-
plies that the weak topology on P(2ω) is compact and further that it is metriz-
able using the Prohorov metric [9]. Given µ, ν ∈ P(2ω), the Prohorov metric

7.2. PROBABILITY MEASURES 113

p(µ, ν) is defined to be the infimum of those positive ε for which the follow
two inequalities hold for all Borel subsets A of 2ω:

µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε,

where Aε = {X ∈ 2ω : (∃Y ∈ A) d(X, Y) < ε}.
Note that under the metric d2ω , if A ⊆ 2ω and ε = 2−n, then Aε =

⋃
{[σ] :

|σ| = n ∧ [σ] ∩ A 6= ∅}. Using this observation, the following lemma is easy to
show.

Lemma 7.2.1. The Prohorov metric and the metric defined in (7.2.1) induce the same
topologies on P(2ω).

Proof. Let p be the Prohorov metric and d the metric as defined in (7.2.1). Pick
any µ ∈ P(2ω) and positive real number δ. Now consider the open ball using
the Prohorov metric Bp(µ, δ). Choose n ∈ ω such that 2−n < δ. Choose ε so
that for all ν ∈ Bd(µ, ε) (the open ball using the metric d) we have that for all σ
of length n , |µ(σ) − ν(σ)| < 2−2n. Then if A ⊆ 2ω is Borel and ν ∈ Bd(µ, ε) we
have that:

µA ≤ µA2−n =
∑
|σ|=n

[σ]∩A 6=∅

µ(σ) <
∑
|σ|=n

[σ]∩A 6=∅

(ν(σ) + 2−2n) = νA2−n + 2−n.

Similarly νA < µA2−n + 2−n and so p(ν, µ) ≤ 2−n. Thus Bd(µ, ε) ⊆ Bp(µ, δ).
For the other direction, consider Bd(µ, δ). Let ε = 2−n for some n such that

2−n+1 < δ. Now if 〈σ〉 ≤ nwe have that |σ| ≤ n so that [σ]ε = [σ]. If ν ∈ Bp(µ, ε)

we have that |µ(σ)− ν(σ)| < ε and so

d(µ, ν) ≤
∑
〈σ〉≤n

2−〈σ〉|µ(σ)− ν(σ)|+ 2−n ≤ 2−n+1.

Thus Bp(µ, ε) ⊆ Bd(µ, δ).

We will treat the space P(2ω) of probability measures as a computable
metric space. These were introduced by Lacombe [53], though our presen-
tation is influenced by [92]. A computable metric space is a triple (X ,Q, d)

where X is a complete separable metric space,Q is an enumeration of a count-
able dense subset of X , and d is a metric computable on the elements of Q.
Given a computable metric space (X ,Q, d), with Q = {q1, q2, . . .}, the stan-
dard fast Cauchy representation of (X ,Q, d) is ρC : 2ω → X and is defined by
ρC(0n(0)10n(1)10n(2)1 . . .) = x if (∀i ∈ ω) d(x, qn(i)) ≤ 2−i. Note that this repre-
sentation ρC is a partial function.

114 CHAPTER 7. NON-COMPUTABLE MEASURES

In order to work with P(2ω) as a computable metric space, we need an
enumeration of a countable dense subset of P(2ω) on which the metric is com-
putable. For any X ∈ 2ω, we define the Dirac measure δX by

δX(σ) =

1 if σ ≺ X,

0 otherwise.

We will take our dense subset Q to be those measures that concentrate on
finitely many sequences each containing finitely many 1s, and take rational
values at those points. In other words, µ ∈ Q if and only if µ =

∑n
i=1 aiδσi0ω ,

where σ1, . . . , σn ∈ 2<ω and a1, . . . , an are positive rationals such that
∑n

i=1 ai =

1.
Fix an enumeration of these measures m1,m2, At times, in order to

avoid subscripts we will write m(i) for mi. Note that d(mi,mj) is computable
in i and j and that the open balls B(mi, 2

−n) form an enumerable basis for
the topology on P(2ω). We will call these the rational open balls and take Bi to
be the ith such ball in some fixed enumeration. Let Bi be the closure of the
rational open ball Bi.

Instead of using the standard fast Cauchy representation of P(2ω), we want
to use the fact that P(2ω) is compact to define a representation that has some
additional useful properties. Reimann showed that there is a computable sur-
jection ρ : P → P(2ω), where P is a Π0

1 subset of 2ω [72]. Our approach is
similar to that of Reimann. It can also be seen as a generalisation of Turing’s
approach to coding the reals via overlapping intervals [85, 86], for which he
acknowledges Brouwer.

To define our representation, we will first define a Turing functional ϕ such
that ϕX is total for all oracles X , and for all n ∈ ω,

d(m(ϕX(n)),m(ϕX(n+ 1))) ≤ 2−n.

Thus for any oracle X , the sequence m(ϕX(0)),m(ϕX(1)), . . . is Cauchy and so
converges (because P(2ω) is complete). Thus we can define a total function
ρ : 2ω → P(2ω) by ρ(X) = limsm(ϕX(s)).

We define ϕX inductively as follows. At stage s we will define ϕX(s) for
all oracles X . At stage 0, we will define ϕX(0) = 1 for all oracles X . Note that
B(m1, 2

0) = P(2ω).
At stage s + 1, for all strings τ such that ϕτ (s) is defined but ϕτ ′(s) is not

defined if τ is a strict initial segment of τ ′ do the following. Let x = ϕτ (s). We
claim that we can uniformly compute a finite open covering {B(m(n1), 2−s−1),

. . . , B(m(nk), 2
−s−1)} of B(m(x), 2−s) with m(ni) ∈ B(m(x), 2−s). Given this

7.2. PROBABILITY MEASURES 115

claim, we can determine a disjoint collection of cylinders {[τ1],. . . , [τk]} that
covers 2ω and define ϕττi(s + 1) = ni. This completes the definition of ϕ.
Our representation will be the continuous function ρ : 2ω → P(2ω) defined by
ρ(X) = limsm(ϕX(s)).

To establish the claim, we build a finite set of probability measures (all in
Q) by adding together measures of the form 2−s−4 · δσ0ω where |σ| = s + 4.
Define:

Ss = {mi ∈ Q : mi =
∑
|σ|=s+4

aσ2−s−4δσ0ω for some aσ ∈ ω}.

Then we take {B(mi, 2
−s−1) : mi ∈ Ss ∧ d(m(x),mi) < 2−s} as our covering.

To show that this is in fact a covering, take any µ ∈ B(m(x), 2−s). Let ν =

(m(x) + 3µ)/4 so d(m(x), ν) = 3d(m(x), µ)/4 and d(µ, ν) = d(m(x), ν)/4. We
can easily find mi ∈ S such that d(ν,mi) < 2−s−2. Hence the ball B(mi, 2

−s−1)

is in our covering and this ball contains µ.

Lemma 7.2.2. The function ρ is total, surjective, and for all X ∈ 2ω, ρ−1(ρ(X)) is a
Π0

1(X) class.

Proof. We have already seen that ρ is total. To see that it is surjective, take any
µ ∈ P(2ω). As ρ is continuous, for all n, the set Fn = {X ∈ 2ω : d(ρ(X), µ) ≤
2−n} is closed. The construction ensures that it is nonempty, so by compact-
ness there is an X ∈

⋂
i Fi. Clearly, ρ(X) = µ.

If X ∈ 2ω, then ρ−1(X) is a Π0
1(ρ(X)) class because Y ∈ ρ−1(X) if and only

if, for all n,

d(m(ϕX(n)),m(ϕY (n))) ≤ 2−n+2.

Because ρ is surjective, it is a representation of P(2ω). Furthermore, it is
equivalent to the standard fast Cauchy representation ρC in the sense that we
can computably translate between them. If ρ(R) = µ, then ϕ(R) is just a fast
Cauchy representation of µ (i.e., the sequence m(ϕR(0)),m(ϕR(1)), . . .). On the
other hand if ρC(S) = µ, then we can compute from S, a sequence R, such that
ρ(R) = µ by running through the construction of ϕ. We start with τ0 = λ. At
each stage s+ 1 we compute a sufficiently close approximation to µ so that we
can choose τs+1 � τs with µ ∈ B(m(ϕτs+1(s+ 1)), 2−s−1).

We will need one additional nice property of ρ: that the inverse image of
the closure of an rational open ball is also a Π0

1 class.

Lemma 7.2.3. If B(s, q) is an rational open ball in P(2ω), then ρ−1(B(s, q)) is a Π0
1

subset of 2ω.

116 CHAPTER 7. NON-COMPUTABLE MEASURES

Proof. First we show that X ∈ ρ−1(B(s, q)) if and only if, for all i, j,

ρ(X) ∈ B(mi, qj) implies d(mi, s) ≤ q + qj.

If for some i, j, ρ(X) ∈ B(mi, qj) and d(mi, s) > q + qj then q + qj < d(s,mi) ≤
d(s, ρ(X)) + d(ρ(X),mi) < d(s, ρ(X)) + qj and hence X 6∈ ρ−1(B(s, q)). Con-
versely, assume that ρ(X) ∈ B(mi, qj) implies d(mi, s) ≤ q + qj , for all i, j.
Then d(ρ(X), s) ≤ d(ρ(X),mi) + d(s,mi) < q + 2qj . As ρ(X) is contained in ar-
bitrarily small rational open balls, we have d(ρ(X), s) ≤ q. Now the predicate
ρ(X) ∈ B(mi, qj) implies d(mi, s) ≤ q+qj is Π0

1. This is true as ρ(X) ∈ B(mi, qj)

and d(mi, s) > q + qj are both Σ0
1.

We are now ready to prove Theorem 7.1.6. We start with the easier direc-
tion.

Lemma 7.2.4. If X ∈ 2ω is µ-random, then it is µ-random for uniform tests.

Proof. Let W be a c.e. set defining the under-graph of a universal uniform test
t. Assume that X is not µ-random for uniform tests. Let R be any representa-
tion of µ. Build an R-test as follows. Let

Vn = {X ∈ 2ω : t(µ,X) > 2n}.

Immediately we have that if t(µ,X) = ∞, then X ∈
⋂
n∈ω Vn. To show that

{Vn}n∈ω is an R-test, first observe that 2nµ(Vn) ≤
∫
t(µ,X) dµ ≤ 1, so µ(Vn) ≤

2−n. Secondly, we have X ∈ Vn if and only if t(µ,X) > 2n if and only if, for
some 〈i, σ, q〉 ∈ W , we have µ ∈ Bi, X ∈ [σ] and q > 2n. The set {i : µ ∈ Bi}
is c.e. in R because if µ is contained in the rational open ball B(mi, 2

−n) then
d(µ,mi) < 2−n and d(µ,mi) is computable in R. Hence the Vn are uniformly
Σ0

1(R) sets, and X is not R-random. As this holds for any representation of µ,
we have proved that X is not µ-random.

For the other direction, we have to show that the failure of µ-randomness
can be detected in a uniform way. Not surprisingly, we do this using the uni-
versal oracle Martin-Löf test {Un}n∈ω from above.

Lemma 7.2.5. If X is not µ-random, then for all n, there exists an m, such that for
all R ∈ ρ−1(B(µ, 2−m)), X ∈ UR

n .

Proof. Take any µ ∈ P(2ω). Assume that for some n, for all m, there is an
Rm such that ρ(Rm) ∈ B(µ, 2−m) and X 6∈ URm

n . Consider the tree {σ ∈
2<ω : (∃m) σ � Rm � m}. This tree is infinite so it has an infinite path A. For
all i, ρ([A � i]) includes the ρ-image of infinitely many Rm. Thus as ρ([A � i])

is closed, it contains µ. Hence ρ(A) = µ. But note that X 6∈ UA
n , or otherwise

X ∈ URm
n for some m. Thus X must be µ-random.

7.3. NEUTRAL MEASURES 117

Proof of Theorem 7.1.6. Lemma 7.2.4 shows that if X is not µ-random for uni-
form tests, then X is not µ-random. To establish the other direction, we will
construct a test f as follows. For all i, let Ki = ρ−1(Bi). By Lemma 7.2.3, Ki

is a Π0
1 class. So if X enters UR

n for all R in Ki, compactness ensures that we
can determine this at some finite stage. If this occurs then we can increase the
value on some open set containing X for all measures in Bi. Let S1, S2, . . . be
an enumeration of all finite sets of finite strings. The under-graph of our test
f will be enumerated by the following c.e. set:

W = {〈i, σ, 2n〉 : (∃j)(∃s) Ki[s] ⊆
⋃
τ∈Sj

[τ] and [σ] ⊆
⋂
τ∈Sj

U τ
2n[s]}.

Given any µ ∈ P(2ω) we will show that
∫
f(µ,X) dµ ≤ 1, so f is a uniform

test. Take R ∈ ρ−1(µ). Take any n and any X 6∈ UR
2n. Given any i, if µ ∈ Bi then

R ∈ Ki. So if Sj covers Ki, then for some τ ∈ Sj , τ ≺ R. Thus X 6∈
⋂
τ∈Sj U

τ
2n.

This implies that 〈i, σ, 2n〉 6∈ W for any σ ≺ X , and so f(µ,X) ≤ 2n−1. Hence
f(µ,X) ≤ max{2n : X ∈ UR

2n} and so,∫
f(µ,X) dµ ≤

∞∑
i=1

2iµ(UR
2i) ≤

∞∑
i=1

2i2−2i = 1.

Now assume that X is not µ-random. Fix n. By Lemma 7.2.5, there is an m
such that if R ∈ ρ−1(B(µ, 2−m)), then X ∈ UR

2n. Let Bi be a closed rational ball
with µ ∈ Bi ⊆ B(µ, 2−m). Now because for all R ∈ Ki we have X ∈ UR

2n, the
set C = {τ ∈ 2<ω : X ∈ U τ

2n} is an open covering of Ki. Hence there is a finite
sub-covering S of C and a stage s such that S covers Ki[s]. So there is a σ with
X ∈ [σ] ⊆

⋂
τ∈S U

τ
2n[s]. Thus 〈i, σ, 2n〉 ∈ W and consequently f(µ,X) > 2n.

This holds for all n, so f(µ,X) =∞. Therefore,X is not µ-random for uniform
tests.

7.3 Neutral measures

Our main goal in the remainder of the chapter will be to come to a better un-
derstanding of (weakly) neutral measures. Levin proved the existence of neutral
measures [57]. However, the term “neutral measure” was introduced later by
Gács [38]. As we will see in Section 7.4, where we derive several facts about
neutral measures, it is often enough to assume a weaker property.

Definition 7.3.1. Let µ be a measure.

(i). µ is neutral for a uniform test t if (∀X) t(µ,X) ≤ 1.

(ii). µ is a neutral measure if it is neutral for some universal test.

118 CHAPTER 7. NON-COMPUTABLE MEASURES

(iii). µ is weakly neutral if every sequence is µ-random.

Since a constant multiple of a universal test is also a universal test, and
any two universal tests majorize each other up to a multiplicative constant,
we can restate the second definition: µ is a neutral measure if and only if
(∃c)(∀X) t(µ,X) ≤ c, where t is any universal test.

It is immediate that a neutral measure µ is weakly neutral. Indeed, this is
the property that makes neutral measures seem so unlikely. One might think
that it is impossible for every sequence to be µ-random, since if we have ac-
cess to µ, we should be able to build a Martin-Löf µ-test covering something.
Indeed, this is the case; in Lemma 7.4.1 we will see that for every representa-
tion R of µ, there is a non-R-random sequence. But if µ is weakly neutral, no
sequence will be de-randomised by every representation of µ.

We start by giving a proof that neutral measures exist.

Theorem 7.3.2 (Levin [57]). For any uniform test, there is a measure neutral for it.

Our proof is fundamentally equivalent to that given by Levin [57] and Gács
[38]. However, we will make use of the Kakutani fixed point theorem instead
of Sperner’s Lemma. Our exposition of the proof will also make clear some
computability properties of neutral measures. A set C ⊆ Rn is convex if for all
µ, ν ∈ C and x ∈ [0, 1], we have xµ+ (1− x)ν ∈ C.

Theorem 7.3.3 (Kakutani [45]). If S is a nonempty compact convex subset of Rn

and φ : S → S a multi-valued map with closed graph such that for all x ∈ S , the
φ-image of x is convex and nonempty, then there is an x ∈ S such that x ∈ φ(x).

A fixed point theorem is useful because we can use the uniform test to de-
fine a map from measures to measures. Given t, we define t̂ : P(2ω) → M(2ω)

by letting t̂(µ) (which we will write as t̂µ) be the measure that takes the fol-
lowing values on the basic clopen sets:

t̂µ(σ) =
1

2

∫
[σ]

t(µ,X) dµ+
1

2
2−|σ|.

We can partially order M(2ω) by µ ≤ ν if µ(σ) ≤ ν(σ) for all σ. In this case we
will say that ν majorizes µ.

Lemma 7.3.4. If µ ≥ t̂µ, then µ is neutral for 1
2
· t.

Proof. Assume µ is not neutral for 1
2
· t, then for some X ∈ 2ω, t(µ,X) > 2.

This implies that there is a σ ∈ 2<ω with X ∈ [σ] such that t(µ, Y) > 2 for all
Y ∈ [σ]. But this would mean that

t̂µ(σ) ≥ 1

2

∫
[σ]

2 dµ+ 2−|σ|−1 > µ(σ).

7.3. NEUTRAL MEASURES 119

This is a contraction because µ majorizes t̂µ.

Consider the sets Fn = {µ ∈ P(2ω) : (∀σ) [|σ| = n ⇒ t̂µ(σ) ≤ µ(σ)]}. Note
that P(2ω) = F0 and Fn+1 ⊆ Fn. Now if we can show that Fn is nonempty
and closed, for all n, then by the finite intersection property, there exists a
µ ∈

⋂
i∈ω Fi. Thus µ has the property that µ ≥ t̂µ, hence it is neutral for t.

Lemma 7.3.5. For all n, the following is a Π0
1 class:

Mn = {(R1, R2) ∈ 2ω × 2ω : (∀σ) [|σ| = n⇒ [t̂ρ(R1)](σ) ≤ [ρ(R2)](σ)]}.

Proof. Take R1, R2 ∈ 2ω and let µ = ρ(R1) and ν = ρ(R2). Now (R1, R2) 6∈ Mn

if and only if, for some σ of length n,

t̂µ(σ) > ν(σ). (7.3.1)

Note that ν(σ) is computable in R2 and t̂µ(σ) is left c.e. in R1. We can as-
sume that ν(σ) is computed using an approximation from above (i.e., for all
s, ν(σ)[s] ≥ ν(σ)[s + 1]) and that ν(σ)[s] depends only on R2 � s. We can also
assume that t̂µ(σ)[s] depends only on R1 � s. Then equation (7.3.1) holds if
and only if for some σ of length n and stage s, we have t̂µ(σ)[s] > ν(σ)[s], and
this allows us to expel [R1 ⊕R2 � 2s] from Mn.

Proposition 7.3.6. There is a measure µ ∈ P(2ω) such that µ majorizes t̂µ.

Proof. As Mn is closed, Fn = ρ({R : (R,R) ∈ Mn}) is closed. The only remain-
ing task is to show that Fn is nonempty. Let Sn = {x̄ ∈ [0, 1]2

n
:
∑2n

i=1 xi = 1}.
Define a continuous map ψ : Sn → P(2ω) by

ψ(x̄) =
2n∑
i=1

xiδσi0ω ,

where σi is the ith string of length n. Define the multi-valued map φ : Sn → Sn

by

φ(x̄) = {ȳ ∈ Sn : (∀i ≤ 2n) yi ≥ [t̂ψ(x̄)](σi)}.

Note that yi = [ψ(ȳ)](σi). So if x̄ is a fixed point of φ, then ψ(x̄) ∈ Fn.
Define the function ρ2 : 2ω × 2ω → P(2ω) × P(2ω) by setting ρ2(R1, R2) =

(ρ(R1), ρ(R2)), and the function ψ2 : Sn × Sn → P(2ω) × P(2ω) by ψ2(x̄, ȳ) =

(ψ(x̄), ψ(ȳ)). Both ρ2 and ψ2 are continuous mappings. The graph of φ is pre-
cisely ψ−1

2 (ρ2(Mn)) and hence closed. Since Sn is a nonempty compact convex
subset of R2n and for all x ∈ Sn, φ(x) is a nonempty convex subset of Sn, Kaku-
tani’s theorem tells us that φ has a fixed point. Therefore, Fn is nonempty.

120 CHAPTER 7. NON-COMPUTABLE MEASURES

This proposition establishes that the Π0
1 class of Lemma 7.3.5 is not empty.

Further if t is a universal uniform test then any representation in this Π0
1 class

is a representation of a neutral measure. In order to prove Theorem 7.3.2, we
need one more application of compactness.

Proof of Theorem 7.3.2. Given any n ∈ ω, we could redefine t̂µ by

t̂µ(σ) =
n

n+ 1

∫
[σ]

t(µ,X) dµ+
1

n+ 1
2−|σ|.

The argument of Lemma 7.3.5 and Proposition 7.3.6 shows there exists a mea-
sure µn which is neutral for n

n+1
t. This implies that if n 6= 0, then for all X ∈ 2ω

we have that t(X,µn) ≤ n+1
n

. Because the space P(2ω) is compact, the sequence
{µn}n∈ω has a convergent subsequence which converges to some measure µ.
If µ is not neutral for t then there is some X such that t(µ,X) > 1. This implies
that for some open ballB including µ, and some c > 1 we have that t(ν,X) ≥ c

for all ν ∈ B. This is a contradiction because B must include µn for some n
with n+1

n
< c.

It is interesting that every known proof of the existence of a neutral mea-
sure uses a fixed point theorem or equivalent. Their existence seems to be a
fundamentally topological fact. However, once we know such measures exist,
they are relatively easy to find. There is Π0

1 class of (representations of) neutral
measures, as we can take the intersection of the diagonals of the Π0

1 classes Mn

when t is a universal test. Recall that a Turing degree is a PA degree if it can
compute a member of every nonempty Π0

1 subclass of 2ω. So every PA degree
computes a neutral measure. This lets us give a simple proof of the following
theorem of Reimann and Slaman.

Theorem 7.3.7 (Reimann and Slaman [73, 74]). For any X ∈ 2ω, X is not com-
putable if and only if there exists a representation R of a measure such that X is
R-random and X is not an atom of ρ(R).

Proof. Let X ∈ 2ω be computable. Take any µ ∈ P(2ω) such that X is not an
atom of µ. If R is a representation of µ, then it is simple to build an R-test that
contains X by finding initial segments of X such that µ(X � n) is sufficiently
small.

For the other direction, assume that X is not computable. Then there is a
P of PA degree such that P 6≥T X . For example, Jockusch and Soare showed
that there is a set of PA degree which is also of hyperimmune-free degree and
another set of PA degree which is low and hence these cannot both computeX
[44]. As there is a Π0

1 class of representations of neutral measures, P computes

7.4. LOCATING NEUTRAL MEASURES 121

a representation R of some neutral measure µ. Since µ is neutral, X is µ-
random. Hence there is a representation R′ of µ such that X is R′-random.
Note that if A is any atom of µ then µ({A}) > q for some rational q. Now the
tree {τ ∈ 2ω : µ([τ]) > q} is computable in R and contains finitely many paths.
Hence R can compute A. Finally as R cannot compute X and R can compute
any atom of µ, we know that X is not an atom of µ.

7.4 Locating neutral measures

In this section we study the computability-theoretic complexity of (weakly)
neutral measures. In the previous section we noted that every PA degree com-
putes a neutral measure. The reverse is true in a strong sense: if µ is a weakly
neutral measure, then some PA degree is computable from every represen-
tation of µ. As we will see, the story is complicated by the fact that weakly
neutral measures themselves cannot have Turing degree. We will show that
their complexity can be measured using the continuous degrees, which were
introduced by Miller. That will give us a better understanding of what is com-
putable from (every representation of) a weakly neutral measure. We will
prove that the ideal of Turing degrees below such a measure is a Scott ideal,
and that every Scott ideal arises in this way. This, in turn, tells us about the
atoms of weakly neutral measures (see Proposition 7.4.8).

One reason the existence of a weakly neutral measure may seem counter-
intuitive is that such a measure does not exist for representation tests.

Lemma 7.4.1. For all R ∈ 2ω, there exists an X ∈ 2ω such that X is not R-random.

Proof. Let µ = ρ(R). Construct an R-test as follows. Compute µ(σ) for all σ
of length 2 with precision 2−2. Take σ1 to be the lexicographically least string
of length 2 such that µ(σ1) is within [0, 2−2] for this level of precision. Let
V1 = [σ1]. Note that µ(σ1) ≤ 2−2 + 2−2 = 2−1. Once Vi = [σi] has been defined
with µ(σi) ≤ 2−i, compute µ(σiτ) for all τ of length 2 with precision 2−i−2.
Take the lexicographically least τ such that µ(σiτ) ≤ 2−i−2 with this precision.
Take σi+1 = σiτ , so µ(σi+1) ≤ 2−i−1. Let Vi+1 = [σi+1]. Thus

⋂
i∈ω Vi is an R-test

with nonempty intersection.

So for any representation R of a weakly neutral measure µ, there is an X

that is not R-random. However, there must be another representation R′ of µ
such that X is R′-random. The test constructed in the previous lemma can-
not be made representation independent. The obstruction is that there is no
canonical representation of a weakly neutral measure, and in fact, every rep-
resentation contains extraneous information. Recall that if A ∈ 2ω then deg(A)

122 CHAPTER 7. NON-COMPUTABLE MEASURES

is the Turing degree containing A. We say that a measure µ has a least Turing
representation if {deg(R) : R ∈ 2ω and ρ(R) = µ} has a minimum element.

Theorem 7.4.2. A weakly neutral measure has no least Turing degree representation.

Proof. Let µ be a measure with least Turing degree representation R. First, by
Lemma 7.4.1 there is an R-test that witnesses that some X is not R-random.
Let R′ be any other representation of µ. Since R′ computes R, the R-test is also
a R′-test (as R and R′ represent the same measure). Hence X is not R′-random
for any representation R′ of µ, and thus X is not µ-random. Therefore, µ is not
weakly neutral.

If weakly neutral measures have no least Turing degree representation,
then how should their computational power be examined? For this we turn to
the continuous degrees introduced by Miller [64].

Definition 7.4.3. LetM0 andM1 be computable metric spaces and let a ∈M0

and b ∈ M1. We define a ≤r b (a is representation reducible to b) if there is
an index e such that for every fast Cauchy representation R of b, ϕRe is a fast
Cauchy representation of a. The continuous degrees are the equivalence classes
under ≡r.

Miller showed that the uniformity in the above definition is not required.
In other words, a ≤r b if every fast Cauchy representation of b computes a
fast Cauchy representation of a, without fixing the index of the computation.
This follows from the natural embedding of the continuous degrees into the
enumeration degrees, see (7.4.1), and the fact that uniform and nonuniform
enumeration reducibility are equivalent.

The finite sets are a countable dense subset of 2ω under the metric d2ω of
Section 7.2. Thus for any A ⊆ ω, we can talk about the degr(A). This gives us
an embedding of the Turing degrees into the continuous degrees. The contin-
uous degrees that contain subsets of ω are called the total degrees. Note that if
R is a representation of µ, then R ≥r µ.

Using the fact that a continuous degree a is a total degree if and only if it
has a least Turing degree representation [64], we obtain the following corollary
to Theorem 7.4.2.

Corollary 7.4.4. Weakly neutral measures have non-total continuous degrees.

This indicates that our study of (weakly) neutral measures can be enhanced
by understanding the non-total continuous degrees. We start with the follow-
ing definitions.

7.4. LOCATING NEUTRAL MEASURES 123

Definition 7.4.5. If a and b are Turing degrees, then a is a PA degree relative to
b (a� b) if every nonempty Π0

1(b) class contains an element computable from
a. For A,B ⊆ ω, we write A � B to mean that degT (A) � degT (B). If a is a
PA degree relative to 0, then a is simply called a PA degree.

Definition 7.4.6. A nonempty countable class S ⊆ 2ω is called a Scott set if

(i). A,B ∈ S implies that A⊕B ∈ S.

(ii). A ∈ S and B ≤T A implies B ∈ S.

(iii). For every A ∈ S, there is a B ∈ S such that B � A.

If S is a Scott set then {degT (A) : A ∈ S} is a Scott ideal.

We summarise some results of Miller. The Hilbert cube [0, 1]ω can be re-
garded as a computable metric space by using the metric defined at 7.2.1. A
suitable countable dense subset is given by the sequences of rationals which
are zero at all but finitely many places.

Theorem 7.4.7 (Miller [64]).

(i). Every continuous degree contains an element of [0, 1]ω.

