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Abstract

We show that for any 3-connected matroid M on a ground set of at least four
elements such that M does not contain any 4-element fans, and any basis B
of M , there exists a set K ⊆ E(M) of four distinct elements such that for all
k ∈ K, si(M/k) is 3-connected whenever k ∈ B, and co(M\k) is 3-connected
whenever k ∈ E(M) − B. Moreover, we show that if no other elements of
E(M)−K satisfy this property, then M necessarily has path-width 3.
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Chapter 1

Introduction

It is well established that the class of 3-connected matroids is fundamental
in matroid theory. Indeed, any matroid that is not 3-connected can be con-
structed from a collection of its 3-connected minors by a sequence of direct
sums and 2-sums. Moreover, when working with representable matroids, 3-
connectivity is an essential ingredient in obtaining any sense of uniqueness
of representations.

Bixby’s Lemma [3] (see Lemma 3.4.2) is a useful tool for maintaining ma-
troid 3-connectivity. It states that for any element e of a 3-connected matroid
M , either M/e is 3-connected up to parallel classes, or M\e is 3-connected
up to series classes. However, situations arise where we have some particular
type of element of a 3-connected matroid, and we specifically want to con-
tract it (or specifically want to delete it) whilst maintaining 3-connectivity.
In such situations, Bixby’s Lemma may be of little use.

For example, if we have a representation [Ir, D] of a matroid M in stan-
dard form, then the columns of Ir correspond to a basis B of M , while the
columns of D correspond to a cobasis E(M)−B of M . We can now suppress
mention of the identity submatrix Ir, and take D to be our representation
of M ; where rows of D correspond to the basis B and columns of D to the
cobasis E(M) − B. Suppose then that we want to study representations of
minors of M . If we restrict ourselves to those minors that can be obtained
via contracting elements of the basis B or deleting elements of the cobasis
E(M) − B, then a representation for such a minor can be found simply by
deleting rows or columns of the matrix D. Doing so leaves all remaining
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CHAPTER 1. INTRODUCTION 2

entries of D unchanged, so that important structural information that may
be present in D can be preserved.

Oxley, Semple, and Whittle [10] studied this precise situation. One result
of theirs was that for a 3-connected matroid M with no 4-element fans, and
any basis B, there always exists either some element b ∈ B such that M/b is
3-connected, or some element b∗ ∈ E(M)−B such that M\b∗ is 3-connected.
In this study, we were interested in extending this result in order to obtain a
set K of as many elements as possible such that whenever e ∈ K ∩B, M/e is
3-connected up to parallel classes, and whenever e ∈ K ∩ (E(M)−B), M\e
is 3-connected up to series classes. In Theorem 4.0.1, we show that provided
|E(M)| ≥ 4, M always contains at least four such elements. We then looked
at situations where this lower bound is met; and concluded with the result
that in such a case, the matroid M must have path-width 3 (Theorem 5.0.2).

While the focus of this work was predominantly on the original research
undertaken, I have attempted to make the thesis as self contained as possi-
ble. Definitions are given for all terminology and notation used, and proofs
are provided for all results that are utilised. We use the notation ⊆ to mean
subset and ⊂ for proper subset. Chapters 2 and 3 give a short introduction
to matroid theory and matroid connectivity. Chapter 4 is concerned with
finding a set consisting of elements which can be removed whilst maintaining
3-connectivity up to parallel and series classes; and culminates with Theo-
rem 4.0.1. In Chapter 5, we study those situations where exactly four such
elements are found. Within this chapter, Sections 5.1 and 5.2 present results
on how we may arrange certain key elements and substructures present in
our matroids with respect to 3-separations. Section 5.3 then ties these results
in with the notion of path-width; concluding with Theorem 5.0.2.

As we neared a completed proof of Theorem 5.0.2, the fog of war that
had surrounded the problem lifted greatly. It is now clear that there is a
slightly more efficient route that can be used to prove the result. In partic-
ular, some constructions present in Section 5.1 can be largely circumvented.
Nevertheless, we have opted to include and use them, as they do give some
insight into the possible structures that can arise. We defer the use of the
simplified argument to a research paper.

With regards to the originality of the material presented herein, Chapter
2 consists exclusively of background material on matroid theory, and as such,
is all well known. Likewise for Chapter 3; with the exception of 3.4.4 - 3.4.8;
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which are all original, and 3.5.1; where a new definition is made. Everything
in Chapter 4 is original work. Theorem 5.0.2 is new, as is the material
contained in Sections 5.1 and 5.2. Definition 5.3.1 is given in [5], and the
results of Lemmas 5.3.2 -5.3.4 are known. The remainder of Section 5.3 is
original work.



Chapter 2

Matroids

The purpose of this chapter is to define matroids and take a look at some
of their basic properties. The introduction is brief, and material presented
herein has been chosen according to what background knowledge is explicitly
required for an understanding of the thesis as a whole. For a thorough
introduction to matroid theory, see Matroid Theory by Oxley [9].

2.1 Matroids; Independent Sets

Matroids can be defined by means of a number of equivalent axiom schemes.
The definition we give here is, arguably, perhaps the most intuitive.

Definition 2.1.1. A matroid is a pair (E, I) where E is a finite set, and
I ⊆ P(E) satisfying the following axioms:

(I1) ∅ ∈ I.

(I2) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I.

(I3) If I1, I2 ∈ I and |I1| < |I2|, then there exists some e ∈ I2− I1 such that
I1 ∪ {e} ∈ I.

If (E, I) is a matroid, we say that (E, I) is a matroid on E. E is the ground
set of the matroid. The members of I are the independent sets of the matroid.

4



CHAPTER 2. MATROIDS 5

Members of P(E) − I are called dependent sets. We usually simply denote
matroids by a capital letter such as M , and whenever we wish to explicitly
refer to either the ground set of M or the collection of independent sets of
M , we use the notation E(M) or I(M) respectively.

Definition 2.1.2. A basis of a matroid M is a maximal independent set of
M .

Lemma 2.1.3. [9, Lemma 1.2.1] If B1 and B2 are bases of a matroid M ,
then |B1| = |B2|.

Proof. Suppose B1, B2 are bases of some matroid M where |B1| < |B2|. Then
by (I3), there exists some e ∈ B2 − B1 such that B1 ∪ {e} is independent.
This contradicts the maximality of B1. Hence |B1| ≥ |B2|, and similarly,
|B2| ≥ |B1|.

Lemma 2.1.4. [9, Lemma 1.2.2] Let B1 and B2 be bases of a matroid M and
x ∈ B1−B2. Then there exists some y ∈ B2−B1 such that (B1−{x})∪{y}
is a basis of M .

Proof. Both B1 − {x} and B2 are independent, and by Lemma 2.1.3, |B1 −
{x}| < |B2|. Therefore, by (I3), there exists some y ∈ B2 − (B1 − {x}) such
that (B1 − {x}) ∪ {y} is independent. Now (B1 − {x}) ∪ {y} is contained
in some basis of M , and |(B1 − {x}) ∪ {y}| = |B1|, so that by Lemma 2.1.3,
(B1 − {x}) ∪ {y} is itself a basis of M .

Definition 2.1.5. A circuit of a matroid M is a minimal dependent set.
Circuits which consist of a single element are called loops, two element circuits
are referred to as a parallel pair, and a circuit of size three is a triangle.

Lemma 2.1.6. [9, Lemma 1.1.3] Let C1 and C2 be distinct circuits of a
matroid M and e ∈ C1 ∩ C2. Then there exists a circuit C3 of M such that
C3 ⊆ (C1 ∪ C2)− {e}.

Proof. Suppose (C1∪C2)−{e} is independent. Taking any x ∈ C2−C1 6= ∅,
we have that C2−{x} is independent. Now let I be a maximal independent
set of C1 ∪ C2 such that I contains C2 − {x}. Then x 6∈ I and there exists
some y ∈ C1 − I. Therefore

|I| ≤ |(C1 ∪ C2)− {x, y}| = |C1 ∪ C2| − 2 < |(C1 ∪ C2)− {e}|.
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Now applying (I3), we conclude that there must exist an independent I ′ such
that C2−{x} ⊆ I ′ ⊆ C1 ∪C2 and |I ′| > |I|. The contradicts the maximality
of I.

Lemma 2.1.7. Let B1 and B2 be bases of a matroid M and x ∈ B2 − B1.
Then there exists some y ∈ B1 −B2 such that (B1 − {y}) ∪ {x} is a basis of
M .

Proof. As B1 ∪ {x} is dependent, it must contain a circuit C1. Take any
y ∈ C1−B2 6= ∅ and consider (B1−{y})∪{x}. If (B1−{y})∪{x} contains
a circuit C2, then by Lemma 2.1.6, there exists a circuit C3 such that C3 ⊆
(C1 ∪ C2)− {x} ⊆ B1, but this contradicts the fact that B1 is independent.
Therefore (B1−{y})∪{x}must be independent. As |(B1−{y})∪{x}| = |B1|,
it then follows from Lemma 2.1.3 that (B1 − {y}) ∪ {x} is a basis of M .

2.2 Representable Matroids

Matroids were originally introduced by Whitney in 1935 [16]; largely in an
attempt to capture the notion of linear independence present in vector spaces
in an axiomatic manner.

Proposition 2.2.1. Let F be a field and n ∈ Z+. Let E be a multiset of
vectors from Fn. Define

I = {I ⊆ E: I linearly independent}.

Then (E, I) is a matroid.

Proof. I clearly satisfies (I1) and (I2). Suppose I1 and I2 are linearly inde-
pendent subsets of E where |I1| < |I2|. Let W = Span(I1∪I2) ⊆ Fn. Letting
dim(W ) denote the dimension of W , we have |I2| ≤ dim(W ). Assume that
for all e ∈ I2 − I1, I1 ∪ {e} is linearly dependent. Then W ⊆ Span(I1) and

|I2| ≤ dim(W ) ≤ |I1| < |I2|

which is absurd. Hence there must exist some e ∈ I2 − I1 such that I1 ∪ {e}
is linearly independent; this gives (I3).
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Suppose that A is some n×p matrix over a field F. Then the collection of
columns of A correspond to a multiset of vectors from Fn. In light of Propo-
sition 2.2.1 above, there is a matroid which has the collection of columns of
A as its ground set; in which the independent sets are precisely the sets of
columns of A which are linearly independent over Fn. We write M [A] to
represent the matroid obtained from a matrix A in this manner. Such a ma-
troid is said to be representable. In particular, if M = M [A] is some matroid
obtained from a matrix A over F, then M is said to be representable over F.

We see that Whitney [16] did indeed capture the notion of linear inde-
pendence to some extent. But do matroids correspond identically to those
structures which arise from configurations of vectors as in the above proposi-
tion? The following example due to Vámos [15] answers this question in the
negative; the class of representable matroids is strictly contained within the
class of matroids.

Example 2.2.2. Let E = {1, 2, 3, 4, 5, 6, 7, 8} and

I ={X : X ⊂ E, |X| ≤ 4}−
{{1, 2, 3, 4}, {1, 4, 5, 6}, {1, 4, 7, 8}, {2, 3, 5, 6}, {2, 3, 7, 8}}

Then (E, I) is a matroid: the Vámos matroid, which is not representable
over any field.

So can we somehow classify those matroids which are representable? Per-
haps it would be possible to tighten our definition of a matroid as to ex-
clude non-representable structures? As the following example illustrates, we
need to specify which particular field F we are considering when determining
whether or not a matroid M is representable.

Example 2.2.3. Let E = {a, b, c, d} and I = {X : X ⊂ E, |X| ≤ 2}.
Then M = (E, I) is readily seen to be a matroid which is representable
over R. However, a simple combinatorial examination reveals that M is not
representable over GF (2). This particular matroid is denoted U2,4.

So fix some field F. Now given an arbitrary matroid M , how do we decide
whether or not M is F representable? This question is a natural one, and
one that has been studied extensively. Yet it remains largely unanswered. In
Section 2.7, we shall survey one approach that has been taken in an attempt
to solve this problem.
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2.3 Rank

Definition 2.3.1. Let M = (E, I) be a matroid. Then for any X ⊆ E, the
rank of X; denoted r(X), is the size of the largest independent set contained
in X. We write r(M) to represent r(E(M)): the rank of M . When we are
dealing with multiple matroids, we often write rM(X) to denote the rank of
the set X in the matroid M .

It follows from Lemma 2.1.3 that the rank of a matroid is equal to the
size of any basis for that matroid.

Lemma 2.3.2. Let M = (E, I) be a matroid. For any X, Y ⊆ E,

r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Proof. If r(X ∪Y ) = r(X ∩Y ), this is immediate. So assume that is not the
case. Let A be a maximally sized independent set contained in X∩Y . Let A′

be a maximally sized independent set contained in X ∪ Y . Then |A| < |A′|,
and so, by repeatedly applying (I3), we can extend A to a maximally sized
independent set of X ∪ Y . Letting B denote this extension of A, we have
r(X ∪ Y ) = |B| and r(X ∩ Y ) = |A|. Now we have

r(X) + r(Y ) ≥ |B ∩X|+ |B ∩ Y |
= |B ∩ (X ∪ Y )|+ |B ∩X ∩ Y |
= |B|+ |A|
= r(X ∪ Y ) + r(X ∩ Y ).

If M is a matroid and X ⊆ E(M) is such that r(X) = 2, then we call
X a line of M . When L is a line of M with |L| = n, we often say that L is
a n-point line. Note that some authors take lines of matroids to be rank 2
flats. In this thesis, lines are simply rank 2 sets, and need not be flats. We
present two simple results about lines of matroids:

Lemma 2.3.3. Let M be a matroid containing a n-point line L, and let B
be a basis of M . Then |L ∩B| ≤ 2.
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Proof. If |L ∩ B| ≥ 3, then r(L ∩ B) ≥ 3 because B is independent. But
r(L ∩B) ≤ r(L) = 2, so |L ∩B| ≤ 2.

Lemma 2.3.4. Let M be a matroid with 4-point lines L1, L2 ⊆ E(M). If
r(L1 ∩ L2) ≥ 2, then either:

(i) L1 = L2, or

(ii) L1 ∪ L2 is a line with |L1 ∪ L2| ≥ 5.

Proof. Suppose r(L1 ∩ L2) ≥ 2 and L1 6= L2. Then certainly, |L1 ∪ L2| ≥ 5,
and, by Lemma 2.3.2, r(L1 ∪ L2) ≤ r(L1) + r(L2)− r(L1 ∩ L2) = 2.

If M = M [A] is some representable matroid, it follows from elementary
linear algebra that the rank of M corresponds identically to the dimension
of the rowspace of the matrix A: the number of non-zero rows in a reduced
row echelon form of A.

2.4 Closure

Definition 2.4.1. Let M be a matroid. Then for all X ⊆ E(M), the closure
of X; denoted cl(X) is defined by

cl(X) = {x ∈ E(M) : r(X ∪ {x}) = r(X)}.

A set X ⊆ E(M) is closed if cl(X) = X. If X ⊆ E(M) is a closed set
with r(X) = r(M) − 1, then we refer to X as a hyperplane of M . We say
that Y ⊆ E(M) is spanning if cl(Y ) = E(M). When dealing with multiple
matroids, we often write clM(X) to denote the closure of X in the matroid
M .

The following result is used freely throughout this thesis.

Lemma 2.4.2. Let M be a matroid and X ⊆ E(M). Then X is a circuit
if and only if X is a minimal set with the property that for all x ∈ X,
x ∈ cl(X − {x}).

Proof. X is a circuit iff X is a minimal dependent set; iff X is dependent
and for all x ∈ X, X − {x} is independent; iff X is a minimal set such that
for all x ∈ X, r(X − {x}) = r(X); iff X is a minimal set with the property
that for all x ∈ X, x ∈ cl(X − {x}).
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2.5 Duality

For any matroid M with ground set E, there is a unique dual matroid M∗

on E defined as follows.

Proposition 2.5.1. Let M = (E, I) be a matroid, and let B denote the
collection of bases of M . Let

B∗ = {E −B : B ∈ B}, and

I∗ = {I ⊆ E : I ⊆ B∗ for some B∗ ∈ B∗}

Then M∗ = (E, I∗) is a matroid.

Proof. As I 6= ∅, B 6= ∅, so B∗ 6= ∅ and I∗ 6= ∅; hence (I1) is satisfied.
Suppose I1 ∈ I∗. Then I1 ⊆ B∗1 for some B∗1 ∈ B∗. Therefore for any
I2 ⊆ I1, I2 ⊆ B∗1 also, so that I2 ∈ I∗; which confirms that (I2) holds. To
show that M∗ = (E, I∗) satisfies (I3), we first note the following:

2.5.1.1. If B∗1 , B
∗
2 ∈ B∗ and x ∈ B∗1−B∗2 , then there exists some y ∈ B∗2−B∗1

such that (B∗1 − {x}) ∪ {y} ∈ B∗.

Proof. Suppose B∗1 , B
∗
2 ∈ B∗ and x ∈ B∗1 − B∗2 . Then there exist bases

B1 = B∗1 − E and B2 = B∗2 − E of M such that x ∈ B2 − B1. Now by
Lemma 2.1.7, there exists some y ∈ B1 −B2 such that (B1 − {y})∪ {x} is a
basis of M . Therefore E − ((B1 − {y})∪ {x}) = (B∗1 − {x})∪ {y} ∈ B∗.

Assume that there exists I1, I2 ∈ I∗, where |I1| < |I2| and for all e ∈
I2 − I1, I1 ∪ {e} 6∈ I∗. By definition, there exists B∗1 , B

∗
2 ∈ B∗ such that

I1 ⊆ B∗1 and I2 ⊆ B∗2 . Let B∗1 be any such element of B∗, and choose
B∗2 ∈ B∗ such that |B∗2 − (I2 ∪B∗1)| is minimal.

Suppose there exists some x ∈ B∗2 − (I2 ∪ B∗1). Then by 2.5.1.1, there
exists some y ∈ B∗1 − B∗2 such that (B∗2 − {x}) ∪ {y} ∈ B∗. But then
|((B∗2−{x})∪{y})−(I2∪B∗1)| < |B∗2−(I2∪B∗1)|; which contradicts our choice
of B∗2 . Therefore B∗2 − (I2 ∪B∗1) = ∅, and it follows that B∗2 −B∗1 = I2 −B∗1 ,
which implies that B∗2 −B∗1 = I2 − I1.

Now suppose there exists some x ∈ B∗1− (I1∪B∗2). Then by 2.5.1.1, there
exists some y ∈ B∗2 − B∗1 such that (B∗1 − {x}) ∪ {y} ∈ B∗. Now I1 ∪ {y} ⊆
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(B∗1−{x})∪{y} ∈ B∗. Hence I1∪{y} ∈ I∗. But B∗2−B∗1 = I2−I1, so y ∈ I2,
but this contradicts our assumption that for all e ∈ I2 − I1, I1 ∪ {e} 6∈ I∗.
Therefore B∗1 − (I1 ∪B∗2) = ∅, which implies that B∗1 −B∗2 = I1−B∗2 , and so
B∗1 −B∗2 ⊆ I1 − I2.

By Lemma 2.1.3, |B∗1 | = |B∗2 |, so |B∗1 − B∗2 | = |B∗2 − B∗1 |. But we’ve seen
that B∗2 −B∗1 = I2− I1 and B∗1 −B∗2 ⊆ I1− I2, therefore |I2− I1| ≤ |I1− I2|;
which contradicts the fact that |I2| > |I1|. We are left to conclude that there
indeed must exist some e ∈ I2 − I1 such that I1 ∪ {e} ∈ I∗; which proves
(I3). Therefore M∗ = (E, I∗) is a matroid.

Let M∗ be a matroid obtained from a matroid M as in the above propo-
sition. Then M∗ is said to be the dual of M . A basis of M∗ is called a
cobasis of M . Similarly, independent sets, circuits, hyperplanes, spanning
sets and lines of M∗ are referred to as coindependent sets, cocircuits, cohy-
perplanes, cospanning sets, and colines of M respectively. Whenever Γ is a
coline of a matroid with |Γ| = n, we say that Γ is a n-point coline. One, two,
and three element cocircuits of M are called coloops, series pairs and triads
respectively. Note also that (M∗)∗ = M .

Lemma 2.5.2. Let M be a matroid on a ground set E, and X ⊆ E. Then

(i) X is coindependent if and only if E −X is spanning, and

(ii) X is a cohyperplane if and only if E −X is a circuit.

Proof. X is coindependent iff X is contained in a cobasis; iff E−X contains
a basis; iff r(E −X) = r(M); iff cl(E −X) = E; iff E −X is spanning. It
then follows that X is a cohyperplane iff X is a maximal non-cospanning set;
iff E −X is a minimal dependent set; iff E −X is a circuit.

Let M be a matroid. For any X ⊆ E(M), the corank of X; denoted
r∗(X) is equal to rM∗(X). The coclosure of X; denoted cl∗(X) is equal to
clM∗(X). A set X is coclosed if cl∗(X) = X.

The corank function of a matroid satisfies the following:
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Lemma 2.5.3. Let M be a matroid on a ground set E. For any X ⊆ E,
r∗(X) = |X| − r(M) + r(E −X).

Proof. Take any X ⊆ E. Let I∗ be a maximally sized coindependent set
contained in X. By Lemma 2.5.2, E − I∗ is spanning. Hence E − I∗ must
contain a basis B. It then follows that X ∩B = X − I∗.

If r(E − X) ≥ |B − X|, then by (I3), there exists an element e ∈ E −
(X ∪B) such that (B−X)∪{e} is independent. Therefore (B−X)∪{e} is
contained in some basisB′. But thenX−B′ is coindependent by Lemma 2.5.2
and |X−B′| > |X−B| = I∗; which contradicts our choice of I∗. So we must
have r(E −X) = |B −X|, and so:

|X| = |X ∩ I∗|+ |X ∩B|
= r∗(X) + |X ∩B|
= r∗(X) + |B| − |B −X|
= r∗(X) + r(M)− |B −X|
= r∗(X) + r(M)− r(E −X).

Lemma 2.5.4. Let e be an element of a matroid M , and let X and Y be
disjoint sets whose union is E(M) − {e}. Then e ∈ cl(X) if and only if
e 6∈ cl∗(Y ).

Proof. By Lemma 2.5.3, r∗(Y ) = |Y |− r(M)+ r(X ∪{e}) and r∗(Y ∪{e}) =
|Y |+1−r(M)+r(X). Therefore r∗(Y ∪{e}) = r∗(Y )+1+(r(X)−r(X∪{e})),
so that e ∈ cl(X) iff r∗(Y ) 6= r∗(Y ∪ {e}); iff e 6∈ cl∗(Y ).

Lemma 2.5.5. Let M be a matroid containing a circuit C and a cocircuit
C∗. Then |C ∩ C∗| 6= 1.

Proof. Suppose that C ∩ C∗ = {x}. Letting H = E(M) − C∗, it follows
from Lemma 2.5.2 that H is a hyperplane. Now C − {x} ⊆ H, and so, by
Lemma 2.4.2, x ∈ cl(C − {x}) ⊆ cl(H). But then x ∈ cl(H) − H; which
contradicts the fact that hyperplanes are closed. Therefore |C ∩C∗| 6= 1.
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Duality is a powerful tool in matroid theory. Whenever we prove that
some result must hold for a matroid M , we may dualise the statement of
that result to immediately obtain another result that holds for the matroid
M∗. The following two facts about colines; which will be useful in what
follows, are a good illustration of this.

Lemma 2.5.6. Let M be a matroid containing an n-point coline Γ, and let
B be a basis of M . Then |Γ ∩B| ≥ n− 2.

