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Abstract

This thesis investigates three research problems which arise in multivari-

ate data and censored regression. The first is the identification of outliers

in multivariate data. The second is a dissimilarity measure for cluster-

ing purposes. The third is the diagnostics analysis for the Buckley-James

method in censored regression.

Outliers can be defined simply as an observation (or a subset of obser-

vations) that is isolated from the other observations in the data set. There

are two main reasons that motivate people to find outliers; the first is the

researcher’s intention. The second is the effects of an outlier on analyses,

i.e. the existence of outliers will affect means, variances and regression

coefficients; they will also cause a bias or distortion of estimates; likewise,

they will inflate the sums of squares and hence, false conclusions are likely

to be created. Sometimes, the identification of outliers is the main objec-

tive of the analysis, and whether to remove the outliers or for them to be

down-weighted prior to fitting a non-robust model.

This thesis does not differentiate between the various justifications for

outlier detection. The aim is to advise the analyst of observations that

are considerably different from the majority. Note that the techniques for

identification of outliers introduce in this thesis is applicable to a wide

variety of settings. Those techniques are performed on large and small

data sets. In this thesis, observations that are located far away from the

remaining data are considered to be outliers.

Additionally, it is noted that some techniques for the identification of

outliers are available for finding clusters. There are two major challenges

in clustering. The first is identifying clusters in high-dimensional data sets



is a difficult task because of the curse of dimensionality. The second is a

new dissimilarity measure is needed as some traditional distance func-

tions cannot capture the pattern dissimilarity among the objects. This the-

sis deals with the latter challenge. This thesis introduces Influence Angle

Cluster Approach (iaca) that may be used as a dissimilarity matrix and

the author has managed to show that iaca successfully develops a cluster

when it is used in partitioning clustering, even if the data set has mixed

variables, i.e. interval and categorical variables. The iaca is developed

based on the influence eigenstructure.

The first two problems in this thesis deal with a complete data set. It is

also interesting to study about the incomplete data set, i.e. censored data

set. The term ’censored’ is mostly used in biological science areas such as

a survival analysis. Nowadays, researchers are interested in comparing

the survival distribution of two samples. Even though this can be done

by using the logrank test, this method cannot examine the effects of more

than one variable at a time. This difficulty can easily be overcome by using

the survival regression model. Examples of the survival regression model

are the Cox model, Miller’s model, the Buckely James model and the Koul-

Susarla-Van Ryzin model.

The Buckley James model’s performance is comparable with the Cox

model and the former performs best when compared both to the Miller

model and the Koul-Susarla-Van Ryzin model. Previous comparison stud-

ies proved that the Buckley-James estimator is more stable and easier to

explain to non-statisticians than the Cox model. Today, researchers are in-

terested in using the Cox model instead of the Buckley-James model. This

is because of the lack of function of Buckley-James model in the computer

software and choices of diagnostics analysis. Currently, there are only a

few diagnostics analyses for Buckley James model that exist.

Therefore, this thesis proposes two new diagnostics analyses for the

Buckley-James model. The first proposed diagnostics analysis is called

renovated Cook’s distance. This method produces comparable results with



the previous findings. Nevertheless, this method cannot identify influen-

tial observations from the censored group. It can only detect influential

observations from the uncensored group. This issue needs further inves-

tigation because of the possibility of censored points becoming influential

cases in censored regression.

Secondly, the local influence approach for the Buckley-James model

is proposed. This thesis presents the local influence diagnostics of the

Buckley-James model which consist of variance perturbation, response

variable perturbation, censoring status perturbation, and independent vari-

ables perturbation. The proposed diagnostics improves and also challenge

findings of the previous ones by taking into account both censored and un-

censored data to have a possibility to become an influential observation.
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Chapter 1

Introduction

This thesis contributes to three areas of statistics. The first is identification

of outliers. The second is dissimilarity measures for clustering purposes.

The third is the diagnostics analysis for the Buckley-James method.

In this introductory chapter, a brief description of the subjects under

studied are provided. In addition, the motivations and aims of the current

study are provided. This chapter concludes with the organization of the

structure for the remaining chapters of the thesis.

1.1 Identification of outliers

The identification of outliers is a part of the field of statistics. It is very im-

portant and deserves more attention because outliers are one of the possi-

ble reasons for the failure of analysis in explaining finding.

Outlier detection methods have been suggested for numerous applica-

tions ( Hawkins, 1980; Barnett and Lewis, 1994; Penny and Jolliffe, 2001;

Acuna and Rodriguez, 2004). Outlier detection methods can be classified

into univariate methods and multivariate methods.

Or, one can classify them based on parametric methods (Hawkins, 1980;

Rousseeuw and Leroy, 1987; Barnett and Lewis, 1994) and non-parametric

methods (Williams, Baxter, He, Hawkins and Gu, 2002). The other ex-

1
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ample of the outlier detection method categorization are clustering tech-

niques ( Kaufman and Rousseeuw, 1990; Ramaswamy, Rastogi and Shim,

2000; Acuna and Rodriguez, 2004)

However, some methods suffer from computational complexity, i.e. the

efficiency of algorithms. Therefore, the current study aims to use the tech-

niques which are based on the influence of eigenstructure for the identi-

fication of outliers. Chapter 3 of this thesis will illustrate the simple and

exploratory nature of the techniques.

Additionally, the techniques are well suited in the identification of the

outliers in a high dimensional data, in which the outliers appear to form

a cluster from a separate sample. Thus study on the next subject is moti-

vated by the desire to use the technique in chapter 3 to create a dissimilar-

ity measure for clustering purpose.

1.2 Clustering

Clustering allows one to handle a large data set effectively. It is a tech-

nique for solving classification problems (Everitt, 1993). The basic idea of

clustering is that it arranges objects, i.e. people, animals, plants and so

forth, into groups where those objects in the same group will have a high

degree of association, while the objects of different groups will have a low

degree of association.

One of the main objectives of the current study is to propose a tool

that can separate the objects in the data set to build a strong association

between the objects in similar groups, yet a poor association associated

between the objects in the other groups.

It is important to note that a data measurement is a very important step

in clustering. Instead of using dissimilarity measures such as Euclidean

distance or Manhattan distance, one may use the influence eigenstucture

to measure the dissimilarity between observations.
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Gnanadesikan and Kettenring (1972) mentioned that the total influ-

ence eigen can also be considered as the influence interpretation of the

Euclidean distance.

1.3 The Buckley-James method

The next subject concerns a diagnostics analysis for the Buckley-James

method, i.e. a method that handles censored data. A censored data set is

a data set that contains observations with incomplete information; these

observations occur when the event of interest is not fully observed.

Survival studies will normally have this type of data set because this

type of study is related to looking at the life time of the subjects under

studieds. At the end of this type of study, there could be patients who

survived and also did not survive.

Therefore, the analyst would not be able to record the patients’ exact

time of survival or length of survival. Surviving patients normally reflect

the success of a new treatment method (if this is the purpose of the study);

therefore, the analyst would not want to label them as a missing data. The

patient with incomplete information is called a censored observation.

Many methods exist for survival analysis. The current study, partic-

ularly described in chapters 6 and 7, is interested in the Buckley-James

method because this method has a great performance ( Miller and Halpern,

1982; Heller and Simonoff, 1990; Heller and Simonoff, 1992; Stare, Heinzl

and Harrell, 2000)

Nevertheless, the Buckley-James method is rarely used as compared to

some other methods for example Cox method. The reason for this is the

deficiency of diagnostic analysis tools for this Buckley-James method. In

line with this gap, chapter 7 of this thesis will outline a proposal for a few

diagnostic analysis tools for the Buckley-James method.
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1.4 Thesis Aims

The aims of this thesis are to:

• apply the influence eigenstructure as a tool for identifying outliers;

• construct clusters using the influence eigenstucture as a dissimilarity

measure;

• create a diagnostics analysis for the Buckley-James method.

1.5 Structure of the Thesis

The thesis is organized as follows. This chapter, Chapter 1 is the introduc-

tory chapter. Next, Chapters 2 and 3 focus on the identification of outliers.

The following chapters, Chapters 4 and 5 illustrate the dissimilarity mea-

sures for clustering purposes. Finally, Chapters 6 and 7 describe diagnos-

tics analyses for the Buckley-James method.

Chapter 2: First, the most referred-to definitions of outliers in the liter-

ature are provided in this chapter. Second, the significance of identifying

outliers are justified. This chapter also explains how outliers could easily

influence the two important estimators (mean and variance) in most statis-

tical analyses. Third, this chapter briefly discusses the various categories

in classifying the techniques for the outliers identification. Next, some of

the techniques which are normally used to detect outliers are presented.

This chapter concludes with a brief suggestion on how to handle outliers

should they exist in the data set.

Chapter 3: This chapter uses the influence eigenstructure for identifying

outliers in a high-dimensional data. First, the definition and the compu-

tation of eigenstructure are briefly explained. The following section dis-

cusses the influence eigenstructure, and it will be used for identifying out-
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liers. Finally, the performance of the techniques discussed in this chapter

are evaluated by using the simulated data sets and the real data sets that

have been used to evaluate the existing outlier detection methods.

Chapter 4: The first part of Chapter 4 explains the clustering problem and

provides some examples of clustering applications. The subsequent part

offers a brief discussion on the dissimilarity measures. A simple outline

of clustering algorithms is given next and a few main clustering algorithm

categories are discussed. The final part of this chapter concentrates on hi-

erarchical clustering and partitioning clustering.

Chapter 5: This chapter starts by explaining the properties and algorithms

of the new dissimilarity measure. Next, it describes the clustering algo-

rithms that will be used in collaboration with the dissimilarity measures

to identify clusters in the data set. A brief explanation regarding the sim-

ulated data set and the real data set used arethen provided in order to

evaluate the performance of the new and existing dissimilarity measures.

This chapter carries out a comparison between the new and existing dis-

similarity measures in a few clustering algorithms for low dimensional

and high dimensional data.

Chapter 6: Chapter 6 presents a discussion concerning various methods

to resolve the problem of incomplete data sets, i.e. censored data sets. The

term “censoring” was first used in 1949. One may find this term to be

mostly used in the analyses in dealing with a life time data. This chapter

focuses on survival analysis whereby the different types of censoring that

may emerge in the survival analysis is explained. Besides, several meth-

ods that one may use to solve the problem involving censoring data sets

are briefly explained.

The Buckley-James approach to survival regression method performs

better than the other methods (see Miller and Halpern, 1982; Heller and
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Simonoff, 1990; Heller and Simonoff, 1992; Stare et al., 2000). However,

it is still rarely used by researchers as it is not well established in most

computer software packages. In addition, there are only a few diagnostics

analyses developed for this method thus far. As such, this chapter illus-

trates the application of the Buckley-James method as one of the survival

regression methods.

Chapter 7: Two new diagnostics analyses for the Buckley-James method

are proposed in this chapter. The first diagnostic analysis was based on

Cook’s idea, and the second one used Shi’s approach. In censored regres-

sion, one will find that most diagnostic studies using local influence ap-

proach have only been applied to Cox method and Kaplan-Meier method

(see, Reid, 1981; Pettitt and Daud, 1989; Weissfeld, 1990; Escobar and Meeker,

1992; Barlow, 1997).

In this chapter, Chapter 7, local influence diagnostics for the Buckley-

James method which consist of variance perturbation, response variable

perturbation, censoring status perturbation and independent variables per-

turbation, are presented. Shi’s 1997 approach is easier to apply without

considering a likelihood assumption. This method is able to assess the

effect of perturbations to the data will have on inferences. It should be

noted that it successfully discovers influential observations from the cen-

sored and uncensored data.

Chapter 8: This chapter concludes the thesis. It summarizes the contri-

butions of the thesis, and points out several problems that should be ex-

plored further in order to ascertain that the proposed method works in a

more efficient manner.



Chapter 2

Identification of outliers

2.1 Introduction

The word ’statistics’ generally gives an imagery of numbers and figures to

many people. In fact, statistics is a broad field of knowledge, and it is not

simply associated with statisticians but is also relevant to many different

fields of research, particularly to people who are occupied with quantita-

tive research. Quantitative research in general is involved with the anal-

ysis of numerical data. Dealing with complicated numerical data usually

results in the researcher failing to notice the nature of each observation in

the data set.

Some might argue about the constraint of time and costs if they have

to be particular with each observation in the data set before proceeding

to the statistical analysis. It must be noted that this is one of the possible

causes some analyses failing to explain a good finding. Many researchers

are not aware of the significance of this issue. This issue leads us to a key

word called ’outlier’.

In §2.2, four of the most commonly referred-to definitions of an outlier

are presented. The concept of an outlier as defined in these four definitions

are almost identical. Next, in §2.3, the significance of the identification of

an outlier is explained. This section also explains how outliers could easily

7
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influence two important estimators in most statistical analysis, i.e. mean

and variance. Other than that, examples of outlier effects on the output of

several statistical analyses are also given.

An outlier can appear in the data set for different reasons. In §2.4, three

possible causes of outliers existing in the data set are listed. Neverthe-

less, in order to detect the source of outliers, first, one needs to examine

whether outliers exist in the data set or not. Previous studies have pro-

posed various methods for identifying outlier.

The method for identifying outliers can be divided into two main cat-

egories, namely the univariate and multivariate methods. This chapter is

focuses on the multivariate methods category. Mahalanobis distance is the

earliest and well known approach for the identification of outliers in the

multivariate category. It was proposed by Mahalanobis (1930).

However, this approach suffers from masking and swamping effects,

as the traditional mean and covariance could easily be inflated by outliers.

What is meant by masking and swamping effects?

There are many definitions of masking and swamping effect (see,

Hawkins, 1980; Iglewics and Martinez, 1982; Davies and Gather, 1993; Bar-

nett and Lewis, 1994). Nevertheless, the definition given by Acuna and

Rodriguez (2004) is simple and easy to understand. It is as follows:

Masking effect: It is said that if one outlier masks a second outlier,

the second outlier can be considered as an outlier only by itself, but not

in the presence of the first outlier. Thus, after the deletion of the first out-

lier, the second instance emerges as an outlier. Masking occurs when a

cluster of outlying observations skews the mean and the covariance esti-

mates toward it, and the resulting distance (the space between two objects

or points) of the outlying point from the mean is small.

Swamping effect: It is said that one outlier swamps a second observa-

tion if the latter can be considered as an outlier only under the presence of

the first one. In other words, after the deletion of the first outlier, the sec-

ond observation becomes a non-outlying observation. Swamping occurs
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when a group of outlying instances skews the mean and the covariance

estimates toward it and away from other non-outlying instances, and the

resulting distance from these non-outlying instances to the mean is large,

making them look like outliers.

Many methods have emerged in order to find a solution to the masking

and swamping effects, particularly methods that attempt to modify the

traditional mean and variance, so that they become robust estimators and

can be used for identification of outliers. In §2.6 and §2.7, various methods

proposed by previous studies that can be used for the identification of

outliers are briefly discussed.

Next, §2.8 briefly explains how to handle outliers if they exist in the

data set. The story about the ozone hole above Antarctica, as an example

of the outlier effect if they were not handled carefully, is also given in this

section.

2.2 What is an outlier?

There are many definitions of an outlier(s) that are almost identical in

meaning. The basic definition of an outlying observation is an observa-

tion(s) that does not fit the model of the rest of the data. However, given

that there is currently no universally accepted definition for an outlier, the

four most-commonly used definitions of outliers are provided. The first

definition is given by Grubbs (1969); he says

an outlier is one observation that appears to deviate markedly

from other observations of the sample in which it occurs.

The next definition is presented by Hawkins, (1980, pg 1), where he defines

an outlier as an observation which deviates so much from other

observations as to arouse suspicion that it was generated by a

different mechanism.
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Following is the definition by Barnett and Lewis, (1994, pg 3), who state

that

an outlier in a set of data is an observation (or a subset of obser-

vations) which appears to be inconsistent with the remainder

of that set of data.

Hair, Anderson, Tatham and Black, (2005, pg 64) explains that

outliers are observations with a unique combination of charac-

teristics identifiable as distinctly different from the other obser-

vations.

These definitions all refer to an observation(s) that is surprisingly dif-

ferent from the rest of the data. However, the words ”appears to deviate”,

”arouse suspicion”, ”inconsistent” and ”distinctly different” imply some

kind of subjectivity or preconceived ideas about what the data should look

like. This chapter uses the four definitions of outliers described above as

the basis for discussion. In conclusion, an outlier can be simply defined

a s as an observation (otherwise a subset of observations) that is isolated

from the other observations in the data set.

2.3 Significance of identification of outliers

Barnett and Lewis (1994) mention two major reasons that could motivate

the inspection of existent outliers before someone moves far above and

away from the ground level of data analyses. The first reason is the inten-

tion of the study itself; see the example of Mr Haldum’s cases in Barnett

and Lewis, (1994, pg 4). The second reason is related to the effect of out-

liers on the findings of analyses. A few examples of outlier effects on the

findings of analyses are given in this section.

For a simple description of outlier influence, first look at the exam-

ples of simulated data sets given in Table 2.1. In Table 2.1, there are three
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types of simulated data sets. The first column represents a normal data

set, whereas the second and third columns are data sets with an outlier(s).

This can be verified by constructing a box plot for each data set.

Observation Data 1 Data 2 Data 3
1 -0.93 -0.93 -0.93
2 1.32 3.97 13.24
3 0.62 0.62 0.62
4 -0.04 -0.12 -0.40
5 -1.00 -3.01 -1.00
6 -0.82 -0.82 -0.82
7 -0.34 -1.02 -0.34
8 -1.53 -1.53 -1.53
9 -0.25 -0.25 -0.25

10 -1.14 -1.14 -1.14
Mean -0.42 -0.43 0.73

Variance 0.76 3.31 19.65

Table 2.1: Three types of simulated data sets

The first data set is generated as normally distributed with mean zero

and variance one, N(0, 1). Based on Pickard, Kitchenham and Linkman

(2001), outliers are generated for data 2 and data 3 in Table 2.1 by multi-

plying the chosen observations in data 1 by a constant value.

Moderate outliers can be generated by multiplying the chosen obser-

vation in data 1 by 3. The observations are selected by the following algo-

rithm:

• Step 1: Generate a random value between 0 and 1;

• Step 2: Select the observation that has a random value less than 0.10.

This indicates 10% of the observations are outliers;

• Step 3: Multiply the observation corresponding to the random value

less than 0.10 by 3, otherwise preserve the observation value.

There are 4 observations in data 1 corresponding to the random value

less than 0.10 and they were multiplied by 3. The new generated data set
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is now labeled as data 2. However, note that out of the 4 chosen obser-

vations, only 2 observations in data 2 become the centre of attention, i.e.

observations 2 and 5 (refer to their value in the Table 2.1 and Figure 2.1).

To create the severe outlier, multiply the chosen observations in data 1

by 10. The algorithm is given as follows:

• Step 1: Generate a random value between 0 and 1;

• Step 2: Select the observation in data 1 that corresponds to the ran-

dom value less than 0.05. Therefore, 5% of the observations are out-

liers;

• Step 3: Multiply the chosen observation in data 1 that corresponds

to the random value less than 0.05 by 10.

Consider the newly generated data set as data 3. Note that observation

2 in data 3 has a very large value compared to the others. Those peculiar

observations from data 2 and 3 cause the sample estimators, i.e. mean, x̄

and variance, s2 for data 2 and 3 to be larger than the ones obtained from

data 1. One can verify this by using the simple univariate test, i.e. the

boxplot.

From Figure 2.1, boxplot of data 2 and 3 clearly show observations 2

and 5 in data 2 and observation 2 in data 3 as outliers. Even though the

box and the whiskers of the boxplot for each data set look pretty normal,

the existence of outliers may lead to the conclusion that observations in

the data set are not normal even though all of them may be normal except

for outlying observations.

Furthermore, these two sample estimators, i.e. mean, x̄ and variance,

s2 play very important roles in the multivariate analyses. Both of these

estimators are utilized in developing models for the data set. If outliers can

change the values of these estimators severely, it may cause a big problem

in more complex analyses, especially in multivariate analyses.

Note that every multivariate technique has underlying assumptions,

both statistical and conceptual (Hair, Anderson, Tatham and Black, 2005).
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Figure 2.1: Boxplot for three simulated data sets

Examples of assumptions for techniques based on statistical inference are

multivariate normality, linearity, independence of error terms and equal-

ity of covariance in a dependent relationship. The conceptual assumptions

are related to such issues as model formulation and the types of relation-

ships represented.

Both statistical and conceptual assumptions must all be met before any

model estimation is attempted. However, there are situations when one

cannot meet these assumptions. One of the reasons is probably due to the

existence of outliers in the data set.

If the statistical models are simply applied to data sets containing out-

liers, one might get a misleading result. There are a few examples of outlier

consequences in multivariate analyses.

For example, in regression analyses, one of the effects of the appear-

ance of outliers is that they would control the regression line with the out-

liers pulling the regression line in their direction. In other words, out-

liers will influence the regression coefficient, which might result in all

the predicted values calculated wrongly. Many authors have been criti-

cal in discussing these issues ( Cook and Weisberg, 1982; Rousseeuw and

Leroy, 1987; Chatterjee and Hadi, 1988)

In the case of principal component analyses or factor analyses, the ex-

istence of outliers will deflate the correlation coefficient and this will auto-

matically influence the factor score. In the case of discriminant analyses,
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outliers might cause problems when it comes to predicting the observa-

tions grouping. It might classify the observations into an incorrect group

since the function value developed from eigenvectors might be affected by

a variance value. A similar problem can also happen to analyses of vari-

ance; the appearance of outliers might prove to be a large influence on the

estimate of variance, and this can cause a low probability of rejecting the

hypothesis since it will affect the F statistics value.

Outliers are also a special target of interest in the real environment.

Hodge (2004) listed a few applications which enable outlier detection. For

example, in work that requires monitoring, one can detect mobile phone

deception by monitoring phone activity or suspicious trades in the equity

market, while in loan application processing, one can identify a poten-

tially problematic customer. Outliers have also been utilized for detecting

unauthorized access in computer networks and for monitoring medical

conditions, such as heart-rate, etc.

2.4 Source of outliers

Outliers may arise coincidently without any anticipation by a researcher.

Sometimes it cannot be explained. However, there are a few possible rea-

sons for the existence of outliers in the data set. Barnett and Lewis (1994)

classified outlier source into three types. The initial source is named as

inherent variability, which implies a situation beyond one’s control since

it might arise from the natural characteristics of the individual variable.

For example, if the data collection involves time duration, it may cause an

occurrence of outliers since some of the observations might be influenced

by any event that might occur unexpectedly throughout the period of the

study. The next cause is measurement error such as reading, computing

and typing errors during the data entry process. This possibly makes the

observation peculiar compared to the other observations in the data set.

The last reason is the execution error, related to the research design where
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one might choose a biased sample or include individuals that are not true

representatives of the population that is to be sampled. No matter what

the causes of outliers are, the most important aspect of outlier issue is the

technique to identify whether there are outliers in the data set or not. By

identifying the existence of outliers, one may identify the source of the

outliers.

2.5 Various methods for identification of outliers

There are many methods available for the identification of outliers. All of

these methods can basically be grouped into two categories, namely the

univariate method and the multivariate method (see Hawkins, 1980; Bar-

nett and Lewis, 1994). The univariate method is performed independently

on each variable, whereas the multivariate method investigates the rela-

tionship of several variables (Franklin, Thomas and Brodeur, 2000). One

can also classify the methods in both categories into parametric and non-

parametric approaches.

Other classifications of outlier detection methods can be found in Pa-

padimitriou, Kitawaga, Gibbons and Faloutsos (2002), Hu and Sung (2003)

and Acuna and Rodriguez (2004). This chapter will briefly explain outlier

identification methods for high-dimensional data. Detailed explanations

about those methods can be found in Hawkins (1980), Barnett and Lewis

(1994), Papadimitriou et al. (2002), Hu and Sung (2003) and Acuna and

Rodriguez (2004).

This chapter does not attempt to summarize literature covering the

univariate method but some major concepts are reviewed before moving

to the multivariate method.
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2.6 Univariate methods

Many methods have been proposed for univariate outlier detection. The

test of discordance, i.e. a formal test, and outlier labeling methods, i.e.

informal test are the most popular approaches.

2.6.1 Test of discordance

The test of discordance needs test statistics for hypothesis testing and it

is usually based on the assumption of well-behaved distribution. Nor-

mally the distribution is assumed to be identically and independently dis-

tributed. Additionally, the type of expected outlier and the distribution

parameters are assumed to be known.

From Barnett and Lewis (1994), there are hundreds of discordance tests

that have been developed for different conditions depending on

(i). the data distribution, i.e. whether the distribution parameters are

known or not;

(ii). the number of expected outliers;

(iii). the types of expected outliers.

The test of discordance is quite powerful since it is based on distribution

assumption. However, it is noted that most real world data may not fol-

low a specific distribution or the distribution is unknown. The discordance

test is thoroughly discussed in Barnett and Lewis (1994) and Iglewicz and

Hoaglin (1993). Examples of discordance test are generalized extreme stu-

dentized deviate (ESD), kurtosis statistics and the Dixon test.

(i). Extreme Studentized Deviate (ESD)

The ESD test is suitable to use if we want to identify a single outlier

in a normally distributed data. It is also known as the Grubb test.



CHAPTER 2. IDENTIFICATION OF OUTLIERS 17

The maximum deviation from the mean is given as

τ =
|xi − x̄|

s
(2.1)

where xi is the observation, x̄ and s are the mean and standard de-

viation of the data set, respectively. Equation 2.1 is calculated for

each observation and the value is compared to the critical value, τα

at the selected α. If τ is greater than the τα (see Iglewicz and Hoaglin

(1993) for ESD test critical values), then the observation under con-

sideration is an outlier.

(ii). Dixon test

The Dixon test is based on the ratio of the ranges and it is gener-

ally used for detecting a small number of outliers. There are six test

statistics from Dixon for normal univariate samples. It is a very sim-

ple test. However, these tests are applicable to only sample sizes of

up to 30. The algorithm is as follows:

• Step 1: Observations in the data set are sorted in ascending or-

der, x(1) < x(2) < . . . < x(n) where x(1) is the lowest observation

and x(n) is the highest one;

• Step 2: Compute the suitable test statistics and depending on

the number of suspected outliers, different test statistics are used

to identify potential outliers. The corresponding test statistics

are given in Table 2.2.

