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Abstract 
 
The influence of highly regular, anisotropic, microstructured materials on high frequency 

ultrasonic wave propagation was investigated in this work.  Microstructure, often only treated as 

a source of scattering, significantly influences high frequency ultrasonic waves, resulting in 

unexpected guided wave modes.  Tissues, such as skin or muscle, are treated as homogeneous 

by current medical ultrasound systems, but actually consist of highly anisotropic micron-sized 

fibres.  As these systems increase towards 100 MHz, these fibres will significantly influence 

propagating waves leading to guided wave modes.  The effect of these modes on image quality 

must be considered.  However, before studies can be undertaken on fibrous tissues, wave 

propagation in more ideal structures must be first understood.   

 

After the construction of a suitable high frequency ultrasound experimental system, finite 

element modelling and experimental characterisation of high frequency (20-200 MHz) 

ultrasonic waves in ideal, collinear, nanostructured alumina was carried out.  These results 

revealed interesting waveguiding phenomena, and also identified the potential and significant 

advantages of using a microstructured material as an alternative acoustic matching layer in 

ultrasonic transducer design.  Tailorable acoustic impedances were achieved from 4-17 MRayl, 

covering the impedance range of 7-12 MRayl most commonly required by transducer matching 

layers.  Attenuation coefficients as low as 3.5 dBmm-1 were measured at 100 MHz, which is 

excellent when compared with 500 dBmm-1 that was measured for a state of the art loaded 

epoxy matching layer at the same frequency.  Reception of ultrasound without the restriction of 

critical angles was also achieved, and no dispersion was observed in these structures (unlike 

current matching layers) until at least 200 MHz.   

 

In addition, to make a significant step forward towards high frequency tissue characterisation, 

novel microstructured poly(vinyl alcohol) tissue-mimicking phantoms were also developed.  

These phantoms possessed acoustic and microstructural properties representative of fibrous 

tissues, much more realistic than currently used homogeneous phantoms.  The attenuation 

coefficient measured along the direction of PVA alignment in an example phantom was 8 

dBmm-1 at 30 MHz, in excellent agreement with healthy human myocardium.  This method will 

allow the fabrication of more realistic and repeatable phantoms for future high frequency tissue 

characterisation studies.   



 iii  

Acknowledgements 
 
 
Firstly, I would like to warmly and heartily thank the efforts of my two supervisors Paul Harris 

and Gideon Gouws for their continual support and commitment to me throughout this 

investigation.  I will always remember the many hours of discussion spent both local and 

abroad, not just relating to my research, but the many other interesting problems and thoughts 

encountered in life.  Their light hearted and practical approach to finding solutions made this 

work very enjoyable.   

 

To the entire Sensors and Electronics team at Industrial Research Limited, this thesis would not 

have been possible without all of the many forms of support they gave to me.  Special thanks to 

Dale Randall for sorting out all of my flights, conference bookings, formatting my documents, 

and putting up with my many other nagging requests.  To David Greager, Dick Van Den Berg, 

Rob Kemp, Frederic Lecarpentier, Russell Petherick, and Graeme Woollett I offer a very warm 

thank you for all of their expert technical support.  They have certainly improved my mindset 

and approach to problems, making me a lot more practical from when I originally started.   

 

I am grateful to Marc Mulholland and Hokmeng Ung from the mechanical development 

workshop.  Their innovative and creative abilities to produce unique, practical solutions to 

endless complicated and difficult problems will never cease to amaze me.   

 

To my dear Mum and Dad, I owe them my deepest gratitude for their endless emotional and 

financial support throughout all my studies.  Without their assistance, care, and sacrifices they 

have made for all my education, none of this would have been possible.  Thanks to my Dad for 

feeding my initial interest in electronics, showing me his yellowed electrical schematics, his and 

Grandad’s old dusty books, and his old projects.  Cheers to my Mum for all the home baking 

that was not only always enjoyed and appreciated by me but also the majority of the 

Engineering and Applied Physics team. 

 

Finally, but certainly not least, I would like to express my gratitude to my brother in law Wade 

Murphy for feeding my initial interest in science.  The Usbourne Book of Physics he purchased 

for my 11th birthday set my path early for a career in science.  



 iv 

List of Conference Presentations and Publications 
 
 

 
• A. Dawson, P. Harris, G. Gouws, “Design and Evaluation of Ultrasonic Transducer Circuits 

for Material Characterisation,” in Proc. 13th Electronics New Zealand Conference, 
Christchurch, New Zealand, pp 261-265, 2006. 

 
• P. Harris, A. Dawson, R. Young, F. Lecarpentier, “High Frequency Propagation in 

Structured Solids,” in Proc. IEEE International Ultrasonics Symposium, N.Y, USA, pp 690-
693, 2007. 

 
• A. Dawson, P. Harris, G. Gouws, “High Frequency Ultrasound System for Analysis of 

Anisotropic Materials,” in Proc. 14th Electronics New Zealand Conference, Wellington, 
New Zealand, pp 137-140, 2007. 

 
• A. Dawson, P. Harris, G. Gouws, “High Frequency Ultrasound Wave Propagation in 

Anisotropic Materials,” in Proc. IEEE 2nd International Conference on Sensing Technology, 
Palmerston North, New Zealand, pp 552-556, 2007. 

 
• A. Dawson, P. Harris, G. Gouws, “High Frequency Wave Propagation in Porous Aluminum 

Samples,” Smart Sensors and Sensing Technology, Springer-Verlag, Berlin, pp 221-232, 
2008. 

 
• R. Young, P. Harris, A. Dawson, F. Lecarpentier, “High Frequency Wave Propagation in 

Structured Materials: Modeling Results,” in Proc. IEEE International Ultrasonics 
Symposium, Beijing, China, pp 532-535, 2008. 

 
• A. Dawson, P. Harris, R. Young, G. Gouws, “High Frequency Propagation Measurements in 

Structured Solids,” in Proc. IEEE International Ultrasonics Symposium, Beijing, China, pp 
74-77, 2008. 

 
• A. Dawson, P. Harris, G. Gouws, “High Frequency Ultrasound Propagation in 

Microstructured Solids,” in Proc. 15th Electronics New Zealand Conference, Auckland, 
New Zealand, pp 147-152, 2008. 

 
• A. Dawson, International PZFlex Student innovation Competition WINNER, March, 2009. 
 
• P. Harris, A. Dawson, R. Young, “Microstructured Materials - Propagation and use for 

Impedance Matching,” in Proc. IEEE International Ultrasonics Symposium, Rome, Italy, 
pp. 1165-1168, 2009. 

 
• A. Dawson, P. Harris, G. Gouws, “Preparation and Characterisation of Microstructured 

Poly(Vinyl Alcohol) Phantoms Mimicking Fibrous Tissue,” in Proc. IEEE International 
Ultrasonics Symposium, Rome, Italy, pp. 1958-1961, 2009. 

 
• A. Dawson, P. Harris, R. Young, G. Gouws, “Acoustic Impedance Matching using Porous 

Aluminium,” in Proc. IEEE 8th International Conference on Sensors, Christchurch, New 
Zealand, pp. 49-52, 2009. 



 v 

• R. Young, A. Dawson, P. Harris, “Modelling of High Frequency Wave Propagation in 
Structured Materials,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, (accepted for publication), 2010. 

 
• A. Dawson, P. Harris, G. Gouws, “Anisotropic Microstructured Poly(Vinyl Alcohol) Tissue 

Mimicking Phantoms,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, Vol. 57, No. 7, pp. 1494-1496, 2010. 

 
• A. Dawson, P. Harris, “Freeze Casted Microstructured PVA Tissue Phantoms Using a 

Microstructured Seed Layer,” in Proc. IEEE International Ultrasonics Symposium, San 
Diego, USA, (to be presented), Oct, 2010. 



 vi 

Table of Contents 
 

Abstract.........................................................................................................................................ii 

Acknowledgements .................................................................................................................... iii 

List of Publications .....................................................................................................................iv 

Table of Figures...........................................................................................................................ix 

1.  Introduction.............................................................................................................................1 

2. Theoretical Background..........................................................................................................5 

2.1 Wave Types ...................................................................................................................5 
2.1.1 Longitudinal Waves ...............................................................................................6 
2.1.2 Shear Waves...........................................................................................................7 
2.1.3 Lamb Waves ..........................................................................................................8 
2.1.4 Rod Waves...........................................................................................................13 
2.1.5 Rayleigh & Interface Waves................................................................................16 

2.2 Acoustic Impedance.....................................................................................................16 
2.3 Transmission and Reflection in Homogeneous Media ................................................17 

2.3.1 Fluid-Solid Interface: Normal Incidence .............................................................17 
2.3.2 Fluid-Solid Interface: Oblique Incidence.............................................................19 
2.3.3 λ/4 Wavelength Matching Layers........................................................................24 

2.4 Wave Propagation in Anisotropic Media.....................................................................26 
2.4.1 Fibrous Reinforced Layers...................................................................................26 
2.4.2 Collinear Porous Solids........................................................................................28 
2.4.3 Fibrous Tissues ....................................................................................................31 

2.5 Attenuation...................................................................................................................32 
2.5.1 Scattering .............................................................................................................32 
2.5.2 Absorption............................................................................................................36 

3. Design and Setup of Experimental Systems ........................................................................39 

3.1 Experimental Configurations.......................................................................................39 
3.1.1 Transmission Measurement System ....................................................................39 
3.1.2 Pulse Echo Measurement System ........................................................................44 

3.2 High Frequency Ultrasonic Transducer Characteristics ..............................................46 
3.2.1 Piezoelectric Transducer Construction ................................................................46 
3.2.2 Immersion Transducers........................................................................................47 
3.2.3 Transducer Frequencies .......................................................................................48 
3.2.4 Transducer Impedance .........................................................................................50 
3.2.5 Transducer Beam Properties ................................................................................54 

3.3 Development of High Frequency Electronics..............................................................58 
3.3.1 Board Layout Considerations ..............................................................................59 
3.3.2 100 MHz Transmitter...........................................................................................59 
3.3.3 100 MHz Receiver ...............................................................................................61 



 vii  

3.3.4 1000 MHz Minicircuits 20W Power Amplifier ...................................................67 
3.3.5 500 MHz Receiver ...............................................................................................67 
3.3.6 500 MHz Transmit-Receive Switch.....................................................................69 

3.4 System Software ..........................................................................................................73 
3.4.1 The GUI ...............................................................................................................73 
3.4.2 Fast Fourier Transforms.......................................................................................74 
3.4.3 Cross Correlation .................................................................................................75 

3.5 3-axis Servo Motor Positioning System ......................................................................76 

4. Porous Anodic Alumina (PAA) Matching Layers – Fabrication and Structure .............77 

4.1 PAA Sample Preparation .............................................................................................78 
4.2 PAA Sample Structure.................................................................................................81 

5. Finite Element Modelling of Collinear Porous Solids ........................................................87 

5.1 Simulated Material Properties......................................................................................88 
5.2 Single Free Boundary Aluminium Plate......................................................................89 
5.3 Single Water Loaded Aluminium Plate .......................................................................94 
5.4 Water Filled Porous Aluminium..................................................................................98 
5.5 Normalisation and Preservation of Waveforms in Porous Aluminium Layers .........105 
5.6 Acoustic Impedance of Free Boundary Aluminium Plate .........................................109 
5.7 Rectangular and Triangular Architecture Models of PAA Samples..........................114 

5.7.1 Triangular and Rectangular Models...................................................................114 
5.7.2 Velocity..............................................................................................................118 
5.7.3 Reflectivity.........................................................................................................120 
5.7.4 Acoustic Impedance...........................................................................................121 

5.8 Significance of the Modelling Results - PAA Transducer Matching Layers ............123 

6. Experimental Characterisation of PAA Samples .............................................................125 

6.1 Velocity......................................................................................................................125 
6.1.1 Solid Aluminium................................................................................................126 
6.1.2 In-house Fabricated PAA Samples ....................................................................127 
6.1.3 Commercial PAA Sample..................................................................................133 

6.2 Acoustic Impedance...................................................................................................134 
6.3 Attenuation.................................................................................................................137 
6.4 Summary of Measured PAA Sample Properties........................................................139 

7. Anisotropic Poly(Vinyl-Alcohol) Tissue Mimicking Phantoms.......................................141 

7.1 The Freeze Casting Process .......................................................................................142 
7.1.1 PVA Slurry Preparation .....................................................................................143 
7.1.2 Unidirectional Freezing .....................................................................................143 
7.1.3 Sample Preparation ............................................................................................145 
7.1.4 Freeze Drying of Prepared Discs .......................................................................147 

7.2 PVA Structure............................................................................................................148 
7.3 Velocity Measurements .............................................................................................152 
7.4 Attenuation Measurements ........................................................................................154 



 viii  

8. Conclusion & Discussion .....................................................................................................157 

8.1 Finite Element Modelling of High Frequency Ultrasonic Wave Propagation in 
Microstructured Materials......................................................................................................157 
8.2 Experimental Characterisation of Porous Anodic Alumina Samples for Use As 
Acoustic Matching Layers .....................................................................................................160 
8.3 Microstructured Poly(Vinyl Alcohol) Tissue Mimicking Phantoms.........................161 

References.................................................................................................................................165 

Appendix - Full Circuit Schematics .......................................................................................173 

A1 - 100 MHz Transmitter Circuit Diagram .........................................................................173 
A2 - 100 MHz Receiver Circuit Diagram..............................................................................174 
A3 - 500 MHz Receiver Circuit Diagram..............................................................................175 
A4 - 500 MHz Transmit/Receive Switch Circuit Diagram ...................................................176 

 
 
 



 ix

Table of Figures 
 
 
Figure 2.1 - Grid diagram showing the deformation of a solid caused by a propagating 

longitudinal wave at four instances of time [18]. ..................................................................6 
Figure 2.2 - Grid diagram showing the deformations of a solid caused by a propagating shear 

wave at four instances of time [18]........................................................................................7 
Figure 2.3 - Generation of a Lamb wave in a plate caused by the interactions of multiple P 

(solid lines) and S (broken lines) waves [24].  The different angles of refraction are due to 
the different speeds of the P and S waves..............................................................................8 

Figure 2.4 - Lamb wave phase velocity dispersion curves for a free boundary aluminium plate 
for both symmetric modes (solid lines) and antisymmetric modes (broken lines) [19]. .....10 

Figure 2.5 - Lamb wave group velocity dispersion curves for a free boundary aluminium plate 
for both symmetric modes (solid lines) and antisymmetric modes (broken lines) [19]. .....12 

Figure 2.6 - Plate displacement shown by the circular arrows for S0 (top) and A0 (bottom) Lamb 
modes when fd = 0.03 [24]. .................................................................................................12 

Figure 2.7 - Longitudinal mode phase velocity dispersion curves for a free boundary aluminium 
rod [19].................................................................................................................................14 

Figure 2.8 - Longitudinal mode group velocity dispersion curves for a free boundary aluminium 
rod [19].................................................................................................................................15 

Figure 2.9 - Normally incident pressure wave reflected and transmitted at media Z1/Z2 interface.
..............................................................................................................................................18 

Figure 2.10 - Obliquely incident pressure wave reflected and refracted at a liquid-solid 
interface................................................................................................................................19 

Figure 2.11 - Variation in the magnitude of the pressure reflection coefficient with angle of 
incidence at a water-aluminium interface. ...........................................................................21 

Figure 2.12 – Percentage energy reflected and transmitted as shear or longitudinal waves at a 
water-aluminium interface. ..................................................................................................23 

Figure 2.13 - Phase velocity dispersion curves for a unidirectional fibre reinforced composite 
plate for propagation parallel to the direction of fibre alignment [19]. ...............................27 

Figure 2.14 – Phase velocity dispersion curves for a unidirectional fibre reinforced composite 
plate for propagation perpendicular to the direction of fibre alignment [19]. .....................27 

Figure 2.15 – Examples of the different types of fibre reinforced composites...........................28 
Figure 2.16 - Longitudinal cross section of a porous anodic alumina sample.  The pores extend 

from the top of the sample to the bottom with no irregularities.  The sample was physically 
snapped in half giving rise to the observed broken pores....................................................29 

Figure 2.17 – Myocardium tissue sample from a human heart that demonstrates a fibrous 
anisotropic microstructure. ..................................................................................................31 

Figure 2.18 - Polar diagrams showing scattering from a rigid sphere for ka values of (a) 5, (b) 
3, and (c) 1. 180° corresponds to reflections directed back at the source, and 0° 
corresponds to propagation directly away from the source [67]..........................................34 

Figure 2.19 – Total scattered power from a sphere of radius a versus ka number. ....................35 
Figure 2.20 – Acoustic absorption in fresh water versus frequency...........................................37 
Figure 3.1 - Transmission measurement experimental configuration.........................................40 
Figure 3.2 - Transmission measurement water bath setup..........................................................41 
Figure 3.3 - Time of flight measurements (a) without sample, and (b) with sample in place. ...41 
Figure 3.4 - Phase measurements to calculate sample velocity for known sample thickness d. 42 
Figure 3.5 - Amplitude measurements to calculate sample attenuation coefficient. ..................43 
Figure 3.6 - Pulse echo measurement experimental configuration. ............................................44 



 x

Figure 3.7 - Pulse echo measurements for unknown sample acoustic impedance. ....................45 
Figure 3.8 - Cross section of a contact piezoelectric transducer [76]. ........................................47 
Figure 3.9 - Typical frequency response for the V390 50 MHz transducers [85]. .....................48 
Figure 3.10 - Typical frequency response for the V3802 110 MHz transducers [85]. ...............49 
Figure 3.11 - Typical frequency response for the V3965 175 MHz transducers [85]. ...............49 
Figure 3.12 - Magnitude (a) and phase (b) characteristics of the two 50 MHz transducers. ......51 
Figure 3.13 - Magnitude (a) and phase (b) characteristics of the two 110 MHz transducers. ....52 
Figure 3.14 - Magnitude (a) and phase (b) characteristics of the two 175 MHz transducers. ....53 
Figure 3.15 - Beam diameter, focal length, and focal zone properties of a transducer [77].......55 
Figure 3.16 - Transducer beam diameter versus frequency for 50 MHz, 110 MHz, and  175 

MHz immersion transducers in water. .................................................................................56 
Figure 3.17 - Focal zone length with frequency for the 50 MHz, 110 MHz, and 175 MHz 

immersion transducers in water. ..........................................................................................58 
Figure 3.18 - Transmitter schematic. ..........................................................................................60 
Figure 3.19 - Transmitter gain versus frequency. .......................................................................60 
Figure 3.20 - 100 MHz receiver schematic.................................................................................62 
Figure 3.21 - Receiver gain versus frequency for five different gains from minimum gain of  17 

dB (lowest trace) to maximum gain of 65 dB (highest trace)..............................................65 
Figure 3.22 - Receiver output noise (top) and spectrum analyser noise (bottom) traces............65 
Figure 3.23 - A time gain compensated waveform shows an exponential rise, with the square 

wave SYNC signal resetting the integrator ramp to zero, and thus stopping the time gain 
compensation. ......................................................................................................................66 

Figure 3.24 - 500 MHz receiver schematic.................................................................................67 
Figure 3.25 - Receiver gain versus frequency.............................................................................68 
Figure 3.26 - Receiver circuit and spectrum analyser noise traces.............................................68 
Figure 3.27 - Simplified transmit-receive switch schematic.......................................................70 
Figure 3.28 - Transmit-receive switch circuit receiver gain with frequency. .............................72 
Figure 3.29 - Transmit-receive switch receiver off characteristic with frequency. ....................72 
Figure 3.30 - System GUI displaying data captured from CH1 and CH2 of the oscilloscope. ..74 
Figure 3.31 - Magnitudes of FFTs performed on CH1 and CH2 data. .......................................75 
Figure 3.32 - Cross Correlation of received CH1 and CH2 data. ...............................................76 
Figure 4.1 - PAA sample preparation setup................................................................................79 
Figure 4.2 - PAA interpore distance variations with anodising voltage for the sulphuric, oxalic, 

and phosphoric electrolytes..................................................................................................80 
Figure 4.3 - Horizontal cross section of a sulphuric acid prepared porous alumina sample (type 

1 sample) showing 30 nm sized pores with 60 nm spacing.................................................82 
Figure 4.4 - Longitudinal cross section of a sulphuric acid prepared porous alumina sample 

(type 1 sample) showing the highly collinear structure of these samples............................82 
Figure 4.5 - Horizontal cross section of an oxalic acid prepared porous alumina sample (type 2 

sample) showing 40 nm sized pores with 80 nm spacing....................................................84 
Figure 4.6 - Horizontal cross section of a phosphoric acid prepared porous alumina sample 

(type 3 sample) showing on average 400 nm-sized pores with 500 nm spacing.................84 
Figure 4.7 - Horizontal cross section of commercial porous alumina sample............................85 
Figure 4.8 - Longitudinal cross section of commercial porous alumina sample. .......................85 
Figure 5.1 - Finite element model of a single free boundary aluminium plate with boundary 

conditions shown (dimensions not to scale). .......................................................................89 
Figure 5.2 - Blackman pulse in time and frequency domains.....................................................90 
Figure 5.3 - Group velocity in a free boundary aluminium plate as a function of the frequency-

thickness product for end on excitation. ..............................................................................91 



 xi

Figure 5.4 - Pulse pressure in the free boundary aluminium plate at (a) the beginning of all 
plates, and at the end of (b) 1mm, (c) 5 mm, and (d) 9mm thick plates. .............................92 

Figure 5.5 - Power through a vertical line of plate nodes at the beginning (top left) of all plates, 
and upon reaching the end of a 1 mm (top right), 5 mm (bottom left), and 9 mm (bottom 
right) thick plates. ................................................................................................................93 

Figure 5.6 - Finite element model of a fluid loaded aluminium plate with boundary conditions 
shown (dimensions not to scale). .........................................................................................95 

Figure 5.7 - Water loaded aluminium plate snapshots 47 µs into the simulation for three 
different amplitude scales. ...................................................................................................96 

Figure 5.8 - Fast wave velocity in a water loaded aluminium plate with frequency-thickness 
product. ................................................................................................................................97 

Figure 5.9 - Slow wave velocity in a water loaded aluminium plate with frequency-thickness 
product. ................................................................................................................................98 

Figure 5.10 - 2D model of a water loaded porous aluminium layer connected to solid 
aluminium with boundary conditions as shown.  The source was excited on the bottom 
most pillar. ...........................................................................................................................99 

Figure 5.11 - Simulation of water loaded porous aluminium connected to solid aluminium  (a) 
35 ns, (b) 70 ns, and (c) 105 ns after the beginning of the simulation...............................100 

Figure 5.12 - Plane wave excitation of water loaded porous aluminium connected to solid 
aluminium (a) 39 ns, (b) 71 ns, and (c) 178 ns after excitation. ........................................102 

Figure 5.13 – Fast wave to slow wave energy ratio versus frequency for 2 µm aluminium pillar 
and pore widths. .................................................................................................................104 

Figure 5.14 - Fast wave to slow wave energy ratio versus porosity at 50 MHz and 150 MHz.
............................................................................................................................................105 

Figure 5.15 - 2D model of a water loaded porous aluminium layer connected to both water and 
solid aluminium with boundary conditions shown.  A single element was excited as shown.
............................................................................................................................................106 

Figure 5.16 - Simulation of spherical wave (a) 35 ns, (b) 70 ns, and (c) 90 ns after the 
beginning of the simulation. ..............................................................................................108 

Figure 5.17 - 2D model of a single aluminium plate connected to solid aluminium with 
boundary conditions shown. ..............................................................................................109 

Figure 5.18 - Energy integral and instantaneous power plots for a 100 kHz wave in an 
aluminium plate of 1 mm thickness.  Snapshots are recorded at (a) the beginning of the 
aluminium plate, (b) halfway along the aluminium plate, and (c) at the beginning of the 
widened aluminium solid...................................................................................................112 

Figure 5.19 - Percentage energy reflected from aluminium plate/solid interface with fd product.
............................................................................................................................................113 

Figure 5.20 - Aluminium plate acoustic impedance versus fd product.....................................113 
Figure 5.21 - Rectangular model horizontal cross section used to model the type 2 and type 3 

PAA sample architectures..................................................................................................115 
Figure 5.22 - Triangular model horizontal cross section used to model the type 1 PAA sample 

architecture.........................................................................................................................115 
Figure 5.23 - Symmetrically reduced rectangular model with symmetrical boundaries. .........117 
Figure 5.24 - Symmetrically reduced triangular model with symmetrical boundaries.............117 
Figure 5.25 - Rectangular and triangular model velocities versus porosity for 50 and 150 MHz 

waves..................................................................................................................................120 
Figure 5.26 - Rectangular and triangular model energy reflection coefficients versus porosity at 

50 and 150 MHz.................................................................................................................121 
Figure 5.27 - Rectangular model acoustic impedance versus porosity at 150 MHz.................122 



 xii

Figure 6.1 - Variations in group velocity with transducer angle of incidence at 50 MHz for solid 
high purity aluminium sample. ..........................................................................................127 

Figure 6.2 - Variations in sample group velocity with transducer angle of incidence at 50 MHz 
for the three in-house fabricated PAA samples. ................................................................128 

Figure 6.3 - Variations in sample group velocity with transducer angle of incidence at  100 
MHz for the three in-house fabricated PAA samples. .......................................................129 

Figure 6.4 - Variations in sample group velocity with transducer angle of incidence at  175 
MHz for the three in-house fabricated PAA samples. .......................................................129 

Figure 6.5 - Velocity versus angle of incidence at 50 MHz, 100 MHz, and 175 MHz for the  
type 1 samples....................................................................................................................130 

Figure 6.6 - Velocity versus angle of incidence at 50 MHz, 100 MHz, and 175 MHz for the  
type 2 samples....................................................................................................................131 

Figure 6.7 - Velocity versus angle of incidence at 50 MHz, 100 MHz, and 175 MHz for the  
type 3 samples....................................................................................................................131 

Figure 6.8 - Average sample velocity versus porosity at 50 MHz, 100 MHz, and 175 MHz. .132 
Figure 6.9 - Variations in group velocity with transducer angle of incidence at 50 MHz for a 

commercial PAA sample. ..................................................................................................134 
Figure 6.10 - Average acoustic impedance of PAA samples versus porosity. .........................136 
Figure 6.11 - Variations in PAA sample attenuation with frequency.......................................138 
Figure 7.1 - PVA sample vial lowering setup...........................................................................144 
Figure 7.2 - The freeze casting process showing the ice crystal formation within the slurry vial 

that is lowered into the liquid nitrogen. .............................................................................145 
Figure 7.3 - Axial and radial cuts made on frozen PVA samples.............................................146 
Figure 7.4 - Pressure/temperature phase transition diagram for pure water. ............................147 
Figure 7.5 - Horizontal cross section (section made perpendicular to the direction of freeze 

casting) of a 5 % concentration by weight PVA phantom lowered at 3 mm/min. ............149 
Figure 7.6 - Longitudinal cross section (section made parallel to the direction of freeze casting) 

of a 5 % concentration by weight PVA phantom lowered at 3 mm/min. ..........................150 
Figure 7.7 - Average pore size versus freezing rate for 5 % by weight PVA concentration. ...151 
Figure 7.8 - Phantom velocity variations with frequency for a 7 % concentration by weight 

PVA phantom measured parallel (circles) and perpendicular (squares) to the direction of 
freeze casting. ....................................................................................................................153 

Figure 7.9 - Attenuation coefficient versus frequency for 7 % concentration by weight PVA 
phantom (circles) measured along the direction of PVA alignment (freeze casting 
direction).  Also plotted are measurements made parallel to the fibre alignment on normal 
human myocardium tissue (filled squares) obtained from [127]. ......................................155 

 



 xiii  

 



 1 

Chapter 1  

Introduction 

Microstructure in materials is often only considered as a source of scattering for incident 

ultrasonic waves.  However, a fibrous or porous microstructure can have a profound influence 

on high frequency ultrasonic wave propagation, resulting in unexpected guided wave modes.  

These occurrences of guided waves will become more apparent in the future as transducer 

technology continues to improve and higher frequency devices are realised.   

 

Consideration of microstructure is important for both medical ultrasound and ultrasonic non-

destructive testing (NDT).  In medical ultrasound, tissues are usually treated as a homogeneous 

material, where only the bulk acoustic properties of the media are considered [1]-[3], [40], [64].  

However, when viewed at micron length scales tissues are found to comprise of microstructure.  