Proof. By dualising Lemma 2.3.3, we have the following result: If M is a
matroid containing an n-point coline L, and B is a cobasis of M , then |L ∩
B| ≤ 2. Equivalently: if M is a matroid containing an n-point coline Γ, and
E(M)−B is a basis of M , then |L∩ (E(M)−B)| ≥ n− 2. The result then
follows via a relabelling of the basis E(M)−B.

Lemma 2.5.7. Let M be a matroid with 4-point colines Γ1,Γ2 ⊆ E(M). If
r∗(Γ1 ∩ Γ2) ≥ 2, then either:

(i) Γ1 = Γ2, or

(ii) Γ1 ∪ Γ2 is a coline with |Γ1 ∪ Γ2| ≥ 5.

Proof. This follows immediately by dualising Lemma 2.3.4, and relabelling
so that L1 and L2 become Γ1 and Γ2 respectively.

We now note that if A is a representation of a matroid over some field
F, then the underlying matroid is invariant under applying standard row
operations to the matrix A, as well as being invariant upon interchanging
columns within A, and multiplying a column of A by an element of F. From
this it is readily deduced that for a matroid M representable over F, the
dual matroid M∗ is also representable over F, and indeed, we can explicitly
construct a representation of M∗. We say that the class of F-representable
matroids is closed under duality.

2.6 Minors

We now briefly examine the fundamental substructures of a matroid: its
minors. One natural substructure of a matroid M is found when we simply
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shrink the ground set E(M) and observe the restriction of M on this smaller
ground set. More formally:

Definition 2.6.1. Let M = (E, I) be a matroid and e ∈ E. Let

I(M\e) = {I ⊆ E − {e} : I ∈ I}.

Then (E, I(M\e)) is readily seen to be a matroid; called M delete e, and
denoted M\e. We say that M\e is obtained from M by deleting e.

Armed with duality, we explore another natural matroid substructure.

Definition 2.6.2. Let M be a matroid and e ∈ E(M). The matroid M
contract e; denoted M/e is defined to be M/e = (M∗\e)∗. M/e is said to be
obtained from M by contracting e.

Lemma 2.6.3. Suppose that M is a matroid on a ground set E, e ∈ E and
X ⊆ E − {e}. Then rM/e(X) = rM(X ∪ {e})− rM({e}).

Proof. rM/e(X) = r(M∗\e)∗(X), so, by Lemma 2.5.3,

rM/e(X) = |X| − r(M∗\e) + rM∗\e(E − (X ∪ {e}))
= |X| − r∗(E − {e}) + r∗(E − (X ∪ {e}))
= |X| − |E − {e}| − rM({e}) + |E − (X ∪ {e})|+ rM(X ∪ {e})
= |X|+ 1− |X ∪ {e}|+ rM(X ∪ {e})− rM({e})
= rM(X ∪ {e})− rM({e}).

Lemma 2.6.4. Let M be a matroid with distinct e1, e2 ∈ E(M). Then

(i) (M\e1)\e2 = (M\e2)\e1, and

(ii) (M/e1)/e2 = (M/e2)/e1, and

(iii) (M\e1)/e2 = (M/e2)\e1.
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Proof. A set I ⊆ E(M) is independent in (M\e1)\e2 iff I ⊆ E(M)−{e1, e2}
and I is independent in M ; iff I is independent in (M\e2)\e1; which proves
(i). Now by the definition of contraction together with (i), we have

(M/e1)/e2 = (M∗\e1)∗/e2 = ((M∗\e1)\e2)∗ = ((M∗\e2)\e1)∗

= ((M∗\e2)∗/e1 = ((M∗)∗/e2)/e1 = (M/e2)/e1

so that (ii) holds. To prove (iii), take any X ⊆ E(M) − {e1, e2}. Then by
Lemma 2.6.3,

r(M/e2)\e1(X) = rM/e2(X)

= rM(X ∪ {e2})− rM({e2})
= rM\e1(X ∪ {e2})− rM\e1({e2})
= r(M\e1)/e2(X).

Therefore the rank in (M\e1)/e2 of any subset X ∈ E(M)−{e1, e2} is equal
to the rank of the same subset in the matroid (M/e2)\e1. As E(M)−{e1, e2}
is the ground set of both of these matroids, it follows that the collection of
independent sets of (M\e1)/e2 is identical to the collection of independent
sets of (M/e2)\e1; we conclude that (M\e1)/e2 = (M/e2)\e1.

As a consequence of the above result we see that the operations of deletion
and contraction commute with both themselves and one another. Therefore
any sequence of deletions and contractions from a matroid M can be written
in the form M\X/Y where X and Y are disjoint subsets of the ground set.
Matroids obtained from a given matroid M through any such sequence of
deletions and contractions are called minors of M . If M is a matroid with a
minor N where N 6= M , then we say that N is a proper minor of M . As we
shall see in Section 2.7, knowledge of the minors contained in some matroid
M can give us important information about some of the necessary properties
of M .

The following is an extension of Lemma 2.6.3, which will be useful later
on.

Lemma 2.6.5. Let M be a matroid and T ⊆ E(M). Then for all X ⊆
E(M)− T , rM/T (X) = rM(X ∪ T )− rM(T ).
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Proof. Suppose X ⊆ E(M) − T and let T = {e1, ..., en}. By Lemma 2.6.3,
rM/e1(X) = rM(X ∪ {e1})− rM({e1}), and it follows that

rM/{e1,e2}(X) = rM/e1(X ∪ {e2})− rM/e1({e2})
= rM(X ∪ {e1, e2})− rM({e1})− rM({e1, e2}) + rM({e1})
= rM(X ∪ {e1, e2})− rM({e1, e2}).

Now by an iteration of this argument for ei ∈ {e3, ..., en}, we can conclude
that rM/{e1,...,en}(X) = rM(X ∪{e1, ..., en})− rM({e1, ..., en}) as required.

We conclude this section with a brief discussion on minors of representable
matroids. If M is a matroid which is representable over F, and e ∈ E(M),
then we may obtain a representation for M\e simply by taking a representa-
tion of M and deleting the column labelled by e. Also, we noted at the end of
Section 2.5 that the class of F-representable matroids is closed under duality.
This implies that for e ∈ E(M), M/e is also representable over F. Let A be
a representation of M over F. If e is a loop of M , then M/e = M\e, so a
representation of M/e is found as above. So assuming that e is not a loop of
M , it turns out that to obtain a representation for M/e, we pivot on some
non-zero entry of the column of A labelled by e to transform this column
into a unit vector. Then, by deleting the row containing the unique non-zero
entry of e as well as deleting the column e, we obtain a suitable representa-
tion of our minor. It now follows that if N is any minor of M , then N is also
F-representable; the class of F-representable matroids is minor-closed. More-
over, a representation for N can be found algebraically by starting with a
representation of M and performing a finite sequence of pivots, row deletions
and columns deletions. We shall revisit this in Section 3.5.

2.7 Rota’s Conjecture

The class of matroids is partially ordered under the property of being a
minor; as can easily be deduced from the definitions in Section 2.6. Also, as
discussed above, the class of F-representable matroids is minor-closed. Now
if M is a matroid with E(M) < 4, it is a simple exercise to show that M is
representable over every field. However, as we saw in Section 2.2, there exist
matroids which are representable over some fields but not others, as well as
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matroids which are not representable whatsoever. We look to explore the
threshold between representability and non-representability. In particular,
as the class of F-representable matroids is minor-closed, we can study those
matroids which are minor minimal non-representable matroids over F. Such
minor minimal non-representable matroids are called excluded minors for F.
The following result; due to Tutte [14], gives a complete classification of those
matroids which are representable over GF (2) in terms of excluded minors.
The matroid U2,4 was introduced in Example 2.2.3.

Theorem 2.7.1. A matroid is representable over GF (2) if and only if it has
no minor isomorphic to U2,4.

The above is an example of an excluded minor theorem. Such a theorem
gives a complete classification of a minor-closed class of matroids with respect
to the collection of excluded minors for that class. The following result; due
to Lazarson [7], reveals that for infinite fields, excluded minor theorems need
not be as elegant as Theorem 2.7.1.

Theorem 2.7.2. If F is a field of characteristic zero, then the set of excluded
minors for F-representability is infinite.

However, this is in stark contrast to what is generally believed to be true
for finite fields. The following conjecture of Rota [12] is perhaps the most
well known conjecture in matroid theory.

Conjecture 2.7.3. (Rota’s Conjecture) For any finite field F, the com-
plete set of excluded minors for F-representability is finite.

Proofs that Rota’s conjecture is valid in the three element field were first
published independently by Bixby [2] and Seymour [13]. The set of excluded
minors for GF (3) was found to be as follows:

Theorem 2.7.4. A matroid is representable over GF (3) if and only if it has
no minor isomorphic to any of the matroids U2,5, U3,5, F7, or F ∗7 .

Validity of the conjecture over GF (4) was confirmed by Geelen, Gerards,
and Kapoor [4]:

Theorem 2.7.5. A matroid is representable over GF (4) if and only if it has
no minor isomorphic to any of the matroids U2,6, U4,6, P6, F

−
7 , (F

−
7 )∗, P8, or

P ′′8 .
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However, for all finite fields with size exceeding four, Rota’s conjecture
remains unresolved. Naturally, in seeking a resolution of the conjecture, one
would hope to narrow the spectrum of candidates for excluded minor status
over GF (q). One simple observation we can make from the above results is
that given an arbitrary matroid M , key structural information on M can be
obtained by considering the minors of M . Taking some finite field GF (q), this
methodology can now be applied directly to the excluded minors for GF (q).
We should be able to shrink our list of potential excluded minors for GF (q) by
looking at the necessary structural conditions imposed by the minors of such
potential excluded minors. In particular, supposing that M is a potential
excluded minor for GF (q), any proper minor N of M is representable over
GF (q). Supposing that N1, ..., Nk, Nk+1 = M is some ordered sequence of
minors of M ; where Ni is a proper minor of Ni+1 for i ∈ {1, ..., k}, we
know that there exists some matrix representation over GF (q) for N1, ..., Nk.
We can therefore examine the representations themselves and hope to use
techniques from linear algebra to place necessary conditions on M through
inductive methods. In order to do this, we require a sense of consistency
when talking about matroid representations. Loosely speaking, one would
ideally want the statement ‘the representable matroid N ′ is a minor of the
representable matroid N ’ to correspond with the statement ‘a representation
of the matroid N ′ can be obtained from a representation of the matroid N
through standard algebraic operations” Unfortunately, this is not quite the
case.

We noted above that if a matroid M is representable over F, with some
representation A, then M is invariant under applying standard row opera-
tions to A, as well as the scaling and interchanging of columns within A. The
fact that one may also add and/or remove rows of zeros to/from A, as well
as apply some automorphism of the field F; neither of which alters M [A],
leads us to the following definition.

Let M be some matroid which is representable over F, and let A1 and
A2 be matrices; each giving a representation of M over F. If A2 can be
obtained from A1 through a sequence of standard row operations, column
interchanges, column scalings, addition/removal of rows of zeros, and auto-
morphisms of F, then the representations A1 and A2 are said to be equivalent.
If all representations of M are equivalent, then we say that M is uniquely
representable.

The verifications of Rota’s conjecture for GF (2), GF (3) and GF (4) all
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rely heavily on the fact that for these small fields, the key classes of matroids
that need to be considered are classes of uniquely representable matroids.
However, Oxley, Vertigan, and Whittle [11] showed that certain classes of
matroids representable over GF (5) may have as many as six inequivalent
representations, while for finite fields containing greater than five elements,
the number of possible inequivalent representations of a matroid can be un-
bounded. This presents a major obstacle on the road toward a resolution of
Rota’s conjecture.

This obstacle led Whittle [17] to develop the notion of a stabilizer for a
class of matroids. Without indulging deeply into the details of defining a
general stabilizer here, essentially, a stabilizer for the class of GF (q) repre-
sentable matroids is a GF (q)-representable matroid N such that if M is a
3-connected GF (q)-representable matroid which contains N as a minor, then
any representation of M is uniquely determined by a representation of N .
Therefore, if we are to use representations as an inductive tool for examining
properties of matroids, we need to find stabilizers for classes of matroids,
study matroids which contain these stabilizers, and, in particular, we need
to restrict out attention to matroids which are 3-connected. In what follows,
we examine this notion of 3-connectivity.



Chapter 3

Connectivity

3.1 Introduction

A minor N of a matroid M is, by definition, obtained through applying a
sequence of deletions and contractions to the matroid M . So if we know
that M is 3-connected, and we want to study minors of M that are also
3-connected, we naturally want to know when the fundamental minors M\e
and M/e are also 3-connected for particular e ∈ E(M).

For example, it is a straightforward result that any excluded minor M for
GF (q) must be 3-connected. Now, as discussed above, if we want to deduce
information about M by examining representations of its minors, then it
would certainly help if these minors were uniquely representable; and for that,
we require them to be 3-connected. Now if N is a minor of M , then there
is a sequence of minors N = N1, N2, ..., Nk, Nk+1 = M of M where for i ∈
{1, ..., k}, there exists some ei ∈ E(M) such that either Ni = Ni+1\ei or Ni =
Ni+1/ei. Therefore if we can deduce exactly when deleting or contracting an
element from a 3-connected matroid results in another 3-connected matroid,
we may be able to obtain a sequence of uniquely representable matroids
N = N1, N2, ..., Nk, Nk+1 = M ; which would be helpful in an attempt to
deduce structure of M . Firstly, some definitions:

Definition 3.1.1. Let M be a matroid on a ground set E. The connectivity
function λ of M is defined on all subsets X of E by

λ(X) = r(X) + r(E −X)− r(M).

20
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When dealing with multiple matroids, we shall write λM to mean the con-
nectivity function of the matroid M . It is clear that λ(X) = λ(E − X) for
any X ⊆ E. A subset X or a partition (X,E − X) of M is k-separating
if λ(X) ≤ k − 1. A k-separating partition (X,E − X) is a k-separation if
both |X| ≥ k and |E − X| ≥ k. A k-separating set X, or a k-separating
partition (X,E −X), or a k-separation (X,E −X) is exact if λ(X) = k− 1.
A matroid is said to be n-connected provided it has no k-separations for all
k < n. When a matroid is 2-connected, we simply say that it is connected.

Lemma 3.1.2. Let M be a matroid. Then λM = λM∗. That is, for all
X ⊆ E(M), λM(X) = λM∗(X).

Proof. Suppose X ⊆ E(M). Then, by Lemma 2.5.3,

λM(X) = r(X) + r(E −X)− r(M)

= r(X) + r∗(X)− |X|
= r∗(E −X) + r(M)− |E −X|+ r∗(X)− |X|
= r∗(X) + r∗(E −X)− (|E(M)| − r(M))

= r∗(X) + r∗(E −X)− r∗(M) = λM∗(X).

The above result, as well as the next two, will be used freely.

Corollary 3.1.3. Let M be a matroid. Then M is n-connected if and only
if M∗ is n-connected.

Proof. This follows immediately from Lemma 3.1.2.

Lemma 3.1.4. Let M be an n-connected matroid with |E(M)| ≥ 4 and
e ∈ E(M). Then both M\e and M/e are (n− 1)-connected.

Proof. Suppose N ∈ {M\e,M/e} and that X and Y are disjoint sub-
sets of E(M) whose union is E(M) − {e}. Then by Lemma 2.6.3,
rN(X) ∈ {rM(X), rM(X) − 1}, rN(Y ) ∈ {rM(Y ), rM(Y ) − 1}, and r(N) ∈
{r(M), r(M) − 1}. So certainly, λN(X) = rN(X) + rN(Y ) − r(N) ∈
{λM(X), λM(X) − 1, λM(X) − 2}, and the only permutation that gives
λN(X) = λM(X) − 2 is where r(N) = r(M), rN(X) = rM(X) − 1, and
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rN(Y ) = rM(Y ) − 1. But in this case, the fact that rN(X) = rM(X) − 1
implies that N = M/e and e is not a loop of M ; contradicting the necessary
requirement that r(N) = r(M). Therefore λN(X) ∈ {λM(X), λM(X) − 1}.
As (X, Y ) was an arbitrary partition of E(N), it follows that N has no
(n− k)-separations for all k ≥ 2. Therefore N is (n− 1)-connected.

Lemma 3.1.5. Let M be a matroid on a ground set E and suppose X, Y ⊆ E.
Then λ(X ∪ Y ) + λ(X ∩ Y ) ≤ λ(X) + λ(Y ).

Proof. With the help of Lemmas 2.3.2 and 2.5.3, we have

λ(X ∪ Y ) + λ(X ∩ Y )

=r(X ∪ Y ) + r(X ∩ Y ) + r(E − (X ∪ Y )) + r(E − (X ∩ Y ))− 2r(M)

≤r(X) + r(Y ) + r(E − (X ∪ Y )) + r(E − (X ∩ Y ))− 2r(M)

=r(X) + r(Y ) + r∗(X ∪ Y ) + r∗(X ∩ Y )− |X ∪ Y | − |X ∩ Y |
=r(X) + r(Y ) + r∗(X ∪ Y ) + r∗(X ∩ Y )− |X| − |Y |
≤r(X) + r(Y ) + r∗(X) + r∗(Y )− |X| − |Y |
=r(X) + r(Y ) + r(E −X) + r(E − Y )− 2r(M) = λ(X) + λ(Y ).

We shall often say by submodularity of λ to mean an application of
Lemma 3.1.5.

3.2 Various Lemmas on 3-connectivity

We now present a series of results relating specifically to 3-connectivity. The
first of these is used repeatedly throughout the thesis. When applying it, we
shall often simply use the phrase by uncrossing.

Lemma 3.2.1. Let M be a 3-connected matroid, and let X and Y be 3-
separating subsets of E(M). Then:

(i) if |X ∩ Y | ≥ 2, X ∪ Y is 3-separating, and

(ii) if |E(M)− (X ∪ Y )| ≥ 2, X ∩ Y is 3-separating.
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Proof. Suppose |X ∩ Y | ≥ 2. Then by submodularity of λ, we have λ(X ∪
Y ) ≤ λ(X) + λ(Y ) − λ(X ∩ Y ) ≤ 4 − λ(X ∩ Y ) ≤ 2, so that X ∪ Y is
3-separating. Similarly, supposing that |E(M) − (X ∪ Y )| ≥ 2, it follows
that λ(X ∩ Y ) ≤ λ(X) + λ(Y )− λ(X ∪ Y ) ≤ 4− λ(E − (X ∪ Y )) ≤ 2.

Lemma 3.2.2. Let M be a 3-connected matroid. If L is a line of M with
|L| ≥ 4, then M\x is 3-connected for all x ∈ L.

Proof. Suppose x ∈ L and M\x is not 3-connected. Then there exists a
2-separation (P,Q) of M\x. Without loss of generality, |L ∩ P | ≥ 2. But
now x ∈ cl(P ), so that λM\x(P ) = λM(P ∪ {x}); giving a contradictory
2-separation (P ∪ {x}, Q) of the 3-connected matroid M .

Lemma 3.2.3. Let M be a 3-connected matroid. If Γ is a coline of M with
|Γ| ≥ 4, then M/y is 3-connected for all y ∈ Γ.

Proof. Let Γ be a coline of M with |Γ| ≥ 4. Then Γ is a line of the 3-
connected matroid M∗. So by Lemma 3.2.2, M∗\y is 3-connected for all
y ∈ Γ. Therefore (M∗\y)∗ = M/y is 3-connected for all y ∈ Γ.

Lemma 3.2.4. Let M be a 3-connected matroid. Let Γ ⊆ E(M) be a coline
of M . Then provided |E(M)− Γ| ≥ 2, r(Γ) = |Γ|.

Proof. Let Γ be a coline of M . Using Lemma 2.5.3 and the fact that M is
3-connected, we have

λ(Γ) =r(Γ) + r(E(M)− Γ)− r(M) ≥ 2

=⇒ r(Γ) + 2 + r(M)− |Γ| − r(M) ≥ 2

=⇒ r(Γ) ≥ |Γ|

So that r(Γ) = |Γ|.

Lemma 3.2.5. Let M be a 3-connected matroid, and let B be a basis of M .
If Γ1,Γ2 are 4-point colines of M with |Γ1 ∩ B| = |Γ2 ∩ B| = 2, then, if
Γ1 ∩ Γ2 6= ∅, Γ1 ∩ Γ2 6⊆ B.

Proof. Let Γ1,Γ2 be 4-point colines of M such that |Γ1 ∩ B| = |Γ2 ∩ B| = 2
and Γ1 ∩ Γ2 6= ∅. As M is 3-connected, it follows from Lemma 2.3.2 that
r∗(Γ1∪Γ2) ∈ {2, 3}. If Γ1 = Γ2, then the result is immediate, so assume that
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Γ1 and Γ2 are distinct. Suppose that Γ1 ∩ Γ2 ⊆ B. If |Γ1 ∩ Γ2| ≥ 2, then
by Lemma 2.5.7, Γ1 ∪ Γ2 is a coline containing at least five elements. But
then |(Γ1 ∪ Γ2) ∩ (E(M) − B)| ≥ 3, so that r∗(Γ1 ∪ Γ2) ≥ 3; contradicting
the fact that Γ1 ∪ Γ2 is a coline. Otherwise, |Γ1 ∩ Γ2| = 1; implying that
|(Γ1∪Γ2)∩ (E(M)−B)| ≥ 4; which contradicts the fact r∗(Γ1∪Γ2) ∈ {2, 3}.
Therefore Γ1 ∩ Γ2 6⊆ B.

Lemma 3.2.6. Let (X, Y ) be an exact 3-separation of a 3-connected matroid
M . If X is independent, then X is a coline of M .

Proof. Suppose X is independent. Then, by Lemma 2.5.3,

r∗(X) = |X| − r(M) + r(E(M)−X)

= |X| − r(M) + r(Y )

= |X| − r(M) + r(M) + 2− r(X)

= |X|+ 2− r(X) = 2.

So that X is a coline of M .

We shall write x ∈ cl(∗)(Y ) to mean that x ∈ cl(Y ) or x ∈ cl∗(Y ).

Lemma 3.2.7. Let X be an exactly 3-separating set in a 3-connected matroid
M , and suppose that r ∈ E(M) − X. Then X ∪ {r} is 3-separating if and
only if r ∈ cl(∗)(X).

Proof. We have λ(X) = r(X)+r(E(M)−X)−r(M) = 2. Now Lemma 2.5.4
together with some simple arithmetic reveals that λ(X ∪ {r}) ≤ 2 iff r(X ∪
{r})+r(E(M)−(X∪{r}))−r(M) ≤ 2; iff r(X∪{r}) = r(X), or r(X∪{r}) =
r(X) + 1 and r(E(M) − (X ∪ {r})) = r(E(M) − X) − 1; iff r ∈ cl(X) or
r 6∈ cl(E(M)−X); iff r ∈ cl(X) or r ∈ cl∗(X); iff r ∈ cl(∗)(X).

Lemma 3.2.8. Let (X, Y ) be an exactly 3-separating partition of a 3-
connected matroid M . Suppose |X| ≥ 3 and x ∈ X. Then:

(i) x ∈ cl(∗)(X − {x}); and

(ii) (X −{x}, Y ∪ {x}) is exactly 3-separating if and only if x is in exactly
one of cl(X − {x}) ∩ cl(Y ) and cl∗(X − {x}) ∩ cl∗(Y ).
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Proof. Assume that x 6∈ cl∗(X − {x}). Then x ∈ cl(Y ) by Lemma 2.5.4,
so r(Y ) = r(Y ∪ {x}). Now suppose that x 6∈ cl(X − {x}). Then r(X) =
r(X − {x}) + 1, and therefore

r(X) + r(Y )− r(M) = 2

=⇒ r(X − {x}) + 1 + r(Y ∪ {x})− r(M) = 2

=⇒ r(X − {x}) + r(Y ∪ {x})− r(M) = 1

But |X−{x}| ≥ 2 so that (X−{x}, Y ∪{x}) is a contradictory 2-separation
of M . Therefore x 6∈ cl∗(X−{x}) =⇒ x ∈ cl(X−{x}). Thus x ∈ cl(∗)(X−
{x}); completing the proof of (i). Now, using Lemma 2.5.4, λ(X − {x}) =
2 iff r(X − {x}) + r(Y ∪ {x}) − r(M) = 2; iff r(X − {x}) = r(X) and
r(Y ∪{x}) = r(Y ), or r(X −{x}) = r(X)− 1 and r(Y ∪{x}) = r(Y ) + 1; iff
x ∈ cl(X−{x})∩cl(Y ), or x 6∈ cl(X) and x 6∈ cl(Y ); iff x ∈ cl(X−{x})∩cl(Y )
or x ∈ (cl∗(X)∩ cl∗(Y ))− cl(X); iff x is in exactly one of cl(X−{x})∩ cl(Y )
and cl∗(X) ∩ cl∗(Y ).