Tests r10, r11, r′11, r12 and r′12 are the test statistics for an extreme

outlier, x(n) or x(1) in a normal sample with population vari-

ance unknown, whereas tests r20, r′20, r21, r′21, r22 and r′22 are

for two extreme observations either the upper-pair x(n), x(n−1)

or the lower-pair x(1), x(2) in a similar normal sample;

• Step 3: Next the value of test statistics is compared to the crit-

ical value, r∗ for a given number of observations n and at a
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Table 2.2: Dixon tests for univariate normal samples

Applicability of test
nmin − nmax Value(s) tested Test Statistics

3-30 Upper x(n) r10 = (x(n) − x(n−1))/(x(n) − x(1))
4-30 Upper x(n) r11 = (x(n) − x(n−1))/(x(n) − x(2))
4-30 Lower x(1) r′11 = (x(2) − x(1))/(x(n−1) − x(1))
5-30 Upper x(n) r12 = (x(n) − x(n−1))/(x(n) − x(3))
5-30 Lower x(1) r′12 = (x(2) − x(1))/(x(n−2) − x(1))
4-30 Upper pair x(n), x(n−1) r20 = (x(n) − x(n−2))/(x(n) − x(1))
4-30 Lower pair x(1), x(2) r′20=(x(3) − x(1))/(x(n) − x(1))
5-30 Upper pair x(n), x(n−1) r21 = (x(n) − x(n−2))/(x(n) − x(2))
5-30 Lower pair x(1), x(2) r′21=(x(3) − x(1))/(x(n−1) − x(1))
6-30 Upper pair x(n), x(n−1) r22 = (x(n) − x(n−2))/(x(n) − x(3))
6-30 Lower pair x(1), x(2) r′22=(x(3) − x(1))/(x(n−2) − x(1))

given significance α. (The r∗ critical value can be found in Kanji

(1993));

• Step 4: If the test statistic is less than the critical value r∗, there

are no outliers present. However, if the test statistic is greater

than the critical value, the null hypothesis is rejected and the

conclusion is that the most extreme value is an outlier. The test

is applied consecutively for other extreme values until the null

hypothesis is true.

2.6.2 Outlier labeling methods

Outlier labeling methods use the interval for identification of outliers. The

interval will separate outliers into ’good region’ and ’bad region’. Bad re-

gion refers to the area outside the interval. Any observations that fall in the

bad region are considered as outliers. Normally, outlier labeling methods

are appropriate to use if one is only interested in finding an observation

that is extremely different from the majority data. This method is not suit-
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able to be applied if one wants to identify the observation that violates the

distribution assumption of statistical analyses, such as regression.

Another reason for using the outlier labeling method is when we have

a large data set. Note that it is difficult to identify the distribution of a large

data set. Therefore, in this condition, the labeling method is appropriate

for outlier detection rather than discordance tests.

(i). Standard Deviation (SD) method

The simple classical approach of the outlier labeling method is Stan-

dard Deviation (SD) method. Given a data set of n observations of

a variable x, let x̄ be the mean and let s be standard deviation of the

data distribution. One observation is declared as an outlier if it lies

outside of the interval

x̄− k′s, x̄+ k′s (2.2)

where the value k′ is usually taken as 2 or 3.

The problem with the given criteria is the mean and standard devia-

tion are highly sensitive to outliers.

(ii). Boxplot

One of the well known and widely used labeling methods is the Box-

plot. The Boxplot was introduced by Tukey in 1977. Tukey intro-

duced the Boxplot as a graphical display on which outliers can be

indicated.

The observation that falls between the inner fence and outer fence,

or beyond the outer fence is labeled as an outlier. The inner fence is

calculated as

[Q1 − 1.5IQR,Q3 + 1.5IQR], (2.3)

where IQR = Q3 −Q1 is the inter quartile range of the data set with

Q3 and Q1 are the upper quartile of the data set and the lower quar-

tile of the data set, respectively. One can compute the outer fence as
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[Q1 − 3IQR,Q3 + 3IQR]. (2.4)

Notice that the upper and lower quartiles, Q3 and Q1 are used to

obtain the robust measures for mean, (Q1 + Q3)/2 and the standard

deviation, Q3 −Q1, which can replace x̄ and s in equation 2.2.

The Boxplot is applicable to skewed data since it makes no distribu-

tional assumptions and it does not depend on a mean or standard

deviation. However it is not suitable for a small sample size and it is

noted that the more skewed the data are, the more observations may

be detected as outliers.

(iii). Adjusted Boxplot

As a solution to the Boxplot, Vanderviere and Hubert (2008) pre-

sented an adjusted Boxplot. The difference between the former and

latter Boxplot is the inner and outer fence. In the adjusted Boxplot,

the medcouple (MC) is introduced. The MC value is between -1 and

1. If MC = 0, the data is symmetric and the adjusted Boxplot be-

comes Tukey’s Boxplot. In addition, if MC > 0, the data is right

skewed; if MC < 0, the data is left skewed.

Let X = x1, x2, . . . , xn be the independent sample of a continuous

univariate distribution. Sort each observation inX , from the smallest

value to the largest value, x(1) ≤ x(2) ≤ . . . ≤ x(n). Therefore, one can

define the MC as

MC(x1, x2, . . . , xn) = med
(xj −med′) − (med′ − xi)

xj − xi
, (2.5)

where med’= the median of X , i and j have to satisfy xi ≤ med′ ≤ xj

and xi 6= xj . If MC ≥ 0, one can develop the fence as below

[Q1 − (1.5IQR× e−3.5MC), Q3 + (1.5IQR× e4MC)].
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However, if MC ≤ 0, the fence becomes

[Q1 − (1.5IQR× e−4MC), Q3 + (1.5IQR× e3.5MC)].

Observations situated outside the fence are labeled as outliers.

2.7 Multivariate methods

Outliers become more difficult to detect in high dimensional data. One

cannot claim multivariable observations as outliers if each variable is con-

sidered independently. Another scenario that could happen in multivari-

ate cases is the masking and swamping problem.

Recall that the masking problem occurs when the appearance of one

outlier covers the appearance of another outlier, whereas the swamping

problem arises when the observation is identified as an outlier even if it

is not. In other words, swamping is the opposite of masking. Instead of

declaring too few outliers, the method declares more outliers than there

actually are (Hawkins, Bradu and Kass, 1984).

Some of the multivariate outliers have been modified from the univari-

ate method, so that it can take into account a multivariable. Examples are

the generalized distance with studentized residual (Siotani, 1959), the ra-

tio of generalized distance with all observations (Wilk, 1963) and the W

statistics for normality (Shapiro and Wilk, 1965).

There are also examples of multivariate outlier detection method that

are based on residuals. Cook (1977) recommended using plot of residuals

or examining the standardized residuals or studentized residuals. Other

suggestions of multivariate outlier detection method that are based on

residuals can be found in David (1978) and Cook (1986).
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2.7.1 Statistical methods

Observations that are situated far from the centre of the data distribution

is labeled as outliers in the statistical method. One of the most widely

used approaches for the detection of multivariate outlier in the statistical

method is called the Mahalanobis distance. According to Stevens (1984),

the Mahalanobis distance is a measure of the distance in factor space.

Let

x = consisting of n observations and p variables

X = matrix of the original data set with column centred by the mean

x̄ = p dimensional vector with the means of each variable

S =
1

n− 1
(XTX), covariances matrix of the p variables

Now, one can develop the Mahalanobis distance, D

D(x, x̄) = {(x − x̄)TS−1(x − x̄)}1/2 (2.6)

where D is the distance of x to the mean of the data set. For multivari-

ate normally distributed data, the values of the Mahalanobis distance are

approximately chi-square distributed with p degrees of freedom (χ2
p). An

observation with large Mahalanobis distance can be considered as an out-

lier.

The Mahalanobis distance works well when identifying scattered out-

liers (Rocke and Woodruff, 1996). However, it fails to perform when a data

set contains clustered outliers. This is supported by Filzmoser (2004), who

mentions that a single extreme observation or a group of observations far

away from the main data structures can have a significant influence on the

Mahalanobis distance.

They are subject both to the masking and swamping effect because both

estimators, i.e. mean and covariance, are usually estimated in a non-robust

manner. Robust estimators mean they are less affected by outliers. Penny
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and Jolliffe (2001) explain the scenario of the masking and swamping ef-

fects if the Mahalanobis distance is used for identification of outliers. In

the situation of masking effects, a value of Mahalanobis distance for out-

liers will decrease as the outliers will pull x̄ and S towards themselves.

In contrast, in the swamping effect, Mahalanobis distance values for non-

outliers might increase since outliers attract x̄ and blow S away from the

majority of observations.

For an illustration of the masking effect, consider the Hawkins Bradu

Kass data set (Hawkins et al., 1984). This data set contains 75 observations

with 3 variables. Note that the first 14 observations are outliers. Neverthe-

less, the Mahalanobis distance only flagged cases 12, 13 and 14 as outlier,

(refer to Figure 2.2). The other outliers emerge only after the deletion of

cases 12, 13 and 14 (Hawkins et al., 1984).
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Figure 2.2: Mahalanobis distance plot for Hawkins Bradu Kass data

Wilk’s statistics is also widely used for identification of outliers (Barnett

and Lewis, 1994). It is equivalent to using the Mahalanobis distances of the

n sample points, xi from the sample mean, x̄ (Caroni and Billor, 2007)

di(xi, x̄) = {(xi − x̄)TS−1(xi − x̄)}−1/2.

Wilk’s statistics is proposed by Wilk (1963) for identification of a single
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outlier. Wilk’s statistics is given by

Ri =
|S(i)|

|S|
∼ B

(n− p− 1

2
,
p

2

)

,

where S(i) is the covariance matrix of p variables when the ith row of ma-

trix X is deleted, X(i). The subscript i in parentheses of X(i) is read as

“with observation i is moved from X”, i.e. the ith row of X is xT
i then

XT
(i)X(i) = XTX − xix

T
i .

The sample points are ordered according to Ri. The outlier is the ob-

servation corresponding to minimum value of Ri. Since

|Ŝ(i)|

Ŝ
= 1 −

n

n− 1
(xi − x̄)T Ŝ−1(xi − x̄),

minimization of Ri becomes equivalent to maximization of

(xi − x̄)T Ŝ−1(xi − x̄).

Wilk showed that theRi are identically distributed withB((n−p−1)/2, p/2)

(but not independent). Figure 2.3 shows the index plot of {i, Ri}; notice

that only observation 14 is located at the bottom of the plot.
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Figure 2.3: Wilks plot for Hawkins Bradu Kass data

Again, an obvious problem is that of masking. Suppose there are ac-

tually more outliers than the number being tested for, then the covariance
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matrix will be inflated by these extra outliers. Hence, minimizing the dis-

tance, di makes it less likely that outliers will be declared. This considera-

tion makes it desirable to consider a robust method of identifying outliers.

This will be further discussed in the next section.

Now, consider Wilk’s criterion for detecting I outlier is

RI =
|SI |

|S|
,

where S(I) is the covariance matrix of p variables with set of observations

I are removed from the data matrix” and I = {i1, i2, . . . , im} is the subset

indices 1 ≤ ij ≤ n, j = 1, 2, . . . , m. The detection of m joint outlier is based

upon minIm⊂nRIm
. It is noted that the calculation of minimum RI is more

unfeasible if n and m are larger.

2.7.2 Multivariate robust measures

As a consequence of the Mahalanobis distance and Wilk’s statistics prob-

lem in the statistical methods, many robust means and covariances have

been introduced in previous studies. Examples are minimum volume el-

lipsoid (MVE) estimators (Rousseeuw and von Zomeren, 1990) and mini-

mum covariance determinant (MCD) estimators by Rousseeuw and Driessen

(1999). These estimators have the desirable properties of high breakdown

point and affine equivariance.

Originally, the breakdown point definition was given by Hodges (1967),

where the definition is limited to a one-dimensional estimation of location.

Nevertheless, Hampel (1971) proposed a much more general formulation.

The breakdown point is a percentage of outliers which will make the esti-

mator take on the large values. Therefore, estimators with a large break-

down point are more robust. It is noted that the highest breakdown point

value can possibly reach 50%. If the value goes beyond 50%, one cannot

decide which data are outliers and which are from the main distribution.
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Another desirable property of an estimator is affine equivariance. A

location estimator Tn ∈ ℜp is affine equivariant if and only if for any vector

b ∈ ℜp and any nonsingular p× p matrix A,

Tn(AX + b) = ATn(X) + b.

A scale estimator Cn ∈ PDS(p) (the set of positive-definite symmetric p×p

matrices) is affine equivariant if and only if for any vector b ∈ ℜp and any

nonsingular p× p matrix A,

Cn(AX + b) = ACn(X)AT .

If an estimator is affine equivariant, stretching or rotating the data won’t

affect the estimator.

Nevertheless, it is noted that the multivariate robust measures suffer

from computational complexity, i.e. the efficiency of algorithms as run

time and memory requirement permit.

(i). M-estimator

M-estimator is an early version of robust estimators, which are de-

veloped by a simple adjustment of the classical estimators. Maronna

(1976) studied affinely equivariant M-estimators for covariance ma-

trices and Campbell (1980) proposed using the Mahalanobis distance

computed using the M-estimators for the mean and covariance ma-

trix. To compute these estimators, each observation is given a weight.

The given weight depends on the di(xi, x̄) values of each observation.

Observation with a high value of di(xi, x̄) will be down weighted.

Full weight is given to the observations with normal di(xi, x̄) value.

Note that the observations with the large value of di(xi, x̄) could be

considered as outliers. Therefore by giving a reduced weight to the

outlying observation in the data set, it hardly influences the estima-

tor. However, the M-estimator has a low breakdown point, which is
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1
p+1

. It means the performance of these estimators is not consistent.

Considering the M-estimator has a low breakdown point, a different

approach have been proposed to overcome the difficulty.

(ii). Minimum Volume Ellipsoide (MVE) estimator

Minimum volume ellipsoid estimators are the mean and covariance

matrix of subsample size h, where h ≤ n. It minimizes the volume

of the covariance matrix associated with the subsample. The basic

idea of the MVE is to search among all such ellipsoids for the one

having the smallest value. Therefore, the main problem of MVE is

to find h that produces the smallest ellipse because the number of all

subsamples containing half of the data is so large that determining

the subsample with the minimum volume is impractical. It is noted

that h is taken to be h = (n + p + 1)/2 which is the integer function.

The h value can be assumed as the minimum number of instances

that must not be outlying. Otherwise, one can state this approach

has a breakdown point of approximately 50%.

(iii). Minimum Covariance Determinant (MCD) estimator

The minimum covariance determinant (MCD) estimator also has a

breakdown point of approximately 50%. The MCD estimator is the

mean and covariance of a subsample of size h (h ≤ n) that mini-

mizes the determinant of the covariance matrix that corresponds to

the subsample. As with MVE, it is impractical to consider all subsets

of half of the data since it is computationally expensive.

(iv). Application of multivariate robust measures

Rousseeuw and von Zomeren (1990) used the MVE estimators to de-

velop a method for outlier detection. The method was based on the

basic resampling algorithm and they named it the Robust Distance

method. However, Hadi (1992) pointed out three weaknesses of this
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method, particularly a problem related to the situation when the co-

variance matrix has a zero determinant. Therefore, he solved this

weakness by presenting an idea that makes outliers appear in one

subset, with the other subset highly unlikely to contain outliers. The

new approach still applies the MVE estimator, but it is easier to com-

pute and the method is not dependent on the basic resampling algo-

rithm. Later, Hadi (1994) modified his idea by giving an alternative

step to the existing algorithm. The findings of this approach were

almost similar to the findings of the previous solution in 1992.

The minimum covariance determinant (MCD) estimator had been

used by Hawkins in 1994 to develop a feasible solution algorithm

(FSA) to discover outliers. This approach still uses the subset to di-

vide a data set from outliers. The disadvantage of this method is that

large number of subsets need to be constructed from a data set, espe-

cially when one has a data set with a large sample size and variables.

Therefore, in order to solve this problem, Rousseeuw and Driessen

(1999) suggested the fast algorithm using the MCD estimator called

FAST-MCD.

They introduced two techniques, which are, the selective iteration

and the nested extension. They also presented C-Step where the ’C’

means concentration. The word concentration could be interpreted

as their focus on h observations with least distances. It also could be

described as the most recent chosen subset that provides a minimum

determinant. The C-Step has four steps which are repeated until the

last process fulfils the latter definition of ’C’.

Hawkins and Olive (1999) also tried to improve the FSA by adding a

condition called C-Condition. However, their approach still retained

the similar computational complexity as FSA since it is only reduces

the computation time for studies that use the fixed sample size, i.e. a

subset with the same sample size.
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2.7.3 Eigenstructure Approach

The eigenstructure of a data matrix plays an important role in some meth-

ods of statistical analyses. For example, in regression analyses, if the co-

variance matrix provides small eigenvalues, this is an indication of the

presence of multicollinearity. Wang and Nyquist (1991) state that indi-

vidual observations can highly influence the eigenstructure of a data ma-

trix. They investigated the influence of each observation by comparing the

eigenstructure of a completed data set and the eigenstructure of a data set

without the observation under consideration. Their study summarized

the properties of exact principal component eigenvalues influence mea-

sures based on a numerical point of view.

Next, Wang and Liski (1993) extended the study to the influence of a set

of observations on the eigenstructure of a data matrix if they are removed

from a data set. In this study, comparisons are made with results of single

deleted observation cases from Critchley (1985).

Later, Mertens (1998) used the rice data to present the exact principal

component eigenvalues influence measures from an applied statistician’s

perspective. Mertens (1998) developed a principal component from two

types of eigenstructure and showed that the normalization of eigenvalues

could create a distance of an observation. According to Mertens (1998), the

analyses of eigenvalues is very important for high dimensional data sets.

In 2005, Gao, Li and Wang proposed a method for identification of out-

lier based on eigenstructure. Their method is called the Max-Eigen differ-

ence (MED).

MEDi =
d′i

n
∑

j=1

d′j

(2.7)

where

d′i =‖ λ
(i)
1 υ

(i)
1 − λ1υ1 ‖ (1 − Πp

j=1I
′
(y2

ij<λj)
)

and ‖ . ‖ represent the euclidean norm, I ′{.} is an indicator function, yij =

(xi − x̄)Tυj. λ(i) and υ(i) are eigenvalues and eigenvectors, respectively,
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calculated from covariance matrix of the data set, X with p dimension

where the ith observation has been removed from it.

The function of 1−Πp
j=1I

′
(y2

ij<λj)
is to let the MEDi become zero if all y2

ik

is less than the corresponding λk where k = 1, 2, . . . , p. This is because if

xis are close to the mean, x̄, they should not be identified as outliers and

their proportion with y2
ik < λk for all k is not large if all observations xi are

identically and independently distributed with normal distribution (Gao,

Li and Wang, 2005).

2.7.4 Angles

Instead of measuring two population using distances, one can also obtain

an angle between them subtended at the origin. Note that the angle and

the distance are using similar concepts, therefore the angle can be called

the Mahalanobis angle. Fisher (1936) seems to be the first to use the con-

cept of the Mahalanobis angle.

Let x1 and x2 be two independent random vectors with E(xi) = µi and

cov(xi) = Σ where i = 1, 2. If Σ is positive definite matrix, the Maha-

lanobis distance between the two populations with the random vectors x1

and x2 is defined as D(µ1, µ2) = {(µ1 − µ2)
T Σ−1(µ1 − µ2)}

1/2. In the same

spirit, Mardia, 1977, defined the Mahalanobis angle as an angle between

µ1 and µ2 subtended at the origin.

Angles also can be used for the identification of outliers. Juan and Pri-

eto (2001) proposed a technique for the identification of outlier based on

the analyses of certain angular properties of the observations. This tech-

nique is able to manage the data set with concentrated contamination that

cannot be handled by methods developed from robust estimators. Angles

for each observation are developed between the reference direction (refer

to the equation (5) in Juan and Prieto (2001)) and the normalized distance.

The Q-Q plot, i.e. a plot of quartiles and ordered angles is used to exhibit

the outlier.
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Later, Kriegel, Schubert and Zimek (2008) proposed a method called

ABOD, i.e. Angle-Based Outlier Detection and some variants assessing

the variance in the angles between the different vectors of an observation.

The main advantage of this approach is it does not depend on any param-

eter selection influencing the quality of the achieved ranking. According

to them, the relative contrast of the farthest observation and the nearest

observation converges to 0 for increasing dimensionality, p as following:

lim
d→∞

distmax − distmin

distmin

→ 0

2.7.5 Data mining methods

Data mining methods can be considered as a non-parametric approach.

There are a few examples of outlier detection methods in this category, i.e.

clustering based-methods and distance-based methods.

(i). Clustering based-methods

Clustering based-methods will classify observations into clusters. Out-

lier is discovered as observation in a small cluster. There are many

types of clustering methods. One of them is called partitioning around

medoids (PAM). This approach was introduced by Kaufman and

Rousseeuw (1990). Normally PAM is performed on small data sets.

Therefore, Kaufman and Rousseeuw (1990) introduced a new ap-

proach called clustering large applications (CLARA).

Note that CLARA and PAM use the same algorithm, with CLARA

merely utilizing the algorithm on the multisamples, i.e. the large

data set dividing the observations into multisamples. The clustering

based-methods are not always optimal for identification of outlier

since their main purpose is clustering.
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(ii). Distance based-methods

The idea of distance-based outlier was originally proposed by Knorr

and Ng (1998). They defined a distance-based outlier as

Definition 2.7.1 An observation O in a data set T is a DB(p′, D) outlier

if at least fraction p′ of the observations in T lie at a greater distance than

D from O,

where DB(p′, D) is a notation for a ’distance-based outlier’, and out-

liers are detected using parameter p′ and D. According to Knorr and

Ng (1998), there are no criteria to choose p′ andD; it is left to a human

expert.

This approach is free from any distribution assumptions and obser-

vations with a large distance are possibly identified as outliers. Fol-

lowing the definition-based outlier, many methods have been pro-

posed to detect distance-based outliers (see, Knorr and Ng, 1998; Ra-

maswamy et al., 2000; Angiulli and Pizzuti, 2002; Bay and Schwabacher,

2003). However, all of these methods can only identify the global

outliers. It is noted that outliers can be classified into two groups:

global outliers and local outliers.

A global outlier is an extreme observation with respect to every other

observation in the data set, whereas a local outlier refers to an obser-

vation that is isolated from its surrounding neighbourhood rather

than the whole data set. Therefore, as a solution to this problem, Pa-

padimitriou, Kitawaga, Gibbons and Faloutsos (2003) and Breunig,

Kriegel, Ng and Sander (2000) introduced the local correction inte-

gral (LOCI) and local outlier factor (LOF), respectively, to find the

local outlier.
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2.8 Solution to outliers

Normally when one finds outliers, there are a few ways to handle them.

If the existence of outliers are only due to measurement error, this can be

corrected. However, if the appearance is caused by an implementation

error, the outliers probably should be removed. If the outlier emerges due

to inherent variability, then it should remain. This is because one might

use it as a new outcome that can lead to a new research.

A story about the ’ozone hole’ above Antarctica gives a very good les-

son about why outliers need to be considered rather than deleted from a

dataset, http://exploringdata.cqu.edu.au/ozone.htm. It is based

on three researchers who queried a data set provided by the British Antarc-

tic Survey in 1985. The data set showed ozone levels not being normal;

however, the Nimbus 7 satellite presented contrast findings. After doing

an inspection, they found the solution to this problem. The different find-

ings occurred because the computer programme that was used to record

the ozone levels from the satellite had assumed that the low concentra-

tion levels were outliers and they were removed. The effect of the deleted

outliers not being examined resulted in no one realizing the world atmo-

sphere has been damaged for nine years (since 1976).

2.9 Conclusion

This chapter briefly presents a simple introduction about outliers and some

methods for identifying outliers. As a conclusion, outliers can be defined

simply as an observation (or a subset of observations) that is isolated from

the other observations in the data set. There are two major reasons that

motivate people to find outlier; first is the researcher intentions. The sec-

ond reason is their effect on the analyses, i.e. the existence of outliers will

affect means, variances and regression coefficients; they will also cause

a bias or distortion of estimates; likewise, they will inflate the sums of

http://exploringdata.cqu.edu.au/ozone.htm
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squares and certainly create false conclusions.

Outliers may exist because of inherent variability, measurement error

and execution error. There have been many methods developed for the

identification of outliers. They can be classified into the univariate method

and the multivariate method (see Hawkins, 1980; Barnett and Lewis, 1994).

The univariate method is performed independently on each variable, whereas

the multivariate method investigates the relationship of several variables

(Franklin et al., 2000). One can also classify them into a statistics approach,

i.e. parametric and non-parametric approach.

§2.7 briefly explained the role of eigenstructure in some methods of sta-

tistical analyses and for identification of outliers. The approach looks easy

to apply as a tool for identification of outliers. Therefore, Chapter 3 will

use a few techniques based on eigenstructure as a tool for the identification

of outliers.



Chapter 3

Outliers Identification by

eigenstructure

3.1 Introduction

As discussed in the previous chapter, the covariance matrix is a very im-

portant tool in multivariate statistics. Suppose X is an n × p data matrix

consisting of n observations on p variables and , therefore X can be written

as follows:

Xn×p =













x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp













=













xT
1

xT
2
...

xT
n













.

In practice, the sample covariance matrix is written as

S =
1

n− 1
(X −

1

n
11T X)T (X −

1

n
11T X)

=
1

n− 1
XT (I −

1

n
11T )X, (3.1)

35
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where
1

n
11T X,

is the n × p matrix of means of the matrix X with 1 is n-vector of ones

(Johnson and Wichern, 2007) and I be the n × n identity matrix. The pur-

pose of the means is to allow the entries to be centred. If the means are

subtracted out, the sample covariance matrix can be computed as

S = n−1(XT X).

However, if one does not bother about dividing S by n, then

S = XT X,

can be called a covariance matrix.

Normally, the covariance matrix will have p variances and
1

2
p(p − 1)

different covariances (Johnson and Wichern, 2007).

S =













s11 s12 . . . s1p

s21 s22 . . . s2p

...
...

. . .
...

sn1 sn2 . . . spp













, (3.2)

where sjk =
1

n− 1

n
∑

i=1

(xij − x̄j)(xik − x̄k) and j, k = 1, 2, . . . , p. Note that the

denominator can also be replaced as n or 1 (Johnson and Wichern, 2007).

This chapter focuses on the identification of outliers using the eigen-

structure of S and S(i) in terms of eigenvalues, eigenvectors and principal

components. Note that S(i) is the sample covariance matrix of data matrix

X(i), where the subscript i in parentheses is read as “with observation i

removed from X”.

The idea of using the eigenstructure as a tool for identification of out-

liers is motivated by Maximum Eigen Difference (MED). This method uti-
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lizes the maximum eigenvalue and the corresponding eigenvector. It is

noted that examination of the observations effect on the maximum eigen-

value is very significant. The reason is that outliers that lie in the direction

close to the maximum eigenvalue or vice versa, will change the maximum

eigenvalue (Gao et al., 2005). The maximum eigenvalue contains max-

imum variance, therefore, the outliers detected by the maximum eigen-

value have a greater effect on variance, and they need extra attention.

