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Abstract

Schrödinger’s equation for the hydrogen molecule ion and the Helmholtz

equation are separable in prolate and oblate spheroidal coordinates respec-

tively. They share the same form of the angular equation. The first task

in deriving the ground state energy of the hydrogen molecule ion, and

in obtaining finite solutions of the Helmholtz equation, is to obtain the

physically allowed values of the separation of variables parameter. The

separation parameter is not known analytically, and since it can only have

certain values, it is an important parameter to quantify. Chapter 2 of this

thesis investigates an exact method of obtaining the separation parameter.

By showing that the angular equation is solvable in terms of confluent Heun

functions, a new method to obtain the separation parameter was obtained.

We showed that the physically allowed values of the separation of variables

parameter are given by the zeros of the Wronskian of two linearly dependent

solutions to the angular equation. Since the Heun functions are implemented

in Maple, this new method allows the separation parameter to be calculated

to unlimited precision.

As Schrödinger’s equation for the hydrogen molecule ion is related to

Helmholtz’s equation, this warranted investigation of scalar beams. Tightly

focused optical and quantum particle beams are described by exact solutions

of the Helmholtz equation. In Chapter 3 of this thesis we investigate the

applicability of the separable spheroidal solutions of the scalar Helmholtz

equation as physical beam solutions. By requiring a scalar beam solution

to satisfy certain physical constraints, we showed that the oblate spheroidal

wave functions can only represent nonparaxial scalar beams when the angular

function is odd, in terms of the angular variable. This condition ensures the

convergence of integrals of physical quantities over a cross-section of the beam

and allows for the physically necessary discontinuity in phase at z = 0 on

the ellipsoidal surfaces of otherwise constant phase. However, these solutions

were shown to have a discontinuous longitudinal derivative.

Finally, we investigated the scattering of scalar waves by oblate and

prolate spheroids whose symmetry axis is coincident with the direction of the

incident plane wave. We developed a phase shift formulation of scattering



by oblate and prolate spheroids, in parallel with the partial wave theory of

scattering by spherical obstacles. The crucial step was application of a finite

Legendre transform to the Helmholtz equation in spheroidal coordinates.

Analytical results were readily obtained for scattering of Schrödinger particle

waves by impenetrable spheroids and for scattering of sound waves by

acoustically soft spheroids. The advantage of this theory is that it enables

all that can be done for scattering by spherical obstacles to be carried over

to the scattering by spheroids, provided the radial eigenfunctions are known.
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Chapter 1

Introduction

This thesis investigates three problems, which are related through the sep-

arability of the Schrödinger equation in prolate spheroidal coordinates, and

the separability of the Helmholtz equation in oblate spheroidal coordinates.

The Schrödinger equation for the hydrogen molecule ion is separable in

prolate spheroidal coordinates, and leads to an angular and radial equation.

Separation of the Helmholtz equation in oblate spheroidal coordinates also

leads to an angular and radial equation. The remarkable result is that the

angular equation for the hydrogen molecule ion is the same as the angular

equation for the Helmholtz equation. Initially the hydrogen molecule ion

was studied, but because of the relation between the Schrödinger equation

and the Helmholtz equation, this warranted investigation of free space scalar

beams, and also the theory of scattering of scalar waves by spheroids. An

introduction for each individual topic is presented in the following sections.

1.1 The hydrogen molecule ion

The simplest of all molecules is the hydrogen molecule ion, consisting of two

protons and one electron. The study of this molecule is important both

theoretically, and also to provide an understanding of the nature of electron

bonding. It is the only quantum mechanical three body problem which is

separable, in the Born-Oppenheimer approximation, due to the fact that

there is no electron-electron repulsion.
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1.1. THE HYDROGEN MOLECULE ION

The solution of this problem would lead to an exact (possibly transcenden-

tal) relationship between the energy of the electron (E) and the internuclear

separation of the two protons (R). However, by performing separation of

variables, a separation parameter μ(λ) is introduced, where λ = −ER2/2,

which can only have certain physical values. An analytic expression for the

separation parameter is not yet known.

The original study of the hydrogen molecule ion was performed by Pauli,

and Niessen [1, 2]. In both these treatments the old, semi-classical, quantum

theory was used. This led to results which were in disagreement with

experiment. Following the development of the Schrödinger equation, Burrau

[3] was able to obtain the ground state energy of the hydrogen molecule

ion. Burrau showed that the Schrödinger equation is separable in elliptic

(prolate spheroidal) coordinates. This led to two equations linked through

the separation parameter μ(λ). The method of Burrau was to convert the two

linear second-order differential equations into first-order non-linear Riccati

differential equations. Solving the two equations numerically, Burrau was

able to obtain the ground state energy in agreement with experiment [9].

More sophisticated treatments were given following Burrau’s initial work.

Wilson [4, 5] solved the angular equation using a series solution, which

gave a series representation of the separation parameter μ(λ) in terms of λ.

Wilson then considered the radial equation and, by utilizing an asymptotic

expansion, obtained an infinite continued fraction relating R, μ(λ), and λ.

However, Jaffé [6] showed that this asymptotic solution did not lead to the

correct infinite continued fraction. Building upon Wilson’s work, Jaffé [6]

solved the radial equation using a series solution which led to the correct

infinite continued fraction relating R, μ(λ), and λ. The infinite continued

fraction, along with the series representation for μ(λ), then allowed the

ground state energy of the hydrogen molecule ion to be determined.

Hylleraas [7] solved the angular equation in terms of an expansion of

associated Legendre functions. By imposing the requirements of a convergent

series solution, Hylleraas obtained a determinantal equation which must be

solved to give the physical values of the separation parameter. This method

also led to the correct series representation of the separation parameter.
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1.2. SCALAR BEAMS

Hylleraas then considered certain expansions of Laguerre polynomials in

order to solve the radial equation. This led to another determinantal equation

which, when combined with the angular result, gave the electron energy as

a function of the internuclear distance.

There are also many treatments of the hydrogen molecule ion based on

variational theory or perturbation theory. For a discussion of the treatments

using variational theory see Chapter 12, section 42 of [8]. Perturbative

methods are given in [9].

The lack of an analytic representation of the separation parameter was

the initial motivation for this work. The major goal of this research was to:

• Derive an exact relation between the separation parameter μ(λ) and

the parameter λ.

We shall give a method of solution, based on the zeros of the Wronskian

of the angular functions, which gives the separation parameter exactly.

The method of our solution for μ(λ) will be compared with those outlined

previously, and we will investigate the applicability of this method to solve

the radial equation. As will be shown in subsequent Chapters, the separation

parameter is important for not only the hydrogen molecule ion, but many

other applications, such as scalar beams, and scattering of scalar waves by

spheroids.

1.2 Scalar beams

The advancements in producing tightly focused laser and particle beams has

raised the necessity to have exact representations of such beams. In the case

of laser beams, where the diameter of the beam can be of the order of a

few wavelengths, the optical fields must be described by nonparaxial beams.

Such tightly focused beams, in both the optical and quantum particle case,

can only be described by exact solutions of the scalar Helmholtz equation.

Optical beams which are weakly focused can be described by the paraxial

Gaussian beam. In the focal region of a tightly focused beam, however, the

Gaussian beam is not an adequate representation of a physical beam.

3



1.2. SCALAR BEAMS

The description of optical beams beyond the paraxial approximation,

developed by Lax et al. [10], is based on introducing correction terms into the

paraxial solution which represent nonparaxiality. The complete behaviour of

a physical beam solution must, however, be described by an exact solution

of the scalar Helmholtz equation.

Exact solutions of the scalar Helmholtz equation, based on complex-

source and sink points, have been proposed as physical beams. Deschamps

[11] introduced an outgoing spherical wave, which has a source point located

at a complex position, as a possible scalar beam. The beam constructed was

found to have properties of the paraxial Gaussian beam and remains an exact

solution of the Helmholtz equation. A fundamental flaw of this beam is that

it has an inherent singularity on the circle ρ = b in the focal plane, where

b is the length of the focal region of the beam, and consequently the beam

solution diverges on this circle.

In order to overcome this divergence Sheppard and Saghafi [12, 13, 14]

replaced the complex source outgoing spherical wave by a non-singular

superposition of an incoming and outgoing spherical wave. This beam has

been expressed in oblate spheroidal coordinates and Ulanowski and Ludlow

[15] generalized it to a set of exact beam solutions known as spherical Bessel

beams. These beams, however, are also not physical. The construction

of a beam by a superposition of counter-propagating wavefronts does not

represent true free space propagation. Furthermore, the energy required to

produce subsets of such beams has been found to be infinite [16].

Another set of possible beam solutions has recently been suggested by

utilizing the fact that the Helmholtz equation is separable in oblate spheroidal

coordinates. Rodŕiguez-Morales and Chávez-Cerda [17] have suggested that

physical free space beams may be represented by the oblate spheroidal wave

functions.
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1.3. SCATTERING OF SCALAR WAVES BY SPHEROIDS

It is at this point where the research that we planned to undertake comes

in. The major goals for this part of research were the following:

• Derive exact solutions of the Helmholtz equation in oblate spheroidal

coordinates.

• Investigate the asymptotic nature of these solutions and ensure they

represent physical beams.

• Derive exact free space electromagnetic beams from the scalar beam

solutions of the Helmholtz equation.

Our study of the solutions proposed in [17] as physical beams resulted

in showing that only subsets of the oblate spheroidal wave functions may

represent physical scalar beams [18]. However, this subset of beams also

has nonphysical aspects, which shall be discussed in both the scalar and

electromagnetic cases.

1.3 Scattering of scalar waves by spheroids

The scalar Helmholtz equation is separable in both the oblate and prolate

spheroidal coordinate systems. Most previous research on scattering by

spheroidal shaped obstacles has relied on this fact, with calculations largely

using the spheroidal wave functions, which Chapter 3 of this thesis discusses

with respect to free space scalar beams. It is this application of the possible

scalar beam solutions, namely spheroidal wave functions, to scattering by

spheroids, which provided the stimulus to study this problem.

Initial research on scattering by spheroids was performed by Rayleigh

[19], who investigated the acoustically soft scattering by a disk, which is the

limiting form of an oblate spheroid. By relating the electrical capacitance of

the disk to the scattered wave, Rayleigh was able to derive the scattering

amplitude, in the long-wavelength limit, by solving a potential problem

instead.
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1.3. SCATTERING OF SCALAR WAVES BY SPHEROIDS

The scattering of sound by prolate spheroids has also been a problem

under thorough investigation. The solution of plane wave scattering by a rigid

prolate spheroid (acoustically hard) has been given by Spence and Granger

in terms of the spheroidal wave functions [20]. The case of acoustically soft

prolate spheroidal scattering has also been investigated by Senior [21].

Long-wavelength scattering by both acoustically soft and acoustically

hard spheroidal bodies has been considered by Senior [22], with an extension

to scattering by a dielectric body [23]. Senior shows that, for acoustically

soft objects, the scattered field may be expanded in a series of increasing

powers of k, where k is the wavenumber. The leading term of this series is of

the order of O(k0), and proportional to the electrostatic capacity, in analogy

with Rayleigh’s work. In the case of acoustically hard bodies, Senior has

related the scattered wave, whose leading term is proportional to k2, to the

magnetic polarizability tensor of the same geometry.

Short-wavelength scattering by rigid prolate spheroids has been inves-

tigated by Lauchle [24], who shows that, approximately, in this limit the

total-cross section is proportional to twice the geometrical area of the

spheroid. Sammelmann et al. [25] have also investigated the short-wavelength

scattering by rigid prolate spheroids, while Ye [26] has considered low-

frequency acoustic scattering by gas filled prolate spheroids in liquids.

The scattering by spheroids has in general been in relation to acoustic

waves. The case of soft acoustic scattering by a spheroid is equivalent to

hard quantum-mechanical scattering by an impenetrable spheroid. It is this

relation, and also the relation between the Helmholtz equation and the free

space Schrödinger equation, which motivated this research.

Instead of utilizing the separability of the Helmholtz equation we utilized

a finite Legendre transform. This enabled the theory of scattering by

spheroids to be put in a form in one-to-one correspondence with the phase

shift formulation of scattering by spherical scatterers developed by Rayleigh,

see section 334 of [27].
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Chapter 2

The hydrogen molecule ion

This Chapter investigates the ground state and certain excited states of the

hydrogen molecule ion. Utilizing the Born-Oppenheimer approximation we

shall show that the Schrödinger equation for the electron is separable in

prolate spheroidal coordinates. For both the angular and radial equations

we shall derive solutions in terms of HeunC functions. Following this, we

shall give a new method of obtaining the separation parameter exactly. The

physical values of the separation of variables parameter shall be shown to

be given by the zeros of the Wronskian of two linearly dependent angular

solutions. The method is applied to certain virtual excited states of the

hydrogen molecule ion, and comparison with the results of other methods is

made. A discussion is also presented of the possible extension of this method

to the radial equation. Finally, we shall discuss an invariant of the motion,

and show that the separable eigenvalue equation for the invariant leads to

the same separable equations as the Schrödinger equation.

2.1 Separation of electron and nuclear terms

Before discussing the hydrogen molecule ion itself, a brief account of the

Born-Oppenheimer [28] approximation is given, since this principle is in

essence the foundation of molecular quantum mechanics.
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2.1. SEPARATION OF ELECTRON AND NUCLEAR TERMS

The solution of Schrödinger’s wave equation for all except the simplest

molecules is a very difficult problem. However, the empirical results of

molecular spectroscopy indicate that the energy values of a molecule can be

conveniently separated into several parts, namely the electronic energy, the

vibrational energy of the nuclei, and the rotational energy of the molecule.

This suggests it is possible to devise a method where, initially, the energy

of the electrons is determined for various arrangements of the nuclei fixed in

space. The stable state will then correspond to one in which the combined

electronic and internuclear energy is a minimum. The nuclei will then

undergo vibrations about their equilibrium positions, and the molecule as

a whole will rotate about its centre of mass.

Born and Oppenheimer were able to show, by a power series expansion

in terms of the ratio of the electron and nuclei masses, that an approximate

solution to the wave equation is obtainable by such a method. The method

consists of first solving the wave equation for the electrons alone, with the

nuclei fixed, as a function of the nuclei coordinates. Following this, a wave

equation for the nuclei is solved, where the energy of the electrons acts as the

potential function. The physical premise behind this idea is that the mass of

the nuclei are much larger than the mass of the electrons, thus the electrons

undergo many cycles of their motion before the nuclear configuration changes,

allowing one to essentially fix the nuclei coordinates.

The complete wave equation for a molecule consisting of r nuclei and s

electrons is
r∑
j=1

1

Mj
∇2
jψ +

1

me

s∑
i=1

∇2
iψ +

2

�2
(E − V )ψ = 0, (2.1)

in which me is the electron mass, Mj is the mass of the jth nucleus, ∇2
j is the

Laplace operator in terms of the coordinates of the jth nucleus, and ∇2
i is

the Laplacian for the ith electron. E is the energy eigenvalue of the molecule,

and V is the potential energy function of the system given by

V =
∑
i,i′

e2

rii′
+

∑
j,j′

ZjZj′e
2

rjj′
−

∑
i,j

Zje
2

rij
, (2.2)

with the interpretation of the sums being over each pair of particles once. Zj

is the atomic number of the jth nucleus.

8



2.1. SEPARATION OF ELECTRON AND NUCLEAR TERMS

Let y represent the 3r coordinates of the r nuclei, relative to axes fixed

in space, and x represent the 3s coordinates of the s electrons. Let α

represent the quantum numbers associated with the motion of the electrons

and β denote the quantum numbers associated with the motion of the nuclei.

The result of Born and Oppenheimer is that an approximate solution for

Ψα,β(x, y) can be obtained in the form

Ψα,β(x, y) = ψα(x, y)ψα,β(y). (2.3)

The functions ψα(x, y) are called the electronic wave functions, and

correspond to the eigenfunctions of the electronic term in the Hamiltonian,

relative to fixed nuclear separation. They do not depend on the nuclear

quantum numbers, but are functions of the nuclear separation. The wave

equation to be solved in order to obtain the electronic wave functions is

given by

s∑
i=1

∇2
iψα(x, y) +

2me

�2

[
Uα(y) − V (x, y)

]
ψα(x, y) = 0. (2.4)

The potential function V (x, y) is the complete potential function of Eqn.

2.2. The function Uα(y) represents the characteristic electronic energy

and is dependent on the nuclear separation. Once we have obtained the

characteristic electronic energy Uα(y) as a function of the nuclei coordinates,

for a given set of values of the electronic quantum numbers α, we next obtain

expressions for the nuclear wave functions.

The results of Born and Oppenheimer show that the nuclear wave

functions are the acceptable solutions of a nuclear wave equation, in which

the potential is given by the electronic energy terms. The nuclear wave

equation thus has the form

r∑
j=1

1

Mj
∇2
jψα,β(y) +

2

�2

[
Eα,β − Uα(y)

]
ψα,β(y) = 0. (2.5)

Eα,β are the characteristic energy values of the entire molecule, and are

dependent on the electronic quantum numbers α, and the nuclear quantum

numbers β.

9



2.1. SEPARATION OF ELECTRON AND NUCLEAR TERMS

In summary, the general treatment of solving Schrödinger’s equation for

a molecule is given by:

• Separating out the nuclear and electronic dependent terms in the wave

function.

• Solving a wave equation for the electrons with the nuclei fixed to obtain

the electronic energy.

• Solving a wave equation for the nuclei using the electronic energy as

the potential.

In some cases it might not be possible to separate the nuclear and electronic

motions and one must consider coupling between the two. There are also

other approximations, such as the diabatic approximation, which take into

account nuclear kinetic energy terms (non-separable terms in the molecular

Hamiltonian) and allow a better representation of the state of a molecule.

By comparison with experimental results, the applicability of the Born-

Oppenheimer approximation in the case of the hydrogen molecule ion shall

be justified.

In the zeroth approximation the energy levels of a molecule are inde-

pendent of spin. By incorporating relativistic considerations the (2S+1)

degenerate energy levels of a molecule are split, and consequently depend on

the projection of the spin on the nuclear axis. This spin-axis interaction

comprises of spin-orbit, spin-spin, and spin-rotation interactions. The

classification of molecular levels with non-zero spin depends on the relative

magnitudes of the spin-axis interaction and the rotation of the molecule.

For the Σ terms of a molecule (to be defined in the next section) it is

found that the rotational energy levels of the molecule, which arise from a

fine splitting of the vibrational energy levels of the molecule, predominate

over multiplet splitting due to spin effects. In section 2.6 we shall give the

energy of the hydrogen molecule ion due to only the electron and internuclear

energy, and nuclear vibrational energy. The analysis of multiplet splitting

due to spin, and rotation of the molecule, may be found in Chapter 11 of

[29].

10



2.2. THE ELECTRONIC WAVE EQUATION

z

1

r

r

2

1

ρ

θ1

R

H

H
z

+

+

φ

z

x

y

e-

Figure 2.1: The geometry of H+
2 with two protons separated a distance R, and

an electron at a distance r1 from proton 1 and r2 from proton 2.

2.2 The electronic wave equation

The first step in solving Schrödinger’s equation for the hydrogen molecule ion

(H+
2 ), shown in Fig. 2.1, is to solve for the electronic wave functions and the

characteristic electron energies as functions of the nuclear separation distance

R. The electronic Hamiltonian for H+
2 is given by

He = − �
2

2me
∇2 − e2

r1
− e2

r2
. (2.6)

A natural coordinate system to study H+
2 is bipolar coordinates, whose

geometry depends on r1, r2, and φ which are shown in Fig. 2.1. In bipolar

coordinates the distances r1 and r2 become

r2
1 = ρ2 + z2, (2.7)

r2
2 = ρ2 + (R− z)2. (2.8)

In cylindrical polar coordinates the Laplacian is given by

∇2 = ∂2
ρ +

1

ρ
∂ρ + ∂2

z +
1

ρ2
∂2
φ, (2.9)

11



2.2. THE ELECTRONIC WAVE EQUATION

which on conversion to bipolar coordinates becomes

∇2 = ∂2
r1

+
2

r1
∂r1 + ∂2

r2
+

2

r2
∂r2 +

r2
1 + r2

2 − R2

r1r2
∂r1∂r2 +

1

ρ2
∂2
φ, (2.10)

where

ρ2 = − [(r1 + r2)
2 − R2][(r1 − r2)

2 −R2]

4R2
. (2.11)

In order to simplify the notation atomic units [au] shall be used, in which

the units of length and energy are given by �
2/mee

2 (Bohr radius) and

mee
4/�2 (one half this unit equals a Rydberg). Thus, Schrödinger’s equation

for the electron in the field of the two nuclei is given by the expression{
−1

2

[
∂2
r1 +

2

r1
∂r1 + ∂2

r2 +
2

r2
∂r2 +

r2
1 + r2

2 − R2

r1r2
∂r1∂r2

]
− 1

r1
− 1

r2

+
2R2

[(r1 + r2)2 −R2][(r1 − r2)2 − R2]
∂2
φ

}
ψ(r1, r2, φ) = Eψ(r1, r2, φ). (2.12)

The electron energy (E) must then have the energy due to the repulsion of

the nuclei added to it in order to obtain the total energy. This results in a

positive shift of the electron energy giving

Etotal(R) = E +
1

R
. (2.13)

Bipolar coordinates are not useful in the sense that Schrödinger’s equation

is still non-separable in its current form. However, in 1927 Burrau [3] was able

to show that the electronic wave equation separates in elliptic coordinates.

Following Burrau we introduce the elliptic coordinates ξ and η defined as:

ξ =
r1 + r2
R

, (2.14)

η =
r1 − r2
R

. (2.15)

The surfaces ξ = constant are confocal ellipsoids of revolution, with the nuclei

at the foci, whereas the surfaces η = constant are confocal hyperboloids. On

the introduction of these coordinates, with ρ2 = (R/2)2(ξ2 − 1)(1 − η2) and

z = (R/2)(ξη + 1), the Laplacian becomes

∇2 =
4

R2(ξ2 − η2)

{
∂ξ(ξ

2 − 1)∂ξ + ∂η(1 − η2)∂η

+

[
1

ξ2 − 1
+

1

1 − η2

]
∂2
φ

}
. (2.16)
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2.2. THE ELECTRONIC WAVE EQUATION

Schrödinger’s time-independent equation for the H+
2 energy eigenstates is

thus given by{
∂ξ(ξ

2 − 1)∂ξ + ∂η(1 − η2)∂η + 2Rξ +
R2

2
E(ξ2 − η2)

+

[
1

ξ2 − 1
+

1

1 − η2

]
∂2
φ

}
ψ(ξ, η, φ) = 0. (2.17)

By defining ψ as the product function

ψ(ξ, η, φ) = X(ξ)Y (η)Φ(φ) (2.18)

the following three linear second-order ordinary differential equations, each

in terms of a single variable, are obtained

d2Φ

dφ2
+m2Φ = 0, (2.19)

d

dη

{
(1 − η2)

dY

dη

}
+

(
λη2 − m2

1 − η2
− μ

)
Y = 0, (2.20)

d

dξ

{
(ξ2 − 1)

dX

dξ

}
+

(
−λξ2 + 2Rξ − m2

ξ2 − 1
+ μ

)
X = 0, (2.21)

where λ = −ER2/2 is non-negative, since E < 0 for bound states, and μ is

the separation of variables parameter. The range of the variable ξ is from 1

to ∞, and of η from −1 to 1. The equations are linked through the parameter

λ and separation parameter μ. In order to obtain the energy eigenvalues the

relation between these two parameters must be determined.

The angular differential equation possesses regular singular points at η =

±1. The physical values of μ are obtained by having a solution Y (η) which is

finite at both end points. This leads to only certain μmn(λ) (m,n = 0, 1, 2, ...)

which give a physical solution [30, 31].

The familiar φ equation can be readily solved, and is found to have

physical solutions only for discrete m:

Φ(φ) = exp(±imφ), m = 0, 1, 2, .... (2.22)
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2.2. THE ELECTRONIC WAVE EQUATION

In this context, since the two protons do not produce a centrally symmetric

field, angular momentum is not itself conserved, but the projection of the

angular momentum onto the nuclear axis is conserved. Physically the integer

m corresponds to the angular momentum along the nuclear axis. It is an

experimentally known fact that the ground state of a molecule is usually one

in which m = 0, so we henceforth set m = 0 to obtain the ground state.

(There are certain exceptions to this rule, for instance, the ground state of

the molecule NO is an m = 1 2Π term.)

Since the ground state of H+
2 is symmetric in r1 and r2 we require a

solution even in η. Therefore, this limits the acceptable μmn(λ) separation

parameters to only the subset μmn(λ), m = 0, n = 0, 2, 4, .... The separation

parameter for the ground state of H+
2 is thus μ00(λ).

In the study of molecular physics the projection of the angular momentum

onto the nuclear axis is usually denoted by the symbol Λ. The states Λ = 0, 1,

2 are given the symbols Σ, Π, Δ,... etc. Thus the state m = 0 corresponds to

a Σ state. Reflection of the molecule in a plane passing through the nuclear

axis does not affect the molecule’s energy, but the value of Λ is reversed in

sign, consequently all except the Σ states are doubly degenerate. That is, for

each energy value, there corresponds two different states which differ in the

projection of the orbital angular momentum along the nuclear axis.1 The Σ

states are not changed upon reflection and so are non-degenerate. The wave

function of a Σ state can thus only be multiplied by a constant as a result of

the reflection. Double reflection is equivalent to the identity transformation,

and so the eigenvalues of this reflection operator (for Σ states) are either

±1. The states which change sign, and those which do not change sign upon

reflection, are denoted as Σ− and Σ+.

Another symmetry in the hydrogen molecule ion results from a change in

sign of the electron coordinates (nuclei coordinates unchanged).

1It is actually observed, if one takes into account the interaction between the electron
state and the rotation, along with higher effects, that the energy of a state with Λ �= 0
is split into two levels close together. This phenomenon is called lambda doubling and
can be accounted for through perturbation theory. The correct wave functions are then
the sum and difference of those corresponding to Λ and −Λ. The effect is usually only
important for Π terms.

14



2.2. THE ELECTRONIC WAVE EQUATION

In general, for a molecule with two identical nuclei, this symmetry arises

because there is a centre of symmetry at the point bisecting the line joining

the nuclei. The Hamiltonian remains invariant to such a change and this

transformation operator also commutes with the orbital angular momentum

operator. This enables the states to be labelled depending on the parity of

the wave function. For a given Λ, even (g - gerade) states are invariant to

such a change, while odd (u - ungerade) states change sign.

Furthermore, in a diatomic molecule, the electron state of the molecule

is characterized by the total spin S of all the electrons in the molecule. If S

is non-zero then there is a degeneracy of 2S+1 with respect to the directions

of the total spin (ignoring fine structure). The number 2S+1 is called the

multiplicity, as is the case for atoms, and is written as an index before the

greek letter indicating the projection of the angular momentum along the

nuclear axis. For example, 2Πu denotes an odd electron state with S = 1/2

and Λ = 1. This results in the complete description of the electron state given

by 2S+1Λ
(±)
g,u with the (±) included only for Σ states. The hydrogen molecule

ion has only one electron, with spin S = 1/2, and so the multiplicity in all

cases is equal to 2. The hydrogen molecule ion ground state experimentally

is found to be 2Σ+
g , and it is this state which shall be primarily investigated.

In order to solve the angular part of the hydrogen molecule ion problem

the relation between μ and λ must be obtained. By solving the Y (η) equation

it will be found that there is a unique μmn(λ) which leads to a physical

solution. Using this μmn(λ) the relation between R and λ can subsequently

be found by solving the X(ξ) equation. This will determine the electronic

energy as a function of the nuclear separation and will complete the solution

of the electronic wave equation.

The procedure followed by Hylleraas to solve for the μmn(λ) and λ relation

will be discussed next, followed by a new method which relies on the linear

dependence of solutions to the angular equation. In subsequent sections the

separation parameter μ will be denoted μmn(λ) to indicate it is the unique

function which exhibits the correct λ dependence. Similarly, R(λ) shall

denote the unique R which exhibits the correct λ dependence; an arbitrary μ

shall be denoted as μ, and an arbitrary R shall be denoted by R respectively.
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2.3. THE ANGULAR EQUATION

2.3 The angular equation

The differential equation given in Eqn. 2.20 is called an angular equation

because the variable η extends from −1 to +1, which is equivalent to the

range traversed by the argument z = cos(θ) of the associated Legendre

functions. Hylleraas [7] proposed a solution to the angular equation in terms

of these functions given by

Y (η) =
∞∑

l=|m|
clP

|m|
l (η), (2.23)

in which the coefficients cl are independent of η. Substituting this expression

into the angular equation, and by comparison with the differential equation

satisfied by the associated Legendre functions, we obtain the equation

∞∑
l=|m|

cl[λη
2 − μ− l(l + 1)]P

|m|
l (η) = 0. (2.24)

The term η2P
|m|
l (η) can be expressed in terms of P

|m|
l−2(η), P

|m|
l (η), and

P
|m|
l+2(η) by use of the recursion formula

η2P
|m|
l =

(l + |m|)(l + |m| − 1)

(2l − 1)(2l + 1)
P

|m|
l−2

+

{
(l − |m| + 1)(l + |m| + 1)

(2l + 1)(2l + 3)
+

(l − |m|)(l + |m|)
(2l − 1)(2l + 1)

}
P

|m|
l

+
(l − |m| + 1)(l − |m| + 2)

(2l + 1)(2l + 3)
P

|m|
l+2, (2.25)

which may be obtained on double application of the recurrence relation

between P
|m|
l (η), P

|m|
l−1(η), and P

|m|
l+1(η), namely

(2l + 1)ηP
|m|
l (η) = (l + |m|)P |m|

l−1(η) + (l − |m| + 1)P
|m|
l+1(η). (2.26)

The Legendre functions are an orthogonal set over the physical range of η.