(ii). Let a and b be total degrees. Then a� b if and only if there is a non-total degree
v with a <r v <r b.

(iii). The Turing ideal below a non-total continuous degree is a Scott ideal.

(iv). Any Scott ideal is the Turing ideal below some non-total continuous degree.

From Corollary 7.4.4 and Theorem 7.4.7 (iii), we know that the ideal below
any weakly neutral measure is a Scott ideal. One reason this is interesting is
that understanding what can be computed from a weakly neutral measure is
the same as understanding its atoms.

Proposition 7.4.8. A ∈ 2ω is an atom of a weakly neutral measure µ if and only if
A ≤r µ (i.e., iff every representation of µ computes A).

Proof. Assume that every representation of µ computes A. If µ does not con-
centrate on A, then any representation R of µ can compute an initial segment
ofAwith arbitrarily small µ-measure, and hence captureA in anR-test. There-
fore, A is not µ-random and µ is not weakly neutral.

For the other direction, assume that A is an atom of µ and let R be any
representation of µ. Choose σ ≺ A such that µ(σ) < 2µ({A}). Given σ, we
can compute A from R by following the path consisting of all τ � σ such that
µ(σ) < 2µ(τ). Therefore, A ≤r µ.

124 CHAPTER 7. NON-COMPUTABLE MEASURES

Every Scott ideal contains a PA degree, and hence contains a member of ev-
ery nonempty Π0

1 class. There is a Π0
1 class containing only Martin-Löf random

sequences, hence:

Corollary 7.4.9. Every weakly neutral measure has a Martin-Löf random atom.

This result allows us to answer a question of Gács [38, Question 1] in the
negative. The question was speculative and, unfortunately, a negative answer
does little more than shut down this speculation. The full context of the ques-
tion would take too much space, but briefly, Gács was interested in capturing
the mutual information of two sequences X, Y ∈ 2ω. Let µ be a neutral measure.
Gács asked if it is would be reasonable to define the mutual information of X
and Y as log t(µ × µ, (X, Y)). More specifically, he asked if this could, for the
right choice of µ, coincide with another definition he was considering. To see
that this is not the case, let A be a Martin-Löf random atom of µ. Then (A,A)

is an atom of µ×µ, hence log t(µ×µ, (A,A)) must be finite. But a definition of
mutual information that allows a Martin-Löf random sequence to have finite
mutual information with itself is fairly absurd and, more concretely, behaves
quite differently than other proposed definitions.

We have seen that the Turing ideal below a (weakly) neutral measure is
always a Scott ideal. It turns out that the converse holds; the ideals below
neutral measures are exactly the Scott ideals.

Theorem 7.4.10. Every Scott ideal is the Turing ideal below some neutral measure.

To prove this theorem, we make further use of some prior work of Miller.
To prove the existence of non-total continuous degrees, Miller developed the
construction of a sequence α ∈ [0, 1]ω that could not be diagonalised com-
putably.

Definition 7.4.11. A sequence α ∈ [0, 1]ω is diagonally non-computably diagonal-
isable, or d.n.c.d., if for all e, there exists a representation R of α such that α(e)

is an element of the convex closure of Πe(R) or Πe(R) is empty (where Πe(R)

is the eth Π0
1(R) subclass of [0, 1]).

The convex closure of Πe(R) is {x ∈ [0, 1] : inf Πe(R) ≤ x ≤ sup Πe(R)}.
This definition of a d.n.c.d. sequence differs from that given in [64], but is
equivalent up to continuous degree. The reason such sequences are referred
to as diagonally non-computably diagonalisable is that if there is a Turing
functional ϕ and an x such that ϕR = x for any representation R of α, then
(uniformly in the index of ϕ) we can find an e such that {x} = Πe(R) for all

7.4. LOCATING NEUTRAL MEASURES 125

representations of α. But then α(e) = x. Thus α witnesses the failure of ϕ to
diagonalise α, uniformly in (the index for) ϕ. The last part of Theorem 7.4.7
can be strengthened to “any Scott ideal is the Turing ideal below some d.n.c.d.
sequence.”

To prove Theorem 7.4.10 we will show that any d.n.c.d. sequence is above,
in the sense of ≥r, a neutral measure that bounds the same total degrees. We
will use semimeasures in our construction of this neutral measure. A semimea-
sure is a function τ : 2ω → [0, 1] such that τ(σ) ≥ τ(σ0)+τ(σ1). We will identify
a semimeasure τ with the set S(τ) = {〈σ, q〉 ∈ 2<ω ×Q : τ(σ) > q}.

Semimeasures have been studied as computably enumerable objects; we
call a semimeasure τ c.e. if S(τ) is c.e. Levin proved the existence of a univer-
sal c.e. semimeasure τ , meaning that for every c.e. semimeasure τ ′ there is a
constant c such that τ ≥ cτ ′ [94]. This proof relativizes to show that for any
set A ⊆ ω, there is a universal c.e. in A semimeasure. However, what does it
mean to enumerate a semimeasure in some sequence α ∈ [0, 1]ω, if α does not
have total degree? A reasonable suggestion would be to define a set to be c.e.
in α if it is c.e. in every representation of α. This can be easily expressed in
terms of the enumeration degrees.

There is an embedding of the continuous degrees into the enumeration
degrees. Given α ∈ [0, 1]ω we define Ξ(α) ⊆ {0, 1} × ω ×Q by

Ξ(α) = {〈0, i, q〉 : q < α(i)} ∪ {〈1, i, q〉 : q > α(i)}. (7.4.1)

IfR is a representation of α then Ξ(α) is c.e. inR. Further if Ξ(α) is c.e. in some
set B, then B computes a representation of α.

Now assume that a set A is c.e. in α (i.e., c.e. in any representation of α).
Further, assume that Ξ(α) is c.e. in a set B. Since B computes a representation
of α, it must be that A is also c.e. in B. Hence A ≤e Ξ(α). On the other hand,
if A ≤e Ξ(α), then as Ξ(α) is c.e. in any representation R of α, we have that
A is c.e. in any representation of α. Thus the approach suggested above is
equivalent to defining a semimeasure τ to be c.e. in α if S(τ) ≤e Ξ(α).

We can now provide a characterisation of µ-randomness in terms of the
enumeration degrees.

Theorem 7.4.12. Let µ ∈ P(2ω). Then X ∈ 2ω is µ-random if and only if for
every semimeasure τ c.e. in µ (i.e., S(τ) ≤e Ξ(µ)), there exists c ∈ ω such that
τ(σ) ≤ cµ(σ) for all σ ≺ X .

Proof. If X is not µ-random, then for some uniform test t(µ,X) = ∞. Define
a (semi-)measure τ = t̂µ. The (semi-)measure τ is c.e. in µ. Fix c ∈ ω. Since

126 CHAPTER 7. NON-COMPUTABLE MEASURES

t(µ,X) = ∞, there is a σ ≺ X such that if Y ∈ [σ], then t(µ, Y) ≥ c. Thus
τ(σ) =

∫
[σ]
t(µ, Y) dµ ≥ cµ(σ).

For the other direction, assume that there is a semimeasure τ c.e. in µ such
that for all c, there exists a σ ≺ X with τ(σ) > cµ(σ). Given any representation
R of µwe can enumerate τ and define a test {Vi}i∈ω such that Vi = {[σ] : τ(σ) >

2iµ(σ)}. This test captures X so X is not R-random. As this is true for any
representation of µ, X is not µ-random.

We claim that, relative to a set B, we can enumerate all semimeasures that
are B-c.e. Let We(B) be the eth set c.e. in B and let We,i(B) be an enumeration
of We(B). Any set X defines a weighting function fX(σ) = sup{q : 〈q, σ〉 ∈ X},
where we are viewing X as a subset of Q× 2<ω. Define Te,0(B) = ∅, and

Te,i+1(B) =

We,i(B) if fWe,i(B) is a semimeasure,

Te,i(B) otherwise.

By passing from Te(B) to Se(B) = {〈q′, σ〉 : 〈q, σ〉 ∈ Te(B) and q′ ≤ q}, we get
an effective list of exactly the semimeasures that are B-c.e.

To prove the following lemma, we use a representation ρ : 2ω → [0, 1]ω with
the same properties as the representation of P(2ω) constructed in Section 7.2.
The same proof, mutatis mutandis, shows that such a representation exists.

Lemma 7.4.13. If α ∈ [0, 1]ω, then there is a universal semimeasure τ c.e. in α.

Proof. Define Ŝe =
⋂
R∈ρ−1(α) Se(R). For any R ∈ ρ−1(α), as ρ−1(α) is Π0

1(R)

class, it follows that Ŝe is c.e. in R. Let τe be fŜe . Note that this is a semimea-
sure. Define τ =

∑∞
e=1 2−eτe. Let S = S(τ), so S is c.e. in R for all R ∈ ρ−1(α).

Now if τ ′ is a semimeasure c.e. in α, then there is an index e such that τ ′ =

Se(R) for all R ∈ ρ−1(α) (this holds because any reduction in the enumeration
degrees is uniform, which is implicit in Selman [81] and proved independently
by Rozinas [76]). Thus τ ′ = τe, and so τ majorizes τ ′.

Lemma 7.4.14. Let α ∈ [0, 1]ω be a d.n.c.d. sequence. If τ is a semimeasure c.e. in α,
then there exists µ ∈ P(2ω) such that µ ≤r α and (∀σ) µ(σ) ≥ τ(σ).

Proof. We will define µ in such a way that any representation of α will (uni-
formly) be able to determine a representation of µ. First define µ(λ) = 1.
Hence µ(λ) ≥ τ(λ).

Now assume that we have defined µ(σ) with µ(σ) ≥ τ(σ). Consider the
interval Iσ = [τ(σ0), µ(σ) − τ(σ1)]. Note that Iσ is nonempty because µ(σ) −
τ(σ1) − τ(σ0) ≥ µ(σ) − τ(σ) ≥ 0. Since τ(σ0) and τ(σ1) are left c.e. in R, and
µ(σ) is computable in R, we see that Iσ is a Π0

1(R) class. Further, everything is

7.5. OPEN QUESTIONS 127

uniform, so we can actually compute an index e such that Iσ = Πe(R), for any
representation R of α. Because α is of d.n.c.d. degree, and Iσ is its own convex
closure, α(e) ∈ Iσ. We define µ(σ0) = α(e) and µ(σ1) = µ(σ)− µ(σ0).

As Iσ is nonempty, we have µ(σ0) ≤ µ(σ), and µ(σ0) ≥ τ(σ0). Additionally,
µ(σ1) = µ(σ)− α(e) ≥ µ(σ)− µ(σ) + τ(σ1) = τ(σ1).

We are finally ready to establish Theorem 7.4.10.

Proof of Theorem 7.4.10. Let I be a Scott ideal. Let α be a d.n.c.d. sequence such
that I is the Turing ideal below α. Let τ be a universal semimeasure for α. By
Lemma 7.4.14, we can take µ ≤r α such that µ majorizes τ and µ ∈ P(2ω). Let t
be a universal test. Since t̂µ is a (semi-)measure c.e. in µ, hence c.e. in α, there
is a b such that t̂µ ≤ bτ ≤ bµ. So by Lemma 7.3.4, µ is neutral for the universal
test 1

b
t.

If A ∈ I, then A ≤r α. Any representation of α can compute A, so some
semimeasure τ c.e. in α must concentrate on A. This means A is an atom of µ
and so A ≤r µ. If A ≤r µ, then A ≤r α so A ∈ I. Hence I is the Turing ideal
below µ.

The previous theorem appears to give a proof of the existence of neutral
measures without using a fixed point theorem. However, this is not the case.
Miller’s construction of a d.n.c.d. sequence makes use of a generalisation of
the Kakutani fixed point theorem and Lemma 7.4.14 makes essential use of
this underlying fixed point theorem to construct the measure µ.

7.5 Open questions

In this chapter we have worked exclusively in Cantor space. How should we
define randomness for non-computable probability measures on other spaces?

Question 7.5.1. Under what assumption on a computable metric space are µ-
randomness and µ-randomness for uniform tests equivalent for an arbitrary prob-
ability measure µ?

There are several open questions about the relationship between neutral
measures and the continuous degrees. The most basic is:

Question 7.5.2. Does every non-total continuous degree contain a neutral
measure?

In the proof of Theorem 7.4.10, we started with a d.n.c.d. sequence α and
built a neutral measure µ ≤r α that bounds the same Turing degrees as α.

128 CHAPTER 7. NON-COMPUTABLE MEASURES

There is no reason to assume that µ ≡r α. While µ can list all of the elements
of the sequence α, it cannot necessarily determine the order of those elements.
Even if we could improve the proof to show that µ ≡r α, we would run into
another open question (from [64]):

Question 7.5.3. Does every non-total continuous degree contain a diagonally
non-computably diagonalisable sequence?

If both questions are answered in the negative, it is natural to ask:

Question 7.5.4. Is there any relationship between the degrees of neutral mea-
sures and the degrees of d.n.c.d. sequences?

It is not too difficult to construct a weakly neutral measure that is not a
neutral measure. For example, let µ be a neutral measure. Define ν such that:

(i). For all σ ∈ 2<ω, ν(0n1σ) = 2−nµ(0n1σ).

(ii). ν has an atom at 0ω.

The measure µ is weakly neutral because there is an atom at 0ω and every
other sequence is in an open neighbourhood where the measure looks neutral.
However, there is a uniform test t such that t(ν,X) = 2n if X ∈ [0n1] (and of
course, t(ν, 0ω) = 0). So ν is not a neutral measure.

The fact that these notions are different leads to natural questions:

Question 7.5.5. Is every weakly neutral measure representation equivalent to
a neutral measure? Does every non-total continuous degree contain a weakly
neutral measure?

Chapter 8

Relative Randomness and PA Degrees

This chapter is joint work with Jan Reimann of the Pennsylvania State University. It
is based on research undertaken with Reimann at the Pennsylvania State University
in December 2010.

8.1 Independence and relative randomness

The idea of independence is central to probability theory. Given a probability
space with measure µ, we call two measurable sets A and B independent if

µA =
µ(A ∩ B)

µB
.

The idea behind this definition is that if event B occurs, it does not make event
A any more or less likely. This chapter considers a similar notion, that of
relative randomness. We say that A is Martin-Löf random relative to B, or
A ∈ MLR(B) if A is not an element of any Martin-Löf test computable in B.

The reason that relative randomness is analogous to independence is that
if A ∈ MLR(B), then not only is A a random sequence but even given the in-
formation in B, we cannot capture A in a Martin-Löf test. If we start with the
assumption that A and B are both Martin-Löf random, then the following the-
orem of van Lambalgen establishes that relative randomness is symmetrical.

Theorem 8.1.1 (Van Lambalgen [88]). If A,B ∈ MLR then A ∈ MLR(B) if and
only if B ∈ MLR(A) if and only if A⊕B ∈ MLR.

We can extend the notion of relative randomness to any probability mea-
sure. We take P(2ω) to be the set of all Borel probability measures on Cantor
space. First we need to define what it means to be relatively random in the
context of non-computable probability measures. We will relativise Defini-
tions 7.1.1 and 7.1.2.

130 CHAPTER 8. RELATIVE RANDOMNESS AND PA DEGREES

Definition 8.1.2. Let A ∈ 2ω, let µ ∈ P(2ω), and let R ∈ 2ω be a representation
of µ.

(i). An (R,A)-test is a uniform (in R⊕A) sequence {Vi}i∈ω of Σ0
1(R⊕A) sets

such that µ(Vi) ≤ 2−i for all i ∈ ω.

(ii). X ∈ 2ω passes an (R,A)-test if X 6∈
⋂
i Vi.

(iii). X ∈ 2ω is (R,A)-random if it passes all (R,A)-tests.

Definition 8.1.3. Let A ∈ 2ω and let µ ∈ P(2ω). A sequence X ∈ 2ω is (µ,A)-
random or X ∈ MLRµ(A), if there exists a representation R of µ such that X is
(R,A)-random.

This allows us to give a definition of relative randomness with respect to a
probability measure.

Definition 8.1.4. Take A,B ∈ 2ω and µ ∈ P(2ω). We say that A and B are
relatively random with respect to µ if A ∈ MLRµ(B) and B ∈ MLRµ(A).

To work with Definition 8.1.3 directly we would need to define a universal
test with two oracles, the first for the measure and the second for the relativi-
sation. We can avoid this difficulty by using representations of measures with
an upwards closure property in the Turing degrees. The desired property we
want is that if R is a representation of a measure µ and A ≥T R then there
is some representation R̂ of µ such that A ≡T R̂. In this chapter we will say
that R = R0 ⊕ R1 is a representation of µ ∈ P(2ω) if ρ(R0) = µ where ρ is the
function defined in Section 7.2.

This change means we can regard our representations as encoding both a
measure and any potential additional oracle. Therefore the degrees of repre-
sentations of a measure are closed upwards. The following proposition shows
why this is useful. If we want to ask whether X ∈ MLRµ(A), we can do so by
just considering representations of µ in the Turing cone above A.

Lemma 8.1.5. X ∈ MLRµ(A) if and only if there exists some representation R of µ
such that X is R-random and R ≥T A.

Proof. Assume that X is R-random and R ≥T A. In this case any (R,A)-test is
just an R-test and so X is (R,A)-random and thus X ∈ MLRµ(A). Conversely
assume that X ∈ MLRµ(A). Then there is some representation R of µ such
that X is (R,A)-random. Now there is some representation R̂ of µ such that
R̂ ≡T R ⊕ A and any R̂-test is also a (R,A)-test. Thus X is R̂-random and
R̂ ≥T A.

8.1. INDEPENDENCE AND RELATIVE RANDOMNESS 131

If A and B are relatively random with respect to some measure µ, then µ

might offer some information about the relationship between A and B. For
example, we know that if A and B are relatively random with respect to the
uniform measure, then any sequence they both compute must be K-trivial
(this follows from results of Nies, and Hirschfeldt, Nies and Stephan which
establish that lowness for Martin-Löf randomness, K-triviality and being a
base for Martin-Löf randomness coincide [39, 69]). If A and B are both atoms
of µ then clearly A and B are relatively random with respect to µ. Given this,
perhaps the most obvious question to ask about relative randomness is the
following.

Question 8.1.6. For which A,B ∈ 2ω does there exist a measure µ such that A
and B are relatively random with respect to µ and neither A nor B is an atom
of µ?

This question is closely related to Theorem 7.3.7 of Reimann and Slaman.
This theorem states that an element X of Cantor space is non-computable if
and only if there exists a measure µ such that X is µ-random and X is not an
atom of µ.

Van Lambalgen’s theorem states that A and B are relatively random if and
only if A ⊕ B ∈ MLR. If we take λ to be the uniform measure, then A ⊕ B ∈
MLR if and only if the pair (A,B) ∈ 2ω×2ω is Martin-Löf random with respect
to the product measure λ× λ or (A,B) ∈ MLRλ×λ. We begin our investigation
into relative randomness by showing that van Lambalgen’s theorem holds for
any Borel probability measure on Cantor space.

In the discussion following Definition 7.1.1 we noted that there exists a
uniform sequence of c.e. sets Un such that if UR

n = {[τ] : 〈τ, σ〉 ∈ Un and σ ≺
R}, then {UR

n }n∈ω is a universal R-test. We called {Un}n∈ω a universal oracle
Martin-Löf test. Now we can define a uniform oracle Martin-Löf test by

{UR
n }n∈ω =

⋂
R̂∈ρ−1(R)

V R̂
n

where {Vn}n∈ω is a universal oracle Martin-Löf test. The sequence {UR
n }n∈ω is

uniformly c.e. in R because π−1(R) is a Π0
1(R) class and so a compact subset

of 2ω. We term this a uniform oracle Martin-Löf test, as it is similar to the
uniform test constructed in the proof of Theorem 7.1.6. In particular if R is a
representation of a measure µ, then MLRµ = 2ω \ (

⋂
n U

R
n).

Note that uniform oracle Martin-Löf tests are not special cases of universal
oracle Martin-Löf tests, for example if R is a representation of a neutral mea-
sure then

⋂
n U

R
n is empty if {Un}n∈ω is a uniform test, but not empty if {Un}n∈ω

132 CHAPTER 8. RELATIVE RANDOMNESS AND PA DEGREES

is a universal test (by Lemma 7.4.1). We will use both universal and uniform
oracle Martin-Löf tests to generalise Theorem 8.1.1.

Theorem 8.1.7. Let µ ∈ P(2ω) and let A,B ∈ 2ω. Then (A,B) ∈ MLRµ×µ if and
only if A ∈ MLRµ and B ∈ MLRµ(A).

Proof. Let {UX
n }n∈ω be a universal oracle Martin-Löf test on 2ω. Assume B 6∈

MLRµ(A). Let R be any representation of µ. Let R̂ be a representation of µ
such that R̂ ≡T A ⊕ R so R̂ = Φ(A ⊕ R) for some Turing functional Φ. Now
because B 6∈ MLRµ(A) we have that B ∈

⋂
n U

R̂
n by Lemma 8.1.5. We define

an R-test for 2ω × 2ω by letting V R
n = {{X} × [σ] : σ ∈ UΦ(X⊕R)

n }. This ensures
that (A,B) ∈

⋂
n V

R
n . By applying Fubini’s theorem we can establish that:

(µ× µ)V R
n =

∫ ∫
2ω×2ω

χV Rn (X, Y)dµ× dµ

=

∫
2ω

∫
2ω
χ
U

Φ(X⊕R)
n

(Y)dµ(Y)dµ(X)

≤
∫

2ω
2−ndµ(X) = 2−n.

Hence (A,B) is not R-random. As this is true for any representation R of µ
we have that (A,B) 6∈ MLRµ×µ. The same argument shows a fortiori that if
A 6∈ MLRµ then (A,B) 6∈ MLRµ×µ.

To establish the other direction assume that (A,B) 6∈ MLRµ×µ. This time
let {UX

n }n∈ω be a uniform oracle Martin-Löf test on 2ω × 2ω. Let {V X
n }n∈ω be a

universal oracle Martin-Löf test on 2ω × 2ω.
Let R be any representation of µ such that R ≥T A. We can define TRn =

{Y ∈ 2ω : (A, Y) ∈ UR
2n}. If for almost all n, µTRn ≤ 2−n, then we can turn

{TRn }n∈ω into an R-test and so B is not R-random because B ∈
⋂
n T

R
n .

Now assume that B ∈ MLRµ(A). Then for some fixed representation R̂ of
µ, with R̂ ≥T A, and for infinitely many n, µT R̂n > 2−n. Now because {UX

n }n∈ω
is a uniform oracle Martin-Löf test, then if R is any representation of µ, we
have that U R̂

n ⊆ V R
n . Now we will define a test by SRn = {X ∈ 2ω : µ{Y ∈ 2ω :

(X, Y) ∈ V R
2n} ≥ 2−n}. First, µSRn ≤ 2−n because

2−2n ≥ (µ× µ)V R
2n ≥

∫
Sn(R)

∫
2ω
χV R2n(X, Y)dµ(Y)dµ(X)

≥
∫
Sn(R)

2−ndµ(X) = 2−nµ(Sn(R)).

Secondly we know that for infinitely many n, µT R̂n > 2−n. Hence for these
n, we have that A ∈ SRn . This implies that A is not R-random because if we
define ŜRn =

⋃
i>n S

R
i , then {ŜRn }n∈ω is an R-test that captures A. As this is true

for any representation of µ, we have that A 6∈ MLRµ.

8.1. INDEPENDENCE AND RELATIVE RANDOMNESS 133

Corollary 8.1.8. If A,B ∈ 2ω and µ ∈ P(2ω), then A and B are relatively random
with respect to µ if and only if (A,B) ∈ MLRµ×µ.

This theorem extends the results in van Lambalgen’s thesis by adapting
some of the techniques in Nies’s proof of van Lambalgen’s theorem [70, 88].1

Corollary 8.1.9. If A ≥T B and (A,B) ∈ MLRµ×µ then B must be an atom of µ.

Proof. If A ≥T B, then B ∈ MLRµ(A) implies B ∈ MLRµ(B) by Lemma 8.1.5
which in turn implies that B is an atom of µ.

We note that we cannot extend one direction of van Lambalgen’s theorem
to product measures of the form µ × ν. In particular it is not true that if A ∈
MLRµ and B ∈ MLRν(A) then (A,B) ∈ MLRµ×ν . For example, let λ be the
uniform measure and let A,B ∈ 2ω be relatively random with respect to λ. We
define ν = (λ + δB)/2 where δB is the measure that concentrates on B. We
have B ∈ MLRλ(A) by assumption. Now we will establish that A ∈ MLRν .
We know that there is a representation R of ν such that R ≡T B. Let {UR

n }n∈ω
be the universal R-test. Now λ(Un+1) ≤ 2ν(Un + 1) ≤ 2−n hence {UR

n+1}n∈ω is
a Martin-Löf test relative to B. Thus A 6∈

⋂
n U

R
n . However any representation

of ν × λ must be able to compute B because B is an atom of ν. This implies
that (A,B) 6∈ MLRν×λ because the test {2ω × [B � n]}n∈ω is an R-test for any
representation R of ν × λ.

Given any A ∈ 2ω, we will use R(A) to denote the set of sequences B
such that A and B are relatively random with respect to some measure µ and
neither A nor B are atoms of µ i.e.

R(A) = {B ∈ 2ω : (∃µ ∈ P(2ω))((A,B) ∈ MLRµ×µ ∧ µ{A,B} = 0)}.

The following lemma will be useful when examining the basic properties
of the setR(A).

Lemma 8.1.10. If λ is the uniform measure, µ ∈ P(2ω), and ν = 1
2
(λ + µ) then

MLRµ ⊆ MLRν .

Proof. Take any X 6∈ MLRν and let R be a representation of µ. There exists
some representation S of ν such that S ≤T R. Because X 6∈ MLRν , there is
an S-test {Un}n∈ω such that X ∈

⋂
n Un. Now {Un+1}n∈ω is an R-test because

µ(Un+1) ≤ 2 · ν(Un+1) ≤ 2−n. Therefore X 6∈ MLRµ.

1Essentially some of the tests constructed by van Lambalgen were tests for weak 2-
randomness.

134 CHAPTER 8. RELATIVE RANDOMNESS AND PA DEGREES

Proposition 8.1.11. For all A,B ∈ 2ω the following hold:

(i). A ∈ R(B) if and only if B ∈ R(A).

(ii). B ∈ R(A) implies that A |T B.

(iii). If A is non-computable, thenR(A) has uniform measure 1.

(iv). If A ∈ MLR then MLR(A) (R(A).

Proof. (i) This holds because for all µ ∈ P(2ω), (A,B) ∈ MLRµ×µ if and only if
(B,A) ∈ MLRµ×µ.

(ii) This holds by Corollary 8.1.9.

(iii) If A is non-computable then there is a measure µ such that A is not an
atom of µ and A ∈ MLRµ. Let ν = (µ + λ)/2 where λ is uniform measure.
We have that A ∈ MLRν (by the previous lemma) and ν{A} = 0. Hence
(MLRν(A) \ {B : ν{B} 6= 0}) ⊆ R(A). Now λ(MLRν(A)) = 1 because the
complement of MLRν(A) is a ν null set and hence a λ null set. The set of
atoms of ν is countable and so has uniform measure 0. This gives us that
λ(MLRν(A) \ {B : ν{B} 6= 0}) = 1.

(iv) LetA = A0⊕A1 ∈ MLR. By the definition ofR(A) we have that MLR(A) ⊆
R(A). To show that the reverse inclusion does not hold, take B ∈ MLR(A).
Let µ = λ × δA1 where λ is the uniform measure and δA1 is the measure that
concentrates on A1. Let us regard µ as a measure on 2ω rather than on 2ω × 2ω.
Clearly B ⊕ A1 6∈ MLR(A). If B ⊕ A1 6∈ MLRµ(A) then fix representation R of
µ such that deg(R) = deg(A1). There is an R-test {Un}n∈ω that captures B⊕A1.
Given access to A we define a new test {Vn}n∈ω by Vn = {X ∈ 2ω : X ⊕ A1 ∈
Un+1}. Now λ(Vn) · δA1({A1}) ≤ µ(Un) which implies that B 6∈ MLR(A). This
contradicts our choice of B and hence B ⊕ A1 ∈ MLRµ(A). This shows that
B ⊕ A1 ∈ R(A).

The above properties leave open the possibility that R(A) is just the class
of sets that are Turing incomparable with A. We will now establish that this is
not necessarily the case.

Proposition 8.1.12. Let R be a representation of a measure µ, and let A be a c.e. set.
Then R⊕ A ≥T R′ if

(i). A is R-random.

(ii). A is not an atom of µ.

