
Self-Organizing Agile Teams:

A Grounded Theory

by

Rashina Hoda

A thesis

submitted to the Victoria University of Wellington

in fulfilment of the

requirements for the degree of

Doctor of Philosophy

in Computer Science.

Victoria University of Wellington

2011

Abstract

Self-organizing teams are a hallmark of Agile software development, directly

affecting team effectiveness and project success. Agile software development,

and in particular the Scrum method, emphasizes self-organizing teams but

does not provide clear guidelines on how teams should become and remain

self-organizing. Based on Grounded Theory research involving 58 Agile prac-

titioners from 23 different software organizations in New Zealand and In-

dia, this thesis presents a grounded theory of self-organizing Agile teams.

The theory of self-organizing Agile teams explains how software development

teams take on informal, implicit, transient, and spontaneous roles and per-

form balanced practices while facing critical environmental factors, in order

to become self-organizing. The roles are: Mentor, Co-ordinator, Translator,

Champion, Promoter, and Terminator. The practices involve balancing free-

dom and responsibility, cross-functionality and specialization, and continuous

learning and iteration pressure. The factors are senior management support

and level of customer involvement. This thesis will help teams and their

coaches better understand their roles and responsibilities as a self-organizing

Agile team. This thesis will also serve to educate senior management and

customers about the importance of supporting these teams.

Dedication

To Late Mrs. Qamrun Nisa Begam

You inspired me as an academic par excellence, a social worker,

winner of the President’s National Award for your life-long contribution

to the cause of girls education in India, and most importantly,

as my grandmother and first teacher.

Acknowledgments

“Is there any Reward for Good—other than Good?

Then which of the favours of your Lord will ye deny?”

– Surah Ar-Rahman, verses 60-61, The Holy Quran

All praise be to God, the Most Gracious, the Most Merciful, for His innu-

merable favours. Peace and blessings be upon His last Prophet Muhammad,

who encouraged all human beings to seek and share knowledge.

I wish to express my deepest gratitude and affection to my parents: Mrs.

Sabiha Hoda and Dr. Najmul Hoda for instilling me with a life-long love

for learning; my husband, Mohammed Asif, for being my pillar of strength

and best friend; my children, Atif and Imran, for being my biggest source of

inspiration; my brothers: Shariq Hoda, for always expecting the very best

from me and Dr. Asif Hoda, for nudging me into Computer Science, knowing

somehow that it will develop into a life-long passion.

I am extremely indebted to my supervisors, Prof. James Noble and Dr. Stuart

Marshall, for seeing me through the ups and downs of this lengthy pursuit,

for encouraging me, challenging me, drawing out the best in me, and most

of all, for always having faith in me.

I wish to express my warmest gratitude to my friends: Amaara Rehmaan,

Mutsumi Tanio, Aneesa Adam, Zeenah Adam, and many others for their

unending encouragement and support.

iv

I wish to extend my gratitude to the Agile Professionals Network (APN,

Wellington) and Agile Software Community of India (ASCI, India) for pro-

viding access to Agile software development communities in which to conduct

this research. I thank all my participants for coming forth and sharing their

experiences with me. I sincerely hope this research will benefit you.

I thank my fellow Software Engineering researchers and members of the Elvis

group at VUW, which include but are not limited to Craig Anslow and Nick

Cameron, for their support and encouragement. I am grateful to Prof. John

Hine and Dr. Peter Andreae (pondy) for their continued support.

Many thanks to Dr. George Allan, Dr. Angela Martin, Esther Derby, Jennifer

Ferriera, Diane Strode, Michael Waterman, and Mary Denton for reviewing

various parts of this thesis and providing their valuable recommendations.

Thanks to Prof. Philippe Kruchten and Dr. Tore Dyb̊a for their research

collaborations and to Dr. Frank Maurer, Shane Hastie, and Steve Adolph for

their continued interest in and support of this research.

I am very grateful to BuildIT (NZ) for a PhD scholarship, the Agile Alliance

(USA) for an academic grant, Software Process and Product Improvement

(NZ), and the School of Engineering and Computer Science (VUW) for their

financial support of this research.

Last but not the least, I thank Prof. Helen Sharp (The Open University,

UK), Prof. Stephen MacDonell (AUT, New Zealand), and Dr. Petra Malik

(VUW, New Zealand) for their time and effort in examining this thesis and

for their valuable feedback.

Table of Contents

1 INTRODUCTION 1

1.1 Motivation . 2

1.2 Research Contributions . 2

1.3 Thesis Structure . 4

2 LITERATURE REVIEW 7

2.1 Traditional Software Development 7

2.1.1 The Waterfall Model 7

2.1.2 The Spiral Model . 9

2.1.3 Traditional Software Development Teams 10

2.2 Agile Software Development 11

2.2.1 Scrum . 12

2.2.2 eXtreme Programming (XP) 16

2.2.3 Agile Software Development Teams 22

2.3 Self-Organizing Teams . 25

2.3.1 Socio-Technical Systems Perspective 25

2.3.2 Organizational Theory Perspective 26

2.3.3 Complex Adaptive Systems Perspective 27

2.3.4 Knowledge Management Perspective 28

2.3.5 Agile Software Development Perspective 29

3 RESEARCH DESIGN 33

3.1 Research Methods . 33

v

vi TABLE OF CONTENTS

3.2 Research Perspectives . 35

3.3 Role of the Researcher . 36

3.4 Grounded Theory . 37

3.4.1 Research Area . 40

3.4.2 Minor Literature Review 41

3.4.3 Data Collection . 42

3.4.4 Data Analysis . 48

3.4.5 Memoing . 54

3.4.6 Sorting . 56

3.4.7 Major Literature Review 56

3.4.8 Theoretical Coding . 57

3.4.9 Write-up . 58

3.4.10 Evaluating a Grounded Theory 58

3.5 Discussion . 59

4 SELF-ORGANIZING AGILE TEAM ROLES 61

4.1 Mentor . 65

4.1.1 Providing Initial Guidance and Support 67

4.1.2 Encouraging Self-Organizing Practices 68

4.1.3 Getting the Team Confident 69

4.1.4 Encouraging Continued Adherence 69

4.2 Co-ordinator . 72

4.2.1 Co-ordinating Customer Collaboration 73

4.2.2 Co-ordinating Change Requests 74

4.2.3 Managing Customer Expectations 76

4.3 Translator . 77

4.3.1 Overcoming the Language Barrier 78

4.3.2 Using Translator Tools 80

4.4 Champion . 82

4.4.1 Securing Senior Management Support 83

4.4.2 Propagating More Teams 85

4.5 Promoter . 86

TABLE OF CONTENTS vii

4.5.1 Understanding Customer Concerns 86

4.5.2 Securing Customer Involvement 88

4.6 Terminator . 89

4.6.1 Identifying Threatening Team Members 90

4.6.2 Removing Members from the Team 92

4.7 Role of the Agile Coach . 94

4.8 Discussion . 96

4.8.1 Team Roles . 97

4.8.2 Role of the Agile Coach 99

5 SELF-ORGANIZING AGILE TEAM PRACTICES 103

5.1 Freedom and Responsibility 104

5.1.1 Collective Decision Making 106

5.1.2 Self-Assignment . 110

5.1.3 Self-Monitoring . 115

5.1.4 Consequence of Imbalance 118

5.2 Cross-functionality and Specialization 119

5.2.1 Need for Specialization 120

5.2.2 Encouraging Cross-Functionality 122

5.2.3 Consequence of Imbalance 127

5.3 Continuous Learning and Iteration Pressure 128

5.3.1 Self-Evaluation . 129

5.3.2 Self-Improvement . 131

5.3.3 Consequence of Imbalance 134

5.4 An Integrated Set of Practices 135

5.5 General Principles of Self-Organization 138

5.6 Specific Conditions of Self-Organization 142

5.7 Discussion . 145

5.7.1 Balancing Freedom and Responsibility 145

5.7.2 Balancing Cross-Functionality and Specialization . . . 146

5.7.3 Balancing Continuous Learning and Iteration Pressure 147

viii TABLE OF CONTENTS

6 SELF-ORGANIZING AGILE TEAM FACTORS 149

6.1 Influence of Senior Management Support 150

6.1.1 Organizational Culture 152

6.1.2 Negotiating Contracts 155

6.1.3 Financial Sponsorship 159

6.1.4 Resource Management 160

6.2 Securing Senior Management Support 162

6.2.1 Applicability to Project Context 163

6.2.2 Time to Market . 164

6.2.3 Customer Demands . 166

6.2.4 Process Improvement 166

6.3 Influence of Customer Involvement 170

6.3.1 Gathering and Clarifying Requirements 170

6.3.2 Prioritizing Requirements 174

6.3.3 Securing Feedback . 175

6.4 Securing Customer Involvement 175

6.4.1 Changing Mindset . 176

6.4.2 Changing Priority . 177

6.4.3 Story Owners . 178

6.4.4 Just Demos . 179

6.4.5 E-collaboration . 181

6.5 Discussion . 182

6.5.1 Senior Management Support 183

6.5.2 Level of Customer Involvement 185

7 CONCLUSION 191

7.1 Research Contributions . 191

7.1.1 Self-Organizing Agile Team Roles 192

7.1.2 Role of the Agile Coach 194

7.1.3 Self-Organizing Agile Team Practices 194

7.1.4 Factors Influencing Self-Organizing Agile Teams 195

7.1.5 Roles-Practices-Factors Relationships 196

TABLE OF CONTENTS ix

7.2 Limitations . 197

7.3 Discussion . 198

7.4 Implications for Practice . 204

7.4.1 Implications for Teams 204

7.4.2 Implications for Agile Coaches 205

7.4.3 Implications for Senior Management 205

7.4.4 Implications for Customers 206

7.5 Future Work . 206

7.5.1 Stages of Becoming a Self-Organizing Agile Team . . . 206

7.5.2 Scaling Self-Organization 208

7.5.3 Exploring Cultural Implications 209

7.5.4 Diagnostic Tools . 209

Appendix 213

References 228

x TABLE OF CONTENTS

List of Figures

2.1 The Waterfall Model . 8

2.2 The Spiral Methodology . 9

2.3 A Typical Scrum Iteration (Sprint) 13

2.4 XP Practices . 20

3.1 The Grounded Theory Life-Cycle 40

3.2 Physical setup of an open-plan workspace 47

3.3 Example of emergence of a category from underlying concepts 50

3.4 Levels of Data Abstraction in Grounded Theory 51

3.5 Memo on Cross-functionality 55

4.1 Emergence of Self-Organizing Agile Teams 63

4.2 Theory of Self-Organizing Agile Teams 64

4.3 Emergence of the category Mentor 65

4.4 Emergence of the category Co-ordinator 72

4.5 Emergence of the category Translator 78

4.6 Emergence of the category Champion 83

4.7 Emergence of the category Promoter 87

4.8 Emergence of the category Terminator 90

5.1 Emergence of the category Balancing Acts 105

5.2 A story board/wall with user stories and tasks 111

5.3 Use of avatars to self-assign tasks 113

5.4 A Burndown chart . 116

xi

xii LIST OF FIGURES

5.5 Open-plan workspaces enable Group Programming 123

5.6 Self-Organizing Agile Practices Support Each Other 136

5.7 Self-Organizing Principles, Conditions and Practices 139

6.1 Emergence of the category Senior Management Support 151

6.2 Emergence of the category Level of Customer Involvement . . 171

6.3 Continuum of Customer Involvement on Agile Projects 188

7.1 Theory of Self-Organizing Agile Teams 193

List of Tables

2.1 Scrum Roles, Artifacts, and Ceremonies 14

2.2 XP Roles and Values . 18

3.1 Grounded Theory Terms and Descriptions 38

3.2 Participant Details . 44

4.1 Self-Organizing Agile Team Roles 66

5.1 Self-Organizing Agile Team Practices 104

6.1 Senior Management Support 150

6.2 Level of Customer Involvement 172

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Traditional software development teams are composed of individuals with

different organizational roles such as developers, testers, designers, business

analysts, etc. These roles are well defined, formal roles and the team mem-

bers function within the boundaries of their separate roles to carry out each

of the steps involved in a traditional software development method, such as

requirements gathering, analysis, design, implementation, testing, and main-

tenance. Project managers are responsible for managing the affairs of the

team, such as goal setting, task allocation, tracking progress, team evalu-

ations, and improvement. Project managers act as a middle-layer between

the team and senior management, conveying senior management expecta-

tions to the team and raising any team-wide issues to senior management for

resolution. Project managers on traditional teams are also responsible for

managing customer relationships and expectations by co-ordinating between

the team and their customers.

Agile software development teams, on the other hand, are self-organizing

teams [40, 72, 137] composed of “individuals [that] manage their own work-

load, shift work among themselves based on need and best fit, and partici-

pate in team decision making” [71]. Self-organizing teams exhibit autonomy,

cross-fertilization, and self-transcendence [154] and must have common fo-

cus, mutual trust, respect, and the ability to re-organize repeatedly to meet

new challenges [40].

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Software engineering researchers are exploring the structure and behaviour

of Agile software development teams [38, 113, 119, 141], partly in response to

the Agile software movement’s increasing popularity within industry over the

past decade [21, 100]. A majority of these studies have focused on eXtreme

Programming (XP) teams [107, 140, 141, 142, 164]. In contrast, research

on teams using project-oriented Agile methods such as Scrum (or combina-

tions of Scrum and XP) is extremely limited in comparison to its growing

popularity [112]. Recent studies have called for research that is (a) empiri-

cal, (b) industry-based, (c) focuses on Scrum, and (d) addresses people and

their concerns about adoption of Agile methods [6, 21, 28, 51]. This research

addresses all of the above.

The specific topic of this thesis is self-organizing Agile teams—a hall-

mark of Agile software development and of the Scrum method in particular.

Self-organizing teams have been identified as one of the critical success fac-

tors of Agile projects [35]. Self-organization can also directly influence team

effectiveness [111] as decision making authority is brought to the level of oper-

ational problems, which increases the speed and accuracy of problem solving.

While Agile software development, and in particular the Scrum method, em-

phasize self-organizing teams, they do not provide clear guidelines on how

self-organization should be implemented [113]. There has been limited re-

search on the subject and almost none across multiple projects, organizations,

and cultures. How Agile teams achieve and sustain self-organization in prac-

tice is not well understood. This thesis explains how software development

teams become self-organizing Agile teams.

1.2 Research Contributions

This thesis presents a grounded theory of self-organizing Agile teams. The

grounded theory is based on a research study involving 58 Agile practitioners

1.2. RESEARCH CONTRIBUTIONS 3

across 23 different software organizations from the New Zealand and Indian

software industries. The resulting theory of self-organizing Agile Teams ex-

plains how software development teams take on informal, implicit, transient,

and spontaneous roles and perform balancing acts on a set of integrated

practices while facing critical environmental factors, in order to become a

self-organizing Agile team.

The main contributions of this thesis are:

• Self-Organizing Agile Team Roles of Mentor, Co-ordinator, Trans-

lator, Champion, Promoter, Terminator, that are informal, implicit,

transient, and spontaneously taken up by team members in response

to challenges faced by the team.

• Role of the Agile Coach in terms of the self-organizing Agile roles

they are likely to play during different stages of the team’s maturation.

• Self-Organizing Agile Team Practices that are performed by Agile

teams, while balancing—freedom and responsibility, cross-functionality

and specialization, and continuous learning and iteration pressure.

• Factors Influencing Self-Organizing Agile Teams: senior man-

agement support and level of customer involvement.

This thesis also presents a discussion of the research results in light of

existing literature which further supports the roles and practices identified

in this research. A description of Grounded Theory, as a research method, its

application in this research with examples, and reflections on the challenges

faced in using Grounded Theory and strategies for overcoming them are also

presented.

4 CHAPTER 1. INTRODUCTION

1.3 Thesis Structure

Chapter 1 Introduction Describes the motivations behind this research,

the contributions of this research, and the structure of this thesis.

Chapter 2 Literature Review Presents an overview of related literature.

In keeping with the research method (described in the chapter 3), a minimal

literature review was conducted up front. A detailed literature review is

presented in light of the research findings, discussion section, at the end of

each of the results chapters 4, 5, and 6.

Chapter 3 Research Design Surveys research perspective and research

methods, and then presents a detailed description of Grounded Theory, along

with examples of its application, challenges faced in using Grounded Theory

and strategies found useful in overcoming them.

Chapter 4 Self-Organizing Agile Team Roles Introduces the theory

of self-organizing Agile team roles, practices, and the critical factors that in-

fluence them and describes the informal, implicit, spontaneous, and transient

self-organizing Agile team roles: Mentor, Co-ordinator, Translator, Cham-

pion, Promoter, Terminator. This is followed by a discussion of these roles

in light of related literature.

Chapter 5 Self-Organizing Agile Team Practices Describes the prac-

tices that enable self-organization in Agile teams: collective decision mak-

ing, self-assignment, self-monitoring, multiple perspective, group program-

ming, rotation, self-evaluation through retrospectives, and self-improvement

through learning spike and pair-in-need. These practices are performed while

balancing freedom and responsibility, cross-functionality and specialization,

and continuous learning and iteration pressure. This is followed by a discus-

sion of these practices in light of related literature.

1.3. THESIS STRUCTURE 5

Chapter 6 Factors Influencing Self-Organizing Agile Teams De-

scribes the two most critical factors that influence self-organizing Agile teams:

senior management support and level of customer involvement. This is fol-

lowed by a discussion of these factors in light of related literature.

Chapter 7 Conclusion Describes the contributions of this thesis, a dis-

cussion of related literature, the limitations of the study, a discussion of the

implications for practice, and suggests ideas for future work.

Terminology used in this thesis: Traditional software development is

used as a catch-all phrase for software development methods characterized by

a structured software life-cycle with structured phase boundaries, voluminous

design and requirements documents, hierarchical organization structures, and

manager-led teams. Agile coaches refer to XP Coaches and Scrum Masters.

New teams refers to teams on their first Agile project and/or those with

less than an year of experience with Agile methods. Mature teams refers

to teams with experience of multiple Agile projects and/or those with more

than an year of experience with Agile methods. The term ‘our ’ refers to

Rashina Hoda, typically in consultation with her supervisors and is used to

differentiate this thesis from other research in the discussion sections 4.8, 5.5,

5.6, 5.7, 6.5, and 7.3.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

This chapter presents an overview of traditional software development models

(Waterfall and Spiral) and traditional software development teams. This is

followed by a description of Agile software development models (Scrum and

eXtreme Programming) and Agile software development teams. Finally, a

review of literature on self-organizing teams is presented. Literature related

to the research findings is further discussed in detail in discussion sections,

at the end of each of the results chapters 4, 5, and 6.

2.1 Traditional Software Development

Several software development models came into use over the years to pro-

vide process and structure to the various activities involved in software de-

velopment. An overview of the Waterfall and the Spiral model, a couple

of examples of traditional software development models, is provided below

[25, 133].

2.1.1 The Waterfall Model

The Waterfall model was initially proposed by Winston W. Royce in 1970,

as a specification-driven approach to software development [132]. Figure 2.1

7

8 CHAPTER 2. LITERATURE REVIEW

shows the steps involved in the Waterfall development model such as require-

ments gathering, analysis, design, coding, testing, and operations.

System
Requirements

Software
Requirements

Analysis

Program
Design

Coding

Testing

Operations

Figure 2.1: The Waterfall Model [132]

The Waterfall model was a modification to the Stagewise or Cascade

model documented by Bennington [25, 133] in 1956. The Stagewise model

included stages of development: operational plan, operational specification,

design and coding specifications, development, testing, deployment, and eval-

uation [25, 133]. The Waterfall model modified the Stagewise model by in-

cluding a feedback loop to allow previous stages to be revisited [133]. The

Waterfall model was intended to be somewhat iterative in nature (“build it

twice”), however its purely sequential form evolved into the popular notion

of Waterfall [93, 155]. In the sequential form of the Waterfall model, all the

requirements were gathered up-front before commencing any design, all the

design was completed for the entire project before starting any development,

and so on [25].

The classic weakness associated with the Waterfall method is poor flex-

ibility [27, 129, 119]. In real life development, it is common to experience

frequent changes in customer requirements. The Waterfall model unrealis-

tically assumes that the customer requirements can be gathered all at once

2.1. TRADITIONAL SOFTWARE DEVELOPMENT 9

at the beginning of the project and that they remain largely unchanged over

the entire length of the project. This leaves little scope for accommodating

changes in requirements later in the project. Another weakness of traditional

methods is that the Big Design Up Front (BDUF) is an expensive exercise

[119, 144]. The amount of time and effort spent in planning and designing

a solution may all go to waste in the face of frequently changing project

requirements.

2.1.2 The Spiral Model

Figure 2.2: The Spiral Model [163]

The Spiral model of software development was introduced by Barry Boehm

[25] in 1986, as a risk-driven approach to software development[133]. Figure

2.2 shows an overview of the Spiral model, where each iteration goes through

the phases of determining objectives, evaluating alternatives and identifying

and resolving risks, development and testing, and planning the next iteration.

The Spiral model involves identifying and analyzing risks, both performance-

related and development-related. Each cycle involves building a prototype

10 CHAPTER 2. LITERATURE REVIEW

with minimum risks, which is verified and validated. The primary strength

of the Spiral model is that it identifies any major risks associated with the

project quickly. An advantage of the Spiral model over the Waterfall model is

that the Spiral model allows the customers or users to preview the prototypes.

The primary weakness of the Spiral model is that the amount of time and

effort spent in identifying risks provides little returns for low-risk projects.

Another weakness of the Spiral model is its reliance on the system designers’

to correctly identify risks for the upcoming cycle and the unrealistic assump-

tion that designers can foresee all problems without actual implementation

[25, 133].

2.1.3 Traditional Software Development Teams

Traditional software development is characterized by manager-led teams, or-

ganized in a hierarchical structure with multiple layers of authority [158].

Management in traditional teams is typically command and control style

[119]. Roles on traditional teams are based around functional tasks reflected

by their organizational roles, such as programmers responsible for program-

ming, testers responsible for testing, analysts responsible for requirements

analysis, etc. Work is delegated to team members by their managers. Prac-

tices of traditional teams include documentation, specifications, and planning

[118, 119]. There are indirect lines of communication across the different lay-

ers of the organizational hierarchy. Members in hierarchical team structures

were commonly lacking in empowerment and visibility of the overall project

[158].

The Chief Programmer team and the Surgical team are examples of

hierarchical teams designed to tackle large software systems development

[30, 109]. The Chief Programmer team consists of the Chief Programmer—

responsible for the team, the Backup Programmer, and the Librarian. The

Surgical team was an extension of the Chief Programmer team, with as many

as 10 members [30]. In addition to the three roles in a Chief Programmer

team, the Surgical team includes an editor—responsible for documentation;

2.2. AGILE SOFTWARE DEVELOPMENT 11

an administrator—responsible for tedious, non-product related tasks; a cou-

ple of secretaries—responsible for helping the editor and the administrator; a

toolsmith—an expert in the tools and operating system; a tester—responsible

for functional testing; and a language lawyer—an expert in the language be-

ing used on the project [158].

2.2 Agile Software Development

Agile software development methods emerged in the late 1990s [94]. Ag-

ile methods follow an iterative and incremental style of development where

collaborative self-organizing teams dynamically adjust to changing customer

requirements [85, 100, 108]. The developers of some of these methods collab-

oratively wrote the Agile Manifesto [72] and use ‘Agile’ as an umbrella term

for several iterative and incremental methods. The Agile Manifesto values:

“individuals and interactions over processes and tools,

working software over comprehensive documentation,

customer collaboration over contract negotiation,

responding to change over following a plan.

that is, while there is value in the items on the right,

we value the items on the left more.”

The principles behind the Agile Manifesto include fast, frequent, consis-

tent, and continuous delivery of working software; responding to changing

requirements; encouraging effective communication; and motivated and well-

supported self-organizing teams.

Agile methods were developed as a response to the perceived weaknesses

of traditional software development models [129]. Agile methods are meant

to improve over the traditional software development models by accommo-

dating changes through iterative and incremental style of development, al-

12 CHAPTER 2. LITERATURE REVIEW

lowing each iteration to focus on a small set of functionalities prioritized by

the customer. Agile methods encourage continuous customer involvement

and feedback, and allow the customer to prioritize the features they want

developed first.

Some flavours of Agile methods include: Dynamic Software Development

Method (DSDM), referred to as the first Agile method [5, 51, 93, 146]; Crys-

tal, a family of methodologies consisting of a number of methods, and prin-

ciples for customizing them for particular projects [5, 39]; Feature Driven

Development (FDD), which focuses on features-based division of work [124];

and Adaptive Software Development (ASD), which focuses on concepts and

culture, and creating emergent order “out of chaos” [5, 70].

Scrum and XP are the most widely adopted Agile methods in the world

[127]. Most XP practices are focused around development activities at the

team level: in contrast, Scrum focuses more on project management [6, 51].

A detailed description of Scrum [43, 139] and XP [19] based on literature

in terms of their team roles, practices, artifacts, and ceremonies, is provided

below.

2.2.1 Scrum

Scrum was developed by Jeff Sutherland and formalized by Ken Schwaber

[139]. Scrum derives its roots from Takeuchi and Nonaka’s paper in 1986

“The New New Product Development Game” in the Harvard Business Review

[154].

Scrum is characterized by Sprints work cycles typically 2 to 4 weeks [43].

During each sprint, self-organizing teams pick tasks from a prioritized list of

customer requirements, so that the features that are developed first are of

the highest value to the customer. At the end of each sprint, a potentially

shippable product is delivered. Figure 2.3 shows a typical Scrum sprint. Ta-

ble 2.1 provides a description of the main roles, artifacts and ceremonies in

Scrum. A description of basic Scrum roles, artifacts, and ceremonies based

on literature [43, 139] is provided below.

2.2. AGILE SOFTWARE DEVELOPMENT 13

Figure 2.3: A Typical Scrum Iteration [145]

Scrum Artifacts

• Product Backlog is the list of features prioritized by business value

delivered to the customer. The Product Backlog includes all the fea-

tures visible to the customer as well as technical requirements needed

to build the product.

• Sprint Backlog is a subset of the Product Backlog and contains the

prioritized features to be developed in a given sprint.

• Burndown Chart displays the cumulative work remaining on a daily

basis and helps guide the development team towards an on-time and

successful sprint.

Scrum Roles

• Product Owner is a customer representative, responsible for the ul-

timate purpose of the product, a business plan, and a road-map that

14 CHAPTER 2. LITERATURE REVIEW

Table 2.1: Scrum Roles, Artifacts, and Ceremonies [139]

Roles

Team

A cross-functional team typically of seven plus/minus two

members, responsible for selecting the sprint goal and

organizing themselves to achieve them.

Scrum Master

A facilitator, responsible for ensuring the team is fully

functional and productive, removing impediments,

protecting the team from external interferences, and

ensuring that the process is followed.

Product Owner

A customer representative, responsible for defining and

prioritizing the product features and providing feedback

to the team.

Artifacts

Product Backlog
A list of features prioritized by business value, provided

by the customer.

Sprint Backlog
A subset of the Product Backlog and contains the

prioritized features to be developed in a given sprint

Burndown Chart

A graph displaying the cumulative work remaining on a

daily basis, designed to guide the development team

towards an on-time and successful sprint.

Ceremonies

Daily Scrum
A fifteen minute meeting designed to allow team members

to report status.

Sprint planning

meeting

A meeting where the team and their customer

representative discuss the Product Backlog, and develop a

detailed plan for the next sprint.

Demo
A demonstration of the working software developed by the

team in a sprint, to the Product Owner.

Retrospective

A meeting where the team members collaboratively

discuss their performance in the previous sprint, and

identify strategies for improvement.

2.2. AGILE SOFTWARE DEVELOPMENT 15

chalks out multiple releases. The Product Owner prepares the Product

Backlog with help from the team. The Product Owner is responsible

for: defining the features of the product, deciding release dates and the

profitability of the product, prioritizing product features according to

market value, adjusting features and priority every 30 days as needed,

and accepting or rejecting work results.

• Scrum Master is a facilitator that works closely with the team and

the Product Owner. The Scrum Master should be aware of the tasks

that have been completed, new tasks that have been identified, and

any estimate changes. They are responsible for noting and removing

impediments faced by the team. They also help resolve any differences

or issues amongst team members to ensure full productivity. The re-

sponsibilities of the Scrum Master include: ensuring the team is fully

functional and productive, enabling close co-operation across all roles

and functions, removing impediments, protecting the team from exter-

nal interferences, and ensuring that the process is followed.

• Team is cross functional and has typically seven plus/minus two mem-

bers. The team selects the sprint goal and specifies work results. The

team has the right to do everything within the boundaries of the project

guidelines to reach the sprint goal. The team organizes itself and its

work, and demonstrates work results to the Product Owner.

Scrum Ceremonies

• Daily Scrum also known as a daily standup, is a fifteen minute meet-

ing designed to report the status of the sprint. The Scrum Master

leads the team every day in their daily standup meeting, where team

member answers three questions: What did I do yesterday? What will

I do today? What impediments are in my way?

• Sprint planning meeting is a meeting where a detailed plan for the

sprint is developed. In the sprint planning meeting, the Product Owner

16 CHAPTER 2. LITERATURE REVIEW

reviews the road-map, vision, release plan, and Product Backlog with

the team. The team sets and reviews the estimates for the features.

Updates on the sprint are provided by the Scrum Master and goals for

the next sprint are set.

• Demo or demonstration is a session where the team demonstrates the

features developed in a given sprint to the Product Owner. A demo

can be held during the first half of the sprint planning meeting or in a

separate session.

• Retrospective is a meeting where the Scrum Master leads the team

into collaboratively identifying positive ways of working and strategies

for improvement.

2.2.2 eXtreme Programming (XP)

eXtreme Programming (XP) was developed by Kent Beck, with support from

Ward Cunningham, Ron Jeffries, and Martin Fowler [19]. XP is defined as

“a light weight methodology for small to medium sized teams developing soft-

ware in the face of vague or rapidly changing requirements” [19]. XP was

developed to address and solve some of the classic problems in software devel-

opment such as schedule slips, canceled projects, inability to solve business

problem, and richness of features with little business value. By advocating

short release cycles, XP tries to limit the scope of schedule slips. XP asks

customers to select the smallest release that makes maximum business value.

In this way, XP tries to help reduce the amount of things that can go wrong

at production, thereby reducing the risk of the project being canceled. XP

requires the customer to be a part of the team and provide rapid feedback

so that the business values are not misunderstood while developing features.

XP insists on only highest priority features being implemented and tries to

reduce the bulk of features with little or no business value. A description

of basic XP roles, values, and practices based on literature [19] is provided

below.

2.2. AGILE SOFTWARE DEVELOPMENT 17

XP Roles

• Coach is responsible for the process as a whole. The Coach needs to

remain calm in stressful situations and guide the team. The coach also

needs to understand the process and learn from other XP teams.

• Tracker is responsible for making good estimates and checking how

they match up to the real results. With practice and feedback, the

tracker should be able to make good calls on the status of the iter-

ations and releases: whether the team is on the schedule and if any

major changes are in store. They need to be able to collect information

without disturbing the entire process. The tracker has been called the

conscience of the team by Beck [19].

• Programmer should possess good communication skills and maintain

simplicity in work and code. The programmer is called the heart of

XP.

• Customer is meant to be an integral part of the XP team. They

need to learn how to write stories, to write functional tests, to make

decisions, and to demonstrate courage.

• Tester helps the customer to write functional tests, runs them regu-

larly, and posts results for everybody’s knowledge.

• Consultant may be needed to assist the XP team. The job of the

consultant is to provide technical knowledge or to help with the process.

• Big Boss is responsible for the project and is the project sponsor.

The Big Boss needs to check the team’s progress regularly and should

practice honest communication with the team. The Big Boss should

take time to listen to the teams’ issues.

18 CHAPTER 2. LITERATURE REVIEW

T
ab

le
2.2:

X
P

R
oles

an
d

V
alu

es
[19]

R
o
le

s

C
o
a
ch

A
p

erso
n

resp
o
n

sib
le

fo
r

th
e

p
ro

cess
a
s

a
w

h
o
le,

g
u

id
in

g
th

e
tea

m
,

an
d

u
n

d
erstan

d
in

g
th

e
p

ro
cess

an
d

learn
in

g
from

o
th

er
X

P
team

s.

T
ra

cker
A

p
erson

resp
o
n

sib
le

fo
r

m
ak

in
g

g
o
o
d

estim
a
tes

a
n

d
ch

eck
in

g
h

ow
th

ey
m

atch
u

p
to

th
e

real
resu

lts.

P
ro

g
ram

m
er

A
p

erson
w

ith
go

o
d

co
m

m
u

n
ica

tio
n

sk
ills,

w
h

o
m

a
in

ta
in

s
sim

p
licity

in
w

ork
an

d
co

d
e.

C
u

stom
er

A
p

erson
(s)

fro
m

th
e

cu
stom

er
o
rg

a
n

iza
tio

n
,

w
h

o
is

in
teg

ra
l

p
a
rt

o
f

th
e

X
P

team
.

T
ester

A
p

erso
n

w
h

o
h

elp
s

th
e

cu
sto

m
er

w
rite

fu
n

ctio
n

a
l

tests,
ru

n
s

th
em

regu
larly,

an
d

p
osts

resu
lts

for

every
b

o
d

y
’s

k
n

ow
led

ge.

C
o
n

su
lta

n
t

A
p

erso
n

w
h

o
m

ay
b

e
n

eed
ed

to
a
ssist

th
e

X
P

tea
m

b
y

p
rov

id
in

g
tech

n
ical

k
n

ow
led

ge
or

h
elp

w
ith

th
e

p
ro

cess.

B
ig

B
o
ss

A
p

ro
ject

sp
on

so
r,

resp
on

sib
le

fo
r

ch
eck

in
g

th
e

tea
m

’s
p

ro
g
ress

regu
la

rly
an

d
com

m
u

n
icatin

g
w

ith
th

e

tea
m

to
listen

th
eir

issu
es.

V
a
lu

e
s

C
o
m

m
u

n
ica

tion
X

P
p

ractices
su

ch
a
s

u
n

it
testin

g
,

p
a
ir

p
ro

g
ra

m
m

in
g
,

a
n

d
ta

sk
estim

ation
en

cou
rage

com
m

u
n

ication

ch
an

n
els

to
rem

ain
o
p

en
at

all
tim

es.

S
im

p
licity

Im
p

lies
th

at
th

e
team

co
n

cen
tra

tes
o
n

so
m

eth
in

g
sim

p
le

to
d

ay
w

h
ich

m
ay

req
u

ire
ch

an
gin

g
tom

orrow
,

rath
er

th
an

sp
en

d
to

o
m

u
ch

tim
e

a
n

d
eff

o
rt

o
n

so
m

eth
in

g
co

m
p

licated
th

at
m

ay
n

ev
er

b
e

u
sed

later.

F
eed

b
a
ck

T
h

e
p

rog
ra

m
m

ers
g
et

feed
b

ack
a
b

o
u

t
th

e
sta

te
o
f

th
eir

sy
stem

th
rou

g
h

u
n

it
tests;

th
e

cu
stom

ers
receive

feed
b

ack
fro

m
p

ro
gram

m
ers

th
ro

u
g
h

estim
a
tio

n
o
f

u
ser

sto
ries;

th
e

cu
stom

er
p

rov
id

es
feed

b
ack

to
team

th
rou

gh
rev

iew
s.

C
o
u

rag
e

It
req

u
ires

co
u

ra
g
e

to
ad

d
ress

issu
es,

fi
x

th
e

p
ro

b
lem

s,
a
n

d
th

row
aw

ay
co

d
e

in
fav

ou
r

of
altern

ative

b
etter

d
esign

s
an

d
im

p
lem

en
ta

tio
n

s.

R
esp

ect
X

P
req

u
ires

h
on

est
com

m
u

n
ica

tio
n

a
n

d
clo

se
co

lla
b

o
ra

tio
n

b
etw

een
all

m
em

b
ers

of
th

e
team

.

2.2. AGILE SOFTWARE DEVELOPMENT 19

XP Values

• Communication: The lack of sufficient communication between peo-

ple can lead to serious problems in a project. XP advocates communi-

cation between programmes, customers, and managers. XP practices

such as unit testing, pair programming, and task estimation are aimed

at encouraging communication channels to remain open at all times.

• Simplicity: The team responds to the question What is the simplest

thing that could possibly work? Simplicity implies that the team con-

centrates on something simple today which may require changing to-

morrow, rather than spend too much time and effort on something

complicated that may never be used later.

• Feedback: By writing unit tests for the system, the programmers are

meant to get feedback about the state of their system. The customers

are supposed to receive feedback from programmers in the form of es-

timation of new user stories (description of features). The customers

review the schedule to provide feedback about the team’s velocity. Con-

crete feedback is meant to encourage communication.

• Courage: It requires courage to address issues in the middle of de-

velopment and fix the problems while maintaining project velocity. It

also takes courage to throw away code in favour of alternative better

designs and implementations. Communication promotes courage by al-

lowing experimentation, which in turn supports simplicity as the team

is always encouraged to try to simplify the system.

• Respect: Beck added this fifth value in the second edition of his book

[20]. XP requires honest communication and close collaboration be-

tween all members of the team. This is not possible without high levels

of trust and respect between programmers, managers, and customers.

20 CHAPTER 2. LITERATURE REVIEW

XP Practices There are twelve XP practices [19]. Figure 2.4 shows the

different XP practices and the arrows between them show how they relate

to, and support each other.

Figure 2.4: XP Practices [19]

• Planning Game is a meeting where projects are planned. The Plan-

ning Game involves the business taking decisions about scope, priority,

composition and dates of releases, and the technical people taking deci-

sions about estimates, consequences, process, and detailed scheduling.

The next iteration is planned based on the features prioritized by the

customer and the work estimated by the programmers.

• Small Releases allow features to be developed quickly in short cycles.

• Metaphor or a simple shared story guides system development and

communication.

• Simple Design advocates choosing the simplest design possible and

removing any unnecessary complexity as soon as it is discovered.

2.2. AGILE SOFTWARE DEVELOPMENT 21

• Testing involves unit tests written by programmers that guide the

code, and acceptance tests that define whether an implementation is

complete.

• Refactoring involves restructuring the system to simplify, remove du-

plication, improve communication, or add flexibility, without changing

the behaviour of the system.

• Pair Programming is the practice of two programmers working to-

gether on one workstation and collaborating on all aspects of the pro-

gramming. One partner, termed the driver, works with the keyboard

and mouse, while the other, termed the navigator, maintains a more

strategic view.

• Collective Ownership implies all code is owned by everyone and can

be changed at anytime to the advantage of the system and design. As

pairing of programmers is dynamic, everyone has the opportunity to

learn something about every part of the code.

• Continuous Integration involves integrating and building the system

several times a day, after each task is completed.

• 40-hour week ensures programmers are fresh and eager every day.

The rule also dictates that no one can work a second week of overtime.

• On-site customer is the business representative, who is available to

set priorities, answer questions that programmers may have.

• Coding standards imply that programmers will endeavour to write

code in accordance with rules that focus on communication and main-

tain uniform set of coding practices.

XP is different from traditional methodologies in the following ways [19]:

short cycles, early and continuing feedback, and an incremental approach;

implementation of functionality to be flexibly scheduled while responding to

22 CHAPTER 2. LITERATURE REVIEW

changing business needs; reliance on oral communication, automated tests,

and source code to describe system structure and intent.

2.2.3 Agile Software Development Teams

A hallmark of Agile software development is its focus on people and social in-

teractions. The values of the Agile Manifesto promote a people-focused view

of software development. It is no surprise, therefore, that researchers are now

exploring the structure and behaviour of Agile software development teams

[38, 104, 108, 119, 141, 162, 164], in response to the Agile software movement’s

increasing popularity within industry over the past decade [21, 100, 119]. A

systematic review of empirical studies of Agile software development found

that about 20% of research studies on Agile software development focused

on human and social factors [51].

Agile teams are meant to be democratic teams—where all members are

considered peers at the same level, without a strict hierarchy in practice.

Team members are empowered with collective decision making and cross-

functional skills, which increases their ability to self-organize [119]. Man-

agement in Agile teams is meant to be facilitative and co-ordinating [119].

Smaller teams are better suited to democratic structures than larger teams

[158]. This is one of the reasons that Agile teams work best in smaller num-

bers [155, 119].

Nerur et al. threw light on various issues related to transitioning into an

Agile environment, broadly dividing them into technological, people-related,

and process-related issues [119]. One of the people-related challenges is pro-

grammers used to solitary working styles moving into a collaborative environ-

ment. Collaborative decision-making is predicted to be a challenge, requiring

huge effort, time, and patience at the organizational level. The study further

suggests that the traditional project manager’s role of controller and plan-

ner would need to change to that of facilitator and collaborator. They also

predict that the greatest challenge posed in the way of achieving this change

would be for the manager to relinquish their authority [119].

2.2. AGILE SOFTWARE DEVELOPMENT 23

A popular slogan “people trump process” highlights the importance of

people in Agile software development [40]. Cockburn et al. point out that

while the success of any process is largely dependent on the people, the ability

of the people to achieve their goals is dependent on the level of support

they receive from users, customers, and management [40]. They argue that

Agile organizations practice “leadership-collaboration” instead of command

and control style management, and that management in Agile organizations

trust their teams to deliver to their best potential. They suggest that Agile

teams function best in an organizational culture that supports people and

collaborations.

Sharp et al. have conducted an extensive ethnographic study of five ma-

ture XP teams, describing characteristics of XP teams [141], collaboration

and co-ordination in XP teams [142], the effect of different organizational

cultures on the practice of XP [130], and the social aspects of XP’s techni-

cal practices [131]. Their study confirms the highly collaborative and self-

organizing nature of Agile teams [142]. Sharp et al. describe the culture

of mature XP teams as possessing five characteristics: (a) respect on both

an individual and team level, (b) responsibility on both an individual and

team level, (c) maintaining quality of working life, (d) confidence in their

own abilities coupled with constant re-validation and re-affirmation, and (e)

trust, that underpins the other four. Their study established the importance

of story cards (physical cards that contain the description of a user story)

and story walls/boards (physical walls/boards that comprises of the user sto-

ries that the team has committed to implementing in a given iteration, along

with their break-down into technical tasks) in collaboration and co-ordination

within XP teams [141]. While simple, these physical artifacts proved to be

information rich focal points for collaboration and co-ordination.

Williams et al. have extensively researched XP’s pair programming prac-

tice [164, 165]. Pair programming has been shown to improve productivity

and quality of products [165]. Transitioning from working alone into pair

programming, however, can be challenging for programmers. Several prac-

24 CHAPTER 2. LITERATURE REVIEW

tical tips are offered for programmers to enable a smooth transition to pair

programming, including sharing all programming artifacts, such as design,

code, etc; taking turns to code and to review; remaining focused on the tasks;

and receiving feedback to improve personal skills instead of being defensive

and egotistic. The study acknowledges that pair programming can be intense

and mentally exhausting, as it demands persistent focus. Pairs often take

time off pair-programming to attend to individual work.