3.3 Vertical & Cyclic Separations

The following types of k-separations will play a critical role throughout the
remainder of this thesis.

Definition 3.3.1. A k-separation (P,E − P ) of a matroid M = (E, I) is
vertical if both r(P ) ≥ k and r(E−P ) ≥ k. A k-separation (P,E−P ) is cyclic
if both P and E − P contain circuits of M . Let (X, {a}, Y ) be a partition
of E. If (X ∪ {a}, Y ) and (X, Y ∪ {a}) are both vertical 3-separations of M
and a ∈ cl(X)∩ cl(Y ), then we say that (X, {a}, Y ) is a vertical 3-separation
of M . If (X ∪ {a}, Y ) and (X, Y ∪ {a}) are both cyclic 3-separations of M
and a ∈ cl∗(X)∩ cl∗(Y ), then we say that (X, {a}, Y ) is a cyclic 3-separation
of M .

The next two results are used freely throughout.

Lemma 3.3.2. Let M be a k-connected matroid. A k-separation (X,E(M)−
X) of M is a vertical k-separation of M if and only if it is a cyclic k-
separation of M∗.
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Proof. Suppose that (X,E(M) − X) is a vertical k-separation of M . Then
λ(X) = k − 1 because M is k-connected. If X is coindependent, then
E(M) −X is spanning by Lemma 2.5.2. But then r(X) = k − 1 + r(M) −
r(E(M) − X) = k − 1 which contradicts the fact that (X,E(M) − X) is
vertical. Therefore X must contain a cocircuit. Similarly, E(M) −X must
also contain a cocircuit. Thus, both X and E(M) − X contain circuits of
M∗ and (X,E(M)−X) is a cyclic k-separation of M∗. The converse follows
in the same manner.

Corollary 3.3.3. Let M be a k-connected matroid. A partition (X, {a}, Y )
of M is a vertical k-separation of M if and only if it is a cyclic k-separation
of M∗.

Proof. This follows immediately from Lemma 3.3.2.

Lemma 3.3.4. Let (P,Q) be a cyclic k-separation of a matroid M . If a ∈
cl∗(P ) ∩Q, then (P ∪ {a}, Q− {a}) is also a cyclic k-separation of M .

Proof. Suppose a ∈ cl∗(P )∩Q. IfQ−{a} is independent, then a ∈ cl(Q−{a})
because Q contains a circuit. But this contradicts Lemma 2.5.4. Therefore
Q− {a} must contain a circuit.

Lemma 3.3.5. Let M be a 3-connected matroid with c ∈ E(M). If
(P, {c}, Q) is a cyclic 3-separation of M , then (cl∗(P )−{c}, {c}, Q− cl∗(P ))
is also a cyclic 3-separation of M .

Proof. This follows by repeated application of Lemma 3.3.4.

Lemma 3.3.6. Let M be a 3-connected matroid with b ∈ E(M). If
(X, {b}, Y ) is a vertical 3-separation of M , then (cl(X)−{b}, {b}, Y −cl(X))
is also a vertical 3-separation of M .

Proof. Suppose e ∈ cl(X)∩Y . Then e ∈ cl(X∪{b}), so that by Lemmas 2.5.4
and 3.2.8, e ∈ cl(Y − {e}). Now both of (X ∪ {b, e}, Y − {e}) and (X ∪
{e}, Y ∪ {b}) are exactly 3-separating by Lemma 3.2.8, and it follows that
(X ∪ {e}, {b}, Y − {e}) is a vertical 3-separation of M . By an iteration of
this argument, we deduce that (cl(X)−{b}, {b}, Y − cl(X)) is also a vertical
3-separation of M .
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Lemma 3.3.7. Suppose (X, {a}, Y ) is a vertical or cyclic 3-separation of a
3-connected matroid M . Then (cl(X) ∩ cl∗(X))−X = ∅.

Proof. If there exists some e ∈ cl(X) − X, then e 6∈ cl∗(Y − {a, e}) by
Lemma 2.5.4. Therefore e ∈ cl(Y − {a, e}) by Lemma 3.2.8, and so, by
Lemma 2.5.4, e 6∈ cl∗(X). Therefore (cl(X) ∩ cl∗(X))−X = ∅.

Definition 3.3.8. A parallel class of a matroid M is a maximal subset of
E(M) such that any two members form a parallel pair. A series class of M
is a parallel class of M∗.

It follows that any 3-connected matroid M does not contain any parallel
or series classes of size greater than one, for if it did, then; up to duality,
M would contain a parallel class P of size two or greater, giving a contra-
dictory 2-separation (P,E(M) − P ) of M . This fact will be used implicitly
throughout.

Definition 3.3.9. Let M be a matroid. The simplification of M ; denoted
si(M), is the minor of M which is obtained by deleting all loops of M and
all but one element from each parallel class of M . The cosimplification of M ;
denoted co(M), is defined by co(M) = (si(M∗))∗.

When deleting and contracting elements from a 3-connected matroid M ;
resulting in a minor N of M , it is often necessary to restrict our attention to
the matroids si(N) and co(N) in order to maintain 3-connectivity. For ex-
ample, if r(M) ≥ 3 and L ⊂ E(M) is a line containing more than two points,
then contracting any element e ∈ L gives a 2-separation (L−{e}, E(M)−L)
of the matroid M/e because L−{e} becomes a parallel class in M/e of size at
least two. But if we move to the matroid si(M/e), this parallel class becomes
a single element, which removes the trivial 2-separation that arose upon con-
traction. This allows us to better examine the global connectivity structure
of the matroid M/e, and it may be that we have now found a minor si(M/e)
of M which is indeed 3-connected. If si(N) is 3-connected, then we say than
N is 3-connected up to parallel classes. Similarly, if co(N) is 3-connected, we
say that N is 3-connected up to series classes.

Lemma 3.3.10. A 2-separation (X, Y ) of a connected matroid M is cyclic
if and only if neither X nor Y is a series class.
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Proof. A 2-separation (X, Y ) is not cyclic in M iff it is not vertical in M∗;
iff either r∗(X) = 1 or r∗(Y ) = 1; iff X or Y is a parallel class in M∗; iff X
or Y is a series class in M .

Lemma 3.3.11. Let M be a 3-connected matroid. If there exists some c ∈
E(M) such that co(M\c) is not 3-connected, then there exists a cyclic 2-
separation of M\c.

Proof. Suppose that co(M\c) is not 3-connected for some c ∈ E(M). Then
there exists a 2-separation (X ′, Y ′) of co(M\c). By Lemma 3.3.10, (X ′, Y ′)
is cyclic. Therefore (X ′, Y ′) is a vertical 2-separation of (co(M\c))∗ =
si(M∗/c). Let S = E(M∗/c)−E(si(M∗/c)). Then by definition of simplifica-
tion, for all s ∈ S, s is contained in exactly one of clM∗/c(X

′) and clM∗/c(Y
′).

Let Sx = S ∩ clM∗/c(X
′) and Sy = S ∩ clM∗/c(Y

′). Taking X = X ′ ∪ Sx and
Y = Y ′ ∪ Sy, it then follows directly from the definition of k-separation that
(X∪Sx, Y ∪Sy) is a vertical 2-separation of M∗/c; hence a cyclic 2-separation
of (M∗/c)∗ = M\c.

The following two results are used freely and extensively throughout the
remainder of this thesis.

Lemma 3.3.12. Let M be a 3-connected matroid with b ∈ E(M). If si(M/b)
is not 3-connected, then there exists a vertical 3-separation (X, {b}, Y ) of M .

Proof. Suppose si(M/b) is not 3-connected. Then there exists a 2-separation
(X, Y ) of M/b such that (X ∩E(si(M/b)), Y ∩E(si(M/b))) is a 2-separation
of si(M/b). We have rM/b(X) + rM/b(Y )− r(M/b) = 1, so by Lemma 2.6.5,
rM(X ∪ {b}) + rM(Y ∪ {b}) − r(M) = 2. Now if b 6∈ cl(X), then rM(X) +
rM(Y ∪ {b})− r(M) = 1; which contradicts the fact that M is 3-connected.
So b ∈ cl(X). Similarly, b ∈ cl(Y ). As rM/b(X) ≥ 2, we have rM(X) =
rM(X ∪ {b}) ≥ 3. Similarly, rM(Y ) ≥ 3. We conclude that (X, {b}, Y ) is a
vertical 3-separation of M .

Lemma 3.3.13. Let M be a 3-connected matroid with c ∈ E(M). If co(M\c)
is not 3-connected, then there exists a cyclic 3-separation (P, {c}, Q) of M .

Proof. This follows immediately as the dual of Lemma 3.3.12.
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3.4 Further Results on Connectivity

We conclude this chapter with several results of importance to following
chapters.

Lemma 3.4.1. Let A be a cocircuit of a 3-connected matroid M where
r(A) = 3 and e ∈ A. If, for some set {p, q, r} ⊆ A− {e}, p, q and r are each
contained in distinct parallel classes of M/e, then si(M/e) is 3-connected.

Proof. Suppose {p, q, r} ⊆ A − {e} where p, q and r are each contained in
a distinct parallel class of M/e. Assume that si(M/e) is not 3-connected.
Then M has a vertical 3-separation (X, {e}, Y ). It follows that (X, Y ) is a
vertical 2-separation of M/e. Without loss of generality, |X ∩ {p, q, r}| ≥ 2,
so we may assume that {p, q} ⊆ X. Now, as rM/e(A − {e}) = 2, we have
rM/e(X ∩ (A − {e})) = 2. By the dual of Lemma 3.3.4, it follows that
(clM/e(X), Y − clM/e(X)) is a vertical 2-separation of M/e where A− {e} ⊆
clM/e(X). Then Y − clM/e(X) is contained in the hyperplane E(M) − A,
which implies that rM(Y − clM/e(X)) = rM/e(Y − clM/e(X)). But then

λM(Y − clM/e(X)) = rM(Y − clM/e(X)) + rM(clM/e(X) ∪ {e})− r(M)

= rM/e(Y − clM/e(X)) + rM/e(clM/e(X))− r(M/e)

= λM/e(Y − clM/e(X)) ≤ 1

So that (clM/e(X)∪{e}, Y − clM/e(X)) is a 2-separation of M ; contradicting
the fact that M is 3-connected. Therefore si(M/e) must be 3-connected.

The following result; known as Bixby’s Lemma [3], shows that up to
parallel and series classes, every element of a 3-connected matroid can either
be contracted or deleted to give a minor which remains 3-connected.

Lemma 3.4.2. Let e be an element of a 3-connected matroid M . Then either
si(M/e) or co(M\e) is 3-connected.

Proof. Suppose that neither si(M/e) nor co(M\e) are 3-connected. Let
(X, {e}, Y ) and (S, {e}, T ) be vertical and cyclic 3-separations of M respec-
tively.

3.4.2.1. For all Z ∈ {X ∩ S,X ∩ T, Y ∩ S, Y ∩ T}, Z 6= ∅.
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Proof. Suppose X ∩ S = ∅. Then X ⊆ T . Therefore e ∈ cl(T ) ∩ cl∗(T ); but
this contradicts Lemma 3.3.7. Similarly, each of X ∩T, Y ∩S, and Y ∩T are
non-empty.

3.4.2.2. For all Z ∈ {X ∩ S,X ∩ T, Y ∩ S, Y ∩ T}, λ(Z) ≤ 2.

Proof. λ(X) = λ(S) = 2. By 3.4.2.1, |E − (X ∪ S)| = |(Y ∩ T ) ∪ {e}| ≥ 2,
so that by uncrossing, λ(X ∩ S) ≤ 2. Similarly, each of X ∩ T, Y ∩ S, and
Y ∩ T are 3-separating.

3.4.2.3. |X ∩ S| ≥ 2 and |Y ∩ T | ≥ 2

Proof. Suppose that |X ∩ S| = 1. Then |X ∩ T | ≥ 2 and |Y ∩ S| ≥ 2
because r(X) ≥ 3 and S contains a circuit. So by 3.4.2.2, λ(X ∩ T ) = 2
as M is 3-connected. Furthermore, λ(X ∪ {e}) = λ(T ∪ {e}) = 2 and
|E−((X∪{e})∪(T∪{e}))| = |Y ∩S| ≥ 2, so that, by uncrossing, λ((X∪{e})∩
(T ∪ {e})) = λ((X ∩ T ) ∪ {e}) = 2. Now by Lemma 3.2.7, e ∈ cl(∗)(X ∩ T ).
But e ∈ cl(Y ) ∩ cl∗(S), so e ∈ cl(Y ∪ S) ∩ cl∗(Y ∪ S); which contradicts
Lemma 2.5.4. Therefore |X ∩ S| 6= 1, and by 3.4.2.2, |X ∩ S| ≥ 2. Similarly,
|Y ∩ T | ≥ 2.

By 3.4.2.2 and 3.4.2.3, λ(X∩S) = 2. Also by 3.4.2.3, |E−((X∪{e})∪(S∪
{e}))| = |Y ∩ T | ≥ 2. Therefore, by uncrossing, λ((X ∩ S) ∪ {e}) = 2. Now
by Lemma 3.2.7, e ∈ cl(X ∩S) or e ∈ cl∗(X ∩S). But then by Lemma 3.3.3,
the first possibility contradicts the fact that e ∈ cl∗(T ); while the second
contradicts the fact that e ∈ cl(Y ). We are left to deduce that at least one
of si(M/e) or co(M\e) is 3-connected.

Lemma 3.4.3. Let (X, {b}, Y ) be a vertical 3-separation of a 3-connected
matroid M . If z ∈ X∩cl∗(Y ) then either (X−{z}, {b}, Y ∪{z}) is a vertical
3-separation of M or r((X − {z}) ∪ {b}) = 2.

Proof. Suppose z ∈ X is such that z ∈ cl∗(Y ). By Lemma 3.2.8, z ∈
cl(∗)((X∪{b})−{z}). As z ∈ cl∗(Y ), z 6∈ cl((X∪{b})−{z}) by Lemma 2.5.4.
So z ∈ cl∗((X ∪ {b}) − {z}). Therefore (((X ∪ {b}) − {z}), Y ∪ {z}) is an
exactly 3-separating partition of M by Lemma 3.2.8 (ii). If |X − {z}| = 2
and r((X − {z}) ∪ {b}) = 3, then r(X) = 3 = r(X ∪ {b}), so that z ∈
cl((X − {z}) ∪ {b}) which; by Lemma 2.5.4, contradicts our assumption
that z ∈ cl∗(Y ). Therefore whenever |X − {z}| = 2, it must be that b ∈
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cl(X−{z}) as required. So assume that |X−{z}| ≥ 2. Now b ∈ cl(∗)(X−{z})
by Lemma 3.2.8 (i). As b ∈ cl(Y ) ⊂ cl(Y ∪ {z}), b 6∈ cl∗(X − {z}) by
Lemma 2.5.4. So b ∈ cl(X−{z}). Hence, (X−{z}, Y ∪{b, z}) is an exactly 3-
separating partition of M by Lemma 3.2.8 (ii). Therefore, if r(X−{z}) ≥ 3,
then (X − {z}, {b}, Y ∪ {z}) is a vertical 3-separation of M . Otherwise,
r(X − {z}) = r((X − {z}) ∪ {b}) = 2.

Theorem 3.4.4. Let M be a 3-connected matroid with r(M) ≥ 4. Suppose
that C∗ is a rank 3 cocircuit of M . If there exists some c ∈ C∗ such that
r(C∗ − {c}) = 3, then co(M\c) is 3-connected.

Proof. Suppose that c ∈ C∗ and r(C∗ − {c}) = 3, but co(M\c) is not 3-
connected. Then by Lemma 3.3.11, there exists a cyclic 2-separation (P,Q)
of M\c.

As C∗ is a cocircuit, we have r(E(M) − C∗) = r(M) − 1. Hence
λM(C∗) = 2. Noting that r(E(M)−C∗) ≥ 3 because r(M) ≥ 4, we have that
(C∗, E(M)−C∗) is a vertical 3-separation of M . For clarity, let X = C∗−{c},
and Y = E(M)− C∗ so that (X ∪ {c}, Y ) is a 3-separation of M .

3.4.4.1. Each of the intersections X ∩ P,X ∩ Q, Y ∩ P , and Y ∩ Q are
non-empty.

Proof. If X ∩ P = ∅, then X ⊆ Q. But then c ∈ cl(X) ⊆ cl(Q) so that
(P,Q ∪ {c}) is a contradictory 2-separation of M . Similarly, X ∩ Q 6= ∅. If
Y ∩ P = ∅, then Y ⊆ Q. Now Y is a hyperplane of M and X ∩ Q 6= ∅, so
that r(Q) = r(M) and c ∈ cl(Q); again giving a contradictory 2-separation
(P,Q ∪ {c}) of M . Similarly, Y ∩Q 6= ∅.

3.4.4.2. For all Z ∈ {X ∩ P,X ∩Q, Y ∩ P, Y ∩Q}, λM\c(Z) = λM(Z).

Proof. By hypothesis, r(M\c) = r(M). If Z ∈ {X∩P,X∩Q}, then by 3.4.4.1
and the fact that Y is a hyperplane, c ∈ cl(E(M)−Z). If Z ∈ {Y ∩P, Y ∩Q},
then c ∈ cl(X) ⊆ cl(E(M) − Z), and in either case we have λM\c(Z) =
λM(Z).

Now, by the submodularity of the connectivity function λ, we see that
λM\c(X ∩ P ) + λM\c(X ∪ P ) ≤ λM\c(X) + λM\c(P ) = 2 + 1 = 3. So,
λM\c(X ∩P ) + λM\c(Y ∩Q) ≤ λM\c(X) + λM\c(P ) = 3. By 3.4.4.2, λM(X ∩
P )+λM(Y ∩Q) ≤ 3. So at least one of {X∩P, Y ∩Q} is 2-separating. As M
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is 3-connected, it then must be the case that at least one of {X ∩ P, Y ∩Q}
has cardinality equal to 1. Now, applying submodularity of the function λ
and 3.4.4.2 again to X∩Q, we deduce that at least one of {X∩Q, Y ∩P} has
cardinality equal to 1. We cannot have |X ∩ P | = 1 = |X ∩ Q| as |X| ≥ 3.
It also cannot be that |Y ∩ P | = 1 = |Y ∩ Q| as r(Y ) ≥ 3. We are left to
conclude that |P | = 2 or |Q| = 2. But (P,Q) is a cyclic 2-separation of M\c,
so either P or Q must be a parallel pair of M\c; which implies the existence
of a contradictory parallel pair in the 3-connected matroid M . Thus co(M\c)
must be 3-connected.

Corollary 3.4.5. Let M be a 3-connected matroid with a rank 3 cocircuit
C∗ such that |C∗| ≥ 4 and r(M) ≥ 4. Let B be a basis of M . Then there
exists some c ∈ C∗ ∩ (E(M)−B) such that co(M\c) is 3-connected.

Proof. If r(C∗−{z}) = 3 for all z ∈ C∗, the result follows immediately from
Theorem 3.4.4 and the fact that |C∗| > r(C∗). So assume that r(C∗−{d}) =
2 for some d ∈ C∗. Now take any c ∈ (C∗ − {d}) ∩ (E(M)− B) 6= ∅. Then
r(C∗−{c, d}) = 2 because M is 3-connected and it follows that r(C∗−{c}) =
3. Applying Theorem 3.4.4, we get that co(M\c) is 3-connected.

Definition 3.4.6. Let M be a 3-connected matroid, and B a basis of M .
Suppose that for some b1 ∈ B, si(M/b1) is not 3-connected. If (X, {b1}, Y )
is a vertical 3-separation of M ; where Y = {x1, x2, b2, c} is a cocircuit with
Y ∩B = {b2}, si(M/b2) is not 3-connected, and both {x1, x2, b2} and {b1, c, b2}
are triangles, then we shall call Y a near-fan of M .

Corollary 3.4.7. Let M be a 3-connected matroid and B a basis of M . If
Y = {x1, x2, b2, c} ⊂ E(M) is a near-fan of M , then both co(M\x1) and
co(M\x2) are 3-connected.

Proof. This is an immediate consequence of Theorem 3.4.4.

Theorem 3.4.8. Let M be a 3-connected matroid with a triad {a, b, c} and
a circuit {a, b, c, d}. Then at least one of the following holds.

(i) Either co(M\a) or co(M\c) is 3-connected.

(ii) There exists a′, c′ ∈ E(M) such that both {a, a′, b} and {c, c′, b} are
triangles.
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(iii) There exists r ∈ E(M) such that {a, b, c, r} is a coline.

Proof. We shall assume that neither (i) nor (ii) holds and prove that in this
case, (iii) must hold. Now, as neither co(M\a) nor co(M\c) are 3-connected,
it follows from Lemma 3.3.11 that there are cyclic 2-separations (P,Q) and
(V,W ) of M\a and M\c respectively.

Consider (P,Q). We can assume without loss of generality that d ∈ Q.
If {b, c} ⊆ Q, then (P,Q ∪ {a}) is a 2-separation of M as a ∈ cl({b, c, d}).
So assume b ∈ P . Then c ∈ cl∗M\a(P ) by Lemma 2.5.4, and it follows from
Lemma 3.3.4 that (P ∪ {c}, Q− {c}) is a cyclic 2-separation of M\a. Thus,
relabelling for clarity, we have a cyclic 2-separation (X ∪ {b, c}, Y ) of M\a
where d ∈ Y . Similarly, we obtain a cyclic 2-separation (S ∪ {b, a}, T ) of
M\c where d ∈ T .

3.4.8.1. If {b, c} or {b, a} is contained in a triangle, then the theorem holds.

Proof. Let {b, c, c′} be a triangle. By our original assumption, {b, a} is not
contained in a triangle. Consider the 2-separation (S ∪{b, a}, T ) of M\c. As
S ∪ {a, b} contains a circuit and {b, a} is not in a triangle, we have |S| ≥ 2.
If c′ ∈ S, then c ∈ clM(S ∪ {b, a}), so that (S ∪ {a, b, c}, T ) is a 2-separation
of M . Thus c′ ∈ T . Now with the use of Lemma 2.6.5 we have

λM\c/b(T ) = rM\c/b(T ) + rM\c/b(S ∪ {a})− r(M\c/b)
= rM\c(T ∪ {b})− 1 + rM\c(S ∪ {a, b})− 1− (r(M\c)− 1)

= rM\c(T ) + rM\c(S ∪ {a, b})− r(M)

= r(M\c) + 1− r(M) = 1

Note that r({a, b, c, c′, d}) = 3 because {a, b, c, d} is a rank 3 circuit and
{b, c, c′} is a triangle. So rM\c({a, b, c′, d}) = 3. Therefore,

rM\c/b({a, c′, d}) = rM\c({a, b, c′, d})− 1 = 2.