Tissues such as collagen fibres [4]-[7] possess lengths of 50-100 µm that are an order of 

magnitude greater than their respective diameters.  These fibres consist of sub-micron fibrils 

that possess diameters of hundreds of nanometers.  In healthy tissues these fibres are oriented 

along the same direction, displaying significant anisotropy in a layered like structure.  When 

these tissues develop defects, for example due to medical conditions [8]-[10], the orientation 

and alignment can become disrupted modifying the surrounding structures, with the generated 

acoustic signatures dependent upon the local tissue structure.   
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Tissue then should be seen as a multi-scale medium containing microstructure.  For example the 

dermis layer in the skin at current imaging frequencies of 5-20 MHz appears highly echogenic 

(uniformly reflective) [11], while at 100 MHz and higher frequencies is expected to be locally 

anisotropic, both a consequence of the collagen and its microstructure.  As the ability to 

fabricate higher frequency transducers continues to improve medical imaging equipment 

manufacturers attempt to provide improved resolution [12]-[14].  However it is believed there 

will become a point when little is achieved unless the underlying microstructures are 

considered.  The incident wavelengths will become comparable to the underlying tissue 

microstructure dimensions, influencing the wave velocity, scattering, and number of waves 

observed.   

 

Although fibrous tissues are highly anisotropic, they do contain irregularities in their 

microstructure.  Therefore a solid understanding of wave propagation in ideal anisotropic 

structures is essential before the high frequency characterisation of more complex fibrous 

tissues is undertaken. 

 

Performing measurements on real tissues also leads to complications involving difficulties with 

sample preparation, problems with consistency between samples during long term studies, and 

ethical issues regarding the use of real tissues.  Homogeneous tissue mimicking materials (or 

phantoms) currently used by researchers [113]-[116] reflect the basic acoustic properties of real 

tissues but fail to incorporate the anisotropic microstructure and dimensions needed to 

investigate the wave guiding properties discussed.  The need for more realistic tissue phantoms 

that replicate both the acoustic and microstructural properties of real tissues are therefore 

essential to understand and advance the use of higher frequencies in medical ultrasound. 

 

A second application area of high frequency ultrasound where a consideration of the material 

substructure can lead to significant advances is found in the non-destructive testing [15], [16] of 

highly regular microstructured and nanostructured solids.  Microstructure can occur 

unexpectedly in materials believed to be homogeneous.  For example, solid aluminium readily 

oxidises at its interface [17] leading to a highly anisotropic and regular aluminium oxide surface 

layer (also known as alumina).  This anodising property has been taken advantage of for many 

years leading to rapid advances in the fabrication of porous materials such as porous anodic 

alumina (or PAA) [87]-[90].  Due to the ideal regularity of the PAA microstructure, the 
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propagation of high frequency ultrasound can be significantly influenced by variations in the 

porous solid structure e.g. changes in dimensions, porosity, architecture etc.   

 

By understanding how wave propagation is influenced by variations in these structural 

properties the potential exists for porous materials to be precisely tailored to possess acoustic 

properties required for a specific application e.g. for transducer impedance matching layers 

[33]-[39].  Matching layers are an important component of medical ultrasound transducers, 

increasing the energy transfer from the transducer active element into the sample of interest.  As 

frequencies continue to increase above 100 MHz, these layers need to be as acoustically 

efficient as possible [103], since maximising energy transfer becomes critical due to the 

significant attenuation at such high frequencies.   

 

The consideration of material microstructure can thus lead to significant benefits in both 

ultrasonic transducer design and diagnostic medical ultrasound.  The ideal properties of the 

PAA samples mentioned above are not only potentially useful for transducer design, but also 

provide an excellent basis for the understanding of wave propagation in other highly anisotropic 

materials.  They possess nanometer sized dimensions of the order of collagen microfibrils that 

form the building block of the larger collagen fibres. Armed with this more simplified 

understanding from the PAA samples wave propagation in more challenging fibrous tissue 

microstructures can be investigated in future studies.  In order to make a contribution to both of 

these areas the following work was undertaken:  

 

• The design and construction of specialised instrumentation for the experimental 

measurement of high frequency ultrasonic waves interacting with sample materials 

(Chapter 3). This included transducers, custom low noise and wide bandwidth 

transmitter/receiver electronics, system software, and apparatus. 

• The fabrication of physical PAA samples prepared by anodising high purity aluminium 

(Chapter 4).  Three different sample types were fabricated possessing ideal regularity 

and collinearity with variable nanometer sized pores/pore spacing, porosities, and 

architectures in order to create a range of these properties, with the effects of these 

properties characterised experimentally and compared with modelling results. 

• Finite element modelling of high frequency ultrasonic wave propagation in highly 

collinear anisotropic materials (Chapter 5) with properties similar to the fabricated PAA 
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samples.  With the increasing power of modern personal computers and the availability 

of dedicated finite element modelling packages, the influences of structural variations in 

PAA samples could be investigated before the fabrication of the physical samples and 

experimental work commenced.  Modelling was performed on both 2D and 3D 

structures to examine the wave guiding phenomena in highly structured media, and 

observe the variations in velocity, reflectivity, and acoustic impedance with changes in 

the PAA sample structural properties.   

• Experimental characterisation of PAA samples using the designed high frequency 

ultrasound system (Chapter 6).  These measurements were performed to experimentally 

verify the wave guiding phenomena observed in the modelling, and reveal other non-

modelled physical properties such as attenuation coefficients. 

• Development of novel tissue phantoms using a unique freeze casting process to be used 

as more realistic tissue mimicking materials in the understanding of the waveguiding 

influence of anisotropic fibrous tissues on high frequency ultrasound (Chapter 7).  The 

process results in the fabrication of repeatable poly(vinyl alcohol) tissue phantoms 

possessing similar microstructural and acoustic properties as found in real fibrous 

tissues.  These samples were then characterised experimentally with velocity and 

attenuation measurements performed.   

 

As a result of the above work the two main original and significant contributions to the 

ultrasound community were:  

 

1.) The concept, modelling, and fabrication of PAA transducer matching materials that 

possess tailorable acoustic impedances in the range of 4-17 Rayl, allow the transmission 

of energy beyond P and S critical angles, display no measurable dispersion at least to 

200 MHz, and possess very low attenuation coefficients at very high frequencies e.g. as 

low as 3.5 dBmm-1 at 100 MHz. 

2.) The fabrication and characterisation of novel anisotropic PVA tissue phantoms that 

closely resemble and incorporate the structure, dimensions, and acoustic properties of 

real microstructured tissue.  These phantoms provide an excellent building block for the 

fabrication of more advanced tissue phantoms for higher frequency medical ultrasound 

research. 
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Chapter 2  

Theoretical Background 

This chapter covers the fundamental principles and background of ultrasonic wave propagation.   

It begins by looking at the fundamental ultrasonic wave types encountered in section 2.1, 

followed by the important concept of acoustic impedance in section 2.2.  Transmission and 

reflection phenomena in homogeneous media is presented in section 2.3, recent contributions to 

the area of ultrasonic wave propagation in anisotropic media are discussed in section 2.4, and 

finally attenuation phenomena are presented in section 2.5. 

2.1 Wave Types 

In this section fundamental wave types of relevance to this work are discussed.  These can be 

separated into two main categories; bulk waves and guided waves.  Bulk longitudinal and shear 

waves propagate in infinite homogeneous media where they are unconstrained by material 

dimensions.  Guided waves propagate when a boundary or a structure of finite dimension 

relative to the propagating wave wavelength is introduced, forming waves such as interface or 

plate waves depending on the applied boundary conditions.  Guided waves are the superposition 

of multiple reflections and interactions of longitudinal and shear waves caused by a structural 

boundary condition. 
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2.1.1 Longitudinal Waves 

Longitudinal waves, also known as compressional or P waves, are bulk waves that travel at the 

velocity determined by the elastic properties of a medium.  In homogeneous media the 

polarization of the compressional wave is always longitudinal, that is the particle motion of the 

solid consists of vibrations parallel to the direction of energy transfer of the wave.  Longitudinal 

waves propagate in both liquids and solids.  Figure 2.1 shows the displacements caused by a 

longitudinal waveform propagating in a homogeneous solid represented by a grid of square 

elements at four different instants in time.   

 

 

Figure 2.1  - Grid diagram showing the deformation of a solid caused by a propagating 
longitudinal wave at four instances of time [18]. 

The propagating wave causes a compression of the grid (where the grid lines are compact) 

followed by a rarefaction (grid lines are expanded).  As can be observed the grid or particle 

motion of the solid is along the direction of propagation.   
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2.1.2 Shear Waves 

Shear waves, also known as transverse or S waves, are the second type of bulk wave where the 

polarization or particle motion is perpendicular to the direction of energy transfer.  Shear waves 

only propagate in solids, as liquids cannot support shear.  S waves travel with a velocity 

typically around half the P wave velocity in the same medium.  Two types of polarisation are 

possible; shear vertical (SV waves), or shear horizontal (SH waves).   

 

 

Figure 2.2  - Grid diagram showing the deformations of a solid caused by a propagating shear 
wave at four instances of time [18]. 

SV waves are more common as they can be mode converted at interfaces from other bulk 

waves, while SH waves are only excited using an SH source.  A thorough treatise on SH waves 

can be found in the literature [19] [20].  Figure 2.2 shows the displacements caused by a shear 

SV wave propagating in a solid, again represented by a grid of square elements at four instants 

in time.  As the shear wave propagates through the solid the grid element displacements are 

vertical, yet the energy propagates through the solid horizontally.   
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2.1.3 Lamb Waves 

A Lamb wave, first explored by Horace Lamb [21], is a guided wave that propagates in a free 

boundary plate of finite dimension when the wavelength of the incident wave is comparable to 

or greater than the plate thickness.  Rigorous mathematical treatments of Lamb waves are given 

in [19], [22], and [23].  These waves are of interest when considering highly anisotropic 

microstructured media as the material microstructure can often be approximated by the 

interconnection of multiple plates.  Lamb waves, as shown in Figure 2.3, are the result of the 

interactions between multiple P waves (solid lines) and S waves (broken lines) propagating in 

the plate, which have been generated by numerous reflections that occur at the plate interfaces.   

 

 

Figure 2.3  - Generation of a Lamb wave in a plate caused by the interactions of multiple P 
(solid lines) and S (broken lines) waves [24].  The different angles of refraction are due to the 
different speeds of the individual P and S waves. 

A single P wave (represented by the single ray on the left) propagates at an angle through the 

plate.  This P wave then reflects off the plate interface back into the plate and also generates a 

shear wave in the process.  Now both the P and S waves generate additional P and S waves as 

they reflect off the other plate boundary.  This process continues along the length of the plate 

causing the interaction of multiple P and S waves, with the superposition result of these called a 

Lamb wave.   
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Lamb waves are highly dispersive.  In other words their phase and group velocities vary with 

frequency.  The resulting Lamb wave properties actually depend upon the frequency of 

excitation, the material properties, the thickness of the plate, and the angle of the incident wave 

with respect to the plate surface.   

 

Lamb wave theory shows that Lamb waves can propagate as either symmetric or anti-

symmetric modes.  These modes refer to the symmetry of the displacements about the plate 

axis.  Considering only real solutions, the equations determining the solutions for Lamb waves 

in a free plate are given by equations (2.1) and (2.2) [19].  
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and vL and vT are the longitudinal and shear wave velocities respectively, k is the wavenumber, 

ω is the angular frequency, and h is half of the plate thickness.  These equations can be used to 

plot Lamb wave dispersion curves that show the variations in phase velocity, vp, with the 

product of frequency f and plate thickness d.  Numerical techniques such as the bisection 

method [25] can be used to solve the equations.  
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Figure 2.4  - Lamb wave phase velocity dispersion curves for a free boundary aluminium plate 
for both symmetric modes (solid lines) and antisymmetric modes (broken lines) [19]. 

The dispersion curves for an aluminium plate are plotted in Figure 2.4, showing the variations 

in symmetric (S) and antisymmetric (A) velocity curves from the fundamental to the seventh 

higher order modes with variations in fd.  Aluminium is a suitable example material since it 

possesses bulk acoustic properties similar to that of amorphous alumina, the material used in 

later chapters that possesses a highly collinear structure (see Chapters 4, 5, and 6).  It can be 

seen that the fundamental modes behave differently to the higher order modes with the higher 

order mode phase velocities asymptotically approaching infinity at certain fd products.  The S0 

and A0 modes on the other hand exist all the way down to zero frequency.  It can also be seen 

the antisymmetric mode phase velocity tends to zero whilst the symmetric mode velocity 

approaches a velocity between the P and S wave speeds.  In the limit as fd approaches zero, the 

S0 mode velocity is given by (2.5) [24]  
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where vS is the shear wave velocity, vP is the longitudinal wave velocity, and vS0 the phase 

velocity of the Lamb wave.  It should also be noted that as fd increases towards infinity, the 

fundamental symmetric and antisymmetric curves tend towards a common phase velocity vr – 

known as the Rayleigh velocity.  In this limit, the finite dimension of the plate no longer exists 

and an infinite media is present resulting in a Rayleigh wave propagating along the surface (see 

section 2.1.5).  The higher order modes at infinite fd converge to either the P or S bulk wave 

velocities of the plate media.      

 

For a pulse (consisting of many frequencies) propagating in a plate, the individual frequencies 

travel at their individual phase velocities.  However, the superposition of these waves, in other 

words the pulse envelope, travels at the group velocity vg.  The group velocity vg expressed in 

terms of the phase velocity is given by (2.6). 
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Using this result the group velocity dispersion curves can be plotted using numerical 

differentiation.  Figure 2.5 shows the resulting group velocity curves for a free boundary 

aluminium plate. 

 

When the derivative of vp with respect to fd becomes zero, the phase velocity is equal to the 

group velocity.  This can be observed by comparing Figure 2.4 with Figure 2.5.  For example 

the S0 mode phase velocity is constant with a derivative of zero as frequency approaches zero, 

hence the group velocity equals the phase velocity.  As the derivative approaches infinity the 

group velocity tends to zero.  This is observed at the cut-off frequencies of the higher order 

modes where with decreasing frequency the phase velocities tend to infinity and the group 

velocities tent to zero.  Comparison of the fundamental symmetric and antisymmetric mode 

plate displacements reveals significantly different behaviour as shown in Figure 2.6 for an fd 

product of 0.03. 
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Figure 2.5  - Lamb wave group velocity dispersion curves for a free boundary aluminium plate 
for both symmetric modes (solid lines) and antisymmetric modes (broken lines) [19]. 

 

Figure 2.6  - Plate displacement shown by the circular arrows for S0 (top) and A0 (bottom) 
Lamb modes when fd = 0.03 [24]. 
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The top picture in Figure 2.6 shows the displacements caused by an S0 mode.  As can be 

observed this mode is dominated by longitudinal displacements with very little shear 

component.  Hence the velocity of this mode is close to the P wave speed of the plate material.  

The antisymmetric mode shown in the lower half of Figure 2.6 predominantly consists of large 

transverse displacements with only small longitudinal displacements, the result of which is a 

slow propagating wave. 

 

If the plate is fluid loaded, for example by water on both sides, changes in the dispersion 

characteristics are observed.  Osborne and Hart [26] cover the theory of this case in their classic 

paper and then went on to confirm this experimentally in [27].  They found the phase velocity 

curves of the fundamental modes are little affected by the presence of the water loading, and do 

not change from the free boundary aluminium plate phase velocities.  The effect though for the 

symmetric mode is the introduction of a small imaginary component to the phase velocity.  This 

imaginary component causes attenuation of the mode due to the radiation of energy into the 

water, known as leaky Lamb waves.  This attenuation is very low though since the S0 mode 

contains displacements mainly parallel to the plate surface.  The antisymmetric mode on the 

other hand, containing large transverse components, results in significant energy losses into the 

water.  In addition, the presence of the water introduces two further modes not observed in the 

free boundary aluminium plate, one symmetric and one antisymmetric.  The phase velocities of 

these two are almost identical to that of the water except for at low frequencies where the 

antisymmetric mode approaches zero, see [26] for further detail.  For the situation involving 

different fluid loading on either side of a plate see [28]. 

2.1.4 Rod Waves 

Waves in rods or bars are another form of guided wave where the propagating wave is 

constrained on all sides by finite dimensions relative to or less than the incident wavelength.  

Wave propagation in rods and bars and the calculation of the phase velocity dispersion curves is 

extensively covered in many references [19], [29], [30].  Not only are longitudinal and flexural 

modes excited in a bar, but also torsional modes.  The following provides a description of 

longitudinal modes in a rod of radius a.  The expression used to find the longitudinal mode 

phase velocity roots is given by (2.7), known as the Pochhammer frequency equation [19] 
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where α  and β  are given by 
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and 0J  and 1J  order zero and order one Bessel functions.  The longitudinal phase and group 

velocity curves for an aluminium rod of diameter d = 2a are shown in Figure 2.7 and Figure 2.8. 

 

 

Figure 2.7  - Longitudinal mode phase velocity dispersion curves for a free boundary aluminium 
rod [19]. 
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Figure 2.8  - Longitudinal mode group velocity dispersion curves for a free boundary aluminium 
rod [19]. 

The rod dispersion curves are very similar to those observed for the symmetric Lamb waves.  In 

the limit as the fd product approaches zero the wavelength becomes large relative to the rod 

diameter, and the velocity tends to a value known as the traditional bar wave velocity given by 

(2.10) 

 

ρ
E

v =0       (2.10) 

 

where E is the Young’s Modulus of the rod material, ρ is the density of the material, and v0 is 

the fundamental bar velocity.  This bar velocity applies for rods of any cross sectional area 

provided the long wavelength condition is satisfied.  As fd approaches infinity the fundamental 

mode approaches the Rayleigh velocity, whilst the higher order modes approach the P and S 

wave velocities of the bar material.  
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2.1.5 Rayleigh & Interface Waves 

Rayleigh waves, first proposed by Lord Rayleigh in 1885 [31], are waves that propagate along 

the free surface of a solid, confined to within a wavelength or two from the surface.  Due to 

their early discovery there are many notable references discussing Rayleigh wave propagation 

[23], [32].  The shear and longitudinal components of Rayleigh waves do not propagate 

independently, but they are coupled together and travel at a common velocity like Lamb waves.  

However the main difference is Rayleigh waves exist on the surfaces of free boundary materials 

of infinite thickness relative to a wavelength, and therefore are unlikely to be found in this 

work.  Where Rayleigh waves propagate on the free surface of a material, waves can also 

propagate along the interface of two different media.  These waves are known as interface 

waves. 

2.2 Acoustic Impedance 

The specific acoustic impedance, Z, of a medium is defined as the ratio of the acoustic pressure 

to the corresponding particle speed in that medium [33] 

 

v

p
Z =       (2.11) 

 
 
where p is the acoustic pressure and v is the particle speed.  The definition of acoustic 

impedance is analogous to the definition of electrical impedance given by Ohm’s law for an 

electrical system.  The acoustic pressure is analogous to the applied voltage and the particle 

velocity analogous to the current flow.  For longitudinal plane waves the acoustic impedance in 

a medium is defined as  

 

LvZ ρ=0      (2.12) 

 

where Z0 is known as the characteristic impedance of the medium, ρ is the density of the 

medium, and vL is the longitudinal velocity.  This impedance is most commonly used for 

characterising material properties (provided plane wave incidence occurs) and is often referred 

to as simply Z.  The characteristic impedance of a medium for acoustic wave propagation is 
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analogous to the characteristic impedance of an electrical transmission line.  As in an electrical 

circuit, maximum transmission of acoustic energy from one medium to another is achieved 

when the characteristic impedances are matched.  It also follows that at times of mismatch, a 

portion of the incident acoustic energy will be transmitted into the second medium, and a 

portion will be reflected according to the degree of mismatch between media.  This is discussed 

in the following section.  

2.3 Transmission and Reflection in Homogeneous Medi a 

When an ultrasonic wave encounters an interface between two homogeneous media (either 

media can be a fluid or solid), reflection, refraction, transmission, and mode conversion 

(conversion of one form of wave energy to another) can occur.  The degree to with each of these 

phenomena occurs depends upon the types of the media, the acoustic impedances of the media, 

and the angle of incidence of the incident wave.  Transmission and reflection phenomena that 

occur at a homogenous fluid-solid interface will now be described. 

2.3.1 Fluid-Solid Interface: Normal Incidence 

Consider a wavefront propagating through a homogeneous liquid with characteristic impedance 

Z1, normally incident upon a homogeneous solid with characteristic impedance Z2, as shown in 

Figure 2.9.  At normal incidence, no mode conversion can occur.  Due to the difference in 

characteristic impedance between the two media, the normally incident compressional wave, pi, 

produces a partially reflected compressional wave pr and partially transmitted compressional 

wave pt at the interface.  The pressure reflection coefficient, Rp, is defined as the fraction of 

pressure of the incident waveform that is reflected back towards the source.  This is written in 

terms of the characteristic impedances as 
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The pressure transmission coefficient Tp is then given by  

 

pP RT −= 1      (2.14) 
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Figure 2.9  - Normally incident pressure wave reflected and transmitted at media Z1/Z2 
interface. 

For Z2 >> Z1, Rp = 1 and Tp = 0.  This indicates total reflection at the interface with no energy 

propagating into the second medium.  In the case of Z2 << Z1 we have Rp = -1 indicating a phase 

change of π occurs for all frequencies.  For Z1 = Z2, we have Rp = 0 and Tp = 1, which implies 

there is no impedance mismatch, hence maximum transmission of energy occurs when the 

impedances of the media are matched.  The acoustic intensity is the average flux of acoustic 

energy per unit area per unit time and is defined in terms of the pressure and the acoustic 

impedance of the medium as   
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Expressions for the intensity reflection coefficient 
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These equations obey the law of conservation of energy and can be verified to satisfy the 

requirement 

 

tri III +=      (2.18) 

 

2.3.2 Fluid-Solid Interface: Oblique Incidence 

In the case of oblique incidence at a fluid-solid interface, a shear wave component can be 

introduced due to mode conversion.  This is shown in Figure 2.10 where for an angle of 

incidence of θi, there exists a reflected wave with angle θr, and two transmitted waves with 

refraction angles θL and θS corresponding to the refracted longitudinal and shear waves 

respectively.   

 

 

Figure 2.10  - Obliquely incident pressure wave reflected and refracted at a liquid-solid 
interface. 
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Refraction of these waves obey Snell’s law which is defined as  
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where v1 is the velocity in the liquid, and vL and vS are the longitudinal and shear wave 

velocities of the solid respectively.   

 

As in optics, for mechanical waves there exists angles of incidence where the refracted 

longitudinal and shear waves become critical, known as the first and second critical angles 

respectively.  Beyond these angles no energy propagates into the solid.  Instead propagation 

occurs along the interface in the form of an interface wave as defined in section 2.1.5.  In the 

case of normal incidence, there was one reflection coefficient and one transmission coefficient.  

In the oblique case there is still one reflection coefficient but there are two transmission 

coefficients; one for the longitudinal wave and one for the shear wave.  The pressure reflection 

coefficient for a given angle of incidence θi is given by equation (2.20) [24]  
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and the individual pressure transmission coefficients TL and TS for the transmitted longitudinal 

and shear waves respectively are given by [24] 
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where Z1, ZL, and ZS are given by 
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These equations show similarities to those for normal incidence except they are now 

complicated by the involvement of individual longitudinal and shear impedances.  By defining 

an effective impedance Zeff  [24] 
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the pressure reflection coefficient expression for oblique incidence can then be simplified to 
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which is now of the same form as the normal incidence reflection coefficient given by (2.13).  
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Figure 2.11  - Variation in the magnitude of the pressure reflection coefficient with angle of 
incidence at a water-aluminium interface. 
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Using (2.20), Figure 2.11 plots the variation in the magnitude of the pressure reflection 

coefficient with angle of incidence for a water-aluminium interface.  The properties used for 

water are a density of 1000 kgm-3, a longitudinal velocity of 1480 ms-1, and zero shear wave 

velocity.  For aluminium a density of 3000 kgm-3 is used, a longitudinal velocity of 6300 ms-1, 

and a shear velocity of 3100 ms-1.   

 

At normal incidence the reflection coefficient is solely due to the acoustic impedance mismatch 

between the fluid and solid, resulting in a pressure reflection coefficient of 0.85 with only a 

longitudinal wave transmitted.  As θi increases, both longitudinal and shear waves are excited in 

the solid.  The reflection coefficient stays relatively flat until the first critical angle of 14° where 

the reflection coefficient rises sharply to one.  At this angle the longitudinal wave becomes 

critical, propagating along the interface with no P wave energy propagating into the solid.  The 

shear wave amplitude at this angle also goes to zero so in total no energy propagates into the 

aluminium.  Beyond the first critical angle only the shear wave continues to propagate.  When 

the second critical angle is reached at 29°, the shear wave becomes critical, also travelling along 

the interface of the solid with the critical P wave; past the second critical angle no energy 

propagates into the solid.  Instead with both longitudinal and shear waves now critical, an 

interface wave propagates along the water/aluminium interface due to the interaction between 

the longitudinal and shear wave components.     

 

The intensity reflection and longitudinal and shear transmission coefficients can be used to 

prove conservation of energy occurs.  For a liquid-solid interface these are   
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where 
i

r

I

I
 is the energy reflection coefficient, 

i

L

I

I
 the longitudinal wave transmission 

coefficient, and 
i

S

I

I
 the shear wave transmission coefficient.  The percentage of energy 

reflected, transmitted as a longitudinal wave, and transmitted as a shear wave for a water-

aluminium interface is plotted in Figure 2.12.   

 

For non-normal angles of incidence, before the first critical angle, the longitudinal wave 

possesses more energy than the shear wave, but this difference becomes less as the angle of 

incidence approaches the first critical angle.  Between the first and second critical angles, only 

the shear wave propagates with more energy than the longitudinal wave possessed.  The energy 

reflected is also reduced in this region.  For angles beyond the second critical angle no energy 

propagates into the solid; conservation of energy is preserved for all angles of incidence.   

 

What Figure 2.11 and Figure 2.12 do not distinguish is for angles of incidence greater than 

either of the critical angles, what fraction of the reflected energy is travelling along the interface 

of the solid and what fraction is reflected into the fluid. 
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Figure 2.12  – Percentage energy reflected and transmitted as shear or longitudinal waves at 
a water-aluminium interface. 
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2.3.3 λλλλ/4 Wavelength Matching Layers 

As described previously, differences in acoustic impedance between two media generates 

reflected waves from the media interface, reducing the energy transmitted into the second 

medium.  The larger the impedance mismatch the greater the amount of energy reflected from 

the interface.  This is a significant problem in medical ultrasound due to the large acoustic 

mismatch between the piezoceramic (piezoelectric material of a transducer), ~30 MRayls, and 

the very low impedance of the biological tissues to be examined, ~1.5 MRayls.   

 

To reduce the impedance mismatch between the two media, a common method is to perform 

impedance matching to increase the energy coupled from the first media into the second.  

Impedance matching is the insertion of an intermediate layer that is placed in between the first 

and second media [33].  The acoustic impedance of the matching layer for maximum energy 

transfer between the two media is given by 

 

21ZZZmatch =      (2.29) 

 

where Zmatch is the acoustic impedance of the introduced matching layer, Z1 is the acoustic 

impedance of the first media, and Z2 is the acoustic impedance of the second media.  The 

impedance of the matching layer is thus the geometric mean of the first and second layer 

impedances.  However, the process is selective in that total transmission of energy only occurs 

at a single frequency.  This is only achieved if the matching layer thickness d is made to a 

quarter of the wavelength in the layer.  

 

4

λ=d       (2.30) 

 

Using this thickness ensures waves that were reflected within the matching layer are in phase 

when they exit the layer.  Almost maximum energy transmission will occur for a narrow band 

of frequencies around this single frequency, significantly improving the energy transmission.  

This method is similar to the quarter wavelength sections used to match an antenna to an 

electrical transmission line.   
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Transducers with single matching layers have been shown in [34] to possess fractional 

bandwidths (bandwidths specified as a fraction of the central transducer frequency) of between 

40-50 %.  This can be improved upon as shown in [35]-[37] using two matching layers, 

improving the fractional bandwidth to around 70 %.  In [38], [39] transducers with many 

matching layers are considered with further bandwidth improvement.  From these works, for 

medical transducers, due to the large impedance mismatch between tissues and the transducer 

piezoceramic, matching impedances in the range of 3-14 MRayl are often required, with  

7-12 MRayl the most common requirement.  Unfortunately very few single-phase solids exist 

with these useful impedances.  Table 2.1 shows the acoustic properties of some common metals 

[24], plastics [24], biological tissues [40], and piezoceramics [24]. 

Table 2.1  - Acoustic properties of common metals, plastics, biological tissues, and 
piezoceramics. 