In her doctoral research, Martin discovered that the customer role was

generally played by a team of people, instead of by a single person as initially

assumed in literature [106, 105]. Martin’s study describes an informal XP

customer team that consist of different roles, where the Negotiator was the

closest to the on-site customer defined in literature. The study also describes

customer practices such as Customer Boot Camp and Pair Customering.

These practices—when combined with the customer roles Martin identified—

were found to help reduce the burden placed on the on-site customer role.

The social nature of Agile teams was explored through a Grounded The-

ory research study by Whitworth [162]. The findings highlight the im-

portance of social and interaction-focused practices such as daily meetings,

and the use of information radiators in establishing social answerability and

awareness. The results emphasize the importance of self-organizing abilities

of Agile teams, while highlighting the lack of research on the topic. This

study calls for more studies to be conducted on social and cultural issues on

Agile teams, specially with regards to “self-regulatory” work structures [162].

Most of the above research has focused almost exclusively on XP teams

[107, 140, 141, 142, 164]. In contrast, research on Scrum is scarce, despite

Scrum being arguably the most popular Agile method used in the industry

[51, 113].

2.3. SELF-ORGANIZING TEAMS 25

2.3 Self-Organizing Teams

The concept of self-organizing teams existed long before it was formally in-

corporated as a hallmark of Agile software development [72]. This section

presents a review of self-organizing teams from several perspectives: socio-

technical systems perspective, organizational theory perspective, complex-

adaptive systems perspective, knowledge management perspective, and fi-

nally, an Agile software development perspective.

2.3.1 Socio-Technical Systems Perspective

From a socio-technical systems perspective, research on self-organizing teams

dates back to the Tavistock group’s study of English coal miners as au-

tonomous groups in the 1950s [159]. Autonomous groups were described as

learning systems that expand their decision space in response to every day

learning. The success of these autonomous groups was largely attributed to

the supporting organizational environment, an informal structure with a de-

centralized, participative, and democratic system of control, called concertive

control [17]. Concertive control was argued to be an alternative to the bu-

reaucratic control marked by an hierarchical system with rational-legal rules

rewarding compliance [97]. Self-managing teams were proposed as an exem-

plar of concertive control and were suggested to increase the organization’s

ability to respond to changing business conditions [17].

Self-managing teams were described as teams made up of 10 to 15 people

taking on the responsibilities of their former supervisors; whose every day

activities were guided by the senior management’s corporate vision; who were

cross-trained individuals setting their own work schedules; who displayed

increased commitment to the company; and who co-ordinated with other

areas of the company [17]. Self-managing teams in a concertive organization

were said to be motivated by peer-pressure as opposed to legal rules in a

bureaucratic organization. The distinct synergy between the description of

these self-managing teams and the theoretical concept of a self-organizing

26 CHAPTER 2. LITERATURE REVIEW

team proposed in Agile software development is inescapable [71, 136].

2.3.2 Organizational Theory Perspective

Self-organizing teams have been described from an organizational theory per-

spective [86, 114, 115]. Morgan, in his book “Images of Organizations”, de-

scribes several metaphors for viewing an organization. One of the metaphors

is organizations as holographic brains, which captures the concept of a holo-

gram to represent organizations where the qualities of the whole system are

captured in each of its parts. As a holographic brain, the organization or work

group displays enhanced abilities to self-organize [1, 115]. Four principles of

self-organization in a holographic organization are defined as: minimum crit-

ical specification, requisite variety, redundancy of functions, and learning to

learn [14, 115]:

Minimum Critical Specification refers to the senior management defining

only the critical factors that are needed to direct the team and placing as few

restrictions on the team as possible [115]. Morgan also emphasizes the need

for self-organizing teams to work in an environment of “bounded” or “respon-

sible autonomy” [115]. The role of management is extremely important in

providing autonomy to the team and for team empowerment [86].

Requisite Variety and Redundancy of Functions Morgan defines requi-

site variety as the need for any control system to match the complexity and

diversity of the environment being controlled [115]. In other words, the or-

ganization must match the variability of its external environment. Requisite

variety implies that changes in the environment of the organization is best

handled by self-organizing teams. In other words, if the amount of variety or

fluctuations in the environment is low, self-organizing teams—composed of

members possessing variety of skills—are not required. Self-organizing teams

are effective when there are changes in the organizational environment. It

is not surprising then that self-organizing teams are seen as improving the

flexibility of an organization in terms of its ability to respond to change and

as influential in improving the quality of the employee’s working life [86, 114].

2.3. SELF-ORGANIZING TEAMS 27

The principles of requisite variety and redundancy of functions are closely

related. Redundancy of functions, refers to the multi-functionality of workers

where workers are able to perform a wide variety of team tasks through cross-

training [86].

Learning to Learn refers to the team’s ability to reanalyze problems, reap-

praise the best working method, and reconsider the required output if nec-

essary [86]. Sustenance of self-organization requires double-loop learning,

where the rules and norms adapt to changing environments [1].

The holographic organizations metaphor has been theoretically explored

in the context of self-organizing Agile teams by Nerur et al. [118]. Minimum

project planning and specification up-front on Agile projects is consistent

with the principle of minimum critical specification. Interchangeable roles,

multiple perspectives, and code ownership on Agile teams, are theoretically

consistent with the principle of requisite variety and redundancy of functions.

The practices of refactoring, standup meetings, and pair programming are

considered consistent with the principle of learning to learn (or double loop

learning). Whether Agile teams are able to adhere to these principles in

practice, however, has not been shown.

2.3.3 Complex Adaptive Systems Perspective

Self-organization has also been discussed from the complex adaptive systems

perspective [16, 88, 92, 96, 99, 154]. Complex adaptive systems (CAS) are

systems that exhibit spontaneous order through a process of self-organization

[92]. Immune systems, ant colonies, human cities, and eco-systems are ex-

amples of complex adaptive systems [92]. Kauffman explored CAS in hu-

man organizations and economics, defining modern organizations as self-

sustaining structure of roles and obligations [88]. Levin further suggested

that co-operation and networks of interaction emerge out of individual be-

haviours and in turn influence them [96].

Anderson et al. [10] define self-organizing teams as teams that are (a)

informal and temporary, (b) formed spontaneously around issues (c) are not

28 CHAPTER 2. LITERATURE REVIEW

a part of a formal organization structure, (d) have a strong sense of shared

purpose, (e) where team members decide their own affairs, and (f) where all

members’ primary roles relates to the task.

Augustine et al. compare Agile projects to Complex Adaptive Systems

and suggest that the complex interactions among members leads to self-

organization and emergent order [16]. Other proponents of this view insist

that senior management and managers, while relinquishing control, must

provide an environment that is conducive for self-organization to emerge

[98, 99].

2.3.4 Knowledge Management Perspective

From a knowledge management perspective, one of the earliest papers to

describe self-organizing teams, was “The New New Product Development

Game” by Nonaka and Takeuchi, where they define a group to possess self-

organizing capability when it exhibits three conditions: autonomy, cross-

fertilization, and self-transcendence [154]. A team exhibits autonomy when

they are provided freedom by their senior management to manage and as-

sumes responsibility of their own tasks and when there is minimum interfer-

ence from senior management in the team’s day to day activities [154]. A

team exhibits cross-fertilization when it is composed of individual members

with varying specializations, thought processes, and behaviour patterns and

these individuals interact amongst themselves leading to better understand-

ing of each others perspectives [154]. A team possesses self-transcendence

when they establish their own goals and keep on evaluating themselves so

that they are able to devise newer and better ways of achieving those goals.

Self-organizing teams were seen as an important agent of knowledge cre-

ation and management in an organization [120]. Self-organizing teams ac-

cumulate and spread knowledge through (a) “multilearning” made up of

multilevel learning across individual, group, and organizational levels and

“multifunctional learning” across functions, and (b) “transfer of learning”

across different departments of the organization [154]. The self-organizing

2.3. SELF-ORGANIZING TEAMS 29

team with its cross-functional and multiple learning capabilities replaced tra-

ditional teams with specialists in particular knowledge areas.

2.3.5 Agile Software Development Perspective

Finally, from an Agile software development perspective, self-organizing teams

are at the heart of Agile software development [35, 40, 72, 108, 137, 141].

Self-organizing teams are considered the source of best architecture, require-

ments, and design [72]. While Scrum specifically mentions self-organizing

Agile teams, the concept of “empowered” teams has only recently been added

to XP [166].

Self-organization is one of the principles behind the Agile Manifesto and

has been identified as one of the critical success factors of Agile projects

[16, 35, 72]. Self-organizing Agile teams are composed of “individuals [that]

manage their own workload, shift work among themselves based on need and

best fit, and participate in team decision making” [71]. Self-organizing teams

must have common focus, mutual trust, respect, and the ability to organize

repeatedly to meet new challenges [40].

Sutherland, a co-creator of Scrum, explains that self-organizing teams

consist of “members with diverse backgrounds” who are “given a free hand”

by the top management [152]. Schwaber, the other co-creator of Scrum,

says that Agile methods “employ self-organizing teams” which are cross-

functional, not limited by their organizational job titles, training or experi-

ence, rather the team “self-organizes based on its strengths and weaknesses to

do the work at hand” [136]. Schwaber suggests individuals on the team need

to co-ordinate their individual self-organization with the rest of the team via

daily synchronization meetings called daily Scrums.

Larsen defines a self-organizing Agile team as a group of peers using one

or more Agile methods that share a goal and accomplish the goal through

collaboration [95]. The team approaches problem-solving collaboratively and

strives for continuous improvement. Others have also mentioned the impor-

tance of self-organizing teams in Agile software development and the need for

30 CHAPTER 2. LITERATURE REVIEW

self-assignment, collective responsibility, cross-functionality, and continuous

learning in such teams [24, 54].

Self-organizing Agile teams are not leaderless, uncontrolled teams [40,

154]. Leadership in self-organizing teams is meant to be light-touch and

adaptive, providing feedback and subtle direction [11, 16, 34, 154]. Leaders

of Agile teams are responsible for setting direction, aligning people, obtaining

resources, and motivating the teams [11].

In a longitudinal study of a single company adopting Scrum, Moe et

al. studied barriers to self-organization by focusing on one aspect of self-

organization—autonomy [113]. They found that management did not provide

an environment conducive to self-organization that led to reduced external

autonomy. They also report that high individual autonomy proved to be a

barrier to self-organization as members preferred individual goals over team

goals.

Moe et al. also investigates the results of exploring the teamwork chal-

lenges that arise when introducing a self-managing Agile team [112]. The

term self-managing, in that paper, is used to describe Agile teams and is

considered synonymous to autonomous or empowered teams. The study

uses Dickinson and McIntyre’s teamwork model for understanding the self-

managing nature of Agile teams, which includes components such as team ori-

entation, team leadership, monitoring, feedback, backup, co-ordination, and

communication [50]. The results show that the main challenges to achiev-

ing team effectiveness include problems with team orientation, leadership,

and co-ordination, as well as highly specialized skills and corresponding di-

vision of work. The study suggests that trust and mental models, besides

the components of Dickinson and McIntyre’s teamwork model, are of great

importance in understanding self-managing Agile teams. The study also rec-

ommends that both developers and management need to change in order to

establish self-managing teams.

While practitioner-based literature on self-organizing Agile teams abound,

research literature on the subject is scarce. Some studies on Agile teams have

2.3. SELF-ORGANIZING TEAMS 31

acknowledged the self-organizing nature of Agile teams [141, 162]. Research

on self-organizing Agile teams is limited to a single case-study based research

which explores one of the three conditions of self-organization—autonomy

[113]. Moe et al. note that Agile methods, specially Scrum, emphasizes self-

organizing teams but do not provide clear guidelines on how they should be

implemented [112, 113]. There is a lack of research exclusively focused on

the self-organizing nature of Agile teams, that extends across multiple or-

ganizations, countries, and cultures. This thesis presents a grounded theory

of self-organizing Agile teams that emerged from this research, in terms of

their roles and practices, and the critical environmental factors that influence

them.

Most of the literature pertaining to self-organizing teams presented here

is revisited, and further literature is discussed in relation to the research

findings as discussion sections 4.8, 5.5, 5.6, 5.7, and 6.5.

32 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Research Design

Software engineering researchers are constantly looking to improve the quan-

tity and quality of their research findings through the use of an appropri-

ate research method [143]. Over the last decade, there has been a sus-

tained increase in the number of researchers exploring the human and so-

cial aspects of software engineering through qualitative research methods

[32, 45, 41, 107, 162]. This chapter provides a description of our choice of

research method and research perspective, role of the researcher, and the

theory and application of Grounded Theory in this research.

3.1 Research Methods

This section provides a brief description of different research methods consid-

ered, and presents our motivation for choosing Grounded Theory. Creswell

[46] and Oates [122] present detailed descriptions of various research methods

and designs.

Survey Research: Survey research allows capturing data from a broad

population with the aim of identifying their characteristics [52, 122, 143].

Survey research often makes use of questionnaires to collect data from a large

number of individuals. Formulation of a clear research question and careful

33

34 CHAPTER 3. RESEARCH DESIGN

selection of a representative subset of the population are prerequisites for

Survey research. This research was driven by a motivation to explore the

human and social aspects of Agile teams. Since there was no clear research

question or hypothesis to begin with, survey research was not a suitable

option for conducting this research.

Case Studies: Case Studies, used as a research method, enables the study

of a contemporary phenomenon in its natural setting, specially “when the

boundaries between phenomenon and context are not clearly evident” [116,

167]. Case Study research can be single-case or multiple-case. The cases are

selected based on their relevance to a pre-formulated research question [52].

Ethnography: Ethnography finds its roots in Anthropology. The aim of

Ethnography is to study community of people in order to understand how

they make sense of their social interactions [52, 141]. Researchers using

Ethnography often become a member of the community for the duration

of the observations. Ethnographies often result in rich descriptions of the

community that help define its culture [141]. Ethnography is well suited to

explore the social aspects of Agile teams [131, 141, 142].

Grounded Theory: Grounded Theory, used as a qualitative research method,

studies people and interactions in order to capture the main concern of the

participants and how they go about resolving it. A detailed description of the

Grounded Theory method and its application in this research, is provided in

the rest of this chapter.

Grounded Theory was selected as the method for this research. Strong

institutional support and a successful history of using Grounded Theory for

exploring human and social aspects of Agile teams [107, 106] within the de-

partment were the primary reasons for selecting Grounded Theory over other

applicable methods, such as Ethnography. Other reasons include the follow-

ing: firstly, Agile methods focus on people and interactions and Grounded

Theory, used as a qualitative research method, allows the study of social

3.2. RESEARCH PERSPECTIVES 35

interactions and behaviour [126]. Secondly, Grounded Theory focuses on

theory generation, rather than extending or verifying existing theories—an

interesting and exciting prospect. Thirdly, Grounded Theory is useful when

studying relatively new areas or when trying to gain a fresh perspective

on a well-known area [147] and there has been limited research on the hu-

man and social aspects of Agile software development. Finally, Grounded

Theory has been used successfully, and continues to gain popularity, as a re-

search method to study Agile software development teams around the world

[38, 41, 107, 162].

3.2 Research Perspectives

Research can be carried out using different underlying philosophical perspec-

tives, such as: positivist, interpretive, and critical [36, 52, 116, 123].

Positivist: A positivist view of the world assumes that knowledge is based

on inferences from observable facts [52]. Positivists assert the study of a

phenomenon is independent of the researcher and their tools [116]. The

main focus of a positivist perspective is to test theory in order to “increase

predictive understanding of phenomena” [116, 123]. Examples of research

methods most commonly associated with a positivist approach are Survey

Research and Case Studies [52, 116], although Case Study research is also

used with other research perspectives.

Critical: A critical perspective assumes that “research is a political act”

[52]. Researchers following the critical approach are referred to as critical

theorists. The main focus of the critical theorists is to study conflicts in

society and take on an emancipatory role [52, 116]. The research method

most commonly associated with a critical approach is Action Research [52].

36 CHAPTER 3. RESEARCH DESIGN

Interpretive: An interpretive perspective endorses the idea that scientific

knowledge is inherently inseparable from its human context and that reality

can be studied through social constructs, such as language [52, 116]. The

main focus of an interpretive perspective is to study a phenomenon by un-

derstanding how people make sense of it. An interpretive perspective rejects

an objective view of the world and does not attempt to generalize from sam-

ple to population. As a result, the findings derived using this perspective

are closely tied to the context of the study. An interpretive perspective leads

to a deep understanding of the phenomenon in a sample context which can

then be used to inform other contexts [123].

In this research, Grounded Theory was used with an interpretive perspec-

tive since (a) the focus was to generate theory, rather than verify existing ones

(which rules out a positivist perspective), and (b) the conceptual findings re-

sulting from the study, although modifiable, are grounded in the contexts

studied. [116].

3.3 Role of the Researcher

Since this Grounded Theory research was carried out using an interpretive

approach, the role of the researcher is important in how the phenomenon

under study is interpreted. This section provides a background of the re-

searcher.

I completed a Bachelor of Science with honours distinction in Computer

Science from Louisiana State University, USA in 2003. My personal inter-

est in literature guided me into taking several elective courses in English

literature. One of these courses—based on critical thinking and writing—

particularly helped me view a phenomenon with an open mind and express

it from multiple and distinct perspectives.

Thereafter, I worked in the Indian software industry for one and a half

years, at Ebookers plc (a web-based, pan-European travel agency). As a de-

veloper, I was exposed to the inner workings of software development teams,

3.4. GROUNDED THEORY 37

their management, and customers in a traditional setting. Towards the end

of my job, there was a marked move towards more Agile-like projects.

In 2005, I joined the Masters program at Victoria University of Welling-

ton, New Zealand. It was in my first year of my Masters degree that I was

introduced to Agile software development, taught as a part of a university

course by Dr. Stuart Marshall. I got further interested in the area as a part

of an object-oriented paradigms course, taught by Prof. James Noble. Based

on my strong academic record and research potential I was admitted to a

direct PhD program, under the supervision of Prof. Noble and Dr. Marshall

in the area of Agile project management.

Since 2006, I have conducted this research as part of my doctoral degree

in New Zealand and India. Being a newcomer to the New Zealand culture,

I had no preconceived notion of how the New Zealand software development

industry worked. Being an Indian by descent and having worked for a brief

period in the Indian software industry, however, meant I had a reasonably

good understanding of software development practices in India. This experi-

ence worked to my advantage in accessing organizations for participation in

research. At the same time, I was conscious not to let this experience cloud

the research as I carefully approached interviews and observations with an

open mind.

In order to preserve consistency in the application of the research method,

I have personally conducted all data collection through interviews and ob-

servations, and all the data analysis, with frequent feedback from my super-

visors, colleagues, peers, and industry practitioners.

3.4 Grounded Theory

Grounded Theory (GT) is defined as “a general methodology of analysis linked

with data collection that uses a systematically applied set of methods to gener-

ate an inductive theory about a substantive area” [59]. GT was developed by

Barney Glaser and Anselm Strauss, as a result of their collaborative research

38 CHAPTER 3. RESEARCH DESIGN

Table 3.1: Grounded Theory Terms and Descriptions [81]

Term Description

Minor

Literature

Review

The researcher can start off with a light literature review—enough to

carry on a conversation with the participants.

Theoretical

Sampling

A process which allows the researcher to collect, code, and analyze the

data and then decide what data to collect next [58]

Open Coding

The first step of analysis and starts by collating key points from raw

data. These are then assigned a code—a phrase that summaries the

key point in 2 or 3 words [57].

Constant

Comparison

Method

A process by which codes arising out of each interview are constantly

compared against the codes from the same interview, and those from

other interviews and observations, producing higher levels of data

abstraction [57, 58].

Memoing

The ongoing process of writing theoretical notes throughout the GT

process. Memos capture the conceptual links between categories as the

researcher notes down their reflections on different categories.

Core Category

Several categories emerge as a result of data analysis and the one that

is able to account for most variations in the data and relates

meaningfully and easily with other categories is called the core

category [58].

Selective

Coding

Once the core category is established, the researcher ceases open coding

and uses selective coding—a procedure where they code for only the

core category and those categories that are closely related to the core.

Theoretical

Saturation

When further data collection and analysis on a particular category

leads to a point of diminishing results—no new insight into the

category is generated—the category is said to have reached Theoretical

Saturation [58]. The researcher can then stop collecting data and

coding for that category.

Major

Literature

Review

As the theory starts to emerge, the researcher can conduct extensive

literature review to see how the literature in the field relates to their

emerging theory.

Sorting

Once the researcher has nearly finished data collection and coding is

almost saturated, they can begin arranging the theoretical memos on a

conceptual level or Sorting. Sorting results in an outline of the theory

describing how the different categories relate to the core category [58].

Theoretical

Coding

Glaser lists several common structures of theories or theoretical coding

families [63] which can be used as a framework to describe how the

categories relate to each other as a hypotheses to be integrated into a

theory. This is called Theoretical Coding.

Write up

The final step in GT is writing up the theory, which follows the

theoretical outline generated as a result of sorting and theoretical

coding.

3.4. GROUNDED THEORY 39

on dying hospital patients [65]. They published their book The Discovery of

Grounded Theory (1967) which laid the foundations of GT [65].

The goal of GT is “to generate a theory that accounts for a pattern of be-

haviour which is relevant and problematic for those involved” [58]. GT tries

to find the main concern of the participants and how they go about resolving

it, through constant comparison of data at increasing levels of abstraction

[59]. The nature of the ‘theory’ generated by the Grounded Theory method

is best understood as an explication of the research findings [8]. It has also

been described as “a general pattern of understanding” [46]. In generating

a theory, a GT researcher uncovers the main concern of the research partici-

pants and how they go about resolving it. The distinguishing features of the

GT method are a rigorous analysis method powered by constant comparison

of data, called Constant Comparison method, and the practice of frequently

recording reflections on data in order to elicit relationships between them,

called Memoing (described later in this chapter.)

Differences between the two originators of Grounded Theory led to the

emergence of two versions of the Grounded Theory method: Glaser’s version

of GT, often referred to as the Glasserian method or ‘classic’ GT and Strauss’

version, called Straussian GT [33, 62]. This research employs classic GT as

it is the dominant form of GT used in software engineering research, and due

to a larger number of resources available [64].

In the following sections, the main procedures of the GT method are

described. Examples from the application of GT to this research are also

included. Table 3.1 provides a glossary of general GT terms [79]. Figure

3.1 presents an overview of the GT method or the GT life-cyle [81]. The

diagram captures the main procedures of the Grounded Theory method but

does not imply a linear sequence because GT procedures are “cycled and go

on simultaneously, sequentially, subsequently, serendipitously” [58].

The following sections describe the GT procedures in the order presented

in Figure 3.1. Challenges faced in applying the various procedures of the GT

method in software engineering research and the strategies found useful in

40 CHAPTER 3. RESEARCH DESIGN

Data Collection

Open Coding Memoing

Constant Comparison
Method

Core Category

Data Collection
(via Theoretical Sampling)

Selective Coding Memoing

Constant Comparison
Method

Sorting

Theoretical Coding

Write Up

Li
te

ra
tu

re
 R

e
v

ie
w

minor review

major review
Theoretical Saturation

Figure 3.1: The Grounded Theory Life-Cycle [81]

overcoming them are also discussed.

3.4.1 Research Area

In order to effectively study and uncover the main problems of the partici-

pants, GT recommends refraining from formulating a research problem or a

question up front [58]. The rationale behind this recommendation is that (a)

the GT method is meant to generate new theory, and having a preconceived

research problem can cause the researcher to be limited in their explorations;

3.4. GROUNDED THEORY 41

and (b) the research problem should be the problem of the participants under

study and should not be preconceived or forced, rather it should be allowed

to emerge [58].

Although the researcher is advised against formulating a research question

up front, they are required to choose a general area of interest. The plethora

of subject areas within software engineering makes choosing one a daunting

task. This research started by exploring Agile Project Management as an

area of research, primarily due to the growing popularity of Agile software

development in software engineering research [38, 107, 113, 119, 141, 162].

3.4.2 Minor Literature Review

Glaser’s stance on literature review in the GT method has been a topic of

debate [149, 156]. While GT does not involve formulating a hypothesis up

front based on extensive literature review, the use of literature is not pro-

hibited in the GT method. Glaser strictly warns against extensive literature

review in the same area of research during the early stages of the GT method

[58]. Glaser insists that “undertaking an extensive literature review before the

emergence of the core category violates the basic premise of GT ” [62]. The

rationale behind a minimal literature review before the emergence of the core

category is in many ways the same as that behind not starting with a spe-

cific research question, namely: avoid clouding the researcher’s mind with

preconceived ideas and focusing on generating theory rather than verifying

existing theories [58].

Following Glaser’s advice, literature review was kept to a minimum in

the beginning—just enough information on Agile methods was read to un-

derstand the basic facts and terminology in order to converse with the par-

ticipants during interviews. A deeper understanding of Agile methods and

in particular the self-organizing nature of Agile teams came mostly from the

participants in the early stages of the research.

While extensive literature review in the same substantive area as the re-

search is discouraged early on, reading of substantive areas different from that

42 CHAPTER 3. RESEARCH DESIGN

of the research is considered vital in order for the researcher to understand

how to apply the GT process [58]. Reading articles and dissertations describ-

ing research conducted using GT in other areas, for example [23, 53, 91, 117],

was found to be useful.

3.4.3 Data Collection

This section describes how the participants were recruited and interviews and

observations were conducted. Data collection in GT is guided by a process

called Theoretical Sampling, which is an ongoing process which helps decide

what data to collect next based on the emerging theory:

“Theoretical sampling is the process of data collection for generat-

ing theory whereby the analyst jointly collects, codes, and analyzes

his data and decides what data to collect next and where to find

them, in order to develop his theory as it emerges.” [58]

Recruiting Participants

The search for participants commenced once Human Ethics Committee (HEC)

approval was received (Appendix B). Finding participants can be difficult at

best and extremely challenging at worst. In the early period of this research

there was no umbrella organization or user group for Agile practitioners in

New Zealand. Individual Agile companies and practitioners were contacted,

with limited success. At an event organized by some Agile companies in

New Zealand, the opportunity to meet and interact with several Agile prac-

titioners presented itself. Some of these practitioners offered to participate

in our research. The foundations of an umbrella Agile group, the Agile Pro-

fessionals Network [12] were laid at this very event. However, it was some

time before the group grew and became active. The struggle to find research

participants continued in the interim and other destinations for data collec-

tion were explored. The Indian software industry was chosen because it is

3.4. GROUNDED THEORY 43

home to a well-established and flourishing software industry with an increas-

ing number of Agile adoptions [4, 150, 151, 153, 158, 161]. In exploring the

Indian software industry resources online, the Agile Software Community of

India, was discovered [13]. A request for participation was emailed to ASCI’s

user group mailing list, and fortunately, several practitioners came forth to

help.

The initial participants belonged to relatively new Agile teams and as

such the emerging theory was mostly based around the initial challenges of

becoming a self-organizing team. Using theoretical sampling, gaps in the

emerging theory were discerned, which prompted the study of more mature

teams towards later stages of the research. A need to include participants

from different functional areas of software development such as development,

testing, management, etc. was also experienced at different stages of the

research guided by the emerging theory. As a result, practitioners in a num-

ber of different organizational roles were approached, such as Agile coach,

developer, tester, business analyst, designer, customer representative, and

senior management. Data collection by theoretical sampling helped develop

the emerging theory by (a) adapting questions to focus on emerging concerns

(b) choosing participants that were well placed to provide information on the

emerging concerns.

This research is based on 58 participants from 23 different software or-

ganizations. Of these, 26 were from 10 New Zealand organizations, 28 were

from 9 Indian organizations, and 4 were from 4 organizations in North Amer-

ica. Interviews with Agile practitioners in New Zealand were conducted in

Wellington. Interviews with Agile practitioners in India were conducted in

New Delhi, Mumbai, and Bangaluru (previously called Bangalore). The re-

maining few interviews with North American participants were conducted

during the Agile2008 conference in Toronto. The domains included health,

social services, telecom, entertainment, agriculture, oil and energy, Agile soft-

ware development and consultancy, etc. The products and services offered

by the participants’ organizations included web-based applications, front and

44 CHAPTER 3. RESEARCH DESIGN

T
ab

le
3.2:

Participants
and

Projects
(P#:ParticipantN

um
ber,Position:A

gile
C

oach
(A

C
),A

gile
Trainer

(A
T),D

eveloper
(D

ev),C
ustom

er
R

ep
(C

ustR
ep),

Business
A

nalyst(BA
),Senior

M
anagem

ent(SM
),K

now
ledge

Strategist(K
S);*O

rganizationalSize:X
S
<

50,S
<

500,M
<

5000,L
<

50,000,X
L
>

100,000
em

ployees)

P
#

P
o
sitio

n
s

M
e
th

o
d

O
r
g
.

S
iz
e
*

L
o
c
a
tio

n
D
o
m

a
in

T
e
a
m

S
iz
e

P
r
o
je
c
t

(m
o
n
th

s)

Ite
r
a
tio

n

(w
e
e
k
s)

P
1
-P

9
D
ev

x
3
,
B
A
,
A
C

x
2
,
A
T
,

T
ester,

C
u
st.

R
ep

.
S
cru

m
M

N
Z

H
ea

lth
7

9
2

P
1
0

A
C

S
cru

m
&

X
P

L
N
Z

S
o
cia

l
S
erv

ices
4
to

1
0

3
to

1
2

2

P
1
1
-P

1
8

D
ev

x
6
,
A
C
,
S
M

S
cru

m
&

X
P

S
N
Z

E
n
v
iro

n
m
en

t
4
to

6
1
2

1

P
1
9

S
M

S
cru

m
&

X
P

S
N
Z

E
-co

m
m
erce

4
2

4

P
2
0

A
C

S
cru

m
&

X
P

X
L

N
Z

T
eleco

m
&

T
ra
n
sp

o
rta

tio
n

6
to

1
5

1
2

4

P
2
1

C
u
st.

R
ep

.
S
cru

m
X
S

N
Z

E
n
terta

in
m
en

t
6
to

8
9

4

P
2
2

A
C

S
cru

m
&

X
P

S
N
Z

G
o
v
ern

m
en

t
E
d
u
ca

tio
n

4
to

9
4

2

P
2
3

A
C

S
cru

m
&

X
P

X
S

N
Z

S
o
ftw

a
re

D
ev

elo
p
m
en

t
8

1
2

1

P
2
4
-P

2
5

D
ev

x
2

S
cru

m
X
S

N
Z

S
o
ftw

a
re

D
ev

elo
p
m
en

t
8
to

1
0

8
2

P
2
6

A
C

S
cru

m
&

X
P

S
N
Z

F
a
rm

in
g

8
1
2

2

P
2
7
-P

3
5

D
ev

x
4
,
A
C
,
T
ester,

S
a
les

M
a
n
a
g
er,

S
M

x
2

S
cru

m
&

X
P

S
In
d
ia

A
g
ile

S
o
ftw

a
re

D
ev

elo
p
m
en

t
&

C
o
n
su

lta
n
cy

5
6

2

P
3
6
-P

3
9

A
C

x
4

S
cru

m
&

X
P

M
In
d
ia

S
o
ftw

a
re

D
ev

elo
p
m
en

t
7
to

8
3
to

6
2

P
4
0

S
M

S
cru

m
&

X
P

S
In
d
ia

C
R
M

a
n
d
F
in
a
n
ce

7
to

8
o
n
g
o
in
g

3

P
4
1

D
esig

n
er

S
cru

m
&

X
P

S
In
d
ia

W
eb

-b
a
sed

S
erv

ices
5

1
2

P
4
2

A
C

S
cru

m
&

X
P

L
In
d
ia

T
eleco

m
8
to

1
5

3
4

P
4
3

A
T

S
cru

m
&

X
P

X
S

In
d
ia

A
g
ile

T
ra
in
in
g

7
8

2
to

4

P
4
4
-P

4
5

D
ev

x
2

S
cru

m
&

X
P

X
S

In
d
ia

S
o
ftw

a
re

D
ev

elo
p
m
en

t
4

1
1

P
4
6
-P

5
3

D
ev

,
B
A

x
2
,
A
T
,
A
C
,
K
S
,

H
R
,
S
M

S
cru

m
&

X
P

M
In
d
ia

A
g
ile

S
o
ftw

a
re

P
ro
d
u
cts

&
C
o
n
-

su
lta

n
cy

1
5

1
2

1

P
5
4

A
C

S
cru

m
&

X
P

M
In
d
ia

F
in
a
n
cia

l
S
erv

ices
8
to

1
1

3
6

2

P
5
5

A
C

R
U
P

X
S

C
a
n
a
d
a

T
eleco

m
1
0
to

1
5

1
0
to

1
5

2
to

4

P
5
6

S
M

S
cru

m
M

U
S
A

O
il
a
n
d
E
n
erg

y
5
to

8
1
2

2

P
5
7

C
u
st.

R
ep

.
S
cru

m
&

X
P

M
U
S
A

C
R
M

a
n
d
C
lo
u
d
C
o
m
p
u
tin

g
v
a
ria

b
le

v
a
ria

b
le

2
to

4

P
5
8

A
C

S
cru

m
&

X
P

X
S

U
S
A

H
ea

lth
v
a
ria

b
le

v
a
ria

b
le

2
to

4

3.4. GROUNDED THEORY 45

back-end functionality, and local and off-shored software development ser-

vices. The projects’ durations varied from 2 to 12 months and the team

sizes varied from 2 to 20 people on different projects. The organizational

sizes varied from 10 to 300,000 employees. Table 3.2 shows participant and

project details.

Participants were practicing Scrum or a combination of Scrum and XP.

All participants were practicing fundamental Agile practices such as iterative

and incremental development (with varying iteration lengths), iteration plan-

ning, estimation and planning of user stories and tasks, testing, status report

meetings (such as daily standup), frequent release of working software, and

some form of retrospective meetings. A majority of the participants engaged

in test-driven development and pair programming (on demand). Some par-

ticipants were certified Scrum Masters. Several participants were active in

local and international Agile communities—speaking at events and authoring

Agile related articles online.

Participants varied in their experiences of working on Agile projects, while

some were very fresh (first Agile project), some others had experienced work-

ing on a number Agile projects, and others had more than 5 years of expe-

rience on Agile projects. Half of the participants were collaborating directly

and regularly with their customers. The other half of the participants were

suffering from inadequate customer involvement of some kind—due to ei-

ther quantity or quality of customer involvement. Over the course of the

study (2006—2010), however, there was a marked improvement in the level

of awareness and popularity of Agile methods and consequently, in the level

of customer involvement. In order to respect their confidentiality, the par-

ticipants are referred to by numbers P1 to P58.

Interviews and Observations

Data was collected through interviews and was supplemented by observa-

tions, over a period of 3 years. Face-to-face, semi-structured interviews with

Agile practitioners were conducted using open-ended questions. The inter-

46 CHAPTER 3. RESEARCH DESIGN

views were approximately an hour long and focused on the participants’ ex-

periences of working with Agile methods. In particular, the challenges faced

in Agile projects and the strategies used to overcome them were discussed.

While the interviews were largely conversation-driven, some standard ques-

tions asked were:

• Please can you tell me about your professional background?

• What is your role on the project?

• What are the major challenges you’ve faced on this project, because you

were practicing Agile?

• How did you overcome that [challenge]?

As the data was analyzed and new concepts and categories emerged, the

subsequent interview questions were updated to focus on the emerging codes.

For example, questions in later interviews were modified to focus on the main

concern of the participants i.e. becoming self-organizing Agile team:

• Do you believe that your team is self-organizing? If yes, why? what

makes you self-organizing?

• What has been the level of customer involvement on this project?

In addition to interviews, observations were made about the participants’

workplaces, such as seating and set-up of information radiators, and several

Agile practices, such as daily stand-up meetings (co-located and distributed),

release planning, iteration planning, and demonstrations. Observations were

made for two teams in New Zealand and three in India for approximately four

hours each. Observations help provide greater insight into the data provided

through interviews as well as help validate the authenticity of interview data.

3.4. GROUNDED THEORY 47

Figure 3.2 shows the physical setup of a NZ team. A sample field note

from an observation is given below:

Figure 3.2: Physical setup of an open-plan workspace

Observation of an Open-Plan Workspace, New Zealand

“The office was an open planned one...The project team was lo-

cated at one end of the floor and the area was occupied by five

employees. These were: P6, the scrum master, one BA, three

developers (from XYZ company) and a tester. The tester was

on leave that day on account of an injured wrist. Her absence

had started to show effects on the burndown chart already! P6

introduced me to the team members and I took the opportunity to

request interviews with a couple of the experienced ones...then had

a look at the white board—the information radiator. It contained

story cards with point estimations. The team had a fun way of

displaying ownership of tasks through cartoon characters. Each

member had printed out a small-sized cartoon character, which

was stuck onto a magnet and moved around with their respective

48 CHAPTER 3. RESEARCH DESIGN

tasks. I thought this was a fun way to not only show ownership

but also personalize the task. There were burndown charts on the

white board and electronic copies of most of this information was

available as shared excel files which were accessible by the whole

organization. I asked P6 whether the Product Owners checked out

their white boards and charts etc and it seemed like most of them

were not as involved as P6 would have liked. She did mention one

Product Owner flying down to discuss the charts/tasks and was

fascinated by the concepts.”

Face-to-face interviews provide the opportunity not only to record verbal

information but also the mannerisms, actions, and expressions which add to

the verbal information. Conducting semi-structured interviews, instead of

completely structured interviews, helped uncover the real concerns of partic-

ipants rather than forcing a topic on them.

The majority of the interviews were first voice recorded and then tran-

scribed. A small number of interviewees were not comfortable being recorded,

and so hand written notes were taken. Although Glaser advises against it,

voice recording the interviews helped avoid losing information, and enabled

better concentration on the conversations. The interview transcripts served

as a good starting point for analysis. Data collection and analysis were it-

erative so that constant comparison of data helped guide future interviews

and the analysis of interviews and observations fed back into the emerging

results.

3.4.4 Data Analysis

Data analysis—called coding in GT—can begin as soon as some data has

been collected. There are two types of codes produced as a result of data

analysis or coding: substantive codes and theoretical codes. The substantive

codes are “the categories and properties of the theory which emerges from and

conceptually images the substantive area being researched” [63]. In contrast,

3.4. GROUNDED THEORY 49

theoretical codes “implicitly conceptualize how the substantive codes will re-

late to each other as a modeled, interrelated, multivariate set of hypothesis in

accounting for resolving the main concern” [63]. The following sections de-

scribe the coding mechanisms—open coding and selective coding—that lead

to substantive codes and theoretical coding that leads to theoretical codes.

Open Coding

Open coding is the first step of data analysis. Open coding was used to

analyze the collected data in detail [58, 60]. To explain open coding, an

example of working from interview transcripts to results for the category

“Mentor ’ is presented, which is one of the self-organizing Agile team roles

[78].

Open coding begins by collating key points from each interview transcript.

Then a code—a phrase that summaries the key point in 2 or 3 words—is as-

signed to each key point [57]:

Interview quotation: “We had [Mentor] as well at the time [the team

started Agile practices] so...It made it easy...having [Mentor] there as a backup

... [it has] been really good to have that guidance from [the Mentor].” — P8,

Tester, New Zealand

Key Point: “Coach providing guidance in initial stages”

Code: Providing initial guidance (P8, NZ)

Line by line data analysis is more effective and useful than word-by-word

analysis which can be tedious and potentially misguiding [7]. The use of key

points made it easy to focus while coding [7].

Constant Comparison Method

The codes arising out of each interview were constantly compared against

the codes from the same interview, and those from other interviews and ob-

servations. This is GT’s constant comparison method [59, 65]. The constant

50 CHAPTER 3. RESEARCH DESIGN

comparison method was used again to group these codes to produce units of

a higher level of abstraction, called concepts in GT.

Concept: Providing initial guidance and support

Mentor

Removing misconceptions

Getting team confident in use of Agile

Providing initial guidance and support

Encouraging continued adherence to Agile

Encouraging self-organizing practices

Figure 3.3: Example of emergence of a category from underlying concepts

Other concepts that emerged include removing misconceptions, encour-

aging self-organizing practices, getting the team confident in the use of Agile

methods, and encouraging continued adherence to Agile. Finally the con-

stant comparison method was repeated on concepts to produce a third level

of abstraction called categories.

Category: Mentor

A Mentor is one particular individual in the Agile team that assumes the

responsibility of providing guidance on the chosen Agile method. Detailed

description of the Mentor role and other roles is presented in chapter 4.

Figure 3.3 shows the emergence of the category Mentor from underlying

concepts. Examples of using diagrams to represent emergence of concepts

from data analysis in GT studies are derived from [7, 57].

Figure 3.4 depicts the levels of data abstraction in GT [81]. Other codes,

concepts, and categories emerged in a similar manner. Emergence of the

different categories is presented in similar diagrams throughout this thesis.

3.4. GROUNDED THEORY 51

Theory

Category

Concept

Code

Key Point

Raw Data

Figure 3.4: Levels of Data Abstraction in Grounded Theory [81]

The rigour of the GT method is embodied by the constant comparison

method. This process is repeated every time a new category is found or there

are changes in existing category or new properties of an existing category is

discovered leading the researcher to revisiting previously coded transcripts

to see if they have the new property.

The observations were analyzed and compared to the concepts derived

from the interviews. The observations did not contradict (but rather sup-

ported) the data provided in interviews, thereby strengthening the interview

data.

The challenge for a software engineering (SE) researcher in applying open

coding is that deriving codes, concepts, and categories, can be difficult es-

pecially early in the project. This problem was overcome by thinking of the

constant comparison method as a model for data abstraction and normaliza-

tion. Once the constant comparison method was understood as analogous

to software engineering’s method of abstraction, it became easier to apply.

One of the advantages of an SE researcher using GT is that they are well-

trained in analytical thinking and abstraction. The ability to raise concepts

to higher levels of abstraction is something SE researchers are familiar with.

This ability was extremely relevant when employing GT’s constant compar-

ative method.

52 CHAPTER 3. RESEARCH DESIGN

An SE researcher can also become overwhelmed as raw data gets con-

verted to another set of data (codes). The growing number of interviews

means increasing amounts of codes which can be further confusing. The

strategy found useful when conducting open coding was asking some ques-

tions: [60]: “what is this data a study of?”, “what category does this incident

indicate?”, “what is actually happening in the data?”, “what is the main

concern being faced by the participants?” and “what accounts for the contin-

ual resolving of this concern?” Answering these questions allowed coding to

continue effectively without feeling overwhelmed by the data.

Some GT researchers use software research tools such as NVivo [121] to

conduct their analysis [126]. The use of NVivo was attempted, but its struc-

tural framework was found to limit the way data could be organized. The

process of coding with pen along paper margins was found most effective.