We also have rM\c/b({c′, d}) = rM\c({b, c′, d}) − 1 = 2. Hence a ∈
clM\c/b({c′, d}) ⊆ clM\c/b(T ). Therefore it must be that λM\c/b(T ∪ {a}) = 1.
So rM\c/b(T ∪ {a}) + rM\c/b(S) = r(M\c/b) + 1 and

rM\c/b(T ∪ {a}) + rM\c/b(S) = r(M\c/b) + 1

=⇒ rM\c(T ∪ {a, b}) + rM\c/b(S) = r(M\c/b) + 2
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=⇒ rM\c(T ∪ {a, b}) + rM\c/b(S) = r(M) + 1

=⇒ rM\c(T ∪ {a, b}) + rM\c(S) = r(M) + 1

So that λM\c(T ∪ {a, b}) = 1. But then c ∈ cl({a, b, d}) implies that λM(T ∪
{a, b, c}) = 1, contradicting the fact that M is 3-connected. Therefore {b, c}
can not be contained in a triangle. Similarly for {b, a}.

Thus we may now assume that neither {b, a} nor {b, c} is contained in a
triangle. From this and the fact that both X ∪ {b, c} and S ∪ {b, a} contain
circuits, we deduce that |X| ≥ 2 and |S| ≥ 2. In what follows, let M ′ =
M\{a, b, c}.

3.4.8.2. c ∈ cl(X ∪ {b}) and a ∈ cl(S ∪ {b}).

Proof. Suppose that c 6∈ cl(X ∪ {b}). Then r(X) = r(X ∪ {b, c}) − 2. But
r(M ′) = r(M)− 1. We have

r(X ∪ {b, c}) + r(Y ) ≤ r(M) + 1

=⇒ r(X) + 2 + r(Y ) ≤ r(M ′) + 2

=⇒ r(X) + r(Y ) ≤ r(M ′)

So that (X, Y ) is a separation of M ′. But r(Y ∪ {b, c}) ≤ r(Y ) + 2, and
a ∈ clM(Y ∪ {b, c}), so that r(Y ∪ {a, b, c}) ≤ r(Y ) + 2. Now

r(X) + r(Y ∪ {a, b, c}) ≤ r(X) + r(Y ) + 2

≤ r(M ′) + 2

≤ r(M) + 1.

This gives (X, Y ∪ {a, b, c}) as a 2-separating partition of M ; which is con-
tradictory as |X| ≥ 2. Similarly a ∈ cl(S ∪ {b}).

3.4.8.3. λM ′(X) = λM ′(Y ) = λM ′(S) = λM ′(T ) = 1.
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Proof. Using 3.4.8.2,

λM ′(X) = rM ′(X) + rM ′(Y )− r(M ′)

= rM ′(X) + rM ′(Y )− r(M) + 1

= rM\a(X) + rM\a(Y )− r(M) + 1

= rM\a(X ∪ {b})− 1 + rM\a(Y )− r(M) + 1

= rM\a(X ∪ {b, c}) + rM\a(Y )− r(M)

= r(M) + 1− r(M)

= 1 = λM ′(Y )

The result that λM ′(S) = λM ′(T ) = 1 follows similarly.

3.4.8.4. If Z ⊆ X or Z ⊆ S, then λM(Z) ≤ λM ′(Z) + 1.

Proof. Suppose Z ⊆ X. Let Z ′ = E(M ′) − Z. Note that d ∈ Z ′ so r(Z ′ ∪
{a, b, c}) ≤ r(Z ′) + 2. Then r(M) = r(M ′) + 1 implies that

λM(Z) = r(Z) + r(Z ′ ∪ {a, b, c})− r(M)

= rM ′(Z) + r(Z ′ ∪ {a, b, c})− r(M ′)− 1

≤ rM ′(Z) + r(Z ′) + 2− r(M ′)− 1

≤ rM ′(Z) + rM ′(Z
′)− r(M ′) + 1

≤ λM ′(Z) + 1

Similarly if Z ⊆ S.

3.4.8.5. If Z ⊆ Y − {d} or Z ⊆ T − {d}, then λM(Z) = λM ′(Z).

Proof. Suppose Z ⊆ Y − {d}. Let Z ′ = E(M ′) − Z. Note that d ∈ Z ′ and
X ⊂ Z ′. Now r(Z ′ ∪ {b}) = r(Z ′) + 1, but by 3.4.8.2, c ∈ cl(X ∪ {b}), so
c ∈ cl(Z ′∪{b}). Hence, r(Z ′∪{b, c}) = r(Z ′)+1. But then a ∈ cl(Z ′∪{b, c}),
so r(Z ′ ∪ {a, b, c}) = r(Z ′) + 1. Therefore

λM(Z) = r(Z) + r(Z ′ ∪ {a, b, c})− r(M)

= r(Z) + r(Z ′) + 1− r(M)

= r(Z) + r(Z ′)− r(M ′) = λM ′(Z)

as required. Similarly for any Z ⊆ T − {d}.
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3.4.8.6. T ∩X 6= ∅, and S ∩ Y 6= ∅.

Proof. If T ∩ X = ∅, then X ⊆ S, and by 3.4.8.2, {a, c} ⊆ cl(S ∪ {b}).
We once again obtain a contradictory 2-separation (S ∪ {a, b, c}, T ) of M .
Similarly for S ∩ Y .

Applying submodularity of the connectivity function together with 3.4.8.3
we have

λM ′(T ∪X) + λM ′(T ∩X) ≤ λM ′(T ) + λM ′(X)
=⇒ λM ′(S ∩ Y ) + λM ′(T ∩X) ≤ 1 + 1 = 2

But by 3.4.8.5, λM ′(S∩Y ) = λM(S∩Y ) and λM ′(T ∩X) = λM(T ∩X). This
result combined with 3.4.8.6 and the fact that M is 3-connected implies that
we must have |S ∩ Y | = |T ∩ X| = 1. We also know that |Y | ≥ 3 because
(X ∪ {b, c}, Y ) is cyclic. Thus |Y ∩ T | ≥ 2.

3.4.8.7. λM ′(Y ∩ T ) ≥ 2.

Proof. By 3.4.8.2, {a, c} ⊆ cl(X∪S∪{b}), so as r(X∪S∪{b}) = r(X∪S)+1,
we have r(X∪S∪{a, b, c}) = r(X∪S)+1. Hence λM(Y ∩T,X∪S∪{a, b, c}) =
λM ′(Y ∩ T,X ∪ S). Thus, if λM ′(Y ∩ T ) ∈ {0, 1}, we contradict the 3-
connectivity of M .

Now λM ′(S ∩ X) + λM ′(T ∩ Y ) ≤ λM ′(S) + λM ′(X) ≤ 1 + 1 = 2. So
by 3.4.8.7, λM ′(S ∩ X) = 0. By 3.4.8.4, we deduce that |S ∩ X| = 1. Let
S ∩X = {r}. Let {a, b, c} = A. As λM ′(S ∩X) = 0, we have λM ′(Y ∪ T ) =
0. Therefore rM(Y ∪ T ) = rM ′(Y ∪ T ) = r(M ′) − 1 = r(M) − 2. Thus
λM(Y ∪ T ) = r(M) − 2 + r(A ∪ {r}) − r(M) = r(A ∪ {r}) − 2 ≤ 2, so
that (Y ∪ T,A ∪ {r}) must be a 3-separation of M . Now by Lemma 3.2.7,
r ∈ cl(∗)(A). If r ∈ cl(A), then (S∪{a, b, c}, T ) is a contradictory 2-separation
of M . We conclude that r ∈ cl∗(A) and that {a, b, c, r} is a coline, giving
(iii).
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3.5 Fixed Basis Connectivity

Given a 3-connected matroid M with e ∈ E(M), Bixby’s Lemma (see 3.4.2)
tells us that either si(M/e) or co(M\e) is 3-connected. However, situations
can arise where we specifically want to contract certain elements, or delete
certain elements, all while maintaining 3-connectivity. In such circumstances,
Bixby’s Lemma may be of limited use. This section introduces one important
example of such a situation.

Suppose we have an F-representable matroid M . As M is invariant under
performing standard row operations on a representation of M , it is natural
that we want to deal with representations of the form [Ir, D] where Ir is
an r × r identity matrix and D is an r × (|E(M)| − r) matrix. Such a
matrix representation is said to be in standard form. Now if A = [Ir, D] is a
representation of M over F in standard form, then the set of column vectors
contained in Ir form a basis for the space Fr. As the rank of a matroid
corresponds to the dimension of the rowspace in a representation of that
matroid, it then follows that r(M) = r, and therefore, the set of column
labels for columns in Ir constitute a basis B of the matroid M . Hence from
our natural desire to work with representations that are in standard form,
we are in effect choosing a particular basis for M . Any information present
in the submatrix D is observed relative to the basis B. Clearly, a matroid
will have many possible standard form representations. For example, if d is
in some basis Bd of M , and d corresponds to some column of D, then (see
Lemma 2.1.7), for some i ∈ {1, ..., r}, we may pivot on the i-th entry of d —
transforming it into the i-th unit vector — and interchange columns d and i.
The resulting matrix is another standard form representation A′ = [Ir, G] of
M ; corresponding to the basis B′ = (B−{i})∪{d} of M . However in general,
the entries in the submatrix G will differ significantly from the entries of the
submatrix D. Thus, important information that may be present in D can be
lost when switching to the representation A′ relative to the new basis B′.

We observed at the end of Section 2.6 that an F-representation for any
minor N of an F-representable matroid M can be found by taking an F-
representation A of M and performing a sequence of operations consisting of
pivots, row deletions and column deletions. We will examine what happens
when our starting representation A of M is in standard form. Suppose that
[Ir, D] is a representation — in standard form — of M . Then the columns of
Ir correspond to a basis B of M , and therefore, the columns of D correspond
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to a cobasis E(M)−B of M .

Suppose that d ∈ E(M)−B. Then d corresponds to some column of the
submatrix D. We will assume that d is not a loop of M to avoid the trivial
case. Consider the matroid M/d. Recall that the first step in obtaining a
representation of M/d is to pivot on some non-zero i-th entry of column d;
transforming it into the i-th unit vector. If we then switch columns d and
i before completing our contraction of d, we find that — upon contracting
d — we obtain a representation of M/d which is in standard form. But,
as observed above, such a procedure corresponds to changing the basis with
which we are observing the representation with respect to, and carrying out
such a process means changing potentially important information present in
the submatrixD. Now consider the matroid M\d. To obtain a representation
for M\d, we simply delete column d of D. Doing so gives a representation
— in standard form — of M\d. Moreover, in this case, all remaining entries
in the submatrix D are completely unchanged.

Now suppose that b ∈ B. Then b corresponds to some column of the
identity matrix Ir. Consider the matroid M\b. We obtain a representation
of this matroid by deleting column b, but doing so leaves us with a rep-
resentation which is not in standard form. To then find a standard form
representation of M\b, we need to pivot on a non-zero entry of some column
of D to obtain another unit vector. But doing so will again often perturb in-
formation present in entries of D which we may be wanting to maintain. On
the other hand, consider the matroid M/b. As b already represents some i-th
unit vector, contracting b simply corresponds to removing row i and column
b. This gives us a representation of M/b which is in standard form, where
all entries of D that remain are unaltered.

So suppose we have a representation [Ir, D] — in standard form — of
a matroid M over F. As discussed, this corresponds to a particular basis
B and cobasis E(M) − B of M . Now suppose that one wished to study
a representation [Iq, D

′] of a minor N of M over F, and one required that
relevant information present in D remain observable in D′. As we’ve seen,
such a requirement can be met as long as we restrict ourselves to the situation
where N is some minor obtained from M by contracting elements from the
basis B and/or deleting elements of the cobasis E(M)−B. If N is a minor of
M found in such a manner, then a representation [Iq, D

′] — in standard form
— of N is easily found, and entries of D′ correspond identically to entries
present in the submatrix D of our original representation.
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For the remainder of this thesis, we are interested in what can be done in
such a situation. From a matroidal point of view, we have some matroid M ,
and some particular basis B of M , and we want to study minors of M that are
found by contracting elements of B and deleting elements of E(M)−B. But
of course, even for minors found in this way, if the representations themselves
are to be of any use as an inductive tool, we need some sense of uniqueness
of representations; and for that, we require 3-connectivity.

Oxley et al [10] studied this problem and found that: given a matroid M
and basis B of M ; provided M has no 4-element fans, there is always either
an element b ∈ B such M/b is 3-connected, or an element c ∈ E(M)−B such
that M\c is 3-connected. In this work, we are predominantly concerned with
what can be done when wanting to maintain 3-connectivity up to parallel
and series classes. We make the following definition:

Definition 3.5.1. Let M be a 3-connected matroid, B a basis of M , and
e ∈ E(M). We say that e is removable with respect to B if either:

(i) e ∈ B and si(M/e) is 3-connected, or

(ii) e 6∈ B and co(M\e) is 3-connected.

The following two lemmas show that the property of being removable
with respect to a basis behaves nicely under duality.

Lemma 3.5.2. Let M be a 3-connected matroid, and let B be a basis of M .
Then e ∈ E(M) is removable with respect to B if and only if e is removable
with respect to the basis E(M)−B in M∗.

Proof. e ∈ E(M) is removable with respect to B iff e ∈ B and si(M/e) is
3-connected, or e 6∈ B and co(M\e) is 3-connected; iff e 6∈ E(M) − B and
(si(M/e))∗ is 3-connected, or e ∈ E(M)−B and (co(M\e))∗ is 3-connected; iff
e 6∈ E(M)−B and co(M∗\e) is 3-connected, or e ∈ E(M)−B and si(M∗/e)
is 3-connected; iff e is removable with respect to the basis E(M) − B in
M∗.

Lemma 3.5.3. Let M be a 3-connected matroid, and let B be a basis of M .
Let K denote the set of elements which are removable with respect to B. Let
K∗ denote the set of elements which are removable with respect to the basis
E(M)−B in M∗. Then K = K∗.
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Proof. This follows immediately from Lemma 3.5.2.

In proving results on 3-connectivity in matroid theory, it is often advanta-
geous to exclude certain substructures from the matroids we are considering.
Fans are an example of such a substructure.

Definition 3.5.4. Let M be a matroid. A set F ⊆ E(M) is a fan if there is
an ordering (f1, ..., fn) of the elements of F such that, for all i ∈ {1, ..., n−2},

(i) {fi, fi+1, fi+2} is either a triangle or a triad, and

(ii) when {fi, fi+1, fi+2} is a triangle, {fi+1, fi+2, fi+3} is a triad, and when
{fi, fi+1, fi+2} is a triad, {fi+1, fi+2, fi+3} is a triangle.

The focus of the work following will be on matroids that do not contain
any 4-element fans, that is: fans of cardinality four. Excluding matroids
that do contain such structures is not greatly confining for our purposes. For
example, it can readily be shown that any excluded minor for GF (q) does
not contain any 4-element fans. The following lemma notes that fans are also
well behaved under duality.

Lemma 3.5.5. Let M be a matroid. Then F is a fan of M if and only if
it is a fan of M∗. In particular, if M does not contain any 4-element fans,
then neither does M∗.

Proof. This follows directly from the definition of a fan and the fact that
triangles and triads are dual to one another.

Although not explicitly stated therein, it can be deduced directly from
results in the paper by Oxley et al [10] that for a matroid M with no 4-
element fans, and a basis B of M , there always exists two distinct elements
which are removable with respect to B. In the next chapter, we look to
strengthen this result.



Chapter 4

The Existence of Removable
Elements

In this chapter we prove the following result:

Theorem 4.0.1. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M . Let K denote the set of elements which are removable
with respect to B. If |E(M)| ≥ 4, then |K| ≥ 4.

4.1 Preliminary Results

Theorem 4.1.1. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M such that for some b ∈ B, si(M/b) is not 3-connected.
Let (X, {b}, Y ) be a vertical 3-separation of M with Y ∪ {b} closed. Then
either:

(i) there exists b1, b2 ∈ X ∩ B with b1 6= b2 such that both si(M/b1) and
si(M/b2) are 3-connected, or

(ii) there exists b1 ∈ X ∩B, d1 ∈ X ∩ (E(M)−B) such that both si(M/b1)
and co(M\d1) are 3-connected, or

(iii) there exists d1, d2 ∈ X ∩ (E(M) − B) with d1 6= d2 such that both
co(M\d1) and co(M\d2) are 3-connected, or

41
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(iv) X ∩ B = {bc}, si(M/bc) is 3-connected, X = {a, bc, c}, X ∪ {b} is a
circuit, and neither co(M\a) nor co(M\c) is 3-connected.

Proof. We shall assume that (i) does not hold and show that either (ii),
(iii) or (iv) does. The proof is separated into 2 cases according the possible
structure of X.

Case (i): X contains no element bx such that si(M/bx) is 3-connected.

Assume as stated that for all bx ∈ B ∩ X, si(M/bx) is not 3-connected. We
shall show that in this case, (iii) must hold.

As b ∈ cl(X) and r(X) ≥ 3, we have r(Y ) < r(M), so that X ∩ B 6=
∅. Note that for each bx ∈ B ∩ X, there exists a vertical 3-separation
(Sbx , {bx}, Tbx) of M . If, for some bx ∈ X ∩ B, there is a vertical 3-
separation (S, {bx}, T ) of M such that S or T is contained in X ∪ {b},
then by Lemma 3.3.6 and a possible relabelling, there exists such a ver-
tical 3-separation where S ⊆ X ∪ {b} and T ∪ {bx} is closed. Then
S ⊆ (X − {bx}) ∪ {b}. If equality holds here, then T = Y . But bx ∈ cl(T )
so bx ∈ cl(Y ); a contradiction. Hence S ⊂ (X − {bx}) ∪ {b}. Now relabel so
that (S, {bx}, T ) becomes (X, {b}, Y ). By an iteration of this procedure, we
eventually obtain a vertical 3-separation (X, {b}, Y ) of M with Y ∪{b} closed
such that if (S, {bx}, T ) is a vertical 3-separation of M with bx ∈ X∩B, then
neither S nor T is contained in X ∪{b}. Moreover, we maintain the property
that there is no element bx ∈ X ∩B such that si(M/bx) is 3-connected.

Let bx be an element of X ∩ B, and let (P, {bx}, Q) be a vertical 3-
separation of M . Without loss of generality, we may assume that b ∈ Q.
Moreover, we may assume by Lemma 3.3.6 that Q ∪ {bx} is closed.

4.1.1.1. Each of the intersections X ∩ P,X ∩Q, Y ∩ P , and Y ∩Q is non-
empty.

Proof. If X ∩P or X ∩Q is empty, then P or Q is contained in Y ∪{b}, and
so bx ∈ cl(Y ∪ {b}); which contradicts the fact that Y ∪ {b} is closed. Thus
X ∩ P and X ∩Q are non-empty. If Y ∩ P or Y ∩Q is empty, then P or Q
is contained in X ∪ {b}; a contradiction.

4.1.1.2. λ(X ∩ P ) ≤ 2.
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Proof. As E − (X ∪ P ) = (Y ∩Q) ∪ {b}, we have |E − (X ∪ P )| ≥ 2. Thus,
since λ(X) = 2 = λ(P ), it follows by uncrossing that λ(X ∩ P ) ≤ 2.

4.1.1.3. r((X ∩ P ) ∪ {bx}) = 2

Proof. If |X ∩ P | = 1, this follows immediately as M is 3-connected. Since
X ∩ P is non-empty, we may now assume that |X ∩ P | ≥ 2. We have
λ(X) = 2 = λ(P ∪ {bx}), and |E − (X ∪ (P ∪ {bx}))| ≥ 2, so that, by
uncrossing, λ(X ∩ (P ∪ {bx})) ≤ 2. With 4.1.1.2, we deduce that λ(X ∩
P ) = λ((X ∩ P ) ∪ {bx}) = 2. By Lemma 3.2.7, bx ∈ cl(∗)(X ∩ P ). If
bx ∈ cl∗(X ∩ P ), then by Lemma 2.5.4, bx 6∈ cl(Y ∪ Q); a contradiction. So
bx ∈ cl(X∩P ). If r((X∩P )∪{bx}) ≥ 3, then (X∩P, {bx}, Y ∪Q) is a vertical
3-separation of M . But this contradicts our construction of (X, {b}, Y ). So
r((X ∩ P ) ∪ {bx}) = 2.

Suppose |Y ∩ P | = 1. Then |X ∩ P | ≥ 2. If |X ∩ P | = 2, then, as
Q∪{bx} is closed, P is a triad. As (X ∩P )∪{bx} is a triangle, P ∪{bx} is a
4-element fan: a contradiction. Thus we may assume that |X∩P | ≥ 3. Then
(X∩P )∪{bx} is a rank-2 set having at least four elements. By Lemmas 3.2.2
and 2.3.3, we obtain distinct d1, d2 ∈ (E −B)∩X such that both M\d1 and
M\d2 are 3-connected, so (iii) holds. So assume that |Y ∩ P | ≥ 2.

4.1.1.4. r((X ∩Q) ∪ {b, bx}) = 2.

Proof. Since λ(X∪{b}) = 2 = λ(Q∪{bx}) and |E−((X∪{b})∪(Q∪{bx}))| =
|Y ∩ P | ≥ 2, it follows by uncrossing that λ((X ∩ Q) ∪ {b, bx}) ≤ 2. But
|(X ∩ Q) ∪ {b, bx}| ≥ 3 and so λ((X ∩ Q) ∪ {b, bx}) = 2. Noting that
P ⊆ E − ((X ∩ Q) ∪ {b, bx}), we have bx ∈ cl(E − ((X ∩ Q) ∪ {b, bx})),
and it follows from Lemmas 3.2.7 and 3.2.8 that bx ∈ cl((X ∪ {b}) ∩ Q).
If r((X ∩ Q) ∪ {b, bx}) ≥ 3, then it follows that ((X ∪ {b}) ∩ Q, {bx}, E −
((X ∩ Q) ∪ {b, bx})) is a vertical 3-separation that contradicts the choice of
b. Therefore, r((X ∩Q) ∪ {b, bx}) ≤ 2 and 4.1.1.4 holds.

Now let L1 = {b} ∪ (X ∩Q) and L2 = {bx} ∪ (X ∩ P ). We have |L1| ≥ 2
and |L2| ≥ 2, and both cl(L1) and cl(L2) are lines. By 4.1.1.1, | cl(L1)| ≥ 3.
If | cl(L1)| ≥ 4, then by Lemmas 3.2.2 and 2.3.3 we again obtain distinct
d1, d2 ∈ (E−B)∩X such that (iii) holds. So we may assume that | cl(L1)| = 3.
Let cl(L1) − {b, bx} = {a}. Suppose that (L2 − {bx}) ∩ B = {b′}. Then, in
M/b

′
, each of b, bx, and a are contained in some distinct parallel class by an



CHAPTER 4. THE EXISTENCE OF REMOVABLE ELEMENTS 44

application of Lemma 2.6.5. Thus, by Lemma 3.4.1, it follows that si(M/b
′
)

is 3-connected: a contradiction. We conclude that (L2 − {bx}) ∩ B = ∅. If
| cl(L2)| ≥ 4, then |L2 ∩ (E − B)| ≥ 2 by Lemma 2.3.3, so by Lemma 3.2.2,
(iii) holds. Thus we may assume that | cl(L2)| ∈ {2, 3}. Since M has no
4-element fans, and Y ∪ {b} is closed it must be that |L2 − {bx}| = 2. Let
L2 − {bx} = {x1, x2}. Note that {a, bx, x1, x2} is a cocircuit of M and X
is a near-fan of M . Applying Corollary 3.4.7, we have that co(M\x1) and
co(M\x2) are 3-connected so that (iii) holds.

Case (ii): X contains exactly one bc ∈ B such that si(M/bc) is 3-connected.