Therefore, in order for the sum to vanish for all η, their coefficients must all

vanish. This gives the following recurrence relation between the coefficients:
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2.3. THE ANGULAR EQUATION

(l − |m| − 1)(l − |m|)
(2l − 3)(2l − 1)

λcl−2

+

[{
(l − |m| + 1)(l + |m| + 1)

(2l + 1)(2l + 3)
+

(l − |m|)(l + |m|)
(2l − 1)(2l + 1)

}
λ− μ− l(l + 1)

]
cl

+
(l + |m| + 2)(l + |m| + 1)

(2l + 3)(2l + 5)
λcl+2 = 0. (2.27)

The recurrence relation obtained in Eqn. 2.27 can be viewed as an

infinite system of simultaneous linear homogeneous equations in the unknown

coefficients cl (with l even or odd). In order that the system possess a non-

trivial solution, the determinant of the matrix of coefficients must vanish.

This determinantal equation will then give the relation between λ and μ.

The matrix of coefficients for even l (starting from l = 0, with m = 0) is

M =

⎡
⎢⎢⎢⎢⎣

λ
3
− μ 2λ

15
0 0 ...

2λ
3

11λ
21

− μ− 6 4λ
21

0 ...

0 12λ
35

39λ
77

− μ− 20 30λ
143

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ . (2.28)

The matrix in Eqn. 2.28 only has non-zero elements on the main diagonal

and the adjacent diagonals. Such a matrix allows an LU decomposition into

a product of a lower and an upper triangular matrix:

LU =

⎡
⎢⎢⎣

1 0 0 ...

l0 1 ... ...
...

...
...

. . .

⎤
⎥⎥⎦
⎡
⎢⎢⎣
d0 u0 ... ...

0 d1 u1 ...
...

...
...

. . .

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

d0 u0 0 ...

l0d0 d1 + l0u0 u1 ...
...

...
...

. . .

⎤
⎥⎥⎦ .

(2.29)

If we express the recurrence relation given in Eqn. 2.27 as

α(l)cl−2 + β(l)cl + γ(l)cl+2 = 0, (2.30)

then the α, β, and γ coefficients can be identified by comparison with the

matrix in Eqn. 2.28.
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2.3. THE ANGULAR EQUATION

For the even l case we deduce that

d0 =
λ

3
− μ = β(0), (2.31)

u0 =
2λ

15
= γ(0), (2.32)

l0d0 =
2λ

3
= α(2) etc. (2.33)

Using the properties of determinants we find that

det(M) = det(L)det(U) = det(U) = Π∞
0 dn = 0, (2.34)

so only the elements dn are needed to solve the determinantal equation. The

diagonal elements are determined by

dn = β(2n) − α(2n)γ(2n− 2)

dn−1
, (2.35)

starting with d0 = β(0) =
λ

3
− μ. (2.36)

The solution to the infinite determinant gives a transcendental relation

between μ and λ. If we set dN = 0 in the product in Eqn. 2.34, then we obtain

an equation for μ of the (N+1)th degree. The first two such approximations

(N = 0, 1) give a linear and a quadratic equation for μ. In the quadratic case

the μ value obtained will correspond to μ00(λ) and μ02(λ), which have the

following series representations as a function of λ

μ00(λ) =
1

3
λ+

2

135
λ2 +

4

8505
λ3 +O(λ4), (2.37)

μ02(λ) = −6 +
11

21
λ+O(λ2). (2.38)

This successful method employed by Hylleraas allows successive approx-

imations to determine μ as a function of λ. The convergence to the true

function, μmn(λ), is rapid and this result represents a great achievement in

understanding the eigenvalue relationship in the H+
2 problem. This now

allows the μ dependency in the radial equation to be eliminated, which

on solving will give the desired relation between R and λ, and ultimately

determine the electronic energy as a function of the internuclear separation.

The next section shall investigate an exact method that gives the μmn(λ) and

λ relation.
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2.4. THE WRONSKIANS

2.4 The Wronskians

2.4.1 The angular Wronskian

The angular and radial equations are linear second-order homogeneous

differential equations with three singular points. Both equations have two

regular singular points and an irregular singular point at infinity. The

Frobenius-Fuchs method of power series can be carried through giving

solutions to each of the angular and radial equations which are non-singular at

the two regular singular points. By Fuchs’s theorem a Taylor series expansion

of the solution to the angular equation, about the ordinary point η = 0, is

convergent out to the nearest singularity η2 = 1, see Chapter 3 of [32].

First we consider the angular equation, which has been studied in great

detail previously because of its relation to the spheroidal wave equation [31].

The solution to this has already been given in terms of a series of Legendre

functions, which gives the series representation of μmn(λ), but here a new

method to derive the μmn(λ) and λ relation is developed. It is an exact,

transcendental relation and does not require an infinite series representation.

The angular equation, as derived previously, is given by

d

dη

{
(1 − η2)

dY

dη

}
+

(
λη2 − m2

1 − η2
− μ

)
Y = 0. (2.39)

We shall consider the m = 0 case of Eqn. 2.39, since physically this

corresponds to the ground state, i.e. μmn(λ) = μ0n(λ), n = 0, 1, 2, 3, ....

(For convenience of notation μ0n(λ), n = 0, 2, 4, ... shall be denoted μe(λ),

whereas μ0n(λ), n = 1, 3, 5, ... shall be denoted μo(λ), which stand for even

and odd respectively.)

If the substitution x = 1 − η2 is made in the angular equation then the

following differential equation for the function f(x) = Y (η) is obtained

x(x− 1)f
′′

+

(
3

2
x− 1

)
f

′
+

1

4
(λx+ μ− λ) f = 0. (2.40)

The prime denotes differentiation with respect to x. This differential equation

is a non-symmetrical confluent Heun equation.
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2.4. THE WRONSKIANS

A discussion of the Heun equation and its confluent forms will be presented

in the appendix, but for the moment the solutions to the aforementioned

equation will be investigated. (The Heun equation is a generalization of

the hypergeometric differential equation, but it now contains 4 regular

singularities. Eqn. 2.40 is one of its confluent forms.)

Eqn. 2.40 has two regular singular points at x = 0 and x = 1. Using the

Frobenius-Fuchs power series method we obtain two power series solutions,

each one non-singular at one of the corresponding regular singularities. The

two even angular solutions to Eqn. 2.40, one regular at x = 1 the other

regular at x = 0, are given by

f1(x) = HeunC

(
0,−1

2
, 0,−λ

4
,
μ+ 1

4
, 1 − x

)
, (2.41)

f0(x) = HeunC

(
0, 0,−1

2
,
λ

4
,
μ− λ+ 1

4
, x

)
, (2.42)

Performing the transformation back in terms of the variable η, the even

solutions to the angular equation are

Y even
0 (η) = HeunC

(
0,−1

2
, 0,−λ

4
,
μ+ 1

4
, η2

)
, (2.43)

Y even
1 (η) = HeunC

(
0, 0,−1

2
,
λ

4
,
μ− λ+ 1

4
, 1 − η2

)
. (2.44)

Y even
0 (η) is regular at the ordinary point η = 0, for any μ. Y even

1 (η) is

regular at the regular singular points η2 = 1, for any μ. If, however, μ = μe(λ)

then both these solutions shall be non-singular at η = 0 and η2 = 1. At the

correct μe(λ) the two solutions become linearly dependent, but are linearly

independent when μ �= μe(λ), for a given lambda. Thus μe(λ) can be deduced

from the property of linear dependence. This is expressed in the Wronskian.

Mathematically this method is represented in the concise form

W even
A (μ, λ, η) = Y even

0 (η)Y even
1 (η)

′ − Y even
1 (η)Y even

0 (η)
′
= 0 ⇔ μ = μe(λ).

(2.45)

The prime denotes differentiation with respect to η.
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The Wronskian method is based on the following theorem due to Józef Maria

Hoëne-Wroński [33]:

Theorem 1. If the functions f1,f2,...fn have n − 1 continuous derivatives

on the interval (−∞,∞), and if the Wronskian of these functions is not

identically zero on (−∞,∞), then these functions form a linearly independent

set of vectors in C(n−1) (−∞,∞).

The Wronskian is not in general equal to zero only for linearly dependent

solutions. This is because solving the Wronskian equal to zero gives a

necessary, and not sufficient, condition for linear dependence. For example,

if f1(x) := x2, f2(x) := {f1(x) x ≥ 0,−f1(x) x < 0}, then these two solutions

have zero Wronskian (for all x), but are linearly independent. However, since

the solutions to the angular equation are analytic, and the Wronskian is zero

for all η, at the correct μmn(λ), the Wronskian then gives a necessary and

sufficient condition for linear dependence. The importance of the Wronskian

is that the angular solutions are linearly dependent if and only if their

Wronskian is equal to zero, therefore, by solving the Wronskian equal to

zero we will obtain all the physical μmn(λ).

The Wronskian method can be summarized as follows:

• The solutions are linearly dependent when the correct separation

parameter is used if and only if the Wronskian is equal to zero.

• Solving the Wronskian equal to zero will thus determine the separation

parameter.

The even Wronskian for the two even angular confluent Heun solutions
is given by

W even
A (μ, λ, η) = −2η

{[
HeunC

(
0, 0,−1

2
,
λ

4
,
μ− λ+ 1

4
, 1 − η2

)

×HeunCPrime
(

0,−1
2
, 0,−λ

4
,
μ+ 1

4
, η2

)]
+

[
HeunC

(
0,−1

2
, 0,−λ

4
,
μ+ 1

4
, η2

)

×HeunCPrime
(

0, 0,−1
2
,
λ

4
,
μ− λ+ 1

4
, 1 − η2

)]}
, (2.46)

where HeunCPrime denotes the derivative of a confluent Heun function. The

value of η is arbitrary, and may be set to 1/
√

2, since this gives the value of

x which is between the two endpoints of Eqn. 2.41 and Eqn. 2.42.
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Figure 2.2: Comparison between the μ00(λ) value computed using the Wronskian

method and with the series method for a range of λ values.

In Fig. 2.2 the results of solving Eqn. 2.45 for a set of λ values is

compared against the series result given in Eqn. 2.37. Fig. 2.2 shows

complete agreement between the values of μ00(λ) obtained by the Wronskian

method, and by the series method. The values of λ used here were small,

but the method can be implemented for a λ of any size. An advantage

of the Wronskian is that by solving Eqn. 2.45 we obtain all possible

μ0n(λ), n = 0, 2, 4, .... Thus all the roots to the single expression in Eqn.

2.46 give all physically possible μ0n(λ), n = 0, 2, 4, ....

The exact formula for the Wronskian of the solutions to the angular

differential equation may be derived by use of Abel’s identity. It follows

from the angular differential equation that the Wronskian has the form

W even
A (μ, λ, η) =

F even(μ, λ)

1 − η2
. (2.47)

The Wronskian function, F even(μ, λ), is therefore zero at one of the physical

values μ0n(λ), n = 0, 2, 4, .... For λ = 1, the even μ0n(λ) values are

approximately 0.34860, −5.4868, −19.4953,..., which are equivalent with

those in [30, 31].
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Figure 2.3: The two angular confluent Heun functions showing the contrasting

linear dependence explicitly. In the first case (λ = 2.20527, μ00(λ) = 0.8117302)

the correct μ00(λ) results in linear dependence, whereas the second case (λ =

2.20527, μ = 2.20527) an incorrect μ results in linear independence.

(The separation parameter in [30, 31] is −1 times our separation parameter.)

The Wronskian result suggests that if the confluent Heun functions were

expressed in terms of elementary functions an analytic expression for μmn(λ)

might be obtainable. That is, if we can determine F (μ, λ), then the zeros

of this function will give μmn(λ). Eqn. 2.40 is not of the hypergeometric

form, however, attempts were made to reduce it to a simpler form, whose

solution would be in terms of elementary transcendental functions. However,

it was only possible to derive the Wronskian in terms of the confluent Heun

functions.

We may exhibit the contrasting linear dependence of the two angular

confluent Heun solutions by plotting them for a given λ with the correct

μmn(λ), and in the other case an incorrect μ. This is shown in Fig. 2.3.

The two angular solutions are linearly dependent when μ = μ00(λ), but are

linearly independent when μ �= μ00(λ). The contrasting linear dependence

of the angular solutions determining whether or not the correct μmn(λ)

separation parameter is obtained is the principle behind the Wronskian.
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2.4.2 The radial Wronskian

In section 2.4.1 we derived the μmn(λ) and λ relation through an angular

Wronskian. In order to derive the total energy of H+
2 the relation between

R(λ) and λ is required. This section shall investigate the possible extension

of the Wronskian method to the radial case to deduce the R(λ) relation. The

Wronskian method applied in the radial case is mathematically represented

in the form of the following expression

WR(R, λ, ξ) = 0 ⇔ R = R(λ), (2.48)

where the μ dependence has been removed by solving an angular Wronskian

for μmn(λ). The radial equation, as derived previously, is given by

d

dξ

{
(ξ2 − 1)

dX

dξ

}
+

(
−λξ2 + 2Rξ − m2

ξ2 − 1
+ μ

)
X = 0. (2.49)

Eqn. 2.49 is a radial equation due to the fact that the variable ξ is of infinite

extent. Following the Wronskian method in the angular case, two solutions to

the radial equation which are linearly dependent when R = R(λ) are sought.

The radial equation has two regular singularities at the points ξ = −1

and ξ = 1, and an irregular singularity at ∞. However, the point ξ = −1

is not physical and corresponds to a negative distance. Nonetheless, there

are two solutions to the radial equation (for m = 0), one non-singular at

the regular singular point ξ = 1, and the other non-singular at the regular

singular point ξ = −1, given by

X1(ξ) = e−
√
λ(ξ−1)HeunC

(
4
√
λ, 0, 0,−4R, 2R− λ+ μ,

−ξ + 1

2

)
, (2.50)

X−1(ξ) = e
√
λ(ξ+1)HeunC

(
4
√
λ, 0, 0, 4R,−2R− λ+ μ,

ξ + 1

2

)
. (2.51)

X−1 is non-singular at ξ = −1, but it is singular at ξ = 1 for arbitrary

eigenvalue parameters. In order to extend this solution into the physical

range of ξ analytic continuation must be performed. However, this leads to a

solution which is now complex and has both real and imaginary components.

The two radial solutions are shown in Fig. 2.4, in one case with the correct

triple (R(λ), μ00(λ), λ), and in the other case an incorrect triple (R, μ, λ).
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Figure 2.4: The two radial solutions showing the contrasting linear dependence

explicitly. In the first case (R = 2, μ = 0.8117302, λ = 2.20527) the correct

(R(λ), μ00(λ),λ) results in linear independence. In the second case (R = 5, μ =

0.8117302, λ = 2.20527) an incorrect (R,μ,λ) also results in linear independence.

The linear independence does not permit the Wronskian method to be applied to

these two solutions.

The two radial solutions are linearly independent and so their Wronskian

may or may not be zero when R = R(λ). The Wronskian equal to zero gives

a necessary condition for linear dependence, thus, it is possible that even

though they are linearly independent their Wronskian is equal to zero. In

this case, however, the Wronskian is non-zero when R = R(λ) and so the

method which was applicable in the angular case cannot be applied here to

these two solutions.

The Wronskian of two solutions to the radial equation may be derived

using Abel’s identity, as was the case for the angular equation. By Abel’s

identity, the Wronskian in the radial case is of the form

WR(R, λ, ξ) =
F (R, λ)

ξ2 − 1
. (2.52)

There is no μmn(λ) dependency in this expression. Since μmn(λ) is a function

of λ it may be approximated through a series representation, or obtained

exactly through the zeros of an angular Wronskian.
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It is interesting that Eqn. 2.52 has the same form as Eqn. 2.47 in the angular

case. Although the form of the Wronskian is known in the radial case, we

do not have the required two linearly dependent solutions needed to obtain

the Wronskian function F (R, λ). We have one exact solution of the radial

equation, X1, which is finite in the range of ξ. Therefore, an area of future

research would be to investigate the possibility of a second solution to the

radial equation, which is linearly dependent with X1 when R = R(λ). The

solution to the radial equation, about the irregular singular point ξ = ∞,

would be linearly dependent with X1, when R = R(λ), but no closed form

expression for this solution has been obtained.

2.5 The radial equation

Section 2.4.1 derived a method which gives the exact μmn(λ) and λ relation.

The exact μmn(λ) is given by the zeros of the Wronskian of two linearly

dependent angular solutions. However, it was not possible to extend this

method to the radial case. Although two solutions to the radial equation

were found, they are not linearly dependent when R = R(λ). In this section

the method of solving the radial equation, as derived by Jaffé [6], shall

be presented, along with a discussion of the method of other researchers.

This method accurately determines the ground state energy of H+
2 and is in

agreement with experimental results.

The radial equation for H+
2 is given in Eqn. 2.49. Following Jaffé, we

make the following substitution in the radial equation

X(ξ) = (ξ2 − 1)m/2f(ξ). (2.53)

The substitution in Eqn. 2.53 gives the following differential equation for

f(ξ)

(ξ2 − 1)f
′′

+ 2ξ(m+ 1)f
′
+ (2Rξ − λξ2 +m2 +m+ μ)f = 0. (2.54)

The prime denotes differentiation with respect to ξ.
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2.5. THE RADIAL EQUATION

Now let f(ξ) have the following form

f(ξ) = e−
√
λξ(ξ + 1)R/

√
λ−1−mw(u), u =

ξ − 1

ξ + 1
. (2.55)

Performing the substitution of Eqn. 2.55 leads to a differential equation

for w(u), namely

u(1 − u)2w
′′

+ [−(m+ 2σ − 1)u2 + 2(σ − 2p− 1)u+m+ 1]w
′

+[σ(σ +m)u+ σ(1 + 2p) +m(m+ 1 + σ) + μ− λ]w = 0, (2.56)

where the following simplifying substitutions have been made

σ = R/
√
λ− 1 −m,

p =
√
λ. (2.57)

The point u = 0 corresponds to ξ = 1 in the original radial equation.

Therefore, the differential equation for w(u) can be solved by means of a

power series about the origin:

w(u) =
∞∑
n=0

cnu
n. (2.58)

As is the case with most series solutions of confluent Heun equations, the

coefficients cn satisfy a three term recurrence relation:

(n+ 1)(n+m+ 1)cn+1 + (n− 1 − σ)(n− 1 − σ −m)cn−1

−[2n2 + (4p− 2σ)n− μ+ λ− 2pσ − (m+ 1)(m+ σ)]cn = 0. (2.59)

Eqn. 2.59 is a second-order difference equation of the Poincaré-Perron type

[34]. To investigate the convergence of the series solution proposed in Eqn.

2.58, we study the difference equation in the case of large n.

For large n, we assume the ratio of consecutive coefficients has the

following form
cn+1

cn
= 1 +

a√
n

+O

(
1

n

)
. (2.60)

Inserting Eqn. 2.60 into Eqn. 2.59 we find

a2 = 4p. (2.61)
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2.5. THE RADIAL EQUATION

It follows that
cn+1

cn
= 1 ±

√
4p

n
+O

(
1

n

)
. (2.62)

Provided we take the solution of Eqn. 2.59 whose coefficients behave

asymptotically as cn+1

cn
= 1 −

√
4p
n

, then the series solution in Eqn. 2.58

is convergent for 0 ≤ u ≤ 1.

The recurrence relation of Eqn. 2.59 can be expressed as

cn+1 + uncn − vn−1cn−1 = 0, n = 0, 1, 2, ..., (2.63)

where c−1 = 0 and un, vn−1 are

un = −2n2 + (4p− 2σ)n− μ+ λ− 2pσ − (m+ 1)(m+ σ)

(n+ 1)(n+m+ 1)
, (2.64)

vn−1 = −(n− 1 − σ)(n− 1 − σ −m)

(n+ 1)(n+m+ 1)
. (2.65)

For the series solution in Eqn. 2.58 to be convergent, we require that

the coefficients cn tend to zero as n tends to ∞. This gives the desired

transcendental expression, relating R(λ), μ(λ), and λ. Therefore by setting

cN = 0 in Eqn. 2.63, as N → ∞, and incorporating the series representation

for μ00(λ), we shall obtain a relation which determines R(λ), and hence the

total energy of H+
2 . Setting cN = 0 allows the transcendental relationship

between R(λ), μ(λ), and λ to be expressed as an infinite continued fraction.

The infinite continued fraction to be solved to give the R(λ) relation is given

by

−u0 =
v0

u1+

v1

u2+

v2

u3+
+ .... (2.66)

This is a transcendental relation for the parameters R(λ), μ(λ), and λ. The

relation in Eqn. 2.66, along with the μ00(λ) series, determines R(λ) and thus

the total energy of the hydrogen molecule ion.

The method of solution of Jaffé is interesting and deserves further

comment. Jaffé follows a similar procedure to that outlined by Wilson.

However, he performs a Jaffé transformation of the independent variable

first (u = (ξ − 1)/(ξ + 1)), and then performs the series expansion of the

solution about the point ξ = 1. The asymptotic solution of the recurrence

relation for the coefficients in the series shows that the series is convergent,

and that the infinite continued fraction is convergent.
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2.5. THE RADIAL EQUATION

The method of Jaffé is more general than just the H+
2 problem. It gives a

method of solving the central two point connection problem in mathematics.

That is, given the asymptotic nature of the solution at ∞, and the series

solution about the origin, what are the eigenvalue parameters in order that

these two solutions match up? [34], [35].

The solution proposed by Hylleraas [7] is of a different type to that just

mentioned. Hylleraas gave a solution to the radial equation as an expansion

of associated Laguerre polynomials multiplied by an exponential function.

This led to a three term recurrence relation for the series coefficients. The

three term recurrence relation gives an infinite continued fraction, which is

convergent, and allows the ground state solution to be obtained.

Our treatment in this section follows closely that of Baber and Hassé [36],

who have rigourously shown that by writing the solution to Eqn. 2.59 as

an infinite continued fraction leads to the required transcendental relation.

Baber and Hassé discuss the question of convergent and divergent radial

solutions in more detail and, in contrast to Jaffé’s statement, show that

Hylleraas’s radial series solution is convergent.

The first paper to treat the H+
2 problem using wave mechanics was that

of Burrau [3]. Burrau’s method of solving the angular and radial equation

is equivalent. In the angular case Burrau turns the second-order equation

into a non-linear first-order Riccati differential equation. By power series

expansion of the solution at η = 0, and the solution at η = 1, Burrau finds

that the two solutions coincide when μ = μ(λ). The method of solution of the

radial equation is to also convert the second-order differential equation into a

non-linear first-order Riccati differential equation. Burrau then performs an

asymptotic expansion about the irregular singular point, and finds that this

solution matches the series solution about the point ξ = 1, when R = R(λ).

The solution of Burrau has, however, been criticized by Wilson [4] as an

asymptotic solution.

The introduction of Flammer’s book [31] gives references to further

research on the H+
2 problem which has been performed following the

pioneering work of Burrau, Hylleraas, and Wilson and Jaffé.
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2.6 The ground state of the hydrogen molecule

ion

Section 2.5 derived a transcendental relation which relates R(λ), μ00(λ), and

λ. Using this relation, along with the μ00(λ) series, allows R(λ) and hence

the electron energy of H+
2 to be determined. In this section we shall present

the ground state equilibrium parameters of H+
2 , as derived by Jaffé, and

compare with the results of Hylleraas. (The results obtained by Jaffé and

Hylleraas for the ground state energy use the series solution for μ00(λ). Thus

all calculations in this section use the μ00(λ) series value, which agrees with

the Wronskian result.)

By solving Eqn. 2.66 for R(λ) the total energy of H+
2 may be deduced

using Eqn. 2.13. Table 2.1 gives the total energy of H+
2 in [au], for various

values of the internuclear separation R(λ), as computed by both Jaffé and

Hylleraas.

H+
2 total energy

R Jaffé Hylleraas

0.5 0.2650 0.2651

1 −0.45175 −0.4523

2 −0.60264 −0.602635

3 −0.57722 −0.57755

Table 2.1: The total energy (electron plus internuclear) of H+
2 , for fixed nuclei,

as computed by Jaffé and Hylleraas.

Table 2.1 shows excellent agreement between the methods of Jaffé and

Hylleraas. Fig. 2.5 shows a plot of the total energy as a function of the

internuclear separation R(λ). The total energy shown in Fig. 2.5 has a

minimum at a nuclear separation of Re = 2a0, where a0 is the Bohr radius,

i.e. Re = 1.06Å, which corresponds to the stable equilibrium configuration.

For distances significantly larger than this the energy is that of a hydrogen

atom and a free proton. At a distance smaller than the equilibrium separation

length there is a larger repulsion of the two protons, and as a result does not

correspond to a stable molecular state.
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Figure 2.5: The total energy (electron plus internuclear) of H+
2 , for fixed nuclei,

as a function of the internuclear separation.

The total energy of H+
2 may be computed for various nuclear separations,

using either the method of Jaffé or Hylleraas. However, an analytic expression

for the total energy is at the moment unavailable. Therefore, we must

represent the total energy, as a function of the nuclear separation, by a

suitable approximation. Using this energy, as in the Born-Oppenheimer

approximation, the nuclear wave equation may be solved with the total

energy term playing the role of the potential. This is now reduced to a

familiar two-body problem, and consequently two one-body problems. One

describes the centre of mass moving as a free particle, with the mass of the

combined protons, and the other describes the two protons moving effectively

as a particle, with the reduced mass, in the field of the total energy. The

motion of the reduced mass, as opposed to the translational motion of the

centre of mass, is of most interest.

The asymmetrical nature of the total energy is evident on the scale of Fig.

2.5. As discussed previously, a suitable approximation is needed to represent

the total energy, which would subsequently allow the nuclear wave equation

to be solved. Such a potential is the Morse potential.
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2.6. THE GROUND STATE OF THE HYDROGEN MOLECULE ION

By matching a Morse curve to the total energy, Hylleraas has obtained an

expression for the energy levels of the hydrogen molecule ion. The theory of

the Morse potential may be found in Chapter 10 of [8], which we shall omit

for brevity.

The energy levels of the hydrogen molecule ion (electron and internuclear

energy plus nuclear vibrational energy), for the Morse fit to the total energy

of Hylleraas, is:

EM
n = −0.602635 + 0.0103

(
n +

1

2

)
− 0.000255

(
n+

1

2

)2

, n = 0, 1, 2, ....

(2.67)

The energy levels derived by Hylleraas are in agreement with those obtained

experimentally by extrapolation of the observed vibrational levels for excited

states of the hydrogen molecule. The coefficients in Eqn. 2.67 are found by

Birge [37], and Richardson [38], to be 0.0104 and −0.00028, and 0.0105 and

−0.000275 respectively.

The ground state equilibrium parameters of H+
2 obtained by Hylleraas

are given in Table 2.2.

H+
2 ground state parameters

Re 1.06Å

Evib 0.138404eV

Emin −16.398542eV

D0 2.654438eV

Table 2.2: The equilibrium parameters in the ground state of H+
2 . These

are, respectively, the equilibrium nuclear separation, the ground state vibrational

energy, the minimum total energy, and the dissociation energy of the molecule.

The ground state energy of the hydrogen molecule ion isEg = −16.2601eV

≈ −0.59755au. The dissociation energy in the lowest vibrational state, into

a free proton and a hydrogen atom, is D0 = 2.6544eV ≈ 0.09755au, which

indicates the relative strength of the bond of the molecule. In conclusion, the

methods of Jaffé and Hylleraas give an accurate description of the ground

state of H+
2 , which is in agreement with experiment.
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The solution to the angular and radial equations now permit the electronic

wave function for the ground state of H+
2 to be constructed. From the

expressions for X(ξ) and Y (η) in Eqn. 2.50 and Eqn. 2.44, we obtain the

ground state wave function of the electron as

ψ(ξ, η) = e−
√
λ(ξ−1)HeunC

(
4
√
λ, 0, 0,−4R, 2R− λ+ μ,

−ξ + 1

2

)

×HeunC

(
0, 0,−1

2
,
λ

4
,
μ− λ+ 1

4
, 1 − η2

)
. (2.68)

The ground state probability density of the electron, along the line joining

the nuclei, is shown in Fig. 2.6. Fig. 2.7 shows a contour plot of the

probability density in two dimensions. Fig. 2.6 shows that the probability

density is large in the region between the nuclei and sufficiently small far

away from them. This expresses the fact that the electron is in essence

shared between the two protons and it is in this stable configuration for

which the proton repulsion is balanced by the electron-proton attraction.

This quantum mechanical argument demonstrates the existence of the one-

electron covalent bond in H+
2 , and shows that the ground state corresponds

to an actual bound state. In the next sections we shall see that only the

ground state of H+
2 exhibits binding.
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Figure 2.6: |ψ|2 along the line joining the nuclei. The variable x is the distance

(along the line of the nuclei) from the midpoint of the two nuclei to the electron.