The codes, concepts, and categories were then stored into electronic spread-

sheets, along with a list of the interviews or observation they were derived

from. The use of spreadsheets provided greater freedom in organizing the

data. As more data was collected, previous data were revisited and com-

pared to the new ones, in-keeping with the constant comparison method.

This resulted in several passes of coding and constant comparison over the

entire data set.

Core Category

The end of open coding is marked by the emergence of a core category [59].

The core category “accounts for a large portion of the variation in a pat-

tern of behaviour” and is considered the “main concern or problem” for the

participants [58].

There are several criteria for choosing the core category: it must be cen-

tral; it must be related to several other categories and their properties; it

must re-occur frequently in the data; it must relate meaningfully and easily

with other categories; and it must account for most variations in data [58].

The category that passed all the criteria for core was self-organizing Agile

3.4. GROUNDED THEORY 53

teams.

The core category captures the main concern of the participants, which

becomes the research problem. A challenge for the researcher, however, is

that discovering a core category can be time consuming and tedious. In

absence of a core category, the researcher can easily feel confused and lost.

Trusting a core category to emerge is perhaps the most demanding part of the

whole GT process. The solution is to continue patiently and rigorously with

constant comparisons and writing of theoretical memos (explained in section

3.4.5) and as Glaser reassures enumerable times, “it just has to emerge” [58].

The “eureka moment” experienced when discovering the core is truly worth

the patience and toil.

Another challenge is the difficulty in discerning the core from near-core

categories. For about half way through the research, the category lack of cus-

tomer involvement was one of the most common concerns of the participants

and looked promising to be the core. The solution to expose red-herrings

(a near-core category appearing to be the core category) is to return to the

list of criteria governing the core category. In checking the category lack of

customer involvement against the core criteria list, it did not meet all the

criteria, in particular it didn’t account for most variations in data. It became

apparent that lack of customer involvement was not the core category, rather

one of the challenges faced by Agile teams in resolving their main concern,

the core category: self-organizing Agile teams.

Selective Coding

Once the core category is established, the researcher ceases open coding and

moves into selective coding. Selective coding involves selectively coding for

the core category by limiting the coding to “only those variables [concepts or

categories] that relate to the core variable [category] in sufficiently significant

ways as to produce a parsimonious theory” [58, 62]. The core category guides

further data collection, analysis, and theoretical sampling [58].

Selective coding was much easier compared to open coding for three rea-

54 CHAPTER 3. RESEARCH DESIGN

sons: (a) by the time the selective coding stage was reached, the constant

comparison method had been familiarized (b) confidence in the application

of GT in general was better compared to the start of the research (c) it was

much easier to code selectively for only those categories that related to the

core rather than continue coding for all categories.

When further data collection and analysis on a particular category leads

to a point of diminishing results, the category is said to have reached the-

oretical saturation [59]. The researcher can stop collecting data and coding

for that category. In this research, the last few interviews provided no new

insight into the existing categories, which was a clear indication of theoretical

saturation.

3.4.5 Memoing

Memoing is the ongoing process of writing theoretical memos throughout the

GT process. A theoretical memos is a “theoretical note about the data and

the conceptual connections between categories written down as they strike the

researcher” [58]. Memoing is considered “the bedrock” of theory generation

[58].

Memos tend to be free-flowing ideas about the codes and their relation-

ships. Memos were written down as ideas about the emerging codes and

their relationships occurred. As recommended by Glaser, coding and other

activities were often interrupted to capture ideas into a memo. Figure 3.5

shows an example memo on “cross-functionality”.

Memoing is a powerful way to allow all the ideas and thoughts about a

certain code, concept, or category, to pour out. With further data collection

and analysis, memos were modified to reflect new ideas. Memoing allowed

the relationship between different concepts and later, between different cate-

gories, to emerge, as the similarities or differences between each, or how one

affected the other were noted down.

The challenge for SE researchers in this procedure of GT is that they may

not be able to express their ideas well enough in writing. A natural inclination

3.4. GROUNDED THEORY 55

Cross-functionality may not only imply the teams' ability to help

with or perform each other's tasks, but also refers to their mere

understanding of each other's tasks and perspective. If the

developer is able to understand the testers work (aim, goal, what

they are looking for) then they can help not by performing the

testing, but doing their job (development) while keeping the tester's

perspective in mind - so they would handle certain problems before

passing the code to the tester. This makes the tester's job easier

simply because the developer understood the (testers) perspective

better (example: P3-developer helping P8-tester). Despite cross-

functionality in the team, there is always room for specialists due to

demands of specific technology or expertise (P2). The ideal

situation would be lite and unobtrusive cross-functionality with

room for specialization as required - a balance.

Figure 3.5: Memo on Cross-functionality

towards literature was an advantage because I was used to writing articles,

poems, and stories, which are all forms of articulating ideas into words. A

SE researcher with little knowledge or inclination towards writing, on the

other hand, could think of memoing as ‘thinking aloud’. Format, structure,

spelling, or style etc are not to be bothered about, instead memoing should

focus on getting ideas down. For example, note the spelling of ‘lite’ towards

the end of the memo on cross-functionality in Figure 3.5.

Another related challenge is that memoing can easily become a trivial

exercise in tracing where the codes originated [7]. A way to overcome this

problem is by avoiding writing about the participants, and instead focusing

on the codes and concepts. For example, the memo in Figure 3.5, does refer

to some participant identifiers only as a reminder of their context. The main

focus of this memo is the concept cross-functionality.

It is useful to record memos electronically on the computer so they can be

stored, searched, retrieved, and edited with greater ease than using pen and

56 CHAPTER 3. RESEARCH DESIGN

paper. Separate files for memos on different topics were created and saved

using the topic name for easy recall. This also supported sorting.

3.4.6 Sorting

Once data collection is nearly finished and coding is almost saturated, the

researcher can begin sorting the theoretical memos. Sorting the memos forms

a theoretical outline. Sorting is an “essential step” that “can’t be missed”

[58]. The advantage of sorting is that it “puts the fractured data back to-

gether” [58]. Care was taken to sort ideas, not data. Chronological ordering

is not the purpose of sorting, instead sorting is done on a conceptual level,

resulting in an outline of the theory in terms of how the different categories

relate to the core-category.

Printouts of all the memos were taken. They were sorted by their topics so

that related topics were ordered one after the other. An outline of the theory

was generated, using these topic names in the same order. This outline later

formed the outline of this thesis.

The challenge involved in sorting the memos is that while it is easy to

group together related memos, the ordering of the memos may not be imme-

diately obvious. It takes some shuffling around of memos and thinking out

the relationships between the different memo topics, to find an order that

makes most sense. Modeling relationships between the different categories

with pen on paper was found to be useful. Once the relationships were estab-

lished in a diagram (using lines to connect categories), it was easier to spot

how the memos (covering different categories and concepts) were related.

3.4.7 Major Literature Review

Once the findings seemed sufficiently grounded and developed, the literature

on self-organizing Agile teams was reviewed. The purpose of major literature

review after analysis is to (a) protect the findings from preconceived notions

3.4. GROUNDED THEORY 57

and (b) to relate the research findings to the literature through integration

of ideas [58].

The advantage of literature review in later stages of GT is that it allows

the researcher to spot literature that is related to the already developed

concepts and categories of the emerging theory. Personal experience suggests

another advantage of avoiding extensive literature review up front, namely,

participants often feel more comfortable in expressing their honest opinions

and sharing their real experience when informing a novice, rather than when

being interrogated by an expert.

This thesis provides a literature review in chapter 2 for the benefit of the

reader, however, most of the extensive reviews were conducted towards the

end of the research, tieing the results into existing literature. In keeping with

the order of the major literature review, the research results are followed by

a discussion of existing literature. For example, the result chapters–4, 5, and

6—first present the research findings and then discuss them in relation to

existing literature in a discussion section.

3.4.8 Theoretical Coding

Theoretical coding is defined as “the property of coding and constant compar-

ative analysis that yields the conceptual relationship between categories and

their properties as they emerge.” [59]. Theoretical coding involves concep-

tualizing how the categories (and their properties) relate to each other, and

how they can be integrated into a theory [58].

Glaser lists several common structures of theories known as theoretical

coding families [59, 63]. Some of these include: The Six C’s (causes, contexts,

contingencies, consequences, covariances, and conditions); Process (stages,

phases, passages etc); Degree family (limit, range, intensity, etc); Dimension

family (dimensions, elements, divisions, etc); Type family (type, form, kids,

styles, classes, genre) and many more. Although theoretical codes are not

strictly necessary, but “a GT is best when they are used.” [63].

Following Glaser’s recommendation, theoretical coding was employed at

58 CHAPTER 3. RESEARCH DESIGN

the later stages of analysis, rather than being enforced as a coding paradigm

from the beginning [59, 63]. The theoretical coding family found best fit to

describe our findings on self-organizing Agile Teams was the Models fam-

ily [58]. The Models family allows a GT researcher to model their theory

diagrammatically. A figure modeling the theory is captured in figure 4.2.

3.4.9 Write-up

Following the GT method led to the generation of a substantive grounded

theory of self-organizing Agile teams. The final step in GT is writing up the

theory, which follows the theoretical outline generated as a result of sorting

and theoretical coding. We present our write up in chapters 4, 5, and 6.

3.4.10 Evaluating a Grounded Theory

Glaser recommends that a grounded theory 1 should be evaluated on the

basis of four criteria: fit, work, relevance, and modifiability [59].

Fit refers to “the ability of the categories and their properties to fit the

realities under study in the eyes of the subjects, practitioners and researchers

in the area” [60]. In other words, an emerging theory is said to ‘fit’ if it ex-

plains and fits the experiences of participants as well as different practitioners

who were not involved in theory generation [117].

Work refers to “the ability of the theory to explain the major variations

in behaviour in the area with respect to the processing of the main concerns

of the subjects”.

Relevance is achieved when the criteria of fit and work are met. Rele-

vance evokes instant “grab” [60].

Modifiability is a “quality of the theory to be ready for changes to include

variations in emergent properties and categories caused by new data. ” [60].

1Grounded Theory is used to refer to the research method, while grounded theory

(lower caps) is used to refer to the product of the research.

3.5. DISCUSSION 59

These criteria are revisited at the end of this thesis in section 7.3 to

demonstrate how well our theory evaluates against them.

3.5 Discussion

This section captures some reflections on the application of GT to study

software engineering, and in particular, Agile software development teams.

Through the course of our research, a strong synergy between the research

area (Agile software development) and the research method (Grounded The-

ory), were discovered [81]. There are several commonalities between the two:

both advocate minimum initial planning—Agile methods advocate minimum

design and planning up-front while Grounded Theory recommends minimum

initial literature review; both are iterative and incremental in nature—Agile

methods have set iterations in which the teams develop small chunks of

working functionality towards the final product while the Grounded The-

ory method involves iterative rounds of data collection and analysis (albeit

of flexible lengths) such that each iteration brings the researcher a step closer

to the main concern of the study; both focus on the human and social

aspects—Agile methods value “people and interactions over processes and

tools” [72] while GT focuses on studying the human experience and social

interactions in a given substantive area. Applying GT requires the ability

to embrace uncertainty, as the research focus slowly emerges through iter-

ative rounds of data collection, analysis, and memoing. This is similar to

Agile software development’s dictum of “embrace change” and “responding

to change” [19, 72]. The ability to embrace this uncertainty is somewhat

dependent on the researcher’s personality. Some researchers may find this

extremely uncomfortable and become paralyzed, while others feel excited at

the prospect of chasing and discovering the hidden or the unknown. The key,

as Glaser relentlessly repeats, is to return to data and trust emergence.

Some researchers feel that it is nearly impossible to let the research ques-

tion emerge in the process of conducting GT [149]. Avoiding extensive liter-

60 CHAPTER 3. RESEARCH DESIGN

ature review up-front and trusting the emergence of core concern make such

skeptics nervous. Our own experience of using GT as a research method in

a SE area with no previous theoretical training in GT to begin with is a

demonstration of an application of GT. Emergence can happen as long as

the fundamental tenets of the methods are adhered to and the researcher is

able to use theoretical sampling effectively to continuously narrow the focus

of the study to a single most relevant topic or concern. Our application of

Grounded Theory to SE research was not smooth-sailing, as is evident from

the various challenges faced (and described) in each of the GT procedures.

The strategies found useful in overcoming these challenges, however, infuse

confidence in employing GT again for similar studies in the future. The de-

scription of the challenges faced and the strategies found useful in applying

GT should help other SE researchers attempting to use GT.

Chapter 4

Self-Organizing

Agile Team Roles

This chapter presents the core of our grounded theory of self-organizing Agile

teams. The theory explains how software development teams take on infor-

mal, implicit, transient, and spontaneous roles ; perform balancing acts on

a set of integrated practices ; while facing critical environmental factors, in

order to become a self-organizing Agile team. The roles are: Mentor, Co-

ordinator, Translator, Champion, Promoter, and Terminator. The practices

involve balancing between freedom and responsibility, cross-functionality and

specialization, and continuous learning and iteration pressure. The factors

are senior management support and level of customer involvement. Each of

these aspects of a self-organizing Agile team—roles, practices, and factors—

are described in this chapter and the next two chapters.

Figure 4.1 shows the emergence of a grounded theory of self-organizing

Agile teams from underlying categories and concepts. Figure 4.2 depicts

the theory of self-organizing Agile teams as a model representing the roles,

practices, and factors.

61

62 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

This chapter describes the informal roles that exist on self-organizing Ag-

ile software development teams. Members of software development teams,

both Agile and non-Agile, fulfill organizational roles on the team. For ex-

ample, developers are responsible for development, testers are responsible

for testing, business analysts are responsible for requirements analysis, etc.

In Agile teams, however, these organizational roles are not strictly adhered

to, and members often function outside their boundaries when organizing

themselves. Members of Agile teams play one or more of six informal, im-

plicit, transient, and spontaneous roles in order to self-organize. These self-

organizing Agile team roles—Mentor, Co-ordinator, Translator, Champion,

Promoter, and Terminator—are focused specifically towards self-organization.

The self-organizing roles are informal and implicit, because unlike organiza-

tional roles, they are not formally designated to the individuals who play

them. The self-organizing roles are transient, because unlike organizational

roles, they emerge in response to challenges faced by the Agile team and

disappear or become dormant as the problems subside. The self-organizing

team roles are spontaneous, because unlike organizational roles, they are in-

tuitively picked up by different members of the team. Table 4.1 provides

an overview of self-organizational Agile team roles. The following sections

describe each of these self-organizing roles in detail. The descriptions include

selected quotations drawn from the interviews that shed particular light on

these categories and that are spread across participants, geographically and

by their organizational roles. The quotations are presented verbatim from

the interview transcripts with square brackets used to insert missing words

to fix grammar or to anonymize participant details (such as names of indi-

viduals or companies). Three full stops (...) indicate a pause, while three

full stops preceded and followed by spaces (...) indicate combining two

sentences referring to the same context but derived from different parts of

the same interview.

63

Se
lf

-O
rg

an
iz

in
g

A
gi

le
 T

e
am

R
O

LE
S

Se
lf

-O
rg

an
iz

in
g

A
gi

le
 T

e
am

P
R

A
C

TI
C

ES
FA

C
TO

R
S

in
fl

u
e

n
ci

n
g

Se
lf

-O
rg

an
iz

in
g

A
gi

le
 T

e
am

s

Tr
an

sl
at

o
r

C
h

am
p

io
n

C
o

-o
rd

in
at

o
r

P
ro

m
o

te
r

M
en

to
r

Te
rm

in
at

o
r

B
al

an
ci

n
g

Fr
ee

d
o

m
 &

R

es
p

o
n

si
b

ili
ty B
al

an
ci

n
g

C
ro

ss
-F

u
n

ct
io

n
al

it
y

&
 S

p
ec

ia
liz

at
io

n

B
al

an
ci

n
g

C
o

n
ti

n
u

o
u

s
Le

ar
n

in
g

&
 It

er
at

io
n

 P
re

ss
u

re

Se
n

io
r

M
an

ag
em

en
t

Su
p

p
o

rt

Le
ve

l o
f

C
u

st
o

m
er

In

vo
lv

em
en

t

Se
lf

-O
rg

an
iz

in
g

A
gi

le
 T

ea
m

s

F
ig

u
re

4.
1:

E
m

er
ge

n
ce

of
th

e
S
el

f-
or

ga
n
iz

in
g

A
gi

le
T

ea
m

R
ol

es
,

P
ra

ct
ic

es
,

an
d

F
ac

to
rs

fr
om

U
n
d
er

ly
in

g
C

at
e-

go
ri

es
.

64 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES
B

LP
B

C
S

B
FR

Se
lf-O

rga
n

izin
g

 A
g

ile
 Te

a
m

C
u

sto
m

e
r

C
u

sto
m

e
r Customer

Mentor

Terminator

Champion

Co-ordinator

Promoter

Translator

F
igu

re
4.2:

T
h
eo

ry
o
f
S
elf-O

rg
a
n
izin

g
A
g
ile

T
ea

m
s.

(R
o
les:

M
en

to
r,

C
o
-o
rd

in
a
to
r,

T
ra
n
sla

to
r,

C
h
a
m
p
io
n
,
P
ro
m
o
ter,

a
n
d
T
erm

in
a
to
r.

P
ra
ctices:

B
a
la
n
cin

g
F
reed

o
m

a
n
d
R
esp

o
n
sib

ility
(B

F
R
);
B
a
la
n
cin

g
C
ro
ss-F

u
n
ctio

n
a
lity

a
n
d
S
p
ecia

liza
tio

n
(B

C
S
);
B
a
la
n
cin

g
L
ea

rn
in
g
a
n
d
Itera

tio
n
P
ressu

re(B
L
P
).

F
a
cto

rs:
S
en

io
r
M
a
n
a
g
em

en
t
S
u
p
p
o
rt

a
n
d
L
ev

el
o
f
C
u
sto

m
er

In
v
o
lv
em

en
t.)

4.1. MENTOR 65

4.1 Mentor

Guides and supports the team initially, helps
them become confident in their use of Agile
methods, ensures continued adherence to Agile
methods, and encourages the development of
self-organizing practices in the team.

The initial stages of becoming a self-organizing Agile team can be very

difficult. Many participants described the transitioning phase as ‘difficult ’, ‘a

challenge’, ‘a struggle’, and ‘a war ’ (P15, P25, P36, P56). During the initial

stages of transitioning, the team’s existing work environment and practices

must be changed to become Agile. At this stage, a Mentor, typically played

by an Agile Coach (Scrum Masters and XP Coaches), teaches the new team

about Agile software development [78]. A description of how this category

emerged from data analysis has been provided in section 3.4.4. Figure 4.3

illustrates the emergence of the category Mentor from the underlying con-

cepts.

Mentor

Removing misconceptions

Getting team confident in use of Agile

Providing initial guidance and support

Encouraging continued adherence to Agile

Encouraging self-organizing practices

Figure 4.3: Emergence of the category Mentor from underlying concepts

66 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

T
ab

le
4.1:

S
elf-O

rga
n

izin
g

A
g
ile

T
eam

R
oles.

A
gile

C
o
a
ch

(A
C

),
d

ev
elo

p
ers

(D
ev

),
b

u
sin

ess
an

aly
st

(B
A

).
S

en
ior

M
an

agem
en

t

in
b

ra
ck

ets
fo

r
M

en
tor

an
d

T
erm

in
a
tor

role
in

d
icates

in
d

irect
in

vo
lv

em
en

t
(a

s
o
p

p
o
sed

to
d

irect
in

teraction
)

R
o
le

D
e
fi

n
itio

n
In

te
ra

c
ts

w
ith

P
la

y
e
d

b
y

(in
n

e
w

te
a
m

s)

P
la

y
e
d

b
y

(in
m

a
tu

re

te
a
m

s)

M
en

to
r

G
u

id
es

a
n

d
su

p
p

orts
th

e
team

in
itia

lly,
h

elp
s

th
em

b
ecom

e
co

n
fi

d
en

t
in

th
eir

u
se

of
A

g
ile

m
eth

o
d

s,
en

su
res

co
n
tin

u
ed

a
d

h
eren

ce
to

A
g
ile

m
eth

o
d
s,

a
n

d
en

co
u

ra
g
es

th
e

d
ev

elo
p

m
en

t
o
f

self-org
a
n

izin
g

p
ra

ctices
in

th
e

tea
m

.

T
ea

m
,

(S
en

ior

M
a
n

a
g
em

en
t)

A
C

A
n
yon

e

C
o-o

rd
in

a
to

r

A
cts

as
a

rep
resen

tativ
e

of
th

e
tea

m
to

m
a
n

a
g
e

cu
sto

m
er

ex
p

ecta
tion

s
an

d
co-o

rd
in

a
te

cu
sto

m
er

co
lla

b
o
ra

tio
n

w
ith

th
e

team
.

T
ea

m
,

C
u

sto
m

ers
D

ev
/

B
A

/A
C

A
n
yon

e

T
ran

slator

U
n

d
ersta

n
d

s
a
n

d
tran

slates
b

etw
een

th
e

b
u

sin
ess

la
n

g
u

a
g
e

u
sed

b
y

cu
sto

m
ers

a
n

d
th

e
tech

n
ica

l
term

in
o
lo

g
y

u
sed

b
y

th
e

team
to

im
p

rove
co

m
m

u
n

icatio
n

b
etw

een
th

e
tw

o
.

T
ea

m
,

C
u

sto
m

ers
B

A
A

n
y
on

e

C
h

a
m

p
io

n

C
h

am
p

ion
s

th
e

A
g
ile

cau
se

w
ith

th
e

sen
io

r
m

a
n

a
g
em

en
t

w
ith

in
th

eir
org

an
iza

tion
in

ord
er

to
g
a
in

su
p

p
o
rt

fo
r

th
e

self-org
a
n

izin
g

A
gile

tea
m

.

S
en

io
r

M
a
n

a
g
em

en
t

A
C

A
n
yon

e

P
rom

o
ter

P
ro

m
otes

A
gile

w
ith

cu
sto

m
ers

an
d

a
ttem

p
ts

to
secu

re

th
eir

in
v
o
lvem

en
t

an
d

co
llab

oratio
n

to
su

p
p

o
rt

th
e

effi
cien

t
fu

n
ctio

n
in

g
of

th
e

self-org
a
n

izin
g

A
g
ile

tea
m

.

C
u

sto
m

ers
A

C
A

n
y
on

e

T
erm

in
ato

r

Id
en

tifi
es

team
m

em
b

ers
th

reaten
in

g
th

e
p

ro
p

er

fu
n

ction
in

g
an

d
p

ro
d

u
ctiv

ity
of

th
e

self-o
rg

a
n

izin
g

A
g
ile

team
a
n

d
en

ga
g
es

sen
ior

m
an

agem
en

t
su

p
p

o
rt

in

rem
ov

in
g

su
ch

m
em

b
ers

from
th

e
tea

m
.

T
ea

m
,

(S
en

ior

M
a
n

a
g
em

en
t)

A
C

A
gile

C
oach

(+
w

h
ole

team
)

4.1. MENTOR 67

4.1.1 Providing Initial Guidance and Support

The Mentor familiarizes the team with the Agile Manifesto [72] values and

principles, and informs them of one or more particular Agile methods, such

as Scrum and XP. The theoretical knowledge of Agile software development

and the practices of particular Agile methods are imparted by the Mentor

in several ways. Some Mentors have informal talks with their teams, while

others conduct more formal training sessions spanning a few days.

Most team members perceive the Agile practices to be simple enough to

comprehend, but when it comes to implementing them on a daily basis, they

need guidance and support. The Mentor oversees the new team as they begin

to practice Agile software development on a day to day basis.

“It’s more important that you get everything right at the start.

Because the process itself is not that complicated [but] doing things

along the lines of the process is a little bit harder than the process

itself...So with [the Mentor] it was kind of to teach us how Ag-

ile works and shape our mindset and make sure everyone knows

how to work under the Agile umbrella.” — P1, Developer, New

Zealand

As the team members learn and practice Agile software development, they

are faced with several challenges. Finding their place and role in the new

team is one of these challenges. Team members often perceive the changes

as a criticism of their personal skills and retreat into a defensive corner,

shunning the changes brought on by the introduction of Agile methods. A

Mentor is quick to identify these insecurities among team members and pro-

actively tries to clear the air of negativity from the team, by encouraging

them to focus on the re-evaluation of their work environment instead of their

own personal skills:

“All the dirty doings get exposed. Hand holding people at that

time...trying to take away the finger pointing...People go into de-

68 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

fensive mode...that’s when whole negativity comes in and all Ag-

ile practices are thrown out to the wind!...[encourage] focusing on

what essential good practices, fundamental framework which has

to be put in place.” — P36, Agile coach, India

Sometimes, a Mentor steps in to remove misconceptions about Agile

among team members. As one of the Mentors disclosed:

“We were establishing from the start and...It’s mainly been show-

ing people through that process...It’s a matter of overcoming and

explaining the misconceptions.” — P10, Agile Coach, NZ

The Mentor encourages the team members to voice their opinions and

concerns freely, thereby creating an environment of trust in the team. Once

the team members vocalize their concerns, the Mentor helps them overcome

their problems.

4.1.2 Encouraging Self-Organizing Practices

Over time, the Mentor helps team members learn and perform Agile practices

that achieve and sustain self-organization. These practices include collective

estimation and planning, self-assignment, self-evaluation through retrospec-

tives, etc. A few examples of these practices and how the Mentor encourages

them are provided here.

The Mentor helps team members practice estimation and planning. Project

planning and estimation in traditional software development projects is mostly

done by the project managers and does not involve team members. As such,

many team members in a new Agile team, with previous experience of work-

ing in traditional software development environments, have never been in-

volved in project planning and estimation. Therefore, the importance of a

Mentor in guiding team members through estimating and planning for Agile

projects is considerable.

Similarly, the Mentor helps the team learn and practice self-assignment.

4.1. MENTOR 69

“It took them [new Agile team] a bit of time to stop coming and

asking us what they should be working on and the answer was

always ‘pick one!’ And after [a] while it became natural...people

were picking stuff...and that worked really well.” — P25, Devel-

oper, New Zealand

A detailed description of the self-organizing practices is provided in chap-

ter 5.

4.1.3 Getting the Team Confident

As the team moves through sprints or iterations, they become more confident

in their understanding and practice of Agile methods. Demonstrations of

working software to the customers, and receiving feedback from them at the

end of the sprint, become important sources of positive reinforcement for

the new team. The Mentor encourages the team to take the feedback in a

constructive spirit and use it to improve their practices.

“When you get the team used to success, that’s where a change

happens in them. You’ll have a team that starts...they haven’t

done this before, they don’t quite know how to do it. You need

to show them...that they have achieved something, that they had

a client presentation and the software worked...And with the next

iteration...they get a little bit more confidence...And after a few

such validation cycles, then they start to get confident.” — P20,

Agile Coach, NZ

4.1.4 Encouraging Continued Adherence

Inexperienced or fresh members of the team, with no previous software de-

velopment experience, find it easier to adopt Agile practices.

“I find that there are perfectly capable developers that for one

reason or another are not bothered to change anymore. They

70 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

[experienced developers] have achieved a certain level of perceived

mastery and they’re not at all driven to excel or to challenge them-

selves...And conversely, you have hungry people [fresh developers]

that don’t know any better just yet and you can show them a way

to do better, and they do.” — P20, Agile Coach, New Zealand

The more mature team members, however, with previous experience of

working with non-Agile software development methods, have a tendency to

revert to their old ways in the initial stages.

“Actually it takes a lot of effort for a team to become self-organizing,

specially if people are coming from traditional software develop-

ment methods. It takes time, specially because I’ve worked with

[a different company] and even in [this company] you see people

they come from traditional, they are into a habit of work which is

very hard to leave to start with.” — P31, Agile Coach, India

An important aspect of the Mentor role is to highlight the importance

of continued adherence to Agile principles and values. The following quote

describes a project where the Mentor was prematurely let go after the man-

agement perceived the team to be self-organizing and no longer in need of

support. This turned out to be a considerable mistake. In the absence of a

Mentor, the team lost the importance of retrospectives.

“In the [retrospective] that we do they are so much quicker now

than it used to be when we had [the Mentor] with us...[the Men-

tor] didn’t have a vested interest in the product, she had a vested

interest in the team...And now it is almost like lip service...we

don’t do self-evaluation as well as we used to.” — P8, Tester,

New Zealand

In relatively new teams (usually less than a year of experience), the role

of the Mentor is taken up by experienced Agile coaches, who display a firm

4.1. MENTOR 71

understanding of both Agile methods and their teams’ issues. These Agile

coaches are often employed on a contractual basis to guide the new team

during the initial stages of practicing Agile software development. In more

mature Agile teams (fluent in use of Agile practices, for usually more than a

year), however, the role of the Mentor is taken up by anyone in the team with

wide experience in Agile software development. For example, in one of the

Indian Agile organizations, most members have several years of experience in

Agile software development and do not need a full-time Mentor. Whenever a

newcomer joins the team, one of the senior members takes up the role of the

Mentor and helps them become accustomed to the teams’ Agile practices. A

similar trend was noticeable in New Zealand teams.

“I’ve been mentoring [a new team initially]...[now] the more se-

nior of the two BA’s [business analysts] is taking a [Mentor] role.”

— P26, Agile Coach, NZ

In a mature Agile team, senior members are expected to be able to mentor

newcomers on a team:

“you’re a very senior [developer] about 8 to 10 years and you

are going to pair up with a junior, to be able to match up to

his expectations and improve him or mentor him, based on your

knowledge.” — P52, Human Resource Manager, India

The mentor role emerges on a need-basis, displaying the transient and

spontaneous nature of this self-organizing role.

72 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

4.2 Co-ordinator

Acts as a representative of the team to man-
age customer expectations and co-ordinate
customer collaboration with the team.

Agile methods expand the customer role within the entire development

process by involving them in writing user stories, discussing product features,

prioritizing the feature lists, and providing rapid feedback to the development

team on a regular basis [82, 74, 73]. These collaborative activities are difficult

to co-ordinate with the customer for various reasons, such as physical distance

between the development team and their customers, lack of time commitment

on part of the customers, and ineffective customer representation [82, 74].

The Co-ordinator role emerged on Agile teams to overcome these challenges

and facilitate collaboration with customers [78]. Figure 4.4 illustrates the

emergence of the category Co-ordinator from the underlying concepts.

Co-ordinator

Co-ordinating customer collaboration

Co-ordinating change requests

Gathering and clarifying
customer requirements

Acting as team representative

Managing customer expectations

Figure 4.4: Emergence of the category Co-ordinator from underlying con-

cepts

4.2. CO-ORDINATOR 73

4.2.1 Co-ordinating Customer Collaboration

In the context of the Indian software industry, Agile teams often face off-

shored customers. Co-ordinating with customers across geographic and time-

zone differences is a challenge for Indian teams. The teams find it useful to

have someone acting as a team representative co-ordinating between

the team and their distant customers representatives. In one of the Indian

projects, the Co-ordinator role was played by a developer who helped co-

ordinate with off-shored customers:

“Initially we avoided [having team leads]...but sometimes, because

we are working offshore [it is] good to have one person who can

communicate. Not a team lead in the sense not telling people what

to do [but] more like co-ordinator — talks to everybody.” — P34,

Senior Management, India

The Co-ordinator interacts with the team on a regular and intimate level

and co-ordinates communication between the team and the customers:

“We assign a customer representative who interacts with the team

... but then passes on the feedback from the customer to the team

and vice versa.” P54, Agile Coach, India

Initial analysis of new Agile teams in New Zealand revealed that teams

face similar problems with distant customers and make use of a Co-ordinator

to facilitate customer collaboration. In case of a New Zealand team, a busi-

ness analyst on the team acted as the Co-ordinator, representing the team

to their customers and co-ordinating communication efforts.

“...it makes sense to have a [Co-ordinator] in the middle...if you

have some sort of problem, you don’t have five people asking the

same question at the other end; which normally business people

don’t like...so having [the business analyst] as a [Co-ordinator],

it’s working for us.” — P1, Developer, New Zealand

74 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

A Co-ordinator is useful in situations where the customer representative

is unable or unwilling to devote the amount of time that the teams require

to collaborate [74, 82]. Similarly, the Co-ordinator role helped facilitate

collaboration with customer representatives that the teams perceived to be

largely ineffective.

“Unfortunately the person who is [the customer rep] has an I.Q.

of literally 25...doesn’t really know how the current system works,

doesn’t know much about the business process, is petrified of the

project sponsor, and is basically budget-driven. So she doesn’t

really care if it’s not going to work in a way that the end users

like.” (undisclosed) Developer

In contrast, an effective customer representative was described as “some-

one who understands the implications of that system...where it fits into the

business process” and at the very least “someone who knows how to use a

computer!” (P10, P8). Some New Zealand practitioners found their respec-

tive customer representatives to be ineffective in providing timely require-

ments and feedback, while others found them lacking in proper understanding

of Agile practices.

4.2.2 Co-ordinating Change Requests

The Co-ordinator also helps co-ordinate change requests made by the cus-

tomers. Responding to change [72, 100] is an integral part of Agile methods

and a Co-ordinator helps in dealing with changes in a systematic way, so

that the team can respond to them effectively:

“[the Co-ordinator] still needs to get all the requirements to us,

so whenever the business owner wants to make a change...we can

plan a little bit ahead; [The Co-ordinator] might say ‘OK guys,

this might come in the next couple of sprints, think about it and

figure out how to handle it’. So that’s kind of cool.” — P1,

Developer, New Zealand

4.2. CO-ORDINATOR 75

The team needs a clear list of requirements (Scrum’s product backlog)

prioritized by the customer before they can begin their development iteration.

The Co-ordinator is responsible for gathering and clarifying customer

requirements and priorities.

“If [the Co-ordinator] is not there things sort of stop spinning. A

lot of the time we have to come back to him: ‘Is this important?

Is this prioritized?...when the client says ‘Oh, that’s all priority’

we have to go back and say ‘Which?! What do you mean?!’ So

then [the Co-ordinator] has to go back and say ‘you can’t have all

priority!’” — P2, Developer, New Zealand

In another New Zealand team with a distant customer (in a different city)

a couple of developers had taken on the role of Co-ordinators, co-ordinating

change requests.

Observation of a Team Meeting, New Zealand

“The Agile coach asked everyone to gather around the table at the

center of the room. This was a combined meeting for all the three

teams to discuss some interdependencies and clarify requirements.

One of the team members who had been in direct contact with the

customer played the role of [the Co-ordinator] on the meeting,

providing requirements and clarifying doubts for the team (based

on the information provided by the real customer). It was obvious

that the Co-ordinator was in regular contact with the customer as

he talked to the team pretending to be real customer. The team

laughed at certain jokes about the requirements and how it was

natural for the real customer to always request certain features.

The Co-ordinator made the team aware of the customer require-

ments. As the Agile coach later confirmed, the customer had pro-

vided 3 individuals to be in contact with the Co-ordinators on the

team regarding the project. The Agile coach was satisfied with the

level of customer involvement.”

76 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

Observing a Co-ordinator in action supplemented the data derived from

interviews and strengthened the understanding of the role. When asked

about these Co-ordinators, other team members confirmed that the two de-

velopers had taken up the responsibility of collaborating with the customers

spontaneously in response to the problem of the entire team co-ordinating

across distances. These two developers were better communicators compared

to the rest of the team and had spontaneously taken on the Co-ordinator role.

“We’ve got two people that have...I’m just trying to think...no

one ever said ‘you guys, that’s your role’ but it’s just devel-

oped that way. And probably more so from their ability to com-

municate ideas; they’re well-spoken and able to get those ideas

across...Which is great for developers!” — P13, Developer, New

Zealand

4.2.3 Managing Customer Expectations

Another part of the Co-ordinator role is to manage customer expectations.

It takes time for a new Agile team to become fluent in Agile methods and

reach a state of stability and performance. In the meanwhile, the first few

sprints are challenging for the team and they experience high fluctuations in

team velocity. During this crucial initial stage, the Co-ordinator carefully

manages customer expectations:

“I have sort of a secret conversation with the customer, ‘right

okay, this team is new here for learning, expect them to blow

the first sprint, it is very likely to happen’...and if anything good

comes out of it, they [customers] are positively surprised.”— P23,

Agile Coach, NZ

On a relatively new Agile Indian team, the Co-ordinator role was played

by a developer that interfaced with off-shored customers on behalf of the

team. On a relatively new New Zealand team, the Co-ordinator was played

4.3. TRANSLATOR 77

by a business analyst facing the customers as a team representative. As the

research progressed and more mature Agile teams were included, we found

that the role of the Co-ordinator could be taken up by anyone in the team,

not necessarily the business analysts or developers. Most members of mature

self-organizing Agile teams are capable playing the Co-ordinator role and co-

ordinate with customer representatives directly.

“Sometimes we have the voice chat [with the customer represen-

tative] and these days we have the text chat. It lasts around half

an hour on the minimum side and on the maximum side 3 hours

or 4 hours.” — P44, Developer, India

“Everyone does that [talk to the customer]. We are all on Skype.

We added ourselves to a group...and then we just chat, even if I

talk to the customer, the other person [team member] also knows

what I’m talking because maybe tomorrow they face the same ques-

tion so they can just observe the conversation.” — P29, Devel-

oper, India

In both new and mature teams, the Co-ordinator role exists despite the

presence of the Mentor.

4.3 Translator

Understands and translates between the busi-
ness language used by customers and the tech-
nical terminology used by the team, to improve
communication between the two.

Development teams and their customer representatives use different lan-

guages when collaborating on Agile projects [74, 80, 82]. While the develop-

ment teams use a more technical language composed of technical terminology,

78 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

their customers use a more business language composed of terminology from

the customers’ business domains. There is a need for translation between the

two languages in order to ensure proper communication of product require-

ments from the customer representatives and clarification of issues from the

development team side. The Translator role emerged on self-organizing Agile

teams to overcome the language barrier [74, 80, 82]. Figure 4.5 illustrates

the emergence of the category Translator from the underlying concepts.

Translator

Understanding technical language
used by development team

Overcoming the language barrier

Understanding business language
used by customer representatives

Using tools for translation

Figure 4.5: Emergence of the category Translator from underlying concepts

4.3.1 Overcoming the Language Barrier

Self-organizing Agile teams are responsible for collaborating effectively and

frequently with customer representatives to elicit product requirements. In

Scrum and XP, user stories are written down on story cards by customer

representatives in the business ’ language with domain specific requirements.

The development team need technical tasks written in technical language that

are specific enough for development to commence. The actual translation of

business requirements into technical tasks happens when user stories are

broken down into technical tasks:

“The biggest issues with the development team...the translation of

4.3. TRANSLATOR 79

what the client wants into something the development can create.

So you have a story card with some features on....how to turn that

story card into part of a website?” — P19, Senior Management,

New Zealand

The language barrier between development teams and their customers

poses a threat to effective team-customer collaboration by limiting their un-

derstanding of each other’s perspectives. The technical language used by

development teams was difficult for their customers to understand:

“(Laughs) The client always expects that the information they sent

to the development team will be enough... We have meetings with

them and obviously there are some gaps in the language and in the

jargon... I think... technical language is a problem for business

people obviously.” — P14, Developer, New Zealand

“I might explain something in a very cryptic, technological way

and [the customers] won’t understand a word!” — P2, Developer,

New Zealand

Business people, such as customer representatives, “switch off ” when

they are “provided information with a technical bent” (P22). Similarly, the

customers’ business language was difficult for the development teams to un-

derstand, as a Scrum Product Owner (customer representative) noted:

“They are very smart developers and they are really into ‘yes we

can code this or make this thing’, but not really putting themselves

in the user’s shoes or the client’s shoes.” — P21, Product Owner

(customer representative), New Zealand

Initial data analysis revealed that the role of the Translator was most of-

ten played by business analysts (P1, P2, P4, P8-P10). Business analysts were

considered suitable candidates for the Translator role because of their ability

80 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

to understand both technical and business languages and to act as

a bridge between the two. The need for a “good BA” was evident on some

teams (P4, P15, P21, P23) suffering from the language barrier. On other

more mature teams, the Translator role was not limited to professional ana-

lysts, and could be played by anyone on the team with good communication

skills and understanding of business concerns.

“...translators...understand the concerns of the business and trans-

late them into priority elements that the development group can

actually focus on to achieve...Somebody who wants to do it, who

has this compulsion ‘let me translate, let me help’...sometimes a

PM, sometimes it’s a BA, sometimes it’s a developer, a tester.”

— P20, Senior Agile Coach, NZ

Some participants ensured that they were “hiring smart, pragmatic com-

municators” (P10, P52) with innate Translator skills when recruiting for an

Agile team.

“strong public-oriented skills...to solve the business problem of the

customer...more important to understand the customer and their

requirements...you have to be very smart enough to get the re-

quirements [and] understand the business intent when you solve

a problem.” – P52, Human Resource Manager, India

4.3.2 Using Translator Tools

There are several tools that help team members take on the Translator role

[80]. These include: a project dictionary, using iterative reasoning, and en-

couraging cross-functionality in the team.

One of the Indian teams use a ‘project dictionary ’ to assist everyone on the

team in becoming a Translator. This dictionary is an online editable docu-

ment (Wiki) populated by the customers with business terms, their meaning,

and their contexts of use. These business terms are translated directly into

4.3. TRANSLATOR 81

code by the team using the same variable names, providing a mapping be-

tween the customers’ business terms and their technical implementation for

a given project. The customer representatives are able to view and edit the

contents of the evolving dictionary.

“we have extensive documentation...a Wiki [where the customers]

have explained their whole infrastructure...as and when they build

up the requirements they come and edit the document...its kind

of like a glossary and also the rules that figure in that world of

theirs...we capture all that and ensure our domain is represented

exactly like that in code.. ..so when they say ‘a port has to be in a

cabinet which has to sit in a rack’ it directly translates to code!”

— P46, Developer, India

Another Translator tool is iterative reasoning—questioning proposed tech-

nical solutions repeatedly until the abstract business reasoning behind the

technical details is evident.

“why do we need that database back up procedure? or...database

recovery? and it’s right down at the technical level [asking] the

question why, why, why till...you’ll eventually discover there’s a

good business reason for having it.” — P22, Senior Management,

New Zealand

Using iterative reasoning, technical solutions could be abstracted to higher

levels till they were clearly aligned with their business drivers.

Interactions between members from diverse disciplines fosters understand-

ing of the project from multiple perspectives [154]. As the team learns to

understand their customer’s perspective, they achieve greater levels of cross-

functionality and are able to translate between their respective languages. An

experienced Agile coach disclosed that the secret to acquiring the Translator

skills through cross-functionality.