Now assume as stated that there is exactly one bc ∈ B ∩ X such that
si(M/bc) is 3-connected. If, for some bx ∈ (X ∩B)− {bc}, there is a vertical
3-separation (S, {bx}, T ) of M such that S or T is contained in (X ∪ {b})−
{bc}, then there is such a vertical 3-separation such that S ⊆ (X ∪ {b}) −
{bc} and T ∪ {bx} is closed. We may now apply case (i) to the vertical 3-
separation (S, {bx}, T ) to conclude that (iii) holds in addition to si(M/bc)
being 3-connected.

So we may assume that if (P, {bx}, Q) is a vertical 3-separation of M
with bx ∈ (X ∩B)− {bc}, then neither P nor Q is contained in (X ∪ {b})−
{bc}. Furthermore, by Lemma 3.3.6, we may assume that Q∪{bx} is closed.
Supposing that (X∩B)−{bc} 6= ∅, let bx ∈ (X∩B)−{bc}, and let (P, {bx}, Q)
be a vertical 3-separation with Q ∪ {bx} closed. Without loss of generality,
we may assume that b ∈ Q. Observe that 4.1.1.1, 4.1.1.2, 4.1.1.3, and 4.1.1.4
all hold. We deduce that bc ∈ X ∩ P . Letting L1 = {b} ∪ (X ∩ Q) and
L2 = {bx} ∪ (X ∩ P ) as per the argument following 4.1.1.4, we again can
assume that | cl(L1)| = | cl(L2)| = 3. Letting L2 − {bc, bx} = {x1} it follows
by an application of Theorem 3.4.4 that co(M\x1) is 3-connected. Thus (ii)
is satisfied.

The final possibility to consider is when (X ∩ B) − {bc} = ∅. Here
r(Y ∪{b}) = r(M)−1 so that X is a cocircuit with r(X) = 3. If |X| ≥ 4, then
Corollary 3.4.5 gives us (ii). So assume |X| = 3. Then X is a triad, and as M
contains no 4-element fans, X ∪{b} must be a circuit. Let X−{bc} = {a, c}.
If co(M\a) or co(M\c) is 3-connected, then (ii) holds. Otherwise, we have
(iv). We conclude that the theorem holds.

The next result is an extension of Theorem 4.1.1 restated in a form which
will be useful in what follows.



CHAPTER 4. THE EXISTENCE OF REMOVABLE ELEMENTS 45

Theorem 4.1.2. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M such that for some b ∈ B, si(M/b) is not 3-connected.
Let (X, {b}, Y ) be a vertical 3-separation of M with Y ∪ {b} closed. Let K
denote the set of elements of M removable with respect to B. Then either:

(i) |X ∩K| ≥ 2, or

(ii) |X ∩K| = 1, X is a triad, there exists r ∈ Y ∩K such that X ∪ {r} is
a 4-point coline with |(X ∪{r})∩B| = 2, and (Y ∪{b})−{r} is closed.

Proof. Assume that (i) does not hold. Applying Theorem 4.1.1, it must be
that 4.1.1 (iv) holds. So X is a triad, X∪{b} is a circuit, and X∩K = X∩B.
Now apply Theorem 3.4.8. As |X ∩K| = 1, 3.4.8 (i) doesn’t hold. If 3.4.8
(ii) holds, then X ∪{a′} and X ∪{c′} are 4-element fans of M ; which cannot
be. So 3.4.8 (iii) must hold. Let X ∪ {r} be the given 4-point coline of M .
It follows by Lemmas 3.2.3 and 2.5.6 that |(X ∪ {r}) ∩ B| = 2. Finally,
as z ∈ cl∗((X ∪ {r}) − {z}) for all z ∈ X ∪ {r}, Lemma 2.5.4 implies that
(Y ∪ {b})− {r} is closed.

Corollary 4.1.3. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M such that for some c ∈ E(M)−B, co(M\c) is not 3-
connected. Let (S, {c}, T ) be a cyclic 3-separation of M with T ∪{c} coclosed.
Let K denote the set of elements of M which are removable with respect to
B. Then either:

(i) |S ∩K| ≥ 2, or

(ii) |S ∩K| = 1, S is a triangle, there exists r ∈ T ∩K such that S ∪{r} is
a 4-point line with |(T ∪ {r})∩ (E(M)−B)| = 2, and (T ∪ {c})− {r}
is coclosed.

Proof. This follows by dualising Theorem 4.1.2 and using Lem-
mas 3.3.3, 3.5.3, and 3.5.5.
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4.2 The Minimal Number of Removable

Elements

We now extend the results from the previous section to place a lower bound
on the number of removable elements in a suitable matroid as a whole. We
conclude this chapter with a proof of Theorem 4.0.1.

Theorem 4.2.1. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M such that for some b ∈ B, si(M/b) is not 3-connected.
Let (X, {b}, Y ) be a vertical 3-separation of M with Y ∪ {b} closed. Let
K denote the set of elements which are removable with respect to B. Then
either:

(i) |X ∩K| ≥ 2 and |Y ∩K| ≥ 2, or

(ii) X ∩ K = {bx}, |Y ∩ K| ≥ 3, and there exists r ∈ Y ∩ K such that
X ∪ {r} is a 4-point coline, or

(iii) |X ∩ K| ≥ 3, Y ∩ K = {by}, and there exists r ∈ X ∩ K such that
(Y − cl(X)) ∪ {r} is a 4-point coline.

Proof. Note that the vertical 3-separation (X, {b}, Y ) satisfies the hypotheses
of Theorem 4.1.2. Applying the theorem, either |X ∩K| ≥ 2 or |X ∩K| = 1.
Assume |X ∩K| = 1. Then X is a triad, there exists r ∈ Y ∩K such that
X ∪ {r} is a 4-point coline with |(X ∪ {r}) ∩B| = 2, and (Y ∪ {b})− {r} is
closed. If b 6∈ cl(Y − {r}), then by Lemma 2.5.4, b ∈ cl∗(X ∪ {r}), so that
X ∪{b, r} is a 5-point coline; but then si(M/b) is 3-connected by the dual of
Lemma 3.2.2: a contradiction. So b ∈ cl(Y − {r}).

Suppose r(Y − {r}) = 2. If |Y − {r}| = 2, |Y | = 3, and as (cl(X) −
{b}, {b}, Y −cl(X)) is a vertical 3-separation by Lemma 3.3.6, it must be the
case that Y − cl(X) = Y , so that X ∪ {b} is closed and Y is a triad. But
now (Y − {r}) ∪ {b} is a triangle, and Y ∪ {b} is a contradictory 4-element
fan. So if r(Y − {r}) = 2, we must have |Y − {r}| ≥ 3. As b ∈ cl(Y − {r}),
|(Y − {r}) ∩ (E(M)− B)| ≥ 2. Thus |(Y − {r}) ∩K| ≥ 2 by Lemma 3.2.2.
So |Y ∩K| ≥ 3 and (ii) holds.

Now suppose that r(Y−{r}) ≥ 3. By Lemma 3.2.8, (X∪{r}, {b}, Y−{r})
is a vertical 3-separation of M , therefore by Lemma 3.3.6, (cl(X ∪ {r}) −
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{b}, {b}, Y − cl(X ∪ {r})) is also. Note that cl(cl(X ∪ {r}) − {b}) ∪ {b} =
cl(X ∪ {r}) is closed. Now applying Theorem 4.1.2, if 4.1.2 (i) holds, then
|(Y − cl(X ∪ {r})) ∩ K| ≥ 2, so that |Y ∩ K| ≥ 3: (ii) is satisfied and
the theorem holds. So assume that 4.1.2 (ii) holds. We have |(Y − cl(X ∪
{r})) ∩ K| = 1, Y − cl(X ∪ {r}) is a triad, and there exists some r′ ∈
(cl(X ∪{r})−{b})∩K such that (Y − cl(X ∪{r}))∪{r′} is a 4-point coline
containing exactly two basis elements. Assume that r′ ∈ X ∪ {r}. Then, as
r′ ∈ K, we have two 4-point colines X ∪ {r} and (Y − cl(X ∪ {r})) ∪ {r′}
such that |(X ∪ {r}) ∩ B| = |((Y − cl(X ∪ {r})) ∪ {r′}) ∩ B| = 2 and
(X ∪ {r}) ∩ ((Y − cl(X ∪ {r})) ∪ {r′}) = {r′} ∈ B. This is a contradiction
to Lemma 3.2.5. Thus r′ 6∈ X ∪ {r} and r′ ∈ Y , so that |Y ∩K| ≥ 3 and (ii)
holds.

Now assume that |X ∩K| ≥ 2. If |Y ∩K| ≥ 2, (i) holds. So assume that
|Y ∩K| ∈ {0, 1}. (cl(X)− {b}, {b}, Y − cl(X)) is a vertical 3-separation by
Lemma 3.3.6 with (cl(X)−{b})∪{b} = cl(X) closed. Apply Theorem 4.1.2.
If 4.1.2 (i) holds, |(Y − cl(X)) ∩ K| ≥ 2. But we’re working under the
assumption that |Y ∩K| ≤ 1. So 4.1.2 (ii) holds. Then |(Y −cl(X))∩K| = 1,
and there exists some ρ ∈ (cl(X)− {b}) ∩K such that (Y − cl(X)) ∪ {ρ} is
a 4-point coline containing exactly two basis elements. Now |Y ∩K| = 1, so
ρ ∈ X. If |X ∩K| ≥ 3, (iii) holds. So we may assume that |X ∩K| = 2. By
Lemma 3.2.8, both X − {ρ} and (X − {ρ}) ∪ {b} are exactly 3-separating.
So b ∈ cl(∗)(X − {ρ}) by Lemma 3.2.7. Now b ∈ cl(Y ) ⊂ cl(Y ∪ {ρ}), so
b 6∈ cl∗(X − {ρ}) by Lemma 2.5.4. Thus b ∈ cl(X − {ρ}).

Suppose r(X − {ρ}) = 2. If |X − {ρ}| ≥ 3, then (X − {ρ}) ∪ {b} is a
4-point line. This implies that |((X − {ρ}) ∪ {b}) ∩ (E(M) − B)| ≥ 2 by
Lemma 2.3.3, so |((X − {ρ}) ∪ {b}) ∩ K| ≥ 2, hence |(X − {ρ}) ∩ K| ≥ 2
and |X ∩ K| ≥ 3 giving (iii). Otherwise, |X − {ρ}| = 2. In this case,
(X − {ρ}) ∪ {b} is a triangle, whereas X is a triad; giving a 4-element fan
X ∪ {b} in M ; a contradiction.

Finally, suppose r(X−{ρ}) ≥ 3. Then (X−{ρ}, {b}, Y ∪{ρ}) is a vertical
3-separation. By Lemma 3.3.6, (X − cl(Y ∪ {ρ}), {b}, cl(Y ∪ {ρ}) − {b}) is
a vertical 3-separation also. Here cl((cl(Y ∪ {ρ}) − {b}) ∪ {b})) = cl(Y ∪
{ρ}) is closed. Applying Theorem 4.1.2 and noting that |X ∩ K| = 2 and
|(X−{ρ})∩K| = 1, it follows that 4.1.2 (ii) holds. That is: X− cl(Y ∪{ρ})
is a triad, and there exists some ρ′ ∈ (cl(Y ∪ {ρ}) − {b}) ∩ K such that
(X − cl(Y ∪ {ρ})) ∪ {ρ′} is a 4-point coline containing exactly two basis
elements. Note that ρ′ ∈ K, |X ∩ K| = 2, and |Y ∩ K| = |(Y − cl(X)) ∩
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K| = 1. Therefore either ρ′ = ρ or ρ′ ∈ Y − cl(X). But in either case
(Y − cl(X)) ∪ {ρ} and (X − cl(Y ∪ {ρ})) ∪ {ρ′} are two 4-point colines such
that |((Y − cl(X)) ∪ {ρ}) ∩ B| = |((X − cl(Y ∪ {ρ})) ∪ {ρ′}) ∩ B| = 2, and
((Y − cl(X)) ∪ {ρ}) ∩ ((X − cl(Y ∪ {ρ})) ∪ {ρ′}) ⊂ B. This contradicts
Lemma 3.2.5. We conclude that the theorem holds.

We obtain the following as a corollary.

Corollary 4.2.2. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M such that for some c ∈ (E(M) − B), co(M\c) is
not 3-connected. Let (S, {c}, T ) be a cyclic 3-separation of M with T ∪ {c}
coclosed. Let K denote the set of elements which are removable with respect
to B. Then either:

(i) |S ∩K| ≥ 2 and |T ∩K| ≥ 2, or

(ii) S∩K = {cs}, |T ∩K| ≥ 3, and there exists r ∈ T ∩K such that S∪{r}
is a 4-point line, or

(iii) |S ∩ K| ≥ 3, T ∩ K = {ct}, and there exists r ∈ S ∩ K such that
(T − cl∗(S)) ∪ {r} is a 4-point line.

Proof. This follows by dualising Theorem 4.2.1 and using Lem-
mas 3.3.3, 3.5.3, and 3.5.5.

Suppose M is a 3-connected matroid with no 4-element fans, B a basis
of M , and let K denote the set of elements of M which are removable with
respect to B. Theorem 4.2.1 states that if there exists some b ∈ B − K,
then |K| ≥ 4. Also, Corollary 4.2.2 states that if there exists some c ∈
(E(M) − B) − K, then |K| ≥ 4. Putting these results together we obtain
the following:

Proof of Theorem 4.0.1. Suppose |K| ≤ 3. Then by Theorem 4.2.1 and
Corollary 4.2.2, B−K = (E(M)−B)−K = ∅. But then B∪ (E(M)−B) =
E(M) = K so that |E(M)| ≤ 3.



Chapter 5

Matroids with Minimal
Removability

In light of the results in preceding chapter, we have that for any matroid M
on a ground set of size at least four, and for any basis B of M , provided that
M does not contain any four element fans, we can always find at least four
elements which are removable with respect to B. We now turn our attention
to the cases for which there exist exactly four elements which are removable
with respect to B. We begin with a definition.

Definition 5.0.1. A matroid M has path-width 3 if there is an ordering
(e1, ..., en) of E(M) such that, for all i ∈ {1, ..., n}, λ({e1, ..., ei}) ≤ 2

The class of matroids with path-width 3 has been studied in detail, and
as a result, the structure of matroids which belong to this class is well un-
derstood. See Hall, Oxley, and Semple [6] for a detailed examination of this
class of matroids. The primary result of this chapter is the following:

Theorem 5.0.2. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Let K denote the set of elements which are
removable with respect to B. If |K| = 4, then M has path-width 3.

5.1 Preliminary Constructions

Proposition 5.1.1. Let M be a 3-connected matroid with no 4-element fans.
Let B be a basis of M such that for some b ∈ B, si(M/b) is not 3-connected.

49
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Let K denote the set of elements which are removable with respect to B.
Suppose |K| = 4. Then, provided M is not the union of a 4-point line and a
4-point coline, there exists a vertical 3-separation (X, {b}, Y ) of M such that
|X ∩K| = 2, |Y ∩K| = 2, and Y ∪ {b} is closed.

Proof. Let (X ′, {b}, Y ′) be a vertical 3-separation of M with Y ′∪{b} closed.
If |X ′∩K| = |Y ′∩K| = 2, the result is immediate. So assume that this isn’t
the case. Now either 4.2.1 (ii) or 4.2.1 (iii) holds.

Suppose (ii) holds. Then X ′ ∩K = {bx}, |Y ′ ∩K| ≥ 3, and there exists
some r ∈ Y ′∩K such that X ′∪{r} is a 4-point coline. By Lemma 3.4.3, either
(X ′∪{r}, {b}, Y ′−{r}) is a vertical 3-separation of M , or r((Y ′−{r})∪{b}) =
2. Suppose the latter holds. If |Y ′ − {r}| ≥ 4, then |((Y ′ − {r}) ∪ {b}) ∩
K| ≥ 3 by Lemmas 2.3.3 and 3.2.2. But then |Y ′ ∩ K| ≥ 4; which is
absurd. If |Y ′ − {r}| = 3, then (Y ′ − {r}) ∪ {b} is a 4-point line. But
E − ((Y ′ − {r})∪ {b}) = X ∪ {r} is a 4-point coline, so that M is the union
of a 4-point line and a 4-point coline, which is not the case. So it must be
that |Y ′ − {r}| = 2. Here |Y ′| = 3. As (cl(X ′) − {b}, {b}, Y ′ − cl(X ′)) is a
vertical 3-separation of M by Lemma 3.3.6, it must be that cl(X ′ − {b}) ∪
{b} = cl(X ′) = X ′ is closed. Therefore, Y ′ is a triad that meets the triangle
(Y ′ − {r}) ∪ {b}; giving a 4-element fan Y ′ ∪ {b} in M ; a contradiction. So
(X ′ ∪ {r}, {b}, Y ′ − {r}) must be a vertical 3-separation of M . As X ′ ∪ {r}
is a 4-point coline, x ∈ cl∗((X ′ ∪ {r}) − {x}) for all x ∈ X ′ ∪ {r}. Hence
cl((Y ′ − {r}) ∪ {b}) ∩ (X ′ ∪ {r}) = ∅ and (Y ′ − {r}) ∪ {b} is closed. Letting
Y = Y ′ − {r} and X = X ′ ∪ {r}, the result follows.

Now suppose 4.2.1 (iii) holds. Then |X ′ ∩ K| ≥ 3, Y ′ ∩ K = {by}, and
there exists some r ∈ X ′ ∩ K such that (Y ′ − cl(X ′)) ∪ {r} is a 4-point
coline. Now (cl(X ′)−{b}, {b}, Y ′− cl(X ′)) is a vertical 3-separation of M by
Lemma 3.3.6. By Lemma 3.4.3, either (cl(X ′) − {b, r}, {b}, (Y ′ − cl(X ′)) ∪
{r}) is a vertical 3-separation, or r((cl(X ′) − {b, r}) ∪ {b}) = 2. Suppose
r((cl(X ′)−{b, r})∪{b}) = 2. If | cl(X ′)−{b, r}| = 2, then | cl(X ′)−{b}| = 3
and so cl(X ′) − {b} = X ′. As Y ′ ∪ {b} is closed, X ′ is a triad, whereas
(X ′−{r})∪{b} is a triangle. This gives a contradictory 4-element fan X ′∪{b}
in M . If | cl(X ′) − {b, r}| = 3, then cl(X ′) − {r} is a 4-point line, whereas
(Y ′−cl(X ′))∪{r} is a 4-point coline. But M is not the union of a 4-point line
and a 4-point coline. Finally, if | cl(X ′)− {b, r}| ≥ 4, then cl(X ′)− {r} is a
rank 2 set containing at least five elements. Therefore |(cl(X ′)−{r})∩K| ≥ 3
by Lemmas 2.3.3 and 3.2.2. As by ∈ Y ′ − cl(X ′), by 6∈ (cl(X ′) − {r}) ∩ K.
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Thus (cl(X ′) − {r}) ∩K ⊂ X ′, and |X ′ ∩K| ≥ 4; a contradiction. It must
be that (cl(X ′)− {b, r}, {b}, (Y ′ − cl(X ′))∪ {r}) is a vertical 3-separation of
M . Moreover, as r ∈ cl∗(Y ′ − cl(X ′)), r 6∈ cl((cl(X ′) − {b, r}) ∪ {b}). Also,
(Y ′−cl(X ′))∩cl((cl(X ′)−{b, r})∪{b}) = ∅. Therefore, (cl(X ′)−{b, r})∪{b}
is closed. Letting X = (Y ′−cl(X ′))∪{r} and Y = cl(X ′)−{b, r}, we conclude
that the theorem holds.

Let M be a 3-connected matroid, let B be a basis of M , and let K denote
the set of elements of E(M) which are removable with respect to B. We
shall call a vertical (cyclic) 3-separation (X, {e}, Y ) of M balanced whenever
|X ∩K| = |Y ∩K| = 2.

The following is a simple restatement of Proposition 5.1.1 using this ter-
minology.

Corollary 5.1.2. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Let K denote the set of elements which are
removable with respect to B, and suppose |K| = 4. If M is not the union of
a 4-point line and a 4-point coline, then for each bi ∈ B −K, there exists a
balanced vertical 3-separation (Xi, {bi}, Yi) such that Yi ∪ {bi} is closed.

Corollary 5.1.3. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Let K denote the set of elements which are
removable with respect to B, and suppose |K| = 4. If M is not the union
of a 4-point line and a 4-point coline, then for each ci ∈ (E(M) − B) −K,
there exists a balanced cyclic 3-separation (Si, {ci}, Ti) such that Ti ∪ {ci} is
coclosed.

Proof. This follows from the dual of Corollary 5.1.2 and the use of Lem-
mas 3.5.3, and 3.5.5.

Corollary 5.1.2 and Corollary 5.1.3 above are used freely throughout the
remainder of this thesis.

Corollary 5.1.4. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Let K denote the set of elements which are
removable with respect to B, and suppose |K| = 4. If |K ∩ (E(M)−B)| ≥ 3,
then for every b ∈ B − K, every vertical 3-separation (X, {b}, Y ) of M is
balanced.
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Proof. Suppose |K ∩ (E(M) − B)| ≥ 3 and b ∈ B −K. Let (X, {b}, Y ) be
a vertical 3-separation of M that is not balanced. Then we can assume that
|X∩K| = 1. Now (X−cl(Y ), {b}, cl(Y )−{b}) is also a vertical 3-separation of
M by Lemma 3.3.6, and, by Theorem 4.1.2, |(X−cl(Y ))∩K| = 1, and there
exists some r ∈ cl(Y ) ∩ K such that (X − cl(Y )) ∪ {r} is a 4-point coline.
But then |((X − cl(Y )) ∪ {r}) ∩ B ∩ K| ≥ 2 by Lemmas 2.5.6 and 3.2.3.
This contradicts the fact that |K ∩ B| ∈ {0, 1}. Therefore (X, {b}, Y ) is
balanced.

Lemma 5.1.5. Let M be a 3-connected matroid with no 4-element fans, and
let B be a basis of M . Let K denote the set of elements which are removable
with respect to B, and suppose |K| = 4. Then:

(i) if L is a line of M and there exists some b ∈ B−K, then |L| ≤ 4, and

(ii) if Γ is a coline of M and there exists some c ∈ (E(M)−B)−K, then
|Γ| ≤ 4.

Proof. Suppose b ∈ B−K and let L be a line of M with |L| ≥ 5. Then |L∩
(E(M)−B)∩K| ≥ 3 by Lemmas 3.2.2 and 2.3.3. Let (X, {b}, Y ) be a vertical
3-separation of M . We can assume without loss of generality that |L∩Y | ≥ 2.
By Lemma 3.3.6, (X−cl(Y ), {b}, cl(Y )−{b}) is a vertical 3-separation of M ,
and we have L∩(E(M)−B)∩K ⊂ cl(Y )−{b}. So (X−cl(Y ), {b}, cl(Y )−{b})
is not balanced. But this contradicts Lemma 5.1.4. Therefore |L| ≤ 4 and
(i) holds. By dualising this result and using Lemma 3.5.3, we obtain (ii).

Proposition 5.1.6. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Let K denote the set of elements which are
removable with respect to B, and suppose |K| = 4. Let Γ1,Γ2 be distinct
4-point colines of M . If there exists some c ∈ (E(M)− B)−K, then |Γ1 ∩
Γ2 ∩B| 6= 1.

Proof. Suppose that c ∈ (E(M) − B) − K and |Γ1 ∩ Γ2 ∩ B| = 1. By
Lemma 2.5.6, |Γ1 ∩ B| ≥ 2 and |Γ2 ∩ B| ≥ 2. If |Γ1 ∩ Γ2| ≥ 2, then
r∗(Γ1 ∩ Γ2) ≥ 2 as M is 3-connected, and so, by Lemma 2.5.7, Γ1 ∪ Γ2 is a
coline containing at least five elements. But this contradicts Lemma 5.1.5.
So we may assume that Γ1 ∩ Γ2 = Γ1 ∩ Γ2 ∩B.