The two nuclei are located at x = −1 and x = 1, where the units of x are the Bohr

radius a0. The electron is largely confined in a region between the two protons,

resulting in a stable bond.
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Figure 2.7: Contour plot of |ψ|2. The variable y is the distance (perpendicular

to the line of the nuclei) from the line of the nuclei to the electron. The two nuclei

are located at x = −1 and x = 1, where the units of x and y are the Bohr radius

a0. The contour levels are 0.1, 0.2,...,0.9. Fig. 2.6 is along the line y = 0.
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2.7 Anti-bonding excited state

The ground state of H+
2 is an even (gerade) state denoted by 2Σ+

g . In this

section an excited state of H+
2 shall be investigated. The excited state has zero

angular momentum along the nuclear axis (m = 0) and an odd (ungerade)

electron wave function. In the terminology introduced in section 2.2 this

state is denoted by 2Σ+
u . By solving the angular equation for an odd angular

confluent Heun function, and using the radial solution X1, a wave function

odd in η will be obtained. Two odd solutions to the angular equation (m = 0)

are given by the following expressions

Y odd
0 (η) = ηHeunC

(
0,

1

2
, 0,−λ

4
,
μ+ 1

4
, η2

)
, (2.69)

Y odd
1 (η) = ηHeunC

(
0, 0,

1

2
,
λ

4
,
μ− λ+ 1

4
, 1 − η2

)
. (2.70)

As in section 2.4, μo(λ) shall denote μ0n(λ) (n = 1, 3, 5, ...), i.e. the odd
physical separation parameters. These two solutions are linearly dependent
solutions when μ = μo(λ), but are linearly independent for an arbitrary μ.
Therefore, the Wronskian of these two solutions can be used to determine the
separation parameter μo(λ) as a function of λ. The odd angular Wronskian
in this case is given by

W odd
A (μ, λ, η) = −2η3

{[
HeunC

(
0, 0,

1
2
,
λ

4
,
μ− λ+ 1

4
, 1 − η2

)

×HeunCPrime
(

0,
1
2
, 0,−λ

4
,
μ+ 1

4
, η2

)]
+

[
HeunC

(
0,

1
2
, 0,−λ

4
,
μ+ 1

4
, η2

)

×HeunCPrime
(

0, 0,
1
2
,
λ

4
,
μ− λ+ 1

4
, 1 − η2

)]}
. (2.71)

Solving Eqn. 2.71 equal to zero, for example with η = 1/
√

2, will

determine the exact relation between μo(λ) and a given λ, as was the case

with the even Wronskian. The μo(λ) separation parameter will be different

from the μe(λ) separation parameter, but a series representation may also

be found by following the procedure given in section 2.3, only with l odd

starting from l = 1 now. The series representation in this case, for the lowest

μo(λ), is given by

μ01(λ) = −2 +
3

5
λ+

6

875
λ2 − 4

65625
λ3 +O(λ4). (2.72)
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Figure 2.8: Comparison between the μ01(λ) value computed using the Wronskian

method and with the series method for a range of λ values.

Comparison between the series solution and the results found using the

Wronskian are shown in Fig. 2.8. Again the Wronskian method deduces

the correct μo(λ) which is in agreement with the series solution obtained in

Eqn. 2.72. Thus, in both the even and odd cases, we have derived an exact,

transcendental equation that gives the separation parameter. In both the

even and odd cases the roots of a single equation give the values of all the

physically allowed separation parameters. As in Eqn. 2.47 we may derive

the Wronskian analytically using Abel’s identity:

W odd
A (μ, λ, η) =

F odd(μ, λ)

1 − η2
. (2.73)

The Wronskian function, F odd(μ, λ), is zero at one of the physical values

μ0n(λ), n = 1, 3, 5, .... For example, for λ = 1, the odd μ0n(λ) values are

approximately −1.393206,−11.492120, .... These values may be compared

with those in [30, 31] which are equivalent (the separation parameter in

[30, 31] is −1 times our separation parameter.)
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Figure 2.9: The Wronskian functions, F even(μ, λ) and F odd(μ, λ), plotted for

λ = 1. The Wronskian functions are dependent on μ, and each zero corresponds to

a different physically allowed μ0n(λ). In the even case the first few zeros correspond

to μ00, μ02, μ04, while in the odd case the zeros correspond to μ01, μ03.

The two Wronskian functions, even and odd cases, are plotted as functions

of μ for a fixed λ in Fig. 2.9. Fig. 2.9 shows that the zeros of the

Wronskian functions, in both the even and odd cases, correspond to the

physical separation parameters.

Obtaining μ01(λ) allows R(λ) to be determined by solving the radial

equation, as was the case in the ground state. This then allows the total

energy to be obtained as a function of the internuclear separation. The total

energy of H+
2 in the 2Σ+

u has been obtained by Bates et al. [39], who use Jaffé’s

method of solution for the radial equation, and the series value for μ01(λ).

Fig. 2.10 shows the total energy for this excited state of H+
2 . In this state

the total energy is repulsive for all internuclear separations, consequently it

does not correspond to a bound state.

We can physically understand why the 2Σ+
u state corresponds to an

anti-bonding state by determining the probability density. The probability

density for the anti-bonding state is shown in Fig. 2.11 and shows completely

contrasting behaviour when compared with the bonding ground state. In the

ground state the probability density is large in the region between the two

nuclei. In the excited state 2Σ+
u , however, the probability density is confined

in the region around the two nuclei.
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Figure 2.10: The total energy of H+
2 in the 2Σ+

u state, as a function of the nuclear

separation. The energy is monotonically decreasing in this range and always lies

above −0.5au, resulting in an unbound system. There is a small minimum when

R = 12.6a0 due to Van der Waal forces, but the energy is −5.8 × 10−5au, which

on the scale of the ground state energy is negligible [29]. (This state is labelled as

2pσu in the notation of [39].)

The presence of the extra node in the probability density also results in

an increase in the total energy, as confirmed in Fig. 2.10. These two facts

show that the electron in this excited state is not shared between the two

nuclei and is more likely to be bound to one of the protons. There is no

evidence of a sharing of the electron in this instance, and consequently a free

proton and a hydrogen atom are more stable than this configuration. This

indicates that, on excitation from the ground state to this (virtual) excited

state, H+
2 will readily dissociate into a free proton and a hydrogen atom.

In conclusion, this section has demonstrated the applicability of the

Wronskian method to determine μ0n(λ) exactly, where n is odd. The next

section shall generalize the Wronskian method to the case of arbitrary m.
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Figure 2.11: |ψ|2 along the line joining the nuclei. The variable x is the distance

(along the line of the nuclei) from the midpoint of the two nuclei to the electron.

The two nuclei are located at x = −1 and x = 1, where the units of x are the Bohr

radius a0. The node in the center of the nuclear axis results in an energy larger

than the ground state energy leading to instability.
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Figure 2.12: Contour plot of |ψ|2. The variable y is the distance (perpendicular

to the line of the nuclei) from the line of the nuclei to the electron. The two nuclei

are located at x = −1 and x = 1, where the units of x and y are the Bohr radius

a0. The contour levels are 0.1, 0.2,...,0.9. Fig. 2.11 is along the line y = 0.
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2.8 Non-zero orbital angular momentum

We consider here the general solutions to Eqn. 2.39, and extend the

Wronskian method to states with non-zero m (angular momentum along

the nuclear axis). In the angular case, the Wronskian gives an exact

transcendental relation between the separation parameter μmn(λ) and λ.

As in section 2.4.1, we seek to determine the μmn(λ) dependency by

solving the angular equation. This may be done using even or odd linearly

dependent solutions via the zeros of the Wronskian. For the even case, the

angular equation has the following solutions

Y even
1 (η) = (1 − η2)m/2HeunC

(
0, m,−1

2
,
λ

4
,
μ− λ+ 1 +m2

4
, 1 − η2

)
,

Y even
0 (η) = (1 − η2)m/2HeunC

(
0,−1

2
, m,

−λ
4
,
μ+ 1 +m2

4
, η2

)
. (2.74)

In the odd case two solutions to the angular equation are given by

Y odd
1 (η) = (1 − η2)m/2ηHeunC

(
0, m,

1

2
,
λ

4
,
μ− λ+ 1 +m2

4
, 1 − η2

)
,

Y odd
0 (η) = (1 − η2)m/2ηHeunC

(
0,

1

2
, m,−λ

4
,
μ+ 1 +m2

4
, η2

)
. (2.75)

These solutions enable the Wronskian method to be applied for the case

of arbitrary m to deduce the μmn(λ) dependency. We shall illustrate this

only in the m = 1 case. Solving the Wronskian of the two odd solutions in

Eqns. 2.75 equal to zero (for a given λ) will give the set μ1n(λ), (n = 2, 4, ...),

whereas solving the Wronskian of the two even solutions will give the set

μ1n(λ), (n = 1, 3, ...). The Wronskian functions, F even(μ, λ) and F odd(μ, λ),

are defined as in Eqn. 2.47 and Eqn. 2.73. Fig 2.13 shows the Wronskian

functions plotted as functions of μ.

As shown in Fig. 2.13, the zeros of the Wronskian functions give all

physically allowed separation parameters. For m = 1, F even(μ, λ) determines

μ11, μ13, μ15, which are approximately −1.795305,−11.534818,−29.513713,

when λ = 1. In the odd case F odd(μ, λ) determines μ12, μ14, which

are approximately −5.567527, −19.520683, when λ = 1. The values of

the separation parameters are in agreement with those of [30, 31]. (The

separation parameter in [30, 31] is −1 times our separation parameter.)
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Figure 2.13: The Wronskian functions, F even(μ, λ) and F odd(μ, λ), plotted for

λ = 1, in the case where m = 1. The zeros of both functions give the physically

allowed values μ1n(λ). The first few zeros of F even(μ, λ) correspond to μ11, μ13, μ15,

whereas the zeros of F odd(μ, λ) correspond to μ12, μ14.

Now that the μmn(λ) relation has been found, for arbitrary m, Eqn. 2.66

may be used to derive the R(λ) dependency and determine the energy of

H+
2 in excited states. Bates et al. [39] have obtained the total energy of H+

2

for the m = 1 gerade and ungerade states, which are shown in Fig. 2.14.

(The values for μmn(λ) used by Bates et al. are those based on the series

expansions.)

The 2Πu energy curve shows a shallow minimum; however, the minimum

energy is above the energy of a free proton and a hydrogen atom. The 2Πu

state is, therefore, a metastable state with respect to a free proton and a

hydrogen atom. The 2Πg state is repulsive for all internuclear separations

and corresponds to an anti-bonding state. It is only the 2Σ+
g state which has

a minimum below the energy of a free proton and a hydrogen atom. All other

excited states, with arbitrary m, either have a minimum above this energy,

or are repulsive for all internuclear separations. Thus the most important

state is the bonding ground state.
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Figure 2.14: The total energy of H+
2 in two excited states. The repulsive state

which has no minimum (red curve) is a 2Πg state, while the state with a shallow

minimum (blue curve) is a 2Πu state. (In the notation of [39] the 2Πg state is

labelled 3dπg, while the 2Πu state is labelled 2pπu.)

In this Chapter the Wronskian method has been shown to give exact

determination of the separation parameter μmn(λ) in the angular equation.

We have shown that, in either the even or odd case, all physically allowed

separation parameters may be obtained by the roots of a single Wronskian

function. It was not possible to extend the Wronskian method to the radial

case, however, this is an area for further research.

2.9 An invariant of the motion

The classical Laplace-Runge-Lenz vector is well-known in classical mechanics

[40]. It is an invariant of the motion (it has zero time derivative) and its

formulation allows the description of the path of a classical body under the

influence of a centrally symmetric field. Pauli [41] was also able to solve

the hydrogen atom energy spectrum by considering a similar invariant of the

motion.
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Erikson and Hill [42] showed that

Ω =
1

2�2
(L1 · L2 + L2 · L1) + 2a

mee
2

�2
(Z1 cos θ1 + Z2 cos θ2), (2.76)

is an invariant for the generalized one-electron binuclear ion, with nuclear

charges Z1 and Z2. (This generalized problem is also solvable by separation

of variables in elliptic coordinates.) In this expression a = R/2 where R is

the nuclear separation. L1 and L2 are the orbital angular momenta of the

electron about the nuclei 1 and 2.

The geometry of this configuration is shown in Fig. 2.1 with the two

nuclei located on the z axis. However, the origin has been shifted to midway

between the nuclei. The electron is a distance ρ from the nuclear axis and a

distance z from the origin (along the z axis). Therefore, cos(θ1) = (a+ z)/r1

and cos(θ2) = (a− z)/r2.

If we denote the electron orbital angular momentum about the origin (at

the midpoint between the nuclei) by L, where Lx = (r×p)x = −i�(y∂z−z∂y),
then the following expressions are found⎧⎪⎨

⎪⎩
L1x = Lx + i�a∂y, L2x = Lx − i�a∂y.

L1y = Ly − i�a∂x, L2y = Ly + i�a∂x.

L1z = Lz , L2z = Lz.

(2.77)

L2 =
1

2
(L1 · L2 + L2 · L1) − �

2a2(∂2
x + ∂2

y),

= �
2{−x2(∂2

y + ∂2
z ) − y2(∂2

z + ∂2
x) − z2(∂2

x + ∂2
y)

+ 2 [yz∂y∂z + zx∂z∂x + xy∂x∂y + x∂x + y∂y + z∂z ]}. (2.78)

The electronic Hamiltonian for the generalized one-electron binuclear ion

(in [au]) is

He = −1

2
(∂2
x + ∂2

y + ∂2
z ) −

Z1

r1
− Z2

r2
. (2.79)

Using the expressions for the electronic Hamiltonian and Ω given in Eqn.

2.79 and Eqn. 2.76, the following commutation relations can be deduced

[Lz, He] = 0, (2.80)

[Ω, Lz] = 0, (2.81)

[Ω, He] = 0. (2.82)
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2.9. AN INVARIANT OF THE MOTION

Since Ω commutes with He there exist simultaneous eigenstates of Ω and

He. Thus, the eigenvalue equation Ωψ = ωψ for Ω will correspond to the

eigenvalue equation Heψ = Eψ for He, with ψ an eigenfunction of both

operators.

In bipolar coordinates (using [au]) the operator Ω becomes

Ω =
R2 + r2

1 − r2
2

2r1
(∂r1 + Z1) +

R2 − r2
1 + r2

2

2r2
(∂r2 + Z2)

+
R2ρ2

r1r2
∂r1∂r2 +

R2 − r2
1 − r2

2

2ρ2
∂2
φ, (2.83)

where ρ is given in Eqn. 2.11. Using elliptic coordinates, as in section 2.2,

with ρ2 = (R/2)2(ξ2 − 1)(1− η2) and z = (R/2)ξη, the invariant Ω, omitting

azimuthal dependence, is found to be

Ω =
1

ξ2 − η2

{
(1 − η2)∂ξ(ξ

2 − 1)∂ξ − (ξ2 − 1)∂η(1 − η2)∂η

+R[(Z1 + Z2)ξ(1 − η2) + (Z1 − Z2)η(ξ
2 − 1)]

}
. (2.84)

The eigenvalue equation Ωψ = ωψ reads{
1

ξ2 − 1
∂ξ(ξ

2 − 1)∂ξ − 1

1 − η2
∂η(1 − η2)∂η

+R(Z1 + Z2)
ξ

ξ2 − 1
+R(Z1 − Z2)

η

1 − η2
− ω

ξ2 − 1
− ω

1 − η2

}
ψ = 0. (2.85)

The eigenvalue equation derived in Eqn. 2.85 is separable in elliptic

coordinates. As in section 2.2, we let ψ(ξ, η) = X(ξ)Y (η). The eigenvalue

equation given in Eqn. 2.85 can be rewritten as the following coupled

ordinary differential equations for X(ξ) and Y (η):

d

dξ

{
(ξ2 − 1)

dX

dξ

}
+ [R(Z1 + Z2)ξ − ω]X − (ξ2 − 1)νX = 0, (2.86)

d

dη

{
(1 − η2)

dY

dη

}
− [R(Z1 − Z2)η − ω]Y − (1 − η2)νY = 0, (2.87)

where ν is the separation of variables constant.

The one-electron binuclear ion has a Hamiltonian (in [au]) given by

He = −1

2
∇2 − Z1

r1
− Z2

r2
, (2.88)
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2.9. AN INVARIANT OF THE MOTION

where the Laplacian in elliptic coordinates is given in Eqn. 2.16. Setting

ψ = X(ξ)Y (η), and omitting the azimuthal variation (that is in the case

m = 0), we find that the electronic energy eigenvalue equation Heψ = Eψ,

with λ = −ER2/2 and separation of variables constant μ, gives

d

dξ

{
(ξ2 − 1)

dX

dξ

}
+ [R(Z1 + Z2)ξ]X + (−λξ2 + μ)X = 0, (2.89)

d

dη

{
(1 − η2)

dY

dη

}
− [R(Z1 − Z2)η]Y + (λη2 − μ)Y = 0. (2.90)

Comparison of the equations for X(ξ) in Eqn. 2.86 and Eqn. 2.89, and

for Y (η) in Eqn. 2.87 and Eqn. 2.90, shows that they are equivalent if the

following two conditions are met by the separation of variables constants

ν = λ, (2.91)

ω = λ− μ. (2.92)

Thus the separation of variables of Ω, in the case m = 0, leads to exactly the

same coupled differential equations that arise on the separation of variables

in Schrödinger’s equation. As has been pointed out by Erikson and Hill [42],

separation of the operator Ω is possible only in the case m = 0. It seems the

operator Ω will not allow the solution to the problem, since in this case the

projections of the operator Ω and He onto the m = 0 subspace give the same

eigenvalue equations.
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Chapter 3

Scalar and Electromagnetic

beams

This Chapter focuses on the study of free space scalar and electromagnetic

beams represented by solutions of Helmholtz’s equation. In the case of scalar

beams, Helmholtz’s equation is separable in oblate spheroidal coordinates.

The resulting angular equation is the same as the angular equation that

arises in the study of H+
2 . This connection allows the physical values of

the separation parameter for scalar beams to be given by the zeros of the

Wronskian of a pair of solutions to the angular equation. We shall derive

this relation explicitly and show that, in both the H+
2 problem and the

scalar beam problem, the solution to the angular equation is a confluent

Heun function. Following this, exact beam wave functions, initially in

terms of confluent Heun functions, and subsequently in terms of oblate

spheroidal wave functions, shall be investigated. For the oblate spheroidal

wave functions to represent nonparaxial scalar beams the angular function

Smn(β, η) requires odd n − m. However, they do not represent physical

scalar beams, as this subset leads to wave functions with a discontinuous z

derivative, in the entire focal plane z = 0. The properties of these exact

beam wave functions shall be compared to the exact spherical Bessel beams

and approximate paraxial Gaussian beam. A discussion is also presented of

the generalized Bessel beams and the Bateman solution of the wave equation,

which express the beam solutions as certain integrals.
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3.1. INTRODUCTION

3.1 Introduction

The description of all electromagnetic phenomena is governed by Maxwell’s

equations plus the Lorentz force law. In SI units the Maxwell equations read

(i) ∇ · E =
ρ

ε0
(Gauss′s law),

(ii) ∇ · B = 0 (No magnetic monopoles),

(iii) ∇× E +
∂B

∂t
= 0 (Faraday′s law),

(iv) ∇× B− μ0ε0
∂E

∂t
= μ0J (Ampère − Maxwell law).

(3.1)

By applying the curl operator to the curl equations, and using the identity

∇× (∇×A) = ∇(∇·A)−∇2A, we obtain the wave equation for the electric

and magnetic fields. In free space, with no charge or current sources, these

become

∇2E =
1

c2
∂2E

∂t2
, ∇2B =

1

c2
∂2B

∂t2
, (3.2)

where c = 1/
√
μ0ε0 is the speed of light.

Assuming the electric and magnetic fields have harmonic time dependence

exp(−iωt), where ω = ck, we obtain Helmholtz’s equation for the scalar

amplitude ψ(r)

(∇2 + k2)ψ(r) = 0, (3.3)

where ψ(r) is any one of the components of E(r) or B(r). Solving Eqn. 3.3,

subject to Eqns. 3.1, for the electric and magnetic fields directly is often a

difficult problem. Therefore, it is often advantageous to use the potential

formulation of electrodynamics.

A continuous electromagnetic beam, with angular frequency ω = ck, has

electric and magnetic fields E(r, t) and B(r, t) which can be found from the

complex magnetic vector potential A(r, t) and the scalar potential Φ(r, t) as

follows:

B = ∇× A, (3.4)

E = −∇Φ − ∂A

∂t
. (3.5)
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3.1. INTRODUCTION

These two equations satisfy, identically, the two homogeneous Maxwell

equations. The behaviour of the potentials is consequently determined by the

two inhomogeneous Maxwell equations. In free space the two inhomogeneous

equations of Eqns. 3.1 can be written in terms of the potentials as

∇2Φ +
∂

∂t
(∇ · A) = 0, (3.6)

∇2A − 1

c2
∂2A

∂t2
−∇

(
∇ · A +

1

c2
∂Φ

∂t

)
= 0. (3.7)

The magnetic vector potential is arbitrary to the extent that we may add

the gradient of some scalar (Λ(r, t)), whereas the scalar potential is arbitrary

in that we may subtract the time derivative of the same scalar quantity

(Λ(r, t)). This freedom allows us to impose a suitable gauge transformation

which relates the potentials A and Φ to each other. (The invariance of the

fields under such gauge transformations is known as gauge invariance.) One

of the most commonly used gauges is the Lorenz gauge because it treats A

and Φ on an equal level, and also because of its suitability in relativistic

electrodynamics. The Lorenz gauge is defined as

∇ · A +
1

c2
∂Φ

∂t
= 0. (3.8)

The use of the Lorenz gauge in Eqn. 3.6 and Eqn. 3.7 uncouples the two

equations and leads to two separate wave equations with terms involving only

A or Φ respectively:

∇2Φ − 1

c2
∂2Φ

∂t2
= 0, (3.9)

∇2A− 1

c2
∂2A

∂t2
= 0. (3.10)

If we assume harmonic time dependence exp(−iωt), where ω = ck, for both

the potentials A and Φ, then Eqn. 3.9 and Eqn. 3.10 reduce to the Helmholtz

equation Eqn. 3.3, but now the interpretation of ψ(r) is that it is associated

with one of the potentials. Thus in free space, Φ and all three components

of A satisfy Eqn. 3.3, which allows both the electric and magnetic fields to

be subsequently derived.
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As has already been mentioned, this formulation of electrodynamics is

advantageous in that deriving the fields from the potentials is easier than

solving for the fields directly. Section 3.7 shall investigate the construction

of electric and magnetic fields from the solutions of the Helmholtz equation

for the potentials. Chapter 6, section 5 of Jackson [43], and Chapter

10 of Griffiths [44] give further details on the potential formulation of

electrodynamics.

In the quantum particle beam case we shall assume that the probability

amplitude Ψ(r, t) represents a coherent beam of spinless, non-interacting

particles of mass m, each with energy �
2k2/2m, where k is the wavenumber.

The time evolution of the particle beam is governed by the Schrödinger

equation ĤΨ = i�∂Ψ/∂t, where Ĥ is an effective Hamiltonian for an atom

of mass m in an external potential V (r):

Ĥ = − �
2

2m
∇2 + V (r). (3.11)

From the Schrödinger equation the well-known continuity equation follows

∂|Ψ|2
∂t

+ ∇ ·
{

�

m
Im(Ψ∗∇Ψ)

}
= 0, (3.12)

where the term in the parentheses is known as the probability current

density J. The continuity equation physically represents the conservation

of probability. By the divergence theorem the integral of J over a surface S

is equal to the decrease in probability of finding the particle in the (fixed)

volume V, bounded by S,∮
S

J · da = − d

dt

∫
V

|Ψ|2d3r. (3.13)

In the case of ‘steady beams’, i.e. a particle beam in an energy eigenstate

with time evolution given by Ψ(r, t) = ψ(r) exp(−iωt), where ω = �k2/2m,

Schrödinger’s time-independent equation in free space is given by (∇2 +

k2)ψ(r) = 0. In order to describe particle beams we must also solve Eqn.

3.3; the interpretation of ψ(r) now being a probability amplitude for the

particle beam, which satisfies the continuity equation Eqn. 3.12.
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3.2. OBLATE SPHEROIDAL COORDINATES

Lekner [45] discusses exact particle beams in terms of spherical Bessel

beams, to be defined later, and discusses some of their properties such

as their momentum content per unit length. There are also experimental

investigations of focusing and diffracting Helium atom beams referenced in

[45]. The next section shall investigate exact solutions of the Helmholtz

equation by using oblate spheroidal coordinates.

3.2 Oblate spheroidal coordinates

In section 2.2 the (electronic) Schrödinger equation for the H+
2 problem was

shown to be separable in prolate spheroidal coordinates. For the scalar beam

problem we use oblate spheroidal coordinates, in which

ρ = b
√
ξ2 + 1

√
1 − η2, z = bξη, φ = φ,

0 ≤ η ≤ 1, −∞ < ξ <∞, 0 ≤ φ ≤ 2π. (3.14)

The oblate spheroidal coordinate system, shown in Fig. 3.1, is formed by

rotating the two-dimensional elliptic coordinate system, consisting of confocal

ellipses and hyperbolas, about the minor axis of the ellipse. The interfocal

distance is 2b, and it is customary to make the z axis the axis of revolution.

(The prolate spheroidal coordinate system is obtained by rotating about

the major axis.) As defined, the oblate spheroidal coordinate system is an

orthogonal curvilinear coordinate system.

The closed form expressions for the ellipsoids, or hyperboloids, of the

oblate spheroidal coordinate system can be obtained by eliminating one of

the variables in Eqns. 3.14. For example, eliminating η from Eqns. 3.14, we

get the ellipsoid
ρ2

b2(ξ2
0 + 1)

+
z2

b2ξ2
0

= 1. (3.15)

Likewise, by setting η = η0 and eliminating ξ from Eqns. 3.14, we get the

hyperboloid
ρ2

b2(1 − η2
0)

− z2

b2η2
0

= 1. (3.16)
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Figure 3.1: The oblate spheroidal coordinate system. The confocal ellipsoids

(lines) are surfaces of constant ξ. The central ellipsoid (the disk z = 0, ρ ≤ b) is at

ξ = 0, with ξ increasing or decreasing by 0.2 in each of the outer half-ellipsoids.

The confocal hyperboloids (dashed) are surfaces of constant η. In the focal plane

z = 0 the region outside the disk ρ ≥ b is shown by the solid line η = 0. The z axis

is given by η = 1. The hyperboloids increase in η by 0.2 from the η = 0 central

hyperboloid.

In the oblate spheroidal coordinate system a surface of constant |ξ0| (>

0) is a flattened ellipsoid of revolution with major axis of length 2b(ξ2
0 +1)1/2

and minor axis of length 2b|ξ0|. The surface ξ0 = 0 is a circular disk of radius

b which lies in the x, y plane and is centred at the origin. The surface η =

constant (< 1) is a hyperboloid of revolution of one sheet, with an asymptotic

cone whose generating line passes through the origin, and is inclined at an

angle θ = cos−1 η to the z axis. The surface φ = constant is the plane through

the z axis making angle φ with the x, z plane.
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3.2. OBLATE SPHEROIDAL COORDINATES

In relation to scalar beams the axis along which the beam propagates,

known as the beam axis, is taken to be the z axis, which in the oblate

spheroidal coordinate system corresponds to η = 1 with ξ ranging from

−infinity to infinity. The focal plane of the beam is a little more complicated:

z = 0 corresponds to η = 0 for ρ ≥ b, while for ρ ≤ b it corresponds to ξ = 0.

The parameter b in Eqns. 3.14 determines the length scale of the

coordinate system, and also properties of the scalar beam. In the limit of

large kb the well-known Gaussian beam is a good approximation to an exact

scalar beam solution of the Helmholtz equation. The Gaussian beam is [46]

ψG =
b

b+ iz
exp

[
ikz − kρ2

2(b+ iz)

]
. (3.17)

The length of the focal region of the beam is given by b. The beam waist (at

z = 0) is W0 = (2b/k)1/2, since there |ψG| = exp(−ρ2/W 2
0 ). Physically the

beam waist represents the minimum width of the beam in the focal plane

(z = 0), whereas along the beam axis (ρ = 0, z > 0) the width of the beam

increases with distance from the focal plane corresponding to angular spread

in the wavefronts.

Throughout this Chapter we shall use the parameter β = kb in order to

describe the type of beam. For example, when β is large the beam waist is

many wavelengths wide and the focal region is many wavelengths long. In

the large β (paraxial) case the angular divergence of the beam from the z

axis, given by the angle α, is related to β by tanα = (2/β)1/2 [47]. Thus

large β corresponds to a weakly focused beam whose angular divergence from

the beam axis is small.

In contrast, a small value of β corresponds to a tightly focused beam

whose width increases along the beam axis. A beam with a small beam waist

(small β) is tightly squeezed in the focal region and consequently spreads in

width along the beam axis. Further discussion of the properties of beams

may be found in Chapter 3 of [46]. We shall now seek exact solutions of

the Helmholtz equation for scalar beams, by utilizing the separability of the

Helmholtz equation in oblate spheroidal coordinates.
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3.3 Angular and radial equations

The Laplacian in oblate spheroidal coordinates, omitting azimuthal variation,

is

∇2 =
1

b2(ξ2 + η2)

{
∂ξ(ξ

2 + 1)∂ξ + ∂η(1 − η2)∂η
}
. (3.18)

The Helmholtz equation is thus

{
∂ξ(ξ

2 + 1)∂ξ + ∂η(1 − η2)∂η + β2(ξ2 + η2)
}
ψ(ξ, η) = 0. (3.19)

Setting ψ(ξ, η) = X(ξ)Y (η) in Eqn. 3.19 we obtain the following angular

and radial equations, with μ as the separation of variables parameter

d

dη

{
(1 − η2)

dY

dη

}
+ (β2η2 − μ)Y = 0, (3.20)

d

dξ

{
(ξ2 + 1)

dX

dξ

}
+ (β2ξ2 + μ)X = 0. (3.21)

The parameter μ takes only certain physical values dependent on β. In

the case where there is no azimuthal variation the allowed values of the

separation of variables parameter are denoted by μ0n(β), n = 0, 1, 2, ....