82 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

“The whole thing with Agile is getting people to be more cross-

disciplinary, to take an interest in somebody else’s perspective...The

moment you understand that cross-concern, you’re teaching ev-

erybody to become a translator.” — P20, Agile Coach, NZ

Relatively new Agile teams often have one or two individuals playing

the Translator role based on either their personal abilities or professional

skills. In contrast, most members of mature Agile teams are bilingual—

speaking technical language in development circles and translating business

language when collaborating with customers. The skills of a Translator can

be an attribute of professional training (business analysts), natural abilities

(natural communicators) or can be acquired using existing Agile practices

such as cross-functionality and adapted practices such as a dictionary and

iterative reasoning.

Both the Translator and Co-ordinator roles interact with the team on

one side and the customers on the other. The Translator role is distinct

from the Coordinator role in that the Co-ordinator role emerged in response

to problems around collaborating with distant, unavailable, or ineffective

customers. The Translator ’s role, on the other hand, involves translating

ideas in expressions that the business/customer representatives understand

into terminology that the development team is familiar with and vice versa.

They were, in some cases, played by the same person.

4.4 Champion

Champions the Agile cause with the senior
management within their own organization in
order to gain support for the self-organizing
Agile team.

Self-organizing Agile team cannot emerge and flourish in isolation [78].

4.4. CHAMPION 83

The importance of senior management support in establishing and propagat-

ing self-organizing Agile teams is immense (P1, P4-P10, P12-P20, P22-P23,

P25-27, P29, P31, P33-35, P39-41, P43, P52-53, P55). The success of Agile

adoption, and that of the self-organizing Agile teams, is dependent on senior

management support [83]. The Champion role emerged on Agile teams to

secure senior management support [78]. Figure 4.6 illustrates the emergence

of the category Champion from the underlying concepts.

ChampionConvincing senior management

Understanding senior management drivers

Establishing pilot team to
prove Agile advantage

Propogating more teams

Understanding senior management drivers

Securing senior management support

Figure 4.6: Emergence of the category Champion from underlying concepts

“...the organizations I see getting the most benefit from Scrum,

from Agile, are organizations where senior management really

gets it! Where senior management has been through training...Senior

management took the time to read, learn about Agile. The least

successful Agile adoptions are ones where senior management has

no interest in Agile, they have no interest in what Agile is.” —

P43, Scrum Trainer, India

4.4.1 Securing Senior Management Support

A Champion is able to understand the business drivers (factors that

motivate business decisions) that motivate senior management, such as cost

84 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

effectiveness, time to market, customer demands, and process improvement.

The Champion convinces senior management while keeping in mind

these drivers, in order to gain their support for the self-organizing Agile

team.

“For a couple of years now I’ve been involved within our company

to promote this notion...we finally got the okay, a couple of weeks

back, to go ahead and make it all formal. Which is excellent, but

it took a hell of a long time to understand people’s motivations

and awareness of things...If you manage to understand their per-

spective, their buttons, what matters to them, what brings them

their next bonus, and paint it in those terms: look, we have just

the solution, sign here!” — P20, Agile Coach, New Zealand

In order to gain senior management support for exploring Agile methods,

a Champion establishes pilot teams. The idea is to show senior manage-

ment how Agile practices work on a small scale. Some Champions prefer

piloting with a team that is open to trying Agile. Most Champions mention

that the initial pilot attempt works best on a project that had previously

experienced difficulties with a traditional development approach, so that the

value brought in by Agile is more apparent:

“Piloting is the key. Pilot with people who want to do it... with a

project which has had problems, with changing requirements, with

customers not happy. Then you’ll see maximum value... if it is

a hundred people organization with ten projects, try with one or

two [projects].” — P27, Developer, India

The role of the Champion is to educate senior management about Agile

methods and the importance of their role in establishing and nurturing self-

organizing Agile teams.

“You have to recognize that executives are not the enemy; they’re

you’re best allies. They have an intense interest in the organiza-

tion’s success; they’re not the ones who prevent you from doing

4.4. CHAMPION 85

stuff, they just don’t know any better! (laughs) So if you see them

as misinformed people...they’re victims of the current mindset.

The only thing you can do is recognize them as such and treat

them as such. Educate them, gently.” — P20, Agile Coach, New

Zealand

A team is impacted in several ways by the senior management at their own

organization: senior management influences organizational culture, types of

contracts governing projects, financial sponsorship, and resource manage-

ment. A lack of understanding of Agile principles and practices can lead

senior management to take project decisions that can adversely affect the

self-organizing ability of the Agile team.

4.4.2 Propagating More Teams

The role of the Champion is not limited to driving initial pilot projects. The

Champion also promotes the idea of propagating more self-organizing Agile

teams across the organization:

“The [Champion] was pretty much championing the whole Ag-

ile idea. They were thinking of using [the Champion] to expand

Agile through all of [organization], so every single project they

were looking at trying to put an Agile aspect to it and [the Cham-

pion] was doing all the ideas, all the objective identification, ev-

erything” — P4, Business Analyst, New Zealand

The Champion role was played mostly by Agile coaches, and by a de-

veloper in one case. Once the senior management is convinced that Agile

software development is advantageous to their organization, the senior man-

agement may take over the role of Champion and champions the cause of

propagating self-organizing Agile teams across the organization. The se-

nior management, in the role of Champion, influences organizational culture,

types of contracts governing projects, financial sponsorship, and resource

86 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

management to favour the proper functioning of self-organizing Agile teams.

The impact of senior management on self-organizing Agile teams is discussed

further in chapter 6.

4.5 Promoter

Promotes Agile with customers in an attempt
to secure their involvement and collaboration
to support the self-organizing Agile team.

Besides senior management support, another critical environmental fac-

tor that influence self-organizing Agile teams is the level of customer in-

volvement. Inadequate customer involvement is a common challenge that

many Agile teams face (P1-P2, P4, P5-P9, P11-P14, P19-20, P25, P27, P43,

P54). Inadequate customer involvement causes several challenges for the

self-organizing Agile team, such as problems in gathering and clarifying re-

quirements, problems in prioritization and receiving feedback, productivity

loss, and even business loss in some cases. There are several causes leading

to inadequate customer involvement. These include skepticism among cus-

tomers, distance between customers and the team, lack of time commitment

on part of the customers, etc. The Promoter role emerged to overcome the

lack of customer involvement [74, 82]. Figure 4.7 illustrates the emergence

of the category Promoter from the underlying concepts.

4.5.1 Understanding Customer Concerns

Customers can harbour misconceptions and skepticism about Agile software

development. As one of the customer representatives disclosed, they were

extremely skeptical about Agile methods at the beginning of the project:

“I remember is someone was talking to me—and I knew nothing

about Agile so it was like what the hell is Agile?—and I got a brief

4.5. PROMOTER 87

Promoter

Convincing customers

Highlighting Agile advantage

Understanding customer concerns

Securing customer involvement

Figure 4.7: Emergence of the category Promoter from underlying concepts

overview and I though that seems remarkably sensible, the basic

principles. And then...all I know is someone came up to me very

excitedly and ‘oh we’ve got a scrum coach coming in this week!’

Are we playing Rugby?! Is there a social team? I used to play a

lot, I could come in handy! And they’re like ‘no, it’s Agile’ and

I was like what is Scrum and why do you need a coach?” — P9,

Customer Representative, New Zealand

Part of the Promoter ’s role is to understand the customer’s background

in terms of their understanding of Agile methods and consequently their

readiness for collaboration with the team. A Promoter tries to understand

the concerns of their customers before advocating the use of Agile methods.

“Agile has been there for a while, people are waking up to this

concept [now]. This huge hallabalu about Agile this, Agile that!

we showcase our [unique] offering, we showcase case studies and

also give them a sense of—not lolling them into a sense of security

but—real values and also focusing on the hardship which comes

with that...” — P36, Agile Coach, India

88 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

4.5.2 Securing Customer Involvement

The collaboration between the team and customers ensures the development

of a product that is built to the customer’s vision. Convincing the customer

that this advantage is worth their time and securing their collaboration is

challenging [82]. Customers may not realize their responsibilities on an Agile

project:

“The client reads [Scrum books] and what they see is client can

make changes all the time and they think wow that sounds great!...

They don’t understand the counter-balancing discipline [customer

involvement] ... Customer involvement is poor.” — P43, Scrum

Trainer, India

The Promoter identifies the concerns of the customers, and systematically

attempts to engage them with Agile practices.

“I did persuade the client to go down this road...story cards, it-

erations, all the way through. Slowly the client did come around

and started to see benefit, so it did work out really well” — P19,

Senior Management/Agile Coach, NZ

One of the ways a Promoter attempts to convince customers is by

highlighting the advantages of Agile software development. Cus-

tomer involvement in the project helps the team to avoid rework:

“To get the client involved in the process I think is the most dif-

ficult part of Agile...[customer involvement is a] benefit for us

[team], because we don’t have to redo things. So from my perspec-

tive as a developer, yes, the more the client is involved, the better

for us.” — P14, Developer, New Zealand

In absence of a customer who understands Agile methods and is willing to

collaborate, a self-organizing team is unable to function to its full potential.

4.6. TERMINATOR 89

“Two of the [internal customers] responded lots and were very...

complaining, and at the end of the project their business units

loved it and the business unit that didn’t give much feedback —

when it went to a user — started complaining. And it’s like well,

if we didn’t get any critique it’s not really our fault!” — P11,

Developer, New Zealand

Given the collaboration-intensive nature of Agile practices, a self-organizing

Agile team cannot work and flourish in isolation. The Champion and Pro-

moter roles were crucial in identifying the influence of the environmental

factors—support of senior management and customer involvement—and se-

curing their support respectively. In new teams, these roles were usually

played by Agile coaches. In more mature teams, any experienced team mem-

ber can play these roles, embodied by the same person in some cases.

Both Promoter and Co-ordinator roles are customer focused. The Pro-

moter attempts to secure adequate levels of customer involvement on the

project for the proper functioning of the team. The Co-ordinator role emerges

in situations where the level of customer involvement is inadequate despite

the Promoter ’s attempts to secure involvement. In contrast, the Champion

attempts to secure senior management support for the team. If the Cham-

pion fails, the future of the self-organizing team is seriously jeopardized. This

suggests that while adequate customer involvement is highly beneficial for a

self-organizing Agile team, senior management support is imperative.

4.6 Terminator

Identifies team members threatening the
proper functioning and productivity of the
self-organizing Agile team and engages senior
management support in removing such mem-
bers from the team.

90 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

Self-organizing Agile teams are “open” in nature and willing to “change”

(P1, P5, P7, P9, P10, P12-P14, P18, P20, P26-P29, P31, P36, P47-52).

In the absence of these desired characteristics, the individual is perceived to

pose a threat to the proper functioning and productivity of the self-organizing

Agile team. The Terminator role emerged to identify team members threat-

ening the proper functioning of the self-organizing Agile team, and to seek

senior management support in removing such members. Figure 4.8 illustrates

the emergence of the category Terminator from the underlying concepts.

Terminator
Seeking senior management support

Removing team members
threatening self-organization

Identifying team members
threatening self-organization

Selecting team members based on fit

Figure 4.8: Emergence of the category Terminator from underlying concepts

The role of the Terminator is certainly not an easy one, and perhaps the

most controversial.

4.6.1 Identifying Threatening Team Members

The Terminator identifies individuals in the team that may be hampering

team productivity because of their personal characteristics and practices.

Individual personality of team members can be considered more important

than skill set when selecting an Agile team. As one of the Terminators

acknowledges below, the individuals themselves are not “bad”, but that their

personality is not suited to the Agile way of working which starts to hamper

4.6. TERMINATOR 91

the productivity of the entire team. Removing such team members who

hamper the team’s productivity can be crucial to project success:

“If you have someone who isn’t willing to learn and just communi-

cate - all those kind of key things that are needed in an Agile team

member - they can wreck the project very very quickly. Your only

tester who refuses to adjust the process to fit the speed of the team

is dogmatic about the way they work or a developer who doesn’t

like communicating, wants to keep their head down on the com-

puter doesn’t like to talk to people when they have a problem and

instead try and solve it themselves and the whole team can go—as

soon as one story is overdue and out of whack it can be critical

path in no time flat because you are doing this just in time...It’s

the whole team, it doesn’t matter. It is the project manager or

the tester or the BA or the developers themselves. Any one of

them that can’t adjust to the Agile mechanism really needs to be

removed pretty quickly...The faster you sort out the bad elements,

the better. It’s not that the person is bad, they may be very very

good at their job, it’s just that they can’t adjust to the different

mechanism [of working].” – P10, Agile Coach, NZ

While inability to adjust to the Agile way of working is seen as a dis-

advantage by many Terminators, the other extreme of embodying idealistic

or evangelist attitude towards Agile software development is also seen as a

potential hindrance to the self-organization in an Agile team:

“Some evangelists have such hundred percent concepts—just scares

me as a coach...Throw out evangelists sometimes, hard reality!

People get fired. It’s the cold-hearted nature of this businesses,

[Agile] identifies the good things, [Agile] identifies even the bad

things. Sometimes [we] have to throw people out.” — P36, Agile

coach, India

92 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

The required characteristics of individuals on Agile teams include open-

ness, ability to communicate, ability to change, and ability to learn. The

difference between members of self-organizing Agile teams and those from

traditional teams is so apparent that it doesn’t escape the notice of senior

management.

“I think the personal interactions and behaviours of the group

is interesting in its own way; they’re more communicative with

people. You dealing with people who are positively more social

I don’t think that’s just because of the people who were chosen,

they seem to be more social and communicative generally. The

people working on non-Agile projects tend to be very isolated in

terms of their behaviours they’re not actually isolated, they could

talk to people, but they don’t tend to so much.” — P18, Senior

Management, NZ

4.6.2 Removing Members from the Team

Sometimes a team member can destabilize the team by their actions and

even though the other team members are aware of it, they are unable to

express their concerns. The Terminator identifies the latent concerns of the

rest of the team and seeks senior management support in removing such

members:

“[Everything] seemed to go all right until [team member] tore the

whole product apart...So our [Terminator] came in...noted that

[team member] was holding the team back, and made an execu-

tive decision by talking to management as the [Terminator] and

said ‘the Agile method isn’t working in this team because this one

person is making such a large difference to everyone’s productiv-

ity’...[we] simply didn’t want to voice our opinions because there

was too much fallback when we tried to...But the [Terminator]

really made that quite obvious to management and therefore we

4.6. TERMINATOR 93

[the organization] just removed them.” — P4, Business Analyst,

NZ

“We had two BAs and they just wouldn’t get it because they had

been working on ‘going away with your specs, and then come back’

and I had a mandate to actually pull out those people who were

not working, um I had both of them boarded off!” — P23, Agile

Coach, NZ

Selecting members up front is one of the activities a Terminator

engages in. In mature teams the whole team provides input in the hiring

process which influences the Terminator to select individuals up front.

“[At the time of hiring] it was just ‘well who is going to work better

with this group of people?’ rather than who’s better technically

or anything...[The team] came down to the point where they’re

[a couple of applicants] both equal and then personality’s more

important so we have a couple of us just figure out who we want

to work with more. But I think that’s really important with Agile;

you’ve got to have people you can work that closely with and trust,

a lot more than if you’re doing Waterfall” — P11, Developer, NZ

The Terminator role was played by experienced Agile coaches in new

teams. In mature teams, the Terminator role was played by an Agile coach

supported by the rest of the team. In Agile organizations, the role of the

Terminator was extended to cover organization-wide issues (P34, P36, P52-

53). The organization-wide Terminator was played by the HR—Human

Resource—department within the organization. The organization-wide Ter-

minator selected new members during the hiring process based on their abil-

ity to fit into the self-organizing team culture (P10, P52).

“we see when we do a code pairing how this guy [potential recruit]

is interacting and how open he is to the idea...So how interactive

94 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

he is, how he listens to the people and understands the team,

and probably explain things back to them to make it come to a

smart solution...we find out his cultural fit...[has to be] open for

the feedback.” — P52, Human Resources Manager, India

4.7 Role of the Agile Coach

The self-organizing Agile team roles identified in this research make an Agile

team self-organizing. This leaves a critical question unanswered: what is

the role of the Agile coach on a self-organizing Agile team? As one of the

participants noted:

“Actually if you talk to some people who are new in the Scrum

Master role, they ask: ‘what is our job?’ If you tell them you

resolve impediments, they understand it but how do you apply it

to reality?” — P31, Agile Coach, India

An important contribution of this thesis is to define the role of an Agile

coach, in terms of the self-organizing Agile team roles they are likely to

play at different stages of the teams’ maturation. The Agile coach is either

played by contracting consultants or by an existing project manager within

the organizations. In the latter case, the person playing the Agile coach may

still keep their formal organizational title of manager, or project manager.

In relatively new Agile teams, the role of the Agile coach is extremely

important. Initially, an Agile coach takes on most of the self-organizational

roles discovered in our research in an effort to facilitate self-organization in

the team in the early stages. On a new team, an Agile coach is likely to play

any or all of these roles: a Mentor to train the new team on Agile principles,

values, and practices; a Co-ordinator to co-ordinate customer collaboration;

a Translator to help translate business specifications into technical require-

ments for the new team; a Champion to gain senior management support for

4.7. ROLE OF THE AGILE COACH 95

the team; a Promoter to secure customer involvement for the proper func-

tioning of the team; and a Terminator to remove cultural misfits from the

team.

“If you put the project manager in that role you’ll find that the

team would grow into a self-organizing team. That’s where the

real power comes into the picture. He should not be interfering

into the day to day activities of the team: [what] is to be done,

[what] is the priority of changing things...generally I see that a

typical project manager become a team coach for an Agile team—

because [for] new teams if you chose someone from inside the

team he doesn’t have that kind of mindset to act as a real Scrum

Master. So I see that a Project Manager should get transformed

into that role because he’s sort of suited for it; that’s his job.If

you can separate out the micro-management, then [the

PM is] the ideal Scrum Master for an Agile project.”

— P31, Agile Coach, India

Over time, these self-organizing team roles are taken up by the team

members. And so, in more mature Agile teams, most members of the team

have the caliber and experience to play any of the roles. For example, in

mature teams, the Mentor role is often played by experienced team members

that help mentor newcomers on the team; the Co-ordinator and Translator

roles are played by most members of the team as they gain experience in

collaborating directly and frequently with their customers; the Champion

and Promoter roles are played, as required, by more experienced members

of the team. The Terminator role is played by the Agile Coach with support

from the team as they provide their input into the suitability of an individual

to join or remain in an Agile team (section 4.6).

This suggests that the role of an Agile coach is to play most of the self-

organizing Agile team roles initially and gradually pass them on to the team

members. In other words, as a couple of the participants noted:

96 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

“A PM’s [Project Manager’s] job is to make himself or herself

redundant. So then the team is self-organized, everybody is ac-

countable... PM doesn’t have to do much, everything is in place

and now I can go and do something else...I want to do some en-

abling, some team building...making sure all the processes are in

place. ” — P47, Business Analyst, India

“...project managers...are there with the specific purpose to serve

and protect the teams and to ensure the project is in good health ...

Analogy is you have patient on the bed, there are all these things

connected to that person; the doctors don’t check each and every-

thing piece of equipment...[they] look at the status, graph looks

good, good system. Now that is all a manager is doing, some-

body who’s there when things really break down, when there is a

better equipment out there and a better means of ensuring the

systems are functioning, that is what the manager should be do-

ing...[an] advantage of Agile is that it takes away all [this micro-

management], brings in all the self-monitoring, self management,

this higher levels of commitments and responsibility. Instead of

concentrating power in one resource...you are just distributing the

load onto the relevant forces and you’re just focusing what a man-

agement should be—core issues, what is the strategic partnership,

decisions being made.” — P36, Agile Coach, India

4.8 Discussion

Following Grounded Theory, the data was first collected and then analyzed.

Once the findings were sufficiently grounded and developed, the literature on

self-organizing Agile teams was reviewed. The purpose of literature review

after analysis is to (a) protect the findings from preconceived notions and (b)

to relate the research findings to the literature through integration of ideas

4.8. DISCUSSION 97

[58]. This section discusses our results in the light of related literature 1.

4.8.1 Team Roles

A wide number of researchers have explored Team Roles and Dynamics [9,

22, 40, 47, 113, 134].

Belbin suggests nine team roles based on behaviour: plant, resource inves-

tigator, co-ordinator, shaper, monitor evaluator, teamworker, implementer,

completer finisher, and specialist [22]. A co-ordinator in Belbin’s team roles

theory focuses on team’s objectives and delegates work. The Co-ordinator

role identified in our research, on the other hand, helps co-ordinate between

the team and their customers and does not delegate work. A key practice of

self-organizing Agile teams is self-assignment. A specialist in Belbin’s the-

ory, focuses on a particular area of expertise and has a tendency to value

their specialization over team goals. In self-organizing Agile teams, however,

team members balance between cross-functionality and specialization while

remaining committed to the team goal. This practice of a self-organizing

team is discussed in detailed in the next chapter.

Five boundary-spanning roles have been identified as means to encour-

age communication across boundaries: ambassador, scout, guard, sentry, and

co-ordinator [9, 134]. An ambassador represents the team to external stake-

holders and persuades them to support the team. This is similar to the

Champion and Promoter roles identified in our research, where the Cham-

pion persuades senior management to support the team and the Promoter

persuades customers to support the team through collaboration. A scout

is responsible for scanning within and outside their organizations for new

ideas and technologies. In self-organizing Agile teams, on the other hand,

learning new technologies and concepts is a continuous effort performed by

all team members. The guard and the sentry roles are meant to protect the

team from external distractions and act as filters, regulating the information

1In this section, the term “our” is used to refer to this thesis, to differentiate this

research from the related literature being discussed.

98 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

passing into and out of the team. Our research did not identify such roles

on self-organizing Agile teams. Instead of taking on defensive roles (such as

guard and sentry), self-organizing Agile teams pro-actively seek the support

of their environmental factors through Champion and Promoter roles.

Anderson et al. [10] define self-organizing teams as teams that are (a) in-

formal and temporary, (b) formed spontaneously around issues (c) are not a

part of a formal organization structure, (d) possessing a strong sense of shared

purpose, (e) where team members decide their own affairs, and (f) where all

members’ primary roles relates to the task. The roles identified in this re-

search (Mentor, Co-ordinator, etc) fit each of these criteria of self-organizing

teams. Specifically, these roles display the characteristics of self-organizing

teams such as being informal, temporary, and formed spontaneously around

issues [10]. In other words, these informal, implicit, transient, and sponta-

neous roles make Agile teams self-organizing [78].

An Agile environment of working is marked by free flow of information

and high levels of transparency. For example, various metrics and status

of team progress are made highly visible. Details of practices that enable

transparency in Agile teams are presented in chapter 5. The last of the five

boundary-spanning roles is the co-ordinator. Much like the Co-ordinator role

identified in our research, this co-ordinator role focuses on communication

with external groups while keeping them informed of the team’s progress.

Software development teams benefit from the initial guidance of a full-

time Mentor, played by an experienced Agile coach. Another Grounded

Theory study also concluded that a mentor is extremely important in helping

newcomers on a project feel better oriented and settle-in [47]. Our Mentor

role is the closest to the classic Agile coach described in the Agile literature

[16, 111, 128, 138].

Some studies have described individuals supporting customers by trans-

lating technical language to business language [104, 107]. In contrast, our

Translator role was able to achieve two-way communication between the de-

velopment team and their customers by translating business language into

4.8. DISCUSSION 99

technical language and vice versa. Another difference is that the Transla-

tor interacted directly with both parties and was a part of the development

team. The Translator role was played by potentially anyone and everyone

on the team.

Cockburn and Highsmith [40] recommend placing “more emphasis on

people factors in the project: amicability, talent, skill, and communication.”

In our research, practitioners used their own set of criterion to evaluate how

well an individual fits into an Agile environment, such as communication,

ability to give and take feedback, and openness. The Terminator exercises

their power when team members did not fit in with the rest of the team,

and hampered their productivity due to lack of openness and willingness to

change.

4.8.2 Role of the Agile Coach

Self-organizing teams are not meant to be leaderless and uncontrolled [40,

154]. Leadership in self-organizing teams is meant to be light-touch and

adaptive [16], providing feedback and subtle direction [11, 34, 154]. This is

in contrast to centralized management in traditional teams [30, 3, 2]. Leaders

of Agile teams are often compared to coaches of sports teams—responsible

for setting direction, aligning people, obtaining resources, and motivating the

teams [11]. Agile methods, such as Scrum and XP, define the Scrum Master

or XP coach (referred to as the Agile coach in this thesis) as a facilitator

of the self-organizing Agile team [19, 138]. According to the Scrum and XP

guidelines, a Scrum Master is responsible for protecting the team from any

disruptions to their tasks that may be caused by outside sources [113, 128,

138], such as unrealistic demands from the customers. They ensure that

the team is fully functional and productive and that all Scrum processes are

being followed. A Scrum Master is seen as a facilitator and does not organize

or manage the team [138]. Similarly, an XP coach is meant to lead the team

towards self-organization by leaving the team alone as early as possible [56]

Despite the guidelines laid down by Agile Methods [19, 138], the role of

100 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

an Agile coach is one of the most popular topics of debate among industry

practitioners. Inexperienced Agile coaches, as well as experienced project

managers used to a traditional development environment, find themselves

confused when they start practicing Agile methods.

Books have been written by experienced practitioners that acknowledge

the predicament faced by new Agile Coaches in understanding their role

and offer advice from practical experiences [16, 93, 144]. Sanjiv Augustine

and Susan Woodcock explore the role of the project manager and propose

the concept of visionary leader as opposed to an uninspired taskmaster [16].

While traditional management was viewed as governing and commanding,

experienced Agile project managers are meant to display ‘light touch’ lead-

ership [16]. Similar sentiments are resonated by Mary Poppendieck in a

panel discussion titled Agile Management An Oxymoron? notes “I distin-

guish management tasks getting the maximum value from the dollar—from

leadership tasks—helping people to excel. Leaders are required. Managers are

optional” [11].

Research on the role of an Agile coach is extremely limited. Coram and

Bohner have studied the impact of Agile methods on software project man-

agement and touched briefly on the project manager role in Agile. They

noted that the project manager is a much more “involved role” and that

“project managers in agile processes are responsible for tracking progress and

making business decisions” [44]. A change in the role of the traditional man-

ager has been predicted [119]. Our research helps define the role of an Agile

coach on self-organizing Agile teams (section 4.7).

This chapter has described (a) these are informal, implicit, transient,

and spontaneous self-organizational roles on Agile teams, discovered through

this research: Mentor, Co-ordinator, Translator, Champion, Promoter, and

Terminator ; (b) a mapping between the self-organizational roles and their

organizational roles associated with the individuals who played them; (c) a

description of the role of an Agile coach in terms of the self-organizational

4.8. DISCUSSION 101

roles they play on Agile teams; and (d) a discussion of the roles in light of

existing literature.

102 CHAPTER 4. SELF-ORGANIZING AGILE TEAM ROLES

Chapter 5

Self-Organizing

Agile Team Practices

Chapter 4 described the informal roles that facilitate self-organization in Ag-

ile teams. This chapter presents the practices that enable self-organization

in Agile teams—“the balancing acts” [76]. The term “balancing acts” emerged

from the data analysis, as shown in Figure 5.1, to describe the practices of

self-organizing teams that balance between different (and often contrasting)

concepts.

The balancing acts include several low-level practices that enable self-

organization on an every day basis. Balancing freedom and responsibility

involves practices such as collective decision making through collective es-

timation and planning, collectively deciding teams and principles, and self-

committing to team goals; self-assignment using story boards; self-monitoring

through daily standup meetings and use of information radiators. Balancing

cross-functionality and specialization involves practices such as multiple per-

spectives, group programming, rotation. Balancing continuous learning and

iteration pressure involves practices such as retrospectives, learning spike,

and pair-in-need. Table 5.1 shows the Agile practices that specifically enable

self-organization on Agile teams grouped under their corresponding balanc-

ing acts.

103

104 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

The following sections describe self-organizing Agile team practices. A

discussion of how the balancing acts support and complement each other,

how they relate to the general principles and specific conditions of self-

organization, and how they relate to other relevant literature concludes the

chapter.

Table 5.1: Self-Organizing Agile Team Practices

Balancing Freedom & Responsibility

Collective estimation and planning

Collectively deciding team norms and principles

Self-committing to team goals

Self-assignment using story boards

Self-monitoring through daily standups and information radiators

Balancing Cross-Functionality & Specialization

Multiple perspectives

Group Programming

Rotation

Balancing Continuous Learning & Iteration Pressure

Self-evaluation through retrospectives

Self-Improvement through learning spike and pair-in-need

5.1 Balancing Freedom and Responsibility

Team members experience more freedom as a part of a self-organizing Agile

team than as a part of a traditional software development team. Managers

on traditional teams are responsible for setting team goals, assigning indi-

vidual tasks for the team members to achieve within set time-frames, and

micromanaging the projects on a daily basis (P10, P20, P36, P56). Agile

team members with previous experience of working in traditional software

5.1. FREEDOM AND RESPONSIBILITY 105

Ba
la
nc
in
g

Fr
ee
do

m

&
 R
es
po

ns
ib
ili
ty

Ba
la
nc
in
g

Cr
os
s‐
Fu
nc
tio

na
lit
y

&
 S
pe

ci
al
iz
at
io
n

Ba
la
nc
in
g

Co
nt
in
uo

us
 L
ea
rn
in
g

&
 It
er
at
io
n
Pr
es
su
re

Co
lle
ct
iv
e

De
ci
sio

n
M
ak
in
g

Se
lf‐
As
sig

nm
en

t

Se
lf‐
M
on

ito
rin

g

N
ee
d
fo
r

Sp
ec
ia
liz
at
io
n

En
co
ur
ag
in
g

Cr
os
s‐
Fu
nc
tio

na
lit
y

Se
lf‐
Ev
al
ua
tio

n

Se
lf‐
Im

pr
ov
em

en
t

Pa
ir‐
in
‐N
ee
d

Le
ar
ni
ng

 S
pi
ke

Re
tr
os
pe

ct
iv
es

Ro
ta
tio

n

G
ro
up

 P
ro
gr
am

m
in
g

M
ul
tip

le
 P
er
sp
ec
tiv
es

Co
lle
ct
iv
e
Es
tim

at
io
n
&
 P
la
nn

in
g

Co
lle
ct
iv
el
y
De

ci
di
ng

Te
am

 N
or
m
s &

 P
rin

ci
pl
es

Se
lf‐
Co

m
m
itt
in
g
to
 T
ea
m
 G
oa
ls

U
sin

g
St
or
y
Bo

ar
d

Ta
ki
ng

 T
as
k
O
w
ne

rs
hi
p

Da
ily
 S
ta
nd

up
M
ee
tin

gs

In
fo
rm

at
io
n
Ra

di
at
or
s

F
ig

u
re

5.
1:

E
m

er
ge

n
ce

of
th

e
ca

te
go

ry
B

al
an

ci
n

g
A

ct
s

fr
om

u
n
d
er

ly
in

g
co

n
ce

p
ts

106 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

development teams describe a traditional environment as frustrating and de-

motivating.

“[In traditional projects] it was more demotivating to be given

ridiculous deadlines or just feel that the people [managers]...who

are deciding the deadlines don’t actually have any clue about the

technical challenges associated with them.” — P11, Developer,

NZ

In contrast, Agile teams are not micro-managed by managers, rather they are

provided freedom by their senior management to organize themselves. Self-

organizing Agile teams perform practices that allow them to self-assign, self-

commit, self-monitor, self-evaluate, and self-improve (P1-P4, P6-P7, P10-

P16, P20-26, P27-29, P31-P32, P34-36, P39-40, P43-52, P54, P56), giving

them a concrete sense of empowerment. The practices of collective decision

making while committing and achieving team goals, self-assigning tasks, and

displaying responsibility require the team to perform a balancing act between

freedom and responsibility. These practices are described below, along with

an example of the consequence of imbalance.

5.1.1 Collective Decision Making

Self-organizing Agile teams plan their iterations and commit to their own

team goals as a result of the freedom provided by their senior management:

“We are participating in all the sprint planning activities and we

have a clear say in that okay we’ll be able to do this particular

stuff in this particular sprint or we have some extra load on us or

not.” — P32, Tester, India

Self-organizing Agile teams perform collective estimation and plan-

ning. The customer representatives provide project requirements in the form

of user stories [138]. These user stories are broken down into developmen-

tal level tasks by the teams during iteration planning meetings. The team

5.1. FREEDOM AND RESPONSIBILITY 107

collectively participates in estimating user stories and tasks and in planning

their iterations.

Estimation and planning in self-organizing Agile teams involves everyone

on the team. A typical estimation and planning session begins with the

team considering the user stories provided by the customer for an iteration.

In Scrum teams, estimation is done by playing planning poker, where every

user story and task are assigned complexity points by the team on a numeric

scale, depending on the team’s perception of the collective effort involved in

implementing them.

“Once we’ve got those tasks, we give them an estimate on how

much time they’ll take...We actually play a game where we all

hold our fingers up to represent the number of hours we’ll take,

just to get away from that whole ‘just following one person’s idea’

[in traditional development teams]. And that works quite well;

a couple of times we’ve been to, say, look at why people are so

far apart and talk it out some more and realize it’s maybe not as

small as one person thought it was but maybe not as big as the

other person thought. ” — P13, Developer, New Zealand

In contrast, estimation and planning in traditional projects is typically

done by managers and does not involve team members (P2, P36). As a

result, team members with traditional software development backgrounds

often have no experience in estimating and planning of projects.

“It was new and the first time I attended that meeting I was like

what are these cards for...(laughs)...it was so confusing at the

time...then I got used to what the cards meant and then later

on when we had done a few months of the thing we could size

something without the cards already and we already knew exactly

what a size of a story is without even thinking about it because it

was so natural because we’d gotten so used to it. That was fun!”

— P2, Developer, New Zealand

108 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

Mature Agile teams collectively decide team norms and principles

that guide their practices. These principles include an informal understand-

ing of working hours, team velocity, policy on defect tolerance etc.

“Even if all the team members are familiar with Agile, there is a

stage that you have to go through. Like when we start a project

we do a session called norming and charting session where we—

everyone in [company name]—we all know about our Agile prac-

tices but when we start on a project we do a session where we

agree to a certain set of principles. Because Agile as such doesn’t

dictate any core working habits like we say these are our core

working hours we’d like to stick to that; this is our setup time;

these are our coding practices that we’d like to adhere to; we won’t

have any technical debt.” — P31, Agile Coach, India

While Agile methods grant customers the ability to prioritize user stories

every iteration, the decision of how many complexity points will be attempted

in an iteration (developmental pace or team velocity) rests with the team,

based on their capacity. A self-organizing Agile team self-commits to team

goals based on this velocity:

“We have stories which we estimate complexity of and we say

‘well, we can fit this much complexity into next two weeks’” —

P10, Agile Coach, New Zealand

“Once we’ve got stories, we generally have a breakdown meeting

at the beginning of each iteration, and we lay out the stories that

we may not have completed and the next X many stories; we have

a look at how long we originally estimated they would take and

then we try and make a guess as to how many we’ll do, and how

many we’ll get through, based on the length of time we’ve got and

who’s available. The calculation...[is] a real feeling thing based on

the team.” — P13, Developer, NZ

5.1. FREEDOM AND RESPONSIBILITY 109

Self-organizing Agile teams enjoy the freedom to set their own team goals,

and at the same time they realize their responsibilities to ensure that they

achieve the iteration goal through a collaborative effort. The team has a

strong sense of commitment to the team goal and they feel responsible to

achieve it.

“The sprint is a commitment of the team, so if a story’s not

getting finished, that means somebody is not doing their job...it’s a

team effort as opposed to an individual effort.” — P2, Developer,

New Zealand

“We are given responsibility and we’re given complete freedom....At

the end of the day [management] wants the tasks to be done

but [they] want that we do it our way. [They] have satisfaction

that [we] did it in the best possible way... and if there’s certain

thing missing then we can just ask our friends and our colleagues

whether they know a better way to do this...that’s [how] we are

self-organizing.” — P44, Developer, India

Self-organizing Agile teams make collective decisions as “every person is

contributing to the decision-making” (P20). Compared to traditional teams

where the manager makes most decisions related to the team and their

projects, self-organizing Agile teams make “a lot more decisions” collectively

(P8).

“If the team is really at the peak of self-organization - the develop-

ers are also empowered, everybody is empowered - they can make

decisions. If you don’t have the Scrum Master - he’s on vacation

or something - then if that’s not the case you’d expect everything

to stop, right? but it doesn’t stop - it goes on.” — P31, Agile

Coach, India

“they make decisions collaboratively. Nobody is standing up there

and, and making a unitary decision. Where a decision has to be

110 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

made, it might be made in a very short time, but it would be made

with the interests of the team in mind, by everybody.” — P26,

Agile Coach, NZ

If Agile teams face a management that dictates terms and sets goals on

behalf of the team, the team is unlikely to self-organize:

“[If] they are forced to commit to a goal that they didn’t believe

in - because of management pressure...if you don’t give that free-

dom...if you have micromanagement, how can you expect people

to be self-organizing? How can they take ownership of what they

commit to?...[if] you have somebody from management who sits

over it, who dictates it, that takes out the self-organizing nature.”

- P31, Agile Coach, India

Senior management within the organization must provide an environment

in which teams can perform collective decision making through collective

estimation and planning, collectively deciding on informal team norms and

principles, and self-committing team goals.

5.1.2 Self-Assignment

Self-assignment, as opposed to delegation, is a distinguishing feature of self-

organizing Agile teams. Members of self-organizing teams strongly value

their ability to self-assign tasks and appreciate the freedom they have to be

able to pull the tasks from the story wall and assign themselves to their

chosen tasks (P1-P4, P6, P10-P16, P25-29, P31-32, P36, P39, P44-45, P58).

Committing to a team goal every iteration is a group decision. Self-

assignment of tasks within committed user stories, on the other hand, is an

individual decision.

“Agile teams its all about pull instead of push so...you will define

tasks yourself and as soon as you are done with the current task,

5.1. FREEDOM AND RESPONSIBILITY 111

you pick up a new one. That’s how it works.” — P30, Developer,

India

Figure 5.2: A story board/wall with user stories and tasks

A practice that enables self-assignment is the use of story boards. The

story board (also known as a Scrum board) comprises of the user stories that

the team has committed to implementing in a given iteration, along with their

break-down into technical tasks, as a result of iteration planning. The user

stories and tasks are written on small pieces of paper or post-it notes, and are

stuck to the story board. The story board has three columns corresponding

to tasks ‘not started’, tasks ‘in progress’, and tasks ‘completed’. Individual

112 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

teams use different terms to signify the three states. A picture of a story

wall is shown in Figure 5.2, taken during observations of the workplace of an

Indian team participating in the research.

The story board is placed in a visible area, such as on a wall or cabi-

net, for ready reference. Team members self-assign tasks by walking over

to the story board and picking up a task. They physically move the task

from their initial ‘not started’ column to the ‘in-progress’ column, to demon-

strate that a task has been self-assigned. Self-assignment leads to taking

task ownership. Individual teams have interesting ways of displaying task

ownership. Some teams use initials of their names on the tasks, while others

use avatars—photos of unique popular figures—to represent different team

members. Much like the tasks, the team members get to choose their own

avatars. Such observations supplemented the data derived from interviews

and strengthened the understanding of these practices. Figure 5.3 shows the

use of avatars to self-assign tasks. A closeup of a task in the figure a task

written on a post-it; the estimated effort involved in the task represented in

hours: “5hrs”; and the owner of the task represented by their avatar. An

observation of a New Zealand team’s story board is presented below:

Observation of a team’s story board, New Zealand:

“I looked at the different charts around the room. The Scrum

Master (played by a Project Manager) explained to me the con-

vention used for estimating the tasks. The highest priority tasks

were labeled ‘1’, then the next highest was labeled ‘2’ and the last

was ‘3’. Similarly the story was designated points and these were

4 digit numbers, the 1st digit was the priority (business value).

Priority 1 meant that story was a ‘must-have’, while 2 was a

‘should-have’ and 3 was ‘nice-to-have’ (depending on 1 and 2

being completed in time). The rest of the digits were the esti-

mation for the task. The Scrum Master said that while 2 digits

5.1. FREEDOM AND RESPONSIBILITY 113

Figure 5.3: Use of avatars to self-assign tasks

would be enough to estimate the stories, the third digit helped to

space them well on the spreadsheet that he maintained. The charts

were divided into 3 columns of ‘not checked-out’ (not assigned),

‘check-out’ (assigned to someone), and ‘done’ (completed). The

one common tester for the teams would run the tests (integration,

regression, etc) once a task was complete or ‘done’.”

Individuals display responsibility in using their freedom to self-assign by

picking the tasks in order of business priority as defined by their customer

representatives, instead of picking tasks that are technically more appealing

to them.

“So focus is on delivering business value as soon as possible - as

a result of that you take items which are most required from point

of view of business.” — P27, Developer, India

In situations where several tasks are of the same business value or pri-

ority, individuals display their responsibility towards other team members

114 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

and avoid picking tasks based on ease of implementation. The high level of

transparency provided by the story board reinforces the need to pick tasks

responsibly:

“You’re assigning to yourself but you’re part of this team of people

so you know that people aren’t stupid...we joke about choosing a

particular thing and we laugh about them being easy or not.” —

P11, Developer, New Zealand

“Individuals sign up for easy stories [is] visible, [there is more]

sense of responsibility” — P40, Senior Management, India

Individuals try to avoid potential conflicts during self-assignment. For

instance, members in some teams unofficially announce the task as they pick

it from the wall such that any potential conflict is easily raised by others and

mutually resolved. Such actions display responsibility towards other team

members when using the individual freedom to self-assign tasks.

For most individuals, self-assignment leads to taking task ownership.

Some individuals, however, struggle to take ownership of tasks during the

initial stages of becoming a self-organizing Agile team. Initially, this prob-

lem seemed to be related to the Indian hierarchical culture where man-

agers are expected to make all decisions, however, some individuals in New

Zealand teams also showed the same resistance to ownership and responsi-

bility [4, 15, 150, 161].

“It takes time for people to get out of that mind set that some

body is going to be assigning me tasks; coming out of that model

of delegation...here [it is] more about taking ownership” — P27,

Developer, India

This initial struggle to accept freedom and use it with responsibility is

not based on national cultural differences, rather it is a result of the lack of

experience of working in an Agile environment. Using the freedom available

5.1. FREEDOM AND RESPONSIBILITY 115

in an Agile environment with responsibility requires “people to be pro-active

and do things for themselves” (P34) and “assign[ing] to themselves needs

maturity” (P39). Relatively inexperienced Agile teams have issues with ac-

cepting autonomy and keep looking up to their seniors and Agile coaches for

guidance and decision making. More mature Agile teams, however, are able

to effectively balance the freedom to self-assign using story boards with the

responsibility to take task ownership.