The definition and computation of eigenstructure are briefly explained

in §3.2. Then in §3.3, the influence eigenstructure of covariance matrix

will be discussed and it will be used to develop techniques for identifying

outliers.

The main part of this chapter considers techniques as well as the in-

dex plot, mainly as a graphical tool for diagnostics, i.e. identification of

outliers. These areas will be discussed in §3.4 and §3.5. This chapter dis-

cusses the problem of outliers without assuming any model distribution.

Note that in practice, mean and variance or covariance are unknown and

the data will often not have a multivariate normal distribution. Therefore,

any distributional result derived under the restrictive assumption can only

be approximations ( Jackson, 1991; Jolliffe, 2002).

In previous studies, finding outliers is about identifying observations

that are obviously different from others (Penny and Jolliffe, 2001), and

there is no motivation to compute significance levels very accurately since

an observation that is barely significant at 5%, typically is of no interest.

The techniques discussed in this chapter use the maximum eigenvalue

with the corresponding eigenvector. It is noted that the first few eigenval-

ues are the most interesting for multivariate data because the first ones are

sensitive to the outliers, as they could inflate the variance and covariance

(Jolliffe, 2002).

An example is that eigenvalues can be referred to when examining

the multicollinearity, i.e. correlation between independent variables in the

model. The square root of the maximum eigenvalue, λmax divided by the
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smallest eigenvalues, λmin represents the condition index (κ),

κ =

√

λmax

λmin
.

The condition indices are used to identify whether there is a multicollinear-

ity problem or not. If κ = 1, hence collinearity problems will not appear.

However, as collinearity increases, eigenvalues will either be greater or

smaller than 1. Eigenvalues close to zero indicate a multicollinearity prob-

lem and the condition indices will increase.

The behaviour of the maximum eigenvalue of a sample covariance ma-

trix as a random object has been studied by Bejan (2005). The choice of the

maximum eigenvalue as the object of interest is motivated by its impor-

tance in many techniques of multivariate statistics, for example, principal

component analysis and the possibility of its use in statistics as test statis-

tics (Bejan, 2005).

In particular, this chapter defines four techniques: ∆∗
1(i), ∆∗∗

1(i), θ1(i) and

θ∗1(i). The techniques discussed in this chapter are not entirely novel; they

have been discussed earlier, i.e. influence eigen has been considered by

Wang and Nyquist (1991) from a numerical point of view. Studies cited in

this chapter are largely empirical and this chapter shows through exam-

ples how the suggested techniques perform in data sets containing out-

liers.

To investigate how the techniques perform, two types of data will be

considered in this chapter. First is the simulated data set and second is

the real data set. The simulated and real data sets used in this chapter are

described in §3.6 and §3.7 respectively.

Next, the performance of the suggested techniques can be seen in §3.9,

§3.10, §3.11 and §3.12. §3.9 considers low dimension and small sample size

data. §3.10 studies those techniques on the low dimension but with a large

sample size data, whereas §3.11 examines the performance of the tech-

niques on high dimension with a large sample size data. The performance
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of those techniques on a real data set can be found in §3.12.

3.2 Eigenvalues and eigenvectors

Definition 3.2.1 (Johnson and Wichern 2007) Consider S is a p× p square ma-

trix and I be the p × p identity matrix. Therefore, the scalars λ1, λ2, . . . , λp that

satisfy the polynomial equation |S − λI| = 0 are called the eigenvalues of matrix

S and |S − λI| = 0 is called characteristic equation.

Definition 3.2.2 (Johnson and Wichern 2007) Let S be a square matrix of di-

mension p × p and let λ be an eigenvalue of S. If υ is a nonzero vector (υ 6= 0)

such that

Sυ = λυ,

then υ is said to be an eigenvector of the matrix S associated with the eigenvalue,λ.

Let S = XT X, where S is a square p× p matrix. Let λj and υj,

j = 1, 2, . . . , p be the eigenvalues and the corresponding normalized eigen-

vectors of S respectively.

According to Graybill (1976), there is an orthogonal matrix

V = [υ1, υ2, . . . , υp], (3.3)

such that

VT SV = VT (XT X)V

= diag[λ1, λ2, . . . , λp]

= Λ. (3.4)
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3.3 Influence eigenvalues and eigenvectors

Some statistical methods are concerned with eigenstructure problems and

a few statistics are the functions of eigenvalues in multivariate analysis.

A test statistic is considered as a function of eigenvalues of a transition

matrix to test a Markov chain for independence (Wang and Scott, 1989)

and eigenstructure methods are applied to study the co-linear problem in

multivariate linear regression (Wang and Nyquist, 1991).

Now, consider the influence of eigenvalues λj and eigenvectors vj for

matrix XT X where X is an n × p observation matrix consisting of n obser-

vations for p variables.

If ith row of matrix X is deleted, one can write it as X(i) where the

subscript i in parentheses is read as “with observation i is removed from

X”, i.e. the ith row of X is xT
i then XT

(i)X(i) = XT X − xix
T
i . Let XT X have the

eigenvalues-eigenvectors pairs

(λ1, v1), (λ2, v2), ..., (λp, vp),

and the eigenvalues are in descending order

λ1 ≥ λ2 ≥ ... ≥ λp, (3.5)

and let XT
(i)X(i) have the eigenvalues and eigenvectors pairs

(λ1(i), v1(i)), (λ2(i), v2(i)), ..., (λp(i), vp(i)),

and the eigenvalues are also in descending order

λ1(i) ≥ λ2(i) ≥ ... ≥ λp(i). (3.6)

Define,

V(i) = [υ1(i), υ2(i), . . . , υp(i)], (3.7)
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and

VT
(i)S(i)V(i) = VT

(i)(X
T
(i)X(i))V(i)

= diag[λ1(i), λ2(i), . . . , λp(i)]

= Λ(i). (3.8)

Then influence functions of eigenvalues λj and eigenvectors vj are given

respectively by Radhakrishnan and Kshirsagar (1981) as follows:

IF (x;λj) = (xTvj)
2 − λj (3.9)

and

IF (x; vj) = −xT vj

∑

k 6=j

xTvk(λk − λj)
−1vk. (3.10)

If one wishes to examine the ith observation’s influence on the eigenvalues

and eigenvectors of XT X, it is easy to remove the ith observation from the

full data set and then compare the eigenvalues and eigenvectors of the

remaining data with that of the complete data.

Lemma 3.3.1 The properties of eigenvalues and eigenvectors are given as fol-

lows:

(i). λj ≥ λj(i);

(ii). The relationship of eigenvalues λj and λj(i) is given by Gao et al. (2005):

λj(i) = λj −
1

n− 1
(l2ij − λj)−

1

2(n− 1)2
l2ij

[

1 +
∑

k 6=j

l2ij
λk − λj

]

+O(
1

n3
), (3.11)

where lij = (xi − x̄)Tvj ;
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(iii). The relationship between eigenvectors of vj and vj(i) is obtained based on

the observation matrix X given by Gao et al. (2005) as follows:

vj(i) = vj +
lij

n − 1

∑

k 6=j

likvk

λk − λj

−
1

2(n − 1)2

∑

k 6=j

[ l2ij l
2
ikvj

(λk − λj)2
−

2l2iklij
(λk − λj)

∑

k 6=j

likvk

λk − λj

+
2l3ij likvk

(λk − λj)2

]

+ O(
1

n3
). (3.12)

Proof:

(i) λj ≥ λj(i) is obtained from the following matrix operations: It is noted

that

XT X = XT
(i)X(i) + xix

T
i ,

where XT X, XT
(i)X(i) and xix

T
i are symmetric matrices and xix

T
i is of rank

unity, there exists on an orthogonal matrix Q such that

QT (xix
T
i )Q =

(

s 0

0 0

)

,

where s is the unique non-zero eigenvalues of xix
T
i , and consider

QT (XT
(i)X(i))Q =

(

t cT

c XT
∗ X∗

)

,

then there is an orthogonal matrix P(k−1)(k−1) so that

PT (XT
∗ X∗)P = Λ∗ = diag{λ1, λ2, ...λk−1}

and one can define an orthogonal matrix

G = Q

(

1 0

0 P

)

,
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then

GT (XT X)G =

(

1 0

0 PT

)

QT (XT
(i)X(i))Q

(

1 0

0 P

)

+

(

1 0

0 PT

)

QT (xix
T
i )Q

(

1 0

0 P

)

=

(

t+ s cT P

PT c Λ∗

)

,

where

k
∑

j=1

λj = t+ s+
k−1
∑

i=1

λi

= t+
k−1
∑

i=1

λi + s

=
∑

j=1

λj(i) + s. (3.13)

Note that s ≥ o, and λj ≥ λj(i) is obtained for any i = 1, 2, ..., n. �

3.4 Influence eigen for identification of outliers

3.4.1 Influence eigen

Let the sample covariance matrix be

S =
1

n
XT (In −

1

n
1n1

T
n )X, (3.14)

where 1 is the n-vector of ones and In is the identity matrix of n× n. If X(I)

and S(I) are the data matrix and sample covariance matrix, respectively,

when the m observations are deleted and the subscript I in parentheses

is read as “with a set of m observations I removed from X”, note that
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I = {i1, i2, . . . , im} where 1 ≤ ij ≤ n and j = 1, 2, . . . , m. Therefore, one

has

S(I) =
1

n−m
XT

(I)(In−m −
1

n−m
1n−m1T

n−m)X(I) (3.15)

and

SI =
1

m
XT

I (Im −
1

m
1m1T

m)XI . (3.16)

Lemma 3.4.1 It is noted that

(i). The relationship among S, SI and S(I) is given as follows:

S(I) = n
n−m

S − nm
(n−m)2

[n−m
n

SI + (x̄I − x̄)(x̄I − x̄)T ];

(ii). If let I = {i} with a single observation, then

S(i) = n
n−1

S − n
(n−1)2

(xi − x̄)(xi − x̄)T .

Proof:

(i) Supposing that equations 3.14-3.16 are biased estimates, they can be

used to developed unbiased estimates as in lemma 3.4.1.

(n−m)S(I) = XT
(I)

(

In−m −
1

n−m
1n−m1T

n−m

)

X(I)

= XT
(I)X(I) −

1

n−m
XT

(I)1
T
n−m1n−mX(I)

= XT X − XT
I XI −

1

n−m

(

XT 1n − XT
I 1m

)(

XT 1n − XT
I 1m

)T

= XT X −
XT 1n1T

n X

n
−
mXT 1n1T

n X

n(n−m)
+

1

n−m

(

XT 1n1T
mXI + XT

I 1m1T
n X − XT

I 1m1T
mXI

)

− XT
I XI

= nS −
nm

n−m

(

x̄x̄T − x̄I x̄
T − x̄x̄T

I + x̄I x̄
T
I

)

+mx̄I x̄
T
I − XT

I XI

= nS −
nm

n−m
(x̄− x̄I)(x̄− x̄I)

T +mx̄I x̄
T
I − XT

I XI (3.17)
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Now simplify equation 3.17 as follows:

(n−m)S(I) = nS −
nm

n−m
(x̄− x̄I)(x̄− x̄I)

T −m
(XT

I XI

m
− x̄I x̄

T
I

)

= nS −
nm

n−m
(x̄− x̄I)(x̄− x̄I)

T −m
(XT

I XI

m
−

XT
I 1m1T

mXI

m2

)

= nS −
nm

n−m
(x̄− x̄I)(x̄− x̄I)

T −m
( 1

m
XT

I (Im −
1

m
1m1T

m)XI

)

= nS −
nm

n−m
(x̄− x̄I)(x̄− x̄I)

T −mSI (3.18)

(ii) By using equation 3.18, one can get the relationship between S, SI and

S(I) in (i) where x̄ =
∑n

i=1 xi

n
and x̄I =

∑

i⊂I xi

m
represent the mean vector

of all observations and the mean vector of the observations indexed by I

respectively. Next, replace m = 1 in the following equation

(n− 1)S(I) = nS −
nm

n−m
(x̄− x̄I)(x̄− x̄I)

T −m
(XT

I XI

m
−

XT
I 1m1T

mXI

m2

)

hence one can find equation (ii) in lemma 3.4.1 as following

(n− 1)S(i) = nS −
n

n− 1
(x̄− x̄i)(x̄− x̄i)

T − 1
(XT

I XI

1
−

XT
I XI

12

)

= nS −
n

n− 1
(x̄i − x̄)(x̄i − x̄)T (3.19)

This completes the proof of lemma 3.4.1. �

Lemma 3.4.2 Let {(λj, vj), j = 1, 2, ..., p} be the pair of eigenvalues and eigen-

vectors of sample covariance matrix S. {(λj(i), vj(i)), i = 1, 2, ..., n} be the pair of

eigenvalues and eigenvectors of covariance matrix S(i). One now has

(i). λj(i) = n
n−1

λj −
n

(n−1)2
||xi − x̄i||

2Gi

where the weights Gi satisfy 0 ≤ Gi ≤ 1 and
∑

i

Gi = 1;

(ii). n
n−1

λj+1 ≤ λj(i) ≤
n

n−1
λj , j = 1, 2, ..., p.
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Proof:

It follows immediately from Theorem 1 in Wang and Liski (1993, p. 222-

223)

(i). Denote αi = (xi − x̄)/‖xi − x̄‖ and from lemma 3.4.1, one has

S(i) =
n

n− 1
S −

n

(n− 1)2
(xi − x̄)(xi − x̄)T . (3.20)

Replace αi in equation 3.20 which implies

S(i) =
n

n− 1
S −

n

(n− 1)2
‖xi − x̄‖2αiα

T
i . (3.21)

Given that
n

n− 1
λj−

n

(n− 1)2
‖xi−x̄‖

2 ≤ λj(i) ≤
n

n− 1
λj , j = 1, 2, . . . , p.

Thus, the weights Gi satisfies 0 ≤ Gi ≤ 1 such that

λj(i) =
n

n− 1
λj −

n

(n− 1)2
‖xi − x̄‖2Gj . (3.22)

Now, the preceding equation can be written as

trace S(i) =
n

n− 1
trace S −

n

(n− 1)2
‖xi − x̄‖2. (3.23)

From equation 3.22, one has

trace S(i) =

p
∑

j=1

λj(i)

=
n

n− 1
trace S −

n

(n− 1)2
‖xi − x̄‖2

p
∑

i=1

Gi. (3.24)

As a consequence of equations 3.23 and 3.24, one has
p
∑

j=1

Gj = 1.

(ii). The proof is given in Corollary 1 and 2 in Wang and Liski, (1993,

p.224). �
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Theorem 3.4.3 The influence eigen j for each observation i can be denoted by

∆∗
j(i) = (xT

i vj)
2 +

n
∑

k=1
k 6=i

{

(vj + vj(i))
Txkx

T
k (vj + vj(i))

}

, (3.25)

where j = 1, 2, . . . , p.

Proof:

According to Gnanadesikan and Kettenring (1972) an influence interpre-

tation of the Euclidean distance can be considered as the total of influence

eigen:

n

(n− 1)
(xi − x̄)T (xi − x̄) =

p
∑

j=1

{ 1

n− 1

(

l2ij − λj

)

+
1

2(n− 1)2
l2ij

(

1 +
∑

k 6=j

l2ij
λk − λj

)}

. (3.26)

By using the relationship of influence eigenstructure in lemma 3.3.1, equa-

tion 3.26 can be re-written as follows:
n

(n− 1)
(xi − x̄)T (xi − x̄)

=

p
∑

j=1

[

(xT
i vj)

2 +
n
∑

k=1
k 6=i

[

(xT
k vj)

2 −
{

xT
k

(

vj +
lij

n− 1

∑

k 6=j

likvk

λk − λj

−
1

2(n− 1)2
×

∑

k 6=j

[ l2ijl
2
ikvj

(λk − λj)2
−

2l2iklij
(λk − λj)

∑

k 6=j

likvk

λk − λj
+

2l3ijlikvk

(λk − λj)2

])}2]]

=

p
∑

j=1

[

(xT
i vj)

2 +
n
∑

k=1
k 6=i

{

(vj + vj(i))
Txkx

T
k (vj + vj(i))

}]

. (3.27)

From equation 3.27, the influence eigen j for each observation i can be
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denoted by

∆∗
j(i) = (xT

i vj)
2 +

n
∑

k=1
k 6=i

{

(vj + vj(i))
Txkx

T
k (vj + vj(i))

}

, (3.28)

where j = 1, 2, . . . , p. �

However, if one considers the influence eigen j on I , thus Theorem

3.4.3 now becomes

∆∗
j(I) =

−m

n−m

n
∑

k=1

(xT
k vj)

2 −
nm

(n−m)2
vT

j ×

[n−m

n
SI + (x̄I − x̄)(x̄I − x̄)T

]

vj (3.29)

Suppose that the influence of an observation, i.e. an outlier on statis-

tics such as jth eigenvalues, λj or eigenvectors, vj of a sample covariance

matrix is simply the change in λj or vj when the ith observation is deleted

from the sample.

Recall that this chapter considers the maximum eigenvalue and the cor-

responding eigenvector as the object of interest. From equation 3.5, it is

given that

max{λ1, λ2, . . . , λp} = λmax

= λ1, (3.30)

where λ1 corresponds to v1. Now, let j = 1, and equation 3.25 becomes

∆∗
1(i) = (xT

i v1)
2 +

n
∑

k=1
k 6=i

{

(v1 + v1(i))
Txkx

T
k (v1 + v1(i))

}

. (3.31)

Therefore, one can consider the influence eigen, ∆∗
1(i) as a tool to iden-

tify a potential influence observation, i.e. outlier in data matrix X. Note

that the test of significance for outlier was discussed briefly in §3.1 and cur-
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rently, it is noted that the test of significance for outliers using the eigen-

structure, such as principal component analysis, has not been widely used

(Jolliffe, 2002). Perhaps the best advice is that the observation that is ob-

viously more extreme than most of the remaining observations in the data

set should be examined.

As a consequence, by using ∆∗
1(i), potential outliers in X can be identi-

fied by plotting the index plot of {i,∆∗
1(i)}. Note that ith observation can

be considered as a potential outlier if it is located further away than the

remaining observations in the data set. By using lemma 3.4.1, 3.4.2 and

equation 3.31 the algorithm for influence eigen, ∆∗
1(i) is given as follows:

• Step 1 : Generate the sample covariance matrix S and S(i);

• Step 2 : Compute the eigenstructure of S and S(i). Denote the eigen-

structure of S and S(i) as {Λ,V} and {Λ(i),V(i)} respectively. Note

that Λ, V, Λ(i) and V(i) are from equations 3.4, 3.3, 3.8 and 3.7 respec-

tively;

• Step 3 : Choose the maximum eigenvalue and the corresponding

eigenvector pair, max{λj , vj} andmax{λj(i), vj(i)} of {Λ,V} and

{Λ(i),V(i)} respectively, i.e. {λ1, v1} and {λ1(i), v1(i)};

• Step 4 : Compute ∆∗
1(i) = (xT

i v1)
2 +

n
∑

k=1
k 6=i

{

(v1 + v1(i))
Txkx

T
k (v1 + v1(i))

}

for each observation;

• Step 5 : Develop the index plot of {i,∆∗
1(i)}, i = 1, 2, . . . , n.

The outliers that are detectable from the index plot are those which

inflate variance and covariance. If an outlier is the cause of a large increase

in variances of the original variables, then it must be extreme on those

variables (Gnanadesikan and Kettenring, 1972). Thus, one can identify it

by looking at the index plot.
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3.4.2 Normalized influence eigen

Using lemma 3.4.1, lemma 3.4.2 and considering the relationship between

λj and λj(i) in equation 3.11, one may compute the normalized influence

eigen j for each ith observation as follows:

∆∗∗
j(i) =

{

λj − λj(i)

}[

p
∑

j=1

{ 1

n− 1

(

l2ij − λj

)

+
1

2(n− 1)2
l2ij

(

1 +
∑

k 6=j

l2ij
λk − λj

)}]−1

. (3.32)

The normalized influence eigen j for I is given by

∆∗∗
j(I) =

{

λj − λj(I)

}[

p
∑

j=1

{ −m

n−m

n
∑

k=1
k 6=i

(xT
k vj)

2 −
nm

(n−m)2
vT

j ×

[n−m

n
SI + (x̄I − x̄)(x̄I − x̄)T

]

vj

}]−1

, (3.33)

where λj(I) =
n

n−m
λj −

nm

(n−m)2
vT

j ×
[n−m

n
SI + (x̄I − x̄)(x̄I − x̄)T

]

vj

}

is given in Wang and Liski (1993, p.219).

As this chapter considers the maximum eigenvalue, therefore, substi-

tute j = 1 into equation 3.32 to give

∆∗∗
1(i) =

{

λ1 − λ1(i)

}[

∑

{ 1

n− 1

(

l2i1 − λ1

)

+
1

2(n− 1)2
l2i1

(

1 +
∑

k 6=j

l2i1
λk − λ1

)}]−1

. (3.34)

From equation 3.13, λj ≥ λj(i), and if the difference of λj − λj(i) is large,

that means λj(i) has a small value. Therefore ith observation affects λj and

produces a large value of ∆∗∗
j(i) if the value of λj(i) is very small.

Now, since ∆∗∗
1(i) is considering the maximum eigenvalue, it is noted

that the ith observation influences λ1 if the deletion of ith observation
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causes the value of λ1(i) to become smaller and the difference of λ1 − λ1(i)

to become larger.

Therefore, the ith observation needs extra attention if it has large ∆∗∗
1(i)

and is situated at the top of the index plot of {i,∆∗∗
1(i)}. This chapter will

henceforth refer to the algorithm of normalized influence eigen, as ∆∗∗
1(i)

and it is summarized as follows :

• Step 1 : Given n× p data matrix X, the sample covariance matrices S

and S(i) can be obtained by lemma 3.4.1;

• Step 2 : Compute the eigenvalues, Λ of S and the eigenvalues, Λ(i)

of S(i);

• Step 3 : Choose the maximum eigenvalue, max{λj} and max{λj(i)}

from Λ and Λ(i) respectively, i.e. λ1 and λ1(i);

• Step 4 : Calculate the normalized influence eigen, ∆∗∗
1(i) in equation

3.34 for each ith observations;

• Step 5 : Plot observations {i,∆∗∗
1(i)}, i = 1, 2, ..., n.

3.5 Influence angle based on eigenstructure for

identification of outliers

3.5.1 Influence angle

Considering the relationship between eigenstructure in lemma 3.3.1 one

can also develop the angle between vj and vj(i) (Mertens, 1998). If ith is an

outlier, therefore vj will change when ith observation is deleted from the

sample data matrix, X.

Let θj(i) be the angle between the jth eigenvectors of S for the given

data X, and the j(i)th eigenvectors when the ith observation is deleted in
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X (i.e., X(i)), then one has the formula of θj(i) by Wang and Nyquist (1991)

as

cos(θj(i)) =
1

2
‖ vj + vj(i) ‖

2 −1, (3.35)

or it can be re-written as a function of eigenvalues and eigenvectors by

θj(i) = cos−1

{

lij/λ
∗
j(i)

√

p
∑

k=1

l2ik/(λ
∗
j(i) + (λk − λj))2

}

, (3.36)

where j = 1, 2, . . . , p; i = 1, 2, . . . , n.

lij is the principal component scores of the omitted observation in the

principal component decomposition of the complete data X and

λ∗j(i) = λj −
1

n− 1
(l2ij − λj) −

1

2(n− 1)2
l2ij [1 +

p
∑

k 6=j

l2ij
λk − λj

] +O(
1

n3
).

The vector angle is defined as the angle between 0 and 180 degrees that

satisfies the relationship vT
j vj(i) = ‖vj‖ ‖vj(i)‖ cos θj(i) where ‖.‖ refers to

the vector length. If m observations are deleted from X, therefore

θj(I) = cos−1
{ vT

j vj(I)

‖vj‖‖vj(I)‖

}

= cos−1
{

vT
j

[

vj +
m

n−m
ljI
∑

k 6=j

lkI(λk − λj)
−1vk+

m

n

∑

k 6=j

vT
k SIvj(λk − λj)

−1vk

]}

= cos−1
{

1 + vT
j

[ m

n−m
ljI
∑

k 6=j

lkI(λk − λj)
−1vk

+
m

n

∑

k 6=j

vT
k SIvj(λk − λj)

−1vk

]}

, (3.37)
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where vj(I) = vj +
m

n−m
ljI
∑

k 6=j

lkI(λk −λj)
−1vk +

m

n

∑

k 6=j

vT
k SIvj(λk −λj)

−1vk

and ljI = vT
j (x̄I − x̄) is the mean of principal component score ljim, im ∈ I.

Note that vj(I), ljI and ljim = vT
j (xim − x̄) are given by Wang and Liski

(1993).

Supposing that one only delete ith observation and considers the max-

imum eigenvalue, replacing j = 1 in equation 3.36 leads to

θ1(i) = cos−1

{

li1/λ
∗
1(i)

√

p
∑

k=1

l2ik/(λ
∗
1(i) + (λk − λ1))2

}

, (3.38)

Next, one can apply the influence angle, θ1(i) to identify the outlier in

the data set; note that there are a few criteria that will control θj(i) value as

following:

(i). First, consider λj ≥ λj(i) and λj(i) ≥ λk+1 as given in lemma 3.4.2,

where j, k = 1, 2, . . . , p. One finds that the θj(i) value is dominated

by the first component of the denominator, i.e. l2i1/{λ
∗
1(i)}

2. If one

substitutes k = 1, into

l2ik/(λ
∗
1(i) + (λk − λ1))

2,

it becomes

l2i1/{λ
∗
1(i)}

2. (3.39)

Notice that

l2ik
{λ∗1(i) + (λk − λ1)}

>
l2i(k+1)

{λ∗1(i) + (λk+1 − λ1)}
,

and the
l2
i(k+1)

{λ∗

1(i)
+(λk+1−λ1)}

value is always small because the denomi-

nator is {λ∗

1(i)
+ (λk+1 − λ1)} of θ1(i) usually large following λj(i) ≥ λk+1,

j, k = 1, 2, . . . , p.
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As a consequence, if the numerator value of the equation 3.38 is close

to one, the denominator value will also be almost the same, noting

that the numerator value is always less than the denominator value.

This follows that the θj(i) yields almost a zero degree angle. Another

point is that the value of cos (θ1(i)) is always between -1 and 1.

(ii). Next, if the principal component score is negative, θ1(i) will be large.

This corresponds to a negative cosine yielding a large angle.

Therefore, the supposed potential outlier will be situated further away

than the remaining observations in the data set if:

(i). θ1(i) for ith observation is larger than other observations following

that {λ∗1(i)} (equation 3.39) in the first component of θ1(i) is large;

or θ1(i) for ith observation is smaller than other observations corre-

sponding to {λ∗1(i)} in the first component of θ1(i) observation is small;

(ii). the principal component score for ith observation is negative while

others are positive. Note that the negative principal component score

produces larger θ1(i) than the positive principal component score and

vice versa.