If we had included azimuthal variation in the Helmholtz equation then we

would obtain eigenfunctions exp(±imφ) in the wave function, which would

lead to a separation of variables parameter μmn(β), i.e. with m dependence,

see Chapter 3 of [31]. In this case, however, we may neglect them dependence

since it only gives the scalar beam a certain amount of angular momentum.

By comparison with the angular equation Eqn. 2.39, we have that the

angular equation is exactly the same. Thus, as mentioned at the beginning of

this Chapter, we have this remarkable connection between the H+
2 problem

in prolate spheroidal coordinates and the scalar beam problem in oblate

spheroidal coordinates. (Oblate rather than prolate because the energy of

H+
2 is negative.) Both problems have the same angular equation, with λ = β2.

As the solution to the angular equation for which Y (η) is finite at η2 = 1

determines μmn(λ) or μmn(β), the angular problem for H+
2 and for beams is

equivalent. This relation further elucidates a reason why the H+
2 problem

is of such importance. Solving this problem would allow the solution of

(separable) scalar beams, in oblate spheroidal coordinates.
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3.3. ANGULAR AND RADIAL EQUATIONS

The angular equation has two linearly independent solutions, where one

is even and the other is odd. There is a pair of even solutions, and a pair

of odd solutions. One of each pair is regular at the ordinary point η = 0,

and the other solution is regular at the regular points η2 = 1, for arbitrary

μ. These types of solutions have already been discussed in Chapter 2.

The two even solutions, one which is regular at η = 0 and the other

regular at η2 = 1, are confluent Heun functions and are given by

Y even
0 (η) = HeunC

(
0,−1

2
, 0,

−β2

4
,
μ+ 1

4
, η2

)
, (3.22)

Y even
1 (η) = HeunC

(
0, 0,−1

2
,
β2

4
,
μ− β2 + 1

4
, 1 − η2

)
. (3.23)

The two odd angular functions, one which is regular at η = 0 and the other

regular at η2 = 1, are given by

Y odd
0 (η) = ηHeunC

(
0,

1

2
, 0,

−β2

4
,
μ+ 1

4
, η2

)
, (3.24)

Y odd
1 (η) = ηHeunC

(
0, 0,

1

2
,
β2

4
,
μ− β2 + 1

4
, 1 − η2

)
. (3.25)

The notation μe(β), μo(β) shall be used in this Chapter for convenience

since we shall need to distinguish between both even and odd solutions,

and also even and odd separation parameters simultaneously. In this case

μe(β) = μ0n(β), where n = 0, 2, 4,... is an arbitrary even number, and

similarly μo(β) = μ0n(β), where n = 1, 3, 5,... is an arbitrary odd number.

The Wronskian of two linearly dependent angular solutions can be used to

obtain the allowed separation parameters μe/o(β); the calculation is that of

Chapter 2 with λ = β2. The Wronskian in the scalar beam case also gives a

transcendental relation between μe/o(β) and β whose solution is equivalent

with those obtained via the infinite series representations of μe/o(β).

In the oblate spheroidal coordinate system the radial equation for scalar

beams is, however, different from that derived for H+
2 . There is no parameter

R(β) in this instance, and so we only need a single Wronskian to determine

the solution completely. It should be noted that in this case the radial

equation may be obtained from the angular equation by the substitution

η → iξ.
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3.4. ASYMPTOTICS OF THE RADIAL SOLUTIONS

This symmetry will play an important role later when we derive integral

relations between the angular and radial solutions.

Since we only require the separation parameter μe/o(β), we need a single

even and a single odd radial confluent Heun solution. There is no need for

the second even or odd radial confluent Heun solution, which is regular at

ξ = ±i. The even and odd radial confluent Heun solutions, which are regular

at ξ = 0, are given by

Xeven
0 (ξ) = HeunC

(
0,−1

2
, 0,

−β2

4
,
μ+ 1

4
,−ξ2

)
, (3.26)

Xodd
0 (ξ) = ξHeunC

(
0,

1

2
, 0,

−β2

4
,
μ+ 1

4
,−ξ2

)
. (3.27)

Now that the separable solutions of the Helmholtz equation have been

found all other solutions may be obtained, either in the product form

X(ξ)Y (η), or through an infinite sum of such products. We shall concentrate

on representing exact beam wave functions through the former approach, but

before investigating these solutions there is an important physical constraint

we must impose on the beam solutions. A physical beam in free space is

forward propagating. Therefore we must fix the beam solution’s asymptotic

form to have purely forward directional propagating wavefronts. The next

section shall investigate the asymptotic form of the radial solutions presented

here.

3.4 Asymptotics of the radial solutions

In order to construct physical scalar or electromagnetic beams, propagating

in free space, we require that the solutions of Helmholtz’s equation are

forward propagating. To ensure the solutions derived satisfy this constraint

we must examine their asymptotic behaviour. This section will rigourously

derive the asymptotic form of the even and odd radial solutions. Following

this analysis we are then able to form a linear combination of the two radial

solutions which represent a forward propagating beam solution.

The radial equation as derived previously is given by

(ξ2 + 1)
d2X

dξ2
+ 2ξ

dX

dξ
+ (β2ξ2 + μ)X = 0. (3.28)
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3.4. ASYMPTOTICS OF THE RADIAL SOLUTIONS

In the asymptotic limit that βξ → ∞ the radial equation becomes

ξ2d
2X

dξ2
+ 2ξ

dX

dξ
+ β2ξ2X = 0, (3.29)

which may be written as

d2

dξ2
(ξX) + β2ξX = 0. (3.30)

The general solution to Eqn. 3.30 is given by

X(ξ) = c1(β)
cos(βξ)

βξ
+ c2(β)

sin(βξ)

βξ
. (3.31)

This represents the general asymptotic form of the solutions to the radial

equation for large βξ. The coefficient functions c1(β) and c2(β) are functions

of μ (and hence of β) and depending on the particular values these functions

take we will obtain the asymptotic form of the even and odd radial confluent

Heun solutions.

The coefficients in Eqn. 3.31 are, however, undetermined. This is

because the analysis performed here has been a local one and as such cannot

determine the coefficient functions for each individual radial solution. In

order to ascertain the coefficient functions we must perform a global analysis

of the radial solutions. Such analysis is usually performed through integral

representations of the solutions, which is not possible in this case. Whereas

solutions of the hypergeometric differential equation have well-known integral

representations there are, at this stage, no non-trivial integral representations

for confluent Heun functions. Only integral relations in terms of simpler

confluent Heun functions are known at this stage. See [34], [35] for further

details.

The differential equation satisfied by the spherical Bessel functions jn(βξ)

is given by

ξ2d
2jn
dξ2

+ 2ξ
djn
dξ

+ [β2ξ2 − n(n + 1)]jn = 0. (3.32)

The correspondence between Eqn. 3.29 and Eqn. 3.32 at large ξ is clear,

and several authors have considered expansions in terms of spherical Bessel

functions [31, 48].
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Therefore, despite the non-existence of an integral representation of the

radial confluent Heun solutions, we can still perform a global analysis via an

expansion in terms of spherical Bessel functions. Assuming such an expansion

to exist, we write the even and odd radial solutions as follows

Xeven
0 (ξ) =

∞∑
n=0,2,4,...

an(β)jn(βξ), (3.33)

Xodd
0 (ξ) =

∞∑
n=1,3,5,...

bn(β)jn(βξ). (3.34)

The spherical Bessel functions do have an integral representation, which is

jn(z) = (−i)n1

2

∫ 1

−1

exp(iz cos(θ))Pn(cos(θ))d(cos(θ)), (3.35)

where Pn(cos(θ)) represent the Legendre polynomials of the first kind. The

spherical Bessel functions have expansions about the origin given by

jn(z) = zn
∞∑
l=0

(−z2/2)l

l!(2n+ 2l + 1)!!
. (3.36)

The even and odd radial solutions may also be expanded about the origin

as Taylor series expansions:

Xeven
0 (ξ) =

∞∑
n=0,2,4,...

An(β)ξn, |ξ| < 1, (3.37)

Xodd
0 (ξ) =

∞∑
n=1,3,5,...

Bn(β)ξn, |ξ| < 1. (3.38)

The coefficients, An(β) and Bn(β), are obtained from the radial differential

equation and satisfy a three term recurrence relation, namely

(n+ α)(n+ α− 1)Cn(β)

+ [(n+ α− 2)(n+ α− 3) + μ+ 2(n+ α− 2)]Cn−2(β)

+ β2Cn−4(β) = 0, n = 0, 2, 4, ..., (3.39)

where α = 0 for the even solution, α = 1 for the odd solution, and in the

appropriate case Cn(β) will be either An(β) or Bn+1(β).
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3.4. ASYMPTOTICS OF THE RADIAL SOLUTIONS

Note that the terms with negative indices are zero, and A0 = B1 = 1. The

recurrence relation also provides a method of deriving the transcendental

relation between μ0n(β) and β. We shall compare the method with the results

observed in the study of H+
2 and show, explicitly, that the same μ0n(β) series

representations are obtained.

The radial series solutions are convergent for |ξ| < 1, which requires a

μ0n(β) such that the coefficients, An(β) or Bn(β), tend to zero as n tends

to ∞. Setting Cn(β) in Eqn. 3.39 equal to zero gives equations for μ0n(β)

of degree n/2. Thus the transcendental relation, in order that we have the

correct μ0n(β), is that limn→∞Cn(β) = 0. Solving C8 equal to zero, for

example, we find that the series representations for the lowest μ0n(β) obtained

are given by

μ00(β) =
1

3
β2 +

2

135
β4 +

4

8505
β6 +O(β8), (3.40)

μ01(β) = −2 +
3

5
β2 +

6

875
β4 − 4

65625
β6 +O(β8). (3.41)

The condition of a convergent series solution imposes the requirement that

the coefficient functions tend to zero; it also imposes the condition that μ

tends to the correct μ0n(β) with the same transcendental form as was derived

in the study of the eigenvalues of H+
2 . The even series solution for μ00(β)

obtained here agrees with the one derived in section 2.3 (with λ = β2), and

the odd series solution for μ01(β) agrees with the odd μ01(λ) that was derived

in section 2.7.

The expansion of the spherical Bessel functions about the origin, along

with the Taylor expansion of the confluent Heun functions about the origin,

means that, in principle, we can obtain the coefficients an(β) and bn(β).

Define the functions U(β, cos(θ)) and V (β, cos(θ)) as follows

∞∑
n=0,2,4,...

(−i)nan(β)Pn(cos(θ)) ≡ U(β, cos(θ)), (3.42)

∞∑
n=1,3,5,...

(−i)nbn(β)Pn(cos(θ)) ≡ iV (β, cos(θ)). (3.43)
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3.4. ASYMPTOTICS OF THE RADIAL SOLUTIONS

The radial solutions then have the following form

Xeven
0 (ξ) =

1

2

∫ 1

−1

exp(iβξ cos(θ))U(β, cos(θ))d(cos(θ)), (3.44)

Xodd
0 (ξ) =

i

2

∫ 1

−1

exp(iβξ cos(θ))V (β, cos(θ))d(cos(θ)). (3.45)

Integration by parts of the expression in Eqn. 3.44 gives

Xeven
0 (ξ) =

1

2iβξ
(U(β, 1) exp(iβξ) − U(β,−1) exp(−iβξ)) +O(ξ−2). (3.46)

The sum in U is over even n, and Pn(−1) = (−1)nPn(1); hence we rigourously

have that the asymptotic form of the even radial solution is given by

Xeven
0 (ξ) = U(β, 1)

sin(βξ)

βξ
+O(ξ−2), βξ → ∞. (3.47)

Thus, we have derived that for the even radial confluent Heun solution,

returning to the general asymptotic solution in Eqn. 3.31, c2(β) = U(β, 1)

and c1(β) = 0. This is subject to the constraint that μ(β) = μe(β), with the

series representation for the lowest μe(β) given in Eqn. 3.40.

Using the same method, we find that the odd radial confluent Heun

solution has the asymptotic form given by

Xodd
0 (ξ) =

i

2iβξ
(V (β, 1) exp(iβξ) − V (β,−1) exp(−iβξ)) +O(ξ−2). (3.48)

Therefore, with V (β,−1) = −V (β, 1), we rigourously have that the

asymptotic form of the odd radial confluent Heun solution is

Xodd
0 (ξ) = V (β, 1)

cos(βξ)

βξ
+O(ξ−2), βξ → ∞. (3.49)

For the odd radial confluent Heun solution we now have, in the general

asymptotic solution Eqn. 3.31, c1(β) = V (β, 1) and c2(β) = 0. This is

subject to the constraint that μ(β) = μo(β), with the series representation

for the lowest μo(β) given in Eqn. 3.41.
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This analysis has successfully derived the asymptotic form of the even

and odd radial confluent Heun solutions. In order to construct physical

beam solutions the next task would be to ensure that the asymptotic

nature of the full solution to the radial equation is proportional to eiβξ/βξ,

i.e. a forward propagating scalar beam. There is, however, a subtlety

to the asymptotic solutions derived here. The even radial solution is

asymptotic to U(β, 1) sin(βξ)/βξ, while the odd radial solution is asymptotic

to V (β, 1) cos(βξ)/βξ. In order that the spherical Bessel series expansions

are convergent we have had to impose the condition that for the even radial

solution μ(β) = μe(β), whereas for the odd radial solution μ(β) = μo(β).

The two radial solutions have different separation parameters.

Finding what separation parameters μ(β) will make one of c1(β) or c2(β)

equal to zero, given that the solution about the origin is known, is called the

central two-point connection problem [34], [35]. Thus, through the spherical

Bessel expansions, we have shown what form the separation parameters μ(β)

must take for only a single asymptotic solution to dominate. In the odd case

μ(β) = μo(β), while in the even case μ(β) = μe(β).

There is one way to interpret this result: instead of the simple X(ξ)Y (η)

product solution to Helmholtz’s equation, we have a solution which is given

by ψ(ξ, η) = Xeven(ξ)Y even(η) + Xodd(ξ)Y odd(η) in which we use an even

μe(β) for the even product, and an odd μo(β) for the odd product. However,

this solution would not produce a forward propagating beam for arbitrary η.

It would be possible to construct a forward propagating scalar beam along

the beam axis (η = 1), but then at any region of space off the beam axis

there will be an introduction of (nonphysical) backward propagation. In

other words, there will be a linear superposition of waves propagating to the

right and propagating to the left representing the scalar beam solution.

Thus, using a single μ(β) separation parameter is apparently the most

physical representation of a forward propagating scalar beam solution of

Helmholtz’s equation. In the following sections we shall investigate the

scalar beams resulting from using two separation parameters μe(β) and

μo(β), and then consider exact beam solutions which have a single separation

parameter.
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3.5 Integral relations for confluent Heun func-

tions

In order to derive analytic expressions for the asymptotic expansions of the

radial solutions an integral representation, or integral relation, is required.

It is the aim of this section to derive an integral relation for the two radial

solutions in terms of the angular confluent Heun functions. This integral

relation will give a complete description of the asymptotic nature of the two

radial solutions, and in the process we shall derive the sums of the alternating

series U(β, 1) and V (β, 1). The method employed is that used by Flammer,

who obtains the same integral relations for the oblate spheroidal functions

[31]. Before presenting the derivation an introduction to the theory of integral

equations and integral relations is given.

A Fredholm integral equation of the first kind is of the form

f(x) =

∫ b

a

K(x, t)φ(t)dt. (3.50)

In this case f(x) represents a known function, φ(t) is the function to be

determined, and K(x, t) is called the kernel function. The two limits are

fixed, which is what determines the integral equation as one of the Fredholm

type. If an unknown function is present both under the integral sign and

outside it, then we have a Fredholm integral equation of the second kind.

In the case of a variable limit of integration the integral equation becomes a

Volterra integral equation of the first or second kind.

An integral relation for a solution of the confluent Heun equation (CHE)

is one of the form

w(z) =

∫
C

K(φ(z, t))v(t)dt, (3.51)

where the functions w(z) and v(z) are specially chosen solutions of the

same or different CHE, and φ(z, t) is a ‘simpler’ function. The contour of

integration can be either a closed contour on a Riemannian surface of the

integration variable or a contour with end points at singularities of the CHE.
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In an integral equation the unknown function is under the integral sign,

whereas in an integral relation a function is expressed in terms of an integral

of another function which solves a similar CHE. The function K(φ(z, t)) has

been shown to be a solution of confluent hypergeometric differential equations

in certain cases and under additional assumptions the equations for v(z) lead

to certain Fredholm integral equations. There is an extensive treatment of

this topic in [34], [35], and [49] which should be referred to for further details.

We shall now give a derivation of an integral relation for both the even and

odd radial confluent Heun solutions relevant for scalar beams.

Let Lη be the linear, self-adjoint differential operator

Lη =
∂

∂η
(1 − η2)

∂

∂η
+ β2η2, (3.52)

and Lξ the operator obtained from Lη upon replacing η by iξ. Let

Y
even/odd
0/1 (η), with separation parameter μe/o(β), be one of the angular

confluent Heun functions which satisfy the differential equation

[Lη − μe/o(β)]Y
even/odd
0/1 (η) = 0. (3.53)

Now let K(ξ, η) be a continuous function in η and ξ, along with its first and

second derivatives, and let K(ξ, η) satisfy the following differential equation

(Lξ − Lη)K(ξ, η) = 0, (3.54)

in the range of η and in the range of ξ, choosing the endpoints −1 ≤ η ≤ 1

such that∫ 1

−1

(Y
even/odd
0/1 (η)LηK(ξ, η) −K(ξ, η)LηY

even/odd
0/1 (η))dη

=

[
(1 − η2)

(
Y
even/odd
0/1 (η)

∂K(ξ, η)

∂η
−K(ξ, η)

∂Y
even/odd
0/1 (η)

∂η

)]η=1

η=−1

,

= 0. (3.55)
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Then we have that

X
even/odd
0 (ξ) =

∫ 1

−1

K(ξ, η)Y
even/odd
0/1 (η)dη (3.56)

is a solution of the radial equation

[Lξ − μe/o(β)]X
even/odd
0 (ξ) = 0, (3.57)

for all ξ on the real line.

Proof: Applying the operator Lξ to Eqn. 3.56 we obtain

LξX
even/odd
0 (ξ) =

∫ 1

−1

LξK(ξ, η)Y
even/odd
0/1 (η)dη,

=

∫ 1

−1

Y
even/odd
0/1 (η)LηK(ξ, η)dη,

=

∫ 1

−1

K(ξ, η)LηY
even/odd
0/1 (η)dη,

= μe/o(β)

∫ 1

−1

K(ξ, η)Y
even/odd
0/1 (η)dη,

= μe/o(β)X
even/odd
0 (ξ).

The above proof can be found in [31] for the oblate (and prolate) spheroidal

functions, but here we have shown that it is valid for the radial and

angular confluent Heun functions. (This analysis actually shows a one-to-

one correspondence between the radial oblate spheroidal and radial confluent

Heun functions that shall be explained in section 3.6.2.) If (∇2 + k2)ψ(ξ, η)

= 0 in oblate spheroidal coordinates and

ψ(ξ, η) = K(ξ, η), (3.58)

then K(ξ, η) satisfies Eqn. 3.54. If we express the Helmholtz equation

in cylindrical coordinates, omitting azimuthal dependence again, then the

equation satisfied by K(ρ, z) is(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂z2
+ k2

)
K = 0. (3.59)

There are various solutions to Eqn. 3.59: one such solution is exp(ikz), which

becomes exp(iβξη) in oblate spheroidal coordinates.
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There are other choices of Kernels involving Bessel, Hankel, or spherical

Bessel functions, but the exponential is the simplest of them. We have

now obtained the integral relations for the even and odd radial confluent

Heun solutions. The integral relations for the radial solutions are given, in

normalized form, by

Xeven
0 (ξ) =

∫ 1

−1
exp(iβξη)Y even

0/1 (η)dη∫ 1

−1
Y even

0/1 (η)dη
=

∫ 1

0
cos(βξη)Y even

0/1 (η)dη∫ 1

0
Y even

0/1 (η)dη
. (3.60)

Xodd
0 (ξ) =

∫ 1

−1
exp(iβξη)Y odd

0/1 (η)dη

i
∫ 1

−1
βηY odd

0/1 (η)dη
=

∫ 1

0
sin(βξη)Y odd

0/1 (η)dη∫ 1

0
βηY odd

0/1 (η)dη
. (3.61)

The normalization has been chosen so thatXeven
0 (ξ) is unity at ξ = 0, whereas

the normalization of Xodd
0 (ξ) is determined by setting dXodd

0 (ξ)/dξ|ξ=0 = 1.

The asymptotic form of the even and odd radial solutions may now be derived

by integration by parts of the expressions in Eqn. 3.60 and Eqn. 3.61. Thus

we have that

Xeven
0 (ξ) =

∫ 1

0
cos(βξη)Y even

0/1 (η)dη∫ 1

0
Y even

0/1 (η)dη
,

=
1

βξ

∫ 1

0
d
dη

(sin(βξη))Y even
0/1 (η)dη∫ 1

0
Y even

0/1 (η)dη
,

⇒ Xeven
0 (ξ) → Y even

0/1 (1)∫ 1

0
Y even

0/1 (η)dη

sin(βξ)

βξ
, βξ → ∞. (3.62)

Comparison of the asymptotic expression in Eqn. 3.62 can be made with

that found in Eqn. 3.47, from which we deduce that

U(β, 1) =

∞∑
n=0,2,4,...

(−i)nan(β)Pn(1),

=

∞∑
n=0,1,2,...

(−1)na2n(β),

=
Y even

0/1 (1)∫ 1

0
Y even

0/1 (η)dη
. (3.63)
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Performing the same analysis for the odd radial solution we find

Xodd
0 (ξ) =

∫ 1

0
sin(βξη)Y odd

0/1 (η)dη∫ 1

0
βηY odd

0/1 (η)dη
,

=
−1

βξ

∫ 1

0
d
dη

(cos(βξη))Y odd
0/1 (η)dη∫ 1

0
βηY odd

0/1 (η)dη
,

⇒ Xodd
0 (ξ) → −Y odd

0/1 (1)∫ 1

0
βηY odd

0/1 (η)dη

cos(βξ)

βξ
, βξ → ∞. (3.64)

On comparing Eqn. 3.64 with Eqn. 3.49, we find that the coefficient in the

asymptotic expression for the odd radial solution is

V (β, 1) = −
∞∑

n=1,3,5

(−i)n−1bn(β)Pn(1),

= −
∞∑

n=0,1,2

(−1)nb2n+1(β),

=
−Y odd

0/1 (1)∫ 1

0
βηY odd

0/1 (η)dη
. (3.65)

These relations hold for either of the even or odd angular confluent Heun

functions. The coefficients U(β, 1) and V (β, 1) are simplified in the case

where we use the angular confluent Heun function Y
even/odd
1 (η), since in this

case their value at η = 1 is exactly 1. Thus the numerator in Eqn. 3.63 is

1, while in Eqn. 3.65 it is −1. For example, for β = 1, μe(β) = μ00(β), and

μo(β) = μ01(β), U(β, 1) ≈ 1.1165 and V (β, 1) ≈ −3.1202. The even radial

solution and its asymptotic form are shown in Fig. 3.2, whereas the odd

radial solution and its asymptotic form are shown in Fig. 3.3.

In conclusion, we have shown that in the case of scalar beams, there are

integral relations for the even and odd radial confluent Heun solutions in

terms of the angular solutions. This has allowed the asymptotic nature of

the radial solutions to be derived, which gives the result that the infinite

alternating series of spherical Bessel coefficients reduces to the inverse of

an integral of an angular confluent Heun function. This result can only be

checked numerically using the correct μe/o(β) since an analytic expression for

μe/o(β) is unavailable at this stage.
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Figure 3.2: The even radial confluent Heun solution Xeven
0 (ξ) (blue) and its

asymptotic form (red), plotted for β = 1, μ(β) = μ00(β).
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Figure 3.3: The odd radial confluent Heun solution Xodd
0 (ξ) (blue) and its

asymptotic form (red), plotted for β = 1, μ(β) = μ01(β).
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3.6 Nonparaxial and paraxial scalar beams

3.6.1 Confluent Heun beams

As a summary of what we have derived in the previous sections we have the

following:

• Analytic solutions of the Helmholtz equation in terms of confluent Heun

functions (sum of products over an odd radial times an odd angular plus

an even radial times an even angular.)

• An analytic method of obtaining the even and odd separation parame-

ters μe/o(β) by solving the Wronskian of two linearly dependent angular

solutions equal to zero.

• Exact representation of the asymptotic form of the radial solutions.

(We also have their expansions in terms of spherical Bessel functions

which give the sums of the alternating series discussed previously.)

As noted earlier, the asymptotic forms of the two radial solutions requires

that we use different separation parameters, μe(β) for Xeven
0 (ξ) and μo(β) for

Xodd
0 (ξ). Therefore we cannot construct a beam which is forward propagating

in this manner. Nevertheless we shall investigate this type of solution since

it remains an analytic solution of Helmholtz’s equation.

Denote the scalar confluent Heun beam by

ψH(ξ, η) = A(β)Xodd
0 (ξ)Y odd

1 (η) + iB(β)Xeven
0 (ξ)Y even

1 (η), (3.66)

where A(β) and B(β) are normalization constants to be derived in order

that the beam is forward propagating along the beam axis. They are not the

A(β) and B(β) discussed in section 3.4. A(β) and B(β) are functions of β,

since the asymptotic nature of the radial solutions is dependent on β too. It

is understood in this expression that all odd confluent Heun functions use

μ01(β), while all even confluent Heun functions use μ00(β) as the separation

parameter.
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Other confluent Heun beams can be constructed using different μe(β) and

μo(β), but here we are interested in the lowest order confluent Heun beam,

i.e. μe(β) = μ00(β) and μo(β) = μ01(β). The asymptotic nature of the scalar

beam, as βξ → ∞, is

ψH(ξ, η) → A(β)V (β, 1)
cos(βξ)

βξ
Y odd

1 (η) + iB(β)U(β, 1)
sin(βξ)

βξ
Y even

1 (η).

(3.67)

We require that the solutions are forward propagating along the beam

axis, and so we set η = 1. The asymptotic nature of the scalar beam solution

can then be put in an explicit form as a superposition of positive and negative

exponentials:

ψH(ξ, η = 1) → A(β)V (β, 1)
cos(βξ)

βξ
+ iB(β)U(β, 1)

sin(βξ)

βξ
, βξ → ∞.

=
1

2βξ
(AV +BU)eiβξ +

1

2βξ
(AV −BU)e−iβξ. (3.68)

To ensure forward propagation along the beam axis, the conditionA(β)V (β, 1)

= B(β)U(β, 1) must be satisfied. Therefore the scalar beam solution is

ψH(ξ, η) = B(β)

(
U(β, 1)

V (β, 1)
Xodd

0 (ξ)Y odd
1 (η) + iXeven

0 (ξ)Y even
1 (η)

)
. (3.69)

The parameter B(β) determines the normalization of the beam and also

the isophase surfaces. We shall normalize the beam so that at the origin,

where the beam axis intersects the focal plane, |ψH(ρ, z)| = |ψH(0, 0)| = 1,

which is satisfied by setting B(β) = i. The asymptotic nature of the scalar

beam, on the z axis, is then iU(β, 1)eiβξ/βξ = iU(β, 1)eikz/kz.

The asymptotic form of the wave function, on the beam axis, is shown

in Fig. 3.4 for a tightly focused β = 2 scalar beam. The plot shows 
(ψH)

compared to −U(2, 1) sin(kz)/kz and �(ψH) compared to U(2, 1) cos(kz)/kz.

In both cases the agreement is very good, and so the scalar beam constructed

here is forward propagating along the beam axis, for large kz.
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Figure 3.4: The real and imaginary parts of the scalar beam ψH (blue), along

the beam axis, plotted for β = 2. The asymptotic forms −U(2, 1) sin(kz)/kz and

U(2, 1) cos(kz)/kz (red) are also shown. As the beam has its real and imaginary

components asymptotic to these expressions, it is forward propagating along the

beam axis, for large kz.
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The scalar beams constructed here are exact solutions of the Helmholtz

equation. There has been another set of exact beam wave functions proposed

by Ulanowski and Ludlow [15], which take the form of spherical Bessel beams.

The properties of these beams have been extensively investigated by Lekner

[16, 47, 50]. The wave function of such beams is given by

ψmn(ρ, z) = jn(kR)Pm
n

(
z − ib

R

)
e±imφ, R2 = ρ2 + (z − ib)2. (3.70)

These beams represent the separable solutions of the Helmholtz equation in

spherical coordinates, however, they have been shifted along the z axis. The

lowest of these set of beams is ψ00 and is given by sin(kR)/kR. This solution

is the (non-singular) generalization of the exact solution exp(ikR)/R, which

was initially proposed by Deschamps [11], as mentioned in the introduction.

(The problem with the complex source point solution of Deschamps is that

it has a singularity in the focal plane z = 0 on the circle ρ = b. The spherical

Bessel beam ψ00 does not have this singularity, since it is constructed through

a superposition of incoming and outgoing waves.)