Material Density  

(kgm-3) 

Longitudinal Velocity 

(ms-1) 

Shear Velocity 

(ms-1) 

Acoustic Impedance 

(MRayl) 

Metals     

Aluminium 2700 6300 3100 17.0 

Lead 11200 2200 700 24.6 

Iron 7690 5900 3200 46.4 

Plastics     

PVC 3270 2380 1380 3.27 

Polystyrene 1050 2400 1150 2.52 

Polyethylene 900 1950 540 1.76 

Tissues     

Heart 1060 1554  1.647 

Muscle 1041 1580  1.645 

Liver 1050 1578  1.657 

Piezoceramics     

PZT-5A 7750 4350  33.7 

PZT-5H 7500 4560  34.3 
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2.4 Wave Propagation in Anisotropic Media 

The previous section described the fundamental transmission and reflection phenomena for 

plane wave propagation in bulk homogeneous and isotropic media.  For waves propagating in 

anisotropic media the properties of the waves are directionally dependent, with the possibility of 

multiple modes propagating.  As a result the solutions for anisotropic media are more 

complicated and the same theory may not apply.  Ultrasonic waves propagating in anisotropic 

media have been studied for decades in the broad areas of geophysics, non-destructive testing, 

and medical ultrasound, with materials varying from tissues to highly structured fibre reinforced 

composites.  This section provides an indication of the influence that anisotropic microstructure 

has on ultrasound, and a summary of relevant previous studies is presented.  Emphasis is placed 

upon those involving high frequency ultrasonic waves and collinear solids and fibrous tissues. 

2.4.1 Fibrous Reinforced Layers 

Unlike most homogeneous and isotropic media where bulk waves propagate with the same 

velocity and displacement properties independent of frequency (can have homogeneous 

dispersive media such as sea water), the structure and dimensions of microstructured media 

determine the properties of the propagating waves leading to dispersive solutions.  An example 

from [19] demonstrates this by varying the fibre orientation in an arbitrary ideal unidirectional 

fibre reinforced composite plate and examining the variations in velocity that occur.  The 

regularly spaced fibres run through the entire plate with the diameter of the fibres the same as 

the plate thickness.  The influence of the angle of incidence relative to the fibre orientation on 

velocity is investigated by plotting the phase velocity dispersion curves for parallel and 

perpendicular incidence in Figure 2.13 and Figure 2.14 respectively.  The derivation of these 

curves can be found in [19].  As can be observed the fibre direction greatly influences the 

velocity with much larger values for propagation parallel to the fibre orientation.   

 

In ultrasonic non-destructive testing considerable work has been performed on studying wave 

propagation in layered media, with the wave propagation in layered fibre reinforced composite 

plates covered extensively in the literature [41]-[46].  Figure 2.15 shows the different types of 

anisotropic architecture these composites can display.  Reference [44] provides an excellent 

review of the major techniques and methods used for analysing wave propagation in these 

different types of composites.   
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Figure 2.13  - Phase velocity dispersion curves for a unidirectional fibre reinforced composite 
plate for propagation parallel to the direction of fibre alignment [19]. 

 

 

Figure 2.14 – Phase velocity dispersion curves for a unidirectional fibre reinforced composite 
plate for propagation perpendicular to the direction of fibre alignment [19]. 
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Figure 2.15  – Examples of the different types of fibre reinforced composites. 

This work was extended in [45] where an alternative method was developed to analyse a radial 

stacked three-layered fibre reinforced composite sample, with all three layers containing fibres 

parallel to the direction of orientation.  The middle layer fibre orientation was then varied to 

analyse the influence on the velocities and modes observed.  The analysis of Lamb wave 

propagation in axially multi-layered inhomogeneous free boundary waveguides was then 

analysed in [46]. 

2.4.2 Collinear Porous Solids 

Highly regular collinear porous solids are of interest in this work as they represent an ideal 

structure to begin this study.  An understanding of the wave propagation in these samples 

facilitates understanding of the propagation in less ideal structures.  Several studies using high 

frequency ultrasound have been undertaken to characterise highly structured ceramics.    

 

The characterisation of advanced porous alumina, sialon, and zirconia ceramics using  

75-100 MHz ultrasonic waves was presented in [47].  By measuring the wave delay time and 

pulse widths after propagation through the ceramic, sample porosities, pore shapes, and pore 

sizes were statistically determined.  Although highly anisotropic these samples were not regular 

in structure, demonstrating poor collinearity and random pore spacing.   
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Figure 2.16  - Longitudinal cross section of a porous anodic alumina sample.  The pores extend 
from the top of the sample to the bottom with no irregularities.  The sample was physically 
snapped in half giving rise to the observed broken pores.    

Since 1995 alumina ceramics have attracted considerable attention in numerous fields due to the 

periodic pore arrangements and high collinearities attainable by anodising high purity 

aluminium.  Porous anodic alumina (PAA) samples are highly regular collinear porous 

ceramics, containing nanometer-sized dimensions.  Figure 2.16 shows a longitudinal cross 

section of an example PAA sample.  Here sample pores can be seen to extend from the top of 

the sample through to the bottom with no irregularities in between; the regularity is better 

observed in the inset image.  The sample in this case was physically snapped in half resulting in 

the observed broken pores.  This structure makes them an ideal template for preparing advanced 

nanostructures for a wide range of materials [48].  They have been used as templates to produce 

photonic crystals [49], micropolarizers [50], polymeric nanostructures [51], nanometals [52], 

and carbon nanotubes [53].  They are also commonly used in the aerospace industry as adhesion 

layers as reported in [54], and for filtration [55] and gas separation [56].   

 

Significant characterisation of the bulk mechanical properties of both amorphous and crystalline 

PAA samples has been performed using high frequency ultrasound.  In [57] quantitative 

acoustic microscopy was used to measure the surface wave velocities on anodised aluminium 
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substrates to be used as adhesion layers, using ultrasonic wave frequencies up to 1 GHz.  Here it 

was found the surface wave velocity showed significant dependence on the porosity of the 

alumina film.  These velocities were found to be highly dispersive, allowing small changes in 

the material surface properties to be detected, providing an excellent method for the non-

destructive testing of these layers.   

 

Acoustic microscopy, using surface wave frequencies up to 225 MHz, was used in [58] to 

determine the density and elastic constants of anodic alumina films of 1-22 µm thickness.  The 

elastic constants were determined by measuring the surface wave dispersion curves in the film, 

and the dependence of the attenuation coefficients on the PAA film thickness used to calculate 

the density.  The influence of porosity on the Young’s modulus, Poisson’s ratio and velocities in 

non-anodic heat-treated alumina ceramics was investigated in [59].  Here sintering was used to 

induce a level of irregular, non-collinear porosity into the alumina.  The longitudinal velocity, 

shear velocity, and Young’s modulus were found to vary significantly with the sample porosity.  

The mechanical properties of anodic alumina samples were also measured in [60] and [61] 

using alternative nanoindentation methods. 

 

In the literature distinction has been made between amorphous and crystalline alumina.  It is 

revealed the bulk crystalline alumina acoustic properties (e.g. Young’s modulus, shear modulus 

etc.) are significantly greater (>3 times) than amorphous alumina structures.  By annealing the 

amorphous samples at high temperatures (>800 °C), the alumina structure changes from an 

amorphous to a crystalline structure, significantly increasing the mechanical strength.  The work 

reported in [62] provides an excellent summary of this by analysing the variation in the elastic 

behaviour of partially sintered alumina bodies that have been subjected to the initial stages of 

sintering.  Reference [63] performed structural characterisation of heat-treated porous anodic 

alumina at various temperatures to transform the anodic alumina from the amorphous phase to 

the final crystalline phase, also known as corundum.  At the various temperatures the increase in 

sample crystallinity can be observed to develop, modifying the acoustic properties of the 

alumina at each stage. 

 

Whilst very high frequency acoustic microscopy has been used to characterise thin film PAA 

using surface wave propagation methods, studies of the high frequency bulk acoustic 

transmission properties (e.g. velocity, acoustic impedance, and attenuation) in highly collinear 
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PAA with variations in the structural properties are not found in the literature.  The variation in 

these acoustic properties of anodic alumina with changes in the microstructure is of interest to 

determine the suitability of these samples for applications such as acoustic impedance matching.  

The nanometer-sized dimensions of these samples significantly influence high frequency 

ultrasonic (> 50 MHz) propagation, leading to guided wave modes.  This work aims to fill this 

gap by analysing the ultrasonic transmission properties of PAA structures using high frequency 

ultrasound. 

2.4.3 Fibrous Tissues 

In medical ultrasound anisotropic tissues are frequently encountered.  Various human tissues 

such as muscle and skin are known to consist of significantly fibrous microstructures.  This can 

be observed in Figure 2.17 that shows the highly fibrous and anisotropic nature of a human 

myocardium (heart tissue) sample, displaying a preferred orientation along the layer.   

 

 

Figure 2.17  – Myocardium tissue sample from a human heart that demonstrates a fibrous 
anisotropic microstructure [125]. 

However as described in chapter 1, all of these fibrous tissues are treated as homogeneous in 

current diagnostic ultrasound imaging systems.  In numerous articles found in the literature such 

as [40] and [64], the direction of tissue fibre orientation has been considered, with 
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characterisation performed both parallel and perpendicular to the direction of fibre alignment.  

Characterisation involved measurements of both velocity and attenuation, which were found to 

differ depending on the fibre orientation relative to the incident illumination angle.  Whilst the 

anisotropy of the tissues were revealed, these studies did not consider the influence of 

underlying fibrous microstructures, and their potential waveguiding affect on high frequency 

ultrasound propagation. 

 

In [65] skin collagen microstructure was considered by analysing the ultrasonic backscatter 

from skin lesions at 20 MHz.  Using this technique localised microstructural variations were 

determined by relating the variations in the measured backscatter coefficients to the differences 

in the distribution of collagen fibres.  However, the collagen fibres were treated as scatterers in 

that work.  Reference [66] characterised skin lesions using a 33 MHz system to identify 

relationships between dermatitis and the thicknesses of the various skin layers e.g. dermis and 

epidermis, found in skin.  This was performed using an echo-based system where the 

echogenicity of the skin was used to determine these relationships; again the underlying 

waveguiding properties of the fibrous tissues were not considered.  With imaging systems 

continuing to increase in frequency, the waveguiding influence of fibrous tissues has an 

increasing role, and as such additional information is likely to be revealed otherwise 

unattainable using current methods. 

2.5 Attenuation 

Attenuation is the decrease in signal amplitude of an ultrasonic wave as a result of passage 

through some medium.  This occurs through two different mechanisms - scattering and 

absorption.  The total attenuation is equal to the sum of the individual scattering and absorption 

contributions. 

2.5.1 Scattering 

The scattering of acoustic waves is the redirection of energy caused by the interaction of a wave 

with the internal structure of a material.  The degree and type of scattering depends upon the 

size, shape, and orientation of the scatterer relative to the incident wavelength.  The type of 

scattering falls into three main categories: objects much larger than, objects much smaller than, 

and objects comparable to a wavelength.  Scatterers in this section are considered to be rigid 
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spheres with the product ka (where k is the wavenumber given by 
λ
π2=k , and a is the radius of 

the sphere) used to express the incident wavelength relative to the radius of the sphere.  Only 

brief descriptions are given for each type of scattering since [67] provides a good summary. 

2.5.1.1 Specular Scattering 

Specular scattering occurs when the incident wavelength is many times smaller than the 

dimension of the scattering object, i.e. ka >> 1.  In this case the reflection of a wave can be 

approximated by ray theory i.e. the scattered wave front is a replica of the shape of the object as 

derived in [68].  The equation for the reflected intensity/incident intensity ratio for the wave 

scattered straight back at the source at an angle of 180° relative to the incident wave (known as 

backscattering) is given by (2.31) [68]. 
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where Ir is the reflected intensity at a source distance r from the scatterer, I i is the incident 

intensity, b is the amplitude of the incident wave, and R is the pressure reflection coefficient 

given by (2.13) determined by the impedance mismatch between the propagating medium and 

the scattering sphere (the absolute value of R is taken since only magnitude is required).  The 

most important point to note from (2.31) is the ratio of the reflected intensity to the incident 

intensity is independent of the incident frequency.   

2.5.1.2 Diffusive Scattering 

At the other extreme diffusive scattering occurs when a scattering object is many times smaller 

than the insonifying wavelength i.e. ka << 1.  Tissue is often modelled as consisting of small 

sub wavelength point scatterers.  Examples in medical ultrasound are irresolvable blood cells or 

contrast agents consisting of tiny gas filled bubbles that are used to enhance the scattering from 

blood vessels for improved imaging [69].  Diffusive scattering from a point sphere is a classical 

problem that can be found in the literature as early as Lord Rayleigh [70], [71].  Using the result 

for a rigid sphere from [71], the backscatter intensity ratio is given by (2.32). 
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where k is the wavenumber, r is the distance from the scatterer, and a is the radius of the 

scatterer.  Comparing the result of (2.32) with that in (2.31) the significant difference is the 

scattered intensity here is proportional to the fourth power of frequency (via k4), and to the sixth 

power of the sphere radius.   

2.5.1.3 Diffractive Scattering 

Diffractive scattering corresponds to the range of ka values that fall between the specular and 

diffusive scattering extremes, considered to be when the incident wavelength is comparable to 

the radius of the scattering sphere, i.e. ka ≅ 1.  Here the scattering profile from objects varies 

significantly with small changes in ka as shown in the polar plots of Figure 2.18 (a)-(c).   

 

 

        (a)       (b)              (c) 

Figure 2.18  - Polar diagrams showing scattering from a rigid sphere for ka values of (a) 5, (b) 
3, and (c) 1. 180° corresponds to reflections direc ted back at the source, and 0° corresponds to 
propagation directly away from the source [67].   
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Figure 2.19  – Total scattered power from a sphere of radius a versus ka number. 

In these diagrams 180° corresponds to backscatter (straight back at the source), and 0° 

corresponds to propagation along the direction of the incident wave.  Figure 2.18 (a) is for ka = 

5, (b) ka = 3, and (c) ka = 1.  Since such a wide variety of scattering can exist in the diffractive 

scattering region due to the many different shapes and sizes of scatterers, it is difficult to 

formulate exact solutions for this range.  An exact solution for elastic scattering from solid 

spheres and cylinders can be found in [72]-[74]. 

 

Figure 2.19 shows the total scattered power versus ka number for a rigid sphere of radius a.  For 

ka < 1, the total scattered power rapidly increases with small increases in ka consistent with the 

f4 relationship associated with diffusive scattering.  In the short wavelength case when ka >> 1, 

the scattering is mainly specular and the scattered power saturates becoming frequency 

independent.  The derivation of the expression for the scattered power can be found in [75]. 
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2.5.2 Absorption 

Absorption is the conversion of acoustic energy to heat due to viscosity in the medium.  

Classical absorption takes into account the transformation of acoustic energy into heat by 

material frictional forces and heat conduction.  The transducers used in this work are high 

frequency (20 MHz and above) focussed ultrasonic immersion transducers.  These are designed 

to operate immersed in water offset some distance from the target (see section 3.2.2).  The 

waves generated travel 5-13 mm through water (depending on the device focal length), 

propagate through the target material, and then travel the same water distance again before 

being received.  The absorption that occurs due to propagation in the water is significant and 

needs to be considered.  The absorption of a material is characterised by its absorption 

coefficient α, given by (2.33) [33]. 
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where ηshear represents the shear viscosity of the absorber, ηbulk the bulk viscosity, γ the specific 

heat ratio, v the bulk longitudinal velocity, cp the specific heat, ρ the density, ω the angular 

frequency, and K is the thermal conductivity.  For a liquid, the third term in the brackets is zero.  

Equation (2.33) shows the absorption coefficient is significantly dependent upon the frequency 

of the propagating wave.  The amplitude of a wave A in an attenuating material at a given depth 

z is expressed as  

 

)exp(0 zAA α−=      (2.34)  

 

where A0 is the initial amplitude of the wave before attenuation.  Rearranging (2.34) in terms of 

α and taking the logarithm to express the result in dB, Figure 2.20 plots the absorption in water 

in dBmm-1 as a function of frequency.  This highlights the rapid increase in absorption with 

increasing frequency.  At 50 MHz absorption is 0.6 dBmm-1, and at 100 MHz this increases to  

2 dBmm-1.  For the transducers with focal lengths of 13 mm, at 100 MHz the total attenuation is 

52 dB (2 dBmm-1 × 13 mm × 2), significantly attenuating the signal. 
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Figure 2.20  – Acoustic absorption in fresh water versus frequency. 
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Chapter 3  

Design and Setup of Experimental Systems 

In this chapter the experimental methods/configurations used and the high frequency ultrasound 

system designed to perform the experimental measurements are described.  Section 3.1 covers 

the transmission and pulse-echo measurement experimental configurations, with the high 

frequency transducers used in these configurations described in more detail in section 3.2.  The 

custom designed high frequency electronics are described in section 3.3, followed by section 3.4 

describing the custom system software.  Finally the 3-axis positioning stage used for transducer 

alignment is briefly described in section 3.5. 

3.1 Experimental Configurations 

Two experimental configurations were used to characterize the sample materials in this work, a 

transmission measurement system and a pulse-echo measurement system.  Sample materials 

included homogeneous solids, porous anodic alumina, and gelatinous homogeneous and 

anisotropic poly(vinyl alcohol) tissue mimicking phantoms.     

3.1.1 Transmission Measurement System 

A transmission measurement configuration was used to measure sample thickness, phase and 

group velocities, and attenuation.  In this configuration separate transmitting and receiving 

transducers were used with the sample holder placed in between as shown in Figure 3.1. 
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A burst waveform with user selectable parameters was generated on the system controlling PC 

using a custom graphical user interface (GUI) (section 3.4).  This waveform was sent to an 

Agilent AFG3251 single channel arbitrary/function generator via an Ethernet network 

connection.  The generated waveform was passed on to a transmitter that drove the transmitting 

transducer using either a custom made transmitter (section 3.3.2) or a commercial power 

amplifier (section 3.3.4).  The transmitting and receiving transducers were 50 MHz, 110 MHz, 

or 175 MHz pairs (section 3.2).  The SYNC signal from the function generator synchronised the 

oscilloscope capture for triggering.  The transmitting transducer was positioned using a 

precision 3-axis linear actuator system (section 3.5).  This positioning system also contained a 

rotational stage to incline the transmitting transducer at various angles.  A custom-made low 

noise receiver circuit (section 3.3.3) amplified the signals received from the receiving 

transducer.  These were captured by a Tektronix TDS3034 8-bit digital phosphor oscilloscope 

and were downloaded to the PC for signal processing.   

 

 

Figure 3.1  - Transmission measurement experimental configuration. 

Ethernet Ethernet 
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The transducers and sample were immersed in a water bath during measurement.  Figure 3.2 

shows the water bath setup for a transmission measurement at normal incidence.  The distances 

of the transducers from the sample were adjusted until the sample was inside the focal zones.  

The top transducer position was then adjusted in the horizontal axes until a maximum signal 

was received, corresponding to ideal alignment.  Sample thickness, velocity, and attenuation 

were measured using ultrasound spectroscopy methods as detailed in the literature [78]-[81]. 

 

 

Figure 3.2  - Transmission measurement water bath setup. 

3.1.1.1 Sample Thickness 

For rigid samples a micrometer could be used to measure sample thickness.  For soft samples 

the thickness was calculated by performing three time-of-flight ultrasonic measurements as 

shown in Figure 3.3.   

 

 

Figure 3.3  - Time of flight measurements (a) without sample, and (b) with sample in place. 
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Transmission times tm and tw were the measured pulse transmission times from transmitter to 

receiver with and without the sample present respectively, and time t2 was the measured 

transmission time with the sample in place after a single reverberation within the sample.  These 

measurements were made by performing cross correlation using the known transmitted 

waveform and received signals to determine these times with precision (see section 3.4).  The 

sample thickness d was found from 
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where vw is the speed of sound in water.  The theoretical speed of sound in pure water at a given 

temperature T was found using a fifth order polynomial [82], [83].  The temperature of the 

water bath was monitored constantly, and no velocity measurement was performed until the 

water temperature had settled to room temperature.   

3.1.1.2 Sample Velocity 

If the sample thickness d is known, the phase velocity vp(f) in a sample can be calculated using 

the phase spectrums captured with the sample in place φm(f) and without the sample in place 

φw(f) as shown in Figure 3.4. 

 

 

Figure 3.4  - Phase measurements to calculate sample velocity for known sample thickness d. 

The phase spectrums were found by performing FFTs on the captured waveforms then finding 

the arguments of these since variations in phase in the frequency domain are equivalent to time 

shifts in the time domain.  The phase velocity was found for all frequencies using equation 

(3.2).  The unwrapped phase was used for the calculation which was implemented in software.  
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The sample had to be sufficiently thick so that φm could be separated/time gated from 

reverberant waves that occur in the sample. 
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The group velocity (wave envelope velocity) of a wave vg was found using tw and tm in equation 

(3.3).  This equation however is only applicable for non-dispersive media. 
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3.1.1.3 Sample Attenuation Coefficient 

The attenuation coefficient α(f) of a sample was found using the FFT magnitudes of two 

waveforms having passed through samples of identical composition but with differing 

thickness.  This is shown in Figure 3.5. 

 

 

Figure 3.5 - Amplitude measurements to calculate sample attenuation coefficient. 

The first measurement was made with a sample of thickness d1 in place, the second with sample 

thickness d2 > d1.  The long focal lengths of the transducers relative to the sample thickness and 

the comparatively small attenuation in the water meant the difference in water path lengths was 

negligible.  This measurement assumes identical sample structure so samples had to have been 
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prepared using the same process.  Using the measured FFT magnitude spectra A1(f) and A2(f) 

from Figure 3.5, the attenuation coefficient is then given by  
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3.1.2 Pulse Echo Measurement System 

The pulse echo configuration was used to measure the acoustic impedance of a sample.  In this 

configuration, shown in Figure 3.6, a single transducer was used for both transmit and receive.  

The sample was placed on an aluminium base to provide a strong acoustic reflection from the 

bottom surface.  The incident wave was generated using the same method as was described for 

the transmission measurement (section 3.1.1). 

 

 

Figure 3.6  - Pulse echo measurement experimental configuration. 

Ethernet Ethernet 
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The SYNC signal as in the transmission measurement setup synchronised the oscilloscope 

capture and in addition gated the transmit/receive switch (section 3.3.6).  This switch isolated 

the transmitter or receiver circuits from the transducer depending on whether the system was 

transmitting or receiving.  As with the transmission setup, a low noise receiver circuit amplified 

the signals received from the transducer before capture by the oscilloscope.   

3.1.2.1 Sample Acoustic Impedance 

The acoustic impedance of a sample was found using a similar method to that used in [84].  

This method measures the amplitude reflected from an unknown sample and compares it to the 

amplitude reflected from a material of known acoustic impedance e.g. steel or aluminium. 

These measurements are shown in Figure 3.7.   

 

 

Figure 3.7  - Pulse echo measurements for unknown sample acoustic impedance. 

For both measurements the same transducer was used, so the transmitted signal T was the same 

for both measurements, incurring the same transducer transfer function on transmit and receive.  

The distance from transducer to sample was equal to the focal length of the transducer.  This 

was adjusted until a maximum reflected signal was received confirming when the sample was in 

the transducer focal zone.  The measured amplitudes as reflected from the known and unknown 

samples were given by  

 

kwk RTA 2α=       (3.5) 

 

uwu RTA 2α=       (3.6) 
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where αw was the absolute attenuation coefficient of water, and Rk and Ru the pressure reflection 

coefficients between the water/known and water/unknown sample interfaces respectively given 

by equation (2.13).  The water attenuation coefficient was squared as attenuation occurs in both 

directions.  Taking the ratio of the measured amplitudes Ak and Au, this is simply equal to the 

ratio of the reflection coefficients Rk and Ru.   
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Rewriting Ru in terms of the unknown acoustic impedance Zu and the acoustic impedance of 

water Zw, the impedance Zu is given by  
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The water temperature was again constantly monitored providing accurate values for the 

acoustic impedance of the water and to provide an accurate result for the unknown sample 

impedance. 

3.2 High Frequency Ultrasonic Transducer Characteri stics  

3.2.1 Piezoelectric Transducer Construction 

An ultrasonic piezoelectric transducer uses the piezoelectric effect to convert an alternating 

potential difference applied across the crystal into a mechanical wave due to the repeated 

deformation of the structure.  The same applies in reverse where an applied mechanical stress to 

the crystal causes the generation of a potential difference across the crystal.  This will occur for 

a certain range of frequencies over which the transducer is designed to operate.  A cross section 

of a typical contact piezoelectric ultrasonic transducer is shown in Figure 3.8.   
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Figure 3.8  - Cross section of a contact piezoelectric transducer [76]. 

The fundamental components of a typical piezoelectric transducer are the following: 

 

1) The backing material provides damping for the transducer.  A highly damped transducer 

reduces ringing time thus producing sharp pulses, resulting in broad bandwidth signals, 

but with low energy.  Broad bandwidth implies improved axial resolution - the ability to 

resolve targets vertically separated along the vertical or depth axis.  For a lightly damped 

transducer the reverse applies (low bandwidth, higher energy pulses).  

2) The piezoelectric element is the active layer that responds to the applied potential 

difference by vibrating, generating a pressure wave.  This element is connected to the 

transducer signal wires via electrodes that connect across the element as shown.  This 

construction is similar to a capacitor, giving rise to the typical 1/f characteristic 

associated with piezoelectric devices.   

3) The matching layer (not shown here) is used to acoustically match the target material to 

the transducer active element.  This is inserted between the active element and the wear 

plate.  This improves energy transmission as was discussed in section 2.3.3.   

3.2.2 Immersion Transducers  

Ultrasonic immersion transducers were used in this work, which are focussed, high frequency, 

wide bandwidth (broadband), piezoelectric devices.  Immersion ensures uniform coupling of 

energy from the transducer into the sample of interest.  These transducers contain an optically 

ground spherical silica glass lens that:  
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• Acts as an acoustic delay line.  This ensures the device stops transmitting before an echo 

is received back for a pulse echo measurement.  

• Focuses the transducer beam, concentrating the ultrasound beam to a spot improving 

both lateral resolution and sensitivity to targets.  Maximising transducer sensitivity was 

important since high frequency corresponds to high acoustic absorption (see section 

2.5.2).  

• Acoustically matched the transducer active element to water in order to ensure 

maximum transfer of energy from the transducer into the sample (see section 2.3.3). 

3.2.3 Transducer Frequencies 

Pairs of immersion transducers with centre frequencies of 50 MHz, 110 MHz, and 175 MHz 

were used in this work; model numbers V390, V3802, and V3965 from Olympus Panametrics.  

These were broad bandwidth devices that allowed pulse compression to be used for improved 

axial resolution.  Figure 3.9, Figure 3.10, and Figure 3.11 show the typical frequency responses 

provided from Olympus for the three different types of transducers.  Responses vary slightly 

between devices with same part numbers.  The broadband nature of the devices can be observed 

where the 50 MHz transducer has a –6 dB bandwidth of 35 MHz, the 110 MHz transducer a –6 

dB bandwidth of 96 MHz, and the 175 MHz transducer a –6 dB bandwidth of 142 MHz. 

 

 

Figure 3.9  - Typical frequency response for the V390 50 MHz transducers [85]. 
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Figure 3.10  - Typical frequency response for the V3802 110 MHz transducers [85]. 

 

 

Figure 3.11  - Typical frequency response for the V3965 175 MHz transducers [85]. 
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3.2.4 Transducer Impedance 

The impedances of the transducers were measured using an Agilent 4291B 1 MHz-1.8 GHz 

impedance analyser.  The impedance analyser was calibrated using the full procedure as 

described in [86] for accurate measurements.  By measuring the transducer impedance 

characteristics, the transmitter output stage was designed to be electronically matched to the 

transducer impedance for improved power transfer.   

3.2.4.1 50 MHz Transducers 

The magnitude and phase characteristics of the two V390 50 MHz devices are shown in Figure 

3.12 from 1-100 MHz.  The characteristics of the two devices were very similar, however the 

measured characteristics strayed from those expected for a piezoelectric transducer.  The 

physical construction of a typical piezoelectric transducer is similar to a capacitor (see section 

3.2.1), displaying a 1/f characteristic with small resistive deviations around the active region.  

Instead the measured plots revealed highly resistive devices measuring 50 ohm at DC, 

indicating a resistor was placed across each input, which was not stated in the manufacturers 

datasheet.   

 

The datasheet measurements were performed without the resistor present showing a highly 

capacitive transducer.  The addition of the resistor caused significant changes to the transducer 

performance, improving matching of the transducers to the 50 ohm cable and resulting in a 

more resistive device, making it easier to drive (a capacitive load means most of the driving 

energy is stored in an electric field).  The measured magnitudes at 50 MHz were approximately 

33 ohms for both devices.  Between 25 and 75 MHz bumps in the plots can be observed 

corresponding to reverberations in the transducer delay lines, identifying the active frequencies 

and broadband characteristics.     

3.2.4.2 110 MHz Transducers 

The magnitudes and phases for the two V3208 110 MHz transducers are shown in Figure 3.13 

from 1-250 MHz.  Figure 3.13 confirms both of these transducers also possessed resistors across 

their inputs with magnitudes of 53 ohms at DC.  At 110 MHz, the magnitude of both 

transducers was 45 ohms, very well matched to the 50 ohm electronics of the system.     
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Figure 3.12  - Magnitude (a) and phase (b) characteristics of the two 50 MHz transducers. 
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Figure 3.13 - Magnitude (a) and phase (b) characteristics of the two 110 MHz transducers. 
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Figure 3.14  - Magnitude (a) and phase (b) characteristics of the two 175 MHz transducers. 
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The phase characteristics of both devices were also very good with phase angles of –19° and  

–22°, even easier to drive than the 50 MHz transducers.  Observing the reverberations in the 

traces, the active bandwidth of both these transducers was between 50-160 MHz. 