5.1.3 Self-Monitoring

In order to ensure that they achieve their goals, self-organizing Agile teams

carefully monitor their progress through an iteration. Generally, in non-Agile

teams, monitoring overall team progress is a responsibility of the team man-

ager. In self-organizing Agile teams, however, this responsibility is shared

collectively among all the members of the team.

The team participates in daily standup meetings, that allow them to

gather a complete view of the team’s overall status. Each member of the

team provides a quick update on what they achieved the day before, what

they are planning to do today, and the impediments they are facing, if any.

The daily standup is a simple, yet effective, way of keeping all members of the

team abreast of the others’ progress, and therefore the progress of the team

as a whole. The daily standup also facilitates the surfacing of impediments

faced by individual members so that they can be discussed as a group or es-

calated to senior management for resolution. Observations of daily standup

meetings were made for a distributed Indian team where one distant mem-

ber of the team participated through video-conferencing and for a co-located

New Zealand team.

Observation of a team daily standup, New Zealand:

One of the teams got together for their daily standup—three de-

velopers and one Scrum Master (project manager). The mem-

116 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

bers discussed what they had achieved the previous day and then

discussed what they planned to do today. They were also able

to spot and resolve dependencies simply by informing each other

of their daily progress. The atmosphere was relaxed and profes-

sional. There were no tangents, and only relevant issues were

discussed. The meeting lasted for about 10 mins. The Scrum

Master supplied information such as contacts for resolving cer-

tain issues. Some technical details were also covered. Then the

team went back to work.

The daily standup serves as an important self-monitoring tool. Team

members inform each other about their daily progress. A lack of progress is

immediately visible during a meeting and brings on peer-pressure to deliver.

Figure 5.4: Burndown chart tracing the actual (solid black line), average

(dashed red line), best (dashed yellow line), and worst (dashed blue line)

burndown rates for the team over several sprints

“you lose your comfort zone; you like to finish your test before

the new daily meeting. Because going every day and saying ‘oh I

5.1. FREEDOM AND RESPONSIBILITY 117

didn’t finish yet’ is terrible; you cannot do that for one week!...so

it pressures you to do something and it’s not your boss pressuring

you, [it is] peer pressure!” — P14, Developer, New Zealand

Self-organizing Agile teams keep a track of their progress through the

use of information radiators—artifacts that radiate project information

with ease and high visibility. Story board is a means to track individual

and team progress as well as a tool for self-assignment (discussed in section

5.1.2). “When someone looks to the board they can see who is working on

which task” and “everyone can read their sticks and see what should be done”

(P14).

Another information radiator is a burndown chart—a graph that traces

the number of complexity points remaining versus the number of iterations,

also called the burndown rate. Usually, the burndown chart will also feature

the ideal burndown rate needed to achieve the iteration goal. A quick look at

the two rates, ideal and real, traced on the same graph, informs the team of

their progress. The graph is drawn or printed by the team on paper, updated

regularly, and placed in a visible area as a ready reminder.

Figure 5.4 shows a picture of a product burndown chart, taken during

observations of the workplace of one of the participating teams. This product

burndown chart traces the progress of the team over the entire length of the

project. The complexity points are represented on the vertical axis and the

number of sprints (iterations) are represented on the horizontal axis. The

solid black line traces the teams’ actual burndown rate; the dashed red line

shows the teams’ average burndown rate; the dashed yellow line indicates

the teams’ best burndown rate; and the dashed blue line shows the teams’

worst burndown rate. This burndown chart shows that the team is currently

in the 24th sprint and is performing slightly worse than their average rate,

but much better than their worst case.

Daily standup meetings and information radiators such as story boards

and burndown charts allow a self-organizing team to monitor their progress

through an iteration and remain on track with achieving their own team goal.

118 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

When Agile teams are provided freedom by the management to organize

and manage their own affairs, it fosters “self-monitoring, self management,

higher levels of commitments and responsibility” (P36). Team members are

found to be “putting their hand up to do stuff ”, and they “get better [at] or-

ganization”, and at the same time there is “a lot more ownership” and “sense

of responsibility and accountability” (P34, P40). Self-organizing Agile teams

are aware of their responsibility to adhere to Agile practices, responsibility

towards each other, and responsibility to achieve team goals.

Teams enjoy freedom both at an individual level as well as a team level.

Similarly, they display responsibility both at the individual level and at the

team level. Through the practices of collective decision making (collective

estimation, planning, collectively deciding team norms and principles, and

self-committing to team goals), self-assignment (using story boards while

taking task ownership), and self-monitoring team progress (through status

report meetings and information radiators), self-organizing Agile teams bal-

ance between the freedom to commit to their own goals and the responsibility

to achieve those goals.

5.1.4 Consequence of Imbalance

The importance of balancing freedom and responsibility is most apparent

when a team is unable to use their freedom in a responsible manner. For

example, the general manager of an Agile organization in India shared an

experience where they had to intervene with a self-organizing team which

was unable to balance successfully between freedom and responsibility (P53).

The team had a couple of senior developers who were extremely proficient at

their tasks, but were misusing the freedom provided and were dictating and

overriding the rest of the team. Their influence had become so strong that

it led to a clear divide in the team between those that sided with them in

every decision fearing comeback and the few that still tried to be democratic.

These members had clearly lost their sense of responsibility towards other

team members by not including them in decision making. The Agile Coach,

5.2. CROSS-FUNCTIONALITY AND SPECIALIZATION 119

acting as a Terminator, sought senior management interference and removed

those senior developers from the team. The rest of the team took some time

to return to their previous self-organizing state. The consequence of im-

balance between freedom and responsibility is generally senior management

intervention, restricting the team’s ability to self-organize in the short term.

Agile teams attempt to carefully balance freedom and responsibility in order

to avoid senior management intervention and sustain their self-organizing

nature.

5.2 Balancing Cross-functionality

and Specialization

A defining characteristic of self-organizing Agile teams is their ability to

maintain cross-functionality in the team. Cross-functionality is the ability of

team members to (a) look beyond their organizational roles (such as devel-

opers, testers, and designers, etc) and to take an interest in activities outside

their areas of specialization, and (b) to look beyond their technical areas of

expertise (such as database management or graphical user interface (GUI)

design) and take the opportunity to expand their expertise in other techni-

cal areas. Cross-functionality allows team members to gain a more rounded

vision of the project through understanding it from multiple perspectives.

While Agile teams generally promote cross-functionality, they cannot

completely dispose of specialization. Some amount of specialization is needed

in both functional roles and in the technical areas of expertise. Self-organizing

Agile teams perform a balancing act between encouraging cross-functionality

and accepting the need for specialization. The practices that enable this

balancing act are described in detail below, along with an example of the

consequence of imbalance.

120 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

5.2.1 Need for Specialization

Self-organizing Agile teams are comprised of individuals with diverse abili-

ties and perspectives. The presence of multiple perspectives on the team

provides individuals with opportunities to share and learn from each other,

in other words become more cross-functional. For example, developers help

with testing when needed, and testers try to understand the developers’

perspective. Team members with different organizational roles interact and

collaborate with each other in order to gain better understanding of each

other’s functional perspectives in the larger scheme of the project.

“The whole thing with Agile is getting people to be more cross-

disciplinary, to take an interest in somebody else’s perspective, to

stop this artificial division between developers and analysts and

testers.” — P20, Agile Coach, New Zealand

The boundaries created by their formal organizational roles are blurred

in self-organizing Agile teams, as individuals learn multiple perspectives and

become more cross-functional. Multiple perspectives on the team leads to a

learning environment.

“[In Agile teams] no egos, no belief that their technical solution

ideas are better than anybody else’s...In other [non-Agile] teams,

someone will have an idea and as soon as someone else has an

counterbalance idea then they fight over the idea and that doesn’t

seem to happen with Agile.” — P18, Senior Management, New

Zealand

Teams carefully balance between encouraging cross-functionality and rec-

ognizing the need for specialization. For example, developers and testers

perform their specialized tasks first, before helping out with the others’ tasks

within the limitations of their cross-functional abilities.

5.2. CROSS-FUNCTIONALITY AND SPECIALIZATION 121

“You choose anything that you wanted, generally testers would

stick to testing first, BAs would stick to requirements first, and

developers stick to development first...[but] as we progress, ob-

viously a lot of the BA work dies down so I’ll say...‘can I help

with development?’ And someone will say ‘well this bit’s quite

easy’...so I’ll go in and just assign [it to] myself.” — P4, Busi-

ness Analyst, New Zealand

Venturing outside the areas of technical expertise was not always easy.

Some individuals are uncomfortable in practicing cross-functionality because

“now they [team members] are switching role...people don’t want to come into

different shoes, different hats very frequently” (P39). The fear of exposing in-

adequacies when attempting a task outside the individual’s area of expertise

leads individuals to specialize more often than become cross-functional.

“Sometimes I’m afraid because I don’t know how to do that story,

and at that point I make a decision, I take a risk - what is the

risk? Oh, I have to expose myself as ignorant in that subject! And

sometimes it’s easier if you just take a task that you know how to

do and you just do it quickly and complete it. Sometimes I take

the risk, sometimes I don’t.” — P14, Developer, New Zealand

A culture of collaboration and cooperation in an Agile team is crucial

for team members to overcome such apprehensions and explore other areas

of expertise. Most mature self-organizing Agile teams are highly cohesive

and cooperative, helping each other learn new skills across different technical

areas.

“We just didn’t do things based on technical skills...people would

just grab whatever and if they couldn’t do it themselves, they get

help. And that worked well.” — P11, Developer, New Zealand

Understanding each other’s perspectives implies individuals can poten-

tially step into each others’ roles in the face of unforeseen loss or unavailabil-

ity of individuals performing within specialized organizational roles:

122 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

“recently our tester left the project...we [developers] needed to step

up and do some testing ourselves” - P13, Developer, New Zealand

“When we are short of testing capacity in the team...even I have

done some testing for a fellow developer on a user story, which

is pretty normal. – P31, Agile Coach, India

Self-organizing Agile teams recognize certain limitations to cross-functionality.

For example, even though developers try and understand the testers’ perspec-

tive, they can harbour inherent biases towards their own code which prevents

them from recognizing weaknesses in it.

“If all the developers can think in the way a tester thinks then

I think we [testers] are not required! (laughs) But actually that

doesn’t happen because some sort of biasing is always there for

their own code.” — P32, Tester, India

The presence of multiple perspectives on the team ensures that cross-

fertilization can happen. At the same time, the need for some amount of

specialization is acknowledged.

5.2.2 Encouraging Cross-Functionality

Self-organizing Agile teams encourage cross-functionality through the prac-

tice of group programming, where team members work together in an

open-plan workspace while frequently collaborating with each other. Open-

plan workspaces have no cubicles and all team members and the project arti-

facts are highly visible. Figure 5.5 shows a picture of an open-plan workspace

environment of one of the Indian self-organizing Agile teams participating in

the research. The term group programming emerged from data analysis, and

is an example of an in-situ code—a code derived directly from the partici-

pant’s comments.

5.2. CROSS-FUNCTIONALITY AND SPECIALIZATION 123

Movable Laptops No Cubicles
or Separators

Figure 5.5: Open-plan workspaces enable Group Programming

“I think Agile software development is not good, or not an ideal

one, for people who love to programme all alone, because some

of the developers prefer working all alone and concentrating on

their stuff and nobody can disturb them, but Agile is totally dif-

ferent from that, so it’s sort of group programming...doing it

all alone...would have been quite a difficult job, but...all [of us]

were involved in all the tasks and everything” — P16, Developer,

New Zealand

A main consequence of group programming is that it puts developers and

testers together in the same physical space. A result is that instead of being

pitched against each other in separate development and testing teams, devel-

opers and testers work together on one team. Developers value the testers’

perspectives and often seek their advice when implementing functionalities

in code. Similarly, testers often engage in discussions with the developers in

124 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

a bid to understand the decisions behind their implementations.

“If I think I’m writing something that is a bit tricky then I pull

the tester over to sit with him and say...this is how it’s looking,

because they tend to have a different view on things and sometimes

as a developer you forget the other view and you need to step back

and get that input. So I quite like to...get them involved.” — P13,

Developer, NZ

“The developers getting used to actually having to treat the testers

with respect, and the testers acknowledging that um, the develop-

ers might actually have some good ideas occasionally (laughs)” —

P26, Agile Coach, NZ

Direct communication between developers and testers not only saves time

and effort, but also promotes cohesiveness in the team.

“We’ll [developers and tester] be having a root cause analysis and

we sit together and see this is the problem—why this was not

implemented or if the developer has misunderstood that, then we

sit together. There is nothing [like] that we’re going to product

owner and telling him that your stuff was not done then he is

telling the developer why didn’t you do that...unnecessarily there’s

a loop.” — P32, Tester, India

Group programming promotes a collaborative team environment that is

particularly useful for newcomers on the team.

“...[when] you start doing it [a task] and you face some of the

problems...okay, so this is a bit difficult now, I never thought of

this thing...you can surely go to another developer, because he’s

also knowing about that task because he was present there at the

time of breakdown...so he can immediately help you...[or] you can

5.2. CROSS-FUNCTIONALITY AND SPECIALIZATION 125

leave it in between and just tell the other developer ‘okay, I’m

having a problem so can you please look at that [and] I can pick

up some other task’.” — P16, Developer, New Zealand

A newcomer with a traditional software development background may

easily feel overwhelmed in a new Agile environment. Group programming

allows for a cohesive, learning environment where newcomers find support

from their team-mates.

“The day I joined...They [team] held me because I was not able

to move. Because what I feel is when you join a new organization

and that too from a traditional to a new Agile methodology you

have to have some space for yourself, some room. But they [team]

hold my finger and they didn’t ask me to just walk—they let me

run with them! And that was the best thing that I have seen and I

really appreciate that part of the developers that...they helped me

a lot.” — P32, Tester, India

Cross-functionality in self-organizing Agile teams is not limited to cross-

ing the boundaries of organizational roles. Cross-functionality also includes

the teams’ ability to actively seek opportunities to work outside their areas

of technical expertise (within the same organizational role.) For example, de-

velopers specialize in different technical areas of expertise such as database

management or graphical user interface (GUI) design. In self-organizing

Agile teams, developers try to work outside their specialization areas and ac-

tively embrace opportunities to gain expertise in other technical areas. One of

the advantages of this practice is that team members become familiar with

most technical aspects of the project so they can easily manage any area,

which is consistent with XP’s collective code ownership principle [19]. The

practice of group programming supported collective code ownership among

team members.

“So we encourage people not to get boxed into ‘I only do database

access stuff!’...One of our keys is that we want everyone to know

126 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

as much of the code base as possible, so that if someone leaves or

can’t work on another problem because they’re busy, someone else

should be able to come in and at least feel a little bit familiar with

what’s going on” - P13, Developer, NZ

“From the sprint backlog you want to pick the XML parser task

or you want to pick the GUI design task that is entirely up to you

and that is the freedom that Agile gives you.” — P29, Developer,

India

Flexibility to work in multiple technical areas is welcomed by develop-

ers because it helps them maintain interest in their work. As one of the

developers nearing the end of their Agile project noted:

“I think the thing that I will probably miss the most, in Agile,

is the fact that everything is so flexible; that one day you can

be doing one thing and the next day you can be doing something

else.” - P2, Developer, NZ

Another practice that promotes cross-functionality across teams is, ro-

tation. Rotation is a policy that is used across large projects with multiple

teams, and allows individuals to rotate across the teams, giving them a wide

exposure to a large number of different contexts, development platforms,

languages, and technical areas of expertise.

“We rotate across teams...so that’s one good way of building knowl-

edge in the system...so particularly people who are less than a year

out or so—they don’t know Ruby so I mean that’s fine...you can

get on and, you know, learn the technology, learn all the skills.”

— P46, Developer, India

The rotation policy is based on the premise that face-to-face commu-

nication and collaboration leads to better transfer of knowledge and skills.

5.2. CROSS-FUNCTIONALITY AND SPECIALIZATION 127

Rotation allows individuals to learn the tricks of the trade through hands-

on experience with people from different backgrounds. In an Indian Agile

organization, rotation was used as a strategy for knowledge sharing.

“[speaking about rotation policy]...it is part of our beliefs that face

to face transfer of knowledge, that’s the best way to do it, yeah we

have all those virtual tools in place, we have mailing lists...and the

rest of it, but I think the face to face, you know, hard-back, really

helps in knowledge sharing and collaboration, that’s the funda-

mental reason [behind rotation]. And it also helps in the transfer

of all kinds of engineering practices, you know, tips and tricks that

people run on the ground, that gets shared.” — P51, Knowledge

Strategist, India

Rotation is also used as a means to keep the work environment interesting

for the team members by exposing them to changing and challenging new

areas (P20, P34, P46, P51).

5.2.3 Consequence of Imbalance

The need for balancing between cross-functionality and specialization when

working in a self-organizing team is highlighted by the example below. A

business analyst (BA) on a New Zealand team misused their cross-functional

programming skills in secret and had started causing damage to the project

code base. The BA would use their coding skills to work on the code base

without the knowledge of the developers and causes lots of confusion and

errors in the system. In this case of irresponsible cross-functionality, the

BA’s unofficial involvement in programming caused the team several hours

of rework. The Agile Coach on the team took on a Terminator role [78]—

securing senior management support to remove the business analyst. The

team performance rose dramatically afterwards, as confirmed by their cus-

tomer representative:

128 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

“[When] we got our scrum coach in...that BA was moved to an-

other project and their contract was not renewed... Once we had

[the coach’s] involvement the work got back on track—we’d gone

four months down the wrong road and [the team] were able to get

us back to where we should be in, I think, about six weeks.” —

P9, Customer Representative, New Zealand

A team’s failure to balance between cross-functionality and specialization,

as in this example, invites senior management intervention. Frequent senior

management interference poses a threat to the team’s self-organizing nature.

Self-organizing Agile teams carefully balance between cross-functionality and

specialization in order to avoid senior management intervention and sustain

their self-organizing nature.

5.3 Balancing Continuous Learning

and Iteration Pressure

Software development teams need to keep themselves abreast of the latest

technologies, processes, and tools in order to manage dynamic requirements

and market trends. Continuous learning is all the more important for self-

organizing Agile teams because responding to change is an essential principle

of Agile software development [19].

“I think in our business, software developing, it’s a complex sub-

ject and it’s impossible for one person to know about everything,

so it’s a day-by-day thing...This is a normal step and everybody

is learning each day.” — . P14, Developer, New Zealand

Self-organizing Agile teams recognize the need to indulge in continuous

improvement powered by constant self-evaluation and continuous learning:

“I think we just need to keep going and we need to keep improving.

I think the minute you think you’re there, you’re not. Because you

5.3. CONTINUOUS LEARNING AND ITERATION PRESSURE 129

can always do better, you can always learn from what went well,

what didn’t go well and tweak things slightly.” — P13, Developer,

New Zealand

Continuous learning involves different types of learning — learning Agile

practices, learning new or complex technical skills, learning cross-functional

skills, and learning from the team’s own experiences — all of which fuel self-

improvement. The rest of the section describes how Agile teams perform a

balancing act between continuous learning of different types and the pressure

to deliver the team goal every iteration. An example of the consequence of

imbalance is also presented.

5.3.1 Self-Evaluation

Self-organizing Agile teams perform self-evaluation through the practice of

retrospectives. Retrospective meetings are held at the end of each itera-

tion where the team collectively self-evaluates themselves by addressing four

aspects: what went well, what didn’t go well, bouquets, and suggestions for

improvement [48].

“I think that sort of fits in well with the whole idea of Agile, where

you’re constantly going ‘is this working for us as a team? or for

me as an individual?’ — P13, Developer, New Zealand

Retrospectives are used as an effective tool to evaluate the learning by

the team over an iteration and suggest concrete steps for improvement.

“With every retrospective we certainly came up with ideas to im-

prove our process, and I think with all those retrospective sessions

under our belt, with all the experience sizing, planning, everything

combined, it really made us evolve as a team. I’d certainly say

our team dynamics expanded well beyond what we thought they

would. At the moment we’re exceptional, we’re just a little family

that works together.” — P4, Business Analyst, New Zealand

130 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

Retrospectives are a powerful mechanism for the team to engage in self-

evaluation and self-correction:

“The key here that makes it all work is this practice of retro-

spectives. Because that essentially says you say stop, ‘how are

we doing guys? What are the good things that we’re doing, what

are the not so clever things that we’re doing, how do we stop

the not so clever things, how do we start better things?’ Because

then with this practice and with the continuous kneading out the

things that don’t quite work and focusing on the things that work,

you grow that eco-system, you develop it, and you’re bound to be

successful.” — P20, Agile Coach, New Zealand

Along with the need for continuous learning and improvement, Agile

teams are very much aware of the pressures of delivering their iteration goals.

Agile teams face iteration pressure—the pressure to deliver to a committed

team goal every iteration. Iteration pressure, in itself, is not detrimental to

the team, in fact some amount of iteration pressure is necessary to motivate

teams to deliver their goals. Short iteration lengths or an extremely high and

unsustainable development velocity, on the other hand, can cause excessive

iteration pressure. For instance, a developer found one week iterations to be

very demanding:

“I’m always feeling the need to rush, rush, rush!...after one week

[iteration], we want to remove all these stickies [tasks] from the

wall. So it’s always pressure...if you have [longer] development

time, then I can adjust my work like if we spent a little bit longer

than we expected, I can catch up next week.” — P15, Developer,

New Zealand

Creating and maintaining a continuous learning environment requires

teams to set some explicit time aside for learning each iteration. Iteration

pressure, on the other hand, implies they may not have any extra time to

spare:

5.3. CONTINUOUS LEARNING AND ITERATION PRESSURE 131

“You need to actually allow time for other team members to learn

what you do and for you to learn what they do. Often we tend to

fill up our sprints with so much that a good teaching environment

isn’t necessarily there...they can see what you’re doing but you

need to be able to take the time to explain in really good detail.”

— P8, Tester, New Zealand

Retrospectives can be used to assess whether the iteration pressure is

unbearable for the team and suggest ways to overcome it. During an in-

terview, a tester revealed that they were facing iteration pressure because

“testing was always pinched at the end” and resolved to take the matter up

in a next retrospective because “that’s what [retrospectives] are for” (P8).

Participants found retrospectives to be “a key ingredient in Agile methodol-

ogy” (P20) which allowed them to evaluate team practices, including team

velocity, and correcting them as needed.

5.3.2 Self-Improvement

Team members have the desire to learn new and better ways of working but

are sometimes too pressured by the iteration tasks to be able to devote any

time to learning and improvement:

“I’d be interested to learn various Agile techniques for require-

ments gathering, such as events and themes, and I’d love to try

and use some of them in an Agile project. It’s just [that] I haven’t

really had a lot of time to think about it. [Scrum] is very action

oriented.” — P4, Business Analyst, New Zealand

A practice that allows self-organizing teams to allow for learning while

managing iteration pressure is a learning spike. A learning spike is an exclu-

sive time set aside—within an iteration or spread across multiple iterations—

for learning. After performing self-evaluation through retrospectives, the

132 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

team may discover that they are lagging behind in a particular area and

decide to devote some exclusive time to update themselves in that area.

One New Zealand team faced excessive iteration pressure when their only

tester on the team left unexpectedly. The team realized the need to auto-

mate their testing efforts. The Agile Coach helped the team not succumb

to the iteration pressure and the team created a learning spike to improving

their testing. The improvement involved the team learning new tools and

techniques and implementing their own automating testing framework.

“We’ve just basically reduced our velocity and taken the time to

do those things because we knew they were important. We made

a call that we were going to not going to wimp out, and go back to

the manual testing...make it automated...the new tester had more

coding skills and therefore we’ve taken automation a lot further.

...we seem to be the only team I can find in New Zealand doing

one hundred percent automation.” — P17, Agile Coach, New

Zealand

The whole team may not be involved in the learning spike. While some

members perform the learning spike, other can continue to work on regular

stories and tasks, thereby managing iteration pressure to an extent:

“amongst five of us two of them they started with testing stuff

and how to do that and then the three that were left with the

development and the other stories. But for a week or two we

really...everybody was thinking that what approach should be used

for the testing stuff so that time we had to switch some roles from

developers to testers and back and forth.” — P16, Developer,

New Zealand

Another source of learning comes from pair-in-need, a modification to

the standard XP practice where developers work in pairs on every task [19].

5.3. CONTINUOUS LEARNING AND ITERATION PRESSURE 133

Teams practicing primarily Scrum and combinations of Scrum and XP, prac-

tice pair-in-need where pairing was done on a need basis, rather than most of

the time, to “distribute knowledge” (P30) and complete complex tasks (P44).

“The way we do it is that if things are unpredictable we always

take up user stories as a pair. There are written tasks for which

we don’t really need to sit together we can part, but if something

requires—this is complex, this is design-intensive—we sit together

and pair it.” — P31, Agile Coach, India

Collaboration through pair-in-need becomes an important source of learn-

ing. Agile coaches in relatively new teams and senior team members in ma-

ture teams often take on a Mentor role to help newcomers learn the basic

Agile practices and catch up to the team’s velocity [78].

“I had never worked on the Spring framework before, but in this

project it’s completely related to Spring framework, and Spring

transaction management and all, so I started learning it...we were

pairing each with other, that time it was beneficial because the

other person was quite okay...and he knew about the Spring frame-

work and he had done it before in some other project. So it helped

me to learn it more faster, because he used to say: ‘okay, you have

to go with this stuff, and you can do it’. So that was a major ad-

vantage.” — P16, Developer, New Zealand.

In order to balance continuous learning and iteration pressure, helping

team members through collaboration should be considered acceptable by the

team as a task that promotes both learning and delivering the iteration goal:

“[We] help [each other], so that means that the next day’s stand-

up you knew that you were helping...so that’s all right...because

I’m covering someone.” — P11, Developer, NZ

134 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

Pair-in-need works well for these teams because it allows them to learn

how to tackle new and complex tasks with the help of a peer and at the same

time to move closer to their iteration goal.

5.3.3 Consequence of Imbalance

Teams must balance learning and iteration pressure. A developer shared

an experience where their team had committed to too much in an iteration,

thereby bringing excessive iteration pressure upon themselves. The team was

unable to keep up with the self-imposed high velocity which resulted in tests

failing across the board:

“We’d gotten a bit over-confident and we’d committed to too much

in the sprint... Everyone was feeling like ‘we have to get through

[all the tasks]’...then I started testing and everything fell over!”

– P25, Developer, NZ

In the following retrospective, the team decided to take a step back and

put some guidelines in place regarding their velocity. They decided to focus

on quality and not just quantity of the tasks. The team also decided to learn

and set up better guidelines for testing.

“So we looked at that retrospective and thought ‘okay, that was a

complete [mess], how can we make sure it’s not next time?’...We

decided that...what we delivered had to be working, and that meant

that if it took longer and if some of the stuff had to be dropped until

the next sprint then that’s what happened!” – P25, Developer, NZ

A balance between continuous learning and iteration pressure is necessary

to allow Agile teams to keep improving and transcending beyond their current

abilities.

5.4. AN INTEGRATED SET OF PRACTICES 135

5.4 An Integrated Set of Practices

The three balancing acts are highly inter-related and re-enforce each other in

several ways. The balancing acts include several low-level practices that en-

able self-organization on an every day basis. Balancing freedom and responsi-

bility involves practices such as collective decision making through collective

estimation and planning, collectively deciding teams and principles, and self-

committing to team goals; self-assignment using story boards; self-monitoring

through daily standup meetings and use of information radiators. Balancing

cross-functionality and specialization involves practices such as multiple per-

spectives, group programming, rotation. Balancing continuous learning and

iteration pressure involves practices such as retrospectives, learning spike,

and pair-in-need. These practices are closely related to each other and sup-

port each other. Figure 5.6 depicts the relationships between the different

self-organizing Agile team practices. This integrated set of practices specif-

ically facilitates self-organization in Agile teams. The relationships between

the practices are described below. There are other Agile practices that teams

engage in. These include XP practices such as metaphor, refactoring, etc.

While these practices enable proper functioning of a development team, they

do not specifically facilitate self-organization and are not discussed here.

In self-organizing Agile teams, the whole team is able to participate and

contribute to collective estimation and planning. As developers, testers, de-

signers, business analysts, etc all collectively estimate and plan their itera-

tions, it fosters a good understanding of the project from multiple perspec-

tives. Collective estimation and planning also promotes group programming

as team members share common ideas about the stories and tasks at a high

level which they later program as a group. Team members can indicate their

interests in selecting certain tasks during the estimation and planning ses-

sion as a pre-cursor to self-assignment of those tasks later from the story

board. Since the estimation and planning is done collectively, team members

have an understanding of the efforts involved in various tasks. This leads to

transparency about tasks estimates, which in turn promotes responsibility

136 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

Collective Estimation

and Planning

Collectively

Deciding Norms and

Principles

Self-Committing

to Team Goal

Self-Assignment

Using Story Board

Taking Task

Ownership

Daily Standup

Meetings

Self-Monitoring

Using Information

Radiators

Multiple
Perspectives

Group
Programming

Rotation

Retrospectives

Learning Spike

Pair-in-Need

BFR

BCS

BLP

Figure 5.6: Self-Organizing Agile Team Practices Support Each Other (Bal-

ancing Freedom & Responsibility (BFR); Balancing Cross-Functionality &

Specialization (BCS); Balancing Continuous Learning & Iteration Pressure

(BLP)

among team members to not only complete the tasks they choose, but also

finish them within the estimated time. This transparency is further enforced

through daily standup meetings and the use of information radiators.

Self-assignment involves team members picking tasks to perform instead

of being delegated tasks. A key motivation during self-assignment is to select

tasks with the highest business value and not necessarily tasks that are easy

to perform. As a result, team members often pick up tasks that are of high

business priority but are well outside their area of expertise, which provides

an opportunity to gain new cross-functional skills. Thus, the practice of

self-assignment promotes cross-functionality in self-organizing Agile teams.

The daily standup meetings allow team members to understand the project

5.4. AN INTEGRATED SET OF PRACTICES 137

from a range of viewpoints which promotes multiple perspectives on the team.

Information radiators, such as story boards and burndown charts, are pri-

marily tools for self-monitoring progress. These information radiators foster

responsibility among team members to complete selected tasks. However,

information radiators also highlight the areas in which the team is not per-

forming optimally. For example, a large number of testing tasks stagnating

on the story board is an indicator of either poor quality code being produced

or that the tester (often outnumbered by developers) is unable to manage the

testing load. This presents an opportunity for self-improvement where the

team may decide to improve their quality of code or automate some of their

testing (section 5.3). It also presents an opportunity for cross-functionality

where developers may pitch in to help the tester with testing tasks.

The practices of group programming presents a conducive environment

for sharing multiple perspectives and encouraging cross-functionality. Other

practices that promote cross-functionality are rotation and pair-in-need. While

pair-in-need primarily enables the team to balance continuous learning and it-

eration pressure, it is also an important means for encouraging cross-functionality.

As well as self-monitoring daily via standup meetings and information ra-

diators, self-organizing Agile teams also perform self-evaluation on an iteration-

by-iteration basis through the practice of retrospectives. Retrospectives

present an opportunity to evaluate a team’s ability to perform all three

balancing acts. As a result of this self-evaluation, a team may decide to

concentrate on self-improvement in several areas, such as create a learning

spike to resolve an immediate need. A team may also decide to re-evaluate

and adapt their norms and principles, such as team velocity, defect tolerance,

work hours etc.

The practices of self-organizing Agile teams described in this chapter,

support and complement each other much like the XP practices (section

2.2.2) support each other.

The three balancing acts enable the team to balance short term gains

with long term benefits. For example, self-assignment of tasks provides an

138 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

opportunity for immediate gains to individuals in terms of freedom to choose

whatever task they want from the story board. However, team members

choose tasks based on high business value, displaying responsibility towards

customers; and based on an awareness of other members’ preferences or inter-

est, displaying responsibility towards the team. An inability to balance free-

dom and responsibility invites senior management intervention which takes

away their long term ability to self-assign tasks (section 5.1).

Similarly, confining themselves to their specialized areas of expertise al-

lows team members to achieve faster results in the short term (for example,

within an iteration). However, acquiring cross-functional skills enables them

to reap long term benefits of achieving sustained progress by removing func-

tional dependencies on individuals (for example, throughout a project or

through multiple projects).

Finally, achieving a high team velocity in an iteration allows the team to

attain short term gains. Managing iteration pressure and allowing time for

learning and growth, on the other hand, enables long term benefits of sus-

tained velocity. All together the practices enable Agile software development

teams to achieve and sustain self-organization on an everyday as well as a

long term basis.

5.5 Balancing Acts and the General Princi-

ples of Self-Organization

The general principles and specific conditions of self-organization have been

explored in Agile literature (described in section 2.3). The concrete practices

of self-organizing Agile teams, however, have not yet been established from

industry-based research across multiple teams, organizations, and countries.

A contribution of this research is the description of concrete, everyday prac-

tices that facilitate self-organization in Agile teams and how these practices

fulfill the conditions and principles of self-organization.

While most of these low-level practices that make up the balancing acts

5.5. GENERAL PRINCIPLES OF SELF-ORGANIZATION 139

M
in

im
u

m
 C

ri
ti

ca
l

Sp
ec

if
ic

at
io

n

R
eq

u
is

it
e

V
ar

ie
ty

R
ed

u
n

d
an

cy
 o

f
Fu

n
ct

io
n

s

Le
ar

n
in

g
to

 L
ea

rn

B
al

an
ci

n
g

C
o

n
ti

n
u

o
u

s
Le

ar
n

in
g

&
 It

er
at

io
n

 P
re

ss
u

re

B
al

an
ci

n
g

C
ro

ss
-F

u
n

ct
io

n
al

it
y

&
 S

p
ec

ia
liz

at
io

n

B
al

an
ci

n
g

Fr
ee

d
o

m

&
 R

es
p

o
n

si
b

ili
ty

C
O

N
D

IT
IO

N
S

[T
ak

eu
ch

i a
n

d
 N

o
n

ak
a,

 1
98

6]

P
R

A
C

TI
C

ES
[H

o
d

a
et

 a
l.,

20
10

]

Th
eo

re
ti

ca
lly

 li
n

ke
d

 t
o

 S
el

f-
O

rg
an

iz
in

g
A

gi
le

 T
ea

m
s

[N
er

u
r

et
 a

l.,
20

07
]

A
u

to
n

o
m

y
ex

p
lo

re
d

 in
 S

el
f-

O
rg

an
iz

in
g

A
gi

le
 T

ea
m

s
 [

M
o

e
et

 a
l.,

 2
00

9,
 2

01
0]

A
u

to
n

o
m

y

C
ro

ss
-F

er
ti

liz
at

io
n

Se
lf

-
Tr

an
sc

en
d

en
ce

P
R

IN
C

IP
LE

S
[M

o
rg

an
, 1

98
6]

Se
lf

-O
rg

an
iz

in
g

A
gi

le
 T

ea
m

 P
ra

ct
ic

es

en
ab

le
 P

ri
n

ci
p

le
s

an
d

 C
o

n
d

it
io

n
s

[H
o

d
a

et
 a

l.
2

01
0

]

F
ig

u
re

5.
7:

R
el

at
io

n
sh

ip
s

b
et

w
ee

n
th

e
p

ra
ct

ic
es

o
f
se

lf
-o

rg
a
n

iz
in

g
A

g
il

e
te

a
m

s
(t

h
e

B
a
la

n
ci

n
g

A
ct

s)
[7

6
]
a
n

d
th

e
g
en

er
a
l
p

ri
n

ci
p

le
s

of
se

lf
-o

rg
an

iz
at

io
n

(M
or

ga
n

,
19

86
)

[1
15

];
an

d
th

e
B

a
la

n
ci

n
g

A
ct

s
a
n

d
th

e
fu

n
d

a
m

en
ta

l
co

n
d

it
io

n
s

o
f

se
lf

-o
rg

a
n

iz
a
ti

o
n

(T
a
ke

u
ch

i

an
d

N
on

ak
a,

19
86

)
[1

54
]

(i
n

d
ic

at
ed

b
y

b
lu

e
an

d
re

d
d

o
tt

ed
li

n
es

re
sp

ec
ti

ve
ly

.)

140 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

are standard or adapted practices from Scrum and XP, they specifically

enable self-organization in Agile teams. The following sections describe

how these practices relate to the general principles of self-organization from

an organizational perspective and to the fundamental conditions of self-

organization as applied to Agile software development. Figure 5.7 depicts

the relationships between the balancing acts, the specific conditions of self-

organizing Agile teams [154], and the general principles of self-organization

from a organizational perspective [115].

The four principles of self-organization described from an organizational

perspective are: minimum critical specification, requisite variety, redundancy

of functions, and learning to learn [14, 115]. Several researchers have studied

and used some or all these principles to explain their findings or further their

research [86, 113, 114, 118, 120]. The relationship between these principles

and the balancing acts are discussed below.

Minimum Critical Specification

Minimum critical specification refers to the senior management defining only

the critical factors that are needed to direct the team and placing as few

restrictions on the team as possible [115]. Morgan also emphasizes the need

for self-organizing teams to work in an environment of “bounded” or “respon-

sible autonomy” [115]. Hut et al. [86] note that the role of management is

extremely important in providing autonomy to the team and for team em-

powerment. Our theory confirms that freedom provided by senior manage-

ment is extremely important for Agile teams to self-organize. Hut et al. [86]

suggest that while interventions by senior management can “dramatically un-

dermine empowerment”, such interventions “may sometimes be inevitable”.

As such, they propose “boundary management” in order to find the “right

balance” [86]. Our research found that senior management was forced to

intervene at times when the teams crossed their boundaries of freedom, in

an effort to restore the balance. Similarly, Mollenman [114] discusses the

need for “balance of power” which is described as the balancing act between

5.5. GENERAL PRINCIPLES OF SELF-ORGANIZATION 141

freedom and responsibility, in our theory.

Requisite Variety and Redundancy of Functions

Requisite variety is derived from the “law of requisite variety” [14] that claims

variety can be handled by variety such that a changing organizational envi-

ronment is best handled by a group containing people with a variety of skills.

Morgan, applying this law to organizational theory, defines requisite variety

as the need for any control system to match the complexity and diversity of

the environment being controlled [115].

Nerur et al. relate this principle to Agile software development by com-

paring variety among team members to cross-functionality or interchangeable

roles [118]. Requisite variety implies that changes in the environment of the

organization is best handled by self-organizing teams. In other words, if the

amount of variety or fluctuations in the environment is low, self-organizing

teams—composed of members possessing variety of skills—are not required.

Self-organizing teams are effective when there are changes in the organiza-

tional environment. It is not surprising then that self-organizing teams are

seen as improving the flexibility of an organization in terms of its ability

to respond to change and as influential in improving the quality of the em-

ployee’s working life [86, 114]. Both these aspects of self-organizing teams

are well-suited to Agile methods which focus on responding to change and

on the people that enable it [19, 72, 138]. Our research found that teams

were facing dynamic environments, in terms of changing customer require-

ments and technologies, and were composed of individuals possessing variety

of skills to respond to these changes, thus fulfilling requisite variety [14].

The principles of requisite variety and redundancy of functions are closely

related. Redundancy of functions refers to the multifunctionality of work-

ers where workers are able to perform a wide variety of team tasks through

cross-training [86]. Nonaka refers to this principle as cross-functionality in a

self-organizing team [120]. Our research found that teams promoted cross-

functionality across technical areas of expertise as well as across functional

142 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

roles. Multifunctionality (achieved by cross-training) or cross-functionality

has been related to improved team performance [114]. However, limitations

to cross-functionality, such as expense of cross-training, have also been ac-

knowledged and imply a need for finding an ‘optimal level’ of cross-functionality

for the team [114]. Our research found that while teams promote cross-

functionality, they also acknowledge that some amount of specialization per-

sists. Finding the ‘optimal level’, therefore, is a balancing act between cross-

functionality and specialization that our participants performed.

Learning to Learn

Learning to learn refers to the team’s ability to reanalyze problems, reap-

praise the best work method, and reconsider the required output if neces-

sary [86]. Self-organizing Agile teams are able to iteratively solve problems

using ‘learning to learn’ via double-loop learning [115, 118]. The specific Ag-

ile practices that facilitate ‘learning to learn’ include reflection workshops,

standup meetings, pair programming, etc [118]. Our research shows that a

couple of these mechanisms of double-loop learning—retrospectives and pair-

in-need—particularly enabled teams to balance between continuous learning

and iteration pressure.

5.6 Balancing Acts and the Specific Condi-

tions of Self-Organization

This section discusses the relationship between the balancing acts and the

fundamental conditions of self-organization specifically applicable to Agile

software development [154].

Self-organizing Agile teams are meant to exhibit three conditions: auton-

omy, cross-fertilization, and self-transcendence [154]. After a careful study

of the three conditions of self-organizing teams, a relationship between those

conditions and the balancing acts was established. Each of the balancing

5.6. SPECIFIC CONDITIONS OF SELF-ORGANIZATION 143

acts were performed in order to uphold each of the three fundamental condi-

tions of self-organizing teams, namely: balancing freedom and responsibility

in order to uphold the condition of autonomy, balancing cross-functionality

and specialization in order to uphold the condition of cross-fertilization, and

balancing continuous learning and iteration pressure in order to uphold self-

transcendence. In unison, the balancing acts were performed by the teams

in an effort to uphold their self-organizing nature. These relationships are

discussed below.

Autonomy

A team possesses autonomy when (a) they are provided freedom by their

senior management to manage and assume responsibility of their own tasks

and (b) when there is minimum interference from senior management in the

teams’ day to day activities [154]. Our participants were provided freedom

by senior management to manage their own tasks, which fulfills the first cri-

terion of autonomy. In order to ensure there was minimum interference from

senior management—the second criterion of autonomy—the teams assumed

responsibility in using that freedom. Thus by balancing between freedom

and responsibility they ensured that they were able to not only achieve but

also sustain autonomy.

Cross-Fertilization

A team possesses cross-fertilization when (a) it is composed of individual

members with varying specializations, thought processes, and behaviour pat-

terns and (b) these individuals interact amongst themselves leading to better

understanding of each others’ perspectives [154]. Our research shows that

Agile teams consist of individual members with varying specializations—

developers, testers, business analysts—which fulfills the first criterion for

cross-fertilization. In order to ensure that these individuals benefited from

understanding each others’ perspectives—the second criterion of cross-fertilization

144 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

—the teams frequently interact across different functional roles and attempt

tasks across different technical areas. Teams find it impossible to com-

pletely avoid specialization but try to be as cross-functional as possible. A

team’s ability to balance specialization and cross-functionality means they

can achieve and sustain cross-fertilization.

Self-Transcendence

A team possesses self-transcendence when (a) they establish their own goals

and (b) keep on evaluating themselves such that they are able to devise newer

and better ways of achieving those goals [154]. Our study found that teams

are able to establish their own goals in terms of deciding how much to com-

mit to in an iteration, thus fulfilling the first criterion of self-transcendence.