In Fig. 3.5 the probability densities for both the confluent Heun beam

wave function ψH , given in Eqn. 3.69, and the ψ00 beam wave function of

Eqn. 3.70 are shown for a tightly focused β = 2 scalar beam. Note the

spherical Bessel beam has been multiplied by β/ sinh(β) to normalize it to

unity at the origin (ρ = z = 0). In this figure the probability current density

J, given by the field vectors, has also been shown.
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Figure 3.5: The probability densities |ψ|2 for the confluent Heun beam ψH , and

for the spherical Bessel beam ψ00, plotted for β = 2. The contours are at [0.01,

0.02, 0.03, 0.05, .1, .2, .3, .4, .5, .6, .8], with the maximum occurring at the origin.

The arrows show [Jz, Jx], which indicates the probability current density. The

three dimensional picture is obtained by rotating the figure about the z axis.
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The plots of these two beam wave functions show remarkable similarity.

In the focal plane (z = 0) the zeros of the two wave functions almost coincide

and their peaks along this axis also nearly coincide. We can understand this

similarity by analysis of the terms in each beam. In the focal plane we have

η = 0 for ρ ≥ b, while for ρ ≤ b, ξ = 0. Examining the odd product in

the confluent Heun beam we have Y odd
1 (0) = 0 for ρ ≥ b, while for ρ ≤ b,

Xeven
0 (0) = 0. Thus, the product Xodd

0 (ξ)Y odd
1 (η) is always identically zero in

the focal plane. It is only the even terms in the confluent Heun beam which

are present in the focal plane.

Hence when ρ ≥ b (z = 0) the confluent Heun beam probability density

is asymptotic to Y even
1 (0)2U(β, 1)2 sin2(βξ)/β2ξ2, whereas the (normalized)

spherical Bessel beam probability density has the form sin2(βξ)/ sinh2(β)ξ2.

Therefore, in the focal plane the two expressions have the same ξ dependence

(asymptotically), but with different amplitudes dependent on β. This result

explains why the zeros of both beams almost coincide, with the zeros of the

spherical Bessel beam occurring at kρ =
√
β2 + n2π2. In the region ρ ≤ b,

with z = 0, the (normalized) spherical Bessel beam probability density is

given by sinh2(βη)/η2 sinh2(β), and if we use a spherical Bessel expansion for

Y even
0 (η), we find |ψH |2 has leading term equal to Y even

1 (0)2 sinh2(βη)/β2η2.

In the focal plane the even terms of the confluent Heun beam give it similar

features to the spherical Bessel beam ψ00.

There is, however, a difference in the beam solutions along the beam

axis. Whereas the (normalized) spherical Bessel beam probability density

is [sin2(βξ) + sinh2(β)]/[(ξ2 + 1) sinh2(β)] along the η = 1 axis, the

confluent Heun beam probability density is asymptotic to U(β, 1)2/β2ξ2.

This corresponds to the difference in the wavefronts at points far along the

beam axis. One possible reason for this difference is due to the fact that the

spherical Bessel beams are not forward propagating, whereas along the beam

axis the confluent Heun beam is.

Lekner [16] has shown that the spherical Bessel beam ψ00 is one which

is not physically realizable. A physical particle beam must have a finite

probability content in a transverse slice of the beam. However, Lekner showed

that the normalization integral of the ψ00 beam is logarithmically divergent.
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Therefore, this indicates that the confluent Heun beam constructed here

is not realizable either. For instance, the normalization integral in a cross-

section of the beam is

N =

∫ ∞

0

ρ|ψ|2dρ =

∫ b

0

ρ|ψ|2dρ+

∫ ∞

b

ρ|ψ|2dρ. (3.71)

On converting to oblate spheroidal coordinates, where ρdρ = b2ξdξ, the

second integral in Eqn. 3.71 (in the focal plane z = 0) is∫ ∞

b

ρ|ψ|2dρ = b2
∫ ∞

0

ξ|ψ|2dξ. (3.72)

In the focal plane (z = 0), for ρ ≥ b, only the even confluent Heun product

is non-zero for the confluent Heun beam. The asymptotic behaviour of the

probability density of this beam is Y even
1 (0)2U(β, 1)2 sin2(βξ)/β2ξ2, thus the

contribution to the normalization integral from Eqn. 3.72 is

b2
∫ ∞

0

ξ|ψ|2dξ → b2Y even
1 (0)2U(β, 1)2

∫ ∞

0

ξ
sin2(βξ)

β2ξ2
dξ, (3.73)

which is logarithmically divergent, for any β (paraxial or not).

The confluent Heun beam has similar nonphysical properties, such as a

divergent normalization integral and backward propagating elements, as the

spherical Bessel beam ψ00, but with an extra amount of complexity by way

of introduction of confluent Heun functions. This result is due to the fact

that we have used two separation parameters, and consequently although

this allows correct asymptotic behaviour along the beam axis, it does not

allow physical behaviour in the focal plane.

Lekner [51] has commented that the wave function ψ00 may be useful

in high aperture situations for small β where it is an improvement on

the Gaussian approximation. This would most likely be applicable to the

confluent Heun beam solution too.

It is well-known that under certain conditions the Gaussian beam gives

an approximate representation of a scalar beam. However, for nonparaxial

(small β) scalar beams the Gaussian approximation breaks down. Therefore,

we give a comparison of the confluent Heun beam with the Gaussian beam

in both the nonparaxial (small β) case, and also the paraxial (large β) case.
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The Gaussian beam wave function is given by

ψG =
b

b+ iz
exp

[
ikz − kρ2

2(b+ iz)

]
. (3.74)

By considering ψ−1
G ∇2ψG the errors in the Gaussian approximation can be

found. Instead of −k2 we obtain −k2 times

1 +
2

k2(b+ iz)2
− 2ρ2

k(b+ iz)3
+

ρ4

4(b+ iz)4
. (3.75)

The errors introduced in the Gaussian approximation are thus negligible in

the regions where both k2(b2+z2) >> 1 and b2+z2 >> ρ2. In the focal plane

(z = 0) β2 >> 1 and β2 >> (kρ)2 for the Gaussian approximation to hold

[16]. The Gaussian beam is an exact solution of the paraxial Helmholtz

equation, but not the full Helmholtz equation, and its validity relies on

assuming large β and small kρ compared to β. Therefore when β is equal

to unity or smaller the paraxial approximation will fail in the beam waist

region |z| ≤ b.

In Fig. 3.6 the probability densities for the confluent Heun beam ψH ,

the spherical Bessel beam ψ00, and the Gaussian beam ψG have been plotted

along the beam axis. In one case for nonparaxial beams with β = 1, and

in the other case paraxial beams with β = 1/0.14. The nonparaxial case

shows a markedly different probability density for the confluent Heun beam

in comparison with the Gaussian beam, particularly when k|z| ≈ β. The

confluent Heun beam is an exact solution in the nonparaxial regime, and

here we observe the disagreement with the non-exact Gaussian beam.

On the beam axis (ρ = 0) the probability density of the Gaussian

beam is β2/[β2 + (kz)2], whereas the confluent Heun beam is asymptotic

to U(β, 1)2/(kz)2. Along the beam axis, for kz >> β, the confluent Heun

beam has the same z dependence as the Gaussian beam, but with a different

amplitude dependent on β. In section 3.6.2 we shall show that U(β, 1) → β,

for large β, so that the confluent Heun beam is asymptotic to the Gaussian

beam along the beam axis. When ρ = 0, the spherical Bessel beam

probability density is β2[sin2(kz) + sinh2(β)]/[sinh2(β)((kz)2 + β2)], which

is also asymptotic to the Gaussian beam, for kz >> β, in the large β limit.

74



3.6. NONPARAXIAL AND PARAXIAL SCALAR BEAMS

�10 �5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

kz

�Ψ
�2

(a) Nonparaxial case, β = 1.
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Figure 3.6: The probability densities |ψ|2 for the exact confluent Heun beam ψH

(blue), the exact spherical Bessel beam ψ00 (green), and the approximate Gaussian

beam ψG (red), in the cases where β = 1 and β = 1/0.14. In both cases the plot

is along the beam axis η = 1. The upper plot shows the nonparaxial case of a

small β, tightly focused beam, while the lower plot shows a large β, weakly focused

beam.
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Fig. 3.7 shows the probability densities, in the focal plane (z = 0), for the

confluent Heun beam ψH , the spherical Bessel beam ψ00, and the Gaussian

beam ψG. In the nonparaxial case, where β = 1, the figure shows that

the confluent Heun beam has almost coincident zeros and maxima with the

spherical Bessel beam. This result has been explained earlier in relation to

the contour plots of these probability densities in Fig. 3.5.

The paraxial case, where β = 1/0.14, again shows that the confluent

Heun beam has almost coincident zeros and maxima as the spherical Bessel

beam. This being due to both beams having the same ξ dependence

(asymptotically). In this large β case, Fig. 3.7 shows that, near the origin,

i.e. kρ << β, the Gaussian beam and the confluent Heun beam have similar

characteristics. However, for the Gaussian beam, the probability density

is exp(−(kρ)2/β), which is normalizable, whereas the confluent Heun beam

probability density is asymptotic to Y even
1 (0)2U(β, 1)2 sin2(βξ)/β2ξ2, which

is not normalizable.

The confluent Heun beam has a divergent normalization integral (in

the focal plane), and off the beam axis, backward propagating elements.

The Gaussian beam has a convergent normalization integral and is forward

propagating. Thus, the confluent Heun beam is not the nonparaxial

generalization of the Gaussian beam.

April [52] has shown that the spherical Bessel beam ψ00 is not the

nonparaxial generalization of ψG. Rather, certain linear combinations of

the spherical Bessel beams are required to produce the Gaussian beam, in

the large β limit. (The linear combination of the spherical Bessel beams,

however, still has the problem of backward propagation.)

This section has derived exact nonparaxial beam solutions in terms of

confluent Heun functions. However, the beams have the problem of a

divergent normalization integral and backward propagating elements, which

a physical beam would not have. In the next section we shall construct scalar

beams without these problems.
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Figure 3.7: The probability densities |ψ|2 for the exact confluent Heun beam

ψH (blue), the spherical Bessel beam ψ00 (green), and the approximate Gaussian

beam ψG (red), in the cases where β = 1 and β = 1/0.14. In both cases the plot is

in the focal plane z = 0. The upper plot shows the nonparaxial case of a small β,

tightly focused beam, while the lower plot shows a large β, weakly focused beam.
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3.6.2 Oblate spheroidal beams

The scalar beam solutions proposed in Eqn. 3.69 do not represent physical

free space scalar beams for two reasons. They are not forward propagating off

the beam axis and they also have a logarithmically divergent normalization

integral in the focal plane. Therefore, physical beams cannot be constructed

from such solutions, since infinite energy would be required. The aim of

this section is to investigate an analytic solution of Helmholtz’s equation

which satisfies the necessary physical requirements of forward propagating

wavefronts, and a convergent normalization integral.

The problem with the confluent Heun beam is that it contains two

separation of variable parameters, μe(β) and μo(β). In order for the beam

to be forward propagating we require even and odd radial solutions whose

asymptotic expansions are known when the same μ(β) is used for both. In

this way a single angular solution may be used. Fortunately such functions

are known. They are known as radial spheroidal functions. In the beam case

we require the radial oblate, and angular oblate spheroidal functions. The

properties of these functions are given in great detail in [31], but here we give

their most important properties.

The radial equation is given by

(ξ2 + 1)
d2R

dξ2
+ 2ξ

dR

dξ
+

(
β2ξ2 +

m2

ξ2 + 1
+ μ

)
R = 0, (3.76)

where we have used the variable R(β, ξ) which is standard for the radial

oblate spheroidal functions. Two linearly independent solutions to Eqn. 3.76

are given by

R(β, ξ) = R(1)
mn(β, ξ), (3.77)

R(β, ξ) = R(2)
mn(β, ξ). (3.78)

R
(1)
mn(β, ξ) is known as the radial oblate spheroidal function of the first

kind, while R
(2)
mn(β, ξ) is known as the radial oblate spheroidal function of

the second kind. R
(1)
mn(β, ξ) is even if n − m is even, whereas R

(2)
mn(β, ξ) is

even when n −m is odd. We shall use the notation R
(3)
mn(β, ξ) to represent

R
(1)
mn(β, ξ) + iR

(2)
mn(β, ξ).
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The asymptotics of these functions are well-known, and as βξ → ∞, are

R(1)
mn(β, ξ) → 1

βξ
cos

[
βξ − π

2
(n+ 1)

]
, (3.79)

R(2)
mn(β, ξ) → 1

βξ
sin

[
βξ − π

2
(n+ 1)

]
. (3.80)

The radial oblate spheroidal functions are defined similarly to the radial

confluent Heun functions, i.e. through an expansion of even or odd spherical

Bessel functions, and later a one-to-one relation between the two shall be

given. The importance of the radial spheroidal functions is that in the case

μ(β) = μe(β), or μ(β) = μo(β), the asymptotics of both are known.

The angular equation is given by

(1 − η2)
d2S

dη2
− 2η

dS

dη
+

(
β2η2 − m2

1 − η2
− μ

)
S = 0, (3.81)

where we have used the variable S(β, η) which is standard for the angular

oblate spheroidal functions. For a given β only a certain set μmn(β) (m,n =

0, 1, 2, ...) give physical solutions S(η) which are finite at η2 = 1.

The scalar beam solutions, with a single separation parameter, are

ψmn(ξ, η) = [R(1)
mn(β, ξ) + iR(2)

mn(β, ξ)]Smn(β, η)e
imφ. (3.82)

The wave function in Eqn. 3.82 was initially proposed by Rodŕiguez-Morales

and Chávez-Cerda [17]. However, Lekner and Boyack [18] have demonstrated

that only a subset of those solutions may represent physical scalar beams.

Only those solutions with n−m odd can be physical, but once this condition

is imposed, it leads to a wave function with a discontinuous z derivative, at

z = 0, both inside and outside the circle ρ = b. (We shall not discuss the

spherical Bessel beam solutions, other than the simplest solution j0(kR), and

so there should not arise any confusion with Eqn. 3.70.) Instead of using

the solution given in Eqn. 3.82, initially proposed in [17], we shall use the

modified solution

ψmn(ξ, η) = i[R(1)
mn(β, ξ) + iR(2)

mn(β, ξ)]Smn(β, η)e
imφ. (3.83)

Eqn. 3.83 is still a solution of the Helmholtz equation.
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The introduction of the imaginary number i is necessary for the isophase

surfaces to have the correct symmetry about the focal plane, as will be shown.

In this section we shall now give the first thorough investigation of the beam

solutions in Eqn. 3.83 and show that, if n − m is odd, they meet three

necessary physical requirements of free space scalar beams. Later we shall

point out a flaw in this beam wave function which makes it nonphysical. The

next section shall prove a more general result about whether the proposed

separable spheroidal beams are physical.

Forward propagation

Far from the origin, when r = (ρ2 + z2)1/2 = b(ξ2 − η2 + 1)1/2 is large

compared to both the scale length b and to k−1, i.e. at large ξ, the wave

function ψmn(ξ, η) has the correct forward propagating form:

ψmn(ξ, η) → i

βξ
exp

{
i

[
βξ − π

2
(n+ 1)

]}
Smn(β, η)e

imφ. (3.84)

Thus, the spheroidal wave functions are manifestly forward propagating, for

any value of the separation parameter.

Isophase surfaces

Consider secondly the isophase surfaces associated with the wave function in

Eqn. 3.83. R
(1,2)
mn and Smn are real functions. Thus the phase of the wave

function in Eqn. 3.83 is mφ plus a function of ξ:

Pmn(β, ξ, φ) = mφ + arc tan

(
−R

(1)
mn(β, ξ)

R
(2)
mn(β, ξ)

)
. (3.85)

At fixed φ = φ0 (or when m = 0 at any φ) the phase is constant on the

ellipses ξ = ξ0, φ = φ0 defined in Eqn. 3.15. On the ellipse ξ = ξ0,

φ = φ0 the phase is Pmn(β, ξ0, φ0), and on the left of the focal plane

(z = 0) the phase on the ellipse ξ = −ξ0, φ = φ0 is Pmn(β,−ξ0, φ0). The

ratio R
(1)
mn(β, ξ)/R

(2)
mn(β, ξ) is odd in ξ for any m,n, and so the phase has a

discontinuity of 2arc tan
(
−R(1)

mn(β, ξ)/R
(2)
mn(β, ξ)

)
in the plane z = 0.
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The phase of any complex function ψ can only be discontinuous where ψ

= 0. All of the ellipsoids intersect the z = 0 plane at ρ ≥ b. Thus we need

wave functions ψ that are zero for all ρ ≥ b on z = 0; that is, ψ must be

zero when η = 0 (see Fig. 3.1). The angular functions Smn(β, η) are zero

when η = 0 if n −m is odd, and non-zero if n −m is even, see [30] or [31].

Therefore, n −m odd is a necessary condition for physical behaviour of the

phase of ψmn(ξ, η).

The isophase surfaces also illustrate the need for the factor i in Eqn. 3.83:

z = 0 is a plane of symmetry and therefore in this plane the m = 0 beam

wavefront is planar. The associated phase of the beam must therefore be

zero when ξ = 0. The radial oblate function which is zero when ξ = 0 is the

radial function of the first kind, thus the factor i is needed in order for the

phase to have the correct form in the focal plane.

For odd n −m the wave functions have isophase surfaces that, at fixed

φ, intersect ellipses. For m = 0 (and odd n) the isophase surfaces are half-

ellipsoids, joining at z = 0 to a half-ellipsoid of the opposite phase. It is

interesting to compare this behaviour with the m = 0 Gaussian beam, given

in Eqn. 3.74, which is an approximate solution of the Helmholtz equation

valid in the paraxial regime, and with the spherical Bessel beam j0(kR),

defined in Eqn. 3.70.

In Fig. 3.8 the isophase surfaces of the Gaussian beam ψG, the spherical

Bessel beam j0(kR), and the oblate spheroidal beam ψ01(ξ, η) are shown.

In the Gaussian case the isophase surfaces are all asymptotic to the z = 0

focal plane as ρ → ∞, i.e. as the wave function ψG → 0. The j0(kR)

beam isophase surfaces, in contrast, converge on to the zeros of sinβ(ξ− iη),

which on the z = 0, ρ ≥ b part of the focal plane lie on the circles ρν =

b[(νπ/β)2 + 1]1/2, ν = 1, 2,... (except when the phase is an integer multiple

of π, see [47].)
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Figure 3.8: Surfaces of constant phase for ψG (upper figure), j0(kR) (middle

figure), and the oblate spheroidal beam ψ01 (lower figure), drawn for β = 2 in

increments of π/4. The darker lines show the isophase surfaces that are integer

multiples of π. The equiphase surfaces for ψG all go off to infinite ρ in the z = 0

plane, while those of j0(kR) converge on to the zeros of j0(kR), which lie on the

circles ρν = b[(νπ/β)2 +1]1/2. The surfaces with phase equal to an integer multiple

of π converge on to the circles ρ = b[(X/β)2 + 1]1/2, where tan(X) = X. For

the oblate spheroidal wave function ψ01 the equiphase surfaces are half-ellipsoids

ξ = ξ0, ξ = −ξ0. These half-ellipsoids tend to hemispheres for large ξ20 .
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Normalization integral

We now examine the convergence of integrals over a cross-section of the

beams given by Eqn. 3.83. A physical quantum particle beam, for example,

must have finite energy and probability content in a transverse slice of the

beam, say between z and z + Δz. The calculation of such probability or

energy content involves an integration of |ψ|2 over ρ at fixed z. From Eqn.

A7 of [16] we have

∫ ∞

0

ρ|ψ|2dρ = b2
∫ 1

0

η−1

[
η2 +

(
z0
bη

)2]
|ψ|2dη, (3.86)

where the integration is over the plane z = z0. From Eqns. 3.14 we have

ξ = z0/bη, and as η → 0 (ξ → ∞) it follows from Eqn. 3.84 that

|ψmn|2 → (βξ)−2[Smn(β, η)]
2 =

η2

(kz0)2
[Smn(β, η)]

2. (3.87)

Thus if Smn(β, 0) is not zero, the leading term in the integrand in Eqn. 3.86

will be η−1 at small η and the integral will diverge logarithmically. We must

have Smn(β, 0) = 0 for convergence of the integral. This is for scalar beams,

but electromagnetic beams have the same divergences, as shown in [16]. Thus

Smn(β, η) has to be zero at η = 0 and it is known that this happens for odd

n−m.

The oblate spheroidal wave functions only represent physical beams when

n − m is odd. A similar condition holds for the spherical Bessel beams

given in Eqn. 3.70, which have convergent normalization integrals only

when n − m is odd too. These have a flaw, however, which makes them

nonphysical. They contain backward propagating elements which increase in

importance for small β. April [52, 53, 54] has considered linear combinations

of these spherical Bessel solutions, those with n−m odd will have convergent

normalization integrals, but the problem of backward propagation remains.

Of course, when the physical system includes a mirror or mirrors, there can

be backward propagation in some regions of space: see, for example, a paper

by Bokor and Davidson [55] on focusing with a paraboloidal mirror.
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Paraxial limit

We shall now give a comparison of the properties of the oblate spheroidal

beam ψ01 and the Gaussian beam ψG, in the large β (paraxial) limit. For

large β, Flammer [31] has shown that the angular oblate spheroidal functions

become linear combinations of Laguerre polynomials. This representation of

the angular oblate spheroidal functions also suggests the form of the large

β representation of the radial oblate spheroidal functions. The radial oblate

spheroidal functions, in the large β limit, may be expanded in terms of the

second solution of the Laguerre differential equation.

Thus, in the case of large β, we might expect the oblate spheroidal beam

ψ01 to have similar features to those of the Gaussian beam ψG. A paper by

Zeppenfeld [56] has investigated the large β limit of the oblate spheroidal

wave functions defined in Eqn. 3.82 and given expressions for the radial

oblate spheroidal functions in the large β limit.

Fig. 3.9 shows the probability densities of a nonparaxial (β = 2) oblate

spheroidal beam, a paraxial Gaussian beam (β = 7), and also the oblate

spheroidal beam with β = 7, on the beam axis. In this figure the modulus

of the oblate spheroidal wave function ψ01 has been normalized to unity at

the origin, i.e. |ψ01(ξ = 0, η = 1)| = 1. This corresponds to multiplying the

wave function ψ01 by the factor [R
(2)
01 (β, 0)S01(β, 1)]−1.

The paraxial beams (β = 7) show a similar z dependence, which can be

derived explicitly. On the beam axis the probability density of the Gaussian

beam is β2/[β2 + (kz)2], whereas the asymptotic form of the (normalized)

oblate spheroidal beam probability density is 1/[R
(2)
01 (β, 0)]2(kz)2. For large

kz, both beams have the same z dependence, but with different amplitudes

dependent on β. However, for large β, −[R
(2)
01 (β, 0)] ≈ R

(1)
00 (β, 0), where

R
(1)
00 (β, 0) ≈ 2

∞∑
s=0

∞∑
r=0

(−1)s
A00
s

A00
0

(s+ r)!(s+ r)!

r!s!

1

(2β)s+r+1
, (3.88)

which gives R
(1)
00 (β, 0) → 1/β, β → ∞, see p 68 of [31]. Thus along the

beam axis, for large (kz), in the limit of large β, but still small β/kz, the

Gaussian beam probability density is asymptotic to the oblate spheroidal

beam probability density.
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Figure 3.9: Comparison between the (normalized) oblate spheroidal beam ψ01

and the Gaussian beam ψG on the beam axis (ρ = 0). In the paraxial case, where

β = 7, the Gaussian beam (red) is asymptotic to the (normalized) oblate spheroidal

beam ψ01 (blue) along the beam axis. The (normalized) oblate spheroidal beam

ψ01 is also shown in the nonparaxial case, where β = 2 (green). This corresponds

to a tightly focused beam.

This result also explains why the confluent Heun beam of Eqn. 3.69

behaves similarly to the Gaussian beam along the beam axis. Since U(β, 1) =

[R
(1)
00 (β, 0)]−1 → β for large β, with μ(β) = μ00(β), on the beam axis (ρ = 0),

|ψH |2 → β2/(kz)2, for large kz.

Now let us consider the large β limit of the oblate spheroidal wave

function ψ01(ξ, η) in the focal plane. The normalized oblate spheroidal wave

function is ψ01(ξ, η) = iR
(3)
01 (β, ξ)S01(β, η)/[R

(2)
01 (β, 0)S01(β, 1)]. This ensures

the probability density is unity at the origin (ρ = z = 0). In the focal plane

(z = 0), for ρ ≥ b, S01(β, η) = 0 and thus ψ01(ξ, η = 0) = 0. When z = 0, for

ρ ≤ b, the oblate spheroidal beam is ψ01(ξ = 0, η) = iS01(β, η)/S01(β, 1).
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In the large β limit the angular oblate spheroidal functions are (p 63 [31]):

S̄mn(β, η) ≈ (1 − η2)m/2
∞∑

s=−ν
Amns

{
e−β(1−η)L(m)

ν+s[2β(1 − η)]

+ (−1)n−me−β(1+η)L
(m)
ν+s[2β(1 + η)]

}
. (3.89)

The bar is used to indicate that this holds only in the large β limit. In this

expression, for n − m odd, ν = 1
2
(n − m − 1), and the functions L

(m)
ν+s(x)

denote the Laguerre polynomials, see Chapter 22 of [30] for properties of

these functions. The coefficients Amn±r are known, up to a constant Amn0 , and

expansions of these functions are given in Chapter 8 of [31]:

Amn±r
Amn0

=

∞∑
k=r

a±rk (m,n)β−k. (3.90)

Now for n = 1, m = 0, we have, as β → ∞ (p 62 [31]):[
S01(β, η)

S01(β, 1)

]
→ e−β(1−η)L0[2β(1 − η)], 0 < η ≤ 1. (3.91)

The first few Laguerre polynomials are L0(x) = 1, L1(x) = −x + 1, etc.

Therefore when z = 0, for ρ ≤ b, we have the following

|ψ01(ξ = 0, η)|2 =

[
S01(β, η)

S01(β, 1)

]2

→ e−2β(1−η), β → ∞. (3.92)

In the region ξ = 0 we have η2 = 1 − (kρ/β)2. We have already shown,

in Eqn. 3.75, that when z = 0 the Gaussian beam is a good approximation

to a scalar beam if kρ << β and β2 >> 1. If we assume kρ << β, then the

expression for η becomes η = 1 − 1
2
(kρ/β)2 + O((kρ/β)4). Substituting this

into Eqn. 3.92 we have, for kρ << β and β2 >> 1,

|ψ01(ξ = 0, η)|2 =

[
S01(β, η)

S01(β, 1)

]2

→ exp(−(kρ)2/β). (3.93)
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The Gaussian beam probability density is given by exp(−(kρ)2/β) in the

focal plane. Therefore, we have proved that, in the large β limit, for z = 0

and kρ << β, the oblate spheroidal beam ψ01(ξ, η) has a leading term with

similar properties as the Gaussian beam. In the region η = 0, ψ01(ξ, η) = 0,

whereas the Gaussian beam has |ψG|2 = exp(−(kρ)2/β). In the next section

we shall show that the oblate spheroidal wave functions ψmn(ξ, η), with n−m
odd, exhibit nonphysical behaviour in the focal plane z = 0, and consequently

that they are not the nonparaxial generalization of the Laguerre-Gaussian

beams. Thus the analysis of this section shows that, when β → ∞, the oblate

spheroidal beam ψ01(ξ, η) has some similar properties as the Gaussian beam,

but in this limit it is simpler to use the Gaussian beam expression. The

simplest of the possible scalar oblate spheroidal beams, i.e. n = 1, m = 0, is

shown in Fig. 3.10

For comparison, we shall briefly discuss the large β limit of the spherical

Bessel beams. Along the beam axis, for large β, the probability density of

the (normalized) spherical Bessel beam ψ00 is asymptotic to the probability

density of the Gaussian beam. However, in the large β limit, the spherical

Bessel beams as defined do not reduce to the paraxial Gaussian beam

expression. April [52, 53, 54] has shown that certain linear combinations of

the spherical Bessel beams are needed to produce exact beam wave functions

which reduce to the Laguerre-Gaussian beams in the paraxial limit (of which

ψG is the first member.)
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Figure 3.10: The modulus squared of the (normalized) oblate spheroidal wave

function ψ01(ξ, η) = iR
(3)
01 (β, ξ)S01(β, η) in the y = 0 plane, plotted for a tightly

focused beam with β = 2. The z axis defines the propagation direction of the

beam, and ρ =
√
x2 + y2 is the radial distance from the beam axis. Note that the

solution is identically zero outside the circle ρ = b in the focal plane z = 0.

Oblate spheroidal beam problems

The oblate spheroidal wave functions ψmn(ξ, η) can only represent physical

scalar beams when n−m is odd. However, this subset exhibits nonphysical

behaviour in the focal plane, both inside and outside the circle ρ = b. Fig.

3.10 shows that, in the region z = 0, ρ ≤ b, the z derivative of the probability

density is discontinuous. This occurs for all oblate spheroidal beams with

n−m odd, which we shall now demonstrate analytically.