The outlier can be exhibited by the index plot {i, θ1(i)}. Based on the influ-

ence angle θ1(i), the following algorithm is proposed to find an outlier:

• Step 1 : Using lemma 3.4.1 and 3.4.2, find S and S(i);

• Step 2 : Next find the eigenstructure of S and S(i), and choose the

maximum eigenpair (v1, λ1) and (v1(i), λ1(i)) respectively;

• Step 3 : Find the principal component score, lik for each k or compute

lik = (xT
i vk);

• Step 4 : Compute θ1(i);

• Step 5 : Identify the outlier from the index plot of {i, θ1(i)}.
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3.5.2 Modified influence angle

From §3.5.1, note that λ∗1(i) in equation 3.39 plays an important role in de-

termining θj(i) value in equation 3.38. Consequently, this section will ig-

nore the principal component score by letting lij = 1, therefore equation

3.36 can be rewritten as

θ∗j(i) = cos−1

{

1/λ∗j(i)
√

p
∑

k=1

1/(λ∗j(i) + (λk − λj))2

}

, (3.40)

where j = 1, 2, . . . , p; i = 1, 2, . . . , n. Let j = 1 as this chapter considers

max{λj}. Therefore equation 3.40 is now given as

θ∗1(i) = cos−1

{

1/λ∗1(i)
√

p
∑

k=1

1/(λ∗1(i) + (λk − λ1))2

}

, (3.41)

One can use θ∗1(i) to identify the outlier, and the algorithm of modified

influence angle is similar to the original influence angle, except one does

not have to compute the principal component scores of the omitted ob-

servation in the principal component decomposition of the complete data

X.

Note that, if ith observation is an outlier, θ∗1(i) is larger than other obser-

vations in the data set following that λ∗1(i) is large. This is because deletion

of ith observation, i.e. an outlier causes λj(i) to become much smaller and

the difference of λ∗1(i) + (λk − λj) for j, k = 1 to become larger.

The ith observation is considered as a potential outlier by θ1(i) if it is

located at the top of the index plot {i, θ∗1(i)}.
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3.6 Simulation data set

The techniques in §3.4 and §3.5 are tested on the simulation data set given

in the Table 3.1.

Table 3.1: The simulation data set used for illustration

Sample Number of Number of
Data size, n variables, p outlier, m

1 105 3 5
2 1005 10 5
3 3005 100 5
4 3050 100 50

Three different scenarios are considered to generate the data set from

the multivariate distributions in Table 3.1 and this is further described in

the following section.

3.6.1 Scenario 1: outliers with the same shapes but differ-

ent locations

There are 3 conditions considered in the first scenario:

• Condition 1 : A random vector of x1, x2, . . . , xn is drawn from a

p− variate normal distribution with mean vector µ and positive def-

inite covariance matrix Σ, i.e. N(µ,Σ). Next x∗1, x
∗
2, . . . , x

∗
m is another

random sample drawn from a p − variate normal distribution with

mean vector µc1 and a similar covariance matrix Σ, i.e. N(µc1,Σ).

Note that m is the number of outliers. Later these two sets of data

vector are merged;

• Condition 2 : The x1, x2, . . . , xn random vector is developed as in con-

dition 1. However, x∗1, x
∗
2, . . . , x

∗
m is constructed by using N(µc2,Σ),
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which is closer to the majority of data parental distribution in condi-

tion 1, i.e. µc2 < µc1;

• Condition 3 : In this condition, the random vector x1, x2, . . . , xn is de-

veloped as in condition 1 and condition 2. Nevertheless, other m ob-

servations, which are x∗1, x
∗
2, . . . , x

∗
m, are developed by usingN(µc3,Σ),

which is much closer to the majority of data parental distribution in

condition 1 and condition 2, i.e. µc3 < µc2 < µc1.

3.6.2 Scenario 2: outliers with different shapes and differ-

ent locations

In scenario 2, x1, x2, . . . , xn is a random vector drawn for p − variate nor-

mal distribution with mean vector µ and positive definite matrix Σ and

x∗1, x
∗
2, . . . , x

∗
m is another set of random vector from p− variate distribution

with mean vector µs2 and covariance matrix Σs2. Note that µ 6= µs2 and

Σ 6= Σs2.

3.6.3 Scenario 3: outliers from a different probability law

Let x1, x2, . . . , xn be a random sample drawn from p− variate normal dis-

tribution with mean vector µ and positive definite covariance matrix Σ.

Now generate x∗1, x
∗
2, . . . , x

∗
m drawn from p− variate student t distribution

with z degrees of freedom and correlation matrix Σs3. Note that Σ 6= Σs3.

3.7 Real data set

This chapter will use data sets taken from Rousseeuw and Leroy (1987).

Details of the data sets are given in Table 3.2. These data sets are cho-

sen as they were often used to evaluate the performance of the outlier

detection method (see, Rousseeuw and Leroy, 1987; Rousseeuw and von
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Zomeren, 1990; Hadi, 1992; Maronna and Yohai, 1995; Rousseeuw and

Driessen, 1999; Gao et al., 2005).

Table 3.2: The real data set used for illustration

Number of Number of
Data set observations, n variables, p
Hawkins Bradu Kass 75 3
Stackloss 21 3
Salinity 28 3

By using these data sets, the influence eigen (∆∗
1(i)), normalized influ-

ence eigen (∆∗∗
1(i)), influence angle (θ1(i)) and modified influence angle (θ∗1(i))

are calculated and the index plot for each technique is developed for the

identification of outliers. The index plots in this chapter will denote the

potential outlier within the black circles.

Figure 3.1 contains the index plot of Mahalanobis distance approach for

these three data sets. As one can see, the Mahalanobis distance approach

does not perform consistently when it is tested on these three data sets.

Note that the black solid circle in Figure 3.1 denotes the outlier.

In the first data set, which is the Hawkins Bradu Kass data, there are

14 observations (i = 1, 2, . . . , 14) that were flagged as outliers by previous

studies (see, Rousseeuw and von Zomeren, 1990; Hadi, 1992; Maronna and

Yohai, 1995; Rousseeuw and Driessen, 1999; Gao et al., 2005). This artificial

data set was generated by Hawkins et al. in 1984.

The second data set is the Stackloss data. There are 4 outliers in this

data set, which are observations 1, 2, 3 and 21. The Stackloss data set is a

real data set that has been used by many statisticians and it is about the op-

eration of a plant for the oxidation of ammonia to nitric acid (Rousseeuw

and Leroy, 1987).

The third data set is the Salinity data. It is a set of measurements of

water salinity, i.e. salt concentration and river discharge taken in North
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Figure 3.1: Mahalanobis distance plot for (i) Hawkins Bradu Kass data (ii)
Stackloss data (iii) Salinity data

Carolina’s Pamlico Sound (Rousseeuw and Leroy, 1987). This real data set

contains 8 outliers(i = 5, 10, 11, 15, 16, 17, 23 and24).

Supposed outliers will be located at the top of the plot. Recall that the

Mahalanobis approach will flag observations that are greater than χ2
p,α as

outliers, where p is the number of variables. Therefore, an observation

that is labeled as an outlier should have the Mahalanobis Distance (MDi)

value larger than other normal observations in the data matrix X.

However, from Figure 3.1, it is noted that the Mahalanobis approach

cannot identify all possible outliers in some of the data sets, i.e. the Stack-

loss data.



CHAPTER 3. OUTLIERS IDENTIFICATION BY EIGENSTRUCTURE 60

3.8 Illustration by simulation data set

Each technique in §3.4 and §3.5 is used, in turn, on each data set in Table

3.1 that is generated following the scenario described in §3.6. First, the per-

formance of those techniques is evaluated on low dimension and a small

sample size data. This is illustrated in §3.9.

Next, in §3.10, those techniques are considered with the data set with a

large sample size yet still corresponding to the low dimension. Finally in

§3.11, they are applied to high dimension data set with a large sample size

data. Instead of using m = 5, §3.11 also examines those techniques for a

data set containing m = 50. The purpose of choosing m = 5 to examine

the performance of algorithms in §3.4 and §3.5 is to ensure that outliers

can clearly be observed from the index plot by the reader.

The index plot will denote the potential outliers within the black cir-

cles. The algorithms for the techniques in §3.4 and §3.5 clearly mention

that the index plot can be drawn by using two-dimensional scatterplot in

which a comparison of 2 measures is presented, one measure along each

axis.

However, note that the index plots in §3.9-§3.11 are represented by

three-dimensional scatterplots to accommodate a better and clearer illus-

tration. The x-axis and the y-axis denote the index while the z-axis denotes

the influence value, i.e. ∆∗
1(i), ∆∗∗

1(i), θ1(i) or θ∗1(i). Examples in §3.9.1 corre-

sponding to condition 1 will be described in detail, although a number of

other examples will be discussed briefly.

3.9 Low dimension and small sample size

First, the techniques in §3.4 and §3.5 are used on the low dimension with a

small sample size data. The data set is generated following the scenarios

described in §3.6. The data set in this section contains 105 observations

with 3 dimensions. Note that the last five observations in this data set can
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be regarded as outliers.

3.9.1 Scenario 1 with n = 105, p = 3, m = 5

Condition 1

The ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) in §3.4 and §3.5 are applied for identification

of outliers. In the first condition, one can observe from Figure 3.2 that all

techniques are able to identify the outlier. It is noted that the outliers are
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Figure 3.2: 3D scatterplot for n = 105, p = 3, m = 5 – visualization of
outlier for condition 1, scenario 1 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv)

θ∗1(i).

within the black circle located at the top of each index plot, which means
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they all have large values from other observations in the data set. First,

consider the influence eigen, i.e. ∆∗
1(i) and ∆∗∗

1(i). These two techniques are

attached to each other since ∆∗∗
1(i) is the normalized value of ∆∗

1(i). There-

fore, if ∆∗
1(i) is large, then ∆∗∗

1(i) is also large. The value of influence eigen

depends on the λ1 −λ1(i), supposing that λ1 −λ1(i) is large, this is followed

by ∆∗∗
1(i).

Provided that ith observation is an outlier, then the λ1(i) for i is smaller

than the remaining observations in the data set, (Table 3.3 gives λ1(i) of

∆∗∗
1(i) for i = 101, . . . , 105). The λ1 value for the data set generated for

condition 1 corresponding to ∆∗∗
1(i) is 196.28, whereas the maximum and

minimum values of λ1(i) for observations 1 until 100 are 191.42 and 186.21,

respectively. Information about λ1(i) for ∆∗
1(i) and ∆∗∗

1(i) can be found in

Table 3.3.

Following that the value of θ1(i) and θ∗1(i) for all observations in Fig-

ure 3.2 are between 0 to 90, this indicates the principal score for all ob-

servations in the data set generated by condition 1 are positive values.

Therefore, if ith are outliers, the value for θ1(i) and θ∗1(i) are larger than the

remaining observations in the data set. Recall in §3.5.1 and §3.5.2, the cri-

terion that causes θ1(i) or θ∗1(i) to become larger is when λ∗1(i) is large. This

is because deletion of ith observation, i.e. an outlier, causes the λj(i) to be-

come much smaller and the difference of λ∗1(i) + (λk − λj) for j, k = 1 gets

larger. The value of λ1(i) for θ1(i) and θ∗1(i) are presented in Table 3.3.

Table 3.3: λ1(i) of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) for observations 101-105–
Condition 1, scenario 1 with n = 105, p = 3, m = 5

Technique λ1(101) λ1(102) λ1(103) λ1(104) λ1(105)

∆∗
1(i) 186.16 171.58 175.44 179.62 176.37

∆∗∗
1(i) 174.54 161.58 167.23 176.79 179.16

θj(i) 184.37 181.43 179.49 180.79 186.76
θ∗j(i) 150.54 161.07 162.17 166.59 163.81
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Next, the values of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) for observations 101 until

105 are given in Table 3.4. These five observations are the largest values

of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) and Figure 3.2 shows they are located further

away than other observations. The maximum and minimum values of

∆∗
1(i) among observations 1 until 100, i.e. the good data, are 5.86 (observa-

tion 24) and 7.1 × 10−6 (observation 70) respectively.

Observation 55 and observation 85 denote the maximum and the min-

imum value of ∆∗∗
1(i) among observations 1 until 100, where the values are

given as 0.028 and 1.54 × 10−5. Next, for θ1(i), note that the maximum

and the minimum value are present in observation 57 and observation 45.

Among observations 1 until 100, the maximum and the minimum value

of θ∗∗1(i) are 9.46 and 1.99 × 10−5 by observation 22 and observation 54 re-

spectively. Note that there is a gap between the maximum values of ∆∗
1(i),

∆∗∗
1(i), θ1(i) and θ∗1(i) with the last five observations, i.e. outliers.

Table 3.4: ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) for observations 3001− 3005–Condition
1, scenario 1 with n = 105, p = 3, m = 5

Technique 101 102 103 104 105
∆∗

1(i) 10.10 24.70 20.82 16.64 19.90

∆∗∗
1(i) 0.09 0.16 0.13 0.08 0.06

θj(i) 10.52 12.74 14.28 13.25 8.81
θ∗j(i) 39.30 20.75 19.10 12.11 16.33
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Condition 2

The data set generated for condition 2 is almost similar to condition 1,

except the mean is closer to the majority of data observations. It is noted

that the most difficult situation for identifying outlier is when the good

and bad data are drawn from the same multivariate normal distribution

with a small difference in the location vector (Rocke and Woodruff, 1996).

However, Figure 3.3 verifies that those techniques in §3.4 and §3.5 suc-

cessfully identify observations 101 − 105 as outliers in the data set gener-

ated using condition 2.
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(iv)

Figure 3.3: 3D scatterplot for n = 105, p = 3, m = 5 – visualization of
outlier for condition 2, scenario 1 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv)

θ∗1(i).
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Condition 3

Figure 3.4 displays the index plot for ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i), which is

developed using the data set generated from the same population as con-

ditions 1 and 2 but with a different mean. The mean in this condition is

chosen to let the outliers become much closer to the majority of the data

set compared to the one in condition 2. It is noted that an outlier is difficult

to identify if the locations, i.e. mean, of the two populations are very close

to each other. Instead of detecting 5 outliers, the index plot in Figure 3.4

only shows 4 extreme observations for ∆∗
i , 3 extreme observations for ∆∗∗

i

and 2 extreme observations for θj(i) and θ∗j(i) respectively.
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Figure 3.4: 3D scatterplot for n = 105, p = 3, m = 5 – visualization of
outlier for condition 3, scenario 1 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv)

θ∗1(i).
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3.9.2 Scenario 2 with n = 105, p = 3, m = 5

Scenario 2 considers outliers with different shapes (Σ 6= Σc) and differ-

ent locations (µ 6= µs2). Recall (µ, Σ) and (µs2, Σc) are mean vector and

covariance matrices for good and bad data respectively.

Figure 3.5 indicates all techniques in §3.4 and §3.5 are able to identify

five outliers contained in the data set generated from scenario 2. The index

plot for each technique marks the outlier within the black circles.
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Figure 3.5: 3D scatterplot for n = 105, p = 3, m = 5 – visualization of
outliers for scenario 2 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv) θ∗1(i).
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3.9.3 Scenario 3 with n = 105, p = 3, m = 5

The data set generated in scenario 3 considers outliers coming from a dif-

ferent probability law. The good data is generated using normal distribu-

tion, whereas the bad data uses the student-t distribution with z degrees

of freedom.

Index plot of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) are shown in Figure 3.6. Overall,

these four techniques do perform in identifying outliers, where the largest

values of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) belong to observations 101 − 105.
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Figure 3.6: 3D scatterplot for n = 105, p = 3, m = 5 – visualization of
outliers for scenario 3 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv) θ∗1(i).
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3.10 Low dimension and large sample size

Since the ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) perform on low dimension with a small

sample data size, i.e. examples in §3.9, this section will use them for identi-

fying outliers in the large sample size yet still utilizing the low dimension.

This section considers 1005 observations with 10 variables. The data set

contains 5 outliers.

3.10.1 Scenario 1 with n = 1005, p = 10, m = 5

Condition 1

By generating a data set containing 1000 good data and 5 bad data on 10

variables using N(µ,Σ) and N(µc1,Σ) respectively, it is noted techniques

in §3.4 and §3.5 can identify the outliers in this data set. This is shown in

Figure 3.7.
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Figure 3.7: 3D scatterplot for n = 1005, p = 10, m = 5 – visualization of
outlier for condition 1, scenario 1 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv)

θ∗1(i).



CHAPTER 3. OUTLIERS IDENTIFICATION BY EIGENSTRUCTURE 69

Condition 2

Figure 3.8 corresponds to the condition of two observations of normal dis-

tribution respectively, using 1000 observations from N(µ,Σ) and 5 obser-

vations from N(µc2,Σ). Recall that µc2 in condition 2 is closer to the ma-

jority of the data set than µc1 in condition 1, i.e. µc2 < µc1. However, it is

noted that ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) are still able to identify the outliers in

this data set. Cases 1001−1005 are still located at the top of each index plot

even though the gap between them and the majority of other observations

is less than the gap shown by observations 1001− 1005 for each index plot

in Figure 3.7.
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Figure 3.8: 3D scatterplot for n = 1005, p = 10, m = 5 – visualization of
outlier for condition 2, scenario 1 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv)

θ∗1(i).
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Condition 3

Figure 3.9 is an example of a large sample data size containing outliers that

are generated much closer to the majority of the data set if compared to

conditions 1 and 2, i.e. µc3 < µc2 < µc1. Techniques in §3.4 and §3.5 cannot

discover the whole 5 observations (1001-1005) as outliers. Nevertheless,

note that the largest value of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) are among these 5

observations. Figure 3.9 flags them within the black circles.
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Figure 3.9: 3D scatterplot for n = 1005, p = 10, m = 5 – visualization of
outlier for condition 3, scenario 1 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv)

θ∗1(i).
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3.10.2 Scenario 2 with n = 1005, p = 10, m = 5

Scenario 2 denotes the data set generated from different locations (µ 6= µc)

and different shapes (Σ 6= Σc). Referring to Figure 3.10 one can observe

the index plot of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) is able to detect 5 observations

that are generated as bad data. Notice there is a gap between these 5 ob-

servations and the majority of the data set for each index plot.
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Figure 3.10: 3D scatterplot for n = 1005, p = 10, m = 5 – visualization of
outlier for scenario 2 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv) θ∗1(i).
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3.10.3 Scenario 3 with n = 1005, p = 10, m = 5

In Figure 3.11, ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) are plotted against ith observa-

tions. It is obvious these four techniques succeed in identifying outliers

generated from a different probability law.
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Figure 3.11: 3D scatterplot for n = 1005, p = 10, m = 5 – visualization of
outlier for scenario 3 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv) θ∗1(i).
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3.11 High dimension and large sample size

Following the steps ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) performed in §3.9 and §3.11,

they now will be examined on a high dimension and large sample data

size. Note that this section considers n = 3005 and n = 3050 where each

sample size contains m = 5 and m = 50 respectively.

3.11.1 Scenario 1

Condition 1 with n = 3005, p = 100, m = 5

Figure 3.12 presents the index plots of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i). These four

index plots distinctly display 5 outliers at the top of the index plots. It

is noted in each of the index plots that there is a very large gap between

the outliers and the remaining observations, i.e. good data. The values of

∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) for each observation from the good data is almost

zero.
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Figure 3.12: 3D scatterplot for n = 3005, p = 100, m = 5 – visualization of
outliers for condition 1, scenario 1 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv)

θ∗1(i).
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Condition 1 with n = 3050, p = 100, m = 50

Next, Figure 3.13 indicates the index plots for the generated data set the

same as Figure 3.12, except the number of outliers, m has now increased

to 50 observations. The results are consistent with those in Figure 3.12,

where all 50 outliers are identified in the data set. The index plots denote

the outliers within the black circles.

   0  500 1000 1500 2000 2500 3000 3500

−
1

0
0

  
 0

 1
0

0
 2

0
0

 3
0

0
 4

0
0

 5
0

0

   0

 500

1000

1500

2000

2500

3000

3500

in
fl
u

e
n

c
e

 e
ig

e
n

_
1

(i)

   0  500 1000 1500 2000 2500 3000 3500

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

   0

 500

1000

1500

2000

2500

3000

3500

in
fl
u

e
n

c
e

 e
ig

e
n

_
2

(ii)

   0  500 1000 1500 2000 2500 3000 3500

 0
 5

1
0

1
5

2
0

2
5

   0

 500

1000

1500

2000

2500

3000

3500

in
fl
u

e
n

c
e

 a
n

g
le

_
1

(iii)

   0  500 1000 1500 2000 2500 3000 3500

 0
 5

1
0

1
5

2
0

2
5

   0

 500

1000

1500

2000

2500

3000

3500

in
fl
u

e
n

c
e

 a
n

g
le

_
2

(iv)

Figure 3.13: 3D scatterplot for n = 3050, p = 100, m = 50 – visualization
of outliers for condition 1, scenario 1 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv)

θ∗1(i).
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Condition 2 with n = 3005, p = 100, m = 5

Generation of a high-dimensional data set from a population where the

good and bad data are closer to each other probably causes the suggested

techniques in §3.4 and §3.5 not to perform. Nonetheless, Figure 3.14 in-

dicates all 5 observations that are supposed to be outliers in the data set

are considered for condition 2. The value of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) for

observations 3001 − 3005 are given in Table 3.5.
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Figure 3.14: 3D scatterplot for n = 3005, p = 100, m = 5 – visualization
of outlier for condition 2, scenario 1 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv)

θ∗1(i).

Table 3.5: ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) for observations 3001-3005–Condition
2, scenario 1 with n = 3005, p = 100, m = 5

Technique 3001 3002 3003 3004 3005
∆∗

1(i) 172.01 151.90 131.78 127.84 141.69

∆∗∗
1(i) 0.05 0.04 0.03 0.04 0.04

θj(i) 86.51 87.38 86.77 86.42 86.42
θ∗j(i) 74.94 77.56 76.02 78.46 70.78
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Condition 3 with n = 3005, p = 100, m = 5

Now, consider the high-dimensional data set containing outliers that are

generated very close to the remaining good data. Figure 3.15 displays the

index plot for each technique, where the outliers are denoted within the

black circles. Surprisingly, almost all techniques are able to identify these

5 observations, i.e. the outliers, though the gap for some outliers with the

good data is not large. Table 3.6 indicates the values of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and

θ∗1(i) for observations 3001 − 3005.
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Figure 3.15: 3D scatterplot for n = 3005, p = 100, m = 5 – visualization of
outliers for condition 3, scenario 1 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv)

θ∗1(i).
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Note that ∆∗
i for observation 3004 is less than observation 2085 (see

index plot (i) in Figure 3.15); only the values of observations 3001, 3002,

3003 and 3005 are a little bit larger than the remaining observations in the

data set. The index plot of (iv) for θ∗1(i) in Figure 3.15 also shows the value

of θ∗j(i) for observation 3002 to be very close to observation 2612.

Table 3.6: ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) for observations 3001-3005–Condition
3, scenario 1 n = 3005, p = 100, m = 5

Technique 3001 3002 3003 3004 3005
∆∗

1(i) 20.50 24.84 23.71 14.24 26.27

∆∗∗
1(i) 0.01 0.02 0.01 0.01 0.01

θj(i) 45.34 33.56 31.82 40.43 45.30
θ∗j(i) 53.06 34.57 50.55 45.61 58.92

3.11.2 Scenario 2

(i). n = 3005, p = 100, m = 5

Recall that scenario 2 generated a data set with different shapes and

different locations. It is known the last 5 observations in this data set

are the outliers. Figure 3.16 clearly displays these 5 outliers at the

top of each index plot of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i). It is noted there is

a large gap between the outliers and the remaining observations.

The minimum value of ∆∗
1(i) among observations 3001−3005 is 84 by

observation 3003, whereas the maximum value is 472 by observation

3001. For ∆∗∗
1(i), the minimum value within observations 3001 − 3005

is denoted by observation 3004 and the maximum value refers to

observation 3001.

The value θ1(i) for observations 3001, 3002, 3003, 3004 and 3005 are

40.96, 66.90, 55.50, 14.93 and 51.47 respectively, where observation

3002 exhibits the maximum value. The maximum value of θ∗1(i) is
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Figure 3.16: 3D scatterplot for n = 3005, p = 100, m = 5 – visualization of
outlier for scenario 2 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv) θ∗1(i).

represented by observation 3004; see index plot (iv) in Figure 3.16.

Details of ∆∗
1(i), ∆

∗∗
1(i), θ1(i) and θ∗1(i) values for observations 3001−3005

are given in Table 3.7.

Table 3.7: ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) for observations 3001-3005–Scenario 2
n = 3005, p = 100, m = 5

Technique 3001 3002 3003 3004 3005
∆∗

1(i) 252.07 561.41 641.47 418.15 77.84

∆∗∗
1(i) 0.12 0.07 0.05 0.04 0.10

θj(i) 40.96 66.90 55.50 14.93 51.47
θ∗j(i) 66.70 73.31 48.45 73.87 57.41
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(ii). n = 3050, p = 100, m = 50

Next, let the number of outliers, m become 50, now generate the new

data set with sample size 3050, where 50 observations represent the

outliers and the remaining observations represent good data. Figure

3.17 indicates all 50 outliers are located at the top of each index plot.