8.1. INDEPENDENCE AND RELATIVE RANDOMNESS 135

Proof. Given such an R and an A, let As be a computable enumeration of A.
We define the function f ≤T A⊕R by:

f(x) = min{s : (∃m ≤ s)(As � m = A � m ∧ µs[A � m] < 2−x)}.

In this definition we take µs[σ] to be an R-computable approximation to µ[σ]

from above. Note that f is well defined because A is not an atom of µ. We
claim that if g is any partial function computable in R, then for all but finitely
many x ∈ dom(g), we have that f(x) > g(x). To establish this claim, let g be an
R-computable partial function. We will build an R-test {Un}n∈ω by defining
Un to be:

{X ∈ 2ω : (∃x > n,m)(g(x) ↓ ∧µ[Ag(x) � m] < 2−x ∧X � (Ag(x) � m))}.

Because any x ∈ dom(g) adds a single open set ([Ag(x) � m] for some m) of
measure less than 2−x to those Un with n < x, we have constructed a valid
test. Now if g(x) ↓≥ f(x), then by definition of f , there is some m ≤ f(x) such
that µ[A � m] < 2−x and A � m = Af(x) � m = Ag(x) � m. Thus for all n < x,
A ∈ Un. Because A is R-random we have that f(x) > g(x) for all but finitely
many x in dom(g).

Let g(x) be the R-computable partial function with domain R′ such that
g(x) is the unique number s such that x ∈ R′s+1 \R′s. For almost all x, we have
that x ∈ R′ if and only if x ∈ R′f(x) and so R′ ≤T A⊕R.

Theorem 8.1.13. Let R be a representation of a measure µ, and let A be a c.e. set.
Then R⊕ A ≥T ∅′ if:

(i). A is µ-random.

(ii). A is not an atom of µ.

Proof. Note the following characteristics of the previous proof. First the total-
ity of f does not depend on the fact thatA isR-random, it only depends on the
fact that A is not an atom of µ. The construction is uniform so there is a single
index e such that Φe(A⊕R̂) is total if R̂ is any representation of µ. Additionally
if A is R̂-random then for all but finitely many x, Φe(A⊕ R̂;x) > g(x) where g
is any fixed R̂-computable partial computable function.

LetR be any representation of µ. The set {A⊕R̂ : R̂ is a representation of µ}
is a Π0

1(A⊕R) class (Lemma 7.2.2) and Φe is total on this class. From A⊕R we
can compute a function f that dominates Φe(A⊕ R̂) where A is R̂-random. As
f dominates any R̂-computable partial function we have that A⊕R ≥T ∅′.

136 CHAPTER 8. RELATIVE RANDOMNESS AND PA DEGREES

Corollary 8.1.14. If A is c.e. and B ≤T ∅′ then B 6∈ R(A).

Proof. Let µ ∈ P(2ω) be such that neither A nor B is an atom of µ. If A is a
µ-random c.e. set and R is a representation of µ, then A ⊕ R ≥T B. Hence
B 6∈ MLRµ(A) and so (A,B) 6∈ MLRµ×µ.

8.2 Computably enumerable sets and PA degrees

We will now show two interesting applications of Theorem 8.1.13 to the study
of the interaction between computably enumerable sets and sets of PA degree.
First we review some basic facts. A function f : ω → ω is a called a diag-
onally non-computable function or DNC function if for all e such that ϕe(e) ↓,
f(e) 6= ϕe(e). Any set of PA degree computes a {0, 1} valued DNC function
[44]. Finally Arslanov’s completeness criterion states that any c.e. set that com-
putes a DNC function is complete [3].

Corollary 8.2.1 (to Theorem 8.1.13). If A is a c.e. set and P a set of PA degree such
that P 6≥T A then P ⊕ A ≥T ∅′.

Proof. In Chapter 7 we noted that any set of PA degree computes a neutral
measure. Hence P can compute a neutral measure µ and A ∈ MLRµ. Now
because P 6≥T A we have that A is not an atom of µ. Thus P ⊕ A ≥T ∅′.

In the slides of a talk to the 2004 Córdoba conference in Logic, Computabil-
ity and Randomness, Kučera asked the following question.

Question 8.2.2. For every incomplete c.e. set A, does there exist a set P of PA
degree such that A <T P <T ∅′?

Kučera gave a negative answer to this question based on an unpublished
result of Kučera and Slaman.2 We provide a complete answer to this question
by showing that the c.e. sets with this property are precisely the low c.e. sets.

Theorem 8.2.3. If A is a c.e. set then the following are equivalent:

(i). A is low.

(ii). There exists P such that, P � A and P is low.

(iii). There exists P of PA degree such that ∅′ >T P >T A.

2Their result is that there is a c.e. set A with A′′ ≡T ∅′′ such that A ⊕ f ≡T ∅′ for any
diagonally non-computable function f ≤T ∅′.

8.2. COMPUTABLY ENUMERABLE SETS AND PA DEGREES 137

Proof. (i) implies (ii). Relativize the low basis theorem to find P � A and
P ′ ≡T A′. As A is low so is P .
(ii) implies (iii). This is a trivial implication.
(iii) implies (i). Take any Q of PA degree such that P � Q (see Simpson [82]).
Now Q ≥T A because otherwise Q ⊕ A ≥T ∅′ by Corollary 8.2.1, but this is
impossible because P ≥T Q⊕A and P 6≥T ∅′. Hence P � A. But now we have
that ∅′ is c.e. in A and also ∅′ computes a DNC function relative to A. Hence
by relativizing Arslanov’s completeness criterion we have that A′ ≡T ∅′.

Using the same ideas we can also strengthen a theorem of Kučera. Kučera
pointed out the following behaviour of sets of PA degree.

Theorem 8.2.4 (Kučera [52]). There exists A,B ∈ 2ω with A of PA degree and
A >T B >T 0 such that for all C ∈ 2ω such that C is of PA degree and A ≥T C we
have that C ≥T B.

In fact we can take A and B to be any such sets with the additional proper-
ties that A is incomplete and B is c.e. Let C be of PA degree such that A ≥T C.
Now if C 6≥T B, then by Corollary 8.2.1 we must have C ⊕ B ≥T ∅′. However
A ≥T C ⊕B and A is incomplete. Therefore it must be that C ≥T B.

138 CHAPTER 8. RELATIVE RANDOMNESS AND PA DEGREES

Chapter 9

Computable Lipschitz Reducibility

(The results of this chapter appeared in the paper: The computable Lipschitz degrees
of computably enumerable sets are not dense, Annals of Pure and Applied Logic, Vol
161 (2010), no. 12, pp. 1588 – 1602.)

9.1 Overview

IfA,B ∈ 2ω, what does it mean forA to be more random thanB? We have seen
in Chapter 2 that the randomness of a sequence is linked to the descriptive
complexity of its initial segments. This suggests that A will be more random
than B if the descriptive complexity of any initial segment of A is greater than
the descriptive complexity of the corresponding initial segment of B. This
can be formalised using plain Kolmogorov complexity by saying A is more
random than B if:

C(A � n) ≥ C(B � n)−O(1).

Elements of 2ω can also be ordered by computational power, typically us-
ing Turing reducibility. What is the relationship between relative randomness
and relative computational power? It is certainly easy to construct a set A and
a set B such that A is more random than B but B has greater computational
power than A. For example, A could be Chaitin’s Ω and the nth bit of B could
be 0 unless for somem, n = 2m andA′(m) = 1. In this chapter we will examine
computable Lipschitz or cl reducibility. This reducibility measures both rela-
tive randomness and computational power. This chapter establishes that the
ordering this reducibility induces on the computably enumerable sets is not
dense.

Definition 9.1.1. (Downey, Hirschfeldt and LaForte [31]) LetA,B ⊆ ω. We say
that B is computable Lipschitz reducible to A, written B ≤cl A, if there exists a

140 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

Turing functional Γ and a constant c such that for all x, ΓA(x) = B(x) and the
use of this computation is bounded by x+ c.

In essence, the Turing functionals used in Definition 9.1.1 are effective ver-
sions of Lipschitz continuous operators (for details see [59]).

If we require the constant c in Definition 9.1.1 to be 0, then we get an even
stronger reducibility known as identity bounded Turing or ibT reducibility. Both
ibT reducibility and cl reducibility maintain some sense of relative random-
ness. If A ≥cl B, then C(A � n) ≥ C(B � n) − O(1) and K(A � n) ≥ K(B �

n) − O(1). There are applications of these reducibilities beyond randomness.
For example, the ibT reducibility has been used in differential geometry [21].

As is the case with Turing reducibility, we can define a degree structure on
the subsets of ω using either cl or ibT reducibility. We say A ≡cl B if A ≤cl B
and B ≤cl A. We can then define the cl degree of A to be deg(A) = {B :

A ≡cl B}. The class of all cl degrees is a partially ordered set under ≤cl where
deg(A) ≤cl deg(B) is defined to hold if A ≤cl B. If we only consider those
degrees that have a computably enumerable member, then we can talk about
the cl degrees of c.e. sets. Similarly we can define the ibT degrees.

Given such a structure, a fundamental question is whether or not it is
dense. The Turing degrees of c.e. sets, and the wtt degrees of c.e. sets are
both dense. The first of these results is due to Sacks and the second to Ladner
and Sasso [54, 77]. Barmpalias and Lewis showed that the ibT degrees of c.e.
sets are not dense [7]. For the cl degrees of c.e. sets, the main related results in
this area are the following.

Theorem 9.1.2. (Downey, Hirschfeldt and LaForte [31]) There is no cl-minimal c.e.
set. That is for every c.e. set A, there exists a c.e. set W such that A >cl W >cl ∅.

Theorem 9.1.3. (Barmpalias [4]) There are no cl-maximal c.e. sets. That is for every
c.e. set A, there exists a c.e. set W such that A <cl W .

Hence the cl degrees are downwards dense, but as there is no maximal
element, it does not make sense to talk about upwards density. This chapter
establishes the following theorem.

Theorem 9.1.4. The cl degrees of c.e. sets are not dense.

The proof of this theorem uses a construction that is loosely based on Barm-
palias and Lewis’s proof that the ibT degrees of c.e. sets are not dense [7].
However, the construction used for the cl degrees is more difficult. New tech-
niques are developed in this chapter that may well find wider applicability.

This theorem has an application to the Solovay degrees.

9.2. PROOF STRATEGY 141

Definition 9.1.5. (Solovay [30]) If x, y ∈ R, then y is Solovay reducible to x,
written y ≤S x, if there are a constant c and a partial computable function
f : Q→ Q such that if q ∈ Q, and q < x, then f(q) < y and y − f(q) < c(x− q)
(where Q is the set of all rationals).

We call x ∈ R a strongly c.e. real if x = 0.A(0)A(1)A(2) . . . for some c.e. set
A. Hence Theorem 9.1.4 says that the cl degrees of strongly c.e. reals are not
dense. Solovay reducibility agrees on the strongly c.e. reals with cl reducibility
on the c.e. sets that define those reals, i.e. if x = 0.A(0)A(1)A(2) . . . and y =

0.B(0)B(1)B(2) . . . for c.e. sets A and B, then y ≤S x if and only if B ≤cl A
[31]. Hence we get the following corollary.

Corollary 9.1.6. The Solovay degrees of strongly c.e. reals are not dense.

The c.e. reals are an important object of study in algorithmic randomness.
A real x is c.e. if {q ∈ Q : q < x} is computably enumerable. Recently, there has
been significant interest in the cl degrees of c.e. reals [6, 31, 93]. The question
whether the cl degrees of c.e. reals are dense remains open. The techniques
developed in this chapter to prove Theorem 9.1.4 may be useful in answering
this question.

In this chapter we will use the notation A �� n for A � (n + 1). Given a
set A ⊆ ω, and integers a, b we define: A[a, b] = {x ∈ A : a ≤ x ≤ b} and
A(a, b) = {x ∈ A : a < x < b}.

9.2 Proof strategy

Our goal is to prove that the cl degrees of c.e. sets are not dense. To do this,
we will construct c.e. sets A and B such that B <cl A, and for any c.e. set W
such that B ≤cl W ≤cl A we have that A ≡cl W or B ≡cl W . Another way of
describing this situation is to say that A is a minimal cover of B.

We will achieve this goal by developing a construction of A and B that
meets a number of requirements. First we need to ensure that B ≤cl A. To
keep B ≤cl A, we will code any change to B into A by changing A before the
change in B. This ensures that if As �� x = A �� x, then Bs �� x = B �� x. Hence
B(x) is computable from A with use x.

Secondly, we need to ensure that A 6≤cl B. This can be achieved by diag-
onalising against all cl functionals. We can take an enumeration of all Turing
functionals {Γp}p<ω. We can turn this into an enumeration of cl functionals

142 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

{∆p}p<ω, by defining, for any oracle Z:

∆Z
p (x) =

ΓZp (x) if γZp (x) ≤ x+ p

↑ otherwise,

where γZp (x) is the use function of Γp with oracle Z. This works because any
Turing functional has an infinite number of indices. Assume that we have
some Turing functional Ψ, and an oracle Z, such that for some constant k,
ψZ(x) ≤ x+k. This means that Ψ with oracle Z is a cl functional. Now there is
some index p ≥ k such that Γp = Ψ and ΓZp has use function γZp (x) = ψZ(x) ≤
x+ k ≤ x+ p, thus ∆Z

p = ΓZp = ΨZ . So we can ensure that A 6≤cl B by meeting
for all p ∈ ω, the requirement:

Pp: ∆B
p 6= A.

Given any p, if at some stage s, for some k, we find that ∆B
p [s] � k = As � k,

then we want to find some x < k with x 6∈ As, add x toAs+1 and preserveB on
x + p ≥ δBsp (x). This is the Friedberg-Muchnik strategy for dealing with such
requirements. If we do this for all p ∈ ω, thenA 6≤cl B. For these requirements,
we do not need to add anything to B. However, it will be advantageous to do
so. We will change B but only above δBsp (x). In fact our construction must
make some change to B as we know by Theorem 9.1.2 that B cannot be com-
putable. Thus we will depart slightly from the classic Friedberg-Muchnik ap-
proach; if we add something to A, we will always add something to B as well.

To understand why it is useful to add something to B, we need to consider
our other requirements to make A a minimal cover of B. What we will do is
enumerate all triples r = 〈a, b, c〉. Now for all such r we define Wr to be the
ath c.e. set (we could define r as a function of a but this is cumbersome). Also
we define:

ΦZ
r (x) =

ΓZb (x) if γZb (x) ≤ x+ r

↑ otherwise;

ΨZ
r (x) =

ΓZc (x) if γZc (x) ≤ x+ r

↑ otherwise.

IfB ≤cl W ≤cl A then there will be some c.e. functionals Γb, Γc and constant
d such that ΓAb = W , and ΓWc = B with γAb (x), γWc (x) ≤ x + d. Now there is
some r ≥ dwith r = 〈a, b, c〉 such thatWr = W . So we have that ΦA

r = ΓAb = Wr

and ΨWr
r = ΓWr

c = B.
It is simpler to write r = 〈W,Φ,Ψ〉 with the understanding that W = Wr,

Φ = Φr and Ψ = Ψr. Hence we see that if B ≤cl A but A is not a minimal cover
of B then for some triple r = 〈W,Φ,Ψ〉we have that:

9.2. PROOF STRATEGY 143

(i). ΦA = W .

(ii). ΨW = B.

(iii). A 6≤cl W .

(iv). W 6≤cl B.

What we will do is ensure that for all such triples 〈W,Φ,Ψ〉, if properties (i)
and (ii) above hold, then either property (iii) or (iv) does not hold. Suppose
that we want to ensure that (iii) does not hold. To show this, we need to build
a Turing functional Γ such that ΓW = A with γW (x) ≤ x+ c for some constant
c. Hence we would like to somehow get W to permit every A change. The
problem is W is not under our control. We can regard W as being controlled
by an opponent who would like to see us fail. However, if (ii) holds then we
can force a W -change by adding an element to B at a stage s + 1 within the
length of agreement of ΨW [s] and Bs. This is why we always add something
to B. We add to A to meet some requirement Pp. At the same time we add
something to B to force a change in W (the change in B is above the use of
the change in A). We will use this W -change to ensure that either (iii) or (iv) is
false i.e. that W ≡cl A or W ≡cl B. This gives us another set of requirements
Rr for all r ∈ ω.

Rr:
If Wr = ΦA

r and B = ΨWr
r , then there exists a Γ such

that: Wr = ΓB with γB(x) ≤ x + r; or A = ΓWr with
γWr(x) ≤ x+ r.

In our proof we will need to monitor various length of agreements to de-
termine when we need to act on a particular requirement.

Definition 9.2.1. Given two sequences A,B we define:

ds(A,B) = min({n < s : A(n) 6= B(n)} ∪ {s}).

If r = 〈W,Φ,Ψ〉 and s ∈ ω, we define the length of agreement for require-
ment Rr by:

lr(s) = min(ds(Bs,Ψ
W [s]), ds(Ws,Φ

A[s])).

If p ∈ ω and s ∈ ω, we define the length of agreement for requirement Pp
by:

mp(s) = ds(As,∆
B
p [s]).

Note that lr and mp are computable. We will say that lr is unbounded if
{lr(s) : s ∈ ω} is infinite. Because we know the bound on the use, we can
make use of the following lemma.

144 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

Lemma 9.2.2. Let r = 〈W,Φ,Ψ〉. The following are equivalent:

(i). lr is unbounded.

(ii). ΦA = W and ΨW = B.

(iii). liminf lr(s) =∞.

Proof. (i) implies (ii). If lr is unbounded then given any x there is a stage s such
that lr(s) > x, and x + r < min{ds(As, A), ds(Bs, B), ds(Ws,W)}. At this stage
we have that ΦA(x) = ΦA(x)[s] = Ws(x) = W (x) and ΨW (x) = ΨW (x)[s] =

Bs(x) = B(x).

(ii) implies (iii). Take any x ∈ ω. Let s0 be a stage such that:

x+ r < min{ds0(As0 , A), ds0(Bs0 , B), ds0(Ws0 ,W)}.

Let s1 > s0 be a stage such that for all y ≤ x, we have that ΦA(y)[s1] ↓= ΦA(y)

and ΨW (y)[s1] ↓= ΨW (y). So for all s > s1, for all y ≤ x, ΦA(y)[s] = ΦA(y) =

W (y) = Ws(y) and ΨW (y)[s] = ΨW (y) = B(y) = Bs(y). Thus for all s ≥ s1,
lr(s) ≥ x. Hence liminf lr(s) =∞
(iii) implies (i). This holds trivially.

In the discussion to follow we will assume that for a certain r = 〈W,Φ,Ψ〉,
lr is unbounded. We will use this knowledge to develop a strategy for meeting
a requirement Pp that tightly controls what the set W can do.

Given that lr is unbounded, suppose that at some stage s, y < lr(s) and
y 6∈ Bs. At stage s+ 1, we set Bs+1 = {y} ∪ Bs. We need to code the change to
B into A, so we choose some x ≤ y with x 6∈ As and set As+1 = {x} ∪ As. Our
change to B has broken the computation of Ψ, i.e. ΨW (y)[s] = Bs(y) = 0 6=
Bs+1(y). In order to fix the computation, the opponent must add something to
W within the use of the computation of y. The use is bounded by y + r, so the
opponent must add some number to W less than or equal to y + r. However,
the opponent also wants to ensure that ΦA = W . Now because we coded theB
change into A by adding x to A, we have given the opponent the opportunity
to redefine the Φ functional. This allows the opponent to add something to
Ws+1 and also have that ΦA[s+ 1] �� lr(s) = Ws+1 �� lr(s). However, x < lr(s) ≤
ds(Ws,Φ

A[s]), hence if z < x−r, ΦA(z)[s+1] = ΦA(z)[s] = Ws(z) becauseA has
not changed within the use of z. Hence if Ws+1(z) 6= Ws(z) the Φ computation
will be broken. If we preserve A on z + r then this computation can never
recover. Consequently in order to fix Ψ without breaking Φ, W must change
between x− r and y + r.

9.2. PROOF STRATEGY 145

To meet a requirement Pp, we select an x 6∈ As and y 6∈ Bs with x + p < y

at a stage s at which mp(s) > x and lr(s) > y. Then we add x to As+1 and y to
Bs+1. So ∆B

p (x)[s + 1] = ∆B
p (x)[s] = 0 6= As+1(x) as the change to B is outside

the use of the computation of x. Additionally, we know that in order to fix the
computation Ψ, W must change between x− r and y + r. We will refer to this
process of adding x to A and y to B as diagonalising against Pp.

Of course this still gives the opponent a number of choices for where W
can change. We will show that we can construct an interval where the oppo-
nent has only two choices. Let us assume that for some p > 2r, we want to
diagonalise against Pp and restrict the places whereW can change in response.
As we control A and B, we can find an integer interval [b, c], where c ≥ 3p+ b

and a stage s, such that:

[b, c] \ As = [b, c] \Bs = {b+ p, c− p}.

We would like to have |[b, c] \Ws| = 2. Assume this is true for some interval
I = [b, c] at stage s. To maintain consistency with future notation, let x(I) =

b + p, y(I) = c − p be the positions of the two zeros in As[b, c] and Bs[b, c].
Because c ≥ 3p + b, it follows that x(I) < y(I). Let x(I, r), y(I, r) be the
positions of the two zeros inWs[b, c] with x(I, r) < y(I, r). We will also assume
that |x(I) − x(I, r)| ≤ r and that |y(I) − y(I, r)| ≤ r, i.e. the zeros in Ws are
within r places of the zeros in As and Bs.

If we add x(I) to A and y(I) to B, then we know that some element of
[x(I)− r, y(I) + r] must be added to W . The only elements left in this interval
are x(I, r) and y(I, r). If W responds by adding x(I, r), then as we know
that x(I, r) ≤ x(I) + r, we can use this change in W to permit the change we
have already made to A. Otherwise, if W responds by adding y(I, r), then as
we know that y(I, r) ≤ y(I) + r, we can regard our change in B as coding
the change in W . In the first case, we will say that W follows A during the
diagonalisation of Pp. In the second case we will say that W follows B.

Even assuming that we can create such intervals, there is more to be done.
There is an infinite number of diagonalisation requirements that need to be
met. It is possible that for infinitely many of these, W could follow A and
for infinitely many of these, W could follow B. First, note that if W almost
always follows B then, after some point, every W change made during some
diagonalisation is coded by a change to B within r positions of the change to
W . We can use this fact to show that W ≤cl B.

Now if W does not almost always follow B, then infinitely often, W must
follow A. Our construction will deal with this outcome by ensuring that A ≤cl
W . To outline how this will work, suppose that by some stage s we construct

146 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

two diagonalisation intervals Ip = [bp, cp] and Iq = [bq, cq] such that bp < cp <

bq < cq.

Ip and Iq are used to meet requirements Pp and Pq respectively with p < q.
Further suppose that at stage s we can ensure that |Ws(cp, bq)| ≥ |As(cp, bq)|
and As(cp, bq) = Bs(cp, bq).

Now what happens if W has followed A on interval Iq, and W has fol-
lowed B on interval Ip? In this case we have that y(Ip, r), x(Iq, r) ∈ Ws. Note
that y(Ip) 6∈ As and x(Iq) 6∈ Bs. Thus we can define As+1 = As ∪ {y(Ip)} and
Bs+1 = Bs ∪ {x(Iq)}. How can the opponent respond? Well, the opponent
must respond by adding some element of [y(Ip)−r, x(Iq)+r] to W . However,
[y(Ip)− r, cp] ∪ [bq, x(Iq) + r] ⊆ Ws. Hence the opponent can only respond by
adding some element of (cp, bq) to Ws+1. But this means that

|Ws+1(cp, bq)| > |Ws(cp, bq)| ≥ |As(cp, bq)| = |As+1(cp, bq)|.

In this case we have a simple strategy to ensure that lr is bounded. As
As(cp, bq) = Bs(cp, bq) we can add an element of (cp, bq) to A and to B each
time lr exceeds bq. To make lr exceed bq again, some element of (cp, bq) must be
added to W . As |Ws+1(cp, bq)| > |As+1(cp, bq)| at some point the opponent must
run out of responses.

So if W follows A on the interval Iq, and lr is unbounded, then W must
follow A on the interval Ip as well. We will use this idea to develop a con-
struction during which if infinitely often W follows A, then W ≡cl A. The
basic idea is that we prefer our requirements Pp to be assigned diagonalisa-
tion intervals like Ip that precede an interval Iq where W has followed A.
Hence if a requirement Pp has the opportunity to obtain an interval with this
property, it will do so (provided it does not injure any higher priority require-
ments). Now to compute A(x) from W �� (x+ r) we do the following. Run the
construction of A and B until a stage s such that:

(i). Ws �� (x+ r) = W �� (x+ r).

(ii). All diagonalisation requirements assigned intervals before x have either
already diagonalised, or have been assigned a diagonalisation interval
before one in which W has followed A.

Now if any of these requirements do diagonalise,W must followA on their
interval. Thus there must be some change to Ws within r places of the change
to A. However, as Ws �� (x + r) = W �� (x + r), no such requirement can
diagonalise and so As(x) = A(x).

9.3. DIAGONALISATION INTERVALS AND BLOCKS 147

9.3 Diagonalisation intervals and blocks

We need to formalise the concept of a diagonalisation interval introduced in
the previous section.

Definition 9.3.1. A diagonalisation interval is a quadruple I = 〈b, c, s, k〉 such
that:

(i). c = b+ 6k + 1.

(ii). [b, c] \ As = {b+ 2k, c− 2k}.

(iii). [b, c] \Bs = {b+ 2k, c− 2k}.

The elements of [b, c] that are not inAs andBs are important. We will define
x(I) = b+ 2k and y(I) = c− 2k.

A diagonalisation interval I = 〈b, c, s, k〉 is suitable for some r ∈ ω if :

(i). r ≤ k.

(ii). |[b, c] \Wr,s| = 2.

(iii). |[x(I)− r, x(I) + r] \Wr,s| = 1.

(iv). |[y(I)− r, y(I) + r] \Wr,s| = 1.

Definition 9.3.2. Given I = 〈b, c, s, k〉, we define the following functions:

(i). R(I) = {r ∈ ω : r is suitable for I}.

(ii). x(I, r) = the unique element of [x(I) − r, x(I) + r] \ Wr,s if r ∈ R(I),
otherwise undefined.

(iii). y(I, r) = the unique element of [y(I) − r, y(I) + r] \ Wr,s if r ∈ R(I),
otherwise undefined.

Suppose that we have a diagonalisation interval I and that r ∈ R(I). We
need to know how Wr responds to a diagonalisation on I. The function gA

defined below records those elements of R(I) that follow A, and the function
gB those elements that follow B.

Definition 9.3.3. (i). gA(I, t) = {r ∈ R(I) : x(I, r) ∈ Wr,t}.

(ii). gB(I, t) = {r ∈ R(I) : y(I, r) ∈ Wr,t}.

It is possible for the sets gA(I, t) and gB(I, t) to have non-empty intersec-
tion.

The following lemma provides our strategy for meeting a requirement Pp
using an appropriate diagonalisation interval.

148 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

Lemma 9.3.4. If I = 〈b, c, s0, k〉 is a diagonalisation interval, R ⊆ R(I) and p ≤ 2k

then there is a strategy starting at s0 to ensure that either:

(i). For some r ∈ R, lr is bounded; or

(ii). Requirement Pp is met, and if x(I) ∈ A then R ⊆ gA(I, s1) ∪ gB(I, s1) for
some s1 > s0.

Proof. Assume that for all r ∈ R, lr is unbounded. We only act at stages s ≥ s0

at which all lengths of agreement lr exceed c. The set of such stages must be
cofinite by Lemma 9.2.2. Now if mp never exceeds c during such a stage s,
then mp is bounded so requirement Pp is met. Otherwise if mp(s) > c for some
such stage s, then we set As+1 = As ∪ {x(I)} and Bs+1 = Bs ∪ {y(I)}. As
y(I)− x(I) > 2k ≥ p, Pp is met.

We then wait until a stage s1 at which for all r ∈ R, lr(s1) > c. If this
happens, then for any r ∈ R, there must be some element of [b, c] inWr,s1 \Wr,s.
But this means that either x(I, r) or y(I, r) are in Wr,s1 and so r ∈ gA(I, s1) ∪
gB(I, s1).

Now we will prove that it is possible to construct diagonalisation intervals.

Lemma 9.3.5. Given a finite subset R of ω, k ≥ max(R), s0 ∈ ω, and an interval
[a, d] where d = a+ (2k2 + 1)(6k + 2)− 1 such that As0 [a, d] = Bs0 [a, d] = ∅, there
is an strategy that either:

(i). Ensures, for some r ∈ R, that lr is bounded; or

(ii). Ensures that for some stage s1 > s0, there is a diagonalisation interval I =

〈b, c, s1, k〉 such that a ≤ b < c ≤ d and I is suitable for all r ∈ R, i.e.
R ⊆ R(I).