The z derivative of a wave function ψ is given by [16]:

∂ψ

∂z
=

1

b(ξ2 + η2)

[
η(1 + ξ2)

∂ψ

∂ξ
+ ξ(1 − η2)

∂ψ

∂η

]
. (3.94)

Now consider the z derivative of Eqn. 3.83 (with n−m odd),

∂ψ

∂z
=

ieimφ

b(ξ2 + η2)

[
η(1 + ξ2)Smn(β, η)

d

dξ
R(3)
mn(β, ξ)

+ξ(1 − η2)R(3)
mn(β, ξ)

d

dη
Smn(β, η)

]
. (3.95)
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Taking the limit as ξ → 0 we find

∂ψ

∂z

∣∣∣∣
ξ→0

= limξ→0
iSmn(β, η)

bη
eimφ

[
d

dξ
R(1)
mn(β, ξ) + i

d

dξ
R(2)
mn(β, ξ)

]
. (3.96)

⇒ ∂ψ

∂z

∣∣∣∣
ξ=0

:=

⎧⎪⎪⎨
⎪⎪⎩

iSmn(β,η)
bη

eimφ
[
R

(1)′
mn (β, 0) + iR

(2)′
mn (β, 0+)

]
, ξ → 0+,

iSmn(β,η)
bη

eimφ
[
R

(1)′
mn (β, 0) + iR

(2)′
mn (β, 0−)

]
, ξ → 0−.

(3.97)

The prime denotes differentiation with respect to ξ. The first function in

the square brackets of Eqn. 3.97 is continuous, as ξ → 0, from both sides.

The second function is discontinuous, having different limits as ξ → 0+ and

ξ → 0−. The function R
(2)
mn(β, ξ) is even when n − m is odd, however, its

derivative is discontinuous, at ξ = 0, which leads to the (nonphysical) blade-

like behaviour observed in the plot of |ψ|2 in Fig. 3.10. The discontinuity in

R
(2)′
01 (β, 0) is evident in Fig. 3.11, which shows R

(2)
01 (β, ξ) and its derivative,

plotted for β = 2. The discontinuity is apparent for all oblate spheroidal

beams with n −m odd, and also means that the radial equation Eqn. 3.76

is not satisfied inside the disk z = 0, ρ ≤ b.

When η = 0, the oblate spheroidal wave functions with n − m odd are

identically zero. However, these wave functions also have a discontinuous z

derivative in this region. The z derivative of Eqn. 3.83 (with n −m odd),

for η = 0, is

∂ψ

∂z

∣∣∣∣
η=0

=
iR

(3)
mn(β, ξ)

bξ
eimφS

′
mn(β, 0). (3.98)

⇒ ∂ψ

∂z

∣∣∣∣
η=0

:=

⎧⎪⎪⎨
⎪⎪⎩

iS
′
mn(β,0)eimφ

bξ0

[
R

(1)
mn(β, ξ0) + iR

(2)
mn(β, ξ0)

]
, ξ = ξ0,

iS
′
mn(β,0)eimφ

bξ0

[
R

(1)
mn(β, ξ0) − iR

(2)
mn(β, ξ0)

]
, ξ = −ξ0.

(3.99)

The z derivative given in Eqn. 3.99 is discontinuous, at z = 0, for ρ ≥ b.

Furthermore, it is tending to an infinite value at the point ξ = η = 0.

The oblate spheroidal wave functions with n−m odd have a discontinuous

z derivative, at z = 0, both inside and outside the circle ρ = b. The

discontinuous z derivative of the oblate spheroidal beams, with n−m odd,

is nonphysical.
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Figure 3.11: The radial oblate spheroidal function R
(2)
01 (β, ξ) (red-line) and

its derivative (blue-dashed), plotted for β = 2. The function R
(2)′
01 (β, ξ) is

discontinuous, at ξ = 0, with opposite limits as ξ → 0+ and ξ → 0−.

An example of a wave function with a discontinuous derivative is the well-

known case of a delta function potential, see Chapter 2 of [57]. However, a

free space scalar beam should have finite and continuous derivatives at all

regions of space.

In conclusion, the oblate spheroidal wave functions proposed in [17] have

been shown to be possible representations of physical beams only when the

angular function Smn(β, η) has odd n −m. This condition makes Smn(β, η)

odd in η, which ensures the convergence of integrals of physical quantities over

a cross-section of the beam. The odd n−m condition also makes ψmn(ξ, η)

zero in the focal plane z = 0 outside the circle ρ = b, and thus allows for

the physically necessary discontinuity in phase at z = 0 on the ellipsoidal

surfaces of otherwise constant phase.

However, the necessary odd n − m condition leads to nonphysical

behaviour of the beam in the focal plane z = 0. The oblate spheroidal

wave functions with n−m odd have a discontinuous z derivative, at z = 0,

both inside and outside the circle ρ = b. This behaviour is nonphysical, since

a free space scalar beam must have finite and continuous derivatives at all

regions of space. The oblate spheroidal wave functions are not physical scalar

beams, and are not the nonparaxial generalization of the Gaussian beam, in

their current simple product form that is.
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Confluent Heun and oblate spheroidal relations

Section 3.6.1 considered the separable solutions of the Helmholtz equation

in terms of confluent Heun functions, which are not physically realizable.

This section has shown the oblate spheroidal wave functions are also not

physically realizable. Both sets of functions can be related. Comparison

of the asymptotic expression in Eqn. 3.79 for the radial oblate spheroidal

functions with the asymptotic expressions for the radial confluent Heun

functions in Eqn. 3.47 and Eqn. 3.49 shows that the relation between these

functions is:

R
(1)
0n (β, ξ) =

sin[π
2
(n+ 1)]

U(β, 1)
Xeven

0 (ξ), n even, (3.100)

R
(1)
0n (β, ξ) =

cos[π
2
(n+ 1)]

V (β, 1)
Xodd

0 (ξ), n odd. (3.101)

In the case of the angular oblate spheroidal functions and the angular

confluent Heun functions the relation is

S
(1)
0n (β, η) = Y even

0 (η)Pn(0), n even, (3.102)

S
(1)
0n (β, η) = Y odd

0 (η)P
′
n(0), n odd. (3.103)

The angular oblate spheroidal functions are defined using the scheme given in

[30] and [31], and Pn(0) denotes the nth Legendre polynomial of the first kind.

These relations assume μ = μ0n(β), n = 0, 2, 4, ... for the even functions,

whereas μ = μ0n(β), n = 1, 3, 5, ... for the odd functions.

3.6.3 Non-existence of separable spheroidal beams

Section 3.6.2 showed that none of the oblate spheroidal wave functions

represent physical free space scalar beams. A physical free space scalar beam

must have finite derivatives, at all regions of space, and they must also be

continuous. In this section we shall use these constraints to show that, in

general, there is no separable solution of the Helmholtz equation, in oblate

spheroidal coordinates, which has these properties.

We make the following demands on a physical wave function ψ:
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1. ψ must satisfy the Helmholtz equation Eqn. 3.3. Note that this

implies that the derivatives ∂zψ and ∂ρψ exist and are continuous: a

discontinuous first derivative would imply an infinite second derivative,

with nothing in the free space Helmholtz equation to cancel it.

2. The integral
∫ ∞

0
ρ|ψ|2dρ must be finite. For example, 2πΔz times this

integral represents the probability of finding a particle in a transverse

section of thickness Δz in a Schrödinger particle beam.

3. The z-component of the probability current density Jz, proportional to

Im(ψ∗∂zψ), must be non-zero, at least in the central part of the focal

plane, otherwise the wave function would not represent a propagating

beam.

We could also require the finiteness of the total flux, i.e. of the integral∫∞
0
ρJzdρ, but shall not need to do so.

The oblate spheroidal wave functions given in Eqn. 3.83, with n − m

odd, were shown in section 3.6.2 to satisfy condition (2), and also to have

physically realizable isophase surfaces. However, we also proved in that

section that the z derivative of these wave functions is discontinuous in

the focal plane, which violates condition (1). As has already been stated,

the oblate spheroidal wave functions are not physical scalar beams. The

remainder of this section shall prove a more general result, independent of

the properties of the oblate spheroidal functions.

Let the solution to Helmholtz’s equation be represented as

ψ(ξ, η, φ) = R(ξ)S(η)Φ(φ). (3.104)

The functions R(ξ), S(η), need not be the oblate spheroidal functions, but

are arbitrary functions which solve the ordinary differential equations in Eqn.

3.76 and Eqn. 3.81. In what follows we shall prove the following theorem

Theorem 2. Free space scalar beams cannot be represented as ψ(ξ, η, φ) =

R(ξ)S(η)Φ(φ) in oblate spheroidal coordinates.
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Proof: Consider the z derivative, defined in Eqn. 3.94, of the beam wave

function in Eqn. 3.104:

∂ψ

∂z

∣∣∣∣
η=0

=
1

bξ
R(ξ)S ′(0)Φ(φ), (3.105)

∂ψ

∂z

∣∣∣∣
ξ=0

=
1

bη
R′(0)S(η)Φ(φ). (3.106)

The z derivative in Eqn. 3.105 must be finite as ξ → 0, and the z derivative

in Eqn. 3.106 must be finite as η → 0. Thus the necessary (but not sufficient)

conditions for the finiteness of ∂zψ on the circle ξ = η = 0 are

R′(0)S(0) = 0 and R(0)S ′(0) = 0. (3.107)

These conditions will be satisfied if one or more of the following four

constraints are satisfied⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) S(0) = 0 and R(0) = 0,

(b) R′(0) = 0 and S ′(0) = 0,

(c) R′(0) = 0 and R(0) = 0,

(d) S(0) = 0 and S ′(0) = 0.

(3.108)

If (a) holds then ψ(ρ, z = 0) = 0 ⇒ Jz(ρ, z = 0) = 0, which gives no

flux in the entire focal plane, a condition contrary to (3). Case (b) gives

∂zψ|z=0 = 0 ⇒ Jz(ρ, z = 0) = 0, and also implies the nonphysical result of

zero flux in the focal plane, which is contrary to condition (3). For case (c),

ψ = 0 in the region z = 0, ρ ≤ b, and would mean there is no flux through

the central disk of the focal plane, which is nonphysical (consider paraxial

beams). If (d) holds then both ψ and ∂zψ will be zero for η = 0, i.e. for

z = 0, ρ ≥ b, which is not a fatal flaw. But if S(0) and S ′(0) are both zero,

the series expansion of S(η) would start with the second or higher power

of η, which is contrary to the indicial equation of Eqn. 3.81, which gives

the characteristic exponents 0 and 1. Thus, in all possible cases, it is not

possible to have a wave function, in the form of Eqn. 3.104, which represents

a physical scalar beam. QED
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3.7 Oblate spheroidal electromagnetic beams

For tightly focused beams the vector nature of light must be taken into

account. That is, given the scalar solutions of Helmholtz’s equation, we

must derive the vector components of the electric and magnetic fields. We

are again interested in the free space properties of such electromagnetic fields

and it is this situation which we shall confine our attention to. The method

of constructing solutions of the Maxwell equations from solutions of the

Helmholtz equation may be found in [16] or [43], which we shall summarize.

The oblate spheroidal wave functions ψmn(ξ, η) are exact solutions of the

Helmholtz equation. For n−m odd such solutions are forward propagating

in the far field, allow for the discontinuity in phase at z = 0 on the isophase

surfaces, and are normalizable in any cross-section of the beam. However,

these beam solutions have a discontinuous z derivative, in the entire z = 0

plane. We shall investigate electromagnetic beams based on these scalar wave

functions and exhibit nonphysical behaviour in the electromagnetic case also.

The solutions of the Helmholtz equation, in terms of the oblate spheroidal

wave functions, are

ψmn(ξ, η) = i[R(1)
mn(β, ξ) + iR(2)

mn(β, ξ)]Smn(β, η)e
imφ, (3.109)

where n − m is odd. Examples of electromagnetic beams that can be

constructed from the scalar beam solutions are transverse electric (TE) or

transverse magnetic (TM) beams. In a TE beam the z component of the

electric field is zero, while in a TM beam the z component of the magnetic

field is zero. Following the notation in [16] we shall use Gaussian units for the

electric and magnetic fields. (The fields E(r) and B(r) in SI units correspond

to the fields E(r)/
√

4πε0 and
√
μ0/4πB(r) in Gaussian units.)

In the case of a TE mode, the electric and magnetic fields may be deduced

from the TM modes (and vice versa) by means of the duality transformations

E(r) → B(r), B(r) → −E(r). For a TM beam the magnetic vector potential

has the simple form ATM(r) = [0, 0, A0ψ(r)], where ψ(r) is the solution of

the scalar Helmholtz equation given by Eqn. 3.109, and A0 is a constant.

The vector potential ATE, which gives the dual of the TM field arising from

ATM , is ATE = (ik)−1∇×ATM . Further details may be found in [16].
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The magnetic vector potential for a TE mode is

ATE =
A0

ik

(
∂ψ

∂y
,−∂ψ

∂x
, 0

)
. (3.110)

The corresponding electric and magnetic fields are

E(r) = A0

(
∂ψ

∂y
,−∂ψ

∂x
, 0

)
, (3.111)

B(r) =
A0

ik

(
∂2ψ

∂x∂z
,
∂2ψ

∂y∂z
,
∂2ψ

∂z2
+ k2ψ

)
. (3.112)

The electric field in Eqn. 3.111 is purely transverse, and if ψ is axially

symmetric (no azimuthal dependence) the electric field lines are circles

concentric with the z axis. An axially symmetric ψ also leads to a TE beam

within which the electric field is exactly linearly polarized everywhere [50].

Thus exact vector electromagnetic beams which solve Maxwell’s equations

can be constructed by taking various derivatives of the solutions of the scalar

Helmholtz equation.

However, there is a problem with the TE or TM vector beams constructed

from the scalar solutions given in Eqn. 3.109. That is, for odd n −m, the

resulting electric or magnetic field are divergent in the focal plane at the

point ξ = η = 0.

We shall investigate a TE beam in the following paragraphs. The electric

field is given in Eqn. 3.111. In oblate spheroidal coordinates the ρ derivative

of ψ is:
∂ψ

∂ρ
=

(ξ2 + 1)1/2(1 − η2)1/2

b(ξ2 + η2)

{
ξ
∂ψ

∂ξ
− η

∂ψ

∂η

}
. (3.113)

The x and y derivatives are related to the derivatives with respect to ρ and

φ by the following formulae:

∂ψ

∂x
= cosφ

∂ψ

∂ρ
− sin φ

ρ

∂ψ

∂φ
, (3.114)

∂ψ

∂y
= sinφ

∂ψ

∂ρ
+

cosφ

ρ

∂ψ

∂φ
, (3.115)

where φ is the azimuthal angle. In subsequent paragraphs ψ shall be given

by the expression in Eqn. 3.109, which gives ∂φψ = imψ. Now suppose we

consider ∂ψ
∂ρ

in the focal plane (z = 0) with ρ ≥ b initially.

95



3.7. OBLATE SPHEROIDAL ELECTROMAGNETIC BEAMS

In oblate spheroidal coordinates this corresponds to η = 0. (Since ψ = 0

when η = 0, the φ derivative does not contribute to the electric field, only

the ρ derivative does.) The ρ derivative is

∂ψ

∂ρ

∣∣∣∣
η=0

=
i(ξ2 + 1)1/2

bξ
Smn(β, 0)eimφ

d

dξ
R(3)
mn(β, ξ),

= 0, ∀ξ �= 0. (3.116)

This is due to the fact that, for odd n−m, Smn(β, η) is zero when η = 0. Eqn.

3.116 shows that the electric field of a TE beam is zero, in the focal plane

z = 0, outside the circle ρ = b. This result arises from forcing the scalar

wave function to be zero in this region. It is interesting to consider what

experimental implications such an electromagnetic beam would produce. In

other words, is it possible to create a free space (TE) electromagnetic beam

that is zero, identically, in the focal plane z = 0, outside the circle ρ = b ?

Let us now consider the limit from the other side of the circle ρ = b. That

is, in the focal plane z = 0, but now with ξ = 0 and η → 0. In this case we

find

∂ψ

∂ρ

∣∣∣∣
ξ=0

=
−i(1 − η2)1/2

bη
R(3)
mn(β, 0)eimφ

d

dη
Smn(β, η),

=
(1 − η2)1/2

bη
R(2)
mn(β, 0)eimφ

d

dη
Smn(β, η). (3.117)

If we take the limit as η → 0

∂ψ

∂ρ

∣∣∣∣
ξ=0,η→0

= limη→0
R

(2)
mn(β, 0)

bη
eimφ

d

dη
Smn(β, η),

= limη→0
(−1)

n−m−1
2 (n+m+ 1)!

2n
(
n−m−1

2

)
!

(
n+m+1

2

)
!

R
(2)
mn(β, 0)

bη
eimφ.(3.118)

The Flammer normalization of the derivative of Smn(β, η) with n − m

odd has been used in Eqn. 3.118 [30]. The normalization is irrelevant in any

case; the Meixner-Schäfke, or Stratton-Morse-Chu-Little-Corbatò schemes

could have been chosen. The most important feature is that the electric field

(and hence the magnetic field in the TM beam case) is divergent.
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The electric field in the region z = 0, ρ < b, diverges as we approach the

circle z = 0, ρ = b, as 1/η. (The contribution to the electric field from the φ

derivative is finite, and cannot ‘cancel’ the divergence.)

A divergent electric field at the point ξ = η = 0 is allowed in the case

of diffraction by a circular disk, provided the energy density is integrable.

Large fields are expected at the edge of certain obstacles. In the case of

diffraction by a circular disk, Flammer [58, 59] has given the form of the field

components, near the disk, and also discussed their singular behaviour. The

nature of the electric fields and charge densities at corners and edges can be

found in Chapter 2 of Jackson [43].

The solution considered in this section is, however, concerned with

free space propagation. The question of edge conditions and allowable

singularities does not arise. From a physical point of view, since space is

isotropic and homogeneous, there should be no divergence associated with

a physical free space electromagnetic beam. This analysis shows that the

oblate spheroidal wave functions cannot represent physical free space (TE

and TM) vector beam solutions.

We may perform the same analysis for the simplest of the spherical Bessel

solutions of the Helmholtz equation,

j0(kR) =
sin(kR)

kR
, R = b(ξ − iη). (3.119)

In the limit that ξ → 0, η → 0, the ρ derivative of j0 has the form

∂

∂ρ
j0(kR)

∣∣∣∣
η=0,ξ→0

=
−1

3

β2

b
+

1

30

β2(β2 − 5)

b
ξ2 +O(ξ4). (3.120)

∂

∂ρ
j0(kR)

∣∣∣∣
ξ=0,η→0

=
−1

3

β2

b
+

1

30

β2(5 − β2)

b
η2 +O(η4). (3.121)

The simplest of the spherical Bessel beams has a finite derivative at

the point ξ = η = 0. Furthermore, the derivative has the same limiting

value, regardless of which side of the circle z = 0, ρ = b the limit is taken

from. This is in contrast to the oblate spheroidal beam solution which has a

discontinuous derivative across the boundary ξ = 0, η = 0.

97



3.8. BESSEL BEAMS AND THE BATEMAN SOLUTION

We have shown that the oblate spheroidal wave functions cannot represent

physical TE and TM electromagnetic beams propagating in free space.

The problem with these wave functions arises from their behaviour when

ξ = η = 0. In the case of scattering by a disk, the infinite electric field

amplitude is allowed due to edge conditions. The energy density remains

integrable and a finite total cross-section also results [58, 59]. A free space

vector beam, however, should not have associated divergences. The problem

therefore remains to determine exact solutions of Maxwell’s equations for

electromagnetic beams propagating in free space.

3.8 Bessel beams and the Bateman solution

3.8.1 Generalized Bessel beams

Exact solutions of the Helmholtz equation can be expressed as oblate

spheroidal wave functions. None of the oblate spheroidal wave functions are

physical free space scalar beams, as shown in section 3.6.2. We shall briefly

investigate another set of scalar beam solutions, which have very interesting

properties and are physical solutions of the Helmholtz equation. These beams

are known as generalized Bessel beams.

The Helmholtz equation in cylindrical polar coordinates is given by(
∂2
ρ +

1

ρ
∂ρ + ∂2

z +
1

ρ2
∂2
φ + k2

)
ψ(ρ, z, φ) = 0, (3.122)

where k is the angular wavenumber. The Helmholtz equation is separable

in cylindrical polar coordinates and so we may express the wave function

as ψ(ρ, z, φ) = X(ρ)Z(z)Φ(φ). Inserting this product into Eqn. 3.122

gives three second-order ordinary differential equations. Solving these three

differential equations gives the following product solutions of the Helmholtz

equation

ψm(ρ, z, φ) = eiqzJm(κρ)eimφ, k2 = κ2 + q2. (3.123)

In this notation Jm is the mth order Bessel function of the first kind and m

is an integer, see Chapter 9 of [30] for properties of Bessel functions.
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3.8. BESSEL BEAMS AND THE BATEMAN SOLUTION

Barnett and Allen [60] used the separable solutions of Eqn. 3.123 to

construct a light beam in which the electric field has the form

E(ρ, z, φ) =

∫ k

0

f(κ)

{
(αx̂ + βŷ)Fm

+
κ

2q
ẑ[(iα− β)Fm−1 − (iα + β)Fm+1]

}
dκ. (3.124)

Here the shorthand notation Fm = eiqzJm(κρ)eimφ has been used.

Barnett and Allen considered monochromatic beams defined through

Eqn. 3.124. Using this representation for the electric field they found

expressions for the energy per unit length, and for the linear and angular

momentum per unit length. They found that all three quantities were

invariants, that is, independent of the longitudinal coordinate z.

For a monochromatic electromagnetic beam it has been shown by Lekner

[61] that of these three quantities only the momentum content per unit length

is an invariant in general. There are seven universal invariants associated with

certain integrals of a flux density over a section of the beam, but neither the

energy content per unit length, or the angular momentum content per unit

length are, in general, an invariant.

The proof of this result is based on conservation laws, i.e. conservation

of energy, conservation of momentum (through the Maxwell stress tensor),

and conservation of angular momentum (through an angular momentum flux

density tensor.) An interesting result in [61] is that the invariance of the

momentum content per unit length arises from energy conservation, not

conservation of momentum. This can be understood, however, given the

fact that the energy flux density equals c2 times the momentum density.

Lekner [62, 63] has considered the most general type of such beams and

it is the properties of these which we shall briefly review. By taking a

continuous superposition of the separable solutions of the Helmholtz equation

we will obtain a general solution to the Helmholtz equation. This then gives

a representation of a scalar beam as an integral of the separable solutions.

The scalar beam solutions to the Helmholtz equation are [62]

ψm(r) = eimφ
∫ k

0

f(κ)eiqzJm(κρ)dκ, q2 + κ2 = k2. (3.125)
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3.8. BESSEL BEAMS AND THE BATEMAN SOLUTION

The invariants for the electromagnetic beams based on this wave function

have been calculated in [62], with the constraint that only certain integrals

of |f(κ)|2 over κ should exist. The beam solutions given in Eqn. 3.125 are

known as generalized Bessel beams and it is the invariants of these beams

which we shall discuss. We shall also derive a new invariant in the case of

scalar generalized Bessel beams.

Conservation of energy of an electromagnetic beam is expressed in terms

of the real fields E(r, t), B(r, t) by

∇ · S +
∂u

∂t
= 0,

S =
c

4π
(E × B) = c2p,

u =
1

8π

(
E2 +B2

)
. (3.126)

(In these expressions Gaussian units for the fields have been used, see section

3.7 for the conversion to SI units.) The vector S is the well-known Poynting

vector and represents the energy per unit time per unit area transported by

the fields, p is the momentum density, and u is the energy density of the

electromagnetic fields which constitute the light beam.

It follows from Eqns. 3.126 that

P
′
z =

∫
p̄z d

2r is an invariant, i.e. not dependent on z. (3.127)

The bar is used to denote a cycle average, used here and throughout this

section, and the
∫
d2r notation denotes

∫ ∞
−∞

∫ ∞
−∞ dxdy: integration over a

transverse section of the beam, at fixed z. The proof may be found in [61]; it

follows by applying
∫
d2r to the cycle average of the first equation in Eqns.

3.126 and using the definition of S in the second equation of Eqns. 3.126.

In this interpretation dPz = P
′
zdz is the momentum content in a slice of

thickness dz, thus the quantity P
′
z is a natural measure of the momentum

content per unit length along the z direction. As stated earlier, the invariance

of the momentum content per unit length is derived from energy conservation.
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3.8. BESSEL BEAMS AND THE BATEMAN SOLUTION

The z component of momentum content per unit length, z component

of angular momentum content per unit length, and energy content per unit

length are defined as follows:⎧⎪⎨
⎪⎩

P
′
z =

∫
p̄z d

2r,

J
′
z =

∫
(r× p̄)z d

2r,

U
′

=
∫
ū d2r.

(3.128)

The energy and angular momentum content per unit length are not invariants

in general: see, for example, [61] where an example is given. For the Barnett

and Allen beam, however, these quantities are invariants.

TM, TE, and circularly polarized (CP) electromagnetic beams are studied

in [62], based on the scalar solution given in Eqn. 3.125. The calculation

of the electric and magnetic field for the dual TM and TE beams based on

the scalar solutions of the Helmholtz equation has been given in section 3.7,

further details may be found in [62]. The derivation of P
′
z, J

′
z, and U

′
in the

case of a TM, or TE beam, requires the use of the various discontinuous

integrals of Weber and Schafheitlin, which may be found in Chapter 11 of

[30], or Chapter 13 of [64].

A summary of the results of [62] shall be presented here. Lekner [62]

found that the quantities in Eqns. 3.128 are all invariants and are given by

the following expressions

U
′
=

1

4

∫ k

0

κ|f(κ)|2dκ. (3.129)

cP
′
z =

1

4k

∫ k

0

κq|f(κ)|2dκ. (3.130)

J
′
z =

m

4ck

∫ k

0

κ|f(κ)|2dκ. (3.131)

An interesting feature of these expressions is that U
′ ≥ cP

′
z, since q ≤ k. This

is a general inequality proved in [61]. Another feature of these generalized

Bessel beams is that for all TM and TE beams the energy content per unit

length is independent of m. Comparison of Eqn. 3.129 and Eqn. 3.131 shows

that ωJ
′
z = mU

′
.

This relation between the angular momentum and energy is consistent with
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3.8. BESSEL BEAMS AND THE BATEMAN SOLUTION

the idea of a beam consisting of photons of energy �ω and angular momentum

m�.

Lekner [62] considered electromagnetic beams. In the case of scalar

beams there is another invariant, namely the normalization integral. The

normalization integral is not in general an invariant: see [16] for an example.

However, the normalization integral for the scalar solutions given in Eqn.

3.125 is an invariant. The normalization integral in a cross-section of the

beam is given by

N =

∫ ∞

0

ρ|ψ|2dρ. (3.132)

The following singular integral is needed to evaluate Eqn. 3.132 [64]∫ ∞

0

ρJm(κρ)Jm(κ′ρ)dρ = κ−1δ(κ− κ′). (3.133)

On application of Eqn. 3.133 to Eqn. 3.132 the normalization integral

becomes

N =

∫ ∞

0

ρdρ

∫ k

0

f(κ)eiqzJm(κρ)dκ

∫ k

0

f ∗(κ′)e−iq
′zJm(κ′ρ)dκ′,

=

∫ k

0

κ−1|f(κ)|2dκ. (3.134)

Thus we have this new result that the scalar generalized Bessel solutions have

another invariant associated with them. That is, the normalization integral

of such beams is independent of the longitudinal coordinate z.

The simple product solutions given in Eqns. 3.123 correspond to a delta-

function amplitude in the wave function of Eqn. 3.125, which leads to

divergent integrals for the physical quantities of the beam, such as the energy

content per unit length. The simple product solutions of the Helmholtz

equation are not physical beams in their own right, but certain superpositions

of them, in the form of a generalized Bessel beam, can give finite physical

properties. In the case of TM and TE beams the normal photon view of an

electromagnetic beam is attained. This is, however, only realized in the TM

or TE cases, the energy and angular momentum relationship is different in

the case of a CP beam.
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This section has presented the generalized Bessel beams and summarized

the results of [62] which derives the invariants for these electromagnetic

beams. We also showed that the normalization integral is an invariant in

the scalar beam case. The beams are interesting from several points of

view. They satisfy the requirement of being purely forward propagating,

a requirement which none of the spherical Bessel beams satisfy, and all of

the oblate spheroidal beams satisfy. The generalized Bessel beams are highly

symmetrical in that they have invariant momentum content per unit length,

angular momentum content per unit length, and energy content per unit

length along the z direction of the beam.

The property of invariant energy and angular momentum content per unit

length is not a general property of electromagnetic beams, but one which

the generalized Bessel beams have. The downside of the generalized Bessel

beams is that no weight function f(κ) has been found which gives a simple

analytical expression for the resulting scalar and electromagnetic beams. We

showed in the previous section that the oblate spheroidal wave functions are

not physical scalar or (TE and TM) electromagnetic beams. It may be that

physical beams are in a form similar to the generalized Bessel beams, which

would warrant investigation into determining a suitable weight function f(κ).

3.8.2 Bateman solution of the wave equation

Exact solutions to the Helmholtz equation have been obtained as a product

of angular and radial oblate spheroidal functions. Through a sum of

the separable products all other solutions can, in principle, be obtained.

However, there is a general solution to the Helmholtz equation which is not

in the form of a product solution. This is the Bateman solution of the wave

equation. The Bateman [65] solution gives an integral representation of the

solution to the wave equation, which may be modified to represent a scalar

beam solution of the Helmholtz equation. In what follows, we shall present

the Bateman solution of the wave equation, and modify it to give a scalar

beam solution.
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The Bateman solution to the wave equation, in cylindrical polar coordi-

nates, is (p 402 [49]):

ψ(ρ, z, t) =

∫ π

−π
f(z + iρ cos(θ), ct+ ρ sin(θ))dθ

+

∫ b

0

∫ π

−π
arc sinh

(
a + z + ct cos(θ)

ρ sin(θ)

)
F (a, θ)dθda.(3.135)

The last term was included by Bateman to allow for logarithmic divergence

in the solution when ρ = 0. The last term also satisfies the wave equation

without the integration, but the first term needs the integration over θ, since

(∇2 − 1/c2∂2
t )f(z + iρ cos(θ), ct + ρ sin(θ)) = −1/ρ2∂2

θf(z + iρ cos(θ), ct +

ρ sin(θ)), which upon integration gives zero.