It is noted the values of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) for the good data are

almost zero.
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Figure 3.17: 3D scatterplot for n = 3050, p = 100, m = 50 – visualization
of outliers for scenario 2 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv) θ∗1(i).
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3.11.3 Scenario 3 with n = 3005, p = 100, m = 5

Figure 3.18 also shows that ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) are capable of identi-

fying outliers in a high-dimensional data set that contains outliers coming

from different probability of laws. Note that outliers are denoted within

the black circles.
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Figure 3.18: 3D scatterplot for n = 3005, p = 100, m = 5 – visualization of
outliers for scenario 3 by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv) θ∗1(i).
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3.12 Illustration using real data set

3.12.1 Hawkins Bradu Kass data

The first data set corresponds to a sample of 75 observations in 3 dimen-

sions. Applying the influence angle (∆∗
1(i)), normalized influence angle

(∆∗∗
1(i)), influence angle (θ1(i)) and modified influence angle (θ∗1(i)) results

in the identification of 14 outliers among 75 observations. It is noted from

Figure 3.19, that all 14 observations are located at the top of the index plot

for each technique. The results agree well with Atkinson (1994), Rocke

and Woodruff (1996) and Pena and Prieto (2001).
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Figure 3.19: 3D scatterplot – visualization of outliers for Hawkins Bradu
Kass data by using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv) θ∗1(i).
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3.12.2 Stackloss data

The Stackloss data set contains 21 observations in 3 dimensions. Accord-

ing to Rousseeuw and von Zomeren (1990), Hadi (1992) and Atkinson

(1994) observations 1, 2, 3 and 21 are the outliers. However, Hawkins

(1994) mentioned 9 observations as outliers in this data set. They are ob-

servations 1, 2, 3, 10, 15, 16, 18, 19 and 21. Pena and Prieto (2001) also

declared more than 4 observations as outliers in the Stackloss data set (ob-

servations 1, 2, 3, 4, 13, 14, 20 and 21). Using techniques in §3.4 and §3.5,

this reveals observations 1, 2, 3and21 as the observations with the highest

value of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i). This suggests that observations 1, 2, 3

and 21 are outliers in this data set (see Figure 3.20).
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Figure 3.20: 3D scatterplot – visualization of outlier for Stackloss data by
using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv) θ∗1(i).
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3.12.3 Salinity data

This data set comprises 28 measurements of water salinity and river dis-

charge taken in North Carolina’s Pamlico Sound. Rousseeuw and Leroy

(1987) mentioned observations 3, 5 and 16 as the outliers of the data set,

whereas Hawkins (1994) and Pena and Prieto (2001) referred to observa-

tions 4, 5, 9, 10, 11, 16, 17, 19, 23 and 24, and observations 5, 10, 11, 15,

16, 17, 23 and 24 as outliers, respectively. However, Fung (1993) carried

out the confirmatory analysis and concluded only observation 16 as the

outlier in this data set. Plots in Figure 3.21 agree well with Fung (1993),

where observation 16 has a large value of ∆∗
1(i), ∆∗∗

1(i), θ1(i) and θ∗1(i) among

all observations.
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Figure 3.21: 3D scatterplot – visualization of outliers for Salinity data by
using (i) ∆∗

1(i) (ii) ∆∗∗
1(i) (iii) θ1(i) (iv) θ∗1(i).
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3.13 Conclusion

Sometimes, the identification of outliers is the main objective of the analy-

sis, and whether to remove the outliers or for them to be down-weighted

prior to fitting a non-robust model. This chapter does not differentiate be-

tween the various justifications for outlier detection. The aim is to advise

the analyst of observations that are considerably different from the major-

ity. Note that the techniques in §3.4 and §3.5 are, therefore, exploratory. It

is applicable to a wide variety of settings. Techniques used in this chapter

are performed on large and small data sets. They are used as a measure-

ment, i.e. distance between observations. In this chapter, observations that

are far away from the remaining data are considered to be outliers.

If the ith observation is a potential outlier, their values for ∆∗
1(i) and

∆∗∗
1(i) are all situated at the top of the index plot; see illustration of index

plots in §3.8 until §3.12. This is because an outlier causes λ1 − λ1(i) values

to be larger than other observations. Note that λ1(i) value is smaller for an

outlier. This follows that ∆∗
1(i) and ∆∗∗

1(i) become larger. Another thing is

∆∗∗
1(i) is the normalized value of ∆∗

1(i), thus if ∆∗
1(i) values for observation i is

large, the ∆∗∗
1(i) value for observation i is also large than other observations.

Notice that the angles of θ1(i) and θ∗1(i) for all examples are between 0

and 90, which correspond to the principal component score, are all posi-

tive. The deletion of ith observation causes the λ1(i) to become smaller, and

λ∗1(i) as well as the angle, i.e. θ1(i) and θ∗1(i) to get larger. As a consequence,

the ith observation with a large angle, i.e. an outlier, is located at the top

of the index plot.

Instead of identifying the outlier, another issue that one should con-

sider is to determine whether the outlier is sufficiently extreme or influen-

tial to warrant further action. Chapter 2 gives some suggestions of what

action should be taken if outliers exist, but this is not further discussed for

each example in §3.8 until §3.12.
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Additionally, it is noted that some techniques for the identification of

outliers are also available for finding clusters. Clustering analysis also uses

the distance as a measurement between observations to develop clusters

among them. Jolliffe (2002) shows that principal component analysis is

also capable of finding clusters in the data set. Note that the influence

angle in §3.5.1 is partially developed by the principal component score

and the outliers appear to form a cluster, separated from the other obser-

vations in the data set. In the next two chapters, θ1(i) will be used as a

tool to classify observations in the data set. First, Chapter 4 will briefly

discuss existing measurement tools for clustering and the common clus-

tering techniques. Next, Chapter 5 will use θ1(i) to calculate the distance

between observations for clustering purposes.



Chapter 4

An Overview of Proximity

Measures and Clustering

Algorithms

4.1 Introduction

Cluster analysis has been widely used in several disciplines, such as statis-

tics, software engineering, biology, psychology and other social sciences,

in order to identify natural groups in large amounts of data. These data

sets are constantly becoming larger, and their dimensionality prevents

easy analysis and validation of the results.

There are two major challenges in clustering. The first is identify-

ing clusters in high-dimensional data sets is a difficult task because of

the curse of dimensionality. According to Domeniconi, Papadopoulos,

Gunopulos and Ma (2004), in high dimensional spaces, it is highly likely

that, for any given pair of points within the same cluster, there exist at

least a few dimensions on which the points are far apart from each other.

As a consequence, distance functions that equally use all input features

may not be effective. Furthermore, several clusters may exist in different

subspaces, comprised of different combinations of features.

86
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The second is a new dissimilarity measure is needed as some tradi-

tional distance functions cannot capture the pattern dissimilarity among

the objects. For instance, some objects are not close to each other if they

are measured by distance functions such as Euclidean, Manhattan, or Co-

sine. Chapter 4 and 5 deal with the latter challenge. Chapter 4 provides

some choices of dissimilarity measures.

There are many techniques one can use to construct dissimilarity or

similarity measures for continuous and binary data. Even though defini-

tions of dissimilarity and similarity vary from one clustering approach to

another, in most of these approaches the concept of dissimilarity is based

on distances, i.e, Euclidean distance or Cosine distance. The other demand

is that the dissimilarity measurement should have the ability to deal with

a variety of data types, i.e. binary, ordinal and categorical values.

The clustering analysis covers multiple numbers of different algorithms

and methods for grouping observations of similar kinds into respective

clusters. Clustering algorithms can be classified into five main groups.

They are partitioning methods, hierarchical methods, model-based meth-

ods, density-based methods and grid-based methods.

Partitioning methods : Given n objects, these methods construct k par-

titions of the data, by assigning objects to groups, with each partition rep-

resenting a cluster. Generally, each cluster must contain at least one object,

and each object may belong to one and only one cluster. However, as it

is unfeasible to test all partitions for even moderate n and k, partitioning

algorithms do not consider all partitions and can only find local optima.

Hierarchical methods : These methods create a hierarchical decompo-

sition of the objects in the data set by either merging or splitting clusters

sequentially. These are referred to as agglomerative and divisive hierar-

chical methods, respectively.

Model-based methods: These methods formulate a model and fit it to

the data by estimating suitable parameters. The models are typically sta-

tistical mixture models or neural networks. Methods involving statistical
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models are sometimes said to perform a ”conceptual clustering”, as clus-

ters are given distributions that govern their behavior and may suggest

some real-world meaning. Neural networks were originally motivated by

an abstract attempt to model the way that brain clusters objects.

Density-based methods : In these methods clusters are defined as

dense regions in the data space, i.e. a larger than expected number of

points in a given subspace. Care must be taken (by statisticians) to remem-

ber that here ”density” refers to the physical concept of density rather than

a particular statistical distribution.

Grid-based methods : These methods are characterized by the practice

of dividing the data space into a finite number of cells to form a grid.

All clustering operations are then performed on the cells of this grid. Of

course it is perhaps dangerous to pigeon-hole new algorithms as having

to belong to one and only one of the above families. Furthermore, they

serve to define some of the distinct styles in clustering , each style having

its own set of qualities and problems.

4.2 What is a clustering problem?

The terms cluster, group and class have been used without any definite

formal definition (Everitt, 1993). Cormack (1971) and Gordon (1999) how-

ever, reached an agreement for a definition of clusters, defining them as

internal cohesion-homogeneity and external isolation-separation. On the

other hand, Everitt, Landau and Leese (2001) emphasized that it is not

appropriate to identify clusters through the plane but the feature of the

recognition process appears to involve the assessment of a relative dis-

tance between points.

Clustering may simply represent a convenient method for organizing

a large data set so that it can easily be understood and information can

efficiently be retrieved . If the data can validly be summarized by clustered

sets of that data, then it would probably give a more precise definition
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about the large data set. Also, it would easily help in clarifying a product

for a particular type of consumers. It is important to summarize a data set

since a growing number of large databases can now easily be accessed in

many areas of sciences.

To produce clustering, one has to find the distance measurement be-

tween observations in the data set. There are many types of distances that

deal with continuous, categorical or mixed variables.

4.3 Proximity Measures

Objects (events) are usually represented as points (vectors) in a multi-

dimensional space, where each dimension represents a distinct attribute

(variable) describing the object. For simplicity, it is usually assumed that

values are present for all attributes. Techniques for dealing with missing

values are described in Jain and Dubes,1988; Kaufman and Rousseeuw,1990.

Thus, a set of objects is represented as an n by p matrix, where there are n

rows, one for each object, and p columns, one for each attribute.

The matrix has different names, e.g., pattern matrix or data matrix, de-

pending on the particular field. The data is sometimes transformed before

being used. One reason for this is that different attributes may be mea-

sured on different scales, e.g., centimeters and kilograms. In cases where

the range of values differs widely from attribute to attribute, these differ-

ing attribute scales can dominate the results of the cluster analysis, and it

is common to standardize the data so that all attributes are on the same

scale.

A simple approach to such standardization is, for each attribute sub-

tract off the mean of the attribute values and divide by the standard devi-

ation of the values. While this is often sufficient, more statistically robust

approaches are available, as described in Kaufman and Rousseeuw (1990).

Another reason for initially transforming the data is to reduce the number

of dimensions, particularly if the initial number of dimensions is large.
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While cluster analysis sometimes uses the original data matrix, many

clustering algorithms use a similarity matrix, say, S, or a dissimilarity ma-

trix, say, D. For convenience, both matrices are commonly referred to as a

proximity matrix. A proximity matrix, say, P , is an n by n matrix contain-

ing all the pairwise dissimilarities or similarities between the objects being

considered.

If xi and xj are the ith and jth objects, respectively, then the entry at the

ith row and jth column of the proximity matrix is the similarity, sij , or the

dissimilarity, dij, between xi and xj . For simplicity, pij is represent either

sij or dij.

For completeness, objects are sometimes represented by more compli-

cated data structures than vectors of attributes, e.g., character strings or

graphs. Determining the similarity (or dissimilarity) of two objects in such

a situation is more complicated, but if a reasonable similarity (or dissimi-

larity) measure exists, then a clustering analysis can still be performed. In

particular, clustering techniques that use a proximity matrix are unaffected

by the lack of a data matrix.

The notion of similarity and dissimilarity (distance) seems fairly intu-

itive. However, the quality of a cluster analysis depends critically on the

similarity measure that is used and, as a consequence, many different sim-

ilarity measures have been developed for various situations.

The proximity measure (and the type of clustering used) depends on

the attribute type and scale of the data. The three typical types of attributes

are binary (two values, e.g., true and false), discrete (a finite number of

values, or integers, e.g., counts.) and continuous (an effectively infinite

number of real values, e.g., weight). The common data scales too are di-

vided into qualitative and quantitative categories. The qualitative cate-

gory is further divided into nominal (the values are just different names,

e.g., colors or zip codes) and ordinal (the values reflect an ordering, noth-

ing more, e.g., good, better, best). On the other hand one can classify the

quantitative category into interval (the difference between values is mean-
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ingful, i.e., a unit of measurement for example, temperature on the Celsius

or Fahrenheit scales) and ratio (the scale has an absolute zero so that ratios

are meaningful; examples are physical quantities such as electrical current,

pressure, or temperature on the Kelvin scale)

The most commonly used proximity measure, at least for ratio scales

(scales with an absolute 0) is the Minkowski metric, which is a generaliza-

tion of the distance between points in Euclidean space.

pij =
(

d
∑

k=1

|xik − xjk|
r
)

1
r

where, r is a parameter, d is the dimensionality of the data object, and xik

and xjk are, respectively, the kth components of the ith and jth objects, xi

and xj .

For r = 1, this distance is commonly known as the L1 norm or city

block distance. If r = 2, the most common situation, then one has the

familiar L2 norm or Euclidean distance. Occasionally one might encounter

the Lmax norm (L∞ norm), which represents the case r → ∞.

The r parameter should not be confused with the dimension, d. For

example, Euclidean, Manhattan and supremum distances are defined for

all values of d = 1, 2, 3, . . . , p and specify different ways of combining

the differences in each dimension (attribute) into an overall distance. Fi-

nally, note that various Minkowski distances are metric distances. In other

words, given a distance function, dist, and three points a, b, and c these dis-

tances satisfy the following three mathematical properties:

• reflexivity (dist(a, a) = 0),

• symmetry (dist(a, b) = dist(b, a)), and

• the triangle inequality (dist(a, c) ≤ dist(a, b) + dist(b, a)).

Not all distances or similarities are metric, i.e, the Jaccard measure.

This introduces potential complications in the clustering process since in
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such cases, a similar (close) to b and b similar to c, does not necessarily

imply a similar to c.

The next chapter discusses how an alternative measurement to dis-

tance can provide useful tool to develop clusters even when the data set

has mixed variables. By using this measurement, clusters can be obtained

easily and it seems to work well in practice. Before going further with the

discussion of the new measurement in the next chapter, this chapter will

briefly explain the choices of clustering algorithms.

4.4 Choices of Clustering Algorithm

At the moment, there is no clustering technique that is universally appli-

cable in uncovering the variety of structures present in multidimensional

data sets (Jain, Murty and Flynn, 1999). Halkidi, Batistakis and Vazirgian-

nis (2001) and Jain et al. (1999), summarized and carried out comparisons

of groups of algorithms; these are partitional clustering, hierarchical clus-

tering, density-based clustering and grid-based clustering.

Clustering algorithms are increasing as there are many fields with dif-

ferent problems, patterns and types of data. For example, Rose (1998)

presented the deterministic annealing approach to clustering and its ex-

tension, via introduction of appropriate constraints on the clustering solu-

tion, to attack a large and important set of optimization problems. Later,

Xing and Karp (2001) proposed a new algorithm that iterated between two

computational processes, namely feature filtering and clustering. In 2002,

Wang, Wang, Yang and Yu tried to cluster objects that exhibited similar

pattern on subset of dimension; they introduced pCluster. Recently, Fang,

Liu, Yang, Luo and Li (2006) introduced the clustering algorithm that is

based on graph structure.

This chapter discusses two types of clustering methods - the partition-

ing and hierarchical methods. The partitioning method divides the data

into k clusters, so that the objects of the same cluster are close to each other
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and objects of different cluster are well separated. The findings of the par-

tition method can be easily viewed through graphical display. The hierar-

chical methods develop a dendogram, which is a tree of which the leaves

are the data objects and each branch represent a cluster.

4.4.1 Partitioning Method

The partitioning methods try to improve the partitioning accuracy by mov-

ing observations from one cluster to another by iterative relocation to pro-

duce original partitions. The algorithm for this method divides the data

set into k clusters, where the integer k needs to be specified by the user.

Typically, the user runs the algorithm for a range of k-values and chooses

the best. For each k, the algorithm carries out the clustering and also

yields a “quality index”, which allows the user to select a value of k later.

The most familiar techniques in partitioning methods are K-means and

K-medoids.

The K-means clustering algorithm is described in detail by Hartigan

(1975). The objective of the K-means algorithm is to divide n points in

p dimensions into k clusters so that the within-cluster sum of squares is

minimized. The advantage of the k-means algorithm is that its time com-

plexity is O(n), making it slightly more scalable and it can work with any

Lp norm.

Criticizing the method, one would complain about having to provide

the number of clusters k. A common practice is to use a hierarchical clus-

tering method to suggest a suitable k. The second criticism is, the method

being sensitive to outliers, also tends to find spherical clusters of equal

size and it has to find initial centroids to start the algorithm. Hartigan and

Wong (1979) suggest using actual objects as initial cluster centres. These

could be selected randomly. Hence the final set of clusters is dependent

on the initial set of clusters having to convert to the distance space every

time one needs to know how to cluster an object. However, this raises the
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computational cost.

The K-medoids method is appealing because it is more robust and it

allows a good characterization of all clusters that are not too elongated

and makes it possible to isolate outliers in most situations (Kaufman and

Rousseeuw, 1990). A few examples of algorithms in the k-medoids tech-

nique are pam, clara and fanny. See Struyf, Hubert and Rousseeuw (1996).

Partitioning Around Medoids (pam) is based on the search for k rep-

resentative objects, called medoids, among the objects of the data set. In

pam, the variables do not have to be continuous; they can be discrete vari-

ables. In this method, first , one needs to decide the number of clusters k

required for the data set. Later, an observation will be selected as repre-

sentative object (medoids). If one decides to build two groups, then two

observations are needed as the representative objects (medoids).

The role of the representative object is being a medoid for the group.

pam will select the representative objects that give a minimal total dissim-

ilarity of all objects to their nearest medoid. Then dissimilarities between

each observation to these two medoids are calculated. Later, each obser-

vation is assigned to the cluster where it has the smallest dissimilarity to

the medoid; that is, observation i is put into cluster vi when medoid mvi is

nearer to i than the other medoid mwi. pam is more suitable to be used by

small sample size data.

The k-medoids algorithm has a number of disadvantages, namely that

the algorithm needs the number of clusters k to be entered as input. This

requires a good guess from the user, which might not be available. Next

, the time complexity per iteration of the algorithm is O(n2). For each

iteration there are k(n− k)i↔ h swaps to consider; calculating each swap

involves accessing (n− k) distances, making one iteration O(k(n− k)2).

Clustering Large Application (clara) shares the same algorithm with

pam. The user must provide the number of groups, k needed and deter-

mine the observations for representative objects (medoids). The advan-

tage of clara is ,it can handle large sample size data. For a data set with
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more than 250 observations, it is appropriate to use clara (Kaufman and

Rousseeuw, 1990). This is because it does not store all possible dissimilar-

ity matrixes but only the actual measurement.

The other method that is similar to the pam and clara is Fuzzy Analysis

(fanny). The speciality of this method is that it can give a detailed expla-

nation of which cluster the object should be assigned to. This method can

exhibit the percentage or probability of the observations to be in particu-

lar groups. For example, there are 3 clusters to be built; this method can

produce a result that says observation 1 belongs for 2% to cluster 1, for

95% to cluster 2 and for 3% to cluster 3. In fanny method, the observation

is assigned to the group with the highest percentage or probability. So, in

the example given above, observation 1 will be assigned to cluster 2.

This algorithm shares the usual problem of having to specify the num-

ber of clusters k. However, its attractive features are that the time com-

plexity of the algorithm is only O(n) and the measure of confidence in

each assignment of an object to a cluster is readily available through the

membership coefficient and summaries of the clusters are available (i.e.

the cluster centres) at the end of the algorithm.

4.4.2 Hierarchical Method

The hierarchical method works by grouping the observations in the data

set into a hierarchy of clusters which is based on a dissimilarity measure.

Hierarchical algorithms do not build a single partition with k cluster but

they deal with all possible values of k in the same run. One might think

the partitioning method as outdated as all possible values of k have to

be found in a single run. However, this is not true because a cluster-

ing formed “along the way” is not necessarily very good (Kaufman and

Rousseeuw, 1990). In fact, a partitioning method tries to select the best

clustering with k clusters, and this is not the purpose of the hierarchical

method. Another weakness of the hierarchical method is it can never redo
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what was done in previous steps. For example, once agglomerative algo-

rithm has joined two observations, they cannot be split.

There are two kinds of hierarchical methods: the agglomerative method

and the divisive method. The agglomerative method is a bottom-up ap-

proach. That means it begins by placing each observation in its own clus-

ter, and combines the clusters into larger ones step by step. On the other

hand, the divisive method is a top-down approach. It starts by grouping

all objects into one cluster, and separates the cluster into smaller ones step

by step. An example of divisive method is Divisive Analysis (DIANA).

A brief analysis of these methods would show them to be ofO(n3) time

complexity, O(n2) on the algorithm for each iteration. This is even before

the potentially expensive calculations that may take place albeit on a sub-

set of the n original objects. The algorithm also needs the group averages

between an object and the new and existing clusters to be recalculated

after an object is moved. This will be costly in terms of the number of

calculations and the amount of storage required.

The agglomerative method has some limitations, which includes the

inability to handle outliers like the K-medoids method. Therefore the clus-

tering results are easily affected by the outliers. For instance, by having

outliers between clusters, two clusters may be grouped into one. It is also

sensitive to the cluster size. For example, if small clusters are situated

close to a large cluster, the agglomerative method cannot notice the small

clusters.

The advantages of hierarchical method are that it is easy to implement

computationally, and it is able to tackle large sample size data than the

k-medoids method and it is unsupervised, in the sense that one can run

the algorithm without having to provide the number of clusters. One

disadvantage of the hierarchical method is, it has O(n3) time complexity.

Even though the order of the distance matrix decreases with each itera-

tion, the cost on iteration k is O((n− k)2), and there are (n − k) iterations

before getting to k. Secondly, the clusters produced are heavily dependent
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on the metric Di,j. Different metrics can produce very different clusters.

For instance, the complete-link metric tends to produce spherical clusters,

whereas the single-link metric produces elongated clusters. Therefore, one

still has to decide which clusters, if any, one is going to choose.

4.5 Conclusion

This chapter briefly reviewed the proximity measures and clustering meth-

ods. Note that clustering may simply represent a convenient method for

organizing a large data set so that it can easily be understood and infor-

mation can efficiently be retrieved. If the data can validly be summarized

by clustered sets of that data, then it would probably give a more precise

definition about the large data set.

This chapter also described some hierarchical and partitioning cluster-

ing algorithms. The partitioning method divide the data set into k clusters,

where the integer k needs to be specified by the user. The hierarchical ap-

proach do not build a single partition with k cluster but they deal with all

values of k in the same run.

Even though one might label the partitioning method as outdated, as

all possible values of k are searched in a single run, but the partitioning

method tries to select the best clustering with k cluster, and this is not the

purpose of the hierarchical method.

The next chapter will consider the partitioning method to examine the

new dissimilarity matrix and a new approach called Influence Angle Clus-

ter Approach (iaca).



Chapter 5

Influence Angle Cluster Approach

5.1 Introduction

In attempting to identify clusters of observations which may be present

in a data is what is important is in knowing how close individuals are to

each other. Two individuals are close either when their dissimilarity or

distance is small, or when their similarity is large. Data set for cluster-

ing can either be from an n × p objects by attribute matrix, where rows

represent objects and columns represent variables, or a n × n dissimilar-

ity matrix where d(i, j) = d(j, i) measures the “difference” or dissimilarity

between the objects i and j.

To produce clustering, one has to find the measurement between ob-

servations in the data set. This can normally be obtained either by simi-

larity or dissimilarity matrix. Similarity matrix is represented by correla-

tion, where high correlation indicates similarity. The correlation focuses

on the pattern rather than proximity. Therefore, to gain proximity, one

needs to use the dissimilarity or distance. There are many types of dis-

tances, such as Euclidean, Maximum, Manhattan, Canberra and Binary.

These distances deal with continuous variables (Everitt et al., 2001).

There are also situations where the data set has mixed variables, i.e.

some variables are continuous and some are categorical. There are a few

98
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approaches to handle this situation. One possibility would be to dichotomize

all variables and use a similarity measure for binary data; another would

be to construct a dissimilarity measure for each type of variables and com-

bine these, either with or without differential weighting, into a single co-

efficient.

Let us consider the similarity measure proposed by Gower (1971) as

an example to handle data with mixed types of variable. Gower (1971)

defines a similarity measure by

sij =

∑p
k=1wijksijk
∑p

k=1wijk

.

Given that sijk is the similarity between the ith and jth individual mea-

sured using the kth variable and wijk is typically one or zero depending on

whether or not the comparison is considered valid. The value of wijk is set

to zero if the outcome of the kth variable is missing for either or both of

individuals i and j. In addition, wijk can be set to zero if the kth variable

is binary and it is thought appropriate to exclude negative matches. For

binary variables and categorical variables with more than two categories,

the component similarities, sijk, take the value one when the two individ-

uals have the same value and zero otherwise. For continuous variables,

Gower suggests using the similarity measure

sijk = 1 − |xik − xjk|/Rk,

where Rk is the range of observations for the kth variable.

Kaufman and Rousseeuw (1990) also provide an algorithm called daisy

which computes a dissimilarity matrix from objects-by-attributes. The

main feature of daisy is the ability to handle nominal, ordinal, asymmetric

binary and ratio-scaled variables, even if different types of variables occur

in the same data set.

In §3.5.1, Chapter 3, reference was made to ’influence angle’. It is sug-

gested here that ’influence angle’ may be used as dissimilarity matrix and
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it is defined as Influence Angle Cluster Approach (iaca) instead of influ-

ence angle to avoid confusion with §3.5.1. The influence angle is devel-

oped by principal component score and Jolliffe (2002) proved that princi-

pal component analysis is also capable of finding clusters in the data set.

This chapter introduces iaca as a dissimilarity matrix in §5.2.

There have been many clustering techniques suggested. This chap-

ter will also consider partitioning methods which divide data into sev-

eral subsets. Unlike traditional hierarchical methods in which clusters are

not revisited after being constructed, partitioning methods are otherwise.

Partitioning methods are further divided to k-medoids and k-means. K-

medoids have two advantages , namely the ability to cover any attribute

types and having the embedded resistance against outliers. Two early ver-

sions of k-medoids methods are described in this chapter, i.e. Partitioning

Around Medoids (pam) and Clustering Large Application (clara). §5.3 will

briefly explain these two algorithms.

It is also very important to examine whether the combination of iaca

and various clustering methods are likely to lead to interesting and infor-

mative classifications. Therefore, §5.4 will discuss in general about cluster

validation. This chapter then continues by showing some examples using

simulation and real data sets in §5.6 and §5.7 before it concludes.

5.2 Influence Angle Cluster Approach as a Dis-

similarity Measure

Recall the definition of influence angle given by equation 3.35 in chapter 3

as shown below

θj(i) = cos−1

{

lij/λ
∗
j(i)

√

p
∑

k=1

l2ik/(λ
∗
j(i) + (λk − λj))2

}

, (5.1)



CHAPTER 5. INFLUENCE ANGLE CLUSTER APPROACH 101

where j = 1, 2, . . . , p; i = 1, 2, . . . , n, and lij is the principal component

score of the omitted observation in the principal component decomposi-

tion of the complete data X and

λ∗j(i) = λj −
1

n− 1
(l2ij − λj) −

1

2(n− 1)2
l2ij [1 +

∑

k 6=j

l2ij
λk − λj

] +O(
1

n3
).