Proof. Our approach is to build a large enough number of diagonalisation in-
tervals so that we can argue, by the pigeonhole principle, that one of them
must be suitable for all r ∈ R. As each diagonalisation interval has length
6k + 2, there is enough space in the interval [a, d] for 2k2 + 1 diagonalisation
intervals. For i ∈ ω such that 0 ≤ i < 2k2 + 1, let bi = a + i(6k + 2) and
ci = a+ (i+ 1)(6k + 2)− 1. The ith diagonalisation interval that we will build
will be on the interval [bi, ci]. On each of these diagonalisation intervals we
want to add all but two elements to A and B. The only elements we will not
add will be the bi+2k and ci−2k = bi+4k+1 positions in each diagonalisation
interval. We call these elements the zeros and define:

Z = {bi + z : 0 ≤ i < 2k2 + 1, z ∈ {2k, 4k + 1}}

9.3. DIAGONALISATION INTERVALS AND BLOCKS 149

to be the set of all zeros. Hence the set of elements we want to add to A and
B is: X = [a, d] \ Z. The construction proceeds in two phases, the build phase
and the review phase.

Build phase. If lr(s) < d for some r ∈ R, then set As+1 = As and Bs+1 = Bs.
Repeat the build phase. If for all r ∈ R, lr(s) ≥ d and As[a, d] = X , go to the
review phase. Otherwise choose some element x in X \ As[a, d], set As+1 =

As ∪ {x} and Bs+1 = Bs ∪ {x} and repeat the build phase.

Review phase. Let s1 be the current stage. If for some i, 〈bi, ci, s1, k〉 is a
diagonalisation interval that is suitable for all r ∈ R then finish. Otherwise,
if there is some z ∈ Z and some r ∈ R such that, [z − r, z + r] ⊆ Wr,s1 , set
As1+1 = As1 ∪ {z} and Bs1+1 = Bs1 ∪ {z} and terminate the algorithm.

To verify the algorithm, first note that if the review phase is never reached,
then by Lemma 9.2.2, this must be because for some r ∈ R, lr is bounded.
Now let us consider what occurs if the review phase is reached. Let s1 be the
stage when the review phase is reached. Take any r ∈ R. We know that each
change to B has forced a change to Wr within r places of the change to B. As
k ≥ r, we have that:

|Wr,s1 [a, d]| ≥ |Bs1 [a, d]| − 2k. (9.3.1)

Now assume that for all z ∈ Z, for all r ∈ R, [z − r, z + r] 6⊆ Wr,s1 . Then as
there are two zeros in each diagonalisation interval [bi, ci], and as k ≥ max(R),
we have that: |Wr,s1 [bi, ci]| ≤ |[bi, ci]| − 2 = |Bs[bi, ci]|.

If there are more than 2k intervals i where |Wr,s1 [bi, ci]| < |Bs[ci, di]| then:

|Wr,s1 [a, d]| =
2k2∑
i=0

|Wr,s1 [bi, ci]|

<
2k2∑
i=0

|Bs1 [bi, ci]| − 2k

= |Bs1 [a, d]| − 2k.

This would contradict (9.3.1), hence there can be at most 2k intervals i where:

|Wr,s1 [bi, ci]| < |Bs[bi, ci]|.

Thus there can be at most 2k|R| ≤ 2k2 diagonalisation intervals where for
some r ∈ R, |Wr,s[bi, ci]| < |Bs[bi, ci]|. As there are 2k2 + 1 intervals, there is
some interval [bi, ci] such that for all r ∈ R, |Wr,s[bi, ci]| = |Bs[bi, ci]|. Hence if
we let I = 〈bi, ci, k, s〉 then we have that R ⊆ R(I).

150 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

The contrapositive of the proceeding argument gives us that if there are no
diagonalisation intervals that include R, then there must be some z ∈ Z and
r ∈ R such that [z− r, z+ r] ⊆ Wr,s1 . In this case the construction adds this z to
A and B and as there is no position where Wr can respond, lr is bounded.

The approach outlined in Section 9.2 to meeting one requirementRr where
lr is unbounded can be extended to two requirements r0 and r1 provided that
we know whether or not both lr0 and lr1 are unbounded. The interesting case
is if they are both unbounded. For this situation we build a pair of diagonal-
isation intervals I0 = 〈b0, c0, s, p〉 and I1 = 〈b1, c1, s, p〉 for each requirement
Pp. The intervals would have the property that {r0, r1} ⊆ R(I0) ∩ R(I1) and
c0 < b1. We would assign the requirement Pp to the second interval I1. Now
if we diagonalise against Pp, then there are four possible ways that these two
R requirements could respond: both could follow B, only r1 could follow B,
only r0 could follow B, or both could follow A. We assign these outcomes
the strings 00, 01, 10 and 11 respectively (later we will refer to these as e-
states). Interpreting the strings as binary values, if the outcome is greater than
0 (i.e. at least one requirement follows A) then we look for any higher priority
P requirements that have not diagonalised. We consider those requirements
currently assigned the second in a pair of intervals. We also consider those
requirements assigned the first in a pair in intervals such that the second in-
terval, in the same pair, has a lower value than I1. We take the highest pri-
ority such requirement, assign it the interval I0, and injure all lower priority
requirements. As we move a requirement at most three times (the number of
times that the e-state can be improved), we can still meet all our P require-
ments through a finite injury argument.

Requirements r0 and r1 are met through a similar argument to that given
in Section 9.2. However, if r1 follows A infinitely often, then to show that
A ≡cl Wr1 we need to know whether requirement r0 follows A infinitely often
or not.

The problem with this approach is that in order to generalise this argu-
ment to an infinite number of R requirements, it is not possible for r0 to know
whether or not lr1 is bounded. Our opponent could pretend that lr1 is bounded
until we have built the intervals I0 and I1. This would mean that neither of
these intervals could be suitable for r1. After we diagonalise on I1, then lr1

could recover. However, we have already built interval I0. If we attempt to
diagonalise on this interval now, then we have placed no real restriction on
how the set Wr1 can change in response.

To solve this problem, we need to delay the construction of the interval I0

9.3. DIAGONALISATION INTERVALS AND BLOCKS 151

until after the diagonalisation on I1 has occurred. To achieve this, we need
a more elaborate strategy and we will introduce the idea of blocks. A block
is a way of dividing the integers into separate areas that we can allocate to
different requirements.

Definition 9.3.6. A block is a quadruple 〈b, c, s, k〉 such that:

(i). c = b+ k − 1.

(ii). [b, c] ⊆ As.

(iii). [b, c] ⊆ Bs.

A block B = 〈b, c, s, k〉 encompasses some r ∈ ω if :

(i). r ≤ k.

(ii). [b, c] ⊆ Wr,s.

From this definition we define the function:

R(B) = {r ∈ ω : B encompasses r}.

If B0 = 〈b0, c0, s0, k〉 and B1 = 〈b1, c1, s1, k〉, and c0 < b1, then we will write
B0 < B1. This indicates thatB0 occurs beforeB1. We will use< in a similar way
to compare diagonalisation intervals, or diagonalisation intervals and blocks.

Blocks are useful because they segment the sets A, B and Wr into what
can be regarded as separate games. If we have two blocks B0 < B1, that both
include r, then any change to A and B between two blocks must be met by a
change to Wr between the same two blocks. Let c0 denote the right end point
of B0 and let b1 be the left end point of B1. If we keep A and B identical on the
interval (c0, b1) then the opponent is in trouble if at any stage s, |Wr,s(c0, b1)| >
|As(c0, b1)|. The following lemma explains why.

Lemma 9.3.7. Assume that B0 = 〈b0, c0, s0, k〉 and B1 = 〈b1, c1, s0, k〉 are two blocks
with B0 < B1 and As0(c0, b1) = Bs0(c0, b1). If for some r ≤ k, |Wr,s0(c0, b1)| >
|As0(c0, b1)| then there is a strategy to ensure that lr is bounded.

Proof. The strategy is as follows. At each stage s ≥ s0, such that lr(s) ≥ b1, we
choose an element x of (c0, b1)\As. We setAs+1 = As∪{x} andBs+1 = Bs∪{x}.

This strategy works because each time we add an element x to A and B,
Wr must respond by making adding some element from [x − r, x + r]. But as
[b0, c0]∪ [b1, c1] ⊆ Wr,s it must be an element from (c0, b1) that is added in order
for the length of agreement lr to exceed b1 again. Hence at all stages s where
lr(s) ≥ b1 we have that |Wr,s(c0, b1)| > |As(c0, b1)|. It follows that at some point
Wr will run out of possible responses and lr will be bounded.

152 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

Let us establish a strategy for constructing blocks.

Lemma 9.3.8. Given any finite subset of R of ω, k ≥ max(R), s0 ∈ ω and interval
[a, d] where d = a + (2k2 + 1)k − 1, there is a strategy starting at s0 to ensure that
either:

(i). For some r ∈ R, lr is bounded; or

(ii). At some stage s1 > s0 there is a block B = 〈b, c, s1, k〉 such that a ≤ b < c ≤ d

and B encompasses R.

Proof. The proof is similar to the proof of Lemma 9.3.5. At each stage s at
which lr(s) > d for all r ∈ R, we take some element x ∈ [a, d] \ As and set
As+1 = As ∪ {x} and Bs+1 = Bs ∪ {x}. We stop at some stage s1 if [a, d] ⊆ As1

and lr(s1) > d for all r ∈ R.
Now |Wr,s1 [a, d]| ≥ |As1 [a, d]| − 2r ≥ |As1 [a, d]| − 2k = d − a + 1 − 2k. For

all i ∈ ω, such that 0 ≤ i < 2k2 + 1, let bi = a+ ik and let ci = a+ (i+ 1)k − 1.
There are at most 2k possible values for i such that |Wr[bi, ci]| 6= ci − bi + 1.
Hence as 2k|R| ≤ 2k2 there must be some i such that for all r ∈ R, |Wr[bi, ci]| =
ci − bi + 1 = |As[bi, ci]|.

We want to be able to build diagonalisation intervals I0 < I1 such that
if I0 and I1 are both suitable for some r, then r cannot both follow A on I1

and follow B on I0. The following lemma describes a situation in which this
holds.

Lemma 9.3.9. Let I0 = 〈b0, c0, s0, k0〉 and I1 = 〈b1, c1, s1, k0〉 be two diagonal-
isation intervals such that I0 < I1. Suppose that at stage s2 ≥ max(s0, s1) the
following conditions are met for some r ∈ R(I0) ∩R(I1):

(i). y(I0) 6∈ As2 .

(ii). x(I1) 6∈ Bs2 .

(iii). As2(c0, b1) = Bs2(c0, b1).

(iv). |Wr,s2(c0, b1)| ≥ |As2(c0, b1)|.

If r ∈ gA(I1, s2) ∩ gB(I0, s2), then there is a strategy to ensure that lr is bounded.

Proof. Adopt the following strategy. Wait until some stage s > s2 at which
lr(s) > c. Define As2+1 = As2 ∪ {y(I0)} and Bs2+1 = Bs2 ∪ {x(I1)}. If at some
stage s′ > s, lr(s′) > c again then some element of [y(I0) − r, x(I1) + r] must
have been added to Wr,s′ . As r ∈ gA(I1, s2) ∩ gB(I0, s2), x(I1, r) ∈ Wr,s2 and

9.4. BASIC ALGORITHM 153

y(I0, r) ∈ Wr,s2 . This means that only elements of (c0, b1) could have been
added to Wr,s′ . Thus |Wr,s′(c0, b1)| > |As′(c0, b1)| and so by Lemma 9.3.7 we
have a strategy to ensure that lr is bounded.

If we consider the conditions of the previous lemma, items (i), (ii) and (iii)
are under our control. To be able to make use of this lemma we need a means
of ensuring (iv) occurs as well. Because of the importance of this item we will
introduce the following definition.

Definition 9.3.10. Let I0 = 〈b0, c0, s0, k0〉 and I1 = 〈b1, c1, s1, k1〉 be two di-
agonalisation intervals with I0 < I1, and s ≥ max(s0, s1). If R ⊆ R(I0) ∩
R(I1), then we will say that I0 and I1 are R-linked at stage s if for all r ∈ R,
|Wr,s(c0, b1)| ≥ |As(c0, b1)|.

We will use a similar definition for blocks.

Definition 9.3.11. Let B0 = 〈b0, c0, s0, k0〉 and B1 = 〈b1, c1, s1, k0〉 be two blocks
with B0 < B1. If R ⊆ R(B0) ∩ R(B1), then we will say that B0 and B1 are
R-linked at stage s if for all r ∈ R, |Wr,s(c0, b1)| ≥ |As(c0, b1)|.

In both cases we will say that blocks or diagonalisation intervals are r-
linked if they are {r}-linked.

We will make extensive use of blocks and diagonalisation intervals. The
following functions are useful because they represent the width of interval
required by Lemma 9.3.5 to build a diagonalisation interval, and the width of
interval required by Lemma 9.3.8 to build a block. We define:

wI(k) = (2k2 + 1)(6k + 2) and wB(k) = (2k2 + 1)k.

9.4 Basic algorithm

Now we are ready to explain the basic algorithm that we will use in our main
construction. This algorithm uses a combination of Lemmas 9.3.5 and 9.3.8.
First we will outline the algorithm. We are given some finite R ⊂ ω, and some
k > max(R). We will assume that for all r ∈ R, lr is unbounded. First by
some stage s, we build a whole sequence of blocks B0 = 〈b0, c0, s, k〉, B1 =

〈b1, c1, s, k〉, . . . ,Bn = 〈bn, cn, s, k〉 such that B1 < B2 < . . . < Bn. Each block
will encompass R. We will show that by making n large enough, for some
i ∈ {0, 1 . . . , n − 1}, for all r ∈ R, |Wr,s(ci, bi+1)| ≥ |As(ci, bi+1)|. Now we will
let B0 = Bi and let B1 = Bi+1. Hence B0 and B1 are R-linked at stage s.

Between any two adjacent blocks we will have built a diagonalisation in-
terval. We let I = 〈b, c, s, k〉 be the diagonalisation interval between B0 and

154 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

B1. We will also make sure that there is space between B0 and I to run the
basic algorithm again for any smaller k. To do this we need to know the space
required by the algorithm. We will define this inductively.

wA(k) =

2 if k = 0

(2k2 + 1)(wB(k) + wA(k − 1) + wI(k)) + wB(k) otherwise.

Lemma 9.4.1 (Basic Algorithm). Given any finite R ⊂ ω, and k > max(R), if at
some stage s0 for some [a, d] with d = a+wA(k)− 1, As0 [a, d] = Bs0 [a, d] = ∅, then
there is a strategy to ensure that either:

(1) For some r ∈ R, lr is bounded; or

(2a) Case k = 0: At some stage s1 > s0 there is a diagonalisation interval I =

〈b, c, s1, 0〉 such that:

(a) a ≤ b, and c ≤ d.

(b) As1 [a, d] = Bs1 [a, d].

(2b) Case k > 0: At some stage s1 > s0 there are two blocks B0 = 〈b0, c0, s1, k〉,
B1 = 〈b1, c1, s1, k〉 and a diagonalisation interval I = 〈b, c, s1, k〉 such that:

(a) a ≤ b0, B0 < I < B1, and c1 ≤ d.

(b) As1 [a, d] = Bs1 [a, d].

(c) R ⊆ R(B0) ∩R(B1) ∩R(I).

(d) B0 and B1 are R-linked at stage s1.

(e) There exists h ∈ (c0, b1) such that As1 [h, h+ wA(k − 1)] = ∅.

Proof. First if k = 0, then d = a + 1 and R = ∅. So we can set I = 〈a, d, s0, 0〉
and the conditions are met.

For k ≥ 1, assume that for all r ∈ R, lr is unbounded. First we use Lemma
9.3.8, to build n = 2k2 + 2 blocks B0, . . . ,Bn−1 that all encompass R. Set j =

wB(k) + wA(k − 1) + wI(k). For all i, 0 ≤ i < n, we use the interval [a + ij, a+

ij + wB(k)− 1] to build block Bi. Secondly, we use Lemma 9.3.5 to build n− 1

diagonalisation intervals. We use the interval [a+ ij + wB(k) + wA(k − 1), a+

ij + wB(k) + wA(k − 1) + wI(k)− 1] to build the diagonalisation interval Ii.
Let s′ be the stage at which these blocks and diagonalisation intervals are

complete. Let 〈bi, ci, s′, k〉 = Bi. Note that there are 2k2 + 1 intervals between
the blocks we have created. These intervals are (ci, bi+1) for 0 ≤ i ≤ n − 1.
Now if for any r ∈ R and i we have that |Wr,s′(ci, bi+1)| > |As′(ci, bi+1)| then as
As′(ci, bi+1) = Bs′(ci, bi+1) we can use Lemma 9.3.7 to ensure that lr is bounded.

9.4. BASIC ALGORITHM 155

Assume this is not the case. We can ensure that we have only operated at
stages s at which lr(s) ≥ d for all r ∈ R. Hence it must be that |Wr,s′ [a, d]| ≥
|As′ [a, d]|−2k. This means there can only be 2k intervals with |Wr,s′(ci, bi+1)| <
|As′(ci, bi+1)|. As 2k|R| ≤ 2k2 this means that for some i we have that

|Wr,s′(ci, bi+1)| = |As′(ci, bi+1)|

for all r ∈ R. We let B0 = Bi and B1 = Bi+1. Now we have that B0 and B1 are
R-linked at stage s′. We set I = Ii. Finally if we take h = a + ij + wB(k), then
As1 [h, h+ wA(k − 1)] = Bs1 [h, h+ wA(k − 1)] = ∅.

This basic algorithm is useful because we can use it to create linked inter-
vals.

Lemma 9.4.2. If the following hold:

(i). We apply the basic algorithm for some k,R ⊂ ω with k > max(R) to some suit-
able interval [a, d]. At stage s1 the algorithm halts giving us a diagonalisation
interval I and parameter h.

(ii). At stage s2 > s1 we diagonalise a P requirement by adding x(I) to As2 and
y(I) to Bs2 .

(iii). At stage s3 > s2 we are given k′ < k and R′ ⊂ ω with k′ > max(R′) such that
R ∩R′ ⊆ gA(I, s3) ∪ gB(I, s3).

(iv). We apply the basic algorithm again on the interval [h, h + wA(k − 1) − 1] for
k′ and R′. At stage s4 the algorithm halts giving us an interval I ′.

Then for all r ∈ R ∩ R′, I and I ′ are r-linked at stage s4 or there is a strategy to
ensure that lr is bounded above.

Proof. Let blocks B0 = 〈b0, c0, s1, k〉, B1 = 〈b1, c1, s1, k〉, diagonalisation inter-
val I = 〈b, c, s1, k〉 and parameter h be the results of the running the basic
algorithm for the first time with B0 < I < B1. Let I ′ = 〈b′, c′, s4, k

′〉 be the di-
agonalisation interval produced by running the basic algorithm a second time.
We have that: B0 < I ′ < I < B1 so that:

b0 < c0 < b′ < c′ < b < c < b1 < c1.

Take any r ∈ R ∩ R′. The basic algorithm guarantees that B0 and B1 are
R-linked at stage s1. Hence:

|Wr,s1(c0, b1)| ≥ |As1(c0, b1)|. (9.4.1)

156 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

Now if |As4(c, b1)| < |Wr,s4(c, b1)|we can force lr to be bounded by adopting
the strategy of Lemma (9.3.7). This is because the diagonalisation interval I
contains a block at the end (i.e. 〈c− k + 1, c, s1, k〉 is a block that encompasses
r). So let us assume that |As4(c, b1)| ≥ |Wr,s4(c, b1)|. As we make no changes to
A on the interval (c, b1) between s1 and s4, we have that:

|As1(c, b1)| = |As4(c, b1)| ≥ |Wr,s4(c, b1)| ≥ |Wr,s1(c, b1)|.

Further, as |Wr,s1 [b, c]| = |As1 [b, c]|, combining this with (9.4.1) gives that:

|Wr,s1(c0, b)| ≥ |As1(c0, b)|.

Now as r ∈ R′, any change to A made during the second running of the
algorithm is met by a change in W so we have that:

|Wr,s4(c0, b)| ≥ |As4(c0, b)|.

We know that at stage s4, |Wr,s4 [b′, c′]| = |As4 [b′, c′]|. Hence

|Wr,s4(c0, b
′)|+ |Wr,s4(c′, b)| ≥ |As4(c0, b

′)|+ |As4(c′, b)|.

Now if |Wr,s4(c0, b
′)| > |As4(c0, b

′)| then we can adopt the strategy of Lemma
9.3.7 and force lr to be bounded. Otherwise we would have that |Wr,s4(c′, b)| ≥
|As4(c′, b)| and hence I and I ′ are r-linked at stage s4.

9.5 The priority tree

We have now developed the basic tools we need to prove the main theorem.
We have an infinite number of R requirements, and an infinite number of P
requirements. These requirements will be ordered by priority as follows:

P0 > R0 > P1 > R1 > P2 > R2

We use this ordering so that when we run a strategy to meet a requirement
Pn, we only need to worry about the responses of those c.e. setsWr with r < n.

There are two possible outcomes for an R requirement. Firstly, that lr is
bounded. This is the finite outcome f . Secondly, that lr is unbounded. This
is the infinite outcome i. In order to successfully run a strategy to meet a
requirement Pn, we need to know, for all r < n, the outcome for requirement
Rr. As we cannot know this in advance, we form a priority tree T = {i, f}<ω.
If α ∈ T is a node of this tree, then α represents a guess as to the outcome of all
requirements Rr with r < |α|. The outcome node α is guessing for Rr is α(r).

9.5. THE PRIORITY TREE 157

We will order the tree with the i branch off any node to the left of the f
branch. Given two nodes α and β, then α has higher priority than β, if α is to
the left of β, or α is an initial segment of β.

If α ∈ T , then α will be assigned a status at all stages s. This status can be
one of: unassigned, building, waiting, diagonalised, or incorrect response.

In a standard tree argument, at each stage in the construction of A and B,
we would start at the top of the tree, with α = λ, visit this node, then check
to see if l|α| has increased since our last visit to αi (αi is the string formed by
appending i to the end of α). If it has, the next node we visit is αi. Otherwise
we visit αf . We would continue this process until we get to some specified
depth in the tree or some action on a node requires us to end the stage. The
construction that we use will follow this idea with some modifications.

The basic idea is the following. The first time we visit a node α, or the
first time we visit it after it has been injured, we assign α a work space [a, a +

wA(|α|)]. At this point we change the status of α from unassigned to building.
Each subsequent time we visit α, we apply a step of the basic algorithm with
k = |α| and R = {r < |α| : α(r) = i}. Now if α’s guess is correct then at some
stage the basic algorithm will terminate. At this point we set the status of α to
waiting.

We will define two functions that allow us to track the outputs of this basic
algorithm. These are: i : T × ω → ω and h : T × ω → ω. The value i(α, s)
takes is equal to the diagonalisation interval assigned to α at stage s if such an
interval exists. Otherwise i(α, s) is undefined. The function h(α, s) is defined
if and only if i(α, s) is defined. If defined, the value of h(α, s) is the position
in the work space at which the algorithm can be run again (the h parameter in
the outcome of the basic algorithm).

If α is visited at stage s, at this stage α has status waiting, and m|α| exceeds
the diagonalisation interval built for α, then we use the interval to meet re-
quirement P|α| through the diagonalisation strategy of Lemma 9.3.4. We set
the status of α to diagonalised.

However, this alone is not enough. As it stands, if we assume that α
guesses correctly, then for all r < α with α(r) = i there are two possible
ways that Wr could respond. Wr could follow A or follow B. In order to
ensure that Wr ≡cl A, or Wr ≡cl B we need to make use of linked intervals
and Lemma 9.3.9.

Consider the following. We have two nodes α and β. Node α has higher
priority than β and |β| > |α|. Node β is in the waiting stage and for β we have
constructed diagonalisation blocks B0, B1 and a diagonalisation interval Iβ .
Now assume that at some stage, β diagonalises, and Wr has responded for all

158 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

r < |α| such that β(r) = i. A new work space can be assigned to α between B0

and Iβ . We apply the basic algorithm again and construct a diagonalisation
interval Iα in this work space. By Lemma 9.4.2, either Iα and Iβ are r-linked
at this stage for all r such that α(r) = β(r) = i; or we can ensure that lr is
bounded and hence the guess made by α is incorrect. Now because these two
intervals are linked, if Wr followed A during the diagonalisation on Iβ , then
Wr must follow A again on any subsequent diagonalisation on Iα. If not then
there is a strategy to ensure that lr is bounded (see Lemma 9.3.9) .

To understand how the diagonalisation has been responded to, we will
define a function f : T × ω → 2<ω that describes how sets Wr respond to a
diagonalisation. The function f(γ, s) is defined if and only if γ has status at
stage s of diagonalised. In this case, if I = i(γ, s) then:

|f(γ, s)| = max{x < |γ| : ∀r ≤ x, (γ(r) = i)→ (r ∈ gA(I, s) ∪ gB(I, s))}+ 1.

We define |f(γ, s)| this way to make sure that all sets Wr where γ(r) = i

and r < |f(γ, s)| have responded. The rth bit of f(γ, s) is then defined by:

f(γ, s)(r) =

1 if γ(r) = i and r ∈ gA(I, s)

0 otherwise.

We will gain more control of how Wr responds to a diagonalisation by
attempting to give each node α the best possible work space. We will define a
function e : T ×ω → 2<ω that specifies the type of work space assigned to α at
stage s. The function e(α, s) will be defined if α has a work space at stage s. We
will ensure that if it is defined, then |e(α, s)| = |α|. We call e(α, s) the e-state of
α at stage s. We will try to maximise the e-state of a node (we can consider the
e-state as a binary value and try to maximise this value). We will ensure that
if at any stage s, for any r < |α|, we have that e(α, s)(r) = 1, then α has been
assigned a work space inside the work space that was assigned to some lower
priority node β. Further, at some point β diagonalised on this work space and
after the diagonalisation, Wr followed A. Hence if α diagonalises, then either
Wr will follow A or we have a strategy to ensure that lr is bounded by Lemma
9.4.2.

Now assume that Wr does not diagonalise as we would like. We have a
strategy to ensure that lr is bounded, but which node should we get to imple-
ment the strategy? We cannot give it to α because there is no guarantee that α
will be visited again. We let γ = α �� r and we get γ to implement the strategy.
We do this by assigning γ a status of incorrect response. Of course γ may not be
visited again but this would be caused by γ’s guess being wrong for an even
higher priority requirement.

9.6. CONSTRUCTION 159

If for some node α at some stage s we have that e(α, s)(r) = 1 for some
r < |α|, then α has been assigned a diagonalisation interval Iα that is linked
to the diagonalisation interval Iβ originally created for a lower priority node
β. It is useful to be able to reference this interval. Hence we will define a
function n : T ×ω → ω where n(α, s) is defined if and only if for some r < |α|,
e(α, s)(r) = 1. In this situation, we set n(α, s) to be the interval Iβ .

Following is a summary of the functions we are using to track different
aspects of the construction:

(i). f(α, s) – the responses to α’s diagonalisation.

(ii). e(α, s) – e-state of current work space assigned to α.

(iii). i(α, s) – the diagonalisation interval assigned to α at stage s.

(iv). h(α, s) – the position at which some a new work space can be built within
the current work space of α.

(v). n(α, s) – the diagonalisation interval that i(α, s) is linked to.

9.6 Construction

Our objective is to construct c.e. sets A,B such that:

(i). B ≤cl A.

(ii). For all p ∈ ω, Pp : A 6= ∆B
p .

(iii). For all r ∈ ω, Rr : If Wr = ΦA
r and B = ΨWr

r , then there exists a Γ such
that Wr = ΓB or A = ΓWr and γ(n) ≤ n+ r.

The requirement that B ≤cl A will be achieved by coding any B change
into A. Injuring a node α at stage s is equivalent to:

(i). Setting the status of α to unassigned.

(ii). Setting i(α, s+ 1), f(α, s+ 1), h(α, s+ 1), e(α, s+ 1), and n(α, s+ 1) to be
undefined.

We construct A and B as follows. At stage 0, set A0 = B0 = ∅, set all nodes
to have status unassigned. Set e(α, 0), i(α, 0), h(α, 0), n(α, 0) to be undefined for
all α.