Teams not only establish their own goals but also assume full responsibility

to achieve those goals causing pressure to deliver. While some iteration pres-

sure motivates teams to achieve their goals, excessive pressure results in a

neglect of learning and improvement. In order to balance between iteration

pressure and the need for continuous learning, the teams practice pair-in-

need to both complete tasks and to learn from each other in the process.

The other technique is to engage in retrospective meetings to self-evaluate

and suggest ways of improvement. Teams use retrospectives to find a bal-

ance in the amount of time they devote to finishing tasks versus the time

they spend specifically on learning new and better ways of working. Thus,

by balancing iteration pressure and the need for continuous learning, teams

were able to achieve self-transcendence.

Most Agile teams display autonomy where senior management provides them

with an environment of freedom and trust. Most Agile teams also value and

encourage cross-fertilization while maintaining some amount of specializa-

tion. Self-transcendence, however, is the most demanding of the three con-

ditions of self-organization. It takes time for new teams to gain experience

in working together as a self-organizing Agile team before they are able to

fully utilize the practices that enable self-evaluation and self-improvement—

5.7. DISCUSSION 145

powering self-transcendence. An Agile team that is able to achieve all the

conditions of self-organization including self-transcendence can be said to be

at the peak of self-organization.

5.7 Discussion

This section discusses the practices of self-organizing Agile teams with other

relevant literature.

5.7.1 Balancing Freedom and Responsibility

Our research suggests Agile teams need to balance between freedom provided

by senior management and their own ability to display responsibility in or-

der to achieve and sustain autonomy. Moe et al.’s study of Scrum teams

suggests that a lack of a conducive environment provided by management

led to reduce the external autonomy in the team [113]. Their study found

that high individual autonomy proved to be a barrier to self-organization as

members preferred individual goals over team goals. In contrast, our cross-

cultural study found that the New Zealand’s individualistic culture did not

negatively affect collaboration and co-ordination on these teams [15]. Some

relatively new teams in both India and New Zealand indicated signs of strug-

gling to make use of the freedom to self-assign and take ownership of tasks.

These teams faced such initial problems due to being habituated to working

in a traditional software development environments as opposed to an Agile

environment. This initial inability to balance freedom and responsibility can

be a barrier to self-organization.

XP teams have been seen to balance individual autonomy with team au-

tonomy and corporate responsibility [51] which is similar to the self-organizing

Agile team practice of balancing between freedom and responsibility found

in our research. Collective decision making is a practice that enables self-

organizing Agile teams to balance freedom with responsibility. Self-organizing

146 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

Agile teams practice collective estimation and planning of the overall project

and the individual iterations. They make collective decisions about the

team’s norms and principles and collective decide on team goals.

Similarly, teams’ ability to take responsibility for tasks (compared to be-

ing commanded) was found to be a necessary aspect of a conducive organi-

zational culture in another study [157]. Self-monitoring practices have been

shown to influence responsibility and ownership in Agile teams [141, 142,

162]. Daily standups and the use of information radiators have been found

to increase social answerability and awareness in Agile teams [162]. Studies

describe mature Agile teams are highly collaborative and self-organizing in

nature, exhibiting responsibility on both individual and team levels [142].

These studies emphasize the importance of story boards in collaborative ac-

tivities of mature Agile teams [141]. Our research confirms that status report

meetings and information radiators used as self-monitoring practices by Agile

teams contribute to balancing freedom and responsibility effectively.

5.7.2 Balancing Cross-Functionality and Specialization

Open workspaces enable the practice of group programming, which in turn

promotes close communication and collaboration among team members. Our

research strengthens the case for open workspaces as an important part of

an Agile team culture [19, 142]

Moe et al. also present the results of exploring the teamwork challenges

that arise when introducing a self-organizing Agile team [112]. The results in-

dicate that the main challenges to achieving team effectiveness include prob-

lems with highly specialized skills and corresponding division of work. Our

research confirms their findings that Agile teams need to effectively balance

cross-functionality and specialization in order to sustain self-organization.

5.7. DISCUSSION 147

5.7.3 Balancing Continuous Learning and Iteration Pres-

sure

The practice of retrospectives has been acknowledged as a way to self-evaluate

team performance and secure ideas for constant self-improvement [48]. Our

research suggests that holding retrospectives is a crucial practice that enables

self-organization in Agile teams. The practice of retrospectives enables the

teams to balance continuous learning with iteration pressure, which leads to

self-transcendence—one of the conditions of self-organization in Agile teams.

Our research shows that constant learning and improvement in Agile

teams is powered by the practices of learning spike and pair-in-need. XP

describes a practice called spike solution, which is a simple program to explore

possible solutions to complex technical and design problems [19]. A spike

solution is used to help estimate challenging and complex user stories and

is often discarded after use. A learning spike, as described in section 5.3.2,

although not limited to a piece of code, is a similar concept. A learning spike

is the extra time taken by the team in an iteration (or spread across a few

iterations), specifically to learn new technologies or tools better to perform

their tasks.

The practice of pair-in-need provides a collaborative environment that

particularly supports newcomers on the team. Newcomers usually feel over-

whelmed and lost in a new project [47]. The presence of a mentor has been

found to be extremely beneficial for getting newcomers better oriented and

settled into their teams [47]. Our research suggests that the presence of a

Mentor—either an Agile Coach or an experienced team member—and the

practice of pair-in-need, when done with a newcomer and a mature team

member, help newcomers settle into teams with greater ease.

Pairing has been described as a mechanism for learning through con-

versations between pairs [131, 164, 165]. Studies have acknowledged that

pair programming can be exhausting [131, 51, 165]. Our research found that

teams practice Pair-in-Need instead of compulsory, consistent pairing. Teams

148 CHAPTER 5. SELF-ORGANIZING AGILE TEAM PRACTICES

found Pair-in-Need to be a useful way to achieve learning while managing

the pressures of delivering team goals 5.3.

Finally, rotation of team membership has been suggested to help dis-

tribute knowledge [119]. The use of rotation to promote knowledge-sharing

and consequently cross-functionality is supported by our research 5.2.

Chapter 6

Factors Influencing

Self-Organizing Agile Teams

This chapter describes the two critical environmental factors influencing self-

organizing Agile teams, that emerged from this research. These factors are:

senior management support and level of customer involvement. First, senior

management support is discussed in terms of (a) how senior management in-

fluences self-organizing Agile teams and (b) how senior management support

can be secured for the establishment, functioning, and propagation of these

teams. Second, the level of customer involvement is discussed in terms of (a)

how different levels of customer involvement influence self-organizing Agile

teams and (b) how adequate customer involvement can be secured for the

smooth functioning of these teams. Finally, both the factors—senior man-

agement support and level of customer involvement—are discussed in light

of existing literature.

149

150 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

6.1 Influence of Senior Management Support

Self-organizing Agile teams are greatly influenced by the senior management

at their own organizations (P1, P4-P10, P12-P20, P22-P23, P25-27, P29,

P31, P33-35, P39-41, P43, P52-53, P55) [83, 78]. The following sections

describe the influence of senior management on self-organizing Agile teams,

followed by the strategies used by self-organizing Agile teams to secure senior

management support at their own organizations.

Figure 6.1 shows the emergence of senior management support from un-

derlying concepts. Table 6.1 presents an overview of the influence of senior

management and the various business drivers (factors that motivate business

decisions) used to secure their support.

Table 6.1: Senior Management Support

Influence of Senior Management

Organizational Culture

Negotiating Contracts

Financial Sponsorship

Resource Management

Securing Senior Management Support via Business Drivers

Applicability to Project Context

Time to Market

Customer Demands

Process Improvement

“..the organizations I see getting the most benefit from Scrum,

from Agile, are organizations where senior management really

gets it! Where senior management has been has been through

training...Senior management took the time to read, learn about

Agile. The least successful Agile adoptions are ones where senior

6.1. INFLUENCE OF SENIOR MANAGEMENT SUPPORT 151

O
rg

an
iz

at
io

n
al

 C
u

lt
u

re

N
eg

o
ti

at
in

g
 C

o
n

tr
ac

ts

F
in

an
ci

al
 S

p
o

n
so

rs
h

ip

R
es

o
u

rc
e

M
an

ag
em

en
t

A
p

p
li

ca
b

il
it

y
 t

o
 P

ro
je

ct
 C

o
n

te
x
t

T
im

e
to

 M
ar

k
et

C
u

st
o

m
er

 D
em

an
d

s

P
ro

ce
ss

 I
m

p
ro

v
em

en
t

In
fl

u
en

ce
 o

f
S

en
io

r

M
an

ag
em

en
t

S
u

p
p

o
rt

S
ec

u
ri

n
g
 S

en
io

r

M
an

ag
em

en
t

S
u

p
p

o
rt

S
en

io
r

M
an

ag
em

en
t

S
u

p
p

o
rt

F
ig

u
re

6.
1:

E
m

er
ge

n
ce

of
th

e
ca

te
go

ry
S

en
io

r
M

an
ag

em
en

t
S

u
pp

or
t

fr
om

u
n
d
er

ly
in

g
co

n
ce

p
ts

152 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

management has no interest in Agile, they have no interest in

what Agile is.” — P43, Scrum Trainer, India

Senior management influences organizational culture, the types of con-

tracts governing projects, financial sponsorship, and resource management

[83]. A senior management that does not support self-organizing Agile teams

causes several challenges for the team in each of these areas.

6.1.1 Organizational Culture

Organizational culture has been defined as “a standard set of basic suppo-

sitions invented, discovered or developed by the group when learning to face

problems of external adaptation and internal integration” [135]. Organiza-

tional culture has a strong influence on the ability of an Agile team to be

self-organizing.

Traditional software development teams typically adopt strictly hierar-

chical organization structures. Self-organizing Agile teams on the other

hand, require organization structures that are informal in practice, where

the boundaries of hierarchy do not prohibit free flow of information and

feedback. In an informal organizational structure, the senior management

is directly accessible by all employees (maintaining an ‘open-doors’ policy),

and accepts feedback—both positive and negative.

Agile organizations, where all the teams operate using Agile software

development, are characterized by informal organizational structures. In-

formality in organizational structure promotes openness. Openness was one

of the most common traits mentioned by participants, that made the orga-

nizational culture conducive for Agile teams. In such organizations, team

members are free to voice opinions, raise concerns, seek management sup-

port in resolving their concerns, make collaborative decisions, and adapt to

changes in their environment. This freedom provided by senior management

is crucial for the team to achieve and sustain autonomy (section 5.1.)

6.1. INFLUENCE OF SENIOR MANAGEMENT SUPPORT 153

“don’t expect that you’re going to be in any other traditional hi-

erarchical company...no matter if its 4 years or three years [of

experience], they [team] can walk up to [CEO’s name] and say

‘this what you did, is bullshit’ (laughs) and [CEO] will say ‘oh,

OK fine, let’s discuss what happened’. So people have that free-

dom to voice their opinion very clearly. At the same time people

will [give] feedback to you.” — P52, Human Resource Manager,

India

Starting with an informal structure has a cascading effect. Informality in

the organizational structure leads to openness marked by free-flow of com-

munication and feedback, which in turn leads to an organizational culture of

trust. An organizational culture where teams trust their senior management

to support them, and when senior management trusts the teams to perform

and display responsibility, makes for fertile grounds for self-organization to

emerge.

“one of the big things that’s made a difference there, is they al-

ready had an environment of trust. There was no fear in the

organization. You often see a level of fearfulness in very bureau-

cratic organizations, people are not prepared to give people—to

give bad news, you know, the automatic punishment for being the

bearer of bad news. I didn’t see any of that at [company name],

the level of confidence, the level of trust between management and

the people on the ground was quite high already. So I think the

ground was fertile for Agile...And that was because of the man-

agement attitude and the supportive nature of the managers.” —

P26, Agile Coach, New Zealand

In contrast, an organization with a strict hierarchical structure is not

conducive for self-organizing Agile teams. A common example is that of

a government sector organization, with a strict hierarchical structure. The

software development teams in such organizations form one of the lowest

154 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

levels of hierarchy, topped by middle management, and then senior man-

agement. Such hierarchical structure is often coupled with heavy processes,

such as heavy documentation, long change management processes, and long

software delivery and deployment processes. Such a culture restricts both

the team’s ability to practice light-weight Agile methods, and their ability

to self-organize.

A strict hierarchical structure also has a cascading effect. The hierarchy

in such an organization enforces a lack of openness marked by restricted and

indirect lines of communication and feedback, which in turn leads to an en-

vironment of fear. Teams are afraid of voicing opinions, raising concerns,

making collaborative decisions, and adapting to changes in their environ-

ment.

“...government business drivers are not ‘time to market’ or pro-

ducing anything useful...the documentation is definitely more im-

portant than actual working software. They are not impressed at

all by demos and working software—they almost didn’t care! ‘Why

don’t they have a big up front design document?’ It basically took

me ages to basically force them to accept vertical slicing of that.

I think its a fear of giving up control. Control doesn’t exist, but

they are afraid to give it up ... I was the PM on that project, they

are still working on it, I went away screaming!” — P23, Agile

Coach, NZ

On the other hand, some government sector organizations find that their

culture, while seemingly different, can be receptive to changes brought on by

Agile methods.

“It’s interesting because it’s [Agile] probably a much better fit [to

our culture] than you might think. On one hand our organization,

part of the culture is that people do tend to work in isolation...But

because it’s very scientifically oriented there’s quite an openness

to sharing ideas and information as well...once they [in-house

6.1. INFLUENCE OF SENIOR MANAGEMENT SUPPORT 155

customers] were exposed to the Agile development group and they

were sitting in the room with them and the whiteboard and things,

they became very open and very communicative. They would have

never have volunteered that or expected that, but once they had

people around them that were used to operating that way they

were very open to that. So it fit quite well is what I’m saying, it

fit pretty well.” — P18, Senior Management, NZ

Senior management support, in terms of providing freedom and estab-

lishing an organizational culture of trust, is therefore extremely important

for self-organizing Agile to establish and flourish. A senior management that

supports self-organizing Agile teams will (a) maintain an informal structure,

(b) provide freedom for teams to provide feedback, and (c) create an organi-

zational culture of trust.

6.1.2 Negotiating Contracts

Self-organizing Agile teams are influenced by the type of contracts that gov-

ern their projects [83, 73]. Senior management—either directly in smaller

organizations, or through their sales department in larger organizations—is

responsible for negotiating contracts with customers. A customer can de-

mand a fixed-bid contract where the cost, time, and scope of the project

are fixed up-front. If senior management accepts the customer’s demand for

a fixed-bid contract, it has far-reaching consequences for the self-organizing

Agile team. Teams find that “fixed price doesn’t work well with Agile” be-

cause “Agile talks about embracing change [and] can’t do fixed price projects

with changes coming in” (P42, P27).

The process of fixing the cost, time, and scope of the project in a fixed-

bid contract involves estimating the project. A senior management that does

not support self-organizing Agile teams, fixes the cost, time, and scope based

estimates provided by managers, rather than the teams. As a result the team

may be placed under pressure to deliver to often unrealistic estimates. The

156 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

negative consequences of a fixed-bid contract in an Agile project are captured

in the following comment by an Agile trainer and coach who worked several

with Indian organizations:

“The whole premise of the fixed-bid contract is that requirements

will be fixed. The nature of software development is that require-

ments are inherently unstable and so when you are entering into

contract negotiation, you are dealing with the recognition that the

requirements will be unstable. . . Biggest source of dysfunction is

not actually from the customer—the greater source of dysfunction

comes from within the organization where the contract—fixed bid

contract—is negotiated by the sales team, it is negotiated for the

smallest amount of money possible. And so the team from day

one is under pressure to over-commit and under-deliver and that

I see again and again and again!” — P43, Agile Trainer, India

In contrast, a senior management that is aware of the negative conse-

quences of fixed-bid contracts on the teams better supports self-organizing

Agile teams. They provide customers with options. These options include

offering an iteration on a trial basis, the flexibility to buy more iterations

or terminate the contract with an iteration’s notice, and swapping features.

For example, an Indian senior manager encouraged customers to buy a few

iterations, instead of signing one contract for a large project:

“Most of the time...[we] sell a certain number of iterations.” —

P34, Senior Management, India

By allowing the customers to use Agile on a trial basis, Agile practitioners

are able to build confidence among customers and provide them with risk

coverage. Once the customers have tried a few iterations, then they are

offered the option to buy more iterations or features as needed:

“One thing we [development firm] used to do and worked very

well—we used to tell the customers you don’t have any risks...in

6.1. INFLUENCE OF SENIOR MANAGEMENT SUPPORT 157

case of Agile we enter into a contract with the client—OK we’ll

show you working software every fifteen days, you’ll have the op-

tion of ending the project within one sprint’s notice. Maximum

they can lose is one sprint. Advantage we show to client they don’t

have to make up their entire mind. . . [they] can include changes in

sprints -they see it as a huge benefit to them.” — P27, Developer,

India

Some Agile practitioners allow the customers to swap features. The

project is delivered at the same time and price as initially specified in the

contract, but the customer can remove product features that they no longer

require and replace them with new ones (requiring approximately equivalent

effort) that are of more business value to them:

“. . . customer after seeing demo after fourth iteration realizes the

features built, say the thirteenth feature, is not required and he

needs something else. . . he can swap the two.” — P27, Developer,

India

By providing the customers with the option to quit the project in the

worst case scenario, some of their financial risks are covered. So if the cus-

tomers are unhappy with the results, they could always quit the project.

If a customer is still insistent on a fixed-bid contract, the senior man-

agement can support a self-organizing Agile team by inviting the team to

estimate their projects. Based on the rate of development per iteration—the

team velocity—as a guideline, the team can estimate the time required for

developing a particular set of requirements in a given domain. Then some

amount of extra time could be added to the estimated time as a buffer. The

contract is then drawn on this estimated time (including buffer) for a fixed

price and scope.

“Agile will not ask you in how much time will you [need to] com-

plete the project...but [the customer will]. Sometimes you’ve got

158 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

to map internal Agile practices to customer practices....Actually

it comes from a lot of experience on Agile. When you know that

okay this is generally the velocity of the team that the team is able

to do within the given domain, the given complexity and then you

make some rough estimates, including some buffer. [Customer

says] ‘okay I want these features, tell me the time’. so then we’ll

make prediction based on Agile data that this is the team size,

this is the velocity, we assume the team won’t change then the

Agile burndown chart will say let’s say 2 weeks so we’ll say okay

another 2 days of buffer, so 2 weeks ands 2 days, something like

that.” — P28, Developer, India

A small amount of buffer time was important to allow the customer the

possibility of introducing changes in requirements along the way while giving

the development team time to respond to those changes. Buffering was a

practical strategy of working with a fixed-bid contract while using Agile

methods.

Finally, senior management in Agile organizations are very careful about

negotiating contracts that are “Agile-friendly”. They frequently have a spe-

cialized sales team that understand Agile methods and the consequences of

the contract on the self-organizing Agile teams.

“In the sales room, even the way we work is Agile. We have two

groups, one for marketing, one for sales. We have stages for each

teams—we use kind of post-its and put them up. So even our sales

is Agile.” — P33, Sales Manager, India

A senior management that supports self-organizing Agile teams will (a)

try to convince customers to try flexible contract options, (b) engage the

team in providing estimates for the fixed-bid contract, along with adding a

contingency buffer, or (c) negotiate “Agile friendly” contracts.

6.1. INFLUENCE OF SENIOR MANAGEMENT SUPPORT 159

6.1.3 Financial Sponsorship

Self-organizing Agile teams need financial sponsorship from their senior man-

agement in the form of Agile training and an infrastructure that’s conducive

to self-organizing practices [83]. The importance of a Mentor in the early

stages of becoming a self-organizing Agile team has been discussed in chapter

4. The team needs senior management support in order to benefit from the

presence of a Mentor in the form of an Agile Coach. The Agile Coach is of-

ten a contracting consultant, hired specifically to train a new team on Agile

principles, values, and practices. In other cases, an existing project manager

in the organization may take up the Mentor role. The senior management

provides financial support by either hiring contracting Agile Coaches or spon-

soring these managers, and occasionally other team members, to receive Agile

training (e.g. a Scrum Master Certification).

Financial support is also required in the form of infrastructure support,

such as setting up an open-plan workplace and tools for electronic com-

munication and collaboration with distant customers. A supportive senior

management champions the cause of self-organizing Agile teams and provides

financial support for such an infrastructure.

“In most organizations I’d say Skype would be blocked. They [se-

nior management in non-Agile organizations] say we do chat or

call their friends abroad and waste time but here in [this organi-

zation], Skype is there on every machine because the management

knows that it is an important communication tool...So yeah def-

initely the change in the mind-set of the organization has to be

there. For example, they [senior management] have provided LCD

TVs within the rooms and there are a lot of Skype meeting rooms

which have LCD TVs, camera, and you have Skype installed. If

I stand up, you actually go through those moves and you can see

the customer and they can see us, so like that. Again there is that

initiative from the senior management because they might as well

160 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

say that ‘okay do it on your own machine or we cannot provide

LCD TVs for every team!’ So that drive has to come from them

definitely.” — P29, Developer, India

“...level of sponsorship means...the senior manager...say ‘This is

the methodology we are adopting. I expect you to change your

practices and techniques to support that, and here’s some money

to do so...here’s some time, here’s some resources.” — P7, Agile

Coach, NZ

A senior management that supports self-organizing Agile teams is willing

to make such financial investments as (a) hiring a Mentor for new teams or

providing existing Project Managers with Agile training and (b) providing

the infrastructure necessary for effective functioning of the self-organizing

Agile teams.

6.1.4 Resource Management

An important influence of senior management is the way they manage re-

sources [83]. For self-organizing Agile teams, dedicated resources are highly

desired. When team members are allocated to multiple projects, it has a

negative influence on the teams’ ability to perform and self-organize. One of

the main characteristics of self-organizing Agile teams is high levels of cohe-

sion and collaboration within the team. The team’s ability to self-organize

is dependent on understanding each others’ strengths and weaknesses and

forming a team culture of openness and respect. It takes time for a team

to learn about each other and self-organize based on the members’ myriad

abilities.

“What I think affected our project...[the developer] was working

on another project, he didn’t have enough time, so he didn’t have

the space to chat with anybody, to discuss ideas with anybody,

to work with anybody, so he was really just on his own, and I

6.1. INFLUENCE OF SENIOR MANAGEMENT SUPPORT 161

think that really impacted a lot of the work he did in the last few

months ... When you’re working in a team like this [Agile team]

and you’ve got to work quite closely, the individuals in the team

matter.” — P21, Customer Rep, NZ

If the members are split across multiple projects, it affects their ability to

perform group programming that enables self-organization. A senior man-

agement that does not realize the implications of their resource management

can have a negative influence on the team:

“[explaining how resource management works]...resource-assignment,

right...If I am VP (vice president)...for me, resource is a pure

mathematical figure. 0.25 is 2 hours. if I divide, make the equa-

tion work, I’ll be happy! Ground reality is different. People can’t

work 0.25! One side am a VP I want to get business, I have to do

equations: 0.5 from here, 0.5 from here etc and make it 3...pure

mathematics...not feasible in ground reality...People have to be

mature enough...[its] just a matter of understanding the ground

reality: if they [senior management] are a developer how would

they react to the situation?” — P39, Agile Coach, India

On the other hand, a supportive senior management values their teams

and respects their human side as much, if not more, than their technical

skills:

“...I personally feel it’s one of those companies where does a lot

for the people. They [senior management] definitely understand

people, values, and you know, they understand their emotions...so

we do respect people and you know if they [team] have any con-

cerns or worries we [company] will try to understand it.” — P52,

Human Resource Manager, India

Resource management in terms of the hiring process and removal of in-

dividuals from teams is also influenced by senior management. In Agile or-

ganizations where senior management supports self-organizing Agile teams,

162 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

their Human Resources department is set up specifically to hire people that

are likely to “fit” into Agile teams (section 4.6).

Sometimes, team members need to be removed from an Agile team be-

cause of their inability to fit into the culture. One of the team members

typically takes on a Terminator role and seeks senior management support

in removing such individuals (section 4.6).

Senior management supports self-organizing Agile teams through man-

aging resources by (a) providing dedicated resources to projects, (b) hiring

individuals to fit into an Agile culture, and (c) removing individuals who

threaten self-organizing teams with the help of a Terminator.

6.2 Securing Senior Management Support

While senior management support is extremely important for self-organizing

Agile teams, it doesn’t always come naturally. Supporting these teams in-

volves the senior management changing their organizational culture, process

of negotiating contracts, and resource management strategies. All senior

management may not be ready to make such significant, organization-wide

changes.

“...main problem is, out of ten, nine people are agreeing to do [Ag-

ile] and one [is] not, and that one is on higher authority...that’s

a problem...that’s a problem!” — P39, Agile Coach, India

In non-Agile organizations, a pilot Agile team must secure senior manage-

ment support in order to survive. One of the team members typically takes

on the role of Champion to secure senior management support. It is impor-

tant that the Champion understands their business drivers—the factors that

motivate senior management’s business decisions. Using these drivers, the

Champion convinces senior management at their organization to support self-

organizing Agile teams. Some of the business drivers or motivators include

6.2. SECURING SENIOR MANAGEMENT SUPPORT 163

applicability of method to project context, time to market, cost-effectiveness,

customer demands, and process improvement.

6.2.1 Applicability to Project Context

From a senior management perspective, Agile methods are one of several

methods from a tool-set that their teams can learn and use to better serve

their customers. The applicability of a given method to a given project

context is an important driver for senior management. Senior management

typically remains open to various options that will bring good returns on

investment:

“To be honest I was doubtful that it was an appropriate type of

project to use Agile for, because in my mind it’s most useful where

there’s a lot of user interaction, [but] where there’s batch systems

processing data and spitting out there’s relatively less opportunity

for interaction to demonstrate the outputs...so it’ll mean paying

a bit more attention to how they get feedback and how the it-

erations occur, where does the confirmation come from...I think

particularly anything that has any kind of user interface for ex-

ample, which is more than trivial, Agile is a better way to go ...

I think what you need to understand is the applicability in cer-

tain situations—what risks and benefits you’re likely to get from

different methods at different points and be able to question the

approach that’s being used” — P18, Senior Management, NZ

A pragmatic Champion is aware that Agile methods may not be appli-

cable to all types of project contexts [75]. A Champion is cautious not to

advocate Agile irrespective of project context—an effort that can eventually

backfire.

“...recognising that Agile does not deliver to every type of project.

So for example, I’d have trouble understanding how you could

164 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

do an iterative development of an infrastructure project. In the

sense that, you know for a web development, you could do the

login screen before you have the database, to capture user data,

see what it looks like, say ‘yeah I’m happy with that’, and move

on. An infrastructure project, I don’t think you could put the

servers floating in mid air, before you put the wiring in, see if it

fit, you know, so things like that.” — P7, Agile Coach, NZ

And so a Champion can advocate the use of Agile methods based on their

applicability to the project context. They explain the advantages of Agile

methods, given the organization’s context. Senior management is much more

likely to be convinced to invest in self-organizing Agile teams if they find that

the practices fit the projects’ contexts.

6.2.2 Time to Market

Time-to-market is another important driver for a senior management. In the

present world of fast-paced development, cut-throat competition, changing

customer requirements, and businesses thriving on innovation, the time it

takes to develop and deploy a product to the market is an important driver

for senior management. Faster time-to-market is one of the advantages of

Agile methods showcased by a Champion in a bid to convince senior man-

agement. A Champion explains how self-organizing Agile teams are able to

produce working software iteratively and incremently such that changing cus-

tomer requirements and latest business trends can be accommodated easily.

They also highlight how Agile allows them to eliminate waste by focusing on

customer priorities, which in turn leads to a shorter time to market.

“You talk to the business in terms that matter to them...Getting

them to realise that 60% of specified software is useless, no one

actually uses it. [Something] might seem like a good idea but

when you look over people’s shoulder at what functions they’re

actually using, most often its only 20% of what is specified as

6.2. SECURING SENIOR MANAGEMENT SUPPORT 165

frequently used, and maybe another 20% that they sometimes use.

Getting them to realise that and asking them what’s actually really

important from them to get from A to B. What’s the minimum

you can get away with.” — P20, Agile Coach, NZ

Traditional hierarchical organizations often have heavy documentation

processes. The time spent in lengthy up front documentation can be a huge

waste in the face of changing requirements and can easily slow a product’s

time-to-market. When senior management realizes this problem, they are

more willing to invest in Agile methods that offer just enough documentation

and faster time-to-market [77].

“They were a very successful organization, they built award win-

ning products...they won the [name] innovation award for...the

best [name] product for 2009. Building that product nearly killed

them...the team was exhausted. [Senior executive’s name]...[had

a] look at the real numbers, they had 4 man years worth of ef-

fort into building a requirements document...They looked back at

this requirements documentation and they looked at the product.

What was actually in the product, versus the requirements docu-

ment: 25% of the requirements that were identified in the docu-

ment were in the delivered product, and they accounted for only

half of the functionality of the product. So, 75% of the work

they had done was wasted, because it had all changed!...[Senior

executive’s name] sent herself and 6 other people came along to

hear about this Agile stuff...After that, they went away and did

a whole lot of thinking, and decided, yeah let’s try it.” — P26,

Agile Coach, NZ

Fast time-to-market is one of the best cards a Champion can play, because

faster delivery of working software is one of Agile’s most commonly claimed

advantages.

166 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

6.2.3 Customer Demands

While some customers are skeptical about Agile methods, other may specifi-

cally demand an Agile approach to developing their projects. With the grow-

ing popularity of Agile methods in software industries around the world, more

customers are looking to engage in Agile projects. This is specially true in

the context of the Indian Agile teams catering to customers in North America

and Europe.

“You know, in part I think because customers don’t really under-

stand that it means but it is a huge buzzword right now. Its the

big thing. There is nothing bigger in the software world right now

really.” — P43, Scrum Trainer, India

Responding to their customers’ demands is an important driver for senior

management. As a result, they encourage their teams to learn Agile methods

in response to customer demands. A related problem is that some senior

management mandate an Agile approach in response to customer demands,

but do not understand their own role in the process.

“Sometimes there’s a mandate from top that we all go Agile but

the problem with that approach is that they give a mandate but

they don’t give an environment for a self-organizing team to start

working.” — P31, Agile Coach, India

A senior management that understands their own role in the process,

not only mandates Agile projects in response to customer demands, but also

changes their own practices to support self-organizing Agile teams.

6.2.4 Process Improvement

A choice of software development method can be driven by a need for pro-

cess improvement. Senior management in organizations with no well-defined

software development process are often easier to convince to try Agile (P17,

6.2. SECURING SENIOR MANAGEMENT SUPPORT 167

P36). In contrast, senior management in organizations used to traditional

software development methods, need to be shown a marked improvement

brought on by the introduction of Agile methods. To convince senior man-

agement, the Champion collects and reports metrics to demonstrate process

improvement. The metrics available in regular Agile projects are very dif-

ferent from those in non-Agile projects, so senior management can harbour

misconceptions about the new metrics and struggle to understand them.

“...[Agile] provides a set of reports that current senior manage-

ment...do not understand. What the hell’s a burn up chart? what

is a burn down chart? What’s velocity mean? What do you mean

by story cards?...[some] people, unless it’s in a Gantt chart, can-

not see it as a project...[senior management asks] ‘you’re writing

on bits of paper to plan a project?’ So one of the things we did

with [organization’s name] was we had printed ones you know,

some companies do their logos and that helps, gives it that more

air of self-importance...It’s just that [some] people look at and say,

‘oh its got a printed card, it must be a proper process’. ” — P7,

Agile Coach, NZ

Senior management may relate formality with robustness, and so several

Agile processes and artifacts that are paper-based and informal may appear

less robust. An effective Champion understands the importance of translat-

ing Agile metrics into traditional metrics in the early stages of transitioning,

so that their senior management can comprehend them and evaluate the

performance of the pilot team.

“You know, early on, you might want to do some sort of transla-

tion. Whether that be a series of two lines on your Gantt chart,

which gradually drop down as the project goes over time with the

set of features...And slowly say, ‘and actually this means this in

this part of the graph’ and wean people off the old methodologies

into the new.” — P7, Agile Coach, NZ

168 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

Initial translation between Agile and traditional metrics allows senior

management to ease into the process. While it takes time and effort to read

and understand reports with two different metrics, it is a valuable long-term

investment.

“What I did receive was two types of report: one’s just a financial

report saying these are the iterations we’re expecting to run, this

is our run rate, and the other report was against what we call the

loosely termed ‘complexity points’...the burn rate of the dollars

and the burn rate of complexity points would be equivalent, and

so I got reports showing whether or not that would be true.” —

P18, Senior Management, NZ

Senior Management is quick to spot processes that show marked improve-

ment in team performance and effectiveness.

“The head of the [name] systems division, [name]...stood up at

the end of that day [of estimation and planning] and he said, we

have achieved in 6 to 8 hours, what normally takes us 6 weeks.

He was absolutely blown away, stunned. And from that point

onwards that team was now dedicated and focused to working on

this product. They made a huge change in the way that they

organised the offices, and they did in fact move people around,

so they stopped being developers, analysts, designers, testers, in

separate office spaces.” — P26, Agile Coach, NZ

In the absence of any real drivers for change, senior management are not

convinced about adopting Agile methods and making the organization-wide

changes required to support self-organizing Agile teams. One example from

this research study is that of an organization where a pilot team had become

a high performing and self-organizing Agile team. The project, however, was

ultimately brought to an end by senior management as a part of a restructur-

ing effort in response to a global economic recession. The senior management,

6.2. SECURING SENIOR MANAGEMENT SUPPORT 169

by that time, had not seen any real reason to invest in self-organizing Agile

teams, especially in the face of an economic crisis.

“They [senior management] scattered the one effective Agile team

to the four winds—one of the coders went back to website content

and all the other BAs have been re-assigned or let go...so I just

don’t know how big a priority Agile was at the time. I really

believe it should be our standard methodology; I drink kool-aid,

I’m converted! I think it’s the way to go and I just don’t know

how receptive the business was at the time, or whether it was just

‘we’ve got to save money’.” — P9, Customer Representative,

New Zealand

“I think it’s one of those ones where there was no clear man-

date for change, there was no reason—they [senior management]

didn’t see a reason for them to change—and also, that the project

was starting to highlight their inefficiencies, which made them

uncomfortable ... it’s one of the strongest teams in the company.

It is difficult and it’s quite hard for me.” — P7, Agile Trainer,

New Zealand

Senior management is typically willing to support self-organizing Agile

teams through (a) changing their organizational culture, (b) negotiating

Agile-friendly contracts, (c) providing financial sponsorship, and (d) man-

aging human resources in a way that supports self-organization, only when

they find a need for it. The need to change all these organization-wide

processes—which can be expensive, time-consuming, and challenging—is de-

fined by various business drivers, such as (a) applicability to project context,

(b) time-to-market, (c) customer demands in response to industry trends, and

(d) process improvement. The Champion tries to convince their senior man-

agement to support self-organizing Agile teams by showcasing the advantage

of Agile methods in light of the business drivers. Once senior management

is convinced that use of Agile methods rewards their business drivers, they

170 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

are more likely to make the organization-wide changes required to support

self-organizing Agile teams.

6.3 Influence of Customer Involvement

Self-organizing Agile teams are influenced by the level of customer involve-

ment they receive on their projects [73, 74, 82]. Inadequate customer in-

volvement has negative consequences for the team, while adequate customer

involvement has positive consequences for the team. This research found

several influences of customer involvement on teams and multiple strategies

for securing customer involvement [74, 82]. One way the customers influence

self-organizing Agile teams is through negotiating fixed-bid contracts. Cus-

tomers demanding fixed-bid contracts place limitations on the team’s ability

to respond to changes. The main influence of negotiating contracts is a pres-

sure to over commit. The influence of negotiating fixed-bid contracts and

the strategies of providing flexible contract options and buffering have been

discussed at length in section 6.1.2.

The following sections describe the most critical influences of customer

involvement on self-organizing Agile teams, followed by the some of the most

popular and innovative strategies used by the teams to secure customer in-

volvement. Figure 6.2 shows the emergence of level of customer involvement

from the underlying concepts. Table 6.2 presents an overview of the influence

of customer involvement and the various strategies used by self-organizing

Agile teams to secure adequate involvement discussed in detail.

6.3.1 Gathering and Clarifying Requirements

Customer representatives are meant to provide requirements in the form of

user stories every iteration [138]. They are also responsible for clarifying

these stories for the development team as needed. In real-life Agile projects,

however, development teams faced challenges in retrieving requirements from

6.3. INFLUENCE OF CUSTOMER INVOLVEMENT 171

G
at

h
er

in
g

&
 C

la
ri

fy
in

g
 R

eq
u

ir
em

en
ts

P
ri

o
ri

ti
zi

n
g
 R

eq
u

ir
em

en
ts

S
ec

u
ri

n
g
 F

ee
d

b
ac

k

C
h

an
g
in

g
 M

in
d

se
t

C
h

an
g
in

g
 P

ri
o

ri
ty

S
to

ry
 O

w
n

er
s

Ju
st

 D
em

o
s

E
-C

o
ll

ab
o

ra
ti

o
n

E
x
tr

em
e

U
n

d
er

co
v
er

In
fl

u
en

ce
 o

f
C

u
st

o
m

er

In
v
o

lv
em

en
t

S
ec

u
ri

n
g
 C

u
st

o
m

er
 I

n
v
o

lv
em

en
t

(A
g
il

e
U

n
d

er
co

v
er

)

L
ev

el
 o

f
C

u
st

o
m

er

In
v
o
lv

em
e
n

t

P
re

ss
u

re
 t

o
 O

v
er

-c
o

m
m

it

U
si

n
g
 a

 C
o
-o

rd
in

a
to

r

U
si

n
g
 a

 T
ra

n
sl

a
to

r

R
is

k
 A

ss
es

sm
en

t
U

p
fr

o
n

t

F
ig

u
re

6.
2:

E
m

er
ge

n
ce

of
th

e
ca

te
go

ry
L

ev
el

of
C

u
st

om
er

In
vo

lv
em

en
t

fr
om

u
n
d
er

ly
in

g
co

n
ce

p
ts

172 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

Table 6.2: Level of Customer Involvement
Influence of Customer Involvement

Gathering and Clarifying Requirements

Prioritizing Requirements

Securing Feedback

Securing Customer Involvement

Changing Mind-set

Changing Priority

Story Owners

Just Demos

e-Collaboration

customers:

“To get requirements from the [customers]...was one of the worst

things in this project, honestly! We’d be sitting there for two

weeks waiting for an answer.” —- P4, Business Analyst, New

Zealand

“The biggest frustration I had on this project was that...we don’t

have the [customer representatives] that we can gather require-

ments from.” — P1, Developer, New Zealand

Inability to gather requirements in time for iterations could result in un-

necessary delays and loss of productivity:

“We are extracting our requirements just in time from the busi-

ness - the detailed requirements. It would be impossible if there

was no full time person inside the project it would get stalled.”

— P10, Agile Coach, New Zealand

“The team has the capacity...[but] with Agile if you don’t have the

requirement you can’t do anything...because you are supposed to

be in-line with business.” — P1, Developer, New Zealand

6.3. INFLUENCE OF CUSTOMER INVOLVEMENT 173

Similarly, some teams have issues trying to get customer representatives

to clarify requirements:

“Things [awaiting clarification] would queue up for them and then

they’d just answer the whole queue at once...then as soon as they

got busy again it would start to get a bit harder.” — P11, Devel-

oper, New Zealand

Without clear requirements, teams are forced to make assumptions about

the customer’s needs and priorities:

“In the absence of business requirements from customers, the

teams make assumptions and get misaligned from the desired busi-

ness drivers. The result is a product or feature that is not aligned

to the perceived business requirements.” — P10, Agile Coach,

New Zealand

These inaccurate assumptions lead to the team building features that are

not as per the customer’s intended requirements. The teams would then have

to perform rework which incurs additional costs for the customers.

“So from my perspective as a developer, yes, the more the client

is involved, the better for us...But I’ve seen projects in the past

where we had to redo all the components and it was very expensive

basically to the client because we were being paid [for rework]” —

P14, Developer, NZ

Rework is both costly to customers and taxing for developers if it has

to be done at a later time. Due to delays in customer feedback, the need

for rework typically does not surface until much later, by which time it is

difficult for the developers to return to a particular story and rework it.

“Yes [we had to rework] but it’s not the re-work, it’s re-worked

easily as long as it’s near the time you did it. So having to go

back and augment what you did three weeks ago was [hard].” —

P11, Developer, New Zealand

174 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

As a result of insufficient and ineffective customer involvement, the de-

velopment teams were unable to get customer representatives to provide and

clarify requirements.

6.3.2 Prioritizing Requirements

Agile methods require customer representatives to prioritize the order in

which the team should work on the user stories, driven by business value.

Understanding and using the concept of prioritization doesn’t always come

naturally to customers new to Agile projects:

“[customers have to be involved...the customer needs to tell his

priorities that this is the first thing we want.” — P28, Developer,

India

“We’d just get a whole lot of requests sent at us, by phone and

email and all different ways and it took a long, long, long time for

them to understand that we needed them prioritised so we knew

what was the most important to be doing.” — P6, Agile Coach,

New Zealand

“We’re meant to have one list of product backlog and it’s supposed

to be prioritized but when the client says ‘Oh that’s all priority’

we have to go back and say ‘which?! what do you mean?!...you

can’t have all priority!’” — P2, Developer, New Zealand

Some teams face difficulties in getting customer representatives to priori-

tize the requirements and as such the teams are confused about what features

to develop and deliver first. In contrast, teams that receive adequate levels of

customer involvement are able to gather and clarify requirements from their

customers more easily and effectively.

6.4. SECURING CUSTOMER INVOLVEMENT 175

6.3.3 Securing Feedback

Customer feedback is of vital importance in ensuring the desired product is

being developed and delivered incrementally. As a senior developer pointed

out “the whole point of the two week iterations was so that the end users

could know if we were on the right track” (P25) and requires the customer

representatives to provide feedback on developed features.

“If [the customer representative] didn’t respond you just didn’t

care about their opinion...and at the end of the project...the busi-

ness units that didn’t give much feedback, when it went to a user,

started complaining. And it’s like well if we didn’t get any critique

it’s not really our fault!” — P11, Developer, NZ

In absence of customer feedback, some teams are unable to assess how

well the features meet the requirements. In contrast, teams that receive ad-

equate levels of customer involvement have better, more direct, and more

frequent communication with their customers. Examples of direct and fre-

quent collaboration with customers has been discussed in section 4.2.