3.2.4.3 175 MHz Transducers 

The magnitudes and phases for the 175 MHz V3965 transducers are shown in Figure 3.14 for  

1-350 MHz.  Observing the magnitudes, the first device in blue follows a bell shaped curve 

whereas the second device in red deviates from this shape at higher frequencies.  At DC the 

magnitudes were 18 and 19 ohms, increasing until 175 MHz with magnitudes at this frequency 

of 45 and 40 ohms.  These were reverberant out to 315 MHz.  The phases increase from 0° at 

DC and are inductive until 150 MHz where they became capacitive.  The transducers therefore 

contained an additional inductive component for improved transducer performance, and as a 

result the phases at 175 MHz are just –16° and –6°.  By adding resistance and inductance these 

become well matched to the 50 ohm electronics, and resistive over a wide range making them 

the easiest transducers to drive.   

 

This compensation was important, as at 175 MHz the absorption in water is exceptionally high.   

In addition, the very high transducer frequencies require very thin active elements (element 

thickness is equal to half the operating wavelength) resulting in limited driving power.  The 

thinner active element causes a larger transducer capacitance, which when combined with the 

high frequencies results in low transducer impedance, causing large capacitive currents in the 

device.  The thin elements cannot tolerate these high currents with out causing permanent 

damage, requiring reduced signal power.  Panametrics recommend a driving voltage of no more 

than 300 V for a 10 MHz device, and no more than 150 V for a 20 MHz device.  This halving of 

the signal voltage continues for every doubling of the transducer centre frequency from the 

quoted values, resulting in very low driving voltages for the devices used. 

3.2.5 Transducer Beam Properties 

3.2.5.1 Focal Lengths and Element Diameters 

The transducer spherical silica glass lens focuses the ultrasound beam.  Focussing concentrates 

the ultrasound energy to a narrow region of uniform pressure some distance from the device.  

Figure 3.15 shows a focussed beam with the properties of beam diameter and focal zone (FZ) 
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highlighted.  These two properties are described below.  The focal length is the distance to the 

centre of the focal zone.  A long focal length causes significant amounts of attenuation due to 

absorption in water (see section 2.5.2).   

 

 

Figure 3.15  - Beam diameter, focal length, and focal zone properties of a transducer [77]. 

The element diameter and focal length of a transducer determines the beam diameter, near field 

length, and focal zone of the acoustic beam.  Increasing the element diameter narrows the beam 

diameter and increases the focal zone.  Focal lengths and element diameters for the transducers 

used are shown in Table 3.1, obtained from the manufacturers website [85]. 

Table 3.1  - Element diameters and focal lengths of immersion transducers used in this work. 

Part Number Centre Frequency 
(MHz) 

Focal Length 
(mm) 

Element Diameter 
(mm) 

V390 50 13 6 

V3802 110 5.8 1.8 

V3965 175 6 1.5 

 

3.2.5.2 Beam Diameters 

The beam diameter is defined as the width of the beam in the transducer focal zone, and is 

usually measured as the –6 dB diameter as shown in Figure 3.15.  This is the distance between 

two horizontally separated points at the focal length where the amplitude of the beam falls  

6 dB below the amplitude measured along the maximum intensity line. The beam diameter of a 
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transducer contributes to the lateral resolution and sensitivity of a system.  Lateral resolution is 

the ability of a system to resolve individual targets horizontally spaced apart.  Sensitivity is the 

amount of energy reflected from a target.  By concentrating the ultrasound beam this energy is 

increased.  The –6 dB beam diameter (BD) for a focussed device is given by (3.9) from [77]. 

 

 
fD

Fv
dBBD 02.1)6( =−      (3.9) 

 

where F is the transducer focal length, v is the material sound velocity, f is the frequency, and 

D is the element diameter.  Assuming a pure water path (given the samples are thin and placed 

in the focal zone), the material velocity can be assumed to be approximately 1480 ms-1 at room 

temperature.   
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Figure 3.16  - Transducer beam diameter versus frequency for 50 MHz, 110 MHz, and  
175 MHz immersion transducers in water. 
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Using (3.9) and the focal lengths/element diameters of the transducers, the beam diameter for 

the three different transducers are plotted in Figure 3.16 over their respective operating 

bandwidths.  For the 50 MHz transducers, diameters from 40-130 µm are observed over the 

operating range of 25-75 MHz.  For the 110 MHz transducers, diameters from 30-100 µm are 

observed over the operating range of 50-160 MHz.  The 175 MHz transducers show similar 

diameters to the 110 MHz devices.   

3.2.5.3 Focal Zones 

The focal zone is the region where the transducer beam applies uniform sound pressure.  This is 

generally chosen to match the thickness of the material to be tested.  A reduction in the focal 

zone increases energy concentration, improving sensitivity, but reducing the radiated area.   

 

The start and end points of a focal zone as shown in Figure 3.15 are defined where the on-axis 

pulse echo signal amplitude falls to –6 dB of the signal amplitude at the focal point.  Focal zone 

is dependent upon the near field N of a transducer and the normalised focal length SF.  The near 

field is the region directly in front of the transducer beam where the ultrasonic amplitude goes 

through a series of maxima and minima ending at the last maximum.  Due to this variation it is 

normally undesirable to place a target within the near field, instead it is placed at the final 

maximum.  Equations (3.10) and (3.11) show the equations for the near field and normalised 

focal lengths of a transducer respectively [77].  

 

        
v
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=              (3.10) 

 

        
N

F
SF =      (3.11) 

 

Once the near field and normalised focal lengths have been determined at the appropriate 

frequencies, the focal zone can be calculated using (3.12) as obtained from [77]. 

 










+
=

F
FZ S

NSF
5.01

22     (3.12) 

 



 58 

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300

Frequency (MHz)

F
oc

al
 Z

on
e 

(m
m

)

50 MHz
110 MHz
175 MHz

 

Figure 3.17  - Focal zone length with frequency for the 50 MHz, 110 MHz, and 175 MHz 
immersion transducers in water. 

Using the expression for the focal zone given by (3.12), the frequency dependence of the 

transducer focal zones are plotted in Figure 3.17.  From this it can be observed the focal zones 

of all three transducers are approximately the same, between 0.75-2 mm across their respective 

operating bandwidths.  Like the beam diameters, these focal zones of 0.75-2 mm are an 

excellent trade off between sensitivity and ease of use. 

3.3 Development of High Frequency Electronics 

As mentioned previously, the high frequencies used in this work cause significant ultrasonic 

signal attenuation and limit the transducer driving power.  This results in received signals with 

small amplitudes, comparable to the background noise.  To account for the above factors, 

specialised custom electronics were designed in this work.  Transmitter and receiver boards 

were initially designed and constructed to accommodate the 50 MHz device bandwidths of 

approximately 20-80 MHz.  Later an additional wideband receiver and transmit-receive switch 

50 MHz 110 MHz 175 MHz 
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were made, and a power amplifier purchased for use with the 110 MHz and 175 MHz 

transducers.  

3.3.1 Board Layout Considerations 

The high frequencies and large bandwidths of the transducer electronics required care in PCB 

layouts to ensure good circuit performance.  Feedback resistors were placed close to the 

inverting terminals of op-amps, and the ground plane copper was removed directly underneath 

all inverting inputs; both of these methods were used to minimise stray capacitance.  A ground 

plane was used for all circuits to prevent large area signal return paths to reduce inductance and 

prevent interference from external fields; minimal cuts were made in the ground plane to ensure 

this.  Analogue amplifying circuitry was separated from the DC and digital control circuitry so 

that noise generated by fast switching devices did not contaminate the small signals being 

amplified.  Significant bypassing of all supply rails was implemented.  All amplifiers in the 

circuits that were bandwidth critical were current feedback devices with very fast slew rates and 

large gain bandwidths.  Small valued resistors were used to minimize Johnson noise of the 

circuits, and also preserve the bandwidths of the current feedback amplifiers that are determined 

by the value of the feedback resistors.  All resistors and capacitors were low inductance type 

and as small as possible to minimize physical board size.  

3.3.2 100 MHz Transmitter  

The transmitter circuit drove the transmitting transducer with the required waveform, delivering 

higher power than the function generator was capable of providing.  The transmitter schematic 

is shown in Figure 3.18 (for a full circuit diagram of the designed circuit with component 

values, power supplies etc., see appendix A1).  The power delivered to the transducer was 

limited to approximately 1.2 W, with a theoretical gain of approximately 13 dB, well within the 

power dissipation limits of the transducer.  The transmitter was designed to operate with a 

bandwidth of 100 MHz to cover the 50 MHz transducer bandwidth.  The circuit output drives 

the transducer via a 2:1 output transformer to better match the 30 ohm impedance of the 

transducer (see section 3.2.4.1) to that of the 50 ohm transmitter circuit.  The transmitter circuit 

consists of four amplifiers arranged in a bridge circuit configuration.  The amplifiers used were 

the THS3092 from Texas Instruments as they are dual high speed, broadband, current feedback 

operational amplifiers.   
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Figure 3.18  - Transmitter schematic. 

 

Figure 3.19 - Transmitter gain versus frequency. 
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The circuit takes a burst of amplitude 2.5 V and amplifies this by a gain of approximately 4 to 

just over 10 V.  The input transformer provides a balanced input and isolation from the function 

generator earth.  The input is matched to the excitation impedance via matching resistors.  The 

input transformer creates the input signal and its inverse on the secondary windings, both of 

which are amplified independently using separate amplifier paths.  Paralleling the op-amps on 

the output increases the current drive of the circuit capable of delivering a peak output current 

of 1 A.  The amplified signals are then combined through the output transformer to drive the 

transmitting transducer.  Figure 3.19 shows the gain bandwidth characteristics of the circuit.  

With a source power of –45 dBm, a power gain of 12 dB is observed and a –3 dB bandwidth of 

100 MHz achieved.  This accommodates the broad bandwidth of the 50 MHz transducers. 

3.3.3 100 MHz Receiver 

The receiver circuit formed the interface between the receiving transducer and the oscilloscope 

and served to amplify the small signals before capture by the oscilloscope.  Significant water 

absorption and sample scattering combined with low transmit transducer power meant that 

receiver noise performance was critical to discriminate signals from background noise.  To 

accommodate different signal strengths due to variable sample scattering properties, the receiver 

gain needed to be variable over a large range and possess a flat gain response over the 

transducer bandwidth.  Finally, signals received later in time incur greater attenuation than those 

received earlier, having travelled a greater distance.  To compensate time gain compensation 

was added as a feature in the event it was required.  This receiver was designed to accommodate 

the 50 MHz transducers only.   

3.3.3.1 Circuit Operation 

The schematic of the receiver is shown in Figure 3.20 (for a full circuit diagram of the designed 

circuit with component values, power supplies etc., see appendix A2).  The input impedance of 

the amplifier was 50 ohm.  Two AD8337 variable gain amplifiers (VGAs) from Analog Devices 

were connected in series to form the front end of the circuit.  These VGAs possessed very low 

current and voltage noise characteristics (4.8pA/rt Hz and 2.2 nV/rt Hz), wide bandwidth, fast 

slew rates, large variable gains, and accommodate a linear-in-dB gain control method.  This 

gain control was useful as by ramping the voltage applied to the gain control pin, linear-in-dB 

time gain compensation could be achieved.   
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Figure 3.20  - 100 MHz receiver schematic. 

This compensates for the attenuation caused by propagation within a material, applying greater 

compensation to signals arriving later in time having travelled a greater distance.  The time gain 

compensation method is described in more detail in the next section. A user adjustable DC input 

to an op-amp integrator [87], with an analogue switch for integrator reset generates the ramp for 

this function.  The op-amp used was a OPA2690 from Texas Instruments and was selected for 

its fast rise and settling time characteristics in order to achieve the best ramp performance.  The 

integrator is shown in Figure 3.20 as an amplifier block with an integral symbol with the 

discharge switch in the op-amp feedback path.  The integrator slope control potentiometer 

determines the slope of the integrator ramp - the degree of attenuation compensation.  The 

function generator SYNC signal activates the integrator reset, discharging the capacitor, and 

resetting the time gain compensation to zero.   

 

The VGAs consisted of a configurable pre-amp, typically set for a gain of 3, followed by a  

24 dB attenuator, and a fixed 18 dB amplifier.  The output amplifier that drives the transmission 

cable to the oscilloscope was configured for a gain of 3.  This results in a variable gain from  

17-65 dB.  The summing blocks seen in Figure 3.20 provided the gain control interface to the 

two VGAs.  These summing blocks controlled the time gain compensation and DC gain 

requirement taking inputs from both potentiometers.  These are configured such that once the 
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first VGA reaches its maximum gain, the second VGA gain begins to increase.  Using this 

method both amplifiers can be dedicated solely to DC gain, time-gain compensation, or any 

combination of the two.  The summing blocks were implemented using op-amps (OPA2690 

ICs) configured as summing junctions.  The control voltages from the summing junctions were 

low pass filtered to ensure stable gain control before being sent to the VGA.  AC coupling was 

used along the amplifier chain to prevent DC offsets.   

3.3.3.2 Time Gain Compensation Method 

To account for attenuation of the ultrasound with depth electronically, an expression for the 

VGA gain in dBmm-1 as a function of the user adjustable input voltage must be defined.  The 

variation in VGA gain with gain pin voltage was obtained from the AD8337 datasheet given by  

 

65.127.19)( += GainVGA VdBGain         (3.13) 

 

where GainVGA(dB) is the VGA gain in dB and VGain is the voltage applied to the VGA gain pin.  

As described in the previous section, an op-amp integrator generated a ramp that was applied to 

the VGA gain pin to achieve linear-in-dB gain control.  The output of an op-amp integrator is 

given by equation (3.14) [87] 
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where Vin is the user adjustable input voltage to the op-amp integrator, R is the integrating 

resistor, C the integrating capacitor, and T is the duration of the ramp.  For a DC input voltage 

the output is then given by (3.15) 

 

     inout V
RC

T
V −=      (3.15) 

 

Assuming no DC gain, the output from the integrator ramp is equal to the VGA gain pin 

voltage.  Substituting Vout for VGain in equation (3.13) and inverting the integrator output 

(eliminating the negative sign) the expression for VGA gain becomes 
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65.127.19)( += inVGA V
RC

T
dBGain        (3.16) 

 

Since attenuation is expressed in dBmm-1, equation (3.16) is divided through by x representing 

the distance travelled through a material.  Substituting x = vt where t is the time of flight, and v 

is the bulk velocity in the sample (here a velocity for water of 1500 ms-1 has been assumed), the 

final expression for VGA gain in dBmm-1 is given by (3.17) 
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By fixing R and C at appropriate values, the degree of time compensation is varied by the user 

adjustable integrator DC input. 

3.3.3.3 Circuit Performance 

The receiver circuit frequency response from minimum to maximum gain is shown in  

Figure 3.21 for five different gains.  The top trace is maximum gain and the bottom trace is 

minimum gain.  The source power of the spectrum analyser was –30 dBm with 20 dB of 

external attenuation to limit the receiver output signals at maximum gain to less than the supply 

rails.  Each of the traces displays excellent frequency response, satisfying the transducer 

requirements with a steep roll off at higher frequencies.  The lowest trace is observed to have a 

magnitude close to –32 dBm.  This agrees with that expected as –50 dBm plus minimum gain 

(17 dB).equals –33 dBm.  Using the same method for maximum gain of 65 dB results in 15 

dBm, also in agreement with Figure 3.21. 

 

Figure 3.22 plots the noise of the receiver and the spectrum analyser used to perform the 

measurement.  The lower trace was the analyser noise alone, while the higher trace was the 

measured noise from the output of the receiver circuit when configured for maximum gain.  For 

this trace the analyser was measuring solely the output noise of the receiver at maximum gain 

plus the intrinsic analyser noise.   
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Figure 3.21  - Receiver gain versus frequency for five different gains from minimum gain of  
17 dB (lowest trace) to maximum gain of 65 dB (highest trace). 

 

Figure 3.22  - Receiver output noise (top) and spectrum analyser noise (bottom) traces.  
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Without maximum receiver gain the receiver noise could not be distinguished from that 

generated by the analyser.  The sudden step in noise on both signal traces above 100 MHz was a 

property of the analyser as it changed scales internally.  The receiver output noise was 

calculated by subtracting the spectrum analyser noise from the top trace.  This value was then 

divided by the square root of the analyser resolution bandwidth (here 910.9 kHz) expressing the 

noise in the standard form of nV/√Hz (nanovolts per root hertz).  Finally, dividing through by 

the maximum gain of the receiver of 65 dB equates to an input referred noise value of 

approximately 2 nV/√Hz, equal to the AD8337 input referred voltage noise from the amplifier 

datasheet.  This indicated the circuit noise was dominated by the noise of the first VGA. 

 

 

Figure 3.23  - A time gain compensated waveform shows an exponential rise, with the square 
wave SYNC signal resetting the integrator ramp to zero, and thus stopping the time gain 
compensation. 

A time gain compensated waveform is displayed in Figure 3.23 with associated control signals.  

This shows an exponentially growing waveform to counter the sample attenuation.  The 

integrator ramp implementing the VGA gain control is shown along with the function generator 

SYNC signal setting the start and finish of the time gain compensation period.  The SYNC 

signal goes low once the waveform is generated.  This charges the integrating capacitor, 

activating the integrator, generating the VGA gain control ramp.  Once the waveform ends the 

SYNC signal goes high, activating the integrator capacitor discharge switch, deactivating and 

resetting the ramp, stopping the time gain compensation until the start of the next waveform. 
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3.3.4 1000 MHz Minicircuits 20W Power Amplifier 

During the project it was decided to also use 100 MHz and 175 MHz transducers in addition to 

the initial 50 MHz transducers.  To design another transmitter with a bandwidth to 

accommodate 200 MHz waveforms and their higher frequency components would take a 

considerable amount of design so a commercial power amplifier was purchased. The unit 

purchased was a 20 W ZHL-20W-13 from Minicircuits, possessing a bandwidth of  

10-1000 MHz and a gain of 50 dB.  It was matched for 50 ohm input and output impedances, 

and could withstand a full impedance mismatch (short or open) across all phases at the output, 

assuming the maximum output power was never exceeded.   

3.3.5 500 MHz Receiver 

To accommodate the use of higher frequency transducers, an additional receiver circuit was 

designed to accommodate the frequency range of all three transducers covering 20-500 MHz.  

Very low noise and a large gain were the design considerations.  This circuit design did not 

include time gain compensation as it was found this feature was not required often enough when 

using the 100 MHz receiver. Variable gain was also not included as the use of the oscilloscope 

gain was deemed sufficient. The receiver schematic is shown in Figure 3.24 (for a full circuit 

diagram of the designed circuit with component values, power supplies etc., see appendix A3). 

 

 

Figure 3.24  - 500 MHz receiver schematic. 
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Figure 3.25  - Receiver gain versus frequency. 

 

Figure 3.26  - Receiver circuit and spectrum analyser noise traces.   
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Two low noise amplifiers connected in series perform the amplifying of the circuit.  The low 

noise amplifiers are Gali-74+ amplifiers from Minicircuits that possess a bandwidth extending 

from DC to 1 GHz with a fixed gain of 25.1 dB and a maximum power output of 19.2 dBm.  

They were matched to 50 ohm input and output impedances and were unconditionally stable.  

This is an important property since transducer impedance varies with frequency and almost 

never matches the 50 ohm receiver; they possessed an excellent noise figure of just 2.1 dB.  The 

low noise amplifiers received DC power and transmit AC output through the same terminal and 

required the use of an appropriate inductor to separate the two.  The resistor in the DC biasing 

arm of the circuit provided the bias current with the value determined by the DC supply voltage.  

AC coupling is used between all stages to eliminate DC offsets.  An optional 6 dB cable driver 

can be used to drive the oscilloscope, reducing the load on the amplifiers.   

 

The gain versus frequency characteristic of this receiver is shown in Figure 3.25 and the noise 

characteristic in Figure 3.26. It shows an overall gain of 47 dB into a 50 ohm load, with a 

useable 3 dB bandwidth exceeding 500 MHz.  Based on these traces, and following the same 

noise calculation method from section 3.3.3, the noise performance was calculated to be just  

1 nV/√Hz; almost equivalent to the Johnson noise of a 50 ohm resistor. 

3.3.6 500 MHz Transmit-Receive Switch 

A transmit-receive switch was required when performing a pulse-echo measurement, where a 

single transducer operates in both transmit and receive mode.  As shown in section 3.2, the 

transducers cover a frequency range of 20-320 MHz.  Like the 500 MHz receiver circuit, this 

board was designed for a frequency range of 20-500 MHz to accommodate 200 MHz pulses and 

their higher frequency components.  During the transmit cycle, the transmit-receive switch 

drives the transducers with a waveform from the power amplifier while simultaneously isolating 

the receiver during the pulse duration.  As the transmitter can generate output waveforms 

greater than +20 V, which are well in excess of the receiver circuit inputs, the circuit had to 

provide enough isolation across all frequencies to prevent receiver damage during transmission.  

During the receive cycle, the receiver circuit must be sensitive to the ultrasound signals 

reflected back from the sample whilst isolating the significant output noise from the power 

amplifier.  The schematic of the transmit-receive circuit used is shown in Figure 3.27 (for a full 

circuit diagram of the designed circuit with component values, power supplies etc., see 

appendix A4).   
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Figure 3.27  - Simplified transmit-receive switch schematic.  

The circuit elements used to perform the required switching (shown in purple) are TOSW-230+ 

single pole double throw PIN diode switches from Minicircuits.  PIN diodes were used due to 

their wide bandwidth and high isolation at very high frequencies.  The TOSW-230+ possesses a 

bandwidth of 10-3000 MHz, low insertion loss, and typical isolation of 40 dB.  The PIN diodes 

are configured as change over switches so when the OUT1 output is on OUT2 is off and vice-

versa.  The input and outputs are matched for 50 ohm.  The switches are toggled via TTL logic 

signals with TTL drivers integrated into the TOSW-230+ reducing external circuitry. 

 

Observing Figure 3.27, there are three TOSW-230+ packages in the circuit.  The far left switch 

is used to isolate the power amplifier from the transducer while the other two are used to isolate 

the receiver circuit.  Two switches are used in series to increase the isolation on the receive side 

due to the large outputs from the power amplifier during transmit.  It should be noted the 

maximum input power into these devices is typically +30 dBm.  Even though the driving 

signals from the power amp greatly exceeded this value, the average power dissipation was kept 

well below this since the signal duty cycle was no greater than 0.5 %.   

 

To avoid the use of an external receiver board, two Gali-74+ low noise amplifiers (LNAs), 

identical to those used in the 500 MHz receiver circuit (section 3.3.5), were included on board.  
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The LNAs were  supplied with +8 V whilst the rest of the circuit +5 V.  DC blocking capacitors 

are not required between a TOSW-230+ and Gali-74+ as the PIN diode packages were found to 

contain internal 1800 pF input and output coupling capacitors. 

 

The function generator SYNC signal controls the PIN diodes and this signal is first passed 

through an ADCMP601 high-speed comparator, providing a sharp square wave output.  The 

comparator is configured for 20 mV hysteresis and user adjustable reference voltage.  The 

comparator with the adjustable reference voltage ensures an output swing between 0 and +5 V, 

independent of the input swing.  This signal is then fed directly to a header and an inverted copy 

to another.  A jumper is used to select whether the original or inverted signal is sent to the PIN 

diodes TTL switch drives.  This is so both active high and active low function generator SYNC 

outputs can be accommodated and is also useful for test purposes.   

 

Figure 3.27 shows for the leftmost PIN diode, the output to the transducer is connected to RF 2.  

The other two PIN diode outputs are connected to RF 1.  This will ensure when the SYNC 

signal allows the power amplifier to drive the transducer, the receiver PIN diodes are off, 

isolating the receiver circuit, and vice versa.  PIN diode RF outputs not used in the signal path 

are grounded via 50 ohm resistors ensuring the RF path is always correctly terminated.   

3.3.6.1 Circuit Performance 

The gain of the receiver circuit versus frequency with the switch in receive mode is shown in 

Figure 3.28.  For an input of –60 dBm, an output power of approximately –18 dBm is observed 

at 100 MHz, equalling a gain of 42 dB at 100 MHz.  Whilst the gain is observed to be several 

dB larger for some lower frequencies, 40–42 dB is the typical gain of the circuit.  The gain is 

relatively flat out to 400 MHz with a –3 dB bandwidth of 500 MHz. 

 

Theoretically, for the received signal path a –6 dB loss is incurred from the 50 ohm voltage 

divider between the output of the first switch and the input of the first LNA.  The signal then 

undergoes a gain of 25.1 dB through the LNA followed by another –6 dB loss between the 

second PIN diode and second LNA, followed by a further 25.1 dB of gain before being received 

by the 50 ohm scope.  This resulted in a theoretical gain of 38.2 dB with an output of  

–21.9 dBm for a –60 dBm input, in good agreement with that measured experimentally.  The 

extra gain from the circuit is due to slightly increased amplifier bias current. 
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Figure 3.28  - Transmit-receive switch circuit receiver gain with frequency.  

 

Figure 3.29  - Transmit-receive switch receiver off characteristic with frequency. 
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Figure 3.29 shows the receiver OFF characteristic when the switch is in transmit mode.  As 

stated above, in this mode the receiver is isolated from the power amplifier to prevent damage 

during transmit.  An input power of –20 dBm was inserted into the receiver and as can be 

expected, significant attenuation occurs across the spectrum at the frequencies of interest.  For 

10-100 MHz at least 60 dB of attenuation occurs.  –80 dBm was the noise floor of the analyser 

for the measurement.  The attenuation is lowest at 500 MHz where it reduces to approximately 

38 dB caused by the PIN diode and stray board capacitances.  Beyond 600-700 MHz the roll off 

of the LNAs and coupling capacitors cause the increase in attenuation.  The receiver noise 

characteristic is identical to that of the 500 MHz receiver board in section 3.3.5. 

 

The switching time of the circuit was 2.5 µs.  There was coupling of the TTL SYNC signal to 

the transducer receive path during switching between states.  This had no influence on the 

transducer signal path since any received signals were delayed by at least 12 µs due to the delay 

line of the transducers and the length of time for the ultrasound to travel the focal distance of the 

transducer in water.  The main source of jitter in the system was due to the SYNC signal from 

the function generator since the entire system was synchronised on this signal.  The jitter of this 

signal however was approximately 230 ps thus having very little effect. 

3.4 System Software 

The software controlling the system was a custom in-house designed graphical user interface 

(GUI) used to coordinate the generation, capture, and processing of the ultrasound signals used 

to characterise the sample materials.     

3.4.1 The GUI 

The system GUI was written in the programming language Delphi.  This communicated with 

the function generator and oscilloscope using an Ethernet interface, allowing fast data transfer 

to and from these.  A screen shot of the GUI plotting captured data from the scope is shown in 

Figure 3.30.  This plot shows data captured from both channel 1 (CH1) and channel 2 (CH2) of 

the scope.  The data from each channel was plotted in the same colour as is displayed on the 

scope.  The yellow trace is the source waveform generated by the function generator, in this 

case a thirty percent windowed 20-80 MHz chirp.       
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Figure 3.30  - System GUI displaying data captured from CH1 and CH2 of the oscilloscope. 

The blue trace shows the pulse from the receiving transducer having passed through a water 

only path and then amplified by the receiver circuit.  As observed, the GUI is separated into 

four main sections: Save/Recall, Chirp Generation, Sine Generation, and Data Capture/Display. 

3.4.2 Fast Fourier Transforms 

Fast Fourier Transform (FFT) magnitudes or phases can be viewed for any of the channels.  

Figure 3.31 shows the magnitudes of the FFTs of the waveforms shown in Figure 3.30.  The 

FFT and IFFT (inverse FFT) algorithms were obtained from numerical recipes in Pascal [25].  

The bell shape of the received signal is significantly different to that of the transmitted with a 

lower centre frequency.  The bell shape is caused by the frequency response of the transducers.  

Example frequency responses of the 50 MHz transducers provided by Olympus (section 3.2.3) 

exhibit this shaped response.  The shifting of the centre frequency is caused by the absorption of 

water (see section 2.5.2) causing the higher frequency components to be greater attenuated.  

Also the centre frequencies of the transducers are not 50 MHz, but instead approximately  

40-44 MHz.  Waveforms can be captured from CH2 at different times and stored in four 

memory slots.   
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Figure 3.31  - Magnitudes of FFTs performed on CH1 and CH2 data. 