We will perform one of three tasks at stage s+ 1. First we look to see if we
can force some lr to be bounded because Wr has not responded as required by

160 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

the e-state during some diagonalisation. If we cannot do this, then we look to
see if we can improve the e-state of any node. Finally, if we cannot do either
of the first two tasks, we access the requirement tree until we find some node
that needs attention. After completing one of these three tasks, we undertake
the steps listed in close stage.

Task One. Check if there exists a node γ such that for some r < |f(γ, s)|,

(i). f(γ, s)(r) = 0.

(ii). γ(r) = i.

(iii). e(γ, s)(r) = 1.

If such a node exists, then take γ to be the highest priority such node and let r
be the least such r. Let α = γ �� r. Set the status of α to incorrect response.

Task Two. Check if there exist any nodes α and β such that:

(i). The current status of α is waiting.

(ii). α has higher priority than β.

(iii). |α| < |β|.

(iv). e(α, s) < f(β, s) � |α|.

If such an α and β exist, then find the highest priority such α, and any such β.
We set e(α, s + 1) = f(β, s) � |α|. As f(β, s) is defined, β must have the status
diagonalised and so h(β, s) is defined. We reassign the interval [h(β, s), h(β, s)+

wA(|α|)] to be the work space for α. As α is now nested inside the interval once
assigned to β we set n(α, s+ 1) = i(β, s).

Task Three. We access the tree. Let α0,s = λ. We use substages t for all
0 ≤ t ≤ s. At substage t, run the basic module on node αt,s. If instructed to
end the stage, then do so. Otherwise, let r = |αt,s|. If:

lr(s) > max{lr(s′) : s′ < s and node αi was visited at stage s′}

then set αt+1,s = αt,si and injure all nodes extending αt,sf . Otherwise set
αt+1,s = αt,sf .

9.6. CONSTRUCTION 161

Close stage. If As+1 and Bs+1 have not been defined, then set As+1 = As and
Bs+1 = Bs. For all nodes δ that have not been injured at stage s, if e(δ, s+1) has
not yet been defined and e(δ, s) is defined, then set e(δ, s+ 1) = e(δ, s). Define
the functions i(δ, s+ 1), h(δ, s+ 1) and n(δ, s+ 1) similarly.

The basic module. Act according to the current status of α.

Status: unassigned. We take a larger than any value seen so far and d =

a+ wA(|α|). We assign the work space [a, d] to α. We change the status of α to
building. We set e(α, s) = 0|α|. We end the current task.

Status: building. We use the strategy of Lemma 9.4.1 with R′ = {r < |α| :

α(r) = i} and k′ = |α| on the interval assigned to α. We run a step of this
strategy each time the node α is visited. If this strategy has finished then we
let I ′ be the diagonalisation interval built and set i(α, s+ 1) = I ′.

Now if n(α, s) is defined, then we let I = n(α, s), and let β be the node
that I was built for. If we take k = |β| and R = {r < |β| : β(r) = i}, then the
conditions of Lemma 9.4.2 are met so if for any r ∈ R ∩ R′, I and I ′ are not
r-linked at the current stage we adopt a strategy to ensure that lr is bounded
above for the least such r. If I and I ′ are (R ∩ R′)-linked then we change the
status of α to waiting.

Each time this node is visited we injure all lower priority nodes and end
the current task.

Status: waiting. Let 〈b, c, s, k〉 = i(α, s). If m|α| < c, then finish the current
substage. Otherwise, if m|α| ≥ c we need to diagonalise. We set As+1 = As ∪
{x(i(α, s))} and Bs+1 = Bs ∪ {y(i(α, s))}. We set the status of α to diagonalised,
injure all lower priority nodes and end the current task.

Status: diagonalised. Finish the current substage.

Status: incorrect response. A node α is only assigned this status if some
diagonalisation has not occurred as expected for some γ � α. Let s′ be the
stage at which α was assigned this status. Since stage s′, α cannot have been
injured. Set r = |α| − 1. Because of the way we choose α in task 1, it must be
that α(r) = γ(r) = i, f(γ, s′)(r) = 0 and e(γ, s′)(r) = 1. Let I0 = i(γ, s′).

As e(γ, s′)(r) = 1 it must be that n(γ, s′) is defined. Let I1 = n(γ, s′) and
let β be the node that I1 was assigned to. As e(γ, s′)(r) = 1, it must be that
β(r) = i and r ∈ gA(I1, s).

162 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

As f(γ, s′)(r) = 0 and γ(r) = i it follows from the definition of f that
r ∈ gB(I0, s′) ⊆ gB(I0, s).

Hence r ∈ gA(I1, s) ∩ gB(I0, s). Further y(I0) 6∈ As, x(I1) 6∈ Bs. If I0 =

〈b0, c0, s0, k0〉 and I1 = 〈b1, c1, s1, k1〉 thenAs(c0, b1) = Bs(c0, b1) asA andB only
ever differ on the diagonalisation blocks.

Now finally let s′′ be the stage at which γ was last assigned the status wait-
ing so s′′ < s′ < s. The strategy adopted in the building phase ensured that I0

and I1 were r-linked at stage s′′. Since then there have been no changes to A
or B on the interval (c0, b1). Hence I0 and I1 are still r-linked at stage s. Thus
we can apply the strategy of Lemma 9.3.9 to ensure that lr is bounded. Each
time this node is visited we apply another step of this strategy, injure all lower
priority nodes and end the current task.

9.7 Verification

Note that the construction is careful about when nodes are injured. We only
injure a node β if a node α to the left of β is visited during task three, or if some
initial segment α of β makes a change to A and B. The disadvantage of this
approach is that it is possible to have a stage s at which a higher priority node
α is assigned a work space that occurs after the work space assigned to a lower
priority node β. Potentially, β could change A and B before the work space of
α. However, this can only happen if α has just been assigned the building or
incorrect response status. Any change toA andB before the work space will not
affect the strategies α might use, as these are localised to the work space. If α
is visited then β will be injured at this point. The reason we take this approach
is that we know that if β is injured by α, then as α must have been visited, for
all r such that α(r) = i, lr has increased. We will use this fact in the proof of
Lemma 9.7.8.

Lemma 9.7.1. During the construction, the tree is accessed infinitely often.

Proof. If not then there is only a finite number of nodes whose status is ever
changed from unassigned. As the actions of task one and two do not act on
nodes whose status is unassigned, one of these tasks must run an infinite num-
ber of times on one node. Take the highest priority node α for which this is
true. After tasks one and two have finished acting on all higher priority nodes,
task one can only act once on α, and task two can only act 2|α| times. This is a
contradiction and hence task three must run infinitely often.

Let TP , the true path, be the leftmost path of the tree accessed infinitely
often.

9.7. VERIFICATION 163

Lemma 9.7.2. If TP (r) = i then lr is unbounded.

Proof. Let γ = TP �� r. Let S be set of stages at which the construction visits
γ. If TP (r) = i then for all s ∈ S we have that lr(s) > max{lr(s′) : s′ ∈ S and
s′ < s}. S is infinite so lr is unbounded.

Lemma 9.7.3. If α � TP then requirement P|α| is met.

Proof. There is some stage s after which no node to the left of α is visited
during task three. After stage s no node to left of α will injure α, so α can only
be injured by nodes γ that are initial segments of α. We argue inductively
by assuming that all nodes γ where γ is an initial segment of α have finished
acting (that is to say they have status diagonalised or they have status waiting
on the last interval that is assigned to them and will not diagonalise). First we
claim that α is only assigned a work space a finite number of times. This holds
because α will only get a work space if it can improve its e-state. However, as
there are only 2|α| possible e-states for α it can be assigned at most 2|α| work
spaces.

If α is on the true path and α(r) = i then lr is unbounded (Lemma 9.7.2).
Hence at some stage the building component of the basic module is com-
pleted. Hence α must remain in the waiting or diagonalised states from some
point onwards. If α reaches the diagonalised stage, then m|α| is bounded so the
node |α| is meet. Similarly, if α remains in the waiting stage. Note that once
all higher priority nodes have finished acting, α cannot be given the status of
incorrect response. If this did happen then lr would be bounded for some r with
α(r) = i. Hence α would not be on the true path.

This lemma also proves that the true path is infinite because if α stays in
the waiting or diagonalised stage, then the next node is visited. Thus we have
met all requirements Pp and so we can conclude that A 6≤cl B.

Now we also need to show that if lr is unbounded then either Wr ≤cl B, or
A ≤cl Wr. First let us show that in this case TP (i) = r.

Lemma 9.7.4. If lr is unbounded, then TP (r) = i.

Proof. Let γ = TP � r. Let S be the set of stages when the construction visits γ.
As lr is unbounded, liminf lr = ∞ by Lemma 9.2.2. Hence given any x, for all
but finitely many s ∈ S, lr(s) > x. Hence there must be infinitely many s ∈ S
such that:

lr(s) > max{lr(s′) : s′ < s and γi was visited at stage s′}.

Thus the node γi is visited infinitely often and so γi ≺ TP and TP (r) = i.

164 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

Now take any r with lr unbounded. Let α = TP �� r (so α(r) = i). Let s1 be
a stage at which all nodes of priority greater than or equal to α have finished
acting. Let σ be the maximum r + 1-bit binary value such that {γ ∈ 2<ω :

∃s, f(γ, s) � |α| = σ} is infinite.

Lemma 9.7.5. If for any q ≤ r, TP (q) = f , then σ(q) = 0.

Proof. If σ(q) = 1, then for infinitely many γ, there exists an s for which we
have that f(γ, s)(q) = 1. This implies that for infinitely many γ with γ(q) = i,
for some stage s′ a diagonalisation interval i(γ, s′) is constructed. However,
the construction of such a diagonalisation interval requires that lq is at some
stage at least the right end point of the interval. Hence lq is unbounded and
by Lemma 9.7.4, TP (q) = i.

We will say that at stage s a node γ will not diagonalise if the status of γ
will never change to diagonalised after stage s. Note that it is possible for the
status of γ at stage s to be diagonalised. However, in this case, if the status of γ
changes, it can never again be set to diagonalised.

Lemma 9.7.6. There exists a stage s2 such that for all γ ∈ {π ∈ 2<ω : ∃s, f(π, s) �

|α| > σ}, γ will not diagonalise.

Proof. There is only a finite number of such nodes γ. The lemma holds for
those nodes to the left of the true path as these are visited finitely often. The
lemma holds for those nodes on the true path as these are only injured finitely
often. Assume some such node γ is to the right of the true path. Then once
TP � |γ| reaches the waiting stage, and will no longer be injured, it follows
that if γ does change its status to diagonalised, then the length of agreement
of m|γ| has increased sufficiently so that TP � |γ| will change its status to
diagonalised as well. This will injure γ. Now γ will never get the opportunity
to diagonalise again as m|γ| will not exceed any new diagonalisation interval
assigned to γ.

Let sα = max(s1, s2).

Lemma 9.7.7. Given α, sα and σ, for any x we can compute a stage s such that for
all nodes β assigned diagonalisation intervals that overlap with [0, x] and may act on
that interval after stage s:

(i). β � α; and

(ii). Either:

(a) e(β, s) � |α| = σ; or

9.7. VERIFICATION 165

(b) β will not diagonalise after stage s.

Proof. We know that α is on the true path so we can run the construction until
a stage s3 > sα at which all nodes to the right of α are not allocated any interval
overlapping with [0, x]. As s3 > sα > s1 all nodes of priority equal to or higher
than α have finished acting. Thus the only nodes that can act on the interval
[0, x] are those that extend α. As s3 > sα > s2 any node γ with e(γ, t) > σ for
some t will not diagonalise.

Assume that there is some node β that extends α, such that e(β, s) � |α| < σ

and β is assigned a diagonalisation interval that overlaps with [0, x]. Take β to
be of highest priority of such nodes. Then we continue running the construc-
tion until some stage s4 at which for some γ such that |γ| > |β|, and the status
of γ at stage s3 is unassigned and f(γ, s4) � |α| = σ. This must occur by our
choice of σ. If γ has higher priority than β, then β has been injured (because
γ must have changed its status to building at some point). Hence β must have
been assigned an interval beyond x. Now if β has a higher priority than γ,
and β still has not diagonalised, then β will be moved to the new interval. By
repeating this process, we can continue until a stage s at which there are no
such nodes β.

Lemma 9.7.8. If TP (r) = i, then Wr ≡cl A or Wr ≡cl B.

Proof. Let r = 〈W,Φ,Ψ〉. Let α = TP �� r. To show that either W ≡cl A or
W ≡cl B, we will construct a Turing functional whose use is bounded by x+r.
We need the following finite amount of information. Let α = TP �� r. Define
σ and sα as above.

If σ(r) = 1, then we will show that W ≡cl A. Given W �� x + r, we
run the construction until a stage s when the conditions of Lemma 9.7.7 are
met on the interval [0, x]. Further we can assume that s is a stage at which
Ws �� (x+ r) = W �� (x+ r).

We claim that As �� x = A �� x. If this is not the case then it must be
that some node β adds a number to A �� x without changing W �� (x + r).
However each change to A occurs with a change to B. Any node that will act
after the stage s on the interval [0, x] must extend α. So if β makes a change
to A and B, no other node will act during task three until α is visited again.
Visiting α requires that the length of agreement lr recovers. The length of
agreement lr can only recover with a change to W . Thus any change to A

must have a corresponding change to W . Given this, the only possibility for
As �� x 6= A �� x is if a node β is assigned a diagonalisation interval I that
overlaps with [0, x], and x(I) ≤ x < x + r < y(I, r) and x(I) ∈ A \ As and
y(I, r) ∈ W \Ws. Note that by Lemma 9.7.7, e(β, s) � |α| = σ.

166 CHAPTER 9. COMPUTABLE LIPSCHITZ REDUCIBILITY

If this occurs, there must be some stage s′ at which α is visited again such
that x(I) ∈ As′ and y(I, r) ∈ Ws′ . Further, for all q ≤ r where α(q) = iwe must
that lq has recovered. Thus, provided β has not been injured, |f(β, s′)| ≥ |α|.
But in this case f(β, s′)(r) = 0 (as y(I, r) ∈ Ws′) but e(β, s′)(r) = σ(r) = 1.
Hence some initial segment γ of α will have its status changed to incorrect
response and will act the next time it is visited. This is a contradiction as we
assumed s > s1 and all nodes with priority greater than or equal to α had
finished acting by stage s1.

Further, β cannot be injured between stage s and s′. This is because β can
only be injured by a higher priority node during task three. But no node to the
left of α can be visited and no initial segment of αwill act. Thus the only higher
priority nodes that can injure β are those that extend α. But these nodes cannot
be visited until at least stage s′, at which the lengths of agreement recover.

If σ(r) = 0, then we will show that W ≡cl B. Given B �� x + r, run the
construction until a stage swhen the conditions of Lemma 9.7.7 are met on the
interval [0, x]. Further we can assume that s is a stage at which Bs �� (x+ r) =

B �� (x+ r).
We claim that Ws �� x = W �� x. Again if β is a node that is assigned to an

interval that overlaps with [0, x], then β � α so β(r) = i. If Ws � x 6= W � x

then there must be some node β such that if I = i(β, s) then x(I, r) ≤ x <

x+ r < y(I) and x(I, r) ∈ W \Ws and y(I) ∈ B \Bs.
For this to occur there must be some stage s′ at which α is visited again

such that x(I, r) ∈ Ws′ and y(I) ∈ Bs′ .
Again, β cannot be injured between stages s and s′. Hence it must be that

|f(β, s′)| ≥ |α| but also, f(β, s′)(r) = 1 6= σ(r) = 0. So we know that f(β, s′) �

|α| 6= σ. Further, f(β, s′) � |α| 6> σ as such β will not diagonalise after stage
s > s2 . Hence it must be that f(β, s′) � |α| < σ = e(β, s′). If this is true, there
must be some r′ < |α| such that f(β, s′)(r′) = 0 and e(β, s′)(r′) = 1. Thus some
initial segment γ of α will have its status changed to incorrect response. Again
this is contradiction.

Proof of Theorem 9.1.4. By construction we have that B ≤cl A. By Lemma 9.7.3
requirement Pp is met for all p ∈ P . Now suppose that for some requirement
r = 〈W,Φ,Ψ〉we have that ΦA = W and ΨW = B. In this case lr is unbounded
by Lemma 9.2.2 and so TP (r) = i by Lemma 9.7.4. Thus by Lemma 9.7.8 either
W ≡cl A or W ≡cl B. So we have met requirement Rr for all r ∈ ω.

Chapter 10

Indifferent Sets for Comeager Classes

10.1 Overview

In this chapter we will apply concepts developed in the study of randomness
to classical computability theory. Any Martin-Löf random sequence has a cer-
tain robustness; it can be changed at finitely many places and the resulting se-
quence is also Martin-Löf random. Figueira, Miller and Nies showed that this
robustness could be extended in the following manner. Given a Martin-Löf
random sequence A, there is some infinite set of locations I such that no mat-
ter how A is changed on the locations specified by I , the resulting sequence
is also Martin-Löf random. They termed the set I an indifferent set for A with
respect to Martin-Löf randomness [34].

Results about randomness can often be interpreted as results about forcing
with closed sets of positive measure. A central notion of forcing used in com-
putability theory is Cohen forcing. In Cohen forcing, comeager classes play
an analogous role to closed sets of full measure. Our objective for this chap-
ter is to investigate indifferent sets for comeager classes in Cantor space and
particularly for the important comeager classes of 1-generic sets and weakly
1-generic sets.1

In order to study indifferent sets for some notion it is essential that the
class of sets with this property has cardinality 2ℵ0 . This is certainly true for
Martin-Löf randomness because any closed set of positive uniform measure
has size 2ℵ0 . Meager and comeager sets were introduced by Baire and while
they have a wider definition, we will restrict our attention to Cantor space. A
subset of Cantor space is comeager if it contains the intersection of a countable
family of open dense sets. A subset is meager if its complement is comeager.
Any comeager set has cardinality 2ℵ0 .

In Section 10.3, we will consider universal indifferent sets for comeager

1We will define the notion of 1-genericity and other key concepts in Section 10.2.

168 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

classes in Cantor space. If A is a comeager class in Cantor space, then a uni-
versal indifferent set for A is a set I such that for all A ∈ A, no matter how
A is changed on the bits specified by I , the resulting sequence remains in A.
We will show in Theorem 10.3.3 that any comeager class in Cantor space con-
tains a comeager class with a universal indifferent set. The classes of weakly
n-generic sets are natural examples of comeager classes in computability the-
ory. We will establish in Theorem 10.3.4, that for any n, the class of weakly
n-generic sets has a universal indifferent set.

The class of all 1-generic sets is arguably the most important example of a
comeager class in computability theory. Constructions based on Cohen forc-
ing can often be adapted to construct a 1-generic set. Though they did not
use this terminology, Jockusch and Posner showed that there exist 1-generic
sets that have indifferent sets [43]. Figueira, Miller and Nies were aware
that all 1-generic sets have indifferent sets, though this result was not pub-
lished.2 Fitzgerald established a few preliminary results on indifferent sets
for 1-generic sets while he was a student at Victoria University of Welling-
ton. These results were never published and we will present two of them
here. We cannot investigate the question of indifferent sets for 1-generic sets
using the approach of Section 10.3 because Miller has established that there
is no universal indifferent set for the class of all 1-generic sets. We present
his result in Theorem 10.3.6. Instead we will look for an indifferent set for a
given 1-generic set. In Theorem 10.4.5, we establish a strong existence result
for indifferent sets for 1-generic sets. All 1-generic sets G have an indifferent
set I that is also 1-generic. Further, such a set I can be found below any set
A ∈ GL2 that bounds G. An easy corollary to Theorem 10.4.5 is that given
any countable class of 1-generic sets, there is a set which is indifferent for all
elements of this class. Fitzgerald established that any ∆0

2 1-generic set has a
co-c.e. indifferent set. We present his result in Theorem 10.4.8.

One use of indifferent sets is as coding locations. In Corollary 10.4.7, a
corollary to Theorem 10.4.5, we use encoding with indifferent sets to show
that if X ∈ GL2, then for every 1-generic set G such that X ≥T G, there is
another 1-generic set Ĝ such that X ≡T G⊕ Ĝ.

In Section 10.5 we examine the relationship between sparseness and indif-
ferent sets. Fitzgerald showed that any indifferent set for a 1-generic set must
be hyperimmune. In Theorem 10.5.3 we establish a spareness condition that
is sufficient for a set to be the indifferent set for some 1-generic set.

An implication of Theorem 10.4.5 is that any 1-generic set has a GL1 indif-

2This was observed by the anonymous referee of their paper.

10.2. BACKGROUND AND NOTATION 169

ferent set. This contrasts strongly with indifferent sets for Martin-Löf random-
ness which must be complete [34]. The fact that indifferent sets for 1-generic
sets can be computationally weak raises the possibility that a 1-generic set
might be able to compute its own indifferent set. We investigate this ques-
tion in Section 10.6 for ∆0

2 1-generic sets. We establish that some but not all
∆0

2 1-generic sets have this property. We consider which c.e. sets bound a 1-
generic set with this property. We show that any c.e. set which is not of totally
ωω-c.a. degree bounds such a 1-generic set. On the other hand no c.e. set of
totally ω-c.a. degree bounds such a 1-generic set. These results are presented
in Theorems 10.6.8 and 10.6.16 respectively.

In Section 10.7, we consider similar questions for weakly 1-generic sets.
These results offer interesting contrasts with those for 1-generic sets. First
in Theorem 10.7.1 we show that any hyperimmune set I computes a weakly
1-generic set G that I is an indifferent set for. This tells us that I is an indiffer-
ent set for some weakly 1-generic set if and only if I is hyperimmune (Corol-
lary 10.7.2). In Theorem 10.7.4 we show that if a set G is weakly 1-generic and
I is a set whose principal function escapes domination by any G-computable
function then I is an indifferent set for G. Further, we show in Theorem 10.7.5,
just as is the case for 1-generic sets, that if A ∈ GL2 then A computes an in-
different set for any weakly 1-generic set it bounds. A difference to the case
of 1-generic sets is provided in Theorem 10.7.6. In this theorem we show that
any ∆0

2 weakly 1-generic set computes a set it is indifferent to.
We conclude in Section 10.8 with some open questions.

10.2 Background and notation

GivenA andX ⊆ ω, we will write bothA[X] andA∆X to denote the symmetric
difference of A and X , i.e. the set (A\X)∪ (X \A). This is the set which differs
from A at precisely the elements of X . If σ, τ ∈ 2<ω, then by σ∆τ we mean
σ0ω∆τ0ω. Our central definition is the following.

Definition 10.2.1. Let A ⊆ 2ω and I ⊆ ω.

(i). Take A ∈ A. If for all X ⊆ I we have that A[X] ∈ A then we call I an
indifferent set for A with respect to A.

(ii). We call I a universal indifferent set for A if I is an indifferent set for all
A ∈ Awith respect to A.

We will be interested in the case in which A is comeager, i.e. contains the
intersection of countably many open dense subsets. We denote the eth c.e. set

170 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

of finite strings by Se.
Let A ⊆ ω and S ⊆ 2<ω. We will say that A meets S if (∃σ ≺ A)(σ ∈ S), and

that A avoids S if (∃σ ≺ A)(∀τ ∈ S) (σ 6� τ). We will also say that a string σ

meets S if for some τ � σ, τ ∈ S, and σ avoids S if no string comparable with
σ is in S. We call a set of strings S dense if for all σ ∈ 2<ω there exists τ ∈ S

such that τ � σ.

Definition 10.2.2. IfG ⊆ ω meets or avoids all sets of finite strings computably
enumerable in ∅n−1, then G is n-generic. If G meets all dense sets computably
enumerable in ∅n−1, then G is weakly n-generic.

For an introduction to n-generic sets see survey papers by Jockusch and
Kumabe [42, 49] and Kumabe’s thesis [48]. Weakly n-generic sets were intro-
duced by Kurtz [51]. In this chapter we will focus our study on 1-generic and
weakly 1-generic sets.

A function f is ω-c.a. if f(x) = lims g(x, s) for some computable g and there
is some computable h such that for all x,

|{s : g(x, s+ 1) 6= g(x, s)}| ≤ h(x).

A Turing degree is a is array non-computable, or ANC if for any ω-c.a. function
g, there is a function f ≤T a such that f escapes domination by g. This class
of degrees was introduced by Downey, Jockusch and Stob [32, 33]. A degree
a is in GLn if an = (a ∨ ∅′)n−1. We write GLn for the complement of GLn. A
well-known fact is that the degree of any 1-generic set is GL1.

The use of GL2 degrees and ANC degrees to perform Cohen forcing con-
structions was noted by Jockusch and Posner [43], and by Downey, Jockusch
and Stob [33] respectively. Forcing using GL2 degrees makes use of the fol-
lowing characterisation of Martin: a ∈ GL2 if and only if for any function
g ≤T a ∨ ∅′ there is a function f ≤T a such that f escapes domination by g

[62]. The following theorem of Cai and Shore extends these ideas and helps us
understand the computational power required to undertake the forcing con-
structions used in this chapter [10]. An A-computable notion of forcing P , is a set
P of forcing conditions with a partial order≤P on P which contains a greatest
element 1, such that P is computable in A. Let C be a sequence of dense sub-
sets of P . A sequence 〈pi〉 is C-generic if it meets each element of C and for all
i, pi ≥P pi+1.

Theorem 10.2.3 (Cai, Shore). Suppose that P is an A-computable notion of forcing,
that C = 〈Dn〉 is a sequence of sets dense in P , and that there is a function d(x, y) =

Φ(A⊕∅′;x, y) witnessing their density, i.e. ∀p ∈ P ∀n(d(p, n) ≤P p∧d(p, n) ∈ Dn).

10.2. BACKGROUND AND NOTATION 171

(i). If A ∈ GL2 then there is a C-generic sequence computable in A.

(ii). IfA ∈ ANC and the use from ∅′ in the computation of Φ(A⊕∅′;x, y) is bounded
by a function computable in A, then there is also a C-generic sequence com-
putable in A.

A function computable in ∅′ with use bounded by a computable func-
tion is called wtt-reducible to ∅′. A c.e. degree a is of totally ω-c.a. degree if
for all f ≤T a, f is ω-c.a. The class of totally ω-c.a. sets was introduced by
Downey, Greenberg and Weber [27] and also studied by Barmpalias, Downey
and Greenberg [5]. A forthcoming monograph of Downey and Greenberg gen-
eralises this concept [26]. The terminology below follows that monograph.

Let R = (R,≤R) be a computable well-ordering of a computable set R.
AnR-computable approximation of a function f is a computable approximation
〈fs〉s<ω of f , equipped with a uniformly computable sequence 〈os〉s<ω of func-
tions from ω to R such that for all x and s:

• os+1(x) ≤R os(x).

• If fs+1(x) 6= fs(x), then os+1(x) <R os(x).

The sequence 〈os〉s<ω, together with the well-foundedness of R, witnesses
the fact that the approximation 〈fs〉s<ω indeed reaches a limit.

Definition 10.2.4. A function f : ω → ω is R-computably approximable (or R-
c.a.) if it has anR-computable approximation.

It is possible to use this definition to establish a hierarchy in the Turing
degrees by restricting ourselves to certain well-orderings. Every ordinal α has
a unique expression as the sum

ωα1n1 + ωα2n2 + · · ·+ ωαknk

where ni < ω are nonzero and α1 > α2 > · · · > αk are ordinals. This is called
the Cantor normal form of α. Further,

ε0 = sup
{
ω, ωω, ωω

ω

, ωω
ωω

, . . .
}

is the least ordinal γ such that ωγ = γ, so for all α < ε0, every ordinal appearing
in the Cantor normal form of α is strictly smaller than α.

Let R = (R,<R) be a computable well-ordering, and let | · | : R → otp(R)

be the unique isomorphism between R and its order-type. The pullback to R
of the Cantor normal form function is the function nfR whose domain is R
and is defined by letting

nfR(z) = 〈(z1, n1), (z2, n2), . . . , (zk, nk)〉

172 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

where ni < ω are nonzero, zi ∈ R, z1 >R z2 >R · · · >R zk, and

|z| = ω|z1|n1 + ω|z2|n2 + · · ·+ ω|zk|nk.

Definition 10.2.5. A computable well-ordering R is canonical if its associated
Cantor normal form function nfR is also computable.

Downey and Greenberg have established that for every ordinal α ≤ ε0

there is a canonical well-ordering of order-type α and further that any two
canonical well-orderings of order-type α are computably isomorphic. Hence
we can define a function f as being α-c.a. if it is R-c.a. for some canonical
well-ordering of order-type α.

Definition 10.2.6. If α ≤ ε0, then a Turing degree a is totally α-c.a. if every
function f ∈ a is α-c.a.

It is not difficult to show that a is totally α-c.a. if and only if every function
f ≤T a is α-c.a. The following theorem establishes that the α-c.a. degrees do
indeed form a hierarchy.