By Lemma 3.2.5, it cannot be the case that |Γ1∩B| = |Γ2∩B| = 2. So we
can assume without loss of generality that |Γ1∩B| ≥ 3. Now |(Γ1∪Γ2)∩B| =
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|(Γ1 ∩B) ∪ (Γ2 ∩B)| = |Γ1 ∩B|+ |Γ2 ∩B| − |Γ1 ∩ Γ2 ∩B| ≥ 4. As |K| = 4,
and every element of (Γ1 ∪ Γ2) ∩ B is removable with respect to B, it must
be that |(Γ1 ∪ Γ2) ∩B| = 4 and K = (Γ1 ∪ Γ2) ∩B. In particular, note that
K ⊆ B.

Now consider the matroid M∗ with basis E(M)−B. As M is 3-connected,
M∗ is also 3-connected. Also, M∗ contains no 4-element fans by Lemma 3.5.5.
By Lemma 3.5.3, the set of elements removable with respect to E(M)−B is
equal to K. Γ1 and Γ2 are 4-point lines of M∗ which meet at exactly one point
α ∈ K. Note that r∗(Γ1 ∪ Γ2) = 3. Consider the element c ∈ E(M)−B. As
c 6∈ K, si(M∗/c) is not 3-connected. By Lemmas 3.3.12 and 3.3.6, there exists
a vertical 3-separation (P, {c}, Q) of M∗ with Q ∪ {c} closed. Recall that
|Γ1∩K| = 3 and K ⊆ B. Note that B is now a cobasis of the matroid M∗ so
that Corollary 5.1.4 may be used freely when studying M∗. If |Γ1 ∩Q| ≥ 2,
then Γ1 ⊆ Q ∪ {c} as Q ∪ {c} is closed. But then |(Q ∪ {c}) ∩ K| ≥ 3
which contradicts Lemma 5.1.4. Therefore |Γ1 ∩ Q| ≤ 1. So |Γ1 ∩ P | ≥ 2.
By Lemma 3.3.6, (cl(P ) − {c}, {c}, Q − cl(P )) is a vertical 3-separation of
M∗. But now Γ1 ⊂ cl(P ) − {c} so that (cl(P ) − {c}, {c}, Q − cl(P )) is not
balanced; contradicting Corollary 5.1.4. We conclude that the proposition
holds.

Lemma 5.1.7. Let M be a 3-connected matroid with no 4-element fans and
let B be a basis of M . Let K denote the set of elements which are removable
with respect to B, and suppose |K| = 4. If b ∈ B − K and (X, {b}, Y )
is a balanced vertical 3-separation of M with Y ∪ {b} closed, then for any
w ∈ X ∩ cl∗(Y ), either:

(i) (X − {w}, {b}, Y ∪ {w}) is a vertical 3-separation of M , or

(ii) (X − {w}) ∪ {b} is a 4-point line.

Proof. Let w be an element of X∩cl∗(Y ). Suppose r((X−{w})∪{b}) = 2. If
|(X−{w})∪{b}| ≥ 5, then |(X−{w})∩K| ≥ 3 by Lemmas 2.3.3 and 3.2.2;
but this contradicts the fact that (X, {b}, Y ) is balanced. If |(X − {w}) ∪
{b}| = 3, then |X| = 3, so that X is a triad and X ∪ {b} is a contradictory
4-element fan. Therefore r((X − {w}) ∪ {b}) = 2 =⇒ |(X − {w}) ∪ {b}| =
4; giving (ii). Otherwise, r((X − {w}) ∪ {b}) ≥ 3 and by Lemma 3.4.3,
(X − {w}, {b}, Y ∪ {w}) is a vertical 3-separation of M .
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Let M be a 3-connected matroid, B a basis of M , and let K denote the set
of elements which are removable with respect to B. We shall call a vertical
(cyclic) 3-separation (X, {b}, Y ) of M colinearly balanced if it is balanced,
and, for any 4-point coline Γ ⊂ E(M), Γ ⊂ X or Γ ⊂ Y . Similarly, we
shall call a vertical (cyclic) 3-separation (X, {b}, Y ) linearly balanced if it is
balanced, and, for any 4-point line L ⊂ E(M), L ⊂ X or L ⊂ Y .

Let M be a matroid, and B be a basis of M . We shall call M colinearly
entwined if there exists 4-point colines Γ1,Γ2 ⊂ E(M) such that |Γ1∩Γ2| = 1
where Γ1 ∩ Γ2 ⊆ E(M)−B.

Proposition 5.1.8. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Suppose that M is colinearly entwined with respect
to the 4-point colines Γ1,Γ2 ⊂ E(M). Let K denote the set of elements which
are removable with respect to B, and suppose |K| = 4. Then for all b ∈ B−K,
there exists a balanced vertical 3-separation (X ′, {b}, Y ′) of M with Γ1 ⊆ X ′

and Γ2 − Γ1 ⊆ Y ′.

Proof. Let Γ1∩Γ2 = {α}. Then α ∈ E(M)−B. It follows from Lemma 3.2.3
and Lemma 2.5.6 that K ⊂ Γ1 ∪ Γ2, α 6∈ K, and M does not contain any
4-point colines apart from Γ1 and Γ2. Suppose b ∈ B−K, and let (X, {b}, Y )
be a balanced vertical 3-separation of M with Y ∪ {b} closed. We construct
a balanced vertical 3-separation that satisfies the theorem through a case
analysis of the possible sizes of the set Γ1 ∩ Y .

Case (i): |Γ1 ∩ Y | = 4

Suppose Γ1 ∩X = ∅. Then |Γ2 ∩X ∩K| = 2. Hence Γ2 ⊆ cl∗(X). Note
that |(Γ1 ∩ Y ) − Γ2| = 3 so that r(Y − Γ2) ≥ 3 by Lemma 3.2.4. Applying
Lemma 3.4.3, it follows that (X ∪ Γ2, {b}, Y − Γ2) is a suitable balanced
vertical 3-separation of M .

Case (ii): |Γ1 ∩ Y | = 3

Suppose Γ1 ∩ X = {z}. Then (X − {z}, {b}, Y ∪ {z}) is a vertical 3-
separation of M by Lemma 5.1.7. If (X −{z}, {b}, Y ∪{z}) is not balanced,
then by Theorem 4.1.2, X − {z} contains a triad Λ and there exists some
r ∈ (Y ∪ {z}) ∩ B such that Λ ∪ {r} is a 4-point coline. But then it must
be that Λ ∪ {r} = Γ2 and r = α which is absurd as α 6∈ B. So (X −
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{z}, {b}, Y ∪ {z}) must be balanced. Then |(X − {z}) ∩ Γ2 ∩ K| = 2. So
Γ2 ⊆ cl∗(X − {z}). Now Γ1 − {α} ⊆ (Y ∪ {z}) − Γ2, hence r((Y ∪ {z}) −
Γ2) ≥ 3 by Lemma 3.2.4. Therefore, applying Lemma 3.4.3, it must be that
((X−{z})∪ (Γ2−{α}), {b}, (Y ∪{z})− (Γ2−{α})) is a vertical 3-separation
of M . Letting X ′ = (Y ∪{z})− (Γ2−{α}) and Y ′ = (X−{z})∪ (Γ2−{α}),
the proposition follows.

Case (iii): |Γ1 ∩ Y | = 2

Suppose Γ1 ∩ X = {z1, z2}. By Lemma 5.1.7, (X − {z1}, {b}, Y ∪ {z1})
is a vertical 3-separation of M . Applying Lemma 3.3.6, (X − cl(Y ∪
{z1}, {b}, cl(Y ∪ {z1}) − {b}) is also a vertical 3 separation of M . As
z2 ∈ cl∗(Y ∪ {z1}), Lemma 3.3.7 implies that z2 6∈ cl(Y ∪ {z1}).

If (X − cl(Y ∪ {z1}), {b}, cl(Y ∪ {z1}) − {b}) is not balanced, then by
Theorem 4.1.2, X − cl(Y ∪ {z1}) is a triad and there exists some r ∈ cl(Y ∪
{z1}) − {b} such that (X − cl(Y ∪ {z1})) ∪ {r} is a 4-point coline. Now
z2 ∈ (X − cl(Y ∪ {z1})) ∪ {r} and z2 ∈ Γ1, so z2 = α and r 6∈ Γ1. Therefore
r(cl(Y ∪ {z1}) − {b, r}) ≥ 3 by Lemma 3.2.4, and so, by an application of
Lemma 3.4.3, it must be that ((X − cl(Y ∪ {z1})) ∪ {r}, {b}, cl(Y ∪ {z1})−
{b, r}) is a vertical 3-separation of M . Letting X ′ = (X− cl(Y ∪{z1}))∪{r}
and Y ′ = cl(Y ∪ {z1}) − {b, r}, we obtain a suitable balanced vertical 3-
separation of M .

So assume that (X − cl(Y ∪ {z1}), {b}, cl(Y ∪ {z1}) − {b}) is balanced.
Noting that (cl(Y ∪{z1})−{b})∪{b} = cl(Y ∪{z1}) is closed, and applying
Lemma 5.1.7, we have that (X − (cl(Y ∪ {z1}) ∪ {z2}), {b}, (cl(Y ∪ {z1}) ∪
{z2})−{b}) is a vertical 3-separation of M . If this separation is not balanced,
then by Theorem 4.1.2, X−(cl(Y ∪{z1})∪{z2}) contains a triad Λ and there
exists some r′ ∈ (cl(Y ∪ {z1}) ∪ {z2})− {b} where r′ ∈ B such that Λ ∪ {r′}
is a 4-point coline. But then Λ ∪ {r′} = Γ2 and r′ = α. This contradicts
the fact that α 6∈ B. So (X − (cl(Y ∪ {z1}) ∪ {z2}), {b}, (cl(Y ∪ {z1}) ∪
{z2})−{b}) must be balanced. Hence |Γ2∩ (X − (cl(Y ∪{z1})∪{z2}))| ≥ 2.
Therefore Γ2 ∈ cl∗(X − (cl(Y ∪ {z1})∪ {z2})). Noting that r((cl(Y ∪ {z1})∪
{z2}) − ({b} ∪ Γ2)) ≥ 3 by Lemma 3.2.4, we have that, by Lemma 3.4.3,
((X − (cl(Y ∪ {z1}) ∪ {z2})) ∪ Γ2, {b}, ((Y ∪ {z1}) ∪ {z2})− ({b} ∪ Γ2)) is a
vertical 3-separation of M . Letting X ′ = (X − (cl(Y ∪ {z1}) ∪ {z2})) ∪ Γ2

and Y ′ = ((Y ∪ {z1}) ∪ {z2})− ({b} ∪ Γ2), the result follows.
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Case (iv): |Γ1 ∩ Y | = 1

Suppose Γ1∩Y = {z}. Then z ∈ cl∗(X) and so z 6∈ cl(X) by Lemma 3.3.7.
Applying Lemma 3.3.6, (cl(X)−{b}, {b}, Y −cl(X)) is a vertical 3-separation
of M with z ∈ Y − cl(X). If it isn’t balanced, then by Theorem 4.1.2,
Y − cl(X) is a triad and there exists some r ∈ cl(X) − {b} such that (Y −
cl(X)) ∪ {r} is a 4-point coline. Then (Y − cl(X)) ∪ {r} = Γ2, z = α,
and it must be that r 6∈ Γ1 because |Γ1 ∩ Γ2| = 1. So r(cl(X) − {b, r}) ≥
3 by Lemma 3.2.4. Now r ∈ cl∗(Y − cl(X)), so that, by Lemma 3.4.3,
(cl(X)−{b, r}, {b}, (Y −cl(X))∪{r}) is a vertical 3-separation of M . Letting
X ′ = (Y − cl(X)) ∪ {r} and Y ′ = cl(X) − {b, r}, we have (X ′, {b}, Y ′) as a
suitable balanced vertical 3-separation of M .

So assume that (cl(X) − {b}, {b}, Y − cl(X)) is balanced. Then by
Lemma 5.1.7, ((cl(X) ∪ {z}) − {b}, {b}, Y − (cl(X) ∪ {z})) is a vertical
3-separation of M . If this 3-separation is not balanced, then by Theo-
rem 4.1.2, Y − (cl(X) ∪ {z}) contains a triad Λ and there exists some
r′ ∈ (cl(X) ∪ {z}) − {b} where r′ ∈ B such that Λ ∪ {r′} is a 4-point
coline. But then Λ ∪ {r′} = Γ2 and r′ = α. This contradicts the
fact that α 6∈ B. Hence ((cl(X) ∪ {z}) − {b}, {b}, Y − (cl(X) ∪ {z}))
must be balanced. Therefore |(Y − (cl(X) ∪ {z})) ∩ Γ2 ∩ K| = 2 and
Γ2 ⊆ cl∗(Y − (cl(X) ∪ {z})). Now |Γ1 ∩ ((cl(X) ∪ {z})− ({b} ∪ {Γ2}))| = 3,
so that r((cl(X) ∪ {z}) − ({b} ∪ {Γ2})) ≥ 3. With Lemma 3.4.3, we then
deduce that ((cl(X) ∪ {z}) − ({b} ∪ {Γ2}), {b}, (Y − (cl(X) ∪ {z})) ∪ Γ2)
is a vertical 3-separation of M . Let X ′ = (Y − (cl(X) ∪ {z})) ∪ Γ2 and
Y ′ = (cl(X) ∪ {z}) − ({b} ∪ {Γ2}), and it follows that (X ′, {b}, Y ′) is a
suitable balanced vertical 3-separation of M .

Case (v): |Γ1 ∩ Y | = 0

Suppose Γ1 ⊆ X. Then |Γ2 ∩ Y ∩ K| = 2, so that Γ2 ⊆ cl∗(Y ). We
have r(X − Γ2) ≥ 3 so an application of Lemma 3.4.3 gives a balanced
vertical 3-separation (X − Γ2, {b}, Y ∪ Γ2) that satisfies the requirements of
the Proposition.

Proposition 5.1.9. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Let K denote the set of elements which are
removable with respect to B. Suppose |K| = 4 and that there exists some
c ∈ (E(M) − B) − K. If M is not colinearly entwined and M is not the
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union of a 4-point line and a 4-point coline, then for each bi ∈ B −K such
that bi is not on 4-point line, there exists a colinearly balanced vertical 3-
separation (Xi, {bi}, Yi) of M .

Proof. Suppose M is not colinearly entwined and M is not the union of a
4-point line and 4-point coline. Note that b 6∈ Γ for any b ∈ B −K and any
4-point coline Γ of M by Lemma 3.2.3.

5.1.9.1. If Γ1,Γ2 are two distinct 4-point colines of M then Γ1 ∩ Γ2 = ∅.

Proof. By Lemma 5.1.6 and the fact that M is not colinearly entwined, |Γ1∩
Γ2| 6= 1. If |Γ1 ∩ Γ2| ≥ 2, then r∗(Γ1 ∩ Γ2) ≥ 2, and by Lemma 2.5.7, either
Γ1 = Γ2; which is not the case, or Γ1 ∪ Γ2 is a coline of cardinality greater
than 4; which contradicts Lemma 5.1.5. So Γ1 ∩ Γ2 = ∅.

Suppose b ∈ B −K. Let (X, {b}, Y ) be a balanced vertical 3-separation
of M with Y ∪ {b} closed. If M does not contain any 4-point colines, then
any balanced vertical 3-separation of M is immediately colinearly balanced,
and the theorem follows. So assume that Γ1 is a 4-point coline of M . We
shall construct a suitable colinearly balanced vertical 3-separation. The con-
struction is a case analysis dependant on the size of Γ1 ∩ Y .

Case (i): |Γ1 ∩ Y | = 4

Suppose Γ1 ⊆ Y . If Γ1 is the only 4-point coline of M , then (X, {b}, Y ) is
colinearly balanced. So let Γ2 be second 4-point coline of M . As (X, {b}, Y )
is balanced, it must be the case that |Γ2 ∩ X| ≥ 2 and Γ2 ∩ Y ∩ K =
∅. By Lemma 3.2.4 and 5.1.9.1, r(Y − Γ2) ≥ 4. Note that Γ2 ⊆ cl∗(X).
Applying Lemma 3.4.3, and noting that M contains at most two distinct
4-point colines, it follows that (X ∪ Γ2, {b}, Y − Γ2) is a colinearly balanced
vertical 3-separation of M .

Case (ii): |Γ1 ∩ Y | = 3

Suppose that |Γ1 ∩ Y | = 3 with Γ1 ∩ X = {z1}. Then, as b does not
lie on a 4-point line, (X − {z1}, {b}, Y ∪ {z1}) is a vertical 3-separation
of M by Lemma 5.1.7. If this vertical 3-separation is not balanced, then
by Lemma 4.1.2, X − {z1} contains a triad Λ and there exists some r ∈
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Y ∪ {z1} such that Λ ∪ {r} is a 4-point coline. By 5.1.9.1, r 6∈ Γ1. As
r ∈ cl∗(X−{z1}), an application of Lemma 3.4.3 yields a colinearly balanced
vertical 3-separation ((X ∪ {r})− {z1}, {b}, (Y ∪ {z1})− {r}) of M .

So assume that (X − {z1}, {b}, Y ∪ {z1}) is balanced. If Γ1 is the only
4-point line of M , then (X − {z1}, {b}, Y ∪ {z1}) is colinearly balanced. So
assume that M contains another 4-point coline Γ2. Then |(X−{z1})∩Γ2| ≥ 2
because K−Γ1 ⊂ X∩Γ2. So Γ2−(X−{z1}) ⊂ cl∗(X−{z1}). By 5.1.9.1 and
Lemma 3.2.4, r((Y ∪{z1})−Γ2) ≥ 4, hence, by an application of Lemma 3.4.3,
we conclude that ((X−{z1})∪Γ2, {b}, (Y ∪{z1})−Γ2) is a colinearly balanced
vertical 3-separation of M .

Case (iii): |Γ1 ∩ Y | = 2

Supose Γ1 ∩ X = {z1, z2}. Then (X − {z1}, {b}, Y ∪ {z1}) is a ver-
tical 3-separation of M by Lemma 5.1.7. Now z2 ∈ cl∗(Y ∪ {b, z1}),
so z2 6∈ cl(Y ∪ {b, z1}) by Lemma 3.3.7. Therefore, by Lemma 3.3.6,
(X − cl(Y ∪ {z1}), {b}, cl(Y ∪ {z1}) − {b}) is a vertical 3 separation of M
with z2 ∈ X − cl(Y ∪ {z1}). If this vertical 3-separation is not balanced,
then by Theorem 4.1.2, X − cl(Y ∪ {z1}) is a triad contained in a 4-point
coline. This contradicts 5.1.9.1. So (X−cl(Y ∪{z1}), {b}, cl(Y ∪{z1})−{b})
must be balanced. Applying Lemma 5.1.7 once more, (X − (cl(Y ∪ {z1}) ∪
{z2}), {b}, cl(Y ∪ {z1}) ∪ {z2}) is a vertical 3-separation of M .

If this vertical 3-separation isn’t balanced, then by Theorem 4.1.2, X −
(cl(Y ∪{z1})∪{z2}) contains a triad Λ and there exists some r ∈ cl(Y ∪{z1})∪
{z2} such that Λ ∪ {r} is a 4-point coline. By 5.1.9.1, r 6∈ Γ1. Therefore,
((X−(cl(Y ∪{z1})∪{z2}))∪{r}, {b}, (cl(Y ∪{z1})∪{z2})−{r}) is a colinearly
balanced vertical 3-separation of M by Lemmas 3.4.3 and 3.2.4. So assume
that (X − (cl(Y ∪{z1})∪{z2}), {b}, cl(Y ∪{z1})∪{z2}) is balanced. If Γ1 is
the only 4-point coline of M , we then have our colinearly balanced vertical
3-separation. So assume that Γ2 is some other 4-point coline of M . It must
be that |Γ2 ∩K ∩ (X − (cl(Y ∪ {z1}) ∪ {z2}))| = 2. Now by 5.1.9.1 together
with Lemmas 3.4.3 and 3.2.4, ((X − (cl(Y ∪ {z1}) ∪ {z2})) ∪ Γ2, {b}, (cl(Y ∪
{z1}) ∪ {z2})− Γ2) is a colinearly balanced vertical 3-separation of M .

Case (iv): |Γ1 ∩ Y | = 1
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Suppose Γ1 ∩ Y = {z1}. Then z1 ∈ cl∗(X), so that z1 6∈ cl(X) by
Lemma 3.3.7. Hence (cl(X)− {b}, {b}, Y − cl(X)) is a vertical 3-separation
with z1 ∈ (Y−cl(X)) by Lemma 3.3.6. If |(Y−cl(X))∩K| = 1, then Y−cl(X)
is a triad which is contained in some 4-point coline by Theorem 4.1.2. But this
contradicts 5.1.9.1. So it must be that |(Y −cl(X))∩K| = 2 and the vertical
3-separation (cl(X)−{b}, {b}, Y − cl(X)) is balanced. Now by Lemma 5.1.7,
((cl(X) − {b}) ∪ {z1}, {b}, Y − (cl(X) ∪ {z1})) is a vertical 3-separation of
M . If it isn’t balanced, then, by Lemma 4.1.2, Y − (cl(X)∪{z1}) contains a
triad Λ and there exists some r ∈ cl(X)− {b} such that Λ∪ {r} is a 4-point
coline. Applying Theorem 3.4.3 with 5.1.9.1 and Lemma 3.2.4, we see that
((cl(X)−{b, r})∪{z1}, {b}, (Y −(cl(X)∪{z1}))∪{r}) is a colinearly balanced
vertical 3-separation of M .

So assume that ((cl(X)−{b})∪{z1}, {b}, Y −(cl(X)∪{z1})) is balanced. If
it is still not colinearly balanced, then there must exist another 4-point coline
Γ2 in M . Then |Γ2 ∩K ∩ (Y − (cl(X)∪{z1}))| = 2, so Γ2 ∈ cl∗(Y − (cl(X)∪
{z1})). By 5.1.9.1, and Lemmas 3.2.4 and 3.4.3, we again find a colinearly
balanced vertical 3-separation (((cl(X)−{b})∪{z1})−Γ2, {b}, (Y − (cl(X)∪
{z1})) ∪ Γ2) of M .

Case (v): |Γ1 ∩ Y | = 0

Suppose Γ1 ∩ Y = ∅. Then Γ1 ⊂ X. If (X, {b}, Y ) isn’t colinearly
balanced, then M contains some other 4-point coline Γ2. Then |Γ2∩Y ∩K| =
2. Applying 5.1.9.1, Lemma 3.2.4 and Lemma 3.4.3 once more, we conclude
that (X − Γ2, {b}, Y ∪ Γ2) is a colinearly balanced vertical 3-separation of
M .

Corollary 5.1.10. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Let K denote the set of elements which are re-
movable with respect to B, and suppose |K| = 4. If (X, {b}, Y ) is a colinearly
balanced vertical 3-separation of M , then (cl(X)−{b}, {b}, Y −cl(X)) is also
a colinearly balanced vertical 3-separation of M .