This allows FFT magnitude and phase information of four waveforms to be compared and used 

to calculate phase velocity, attenuation coefficient, and acoustic impedance variations with 

frequency.  Either the amplitude/phase/both of an individual wave can be displayed, or all four 

waveforms at once. 

3.4.3 Cross Correlation 

Cross correlation allowed time differences between the transmitted and receive pulses to be 

found to within tens of nanoseconds accuracy.  Figure 3.32 shows the cross correlation result of 

the transmitted and received waveforms in Figure 3.30.  The blue trace shows the received 

trace, and the green the cross correlation result.  Cross correlation or matched filtering [88] is 

the optimal technique for detecting a known waveform in random white noise.  The green cross 

correlation peak in Figure 3.32 is very large as the transmitted 50 MHz wave is only passing 

through 26 mm of water before being received.  It therefore suffers a small amount of 

attenuation due to absorption in the water, resulting in a large signal to noise ratio, 

corresponding to a large correlation peak.  By identifying the time when the cross correlation 

peak is  maximum by  manually  zooming  in on the plot, and  knowing the  scope  delay time as  
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Figure 3.32  - Cross Correlation of received CH1 and CH2 data. 

selected by the user on the GUI time differences between the transmitted and received signals 

can be found.  The time resolution of the cross correlation was 1 ns.  The cross correlation 

algorithm was implemented by reversing the transmitted signal in time, and then performing the 

convolution of the source and received waveforms in the frequency domain, as described in 

[89]. 

3.5 3-axis Servo Motor Positioning System 

The narrow transducer beam widths combined with small focal zones made manual transducer 

alignment for a transmission measurement difficult and time consuming, especially for non-

normal angles of incidence.  The Thorlabs LNR50VK3/M three-axis 50 mm TravelMax stage 

along with the three channel BDC103 DC motor drive was used with a resolution step size of 

500 nm.  A NR360S rotary stage with BSC101 stepper motor drive was obtained that can be 

attached to the 3-axis stage.  This allowed the angle of incidence of one of the transducers to be 

varied with precision.  The two motor drives interface to the controlling PC via USB.  The user 

interface used to operate the motors is the free APT user suite supplied by Thorlabs.   
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Chapter 4  

Porous Anodic Alumina (PAA) Matching 
Layers – Fabrication and Structure  

To investigate the waveguiding influence of anisotropic microstructure on high frequency 

ultrasound, highly collinear porous anodic alumina (PAA) samples were fabricated.  This 

allowed for experimental verification of the finite element modelling (FEM) performed for high 

frequency wave propagation in collinear microstructured materials.  Once the wave propagation 

in an ideal PAA type structure is understood in the FEM and confirmed experimentally, 

understanding of the wave propagation in anisotropic materials with less regularity and 

collinearity can then be considered e.g. fibrous tissues.  In this chapter the anodisation process 

for the fabrication of the PAA samples is described.  For further background on the formation of 

porous anodic alumina on aluminium see [90]-[93].   

 

Unexpected microstructure can be encountered during the non-destructive testing of seemingly 

homogeneous materials.  Solid aluminium is an example that readily oxidises at its interfaces to 

produce aluminium oxide or alumina.  This alumina layer is very thin (of the order of 

nanometers) but consists of a highly aligned regular porous structure.  Taking advantage of this 

property, porous collinear alumina membranes with ten to hundreds of nanometer-sized pores 

and pore wall dimensions can be fabricated by anodising high purity aluminium using a 

controlled and repeatable anodisation process.   
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Such a highly regular structure constrains the propagation of high frequency ultrasound, 

resulting in consistent guided wave propagation.  By modifying the fabrication process 

parameters, the structural properties of the PAA samples (e.g. pore spacing, sample 

architecture) can be modified.  These modifications can lead to variations in the acoustic 

properties, allowing the tailoring of these samples for specific applications.   

4.1 PAA Sample Preparation  

As described in section 2.4, nanoporous anodic alumina samples have been a topic of interest 

for many years due to their unique and ideal nanostructure.  Typical applications include 

templates for growing nanostructured materials, and for use as adhesion layers.  The anodisation 

of high purity aluminium to produce nanoporous alumina structures is well understood and was 

the technique used in this work. 

 

To make these PAA samples, ultra high purity aluminium (99.99%) was used as the substrate 

material.  This was cleaned chemically using ethyl acetate, ultrasonic cleaned for 10 minutes, 

washed with distilled water, and then left to air dry.  Anodisation replicates a mirror image of 

the substrate surface, so the aluminium was pressed between two steel plates before use to 

ensure the anodising process took place on a flat aluminium substrate.  Figure 4.1 shows the 

experimental setup used to anodise the PAA samples.  The prepared aluminium sample was 

placed on a copper plate and then clamped between a cooled steel plate and a clamp-on cell.  An 

o-ring separated the clamp on cell from the aluminium to seal off any leaks (the size of the o-

ring determining the size of the resultant sample).  An electrolyte was then poured into the 

clamp-on cell and stirred using a magnetic stirrer.  Either sulphuric, oxalic, or phosphoric acid 

with 0.3 molL-1 concentration was used as the electrolyte.  It was found that the electrolyte 

determines the pore dimensions of the samples.  A DC current was passed through the 

electrolyte by setting the anodising voltage required for the particular electrolyte used.  The 

positive terminal was connected to the copper plate and the negative terminal connected to a 

platinum electrode that was immersed in the electrolyte as shown Figure 4.1.  With the voltage 

applied, the system was left for the period of time required for the anodising process to take 

place, depending on the desired sample thickness.  Anodisation time with sample thickness is an 

exponential relationship.  Samples of 100 µm thickness took approximately 20 hours, whilst 

samples of 1 mm thickness would take at least a couple of weeks to prepare.  Typical sample 
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thicknesses used were between 60-500 µm.  The anodisation current was monitored during the 

process as an indication of when the desired thickness was obtained.  The current decreased 

exponentially with anodisation depth with the values of anodising current dependant upon the 

electrolyte used e.g. for sulphuric acid at 2.5 mA the thickness of the PAA samples is 150 µm, 

for oxalic acid the current is 5 mA for that same thickness.  Once the desired thickness was 

reached the clamp on cell was then removed and the samples placed into iodine-methanol 

solution to remove any excess metallic aluminium.  All samples produced were robust and 

could be handled comfortably using standard tweezers.   

 

 

Figure 4.1  - PAA sample preparation setup. 

The method used here followed the main steps of most standard PAA anodisation procedures, 

with the major exception being the samples fabricated for this work did not undergo heat 

treatment, the final step usually performed when producing PAA structures.  Heat treatment as 

described in the literature from section 2.4 causes the transformation from amorphous to 

crystalline alumina.  Crystalline alumina phases possess larger elastic constants than the 

amorphous phase.  In this work the amorphous phase was desired and was confirmed for our 

samples using X-Ray diffraction and NMR spectroscopy [63].  No crystalline structure was 

observed until heat treatment temperatures of 800 °C or above. 
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Figure 4.2 shows the variation in interpore spacing as a function of the anodising voltage and 

the electrolyte used.  As can be observed there is a finite voltage range each electrolyte can 

support for the anodising process to occur.  The sulphuric acid electrolyte produces samples 

with the smallest interpore spacing using the smallest anodising voltages.  Oxalic acid is very 

close to this with a slight increase in anodising voltage and similar spread in interpore spacing.  

A very large increase in anodising voltage is then required when using phosphoric acid 

producing significantly larger inter pore spacing.  An incorrect voltage applied to an electrolyte 

causes poorly formed anodic layers on the aluminium substrates.  The general rule found was 

the pore spacing is approximately proportional to 2.5 times the applied voltage.  However there 

is some statistical spread, giving rise to the range of different pore spacings possible for a given 

anodising voltage as observed in Figure 4.2.  These results were obtained from in-house 

measurements of many samples prepared using the three different electrolytes, more detail on 

this relationship can be found in [94] and [95].  The pore size appears closely related to the pore 

spacing, however it is also influenced by the concentration of the electrolyte and the 

temperature at which the process takes places.  Both of these were kept constant in this work.   

 

 

 

Figure 4.2  - PAA interpore distance variations with anodising voltage for the sulphuric, oxalic, 
and phosphoric electrolytes. 
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4.2 PAA Sample Structure  

Example horizontal and vertical cross-sections of all three PAA sample types and a less regular 

commercial PAA sample are now presented.  It should be noted that all four sample types were 

hydrophilic, absorbing water into the pores upon immersion.  Figure 4.3 shows the horizontal 

cross section of a sample prepared using sulphuric acid as an electrolyte where the highly 

regular structure is observed.  Samples prepared using a sulphuric acid electrolyte are called 

type 1 samples.  All the pores are circular and possess the same diameter of approximately 30 

nm.  The pores are regularly spaced from pore centre to pore centre approximately 60 nm apart.  

Each pore is arranged in a hexagonally close packed (HCP) arrangement relative to the 

surrounding pores.   

 

The porosities of these type 1 samples were measured in the range 23-28 % by performing 

greyscale threshold detection image processing in Matlab.  This was performed on several SEM 

images for the same sample type with the results averaged.  The SEM images were read into 

Matlab with a user defined brightness threshold set to distinguish whether a pixel of the image 

was black or white (pore or wall).  These tests were carried out on every pixel converting each 

to either black or white based on the test.  Using the new recreated image the porosity was 

determined by calculating the total number of black pixels divided by the total number of (black 

plus white) pixels.  Figure 4.4 shows the longitudinal cross section where a sample has been 

fractured by physically snapping it in half.  This accounts for the broken pores that are visible.  

What can be observed is how highly collinear the samples are where pores run directly from top 

to bottom with no irregularities in between.  The inset picture shows a zoomed in version of the 

pores where the collinearity of the sample is better observed.  The longitudinal cross sections 

for the other two types of fabricated samples are visually the same with the same level of 

collinearity, the only difference being the dimensions of the pores are different so they are not 

shown. 
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Figure 4.3  - Horizontal cross section of a sulphuric acid prepared porous alumina sample 
(type 1 sample) showing 30 nm sized pores with 60 nm spacing. 

 

 

Figure 4.4  - Longitudinal cross section of a sulphuric acid prepared porous alumina sample 
(type 1 sample) showing the highly collinear structure of these samples. 
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The samples prepared using oxalic acid as an electrolyte are called type 2 samples.  These 

possessed slightly larger pore dimensions and spacing than the type 1 samples but the main 

difference is they exhibited a different architecture.  Figure 4.5 shows a horizontal cross section 

of a type 2 sample.  The pores here are not circular as in the type 1 sample, but instead appear 

more hexagonal in structure.  The regularity is still similar for these samples where the solid 

separating the pores is of uniform thickness.   This solid looks like many plates of uniform 

thickness joined together, quite different when compared with Figure 4.3.  Since this is the case 

a different model was used to simulate these samples.  The pore diameters are larger at 

approximately 40 nm, and these are spaced approximately 80 nm apart.  These samples are also 

much more porous than the type 1 samples with measured porosities in the range 40-44 %. 

 

Finally the samples prepared using phosphoric acid as an electrolyte possessed the largest 

sample pore/spacing dimensions out of the three samples.  These are called type 3 samples.  

Figure 4.6 shows a horizontal cross section of one of these samples.  The pores in this cross 

section are of no particular shape or regularity.   On average, at the widest points these pores are 

approximately 400 nm wide and spaced approximately 500 nm apart centre to centre.  The solid 

separating the pores is of consistent thickness throughout the sample showing a likeness in 

architecture to the type 2 samples.  These walls are approximately 200 nm thick, with the solid 

separating the pores like many uniform thickness plates.  These samples are the most porous 

with measured porosities in the range 46-50 %. 

 

Porous alumina membranes can be purchased commercially.  Figure 4.7 and Figure 4.8 show 

horizontal and longitudinal cross sections of a commercial sample obtained from Whatman 

[106].  As can be seen, these samples display significantly less regularity in pore size, pore 

spacing, and collinearity, in contrast to those fabricated in-house.  They possess an average pore 

size of approximately 200 nm, but the solid separating the pores is not of consistent thickness 

throughout the sample.  The longitudinal cross section reveals the samples are not highly 

collinear where pores do no extend from the top of the sample to the bottom.  This can be 

observed in Figure 4.7 as well where the tops of some pores do not penetrate the surface of the 

sample.  These samples required much more care when handling to avoid fracturing. 
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Figure 4.5  - Horizontal cross section of an oxalic acid prepared porous alumina sample (type 
2 sample) showing 40 nm sized pores with 80 nm spacing. 

 

 

Figure 4.6  - Horizontal cross section of a phosphoric acid prepared porous alumina sample 
(type 3 sample) showing on average 400 nm-sized pores with 500 nm spacing. 
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Figure 4.7  - Horizontal cross section of commercial porous alumina sample. 

 

 
 

Figure 4.8  - Longitudinal cross section of commercial porous alumina sample. 
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Chapter 5  

Finite Element Modelling of Collinear 
Porous Solids 

With the continual increase in computing technology leading to more powerful desktop and 

laptop PCs, the need for large parallel computer clusters for computationally expensive 

simulations is becoming less of a requirement.  Also, with the development of dedicated and 

subject specific finite element modelling packages (FEM), desktop simulations with reduced 

FEM computation times are a reality.  FEM simulations divide a physical problem into a grid of 

discrete elements (typically rectangular or triangular), each with user described material 

properties.  Each element responds to a user-defined stimulus e.g. stress in the case of a 

mechanical simulation, to produce physical outputs from each element e.g. strain, according to 

the set properties and structure of the medium.  Material properties in the case of mechanical 

systems are defined by their elastic constants e.g. Young’s and shear modulus, or by their P and 

S wave speeds, and density.  By increasing the number of elements the accuracy of the 

simulation is improved.  For example, when generating a cylindrical structure using a 

rectangular grid, the more elements used the more realistic the cylinder.  This results in an 

increase in computation time, especially for 3D simulations.  

 

PZFlex [107] written by Weidlinger Associates, is an FEM package dedicated to piezoelectric 

and ultrasonic wave propagation applications.  With the wide range of commands and tools 
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dedicated to ultrasonic applications, a deeper fundamental understanding of a problem can be 

obtained in a time efficient manner before experimental work commences.  In this work FEM 

was performed using PZFlex to investigate the wave guiding properties of highly regular 

structured solids on high frequency ultrasound waves.  Sample dimensions, architectures, and 

wave frequencies were varied, and the impact of these changes observed.  This same detailed 

understanding was not possible experimentally, where the variation in structural properties was 

limited to the three PAA samples fabricated.  Modelling of ultrasonic wave propagation was 

performed in three phases 

 

I. Preliminary simulations were performed for homogeneous media to confirm the 

expected bulk wave propagation in common liquids and solids.   

II.  2D models were then performed on anisotropic media to provide an understanding of 

ideal guided wave propagation in highly structured solids.   

III.  3D modelling was then performed to investigate wave propagation in more realistic 

representations of the fabricated PAA samples.   

5.1 Simulated Material Properties 

As stated in section 4.1, the PAA samples fabricated for this work were confirmed to be in the 

amorphous alumina phase.  The exact bulk acoustic properties of amorphous alumina are not 

well published, however from [60], [62], and [108]-[110] it can be established the acoustic 

moduli of amorphous alumina are approximately 3.0-3.5 times less than those of crystalline 

alumina.  The density of amorphous alumina was determined from [58], [62], and [109].  These 

properties result in longitudinal velocity, shear velocity, and density ranges slightly larger but 

similar to aluminium.  Since uncertainty exists in the exact values of the amorphous alumina 

properties, the alumina was modelled as solid aluminium with acoustic properties obtained from 

[33].  This allowed a logical progression from confirming previous work from the literature on 

free boundary and fluid loaded aluminium plates towards 3D representations of the PAA 

structures using the same material properties.  Even though using the acoustic properties of 

aluminium for amorphous alumina meant measurements (such as velocity) calculated from the 

simulations were not exactly equal to those in amorphous alumina, they still provided a good 

indication of the variations in values expected, and the waveguiding phenomena observed were 

still valid.   
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Table 5.1  - Bulk acoustic properties of crystalline alumina, amorphous alumina, aluminium, and 
water.  

Material Density  
(kgm-3) 

Longitudinal 
Velocity  (ms-1) 

Shear Velocity  
(ms-1) 

Acoustic 
Impedance 
(MRayl) 

α-Crystalline Alumina 3860 10052 6350 40.6 

Amorphous Alumina 2700-3400 6520-7150 3330-3920 17.9-24.3 

Aluminium 2700 6300 3100 17.0 

Water 1000 1480  

(at room temp.) 

0 1.48 

 

Therefore only aluminium and water were the materials used in the simulations with the 

density, velocity, and acoustic impedance values of these shown in Table 5.1.  Also shown are 

the ranges of velocities calculated for bulk amorphous and crystalline alumina.  As can be 

observed the mechanical properties of crystalline alumina are significantly larger than 

amorphous alumina due to the improved order of the crystalline structure. 

5.2 Single Free Boundary Aluminium Plate 

The first simulation performed was a simple 2D model used to analyse the group velocity 

dependence upon incident wave frequency and plate thickness for end on excitation of a single 

free boundary aluminium plate.  The model used is shown in Figure 5.1.  

 

 

Figure 5.1 -  Finite element model of a single free boundary aluminium plate with boundary 
conditions shown (dimensions not to scale). 
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This is the simplest model confirming the original theoretical work performed by Lamb and 

others [19], [21], [22], [24].  Model boundary conditions are shown for all plate boundaries.  

The boundary at the right end is fully absorbing preventing any reflections.  The source is 

applied to the entire left boundary, resulting in plane wave excitation.  The source pulse used for 

all simulations was a Blackman pulse.  The Blackman pulse is the functional form of the second 

derivative of the Blackman-Harris window [111].  It is a temporally compact pulse whose 

frequency content is a Gaussian distribution centred at the selected wave frequency.  Figure 5.2 

shows the Blackman pulse with a centre frequency of 100 kHz used for this simulation in both 

the time and frequency domain.  The frequency spectrum shows a bandwidth just over 200 kHz.   

 

            

Figure 5.2  - Blackman pulse in time and frequency domains. 

Referring to the symmetric mode group velocities shown in Figure 2.5 of section 2.1.3, the 

Lamb wave velocity in a free plate varies significantly with the frequency-thickness (fd) 

product.  The frequency thickness product for this simulation was varied from  

 
Time (x10 -4 sec)  

Frequency (x10 6 Hz) 
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0.025 to 1 MHz.mm, and the group velocity was measured over this range.  This represents the 

range over which the fd product varies with the transducer frequencies and PAA wall thickness 

dimensions used in the experimental work.  This was achieved in the model by fixing the source 

frequency at 100 kHz, then varying the plate thickness from 0.25 to 10 mm.  The FEM element 

size used was 62.5 µm to ensure enough spatial resolution for the smallest plate thickness of  

0.5 mm.  The plate length was 300 mm where the longer the plate the more accurate the velocity 

measurement at the expense of greater computation time.  300 mm equates to 4800 elements 

long, which is more than sufficient to obtain a fair measurement.  The velocity was determined 

by measuring the time difference between pulse peaks at two different ends of the plate.  Using 

this time difference and the known plate length, the plate group velocity vplate is given by 

 

begend
plate tt

L
v

−
=      (5.1) 

 

where tbeg is the time at which the power flux peak occurs at the beginning of the plate, tend the 

time at which the power flux peak occurs at the end of the plate, and L is the length of the plate. 
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Figure 5.3  - Group velocity in a free boundary aluminium plate as a function of the frequency-
thickness product for end on excitation. 
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Figure 5.3 shows the measured variations in group velocity with fd product obtained from the 

simulations plotted with select points obtained using the analytical equations from section 2.1.3.  

The analytical and modelling overlay in excellent agreement with the expected result that the fd 

product has a significant influence on the plate wave group velocity.  For near zero fd products, 

the velocity of the wave is given by equation (2.5).  Using this equation results in a velocity of 

5400 ms-1, agreeing with that observed in Figure 5.3.  The fact the source is excited at normal 

incidence eliminates the possibility of the fundamental anti-symmetric mode, since the wave 

can only consist of longitudinal displacements.  Since the fd product is so low, the existence of 

higher order modes is not possible.  However, due to the broadband nature of the Blackman 

pulse, for larger plate thicknesses, dispersion of the wave was evident.  This is observed in 

Figure 5.4 showing images of the pulse pressure in the plate at (a) the beginning of all plates, 

and upon reaching the end of the plate for thicknesses of (b) 1 mm, (c) 5 mm, and (d) 9 mm.   

 

 

 

(a) 

 

(b) 

 

(c) 
 

 
 

(d) 

Figure 5.4  - Pulse pressure in the free boundary aluminium plate at (a) the beginning of all 
plates, and at the end of (b) 1mm, (c) 5 mm, and (d) 9mm thick plates.  
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In these plots the pulse pressures are represented by a colour as indicated in the colour scale on 

the right.  The same scale was used for each plate where navy blue is the maximum 

compression applied by the pulse and red the maximum expansion.  Figure 5.4 (a) shows the 

source pulse at the beginning of an arbitrary thickness plate.  The thickness is irrelevant here 

since the source pulse is the same at the beginning of all plates.  Here the two navy blue 

components of the pulse correspond to the two positive peaks of the Blackman pulse in  

Figure 5.2 and red the large negative peak.  Observing the pressure at the ends of the three 

different plates (b)-(d), the energy in the waveform becomes significantly more dispersed as the 

width of the plate is increased, where for the 9 mm plate significant energy can be seen to trail 

behind the original main pulse.    

 

 

Figure 5.5  - Power through a vertical line of plate nodes at the beginning (top left) of all plates, 
and upon reaching the end of a 1 mm (top right), 5 mm (bottom left), and 9 mm (bottom right) 
thick plates.  
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Figure 5.5 shows an alternative way to observe this dispersion by plotting the power through a 

vertical line of nodes across the thickness of the plate.  These were plotted (as before) for the 

beginning of all plates, and the ends of 1 mm, 5 mm, and 9 mm thick plates.  The top left plot 

shows the Blackman pulse source that is applied to the beginning of all plates.  The top right 

plot shows the pulse upon reaching the end of a 1 mm thick plate.  Here it can be seen this is 

almost identical to the source.  The next plot in the bottom left shows the result at the end of a 5 

mm thick plate.  The dispersion effects of the guided wave are visible here as it can be seen 

some energy has been transferred to the trailing lobe, creating an asymmetry in the pulse.  This 

can be observed in Figure 5.4 (c) where the leading lobe is now a lighter blue.  The plate is now 

at sufficient thickness such that some of the higher frequency components of the pulse are 

travelling at a slower velocity than the lower frequency components, but still propagate as a 

fundamental symmetric mode.  This can be understood by analysing the frequency content of 

the Blackman pulse shown in Figure 5.2.  For a pulse with a centre frequency of 100 kHz, the 

bandwidth of the Blackman pulse extends from 0-200 kHz.  This results in a fd product range of 

0 to 1, which by Figure 5.3 corresponds to a group velocity range of approximately 5260 ms-1 to 

5400 ms-1.  Observing the final plot in the bottom right for the 9 mm thick plate (an fd product 

range of 0 to 1.8), the dispersion is more exaggerated, where enough energy travelling at a 

slower velocity has been transferred to create a second major peak.  More energy is now 

travelling at slower velocities as more minor peaks are now visible.  This can be clearly 

observed in Figure 5.4 (d) where significant energy is trailing the original pulse and the leading 

lobe contains significantly less energy than before. 

5.3 Single Water Loaded Aluminium Plate 

The free boundary aluminium plate simulations confirmed the dependence of the wave group 

velocity upon both the incident wave frequency and plate thickness.  This was extended by 

modelling the aluminium plate as immersed in water by loading the aluminium plate with water 

on both sides.  The model used for this simulation is shown in Figure 5.6.  Absorbing 

boundaries were applied to the three boundaries shown to prevent the reflection of any waves 

incident upon them back into the model.  Absorbing boundaries are purely absorbing for 

normally incident waves but poor absorbers at near grazing incidence (absorbing grazing 

boundaries  can  be  used for such incidence).  However  given the angles of incidence of waves   
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Figure 5.6  - Finite element model of a fluid loaded aluminium plate with boundary conditions 
shown (dimensions not to scale). 

generated in this model were not near grazing incidence absorbing boundaries were appropriate.  

This reduces the size of the model and computation time.  Here the water widths were made 5 

mm so any waves propagating in the water could also be easily observed.  A 100 kHz Blackman 

pulse was applied only to the elements of the aluminium plate on the left boundary as shown 

above.  The length of the model was 300 mm and the element size used was 62.5 µm. 

 

Figure 5.7 (a)-(c) shows three images of the pressure in a 5 mm thick plate, each taken 47 µs 

into the simulation using different pressure scales to reveal several interesting points.  Figure 

5.7 (a) shows a single waveform propagating in the aluminium plate with a pressure scale just 

large enough to prevent amplitude saturation of the pulse in the plate.  On this scale it appears 

almost all the energy is confined solely to the aluminium plate.   

 

In Figure 5.7 (b), the pressure scale amplitude has been reduced by a factor of six so that the 

plate wave amplitude has saturated the scale.  Now it can be seen energy does leak from the 

plate into the surrounding water, since a wake (called a bow wave) can be observed to 

propagate along with the aluminium plate wave but in the water.  The total energy leaked into 

the water is very small since the pressure scale has been reduced significantly yet the amplitude 

in the water still appears small.  The total amount of energy leaked into the water is dependent 

upon how far along the plate the wave has propagated.  In the observed simulation shot, the 

total energy leaked into the water is just 0.14 % of the plate wave energy.         

Absorbing boundary 

Absorbing  boundary 

Absorbing  
boundary Source 

  Aluminium         Water 

300 mm 

5 mm 0.25-10 mm 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 5.7  - Water loaded aluminium plate snapshots 47 µs into the simulation for three 
different amplitude scales. 

By reducing the pressure scale by a further factor of ten Figure 5.7 (c) reveals a saturated plate 

wave and bow wave, but also identifies an additional slow wave.  This wave propagates much 

slower than the plate wave, appearing to travel at the water velocity and propagating primarily 

in the water, but with a small amount of energy present in the plate.  This wave is the slow 

mode mentioned in the classic paper by Osbourne and Hart [26].  However, the energy in this 
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wave is insignificant when compared with the primary wave.  For the distance travelled above, 

the energy of the slow wave was too small to quantify, at least several orders of magnitude less 

than the water bow wave.  The terms fast wave and slow wave are now used for the wave 

propagating in the plate and water respectively. 

 

Variation in the fast and slow wave velocities with aluminium plate thickness were investigated 

using the same method as in the previous section.  The plate thickness was varied from 0.25 to 

10 mm and the velocity of both waves measured.  The resulting group velocity versus fd 

product curves for the fast and slow waves are shown in Figure 5.8 and Figure 5.9.  The values 

plotted in Figure 5.8 are in good agreement with those plotted for the free boundary aluminium 

plate in Figure 5.3.  Comparing velocity values at several fd products reveals very little 

variation between the two curves.  The velocity in the limit as the fd product tends to zero is the 

S0 Lamb mode velocity of 5400 ms-1.  Therefore the water loading is not significant enough to 

have an affect on the fast wave velocity.   
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Figure 5.8  - Fast wave velocity in a water loaded aluminium plate with frequency-thickness 
product. 
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Figure 5.9  - Slow wave velocity in a water loaded aluminium plate with frequency-thickness 
product. 

Figure 5.9 shows the slow wave velocity versus the fd product.  This shows a dispersionless 

velocity characteristic with the wave travelling at a constant velocity of 1480 ms-1 for the 

plotted fd products. 

5.4 Water Filled Porous Aluminium 

This section extends the previous simulations and studies by modelling multiple aluminium 

plates (or pillars) separated by water filled pores, creating an ideal porous microstructured 

material in two dimensions.  This layer was then connected to solid aluminium to demonstrate 

the difference in wave propagation between microstructured and homogeneous media.  This 

simulation was performed for both the excitation of a single aluminium plate and plane wave 

excitation.  The model used and associated boundary conditions for the point source model are 

shown in Figure 5.10.   
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Figure 5.10 - 2D model of a water loaded porous aluminium layer connected to solid 
aluminium with boundary conditions as shown.  The source was excited on the bottom most 
pillar. 

The porous layer consisted of 25 aluminium pillars separated by water filled pores.  Both the 

porous layer and solid aluminium were 300 µm in length.  The aluminium pillar and water pore 

widths were 2 µm.  The source was a 50 MHz Blackman pulse, initially incident on the bottom 

most aluminium pillar as shown in Figure 5.10.  A frequency of 50 MHz was used as this is the 

lowest operating frequency of the transducers used in the experimental work.  This pillar is half 

the size due to the symmetrical boundary condition applied to that boundary.  These parameters 

result in a frequency-thickness product of 0.2 MHz.mm.  The model mesh size used was  

250 µm, 1/60th of a wavelength in the water.  Figure 5.11 (a)-(c) shows three snapshots of the 

plate x-displacement taken at 0.35 µs, 0.7 µs, and 1.05 µs after the beginning of the simulation.  