Theorem 10.2.7 (Downey, Greenberg [26]). Let α ≤ ε0. There is a totally α-c.a.
degree which is not totally γ-c.a. for any γ < α if and only if α is a power of ω. If α
is a power of ω then in fact there is a c.e. degree which is totally α-c.a. but not totally
γ-c.a. for any γ < α.

10.3 Universal indifferent sets

We will begin by looking at indifferent sets for comeager subsets of Cantor
space. Not all comeager subsets of Cantor space have a universal indifferent
set. A trivial example is the set comprised of all 1-generic sets and the empty
set. If this comeager set had a universal indifferent set I , then we could add
the least element of I to the empty set and obtain a finite 1-generic set.

However, we will show that any comeager subset of Cantor space contains
a comeager subset with a universal indifferent set. In order to prove this, we
will establish a property of a countable class of dense sets of strings S, that
will ensure that the class of sets that meet all elements of S has a universal
indifferent set.

Let S be a dense set of strings. A typical approach to constructing a se-
quence A that meets S is to find some string σ ∈ S and then fix σ to be an
initial segment of A. However, as the following lemma shows, the segment
that we fix does not need to be an initial segment of A.

10.3. UNIVERSAL INDIFFERENT SETS 173

Lemma 10.3.1. If S is a dense set of strings, then for all n ∈ ω, there some τn ∈ 2<ω

such that for all X ∈ 2ω, if (X � n)τn ≺ X then X meets S.

Proof. Fix some enumeration of S. To find τn, let σ1, . . . , σk be a list of all finite
strings of length n. Define ρ1 such that σ1ρ1 ∈ S and ρ1 is the first string
observed with this property. Once ρi is defined, if i < k, define ρi+1 such that
σi+1ρ1ρ2 . . . ρiρi+1 ∈ S and ρi+1 is the first string observed with this property.
Define τn = ρ1 . . . ρk.

Take any X ⊆ ω such that (X � n)τn ≺ X . Fix the i such (X � n) = σi. Thus
σiρ1 . . . ρi ≺ X and hence X ∈ S.

Given a dense set of strings S, let τi witness the truth of Lemma 10.3.1 for
each i ∈ ω. We can inductively define a pair of functions t : ω → 2<ω and
l : ω → ω by

l(0) = 0, t(0) = τ0, l(n+ 1) = l(n) + |t(n)|, t(n+ 1) = τl(n+1).

If for any n we have that (X � l(n))t(n) ≺ X , then X meets S. This section
will make use of pairs of function of this type so we will introduce the follow-
ing term. We call a pair of functions (t, l) ∈ (2<ω)ω × ωω suitable for S if for
all n:

(i). l(n+ 1) = l(n) + |t(n)|.

(ii). For all X ∈ 2ω if (X � l(n))t(n) ≺ X , then X meets S.

Let S be a class of dense sets of strings. We say that S has property (?) if
for all S ∈ S there is a pair of functions (t, l) suitable for S such that for all n,
the following set is also in S :

{στρ : ∃m > n[|σ| = l(2m) ∧ τ = t(2m) ∧ ρ = t(2m+ 1)]}. (10.3.1)

Lemma 10.3.2. If S = {Si}i∈ω is a countable sequence of dense sets of strings with
property (?), then there is a universal indifferent set for A = {X ⊆ ω : (∀i)X meets
Si}.

Proof. For each i ∈ ω, we can take (ti, li) to be a pair of suitable functions for
Si that witness property (?). Let I be an infinite set such that:

(∀i)(∀∞n) |[li(2n), li(2n+ 2)− 1] ∩ I| ≤ 1.

We claim that I is a universal indifferent set for A. Let A ∈ A and X ⊆ I .
Consider any dense set Si. Now because of property (?) there are infinitely
many n such that (X � li(2n))ti(2n)ti(2n+ 1) ≺ A. Now for almost all of these
n we have that |I ∩ [li(2n), li(2n+ 2)− 1]| ≤ 1. For such n either

174 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

(i). A[X] � (A[X] � li(2n))ti(2n); or

(ii). A[X] � (A[X] � li(2n+ 1))ti(2n+ 1).

In either case we have that A[X] meets Si. Thus A[X] ∈ A.

Theorem 10.3.3. Let A ⊆ 2ω be comeager. There exists B ⊆ A and I ⊆ ω such that
B is comeager and I is a universal indifferent set for B.

Proof. Let S = {Si}i∈ω be a countable sequence of dense sets of strings such
that {X ⊆ ω : (∀i)X meets Si} ⊆ A.

We extend S as follows. Let S0 = S. We build Sn+1 from Sn as follows.
For each S ∈ Sn we choose a pair of functions (t, l) suitable for S and add
S along with the countably many dense sets of strings defined by (10.3.1) to
Sn+1. Then Sω =

⋃
n Sn has property (?) and is a countable set of dense sets of

strings. Thus there is a universal indifferent set for B = {X ⊆ ω : (∀S ∈ Sω)X

meets S}.

If a set X can enumerate an open dense subset S, i.e. S = We(X) for some
e, then using the procedure of Lemma 10.3.1, X can uniformly in e compute a
pair of functions (t, l) that are suitable for S.

Theorem 10.3.4. Fix n ≥ 1. If B ≥T ∅n−1 and B′ ≥T ∅n+2 then B computes a
universal indifferent set for the class of all weakly n-generic sets.

Proof. Fix n ≥ 1 and let A = ∅n−1, let {Si}i∈ω be an A computable enumeration
of all c.e. sets of strings enumerable in A. Using A as an oracle, we can in a
uniform manner define (ti, li) such that if Si is a dense set of strings, then

(i). (ti, li) is suitable for Si.

(ii). All sets defined from (ti, li) as in (10.3.1) are also enumerable in A.

Hence the collection of open dense sets enumerable in A has property (?).
The set D = {i : Si(A) is dense } is ∆0

2(B) because B′ ≥T A′′. Let Ds be a
B-computable approximation to D.

From B we define x0 = 0. Once xs is defined, we find some t ≥ s such that
for all e ≤ s, one of the following is true:

(i). Dt(e) = 0; or

(ii). For some ni, we have li(2ni)[t] ↓> xs.

We let xs+1 be the least element of ω greater than both xs and max{li(2ni) :

li(2ni)[t] ↓ and e ≤ s}. We let I = {xn : n ∈ ω}. Now because our approxima-
tion to D must converge, I is well defined and has the desired property.

10.4. INDIFFERENCE AND 1-GENERICITY 175

Corollary 10.3.5. If A,B ∈ 2ω with A ≤T B and A′′ ≤T B′ then B computes a
universal indifferent set for the class of open dense sets enumerable in A.

Proof. The restriction of A to ∅n for some n is not necessary.

Theorem 10.3.3 tells us that the class of 1-generic sets contains a comea-
ger subset with a universal indifferent set. Theorem 10.3.4 provides a specific
example, namely the class of all weakly 2-generic sets. However, is there a uni-
versal indifferent set for class of 1-generic sets itself? Miller, in unpublished
work, has proved that there is not.

Theorem 10.3.6 (Miller). Let I ⊆ ω be infinite. There are sets G,A ⊆ ω such that
G is 1-generic, A is not 1-generic, andG∆A ⊆ I . In other words, I is not universally
indifferent for the class of 1-generic sets.

Proof. We define the characteristic function of G in stages. At stage 0 we pick
some element i0 ∈ I greater than 0. We define σ0 = 0n10∅′(0) where n is chosen
so that |0n1| = i0 i.e. i0 is the location of the 0 in σ0 before the coding location
of ∅′(0).

At stage s+ 1, we define σs+1 extending σs as follows. If σs avoids Ss, then
define τs = λ. If σs does not avoid Ss then let τs be the first string enumerated
into Ss that extends σs. We take is+1 ∈ I such that is+1 > |τs| and we now
define σs+1 = τs0

n10∅′(s + 1) where n is chosen so that |τs0n1| = is+1. Let G =⋃
n σn. The construction ensures that the setG is 1-generic. DefineX = {in : σn

avoids Sn}. DefineA = G[X]. FromA and σn, we can determine whether or not
σn meets or avoids Sn. Thus we can determine σn+1 and so we can determine
∅′(n+1). This shows thatA ≥T ∅′ and consequentlyA cannot be 1-generic.

10.4 Indifference and 1-genericity

We know that there is no universal indifferent set for the class of all 1-generic
sets. However we will establish that all 1-generic sets have an indifferent set
with respect to the class of all 1-generic sets. It is known that there exists 1-
generic sets with indifferent sets.

Theorem 10.4.1 (Jockusch and Posner [43]). If A ∈ GL2, then there exists G, I
Turing below A such that G is 1-generic and I is an indifferent set for G.

The terminology used by Jockusch and Posner is different. They con-
structed a function f : ω → {0, 1, 2} such that f is 1-generic and any char-
acteristic function obtained from f by replacing 2’s with 0’s and 1’s is also
1-generic. Given such an f , let G = {x : f(x) = 1} and I = {x : f(x) = 2}.

176 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

Clearly I is an indifferent set for G. This result can be strengthened by the
work of Cai and Shore.

Theorem 10.4.2 (Jockusch and Posner; Cai and Shore [10, 43]). If A ∈ ANC

then there exists G, I Turing below A such that G is 1-generic and I is an indifferent
set for G.

We will strengthen Jockusch and Posner’s result in a different direction.
Theorem 10.4.5 establishes that any X ∈ GL2 computes an indifferent set for
any 1-generic set it bounds. We make use of the following well-known lemma.

Lemma 10.4.3. If G is a 1-generic set and X ⊆ ω is finite, then G[X] is 1-generic.

Given a 1-generic set G and e, n ∈ ω we can find some point m such that no
matter how we change G on the first n bits, the resulting set meets or avoids
Se after m bits.

Lemma 10.4.4. Let G be a 1-generic set. There is a function fG : ω2 → ω with
fG ≤T G ⊕ ∅′ such that for all n, e ∈ ω, for all X ⊆ {0, 1, . . . , n − 1}, we have that
G[X] � fG(n, e) meets or avoids Se.

Proof. Take any n and e and let X1, X2, . . . , X2n be a list of all subsets of the
set {0, 1, . . . , n − 1}. For all i, 1 ≤ i ≤ 2n, we have that G[Xi] is 1-generic as
Xi is finite. Hence there is some mi such that G[Xi] � mi meets or avoids Se.
This mi is computable in G ⊕ ∅′ because we can query whether successive
initial segments of G[Xi] meet or avoid Se until we find one that does. Define
fG(n, e) = max{mi : 1 ≤ i ≤ 2n}.

We are now ready to give our basic existence result for indifferent sets for
1-generic sets.

Theorem 10.4.5. Given A ≥T G where A ∈ GL2 and G is a 1-generic set, there
exists I ≤T A such that I is an indifferent set for G with respect to 1-genericity and
I is 1-generic.

Proof. Let G be 1-generic. We can make I both 1-generic and an indifferent set
for G by satisfying the following requirements for all e ∈ ω.

Qe: I meets or avoids Se.

Re: For all X ⊆ I we have that G[X] meets or avoids Se.

These requirements can be met by constructing an I that meets the follow-
ing dense sets:

Ce = {σ ∈ 2<ω : σ meets or avoids Se}, and

10.4. INDIFFERENCE AND 1-GENERICITY 177

De = {σ ∈ 2<ω : ∀X ⊆ σ,G[X] � |σ|meets or avoids Se}.

We say X ⊆ σ if X ⊆ {i : i < |σ| ∧ σ(i) = 1}.
In this proof the notion of forcing that we use is just Cohen forcing so

P = 2<ω and σ ≤P τ if σ � τ . There is a function computable in ∅′ that uni-
formly witnesses the density of the sequence of sets 〈Cn〉: let c(σ, e) be the first
extension of σ to enter Se if such an extension exists, or σ otherwise. There is
also a function computable inG⊕∅′ that witnesses the density of the sequence
of sets 〈Dn〉. We define d(σ, e) = σ0fG(|σ|,e)−|σ|.

If I � d(σ, e) and X ⊆ I , then G[X] � |d(σ, e)| can only differ from G on the
first |σ| bits. As fG(|σ|, e) = |d(σ, e)| by Lemma 10.4.4, G[X] � |d(σ, e)| meets or
avoids Se.

By applying Theorem 10.2.3, there is an A-computable ≤P decreasing se-
quence 〈σi〉 that meets all sets in the sequences 〈Ce〉 and 〈De〉. Hence taking
I = limi σi, we have that I is 1-generic and I is an indifferent set for G.

Corollary 10.4.6. If {Gi}i∈ω is a countable family of 1-generic sets andA ≥T ⊕i∈ωGi

with A ∈ GL2, then there is an I ≤T A such that for all i ∈ ω, I is an indifferent set
for Gi.

Proof. We simply replace the sequence of sets 〈De〉with

De,i = {σ ∈ 2<ω : ∀X ⊆ σ,Gi,[X] � |σ|meets or avoids Se}.

Now because the sequence {Gi}i∈ω is uniformly computable in A there is a
function computable in A⊕ ∅′ that witnesses the density of this sequence.

One possible use of indifferent sets for 1-generic sets is as coding locations.
We can take a 1-generic G, and then form another 1-generic Ĝ by changing G
on some bits of an indifferent set. We can recover these changes from the join
of G and Ĝ. The following theorem is an application of this idea.

Corollary 10.4.7. Given A ≥T G where A ∈ GL2 and G is a 1-generic set, there
exists a 1-generic Ĝ such that G⊕ Ĝ ≡T A.

Proof. G has an A-computable indifferent set I that is also 1-generic. As I is
1-generic there are infinitely many even numbers in I and infinitely many odd
numbers in I . Define the following A computable subset of I . If 0 ∈ A, then
let x0 be the first even element of I , otherwise let x0 be the first odd element of
I . We inductively define xi+1 to be the first even element of I greater than xi

if i + 1 ∈ A and the first odd element of I greater than xi otherwise. Let X =

{xi : i ∈ ω}. As G,X ≤T A we have that G[X] ≤T A. Further, A ≤T G ⊕ G[X]

because x ∈ A if and only if the ith position where G and G[X] differ is even.
Thus A ≡T G⊕G[X].

178 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

In our final result for this section, we will show that any ∆0
2 1-generic set

has a co-c.e. indifferent set. This was originally shown by Fitzgerald using a
full approximation argument. We give an alternative proof.

Theorem 10.4.8 (Fitzgerald). If G is a ∆0
2 1-generic set, then there exists a co-c.e.

set I such that I is an indifferent set for G.

Proof. LetG ∈ ∆0
2 be a 1-generic set. We will show that there is a function f ≤T

∅′ such that for any set I such that pI , the principal function of I , majorizes f
we have that I is an indifferent set for G. Because for any ∆0

2 function f , there
is a co-c.e. set whose principal function majorizes f we are done.

Define f(e) as follows. Set ne,0 = 0 and then ne,i+1 = fG(ne,i, e) + 1. Now
set f(e) = ne,e+1. The function f is computable in ∅′ because fG ≤T G⊕∅′ = ∅′.
Let I be a co-c.e. set such that for all x, pI(x) ≥ f(x). Take any e. Now consider
the pairwise disjoint sets [ne,i, ne,i+1 − 1] for i such that 0 ≤ i < e + 1. Because
ne,e+1 = f(e) ≤ pI(e), There must be some i such that [ne,i, ne,i+1 − 1] ∩ I = ∅.
Now because ne,i+1 − 1 = fG(ne,i), for any X ⊆ I , G[X] � fG(ne,i, e) only differs
from G on the first ne,i many bits. Thus G[X] meets or avoids Se and so I is a
co-c.e. indifferent set for G.

10.5 Sparsity of indifferent sets

In the previous section, we used a forcing construction to build an indifferent
set. That construction succeeded by placing large intervals of zeros into the
indifferent set. This indicates that indifferent sets for 1-generic sets may need
to be sparse. The following theorem of Fitzgerald confirms this intuition by
showing that they must be hyperimmune.

Theorem 10.5.1 (Fitzgerald). If I is an indifferent set for some 1-generic setG, then
I is hyperimmune.

Proof. Let G be 1-generic and X ⊆ ω be a set that is not hyperimmune Let f
be a computable and strictly increasing function such that for all j, [f(j), f(j+

1) − 1] ∩ X 6= ∅. Then there exists some X̂ ⊆ X such that for all j there is a
unique n ∈ [f(j), f(j+1)−1]∩ X̂ if and only if |[f(j), f(j+1)−1]∩G| is even.

Consider the set S ⊆ 2<ω, defined by στ ∈ S if for some j, |σ| = f(j), |τ | =
f(j+1)−1−f(j) and τ has an even number of bits. The set S is a c.e. dense set
of strings. Now G[X̂] cannot meet S because for all j, |[f(j), f(j+ 1)−1]∩G[X̂]|
must be odd. Thus G[X̂] is not 1-generic and so X is not an indifferent set
for G.

10.6. 1-GENERIC SETS THAT COMPUTE THEIR OWN INDIFFERENT SETS 179

Thus an indifferent set needs to be sparse. In fact if a set is sufficiently
sparse, then it must be the indifferent set for some 1-generic set. The following
lemma is a version of Lemma 10.3.1 for sets that are not necessarily dense.

Lemma 10.5.2. There exists an ω-c.a. function g : ω2 → 2<ω such that for all n, e ∈
ω, for all X ⊆ ω, if (X � n)g(n, e) ≺ X then X meets or avoids Se.

Proof. Fix some enumeration of the sets Se such that at most one string enters
Se at any stage s. Given n and e we use the following process to determine
g(n, e). We let τ0 = λ. Now we inductively define τs+1 as follows. If we have
some string σρ enumerated into Se at stage s with |σ| = n, ρ � τs and such
that σ has not been satisfied, then we define τs+1 = ρ and we regard σ as being
satisfied. Otherwise, we define τs+1 = τs. We let g(n) = lims τs. As τs can
change at most 2n times we have that g is ω-c.a.

Assume that for some n, e ∈ ω and X ⊆ ω we have that (X � n)g(n, e) ≺ X .
If during the construction of g(n, e) the string X � n was satisfied then for
some τ � g(n, e) we have that (X � n)τ ∈ Se and so X meets Se. If not, then
there is no τ � g(n, e) such that (X � n)τ ∈ Se. Thus (X � n)g(n) avoids Se.

Theorem 10.5.3. Take I to be an infinite subset of ω. There is an ω-c.a. function f ,
such that if

∃∞n [n, f(n)] ∩ I = ∅,

then I is an indifferent set for some 1-generic G.

Proof. Take f(n) = n + max{|g(n, e)| : e ≤ n} where g is the function defined
in Lemma 10.5.2. As g is ω-c.a., so is f . Now given I such that ∃∞n [n, f(n)] ∩
I = ∅ we can take a sequence n0, n1, . . . such that for all i, [ni, f(ni)] ∩ I = ∅,
and f(ni) < ni+1. We define G as limi σi where σ0 = 0n0 and with inductive
assumption that |σi| = ni, we define σi+1 = σig(ni, i)0

ki where ki = ni+1 −
|σig(ni, i)| (ki ensures that |σi+1| = ni+1 and ki > 0 because ni+1 > f(ni) ≥
ni + g(ni, i)).

Now let X ⊆ I and take any e ∈ ω. We have that (G[X] � ne)g(ne, e) ≺ G[X]

because I∩[ne, f(ne)] = ∅ and so by Lemma 10.5.2,G[X] meets or avoids Se.

10.6 1-generic sets that compute their own indifferent sets

We know that every 1-generic set has as indifferent set which is GL1. This in-
dicates that it may be possible for a 1-generic set to compute an indifferent set
for itself. Such a 1-generic set would have the following interesting property.
For all A ≥T G there exists a 1-generic Ĝ such that A is the join of G and Ĝ.

180 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

To show this, let G compute an indifferent set for itself with principal function
pI . If A >T G, then let X = {pI(x) : x ∈ A}, and so A ≡T G ⊕ G[X]. In this
section we will show that such 1-generic sets exist. In fact we will show that
any c.e. set that is not of totally ωω-c.a. degree computes a 1-generic set with
this property. First, by appealing to known results, we will show that not all
1-generic sets have this property.

Proposition 10.6.1. Any 1-generic set bounded by a set with a strong minimal cover
does not compute an indifferent set for itself.

Proof. If A >T B ≥T G ≥T I , where G is 1-generic and I is an indifferent set
forG, then by the discussion above, there is a 1-generic Ĝ such thatA = G⊕Ĝ.
If Ĝ <T A, then as Ĝ 6≤T B we have that A is not a strong minimal cover of B.
If Ĝ ≡T A, then A splits into two incomparable degrees one of which cannot
be below B and so again A cannot be a strong minimal cover of B.

Corollary 10.6.2. Any 1-generic set bounded by an array computable c.e. set does
not compute an indifferent set for itself.

Proof. This corollary follows from Ishmukhametov’s theorem that any array
computable c.e. set has a strong minimal cover [41].

Corollary 10.6.3. There exists a ∆0
2 1-generic set G that fails to compute an indiffer-

ent set for itself.

Proof. Any c.e. set bounds a 1-generic set and there exist array computable c.e.
sets.

We will now work towards proving that every c.e. set that is not of totally
ωω-c.a. degree computes a 1-generic set which computes an indifferent set for
itself. We first start by proving that ∅′ computes such a 1-generic set. Following
this, we will examine the proof and turn it into a permissions argument.

Theorem 10.6.4. There exists a ∆0
2 1-generic set G that computes an indifferent set

for itself.

Proof. For this construction we will build a set G and a reduction Γ such that
Γ(G) is the principal function of I , an indifferent set for G. We have the fol-
lowing requirements:

Ie: Γ(G; e) ↓ and if e > 0, Γ(G; e) > Γ(G; e− 1).

Re: ∃w such that ∀X ⊆ rngΓ(G), G[X] � w meets or avoids Se.

If we meet all these requirements, then G is 1-generic and rngΓ(G) is an
infinite indifferent set for G. Our requirements will be prioritised as follows:

10.6. 1-GENERIC SETS THAT COMPUTE THEIR OWN INDIFFERENT SETS 181

R0 > I0 > R1 > I1 > The construction of G is a finite injury argument. At
stage 0 we set G0 = 0ω. At stage s+ 1 we find the highest priority requirement
that needs attention and act on it.

Requirement Ie needs attention at stage s if Γ(G, e)[s] ↑. Our action is to
choose a new large number n such that Gs(n) = 0 (this will always be possible
because there will only be finitely many places where Gs is 1). We then set
Γ(Gs; e) = n with use n, define Gs+1 = Gs and restrain Gs+1 � (n + 1) with
priority e.

Each requirement Re will have a restraint, r, imposed on it by higher pri-
ority requirements. There will also be a value w(e, s) ≥ r (this is our candidate
for the witness w). We start with w(e, 0) = 0 for all e. A requirement Re needs
attention at stage s if there exists σ ∈ Se,s with |σ| > w(e, s), such that:

(i). (σ � w(e, s))∆(Gs � w(e, s)) ⊆ rngΓ(G)[s].

(ii). No initial segment of σ � w(e, s) is in Se,s.

The reason we need to pay attention to Re at this stage is because σ � w(e, s)

differs from Gs only on elements of rngΓ(G)[s] but σ � w(e, s) does not meet or
avoid Se. This means that w(e, s) is not a correct witness for requirement Re.

Our action is like that of a greedy algorithm. We change Gs to look like σ
anywhere we can while maintaining our constraints. Specifically we set:

Gs+1(x) =


Gs(x) x ≤ r

σ(x) r < x < |σ|

0 |σ| ≤ x.

We setw(e, s+1) = |σ|, and we restrainGs+1 � w(e, s+1) with priority e. For
all e′ < e we set w(e′, s+1) = w(e′, s). For all e′ > e we set w(e′, s+1) = w(e, s).
This ends the construction.

Verification. The key step to verifying this construction is to show that each
requirement needs attention finitely often. Take any requirement, and assume
that at stage s0, all higher priority requirements have stopped acting and a
final restraint r is placed on this requirement. First consider a requirement of
the form Ie. If Γ(G; e)[s0] is not defined, then it will be defined at the next stage
and its use preserved.

Now consider a requirement of the form Re. Let n = 2r. We want to show
that Re acts finitely often. To prove this, for each stage s ≥ s0, we will choose
an element of cs of the linear order (ω + 1)n (if a, b ∈ (ω + 1)n then a < b if on
the first coordinate that a and b differ the a value on this coordinate is smaller

182 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

than the b value). We will ensure that for all s ≥ s0, cs+1 ≤ cs and if Re acts at
stage s + 1, then cs+1 < cs. Hence as (ω + 1)n is a well-order, we have that Re

can only act finitely often.
To determine cs we first let T ⊆ Se be the set of all strings that cause Re to

act after stage s0. Because any element of T causes Re to change, the next ele-
ment of T to enter Se must be of strictly greater length. Let σ0,s, σ1,s, . . . , σms,s

be a list of all strings in Ts that agree with Gs after r. We assume that the
strings are numbered so that |σ0,s| < |σ1,s| < . . . < |σms,s|. For any s ≥ s0, we
have that ms < n. This is because if ms ≥ n, then because there are only n

strings of length r, there would be i < j ≤ ms with σi,s � r = σj,s � r. As both
strings agree with Gs after r, this implies that σi,s ≺ σj,s. However, it is not
possible for two such strings to cause requirement Re to act (by condition (ii)
for Re to need attention and the fact that strings enter T in increasing order).

Fix some i ≤ ms. Provided that for all t ≥ s and all j < i we have that
σj,t+1 = σj,t, our objective is to bound the size of the set {t : σi,t+1 6= σi,t}. First
we will find a set of strings that includes all possible values that Gt � |σi,t|
could take for t ≥ s. We define a string ρ as being an (i, s)-candidate if:

(i). ρ 6� Gs � |σi,s|.

(ii). ρ ≥lex Gs � |ρ|.

If σi,s 6= σi,s+1 then σi,s+1 must differ from σi,s at some point in rngΓ(Gs)[s].
We define:

Cs(i) = {x ∈ ω : x ∈ rngΓ(ρ)[s] and ρ is an (i, s)-candidate}.

We will show that the size of this set bounds the possible number of times
that σi,s changes. Thus we define:

cs(i) =

|Cs(i)| if i ≤ ms

ω otherwise.

This ends our definition of cs.

Lemma 10.6.5. If i ≤ min{ms,ms+1}, and σi,s+1 = σi,s then cs+1(i) = cs(i).

Proof. We have that σi,s agrees with Gs � |σi,s| after r, and σi,s+1 agrees with
Gs+1 � |σi,s+1| after r, hence Gs � |σi,s| = Gs+1 � |σi,s+1|. Thus if ρ is an (i, s)-
candidate, then it is also an (i, s+ 1)-candidate.

Now at stage s+ 1, if a new axiom is enumerated for Γ, it must be on some
extension of Gs � w(e, s). As w(e, s) ≥ |σi,s+1|, any new axiom must be on a
string which is not an (i, s+ 1)-candidate. Hence we have that Cs+1(i) = Cs(i)

and consequently cs+1(i) = cs(i).

10.6. 1-GENERIC SETS THAT COMPUTE THEIR OWN INDIFFERENT SETS 183

Lemma 10.6.6. If Re does not act at stage s+ 1, then cs+1 = cs.

Proof. If Re does not act at stage s+ 1, then Ts+1 = Ts and Gs+1 � w(e, s+ 1) =

Gs+1 � w(e, s) so ms+1 = ms. Thus for all i ≤ ms, σi,s = σi,s+1 and so be
the previous lemma cs(i) = cs+1(i). For i with ms < i < n we have that
cs+1(i) = ω = cs(i).

Lemma 10.6.7. If Re acts at stage s+ 1, then cs+1 < cs.

Proof. If Re acts at stage s + 1, then some new string enters Ts+1. This means
that either there is some i ≤ min{ms,ms+1}with σi,s+1 6= σi,s, orms+1 = ms+1.
For the second case we have that cs+1(i) = cs(i) for all i ≤ ms and cs+1(ms+1) <

ω = cs(ms+1). Thus cs+1 < cs.
For the first case, let i be least such that σi,s+1 6= σi,s. We have already

established that cs+1(j) = cs(j) for all j < i.
Our first claim is that Gs+1 � |σi,s| >lex Gs � |σi,s|. This claim holds because

first Gs+1 � |σi,s+1| cannot be an extension of Gs � |σi,s| (if so it would not be
the ith string in order of size in Ts+1 that agrees with Gs+1 after r). Hence
σi,s+1 does not agree with Gs at some point between |σi−1,s| (or r if i = 0) and
|σi,s|. The only places that σi,s+1 can disagree with Gs are those elements of
rngΓ(G)[s]. This is a subset of Cs(i). Now if Γ(G;m)[s] ↓= n then Gs(n) = 0.
This implies that we must form Gs+1 � |σs| from Gs � |σs| by changing some
elements to 1 and so Gs+1 � |σi,s| >lex Gs � |σi,s|. Consequently the (i, s + 1)-
suitable strings are a strict subset of the (i, s)-suitable strings. Further there
must have been some element of Cs(i) that is now an element of Gs+1 and
hence Cs+1(i) (Cs(i) and so cs+1(i) < cs(i).