For a monochromatic beam the time dependence is exp(−iωt) = exp(−ickt),
which restricts the function f to be of the form

f =
1

2π
g(z + iρ cos(θ))e−ik(ct+ρ sin(θ)). (3.136)

Therefore (∇2 + k2)ψ = 0 is solved by

ψ(ρ, z) =
1

2π

∫ π

−π
g(z + iρ cos(θ))e−ikρ sin(θ)dθ. (3.137)

In the case of scalar beams the second term of Eqn. 3.135 is not needed,

since we do not require the possibility of divergence in ψ when ρ = 0. Eqn.

3.137 is the most general (non-singular) form of the solution to the Helmholtz

equation, but it does not give an insight into what function g(z + iρ cos(θ))

gives a physical beam solution.

In section 3.5 the solution to the radial equation was expressed as an

integral of an angular function. The kernel in the integral relation satisfies

the Helmholtz equation Eqn. 3.59. Therefore, the Bateman form of the

solution to the Helmholtz equation given in Eqn. 3.137 can be used to derive

the kernels of the integral relations. The simplest kernel is the plane wave

solution exp(ikz), which was used in expressing the integral relations of Eqn.

3.60 and Eqn. 3.61 between the radial and angular confluent Heun functions.

We shall now derive the plane wave solution utilizing the Bateman solution

Eqn. 3.137.
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If g = eik(z+iρ cos(θ)) the solution to the Helmholtz equation becomes

ψ(ρ, z) =
exp(ikz)

2π

∫ π

−π
e−kρ(cos(θ)+i sin(θ))dθ. (3.138)

Performing the integration is best handled using contour integration. If we

make the substitution X = exp(iθ), dX = iXdθ, and perform the contour

integration around the unit circle, the solution is

ψ(ρ, z) =
exp(ikz)

2πi

∮
exp(−kρX)

X
dX. (3.139)

The residue at the singularity X = 0 is given by 1. By the residue

theorem, or Cauchy’s integral formula, the solution to the Helmholtz

equation, for this particular g, is

ψ(ρ, z) = exp(ikz), (3.140)

which is exp(iβξη) in oblate spheroidal coordinates. This gives the usual

plane wave solution, which can be obtained by inspection of the partial

differential equation. However, this method illustrates an application of the

Bateman solution. In oblate spheroidal coordinates the Bateman solution

Eqn. 3.137 becomes

ψ(ξ, η) =
1

2π

∫ π

−π
g(bξη + ib

√
(ξ2 + 1)(1 − η2) cos(θ))e−iβ sin(θ)

√
(ξ2+1)(1−η2)dθ.

(3.141)

In conclusion, the Bateman solution in Eqn. 3.137 is a general solution

of the Helmholtz equation. For a certain g, the Bateman solution may lead

to an analytic expression for exact scalar beams. Thus, in future research, it

may be of benefit to further investigate various functions g, and determine

the properties of the corresponding scalar beams.
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Chapter 4

Scattering of scalar waves by

spheroids

Chapter 3 investigated the applicability of oblate spheroidal wave functions

as free space scalar beams. As discussed in the introduction, these

wave functions have also been used for solving the scattering of acoustic

waves by spheroidal obstacles. In this Chapter, however, we shall give a

phase shift formulation of the scattering of Schrödinger particle waves by

impenetrable spheroids, and for scattering of sound waves by acoustically

soft spheroids. The important step is the application of a finite Legendre

transform to the Helmholtz equation. We shall show that the resulting radial

eigenfunctions, in the oblate and prolate cases, satisfy certain difference-

differential equations. In the long-wavelength limit solution of the difference-

differential equations in terms of Legendre functions is possible. This shall

lead to expressions for the scattering length, differential scattering cross-

section, and the total cross-section, of spheroidal scatterers, in the long-

wavelength limit. The method is restricted to scattering by spheroids whose

symmetry axis is coincident with the direction of the incident plane wave.

The advantage of the method is that it is in one-to-one correspondence

with the partial wave theory of scattering by spherical objects developed

by Rayleigh.

106



4.1. INTRODUCTION

4.1 Introduction

In classical mechanics the elastic scattering of particles by collisions is

determined by the particle’s velocity and impact parameter. The classical

scattering problem is to determine the scattering angle in terms of the impact

parameter. However, in quantum mechanics, the concept of a definite path

is meaningless, and the very notion of an impact parameter is also not

well defined. In quantum scattering theory the aim is to compute the

probability that a certain particle, represented by its deBroglie wave, is

scattered through a certain angle. This probability is obtained from the

scattering amplitude, which is related to the experimentally important total

cross-section in a simple way. A thorough treatment of quantum scattering

by spherical scatterers is given in Chapter 17 of [29]. In this Chapter we shall

summarize the usual phase shift theory of scattering by spherical scatterers,

and then derive analogous results for the scattering by spheroidal obstacles.

We shall investigate the scattering of an incident Schrödinger particle

wave, represented as a plane wave eikz, by hard oblate or prolate spheroids.

In this context the spheroids are impenetrable and the extinction of the

incident plane wave is due entirely to scattering, with no contribution from

absorption. The results are not restricted to scattering of quantum particle

waves, but are relevant to scattering of acoustic sound waves by acoustically

soft spheroidal objects. This is because in both cases the boundary condition

is that the wave function, or velocity potential in the acoustic case, must

vanish on the surface of the spheroid.

Before deriving the theory for spheroidal scatterers, it is instructive

to summarize the main results for the scattering of waves by spherical

scatterers in terms of the phase shifts δn. The principle behind the

phase shift formulation of scattering is based on conservation of probability.

A Schrödinger particle wave, scattered by a spherical obstacle, may be

represented by a superposition of scattered partial waves, each with only

a change in the phase of the incident particle wave.
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The Schrödinger equation is separable in spherical coordinates, and so the

solution can be represented as a sum over products of a radial and angular

function

ψ(r, θ) =

∞∑
n=0

(2n+ 1)Rn(r)Pn(cos(θ)). (4.1)

The physical solutions to Schrödinger’s equation must have the following

asymptotic form

ψ → eikz + f(θ)
eikr

r
, (4.2)

where f(θ) is the scattering amplitude. This expression represents the wave

function as a superposition of the incident wave plus the outward propagating

scattered wave. The asymptotic form of the radial solutions are given in terms

of the phase shifts as

Rn(r) → in

kr
eiδn sin(kr − nπ/2 + δn). (4.3)

The difference between ψ and eikz gives the scattered wave. In order to

derive the scattering amplitude the incident plane wave must be represented

in terms of an expansion of the solutions of Schrödinger’s equation in

spherical coordinate eigenstates. This is known as Rayleigh’s formula:

eikz =

∞∑
n=0

(2n+ 1)injn(kr)Pn(cos(θ)). (4.4)

Thus the scattering amplitude can be found by using the asymptotic form

of the radial solutions along with the Rayleigh formula. The scattering

amplitude is

f(θ) =
1

k

∞∑
n=0

(2n+ 1)eiδn sin(δn)Pn(cos(θ)). (4.5)

Once the scattering amplitude has been determined we are able to deduce

the differential scattering cross-section defined as follows

D(θ) =
dσ

dΩ
= |f(θ)|2. (4.6)

If we integrate the differential scattering cross-section over the full solid angle

we obtain the total cross-section.
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The total cross-section is the ratio of the total probability (per unit time)

that a particle will be scattered to the probability current density in the

incident wave. It is effectively the total area of incident beam scattered by

the target. The total cross-section is defined as follows

σ =

∫
D(θ)dΩ = 2π

∫ π

0

|f(θ)|2 sin(θ)dθ. (4.7)

In terms of the phase shifts δn the total cross-section is

σ =
4π

k2

∞∑
n=0

(2n+ 1) sin2(δn). (4.8)

The quantum theory of scattering can be found in Chapter 17 of [29], or

Chapter 11 of [57]. Chapter 4 of [40] gives the classical theory of scattering.

Scattering by spherical obstacles can be summarized by the following set of

equations:

ψ(r, θ) =

∞∑
n=0

(2n+ 1)Rn(r)Pn(cos(θ)),

ψ(r, θ) → eikz + f(θ)
eikr

r
,

Rn(r) → in

kr
eiδn sin(kr − nπ/2 + δn),

f(θ) =
1

k

∞∑
n=0

(2n+ 1)eiδn sin(δn)Pn(cos(θ)),

dσ

dΩ
= |f(θ)|2,

σ =

∫
dσ

dΩ
dΩ =

4π

k2

∞∑
n=0

(2n+ 1) sin2(δn).

(4.9)

Scattering theory reduces to calculating the phase shifts δn for a specific

potential. This is done by solving the Schrödinger equation in the region

where the potential is non-zero, and then using appropriate boundary

conditions.
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4.2. WAVE EQUATION FOR OBLATE SPHEROIDAL SCATTERERS

These equations (in order) express the solution of Helmholtz’s equation

(∇2 + k2)ψ = 0 as a sum over products of radial and angular solutions, give

the asymptotic form appropriate for an incoming plane wave and a spherically

diverging wave, express the asymptotic form of the radial solutions in terms

of the phase shifts δn, give the scattering amplitude f(θ) in terms of the

phase shifts, and give the differential and total cross-sections.

It follows from comparison of Eqn. 4.5 and Eqn. 4.8 that the forward

scattering amplitude is related to the total cross-section:

σ =
4π

k
Im {f(0)} . (4.10)

This result, called the ‘optical theorem’, holds for elastic scattering (no

absorption) of scalar waves, for which the phase shifts δn are real.

In the case of scattering by spheroids, which is our main focus, we seek

to derive expressions analogous to those given in Eqns. 4.9 for scattering by

spherical scatterers.

4.2 Wave equation for oblate spheroidal scat-

terers

The oblate spheroidal coordinate system has been explained in Chapter 3,

which should be referred to for details about the coordinate system. In this

Chapter, however, we shall use a different range for the variables. That is

ρ = b
√
ξ2 + 1

√
1 − η2, z = bξη, φ = φ,

−1 ≤ η ≤ 1, 0 ≤ ξ <∞, 0 ≤ φ ≤ 2π. (4.11)

The definitions of the oblate spheroidal coordinate system given in Eqns.

3.14 and Eqns. 4.11 are both representations of the whole of space. However,

Eqns. 3.14 have a branch cut on the η = 0 axis, whereas Eqns. 4.11 have a

branch cut on the disk ξ = 0.
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Figure 4.1: Oblate and prolate spheroidal coordinate systems (upper left and

right, respectively), and two examples of these spheroids. Lower left: the oblate

spheroid ξ0 = 0.2. Lower right: the prolate spheroid ξ0 = 1.2 . In the upper figures

these solid bodies are the innermost spheroids, shown shaded. The parameter ξ0
increases in steps of 0.2 from the inner spheroids.

The form of the oblate spheroidal coordinate system in Eqns. 3.14 is used for

beam solutions, propagating along the z axis, whereas the form in Eqns. 4.11

is used for outward propagating waves, which are observed in the scattering

problems under consideration. The ellipsoids represented by the oblate

spheroidal coordinate system, Eqn. 3.15, are shown in Fig. 4.1.

As discussed in Chapter 3, the free space Schrödinger equation is

equivalent to the scalar Helmholtz equation. We shall consider plane waves

incident along the symmetry axis of the spheroid, so this restricted problem

has no φ-dependence. The corresponding Helmholtz equation in oblate

spheroidal coordinates is

{
∂ξ(1 + ξ2)∂ξ + ∂η(1 − η2)∂η + β2(ξ2 + η2)

}
ψ(ξ, η) = 0. (4.12)
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4.2. WAVE EQUATION FOR OBLATE SPHEROIDAL SCATTERERS

The product of the wavenumber k and parameter b is, as in Chapter 3,

denoted by β. The Helmholtz partial differential equation, Eqn. 4.12, is

separable, which is the usual method of proceeding. Instead, we perform a

finite Legendre transformation of Eqn. 4.12, see, for example, section 6.11 of

[66]. The finite Legendre transform of ψ(ξ, η) is defined by

Rn(ξ) =
1

2

∫ 1

−1

ψ(ξ, η)Pn(η)dη, (4.13)

where Pn(η) is the Legendre polynomial of order n, and satisfies

[∂η(1 − η2)∂η + n(n + 1)]Pn(η) = 0. (4.14)

It follows from integration by parts and the use of Eqn. 4.13 and Eqn.

4.14 that

1

2

∫ 1

−1

[
∂η(1 − η2)∂ηψ(ξ, η)

]
Pn(η)dη = −n(n + 1)Rn(ξ). (4.15)

The Legendre polynomials satisfy the following recurrence relation, also given

in Eqn. 2.25,

(2n+ 1)η2Pn =
n(n− 1)

2n− 1
Pn−2 +

{
(n + 1)2

2n+ 3
+

n2

2n− 1

}
Pn

+
(n+ 1)(n+ 2)

2n+ 3
Pn+2. (4.16)

Therefore operating on the Helmholtz equation with 1
2

∫ 1

−1
Pn(η)dη, and using

the definition of Rn(ξ), we obtain the following coupled set of difference-

differential equations for Rn(ξ)[
∂ξ(1 + ξ2)∂ξ + β2ξ2 − n(n + 1)

]
Rn(ξ)

+
β2

2n+ 1

{
n(n− 1)

2n− 1
Rn−2(ξ) +

[
(n+ 1)2

2n+ 3
+

n2

2n− 1

]
Rn(ξ)

+
(n+ 1)(n+ 2)

2n+ 3
Rn+2(ξ)

}
= 0. (4.17)

The first three of the set Eqn. 4.17 read

n = 0 :

[
∂ξ(1 + ξ2)∂ξ + β2

(
ξ2 +

1

3

)]
R0 +

2

3
β2R2 = 0.

n = 1 :

[
∂ξ(1 + ξ2)∂ξ + β2

(
ξ2 +

3

5

)
− 2

]
R1 +

2

5
β2R3 = 0. (4.18)

n = 2 :

[
∂ξ(1 + ξ2)∂ξ + β2

(
ξ2 +

11

21

)
− 6

]
R2 +

β2

5

(
12

7
R4 +

2

3
R0

)
= 0.
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We do not have the general solution of this system of equations, but the

long-wavelength limit (β = kb→ 0) is simple:

(1 + ξ2)R
′′
n + 2ξR

′
n − n(n + 1)Rn = 0. (4.19)

Comparison of Eqn. 4.19 with the Legendre differential equation Eqn. 4.14

shows that, at low frequencies, Rn becomes a linear combination of the

regular and singular Legendre functions of imaginary arguments:

Rn(ξ) → pnPn(iξ) + qnQn(iξ), β → 0. (4.20)

Since

Q0(x) =
1

2
ln

1 + x

1 − x
and

1

2i
ln

1 + iξ

1 − iξ
= arctan(ξ) (4.21)

we can write the first three low-frequency limiting forms of Rn as

R0 → p0 + q0arctan(ξ),

R1 → p1ξ + q1(1 + ξarctan(ξ)), (4.22)

R2 → p2(1 + 3ξ2) + q2[3ξ + (1 + 3ξ2)arctan(ξ)].

In fact, Rn(ξ) = Pn(iξ) solves Eqn. 4.17 for all n ≥ 0, and Rn(ξ) = Qn(iξ)

solves Eqn. 4.17 for all n ≥ 2 (the recurrence relation Eqn. 4.16 is satisfied

by Qn(iξ) only for n ≥ 2), but these are not physical solutions except in the

long-wavelength limit.

At high frequencies the behaviour of Rn(ξ) is more like that of the

spherical Bessel functions jn(βξ) and yn(βξ), which satisfy the equation

ξ2d
2jn
dξ2

+ 2ξ
djn
dξ

+ [β2ξ2 − n(n + 1)]jn = 0. (4.23)

The remainders when Rn(ξ) is set equal to jn(βξ) in Eqn. 4.17 are

n = 0 :
4

3
β2j2(βξ),

n = 1 :
4

5
β2j3(βξ), (4.24)

n = 2 :
4

5
β2

[
6

7
j4(βξ) +

1

3
j0(βξ)

]
.

Corresponding results hold for Rn(ξ) set equal to yn(βξ).
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4.3. SCATTERING BY OBLATE SPHEROIDS

4.3 Scattering by oblate spheroids

In this section we shall formulate the scattering of waves incident along the

symmetry axis of an oblate spheroid in a similar form as the phase shift

formulation of scattering by spherical scatterers [29]. The theory of scattering

by spherically symmetric potentials reduces to calculating the phase shifts,

as functions of the wavelength, for a specific potential.

The inverse of the Legendre transform Eqn. 4.13 (into which the factor
1
2

has been inserted to retain exact correspondence with scattering theory)

is obtained from the orthogonality relation∫ 1

−1

Pn(η)Pm(η)dη =
2δnm

2n + 1
, (4.25)

where δnm is the Kronecker delta function. By analogy with Eqn. 4.1 we

write

ψ(ξ, η) =
∞∑
n=0

(2n+ 1)Rn(ξ)Pn(η). (4.26)

If we multiply both the left and right hand sides of Eqn. 4.26 by

the Legendre polynomial Pm(η) and invoke the orthogonality condition of

Legendre polynomials this gives us back Eqn. 4.13.

In analogy with the spherical scattering theory we replace kr by βξ =

(kbξ) and cos(θ) by η; thus we require the wave function to have the following

asymptotic form

ψ(ξ, η) → eiβξη + F (η)
eiβξ

βξ
, (4.27)

where F (η) is the (dimensionless) spheroidal scattering amplitude. The

scattering amplitude gives the probability of scattering in a given direction

specified asymptotically by η.

As in Eqn. 4.3, the asymptotic form of the radial functions Rn(ξ), in

terms of the phase shifts δn, is

Rn(ξ) → in

βξ
eiδn sin(βξ − nπ/2 + δn). (4.28)
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In order to derive the scattering amplitude F (η), in terms of the phase

shifts, we need the expansion of the plane wave eikz in terms of the Legendre

polynomials, and an undetermined radial function. Expanding the incident

plane wave as in Eqn. 4.26 we have

eiβξη =
∞∑
n=0

(2n + 1)Gn(ξ)Pn(η). (4.29)

The function Gn(ξ) can be found as before by multiplying both the left

and right sides of Eqn. 4.29 by the Legendre polynomial Pm(η), integrating,

and invoking the orthogonality of the Legendre polynomials. This gives

Gn(ξ) =
1

2

∫ 1

−1

eiβξηPn(η)dη =
1

(−i)n jn(βξ), (4.30)

from the integral representation of the spherical Bessel function jn(βξ). We

now have the desired expansion of the plane wave (eikz), in terms of spherical

Bessel functions and Legendre polynomials,

eiβξη =

∞∑
n=0

(2n+ 1)injn(βξ)Pn(η). (4.31)

Eqn. 4.31 is in exact analogy with the familiar Rayleigh formula Eqn. 4.4,

which expands a plane wave in terms of the same functions, except written

in spherical coordinates. Now that the plane wave expansion expressed

in spheroidal coordinates has been found we may determine the scattering

amplitude from the asymptotics of the wave function.

The asymptotics of the spherical Bessel functions are

jn(βξ) →
sin

(
βξ − nπ

2

)
βξ

, βξ → ∞. (4.32)

Therefore the plane wave expansion in the limit that βξ → ∞ is

eiβξη →
∞∑
n=0

(2n+ 1)in
sin

(
βξ − nπ

2

)
βξ

Pn(η). (4.33)

The scattering amplitude F (η) can be found from the difference in the

asymptotic expression of ψ(ξ, η) − eiβξη. This gives us:
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4.3. SCATTERING BY OBLATE SPHEROIDS

ψ(ξ, η) − eiβξη =

∞∑
n=0

(2n+ 1)[Rn(ξ) − injn(βξ)]Pn(η),

→ 1

βξ

∞∑
n=0

in(2n+ 1)[eiδn sin(βξ − nπ/2 + δn)

− sin(βξ − nπ/2)]Pn(η),

=
eiβξ

βξ

∞∑
n=0

(2n+ 1)eiδn sin(δn)Pn(η). (4.34)

As the scattering amplitude is the coefficient of the scattered wave, inspection

of Eqn. 4.34 gives

F (η) =
∞∑
n=0

(2n+ 1)eiδn sin(δn)Pn(η). (4.35)

Now that the scattering amplitude has been found we can deduce the

differential scattering cross-section using Eqn. 4.6 and Eqn. 4.35. The result

is
dσ

dΩ
=

1

k2

∣∣∣∣
∞∑
n=0

(2n+ 1)eiδn sin(δn)Pn(η)

∣∣∣∣
2

. (4.36)

Integration of the differential scattering cross-section gives the total cross-

section

σ = 2π

∫ 1

−1

dσ

dΩ
dη,

=
4π

k2

∞∑
n=0

(2n+ 1) sin2(δn). (4.37)

We may now derive the optical theorem, which relates the total cross-section

to the forward scattering amplitude, for the case of scattering by spheroids.

Using Eqn. 4.35 and Eqn. 4.37, the total cross-section is given by

σ =
4π

k2
Im {F (η = 1)} . (4.38)

The scattering theory of spheroids is completely analogous to the

scattering by spherically symmetric potentials. The analogy between

scattering amplitudes is given by the following relation

F (η)

βξ
↔ f(θ)

r
. (4.39)
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This formalism has now expressed the free space solutions to Helmholtz’s

equation in terms of a product of a Legendre polynomial and an unknown

function Rn(ξ). If we can determine Rn(ξ) then by Eqn. 4.28 we can obtain

the phase shifts δn from the asymptotic form of Rn(ξ). This would enable

the scattering amplitude to be subsequently deduced.

The next sections investigate the case of long-wavelength scattering by

oblate and prolate spheroids. In this limit the exact solutions for the radial

eigenfunctions, namely the Legendre functions, have the correct behaviour.

For long-wavelength scattering only δ0 is important. The theory has been

derived here in its complete form, however, using all the phase shifts and

the full scattering amplitude. The scattering by spheroidal obstacles may be

summarized in terms of the phase shifts as follows:

ψ(ξ, η) =
∞∑
n=0

(2n+ 1)Rn(ξ)Pn(η),

ψ(ξ, η) → eiβξη + F (η)
eiβξ

βξ
,

Rn(ξ) → in

βξ
eiδn sin(βξ − nπ/2 + δn),

F (η) =
∞∑
n=0

(2n+ 1)eiδn sin(δn)Pn(η),

dσ

dΩ
= k−2|F (η)|2,

σ =

∫
dσ

dΩ
dΩ =

4π

k2

∞∑
n=0

(2n+ 1) sin2 δn.

(4.40)

4.4 Long wave scattering by oblate spheroids

If we consider the case of a wave incident on an oblate spheroid, in the long-

wavelength limit, then it is only the lowest partial wave amplitude which is

significant. This is called s wave scattering and arises as a result of the partial

wave amplitudes being directly proportional to the wavenumber k, p 546 of

[29]. If we adapt this to the spheroidal case under consideration, then the

solution R0(ξ) shall dominate, and we may neglect the other Rn(ξ) (n �= 0).

117
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In the long-wavelength limit, for spherical scatterers, the scattering

amplitude f(θ) is approximately given by the lowest partial wave amplitude

f0. This is usually termed the scattering length s and is defined as follows

s = −limk→0
δ0
k
. (4.41)

Physically the scattering length equals minus the amplitude of the scattered

wave in the long-wavelength limit. The scattering length is independent

of angle, which implies that in the long-wavelength limit the scattering is

isotropic and independent of the incident particle’s energy.

In the case of scattering by spherical scatterers the asymptotic form of

the dominant n = 0 wave, outside the scatterer, is

R0 → eiδ0

kr
sin(kr + δ0) =

e−iks

kr
sin k(r − s). (4.42)

If we multiply Eqn. 4.42 by r then, as λ = 2π/k → ∞,

rR0 → r − s (outside the scatterer, but with k(r − s) << 1). (4.43)

We shall adapt this to the case of scattering by spheroids. From Eqn. 4.28

the dominant partial wave, in the long-wavelength limit, has the asymptotic

form

R0 → eiδ0

βξ
sin(βξ + δ0) =

e−iks

βξ
sin β(ξ − s/b). (4.44)

Thus the analogue of Eqn. 4.43 is

ξR0(ξ) → ξ − ξs, ξs = s/b [β(ξ − ξs) << 1]. (4.45)

Now that we have a definition of the scattering length for the scattering

by oblate spheroidal objects we can obtain the total cross-section, in the

long-wavelength limit.

For the acoustically soft, or quantum-mechanically hard, scattering by an

oblate spheroid, the boundary condition on the spheroid ξ = ξ0 is ψ(ξ0, η)

= 0. In the long-wavelength limit this implies R0(ξ0) = 0. In order to have

a solution which vanishes on the spheroid ξ = ξ0 we take R0(ξ) (up to a

constant factor), given in Eqns. 4.22, as

R0(ξ) = arctan(ξ) − arctan(ξ0). (4.46)
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This solution is correct in the long-wavelength limit, however, it clearly does

not have the asymptotic form of the general solution derived in Eqn. 4.28.

The solution does satisfy the boundary condition, R0(ξ0) = 0, which is all

that we require in order to derive the scattering length. The Taylor series

expansion of Eqn. 4.46 for large ξ (but βξ still small) is

ξR0(ξ) = ξ

(
π

2
− arctan

1

ξ
− arctanξ0

)
,

= ξ
(π

2
− arctanξ0

)
− 1 +O(ξ−2),

= ξ

(
arctan

1

ξ0

)
− 1 +O(ξ−2). (4.47)

Thus ξs = (arctanξ−1
0 )−1, and the scattering length is

s = bξs =
b

arctan(1/ξ0)
. (4.48)

Now that the scattering length has been deduced we may derive the

differential scattering cross-section. In the oblate spheroid case we find

dσ

dΩ
= b2ξ2

s =
b2

(arctan(1/ξ0))2
. (4.49)

The impenetrable disk (ρ ≤ b, z = 0) is the limiting case of an oblate spheroid

with ξ0 → 0, and so comparison with Rayleigh’s result [19] can be made.

Setting ξ0 = 0 in Eqn. 4.48 we have

s =
2b

π
,

dσ

dΩ
=

(
2b

π

)2

, (4.50)

in agreement with [19].

Although this result has been known since 1897, the method used by

Rayleigh is different from that used here. Rayleigh [19, 67] used a scalar

theory of diffraction to solve the long-wavelength diffraction of an acoustic

wave through an aperture. The boundary condition on the screen is

acoustically hard, which corresponds to the normal derivative vanishing on

the screen. The diffracted wave is then expressed as a certain surface integral

over the aperture.
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By considering points situated on the aperture, along with the continuity

of the velocity potential across the aperture, the surface integral is found

to be equivalent to a distribution of charge density at unit potential. The

amplitude of the diffracted wave is then readily deduced as an electrical

capacitance, and from the known capacity of a conducting disk having the

size and shape as the aperture, the diffracted wave can be inferred. The

problem of soft acoustic scattering by a disk has an affinity to this, by using

his aperture solution (with the superposition of the incident wave), Rayleigh

is able to solve the acoustically soft scattering by a disk.

The differential scattering cross-section for an oblate spheroid, in the

long-wavelength limit, has been found by Senior [22]. Senior expands the

scattered wave in powers of the wavenumber k. By considering points near

the boundary of the spheroid, Senior obtains a constraint based on a surface

integral over the spheroid. The surface integral is identical to the equation for

the surface charge distribution on a metallic conductor at unit potential and

thus is related to the capacitance of the object of the same geometry. Senior

derives this capacitance and obtains results equivalent to those found in

Eqn. 4.49. The derivation given here, however, parallels the usual quantum

scattering theory for spherically symmetric potentials.

The other limit is the case of large bξ0, which corresponds to the scattering

by a sphere of radius a = bξ0. In the case of large ξ0, i.e. ξ0 >> 1,

arctan(1/ξ0) → 1/ξ0. This gives the scattering length as s = bξ0 and thus

the differential scattering cross-section, and the total cross-section, are

dσ

dΩ
→ a2, σ → 4πa2, (4.51)

which is in agreement with the known total cross-section for hard sphere

scattering [29, 57].

For the case of long-wavelength scattering by (quantum-mechanically)

hard spheres, the total cross-section tends to the surface area of the sphere,

and not the geometric cross-section of the sphere, with higher order terms

proportional to powers of ka, where a is the radius of the sphere. This result

can be interpreted as the incident wave ‘wrapping around’ the sphere, p 404

[57].
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It is actually true, in general, in the case of scattering by spherical

scatterers, that the number of particles scattered is four times the number

of particles in the incident particle flux, which is a purely quantum effect

due to interference between the incident and scattered waves [29]. On the

basis that long waves ‘wrap around’ the spheroid, we might expect the total

cross-section to be proportional to the surface area of the oblate spheroid.