 

After 35 ns, the incident wave is travelling in the first aluminium pillar as a single spatially 

compact wavefront guided along the pillar with a velocity of 5400 ms-1, rather than as the 

individual P and S wavefronts expected for a point source in a homogeneous solid.  This fast 

wave velocity showed similar fd product dependence as observed in the previous section.  The 

close proximity of adjacent pillars facilitates energy transfer through the water pores into these 

pillars, resulting in the observed wake.   
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(a) 35 ns. 

 

 

(b) 70 ns. 

 

 

(c) 105 ns. 

Figure 5.11  - Simulation of water loaded porous aluminium connected to solid aluminium  
(a) 35 ns, (b) 70 ns, and (c) 105 ns after the beginning of the simulation. 
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A slow wave can also be observed in the first water channel travelling at the velocity of water of 

1480 ms-1.  This slow wave velocity was again found to be constant with both frequency and 

aluminium plate thickness.  The amplitude of this wave in this simulation is again much smaller 

than the fast wave.  The x-displacement scale is intentionally saturated in order for the slow 

wave displacement to be visible on this scale.  The small energy in the slow wave is due to the 

fast wave consisting predominantly of longitudinal displacements and little affected by the 

presence of the water, resulting in very little energy transfer into the water.  For a point source 

the width of the pores influences the amount of energy transferred into adjacent pillars, with 

more energy transferred for thinner pore widths. 

 

After 70 ns, the wavefront reaches the porous/solid aluminium interface and energy starts to 

transfer into the solid.  Already it can be seen the compact wavefront is now beginning to spread 

(since the first aluminium pillar acts like a circular source of energy) into the solid aluminium.  

In this snapshot the slow wave can be observed more clearly, and the wake is spread out over a 

wider number of pores.   

 

At 105 ns, the model becomes a little more complicated with multiple waves but is easily 

understood.  Upon reaching the material interface and propagating into the solid, the compact 

fast wave ceases to exist as no longer guided by the porous aluminium pillars the P and S 

components are free to travel at their respective velocities.  The individual P and S waves 

spread spherically outwards from the material interface at their respective velocities.  The S 

wave velocity is 3100 ms-1, close to half the P wave velocity of 6300 ms-1.  Figure 5.11 (c) also 

shows that a reflected fast wave and an interface wave are created.    The fast wave propagates 

to the left at the same velocity as before with an observed wake.  This reflected wave is of 

significance, as this suggests an impedance mismatch between the porous and solid aluminium 

exists at the interface.  Since the acoustic properties of the solid fractions of the porous 

aluminium layer and the bulk aluminium layer are modelled as the same, the impedance 

mismatch at the interface is caused by the properties of the propagating waves; this impedance 

mismatch is further explored in section 5.6.  The marked interface wave is coupled to both the P 

and S waves propagating in the solid, and the fast wave in the porous aluminium, with a clear 

stream of energy connecting them.  The influence of the interface wave on the S wave is the 

wavefront is not perfectly spherical.  The interface wave propagates upwards along the interface 

and in the process creates new slow waves that propagate to the left in the porous layer.   
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(a) 39 ns. 

 

(b) 71 ns. 

 

(c) 178 ns. 

Figure 5.12  - Plane wave excitation of water loaded porous aluminium connected to solid 
aluminium (a) 39 ns, (b) 71 ns, and (c) 178 ns after excitation. 
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These new slow waves are coupled to the P wave in the solid as a stream of energy can be seen 

to connect them.  These new slow waves contain significantly more energy than those originally 

propagating to the right since these have been created by a reflection at the interface, and not 

created by the small amount of energy leaked between aluminium pillars.  The original slow 

waves propagating to the right can still be observed having almost reached halfway along the 

porous layer.   

 

For plane wave incidence the result is considerably simpler.  The model used for plane wave 

excitation required only minor changes from the single pillar excitation model.  The lengths of 

both layers were reduced to 200 µm and the number of aluminium pillars reduced to 20.  The 

entire left boundary was then excited and the top boundary modified from absorbing to 

symmetrical to simulate an infinite plane wave.  The bottom and right boundaries were kept the 

same.  Figure 5.12 (a)-(c) shows the plane wave simulation results 39 ns, 71 ns, and 178 ns after 

excitation.  After 39 ns, the slow wave and fast wave are clearly observed propagating at  

1480 ms-1 and 5400 ms-1 respectively.  In comparison to the single aluminium pillar excitation 

just discussed, with plane wave excitation significantly more energy propagates in the water 

filled pores since the entire porous layer face is now excited.  In the snapshots, the slow wave 

appears to contain the same amount of energy as the fast wave.  However, not only is the scale 

saturated in the snapshots, but also the slow wave energy is concentrated over a smaller 

wavelength.  Comparison of the FEM energy integrals of the fast and slow waves reveals the 

fast wave energy is many times greater than the slow wave.  This is explored further below. 

 

After 71 ns the fast wave has propagated into the solid aluminium where it travels at the P wave 

speed in aluminium.  This is obvious since there is a noticeable increase in the wavelength.  A 

reflected fast wave of small amplitude can be seen to propagate to the left of the interface 

generated by the impedance mismatch between the porous and solid aluminium.   

 

Finally, after 178 ns the slow wave has reached the interface, been reflected and now travelling 

to the left, and transmitted a small amount of energy into the solid aluminium creating a P wave.  

This energy transmitted by the slow wave is significantly less than the energy transmitted by the 

fast wave since the impedance mismatch between the water and the solid aluminium is much 

greater, resulting in a large reflection coefficient and significant energy reflected back into the 

layer. 
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For plane wave excitation of the layer, the energy transfer is different since the source pulse is 

now incident on both the water pores and aluminium at the same time. The energy partition 

between the aluminium and water was analysed with variations in both frequency and 

aluminium pillar width.  Figure 5.13 plots the simulated fast wave energy in the aluminium 

pillars relative to the slow wave energy in the water pores as an energy partition ratio against 

variations in wave frequency; a near continuous range of frequencies was used in the generation 

of this plot.  For these measurements the pore and aluminium widths were both  

2 µm, or expressed as a porosity, 0.5 or 50%.  Porosity in 2D is defined as the total pore area 

divided by the total sample area (use volumes in 3D).  As can be observed the energy partition 

is fairly constant out to 200 MHz showing approximately 11.9 times more energy propagates in 

the aluminium than in the water for these dimensions.  For frequencies greater than 200 MHz 

the energy ratio begins to slowly decrease with more energy starting to travel in the pores.  This 

change however is only minimal, hence the scale used, decreasing by only 0.3 to 11.4 at  

300 MHz, the limit of the usable transducer bandwidth of our system.  Figure 5.14 examines the 

fast to slow wave energy ratio dependence upon the pore width relative to the aluminium pillar 

width, i.e. the layer porosity.  This was performed for 50 MHz and 150 MHz.   
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Figure 5.13  – Fast wave to slow wave energy ratio versus frequency for 2 µm aluminium pillar 
and pore widths.   
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Figure 5.14  - Fast wave to slow wave energy ratio versus porosity at 50 MHz and 150 MHz. 

Here it can be seen for fixed frequencies with increasing porosity the amount of energy that 

propagates in the aluminium as a fast wave decreases, and thus the energy content propagating 

in the water as a slow wave increases.  The energy content of the slow wave is however 

insignificant for low porosities and remains so until approximately 0.9 (or 90 % porosity) where 

it becomes comparable to the fast wave energy.  There is almost no difference between the  

50 MHz and 150 MHz traces except for a slightly higher energy ratio at 50 MHz for porosities 

less than 10 %.  At the extreme of near 100 % porosity (water medium) the ratio tends to zero 

since all the energy is now in the water and vice versa for near 0 % porosity. 

5.5 Normalisation and Preservation of Waveforms in Porous 
Aluminium Layers 

In the previous simulation, for a waveform normally incident on a single aluminium pillar it was 

observed how a spatially compact wavefront propagates within the porous microstructured 

layer.  This wave, due to the frequency thickness product of the microstructure and incident 

wave frequency travelled at the fundamental symmetric Lamb mode velocity of 5400 ms-1.  

This next simulation investigated the propagation behaviour within the microstructured porous 

layer for the occurrence of non-normal angles of incidence.   
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Figure 5.15  - 2D model of a water loaded porous aluminium layer connected to both water 
and solid aluminium with boundary conditions shown.  A single element was excited as shown. 

The model structure and boundary conditions are shown in Figure 5.15.The model consisted of 

a porous aluminium layer with water filled pores, connected to both water on the left and solid 

aluminium on the right.  The porous layer was 200 µm in length, the water layer 50 µm, and the 

solid aluminium 100 µm.  The porous layer consisted of aluminium pillars of width 4 µm 

separated by 4 µm water filled pores.  In this model there were 40 aluminium pillars.  The 

boundary conditions were absorbing boundaries on all sides apart from the excitation boundary.  

The element size of the model was 250 nm.  The source used was a 50 MHz Blackman pulse 

incident on a single element in the centre of the left most boundary.  The purpose of using a 

point source here was to generate a spherical waveform that was incident on the porous layer at 

all angles of incidence, from zero to ear normal.  Figure 5.16 (a)-(c) shows three snapshots 

taken at three different times during the simulation.   

 

Figure 5.16 (a) is captured 35 ns after the start of the simulation.  As can be observed the 

waveform generated from the single element excitation was a spherical waveform impinging 

upon the first interface at all angles of incidence.   The wavelength in the water was 30 µm. 
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Figure 5.16 (a)  - Simulation of spherical wave 35 ns after the beginning of the simulation. 

 
 
 

 

Figure 5.16 (b)  - Simulation of spherical wave 70 ns after the beginning of the simulation. 
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(c) after 90 sec 

Figure 5.16 - Simulation of spherical wave (a) 35 ns, (b) 70 ns, and (c) 90 ns after the 
beginning of the simulation. 

Upon reaching the water/porous layer interface, Figure 5.16 (b) shows a snapshot of the 

waveform 70 ns after the beginning, now propagating inside the porous layer.  A reflected 

waveform can be observed to propagate back into the water, due to the impedance mismatch 

between the porous aluminium and water.  Inside the porous layer, two waveforms are now 

observed - a fast wave and a slow wave.  Measuring the velocity of the waves using the same 

technique as in previous simulations, the velocity of the fast wave is measured again to be  

5400 ms-1 and the slow wave 1480 ms-1.  An interesting point is the entire spherical wave shape 

is preserved upon incidence of the porous layer.  For homogeneous aluminium, using equation 

(2.19) from section 2.3.2, critical angles of 14° and 29° exist for the P and S waves respectively.  

For angles of incidence greater than or equal to these, the respective waves travel along the 

interface and do not propagate into the medium.   

 

In contrast to this, it can be seen from Figure 5.16 (b) that the porous layer allows transmission 

for all angles of incidence, normalising the incident waveform.  At the porous layer interface 

Snell’s law no longer applies since it is only applicable at homogenous media interfaces.  

Instead guided wave propagation occurs in the microstructure, eliminating the occurrence of 

first and second critical angles.  Also, during transmission through this layer, the wave does not 
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continue to spread spherically as occurs in homogeneous media, but rather maintains the same 

shape of the wave upon entry into the porous layer.  This result has significant implications as 

the information in many imaging systems is obtained from the shape of a received waveform. 

 

The final snapshot Figure 5.16 (c) is taken 90 ns after the beginning of the simulation.  This 

shows the wave exiting the porous layer and entering the solid aluminium.  A small almost 

unnoticeable waveform is reflected at the porous layer/solid aluminium interface, implying an 

impedance mismatch between the porous layer and solid aluminium.  Once in the solid 

aluminium, no longer constrained by the porous layer microstructure the wave spreads 

spherically outwards, exiting the layer with the same waveshape of that upon entering the layer. 

5.6 Acoustic Impedance of Free Boundary Aluminium P late 

In the previous two simulations, reflections at the porous aluminium/solid aluminium interface 

were observed.  These implied the porous aluminium possessed an acoustic impedance different 

from that of the solid aluminium.  In this simulation the variation in the percentage energy 

reflected (or energy reflection coefficient) at a single aluminium plate/solid aluminium interface 

as a function of plate thickness was investigated.  Figure 5.17 shows the structure of the model 

used with boundary conditions.  The model consisted of an aluminium plate 260 mm in length 

that widened into a solid aluminium block at the end of the plate.   

 

 

         

Figure 5.17  - 2D model of a single aluminium plate connected to solid aluminium with 
boundary conditions shown. 
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The dimensions of the large solid block were not critical as it was only used to create the 

impedance mismatch between the plate and the aluminium solid.  The only requirement was 

that it was wide enough so that bulk wave propagation occurred in the solid.  The length of the 

solid was arbitrary since an absorbing boundary condition was applied to the right most 

boundary.  The source was a 100 kHz Blackman pulse incident on the entire left most boundary, 

creating a plane wave.  This choice of frequency is arbitrary provided the plate dimensions are 

of the right thickness relative to a wavelength in order to observe reflectivity changes.  The 

thickness of the plate was varied from 250 µm to 10 mm, resulting in a frequency-thickness 

product range of 0.025 to 1 MHz.mm.  An element size of 50 µm was used to provide adequate 

spatial resolution for the smallest plate thickness.  The simulation was run for 100 µs, providing 

enough time for a wave to travel to the end of the plate and a reflected wave to propagate 

halfway back.  The energy content of this wave needs to be measured to determine the 

reflection coefficient at the interface. 

 

Figure 5.18 (a)-(c) shows three energy integral and instantaneous power plots with time, 

calculated for a vertical line of nodes stretching the thickness of the plate, at several points 

along the plate length for a 1 mm thick plate.  Figure 5.18 (a) shows the energy integral and 

instantaneous power plots at the beginning of the aluminium plate, (b) halfway along the 

aluminium plate, and (c) beginning of the widened aluminium.  The energy plot shows the net 

energy that has propagated through the line of nodes with time.  Any energy propagating 

through a line is recorded as positive if it is right going (travelling away from the source), and 

negative if it is left going (reflected back towards the source).  This can be observed in Figure 

5.18 (b).  The lower trace shows the instantaneous power with time through the line of nodes 

defined halfway along the plate where both a positive transmitted wave and a negative reflected 

wave are observed.  The energy integral above that reflects this where the energy reaches a 

maximum then drops as the reflected wave passes through the plane in the opposite direction.  

To calculate the energy reflection coefficient the total original energy and total reflected energy 

were required to be found.  The original energy was found using the energy integral result of 

Figure 5.18 (a).  The energy integral result of Figure 5.18 (b) was the original energy less the 

reflected energy.  By taking the energy integral result of Figure 5.18 (b) and subtracting that 

from the energy integral of Figure 5.18 (a) the reflected energy could be calculated.  Taking this 

result as a fraction of the original energy gives the energy reflection coefficient R.  The resulting 

reflection coefficient variations with frequency-thickness product are shown in Figure 5.19. 
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Figure 5.18 (a)  - Energy integral and instantaneous power plots for a 100 kHz wave in an 
aluminium plate of 1 mm thickness, recorded at the beginning of the aluminium plate.  

 

 

 

Figure 5.18 (b)  - Energy integral and instantaneous power plots for a 100 kHz wave in an 
aluminium plate of 1 mm thickness, recorded halfway along the aluminium plate. 
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(c) Beginning of widened aluminium solid 

Figure 5.18  - Energy integral and instantaneous power plots for a 100 kHz wave in an 
aluminium plate of 1 mm thickness.  Snapshots are recorded at (a) the beginning of the 
aluminium plate, (b) halfway along the aluminium plate, and (c) at the beginning of the widened 
aluminium solid. 

Observing Figure 5.19 the reflection coefficient at the plate/solid interface is greatest when the 

frequency-thickness product is smallest.  As the frequency-thickness product is increased the 

aluminium plate becomes wider, reducing the difference between the plate and the widened 

solid, reducing the reflectivity.  With an fd product of 1 MHz.mm, the reflection coefficient is 

approximately just 5 %.  Equations (2.13) and (2.16) can be combined to given an expression 

for the unknown plate acoustic impedance Z1.  
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where R is the energy reflection coefficient.  Using (5.2), the known solid aluminium acoustic 

impedance of 17 MRayl, and the calculated energy reflection coefficients, the variations in plate 

acoustic impedance is plotted against fd product in Figure 5.20. 
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Figure 5.19  - Percentage energy reflected from aluminium plate/solid interface with fd product. 
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Figure 5.20  - Aluminium plate acoustic impedance versus fd product. 
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5.7 Rectangular and Triangular Architecture Models of PAA 
Samples 

The 2D modelling performed revealed several points of significant interest 

• The velocities in the aluminium plates of all of the simulations were dependant upon the 

incident wave frequency and aluminium plate/pillar thickness. 

• Water loading of the porous aluminium pores caused small amounts of energy to leak to 

adjacent aluminium pillars, the extent of which was dependent upon the sample porosity.    

• For plane wave excitation the porosity of the porous layer determined the energy 

partition between the water filled pores and aluminium plates.   

• In addition to the S0 like Lamb mode in the aluminium, a slow wave propagated in the 

water channel with the P wave velocity of water. 

• Reducing the aluminium plate thickness resulted in an increase in the acoustic 

impedance mismatch between the solid and porous aluminium layers. 

• A microstructured porous layer normalised incident waveforms, allowing reception for 

angles of incidence well beyond the critical angles that exist at an interface between two 

homogeneous media.  

 

Whilst the above information was useful, simulations were performed on 3D porous 

microstructures more representative of the fabricated PAA samples.  These 3D models provided 

a greater insight into what was expected in the experimental work.  Models performed in 3D 

require more elements and calculations leading to increased computation times.   

5.7.1 Triangular and Rectangular Models 

The type 1 PAA samples show a typical hexagonal closely packed (HCP) structure.  The type 2 

and type 3 PAA samples are however quite different, not exhibiting an obvious HCP structure.  

Two different architectures were therefore modelled to investigate the influence of architecture 

on the observed wave guiding phenomena.  These were called the rectangular model and 

triangular model.  The rectangular model was used to reflect the main structural properties of 

the type 2 and type 3 samples since they display similar pore/pore wall architectures, and the 

triangular model was used to reflect the type 1 HCP like structure.  Whilst the respective models 

incorporate the structural characteristics of the PAA samples, they are not intended to be an 

exact simulation of the PAA samples.   
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Figure 5.21  - Rectangular model horizontal cross section used to model the type 2 and type 3 
PAA sample architectures. 

 

 

Figure 5.22  - Triangular model horizontal cross section used to model the type 1 PAA sample 
architecture. 
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The wave phenomena observed however provided a good indication for what was expected 

when experimental measurements were performed on the PAA samples. Horizontal cross 

sections of the rectangular and triangular models are shown in Figure 5.21 and Figure 5.22 

respectively.  Blue represents the sample pores, and grey the aluminium pore wall structure.  

The rectangular model simulates the type 2 and type 3 samples with regularly spaced square 

pores in a grid separated from each other by aluminium pore walls of uniform thickness.  From 

SEM images the pores of the type 2 and type 3 samples were not rectangular, as consistent in 

shape, or as well arranged as the grid in Figure 5.21.  However the pore size and aluminium 

pore wall thicknesses were very consistent as simulated in this model.   

 

2D modelling showed the pore size and solid thickness to be the important characteristics 

determining sample velocity and acoustic impedance.  Pores were modelled as squares to reduce 

the number of elements and thus computation time.  SEM images of the type 1 samples showed 

the pores were arranged in a face centred structure, significantly different from the type 2 and 

type 3 samples.  To simulate this, pores were arranged in a triangular arrangement relative to the 

surrounding pores.  Comparison of the two models shows the rectangular model aluminium 

content was simulated as many aluminium plates separating the pores, whereas in the triangular 

model the aluminium becomes more like bars as the aluminium content is reduced.    

 

The cross sections of each model were followed through 100 µm in length (the z-axis), creating 

highly collinear porous 3D structures.  Pores are assumed void unless stated otherwise.  The 

porous layers were attached to a solid aluminium layer creating an impedance mismatch in 

order to measure the porous sample reflectivity.  Fixing the pore size at 500 nm, simulations 

were performed for aluminium plate thicknesses in the range 50-4000 nm - a porosity range of 

0-80 % for the rectangular samples, and a porosity range of 0-45 % for the triangular model.  

This upper porosity limit for the triangular model comes about since as the inter-pore separation 

is reduced, the pores will eventually come into contact preventing continuous coupling between 

the aluminium. 

 

By applying symmetry, the two models were reduced to those shown in Figure 5.23 and Figure 

5.24, reducing computation time significantly.  These reduced models contain all of the 

structure of Figure 5.21 and Figure 5.22, however with a fraction of the computation time to run 

the model.  The dimension s is the pore separation distance, and p the rectangular pore width.   
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Figure 5.23  - Symmetrically reduced rectangular model with symmetrical boundaries. 

 

                        
 
 

 
 

 

Figure 5.24  - Symmetrically reduced triangular model with symmetrical boundaries. 
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These are shown as divided by two due to the symmetrical boundary conditions applied to the 

model.  The porosity of a sample φ is defined as 

 

 
areatotal

areapore

_

_=φ      (5.3) 

 

Using the parameters from the reduced models, the porosity of the rectangular and triangular 

models are given by equations (5.4) and.(5.5) respectively. 
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Energy reflection coefficients were measured using the same method as used in section 5.6.  

Using these measurements, and the known solid aluminium acoustic impedance, equation (5.2) 

was used to find the unknown porous layer impedances.  Wave velocities were calculated using 

the same method as used in section 5.2.  The excitations used were plane wave 50 and 150 MHz 

Blackman pulses applied to all elements and excited along the z-axis.  The finite element size 

used was 25 nm to provide adequate spatial resolution for the models with the smallest 

aluminium wall thickness.  Simulation time was 40 ns, providing enough time for a wave to 

reach the porous layer/solid interface and reflect back.  Energy integrals were calculated by 

defining 2D planes in x and y located at desired points along the z-axis.  Performing these 

measurements, the variation in the rectangular and triangular model velocity, reflectivity, and 

acoustic impedance with sample porosity and frequency were found. 

5.7.2 Velocity 

Figure 5.25 shows the variation in the rectangular and triangular geometry velocities with 

sample porosity at 50 and 150 MHz.  Given the different sample architectures, sample velocity 

was plotted against porosity to allow direct comparison between samples of differing 
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architectures.  Observe that the 50 MHz and 150 MHz rectangular model velocity traces 

overlap, as do the 50 MHz and 150 MHz triangular model traces, showing the sample velocity 

is independent of the wave frequency.  This is due to the small substructure dimensions of the 

material relative to the wavelength.  The frequency was increased further to 200 MHz for 

specific porosities and still no change in velocity was observed.   

 

The velocity though is observed to show dependence on the sample architecture and sample 

porosity.  In the limiting case of 0 % porosity (solid aluminium), both the triangular and 

rectangular model velocities tend to the aluminium P wave speed of 6300 ms-1.  For values of 

porosity up to 20 % the velocities for both architectures are the same, decreasing from the P 

wave speed as porosity is increased.  As porosity is increased further, at approximately 25 % the 

dependence on architecture is first observed as the traces begin to separate.  By 40 % the 

difference is significant where the velocity for the triangular model is approximately 5270 ms-1 

and for the rectangular model just under 5400 ms-1.  This separation occurs since as the porosity 

is increased, the guided wave propagation in the two types of architectures is different.  For the 

rectangular model, propagation remains as a plate wave regardless of porosity due to the 

structure of the aluminium.  For the triangular model, as the porosity is reduced the architecture 

causes the formation of bar like zones with very little coupling between adjacent bars, and 

becomes dominated by the bar mode.  In the limit as porosity is increased towards 100 %, the 

rectangular model trace asymptotically approaches the S0 Lamb mode velocity of 5400 ms-1 

given by equation (2.5).  The triangular model asymptotically approaches the fundamental bar 

mode velocity of 5090 ms-1 given by equation (2.10) using a Young’s modulus of 70 GPa for 

aluminium, calculated from the bulk aluminium P and S wave speeds. 

 

The above velocities were measured with the pores assumed void of any fluid.  Since the PAA 

samples were immersed in water during the experimental work, the velocity measurements were 

repeated for the models at 50 and 150 MHz with water filled pores to see if any changes in the 

velocities occurred.  As with the 2D modelling, there were no significant differences between 

the water filled and void pore measurements.  The water filled measurements were repeated for 

select porosities up to 200 MHz where again no significant changes were observed. 
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Figure 5.25  - Rectangular and triangular model velocities versus porosity for 50 and 150 MHz 
waves. 

5.7.3 Reflectivity 

The variation in the energy reflection coefficient (percentage energy reflected) at the 

porous/solid aluminium interface with porosity, frequency, and architecture is shown in Figure 

5.26.  As can be observed there is no distinction between any of the four graphs, meaning the 

energy reflection coefficient is independent of both frequency and architecture, but still highly 

dependent upon porosity.  In the limiting case of 0 % porosity (solid aluminium) the reflected 

energy is 0 % resulting in 100 % transmission.  For low porosities 10 % or less, the percentage 

energy reflected is very low implying the propagating waves are not significantly guided for 

these porosities.  This is due to the bulk material still being largely aluminium with a small total 

pore area.  At the triangular model maximum porosity of 45 %, the percentage reflected energy 

is around 12 % suggesting a significant impedance mismatch.  By increasing the porosity to  

60 %, the reflected energy almost doubles to approximately 23 %.   
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Figure 5.26  - Rectangular and triangular model energy reflection coefficients versus porosity 
at 50 and 150 MHz. 

Extending beyond this to a very high porosity of 80 %, the energy reflection coefficient reaches 

50 %, however physical samples with such porosity are not realistic.  Figure 5.26 shows the 

variation in the reflectivity of the samples is not linear, but appears to vary with the square of 

the sample porosity.  This is expected as by changing the sample porosity the impedance Z1 

changes, which by the nature of equation (2.13) means the pressure reflection coefficient is 

varying non-linearly.  To calculate the energy reflection coefficient equation (2.13) is squared 

as according to equation (2.16), resulting in the observed quadratic behaviour. 

5.7.4 Acoustic Impedance 

Using the energy reflection coefficients from the previous section, and the known solid 

aluminium acoustic impedance, the variations in the rectangular and triangular model acoustic 

impedances could be found.  Since the reflection coefficients were found to be independent of 

both frequency and architecture, according to equation (5.2) so would the acoustic impedances.  

Therefore Figure 5.27 only plots the variations in the rectangular model acoustic impedance 

with porosity at 150 MHz.   
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Figure 5.27  - Rectangular model acoustic impedance versus porosity at 150 MHz. 

A highly linear relationship between sample acoustic impedance and porosity is observed, with 

a wide range of acoustic impedances that can be generated by simply varying the sample 

porosity.  Increasing the porosity from 0 to just 10 %, the acoustic impedance of the layer is 

reduced from 17 MRayl (solid aluminium) to less than 15 MRayl.  In the range of 40-50 % 

porosity, comparable to the porosity range found for the type 2 and type 3 samples, impedances 

in the range 7-9 MRayls can be realised.  Finally, at 60 % porosity the impedance is reduced 

almost to 5 MRayl.  Given the type 3 sample porosities vary between 45–50 % porosity and are 

still very robust, the fabrication of a 60 % porosity sample is very realistic.  This would allow - 

given the type 1 samples possess porosities of 20-25 % - an impedance range of 5-13 MRayl for 

these samples.  This is an ideal impedance range for transducer matching purposes.   

 

Acoustic impedance measurements were not repeated with water filled pores as it was found 

fluid loading had little influence on the measured velocity.  As described in section 2.2 velocity 

and density determine the characteristic acoustic impedance of a medium.  It was also shown in 

section 5.4 that the amount of energy propagating in the water relative to the aluminium is 

insignificant, specifically for the dimensions concerned with here.  This means the consideration 

of just the fast wave properties by setting the pores to be void is a fair approximation to 

determine the wave-guiding properties of these porous samples. 
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5.8 Significance of the Modelling Results - PAA Tra nsducer 
Matching Layers 

The results from the 2D and 3D FEM revealed the wave guiding properties of a collinear 

microstructured material display compared to a bulk solid.  The combination of these properties 

would be ideal for a high frequency transducer matching material, showing significant 

advantages over the currently used materials.  Matching layers, as described in section 2.3.3, are 

intermediate layers placed between two poorly acoustically matched media to increase the 

energy coupling between them.    

 

In medical ultrasound, the high acoustic impedance (>30 MRayl) of commonly used 

piezoceramics for transducer active elements [96], [97], and the low acoustic impedance (< 1.6 

MRayl) of biological tissues [40], is a large acoustic impedance mismatch, resulting in poor 

energy transmission into the tissue samples.  Calculating the energy transmission coefficient at 

the interface of these two materials using equations (2.16) and (2.18) results in a transmission 

coefficient of just 0.19; this acoustic mismatch can be reduced significantly by including one or 

more acoustic matching layers into the transducer.  As reported in section 2.3.3, matching 

materials with acoustic impedances in the range of 3 to 14 MRayl are often required 

unfortunately there are no useful single phase solids that fall in this range. 