Finally, the importance of adequate customer involvement is summarized

by a customer representative themselves, in the following comment:

“Well I’m sorry, if you’re not prepared to take one person out of

their job for two weeks and put them in an office doing nothing

but answering questions about a [product] they’re building for you,

you deserve what you get!” — P9, Customer Representative, NZ

6.4 Securing Customer Involvement

Several interesting strategies are used by the teams to secure customer in-

volvement. These strategies are collectively named Agile Undercover, a cat-

egory that emerged from the data analysis [74]. These strategies include:

Changing Customers’ Mind-sets, Providing Options, Buffering, Changing

176 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

Priority, Risk Assessment Up Front, Story Owners, Using a Co-ordinator,

Using a Translator, Just Demos, E-collaboration, and Extreme Undercover.

Agile Undercover strategies allow teams to successfully secure customer in-

volvement in some cases and continue to practice Agile in the face of inade-

quate customer involvement in others.

Risk Assessment Up Front is a general strategy for assessing the risks

involved in an Agile project up front. The level of customer involvement was

one of the risk items assessed using a risk assessment questionnaire. Extreme

Undercover was a strategy used by some teams to practice Agile internally

while appearing to be a traditional software development team to the cus-

tomers. This strategy was found to be used by some Indian teams in the

initial stages of adoption, where they faced extremely skeptical customers.

Over the course of the research, as the popularity of Agile methods increased,

this strategy was rarely observed. Providing options and buffering have al-

ready been described in section 6.1.2 and also presented in [74, 82, 75]. A

Translator was used to overcome the language barrier between teams and

their customers. A Co-ordinator was used to help co-ordinate customer

collaboration and change requests across distances. The Translator and Co-

ordinator roles have been discussed at length in sections 4.3 and 4.2. A

description of these strategies is available in our publications on this topic

[78, 73, 74, 82], they are not reiterated here for space reasons. The following

sections describe the rest of these Agile Undercover strategies used by Agile

teams to secure customer involvement.

6.4.1 Changing Mindset

A Promoter ’s role in convincing customers to try Agile methods and collabo-

rate with teams is extremely important. Some customers harbour skepticism

about Agile methods and are unwilling to extend collaboration. A Promoter

tries to change the mindset of such customers by explaining the principles

and values of Agile methods.

6.4. SECURING CUSTOMER INVOLVEMENT 177

“The people [customers] who are coming from typical bigger com-

panies they would have read about it or have the wrong idea of

Agile. We interactions with them, have a series of talks...and

explain to them what Agile is.” — P36, Agile Coach, India

One of the participants, who played a Promoter role, highlighted the

advantages of Agile methods to their customers in a bid to secure their in-

volvement.

“...focus is on delivering business value as soon as possible - as a

result of that you take items which are most required from point of

view of business, not the ones that are most interesting in terms

of technical implementation.” — P27, Developer, India

A Promoter asserts that frequent customer involvement allows customers

better control of the product. A constant focus on customer priorities was

seen as an advantage by customers, many of whom became willing to get

involved in the process. As one of the customer representatives, convinced

about the advantages of Agile methods, revealed:

“...when it’s done correctly, [Agile] makes Waterfall look archaic.

As a business owner or a business representative, the control that

you have and the ability to change your mind and to keep the

project abreast of things that are going on in the business, is un-

parallelled.” — P9, Customer Representative, New Zealand

Finally, in a bid to change customers’ mindsets, some Agile organizations

offer Product Owner training to their customers in order to familiarize them

with their responsibilities as an Agile customer.

6.4.2 Changing Priority

In an effort to maintain the iterative and incremental nature of their Ag-

ile projects, teams are forced to lower the priority of user stories that are

178 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

awaiting customer requirements, clarification, or prioritization. Such stories

are usually demoted in priority and pushed further down into the product

backlog until the required customer response is secured and development on

those stories can re-commence. Agile teams confess that they change the

priority of the story in absence of enough, clear, and prompt requirements

(P1, P8, P14, P22, P30).

“[If] we know exactly what business want or we know 80 % of

what they want, we include that story in the sprint; otherwise if

we have something that’s a little bit unsure, we don’t include that

in the sprint.” — P1, Developer, NZ

A similar strategy, called definition of ready was adopted by an Indian team

[18]:

“We have recently started using...the definition of ready.....product

owner will not take something that is not ‘done’ and similarly de-

velopers are not going to take something that’s not ‘ready’.” —

P30, Developer, India

A user story was considered ready when the customers had provided the

business goals and expected outcome associated with the story and imple-

mentation details necessary to estimate the story had been discussed. A story

that was not ready was not able to achieve priority in the product backlog.

6.4.3 Story Owners

In absence of the on-site customer, Agile teams use Story Owners where

members of the customer organization share the responsibility of the cus-

tomer role and are available as and when required. The practice of assigning

Story Owners was an adaptation to the Scrum practice of allocating a prod-

uct owner [138]. Story owners are responsible for particular stories (less than

a week long), instead of all the stories in the product backlog: “every story

6.4. SECURING CUSTOMER INVOLVEMENT 179

had to have an owner to get into prioritisation.” (P14) Assigning story own-

ers serves a three-fold purpose. Firstly, having multiple story owners instead

of a single customer representative for entire project means no one person

from the customer’s organization is expected to be continuously available.

This lessens the burden of the customer representatives, who have their own

operational jobs to tend to alongside playing an Agile customer.

“We didn’t need that story owner for the duration of the project,

we normally only need them for part of an iteration.” – P22,

Agile Coach, New Zealand

Secondly, it allows the team to plan out stories for development in syn-

chronization with the corresponding story-owner’s availability. Thirdly, it

encourages a sense of ownership among customer representatives as they are

encouraged to present their own stories to peers at end of iteration reviews.

“We get the [story owners] to demonstrate those stories to their

peers at the end of the iteration review, this concept is something

we’ve evolved over the project.” — P22, Senior Agile Coach, New

Zealand

After one such presentation a particularly skeptical customer representa-

tive was “quite chuffed [pleased], and at the [next] iteration planning meeting,

that person was all go! Instead of sitting back with their arms folded, they

had their elbows on the table, leaning forward, and were driving the story

detailing conversations we were having.” (P22)

6.4.4 Just Demos

Demonstrations are used by Agile teams as a powerful mechanism to secure

the much needed and elusive customer feedback. The team presents work-

ing software to the customer representatives at these regular demonstration

meetings and receive feedback from them regarding the features delivered

180 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

in that iteration. This feedback is then incorporated into the development

cycles.

“Often there’s someone from each of the [customers] have a look

to see what were doing and how it will affect them.” — P6, Agile

Coach, New Zealand

Using demos provides the opportunity to clear any assumptions made

by development teams as a consequence of the customer representative not

providing enough or clear requirements:

“you are communicating more generally with the client by virtue

of the fact that if nothing else you are releasing software more

frequently in iterations to the client....Developers have their in-

terpretations of what is that they are supposed to be doing. What

we try to do to mitigate that is frequent working software that we

get in front of the client and we say this is what we think you

want and they say that’s not even close! And we say okay cool,

at least we know that now rather than at the end of the project.”

— P19, Senior Management, New Zealand

Demonstrations were often the only regular involvement that some Agile

teams receive from their customer representatives. The teams use this op-

portunity to receive feedback and clarifications. The customers appreciate

the demos despite their potential reservations about Agile in general because

it provides them with increments of working software:

“We gave demo after fifteen days. [The customers] liked what

we were doing because they were not used to some additional fea-

tures very fifteen days. We were getting 4-5 people from client

organization in the demo. They were pretty impressed with that

concept...happy with the results.” - P27, Developer, India

6.4. SECURING CUSTOMER INVOLVEMENT 181

Teams utilize demos to discuss requirements and get clarifications in ad-

dition to receiving feedback on demonstrated features. As the local and

involved customer representative of a NZ team disclosed:

“Just the sprint demos...and [we see] three pieces of functionality

and it’s all done in fifteen minutes, we take the full hour to discuss

the other things...the demos were fun. I don’t know if that’s their

intent, but they were!” — P9, Customer Rep, New Zealand

A demo also proved to be a useful way to get collaboration from distant

customers:

“[distant customers] can’t be here every day or every week so we

only got to do emailing and phone calls during the demo.” — P2,

Developer, New Zealand

This strategy was found to be useful in securing customer feedback from

distant and skeptical customers. Almost all customers are interested enough

to attend demonstrations as it gives them an opportunity to see new func-

tionalities of their software.

6.4.5 E-collaboration

Electronic collaboration (e-collaboration) is a popular means of communicat-

ing with customers using phone, email, chat, and voice/video conferencing.

For Indian teams with off-shored customers, e-collaboration is a practical

work-around:

“Video conferencing becomes very important. Its all about collab-

oration [when] time difference is a problem...with Europe [there

is a] 4 hours overlap.” — P27, Developer, India

Some New Zealand teams with distant customers were also seen using

phone conferencing with shared documents and emails:

182 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

“[Using] webX...its an online forum and as a host we get to call

up documents and share them and they can come in and view.”

— P8, Tester, New Zealand

“Web-conferencing...chats...[enable] stand-up meetings over the

web. You can do demos that way. — P20, Agile Coach, New

Zealand

“Skype or video-conferencing...doesn’t cost that much — to use

Skype its literally zero.” — P1, Developer, New Zealand

With increasing number of software projects being off-shored globally or

spread across multiple sites, face-to-face collaboration has become a practical

challenge. E-collaboration is a popular alternative used by software teams

to overcome this issue because (a) Agile requires regular customer involve-

ment (b) several teams have physically distant customers making face-to-face

collaboration difficult and (c) e-collaboration provides a cheaper alternative.

In summary, adequate levels of customer involvement is extremely impor-

tant for self-organizing Agile teams. Inadequate customer involvement leads

self-organizing Agile teams to adopt coping strategies, many of which are

not ideal. Teams that receive adequate customer involvement, on the other

hand, are able to concentrate on delivering quality products to meet their

customers’ demands.

6.5 Discussion

Self-organizing teams do not emerge and flourish in isolation [74, 82, 83].

Teams depend on environmental factors such as the support of senior man-

agement at their own organization and the level of customer involvement

on their projects. Moe et al. identify lack of support system as a barrier

to self-organization [113]. Beck notes that an Agile team is not equipped to

handle the “foreign relations” with the rest of the organization by themselves

6.5. DISCUSSION 183

[11]. The Champion and Promoter roles, mostly played by Agile coaches,

handled these relationships. The following sections discuss these two most

critical factors influencing self-organizing Agile teams, in light of the existing

literature on the subject.

6.5.1 Senior Management Support

Senior management influences the organizational structure and culture in an

organization [119]. The importance of senior management support in the

form of a conducive organizational culture has been widely acknowledged

[67, 19, 35, 44, 51, 119, 148, 157]. Agile methods challenge conventional

management ideas, and require changes in organization structure, culture,

and management practices in traditional software development organizations

[51, 119]. Changing mindsets and cultures, however, is no trivial task [29].

Beck highlights the influence of organizational culture on the use of Agile

methods and argues that an environment of isolation, timidity, and secrecy

will cause challenges [20]. Our research supports the claim that an environ-

ment of openness, communication, and trust is imperative for self-organizing

Agile teams to function. The influence of senior management in creating and

maintaining such an environment is extremely important.

A study of the influence of organizational culture on Agile methods use

found correlations between certain aspects of organizational culture and the

use of Agile practices [148]. In particular, the study found that organiza-

tions that value collaboration, feedback, learning, and empowerment of peo-

ple are better suited to support Agile methods. Our findings support these

claims, as well as the conclusion that hierarchically structured organizations

are not well suited to Agile methods. Management in Agile teams is meant

to be more facilitative and collaborative [119, 148]. Empowerment and col-

lective decision making in Agile teams are seen to increase their ability to

self-organize [119]. Similarly, our research shows that these aspects of or-

ganizational culture have a strong influence on the self-organizing ability of

Agile teams.

184 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

Tolfo and Wazlawick studied the influence of organizational culture on

the adoption of XP [157]. Their study concludes that while XP generally

assumes the existence of a conducive environment for XP teams, such an

organizational culture is not always present in software organizations. In

particular, the level of autonomy an organization provides to its members was

found to be an important ingredient of a conducive organizational culture.

Our findings supports this claim and link senior management support to

self-organizing teams.

Most studies that have explored the influence of senior management sup-

port and organizational culture have focused on XP teams [130, 157]. Studies

exploring the influence of organizational culture on Scrum teams, however,

are limited. In a Scrum-based study, Moe et al. found that the management

did not provide an environment conducive to self-organization that led to

reduced external autonomy [113]. Our research found that self-organizing

Agile teams (practising Scrum or combinations of Scrum and XP) require

a conducive organizational culture marked by freedom, openness, trust, and

an informal organizational structure. In contrast, an organization with a hi-

erarchical organizational structure and an environment of restricted, formal,

and indirect communication restricts the teams’ ability to self-organize.

In a paper on introducing lean principles with Agile practices in a For-

tune 500 company, Parnell-Klabo described various difficulties in securing

buy-in for a pilot project [125]. Some of these included obtaining facility

space for collocation, gaining executive support, and influencing the change

curve. Our research describes how our participants went about securing se-

nior management support (section 6.2).

Several attributes of Agile methods are well aligned with senior manage-

ment’s business drivers discussed in this chapter. For example, fast delivery

and rapid response to changes in business and technology is a key attribute

of Agile methods [6, 19, 26, 72]. It would appear then that convincing senior

management to support self-organizing Agile teams would be an easy task.

However, this is not always the case. Organizations don’t change for the sake

6.5. DISCUSSION 185

of change, they change when they see benefit from it.

A single case-study of adopting XP at a diverse, multidisciplinary web-

development environment at IBM highlights the existence of skepticism amongst

senior management regarding Agile nomenclature. For example, the use of

the XP term “planning game” was not well received by senior executives who

preferred more formal-sounding terms like “planning process”. Section 6.2

provides examples of skepticism faced when trying to secure senior manage-

ment support. Our findings suggest that convincing senior management not

only requires that a team member takes on the role of a Champion, but also

that they understand senior management’s business drivers. In other words,

senior management does not undertake drastic changes in their organizations

without a strong incentive. Understanding the business drivers particular to

different organizations and their senior management is critical for a Cham-

pion advocating the introduction and continued support for self-organizing

Agile teams.

Most of the above mentioned studies have explored the influence of man-

agement support on the adoption and use of Agile methods. Our findings

show the influence of senior management support on self-organizing Agile

teams and highlight various strategies used by teams to secure such support

in an effort to achieve and sustain self-organization.

6.5.2 Level of Customer Involvement

Customer collaboration in traditional software development projects is typ-

ically limited to providing the requirements in the beginning and feedback

towards the end, with limited regular interactions between the customer and

the development team [44, 66, 68, 87, 119]. In contrast, customer collabora-

tion is a vital feature [73, 72, 107] and an important success factor in Agile

software development [35, 100, 110]. Agile methods expand the customer role

within the entire development process by involving them in writing user sto-

ries, discussing product features, prioritizing the feature lists, and providing

rapid feedback to the development team on a regular basis [55, 66, 107, 119].

186 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

There is empirical evidence to show that effective customer communication

and feedback are critical in Agile software development [90].

An ideal customer representative is an individual who has both thorough

understanding of and ability to express the project requirements and the

authority to take strategic decisions [44, 55, 66, 119]. Boehm advocates

dedicated and co-located CRACK (Collaborative, Responsible, Authorized,

Committed, Knowledgeable) customers for Agile projects [29]. Training in

Scrum process, has also been advocated for customers in order to better

understand their role [104].

Several studies have, however, described a gap between the ideal Agile

customer role and the level of customer involvement on Agile projects in

practice [31, 42, 44, 90, 103, 127, 131]. These studies have identified varying

levels of customer involvement in their own case studies, both in terms of the

quality and quantity of that involvement.

Martin et al. found that the on-site customer role in XP projects, although

perceived as rewarding by some customers, was largely seen as overburden-

ing and inherently un-sustainable [107]. They discovered that the customer

role was played by a team of people, instead of by a single person as ini-

tially assumed in literature. Martin et al. describe an informal XP customer

team that consist of different roles. Of these different roles, the Negotiator

is a customer representative who has in-depth domain knowledge, provides

requirements to the development team, and is willing to carry responsibil-

ity of project success or failure. The Negotiator role is the closest to the

classic customer representative role and interacts directly with the develop-

ment team. In addition to these qualities, our participants suggested that

customer representatives should understand both Agile practices and their

own responsibilities in the process of Agile software development (P5, P12,

P29). Martin et al. describe certain customer practices such as Customer

Boot Camp and Pair Customering. These practices—when combined with

the customer roles they identified—can help reduce the burden placed on the

on-site customer role and the XP team.

6.5. DISCUSSION 187

Some customers are unwilling to set aside the amount of collaboration

time required on Agile projects, while in some other cases, the customer

representative appointed are lacking in knowledge and authority [44].

Conboy et al. analyzed two completed projects through the use of focus

groups [42], and noted that the two teams differed dramatically in their as-

sessment of the value of the customer’s input in their project. One team

consistently rated the on-site customer role as an excellent addition to their

set of practices, while the second team consistently rated this role very poor

— essentially counter-productive — influence on the project’s successful com-

pletion. The team that rated the on-site customer role badly did so because

the customer was expensive, did not actively participate in many of the key

activities, and was only available for at most two hours of the typical working

day due to being on a different shift. This reinforces the need for mitigat-

ing strategies where continuous and active customer collaboration cannot be

achieved.

A customer proxy is often used in situations were customer involvement

is not ideal [87, 101, 104]. Grisham et al. report on the use of proxy to sup-

plement a part-time or unavailable customer [66]. Sometimes a proxy may

work to support a Product Owner [87]. In this case, the proxy was a member

of the team and an experienced Scrum Master. The use of a proxy allowed

the Product Owner to fulfil their role with the minimum of time commitment

and allowed the team to benefit from the continuous presence and involve-

ment of the Product Owner proxy. A multi-site case study reported project

managers acting as customer liaisons [31]. These roles were also referred to

as surrogate customers, and occurred during the adoption of Agile practices.

In our research, the role of the Co-ordinator is similar to the surrogate cus-

tomer role and acted as the team representative to the customer. Similarly,

Mangalaraj et al. explored two projects and identified that one project had

no dedicated customer or proxy customer [103].

Another situation where the Product Owner role may be derived from the

development team is when the ‘customer’ is in fact the end-user. Lowery et

188 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

al. report on experiences in scaling Scrum at the BBC [101]. The ‘customer’

in this case was the end-user of the internet services provided by BBC’s

online iPlayer project. As such the role of the Product Owner was delegated

to a member from within the different development teams. This was akin

to the Co-ordinator role in our participants’ teams. Our participants agreed

that playing a Co-ordinator was demanding yet useful in co-ordinating with

distant customers (P2, P4, P13-P14, P25, P34-35, P54).

Pikkarainen et al. [127] studied the impact of Agile practices on commu-

nication in software development and found that requirements provided by

external customers were not always understandable for the developers. Ko-

rkala et al. [90] conclude that misunderstood requirements were a reason for

late and unreliable software. The Translator role identified in our research,

specifically helped mitigate this problem of a language barrier between cus-

tomers and development teams. Using the definition of ready for user stories

forced customers to provide detailed requirements with clear business drivers

[18]. The definition of ready complemented the existing Scrum definition of

done [138].

On-site
customer+ -Story

Owner
Just

Demos
E-collab Customer

Proxy
Extreme

Undercover

Figure 6.3: Continuum of Customer Involvement on Agile Projects [82]

Our research suggests that there is a continuum of levels of customer

involvement on real-life Agile projects. Figure 6.3 depicts the continuum of

levels of customer involvement based on the directness of the collaboration.

The levels in between the two extremes are not strictly linear and may occur

simultaneously, such as Just Demos may take place using E-collaboration.

The continuum assumes that the amount and quality of involvement are the

6.5. DISCUSSION 189

same for all levels. The ideal level is a most direct customer involvement via

the on-site customer where the real customer representative is present face-

to-face and in person for most collaboration-intensive practices as per Agile

guidelines. The practice of assigning Story Owners was an adaptation of the

existing product owner practice. Unlike the product owner, the story owner

was only responsible for one story at a time [100, 138]. This was an effective

way of overcoming the limited availability of customer representatives. Story

owners also provide an alternative to the practice of on-site customer which

has been found to be effective but burdening and un-sustainable for long-term

use [66, 90, 100, 107].

This is followed by Just Demos where the level of customer involvement is

limited to participating in end of iteration demonstrations. Although demos

are a regular Agile feature, they were often the only face-to-face collabora-

tion time our participants received from their customers and they used Just

Demos to discuss features and receive clarifications in addition to feedback.

The next level is E-collaboration where the team interacts with the cus-

tomer representative over electronic means such as video conferencing. Face-

to-face communication is considered “the most efficient and effective method

of conveying information to and within a development” [87, 72], followed

by video-conferencing, telephone, and email [90]. Our participants used E-

collaboration extensively but noted that “it does not take the place of having

somebody sitting beside you” (P8). Other limitations were imposed by the

tool itself, such as Skype not supporting three or more people through video

chatting (P1).

This is followed by a Customer Proxy from the team playing the role

of the customer representative in absence of the real customer involvement;

followed by the least desirable level, Extreme Undercover where the customer

is unaware of the Agile nature of the project.

190 CHAPTER 6. SELF-ORGANIZING AGILE TEAM FACTORS

Chapter 7

Conclusion

This chapter summarizes the main contribution of this thesis—a grounded

theory of self-organizing Agile teams. This is followed by a discussion of the

relationships between the roles, practices, and factors. The next two sections

critique our grounded theory and identify the limitations of this study. This

is followed by a discussion of the theory in the light of existing literature,

implications for practice, and suggestions for future work.

7.1 Research Contributions

This thesis presents a grounded theory of self-organizing Agile teams. This

theory is based on a Grounded Theory research study involving 58 Agile

practitioners from 23 different software organizations in New Zealand and

India over a period of 4 years. The theory of self-organizing Agile teams ex-

plains how software development teams take on informal, implicit, transient,

and spontaneous roles, and perform balanced practices while facing critical

environmental factors, in order to become a self-organizing Agile team.

191

192 CHAPTER 7. CONCLUSION

Figure 7.1 presents a diagram depicting the theory of self-organizing Agile

teams. The main contributions of this thesis are as follows:

7.1.1 Self-Organizing Agile Team Roles

The self-organizing Agile team roles are:

• Mentor that guides and supports the team initially, helps them become

confident in their use of Agile methods, ensures continued adherence

to Agile methods, and encourages the development of self-organizing

practices in the team.

• Co-ordinator who acts as a representative of the team to co-ordinate

customer collaboration with the team and manage customer expecta-

tions.

• Translator that understands and translates between the business lan-

guage used by customers and the technical terminology used by the

team, in an effort to improve communication between the two.

• Champion that champions the Agile cause with the senior management

within their organization in order to gain support for the self-organizing

Agile team.

• Promoter that promotes Agile with customers in an attempt to secure

their involvement and collaboration to support the efficient functioning

of the self-organizing Agile team.

• Terminator that identifies team members threatening the proper func-

tioning and productivity of the self-organizing Agile team and engages

senior management support in removing such members from the team.

The informal, implicit, transient, and spontaneous nature of these roles

are characteristic of self-organizing teams [10]. Detailed descriptions of these

roles are provided in chapter 4.

7.1. RESEARCH CONTRIBUTIONS 193
B

LP
B

C
S

B
FR

Se
lf

-O
rg

a
n

iz
in

g
 A

g
il

e
 T

e
a

m

C
u

st
o

m
e

r

C
u

st
o

m
e

rCustomer

Me
nto

r

Te
rm
ina

tor

Ch
am

pio
n

Co
-o
rdi
na
tor

Pr
om

ote
r

Tr
an
sla
tor

F
ig

u
re

7.
1:

T
h
eo

ry
o
f
S
el
f-
O
rg
a
n
iz
in
g
A
g
il
e
T
ea

m
s.

(R
o
le
s:

M
en

to
r,

C
o
-o
rd

in
a
to
r,

T
ra
n
sl
a
to
r,

C
h
a
m
p
io
n
,
P
ro
m
o
te
r,

a
n
d
T
er
m
in
a
to
r.

P
ra
ct
ic
es
:

B
a
la
n
ci
n
g
F
re
ed

o
m

a
n
d
R
es
p
o
n
si
b
il
it
y
(B

F
R
);
B
a
la
n
ci
n
g
C
ro
ss
-F
u
n
ct
io
n
a
li
ty

a
n
d
S
p
ec
ia
li
za

ti
o
n
(B

C
S
);
B
a
la
n
ci
n
g
L
ea

rn
in
g
a
n
d
It
er
a
ti
o
n
P
re
ss
u
re
(B

L
P
).

F
a
ct
o
rs
:
S
en

io
r
M
a
n
a
g
em

en
t
S
u
p
p
o
rt

a
n
d
L
ev

el
o
f
C
u
st
o
m
er

In
v
o
lv
em

en
t.
)

194 CHAPTER 7. CONCLUSION

7.1.2 Role of the Agile Coach

The Agile coach initially plays most of the self-organizing Agile team roles.

Over time, the self-organizing team roles will be taken up by the team mem-

bers themselves. In more mature Agile teams, most members of the team

have the caliber and experience to play any of the roles. For example, in ma-

ture teams, the Mentor role is generally played by experienced team members

that help mentor newcomers on the team; the Co-ordinator and Translator

roles are played by most members of the team as they gain experience in col-

laborating directly and frequently with their customers; the Champion and

Promoter roles are played, as required, by more experienced members of the

team. The Terminator role is played by the Agile coach with support from

the team as they provide their input into the suitability of an individual to

join or remain in an Agile team.

7.1.3 Self-Organizing Agile Team Practices

Self-organizing Agile teams balance freedom and responsibility, cross-functionality

and specialization, and continuous learning and iteration pressure. These bal-

ancing acts affect how the team performs an integrated set of Agile practices:

• Balancing freedom and responsibility involves practices such as collec-

tive decision making through collective estimation and planning; col-

lectively deciding teams and principles; and self-committing to team

goals; self-assignment using story boards; self-monitoring through daily

standup meetings and use of information radiators.

• Balancing cross-functionality and specialization involves practices such

as multiple perspectives, group programming, and rotation.

• Balancing continuous learning and iteration pressure involves practices

such as retrospective, learning spike, and pair-in-need.

These practices are performed in order to achieve and sustain the three

fundamental conditions of self-organization: autonomy, cross-fertilization,

7.1. RESEARCH CONTRIBUTIONS 195

and self-transcendence [154]; and to adhere to the general principles of self-

organization: minimum critical specification, requisite variety, redundancy of

functions, and learning to learn [115]. Detailed descriptions of the practices

are provided in chapter 5.

7.1.4 Factors Influencing Self-Organizing Agile Teams

Self-organizing Agile teams face critical environmental factors that influence

them: senior management support and level of customer involvement.

• Senior management within the development team’s organization influ-

ences organizational culture, negotiating contracts, financial sponsor-

ship, and human resource management, all of which impact the team.

Self-organizing Agile teams attempt to secure senior management sup-

port through a Champion that highlights the benefits of Agile software

development in terms of the business drivers that motivate business de-

cisions. These business drivers include: applicability to project context,

time-to-market, customer demands, and process improvement.

• Level of customer involvement also critically influences self-organizing

Agile teams. Customer involvement influences the self-organizing Agile

teams when gathering and clarifying requirements, prioritizing require-

ments, and securing customer feedback. Teams attempt to secure and

maintain customer involvement through a Promoter that tries to con-

vince the customers to collaborate, a Co-ordinator that helps them

co-ordinate customer collaboration (in the face of inadequate customer

involvement), and a Translator that helps translate between business

and technical languages in an effort to improve communication. In

the face of inadequate customer involvement, teams practice Agile Un-

dercover strategies that include changing priority, story owners, just

demos, e-collaboration, and extreme undercover [82, 74].

Detailed descriptions of these two critical factors influencing self-organizing

Agile teams are provided in chapter 6.

196 CHAPTER 7. CONCLUSION

This thesis also presents a description of the Grounded Theory method,

examples of its application, and reflections on the challenges faced in using

GT and strategies for overcoming them (chapter 3). Finally, this research

has resulted in a number of publications focusing on various aspects of the

theory of self-organizing Agile teams (Appendix A).

7.1.5 Roles-Practices-Factors Relationships

Figure 7.1 captures the relationships between the key contributions of this

thesis: roles, practices, and factors. Members in Agile teams take on infor-

mal self-organizing roles in response to various challenges. Some of the roles

specifically emerge in response to the two critical environmental factors. For

example, the Champion role emerges to gain senior management support,

the Promoter role emerges to secure customer involvement, the Co-ordinator

role emerges to co-ordinate customer collaboration in case of inadequate cus-

tomer involvement, and the Translator roles emerges to help translate be-

tween technical language used by the team and business language used by

their customers. The other two roles, Mentor and Terminator emerge with

support from senior management to help the team learn and practice Agile

software development and remove members that are unable to adjust to the

Agile way of working.

The self-organizing Agile team practices are supported by the roles and

influenced by the environmental factors. For example, all three balancing

acts and their underlying practices, require a Champion to convince senior

management to support the practices, a Mentor to help guide the team

through these practices, and a Terminator to identify and remove members

that threaten the team by not being able to perform these practices.

In addition, balancing freedom and responsibility involves practices of

collective estimation and planning and self-committing to a team goal, and

require a Co-ordinator to gather and clarify requirements during estima-

tion and planning in case of inadequate customer involvement. Balancing

cross-functionality and specialization involves practices of group program-

7.2. LIMITATIONS 197

ming, rotation, and multiple perspectives, and lead to the emergence and

strengthening of a Translator role. Balancing continuous learning and iter-

ation pressure includes the practice of a learning spike that requires a Pro-

moter to manage customer expectations in a way that allows the team to

maintain a healthy team velocity while allowing for time to learn and up-skill

themselves.

7.2 Limitations

A limitation of this research study is that the contexts studied were dictated

by the choice of research destinations, which in turn were in some ways

limited by our access to them. Similarly, the selection of research participants

was limited by their willingness to participate.

As with any empirical software engineering, the very high number of

variables that affect a real software engineering project make it difficult to

identify the impact that any one factor has on the success or failure of the

project. The self-organizational roles, practices, and factors influencing self-

organizing Agile teams, however, were clearly evident.

Data derived from interviews is known to be prone to bias [126]. There are

four types of data that can be presented to the researcher: (a) Baseline data,

the best description a participant can offer (b) Properline data, what the

participant thinks it is proper to tell the researcher (c) Interpreted, what is

told by a trained professional who wants to make sure that others see the data

his professional way (d) Vaguing it out, the vague information provided by a

participant that is not bothered to provide information to the researcher [58].

The researcher can encounter any of these. Software Engineering researchers

may not be well trained in the art of interviewing for research and as such

may struggle to illicit useful data from the participants. It takes time to build

the ability to discern the type of data being provided during an interview and

skill to be able to ask questions that can counter-check the data provided.

Conducting semi-structured interviews with open-ended questions allows the

198 CHAPTER 7. CONCLUSION

researcher to ask the participants for specific and detailed examples. Semi-

structured interviews also help to ask a question in multiple ways at different

points in the interview.

Another effective way to ensure authenticity of the data collected through

interviews and to validate the interpretation of the interview data, is to sup-

plement it with observations of workplaces and activities [126]. The data

derived from observations did not contradict, but rather supported our in-

terview data, thereby strengthening it. A rounded perspective of the issues

was gathered by interviewing practitioners representing other aspects of soft-

ware development such as customer representative and senior management

besides focusing on the development team (developer, tester, Agile coach,

business analyst). In order to minimize any loss or misinterpretation, all

data was personally collected and analyzed by the doctoral candidate—the

author of this thesis.

A Grounded Theory research study produces a “mid-ranged” theory,

which means that while the theory is not claimed to be universally applicable,

it can be modified by constant comparison to accommodate more data from

new contexts [59]. A key contribution of a GT study, carried out correctly,

is that it focuses on conceptualization and produces flexible, modifiable con-

cepts with “immense grab” [61]. These concepts inter-relate to generate an

abstract theory which explains the main concerns of the participants in a

substantive area.

The grounded theory of self-organizing Agile teams generated in this re-

search is a first of its kind in the field. Further research into self-organizing

teams in Agile software development and other disciplines will help generate

a more generalized theory.

7.3 Discussion

The grounded theory of self-organizing Agile teams presented in this thesis is

a first large-scale study of this topic in the field of Agile software development.

7.3. DISCUSSION 199

The various aspects of the theory build upon previous work. Sections 4.8, 5.7,

and 6.5 discuss each of the main contributions of this thesis in the context

of related work. This section summarizes those discussions.

Team Roles Team roles have been described outside the field of software

development [9, 22, 134]. Belbin suggested nine team roles based on indi-

vidual behaviours traits of team members. In contrast, the self-organizing

Agile team roles are focused on facilitating self-organization. A co-ordinator

in Belbin’s team roles theory focuses on team objectives and delegates work.

The Co-ordinator role identified in our research, on the other hand, helps

co-ordinate between the team and their customers and does not delegate

work.

Ancona and Caldwell and Sawyer et al. describe five boundary-spanning

roles focused on encouraging communication of the team with external stake-

holders [9, 134]. An ambassador role in their study represents the team to

external stake-holders and persuades them to support the team. This is

similar to the Champion and Promoter roles identified in our research, where

the Champion persuades senior management to support the team and the

Promoter persuades customers to support the team through collaboration.

The boundary spanning roles also consist of a co-ordinator which is similar

to our Co-ordinator role, focusing on communication with external groups

while keeping them informed of the team’s progress.

The self-organizing Agile team roles identified in this research include in-

ternal, external, and interfacing roles. The Mentor and Terminator roles are

primarily internal facing, the Champion and Promoter are external facing,

and the Co-ordinator and Translator roles are interfacing roles between the

team and their external stake-holders (senior management and customers).

The self-organizing nature of these roles identified in this research is further

consolidated when compared to the characteristics of self-organizing teams

defined by Anderson and McMillan [10]. Detailed discussion of team roles in

relation to relevant literature on team roles has been provided in section 4.8.

200 CHAPTER 7. CONCLUSION

Role of the Agile Coach Section 4.7 describes the role of the Agile coach

as presented in literature. In particular, a change in management style from

command-and-control to leadership and collaboration has been predicted [16,

119, 40, 148]. There has been no substantial research exploring the role of

the Agile coach across multiple organizations and countries however. Our

theory helps describe the role of Agile coach in terms of the self-organizing

Agile roles they are likely to play in a self-organizing Agile team.

Team Practices Studies describe mature Agile teams as highly collabora-

tive and self-organizing in nature, exhibiting responsibility on both individ-

ual and team levels [142]. These studies emphasize the importance of story

boards in collaborative activities of mature Agile teams [141]. Our research

confirms that status report meetings and information radiators used as self-

monitoring practices by Agile teams enable them to balance freedom and

responsibility effectively.

Self-monitoring practices have been shown to influence responsibility and

ownership in Agile teams [141, 142, 162]. Daily standups and the use of

information radiators have been found to increase social answerability and

awareness in Agile teams [162].

Moe et al. explored the teamwork challenges that arise when introduc-

ing a self-organizing Agile team [112]. The results indicate that the main

challenges in achieving team effectiveness include problems with highly spe-

cialized skills and the corresponding division of work. Our research confirms

their findings that Agile teams need to balance cross-functionality and spe-

cialization in order to sustain self-organization. Furthermore, our research

provides guidance on concrete practices that enable teams to achieve this

balance: multiple perspectives, group programming, and rotation.

Pairing has been described as a mechanism for learning through conver-

sations between pairs [131, 164, 165]. Studies have acknowledged that pair

programming can be exhausting [131, 51, 165]. Our research found that

teams practice pair-in-need instead of compulsory, consistent pairing. Teams

7.3. DISCUSSION 201

found pair-in-need to be a useful way to achieve learning while managing

the pressures of delivering team goals (5.3). Detailed discussion of the self-

organizing Agile team practices in relation to relevant literature on team

roles has been provided in section 5.7.

Environmental Factors The importance of senior management support

in adoption of Agile methods has been widely acknowledged [19, 35, 44,

51, 67, 119, 148, 157]. Additionally, our research shows that senior man-

agement support is imperative for the sustenance of self-organizing Agile

teams (section 6.1). Our study confirms that senior management will need

to change several organizational processes in order to make them conducive

for self-organizing Agile teams, such as changing their organizational culture

[51, 119]. As Boehm suggests, these changes may be non-trivial [29]. The

extent of changes required will depend on how far the current environment

is from an ideal environment for self-organizing Agile teams [157].

Customer collaboration is a vital feature in Agile software development

[35, 73, 72, 90, 100, 107, 110]. Our grounded theory establishes customer in-

volvement as a critical environmental factor that influences self-organization

in Agile teams (6.3).

The role of the customer in XP has been described at length as a grounded

theory by Martin [107]. Martin identified several roles that form an informal

customer team, of which the Negotiator role is the closest to the on-site

customer described in XP. Our theory identifies a similar Co-ordinator role

on the development team side who is responsible for collaborating with the

Negotiator on the customer side.

An ideal customer representative is an individual who has both thor-

ough understanding of, and ability to, express the project requirements and

the authority to take strategic decisions [44, 55, 66, 119]. This representa-

tive must be CRACK (Collaborative, Responsible, Authorized, Committed,

Knowledgeable) [29]. Additionally, our study suggests that the customer rep-

resentative should understand the basics of Agile methods and the theory of

202 CHAPTER 7. CONCLUSION

self-organizing Agile teams.

A gap between ideal and real levels of customer involvement on Agile

projects has been acknowledged [31, 42, 44, 90, 103, 127, 131]. Studies have

reported the practice of using proxy or surrogate customers in the face of

inadequate customer involvement [31, 66, 87, 101, 103]. Our study identified

the Co-ordinator role which acted as a team representative, co-ordinating

collaboration with customers (section 4.2).

Detailed discussion of these factors influencing self-organizing Agile teams

in relation to relevant literature has been provided in section 6.5.

Evaluating the Grounded Theory As per Glaser’s recommendation, a

grounded theory can be evaluated on the basis of four criteria: fit, work,

relevance, and modifiability [59] (section 3.4.10). This section evaluates the

theory of self-organizing Agile teams against these criteria:

Fit: Publications based on the emerging theory were shared with the

participants, many of whom found them relevant and useful. For example,

one of the participants provided their feedback via email on the emerging

theory as follows:

“These [publications] all look very good! The content of all three

would be quite useful to members of our organization as well as

perhaps our clients.” — P23, Senior Management, New Zealand

The emerging theory was presented to several practitioner groups in In-

dia and New Zealand. Confidence in the validity of the emerging theory

was helped by these practitioner groups recognizing their own experiences in

theory generated from others’ experiences.

Work: The emerging codes, concepts, and categories were strongly related

to the main concern of the participants—becoming a self-organizing Agile

team. Frequent presentations to (and feedback from) the Agile practitioner

communities in NZ and India as well as frequent discussions with the research

supervisors about emerging codes, concepts, and categories helped ensure

that the emerging theory works.

7.3. DISCUSSION 203

Relevance: Relevance of the emerging theory was established via feedback

from practitioners and international experts. Presentations were made at

various Agile practitioner group events and to experts at major international

conferences to gain their feedback [12, 74, 78]. When the experts in the field

find the research findings useful, it becomes an important source of verifying

the fit, work and relevance of the theory [58].

Receiving comments such as “well applied”, “rings true” and “I could

identify each of those roles” from the expert reviewers and Agile practition-

ers made us confident of our emerging theory. Examples of our emerging

theory being found relevant include a number of articles by Agile practition-

ers dedicated to our research [69, 89, 84, 49, 102].

Modifiability: The emerging theory was modifiable throughout the re-

search. For example, the self-organizing roles evolved through the research

as we went from studying relatively new teams to more mature Agile teams

(chapter 4).

In addition to these criteria, the ability of a theory to fit and extend previous

literature on the subject also helps evaluate it. Since the major literature

review in the same substantive area of research is conducted only after the

main concepts and categories are established, literature becomes an impor-

tant source of validating the emerging theory. For example, once we had

established the three balancing acts as the practices of Agile teams that par-

ticularly enable self-organization, we conducted an extensive literature review

on self-organization in and outside software engineering. We found that pre-

vious literature in organizational theory had defined the general principles of

self-organization [115]. Literature in Agile software development described

the three conditions of self-organization [154]. Both these principles and con-

ditions of self-organization fit perfectly with our practices of self-organizing

teams. All the main categories derived from this GT study have been com-

pared to existing literature and presented in sections 4.8, 5.5, 5.6, 5.7, 6.5.1,

and 6.5.2.

204 CHAPTER 7. CONCLUSION

7.4 Implications for Practice

Our theory of self-organizing Agile teams has several implications for prac-

titioners. The following sections present the implications of this theory for

teams, their Agile coaches, senior management, and customers.

7.4.1 Implications for Teams

The transition of becoming a self-organizing Agile team is not easy. The roles

and practices described in this thesis should help team members understand

their roles and practices when becoming a self-organizing Agile team.

One of the characteristics of self-organizing teams is their ability to react

spontaneously in response to challenges. In an Agile environment, teams

can expect to get involved in a lot more practices than just coding and

testing. These practices include group programming (as compared to working

in isolation), daily standups meetings, and the use of information radiators

to promote transparency, collective decision making, and self-assignment.

In the absence of a manager that handles external relations for the team,

team members should be ready to take on the interfacing roles of Co-ordinator

and Translator. Initially, individuals with good communication skills will find

themselves taking on these roles. Similarly, team members should be ready

to champion their teams with senior management or promote their teams

with customers as required by playing Champion and Promoter roles respec-

tively. Over time, most members can expect to take up any or all of these

team roles as needed.

While some members of the team may easily adjust to the new environ-

ment made up of these roles and practices, others may struggle, and some

may fail to make the transition. Those members that struggle should try to

identify and address pain areas with the help of their Mentors. Those indi-

viduals who are unable to fit into an Agile way of working may eventually

be removed from the team by a Terminator.

7.4. IMPLICATIONS FOR PRACTICE 205

7.4.2 Implications for Agile Coaches

The popularity of Agile methods has led to several project managers from

traditional software development backgrounds taking on an Agile coach role.

A new Agile coach often finds themselves confused about their role on a self-

organizing Agile team. They may be unsure about the level of involvement

expected of them. The self-organizing Agile team roles described in this

thesis should help Agile coaches better understand the responsibilities they

are likely to take on at the different stages of the team’s maturation. The

practices described in this thesis should assist Agile coaches in guiding their

team into self-organization. The critical factors identified in this thesis should

help Agile coaches know what to expect in terms of challenges and how to

react through the roles and practices. An important implication for the Agile

coach, however, is to always be mindful of the self-organizing nature of these

roles and practices and facilitate their emergence rather than forcing them

on the team.

7.4.3 Implications for Senior Management

Senior management must be made aware of their influence on the ability

of Agile teams to self-organize. An important aspect of this awareness is

understanding both Agile methods, and their role in creating a conducive

environment for Agile teams to achieve and sustain self-organization: an

organizational culture which is characterized by trust, openness, free flow of

information, and informality.