The θj(i) is defined as the angle between 0 and 180 degrees that satisfies

the relationship vT
j vj(i) = ‖vj‖ ‖vj(i)‖ cos θj(i) where ‖.‖ refers to the vector

length.

Now consider the Influence Angle Cluster Approach (iaca) as a dissim-

ilarity matrix. The iaca is developed in an algorithm as given below:

• Step 1: Assuming X is the complete data set, one can compute the

vector of eigenvalues of XT X. Supposed Λ = {λ1, λ2, . . . , λp} be the

vector of eigenvalues of XT X and V represents eigenvectors corre-

sponding to the Λ. Next, estimate the eigenvalues for XT
(i)X(i) af-

ter deleting ith observation. The vector of eigenvalues of XT
(i)X(i) is

Λ(i) =
{

λ1(i), λ2(i), . . . , λp(i)

}

and V(i) represents eigenvectors corre-

sponding to the Λ(i) and i = 1, 2, . . . , n.

• Step 2: Compute the principal component scores of the omitted ob-

servation in the principal component decomposition of the complete

data set, lij. Next, determine the cos(θj(i)), where one can fix j = 1 as

this chapter is considering the principal eigenvalues. θj(i) represents

the influence angle between the jth eigenvector for the complete data

set and the jth eigenvector when the ith observation is deleted for all

i = 1, 2, . . . , n.

Next, one can develop iaca as follows: one needs to find the difference

between the influence angle of each observation as |θj(i) − θj(i∗)| where

1 ≤ i, i∗ ≥ n and the absolute value signs are used since one can consider

the difference between influence angles to be an unsigned scalar value and

it can be called iaca.
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Ψj =













0 |θj(1) − θj(2)| · · · |θj(1) − θj(n)|

|θj(2) − θj(1)| 0 · · · |θj(2) − θj(n)|
...

...
. . .

...

|θj(n) − θj(1)| |θj(n) − θj(2)| · · · 0













Definition 1. An n × n matrix Ψj = ψj
(i)(i∗) is called as the dissimilarity

matrix of iaca if and only if there exist θj(1), . . . , θj(n) ∈ Rd, n ≥ 2 points in

some d-dimensional spaces, such that ψj
(i)(i∗) = |θj(i) − θj(i∗)|. The smallest

d for which this is possible is the dimensionality of Ψj .

From Definition 1, if Ψj = ψj
(i)(i∗) is the dissimilarity matrix of iaca then

• ψj
(i)(i∗) = |θj(i) − θj(i∗)| ≥ 0 (Ψ has nonegative entries)

• Ψj is a hollow matrix where all elements on the diagonal of Ψj are

equal to zero. The elements of Ψj are given by Ψn×n =
{

ψj
(i)(i∗)

}

;

ψj
(i)(i∗) = 0 if i = i∗, 1 ≤ i, i∗ ≤ n.

• The trace of Ψ is zero (by the above property).

tr(ψj) =
∑

i=i∗
|θj(i)−θj(i∗)| = ψj

(1)(1)+ψ
j
(2)(2)+. . .+ψ

j
(n)(n) =

∑

i=i∗
ψj

(i)(i∗) = 0

• Ψj is symmetric (Ψj = ΨT
j ), where ψj

(i)(i∗) = |θj
(i)−θ

j
(i∗)| = |θj

(i∗)−θ
j
(i)| =

ψj
(i∗)(i)

Next, one can construct a partition of n objects into a set of k clusters by us-

ing iaca that is applied in the clustering algorithms which will be explained

in the next section.

5.3 Partitioning methods

Given n objects, these methods construct k partitions of the data, with

each partition representing a cluster. The general method works as fol-

lows: given the number of clusters, an initial partition is made; objects are

then moved between partitions in an attempt to improve some objective

function.
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To find a global optimum for the objective function one needs to con-

sider all N(n, k) possible partitions, where

N(n, k) =
1

k!

∑

i=1

k(−1)(k−i)

(

k

i

)

in

N(n; k) is one of Stirling’s numbers of the second kind. See Jensen (1969).

With increasing n this soon becomes unfeasible, so inevitably, partitioning

algorithms do not consider all partitions and may thus only find the local

optima.

k-medoids

The k-medoids method partitions a distance-space into k clusters. A medoid

is an object that is selected from the dataset representing a cluster. The al-

gorithm selects k medoids to represent the k clusters. Clusters are then cre-

ated by assigning each of the remaining objects to the nearest medoid. The

most common k-medoids algorithm is the Partitioning Around Medoids

(pam) algorithm of Kaufman and Rousseeuw (1990). The k-medoids algo-

rithm is as follows:

• STEP 1: Arbitrarily select k objects from the data as medoids.

• STEP 2: Consider swapping the pair of objects (i, h), where i ∈ se-

lected objects and h ∈ non- selected objects. Denote the swap as

i ↔ h. Let d(xi, xh) be the distance-measure between two objects i

and h.

Now consider another non-selected object j. Calculate Tih, the ”total

swap contribution” for i↔ h, as

Tih =
∑

j

Cjih
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where Cjih is the contribution to i ↔ h from object j defined below.

There are four possibilities to consider when calculating Cjih.

– If j currently belongs to the cluster defined by medoid i (denote

cluster i), consider the distance d(xj, xh) between object j and

object h. If h is further from j than the second best medoid i′ is

from j then the contribution from object j to the swap is:

Cjih = d(xj , x
′
i) − d(xj , xi)

The result of i↔ h would be that object j now belongs to cluster i′

Else, if h is closer to j than i′ is to j, the contribution from j to

the swap is:

Cjih = d(xj , xh) − d(xj , xi)

The result of i↔ h would be that object j now belongs to cluster h.

– If j currently belongs to cluster k, where k 6= i, check the dis-

tance between object j and object h.

If h is further from j than the medoid k is from j, then the con-

tribution from object j to the swap is:

Cjih = 0

The result of i↔ h would be that object j still belongs to cluster k.

Else, if h is closer to j than k is to j, the contribution from j to

the swap is:

Cjih = d(xj, xh) − d(xj , xk)

The result of i↔ h would be that object j now belongs to cluster h.

• STEP 3: Let (i∗, h∗) = arg min
i,h

Tih. If Ti∗h∗ < 0 then swap i∗ ↔ h∗.

Now object h ∈ selected objects and i ∈ non-selected objects. Go to Step 2.
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• STEP 4: Allocate each non-selected object to the cluster defined by

the nearest medoid.

The most attractive property of this method is its robustness. The use

of medoids to define clusters makes this method very resistant against

outliers in the data. It does not have to store a vast amount of information

in addition to the original data in memory; all that is required is the label

of the selected object.

pam algorithm is intended to handle outliers efficiently. Instead of clus-

ter centers, it chooses to represent each cluster by its medoid. The compu-

tational complexity of pam is O(I ′′k(n − k)2), with I ′′ being the number of

iterations, making it very costly for large n and k values.

A solution to this is the clara algorithm by Kaufman and Rousseeuw

(1990). This approach works on several samples of size s, of the n tuples

in the database, applying pam on each one of them. The output depends

on the s samples.

5.4 Strength Measurement of Cluster

Apart from developing a cluster for a data set, there is a method to mea-

sure whether one is constructing a strong or reasonable clustering struc-

ture. Levine and Domany (2001) had listed various methods and indica-

tors that come under the name “cluster validation”. They also proposed a

method to check which clustering method would be more reliable. Details

of the various cluster validity approaches also can be found in Halkidi

et al. (2001).

This chapter is not proposing a new technique to choose an appropri-

ate number of clusters in partitions method. Instead, this chapter would

apply the existing method used to find a suitable group for the data set.

This is to check whether the cluster constructed for high dimension data

using iaca as a dissimilarity matrix is useful or not. Milligan and Cooper
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(1985) compared 30 measures of the strengths of clusters for determin-

ing the number of clusters. The Calinski and Harabasz index (CH index)

had the best performance. However, the Silhouette index introduced by

Rousseeuw (1987) is used much more often and easy to interpret. From

Rousseeuw (1987), the silhouette index is defined as

s =
1

n

n
∑

i=1

si

where

si =
bi − ai

max(ai, bi)

and ai is the average distance of the data point yi to other points in cluster

A where yi belongs to

ai =
1

nA − 1

∑

j∈A,j 6=i

d(yi, yj)

and bi is the average distance to points in the nearest neighbor cluster

besides its own. Define d(i, C) =average distance of the data point yi to

all data points in Cluster C. Then

bi = min
C 6=A

d(i, C)

The index si can take values from -1 to 1. If the index shows zero value,

that means the data point has equal distance to its cluster and its nearest

neighbor cluster. If the index is positive, then it shows the observation is

assigned to a correct cluster, whereas if the index shows negative values,

it means the reverse. Overall, if the data points are correctly assigned, the

average for the index should be close to one. Experience has led to the

subjective interpretation of the silhouette index (SI) as listed in Table 5.1

below. This interpretation does not depend on the number of observa-

tions.
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Table 5.1: Interpretation of the Silhouette Index (SI)

SI Proposed Interpretation
0.71-1.00 A strong structure has been found.
0.51-0.70 A reasonable structure has been found.
0.26-0.50 The structure is weak and could be artificial;

try additional methods.
≤ 0.25 No substantial structure has been found.

5.5 Data set

This chapter considers a simulated data sets to examine the performance

of the iaca as a dissimilarity matrix.

First a data set containing 3 groups of 30 dimensional observations is

generated following normal distribution. Six columns i.e., variables are

generated from this data set with mean, µi and variance, Σ1, where i =

1, 2, . . . , 6. Another 24 columns are generated with the first 100 rows, i.e.,

observations correspond to mean, µ1j and variance, Σ2 and j = 1, 2, . . . , 24.

The second 100 rows are generated with mean, µ2j and variance, Σ2 whereas

the last 100 rows has the mean, µ3j and the variance, Σ2. Note that there

are 300 observations in the first data set.

As we are also interested in high-dimensional data, a normal data set

with 100 dimensions are generated to correspond to sample size of 4500.

18 columns are generated with µi and variance, Σ1, where i = 1, 2, . . . , 18.

Later, the remaining 82 columns are generated so that the first 1500 rows

are normal data with mean, µ1j and variance, Σ2, and j = 1, . . . , 82. The

second 1500 rows are normal data with mean µ2j and variance, Σ2 and the

last 1500 rows are normal data with mean µ3j and variance, Σ2. It is noted

that these two data sets are generated following the normal distribution

and only contain interval variables.

As the data set might also contain nominal or ordinal variables, this

chapter will also study the influence angle performance in handling a
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data set with mixed variables. Once again the data sets containing 30 and

100 variables with 300 and 4500 observations respectively are generated in

turn, but this time with mixed variables.

For a data set containing 30 dimensions, let 21 of the columns contain

categorical values, i.e. nominal variables and the other nine columns con-

taining interval variables. Assign some of the observations an identical

categorical value and to the rest other categorical values. As an example,

300 observations are given X for the first 100 rows, Y to the second 100

rows and Z to the last 100 rows.

The real data sets are also utilized to evaluate the Influence Angle Clus-

ter Approach. There are three real data sets considered and one of them

contains mixed variables. They are mammal milk data, mortality data and

flower data. The data sets details are given in Table 5.2.

Table 5.2: The real data set used for clustering illustration

Data Types of data Number of variables Sample size
Mammal milk Interval variables 5 25
Mortality Interval variables 4 48
Flower Mixed variables 8 18

5.6 Clustering low dimensional data

In this section, first the low dimensional interval data set is considered.

The pam algorithm was used to cluster the low dimensional data with Eu-

clidean distance, while iaca, daisy and Manhattan distance in turn was used

to determine the pairwise difference between objects.

This data set is generated following normal distribution containing 3

groups of 30 dimensional observations and 300 observations.
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Figure 5.1 shows cluster plot developed using pam algorithm with Eu-

clidean distance, and iaca, daisy and Manhattan distance in turn to cal-

culate the dissimilarity between objects. Even though these four cluster

plots can classify observations as to which group they are from, it is noted

that pam algorithm with iaca and daisy are able to separate all three groups

completely on a very large scale.
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(a)

Figure 5.1: Cluster plot for n = 300, p = 30 – pam using (i) Euclidean
distance, (ii) iaca, (iii) daisy and (iv) Manhattan distance.

Table 5.3 shows the silhouette width of the partition obtained with pam.

The silhouette widths, s(i) of all observations are visible at least above

0.95 when combination of pam and iaca is used to developed clusters. The

silhouette index of iaca is the highest and the closest to 1 compared to the
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other three dissimilarities.

Table 5.3: Silhouette width for interval variables with n = 300, p = 30

Silhouette Silhouette
Data Method Dissimilarity width, s(i) index
n = 300, p = 30 pam Euclidean > 0.80 0.87

iaca > 0.95 0.97
daisy > 0.85 0.87
Manhattan > 0.80 0.89

The performance of iaca is now tested on low dimensional data with

mixed variables. pam was used to partition the data into three clusters.

The four resulting dissimilarities are given in Figure 5.2.

It can be verified that the combination of iaca and pam yields a strong

clustering structure since the silhouette index is very close to 1 compared

to the other three dissimilarities. See Table 5.4. Even though the silhouette

widths of all objects for iaca are at least above 0.4, it is noted that only 5

objects have silhouette widths, s(i) near to 0.4 and the silhouette widths

for the remaining objects are above 0.80.

Table 5.4: Silhouette width for mixed variables with n = 300, p = 30

Silhouette Silhouette
Data Method Dissimilarity width, s(i) index
n = 300, p = 30 pam Euclidean > 0.50 0.66

iaca > 0.40 0.89
daisy > 0.40 0.70
Manhattan > 0.60 0.73
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(iv)

(a)

Figure 5.2: Cluster plot for n = 300, p = 30 ; mixed variable – pam using
(i) Euclidean distance, (ii) iaca, (iii) daisy and (iv) Manhattan distance.

5.7 Clustering high dimensional data

Next, this chapter examines the performance of iaca for high-dimensional

interval data set. This data set contains 4500 observations with 100 vari-

ables. clara algorithm was used to partition the high-dimensional data set.

Figure 5.3 shows the cluster plot and the ellipses represent the cluster

boundaries as computed by clara. Combination of clara and Euclidean dis-

tance, iaca, daisy and Manhattan distance in turn managed to assign the

4500 observations into the correct cluster. Table 5.5 displays the silhou-

ette widths, s(i) of all observations and note that these 4 cluster plots have
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These two components explain 81.61 % of the point variability.

(a) clara

Figure 5.3: Cluster plot for n = 4500, p = 100 – clara using (i) Euclidean
distance, (ii) iaca, (iii) daisy and (iv) Manhattan distance

very high values of silhouette index, hence this indicates that combina-

tion of Euclidean distance, iaca, daisy and Manhattan distance with clara

construct a very strong clustering structure.
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Table 5.5: Silhouette width for interval variables with n = 4500, p = 100

Dissimilarity Silhouette Silhouette
Data Method measure width, s(i) index
n = 4500, p = 100 clara Euclidean > 0.80 0.88

iaca > 0.95 0.99
daisy > 0.95 0.99
Manhattan > 0.80 0.90

Next, we examined high-dimensional data set containing mixed vari-

ables. The finding shows that the combination of clara with iaca and daisy

respectively managed to find a strong clustering structure where both dis-

similarities obtained the value of silhouette index equal to 0.94. Refer to

Table 5.6.

Table 5.6: Silhouette width for mixed variables with n = 4500, p = 100

Dissimilarity Silhouette Silhouette
Data Method measure width, s(i) index
n = 4500, p = 100 clara Euclidean > 0.55 0.65

iaca > 0.80 0.94
daisy > 0.85 0.94
Manhattan > 0.55 0.67
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(a) clara

Figure 5.4: Cluster plot for n = 4500, p = 100; mixed variable – clara using
(i) Euclidean distance, (ii) iaca, (iii) daisy and (iv) Manhattan distance

5.8 Clustering real data set

5.8.1 Mammal milk data

The original Mammal Milk data set contains the ingredients of mammal’s

milk of 25 animals. It was taken from

http://www.uni-koeln.de/themen/Statistik/data/cluster/.

There are five variables in this data set and all variables, i.e. water, protein,

fat, lactose and ash values are in percentage. Combination of pam with Eu-

clidean distance, iaca, daisy and Manhattan distance are used in turn to

http://www.uni-koeln.de/themen/Statistik/data/cluster/
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partition the data set into four clusters. Figures 5.5 shows the cluster plots

developed by pam. The silhouette widths, s(i) of all observations are at
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(iv)

Figure 5.5: Cluster plots for mammals’ milk using pam with (i) Euclidean
distance (ii) iaca (iii) daisy (iv) Manhattan distance

least above 0.3 when the combination of pam and iaca are used to partition

the data set. The value of silhouette index is 0.71, which indicates a strong

clustering structure. Table 5.7 shows partition of objects i in mammal milk

data when using the combination of pam and the other three dissimilarities

only construct reasonable clustering structures since their silhouette index

values are 0.60.

Table 5.7: Silhouette width for mammal milk data

Silhouette Silhouette
Data Method Dissimilarity width, s(i) index
Mammal pam Euclidean > 0.10 0.60
milk iaca > 0.30 0.71

daisy > 0.10 0.60
Manhattan > 0.10 0.60
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5.8.2 Mortality data

The mortality data set is taken from Everitt et al. (2001). This data set con-

tains 48 observations with 4 continuous variables. Cluster plots in Figure

5.6 exhibits a good clustering structure when iaca and daisy are used as dis-

similarity matrix in pam. Table 5.8 displays the silhouette widths, s(i) of
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(iv)

Figure 5.6: Cluster plots for mortality using pam (i) Euclidean distance (ii)
iaca (iii) daisy (iv) Manhattan distance

all observations and the values of silhouette index yield from combination

of 4 dissimilarities with pam in turn to partition the mortality data.

Table 5.8: Silhouette width for mortality data

Dissimilarity Silhouette Silhouette
Data Method measure width, s(i) index
Mortality pam Euclidean > 0.1 0.62

iaca > 0.1 0.64
daisy > 0.1 0.62
Manhattan > 0.1 0.58
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5.8.3 Flower data set

Flower data set is taken from the R Library Cluster. There are 18 obser-

vations with eight variables in this data set. This data set contains mixed

variables,. Six of them are categorical variables and the remaining are con-

tinuous variables. Cluster plots for the flower data exhibit very well the

separation when combination of pam and iaca as dissimilarity matrix are

used. See Figure 5.7.
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Figure 5.7: Cluster plots for flower using pam with (i) Euclidean distance
(ii) iaca (iii) daisy (iv) Manhattan distance

The silhouette index values of 0.70 obtained shows a good clustering

structure. Note that the combination of pam and the remaining three dis-

similarities indicate weak clustering structure as the average silhouette

width are below than 0.50. Refer to Table 5.9.
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Table 5.9: Silhouette width for flower data

Silhouette Silhouette
Data Method Dissimilarity width, s(i) index
Flower pam Euclidean > 0.05 0.47

iaca > 0.10 0.70
daisy > 0.05 0.33
Manhattan > 0.10 0.45

5.9 Conclusion

In this chapter the author has managed to show that iaca successfully de-

velops a cluster when it is used in partitioning clustering, even if the data

set has mixed variables, i.e. interval and categorical variables. iaca is de-

veloped based on the influence eigenstructure. It can obtain clusters easily

and hence, avoid the curse of dimensionality. It is also flexible to imple-

ment, and seems to work well in practice.



Chapter 6

The Buckley-James regression

model for censored data

6.1 Introduction

There have been various methods created and modified to resolve the

problem of censoring data sets. The term “censoring” was first used in

1949 and one can find this term mostly used in biological science areas

such as survival, epidemiological and duration analysis. These analyses

deal with the life time data. In addition to biological applications, cen-

soring data sets can also be seen in educational testing and econometrics

analysis (see, Greene, 2000).

This chapter will provide illustrations based on survival analysis,

with §6.2 presenting the idea and concepts of survival analysis. In §6.3,

the different types of censoring that can emerge in survival analysis are

explained; and in §6.4, methods that can be used to solve the problem

involving censoring data sets are listed. In survival analysis, the life table

is the earliest and a well known method to handle the issue of censoring

data sets.

Other than that, one also can choose a method which was introduced in

1958; this method is called Kaplan-Meier estimators. Details on Kaplan-

119
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Meier estimators can be found in §6.4.1. Since researchers normally are

interested in comparing Kaplan-Meier curves, various methods have been

created based upon regression ideas, where these survival regression mod-

els have the ability to examine several effects of variables at a time. §6.4.2

discusses several survival regression models such as the Cox model, Miller’s

model, the Kaplan-Meier model and the Buckley-James model.

This chapter looks at the Buckley-James censored regression model, as

this model performs well compared to other survival regression models

(see Miller and Halpern, 1982; Heller and Simonoff, 1990; Heller and Si-

monoff, 1992; Stare et al., 2000).

Miller and Halpern (1982) made an effort to examine the potency of this

model by comparing it with the Cox model, Miller’s approach and Koul,

Susarla and Van Ryzin’s estimators by using the Stanford heart transplant

data. They stated that Miller’s approach and Koul, Susarla and Van Ryzin’s

estimators had problems with their methodology in contrast to the Cox

method and the Buckley-James method. Details about the Buckley-James

censored regression model are presented in §6.5.

Even though the Buckley-James approach performs better than other

methods, it is still rarely practised by researchers as it is not established

in many computer software programmes. The other reason is that there

are few diagnostics analyses developed for the Buckley-James model. §6.6

discusses several diagnostics analyses for the Buckley-James censored re-

gression approach. These include renovated scatterplot, plots of Hillis

residuals, renovated leverage, renovated added variable plot, measures

of explained variation and renovated partial residual plot.

6.2 Survival analysis

In a study, survival analysis is related to the life time distribution. In other

words, it is studying the time between the subject’s entry to a study and a

subsequent event. Therefore, the main interest of the study is the relation
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of the time to the event. Some examples of events that one can find in

biological research are the time from diagnosis to death and the time it

takes for a patient to respond to a new treatment. For industrial research,

an example of special interest can be the life time of machine components.

However, one should note that the event may not happen for all sub-

jects in the study. In this situation, one would have a censored data set,

as some of the subjects do not have complete information. With censored

data sets, one cannot use the standard analysis tools to analyse the data.

Rather, the censored data set would need the use of survival analysis.

In survival analysis, there are two important functions that need to be

understood. First is the survival function. Let Y be a random variable with

probability density function f and Y become a survival random variable if

an observed outcome, y of Y always lies in the interval [0,∞). Cumulative

density function, F for Y is

F (y) = P (Y ≤ y) =

∫ y

0

f(u)du. (6.1)

The survival function is given as S(y) = P (Y > y) = 1−F (y) and express-

ing the survival function in terms of the probability density function, f(u)

can be written as below

S(y) = P (Y > y) =

∫ ∞

y

f(u)du. (6.2)

By replacing y = 0 into equation 6.2, one can have S(0) = 1 which shows

all observed subjects are alive as opposed to S(∞) = 0 where all observed

subjects are dead. The survival function is a decreasing monotony from

S(0) = 1 through to S(∞) = 0.

Another important function in survival analysis is the hazard function.

The hazard function is the probability of failure in the time interval [y, y+
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δy]. One can define the hazard function by the following equation

h(y) = lim
δy→0

P [y < Y < y + δy|Y ≥ y]

δy
. (6.3)

Equation 6.3 is equal to f(y)
S(y)

for y > 0. S(y) also can be written in the hazard

function as e−
∫ y

0
h(u)du. Sometimes the survival distribution is described by

the cumulative hazard, H(y) =
∫ y

0
h(u)d(u) = ln S(y). It should be noted

that all these different functions f(y), F (y), S(y), h(y) and H(y) are related

and only one of the functions is needed to be able to calculate the other

four.

6.3 Censoring

The word “censoring” was first recommended by Mr Kerrich to be used

by Hald in 1949 and it is used mostly in studies that are involved with

life time data, such as survival studies. Normally at the end of this type

of study, there would be patients who survived till the final stage of the

study. As having surviving patients reflects the success of the new treat-

ment method (if this is the purpose of the study), the analyst would not

want to label them as missing data. There would also be other patients

with whom the analyst may lose contact. Those observations that contain

incomplete information are called censored observations.

A well known censoring case is called right censored data. Right cen-

sored means the time to failure is to the right of the time line (the time line

is the end time of the study), where those observations keep on running

and the failure would happen after (or to the right of) the time line, refer

to Figure 6.1.

The second type of censoring is interval censored data. Normally, one

would use this type of censoring case when the data set is not continuously

supervised. Therefore, the only information one would have is a certain

interval of failure time. As an example, if one is testing a drug on eight
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Right censored data

Time

Ca
se

1
2

3
4

5
6

7
8

Running

Failed

Running

Running

Failed

Failed

Failed

Failed

Figure 6.1: Plot of right censored data with the dashed lines representing
the time line.

tissue-cells and inspecting them every 48 hours, and they are still alive at

48 hours, then the inspection is continued to 96 hours. If five of them died

after 96 hours, one only knows the failure has occurred in the interval

between 48 and 96 hours. Figure 6.2 reveals an example of the interval

censored data and the dashed arrow means the failure time could have

occurred at any time period up to the time line, however exact times for

each failure are not available.

Interval censored data can also be seen as left censored data, which is

another type of censoring. It is called left censored data and similar to

interval censored data because the failure time occurs before the time line,

and one will not know when the failure occurs. The interval starts from

zero until the time line (for example, see Finkelstein, 1986).

Censoring case also can be classified into censoring type I data, censor-

ing type II data and random censoring. Censoring type I data is also called

right censored data since the times of failure to the right (i.e., larger than

time line) are missing and the exact time of failure for each case occurred

at any time period up to the time line is recorded. Let’s say from T hours

of test with n subjects, one can observe the total number of failed subjects,
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Interval censored data
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Figure 6.2: Plot of interval censored data with the vertical solid lines rep-
resenting the first inspection and the vertical dashed lines representing
the second inspection whereas the dashed arrows indicate the failure time
could have occurred at any time period up to the time line, thus exact
times for each failure are not available.

nf before T . One will have the number of surviving cases in the T hours

test as n− nf .

In censoring type I data, T is fixed before the study begins and nf is

random as opposed to censoring type II data. For censoring type II data,

one normally decides the total number of failures, nf before starting the

study, therefore T is unknown until the nf failed cases emerge.

For random censoring, let each observation have a potential censoring

time, ti and potential survival time, Yi which are independent variables.

One can observe the life time of each observation, Zi as the minimum of

the censoring and survival time.

Zi = min(Yi, ti). (6.4)

If ti occurs earlier than the target event, then an ith observation will be

randomly censored. The indicator variable for each observation is often
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represented by δi where

δi =







0 (censored) if Yi > ti,

1 (uncensored) if Yi ≤ ti.
(6.5)

The situation exists with the random and type I censoring where there

is no relationship between the censoring times and the survival variable.