 

To realise these impedances, the state of the art technique is to use an epoxy matrix loaded with 

a fine powder, where the fractional loading of the powder determines the overall impedance and 

attenuation of the layer.  In [98], alumina powder with a 3 µm particle size was mixed with 

epoxy for matching layers operating in the 20-70 MHz range.  In [99] and [100] silver powder 

of a similar particle size was used.  The problem with these loaded materials is the presence of 

the particles causes them to be intrinsically lossy as the sub-wavelength scatterers cause 

diffusive scattering of the ultrasound (see section 2.5.1.2).  This scattering shows significant 

frequency dependence and hence loaded epoxies are often used to make lossy backing materials 

to dampen the active element of a transducer [98].   

 

For very high frequencies e.g. 100 MHz, these layers must be made less than 8 µm thick in 

order to satisfy the quarter wavelength requirement.  This means even finer submicron sized 

loading powders must be used to ensure a uniform matching layer is obtained.  This was 
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demonstrated in [101] and [102] where high quality alumina powder with 30 nm average 

particle size was mixed with epoxy realising impedances in the range of 2.8 to 5.1 MRayl.  This 

reduced the attenuation in the matching layer considerably at high frequencies compared to 

those made with 3 µm particles [98].  Attenuation was 15 dBmm-1 at 40 MHz and significantly 

increased with the fourth power of frequency beyond this.  This was recently improved in [103] 

where cerium oxide with 20 nm average particle size was used, increasing the upper limit of 

adjustable impedance to 7 MRayl, with a quoted value for attenuation in the layer of 500 

dBmm-1 at  

100 MHz.  These matching layers are very lossy at frequencies where signal strength is critical, 

and require the use of very fine loading powders.     

 

The proposed solution to these lossy, scattering, matching layers, is to use porous 

nanostructured materials with a regular highly collinear structure to act as a waveguide to the 

incident ultrasound waves.  The waveguiding properties mean there would be very little 

scattering in these layers, with the only attenuation due to the material absorption.  Less regular 

porous filtration membranes have been shown in [104] and [105] to improve energy coupling 

significantly in air-coupled ultrasound applications over the frequency range of 0.3-3 MHz.  

The modelling performed on highly collinear microstructured materials demonstrated properties 

such as the normalisation of incident ultrasonic waves, a wide range of adjustable acoustic 

impedances, and no dispersion.  The independence of the sample velocity on frequency is an 

important characteristic not found in current matching layers.  The scattering characteristic of 

epoxy/powder layers causes the distortion of generated pulses, modifying the spectrum of the 

wave.   
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Chapter 6  

Experimental Characterisation of PAA 
Samples 

With the FEM performed, verification of the waveguiding phenomena observed in the 

modelling was obtained by performing experimental measurements on the PAA samples.  As 

mentioned in section 4.1, the PAA samples were not porous aluminium, but did possess similar 

acoustic properties.  This meant the exact values of these properties will differ somewhat 

between experiment and modelling, but the dependence of these upon frequency, architecture, 

porosity etc. should be the same.  Experimentally measured PAA velocity, acoustic impedance, 

and attenuation measurements are presented in this chapter.  The velocity and acoustic 

impedance measurements are compared with the modelling results from the previous section, 

and the attenuation measurements compared with values for the state of the art matching layers 

found in the literature.    

6.1 Velocity 

The variations in the PAA sample velocity measurements with angle of incidence, sample 

structure, and frequency are presented in this section.  These results are compared with those 

generated from the modelling reported in section 5.7.2.  These measurements were made using 

the three different frequency transducers driven with 50 MHz, 100 MHz, and 175 MHz pulses 
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respectively.  These were single cycle sine pulses centred at the above transducer frequencies 

with a 20 % Blackman window [112] applied to each.  Windowing prevented sharp 

discontinuities in the time domain and resulted in a smooth frequency spectrum with 

significantly reduced lobes.  The transmission measurement experimental configuration 

described in section 3.1.1 was used to perform the measurements.   

 

Measurements were performed on the three different in-house fabricated PAA samples, a 

commercial PAA sample, and a high purity solid aluminium sample.  The angle of incidence of 

the transmitting transducer was varied from 0° to 40° degrees and the group velocities 

measured.  Measuring the velocity over these angles provided an indication of the normalising 

capabilities of each of the samples under test.  Equation (3.3) was used to calculate the group 

velocities.  Since the samples were rigid, the sample thicknesses could be measured using a 

Mitutoyo dial micrometer.  The measuring needle restoring spring was removed from the 

micrometer to ensure minimal compressional force was applied to the sample during 

measurement.  The thickness measurements were accurate to within ± 5 %.   

6.1.1 Solid Aluminium 

The measurements for a solid aluminium sample are shown in Figure 6.1 where the variations in 

the group velocity are plotted with transducer angle of incidence from 0° to 40° at 50 MHz.  For 

normal incidence only the bulk aluminium P wave with a velocity of 6300 ms-1 was observed as 

expected.  As the angle was increased to small angles (< 10°) beyond normal both the P wave 

and an S wave with a velocity of 3100 ms-1 were measured.  After 14° the P wave was no longer 

observed, only the S wave.  This was the case until 28° where for angles greater than this the S 

wave was also no longer observed.  This is in agreement with the theory from section 2.3.2 

where it was shown for a water/aluminium interface the theoretical P wave critical angle was 

found to be 14°, and the S wave critical angle 29°.  For any angles of incidence greater than 

these the respective waves travel along the surface of the interface, thus going undetected in a 

transmission measurement. 
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Figure 6.1  - Variations in group velocity with transducer angle of incidence at 50 MHz for solid 
high purity aluminium sample. 

The energy content of the measured P and S waves with angle of incidence were consistent with 

those plotted in Figure 2.12.  This shows the expected fraction of energy transmitted as a P and 

an S wave and the expected fraction of the reflected energy with angle of incidence at a 

solid/aluminium interface.  In the range of 10-14° angle of incidence experimental 

measurements found significant energy in both the P and S wave solid aluminium components 

with the S wave energy approximately 25-40 % of the P wave energy over this range. 

6.1.2 In-house Fabricated PAA Samples 

The variations in the group velocity for the in-house fabricated PAA samples with angle of 

incidence at 50 MHz are shown in Figure 6.2.  For all three samples only a single wavefront of 

constant velocity was received up to angles of 40°.  The variations in the measured velocities 

for all three samples were in good agreement with the results produced from the modelling, 

which predicted a dependence of wave velocity on sample porosity. 

 

For type 1 samples the porosity was measured to vary between 23-28 %.  From the triangular 

model (closely resembling the type 1 sample architecture) simulation results from section 5.7,  
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velocities were calculated in the range of 5600-5700 ms-1 over this porosity range.  This is in 

good agreement with the experimentally measured velocities for the type 1 samples in Figure 

6.2 that varied between 5816-5890 ms-1.  For the type 2 and type 3 samples, porosities were 

measured to vary between 40-44 % and 46-50 % respectively.  From the rectangular model 

simulation results, the velocity did not vary significantly over the range of 40-50 % porosity 

with simulated velocities in the range 5550-5600 ms-1.  From Figure 6.2 the measured type 2 

sample velocities varied between 5662-5730 ms-1, and for the type 3 samples velocity 

measurements were on average less than this, varying in the range 5620-5685 ms-1.  Both of 

these ranges are in good agreement with the rectangular model results.   
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Figure 6.2  - Variations in sample group velocity with transducer angle of incidence at 50 MHz 
for the three in-house fabricated PAA samples. 
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Figure 6.3  - Variations in sample group velocity with transducer angle of incidence at  
100 MHz for the three in-house fabricated PAA samples. 
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Figure 6.4  - Variations in sample group velocity with transducer angle of incidence at  
175 MHz for the three in-house fabricated PAA samples. 
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The experimentally measured velocities were all larger than those obtained from the modelling, 

but within approximately 5 %.  This is expected since the bulk acoustic properties of amorphous 

alumina are larger than those of solid aluminium.  The velocity measurements were then 

repeated at 100 MHz and 175 MHz, which are plotted in Figure 6.3 and Figure 6.4 respectively.  

At 100 MHz signals were significantly attenuated and as a result measurements were made to 

an angle of incidence of only 20°.  This was reduced further to 15° at 175 MHz.  Once again the 

velocity for the three samples can be observed to be constant for all angles of incidence.  The 

main point to note is the increase in frequency has produced no significant variation in the 

velocities, with the same velocity difference observed between all three samples at the three 

different frequencies.   

 

Figure 6.5, Figure 6.6, and Figure 6.7 plot the velocity variations with angle of incidence at all 

three frequencies for each of the type 1, type 2, and type 3 samples respectively.  This allows 

direct comparison between velocity and frequency for the same sample types.  From these it is 

confirmed the variation in frequency from 50-175 MHz has no significant influence on the 

measured velocity for any of the samples.  
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Figure 6.5 - Velocity versus angle of incidence at 50 MHz, 100 MHz, and 175 MHz for the  
type 1 samples. 
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Figure 6.6  - Velocity versus angle of incidence at 50 MHz, 100 MHz, and 175 MHz for the  
type 2 samples. 
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Figure 6.7  - Velocity versus angle of incidence at 50 MHz, 100 MHz, and 175 MHz for the  
type 3 samples. 
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These measured velocity results at the three frequencies are therefore consistent with those 

observed in the modelling.  This is because the experimentally measured velocities were found 

to be independent of the propagating frequency, and appeared to be independent of architecture, 

but dependent upon porosity.  Velocity differences were consistently observed between the type 

2 and type 3 samples for all three frequencies yet both types display similar architectures.  Type 

1 and type 2 samples contain very similar dimensions, but very different porosities, and hence 

show significantly different velocity measurements.   

 

Ignoring sample type and architecture, the variations in the average measured velocities with 

average porosities are plotted for 50 MHz, 100 MHz, and 175 MHz in Figure 6.8.  Here the  

25 % porosity measurements correspond to the type 1 sample velocity measurements at all three 

frequencies, and the next two porosities the type 2 and type 3 velocity measurements performed 

at all three frequencies.  This is in good agreement with the velocity versus porosity curve from 

the modelling results in Figure 5.25. 
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Figure 6.8  - Average sample velocity versus porosity at 50 MHz, 100 MHz, and 175 MHz. 
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For all PAA samples, the velocities were measured for angles up to 40°, well past the P and S 

critical angles that exist for the solid aluminium.  The reason for this is the microstructure of the 

PAA samples impose a dimensional constraint relative to the incident wavelength, acting as 

waveguides and normalising the incident propagating waves.  This is consistent with the 

modelling results presented in section 5.5.  This allows the detection of signals over a wide 

range of angles of incidence.  The significance of this property is signals incident beyond the 

critical angles potentially convey important information, but go undetected in systems that 

cannot normalise signals at such angles.   

 

Analysis of the amplitudes of the waveforms measured from the PAA samples for all angles of 

incidence revealed only the fast guided wave and its reverberations.  The slow waves observed 

in the modelling that propagate within the pores of the samples were not observed 

experimentally for any of the three sample types.  This is consistent with the modelling results 

from section 5.4 where it was found the ratio of energy between the fast and slow waves was 

30:1 at 20 % porosity, 12:1 at 50 %, and was not until 90 % where the energy partition reaches 

1:1.  Therefore due to the slow velocity and small signal amplitude the slow wave was hidden in 

the sample reverberation.  To confirm this samples would have to be made many times thicker 

to ensure the slow wave was received before the fast wave reverberation in the plate. 

6.1.3 Commercial PAA Sample 

The commercial PAA samples velocity results are plotted in Figure 6.9 at 50 MHz.  For the 

commercial samples, only a single wavefront was received, as was the case for the in-house 

fabricated samples.  This is due to the pore wall dimensions of the sample being of the same 

order as the in house fabricated PAA samples, imposing a dimensional constraint.  Velocities 

were also measured out to 40°, however the velocity was found to be highly variable in 

comparison to the in-house fabricated samples.  The waveforms also appeared somewhat 

distorted and consistently lower in amplitude when compared with the in house samples.  Given 

the poor collinearity of these samples (see Figure 4.7 and Figure 4.8) this variation in velocity 

and amplitude was expected since the velocity will depend on the wave path travelled and thus 

the irregular variation in sample porosity, and the misaligned pores creating sites for significant 

scattering.  This was observed for measurements at normal incidence where the sample was 

moved around so that different parts of the sample were illuminated.     
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Figure 6.9  - Variations in group velocity with transducer angle of incidence at 50 MHz for a 
commercial PAA sample. 

Observing the oscilloscope whilst doing this, significant variations in time and amplitude of the 

received signals were observed.  This is in contrast to that observed for the in-house fabricated 

PAA samples where very little temporal or amplitude variations were observed.  Velocities for 

the commercial samples were measured in the range 5290-6195 ms-1. 

6.2 Acoustic Impedance 

The acoustic impedances of each of the in-house fabricated PAA samples were measured using 

the pulse-echo method described in section 3.1.2.  This method involved measuring at normal 

incidence the amplitudes reflected from both the unknown PAA samples and a homogeneous 

sample of known acoustic impedance, in this case high purity aluminium.  The thickness of the 

unknown and known samples did not need to be the same as the transducer height was adjusted 

until the received signal strength from a sample reached a maximum.  At this height the sample 

was within the focal zone, located independent of the sample thickness.   

 

Using the known acoustic impedances of the high purity aluminium and water, and the 

measured amplitudes from each sample, the unknown acoustic impedances of the alumina 
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samples were calculated using equation (3.8).  The resulting acoustic impedance measurements 

are summarised in Table 6.1, Table 6.2, and Table 6.3 corresponding to measurements made at 

50 MHz, 100 MHz, and 175 MHz respectively.  These are compared with those calculated from 

the modelling.  The measured impedances of each type of sample were averaged over at least 

five samples and performed at the three different frequencies using the same waveforms as used 

for the velocity measurement.  For all three samples the impedance measurements showed no 

frequency dependence.  The uncertainty range in the measured impedances took into account 

the uncertainty in the known aluminium and water acoustic impedances. 

Table 6.1  - Acoustic impedance measurements of PAA samples compared with those 
simulated at 50 MHz. 

Sample Porosity  
(%) 

Modelled Impedance 
(MRayl) 

Measured Impedance 
(MRayl) 

Type 1 25.5 ± 2.5 11-12  13.3 ± 2.00 

Type 2 42 ± 2.0 8-9 10.2 ± 1.56 

Type 3 48 ± 2.0 7-8 9.06 ± 1.39 

 

Table 6.2  - Acoustic impedance measurements of PAA samples compared with those 
simulated at 100 MHz. 

Sample Porosity  
(%) 

Modelled Impedance 
(MRayl) 

Measured Impedance 
(MRayl) 

Type 1 25.5 ± 2.5 11-12  12.9 ± 1.97 

Type 2 42 ± 2.0 8-9 10.3 ± 1.58 

Type 3 48 ± 2.0 7-8 9.22 ± 1.41 

 

Table 6.3  - Acoustic impedance measurements of PAA samples compared with those 
simulated at 175 MHz. 

Sample Porosity  
(%) 

Modelled Impedance 
(MRayl) 

Measured Impedance 
(MRayl) 

Type 1 25.5 ± 2.5 11-12  13.1 ± 2.00 

Type 2 42 ± 2.0 8-9 10.2 ± 1.56 

Type 3 48 ± 2.0 7-8 9.19 ± 1.41 
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Figure 6.10  - Average acoustic impedance of PAA samples versus porosity.   

The modelled impedances are those calculated in section 5.7.4 for the porosity ranges of the 

actual fabricated PAA samples.  Comparing the modelled values with those measured 

experimentally they are in close agreement, with all of the measured values larger than those 

from the simulation.  As with the velocity measurements, the acoustic impedance of alumina is 

larger than that of aluminium, and as a result the experimental measurements are also larger.  

The type 2 and type 3 measured impedances are very similar even though the samples possess 

very different dimensions.  This is due to the porosities of these two samples being very similar, 

confirming the results from the modelling where it was found the acoustic impedance was 

independent of sample dimensions, architecture, and frequency, but dependent upon sample 

porosity.  Figure 6.10 plots the average acoustic impedance of the PAA samples (impedance 

was found to be independent of frequency) as a function of the sample porosity.  From this a 

linear relationship between acoustic impedance and porosity can be observed, which is in 

excellent agreement with that shown from the 3D modelling performed in section 5.7.4. 

 

Assuming the linear relationship continues for higher porosities, since a measured experimental 

impedance of 9 MRayl could be realised for porosities of 46-50 % and the samples were still 
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very robust, the porosity can be increased further to realise impedances of 7 MRayl or less.  The 

PAA samples would then fulfil the very common range of impedances required for impedance 

matching layers of 7-12 MRayl.   

 

It is recognised the acoustic impedances calculated from the modelling were found for a porous 

layer where the pores were void of any fluid.  This is different to the experimental 

measurements where the pores were water filled since the samples were immersed during 

measurement.  From the FEM modelling it was concluded the water loading of the samples 

should not cause a significant difference in impedance measurement, as the triangular and 

rectangular models showed no observable variation in velocity with water present.  This is due 

to the majority of the energy propagating in the solid with very little energy transferred into the 

water. 

6.3 Attenuation 

The attenuation coefficients of the PAA samples were measured using the transmission method 

described in section 3.1.1.3.  For each sample type two samples were fabricated, one 

approximately 100 µm thick, the other at least close to 500 µm thick in order to achieve a 

significant difference.  Measuring the amplitudes after transmission through the two samples, 

the attenuation coefficient was calculated using equation (3.4).  The same pulses and 

frequencies as described for the velocity and impedance measurements were used, with the 

measurements performed at normal incidence.  The resulting attenuation measurements are 

summarised in Figure 6.11 expressed in dBmm-1.  The measurements made were averaged over 

several samples.  As with the velocity measurements, only a single waveform of significant 

amplitude was received corresponding to the fast wave travelling in the solid.  This means all 

attenuation measurements refer to the fast wave travelling in the alumina.   

 

Observing Figure 6.11, comparison between the three sample traces reveals significant 

differences in the attenuation coefficients.  The samples with the smallest attenuation 

coefficients were the type 1 samples varying from 2.6 dB.mm-1 at 50 MHz to just 8 dB.mm-1 at 

175 MHz.  The type 2 sample coefficients were slightly higher varying from 4.7 dB.mm-1 to  

12 dB.mm-1 over the same frequency range.  The type 3 samples showed the highest attenuation 

coefficients varying from 11.6 dB.mm-1 to 22 dB.mm-1. 
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Figure 6.11  - Variations in PAA sample attenuation with frequency. 

These variations can be explained by referring to the modelling in section 5.4.  There, the 

energy partition between the aluminium pillars and the water pores of a porous aluminium layer 

was investigated for plane wave incidence.  This was investigated by calculating the total 

energy propagating in the fast waves in the aluminium pillars relative to that propagating as 

slow waves in the water pores.  Figure 5.14 revealed this ratio was influenced by the aluminium 

pillar to water pore width ratio.  As the aluminium pillar widths were increased relative to the 

water pores (reducing porosity), the greater the amount of energy that propagated in the 

aluminium as a fast wave, thus reducing the total slow wave energy.  For the type 3 samples 

possessing the largest porosities, the fast wave energy will be the smallest of the three samples, 

and the slow wave energy the largest.  Since the slow wave is lost in the fast wave 

reverberation, and the attenuation measurement is based on the fast wave amplitude, this is 

consistent with Figure 6.11 where the attenuation is the highest in the type 3 samples.  The 

difference in attenuation between the PAA samples is therefore a measure of modal energy 

distribution, not a difference in sample scattering or absorption.   
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To understand the significance of the above attenuation coefficient measurements requires 

comparison with the currently used state of the art matching layers made from nanoparticle 

loaded epoxies as found in [101] and [103].  Reference [101] uses alumina colloidal/polymer 

nanocomposite films with particle sizes in the range of 10-40 nm.  The lowest attenuation 

measurement achieved from this work for any of the samples was 15 dBmm-1 at a frequency of 

40 MHz, and appeared to increase beyond this with the fourth power of frequency.  Comparison 

with our samples reveals even the type 3 samples show almost half as much attenuation at  

50 MHz varying with the square of frequency.  Reference [103] used nanocomposite cerium 

oxide polymer matching layers with particle sizes of 20 nm, reporting an attenuation 

measurement of 0.5 dBµm-1 at 100 MHz, or 500 dBmm-1.  The difference between this value 

and the largest value measured for our samples at 100 MHz of 11 dBmm-1 is extremely 

significant.  For frequencies in excess of 100 MHz these nanoparticle matching layers will 

become excessively lossy, making our porous samples a very suitable and desirable alternative.   

 

The excellent attenuation performance of the PAA samples is due to the highly collinear 

nanostructured alumina walls.  These extend through the samples from top to bottom, acting as 

waveguides to the propagating waves throughout the entire structure.  These waveguides cause 

no scattering to the propagating waves, with the only attenuation caused by material absorption.  

This is a significant improvement over the nanometer-sized powders used in [101] and [103] to 

make current matching layers, which result in significant amounts of frequency dependant 

scattering in addition to the material absorption. 

6.4 Summary of Measured PAA Sample Properties 

The experimental data presented in the previous sections 6.1, 6.2, and 6.3 for each of the in-

house fabricated PAA samples are summarised in Table 6.4.  Since the velocity and acoustic 

impedance measurements were found to be frequency independent, the values summarised in 

the table below are averaged over the results from the three frequencies used.  The attenuation 

coefficient measurements being dependent upon frequency are stated for all three frequencies.   

 

The type 1 samples possess 1) the smallest physical dimensions and porosity, 2) the largest 

velocity and acoustic impedance, but 3) the smallest attenuation coefficients.  Type 3 samples 

are the opposite  possessing  the largest   physical  dimensions  and  porosity, and in terms of the  
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Table 6.4  - Measured in-house fabricated PAA sample properties. 

Sample 
Type 

Electrolyte Pore Size 
(nm) 

Pore 
Spacing 
(nm) 

Porosity 
(%) 

Velocity  
(ms-1) 

Acoustic 
Impedance 
(MRayl) 

Attenuation 
(dB.mm-1 @ 
MHz) 

1 Sulphuric 30 60 25.5 ± 2.5 5840 ± 43 13.1 ± 2.00 2.11 @ 50  

3.45 @ 100  

8.55 @ 150  

2 Oxalic 40 80 42 ± 2 5696 ± 41 10.2 ± 1.56 3.67 @ 50  

5.80 @ 100 

12.1 @ 150 

3 Phosphoric 400 500 48 ± 2 5671 ± 40 9.16 ± 1.40 8.86 @ 50  

11.1 @ 100 

18.7 @ 150 

 

mechanical properties the smallest velocity and acoustic impedance, but the largest attenuation 

coefficient. The type 2 samples are a combination of the others possessing physical dimensions 

almost the same as the type 1 samples, yet possess porosities, architectural, and mechanical 

properties much closer to the type 3 samples.  This is due to the architecture and porosity 

appearing to determine the mechanical properties of the samples. 

 

All three types of samples show significant advantages over currently used loaded epoxy 

materials.  The normalising properties of the PAA samples allows for reception over a much 

wider range of angles, resulting in increased signal to noise ratio, and reception of waves that 

would have otherwise gone critical.  The attenuation coefficients of these samples are excellent 

out to and beyond frequencies where the attenuation of currently used layers become 

unacceptably high.  The PAA matching layers showed no measurable dispersion at least to 200 

MHz preserving waveshape and frequency content.  The variation in PAA impedance with 

porosity allows them to be tailored for a specific application, and if porosities of 60 % (realistic 

for these PAA samples) can be fabricated, will result in a potential impedance range of 5-17 

MRayls. 
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Chapter 7  

Anisotropic Poly(Vinyl-Alcohol) Tissue 
Mimicking Phantoms 

Tissue mimicking phantoms are an important component in medical ultrasound research, as 

they often offer a more repeatable, easier to prepare, and ethical alternative to handling actual 

tissue samples.  Such phantoms should possess similar properties, structures, and dimensions to 

the real tissues of interest and it should be possible to easily replicate these phantoms to ensure 

consistency throughout many experiments.   

 

Poly (vinyl alcohol), commonly known as PVA, is now the accepted material used by medical 

ultrasound researchers to make tissue phantoms.  PVA is currently most commonly made into 

homogeneous phantoms known as cryogels that are covered extensively in the literature [113]-

[116].  These gels maintain their shape at room temperature and can be tailored to possess 

similar tissue properties e.g. velocity, by exposing the samples to repeated freezing-thawing 

cycles.  However as shown in [113] the cross-linking process that takes place during the freeze-

thaw cycles does not introduce any preferred orientation or significant anisotropic structure (at 

least at the micron scale) into the phantom.  As described in chapter 1, this is significantly 

different from many real tissues such as muscle that possess a highly anisotropic structure, 

containing fibres microns in diameter, and tens of microns in length, orientated along the same 

direction.   
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As medical ultrasound systems continue to increase towards the use of 100 MHz and higher 

frequencies, these real tissue properties and dimensions need to be considered, since the 

insonifying wavelengths become comparable to the tissue microstructure dimensions.  Such 

microstructure can influence the wave velocity, scattering, and propagating modes depending 

on the frequency-microstructure dimensions and orientation.  New more advanced tissue 

phantoms that possess these real tissue structures and dimensions need to be developed for this 

purpose. 

 

Microstructured anisotropic PVA phantoms were developed in this work that possess tailorable 

acoustic properties with similar dimensions, microstructure, and orientation to that of real 

fibrous tissues.  These phantoms appear to be a suitable starting point for the fabrication of 

more advanced tissue-mimicking phantoms. 

7.1 The Freeze Casting Process 

A process known as freeze casting was used to fabricate porous anisotropic tissue phantoms.  

Materials with aligned porous structures have many applications in areas such as organic 

electronics, ceramics, microfluidics and molecular filtration.  These materials can be fabricated 

using processes such as microfabrication and photolithography, however a simple, cheap, and 

novel approach is to use freeze casting or directional freezing.  Using this simple technique, 

aligned porous materials with 2D surface structures or 3D monolithic structures can be made. 

The same basic technique can be applied to produce porous ceramic structures [117], [118], 

porous polymer structures [119], [120], or drug release scaffolds [121] for controlled drug 

delivery.   

 

The freeze casting process used in this work was tailored for this application and consisted of 

four main steps:  

1. Slurry preparation  

2. Unidirectional freezing 

3. Sample preparation 

4. Freeze drying   

Each of these steps is described in sections 7.1.1, 7.1.2, 7.1.3, and 7.1.4 respectively below.   
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7.1.1 PVA Slurry Preparation  

The first step in the process was the preparation of aqueous PVA slurry.  The choice of PVA 

polymer is very important in determining the final structural properties of the phantom.  Firstly, 

the molecular weight of the PVA polymer determines the solubility of the samples with the 

smaller molecular weights being the more soluble.  Samples prepared using lightweight 

polymers were observed to dissolve in a matter of seconds.  Molecular weight was also found to 

contribute to the final mechanical strength of the samples by contributing to the degree of PVA 

inter- and intra- molecular bonds in the phantom.  The PVA used in this work was purchased 

from Sigma-Aldrich, catalogue number 563900, batch # 10708CH, possessing an average 

molecular weight of 130,000 gmol-1 and was greater than 99 % hydrolysed.  For this molecular 

weight the samples lasted 2-3 days from the time of immersion in water till fully dissolved.  In 

this work, once a sample was immersed in water, measurements were performed immediately to 

minimise the affects of sample degradation over time on the measurement accuracy.   

 

PVA slurry concentration was found to influence the final porosity of the sample, pore wall 

thickness, and density.  The PVA slurries were varied between 5-10 % concentrations by weight 

by slowly adding 5-10 g of PVA powder to 90-95 mL of pure water (depending on 

concentration) in a beaker that was heated to 80 °C.  The solution was then maintained at 80 °C 

and mixed thoroughly using an automatic heater/stirrer for 2-3 hours to ensure a uniform slurry 

was obtained.  To minimise dehydration during the process, the beaker was covered with plastic 

wrap.  Silica gel particles - often added as a scattering component to homogeneous PVA 

phantoms - are not required as scattering is intrinsic to these samples due to their porous 

microstructure.   

7.1.2 Unidirectional Freezing  

Once the slurry was prepared, the next step was the unidirectional freezing of the slurry in order 

to create an aligned porous microstructure.  4 mL of the solution was poured into a 5 mL 

polystyrene flat base vial.  It is very important to use a vial with minimal curvature and defects 

on the base as these factors can introduce unwanted nucleation sites, biasing the microstructure 

formation.  This vial was then placed into a sample holder attached to the Thorlabs 3-axis 

positioning stage (described in section 3.5) as shown in Figure 7.1.  Larger volumes can be 

used. 
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Figure 7.1  - PVA sample vial lowering setup. 