Proof. Let (X, {b}, Y ) be a colinearly balanced vertical 3-separation of M .
By Lemma 3.3.6, (cl(X) − {b}, {b}, Y − cl(X)) is a vertical 3-separation of
M with (cl(X)− {b}) ∪ {b} = cl(X) closed. If (cl(X)− {b}, {b}, Y − cl(X))
is not balanced, then by Theorem 4.1.2, Y − cl(X) is a triad and there exists
some r ∈ cl(X) − {b} such that (Y − cl(X)) ∪ {r} is a 4-point coline. But
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then r ∈ cl∗(Y − cl(X)), so that r 6∈ cl(cl(X)− {r}). This now implies that
r(cl(X)) > r(cl(X) − {r}), which contradicts the fact that r ∈ cl(X). So
(cl(X)−{b}, {b}, Y −cl(X)) must be balanced. Suppose Y contains a 4-point
coline Γ. Then |(Y − cl(X)) ∩ Γ ∩K| = 2. As γi ∈ cl∗(Γ− γi) for all γi ∈ Γ,
it follows that γi 6∈ cl(X ∪ {b}) = cl(X) for all γi ∈ Γ by Lemma 2.5.4. Thus
Γ ⊆ Y − cl(X) and (cl(X)− {b}, {b}, Y − cl(X)) is colinearly balanced.

Corollary 5.1.11. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Let K denote the set of elements which are
removable with respect to B. Suppose |K| = 4 and there exists some b ∈
B−K. If M∗ is not colinearly entwined and M is not the union of a 4-point
line and a 4-point coline, then for each ci ∈ (E(M) − B) − K such that ci
is not on 4-point coline, there exists a linearly balanced cyclic 3-separation
(Si, {ci}, Ti) of M .

Proof. Note that a cyclic 3-separation (S, {c}, T ) of M is linearly balanced
if and only if (S, {c}, T ) is a colinearly balanced vertical 3-separation of M∗.
The corollary then follows by noting Lemmas 3.5.5 and 3.5.3 and dualising
Proposition 5.1.9.

Corollary 5.1.12. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Let K denote the set of elements which are
removable with respect to B, and suppose |K| = 4. If (S, {c}, T ) is a linearly
balanced cyclic 3-separation of M , then (cl∗(S)−{c}, {c}, T − cl∗(S)) is also
a linearly balanced cyclic 3-separation of M .

Proof. This follows by dualising Corollary 5.1.10.

5.2 Arranging Removable Elements

Theorem 5.2.1. Let M be a 3-connected matroid with no 4-element fans,
where M is not the union of a 4-point line and a 4-point coline. Let B
be a basis of M , and let K denote the set of elements which are removable
with respect to B. Suppose |K| = 4. Then there exists a set {α1, α2} ⊂ K
such that for every bi ∈ B −K, there exists a balanced vertical 3-separation
(Xi, {bi}, Yi) with {α1, α2} ⊂ Xi. Moreover, if M contains a 4-point line,
then {α1, α2} ⊂ (E(M)−B) ∩ L where L is a 4-point line of M .
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Proof. If M is colinearly entwined, then the theorem follows immediately
from Theorem 5.1.8. So assume that M is not colinearly entwined. Our
argument is divided into three separate cases.

Case (i): (E(M)−B)−K = ∅.

Suppose that (E(M)−B)−K = ∅, and b1 ∈ (B −K). Let (X, {b1}, Y )
be a balanced vertical 3-separation of M and let {α1, α2} = X∩K. We show
that for all other bi ∈ B − K, there exists a balanced vertical 3-separation
(Xi, {bi}, Yi) with {α1, α2} ⊂ Xi.

Take some b2 ∈ B − K, and assume that there does not exist any bal-
anced vertical 3-separation (S, {b2}, T ) with {α1, α2} ⊂ S. Then b1 6= b2.
Let (P, {b2}, Q) be a balanced vertical 3-separation of M . Without loss of
generality, we may assume that b1 ∈ Q and b2 ∈ Y .

5.2.1.1. For all y ∈ (Y ∩K) ∪ {b2}, y 6∈ cl(X).

Proof. If b2 ∈ cl(X), then, by Lemma 3.2.8, (X ∪ {b1}, {b2}, Y − {b2}) is
a vertical 3-separation that contradicts our assumption. So b2 6∈ cl(X).
Suppose z ∈ Y ∩K ∩ cl(X). Then by Lemma 3.3.6, (cl(X)−{b1}, {b1}, Y −
cl(X)) is a vertical 3-separation of M with |(Y − cl(X)) ∩K| ≤ 1. Now by
Theorem 4.1.2, |(Y −cl(X))∩K| = 1 and Y −cl(X) is a triad which contains
two elements of (E(M) − B) − K. But (E(M) − B) − K = ∅. Therefore
Y ∩K ∩ cl(X) = ∅.

By Lemma 3.3.6, we may assume; relabelling as necessary, that
(X, {b1}, Y ) is a vertical 3-separation such that X ∪ {b1} is closed. More-
over, by 5.2.1.1, we maintain the property that (X, {b1}, Y ) is balanced with
b2 ∈ Y . By assumption, {α1, α2} 6⊂ P and {α1, α2} 6⊂ Q. Without loss of
generality, α1 ∈ X ∩P and α2 ∈ X ∩Q. Also, |Y ∩P ∩K| = |Y ∩Q∩K| = 1
because (X, {b1}, Y ) and (P, {b2}, Q) are balanced. So each of the intersec-
tions X∩P,X∩Q, Y ∩P and Y ∩Q are non-empty and each contains exactly
one element of K.

5.2.1.2. Either |Y ∩ P | = 1 or (Y ∩ P ) ∪ {b2} is a triangle.

Proof. Assume that |Y ∩ P | ≥ 2. As λ(Y ) = λ(P ) = 2 and |E − (Y ∪ P )| =
|(X ∩Q) ∪ {b1}| ≥ 2, it follows by uncrossing that λ(Y ∩ P ) = 2. Similarly,
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λ((Y ∩ P ) ∪ {b2}) = 2. By Lemmas 3.2.7 and 2.5.4, b2 ∈ cl(Y ∩ P ). If
r(Y ∩P ) ≥ 3, then (Y ∩P, {b2}, X ∪Q) is a vertical 3-separation of M . But
then by Theorem 4.1.2, Y ∩ P contains a triad Λ which contains elements
of E(M) − B which are not removable with respect to B; contrary to our
assumption. So r(Y ∩P ) = 2. If |Y ∩P | ≥ 3, then (Y ∩P )∪{b2} contains a
4-point line L. But then |L∩Y ∩P ∩ (E(M)−B)| ≥ 2 by Lemma 2.3.3, and
so |Y ∩ P ∩K| ≥ 2 by Lemma 3.2.2, which is a contradiction. Therefore, if
|Y ∩ P | ≥ 2, then (Y ∩ P ) ∪ {b2} is a triangle. Otherwise, |Y ∩ P | = 1.

5.2.1.3. |X ∩ P | ≥ 2.

Proof. Suppose |X ∩ P | = 1. Then (Y ∩ P ) ∪ {b2} is a triangle by 5.2.1.2
and the fact that r(P ) ≥ 3. But then P is a triad, so that P ∪ {b2} is a
contradictory 4-element fan.

5.2.1.4. (Y ∩Q) ∪ {b1, b2} is a triangle.

Proof. Noting that λ(Y ) = λ(Q) = 2 and |E − (Y ∪ Q)| = |X ∩ P | ≥ 2
by 5.2.1.3, it follows by uncrossing that λ(Y ∩ Q) ≤ 2. Similarly we obtain
λ((Y ∩Q)∪{b2}) = λ((Y ∩Q)∪{b1, b2}) = 2. Now by Lemmas 3.2.7 and 2.5.4,
b1 ∈ cl((Y ∩Q)∪{b2}). As M is 3-connected, all that remains is to show that
|Y ∩ Q| = 1. Suppose |Y ∩ Q| ≥ 2. Then λ(Y ∩ Q) = 2 and it follows that
b2 ∈ cl(Y ∩Q). If r(Y ∩Q) ≥ 3, then (Y ∩Q, {b2}, X ∪P ∪{b1}) is a vertical
3-separation of M . But then Theorem 4.1.2 implies that Y ∩ Q contains a
triad Λ that contains two elements of (E(M)−B)−K, which is absurd. So
r(Y ∩ Q) = 2. But then r((Y ∩ Q) ∪ {b1, b2}) = 2 and (Y ∩ Q) ∪ {b1, b2}
contains a 4-point line L. By Lemma 2.3.3, Y ∩ Q ⊆ E(M) − B, and, as
|Y ∩ Q ∩ L| ≥ 2, we get |Y ∩ Q ∩ K| ≥ 2 by Lemma 3.2.2. This is a
contradiction. We conclude that |Y ∩ Q| = 1 and that (Y ∩ Q) ∪ {b1, b2} is
a triangle.

Now suppose that (Y ∩ P ) ∪ {b2} is a triangle. Note that Y is a rank 3
cocircuit of M . Let Y ∩ P = {z1, z2}. Then r(Y − {z1}) = r(Y − {z2}) = 3.
Therefore, both co(M\z1) and co(M\z2) are 3-connected by Theorem 3.4.4.
As |Y ∩P ∩K| = 1, it follows from Lemma 2.3.3 that |Y ∩P ∩ (B−K)| = 1.
Without loss of generalization, z1 ∈ B − K. Let Y ∩ Q = {w}. Now, by
Lemma 2.6.5, each of b1, b2 and w are contained in a distinct parallel class of
M/z1. But this, together with the fact that z1 6∈ K contradicts Lemma 3.4.1.
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So (Y ∩P )∪{b2} is not a triangle, and by 5.2.1.2, it must be that |Y ∩P | = 1.
But then Y is a triad and so Y ∪{b1} is a contradictory 4-element fan in M .
We conclude that either {α1, α2} ⊂ P or {α1, α2} ⊂ Q as required.

We now assume for the remaining two cases that (E(M)−B)−K 6= ∅.

Case (ii): M contains a 4-point line.

Let L be a 4-point line of M . Then |L ∩ K ∩ (E(M) − B)| ≥ 2 by
Lemmas 3.2.2 and 2.3.3. Choose distinct α1, α2 ∈ L∩K ∩ (E(M)−B). We
show that for each bi ∈ B −K, there exists a balanced vertical 3-separation
(Xi, {bi}, Yi) such that {α1, α2} ⊂ Xi.

Suppose b ∈ B − K. Let (X, {b}, Y ) be a vertical 3-separation of M .
Without loss of generality, we may assume that |X∩L| ≥ 2. By Lemma 3.3.6,
(cl(X)−{b}, {b}, Y − cl(X)) is a vertical 3-separation of M with {α1, α2} ⊂
L ⊂ cl(X)−{b}. If (cl(X)−{b}, {b}, Y − cl(X)) is balanced, we’re done. So
suppose (cl(X)− {b}, {b}, Y − cl(X)) is not balanced. Then |(Y − cl(X)) ∩
K| = 1, and by Theorem 4.1.2, Y −cl(X) is a triad and there exists r ∈ B∩K
such that (Y − cl(X)) ∪ {r} is a 4-point coline. So r ∈ cl∗(Y − cl(X)) and,
by Lemma 2.5.4, r 6∈ L. If r(cl(X) − {b, r}) = 2, then it must be that
cl(X) − {r} = L. But then M is the union of a 4-point line and a 4-point
coline, which is contrary to our assumption. So r(cl(X) − {b, r}) ≥ 3, and
applying Lemma 3.4.3, we conclude that (cl(X)−{b, r}, {b}, (Y−cl(X))∪{r})
is a balanced vertical 3-separation with {α1, α2} ⊂ cl(X)−{b, r} as required.

The argument above applies to any bi ∈ B −K, so that if M contains a
4-point line, the theorem holds.

Case (iii): M does not contain a 4-point line.

Now assume that M does not contain any 4-point lines. As M is not
colinearly entwined, we deduce from Theorem 5.1.9 that for each bi ∈ B−K,
there exists a colinearly balanced vertical 3-separation (Xi, {bi}, Yi) of M .
Choose some b1 ∈ B−K and let (X, {b1}, Y ) be a colinearly balanced vertical
3-separation. Let X∩K = {α1, α2}. We show that for any bi ∈ B−K, there
exists a balanced vertical 3-separation (Xi, {bi}, Yi) with {α1, α2} ⊂ Xi.

Suppose b2 ∈ B − K. Assume that there does not exist any balanced
vertical 3-separation (S, {b2}, T ) with {α1, α2} ⊂ S. Then b1 6= b2. Let
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(P, {b2}, Q) be a colinearly balanced vertical 3-separation of M . Without
loss of generality, we may assume that b1 ∈ Q and b2 ∈ Y . If b2 ∈ cl(X),
then by Lemma 3.2.8, (X ∪ {b1}, {b2}, Y − {b2}) is a balanced vertical 3-
separation of M that contradicts our assumption. So b2 6∈ cl(X). Now by
Corollary 5.1.10, we may assume; relabelling as appropriate, that X ∪ {b1}
is closed with b2 ∈ Y . We may also assume by Corollary 5.1.10 that Q∪{b2}
is closed.

By assumption {α1, α2} 6⊂ P and {α1, α2} 6⊂ Q. Without loss of gen-
erality, α1 ∈ X ∩ P and α2 ∈ X ∩ Q. As (X, {b1}, Y ) and (P, {b2}, Q) are
balanced, it must also be that |Y ∩ P ∩K| = |Y ∩ Q ∩K| = 1. So each of
the intersections X ∩ P,X ∩ Q, Y ∩ P , and Y ∩ Q are non-empty and each
contains exactly one element of K.

5.2.1.5. Either |Y ∩ P | = 1 or (Y ∩ P ) ∪ {b2} is a triangle.

Proof. Assume that |Y ∩ P | ≥ 2. As λ(Y ) = λ(P ) = 2 and |E − (Y ∪ P )| =
|(X ∩Q) ∪ {b1}| ≥ 2, it follows by uncrossing that λ(Y ∩ P ) = 2. Similarly,
λ((Y ∩ P ) ∪ {b2}) = 2. By Lemmas 3.2.7 and 2.5.4, b2 ∈ cl(Y ∩ P ). If
r(Y ∩ P ) ≥ 3, then (Y ∩ P, {b2}, X ∪ Q) is a vertical 3-separation of M .
But then by Theorem 4.1.2, Y ∩ P contains a triad Λ and there exists some
r ∈ X ∪ Q such that Λ ∪ {r} is a 4-point coline. But (X, {b1}, Y ) and
(P, {b2}, Q) are colinearly balanced so it must be that r ∈ Y ∩ P , which is
absurd. Hence r(Y ∩ P ) ≤ 2. If |Y ∩ P | ≥ 3, then (Y ∩ P ) ∪ {b2} contains
a 4-point line. But M does not contain any such lines by assumption. So
|Y ∩ P | ≥ 2 =⇒ (Y ∩ P ) ∪ {b2} is a triangle. Otherwise, |Y ∩ P | = 1.

5.2.1.6. λ(Y ∩Q) ≤ 2, and λ((Y ∩Q) ∪ {b2}) = λ((Y ∩Q) ∪ {b1, b2}) = 2.

Proof. Consider |X ∩ P |. If |X ∩ P | = 1, then (Y ∩ P ) ∪ {b2} is a triangle
by 5.2.1.5 and the fact that r(P ) ≥ 3. Recall that Q∪{b2} is closed. But now
P is a triad, and Y ∪ {b2} is a contradictory 4-element fan in M . Therefore
|X∩P | ≥ 2. Thus |E−(Y ∪Q)| ≥ 2, and by uncrossing we get that λ(Y ∩Q) ≤
2. Similarly, |E−(Y ∪(Q∪{b2}))| ≥ 2 and |E−((Y ∪{b1})∪(Q∪{b2}))| ≥ 2,
so that by uncrossing, λ((Y ∩Q)∪{b2}) ≤ 2 and λ((Y ∩Q)∪{b1, b2}) ≤ 2. As
M is 3-connected, we obtain λ((Y ∩Q)∪{b2}) = λ((Y ∩Q)∪{b1, b2}) = 2.

5.2.1.7. (Y ∩Q) ∪ {b1, b2} is a triangle.
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Proof. Suppose |Y ∩Q| ≥ 2 so that λ(Y ∩Q) = 2. It then follows from 5.2.1.6
and Lemmas 3.2.7 and 2.5.4 that {b1, b2} ⊂ cl(Y ∩Q). If r(Y ∩Q) ≥ 3, then
(Y ∩Q, {b2}, X∪P∪{b1}) is a vertical 3-separation of M . But |Y ∩Q∩K| = 1,
so that by Theorem 4.1.2, Y ∩Q contains a triad Λ which is contained in a 4-
point line Γ 6⊂ Y ∩Q. But this is absurd as both (X, {b1}, Y ) and (P, {b2}, Q)
are colinearly balanced. So r(Y ∩ Q) = 2. But then (Y ∩ Q) ∪ {b1, b2}
contains a 4-point line which cannot exist. Thus |Y ∩ Q| = 1. By 5.2.1.6,
λ((Y ∩Q) ∪ {b2}) = λ((Y ∩Q) ∪ {b1, b2}) = 2, and Lemmas 3.2.7 and 2.5.4
imply that b1 ∈ cl((Y ∩Q) ∪ {b2}). As M is 3-connected, (Y ∩Q) ∪ {b1, b2}
must be a triangle.

Recall from 5.2.1.5 that either |Y ∩P | = 1 or (Y ∩P )∪{b2} is a triangle.
Suppose (Y ∩P )∪{b2} is a triangle. Let Y ∩P = {z1, z2} and Y ∩Q = {w}.
Note that Y is a rank 3 cocircuit of M . Now r(Y −{z1}) = r(Y −{z2}) = 3.
Therefore by Theorem 3.4.4, both co(M\z1) and co(M\z2) are 3-connected.
But |Y ∩ P ∩ K| = 1 and {z1, z2, b2} is a triangle, so Y ∩ P must contain
exactly one basis element. Without loss of generalization, z1 ∈ B. But then,
by Lemma 2.6.5, b1, b2 and w are each contained in a distinct parallel class
of M/z1. Therefore by Lemma 3.4.1, si(M/z1) is 3-connected in addition to
co(M\z2) being 3-connected. This contradicts the fact that Y ∩ P contains
exactly one element which is removable with respect to B.

The final remaining possibility is that |Y ∩P | = 1. But then Y is a triad,
whereas (Y ∩Q)∪{b1, b2} is a triangle by 5.2.1.7. This gives a contradictory
4-element fan Y ∪{b1} in M . We conclude that {α1, α2} ⊂ P or {α1, α2} ⊂ Q
as required.

Corollary 5.2.2. M be a 3-connected matroid with no 4-element fans, where
M is not the union of a 4-point line and a 4-point coline. Let B be a basis
of M , and let K denote the set of elements which are removable with respect
to B. Suppose |K| = 4. Then there exists a set {β1, β2} ⊂ K such that
for every ci ∈ (E(M) − B) −K, there exists a balanced cyclic 3-separation
(Si, {ci}, Ti) with {β1, β2} ⊂ Si. Moreover, if M contains a 4-point coline,
then {β1, β2} ⊂ B ∩ Γ where Γ is a 4-point coline of M .

Proof. Noting that (X, {b}, Y ) is a balanced vertical 3-separation of a ma-
troid M iff it is a balanced cyclic 3-separation of M∗, this result follows by
dualising Theorem 5.2.1.
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Theorem 5.2.3. Let M be a 3-connected matroid with no 4-element fans,
where M is not the union of a 4-point line and a 4-point coline. Let B be a
basis of M , and let K denote the set of elements which are removable with
respect to B. Suppose |K| = 4. Then there exists a set {k1, k2} ⊂ K such
that:

(i) for every bi ∈ B − K, there exists a balanced vertical 3-separation
(Xi, {bi}, Yi) with {k1, k2} ⊂ Xi, and

(ii) for every ci ∈ (E(M) − B) − K, there exists a balanced cyclic 3-
separation (Si, {ci}, Ti) with {k1, k2} ⊂ Si.

Proof. If either B − K = ∅ or (E(M) − B) − K = ∅, then this follows
immediately from the previous two results. So we can assume that both are
non-empty. Our argument is divided into three cases.

Case (i):M contains a 4-point line.

Suppose M contains a 4-point line. Then by Theorem 5.2.1, there exists a
4-point line L with a set {α1, α2} ⊂ (E(M)−B)∩L∩K such that for every
bi ∈ B − K there exists a balanced vertical 3-separation (Xi, {bi}, Yi) with
{α1, α2} ⊂ Xi. Let {k1, k2} = {α1, α2}. Then (i) is immediate. We now prove
(ii). If M∗ is colinearly entwined, then (ii) follows directly from the dual of
Proposition 5.1.8. So assume that M∗ is not colinearly entwined. For each
ci ∈ (E(M)−B)−K where ci does not lie on a 4-point coline, there exists a
linearly balanced cyclic 3-separation (Si, {ci}, Ti) of M by Corollary 5.1.11.
It follows that (ii) holds if M does not contain a 4-point coline. So let Γ be
a 4-point coline of M .

Choose any c ∈ (E(M)−B)−K and let (S, {c}, T ) be a balanced cyclic
3-separation of M . Without loss of generality, |T ∩Γ| ≥ 2. By Lemma 3.3.5,
(S − cl∗(T ), {c}, cl∗(T )− {c}) is a cyclic 3-separation of M with Γ ⊂ cl∗(T ).
Suppose (S − cl∗(T ), {c}, cl∗(T ) − {c}) is not balanced. Then by Corol-
lary 4.1.3, |(S−cl∗(T ))∩K| = 1 and S−cl∗(T ) is a triangle which is contained
in a 4-point line. This 4-point line must be L. Without loss of generality,
(cl∗(T ) − {c}) ∩ L = {k1}. Note that k1 6∈ Γ. Now k1 ∈ cl(S − cl∗(T )), and
by Lemma 3.2.8, cl∗(T )−{k1} is an exactly 3-separating set. If cl∗(T )−{k1}
does not contain a circuit, then by Lemma 3.2.6, cl∗(T ) − {k1} is a col-
ine. As Γ ⊆ cl∗(T ) − {k1} and M contains no colines of size greater than
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4 by Lemma 5.1.5, it follows that cl∗(T ) − {k1} = Γ. But then M is the
union of a 4-point line and a 4-point coline, which is not the case. Therefore
(S − cl∗(T ), {c}, cl∗(T ) − {c}) must be balanced, and {k1, k2} ⊂ S − cl∗(T )
as required. This applies to any ci ∈ (E(M)−B)−K so that we obtain (ii)
and conclude that the theorem holds.

Case (ii): M contains a 4-point coline.

Suppose M contains a 4-point coline. Then by Theorem 5.2.2, there exists
a 4-point coline Γ with a set {β1, β2} ⊂ B ∩ Γ ∩K such that for every ci ∈
(E(M)−B)−K there exists a balanced cylic 3-separation (Si, {ci}, Ti) with
{β1, β2} ⊂ Si. Let {k1, k2} = {β1, β2}. Then (ii) is immediate. We show (i).
If M is colinearly entwined, then (ii) follows directly from Proposition 5.1.8.
So assume that M is not colinearly entwined. If M contains a 4-point line,
then the theorem holds as in case (i) above. So we can assume that M
does not contain any 4-point lines. Then, by Corollary 5.1.9, for every bi ∈
B −K, there exists a colinearly balanced vertical 3-separation (Xi, {bi}, Yi)
of M . Any such 3-separation has Γ ⊆ Xi or Γ ⊆ Yi by construction, so
that {k1, k2} ⊂ Xi or {k1, k2} ⊂ Yi as required. Therefore (i) holds, and the
Theorem follows.

Case (iii): M contains no 4-point lines and no 4-point colines.

Suppose that M does not contain any 4-point lines or 4-point colines. By
Theorem 5.2.1, there exists a set {α1, α2} ⊂ K such that for each bi ∈ B−K
there exists a balanced vertical 3-separation (Xi, {bi}, Yi) with {α1, α2} ⊂
Xi. Let {k1, k2} = {α1, α2}. Then (i) holds. We prove (ii). Take some
b ∈ B−K and let (X, {b}, Y ) be a balanced vertical 3-separation of M with
{k1, k2} ⊂ X. We show that for any ci ∈ (E(M) − B) − K, there exists a
balanced cyclic 3-separation (Si, {ci}, Ti) with {k1, k2} ⊂ Si.