Senior management must decide whether such changes are beneficial for

their organization. The business drivers discussed in section 6.2 should help

guide senior management in making this decision. Senior management can

try to assess the advantages they stand to gain in making these changes to

accommodate self-organizing Agile teams. Examples of organizations that

will likely benefit from self-organizing Agile teams include those that cater

to product/applications that require frequent changes and innovation. Some

206 CHAPTER 7. CONCLUSION

senior managers may find that the effort involved in undertaking such changes

outweigh the benefits of introducing Agile methods, especially when they

mostly cater product/applications that are design and architecture-driven,

safety-critical, or have a slow rate of change in requirements [75].

7.4.4 Implications for Customers

Customers should be made aware of their influence on the self-organizing

ability of Agile teams. Customers will need to carefully select members from

within their organization as representatives to collaborate with the develop-

ment teams. Where possible, such as in the case of an in-house customer,

the self-organizing Agile team should be consulted when selecting a repre-

sentative. The representative should be provided enough time and authority

to effectively collaborate with the team.

Customers should try to understand their role when starting an Agile

project. To this end, vendor organizations may consider offering relevant

training to their new customers. Customers should attempt to bridge the

gap between ideal and real levels of involvement and collaboration with self-

organizing Agile teams as it ultimately benefits their project.

7.5 Future Work

7.5.1 Stages of Becoming a Self-Organizing Agile Team

This research suggests a preliminary model of becoming a self-organizing

Agile team which involves 3 stages: establishing, practicing, transcending.

Establishing The establishing stage of becoming a self-organizing Agile

team is where a group of software practitioners come together to form a

team. In a non-Agile organization, this may be the first self-organizing Agile

team—a pilot team. A clear indicator of this stage is a lack of knowledge

about Agile principles, values, and practices among the team members. The

7.5. FUTURE WORK 207

presence of a Mentor in the form of an Agile coach is extremely important in

the initial stages, as the Mentor familiarizes the team with Agile principles,

values, and practices and guides them through the first few iterations (section

4.1).

Many problems, such as people-related issues, are likely to surface in this

stage. Some team members may become anxious about the new environ-

ment of working and their own roles in the team. Individuals who are not

comfortable working in an open Agile environment show signs of distress or

aggression. A Terminator or Mentor can try to convince them to change

their mindsets, otherwise, seek senior management support in removing such

individuals from the team.

Practicing In the practicing stage, the team is expected to be familiar

with the fundamentals of Agile software development and be comfortable

with most basic practices. The team should feel more confident about their

abilities to work in an Agile environment. Team members should experience

high enthusiasm, energy, cohesion, and motivation in this stage. The team

starts to devise strategies to overcome the challenges posed by the environ-

mental factors, such as level of customer involvement.

Transcending Few teams will reach this stage, depending on their inter-

nal team development and strong support of the two critical environmental

factors—senior management support and level of customer involvement. In

this stage, the self-organizing Agile team roles should become dormant at the

team level, with most of the challenges they address being resolved. Team

members will likely experience high performance, morale, and general team

spirit and feel very positive about themselves, their project, their manage-

ment, and their customers. A distinct team culture is expected to emerge by

this stage.

The research also suggests two extended stages—Propagating : where a

self-organizing Agile team leads to propagation of more teams in the organi-

208 CHAPTER 7. CONCLUSION

zation, and Terminating—where a self-organizing Agile team is disintegrated

for various reasons and there is no further propagation across the organiza-

tion. This preliminary model of becoming a self-organizing Agile team sug-

gested by this research is similar to a popular small group formation model—

norming, forming, storming, and performing—suggested by Tuckman in 1965

[160]. This preliminary model also supports the Shu-Ha-Ri stages of mastery

as applied to Agile software development [37].

Future work could explore the stages suggested in this model on new and

mature Agile teams, such as a detailed study tracing the progress of teams

from the initial to the advanced stages of self-organization.

7.5.2 Scaling Self-Organization: From Self-Organizing

Teams to Self-Organizing Organizations

Self-organizing Agile team roles ensure that a single team is able to achieve

and sustain self-organization by catering to the different needs of the team,

such as the need for training, senior management support, customer involve-

ment, etc.

In Agile organizations, where all software development is done by multiple

self-organizing Agile teams, the self-organizational roles at the team level

need organization-wide counterparts at the organizational level. Since all

teams are self-organizing, the need for mentoring, training, securing and co-

ordinating customers collaboration, and removing cultural misfits become

organization-wide concerns. In response, the self-organizational team roles

of Mentor, Co-ordinator, Translator, Champion, Promoter, and Terminator

can be mirrored at the organizational level.

The presence of these organization-wide roles was indicated in two mature

Agile organizations towards the end of this research. Future work could

study Agile software development companies to explore such organization-

wide roles that enable self-organization at an organizational level.

7.5. FUTURE WORK 209

7.5.3 Exploring Cultural Implications

Our cross-cultural research looked at Agile practitioners from New Zealand

and India but did not find any notable co-relations between the teams’ na-

tional cultures and the main components of our theory. In other words, the

self-organizing roles, practices, and factors were consistent across the two

national cultures. There was, however, some indication of the existence of

a distinct Agile team culture reflected by practices of self-assignment, group

programming, collective decision making, daily standup, using information

radiators, retrospectives, and pair-in-need. Researchers such as Sharp et

al. and Whitworth et al. have classified Agile team culture in similar ways

[141, 162]. Future studies could explore in more detail any cultural implica-

tions of our theory in different contexts.

7.5.4 Diagnostic Tools

Our study describes the changes senior management needs to make to support

self-organizing Agile teams, as well as the motivators (business drivers) that

drive senior management’s business decisions (sections 6.1 and 6.2). Man-

agers need to compare the extent of changes required in the organization

with the likely benefits from introducing these teams.

Future studies could use these guidelines to build diagnostic tools to

help senior management evaluate the expected benefit from supporting self-

organizing Agile teams.

210 CHAPTER 7. CONCLUSION

Appendices

211

Appendix A:

List of Publications

1. Hoda, R, Noble, J, Marshall S. Developing a Grounded Theory to Ex-

plain the Practices of Self-Organizing Agile Teams. Empirical Software

Engineering Journal (In Press) 2011

2. Hoda, R, Noble, J, Marshall S. The Impact of Inadequate Customer

Involvement on Self-Organizing Agile Teams. Journal of Information

and Software Technology, Vol. 53, 521-534, May 2011

3. Rashina Hoda, James Noble, Stuart Marshall. Supporting Self-Organizing

Agile Teams: What’s Senior Management Got To Do With It? XP2011,

Madrid, Spain, May 2011 [To Appear]

4. Hoda, R, Noble, J, Marshall S. Organizing Self-Organizing Agile Teams.

ICSE, Cape Town, South Africa, 2010

5. Hoda, R, Noble, J, Marshall S. Balancing Acts: Walking the Agile

Tightrope. CHASE workshop at ICSE, Cape Town, South Africa, 2010

6. Hoda, R, Kruchten, P, Noble, J, Marshall S. Agility in Context. OOP-

SLA, Reno/Nevada, USA, 2010

7. Hoda, R, Noble, J, Marshall S. Using Grounded Theory to Study the

Human Aspects of Software Engineering. HAoSE workshop at SPLASH,

Reno/Nevada, USA, 2010

213

214

8. Hoda, R, Noble, J, Marshall S. Agile Undercover: When Customers

Don’t Collaborate. XP2010, Trondheim, Norway, 2010

9. Hoda, R, Noble, J, Marshall S. What Language Does Agile Speak?.

XP2010, Trondheim, Norway, 2010

10. Hoda, R, Noble, J, Marshall S. How Much is Just Enough: Some Doc-

umentation Patterns on Agile Projects. EuroPLoP, Germany, 2010

11. Hoda, R, Noble, J, Marshall S. Negotiating Contracts for Agile Projects:

A Practical Perspective. XP2009, Sardinia, Italy, 2009

12. Hoda, R, Noble, J, Marshall S. Don’t Mention the ‘A’ Word: Agile Un-

dercover. Research-in-Progress workshop at Agile2009, Chicago, USA,

2009

13. Hoda, R, Noble, J, Marshall S. Agile Project Management: A Grounded

Theory Perspective. NZCSRSC, Auckland, New Zealand, 2009

14. Hoda, R, Noble, J, Marshall S. Exploring the Role of the Manager in

Agile Projects. ACDC, Wellington, New Zealand, 2009

15. Hoda, R, Noble, J, Marshall S. A for Agile, Issues with Awareness

and Adoption. Research-in-Progress workshop at Agile2008, Toronto,

Canada, 2008

16. Hoda, R, Noble, J, Marshall S. Agile Project Management. NZCSRSC,

Christchurch, New Zealand, 2008

Appendix B: Approved HEC

Application and Documents

215

Agile Project Management - Information Sheet

General Information

This research is being conducted as a part of studies towards a PhD degree in the department of
Computer Science at Victoria University of Wellington, New Zealand.

Student: Rashina Hoda (hodarash@mcs.vuw.ac.nz, +64 4 463 6778)
Supervisors: Dr. James Noble (kjx@mcs.vuw.ac.nz, +64 4 463 6736)

Dr. Stuart Marshall (stuart.marshall@vuw.ac.nz, +64 4 463 6730)
Research Topic: Agile Project Management

Aim of the Research

The objective of this research is to explore the concept of Agile Project Management within
companies/practitioners/mentors using Agile software methodologies such as XP, Scrum, Crystal.
The investigation is expected to delve into the following sub-topics, and explore:

– the role of the project manager in an Agile project
– the process and problems of transitioning into an Agile company/practitioner
– management of offshored or outsourced Agile software projects.

Method of Research and Interviews

The research will use qualitative analysis methods to gather valuable data regarding various issues
in Agile Project Management in New Zealand and India. We have sought and have been granted
approval by the Human Ethics Committee to conduct these interviews and observations.

In order to gather information regarding the topic, interviews will be conducted to gain insight and
data from project managers, developers, practitioners, mentors, and consultants who have practical
experience in the field of Agile project management. The data collected in the form of interview
transcripts or project results will be treated as strictly confidential (please see details under
'Confidentiality' section below.) We would ideally like to conduct 2 or 3 interviews at different
important stages of the project. Each interview would last for roughly an hour and will be held at
the interviewee's workplace or as mutually agreed between the researcher and the interviewee. The
interviews will be taped to reduce the risk of interviewer not being able to note down all
information provided by interviewee. An interview guide is attached herewith.

Purpose of Data Collection

The data collected will be analysed carefully to derive important conclusions about the practices of
project management within the Agile software development field. Papers may be published in
journals and conferences during the course of the research for the benefit of the larger research
community. The final thesis report will be published as a PhD thesis and will be held at the Victoria
University Library.

Confidentiality and Consent

All materials collected will be stored in a confidential way and will be destroyed at the completion
of the research. No personal information or details will be collected during the interview. The data
collected will be kept confidential to the researcher (myself), and my supervisors Dr. James Noble
and Dr. Stuart Marshall. The thesis report and any papers published as a result of the study will not

Consent for Participation in Research

Topic of Research: Agile Project Management
Researcher: Rashina Hoda, Victoria University of Wellington, New Zealand

I have been provided with and have understood the information regarding this research and the
confidentiality conditions. I have been given the opportunity to ask questions and have them
answered to my satisfaction.

I agree to be interviewed by Rashina Hoda for the purpose of this research contributing towards her
PhD degree and resultant thesis and conference papers publications. I also understand that I may
withdraw from this research upto 30 days after the data collection/interview.

I give my consent to the collection and use of my opinions, perceptions, information and
experiences during this research.

I agree to have the interviews sound-recorded (to reduce the risk of interviewer not being able to
note down all information provided by interviewee)?

YES NO

I would like to receive a copy of any publications that are based on these interviews?

YES NO

If yes, please provide an email or mailing address below.

__

__

Name: ______________________

Signed:______________________

Date: ______________________

Agile Project Management – Interview Guide

General Information

Interview Date: _________________________

Interview Venue: _________________________

Topic: Agile Project Management
We will discuss any or all of the following depending on whats relevant and applicable to the
interviewee's experience.

• role of project manager in Agile projects
• process and problems of transitioning into an Agile framework
• management of outsourced or off-shored Agile projects

Agenda

Category Duration
1. Explain topic, agenda, and rules of interview 5 mins
2. Previous experience with Agile methodologies, Agile project management,

transitioning, and outsourcing
10mins

3. Depending on interviewee's experience:
- define your role and responsibilities as project manager
- details of transitioning into an Agile framework
- detailed setup of outsourced Agile projects

15 mins

4. Discuss things that worked well for the project (your idea of best practices)
with respect to any or all of the above points (refer 3)

10 mins

5. Discuss problems and issues with respect to any or all of the above (3) 10 mins
6. Suggest improvements on any or all of the above areas (3) 5 mins
7. Closing (fix next interview session where applicable, explain feedback

process to interviewee.)
5 mins

Rules of Interview

• Interviews will be taped, upon mutual agreement, to reduce the risk of interviewer not
being able to note down all information provided by the interviewee.

• Interviewees can be provided with interpretations of their comments/data collected
during the interview, if required by the interviewee.

• Interviewee will be allowed to discuss any other relevant issue not covered by the
interview agenda.

Interview Questions

1. How did you learn about Agile?

2. Is there a live Agile project that you are working on?

3. What is the project about (what flavour of Agile are you using)?

4. What's the team size and project duration?

5. Was the customer tuned into Agile or did you promote it?

6. What's your role and responsibilities in the project?

7. What difficulties have you faced so far on this project?

8. What are the main issues faced by you (as a manager/leader) when dealing with:
 A. customers

 B. internal team and management

9. At this point, what are your expectations of the project (how long will it take, on budget/ on
time)?

10. In your wider experience, what are the advantages of Agile project management?

11. Disadvantages, if any?

12. Please describe your experience of transitioning into an Agile framework (share particular
project experience)

13. what were some of the biggest obstacles in transitioning and how did you get around them?

14. who best supported the process?

15. what went wrong?

16. what would you advice companies thinking of transitioning into Agile?

17. In your opinion, whats the best way to promote Agile?

18. Is there anything else that you feel we should have discussed?

228

Bibliography

[1] Book reviews comptes rendus. Canadian Public Administration 32, 2

(1989), 320–339.

[2] A Guide To The Project Management Body Of Knowledge (PMBOK

Guides). Project Management Institute, 2004.

[3] Comparing PMBOK and Agile Project Management Software Develop-

ment Processes. Springer, 2007, pp. 378–383.

[4] Abraham, L. Cultural differences in software engineering. In ISEC

’09 (New York, 2009), ACM, pp. 95–100.

[5] Abrahamsson, P. Agile Software Development Methods: Review and

Analysis (VTT publications). VTT publications, 2002.

[6] Abrahamsson, P., Warsta, J., Siponen, M. T., and

Ronkainen, J. New directions on Agile methods: a comparative

analysis. In Proceedings of 25th International Conference on Software

Engineering (2003), pp. 244–254.

[7] Allan, G. A critique of using grounded theory as a research method.

EJBRM 2, 1 (2003).

[8] Allan, G. The legitimacy of grounded theory. Key Note Address

5th European Conference on Research Methodology for Business and

Management (2006), 1–8.

229

230 BIBLIOGRAPHY

[9] Ancona, D. G., and Caldwell, D. F. Beyond task and main-

tenance: Defining external functions in groups. Group Organization

Management 13, 4 (1988), 468–494.

[10] Anderson, and McMillan. Of ants and men: self-organized teams

in human and insect organizations. Emergence: Complexity Organiza-

tion 5, 2 (2003), 29–41.

[11] Anderson, L., Alleman, G., Beck, K., Blotner, J., Cunning-

ham, W., Poppendieck, M., and Wirfs-Brock, R. Agile man-

agement - an oxymoron?: who needs managers anyway? In OOPSLA

’03 (New York, 2003), ACM, pp. 275–277.

[12] APN. Agile professionals network. World Wide Web electronic publi-

cation, http://www.agileprofessionals.net/, last accessed on 20th

Sep 2010.

[13] ASCI. Agile software community of india. World Wide Web electronic

publication, http://www.agileindia.org/, last accessed on 20th Sep

2010.

[14] Ashby, R. An introduction to cybernetics. Chapman and Hall, Lon-

don, 1956.

[15] Aston, J., Laroche, L., and Meszaros, G. Cowboys and indians:

Impacts of cultural diversity on Agile teams. In Proceedings of the

conference on Agile 2008 (Toronto, Canada, 2008), IEEE Computer

Society, pp. 423–428.

[16] Augustine, S. Managing Agile Projects. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2005.

[17] Baker, J. Tightening the iron cage: Concertive control in self-

managing teams. Administrative Science Quarterly 38, 3 (1993), 408–

437.

BIBLIOGRAPHY 231

[18] Beaumont, S. The definition of ready. Xebia Blogs, url

= http://blog.xebia.com/2009/06/19/the-definition-of-ready, last ac-

cessed on 9th Nov 2010.

[19] Beck, K. Extreme Programming Explained: Embrace Change, first ed.

Addison-Wesley Professional, 1999.

[20] Beck, K., and Andres, C. Extreme Programming Explained: Em-

brace Change (2nd Edition). Addison-Wesley Professional, 2004.

[21] Begel, A., and Nagappan, N. Usage and Perceptions of Agile Soft-

ware Development in an Industrial Context: An Exploratory Study.

In ESEM ‘07: Proceedings of the First International Symposium on

Empirical Software Engineering and Measurement (Washington, DC,

USA, 2007), IEEE Computer Society, pp. 255–264.

[22] Belbin, R. Team roles at work. Butterworth-Heinemann, 1993.

[23] Benoliel, J. Q. Grounded theory and nursing knowledge. Qualitative

Health Research 6, 3 (1996), 406–428.

[24] Berteig, M. Team self-organization. Agile Advice, http://www.

agileadvice.com/archives/2005/12/agile_work_uses_2.html,

last accessed on 9th Nov 2010.

[25] Boehm, B. A spiral model of software development and enhancement.

SIGSOFT Softw. Eng. Notes 11, 4 (1986), 14–24.

[26] Boehm, B. Get ready for Agile methods, with care. Computer 35, 1

(Jan. 2002), 64 –69.

[27] Boehm, B. A view of 20th and 21st century software engineering. In

ICSE ’06: Proceedings of the 28th international conference on Software

engineering (New York, NY, USA, 2006), ACM, pp. 12–29.

232 BIBLIOGRAPHY

[28] Boehm, B., and Turner, R. Management Challenges to Implement-

ing Agile Processes in Traditional Development Organizations. IEEE

Softw. 22, 5 (2005), 30–39.

[29] Boehm, B. W., and Turner, R. Rebalancing your organization’s

agility and discipline. In In XP/Agile Universe (2003), pp. 1–8.

[30] Brooks, P. F. Mythical Man-Month, Second Edition. Addison-

Welsey, 1995.

[31] Cao, L., Mohan, K., Xu, P., and Ramesh, B. A framework

for adapting Agile development methodologies. European Journal of

Information Systems 18, 4 (2009), 332–343.

[32] Carver, J. The impact of background and experience on software

inspections. Empirical Software Engineering 9, 3 (2004), 259–262.

[33] Charmaz, K. Constructing Grounded Theory: A Practical Guide

through Qualitative Analysis (Introducing Qualitative Methods series),

1 ed. Sage Publications Ltd, 2006.

[34] Chau, T., and Maurer, F. Knowledge Sharing in Agile Software

Teams. In Logic versus Approximation (2004), pp. 173–183.

[35] Chow, T., and Cao, D. A survey study of critical success factors in

Agile software projects. Journal of Systems and Software 81, 6 (2008),

961–971.

[36] Chua, W. F. Radical developments in accounting thoughts. The

Accounting Review 61, 4 (1986), 601–632.

[37] Cockburn, A. Agile software development. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2002.

[38] Cockburn, A. People and Methodologies in Software Development.

PhD thesis, University of Oslo, Norway, 2003.

BIBLIOGRAPHY 233

[39] Cockburn, A. Crystal clear: a human-powered methodology for small

teams. Addison-Wesley Professional, 2004.

[40] Cockburn, A., and Highsmith, J. Agile software development:

The people factor. Computer 34, 11 (2001), 131–133.

[41] Coleman, G., and OConnor, R. Using grounded theory to under-

stand software process improvement: A study of Irish software product

companies. Inf. Softw. Technol. 49, 6 (2007), 654–667.

[42] Conboy, K. Agility from first principles: Reconstructing the concept

of agility in information systems development. Info. Sys. Research 20,

3 (2009), 329–354.

[43] Control Chaos. World Wide Web electronic publication, http://

www.controlchaos.com/old-site/rules.htm, last accessed on 16th

Sep 2010.

[44] Coram, M., and Bohner, S. The impact of Agile methods on

software project management. In Proceedings of the 12th IEEE In-

ternational Conference and Workshops on Engineering of Computer-

Based Systems (Washington, DC, USA, 2005), IEEE Computer Soci-

ety, pp. 363–370.

[45] Crabtree, C. A., Seaman, C. B., and Norcio, A. F. Exploring

language in software process elicitation: A grounded theory approach.

In ESEM ’09: Proceedings of the 2009 3rd International Symposium on

Empirical Software Engineering and Measurement (Washington, DC,

USA, 2009), IEEE Computer Society, pp. 324–335.

[46] Creswell, J. W. Research Design: qualitative, quantitative, and

mixed methods and approaches (second edition). Sage Publications,

2003.

234 BIBLIOGRAPHY

[47] Dagenais, B., Ossher, H., Bellamy, R. K. E., Robillard,

M. P., and de Vries, J. P. Moving into a new software project

landscape. In ICSE ’10: Proceedings of the 32nd ACM/IEEE Interna-

tional Conference on Software Engineering (2010), ACM, pp. 275–284.

[48] Derby, E., and Larsen, D. Agile Retrospectives: Making Good

Teams Great. Raleigh: Pragmatic Bookshelf, 2006.

[49] Derby, Esther. A tale of a too hands-off Manager. World Wide

Web electronic publication, http://www.estherderby.com/2010/10/

too-hands-off-manager.html, last accessed on 9th Nov 2010.

[50] Dickinson, T., and McIntyre, R. A conceptual framework of

teamwork measurement. Team Performance Assessment and Measure-

ment: Theory, Methods, and Applications (1997), 19–43.

[51] Dyb̊a, T., and Dingsoyr, T. Empirical studies of Agile software

development: A systematic review. Inf. Softw. Technol. 50, 9-10 (2008),

833–859.

[52] Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D.

Selecting empirical methods for software engineering research. Guide

to Advanced Empirical Software Engineering (2008), 285–311.

[53] Elliot, N., and Lazenbatt, A. How to recognize a ‘quality’

grounded theory research study. Australian Journal of Advanced Nurs-

ing 22, 3 (2005), 48–52.

[54] Elssamadisy, A. Agile Adoption Patterns: A Roadmap to Organiza-

tional Success. Addison-Weasley Professional, 2008.

[55] Fraser, S., Martin, A., Biddle, R., Hussman, D., Miller,

G., Poppendieck, M., Rising, L., and Striebeck, M. The role

of the customer in software development: the XP customer - fad or

BIBLIOGRAPHY 235

fashion? In OOPSLA ’04: Companion to the 19th annual ACM SIG-

PLAN conference on Object-oriented programming systems, languages,

and applications (New York, NY, USA, 2004), ACM, pp. 148–150.

[56] Fraser, S., Reinitz, R., Eckstein, J., Kerievsky, J., Mee,

R., and Poppendieck, M. Xtreme programming and Agile coach-

ing. In OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and

applications (New York, NY, USA, 2003), ACM, pp. 265–267.

[57] Georgieva, S., and Allan, G. Best practices in project manage-

ment through a grounded theory lens. Electronic Journal of Business

Research Methods 6, 1 (2008), 43–52.

[58] Glaser, B. Theoretical Sensitivity: Advances in the Methodology of

Grounded Theory. Sociology Press, Mill Valley, CA, 1978.

[59] Glaser, B. Basics of Grounded Theory Analysis: Emergence vs Forc-

ing. Sociology Press, Mill Valley, CA, 1992.

[60] Glaser, B. Doing Grounded Theory: Issues and Discussions. Sociol-

ogy Press, Mill Valley, CA, 1998.

[61] Glaser, B. Naturalist inquiry and grounded theory. Forum: Quali-

tative Social Research 5, 1 (2004).

[62] Glaser, B. Remodeling grounded theory. Forum: Qualitative Social

Research 5, 2 (2004).

[63] Glaser, B. The Grounded Theory Perspective III: Theoretical Coding.

Sociology Press, Mill Valley, CA, 2005.

[64] Glaser, B. Grounded Theory Institute: Methodology of Barney G.

Glaser, 2010.

236 BIBLIOGRAPHY

[65] Glaser, B., and Strauss, A. L. The Discovery of Grounded The-

ory. Aldine, Chicago, 1967.

[66] Grisham, P. S., and Perry, D. E. Customer relationships and

extreme programming. In HSSE ’05: Proceedings of the 2005 workshop

on Human and social factors of software engineering (New York, NY,

USA, 2005), ACM, pp. 1–6.

[67] Grossman, F., Bergin, J., Leip, D., Merritt, S., and Gotel,

O. One XP experience: introducing Agile (XP) software development

into a culture that is willing but not ready. In CASCON ’04: Pro-

ceedings of the 2004 conference of the Centre for Advanced Studies on

Collaborative research (2004), IBM Press, pp. 242–254.

[68] Hanssen, G. K., and Faegri, T. E. Agile customer engagement:

a longitudinal qualitative case study. In ISESE ’06: Proceedings of

the 2006 ACM/IEEE international symposium on Empirical software

engineering (New York, NY, USA, 2006), ACM, pp. 164–173.

[69] Hastie, S. Organizing Self-Organizing Agile Teams. InfoQ Article,

url = http://www.infoq.com/news/2010/04/organizing-selforganizing-

teams, last accessed on 9th Nov 2010.

[70] Highsmith, J. Adaptive software development: a collaborative ap-

proach to managing complex systems. Dorset House Publishing, New

York, 2000.

[71] Highsmith, J. Agile Project Management: Creating Innovative Prod-

ucts. Addison-Weasley, USA, 2004.

[72] Highsmith, J., and Fowler, M. The Agile Manifesto. Software

Development Magazine 9, 8 (2001), 29–30.

[73] Hoda, R., Noble, J., and Marshall, S. Negotiating contracts for

Agile projects: A practical perspective. In International Conference on

Agile Software Development (XP) (Italy, 2009), Springer, pp. 186–191.

BIBLIOGRAPHY 237

[74] Hoda, R., Noble, J., and Marshall, S. Agile undercover: When

customers don’t collaborate. In International Conference on Agile Soft-

ware Development (XP) (Norway, 2010), pp. 73–87.

[75] Hoda, R., Noble, J., and Marshall, S. Agility in context. In

OOPSLA (Reno/Nevada, USA, 2010), ACM, pp. 74–88.

[76] Hoda, R., Noble, J., and Marshall, S. Balancing acts: Walking

the Agile tightrope. In Co-operative and Human Aspects of Software

Engineering workshop at ICSE2010 (South Africa, 2010), ACM, pp. 5–

12.

[77] Hoda, R., Noble, J., and Marshall, S. How Much is Just

Enough? Some Documentation Patterns on Agile Projects. In Eu-

roPLoP2010 (Germany, 2010), Hillside Group.

[78] Hoda, R., Noble, J., and Marshall, S. Organizing self-

organizing teams. In ICSE ’10: Proceedings of the 32nd ACM/IEEE In-

ternational Conference on Software Engineering (South Africa, 2010),

ACM, pp. 285–294.

[79] Hoda, R., Noble, J., and Marshall, S. Using grounded the-

ory to study the human aspects of software engineering. In Human

Aspects of Software Engineering (HAoSE) workshop at SPLASH2010

(Reno/Nevada, USA, 2010), ACM, pp. 5:1–5:2.

[80] Hoda, R., Noble, J., and Marshall, S. What language does Agile

speak? In International Conference on Agile Software Development

(XP) (Norway, 2010), pp. 387–388.

[81] Hoda, R., Noble, J., and Marshall, S. Developing a grounded

theory to explain the practices of self-organizing agile teams. Empirical

Software Engineering (2011), In Press.

238 BIBLIOGRAPHY

[82] Hoda, R., Noble, J., and Marshall, S. The impact of inadequate

customer collaboration on self-organizing agile teams. Information and

Software Technology 53 (May 2011), 521–534.

[83] Hoda, R., Noble, J., and Marshall, S. Supporting self-

organizing agile teams: What’s senior management got to do with

it? In International Conference on Agile Software Development (XP)

(Spain, 2011), ACM, p. To Appear.

[84] Hoeppner, K. D. Agile undercover. World Wide Web electronic

publication, url = http://virtualbreath.net/curious/2010/08/23/agile-

undercover/, last accessed on 9th Nov 2010.

[85] Horvath, N. Uses Cases & Scrum. World Wide Web electronic pub-

lication, http://www.femara.com.br/media/12131/usecasesscrum.

pdf, last accessed on 9th Nov 2010.

[86] Hut, J., and Molleman, E. Empowerment and team development.

Team Performance Management 4, 2 (1998), 53–66.

[87] Judy, K. H., and Krumins-Beens, I. Great Scrums need great

product owners: Unbounded collaboration and collective product own-

ership. In HICSS ’08: Proceedings of the Proceedings of the 41st An-

nual Hawaii International Conference on System Sciences (Washing-

ton, DC, USA, 2008), IEEE Computer Society, p. 462.

[88] Kauffman, S. A. The Origins of Order. Oxford University Press,

New York, 1993.

[89] Kearns, A. Converting Waterfall Requirements into Underground

Agile Features. World Wide Web electronic publication, url =

http://www.morphological.geek.nz/blogs/viewpost/Peruse+Muse+

Infuse/Converting+Waterfall+Requirements+into+Underground

+Agile+Features.aspx, last accessed on 9th Nov 2010.

BIBLIOGRAPHY 239

[90] Korkala, M., Abrahamsson, P., and Kyllonen, P. A case

study on the impact of customer communication on defects in Agile

software development. In In Agile 2006 (Washington, DC, USA, 2006),

IEEE Computer Society, pp. 76–88.

[91] Lambert, A. Fluid families: A theoretical model for determining

family membership within blended and ex-blended families. In 93rd

Annual Convention of the NCA (Chicago, IL, 2007).

[92] Lansing, S. J. Complex adaptive systems. Annual Review of Anthro-

pology 32 (2003), 183–204.

[93] Larman, C. Agile and Iterative Development: A Manager’s Guide.

Addison Wesley Professional, 2003.

[94] Larman, C., and Basili, V. R. Iterative and incremental develop-

ment: A brief history. Computer 36, 6 (2003), 47–56.

[95] Larsen, D. Team Agility: Exploring Self-Organizing Soft-

ware Development Teams. Industrial Logic and The Ag-

ile Times newsletter, http://www.futureworksconsulting.com/

resources/TeamAgilityAgileTimesFeb04.pdf, last accessed on 14th

Nov 2010.

[96] Levin, S. A. Ecosystems and the biosphere as complex adaptive

systems. Ecosystems 1, 5 (1998), 431–436.

[97] Lewin, K. Resolving Social Conflicts: Selected Papers on Group Dy-

namics. Harper and Row, New York, 1948.

[98] Lewin, R. Complexity—Life at the Edge of Chaos. Dent, London,

1993.

[99] Lewin, R. From chaos to complexity: Implications for organizations.

Executive Development 7, 4 (1994), 16–17.

240 BIBLIOGRAPHY

[100] Lindvall, M., Basili, V. R., Boehm, B. W., Costa, P., Dan-

gle, K., Shull, F., Tesoriero, R., Williams, L. A., and

Zelkowitz, M. V. Empirical Findings in Agile Methods. In In

XP/Agile Universe (London, UK, 2002), Springer-Verlag, pp. 197–207.

[101] Lowery, M., and Evans, M. Scaling product ownership. In In

Proceedings of the Agile 2007 (Washington, DC, USA, 2007), IEEE

Computer Society, pp. 328–333.

[102] Mamoli, S. Agile Undercover: When Customers don’t Col-

laborate. World Wide Web electronic publication, url =

http://www.nomad8.com/files/category-agile-product-ownership.php,

last accessed on 9th Nov 2010.

[103] Manglaraj, G., Mahapatra, R., and Nerur, S. Acceptance of

software process innovations the case of extreme programming. Euro-

pean Journal of Information Systems 18, 4 (2009), 344–354.

[104] Mann, C., and Maurer, F. A case study on the impact of Scrum on

overtime and customer satisfaction. In Agile Development Conference

(2005), IEEE Computer Society, pp. 70–79.

[105] Martin, A. The role of the customers in Extreme Programming

projects. PhD thesis, School of Mathematics, Statistics and Operations

Research, Victoria University of Wellington, Wellington, New Zealand,

2009.

[106] Martin, A., Biddle, R., and Noble, J. The XP customer role

in practice: Three studies. In Agile Development Conference (2004),

pp. 42–54.

[107] Martin, A., Biddle, R., and Noble, J. The XP customer role: A

grounded theory. In In Agile 2009 (Chicago, 2009), IEEE Computer

Society.

BIBLIOGRAPHY 241

[108] Martin, R. Agile Software Development: principles, patterns, and

practices. Pearson Education, NJ, 2002.

[109] Mills, H. D. Software Productivity. Little Brown and Company,

1983.

[110] Misra, S. C., Kumar, V., and Kumar, U. Identifying some impor-

tant success factors in adopting Agile software development practices.

Journal of Systems Software. 82, 11 (2009), 1869–1890.

[111] Moe, N. B., and Dingsoyr, T. Scrum and team effectiveness:

Theory and practice. In International Conference on Agile Software

Development (XP) (Limerick, 2008), Springer, pp. 11–20.

[112] Moe, N. B., Dingsøyr, T., and Dyb̊a, T. A teamwork model

for understanding an Agile team: A case study of a Scrum project.

Information and Software Technology 52, 5 (2010), 480–491.

[113] Moe, N. B., Dingsoyr, T., and Dyb̊a, T. Understanding self-

organizing teams in Agile software development. In ASWEC 08 (Wash-

ington, 2008), IEEE, pp. 76–85.

[114] Molleman, E. Variety and the requisite of self-organization. Inter-

national Journal of Organizational Analysis 6, 2 (1998), 109–131.

[115] Morgan, G. Images of organization. Sage Publications, Beverly Hills,

1986.

[116] Myers, M. D. Qualitative research in information systems. MIS

Quaterly 21, 2 (1997), 241–242.

[117] Nathaniel, K. A. A Grounded Theory Of Moral Reckoning In Nurs-

ing. PhD thesis, West Virginia University, 2003.

[118] Nerur, S., and Balijepally, V. Theoretical reflections on Agile

development methodologies. Commun. ACM 50, 3 (2007), 79–83.

242 BIBLIOGRAPHY

[119] Nerur, S. e. a. Challenges of migrating to Agile methodologies.

Commun. ACM 48, 5 (2005), 72–78.

[120] Nonaka, I. A Dynamic Theory of Organizational Knowledge Cre-

ation. Organization Science 5, 1 (1994), 14–37.

[121] NVivo. Research software tool. World Wide Web electronic publi-

cation, http://www.qsrinternational.com/products_nvivo.aspx,

last accessed on 10th April 2010.

[122] Oates, B. J. Researching Information Systems and Computing. Sage

Publications, 2006.

[123] Orlikowski, W. J., and Baroudi, J. J. Studying information

technology in organizations: Research approaches and assumptions.

Information Systems Research 2, 1 (1991), 1–28.

[124] Palmer, S., and Felsing, M. A Practical Guide to Feature- Driven

Development. Pearson Education, 2001.

[125] Parnell-Klabo, E. Introducing Lean principles with Agile practices

at a Fortune 500 company. In In Agile 2006 (Washington, DC, USA,

2006), IEEE Computer Society, pp. 232–242.

[126] Parry, K. Grounded theory and social process: A new direction for

leadership research. Leadership Quaterly 9, 1 (1998), 85–105.

[127] Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P.,

and Still, J. The impact of Agile practices on communication in

software development. Empirical Software Engineering 13, 3 (2008),

303–337.

[128] Rising, L., and Janoff, N. S. The Scrum software development

process for small teams. IEEE Softw. 17, 4 (2000), 26–32.

BIBLIOGRAPHY 243

[129] Robey, D., Welke, R., and Turk, D. Traditional, iterative, and

component-based development: A social analysis of software develop-

ment paradigms. Information Technology and Management 2, 1 (2001),

53–70.

[130] Robinson, H., and Sharp, H. Organisational culture and XP: three

case studies. In Agile Development Conference (2005), IEEE Computer

Society, pp. 49–58.

[131] Robinson, H., and Sharp, H. The social side of technical practices.

In XP (2005), pp. 100–108.

[132] Royce, W. W. Managing the development of large software systems:

Concepts and techniques. In ICSE (1987), pp. 328–339.

[133] Ruparelia, N. B. Software development lifecycle models. SIGSOFT

Softw. Eng. Notes 35, 3 (2010), 8–13.

[134] Sawyer, S., Guinan, P. J., and Cooprider, J. Social interactions

of information systems development teams: a performance perspective.

Information Systems Journal 20 (January 2010).

[135] Schein, E. H. Organizational Culture and Leadership, 1st edition ed.

Jossey-Bass Publishers, San Franciso, 1985.

[136] Schwaber, K. Agile Processes and Self-Organization. Control Chaos,

http://www.controlchaos.com/download/Self%20Organization.

pdf, last accessed on 31st March 2010.

[137] Schwaber, K. Scrum Guide. Scrum Alliance Resources, http://www.

scrum.org/storage/scrumguides/Scrum%20Guide.pdf, last accessed

on 9th Nov 2010.

[138] Schwaber, K., and Beedle, M. Agile Software Development with

SCRUM. Prentice-Hall, 2002.

244 BIBLIOGRAPHY

[139] Scrum Alliance. World Wide Web electronic publication, http:

//www.scrumalliance.org/view/scrum_framework, last accessed on

Sep 16th, 2008.

[140] Sfetsos, P., Angelis, L., and Stamelos, I. Investigating the

extreme programming system—an empirical study. Empirical Software

Engineering 11, 2 (2006), 269–301.

[141] Sharp, H., and Robinson, H. An ethnographic study of XP prac-

tice. Empirical Software Engineering 9, 4 (2004), 353–375.

[142] Sharp, H., and Robinson, H. Collaboration and co-ordination in

mature extreme programming teams. International Journal of Human-

Computer Studies 66, 7 (2008), 506–518.

[143] Sjoberg, D. I., Dyba, T., and Jorgensen, M. The future of em-

pirical methods in software engineering research. In Future of Software

Engineering (2007), IEEE Computer Society.

[144] Sliger, M., and Broderick, S. The Software Project Manager’s

Bridge to Agility. Addison Wesley Professional, 2008.

[145] Software, M. G. Learning Scrum - free to use figures and wallpapers

about Scrum. Online; last accessed 15-Nov-2010.

[146] Stapleton, J. Dynamic Systems Development Method. Addison Wes-

ley, 1997.

[147] Stern, P. N. Eroding grounded theory. Critical Issues in Qualitative

Research Methods (1994), 210–223.

[148] Strode, D. E., Huff, S. L., and Tretiakov, A. The Impact

of Organizational Culture on Agile Method Use. In Proceedings of the

42nd Hawaii International Conference on System Sciences (Washing-

ton, DC, USA, 2009), IEEE Computer Society, pp. 1–9.

BIBLIOGRAPHY 245

[149] Suddaby, R. From the editors: What grounded theory is not.

Academy of Management Journal 49, 4 (2006), 633–642.

[150] Summers, M. Insights into an Agile adventure with offshore partners.

In In Agile 2006 (USA, 2008), IEEE, pp. 333–338.

[151] Sureshchandra, K., and Shrinivasavadhani, J. Adopting Ag-

ile in Distributed Development. In ICGSE ’08: Proceedings of the

2008 IEEE International Conference on Global Software Engineering

(Washington, DC, USA, 2008), IEEE Computer Society, pp. 217–221.

[152] Sutherland, J. Roots of Scrum: Takeuchi and self-organizing teams.

World Wide Web electronic publication, http://jeffsutherland.

com, last accessed on 31st March 2010.

[153] Sutherland, J., Schoonheim, G., Rustenburg, E., and Rijk,

M. Fully distributed Scrum: The secret sauce for hyperproductive

offshored development teams. In In Agile 2008 (Washington, DC, USA,

2008), IEEE Computer Society, pp. 339–344.

[154] Takeuchi, H., and Nonaka, I. The new new product development

game. Hardvard Business Review 64, 1 (1986), 137–146.

[155] Taylor, P. S., Greer, D., Sage, P., Coleman, G., McDaid,

K., and Keenan, F. Do Agile GSD experience reports help the prac-

titioner? In GSD ’06: Proceedings of the 2006 international workshop

on Global software development for the practitioner (New York, NY,

USA, 2006), ACM, pp. 87–93.

[156] Thomas, G., and James, D. Reinventing grounded theory: some

questions about theory, ground and discovery. British Educational Re-

search Journal 32, 6 (2006), 767–795.

[157] Tolfo, C., and Wazlawick, R. S. The influence of organizational

culture on the adoption of extreme programming. Journal of Systems

and Software 81, 11 (2008), 1955–1967.

246 BIBLIOGRAPHY

[158] Tomayko, J. E., and Hazzan, O. Human Aspects of Software

Engineering. Charles River Media, Massachusetts, USA, 2004.

[159] Trist, E. The evolution of socio-technical systems. Occasional paper

(1981).

[160] Tuckman, B. W. Development Sequence in Small Groups. Psycho-

logical Bulletin (1965), 384–399.

[161] Uy, E., and Ioannou, N. Growing and sustaining an offshore Scrum

engagement. In In Agile 2008 (USA, 2008), IEEE.

[162] Whitworth, E., and Biddle, R. The social nature of Agile teams.

In In Agile 2007 (USA, 2007), IEEE Computer Society, pp. 26–36.

[163] Wikipedia. Spiral model, 2010. [Online; last accessed 15-Nov-2010].

[164] Williams, L., Kessler, R. R., Cunningham, W., and Jeffries,

R. Strengthening the case for pair programming. IEEE Softw. 17, 4

(2000), 19–25.

[165] Williams, L. A., and Kessler, R. R. All I really need to know

about pair programming I learned in kindergarten. Commun. ACM

43, 5 (2000), 108–114.

[166] XP. Extreme programming: A gentle introduction. World Wide Web

electronic publication, http://www.extremeprogramming.org/, last

accessed on 23rd Oct 2010.

[167] Yin, R. Case Study Research: Design and Methods. Sage Publications,

CA, 1984.