The sample vial was then lowered by the z-axis linear actuator at a rate between 3-7 mm/minute 

into a low thermal conductivity flask of liquid nitrogen.  The low thermal conductivity flask was 

used to prevent nitrogen evaporation.  In order to ensure unidirectional freezing, the sample 

holder must be held rigidly and completely isolated from all movement. This will ensure that 

the temperature gradient from liquid nitrogen temperature at the base of the sample vial, to 

room temperature at the top of the sample vial, only exists along the direction of lowering.  The 

top of the liquid nitrogen flask where the sample is lowered through is surrounded by 

polystyrene (not shown) to further prevent liquid nitrogen evaporation.  Evaporation results in 

the effective rate of lowering being slower than the actual set value.   

   

The freeze-casting process that takes place during lowering is described with the aid of Figure 

7.2.  As the sample is first lowered into the liquid nitrogen, ice nucleation occurs on the bottom 

of the vial as the water content in the slurry begins to freeze, and the ice crystals in the sample 

form according to the Mullins-Sekerka instability criterion [120].  This criterion defines a 

wavelength that determines the periodicity of the ice cell growth, dependent on many different 

parameters.   

 

Linear Motor 

Sample Vial 

Liquid Nitrogen 

Sample holder 

Electronic Drive 



 145 

 

Figure 7.2  - The freeze casting process showing the ice crystal formation within the slurry vial 
that is lowered into the liquid nitrogen. 

With the first ice growth sites separated by the Mullins-Sekerka wavelength, these original sites 

become preferred formation sites for further ice growth, leading to the formation (assuming a 

unidirectional temperature gradient is present) of vertical ice pillars along the direction of 

freezing.  The PVA molecules are excluded from the ice formation process, causing them to 

accumulate in between the ice pillars.  The PVA polymer chains then form tight inter and intra-

molecular bonds with surrounding polymers trapped between the ice pillars.  This process 

continues to take place until the sample is fully immersed ensuring the sample is fully frozen.  

The sample was then raised at a much faster rate, removed, and then placed into an external 

container of liquid nitrogen to prevent thawing of the sample before sample preparation. 

7.1.3 Sample Preparation  

Sample preparation involved cutting the sample to the desired thickness before the final freeze-

drying step.  Once freeze dried, the PVA samples were almost impossible to cut without causing 

permanent damage.  Therefore the easiest solution was to cut the samples to size whilst still 

frozen.  After evaluating several different methods, samples were cut by sawing them while 



 146 

immersed in liquid nitrogen.  Sawing caused the least surface structural damage, generating no 

significant heat provided the blade was kept cool.   

 

The plastic vial with the sample still inside was clamped in a custom made PVC plastic v-block 

that was mounted inside a small volume plastic box; PVC was used to reduce nitrogen boil off.  

The box was then filled with liquid nitrogen, immersing the sample for sawing.  Sawing was 

carried out using an Emco mill drill machine mounted at 90 degrees with a slotting saw blade 

that was lowered to perform the cut.  The slotting saw blade was cooled before sawing to 

minimise initial heat exposure to the PVA samples.   

 

 

Figure 7.3  - Axial and radial cuts made on frozen PVA samples. 

To cut samples for measurement along the direction of PVA alignment, the first cut was made 

halfway along the sample vial, perpendicular to the direction of casting i.e. radially as shown in 

Figure 7.3.  Successive radial cuts were then made on each sample half from the middle 

outwards, cutting the sample into discs of 1-2 mm in thickness and diameter of 10 mm.  The 

diameter of the samples was set by the diameter of the vial, in this case 10 mm.  Once cut, these 

discs were then placed back into liquid nitrogen until the final freeze-drying process.  To cut 

samples for measurements perpendicular to the direction of PVA alignment, the first cut was 

made axially as shown in Figure 7.3, splitting the sample along the axis of the vial.  Cuts were 

then made radially on each half, and once again samples were immediately placed in liquid 

nitrogen for temporary storage. 
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7.1.4 Freeze Drying of Prepared Discs 

Once the solid anisotropic discs had been prepared, they were still not useable since leaving the 

sample at room temperature would cause the samples to thaw and eventually lose 

microstructure.  By removing the ice crystals, these phantoms (provided these samples were not 

immersed in water) could be kept at room temperature for many months.  Therefore the ice 

crystals had to be removed without letting the samples thaw.  To do this the process of freeze-

drying [122] was used that removes the ice crystals via sublimation. This process is a standard 

procedure commonly used in the food industry for long-term food preservation.  Freeze drying 

is a thermodynamic process that transforms water from the solid ice phase to the gas phase 

without passing through the liquid phase.  Figure 7.4 shows the phase diagram for pure water.  

The process of freeze-drying (or sublimation) represented by the left most arrow requires the 

surrounding pressure of the water to be reduced and heat applied.  However, if the pressure is 

reduced sufficiently, no heating is required.  This is the concept of a commercial flask freeze 

dryer commonly used in chemistry laboratories where the pressure is reduced below 300 mTorr. 

 

 

Figure 7.4  - Pressure/temperature phase transition diagram for pure water. 
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A custom vacuum chamber was prepared that was evacuated using a double vane rotary pump.  

This pump is capable of reducing the chamber below 250 mTorr with several samples present, 

eliminating the need for any heating.  Commercial freeze dryers contain a condenser, converting 

the water vapour into the liquid phase to reduce corrosion of the pump vanes and preventing 

water vapour being absorbed into the pump oil.  A condenser was not used in our setup due to 

the small volumes of water involved.   Regular pump ballast was applied after each freeze-

drying process to remove any water vapour absorbed, and the pump oil was changed regularly 

as a precaution.  Samples were fabricated and cut to size during the day, then placed in the 

freeze dryer and left overnight.   

7.2 PVA Structure  

Using the fabrication method described in the previous section, example horizontal and 

longitudinal cross sections of the PVA samples are presented. These structures were viewed 

using a JEOL 5300 scanning electron microscope (SEM).  The samples were prepared for SEM 

viewing by sputtering a 30 nm gold film onto the viewing surface.  The samples were attached 

to the SEM sample mount using carbon tape from the bottom of the mount to the top of the 

sample ensuring good electrical grounding of the material.   

 

Figure 7.5 shows a SEM micrograph of the horizontal cross section of a phantom prepared 

using a 5 % concentration by weight PVA slurry, lowered at a nominal rate of 3 mm/min.  The 

significant anisotropic microstructure of the phantom can clearly be observed.  The pores of the 

sample are created by the absence of the ice crystals that were sublimed off during the freeze 

drying process and are arranged in a fairly regular structure.  The pores are almost hexagonal in 

shape and relatively consistent in size.  Even though this is a horizontal cross section, intended 

to be looking directly down the pores, the sample looks as though it was on an angle when the 

image was taken.  This is due to a slight difference in angle between the SEM viewer and the 

sample vertical pore axis.  The pores also appear to be asymmetrically shaped, as though the 

sample had undergone some compression, resulting in elongated hexagonal pores.  This was 

present in a number of samples, and it is quite possible that during the application of the carbon 

tape to the sample, slight compression may have taken place due to handling of the samples.   
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Figure 7.5  - Horizontal cross section (section made perpendicular to the direction of freeze 
casting) of a 5 % concentration by weight PVA phantom lowered at 3 mm/min. 

The PVA walls separating the pores are of consistent thickness with dimensions between 5-15 

µm.  These pore wall dimensions are in good agreement with the myocardial fibre diameters 

measured in rat heart tissue, found to be 10-12 µm in diameter as stated in [123].  The pore 

walls themselves can be observed to possess their own microstructure.  Increasing the PVA 

concentration or reducing the sample-lowering rate increases the density of these walls.  The 

solid feature located in the bottom left corner disrupting the regularity of the structure is not part 

of the actual phantom microstructure.  Instead, this is a flake that has settled on the surface as a 

result of fracturing the original sample for SEM imaging. 

 

Figure 7.6 shows a SEM micrograph of the longitudinal cross section from the same phantom.  

Once again the anisotropic nature of the phantom is observed.  From this image it can be seen 

the phantom possesses a well-defined orientation and significant anisotropy, with regularity 

much like that found in fibrous tissues.  The pore walls appear to run vertically through the 

sample along the direction of freeze casting, in the case of Figure 7.6 from the bottom left of the 

image to the top right.  Confirmation that the pores form along the direction of freeze-casting 

was found in the experimental velocity measurements (see section 7.3).     
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Figure 7.6  - Longitudinal cross section (section made parallel to the direction of freeze casting) 
of a 5 % concentration by weight PVA phantom lowered at 3 mm/min. 

The large surface structures observed are not part of the microstructure but again flakes that 

have settled on the sample during SEM preparation.  As observed in Figure 7.5 the dimensions 

of the pore walls are approximately 10 µm on average, in good agreement with real fibrous 

tissue dimensions.  The pore widths can be observed to vary somewhat, and do not necessarily 

appear to be the same size as those observed in Figure 7.5.  Again, a small error in viewing 

angle may have occurred so that viewing exactly perpendicular to the pore axis was not 

occurring.  These observations though are more likely a consequence of the sample preparation 

process.  When vertical sections of the samples are prepared, the samples lose their strength, 

potentially causing folding of the pore walls.  Also, during preparation the sample cut will not 

be such that it splits the pores directly in half, and as a result gives the appearance of smaller 

pores.  Finally, pores are not exactly in line with each other so some pores will appear larger, 

some smaller, and some the same as those observed in Figure 7.5.   

 

The rate at which the sample is lowered into the liquid nitrogen greatly influences the pore 

spacing (the size of the ice crystals formed).  Slow freezing rates result in groups of large ice 

crystals.  As a result the accumulation of PVA between ice pillars becomes denser for these 

slower rates, creating more rigid pore walls and mechanical strength.   
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Figure 7.7  - Average pore size versus freezing rate for 5 % by weight PVA concentration. 

Figure 7.7 shows the average pore spacing for 5 % by weight PVA slurry concentration 

phantoms, lowered at five different freezing rates.  Values for each of the plotted freezing rates 

were based on several SEM images with the pore sizes measured and averaged for each.  For 

elongated pores both the length and widths were measured and the average of the two found.  

As can be observed a reasonable range of pore spacing can be achieved by lowering the samples 

at different rates.  For faster freezing rates, the ice does not have time to form large crystal 

groups, and instead the ice crystal groups are smaller in size resulting in smaller phantom pores.  

The PVA pore walls for these freezing rates become less dense.  Finally, for freezing rates 

greater than 10 mm/min, it was found the regularity in ice crystal spacing and long distance ice 

formation was lost.  Too fast a freezing rate causes the initial ice crystals to be randomly spaced 

with no grouping.  These randomly distributed crystals become the preferred formation sites for 

further ice growth, but with little chance for ice to form on these sites, these new ice crystals 

will also be loosely ordered, resulting in an overall poorly ordered amorphous ice structure.   
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For 5 % PVA concentration, the average pore spacing is observed to vary between 10-25 µm for 

freezing rates between 2-7 mm/min.  For freezing rates greater than 7 mm/min there is very 

little decrease in the pore spacing before irregular ice crystal formation occurs for rates greater 

than 10 mm/min.  Instead, to further reduce the average pore spacing the concentration of the 

PVA can be increased.   

 

In addition to the above process parameters, it is proposed by introducing a nucleation plate 

within the sample container prior to cryogenic cooling, the seed layer can be controlled and 

hence the overall resulting microstructure influenced accordingly.  The nucleation plate could 

be placed at the bottom of the slurry container containing microfabricated wells with 

dimensions of the desired crystalline structure, allowing phantom properties to be more 

rigorously controlled.  This could lead to the fabrication of more advanced structured phantoms.   

7.3 Velocity Measurements 

Measurements of the velocity through the PVA phantoms are presented here.  These were made 

using the transmission measurement method described in section 3.1.1.2.  This method requires 

the thickness of the PVA sample to be known.  Since these samples are not solid, they were 

measured using the non-destructive transmission method described in section 3.1.1.1. 

   

To measure the anisotropic characteristics of these phantoms, the velocity measurements were 

made both parallel and perpendicular to the freeze casting direction.  Numerous velocity 

experiments on various fibrous tissues described in the literature find the orientation of the 

fibres relative to the incident waves significantly influence the propagating wave velocity [64], 

[124].  However, the velocity frequency dependence in these papers is found to be very low 

showing very little dispersion across a wide bandwidth.   

 

Several phantoms were used for the following measurements with the results averaged.  The 

phantoms were made from a 7 % concentration by weight PVA slurry and were lowered at a 

nominal rate of 5 mm/min.  Samples were cut to approximately 1 mm in thickness to obtain an 

accurate measurement.   
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Figure 7.8  - Phantom velocity variations with frequency for a 7 % concentration by weight PVA 
phantom measured parallel (circles) and perpendicular (squares) to the direction of freeze 
casting. 

The resulting measurements of the acoustic velocity parallel and perpendicular to the direction 

of PVA alignment are both plotted in Figure 7.8.  The plots confirm the results from the 

literature where the velocities measured parallel to the PVA alignment (along the freeze casting 

direction) are greater than those measured perpendicular.  This confirms the pores form along 

the freeze casting direction since the larger velocities indicate greater mechanical strength due 

to the increased PVA alignment.  At 20 MHz the difference between the two is approximately 

20 ms-1 and by 45 MHz this gap has increased to approximately 30 ms-1.  This is due to the 

measurements made parallel to the PVA orientation increasing at a faster rate of 0.6 ms-1MHz-1 

compared to the measurements made perpendicular increasing at just over half the rate of  

0.36 ms-1MHz-1.  These results demonstrate very little dispersion and are in good agreement 

with those measured in [124] for lamb heart myocardium.  Myocardium is one of the highly 

anisotropic fibrous muscle tissues found in the heart as observed in images from [125].  In that 

work the rate of dispersion measured along the direction of fibre orientation was  

0.74 ms-1MHz-1, significantly greater than the rate measured perpendicular of 0.24 ms-1MHz-1.   
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The values of the velocities are also in good agreement with those measured in [64] and [126].  

Reference [64] contains measurements for bovine heart muscle tissue over the frequency range 

of 20-40 MHz measured along the direction of fibre alignment.  For this frequency range the 

velocities varied from 1565-1570 ms-1 compared to the measured PVA velocities of  

1555-1565 ms-1.  The phantom velocities are not limited to these values and can be varied 

significantly up or down to resemble other tissues by varying the various process parameters. 

7.4 Attenuation Measurements 

The attenuation coefficient of the PVA samples was calculated using the transmission method 

described in section 3.1.1.3, averaged over several measurements.  This method required two 

samples of near identical microstructure for an accurate measurement.  To achieve this, for each 

separate attenuation measurement two samples were used that were cut from the same vial.  One 

sample was cut to no greater than 0.5 mm in thickness and the other 1 mm ensuring a 

reasonable thickness difference for the calculation.  Sample thickness was again measured non-

destructively using the transmission method described in section 3.1.1.1.   

 

The attenuation coefficients were measured for several phantoms made from a 7 % by weight 

concentration PVA slurry lowered into liquid nitrogen at a nominal rate of 5 mm/min.  The 

results were averaged and are plotted in Figure 7.9 over a frequency range of 20-45 MHz.  

These measurements were performed along the direction of PVA alignment and expressed in  

dBmm-1.  The PVA phantom measurements are plotted in Figure 7.9 as blue circles.  The figure 

also includes measurements that were performed on normal human myocardium tissue parallel 

to the direction of fibre alignment obtained from [127]; these are plotted as filled green squares.     

 

Both data sets show monotonically increasing functions.  The attenuation coefficient at 20 MHz 

was approximately 5 dBmm-1 for the PVA increasing to 13 dBmm-1 at 45 MHz.  The PVA 

measurements are in excellent agreement with the myocardium measurements over the plotted 

frequency range, varying proportionally to the 1.6 power of frequency.  This exponent value is 

also in good agreement with the value measured from [64] of 1.56 for bovine heart muscle. 
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Figure 7.9  - Attenuation coefficient versus frequency for 7 % concentration by weight PVA 
phantom (circles) measured along the direction of PVA alignment (freeze casting direction).  
Also plotted are measurements made parallel to the fibre alignment on normal human 
myocardium tissue (filled squares) obtained from [127]. 

Whilst the above phantom shows attenuation properties representative of human myocardium 

tissue, like velocity the PVA attenuation properties are not limited to the above.  Varying the 

process parameters can realise phantoms with attenuation or velocity properties significantly 

greater or less than the above example phantom, and these results should therefore be viewed as 

representative of what can be attained.  The samples can also be scaled and made any size 

provided the same procedure is followed and rigorous control applied during the sample 

immersion step. 
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Chapter 8  

Conclusion & Discussion 

The discussion of the results from this work are summarised in three main sections of this 

chapter: Section 8.1 summarises the finite element modelling (FEM) of high frequency wave 

propagation in collinear porous microstructures from Chapter 5, section 8.2 the experimental 

characterisation of the in-house fabricated porous anodic alumina samples (PAA) analysed in 

Chapter 6, and section 8.3 the fabrication and characterisation of the novel microstructured 

poly(vinyl alcohol) tissue mimicking phantoms described in Chapter 7. 

8.1 Finite Element Modelling of High Frequency Ultr asonic 
Wave Propagation in Microstructured Materials 

FEM performed using PZFlex revealed highly regular microstructures significantly influence 

high frequency (20-200 MHz) ultrasonic wave propagation, with a highly collinear 

microstructure having a major waveguiding affect.  The dimensions and collinear structure of 

these samples constrain the propagating waves causing them to travel as a compact waveform 

through the layer with no scattering.   

 

The 2D modelling of a collinear porous aluminium material immersed in water revealed the 

influence microstructure has on high frequency waves, with wavelengths comparable to or 
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larger than the porous layer solid dimensions.  For a porous aluminium layer with 4 µm sized 

pillars separated by water filled channels of the same width, it was observed for a 50 MHz wave 

(with a wavelength of approximately 30 µm) excited on a single pillar, the wave was strongly 

guided along its length.  The waveform was constrained to the pillar, with very little leakage 

through the water to adjacent pillars.  The wave travelled as a single wavefront in the excited 

pillar at a guided velocity of 5400 ms-1.  A slow wave generated by the wake of the primary 

wave was observed in the water travelling at the P wave velocity of water of 1480 ms-1.  This is 

in contrast to that observed for solid aluminium where both P and S waves were observed.  In 

the homogeneous bulk material, these waves are unconstrained and are free to spread circularly 

outwards at their own respective velocities of 6300 ms-1 and 3100 ms-1.  The slow wave 

observed for both the single pillar and plane wave excitations contained significantly less 

energy than the fast wave unless microstructured layers with porosities of 90 % or greater were 

used. 

 

For a spherical source generated in water propagating into the same 2D porous aluminium layer, 

the normalising capabilities of such a microstructure were observed.  The wavefront from the 

spherical source, containing all angles of incidence, upon reaching the interface of the porous 

layer displayed no critical angles, with transmission into the layer occurring for all angles of 

incidence.  Within the porous layer the wave shape was preserved.  Waveshape preservation is 

of value since this reveals information about the nature of the scattering source, important for 

imaging applications.  Since the porous layer is acting as a waveguide to the incident waves, the 

transmission and reflection phenomena that occur for homogeneous media are no longer 

observed.  Hence the wave propagation is not restricted by the P and S critical angles that exist 

for bulk solids.   

 

At the interface between the porous aluminium layer and aluminium solid, a reflected wave was 

observed to propagate back into the porous layer.  Given the physical material properties 

(density, longitudinal velocity), and thus characteristic impedance of the individual aluminium 

pillars of the porous layer and solid aluminium were the same, an acoustic impedance mismatch 

based on material properties does not exist.  However, the different wave propagation 

characteristics of the guided wave in the plate and bulk waves in the solid cause this mismatch.   
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This phenomena was further investigated by simulating a free boundary aluminium plate that 

widened into a homogenous aluminium solid.  By varying the thickness of the plate, the size of 

the reflected pulse could be varied and thus the impedance mismatch.  By widening the plate the 

situation becomes closer to that of a continuous homogeneous solid, resulting in a smaller 

reflected pulse due to a smaller acoustic impedance mismatch.  Extending this concept to the 

porous aluminium layer, by controlling the layer porosity the acoustic impedance of the sample 

can be varied to a desired value. 

 

Taking into account the 2D modelling results, 3D models were then performed to provide a 

realistic representation of the fabricated PAA samples.  These results could be compared with 

those measured from experimental characterisation of the PAA samples.  These simulations 

found the PAA sample acoustic impedance to be independent of both sample architecture and 

dimensions, but displayed a linear dependence on the sample porosity.  By varying the porosity 

over the range 0 to 80 %, sample impedances in the range of 2-17 MRayl could be achieved.  

The acoustic impedance was found to be independent of frequency to at least 200 MHz. 

   

The PAA sample velocity was found to be dispersionless to at least 200 MHz.  It was highly 

dependent on the sample porosity and unlike the acoustic impedance did show a small 

dependence on the sample architecture.  For low porosities the velocity was found to be 

independent of architecture, with velocity decreasing from the P wave velocity, in this case 

aluminium with a velocity of 6300 ms-1.  This continued until approximately 13 % porosity, 

where a velocity of 5900 ms-1 was observed, at which point the velocities of the two 

architectures began to separate.  For the triangular model, at high porosity the velocity appeared 

to approach the fundamental bar velocity of 5090 ms-1, whilst for the rectangular model the 

velocity approaches the fundamental symmetric Lamb mode velocity of 5400 ms-1.   

 

In future work the regularity of these highly collinear structures will be reduced.  This will 

allow for the understanding of wave propagation in more complex structures, with less 

collinearity, but still highly anisotropic.  This heads towards the modelling of real tissue like 

structures, revealing the wave guiding phenomena associated with these.  By simulating these 

structures with the same acoustic properties as tissue the results from these simulations can be 

compared with experimental measurements performed on the anisotropic PVA phantoms 

developed in this work. 
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8.2 Experimental Characterisation of Porous Anodic 
Alumina Samples for Use As Acoustic Matching Layers  

Experimental velocity measurements performed on the in-house fabricated PAA samples 

revealed guided wave propagation, with velocity dependent upon sample porosity.  Measured 

values were in good agreement with those calculated from the modelling at the corresponding 

porosities.  Experimental velocity measurements were performed to 175 MHz displaying no 

frequency dependence, confirming the FEM modelling.  Only a single waveform was received 

corresponding to the fast wave identified in the modelling.  The slow wave was not observed 

due to the small energy this wave contained. 

 

The normalising characteristics of the PAA samples identified in the modelling were confirmed 

experimentally.  Velocities were measured for angles of incidence out past 40°, well beyond the 

P and S critical angles measured for solid aluminium of 14° and 29° respectively.  Similar 

behaviour was observed for the commercial PAA samples where energy was received for angles 

greater than the aluminium P and S critical angles, however the amplitudes were significantly 

less than those measured for the in-house fabricated PAA samples.  The velocities measured 

across the commercial samples for a range of angles were found to be highly variable, in 

significant contrast to the constant velocities measured for the in-house fabricated PAA 

samples.  This suggested significant sample path dependence, a likely consequence of the poor 

regularity of the commercial samples.  Using a highly collinear microstructured layer allows for 

the reception of energy over a much wider range of angles, increasing the signal to noise ratio, 

and allowing the transmission of signals that would potentially go critical at a solid media 

interface, and thus be undetected.   

 

Experimental acoustic impedance measurements of the three types of PAA samples were in 

good agreement with those in the modelling at the respective sample porosities.  The lowest 

acoustic impedance measured experimentally of 9 MRayl was achieved for the most porous 

type 3 samples with porosities in the range of 45-50 %.  These samples were still very robust at 

these porosities and by fabricating samples with porosities as high as 70 %, impedances as low 

as 4 MRayl can potentially be achieved. 
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The additional property not simulated but measured experimentally was the attenuation of the 

PAA samples.  The measured attenuation characteristics of the samples were orders of 

magnitude less than those found in the literature for the currently used epoxy powder matching 

layers.  At the highest frequency for which the coefficients were measured (175 MHz), the 

smallest attenuation coefficient of the PAA samples was just 8 dBmm-1, and the largest still 

only 22 dBmm-1.  With a quoted attenuation coefficient for the epoxy/powder mixtures of  

500 dBmm-1 at 100 MHz, compared with the highest value measured at 100 MHz for the type 3 

PAA samples of no more than 15 dBmm-1, a significant difference in attenuation performance 

can be concluded.  This is an enormous reduction in attenuation, and at frequencies where the 

reduction of attenuation is critical to achieving a meaningful signal. 

 

With no measurable dispersive velocity characteristics, tailorable impedances potentially 

covering a wide range of useful impedances, very low attenuation coefficients, and reception 

over a wide range of angles, these nanomaterials are an excellent potential future alternative for 

transducer matching layers.  In future work, samples with fabricated porosities up to 60-70 % 

will be attempted to realise acoustic impedances in the range of 4-6 MRayl.  The influence of 

filling the pores with other couplants and solids is also of interest, as these will also influence 

the final material properties.  The anodisation of other materials is also under consideration to 

achieve alternative impedance ranges. 

8.3 Microstructured Poly(Vinyl Alcohol) Tissue Mimi cking 
Phantoms 

Anisotropic PVA tissue mimicking phantoms were prepared using a novel freeze casting 

process.  PVA tissue phantoms currently used by ultrasound researchers possess similar bulk 

acoustic properties such as velocity and acoustic impedance to those of real tissues.  These 

phantoms however are homogeneous and fail to incorporate the microstructure and dimensions 

found in real fibrous tissues.  With ultrasound imaging systems continuing towards 100 MHz 

and beyond, unless the microstructure dimensions of the underlying tissue substructure are 

considered, the imaging quality of the system will be degraded.   

 

With the lack of a suitable phantom to carry out this work, the freeze casting method used for 

fabricating advanced monolithic ceramics was modified in order to create a microstructured 



 162 

tissue phantom.  The freeze casting process is very simple, with the properties of the final 

phantom largely determined by the size of the ice crystals that form in the slurry during the 

immersion process.  The size of the ice crystals is mainly dependant upon the rate of lowering 

of the sample into the liquid nitrogen, and the concentration of the PVA slurry used.   

 

These samples possess the acoustic properties (velocity, attenuation) found in current tissue 

phantoms, but also contain the same microstructural properties (anisotropy, local variations, 

microstructure dimensions) similar to those found in real fibrous tissues.  By varying the 

freezing rate, PVA slurry concentration, and PVA molecular weight, phantoms with different 

properties can be fabricated.   

 

Horizontal and vertical cross sections of example PVA phantoms examined using SEM reveals 

a porous PVA microstructure where the ice crystals had been removed by freeze-drying.  The 

pore walls were 10-20 µm thick with pore sizes of approximately 20-100 µm.  A preferred 

orientation was also observed that formed along the direction of freeze casting.  Experimental 

measurements of the acoustic properties of these phantoms over the frequency range 20-45 

MHz reveal velocity and attenuation coefficients in good agreement with those measured in the 

literature.  Velocity measurements that were made parallel to the direction of PVA alignment 

were greater than those made perpendicular (as found in real tissues).  The magnitude and rate 

of change of these velocities with frequency were also in good agreement with real tissue over 

the same frequency range.  Attenuation measurements of an example PVA phantom was in 

excellent agreement with measurements performed on healthy human heart tissue (myocardium) 

over the same frequency range. 

 

Using a simple freeze casting fabrication process, phantoms possessing measured acoustic and 

microstructural properties representative of real fibrous tissues have been fabricated.  These 

phantoms are a significant step forward in the fabrication of more advanced realistic tissue 

phantoms for high frequency tissue characterisation studies.  To extend upon this initial freeze 

casting process presented, the influence of introducing pre-nucleation templates will be 

explored in planned future work.  Fabricating a regular microfabricated template containing 

regularly spaced square wells on the base of the sample holder will force ice crystals to form to 

the microstructure dimensions.  By changing the dimensions of this seed layer, a greater control 
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over the range of ice crystal sizes in a phantom can be obtained.  This will allow for a greater 

range of pore wall thicknesses and increase the regularity of the vertically formed ice pillars.   

 

Both regular and irregular nucleation templates will be introduced onto the base of the freeze-

casting container.  Filling the samples with other materials is also of interest to create composite 

tissue phantoms with specific properties.  Efforts to reduce the solubility of the samples will 

also be made.  Repeated cryogenic freezing/thawing cycles similar to the procedure followed 

for the homogeneous phantoms could also be applied to these phantoms.  The cryogenic 

temperature gradient will cause the preferred orientation within the PVA during each cycle, 

whilst the repeated cycles will cause more of the PVA molecules to form stronger bonds, 

improving the alignment of the structure with each cycle. 
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Appendix - Full Circuit Schematics 

A1 - 100 MHz Transmitter Circuit Diagram 
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A2 - 100 MHz Receiver Circuit Diagram 
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A3 - 500 MHz Receiver Circuit Diagram 
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A4 - 500 MHz Transmit/Receive Switch Circuit Diagra m 
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