Suppose c ∈ (E(M) − B) − K. Assume that there does not exist any
balanced cyclic 3-separation (P, {c}, Q) with {k1, k2} ⊂ P . Let (S, {c}, T )
be a balanced cyclic 3-separation of M . Without loss of generality, we may
assume that c ∈ Y and b ∈ T

5.2.3.1. For all y ∈ (Y ∩K) ∪ {c}, y 6∈ cl(X).
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Proof. If c ∈ cl(X), then, by Lemma 3.2.8, (X ∪ {b}, {c}, Y − {c})
is a vertical 3-separation of M . Therefore (X ∪ {b}, Y − {c}) is a 2-
separation of M/c. But rM/c(X ∪ {b}) ≥ 2 and rM/c(Y − {c}) ≥ 2, so
that ((E(si(M/c))) ∩ (X ∪ {b}), (E(si(M/c))) ∩ (Y − {c})) is a 2-separation
of si(M/c). Therefore si(M/c) is not 3-connected. But c ∈ (E(M)−B)−K,
so that co(M\c) is not 3-connected. This contradicts Lemma 3.4.2. Thus c 6∈
cl(X). If y ∈ Y ∩K∩cl(X), then by Lemma 3.3.6, (cl(X)−{b}, {b}, Y−cl(X))
is a vertical 3-separation of M . But then Theorem 4.1.2 implies that
|(Y −cl(X))∩K| = 1 and Y −cl(X) is contained in a 4-point coline; contrary
to our assumption that M contains no such colines. So Y ∩K∩cl(X) = ∅.

By Lemma 3.3.6, we may assume; relabelling as necessary, that
(X, {b}, Y ) is a vertical 3-separation such that X ∪ {b} is closed. More-
over, by 5.2.3.1, we maintain the property that (X, {b}, Y ) is balanced with
c ∈ Y . By assumption, {k1, k2} 6⊂ S and {k1, k2} 6⊂ T . Without loss of
generality, k1 ∈ X ∩S and k2 ∈ X ∩ T . Also, |Y ∩S ∩K| = |Y ∩ T ∩K| = 1
because (X, {b}, Y ) and (S, {c}, T ) are balanced. So each of the intersections
X ∩S,X ∩T, Y ∩S and Y ∩T are non-empty and each contains exactly one
element of K.

5.2.3.2. |Y ∩ S| = 1 or Y ∩ S is a triad.

Proof. λ(Y ) = λ(S) = 2. Now |E − (Y ∪ S)| = |(X ∩ T ) ∪ {b}| ≥ 2.
So by uncrossing, λ(Y ∩ S) ≤ 2. Similarly, λ((Y ∩ S) ∪ {c}) = 2. Suppose
|Y ∩S| ≥ 2. Then λ(Y ∩S) = λ((Y ∩S)∪{c}) = 2 because M is 3-connected.
By Lemmas 3.2.7 and 2.5.4, c ∈ cl∗(Y ∩S). If Y ∩S contains a circuit, then,
as |Y ∩ S ∩K| = 1, applying Corollary 4.1.3, we deduce that Y ∩ S contains
a triangle which is contained in a 4-point line. But M has no such 4-point
lines. So Y ∩ S is independent. As c ∈ cl∗(Y ∩ S)− cl(Y ∩ S), (Y ∩ S)∪ {c}
is also independent. Recall that (Y ∩S)∪{c} is exactly 3-separating. As M
does not contain any 4-point colines, Lemma 3.2.6 implies that |Y ∩ S| ≤ 2.
Therefore |Y ∩S| = 2 and (Y ∩S)∪{c} is a triad. Otherwise, |Y ∩S| = 1.

5.2.3.3. |X ∩ S| ≥ 2

Proof. If |X ∩ S| = 1, then, as |S| ≥ 3, (Y ∩ S) ∪ {c} must be a triad
by 5.2.3.2. Now (S, {c}, T ) is a cyclic 3-separation of a 3-connected matroid
with |S| = 3, so S must be a triangle. But then S ∪ {c} is a contradictory
4-element fan of M . Therefore |X ∩ S| ≥ 2.
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5.2.3.4. λ(Y ∩ T ) ≤ 2 and λ((Y ∩ T ) ∪ {c}) = λ((Y ∩ T ) ∪ {b, c}) = 2.

Proof. λ(Y ) = λ(T ) = 2. By 5.2.3.3, |E−(Y ∪T )| = |X∩S| ≥ 2. Therefore,
by uncrossing, λ(Y ∩ T ) ≤ 2. Similarly, |E − (Y ∪ (T ∪ {c}))| = |E − ((Y ∪
{b}) ∪ (T ∪ {c}))| = |X ∩ S| ≥ 2, so by uncrossing, and the fact that M is
3-connected, λ((Y ∩ T ) ∪ {c}) = λ((Y ∩ T ) ∪ {b, c}) = 2.

Suppose |Y ∩ T | ≥ 2. Then by 5.2.3.4, λ(Y ∩ T ) = λ((Y ∩ T ) ∪ {c}) =
λ((Y ∩ T ) ∪ {b, c}) = 2. Applying Lemmas 3.2.7 and 2.5.4, we deduce that
b ∈ cl(Y ∩ T ) and c ∈ cl∗(Y ∩ T ). Hence, if |Y ∩ T | = 2, (Y ∩ T ) ∪ {b} is a
triangle. But then ((Y ∩ T ) ∪ {b}, {c}, X ∪ S) is a cyclic 3-separation of M .
As M does not contain any 4-point lines and |((Y ∩ T )∪ {b})∩K| = 1, this
contradicts Corollary 4.1.3. So |Y ∩T | 6= 2. If |Y ∩T | ≥ 3 and Y ∩T contains
a circuit, then we again have a cyclic 3-separation (Y ∩ T, {c}, X ∪ S ∪ {b})
of M that contradicts of Corollary 4.1.3. So |Y ∩ T | ≥ 3 =⇒ Y ∩ T is
independent. But then (Y ∩ T ) ∪ {c} is both independent and exactly 3-
separating, and Lemma 3.2.6 implies that (Y ∩ T ) ∪ {c} contains a 4-point
coline; a contradiction.

The only remaining possibility is that |Y ∩ T | = 1. By 5.2.3.4, λ((Y ∩
T ) ∪ {c}) = λ((Y ∩ T ) ∪ {b, c}) = 2. Therefore, by Lemmas 3.2.7 and 2.5.4,
b ∈ cl((Y ∩T )∪{c}). Hence (Y ∩T )∪{b, c} is a triangle. Now if |Y ∩S| = 1,
then Y is a triad, but then Y ∪ {b} is a contradictory 4-element fan of M .
So (Y ∩S)∪{c} must be a triad by 5.2.3.2. But then we find ourselves with
a circuit (Y ∩ T ) ∪ {b, c} and a cocircuit (Y ∩ S) ∪ {c} whose intersection is
{c}. This contradicts Lemma 2.5.5. We conclude that either {k1, k2} ⊂ S or
{k1, k2} ⊂ T . As c was an arbitrary member of (E(M)− B)−K, case (iii)
is complete and the theorem holds.

5.3 Path Width

We now tie in the results of Sections 5.1 and 5.2 with the notion of path-width
(see Definition 5.0.1), and conclude with a proof of Theorem 5.0.2.

Definition 5.3.1. A path of 3-separations in a matroid M is an ordered
partition P = (P0, P1, ..., Pr) of E(M) with the property that for all i ∈
{0, ..., r − 1}, λ(P0 ∪ ... ∪ Pi) = 2. The members of P are called steps of P.
Empty steps are permitted.



CHAPTER 5. MATROIDS WITH MINIMAL REMOVABILITY 70

Note that it follows from the above definition that if P = (P0, ..., Pr) is a
path of 3-separations in a matroid M , then P0 6= ∅ 6= Pr.

Note also that both vertical and cyclic 3-separations are examples of paths
of 3-separations.

Lemma 5.3.2. Let P = (P0, ..., Pr) be a path of 3-separations in a matroid
M . If, for some i ∈ {1, ..., r − 1}, |Pi| = 1 with Pi = {ei}, then either

(i) ei ∈ cl(P0 ∪ ... ∪ Pi−1) ∩ cl(Pi+1 ∪ ... ∪ Pr), or

(ii) ei ∈ cl∗(P0 ∪ ... ∪ Pi−1) ∩ cl∗(Pi+1 ∪ ... ∪ Pr).

Proof. Suppose Pi = {ei} for some i ∈ {1, ..., r−1}. Then λ(P0∪ ...∪Pi−1) =
λ(P0∪...∪Pi−1∪{ei}) = 2. Also, λ(Pi+1∪...∪Pr) = λ(P0∪...∪Pi−1∪{ei}) = 2,
and λ(Pi+1 ∪ ... ∪ Pr ∪ {ei}) = λ(P0 ∪ ... ∪ Pi−1) = 2. It then follows from
Lemma 3.2.7 that ei ∈ cl(∗)(P0 ∪ ... ∪ Pi−1) and ei ∈ cl(∗)(Pi+1 ∪ ... ∪ Pr). If
ei ∈ cl(P0 ∪ ... ∪ Pi−1), then by Lemma 2.5.4, ei ∈ cl(Pi+1 ∪ ... ∪ Pr); which
gives (i). Otherwise, ei ∈ cl∗(P0 ∪ ... ∪ Pi−1), in which case, Lemma 2.5.4
implies that ei ∈ cl∗(Pi+1 ∪ ... ∪ Pr); giving (ii).

Lemma 5.3.3. A 3-connected matroid M has path-width 3 if and only if
there is a path P = (P0, ..., Pr) of 3-separations such that |P0| = |Pr| = 2,
and, for all i ∈ {1, ..., r − 1}, |Pi| = 1.

Proof. Let M be a 3-connected matroid with path-width 3. Let (e1, ..., en) be
an ordering of E(M) such that for all i ∈ {1, ..., n}, λ({e1, ..., ei}) ≤ 2. As M
is 3-connected, it follows that for i ∈ {2, ..., n − 2}, λ({e1, ..., ei}) = 2. Now
letting P0 = {e1, e2}, Pn−3 = {en−1, en} and Pi = {ei+2} for i ∈ {1, ..., n− 4},
we obtain a suitable path of 3-separations (P0, P1, ..., Pn−4, Pn−3).

Conversely, let P = (P0, ..., Pr) be a path of 3-separations in a 3-connected
matroid M such that |P0| = |Pr| = 2, and, for all i ∈ {1, ..., r − 1}, |Pi| = 1.
Letting {e1, e2} = P0, {er+2, er+3} = Pr and {ei+2} = Pi for i ∈ {1, ..., r−1},
we obtain an ordering (e1, ..., er+3) of E(M) which implies that M has path-
width 3.

Lemma 5.3.4. Let M be a 3-connected matroid such that E(M) = L ∪ Γ
where L is a 4-point line and Γ is a 4-point coline. Then M has path-width
3.
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Proof. Letting L = {l1, l2, l3, l4} and Γ = {γ1, γ2, γ3, γ4}, the ordering
(l1, l2, l3, l4, γ1, γ2, γ3, γ4) of E(M) reveals that M has path-width 3.

Proposition 5.3.5. Let P = (P0, ..., Pr) be a path of 3-separations in a
matroid M . Suppose i ∈ {1, ..., r− 1}, e ∈ Pi, and that there exists a path of
3-separations (X, {e}, Y ) of M with P0 ⊆ X, Pr ⊆ Y and e ∈ cl(X)∩ cl(Y ).
Then there exists a path of 3-separations (X ′, {e}, Y ′) with P0∪...∪Pi−1 ⊆ X ′,
Pi+1 ∪ ... ∪ Pr ⊆ Y ′, and e ∈ cl(X ′) ∩ cl(Y ′).

Proof. Let S = P0 ∪ ... ∪ Pi−1 and T = Pi+1 ∪ ... ∪ Pr.

5.3.5.1. There exists a path of 3-separations (X0, {e}, Y0) of M such that
S ⊆ X0, Pr ⊆ Y0, and e ∈ cl(X0) ∩ cl(Y0).

Proof. We have λ(Y ∪ {e}) = λ(Pi ∪ T ) = 2. Note that P0 ⊆ X ∩ S, and P0

contains at least two elements. Now

|E(M)− ((Y ∪ {e}) ∪ (Pi ∪ T ))| = |X ∩ S| ≥ |P0| ≥ 2

and it follows by uncrossing that λ((Y ∪{e})∩ (Pi∪T )) ≤ 2. So (X∪S, (Y ∪
{e}) ∩ (Pi ∪ T )) is a 3-separating partition of M . We know that |P0| ≥ 2
and |Pr| ≥ 2. Also, P0 ⊆ X ∪ S and Pr ⊆ (Y ∪ {e}) ∩ (Pi ∪ T ). Therefore
(X∪S, (Y ∪{e})∩(Pi∪T )) is a 3-separation of M . But e ∈ cl(X) ⊆ cl(X∪S),
and it follows from Lemmas 2.5.4 and 3.2.8 that e ∈ cl(((Y ∪ {e}) ∩ (Pi ∪
T )) − {e}) and that (X ∪ S, {e}, Y ∩ (Pi ∪ T )) is a path of 3-separations.
Letting X0 = X ∪ S and Y0 = Y ∩ (Pi ∪ T ), the result follows.

Now λ(X0∪{e}) = λ(Pi∪S) = 2, and |E(M)− ((X0∪{e})∪ (Pi∪S))| =
|Y0 ∩ T | ≥ |Pr| ≥ 2, so that, by uncrossing, λ((X0 ∪ {e})∩ (Pi ∪ S)) ≤ 2. As
P0 ⊆ (X0 ∪ {e}) ∩ (Pi ∪ S), it must be that λ((X0 ∪ {e}) ∩ (Pi ∪ S)) = 2.
Therefore ((X0 ∪ {e}) ∩ (Pi ∪ S), Y0 ∪ T ) is an exact 3-separation of M .
As e ∈ cl(Y0 ∪ T ), it then follows from Lemmas 2.5.4 and 3.2.8 that e ∈
cl(((X0 ∪ {e}) ∩ (Pi ∪ S)) − {e}) and that (X0 ∩ (Pi ∪ S), {e}, Y0 ∪ T ) is a
path of 3-separations. Observing that S ⊆ X0 ∩ (Pi ∪S) and T ⊆ Y0 ∪T , we
conclude that the theorem holds.

Corollary 5.3.6. Let P = (P0, ..., Pr) be a path of 3-separations in a matroid
M . Suppose i ∈ {1, ..., r − 1}, e ∈ Pi, and that there exists a path of 3-
separations (X, {e}, Y ) in M with P0 ⊆ X, Pr ⊆ Y and e ∈ cl∗(X)∩ cl∗(Y ).
Then there exists a path of 3-separations (X ′, {e}, Y ′) with P0∪...∪Pi−1 ⊆ X ′,
Pi+1 ∪ ... ∪ Pr ⊆ Y ′, and e ∈ cl∗(X ′) ∩ cl∗(Y ′).
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Proof. This follows by duality from Proposition 5.3.5.

Corollary 5.3.7. Let P = (P0, ..., Pr) be a path of 3-separations in a matroid
M . Suppose i ∈ {1, ..., r − 1}, e ∈ Pi, and that there exists a path of 3-
separations (X, {e}, Y ) in M with P0 ⊆ X and Pr ⊆ Y . Then there exists a
path of 3-separations (X ′, {e}, Y ′) with P0∪...∪Pi−1 ⊆ X ′ and Pi+1∪...∪Pr ⊆
Y ′.

Proof. This is a consequence of Lemma 5.3.2, together with the results of
Proposition 5.3.5 and Corollary 5.3.6.

Corollary 5.3.8. Let P = (P0, ..., Pr) be a path of 3-separations in a matroid
M . Suppose i ∈ {1, ..., r − 1}, e ∈ Pi, and that there exists a path of 3-
separations (X, {e}, Y ) of M with P0 ⊆ X and Pr ⊆ Y . Then P refines to
a path (P0, ..., Pi−1, P

′
i , {e}, P ′′i , Pi+1, ..., Pr) of 3-separations where P ′i ∪{e}∪

P ′′i = Pi.

Proof. By Corollary 5.3.7, we have a path of 3-separations (X ′, {e}, Y ′)
of M with (P0 ∪ ... ∪ Pi−1) ⊆ X ′ and (Pi+1 ∪ ... ∪ Pr) ⊆ Y ′. Letting
P ′i = X ′ − (P0 ∪ ... ∪ Pi−1) and P ′′i = Y ′ − (Pi+1 ∪ ... ∪ Pr), it follows that
(P0, ..., Pi−1, P

′
i , {e}, P ′′i , Pi+1, ..., Pr) is a path of 3-separations. Moreover,

P ′i ∪ {e} ∪ P ′′i = Pi.

Corollary 5.3.9. Let M be a 3-connected matroid with disjoint sets
{a1, a2} ⊂ E(M) and {z1, z2} ⊂ E(M). Suppose that for every e ∈
E(M) − {a1, a2, z1, z2}, there exists a path of 3-separations (X, {e}, Y ) of
M such that {a1, a2} ⊆ X and {z1, z2} ⊆ Y . Then M has path-width 3.

Proof. As M is 3-connected, ({a1, a2}, E(M) − {a1, a2, z1, z2}, {z1, z2}) is a
path of 3-separations. If E(M) = {a1, a2, z1, z2}, the result is immediate. So
suppose that e ∈ E(M)−{a1, a2, z1, z2}. Applying Corollary 5.3.8, we obtain
a refinement of our original path of 3-separations. Now successively applying
Corollary 5.3.8 to each of the other elements of E(M)− {a1, a2, z1, z2}; each
time with respect to our new refined path of 3-separations, we eventually
obtain a path of 3-separations P = ({a1, a2}, P1, ..., Pq, {z1, z2}) where, for
all i ∈ {1, ..., q}, the step Pi is either a singleton, or empty. If we then
remove all empty steps from P, we obtain a path of 3-separations P′ =
({a1, a2}, P ′1, ..., P ′n, {z1, z2}) in which Pi is a singleton for all i ∈ {1, ..., n}.
By Lemma 5.3.3, M has path-width 3.
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Proof of Theorem 5.0.2. If M is the union of a 4-point line and a 4-point
coline, then the result follows immediately from Lemma 5.3.4. So as-
sume that this is not the case. Let K = {k1, k2, k3, k4}. Recall that
vertical 3-separations and cyclic 3-separations are both examples of paths
of 3-separations. Therefore it follows from Theorem 5.2.3 that for each
ei ∈ E(M) − K, there exists a path of 3-separations (Xi, {ei}, Yi) of M
such that {k1, k2} ⊂ Xi and {k3, k4} ⊂ Yi. Thus, by Corollary 5.3.9, M has
path-width 3.



Chapter 6

Future Work

6.1 Some Conjectures

Our motivation for wanting to maintain 3-connectivity upon removing el-
ements from matroids arose primarily from our desire to obtain matroids
that are uniquely representable. But as discussed in Section 2.7, in general,
for a matroid to have any sense of unique representability over GF (q), not
only must that matroid be 3-connected, but we also require that it contain
a stabilizer for GF (q) as a minor. While we have shown that for a suitable
matroid M with arbitrary basis B, there always exists at least four elements
which are removable with respect to B; thereby maintaining 3-connectivity,
in principle, it is possible that removing any one of these elements means los-
ing the existence of a stabilizer as a minor; hence losing our sense of unique
representability. However, we believe that something can be said provided
there exists some element of E(M) that can be deleted or contracted as ap-
propriate while maintaining the stabilizer as a minor. We make the following
conjecture, which we believe should follow from results established in this
thesis.

Conjecture 6.1.1. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Let N be a 3-connected minor of M . If there
exists some b ∈ B such that M/b has an N-minor, or there exists some
c ∈ E(M) − B such that M\c has an N-minor, then there exists distinct
k1, k2 ∈ E(M) such that for i ∈ {1, 2},

74
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(i) si(M/ki) is 3-connected with an N-minor if ki ∈ B, and

(ii) co(M\ki) is 3-connected with an N-minor if ki ∈ E(M)−B.

We showed in Chapter 5 that for a suitable matroid M and basis B,
if there are exactly four elements which are removable with respect to B,
then M necessarily has path-width 3. Now the class of matroids with path-
width 3 is well understood (see [1],[6]). Therefore, one should be able to
give a stronger, more explicit, description of the class of matroids which have
minimal removability with respect to some basis. For the moment, we leave
this as an open problem.

Also, assuming that Conjecture 6.1.1 holds, it would be of interest to
study the structure that is imposed upon M if there are exactly two elements
which we can remove with respect to B while maintaining an N -minor. Fur-
thermore, it is plausible that from a confirmation of Conjecture 6.1.1, we
may be able to strengthen the result by removing the restriction that we
need to simplify and cosimplify to remain 3-connected. Indeed, Oxley et al
[10] showed the following:

Theorem 6.1.2. Let M be a 3-connected matroid with no 4-element fans,
and let N be a 3-connected minor of M . Let B be a basis of M , and assume
that either there is an element b1 of B such that M/b1 has an N-minor, or
there is an element b∗1 of E(M)−B such that M\b∗1 has an N-minor. Then
either:

(i) B contains an element b such that M/b is 3-connected with an N-minor,
or

(ii) E(M)−B contains an element b∗ such that M\b∗ is 3-connected with
an N-minor.

We next propose such a strengthening of Conjecture 6.1.1; analogous
to Theorem 6.1.2. However it seems quite possible that in this case, extra
constraints on the matroid M may be required.

Conjecture 6.1.3. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Let N be a 3-connected minor of M . If there
exists some b ∈ B such that M/b has an N-minor, or there exists some
c ∈ E(M) − B such that M\c has an N-minor, then there exists distinct
k1, k2 ∈ E(M) such that for i ∈ {1, 2},
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(i) M/ki is 3-connected with an N-minor if ki ∈ B, and

(ii) M\ki is 3-connected with an N-minor if ki ∈ E(M)−B.

In the event that Conjecture 6.1.3 was shown to hold, we could then take
N to be the empty matroid in 6.1.3 and obtain the following as a corollary.

Conjecture 6.1.4. Let M be a 3-connected matroid with no 4-element fans,
and let B be a basis of M . Then there exists distinct k1, k2 ∈ E(M) such
that for i ∈ {1, 2},

(i) M/ki is 3-connected if ki ∈ B, and

(ii) M\ki is 3-connected if ki ∈ E(M)−B.

Finally, we note an observation on Theorem 5.0.2. We showed that if
a 3-connected matroid M with no 4-element fans, and some given basis B
contains exactly four elements which are removable with respect to B, then
the matroid M itself has path-width 3. But the notion of removability is
relative to the choice of basis one makes. It is certainly possible that upon
switching to another basis B′, we find that M contains more than four remov-
able elements. Potentially, one could examine the entire collection of bases
of suitable matroids. Perhaps one could deduce that, for any 3-connected
matroid M with no 4-element fans, there exists some basis B∃ such that M
contains more than four elements which are removable with respect to B∃.

Question 6.1.5. Does there exist a 3-connected matroid M with no 4-
element fans such that for every basis B of M , there exists exactly four
elements of E(M) which are removable with respect to B? If so, what addi-
tional structure must such an M have?
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[15] Vámos, P., On the representation of independence structures (unpub-
lished manuscript).

[16] Whitney, H., On the abstract properties of linear dependence. Amer. J.
Math. 57 (1935), 509-533.

[17] Whittle, G. P., Stabilizers of classes of representable matroids. J. Com-
bin. Theory Ser. B 77 (1999), 39-72.