The spheroid ξ = ξ0, given in Eqn. 3.15, has semi axes a, a, c where

a = b(ξ2
0 + 1)1/2, c = bξ0. The surface area of this oblate spheroid is

A = 2πb2
{
ξ2
0 + 1 +

ξ2
0

2e
ln

1 + e

1 − e

}
, (4.52)

where e is the ellipticity defined as

e =

(
1 − c2

a2

)1/2

= (ξ2
0 + 1)−1/2. (4.53)

The ratio of the total cross-section to the surface area is

σ

A
=

2

(arctan(1/ξ0))2

1

ξ2
0 + 1 +

ξ20
2e

ln1+e
1−e

. (4.54)

In the spherical limit (ξ0 → ∞, e→ 0) the ratio of Eqn. 4.54 is unity, whereas

in the disk limit (ξ0 → 0, e → 1−) the ratio is 8/π2 ≈ 0.81. Fig. 4.2 shows

this ratio plotted as a function of α = arctan(1/ξ0), which varies from zero

to π/2. In terms of the angle α, the total cross-section to surface area ratio

is
σ

A
=

2 sin3 α

α2

[
sinα + cos2 αln

(
1+sinα
cosα

)] . (4.55)

This function is remarkably flat for small α (which corresponds to large

ξ0 = cotα, and nearly spherical scatterers):

σ

A
= 1 − 4

945
α6 +O(α8). (4.56)

In the opposite limit, where α is near π/2 (which corresponds to small ξ0 =

cotα, and nearly disk shaped scatterers) the ratio of the total cross-section

to the surface area is

σ

A
=

8

π2
− 32

π3

(
α− 1

2
π

)
+O

((
α− 1

2
π

)2
)
. (4.57)
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α = arctan 1
ξ0

0

σ
A

0

1
(sphere) (disk)

8/π2

π/2

Figure 4.2: The ratio of the total cross-section to the surface area of an oblate

spheroid, in the long-wavelength limit.

Fig. 4.2 shows the weak divergence of the ratio of σ/A from unity to the

disk value. For nearly spherical scatterers the total-cross section to surface

area ratio is very close to unity, however, in the limit of the disk this ratio is

(8/π2).

4.5 Scattering by prolate spheroids

We may also investigate prolate spheroids by applying the Legendre trans-

form to the prolate version of Helmholtz’s equation. The prolate spheroidal

coordinate system is defined by

ρ = b
√
ξ2 − 1

√
1 − η2, z = bξη, φ = φ,

−1 ≤ η ≤ 1, 1 ≤ ξ <∞, 0 ≤ φ ≤ 2π. (4.58)

The surface ξ = ξ0 is an ellipsoid with semi axes a, a, c where a = b(ξ2
0 −1)1/2,

c = bξ0:
ρ2

b2(ξ2
0 − 1)

+
z2

b2ξ2
0

= 1. (4.59)
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4.5. SCATTERING BY PROLATE SPHEROIDS

The surface η = η0 is a two-sheet hyperboloid:

ρ2

b2(1 − η2
0)

− z2

b2η2
0

= −1. (4.60)

We again consider scattering of a plane wave eikz incident along the

symmetry axis of the prolate spheroid. The Helmholtz equation then has

no φ-dependence, and reads{
∂ξ(ξ

2 − 1)∂ξ + ∂η(1 − η2)∂η + β2(ξ2 − η2)
}
ψ(ξ, η) = 0. (4.61)

Instead of separating the variables we again apply the Legendre transform

Eqn. 4.13; that is, we operate on Eqn. 4.61 with 1
2

∫ 1

−1
Pn(η)dη. As in

the oblate case, the result is a difference-differential equation for the radial

functions Rn(ξ) = 1
2

∫ 1

−1
ψ(ξ, η)Pn(η)dη :[

∂ξ(ξ
2 − 1)∂ξ + β2ξ2 − n(n+ 1)

]
Rn(ξ)

− β2

2n+ 1

{
n(n− 1)

2n− 1
Rn−2(ξ) +

[
(n + 1)2

2n+ 3
+

n2

2n− 1

]
Rn(ξ)

+
(n+ 1)(n+ 2)

2n+ 3
Rn+2(ξ)

}
= 0. (4.62)

Solutions of Eqn. 4.62 are Rn(ξ) = Pn(ξ) from n = 0, and Qn(ξ) from

n = 2. In the low-frequency limit, β = kb→ 0, the solutions

Rn(ξ) = pnPn(ξ) + qnQn(ξ) (4.63)

are valid at n = 0 and n = 1. Thus the dominant n = 0 partial wave radial

function is a linear combination of P0(ξ) = 1 and Q0(ξ) = 1
2
ln

(
ξ+1
ξ−1

)
. For

the acoustically soft scatterer, and the quantum impenetrable scatterer, the

n = 0 solution at long-wavelengths satisfying R0(ξ0) = 0 is thus

R0(ξ) = ln

(
ξ0 + 1

ξ0 − 1

)
− ln

(
ξ + 1

ξ − 1

)
. (4.64)

All of the formulation of scattering by oblate spheroids translates to the

prolate case, including the plane-wave expansion Eqn. 4.31. Thus we can

apply Eqn. 4.45 to Eqn. 4.64 to extract the scattering length s = bξs. This

gives

ξR0(ξ) → ξln

(
ξ0 + 1

ξ0 − 1

)
− 2 +O(ξ−2). (4.65)
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4.5. SCATTERING BY PROLATE SPHEROIDS

Thus, in agreement with the known results for low-frequency scattering [22]

ξs =
2

ln

(
ξ0+1
ξ0−1

) . (4.66)

The long-wavelength limit of the total cross-section is therefore

σ = 4πs2 =
16πb2[

ln

(
ξ0+1
ξ0−1

)]2 . (4.67)

The surface area of a prolate spheroid (semi axes a, a, c) is

A = 2πa2

(
1 +

γ

sin γ cos γ

)
, γ = arccos

(
a

c

)
. (4.68)

Here a = b(ξ2
0 − 1)1/2, c = bξ0. In the spherical limit (bξ0 >> 1) the surface

area tends to 4π(bξ0)
2, bξ0 being the radius of the sphere. The total cross-

section also tends to 4π(bξ0)
2, in a similar way to Eqn. 4.56:

σ

A
= 1 +

4

945
ξ−6
0 +O(ξ−8

0 ). (4.69)

The opposite extreme (ξ0 → 1+) is end-on scattering by a needle-shaped

object. In this limit the ‘wrap around’ idea of long-wave scattering fails,

since σ/A diverges, though weakly:

σ

A
→ 8

√
2/π[

ln 2
ξ0−1

]2

(ξ0 − 1)1/2

+O(ξ0 − 1)1/2. (4.70)

In terms of the angle γ = arccos(a/c) = arcsin(1/ξ0), the ratio of the cross-

section to the spheroid surface area is

σ

A
=

8 sin3 γ[
ln

(
1+sin γ
1−sin γ

)]2

cos γ[sin γ cos γ + γ]

,

= 1 +
4

945
γ6 +O(γ8). (4.71)

Fig. 3 shows that σ ≈ A is a very good approximation for most of the range

of the angle γ.
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4.5. SCATTERING BY PROLATE SPHEROIDS

γ= arcsin 1ξ0

0

σ
A

0

1

π/2

(needle)(sphere)

Figure 4.3: Ratio of the long-wavelength scattering cross-section to the surface

area of a prolate spheroid.

The analysis performed here was for scattering of scalar waves by

spheroids. For discussion of scattering of electromagnetic waves, by oblate

and prolate spheroids, in the long-wavelength limit, known as the electro-

statics approximation, see Chapter 5 of [68]. The general electromagnetic

theory of scattering by spheroidal particles, using the vector spheroidal wave

functions, in a form similar to Mie theory, has been carried out by Asano

and Yamamoto [69, 70].

In conclusion we have presented an alternative treatment of the scattering

of scalar waves by spheroids, which results in a one-to-one correspondence

with the partial wave analysis of scattering by spherical objects. The only

restriction is that the wave is incident on the scatterer along its symmetry

axis. Long-wavelength scattering by acoustically soft spheroids follows from

the spheroidal analogue of a scattering length, which has been obtained

analytically.
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Chapter 5

Discussion and Conclusions

In this final Chapter the main results of Chapters 2-4 shall be presented,

with a discussion of possible areas for future research.

Chapter 2: The hydrogen molecule ion

Chapter 2 investigated the ground state and certain excited states of the

hydrogen molecule ion. The main achievement in this section was the

derivation of the Wronskian method. In particular we showed the following:

• The angular Wronskian gives an exact transcendental expression whose

roots give all the physical separation parameters.

As the Heun functions are implemented in Maple, the Wronskian allows

all the physical separation parameters of the spheroidal wave equation to

be computed, with unlimited precision. There are a number of other

applications using spheroidal wave functions, such as scattering by spheroids,

which require the separation parameter to be accurately known. The

Wronskian result is therefore of benefit to applications involving spheroidal

wave functions where the separation parameter must be known over a wide

range of its variable.
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Chapter 3: Scalar and Electromagnetic beams

Chapter 3 investigated scalar beam solutions of the Helmholtz equation.

Initially exact beam wave functions in terms of confluent Heun functions,

and then subsequently in terms of oblate spheroidal wave functions, were

studied. The results obtained concerning oblate spheroidal wave functions

were the following:

• The oblate spheroidal wave functions may only represent physical free

space scalar beams when n−m is odd. This allows for the physically

necessary discontinuity in phase outside the circle ρ = b in the focal

plane on the ellipsoidal surfaces of otherwise constant phase.

• If n−m is odd the oblate spheroidal wave functions are normalizable

in any cross-section of the beam.

• The oblate spheroidal wave functions are manifestly forward propagat-

ing.

• The n−m odd condition leads to a wave function with a discontinuous

z derivative, in the entire z = 0 plane.

• The oblate spheroidal wave functions are not physical free space scalar

or (TM and TE) electromagnetic beams. More generally, no simple

product solution ψ(ξ, η, φ) = R(ξ)S(η)Φ(φ) can represent a physical

free space scalar beam.

The oblate spheroidal wave functions have been shown to require n−m

odd. However, this leads to a discontinuous ρ derivative across the boundary

ξ = η = 0. Furthermore, when η = 0, where ψmn(ξ, η) = 0, we showed that

the z derivative of ψ is infinite as ξ → 0. Any physical quantum particle

beam must have a continuous wave function and a continuous derivative at

all points in space. The associated divergence of the (ρ and z) derivatives

of the oblate spheroidal wave functions (when n−m is odd) indicates they

are not physical free space scalar beams. Therefore, the problem of deriving

exact solutions of the Helmholtz equation which represent physical free scalar

beams remains.
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Chapter 4: Scattering of scalar waves by sphe-

roids

The scattering of Schrödinger particle waves by quantum-mechanically hard

oblate and prolate spheroids was investigated in Chapter 4. In analogy

with the partial wave theory of scattering by spherical scatterers, a general

formulation of the scattering by spheroids was formulated. In particular we

showed that

• The radial eigenfunctions, for axial scattering by spheroidal obstacles,

solve certain difference-differential equations.

• The spheroidal scattering theory has a one-to-one correspondence with

the spherical scattering theory.

• The exact solutions in the long-wavelength limit, subject to axially

symmetric incidence, are linear combinations of the singular and non-

singular Legendre functions.

Scattering by spherical objects, outside the range of influence of the

scatterer, uses known free space radial functions the spherical Bessel

functions. In the spheroidal case the corresponding functions are solutions

of difference-differential equations. Although we have found exact solutions

of these equations they are not the general solutions, and are physical only

in the long-wavelength limit.

Possible future research

Finding an exact solution of the radial equation which is linearly dependent

with X1(ξ), when R = R(λ), would enable a radial Wronskian to determine

the R(λ) and λ relation exactly. Two solutions to the radial equation were

derived, however, they were shown to be linearly independent. Further

investigation into finding another solution to the radial equation, which

is linearly dependent with X1(ξ), when R = R(λ), may allow a complete

solution to the problem.
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For the radial equation arising from the Helmholtz equation, we showed

if K(ξ, η) is any solution, independent of the azimuthal angle φ, of the

Helmholtz equation, X(ξ) =
∫ 1

−1
K(ξ, η)Y (η)dη will satisfy the radial

equation provided Y (η) satisfies the angular equation (both having the same

μ(β) separation constant, of course).

One can do the same for the H+
2 problem, up to a point: define Lη as

before by Eqn. 3.52 with λ = β2, and

Lξ = ∂ξ(ξ
2 − 1)∂ξ + 2Rξ − λξ2 (5.1)

and let K(ξ, η) be any solution (independent of φ) of the Schrödinger

equation, i.e. satisfying (Lξ + Lη)K(ξ, η) = 0. Then it follows as before

that the integral
∫ 1

−1
[Y LηK −KLηY ]dη is zero, and thus if (Lη − μ)Y = 0,

X(ξ) =

∫ 1

−1

K(ξ, η)Y (η)dη (5.2)

will solve the radial equation (Lξ + μ)X = 0. This might be useful in

determining the asymptotic form of X(ξ), and thus the relationship between

λ and the internuclear separation R, if a suitable solution of the Schrödinger

equation could be found.

Most of the beam solutions considered in Chapter 3 have had some

nonphysical aspect to them. The confluent Heun beams are not physical due

to a divergent normalization integral and backward propagating elements.

The spherical Bessel beams are not physical due to backward propagating

elements. The oblate spheroidal beams, with n−m odd, have a discontinuous

z derivative, in the entire z = 0 plane. Only the generalized Bessel beams

are physical scalar beams. An area of future research would be to determine

what weight function(s) f(κ) lead to analytic expressions of physical scalar,

and electromagnetic, free space beams.

The solution of the difference-differential equations for the radial eigen-

functions would allow the spheroidal scattering theory constructed to be fully

functional. This would enable the theory to be able to do for axial scattering

by spheroidal bodies all that can be done by the phase-shift theory for

centrally symmetric scatterers. Thus determining the radial eigenfunctions

would be an aspect to look at in the future.
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Appendix A

The Heun equation

A.1 General Heun equation

The Heun equation [71] is a Fuchsian linear second-order ordinary differential

equation. It is the natural generalization of the hypergeometric differential

equation, which has three regular singularities. The Heun equation is an

extension of the hypergeometric differential equation in that it has four

regular singularities. The Heun equation may also be interpreted as a

confluent form of the differential equation with eight elementary singularities,

the singularities being combined in pairs to form four regular singularities,

but little is known about this differential equation. The canonical form of

the general Heun equation (GHE) is given by

d2y

dz2
+

{
γ

z
+

δ

z − 1
+

ε

z − a

}
dy

dz
+

αβz − q

z(z − 1)(z − a)
y = 0. (A.1)

Eqn. A.1 is essentially due to Heun himself, however, Heun had αβ(z−q)
as the coefficient of y. The form in Eqn. A.1 allows α = 0, or β = 0,

without eliminating the term in y. In this form y and z are both complex

variables, α, β, γ, δ, ε, q, a are arbitrary parameters, generally complex,

except a �= 0, 1. The equation has regular singularities at z = 0, 1, a, ∞,

with the characteristic (or indicial) exponents at these singularities given by

{0, 1 − γ}; {0, 1 − δ}; {0, 1 − ε}; {α, β}.
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A.1. GENERAL HEUN EQUATION

The sum of these exponents is equal to two as a result of Fuch’s theorem;

that is

γ + δ + ε = α + β + 1. (A.2)

From the characteristic exponents the Riemann P symbol of the Heun

equation follows

P

⎛
⎜⎝

0 1 a ∞
0 0 0 α z q

1 − γ 1 − δ 1 − ε β

⎞
⎟⎠ . (A.3)

The parameter a locates the third finite singularity and is called the

singularity parameter, while α, β, γ, δ, ε determine the exponents at the

four singularities; the other parameter q is called the accessory parameter.

It should be mentioned that in Eqn. A.1 one of the four regular

singularities has been taken to be infinity. This is without any loss of

generality, since any Fuchsian second-order equation with four arbitrary

finite regular singularities can be transformed into this form by suitable

transformations, see Chapter 2, section 3 of [35]. Of course, this assumes that

infinity is an ordinary point of the original equation. In fact, any Fuchsian

second-order differential equation with four (three finite and one infinite, or

four finite) regular singularities can be transformed into the Heun equation.

Since any equation with three regular singularities can be transformed

into a hypergeometric differential equation, any equation with three regular

singularities can be transformed into a Heun equation too. These few remarks

presented here should already indicate the scope of the Heun equation and

why it is of such interest, from both a pure and applied point of view.

The differential equations of classical physics: Bessel, Legendre, Laguerre,

etc can all be represented in the form of hypergeometric (or confluent

hypergeometric) differential equations, but now many problems arising in

quantum mechanics must be represented in terms of Heun equations. The

hydrogen molecule ion is the most pertinent example in this case. Other

quantum mechanical applications may be found in Chapter 4 of [34].
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A.1. GENERAL HEUN EQUATION

It is interesting to consider the solutions to the general Heun equation

Eqn. A.1. The Heun equation may be transformed into another version

of itself; that is, an equation with four regular singularities, three of which

are located at z = 0, 1,∞, by any of twenty four Möbius transformations

z → f(z). The Heun equation has four regular singularities, and around

each singularity it is possible to construct two local Frobenius solutions.

Since there are twenty four transformations which leave the form of the

Heun equation unaltered, therefore, there are 192 possible solutions to the

general Heun equation [72]. This is analogous to Kummer’s 24 solutions of

the hypergeometric differential equation.

One such solution is the function HeunG(a, q, α, β, γ, δ, z) (in Maple

notation), which satisfies the conditions at the origin y(0) = 1, y
′
(0) = q/γa.

The function HeunG(a, q, α, β, γ, δ, z) is a local Frobenius solution of the

GHE, computed as a power series about the regular singular point z = 0. By

the theory of local Frobenius solutions, the function HeunG(a, q, α, β, γ, δ, z)

has a radius of convergence min(1, |a|), i.e. out to the location of the nearest

singularity.

In certain cases it is possible that the local Frobenius solution is also

valid about the nearest adjacent singularity. These solutions are known as

Heun functions, and are analytic in a domain containing both singularities,

see Chapter 3 of [35].

A third type of solution are Heun polynomials [73]. Heun polynomials

are, by definition, a local Frobenius solution of the Heun equation, valid at

three singularities. A Heun polynomial is thus defined in the whole plane,

except at the singularities, and with certain cuts for single-valuedness.

The wide scope of the Heun equation lies in its various confluent forms.

Confluence is a process whereby two singularities in a differential equation are

brought into coincidence. It arises as a result of a suitable limiting procedure

in the Laurent expansion of the coefficient functions of the differential

equation, so that the two singularities merge into one singularity, generally

of a more complicated nature. There are four confluent forms of the Heun

equation. These are the confluent Heun equation, the doubly confluent Heun

equation, the biconfluent Heun equation, and the triconfluent Heun equation.
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A.2. CONFLUENT HEUN EQUATION

A summary of these equations shall be presented next, with emphasis on

the confluent Heun equation due to its relation to the hydrogen molecule ion,

and scalar beam problems.

A.2 Confluent Heun equation

The Heun equation of most importance in this thesis was the confluent Heun

equation (CHE). The CHE arises from the coalescence of the two regular

singularities at z = a and z = ∞ in the GHE. This process results in an

irregular singularity at z = ∞. The coalescence of two regular singularities

typically (although there are exceptions) resulting in an irregular singularity,

see the Addendum of [35]. For an elucidation of the coalescence process we

derive the CHE from the GHE. The GHE is given in Eqn. A.1, suppose we

redefine the parameters as follows

β = βa, ε = εa, q = qa. (A.4)

Now take the limit a→ ∞, the resulting equation is

d2y

dz2
+

{
γ

z
+

δ

z − 1
− ε

}
dy

dz
−

{
αβ − q

z − 1
+
q

z

}
y = 0. (A.5)

Eqn. A.5 is a (non-symmetrical) CHE, which has two regular singularities

at z = 0 and z = 1, and an irregular singularity at z = ∞. (The CHE is

symmetrical if the two regular singularities are at z = −1 and z = 1.) A

canonical form of the CHE, with regular singularities at z = 0 and z = 1,

and an irregular singularity at z = ∞ is

d2y

dz2
+

{
α +

β + 1

z
+
γ + 1

z − 1

}
dy

dz
+

{
ν

z − 1
+
μ

z

}
y = 0,

where μ =
1

2
[α− β − γ − 2ε+ β(α− γ)],

ν =
1

2
[α + β + γ + 2δ + 2ε+ γ(α + β)]. (A.6)
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A.2. CONFLUENT HEUN EQUATION

The standard confluent Heun function, as implemented in maple, is the

unique solution of Eqn. A.6, regular at z = 0 and normalized to unity at the

origin:

HeunC(α, β, γ, δ, ε, z) =

∞∑
n=0

An(α, β, γ, δ, ε)z
n, |z| < 1, (A.7)

where the coefficients An, typically, satisfy three term recurrence relations. A

second linearly independent solution is given by z−βHeunC(α,−β, γ, δ, ε, z).
However, when β is an integer these two solutions are not independent. By

considering the invariance under the transformation z → 1−z, a second pair

of independent solutions is given by HeunC(−α, γ, β,−δ, ε+ δ, 1 − z) +(z −
1)−γHeunC(−α,−γ, β,−δ, ε+ δ, 1− z). This invariance has been explored in

the context of the solutions to the angular equation in the hydrogen molecule

ion, and scalar beam problems, see Eqn. 2.41.

The CHE has two regular singularities and one irregular singularity. It

includes as particular cases both the 2F1 and 1F1 hypergeometric equations.

An important non-hypergeometric case of the CHE is the spheroidal wave

equation, which has been discussed in section 3.6.2. The spheroidal wave

equation is given by the following equation

(z2 − 1)
d2y

dz2
+ 2(γ + 1)z

dy

dz
+ (4δz2 − c)y = 0, (A.8)

which is obtained from the CHE by taking α = 0, β = −1/2, ε = (1−γ−c)/4
and changing z → z2. Another important non-hypergeometric case of the

CHE is the Mathieu equation, which arises from the separation of variables

of the Helmholtz differential equation in elliptic cylindrical coordinates. The

rational form of the Mathieu equation is given by

(z2 − 1)
d2y

dz2
+ z

dy

dz
+ [2δ(2z2 − 1) − a]y = 0, (A.9)

which is obtained from the spheroidal wave equation by taking c = a + 2δ

and γ = −1/2. Eqn. A.9 has two regular singularities at z = −1 and z = 1,

and an irregular singularity at z = ∞. Thus it is not expressible in terms

of hypergeometric functions, however, it is solvable in terms of the HeunC

function HeunC

(
0,−1

2
,−1

2
, δ, 3

8
− 1

2
δ − 1

4
a, z2

)
.
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A.3. DOUBLE CONFLUENT HEUN EQUATION

Physical applications utilizing the confluent Heun equation are numerous.

Exton [74] has shown that the Schrödinger equation with interaction V (r) =

−Ze2/(r + β) is reducible to a confluent Heun equation, for general values

of the parameters. El-Jaick and Figueiredo [48] have also investigated the

Schrödinger equation for an inverted potential and for an electric dipole.

The paper by El-Jaick and Figuieredo considers solutions in terms of series of

Bessel functions, which are related to the spherical Bessel expansions derived

in section 3.4. There are also areas in general relativity, and gravitational

physics, where confluent Heun equations and confluent Heun functions play

an important role, see [73] and the references therein. For further applications

of confluent Heun equations see Chapter 4 of the book by Slavyanov and Lay

[34].

A.3 Double confluent Heun equation

Section A.2 considered the confluent Heun equation, which arose from

the coalescence of two regular singularities in the general Heun equation.

Similarly we may consider the coalescence of the two regular singularities in

the CHE, which gives rise to an equation with two irregular singularities,

located at z = 0 and z = ∞. This is known as the double confluent Heun

equation (DCHE). The DCHE may be further transformed, relocating the

singularities to z = −1 and z = 1. This DCHE is given by

d2y

dz2
− (−2z3 + z2α+ 2z + α)

(z − 1)2(z + 1)2

dy

dz
+

(z2β + (γ + 2α)z + δ)

(z − 1)3(z + 1)3
y = 0. (A.10)

The function HeunD is the solution of Eqn. A.10. The conditions

satisfied by HeunD at the origin are y(0) = 1, y
′
(0) = 0. The function

HeunD(α, β, γ, δ, z) is a local solution to the DCHE, computed as a standard

power series expansion about the origin. The radius of convergence of

this local Frobenius solution is |z| < 1, due to the irregular singularities

located at |z| = 1. Analytic continuation of the HeunD function outside

the unit circle is obtained through the identity HeunD(α, β, γ, δ, z) =

HeunD(−α,−δ,−γ,−β, 1/z).
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A.4. BICONFLUENT HEUN EQUATION

A.4 Biconfluent Heun equation

The coalescence of the two regular singularities in the CHE leads to an

equation (DCHE) with two irregular singularities. However, we may combine

the irregular singularity with one of the regular singularities in the CHE,

which leads to an equation with one regular and one irregular singularity.

This is the biconfluent Heun equation (BHE). The BHE has a regular

singularity at z = 0, and an irregular singularity at z = ∞. The BHE

is

d2y

dz2
−

{
2z2 − 1 − α + βz

z

}
dy

dz
− 1

2

{
(−2γ + 2α + 4)z + δ + β + βα

z

}
y = 0.

(A.11)

The function HeunB(α, β, γ, δ, z) is a local Frobenius solution to Eqn. A.11,

computed as a power series expansion about the origin. Because the next

singularity is located at infinity this series converges in the whole complex

plane. The HeunB function satisfies the conditions y(0) = 1, y
′
(0) = (δ +

αβ + β)/(2α+ 2) at the origin.

A.5 Triconfluent Heun equation

The triconfluent Heun equation (THE) arises as a result of the coalescence of

three regular singularities in the GHE. (The THE must, however, be derived

from the GHE written in the special form where the singularities are located

at a1, a2, a3,∞, and let a1 → a2 → a3 → ∞. The resulting equation has an

irregular singularity at z = ∞, of rank three [35], with no finite singularities

at all. The THE is given by

d2y

dz2
− (3z2 + γ)

dy

dz
− [(3 − β)z − α]y = 0. (A.12)

The function HeunT is a solution of Eqn. A.12, which satisfies the following

conditions at the origin, y(0) = 1, y
′
(0) = 0. The function HeunT(α, β, γ, z)

is a local Frobenius solution to the THE, computed as a power series

expansion about the origin. Because the nearest (irregular) singularity occurs

at z = ∞, this local Frobenius solution is convergent in the whole complex

plane.
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Appendix B

Abstracts of papers

Figure B.1: Constraints on spheroidal beam wavefunctions.

Non-existence of separable spheroidal beams

We show that ψ = R(ξ)S(η)eimφ, a product of radial and angular oblate

spheroidal functions and an azimuthal factor, cannot represent physical scalar

beams. The reason lies in the discontinuity in the longitudinal derivative of

ψ in the focal plane, where ψ is not a solution of the Helmholtz equation on

the disk ξ = 0.

In preparation
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Axisymmetric scattering of scalar waves by

spheroids

We give a phase shift formulation of scattering by oblate and prolate

spheroids, in parallel with the partial-wave theory of scattering by spherical

obstacles. The crucial step is application of a finite Legendre transform to

the Helmholtz equation in spheroidal coordinates. In the long-wavelength

limit the spheroidal analogue of the spherical scattering length immediately

gives the cross-section. Analytical results are readily obtained for scattering

of Schrödinger particle waves by impenetrable spheroids, and for scattering

of sound waves by acoustically soft spheroidal objects. The method is

restricted to scattering by spheroids whose symmetry axis is coincident with

the direction of the incident plane wave.

Submitted to J. Acoust. Soc. Am.

Properties of confluent Heun functions rele-

vant to the Helmholtz equation and to Schrö-

dinger’s equation for H+
2

The Helmholtz equation and Schrödinger’s equation for H+
2 are separable

in (respectively) oblate and prolate spheroidal coordinates. They share the

same form of the angular equation. In both cases the radial and angular

equations have solutions in terms of confluent Heun functions. We show that

the zeros of the Wronskian of a pair of solutions to the angular equation give

the allowed values of the separation of variables parameter. We also derive

the asymptotic forms of the radial solutions of the Helmholtz equation, and

obtain integral relations between the radial and angular solutions.

Submitted to J. Math. Phys.
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Zeitschrift für Physik, vol. 71, pp. 739–763, 1931.

[8] L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics With

Applications to Chemistry. New York: McGraw-Hill, 1935.

[9] L. Pauling, “The Application of the Quantum Mechanics to the

Structure of the Hydrogen Molecule and Hydrogen Molecule-Ion and

to Related Problems,” Chemical Reviews, vol. 5, pp. 173–213, 1928.

[10] M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to

paraxial wave optics,” Phys. Rev. A, vol. 11, no. 4, pp. 1365–1370, 1975.

139



BIBLIOGRAPHY

[11] G. A. Deschamps, “Gaussian beam as a bundle of complex rays,”

Electronics Letters, vol. 7, no. 23, pp. 684–685, 1971.

[12] C. J. R. Sheppard and S. Saghafi, “Beam modes beyond the paraxial

approximation: A scalar treatment,” Phys. Rev. A, vol. 57, no. 4,

pp. 2971–2979, 1998.

[13] C. J. R. Sheppard and S. Saghafi, “Electromagnetic Gaussian beams

beyond the paraxial approximation,” J. Opt. Soc. Am. A, vol. 16,

pp. 1381–1386, 1999.

[14] C. J. R. Sheppard, “High-aperture beams: reply to comment,” J. Opt.

Soc. Am. A, vol. 24, no. 4, pp. 1211–1213, 2007.

[15] Z. Ulanowski and I. K. Ludlow, “Scalar field of nonparaxial Gaussian

beams,” Opt. Lett., vol. 25, no. 24, pp. 1792–1794, 2000.

[16] J. Lekner, “TM, TE and ‘TEM’ beam modes: exact solutions and their

problems,” J. Opt. A:Pure Appl. Opt., vol. 3, pp. 407–412, 2001.
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