These two groups of censoring can be classified as non-informative cen-

soring, which is often an assumption in survival analysis.

This chapter will consider the right censored data (or the censoring

type I data). It should be noted that most techniques for right censored

data can also be used with interval censored data (see, Glasson, 2007;

Smith, 1996).

6.4 How do we handle censored data?

All methods in survival analysis can handle censored data. Examples of

descriptive methods that one can use to estimate the distribution of sur-

vival time from a sample are life table and Kaplan-Meier survival func-

tion estimation. The life table method is the traditional approach in sur-

vival studies (see Berkson and Gage, 1950; Cutler and Ederer, 1958; Gehan,

1969), and it is mostly used in the presentation of large amounts of the

right censored data.

Lawless (1982) proposed a simple algorithm of the life table analysis.

According to his algorithm, the first step in the life table approach is as-

signing the life time into a certain number of intervals. Then for each

interval, compute the conditional probability of survival. Later, one can

estimate the survival function at the interval endpoints. In addition to

survival function, one can obtain other information, such as the number

of cases at risk, the proportion failing, the proportion surviving, the cu-

mulative proportion, the probability density, hazard rate, median survival
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time and required sample sizes.

6.4.1 Kaplan-Meier estimator

Another approach that one can use to estimate the survival function is

called the Kaplan-Meier estimators or product limit estimators. It was in-

troduced by Kaplan and Meier (1958). This approach is similar to the life

table method.

The Kaplan-Meier estimators for n subjects with the ordered obser-

vations (Z(1) < Z(2) < . . . < Z(n)) corresponding to censor indicators

(δ(1), δ(2), . . . , δ(n)) can be computed as below if the tied data is absent:

Ŝ(u) =
∏

j:Z(j)≤u

( n− j

n− j + 1

)δ(j)
, (6.6)

where j refers to number of observations surviving up to time u. The

values of j are sequential integers 1, 2, . . . , n if there are no censored obser-

vations.

However, if ties exist within the data, then equation 6.6 needs to be

altered. There are three situations one needs to consider (Smith, 2002).

First, ties among censored observations: let us say before time u, one found

m individuals alive and at u there are d uncensored ties, this corresponds

to a factor (1 − d
m

) in the Kaplan-Meier estimators.

Second, ties among censored and uncensored observations, where in

this situation, the priority should be given to uncensored observations.

The last situation is where the largest ordered observation, Z(n) is cen-

sored; one has to change it to uncensored so as to let the Ŝ(u) reach zero

for large values of u because Ŝ only jumps at uncensored observations.

That is,

lim
u→∞

Ŝ(u) > 0,

if the observations is censored.
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Normally the survival studies intend to compare the differences be-

tween Kaplan-Meier curves (survival distribution of two samples). This

can be done by using the logrank test. The logrank test is also called

Mantel-Cox test. It is also appropriate to be used with the right censored

data. This test was introduced by Mantel (1966) and the name was given

to the test by Richard and Julian (1972). However, the logrank test cannot

be used to examine the effects of several variables at a time. As a solution

to the logrank test problem, the modeling of survival based on regression

concept emerged.

In survival studies, the researcher is normally interested in investigat-

ing whether independent variables are correlated with the response vari-

able (survival time). Nevertheless, this issue cannot be solved by using

the typical multiple regression method since the response variable (sur-

vival time) follows exponential or weibull distribution (not normally dis-

tributed); the other reason is because of the censored data set.

6.4.2 Regression method for censored data

One of the survival models usually used as censored regression is called

the Cox model (Cox, 1972). It is also known as the proportional hazards

model and it is the regression model which is distribution-free. A good

reason why the Cox model is widely utilised in survival analysis is because

it has been included in most of the statistical software packages.

Distinct from the Cox model, there have been various methods created

based upon standard regression ideas to resolve the problem of data sets

containing censored observations, i.e. Miller’s method, the Buckley-James

estimators and the Koul-Susarla-Van Ryzin estimators.

Miller’s method was proposed by Miller in 1976. This method is re-

lated to Kaplan and Meier’s (1958) approach since it uses the weights of the

Kaplan-Meier estimators to minimize the weighted sum of squares of the

residuals. The estimators from this method are named Kaplan-Meier least
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square estimators and are developed using iteration approaches. Later in

1979, Buckley and James presented the Buckley-James estimators, which

are also known as BJ estimators. This approach is also developed using

iteration methods. Details about the BJ estimators are explained in §6.5.

Subsequently Koul, Susarla and Ryzin (1981) suggested estimators for

censored regression which would be developed without using the itera-

tion method used by Miller (1976) and Buckley and James (1979). It is

called the Koul-Susarla-Van Ryzin estimators. However, when Miller and

Halpern (1982) compared the performance of these three methods, they

found that only the Buckley-James regression method produced reliable

estimators for use with censored observations.

In another study, Heller and Simonoff (1990) compared several meth-

ods of developing estimators in linear regression for a data set with cen-

sored observations. The finding was in agreement with Miller and Halpern

(1982), whereby the Buckley-James method was selected over the other

methods. Later, Heller and Simonoff (1992) re-examined the Buckley-

James and the Cox (the proportional hazards model) methods. They de-

termined that the choice of a method relied on the censoring proportion,

the form of the failure distribution, the strength of the regression and the

form of the censoring distribution.

Nevertheless, Stare et al. (2000) described three reasons to support the

Buckley-James regression method over the Cox method: (i) Most researchers

always failed to notice the basic assumptions of the Cox method, which is

the proportionality; normally the assumption is not fulfilled (it might be

due to no alternative method in the software resulting in the researcher

omitting it); (ii) the Buckley-James method can provide prediction directly

from estimators as opposed to the Cox method; (iii) The results of the

fitting line with the Buckley-James method are easier to explain to non-

statisticians.
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6.5 Buckley-James censored regression

Buckley and James (1979) introduced the Buckley-James model as the re-

gression model for censored data. The model was developed by modi-

fying least square standard equations to make it suitable for a data set

exposed to censored observations.

Before further discussions about the Buckley-James censored regres-

sion, first let us review the standard linear regression with a complete data

set which can be written as

Yi = α + βxi + εi, (6.7)

where

• Yi is a response variable correponding to independent variable, xi

and i = 1, 2, . . . , n;

• α and β are parameters to be estimated;

• εi is assumed to be independent and identical random variables

with mean zero and variance σ2 and the distribution εi ∼ F .

By minimising the residual sum of squares, RSS =
n
∑

i=1

(Yi − α̂ − β̂xi)
2 one

can obtained the β as below

β̂ =

n
∑

i=1

(xi − x̄)Yi

n
∑

i=1

(xi − x̄)2

, (6.8)

and get α by finding the difference of Ȳ − β̂x̄.

Nevertheless, if right censored observations exist in the data set, which

causes the data set to be incomplete, then α and β will be biased by those

censored observations. This problem can be solved by using the Buckley-

James method, where one can replace censored observations with their
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expected values, E(Yi|Yi > ti). Many studies have proved the efficiency

of this method (see, Miller and Halpern, 1982; Weissfeld and Schneider,

1987; Heller and Simonoff, 1990; Hillis, 1993; Wu and Zubovic, 1995; Stare

et al., 2000).

Let the response variable be subjected to right censoring, then ith sub-

ject will have a related censoring time, ti. Now observed Zi, δi and xi for

i = 1, 2, . . . , n where Zi = min(Yi, ti) and δi is from equation 6.5.

Choose the survival time, Zi as ti; if the observation is censored, δi = 0

whereas if the observation is uncensored, δi = 1, then let the survival time,

Zi be as Yi. Now, renovate each of the old response variable, Yi based on

their censored status, δi.

If δi = 1, i.e. uncensored observation, then preserve the Yi value there-

fore the new response variable, Y ∗
i = Yi. However if δi = 0, compute the

new response variable, Y ∗
i .

From Smith (2002), one can find E(Y ∗
i (b)) = E(Yi) which assures the

linear regression model is not biased by E(Yi|Yi > ti) where b is an arbi-

trary slope to be estimated by Buckley-James algorithm.

Y ∗
i (b) =







bxi + Êb(ǫi(b)|ǫi(b) > ci(b)) if δi = 0,

Yi if δi = 1,
(6.9)

where

Êb(ǫi(b)|ǫi(b) > ci(b)) =

∫∞

ei
ǫdF̂b(ǫ)

∫∞

ei
dF̂b(ǫ)

=
n
∑

k=1

qik(b)ek(b) (6.10)

and qik(b) are the weights developed from the probability mass assigned

by the Kaplan-Meier estimator to ek(b).

Note that the residuals, ei(b) were obtained based on the selected sur-

vival time which corresponds to the δi. The different residual notations
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are

ci(b) = ti − bxi

ǫi(b) = Yi − bxi

ei(b) = Zi − bxi = min{ǫi(b), ci(b)}.

The residuals, ei(b) play an important role in developing the weights.

First, one has to sort the residuals from the smallest to the largest value

as e1(b) < e2(b) < . . . < en(b). Later, one can find Êb(ǫi(b)|ǫi(b) > ci(b)) as

(6.10) which qik can be computed as below

qik =











dF̂ (ek(b))δk(1 − δi)

Ŝ(ei(b))
if k > i,

0 if otherwise.

(6.11)

dF̂ (ek(b)) is the probability mass assigned by the Kaplan-Meier estimator

to ek and Ŝ(ei(b)) is the Kaplan-Meier estimate for ek(b). After finding the

renovated response variable, Y ∗, which is given by 6.9, one can develop

the Buckley-James estimator of β as follows

n
∑

i=1

(xi − x̄)(Y ∗
i − xiβ̂) = 0. (6.12)

By using the iteration, first get the initial estimate of the slope, β̂(0),

then, further, the Buckley-James estimator of β can be obtained as below

∑n
i=1(xi − x̄)Y ∗

i (β̂m)
∑n

i=1(xi − x̄)2
= β̂m+1, (6.13)

where Y ∗ is given by equation 6.9 and β̂m is the estimate of β for the mth

iteration, m = 1, 2, . . . .

The iteration is stopped when |β̂m+1 − β̂m| is small and reaches con-

vergence. However, note that sometimes the convergence may not be ob-
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tained, even after several iterations, especially when there are many cen-

sored observations in the data set compared to uncensored observations;

but there is always at least one consistent solution (James and Smith, 1984).

Later one can estimate α̂ as follows

α̂ =
Y ∗(β̂) − β̂xi

n
. (6.14)

6.5.1 Multivariate censored regression

Considering that researchers normally deal with data sets that contain

more than one covariate, the multivariate censored regression emerges

and can be defined as below

Y = Xβ + ε, ε ∼ F

where

• Y is a n× 1 vector of response variable, which is right censored;

• X is a known n× (p+ 1) matrix as the first column of 1’s to provide

an intercept;

• β is a (p + 1) × 1 vector of parameters where it is estimated by

bT = (b0, b1, . . . , bp);

• ε is n × 1 vector of errors and the distribution has an unknown

survival function, S = 1 − F .

If the matrix, X contains only uncensored observations, then the re-

gression parameters can be estimated as

b = (XTX)−1XTY. (6.15)

However, if X contains censored observations, then the regression param-

eters cannot be estimated directly as equation 6.15. Firstly, one needs to
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renovate the response variable for multivariate censored regression based

on the censor indicator, δT = (δ1, δ2, . . . , δn) as one did for linear censored

regression.

This can be done by the following equation

Y∗(b) = Xb + Q(b)(Z − Xb), (6.16)

where

Q(b) = diag(δ) + {qik(b)}

=



















δ1 q12(b) q13(b) . . . q1n(b)

0 δ2 q23(b) . . . q2n(b)
...

...
. . . . . .

...

0 0 0
. . . q(n−1)n(b)

0 0 0 . . . δn



















(6.17)

is the upper triangle Renovation Weight Matrix containing censored sta-

tus on the main diagonal (Smith, 2002) and ZT = (Z1, Z2, . . . , Zn) are the

observed responses subject to censoring indicator, δ and qik is

qik(b) =











dF̂ (ek(b))δk(1 − δi)

Ŝ(ei(b))
if k > i,

0 if otherwise,

(6.18)

where dF̂ (ek(b)) is the probability mass assigned by the Kaplan-Meier

estimator to ek and Ŝ(ei(b)) is the Kaplan-Meier estimate for ek(b). The

weight matrix Q satisfies (Smith, 2002):

• Q2 = Q and (I-Q)2 = I-Q (idempotence);

• Q1 = 1 where 1 is an n× 1 vector of 1’s (row sums);

• 1T Q = nvT where v = (υ1, υ2, . . . , υn)T (column sums);
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• W = I, the n× n identity matrix, in the absence of any censoring.

In multivariate censored regression, the iteration concept is still ap-

plied to develop the Buckley-James estimators:

bm+1 = (XTX)−1XT (Xbm +Q(bm)(Z −Xbm)). (6.19)

Recall thatm = 1, 2, . . . refers to the number of iterations as in the linear

censored regression. The solution of (6.19) can be obtained as the norm

of bm+1 − bm is small (James and Smith, 1984) and (Lin and Wei, 1992).

Nevertheless if the iteration fails to converge, one can solve this problem

by taking the average of all possible solutions of β (Wu and Zubovic, 1995).

Note that where there is an exact solution, the Buckley-James estimators

are given, as below

β̂ = (XTQX)−1XTQZ. (6.20)

Since QY ∗ = QZ, equation (6.20) can be rewritten as the following equa-

tion

β̂ = (XTQX)−1XTQY∗. (6.21)

6.5.2 Properties of the Buckley-James censored regression

Many comparisons and simulation studies on the Buckley-James model

have been done to evaluate its performance (see, Buckley and James, 1979;

Miller and Halpern, 1982; Moon, 1989; Heller and Simonoff, 1990).

In addition, studies on the Buckley-James censored regression asymp-

totic properties also have been given a great deal of attention, as in James

and Smith (1984), James (1986), Smith (1988) and Ritov (1990). In 1991, Lai

and Ying tried to modify and stabilize the Buckley-James estimators so as

to make them consistent as well as asymptotically normal under regularity

condition.

Studies on the Buckley-James covariance matrix can be found in Buck-

ley and James (1979), Smith (1986), Weissfeld and Schneider (1987), Ritov
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(1990), Hillis (1993) and Hillis (1994). The variance estimator proposed

by Buckley and James in 1979 was lacking in theoretical justification even

though previous studies showed it performed well in most situations (see,

Weissfeld and Schneider, 1987; Lin and Wei, 1992; Hillis, 1993). The covari-

ance estimator for β̂ given by Buckley and James (1979) can be written as

following

Σ̂β̂ = σ̂2
BJ

[

XT
u Xu

]−1

=
[

n
∑

i=1

δi

{

ei(b) − n−1
u

n
∑

i=1

δiei(b)
}2/(

nu − p
)][

XT
u Xu

]−1

, (6.22)

where nu is the number of uncensored observations and Xu represents the

design matrix corresponding to the uncensored observations. Later, Smith

(1986) proposed a variance estimator based on the asymptotic variance.

Weissfeld and Schneider (1987) also proposed an alternate covariance

matrix for β̂ as follows

Σ̂β̂ = σ̂2
WS

[

XT
u Xu

]−1

=
1

n

n
∑

i=1

[

δi{ei(b)}
2 + (1 − δi)

n
∑

k=1

qik(b){ek(b)}
2
][

XT
u Xu

]−1

, (6.23)

However, the Hillis (1993) and Hillis (1994) simulation studies showed

that the Smith (1986) variance estimator performed best.

Ritov (1990) suggested that variance estimation for Buckley-James model

can be done by following Tsiatis’s (1990) method. However, this idea was

disapproved by Wei, Ying and Lin (1995) because it was not stable for un-

censored data.
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6.6 Renovated diagnostics for Buckley-James cen-

sored regression

There are various techniques used to examine a model so as to discover the

outlying and influential observations in regression with a common data

set (details can be found in Belsley, Kuh and Welsch, 1980; Cook and Weis-

berg, 1982; Chatterjee and Hadi, 1988).

Thus in censored regression, particularly the estimators estimated us-

ing the Buckley-James method, one can find a few diagnostic tools. For

example, Smith and Zhang (1995) proposed renovated leverage value and

renovated scatterplot. One can also find scatterplot proposed by Hillis

(1995). In 1999, Smith and Peiris suggested using renovated added vari-

able plot. And the latest studies used measures of explained variation

(MVE) and renovated partial residual plot, proposed by Glasson (2007)

and Wang, Zhang, Ahmed and Aziz (2009) respectively.

6.6.1 Renovated Scatterplots and Residual Plots

Once the solution of the Buckley-James estimator is obtained, one will

also have the new response variable (Y ∗), particularly for censored ob-

servations, noting that the response variable for uncensored observations

would remain the same: recall equation 6.9. By using Y ∗, one can now

develop a scatterplot of X vs Y ∗. This means the plot contains renovated

points and uncensored points and it tends to display less scatter in the cen-

sored values since the censored residuals are renovated to their expected

positions, which tends to be close to the final regression line.

Renovated scatterplots and associated residual plots are not completely

the same as those used in simple linear regression. However, renovated

scatterplots are useful in visualising the upwards movement of the cen-

sored points caused by the Buckley-James algorithm, and their effect on

the final regression line (Glasson, 2007).
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Next, Hillis (1995) made an effort to develop a residual plot similar to

standard residual plot for standard regression. This plot was developed

by using modified residuals to examine heteroscedacity and the violation

of other distributional assumptions. The modified residuals are

e∗i = δi(Yi − xT
i β̂) + (1 − δi)Di, (6.24)

where Di is randomly generated from the conditional distribution esti-

mated from the fitted model (Glasson, 2007).

6.6.2 Renovated Added Variable Plots

The added variable plots are diagnostic tools that permit an evaluation

of the role of individual variables within the multiple regression model.

They are used to assess visually (i) whether a variable should be included

or not in the model and (ii) the presence of outliers and influential cases.

An added variable plot is a way to look at the marginal role of variable Xk

in the model, given that other independents are already in the model.

Smith and Peiris (1999) proposed the renovated added variable plot for

censored regression. Assume the censored regression model,

Y ∗ = β0 + β1X1 + β2X2,

then the renovated added variable plot for censored regression can be de-

fined in terms of residuals as the plot e∗(Y ∗|X1) against e∗(X2|X1) where

e∗(Y ∗|X1) is the renovated residual (Y ∗ regress onX1) and e∗(X2|X1) is the

renovated residual (X2 regress on X1).

It can be shown that the slope of the added variable plot of e∗(Y ∗|X1)

on e∗(X2|X1) is equal to the estimated coefficient β2 of X2 in the censored

regression model Y ∗ = β0 + β1X1 + β2X2 (see Smith and Peiris, 1999).

The stronger the linear relationship in the added variable plot, the more

important the additional contribution of X2 to the regression equation al-
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ready containing other predictors. If the scatter of the points shows no

marked slope, the variable is unlikely to be useful in the model.

6.6.3 Renovated Partial Residual Plot

The partial residual plot is also called the residual plus component plot.

This plot examines whether the linearity assumption in a multiple regres-

sion model appears to be satisfied. The plot can therefore suggest possi-

ble transformations for linearizing the data. The indication of normality

is however not present in the added variable plot because the horizontal

scale in the plot is not the variable itself.

The partial residual plot is a scatter plot of (e+ β̂jXj) versus Xj where

e is the ordinary least square residual when Y is regressed on all predictor

variables and β̂j is the cefficient of Xj in this regression. As in the added

variable plot, the slope of the points in this plot is β̂j , the regression coeffi-

cient of Xj.

In the case of censored regression, let us say one has the censored re-

gression model Y ∗ = β0 + β1X1 + β2X2, Wang et al. (2009) defined the ren-

ovated partial residual vector for X2 as R∗
X2

= (I − H∗)Y ∗ + X2β2, where

H∗ is the renovated hat matrix. From the plot, if the point lies very close to

the straight lines, it suggests the X2 affects the Y ∗ strength linearity. Wang

et al. (2009) also proved that the slope of the renovated partial residual

plot is equal to the β2 in Y ∗.

By using the Stanford heart transplantation model from Miller and

Halpern (1982), Wang et al. (2009) illustrated the renovated partial resid-

ual plots and their properties in the censored regression model. The coeffi-

cients of the fitted regression line are given in the Table 6.1 and it presents

strong evidence that the partial slope of Xi for renovate partial plots and

the corresponding regression coefficient for the full model, β̂i display al-

most the same value.
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Table 6.1: Regression Line for Stanford Heart Transplantation

Using Estimate of Coefficient

Variable β̂0 β̂1 β̂2

X1 and X2 182.750 1.136 62.197
X1 236.974 1.501 —
X2 228.950 — 64.550
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Figure 6.3: Renovated partial residuals plot using Stanford heart trans-
plant data for (a) X1 (b) X2

Both plots are useful, but the partial renovated residual plot is more

sensitive than the added variable plot in detecting nonlinearities in the

variable being considered for introduction in the model. The added vari-

able plot is, however easier to interpret and points out the influential ob-

servations.
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6.6.4 Renovated Hat Matrix

The hat matrix is used to identify the outlying observations (Belsley et al.,

1980). In 1995, Smith and Zhang proposed the renovated hat matrix, H∗

for censored regression. H∗ is developed from Lemma 2.1 in Chatterjee

and Hadi (1988). The renovated hat matrix for censored regression is given

as

H∗ = X(XTQX)−1XTQ

Next, one may define the vector of renovate residual,

e∗ = Y ∗ − Ŷ ∗ = Y ∗ −H∗Y ∗,

so that e∗ = (I − H∗)Y ∗. The H∗ is not symmetric, however it fulfills

(H∗)2 = H∗, (I−H∗)2 = I−H∗, tr(H∗) = p andH∗(Y ∗−Xβ) = 0. It follows

that the variance of the renovate residual estimate is σ2(e∗) = σ2(I −H∗).

Thus, the variance of an individual renovate residual, e∗i , is

σ2(e∗i ) = σ2(1 − h∗ii),

where h∗ii is from

diag(h∗11, h
∗
22, . . . , h

∗
nn) = diag(H∗)

and h∗ii can be calculated without calculating the whole H∗,

h∗ii = xT
i (XTQX)−1XT qi,

where qi can be calculated as equation 6.11. h∗ii measures the leverage of

an observation.

For standard regression cases where all observations are uncensored,

one can identify the high-leverage observation by comparing the hii value

with 2p/n (see, Belsley et al., 1980; Myers, 1990) where the hii value is given
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as below

hii = xT
i (XTX)−1xi. (6.25)

In censored regression, it is noted the h∗ii is equal to zero for δi = 0, i.e.

censored observation. In the case of δi = 1, i.e uncensored cases, if the

h∗ii > 2(p + 1)/n, then the observation could be flagged as uncommonly

large (Smith, 2004).

6.6.5 Measures of explained variation

Measures of explained variance (MEV) is a summary of the fit of a linear

regression. In common regression, it can be measured using coefficient of

determination

R2 = 1 −

∑n
i=1 e

2
i

∑n
i=1(yi − ȳ)

. (6.26)

The regression line perfectly fits the data if the R2 = 1. However, this

measurement cannot be used in survival analysis due to the existence of

the censored point. There are a few suggested MEV for survival analysis

in previous studies by Harrell (1986) and Kent and O’Quigley (1988) that

are based on a likelihood assumption; nevertheless, this proposed method

is not suitable to be applied to the Buckley-James model.

Therefore, in 2007, Glasson proposed a few versions of MEV for the

Buckley-James model; the first measurement of MEV was developed fol-

lowing the ideas of Smith and Zhang (1995) by using the renovated re-

sponse variable, Y ∗ (see 6.9) where

R2
G1 = 1 −

∑n
i=1(ê

∗
i )

2

∑n
i=1(y

∗
i − ȳ∗)

. (6.27)

However, the first measurement did not work well under high censoring

rates where it produced a large value of R2
G1 as the censored observations

tended to give more information in the Buckley-James model (Glasson,
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2007). Hence, he tried to solve this problem by suggesting MEV that com-

puted using uncensored observations only. The second measurement is

given as

R2
G2 = 1 −

∑n
i=1 δiê

2
i

∑n
i=1 δi(yi − (

∑n
i=1 δiyi

/

∑n
i=1 δi))

. (6.28)

However, the second measurement produced negative values ofR2
G2 when

he applied it to Stanford heart transplant data. Recall that R2 must be

between 0 and 1.

Consequently, he proposed a third measurement that was based on

pearson correlation coefficient between the uncensored response and the

uncensored predicted response; this approach follows Hocking (2003) and

can be defined as

r2
G3 =

∑n
i=1 δi{yi − (

∑n
i=1 δiyi

/

∑n
i=1 δi)}{ŷi − (

∑n
i=1 δiŷi

/

∑n
i=1 δi)}

{(
∑n

i=1 δi) − 1}s1s2
,

(6.29)

where s1 and s2 correspond to standard deviation of the uncensored re-

sponse and the uncensored predicted response. The third measurement

yielded a value of r2
G3 between 0 and 1 and the value was not inflated by

censored observations. Nonetheless, the diagnostic of r2
G3 with Stanford

heart transplant data showed very small values. From these three mea-

surements, only r2
G3 is reliable in practice; however, measures of explained

variation in the Buckley-James model need more attention and work in the

future.

6.7 Conclusion

This chapter mainly looked at the survival regression model, particularly

the Buckley-James model and the corresponding diagnostics analysis. In

the first instance, the idea of survival analysis and the relation to the cen-

soring data were briefly discussed .
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Note that in censoring, one can find three types of censoring, which are

censoring type I, censoring type II and random censoring. Censoring data

are related to the time and they cannot be analysed using the standard

analysis tools. Therefore, the use of survival analysis appears to solve

this problem. In survival analysis, there are two important functions: the

survival function and hazard function.

There are many methods in survival analysis that can be used to anal-

yse censoring data. Nowadays, researchers are interested in comparing

the survival distribution of two samples. Even though this can be done

by using the logrank test, this method cannot examine the effects of more

than one variable at a time. This difficulty can easily be overcome by us-

ing the survival regression model. Examples of the survival regression

model are the Cox model, Miller’s model, the Buckely-James model and

the Koul-Susarla-Van Ryzin model.

The Buckley-James model’s performance is comparable with the Cox

model and the former performs best when compared both to the Miller

model and the Koul-Susarla-Van Ryzin model. Previous comparison stud-

ies prove that the Buckley-James estimator is more stable and easier to

explain to non-statisticians than the Cox model. Today, researchers are in-

terested in using the Cox model instead of the Buckley-James model. This

occurred because of the lack of function of Buckley-James model in the

computer software and choices of diagnostics analysis.

Currently, there are only a few diagnostics analyses for Buckley-James

model that exist. Therefore, two new diagnostics analyses for the Buckley-

James model are proposed in Chapter 7.