Hence the stages at which Re acts can be mapped to a decreasing sequence
of a well-order and so requirement Re needs attention finitely often. As each
requirement needs attention finitely often, we have that the use of Γ(G; e) is
bounded in the construction and so requirement Ie is met. For all e, limsw(e, s)

exists and witnesses the fact that requirement Re is met.

Once we know that there exist 1-generic sets that compute their own in-
different sets, we can investigate where in the ∆0

2 degrees such 1-generic sets
exist. The verification of Theorem 10.6.4 showed that each requirement was
met by constructing a descending sequence in (ω + 1)n for some n. In the
following theorem, we will show how this can be turned into a permission
argument. We can build a 1-generic set G that computes an indifferent set for
itself below some c.e. set A, if A will provide us with enough permissions. We

184 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

will show that if A is not of totally ωω-c.a. degree then sufficient permissions
must be given.

Theorem 10.6.8. If a c.e. set A is not of totally ωω-c.a. degree then there exists G, I
with A >T G ≥T I such that G is 1-generic, and I is an indifferent set for G.

Proof. Let A be such a set and let f = Ψ(A) be a function that witnesses that
A is not of totally ωω-c.a. degree. Let f(x, s) = Ψ(A;x)[s] be a computable
approximation to f . We will buildG via a reduction Φ(A), and set I = rngΓ(G)

where Γ(G) is a strictly increasing function. To construct G we will need to
obtain A-permissions. We will do this by attempting to show that f is ωω-c.a.
In fact to simplify the exposition of the proof we will attempt to show that f
is (ω+ 1)ω-c.a. The result will hold because our well-order (ω+ 1)ω can just be
regarded as another canonical well-ordering of ωω.

The failure of this approach will ensure that we get the permissions we
need to build G and I . We can assume that our approximation to A has the
property that for all stages s, f(x, s) is defined for all x ≤ s. We let u(x, s)

be the use of As in the computation of f(x, s). We can assume that u is non-
decreasing in both arguments.

Our first requirement is that Φ(A) is total. Then taking G = Φ(A) we have
for all e ∈ ω:

Ie: Γ(G; e) ↓ and if e > 0, Γ(G; e) > Γ(G; e− 1).

Re: ∃w such that ∀X ⊆ rngΓ(G), G[X] � w meets or avoids Se.

The approach we use to meet a requirement Re is as follows. Each time the
requirement is injured, we start afresh with a new function ge that we use to
approximate f . We pick some number q0 greater than the restraint imposed
on Re, and we attempt to run the same strategy of Theorem 10.6.4 using q0

instead of r. We call q0 a sub-strategy of Re. To run this sub-strategy we need
to be able to change our approximation to G after q0. However, we cannot do
this unless we get permission from A to do so. To get this permission we will
link the A-use of the computation of G to the A-use of the computation of f .
Specifically, if we act on sub-strategy q0 at stage s, then will ensure that for all
t ≥ s, we have that φ(A; q0)[t] ≥ u(s, t). Suppose that at some later stage t, we
see some string σ enter Se,t and we want to change G after q0 to agree with σ.
We askA for permission by defining ge(x, t+1) = f(x, t+1) for all x ∈ [r+1, s].
Now if f changes on any of these values, then we know that A has changed
below u(s, t) ≤ φ(A; q0)[t] and thus we can change G as desired. If on the
other hand, f fails to change, then we have made some progress in building an
approximation to f . We will show this approximation is a (ω+1)ω computable

10.6. 1-GENERIC SETS THAT COMPUTE THEIR OWN INDIFFERENT SETS 185

approximation by defining a function oe(x, s) that tracks the changes of ge.
While we are waiting for permission to change G at q0 we initiate another sub-
strategy q1. We will keep initiating new strategies at stages at which it appears
that all earlier sub-strategies are successfully approximating f . We will show
in the verification that one sub-strategy must succeed because otherwise we
will establish that f is (ω + 1)ω-c.a. We will assign all active sub-strategies
one of two states: good or waiting. The good state indicates that a sub-strategy
currently believes it has established the existence of a w witnessing that we
have met Re. The witness for a strategy q at stage s will be φ(A; q)[s]. The
waiting state indicates that the sub-strategy is seeking permission to change
the current approximation to G.

Construction. Our requirements will be prioritised as follows: R0 > I0 >

R1 > I1 > A requirement Ie needs attention at stage s + 1 if Γ(G; e)[s] ↑.
If a requirement Re is injured then all of its sub-strategies are halted. We say
that a sub-strategy q in state waiting has permission to act if Φ(A; q)[s] ↑. A
sub-strategy q of requirement Re needs attention if:

(i). It is in state waiting and has permission to act; or

(ii). It is in state good and there exists σ ∈ Se,s with |σ| > φ(A; q)[s], such that:

(a) (σ � φ(A; q)[s])∆(Gs � φ(A; q)[s]) ⊆ rngΓ(G)[s], and

(b) No initial segment of σ � φ(A; q)[s] is in Se,s.

A requirement Re needs attention at stage s if:

(i). It has a sub-strategy that needs attention; or

(ii). No sub-strategy of Re needs attention, and all sub-strategies (if any) are
in state waiting.

At stage 0, set Gs = 0ω and for all e, x set ge(x, 0) ↑ and oe(x, 0) ↑.
At stage s+ 1, find the highest priority requirement that needs attention. If

there are no requirements that need attention, set Gs+1 = Gs.
If the requirement that needs attention is of the form Ie, take some large

value n such that Gs(n) = 0 and set Gs+1 = Gs and Γ(G; e)[s + 1] = n. Injure
all lower priority requirements and restrain Gs+1 � n with priority e.

If the requirement is of the form Re and Re has some sub-strategy that
needs attention, then let q be the smallest such sub-strategy. If q is in state
good, then change q to state waiting and set Gs+1 = Gs. Halt any sub-strategy

186 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

q′ of Re with q′ > q. If q is in state waiting, then let σ be the string in Se,s that
caused q to change its state to waiting. We set:

Gs+1(x) =


Gs(x) x ≤ q

σ(x) q < x < |σ|

0 |σ| ≤ x.

We will commit to keeping φ(A;x)[t] ≥ u(s + 1, t) for all t ≥ s + 1 for any x

such that x ≥ q. Halt any sub-strategy q′ of Re with q′ > q.
If no sub-strategy of Re needs attention, then we start a new sub-strategy

on s+1 and we will commit to keeping φ(A; s+1)[t] ≥ u(s+1, t) for all t ≥ s+1.
Now that we have updated Gs, we update the reduction Φ. For all x ≤

s + 1 we set Φ(A;x)[s + 1] = Gs+1(x). As we only change Gs+1 when we get
permission from our approximation to A, Φ is a valid Turing functional (we
will later verify that Φ(A) is total). We will set the use of Φ(A;x)[s + 1] for all
x ≤ s + 1 to be as small as possible while still honouring the commitments
made.

We will now define the functions ge and oe. For all e ≤ s + 1, we do the
following. Take any x ≤ s+1. If u(x, s+1) ≤ φ(A; q)[s+1] for some sub-strategy
q of Re that is in state waiting, we define ge(x, s + 1) = f(x, s + 1). Otherwise
we set ge(x, s+1) to be undefined. Let re be the restraint currently imposed on
requirement Re. Let nx =

∑x
i=re+1 2i. For all x such that ge(x, s+ 1) is defined,

we will define oe(x, s+1) to be an element of the well order (ω+1)nx . First, for
all x we define cs+1,x to be an element of (ω + 1)(2x). We let cs+1,x = 0(2x) if x is
not an active sub-strategy of Re. Otherwise, we define cs+1,x to be the element
of (ω + 1)(2x) as in Theorem 10.6.4 (we take x instead of r, and T ⊆ Se,s to be
the strings that cause this sub-strategy to change from state good to waiting).
We define oe(r + 1, s) = cs+1,x and then for x > r + 1 we define oe inductively
by oe(x+ 1, s) = oe(x, s)cs+1,x+1.

Verification. Take any requirement and assume that by stage s0 all higher
priority requirements have finished acting. If the requirement is of the form
Ie then by stage s0 + 1 we have defined Γ(G; e)[s + 1] and restrained G on the
use of this computation.

Assume the requirement is of the form Re. The first observation is that any
sub-strategy can only be acted on a finite number of times. This follows from
the verification of Theorem 10.6.4. Given any x, let s be the last stage at which
we act on any sub-strategy (for any requirement Re) less than or equal to x.
Now φ(A;x) = u(s) and so we have that Φ(A) is total.

10.6. 1-GENERIC SETS THAT COMPUTE THEIR OWN INDIFFERENT SETS 187

Lemma 10.6.9. For all x, s, t with s < t, if oe(x, s) ↓ and oe(x, t) ↓ then oe(x, s) ≥
oe(x, t).

Proof. Assume that this is false and that there is some least x for which there
exist s and t with s < t such that oe(x, s) < oe(x, t). Now because oe(x, s) =

cs,r+1cs,r+2 . . . cs,x, there must be some least y with r+1 ≤ y ≤ x such that cs,y <
ct,y, and y must be an active sub-strategy of Re at stage t (because otherwise
ct,y = 0(2y)). This means that y was also an active sub-strategy of Re at stage s
because y ≤ x ≤ s and the sub-strategy y must have been started at stage y.

Now no higher priority requirements have acted since stage s. Addition-
ally no Re sub-strategies less than y have acted because if they did, then sub-
strategy y would be halted. Hence if for any s′ with s ≤ s′ < t we have that
Gs′ � φ(A; y)[s′] 6= Gs′+1 � φ(A; y)[s′] this must have been the result of sub-
strategy y acting and so by the verification of Theorem 10.6.4 we know that
cs,y ≥ ct,y contradicting our assumption.

Lemma 10.6.10. For all x, s, t with s < t if ge(x, s) ↓ and ge(x, t) ↓ with ge(x, s) 6=
ge(x, t) then oe(x, s) > oe(x, t).

Proof. If ge(x, s) ↓, then ge(x, s) = f(x, s) and there exists some Re sub-strategy
q ≤ x such that q is in state waiting at stage s and φ(A; q)[s] ≥ u(x, s). Now if q
is in state waiting at stage s then all sub-strategies q′ < q of Re are also in state
waiting at stage s (when strategy q started q′ was in state waiting and if q′ ever
changed to state good then q would be halted).

If ge(x, t) ↓6= ge(x, s), then f(x, s) 6= f(x, t) and so As � u(x, s) 6= At �

u(x, s). This means that some smallest sub-strategy q′ ≤ q will have been
given permission to act and have acted. As this is the smallest sub-strategy to
act, we know that cs,q′ > ct,q′ by the verification of Theorem 10.6.4. If q′ = r+ 1

this gives us that oe(q′, s) > oe(q
′, t). If q′ > r+1 then as oe(q′−1, s) ≥ oe(q

′−1, t)

by the previous lemma we again have that oe(q′, s) = oe(q
′ − 1, s)cs,q′ > oe(q

′ −
1, t)ct,q′ = oe(q

′, t). As x ≥ q′, we have that oe(x, s) > oe(x, t).

Lemma 10.6.11. If Re acts infinitely often, then for infinitely many x there are in-
finitely many s such that ge(x, s) ↓.

Proof. As observed, any sub-strategy only needs to act a finite number of times
to meet requirement Re. Hence if Re acts infinitely often then Re must have an
infinite number of sub-strategies and all of the sub-strategies must have some
final state of waiting. Let re be the final restraint imposed upon Re by higher
priority requirements. Pick any x > re and take the least sub-strategy q such
that q > x and some stage s such that q is in state waiting for all stages t ≥ s.
In this case ge(x, t) is defined for all t ≥ s.

188 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

If ge(x, s) ↓, then ge(x, s) = f(x, s). Thus if Re acts infinitely often, let
ĝe(x, s) = ge(x,min{t ≥ s : ge(x, t) ↓}), and let ôe(x, s) = oe(x,min{t ≥ s :

oe(x, t) ↓}). For all x > re, lims ĝe(x, s) = lims ge(x, s) = f(x) and so ĝe and
ôe witness that f is (ω + 1)ω-c.a. This contradicts our initial assumption and
so Re acts finitely often. Hence all requirements act finitely often and so our
construction is successful.

Corollary 10.6.12. If A is a c.e. set and A′′ >T ∅′′ then A bounds a 1-generic set that
computes an indifferent set for itself.

Proof. If a c.e. set A is of totally ωω-c.a. degree then A′′ ≡T ∅′′ [26].

We will now prove an extension of Corollary 10.6.2. We will show in The-
orem 10.6.16 that no 1-generic set bounded by a c.e. set that is of totally ω-c.a.
degree computes a set to which it is indifferent. To establish this result, we will
show that any approximation to a 1-generic set that computes an indifferent
set to itself changes frequently. Given G and I with pI = Γ(G), we define the
number of times G changes on the use of the xth point of I as follows.

#G(I, x) = |{s : Γ(G;x)[s] ↓ ∧Gs � γ(G;x)[s] 6= Gs+1 � γ(G, x)[s]}|.

Proposition 10.6.13. Assume that I ≤T G ≤T ∅′ with pI = Γ(G) and the reduction
Γ has the property that ∀x, Γ(G;x + 1) > γ(G;x). If for some computable function
q, and some computable approximation to G, Gs we have that:

∀x q(x+ 1)− q(x) ≥ (#G(I, q(x+ 1)) + 1)2

then I is not an indifferent set for G.

Proof. We will construct a set A and a c.e. set of strings V such that A∆G ⊆ I

and A does not meet or avoid V . The set A will be defined as the limit of a
sequence α0 ≺ α1 ≺ We have the following requirements:

Re:
αe+1 � αe, αe does not avoid V , αe+1 does not meet V and
αe+1∆(G � |αe+1|) ⊂ rngΓ(G).

We will build an approximation α(e, s) such that for all e, αe = lims α(e, s).
A requirement Re needs attention at stage s, if for all x ≤ q(e+ 1) we have that
Γ(G;x)[s] ↓; if x > 0 then Γ(G;x)[s] ≥ γ(G;x− 1)[s] and either:

(i). There is no extension of α(e, s) in Vs, or

(ii). α(e+ 1, s) is undefined, or

(iii). The requirement last acted at stage t and

Gt � |α(e+ 1, t)| 6= Gs � |α(e+ 1, t)|.

10.6. 1-GENERIC SETS THAT COMPUTE THEIR OWN INDIFFERENT SETS 189

At stage s = 0, we set α(0, 0) = λ and we declare α(e, 0) to be undefined for
all e > 0. At stage s + 1, we find the highest priority requirement that needs
attention Re. If no requirement needs attention then for all e such that α(e, s) ↓
we set α(e, s+ 1) = α(e, s) and otherwise we set α(e, s+ 1) ↑.

If Re is the highest priority requirement that needs attention, then take ne
to be the largest integer such that n2

e ≤ q(e + 1)− q(e). We partition {Γ(G;x) :

q(e+1)−n2
e < x ≤ q(e+1)} into sets Is,1, Is,2, . . . , Is,ne , each of size ne, and such

that max Is,j < min Is,j+1. Define ρ = Gs � |a(e, s)| and u = γ(Gs; q(e + 1))[s].
Let m be the number of times that requirement Re has acted previously in the
construction . We will take as our first construction assumption thatm < ne−1

and verify this assumption later.
If there is no extension of α(e, s) in Vs, then we take i = min Is,ne , and

we add the string α(e, s)σ to Vs+1, where σ is chosen so that |ρσ| = u and
ρσ∆(Gs � u) = {i}.

We define the following set of candidates for α(e+ 1, s+ 1):

Us+1 = {α(e, s)σ : |α(e, s)σ| = u ∧ ρσ∆(Gs � u) = {i} ∧ i ∈ Is,ne−m−1}.

We will assume for now that there is some string α(e, s)σ ∈ Us+1 that is in-
comparable with all α(e + 1, t) for all t ≤ s (where defined) and also incom-
parable with any extension of α(e, s) added to V by this requirement. This is
the second construction assumption. We take such a string α(e, s)σ (e.g. the
lexicographically least) and set α(e + 1, s + 1) = α(e, s)σ. For all d ≤ e we set
α(d, s+ 1) = α(d, s) and for all f > e+ 1, we set α(f, s+ 1) to be undefined.

Verification. If a requirement acts at a stage s, we will say that this action
is successful if both of the construction assumptions made are met. We will
inductively show that:

(i). Whenever requirement Re acts, it does so successfully.

(ii). Re acts finitely often.

Lemma 10.6.14. If Re acts at stage s + 1, and it has acted less than ne − 1 times
before, then Re acts successfully.

Proof. As our first construction assumption is met by hypothesis we only need
to check that Us+1 contains a suitable string. Any strings enumerated into Vs+1

by this requirement extend α(e, t), for some t ≤ s. By our induction hypothesis
(that the second construction assumption is met for Re−1) this set of strings
forms an anti-chain (for the case e = 0, we have that a(0, t) = λ for all t). Thus
there is only one string enumerated in Vs+1 by this requirement that we need

190 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

to avoid. In addition, there are at most ne−2 strings that are equal to α(e+1, t)

for some t ≤ s as this is the maximum number of times this requirement has
acted before.

Let m be the number of times this requirement has acted before. Let T be
the set of all strings we want to avoid. Note that |T | ≤ ne − 1. By induction
on the stages at which Re acts, we can assume that T is an anti-chain (i.e. the
second construction assumption has held every previous time Re has acted).
The size of the set Us+1 is ne. We will show that for all τ ∈ T , there is at most
one string α(e, s)σ ∈ Us+1 such that τ � α(e, s)σ, or α(e, s)σ � τ . Hence as
|Us+1| > |T |, we can choose some string σ ∈ Us+1 such that T ∪ {α(e, s)σ} is an
anti-chain and set α(e+ 1, s+ 1) = α(e, s)σ.

Take any τ ∈ T . If τ is not an extension of α(e, s) then τ must extend
some α(e, t) for some t < s with α(e, t) defined and α(e, t) 6= α(e, s). Because
the second construction assumption holds for all higher priority requirements,
we know that α(e, s) and α(e, t) are incomparable and hence τ is incomparable
with all elements of Us+1. So we can assume that τ � α(e, s) and we can write
τ = α(e, s)τ̂ . Let ρ = Gs � |a(e, s)|. Now because Us+1 is an anti-chain the only
way that α(e, s)τ̂ can be comparable with two elements of Us+1 is if α(e, s)τ̂ �
α(e, s)σj and α(e, s)τ̂ � α(e, s)σk for distinct α(e, s)σj, α(e, s)σk ∈ Us+1. In this
case, it must be that ρτ̂ � Gs because any common initial segment of two
elements of Us+1 must agree with Gs after |α(e, s)|.

Let t be the stage when either τ was added to V or the least stage when τ

was equal to α(e + 1, t). Let m′ be the number of times that the requirement
has acted before stage t. Hencem′ < m. As no higher priority requirement has
acted we have that ρ � Gt. By construction, it must be that ρτ̂∆(Gt � |τ |) = {a}
for some a ∈ It,ne if τ was added to V , and a ∈ It,ne−m′−1 otherwise. Now any
element of the range of Γ(G)[t] less than a is also an element of the range of
Γ(G)[s] because any element of the range of Γ(G)[t] less than a has use less
than a and ρτ̂ agrees with both Gs and Gt before a.

We can draw a contradiction from this fact because α(e, s)t̂ � α(e, s)σj

implies that the first element of the range of Γ(G)[s] greater than or equal to a
cannot be in Is,ne−k if k ≤ m. This in turn implies that a cannot be in It,ne−k if
k ≤ m which contradicts our assumption that a ∈ It,ne−m′−1 or a ∈ It,ne . Hence
there is some suitable string in Us+1 and requirement Re acts successfully.

Lemma 10.6.15. If requirement Re acts ne − 1 times then it never needs attention
again.

Proof. If Re acts at stage t, and then again at some s > t, it must be that for

10.6. 1-GENERIC SETS THAT COMPUTE THEIR OWN INDIFFERENT SETS 191

some d ≤ e, we have that for some stage s′ with t < s′ ≤ s:

Gs′ � α(d+ 1, t) 6= Gs′+1 � α(d+ 1, t).

Now |α(d+ 1, t)| = γ(G; q(d+ 1))[t] ≤ γ(G; q(e+ 1))[t]. Thus Gt � γ(G; q(e+

1))[t] 6= Gs′ � γ(G; q(e+ 1))[t].
This means that the number of times that Re acts is at most #G(I, q(e+ 1)).

But as (#G(I, q(e+ 1)) + 1)2 ≤ q(e+ 1)− q(e), by our choice of ne we have that
#G(I, q(e+ 1)) ≤ ne − 1.

We have that each requirement acts finitely often. This means that for all
e, αe = lims α(e, s) is defined. Further αe+1 � αe because if α(e + 1, s) ↓ then
α(e+1, s) � α(e, s). LetA =

⋃
e αe. Now αe+1∆(G � |αe+1|) ⊂ rngΓ(G) because

if s is a stage when requirement Re acts then α(e + 1, s)∆(Gs � |α(e + 1, s)|) ⊂
rngΓ(G)[s] and the use of any indifferent point in rngΓ(G)[s] ∩ |α(e + 1, s)|
is at most |α(e + 1, s)|. Now if the approximation to G changes on the first
|α(e + 1, s)| bits, then α(e + 1, s) 6= αe+1 because the requirement will need
attention again.

As each requirement is met we have that A does not avoid V (for all e, αe
has some extension in V). Let σ be an element of V . There is some requirement
Re that enumerated σ into V and some stage s such that σ � α(e, s). If αe 6=
α(e, s) then these two strings are incomparable and so A does not meet σ. If
αe = α(e, s), then by construction αe+1 is incomparable with σ. Thus A is not
1-generic and so I is not an indifferent set for G.

Theorem 10.6.16. If a c.e. set A is of totally ω-c.a. degree then A does not bound a
1-generic set G that computes an indifferent set for itself.

Proof. Assume that G = Φ(A) and that Γ(G) is equal to the principal function
of some set I . We can assume that for all x > 0, Γ(G;x + 1) > γ(G;x) because
if G can compute an indifferent set for itself then it can compute one with this
property.

We will show that I is not an indifferent set for G. Our approach is to
build a function f ≤T A, where f(x) = Ψ(A;x). Because A is of totally ω-c.a.
degree we know that there is a pair of computable functions (g, h) such that
f(x) = lims g(x, s) and if we define #g(x) = |{s+ 1 : g(x, s) 6= g(x, s+ 1}|, then
#g(x) ≤ h(x). However, we do not know which computable functions these
are. We will take an enumeration of all pairs of partial computable functions:
(ge, he)e<ω. Our objective in the construction of f is to find the pair of func-
tions g and h that witness that f is ω-c.a., and then use this pair to slow the
approximation of A sufficiently so that I is not an indifferent set for G.

We call (ge, he) a valid ω-c.a. approximation for f if:

192 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

(i). ge and he are total.

(ii). ∀x, #ge(x) ≤ he(x).

(iii). ∀x, lims ge(x, s) = f(x).

We cannot determine whether (ge, he) is a valid ω-c.a. approximation for f . But
given x and s, we can determine the following. We call (ge, he) a valid ω-c.a.
approximation for f until x at stage s if for all y ≤ x:

(i). he(y)[s] ↓.

(ii). ge(y,max{j : ge(y, j)[s] ↓}) = Ψ(A;x)[s].

(iii). |{j ∈ ω : ge(y, j)[s] ↓6= ge(y, j + 1)[s] ↓}| ≤ he(y)[s].

A pair (ge, he) is a valid ω-c.a. approximation for f if and only if for all x there
is an s such that (ge, he) is a valid ω-c.a. approximation for f until x at stage s.

Our requirements for the construction are:

(i). For all x, Ψ(A;x) ↓.

(ii). Either A is computable, or there some approximation to G, and some
strictly increasing computable function q, such that:

∀x (q(x+ 1)− q(x) > (#G(I, q(x)) + 1)2).

We will assume that our enumeration of A is sufficiently fast so that for all
x ≤ s, Γ(Φ(A);x)[s] ↓. During the construction we will build a computable
function r(x, s). The function r(x, s) determines a point in the set I . This point
in I is computable from A by composing Γ and Φ. Hence it has an A-use. We
will denote this use as γ ◦ Φ(A; r(x, s)). When possible, we will set the use of
Ψ(A;x)[s] to be this value.

Let e, s, x ∈ ω with e, x ≤ s. At any stage s, we say that e can take control of
x if:

(i). x is not controlled by any d < e.

(ii). (ge, he) is a valid ω-c.a. approximation for f until x at stage s.

10.6. 1-GENERIC SETS THAT COMPUTE THEIR OWN INDIFFERENT SETS 193

Construction. At each stage in the construction we will define r(x, s) for all
x ≤ s. We will also ensure that Ψ(A;x)[s] is defined for x ≤ s.

At stage 0 we define Ψ(A; 0)[0] = 0, r(0, 0) = 0 and we define the use of
Ψ(A; 0)[0] to be γ ◦ Φ(A; r(0, 0))[r(0, 0)].

At stage s + 1, we ask whether there is any e, x ≤ s such that e can take
control of x. If so we take the least such e, and give it control of the least x it
can take control of. Define r(0, s+ 1) = 0. Now define inductively

r(x+ 1, s+ 1) =

r(x, s+ 1) + (he(x+ 1) + 1)2 if e controls x+ 1,

r(x, s+ 1) + 1 if no e controls x+ 1.

Now for all x ≤ s+ 1, such that Ψ(As+1;x)[s] ↑we define

Ψ(As+1;x)[s+ 1] =

max{ge(x, j)[s] : j ≤ s}+ 1 if e controls x,

0 if no e controls x.

For these x, we set the A use of the computation of Ψ(As+1;x)[s + 1] to be
γ ◦ Φ(A; r(x, s+ 1))[r(x, s+ 1)].

Verification. First we show that f = Ψ(A) is total. This can be done by
showing that the use of any computation does not tend to infinity. This is true
if for all x, lims r(x, s) exists. Now lims r(0, s) = 0 and if the lims r(x, s) exists,
then as x+ 1 has finitely many owners so lims r(x+ 1, s) exists.

By assumption A is ω-c.a., so it follows that there is some least e such that
(ge, he) is a valid ω-c.a. approximation to f . We claim that e takes control of
almost all x. If d < e, then there is some x such that for all s, (gd, hd) is never a
valid approximation for f until x at stage s. Thus d never takes control of any
element greater than or equal to x. As only a finite subset of ω is controlled
any d < e, e will take control of the remaining elements of ω. This makes
r : ω → ω, defined by r(x) = lims r(x, s), computable, because for almost all x
the limit occurs at the stage e takes ownership of x.

If for almost all x, Ψ(A;x) = 0, then A is computable. We just wait until a
stage s at which e takes ownership of x. At this point, A cannot change on the
use of Ψ(A;x)[s]; if it did, then Ψ(A;x) would be set to some non-zero value.
As the use of Ψ(A) is unbounded we have that A is computable.

Otherwise, there exists infinitely many x where Ψ(A;x) is defined after e
takes ownership of x. The set of these x is c.e. and so has some infinite com-
putable subset. We can take this subset to be the range of a strictly increasing
computable function p.

Now we can speed-up the enumeration of G so that stage t in the new
enumeration corresponds to the first stage s when e has control of all x ≤ t

194 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

(that it will take control of) and (ge, he) is a valid approximation for f until t.
Now the computable function r(p(x)) has the property that for all x,

r(p(x+ 1))− r(p(x)) ≥ r(p(x+ 1))− r(p(x+ 1)− 1) ≥ (he(p(x+ 1)) + 1)2.

We claim that for all x, #G(I; r(x)) ≤ he(x). This is because if Gt+1 �

γ(G; r(x))[t] 6= Gt � γ(G; r(x))[t], then At+1 6� At � γ ◦ Φ(A; (r(x))). This means
that Ψ(A;x)[t+ 1] > Ψ(A;x)[t] which in turn implies that ge(x; t+ 1) > ge(x; t).
We know these changes are bounded by he(x). Thus for all x,

r(p(x+ 1))− r(p(x)) ≥ (#G(I, r(p(x+ 1)) + 1)2.

We now apply Proposition 10.6.13 to establish that I is not an indifferent set
for G with q = r ◦ p.

10.7 Indifferent sets for weakly 1-generic sets

In this section we will further examine indifferent sets for weakly 1-generic
sets. We start with an observation about the function g(n, e) defined in Lemma
10.5.2. Fix e ∈ ω. If Se is dense, then g(n, e), as a function of the first variable,
is computable, because we do not need to ask ∅′ whether some string σ has
an extension in Se. The answer is always “yes.” We can use this observation
to prove that any hyperimmune set computes a weakly 1-generic set that it is
the indifferent set for. For this section we will take g(n, e) to be a partial com-
putable function such that if Se is dense, then g(n, e) agrees with the function
of Lemma 10.5.2 and if Se is not dense then for some n, for all m ≥ n, g(m, e) ↑.
This is the result of assuming that the answer to each ∅′ query is “yes”; at some
point g(m, e) will fail to halt if Se is not dense.

Theorem 10.7.1. If I is hyperimmune, then I is the indifferent set for some weakly
1-generic set G with G ≤T I .

Proof. We will construct G ≤T I and meet the following requirements to en-
sure that G is weakly 1-generic.

Re: If Se is dense, then ∃n [(G � n)g(n, e) ≺ G and [n, n+g(n, e)]∩I = ∅].

We order our requirements by priority as follows: R0 > R1 > We say
that requirement Re needs attention at stage s+ 1 if:

(i). e ≤ s.

(ii). Re is not currently satisfied.

10.7. INDIFFERENT SETS FOR WEAKLY 1-GENERIC SETS 195

(iii). g(s, e)[pI(s)] ↓.

(iv). I ∩ [s, s+ |g(s, e)|] = ∅.

(v). s+ 1 is not restrained by any Rd with d < e.

At stage 0, we set G0 = 0ω. At stage s + 1, if no requirement needs at-
tention then we set Gs+1 = Gs. Otherwise let Re be the highest priority re-
quirement that needs attention. We define Gs+1 = (Gs � s)(g(s, e))0ω and if
x ≤ s + |g(s, e)|, we restrain x with priority e. We declare Re satisfied and Rf

unsatisfied for all f > e.

Verification. Because for all x, Gx � x = G � x, we have thatG ≤T I . To show
that all requirements are met, consider any requirement Re and let s0 ≥ e be a
stage such that for all d ≤ e, Rd no longer requires attention and further that
no x ≥ s0 is restrained by a higher priority requirement. Now if Se is not dense
then Re is met trivially but further for some x, for all y ≥ x, g(y, e) ↑ and so Re

only requires attention finitely often.
If Se is dense then we claim that there exists some t ≥ s0 such that both

g(t, e)[pI(t)] ↓, and I ∩ [t, t + |g(t, e)|] = ∅. If this claim holds then we have
that (G � t)g(t, e) ≺ G and so requirement Re is met. It needs attention finitely
often because once it is acted on it will be declared satisfied and never again
require attention.

To establish the claim, define the following computable function h : ω → ω.
To determine h(x), let nx,0 = x and nx,i+1 = nx,i + |g(nx,i, e)| + 1. Now define
h(x) to be the least stage such that for all i with 0 ≤ i ≤ x + 1, g(nx,i, e) has
halted. We also require h(x) to be greater than nx,x+1. If we take some x ≥ s0

such pI(x) > h(x), then there must be some i ≤ x such that [nx,i, nx,i+1−1]∩I =

∅. Further we have that g(nx,i, e)[pI(x)] ↓ so g(nx,i, e)[pI(nx,i)] ↓. Now take
t = nx,i.

Corollary 10.7.2. A set I ⊆ ω is the indifferent set for some weakly 1-generic set if
and only if I is hyperimmune.

Proof. The other direction, the fact that if I is an indifferent set for some weakly
1-generic set G then I is hyperimmune, follows from the proof of Theorem
10.5.1. The proof of Theorem 10.5.1 builds a dense c.e. set of strings so this
proof applies to the case of weakly 1-generic sets as well.

We will now consider which degrees can compute an indifferent set for a
given weakly 1-generic set. In Lemma 10.5.2, we showed that we could make a
set G meet or avoid Se by ensuring that (G � n)g(n, e) ≺ G. Now if Se is dense,

196 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

then as the following lemma indicates, this is also a necessary condition for G
to meet Se.

Lemma 10.7.3. If G is a weakly 1-generic set and Se is dense, then there exist in-
finitely many n such that (G � n)g(n, e) ≺ G.

Proof. Given a dense set of strings Se we will define another dense set of
strings Ve as follows. At stage 0 we add g(0, e) to Ve and set l0 = |g(0, e)|. At
stage s+1, for all σ of length ls, we add σg(ls, e) to Ve and set ls+1 = ls+|g(ls, e)|.
As Ve is dense, it follows that G meets Ve infinitely often. Hence for infinitely
many i, (G � li)g(li, e) ≺ G.

Theorem 10.7.4. If G is a weakly 1-generic set, and I is a set such that pI escapes
domination by all f ≤T G, then I is an indifferent set for G.

Proof. If G is a weakly 1-generic set, and Se is dense, there is a sequence
n0, n1, . . . computable in G such that (G � ni)g(ni, e) ≺ G. Further we can
require that ni+1 > ni + |g(ni + 1, e)|. Now as pI escapes domination by any
G-computable function, for some x we have that pI(x) > nx+1. Thus there is
some i ≤ x such that such that I ∩ [ni, ni+1 − 1] = ∅. Thus we have that for all
X ⊆ I , G[X] � nig(ni, e) ≺ G[X] and so G[X] meets Se. This is true for any e so I
is an indifferent set for G with respect to weak 1-genericity.

Theorem 10.7.5. If G is a weakly 1-generic set, A ≥T G and A ∈ GL2, then A

computes an indifferent set for G.

Proof. For the previous proof to hold, we needed pI to escape domination by
a set of functions fe for each e such that Se is dense. From G⊕∅′ we can define
a function that majorizes f(x) = max{fe(x) : e ≤ x ∧ Se is dense}. If a set
Se is not dense, then the corresponding fe may fail to be total. However, we
can concurrently attempt to compute fe(x), for any x, using G and search for a
witness that shows Se is not dense using ∅′. Either fe(x) ↓ or we establish that
Se is not dense and we can remove e from our list of functions.

As A ∈ GL2 and A ≥T G, we have that A computes a set whose principal
function escapes domination by f and hence A computes an indifferent set
for G.

We will now look at another significant difference between indifferent sets
for 1-generic sets and weakly 1-generic sets.

Theorem 10.7.6. Any ∆0
2 weakly 1-generic set computes a set it is indifferent to.

10.7. INDIFFERENT SETS FOR WEAKLY 1-GENERIC SETS 197

Proof. Let G ≤T ∅′ be weakly 1-generic set with approximation Gs. To prove
this theorem we will construct a Turing functional Γ such that Γ(G) is total
and strictly increasing and that rngΓ(G) is an indifferent set for G.

Take any X ⊆ rngΓ(G). We will use the fact that G is weakly 1-generic to
ensure that G[X] is also weakly 1-generic. For each c.e. set of strings S, we will
enumerate our own c.e. set of strings V . If S is dense, then we will threaten
to make V dense as well. Further we will construct V in such a way that if
G meets it, then for all X ⊆ rngΓ(G), G[X] meets S. Our requirements are as
follows:

Ie: Γ(G; e+ 1) ↓> Γ(G; e),

Re:
Se dense → ∃[n([n, n + |g(n, e)|] ∩ rngΓ(G) = ∅, and
(G � n)g(n, e) ≺ G)].

A requirement Ie needs attention at stage s, if Γ(G; e + 1)[s] ↑. We act on
such a requirement by finding the least x > Γ(G; e)[s] that is not restrained by
a higher priority requirement. We set Γ(Gs; e + 1)[s + 1] = x with use x. We
injure all lower priority requirements of the form Re.

We will assign each requirement Re, a c.e. set of strings Ve. Each time Re is
injured we assign Re a new set Ve. We will define the following computable
function m : ω3 → ω by

m(e, i, s) = max{x+ 1 : (∃ρ ∈ 2<ω)(x ∈ rngΓ(ρ)[s] ∧ ρ 6� Gs � i)}.

A requirement Re needs attention if at stage s+ 1 if

(i). Gs does not meet Ve.

(ii). For some unused pair (e, i), there exists an s such that g(m(e, i, s), e)[s] ↓.

We act on a requirement Re by adding σg(m(e, i, s), e) to Ve for all strings σ
such that:

(i). |σ| = m(e, i, s).

(ii). σ 6� Gs � i.

Following this, we injure all lower priority requirements and we restrain any
x ≤ m(e, i, s) + g(m(e, i, s), e) with priority e. We declare the pair (e, i) used.

The construction is simply this, at stage s we find the highest priority re-
quirement that needs attention and we act on that requirement.

198 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

Verification. Take any requirement, and assume that all higher priority re-
quirements require attention finitely often. If the requirement is of the form
Ie then there is some maximum restraint r placed on Ie by higher priority re-
quirements. Let x be the least value that exceeds r and, if e 6= 0, also exceeds
Γ(G; e− 1). The construction ensures that Γ(G; e) = x with use x and hence Ie
is met and further, Ie requires attention finitely often.

If the requirement is of the form Re, then first assume that Se is not a dense
c.e. set of strings. In this case Re is met trivially. Further, Re cannot need
attention infinitely often because for some x for all y ≥ x, g(y, e) ↑. Now as-
sume that Se is a dense c.e. set of strings. First we claim that for all i, there
exists some s such that g(m(e, i, s), e)[s] ↓. This claim holds because during the
construction we only define Γ on initial segments of Gs. Once our approxima-
tion settles on the first i bits, then we will no longer define Γ on strings that
do not extend G � i. This means that limsm(e, i, s) exists and so for some s,
g(m(e, i, s), e)[s] ↓.

If G did not meet Ve then Re would act infinitely often and so Ve would be
dense. However as G is weakly 1-generic then this would imply that G does
meet Ve. Hence we must conclude that at some point G meets Ve and so Re

requires attention finitely often.
It remains to show that requirement Re is satisfied. Let σg(m(e, i, s), e) be

the string in Ve that G meets, where |σ| = m(e, i, s). At stage s, we had that
σ 6= Gs � i so G 6� Gs � i. Further for all x such that

m(e, i, s) < x ≤ m(e, i, s) + g(m(e, i, s), e)

we have that x 6∈ rngΓ(ρ)[s] if ρ 6� Gs � i. Thus for all x ∈ [m(e, i, s),m(e, i, s) +

g(m(e, i, s), e)], x 6∈ rngΓ(G) because after stage s all x ≤ g(m(e, i, s), e) are
restrained with priority e.

10.8 Open questions

We conclude this chapter with some remaining questions.

Question 10.8.1. Does there exists an array computable set A, such that A
computes a 1-generic set G and an indifferent set for G? If so, can A be 1-
generic? If this question has a positive answer it may well provide a new
example of a degree with no strong minimal cover.

Question 10.8.2. In Corollary 10.7.2 we characterised indifferent sets for weak-
ly 1-generic sets in terms of sparseness. Can indifferent sets for 1-generic sets
be characterised by a sparseness requirement?

10.8. OPEN QUESTIONS 199

Question 10.8.3. Can the c.e. degrees that bound 1-generic sets that compute
an indifferent set for themselves be characterised using the totally α-c.e. de-
gree hierarchy?

Question 10.8.4. In Section 10.7 we showed that any weakly 1-generic set that
is either in GL2 or is ∆0

2 can compute an indifferent set for itself. However, we
have not be able to answer the following question. Does there exists a weakly
1-generic set that cannot compute a set to which it is indifferent?

Question 10.8.5. What can be said about indifferent sets for (weakly) n-generic
sets for n > 1?

200 CHAPTER 10. INDIFFERENT SETS FOR COMEAGER CLASSES

Bibliography

[1] ALLENDER, E., BUHRMAN, H., AND KOUCKÝ, M. What can be effi-
ciently reduced to the Kolmogorov-random strings? Annals of Pure and
Applied Logic 138 (2006), 2–19.

[2] ALLENDER, E., BUHRMAN, H., KOUCKÝ, M., VAN MELKEBEEK, D., AND

RONNEBURGER, D. Power from random strings. In FOCS ’02: Proceedings
of the 43rd Symposium on Foundations of Computer Science (Washington, DC,
USA, 2002), IEEE Computer Society, pp. 669–678.

[3] ARSLANOV, M. M. On some generalizations of the fixed-point theorem.
Soviet Mathematics 25 (1981), 1–10.

[4] BARMPALIAS, G. Computably enumerable sets in the Solovay and the
strong weak truth table degrees. In New Computational Paradigms (2005),
S. Cooper, B. Löwe, and L. Torenvliet, Eds., Lecture Notes in Computer
Science, Springer Berlin/Heidelberg, pp. 8–17.

[5] BARMPALIAS, G., DOWNEY, R. G., AND GREENBERG, N. Working with
strong reducibilities above totally ω-c.e. and array computable degrees.
Transactions of the American Mathematical Society 362, 2 (2010), 777–813.

[6] BARMPALIAS, G., AND LEWIS, A. E. M. A c.e. real that cannot be sw-
computed by any Ω number. Notre Dame Journal of Formal Logic 47, 2
(2006), 197–209.

[7] BARMPALIAS, G., AND LEWIS, A. E. M. The ibT degrees of computably
enumerable sets are not dense. Annals of Pure and Applied Logic 141, 1-2
(2006), 51–60.

[8] BARTLE, R. G. The Elements of Integration. John Wiley & Sons, 1966.

[9] BILLINGSLEY, P. Convergence of Probability Measures, 2nd ed. Wiley, 1999.

[10] CAI, M., AND SHORE, R. A. Domination, forcing, array nonrecursive-
ness and relative recursive enumerability. To appear.

202 BIBLIOGRAPHY

[11] CALHOUN, W. C. Degrees of monotone complexity. The Journal of Sym-
bolic Logic 71 (2006), 1327–1341.

[12] CALUDE, C., COLES, R. J., HERTLING, P., AND KHOUSSAINOV, B.
Degree-theoretic aspects of computably enumerable reals. In Models and
Computability. Invited Papers from Logic Colloquium ’97 - European Meeting
of the Association for Symbolic Logic, Leeds, July 1997, S. B. Cooper and J. K.
Truss, Eds., vol. 259 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 1999.

[13] CALUDE, C., HERTLING, P., KHOUSSAINOV, B., AND WANG, Y. Recur-
sively enumerable reals and Chaitin Ω numbers. In STACS 98. 15th An-
nual Symposium on Theoretical Aspects of Computer Science. Paris, France,
February 25-27, 1998 (1998), M. Morvan, C. Meinel, and D. Krob, Eds.,
vol. 1373 of Lecture Notes in Computer Science, pp. 596–606.

[14] CHAITIN, G. J. On the length of programs for computing finite binary
sequences. Journal of the ACM 13 (1966), 547–569.

[15] CHAITIN, G. J. On the length of programs for computing finite binary
sequences: statistical considerations. Journal of the ACM 16 (1969), 145–
159.

[16] CHAITIN, G. J. A theory of program size formally identical to informa-
tion theory. Journal of the ACM 22, 3 (1975), 329–340.

[17] CHAITIN, G. J. Information-theoretic characterizations of recursive infi-
nite strings. Theoretical Computer Science 2, 1 (1976), 45 – 48.

[18] CHURCH, A. A note on the Entscheidungsproblem. The Journal of Sym-
bolic Logic 1 (1936), 40–41.

[19] CHURCH, A. An unsolvable problem of elementary number theory.
American Journal of Mathematics 58 (1936), 345–363.

[20] CHURCH, A. On the concept of a random sequence. Bulletin of the Amer-
ican Mathematical Society 46 (1940), 130–135.

[21] CSIMA, B. F., AND SOARE, R. I. Computability results used in differential
geometry. The Journal of Symbolic Logic 71, 4 (2006), 1394–1410.

[22] DAY, A. R. On the computational power of random strings. Annals of
Pure and Applied Logic 160, 2 (2009), 214–228.

BIBLIOGRAPHY 203

[23] DAY, A. R. The computable Lipschitz degrees of computably enumerable
sets are not dense. Annals of Pure and Applied Logic 161, 12 (2010), 1588 –
1602.

[24] DAY, A. R. On process complexity. Chicago Journal of Theoretical Computer
Science 4 (2010).

[25] DEMUTH, O. Remarks on the structure of tt-degrees based on construc-
tive measure theory. Commentationes Mathematicae Universitatis Carolinae
29, 2 (1988), 233–247.

[26] DOWNEY, R. G., AND GREENBERG, N. A transfinite hierarchy of notions
of lowness in the computably enumerable degrees, unifying classes, and
natural definability. To appear.

[27] DOWNEY, R. G., GREENBERG, N., AND WEBER, R. Totally ω-computably
enumerable degrees and bounding critical triples. Journal of Mathematical
Logic 7, 2 (2007), 145–171.

[28] DOWNEY, R. G., AND GRIFFITHS, E. J. Schnorr randomness. The Journal
of Symbolic Logic 69, 2 (2004), 533–554.

[29] DOWNEY, R. G., GRIFFITHS, E. J., AND REID, S. On Kurtz randomness.
Theoretical Computer Science 321, 2-3 (2004), 249–270.

[30] DOWNEY, R. G., AND HIRSCHFELDT, D. R. Algorithmic Randomness and
Complexity. Springer-Verlag, 2010.

[31] DOWNEY, R. G., HIRSCHFELDT, D. R., AND LAFORTE, G. Randomness
and reducibility. Journal of Computer and System Sciences 68, 1 (2004), 96–
114.

[32] DOWNEY, R. G., JOCKUSCH, JR., C. G., AND STOB, M. Array nonre-
cursive sets and multiple permitting arguments. In Recursion theory week
(Oberwolfach, 1989), vol. 1432 of Lecture Notes in Mathematics. Springer,
Berlin, 1990, pp. 141–173.

[33] DOWNEY, R. G., JOCKUSCH, JR., C. G., AND STOB, M. Array nonre-
cursive degrees and genericity. In Computability, enumerability, unsolvabil-
ity, vol. 224 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 1996, pp. 93–104.

[34] FIGUEIRA, S., MILLER, J. S., AND NIES, A. Indifferent sets. Journal of
Logic and Computation 19, 2 (2009), 425–443.

204 BIBLIOGRAPHY

[35] GÁCS, P. On the symmetry of algorithmic information. Soviet Mathematics
Doklady 15 (1974), 1477–1480.

[36] GÁCS, P. On the relation between descriptional complexity and algorith-
mic probability. In 22nd Annual Symposium on Foundations of Computer
Science (Los Alamitos, CA, USA, 1981), IEEE Computer Society, pp. 296–
303.

[37] GÁCS, P. On the relation between descriptional complexity and algorith-
mic probability. Theoretical Computer Science 22 (1983), 71–93.

[38] GÁCS, P. Uniform test of algorithmic randomness over a general space.
Theoretical Computer Science 341, 1-3 (2005), 91–137.

[39] HIRSCHFELDT, D. R., NIES, A., AND STEPHAN, F. Using random sets as
oracles. Journal of the London Mathematical Society 75, 3 (2007), 610–622.

[40] HOYRUP, M., AND ROJAS, C. Computability of probability measures and
Martin-Löf randomness over metric spaces. Information and Computation
207, 7 (2009), 830–847.

[41] ISHMUKHAMETOV, S. Weak recursive degrees and a problem of Spec-
tor. In Recursion theory and complexity (Kazan, 1997), M. M. Arslanov and
S. Lempp, Eds., vol. 2 of de Gruyter Series in Logic and its Applications. de
Gruyter, Berlin, 1999, pp. 81–88.

[42] JOCKUSCH, JR., C. G. Degrees of generic sets. In Recursion theory: its gen-
eralisation and applications, vol. 45 of London Mathematical Society Lecture
Note Series. Cambridge University Press, Cambridge, 1980, pp. 110–139.

[43] JOCKUSCH, JR., C. G., AND POSNER, D. B. Double jumps of minimal
degrees. The Journal of Symbolic Logic 43, 4 (1978), 715–724.

[44] JOCKUSCH, JR., C. G., AND SOARE, R. I. Π0
1 classes and degrees of theo-

ries. Transactions of the American Mathematical Society 173 (1972), 33–56.

[45] KAKUTANI, S. A generalization of Brouwer’s fixed point theorem. Duke
Mathematical Journal 8 (1941), 457–459.

[46] KOLMOGOROV, A. N. Three approaches to the quantitiative definition of
information. Problems of Information Transmission 1 (1965), 1–7.

[47] KRAFT, L. G. A device for quantizing, grouping and coding amplitude
modulated pulses. Master’s thesis, MIT, 1949.

BIBLIOGRAPHY 205

[48] KUMABE, M. On the Turing Degrees of Generic Sets. PhD thesis, University
of Chicago, 1990.

[49] KUMABE, M. Degrees of generic sets. In Computability, enumerability,
unsolvability, vol. 224 of London Mathematical Society Lecture Note Series.
Cambridge Univ. Press, Cambridge, 1996, pp. 167–183.

[50] KUMMER, M. On the complexity of random strings (extended abstract).
In STACS ’96: Proceedings of the 13th Annual Symposium on Theoretical As-
pects of Computer Science (London, UK, 1996), Springer-Verlag, pp. 25–36.

[51] KURTZ, S. Randomness and genericity in the degrees of unsolvability. PhD
thesis, University of Illinois at Urbana–Champaign, 1981.

[52] KUČERA, A. Measure, Π0
1 classes and complete extensions of PA. In

Recursion Theory Week. Proceedings of the Conference Held at the Mathema-
tisches Forschungsinstitut in Oberwolfach, April 15-21, 1984 (Berlin, 1985),
H. D. Ebbinghaus, G. H. Müller, and G. E. Sacks, Eds., vol. 1141 of Lecture
Notes in Mathematics, Springer, pp. 245–259.

[53] LACOMBE, D. Quelques procédés de définition en topologie recursive.
In Constructivity in mathematics: Proceedings of the colloquium held at Ams-
terdam, 1957 (edited by A. Heyting) (1959), Studies in Logic and the Foun-
dations of Mathematics, North-Holland Publishing Co., pp. 129–158.

[54] LADNER, R. E., AND SASSO, L. P. The weak truth table degrees of recur-
sively enumerable sets. Annals of Mathematical Logic 8, 4 (1975), 429–448.

[55] LEVIN, L. A. On the notion of a random sequence. Soviet Mathematics
Doklady 14, 5 (1973), 1413–1416.

[56] LEVIN, L. A. Laws of information conservation (non-growth) and as-
pects of the foundation of probability theory. Problems of Information
Transmission 10 (1974), 206–210.

[57] LEVIN, L. A. Uniform tests of randomness. Soviet Mathematics Doklady
17, 2 (1976), 337–339.

[58] LEVIN, L. A. Some theorems on the algorithmic approach to probability
theory and information theory: (1971 dissertation directed by A. N. Kol-
mogorov). Annals of Pure and Applied Logic 162, 3 (2010), 224 – 235. Special
Issue: Dedicated to Nikolai Alexandrovich Shanin on the occasion of his
90th birthday.

206 BIBLIOGRAPHY

[59] LEWIS, A. E. M., AND BARMPALIAS, G. Random reals and Lipschitz
continuity. Mathematical Structures in Computer Science 16, 5 (2006), 737–
749.

[60] LI, M., AND VITÁNYI, P. An introduction to Kolmogorov complexity and its
applications (2nd ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1997.

[61] LUTZ, J. H. The quantitative structure of exponential time. In Complexity
Theory Retrospective II. Springer, 1997, pp. 225–260.

[62] MARTIN, D. A. Classes of recursively enumerable sets and degrees of
unsolvability. Zeitschrift für Mathematische Logik und Grundlagen der Math-
ematik 12 (1966), 295–310.

[63] MARTIN-LÖF, P. The definition of random sequences. Information and
Control 9 (1966), 602–619.

[64] MILLER, J. S. Degrees of unsolvability of continuous functions. The Jour-
nal of Symbolic Logic 69, 2 (2004), 555–584.

[65] MILLER, J. S., AND YU, L. On initial segment complexity and degrees
of randomness. Transactions of the American Mathematical Society 360, 6
(2008), 3193–3210.

[66] MUCHNIK, A. A., AND POSITSELSKY, S. Y. Kolmogorov entropy in
the context of computability theory. Theoretical Computer Science 271, 1-2
(2002), 15–35.

[67] MUNROE, M. E. Introduction to Measure and Integration. Addison-Wesley,
1953.

[68] NERODE, A. General topology and partial recursive functions. In Sum-
maries of talks presented at the Summer Institute for Symbolic Logic. Cornell
University, 1957, pp. 247–251.

[69] NIES, A. Lowness properties and randomness. Advances in Mathematics
197, 1 (2005), 274 – 305.

[70] NIES, A. Computability and randomness. Oxford University Press, 2009.

[71] ODIFREDDI, P. Classical Recursion Theory. The Theory of Functions and Sets
of Natural Numbers, vol. 125 of Studies in Logic and the Foundations of Math-
ematics. North-Holland Publishing Company, Amsterdam, 1990.

BIBLIOGRAPHY 207

[72] REIMANN, J. Effectively closed sets of measures and randomness. Annals
of Pure and Applied Logic 156, 1 (2008), 170–182.

[73] REIMANN, J., AND SLAMAN, T. A. Measures and their random reals. To
appear.

[74] REIMANN, J., AND SLAMAN, T. A. Probability measures and effective
randomness. In 13th International Congress of Logic Methodology and Phi-
losophy of Science, Beijing (2007).

[75] ROGERS, H. Theory of Recursive Functions and Effective Computability. The
MIT Press, 1987.

[76] ROZINAS, M. The semilattice of e-degrees. In Recursive functions (Rus-
sian). Ivanov. Gos. Univ., Ivanovo, 1978, pp. 71–84.

[77] SACKS, G. E. The recursively enumerable degrees are dense. The Annals
of Mathematics 80, 2 (1964), 300–312.

[78] SCHNORR, C. P. A unified approach to the definition of random se-
quences. Theory of Computing Systems 5, 3 (1971), 246–258.

[79] SCHNORR, C. P. Zufälligkeit und Wahrscheinlichkeit. In Lecture Notes
in Mathematics, vol. 218 of Lecture Notes in Mathematics. Springer-Verlag,
Berlin-New York, 1971.

[80] SCHNORR, C. P. Process complexity and effective random test. Journal of
Computer and System Sciences 7 (1973), 376–388.

[81] SELMAN, A. L. Arithmetical reducibilities. I. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik 17 (1971), 335–350.

[82] SIMPSON, S. Degrees of unsolvability: a survey of results. In Handbook of
Mathematical Logic, J. Barwise, Ed., vol. 90 of Studies in Logic and the Foun-
dations of Mathematics. North-Holland Publishing Company, Amsterdam,
1977, pp. 631–652.

[83] SOARE, R. I. Recursively enumerable sets and degrees. Springer-Verlag New
York, Inc., New York, NY, USA, 1987.

[84] SOLOMONOFF, R. J. A formal theory of inductive inference, I and II.
Information and Control 7, 1-22 (1964), 224–254.

208 BIBLIOGRAPHY

[85] TURING, A. M. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society s2-
42, 1 (1937), 230–265.

[86] TURING, A. M. On computable numbers, with an application to the
Entscheidungsproblem. A correction. Proceedings of the London Mathemat-
ical Society s2-43, 1 (1938), 544–546.

[87] USPENSKY, V. A., AND SHEN, A. Relations between varieties of Kol-
mogorov complexities. Mathematical Systems Theory 29 (1996), 271–292.

[88] VAN LAMBALGEN, M. Random Sequences. PhD thesis, University of Am-
sterdam, 1987.

[89] VILLE, J. Étude critique de la notion de collectif. In Monographies des Prob-
abilités. Calcul des Probabilités et ses Applications. Gauthier-Villars, Paris,
1939.

[90] VON MISES, R. Grundlagen der wahrscheinlichkeitsrechnung. Mathema-
tische Zeitschrift 5, 52-99 (1919).

[91] WANG, Y. Randomness and Complexity. PhD thesis, University of Heidel-
berg, 1996.

[92] WEIHRAUCH, K. Computable analysis, an introduction. Springer-Verlag,
Berlin, 2000.

[93] YU, L., AND DING, D. There is no sw-complete c.e. real. The Journal of
Symbolic Logic 69, 4 (2004), 1163–1170.

[94] ZVONKIN, A. K., AND LEVIN, L. A. The complexity of finite objects
and the development of the concepts of information and randomness of
means of the theory of algorithms. Russian Mathematical Surveys 25, 6
(1970), 83–124.