Chapter 7

New diagnostics analysis for the

Buckley-James model

7.1 Introduction

In this chapter, two new diagnostics analyses of the Buckley-James model

will be discussed. The first diagnostic analysis is based on Cook’s idea,

and the second one is using Shi’s approach. It is acknowledged that Cook’s

statistics (Cook, 1977) are perhaps the best summary of influence due to its

tendency to amplify the influence of a case.

Therefore, Cook’s statistics are chosen to be modified in an attempt

to produce the quickest way to detect the influential case in censored re-

gression, particularly the Buckley-James model. In this chapter, the first

proposed diagnostic is called renovated Cook’s distance, RD∗
i which can

be found in §7.2. This approach seems to have advantages (depending on

the analyst’s demands) over

(i). DFIT∗
i = xT

i β̂ − xT
i β̂(i) as it measures the influence of case i on all n

fitted values Ŷ ∗
i (not just the fitted value for case i as DFIT∗

i );

144
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(ii). DBETA∗
i = β̂− β̂(i) since DBETA∗

i corresponds to the number of vari-

ables, p so it is usually easier to look at a diagnostic measure such as

RD∗
i since information in p can be considered simultaneously.

DFIT∗
i measure effect of change in fit and DBETA∗

i evaluate change in

the estimated regression coefficients for censored regression if the ith row

of Xn×(p+1) is deleted. β̂ represents the coefficients estimated for censored

regression of all cases and β̂(i) are the coefficients estimated for censored

regression when the ith row is deleted. The subscript i in parentheses is

read as “with case i is removed from Xn×(p+1)”. Recall

β̂ = (XTQX)−1XTQY ∗

where Y ∗ and Q is from equation 6.9 and 6.17 respectively.

Secondly, the local influence approach for the Buckley-James model is

proposed. In censored regression, one finds that most diagnostic stud-

ies using the local influence approach have only been applied to the Cox

model and the Kaplan-Meier model (see, Reid, 1981; Pettitt and Daud,

1989; Weissfeld, 1990; Escobar and Meeker, 1992; Barlow, 1997). §7.3 presents

the local influence diagnostics of the Buckley-James model, which consist

of

(i). variance perturbation;

(ii). response variable perturbation;

(iii). censoring status perturbation;

(iv). independent variables perturbation.

The advantage of local influence analysis for the Buckley-James model

is that this approach can discover influential censored observation. Re-

call that the renovated leverage used by Smith and Zhang (1995) can only

identify influence observations from the uncensored group.
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Next, these two suggested diagnostic methods in §7.4 are illustrated

using the Stanford heart transplant data set and the lung cancer data set.

The latter data set is considered so as to examine whether the proposed

method can be utilised by a large covariates data set. In this chapter, plot-

ting of survival data will denote the censored observations as solid circles

and uncensored observations as hollow triangles.

7.2 Renovated Cook’s distance for the Buckley-

James model

Cook’s distance was originally proposed by Cook in 1977. A large value

of Cook’s distance possibly indicates that a case is influential, that when

it is excluded from the regression, it will cause a substantial change in the

estimated regression function (Cook and Weisberg, 1980). As opposed to

DFIT∗
i , Cook’s distance measures the influence of ith cases on all n fitted

values Ŷ ∗
i .

DFIT∗
i for the Buckley-James model measures the influence of case i on

its own fitted value, Ŷ ∗
i . DFIT∗

i in §7.1 is given by Smith (2002) as

DFIT∗
i = xT

i β̂ − xT
i β̂(i) =

h∗iiǫ
∗
i

(1 − h∗ii)
, (7.1)

where ǫ∗i = Y ∗
i − xT

i β̂ and h∗ii = xT
i (XTQX)−1XT qi. Y ∗

i , qi and Q is from

equation 6.9, 6.11 and 6.17 respectively.

DFIT∗
i represents the number of estimated standard deviations of Ŷ ∗

i

where the fitted value Ŷ ∗
i increases or decreases with the inclusion case i

in regression.

In a general version of Cook’s distance for least square regression (LSR),

one can have

Di =
(Ŷ − Ŷ(i))

T (Ŷ − Ŷ(i))

pσ2
, (7.2)
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where Ŷ(i) is the deleted fitted value when the ith point is deleted.

Theorem 7.2.1 The renovated Cook’s distance is given as

RD∗
i =

(ê∗i )
2

ps2

{

h∗∗ii
(1 − h∗ii)

2

}

where h∗∗ii = qT
i X(XTQX)−1XT qi and h∗ii = xT

i (XTQX)−1XT qi.

Proof:

First, let the Buckley-James estimators be

β̂ = (XTQX)−1(XTQY ∗). (7.3)

Therefore, the Buckley-James estimators without ith observation are given

as

β̂(i) = (XT
(i)Q(i,i)X(i))

−1(XT
(i)Q(i,i)Y

∗
(i))

=
[

XTQX − xiq
T
i X
]−1[

XTQY ∗ − xiq
T
i Y

∗
]

=
[

(XTQX)−1XTQY ∗ +
(XTQX)−1XT qix

T
i (XTQX)−1XTQY ∗

1 − xT
i (XTQX)−1XT qi

]

−

[{

(XTQX)−1 +
(XTQX)−1XT qix

T
i (XTQX)−1

1 − xT
i (XTQX)−1XT qi

}

XT qiy
∗
i

]

=
[

β̂ +
(XTQX)−1XT qix

T
i β̂

1 − xT
i (XTQX)−1XT qi

]

−

[{

1 +
xT

i (XTQX)−1XT qi
1 − xT

i (XTQX)−1XT qi

}

(XTQX)−1XT qiy
∗
i

]

=
[

β̂ +
(XTQX)−1XT qix

T
i β̂

1 − xT
i (XTQX)−1XT qi

]

−
[ (XTQX)−1XT qiy

∗
i

1 − xT
i (XTQX)−1XT qi

]

, (7.4)
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where

Q(i,i) =











































δ1 q12 q13 . . . q1(i−1) q1(i+1) . . . . . . q1n

0 δ2 q23 . . . q2(i−1) q2(i+1) . . . . . . q2n

... 0
. . . . . .

...
...

...
...

...
...

. . . . . . . . .

0
...

. . . δ(i−1) q(i−1)(i+1) . . . . . . q(i−1)n

... 0 δ(i+1) . . . . . . q(i+1)n

... 0
. . . . . .

...
...

. . . . . .
...

0 0 . . . 0 . . . . . . . . . 0 δn











































(n−1)×(n−1)

(7.5)

is the upper triangle Renovation Weight Matrix when ith row and column

are deleted from the matrix.

So h∗ii = xT
i (XTQX)−1XT qi becomes a renovated leverage for censored

regression, thus replacing h∗ii in 7.4, resulting in the Buckley-James estima-

tors without ith observation as

β̂(i) =
{

β̂ +
(XTQX)−1XTqix

T
i β̂

1 − h∗ii

}

−
{(XTQX)−1XT qiy

∗
i

1 − h∗ii

}

= β̂ +
{

(XTQX)−1XTqi

}{(xT
i β̂) − y∗i
1 − h∗ii

}

= β̂ −
{

(XTQX)−1XT qi

}{y∗i − ŷi

1 − h∗ii

}

= β̂ −
{

(XTQX)−1XT qi

}{ ê∗i
1 − h∗ii

}

. (7.6)
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By using equation 7.6, the renovated Cook’s distance for censored regres-

sion can be written as

RD∗
i =

(β̂(i) − β̂)TS(β̂(i) − β̂)

ps2

=
1

ps2



−

{

(XTQX)−1XT qi

}

ê∗i

1 − h∗ii





T

XTQX



−

{

(XTQX)−1XT qi

}

ê∗i

1 − h∗ii





=
(ê∗i )

2

ps2

{qT
i X(XTQX)−1XT qi

(1 − h∗ii)
2

}

=
(ê∗i )

2

ps2

{ h∗∗ii
(1 − h∗ii)

2

}

, (7.7)

where S = XTQX , s2 is estimate variance and h∗∗ii = qT
i X(XTQX)−1XT qi

and ê∗i = y∗i − ŷi.�

Theorem 7.2.2 The renovated leverage of an observation in censored regression,

h∗ii, can be presented in the following form, qT
i X(XTQX)−1XT qi, which is de-

fined as h∗∗ii . Therefore, h∗∗ii = h∗ii.

Proof:

Let the renovated leverage become

H∗ = X(XTQX)−1XTQ

and

X = (X1 X2),

where X1 is an (n× r) matrix of rank r and X2 is an n × (k − r) matrix of

rank k − r. From lemma 1 in Smith and Peiris (1999, page 1990), one can

find

H∗ = H∗
1 + (I −H∗

1 )(X2MXT
2 Q)(I −H∗

1),
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where H∗
1 = X1(X

T
1 QX1)

−1XT
1 Q and M = [XT

2 Q(I −H∗
1 )X2]

−1.

By using Lemma 2.1 in Chatterjee and Hadi (1988), H∗∗ can be devel-

oped as below

H∗∗ = QX(XTQX)−1XTQ

=
(

QX1 : QX2

)

(

XT
1 QX1 XT

1 QX2

XT
2 QX1 XT

2 QX2

)−1(

XT
1 Q

XT
2 Q

)

=
(

QX1 : QX2

)

(

v11 v12

v21 M

)(

XT
1 Q

XT
2 Q

)

= X1(X
T
1 QX1)

−1XT
1 QQ+ (I −H∗

1 )(X2MXT
2 QQ)(I −H∗

1 )

= X1(X
T
1 QX1)

−1XT
1 Q

2 + (I −H∗
1 )(X2MXT

2 Q
2)(I −H∗

1 ),

where

v11 = (XT
1 QX1)

−1 + (XT
1 QX1)

−1(XT
1 QX2)M(XT

2 QX1)(X
T
1 QX1)

−1;

v12 = −(XT
1 QX1)

−1(XT
1 QX2)M ;

v21 = −M(XT
2 QX1)(X

T
1 QX1)

−1.

From the properties of the weight matrix, it is known that Q2 = Q, idem-

potence, see the proof of Q2 = Q in Smith (2004, page 167).

Hence,

H∗∗ = X1(X
T
1 QX1)

−1XT
1 Q

2 + (I −H∗
1 )(X2MXT

2 Q
2)(I −H∗

1 )

= X1(X
T
1 QX1)

−1XT
1 Q+ (I −H∗

1 )(X2MXT
2 Q)(I −H∗

1 )

= H∗
1 + (I −H∗

1 )(X2MXT
2 Q)(I −H∗

1 )

= H∗.�

Since the renovated leverage, h∗ii, comprises the diagonal entries of H∗,

therefore h∗∗ii = h∗ii. Based on Theorem 7.2.2 above, Theorem 7.2.3 is given

as follows:
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Theorem 7.2.3 The renovated Cook’s distance is given as

RD∗
i =

(ê∗i )
2

ps2

{

h∗ii
(1 − h∗ii)

2

}

where h∗ii = xT
i (XTQX)−1XT qi.

The formulae shows that RD∗
i is large when either renovated residual,

e∗i , or the renovated leverage, h∗ii, is large, or both. It should be noted

that due to censoring estimates of the residual variance, s2 could easily

inflate theRD∗
i . This problem is solved by calculating s2 using the variance

estimator proposed by Smith in 1986. Simulation studies by Hillis (1993)

and Hillis (1994) showed Smith’s estimator performed best. Smith’s (1986)

variance estimator is given as

σ̂2
SMITH =

nu

nu − 2
g−2
[

n
∑

i=1

(xi − x̄)2σ̃2
i

]

, (7.8)

where nu is the number of uncensored observations, σ̃2
i and g are defined

by

σ̃2
i =

∫

ǫ2dF̂β̂(ǫ) − (1 − δi)

[
∫∞

ei
ǫ2dF̂β̂(ǫ)

∫∞

ei
dF̂β̂(ǫ)

−

{
∫∞

ei
ǫdF̂β̂(ǫ)

∫∞

ei
dF̂β̂(ǫ)

}2]

,

where

∫

ǫ2dF̂β̂(ǫ) =
1

n

n
∑

i=1

[

δi[ei(b)]
2 + (1 − δi)

n
∑

k=1

qik(b)[ek(b)]
2

]

and

g =

n
∑

i=1

(xi − x̄)2
[

1 − (1 − δi)p̂i(b)
]

,

where

p̂i(b) = 1 + λ̂(ei)

[

ei −

∫∞

ei
ǫdF̂β̂(ǫ)

∫∞

ei
dF̂β̂(ǫ)

]

.
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λ̂(ei) is the estimated hazard function for ei and it is calculated using the

life table method as in Lee (1980). Influence cases can easily be detected

by using the index plot {i, RD∗
i } where i is the case number, particularly

for influential observations that belong to the uncensored group.

Recall that the original Cook’s distance will flag observations in stan-

dard regression from normal data i.e. uncensored data that is greater than

1 or 2 as influential (Velleman and Welsch, 1981). The principle occurs

as there is an argument that Cook’s distance does not have F-distribution

(Chatterjee and Hadi, 1988). Following this reference point, the uncen-

sored data using the renovated Cook’s distance also will be given extra

attention if their RD∗
i value is greater than 1 or 2.

In censored regression, it is noted that the RD∗
i is equal to zero for ob-

servation with δi = 0, i.e. censored observation. This follows from h∗ii, re-

call that h∗ii = 0 for censored observations. Even though the circumstances

agree well with Weissfeld and Schneider’s (1990) analysis, censored obser-

vations have a high tendency to be less influential than uncensored obser-

vations; nevertheless, one still has to be aware of the potency of censored

observations to influence the censored regression. This issue is futher dis-

cussed and a new diagnostic tool based on local influence is proposed in

§7.3 to overcome this issue.

7.3 Local influence for the Buckley-James model

Another method that one can use to discover influential observations in

a data set is called local influence. It was also proposed by Cook in 1986

and was based on likelihood displacement. It is an alternative method to

the global influence, i.e. deletion case, which suffers from a form of the

masking effect. Details regarding diagnostics based on case deletion can

be found in Andrews and Pregibon (1978), Atkinson (1981) and Johnson

and Geisser (1983).

Even though the local influence method has been applied mostly to
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regression models, it also works well in other statistical areas. As an ex-

ample, Shi (1997) studied local influence in a multivariate model. He pre-

sented the idea of combining a general influence function and generalised

Cook statistic as a new concept of local influence. This concept is easier to

apply without considering a likelihood assumption.

In a censored regression, most diagnostic studies based on local influ-

ence have been done for the Cox model and the Kaplan-Meier model (see,

Reid, 1981; Pettitt and Daud, 1989; Weissfeld, 1990; Escobar and Meeker,

1992; Barlow, 1997).

Studies on influence observations for the Cox model using the local

influence method can be found in Pettitt and Daud (1989) and Weissfeld

(1990). Pettitt and Daud (1989) proposed an overall measure of influence

that uses the asymptotic covariance matrix, where this measure approxi-

mates the change in likelihood displacement if the individual observation

is deleted.

The local influence method proposed by Weissfeld (1990) was different

from Pettitt and Daud (1989) since it was based on perturbation of the

likelihood function and perturbation of covariates included in the model.

Barlow (1997) also suggested a different local influence approach from

Pettitt and Daud (1989) by measuring the estimated influence of each indi-

vidual on the maximum likelihood estimate of the regression parameters.

Another study that used the local influence approach was done by Escobar

and Meeker (1992). They used the local influence approach to detect data

perturbations that have an important effect on the maximum likelihood

estimates of regression model parameters based on the censored data.
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This section presents the local influence diagnostics in the Buckley-

James model, which consist of

(i). variance perturbation;

(ii). response variable perturbation;

(iii). censoring status perturbation;

(iv). independent variables perturbation.

To evaluate the local change of small perturbation on some issues, we

first define the general influence function and generalised Cook statistics

proposed by Shi (1997). The general influence function of T ∈ Rp+1, can

be displayed as

GIF (T, h) = limε→0
T (wo + ǫh) − T (wo)

ǫ

where w = wo + ǫh ∈ Rn describes a perturbation with the null perturba-

tion, wo fulfils T (wo) = T and h ∈ Rn refers to a unit-length vector. Next,

one can specify generalised Cook statistics to measure the influence of the

perturbations on T as

GC(T, h) =
{GIF (T, h)}T M {GIF (T, h)}

c
,

where M is a p× p positive-definite matrix and c is a scalar. One may find

a direction of hmax(T ) to perturb a datum and maximize local change in

T . The direction of hmax(T ) can be derived by maximizing the absolute

value of GC(T, h) with respect to h. The serious local influence appears if

maximum value GCmax(T ) = GC(T, hmax(T )).
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7.3.1 Perturbing the variance for censored regression

By using the Buckley-James estimators as follows

b = (XTQX)−1XTQY ∗ (7.9)

perturb the variance of the error in equation 7.9, by replacing ǫ as

ǫw ∼ N(0, σ2W−1).

Let W be diagonal matrix

W =















w1 0
. . . 0

0 w2
. . . 0

...
...

. . .
...

0 0 · · · wn















(7.10)

and vector wT = (w1, w2, . . . , wn) and w is given by,

w = w◦ + ǫh,

where

wT
◦ = (1, 1, . . . , 1),

the n-vector of ones and

hT = (h1, h2, . . . , hn),

refers to a unit-length vector.
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Lemma 7.3.1 It is noted that the general influence function of b under the per-

turbation is obtained as GIF (b, h) = (XTQX)−1XTQD(e∗)h.

Proof:

Hence, W in equation 7.10 can be written as

W = D(w)

=















w1 0
. . . 0

0 w2
. . . 0

...
...

. . .
...

0 0 · · · wn















=















1 + ǫh1 0
. . . 0

0 1 + ǫh2
. . . 0

...
...

. . .
...

0 0 · · · 1 + ǫhn















= In + ǫD(h), (7.11)

where In =













1 0 0 0

0 1 0 0
...

...
. . .

...

0 0 · · · 1













and D(h) =













h1 0 0 0

0 h2 0 0
...

...
. . .

...

0 0 · · · hn













.

Now equation 7.9 becomes

b(w) = (XTWQX)−1XTWQY ∗. (7.12)
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By replacingW = diag(w1, w2, . . . , wn) in equation 7.12, b(w) can be rewrit-

ten as below

b(w) = (XT{In + ǫD(h)}QX)−1XTWQY ∗

= (XTQX + ǫXTD(h)QX)−1XTWQY ∗

=
{

(XTQX)−1 − ǫ[(XTQX)−1XTQD(h)X(XTQX)−1] +O(ǫ2)
}

×XTWQY ∗

= [(XTQX)−1 − ǫ
{

(XTQX)−1XTQD(h)X(XTQX)−1
}

] ×XTWQY ∗,

where XTWQY ∗ = XT{In + ǫD(h)}QY ∗ = XTQY ∗ + ǫXTQD(h)Y ∗.

Therefore, b(w) is given by

b(w) = [(XTQX)−1 − ǫ
{

(XTQX)−1XTQD(h)X(XTQX)−1
}

] ×XTWQY ∗

= [(XTQX)−1 − ǫ
{

(XTQX)−1XTQD(h)X(XTQX)−1
}

]

× (XTQY ∗ + ǫXTQD(h)Y ∗)

= b+ ǫ
{

(XTQX)−1(XTQD(h)e∗)
}

+O(ǫ2). (7.13)

From equation 7.13, the general influence function of b under the per-

turbation is obtained as

GIF (b, h) = (XTQX)−1XTQD(h)e∗

= (XTQX)−1XTQD(e∗)h.� (7.14)

Theorem 7.3.2 To assess the influence of the variance perturbations, the gener-

alized Cook statistics are defined as

(i). GC1(b, h) = hTD(e∗)(H∗)2 △D(e∗)h/ps2 and

(ii). GC2(b, h) = hTD(e∗)(H∗)2D(e∗)h/ps2

Proof:

By using lemma 7.3.1, the generalised Cook statistic of b is developed. It is
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scaled by M = XT △X in censored regression following that

cov(b) = (XT △X)−1σ2
BJ ,

where △ = diag(δ1, δ2, . . . , δn).

GC1(b, h) =
GIF (b, h)XT △XGIF (b, h)

ps2

=
hTD(e∗)QX(XTQX)−1XT △X(XTQX)−1XTQD(e∗)h

ps2

=
hTD(e∗)H∗ ×△×H∗D(e∗)h

ps2
.

Therefore

GC1(b, h) =
hTD(e∗)(H∗)2 △D(e∗)h

ps2
, (7.15)

where H∗ = X(XTQX)−1XTQ is renovated leverage for censored regres-

sion.

By applying M = XTX to the scaled generalised Cook statistic, which

is based on least square regression framework ’ cov(b) = (XTX)−1σ2, one

can find GC2(b, h) as follows

GC2(b, h) =
GIF (b, h)XTXGIF (b, h)

ps2

=
hTD(e∗)QX(XTQX)−1XTX(XTQX)−1XTQD(e∗)h

ps2

=
hTD(e∗)H∗ ×H∗D(e∗)h

ps2

=
hTD(e∗)(H∗)2D(e∗)h

ps2
.� (7.16)

The diagnostic direction hmax can be obtained by calculating the eigen-

vector correpsonding to the largest eigen value of matrices D(e∗)(H∗)2 △

D(e∗) and D(e∗)(H∗)2D(e∗) from equation (7.15) and (7.16) respectively.
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7.3.2 Perturbing response variables for censored regression

Theorem 7.3.3 To assess the influence of the response variables perturbations,

two generalised Cook statistics can be developed by using the scaleM = XT △X

and M = XTX based on censored regression and the least square regression

framework (LSR), which are hT (H∗)2 △ h/ps2 and hT (H∗)2h/ps2 respectively.

Proof:

The response variable can be perturbed as follows

Y ∗
w = Y ∗ + εh,

where h ∈ Rn refers to a unit-length vector. Let equation (XTQX)−1XTQY ∗

become

(XTQX)−1XTQY ∗
w = (XTQX)−1XTQ(Y ∗ + εh)

= (XTQX)−1XTQY ∗ + ε(XTQX)−1XTQh

= b+ ε(XTQX)−1XTQh. (7.17)

Therefore, the general influence function of b under the perturbation can

be shown as

GIF (b, h) = (XTQX)−1XTQh. (7.18)

Now two generalised Cook statistics can be developed by using the scale

M = XT △ X and M = XTX based on censored regression and the least

square regression framework (LSR), which are

cov(b) =







(XT △X)−1σ2
BJ if (censored regression),

(XTX)−1σ2 if (LSR).
(7.19)
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respectively, where △ = diag(δ1, δ2, . . . , δn). Hence,

GC1(b, h) =
GIF (b, h)(XT △X)GIF (b, h)

ps2

=
hTQX(XTQX)−1XT △X(XTQX)−1XTQh

ps2

=
hT (H∗)2 △ h

ps2
(7.20)

and

GC2(b, h) =
GIF (b, h)(XTX)GIF (b, h)

ps2

=
hTQX(XTQX)−1XTX(XTQX)−1XTQh

ps2

=
hT (H∗)2h

ps2
.� (7.21)

7.3.3 Perturbing censoring status for censored regression

Theorem 7.3.4 To assess the influence of the censoring status perturbations, the

generalized Cook statistics are defined as

(i). GC1(b, h) =
{1 + εh}TD(e∗)X(XTQX)−1(XT △X)(XTQX)−1XTD(e∗){1 + εh}

ps2

and

(ii). GC2(b, h) =
{1 + εh}TD(e∗)X(XTQX)−1(XTX)(XTQX)−1XTD(e∗){1 + εh}

ps2
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Proof:

Note that the weight matrix is given as

Q(b) = diag(δ) + {qik(b)}

=



















δ1 q12(b) q13(b) . . . q1n(b)

0 δ2 q23(b) . . . q2n(b)
...

...
. . . . . .

...

0 0 0
. . . q(n−1)n(b)

0 0 0 . . . δn



















(7.22)

If the censored status is perturbed as

Qw(b) = Q(b) +W.

Recall

W =













w1 0 0 0

0 w2 0 0
...

...
. . .

...

0 0 · · · wn













=













1 + ǫh1 0 0 0

0 1 + ǫh2 0 0
...

...
. . .

...

0 0 · · · 1 + ǫhn













= In + ǫD(h).
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Therefore

Qw(b) = Q(b) + In + ǫD(h)

= diag(δ) + {qik(b)} + diag(1 + εh)

=





















δ1 q12(b) q13(b) . . . q1n(b)

0 δ2 q23(b) . . . q2n(b)
...

...
. . .

. . .
...

0 0 0
. . . q(n−1)n(b)

0 0 0 . . . δn





















+





















1 + εh1 0 0 . . . 0

0 1 + εh2 0 . . . 0
...

...
. . .

. . .
...

0 0 0
. . . 0

0 0 0 . . . 1 + εhn





















= diag(δ + 1 + εh) + {qik(b)}

=





















δ1 + 1 + εh1 q12(b) q13(b) . . . q1n(b)

0 δ2 + 1 + εh2 q23(b) . . . q2n(b)
...

...
. . .

. . .
...

0 0 0
. . . q(n−1)n(b)

0 0 0 . . . δn + 1 + εhn





















. (7.23)

Hence,

(XTQwX)−1XTQwY
∗

= (XT (Q+W )X)−1XT (Q+W )Y ∗

= (XTQX +XTWX)−1(XTQY ∗ +XTWY ∗)

=

{

(XTQX)−1XTQY ∗ −
(XTQX)−1XTWX(XTQX)−1XTQY ∗

1 + xT
i (XTQX)−1XTwi

}

+

[{

(XTQX)−1 −
(XTQX)−1XTWX(XTQX)−1

1 + xT
i (XTQX)−1XTwi

}

XTWY ∗

]

.

Let W = In + εD(h), therefore
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(XTQwX)−1XTQwY
∗

=

{

b−
(XTQX)−1XT{In + εD(h)}Xb

1 + xT
i (XTQX)−1XTwi

}

+

{

(XTQX)−1XT{In + εD(h)}Y ∗

1 + xT
i (XTQX)−1XTwi

}

= b+ (XTQX)−1XT e∗ + ε(XTQX)−1XTD(h)e∗ +O(ǫ2)

= b+ (XTQX)−1XT{e∗ + εD(h)e∗} +O(ǫ2).

Now one can describe the general influence function as the follows

GIF (b, h) = (XTQX)−1XT{e∗ + εD(h)e∗}

= (XTQX)−1XTD(e∗){1 + εh},

where 1T = (1, 1, . . . , 1) and hT = (h1, h2, . . . , hn). Therefore generalised

Cooks using M = XT △X becomes

GC1(b, h)

=
GIF (b, h)(XT △X)GIF (b, h)

ps2

=
{1 + εh}TD(e∗)X(XTQX)−1(XT △X)(XTQX)−1XTD(e∗){1 + εh}

ps2
.

(7.24)

Now, let M = XTX , hence

GC2(b, h)

=
GIF (b, h)(XT △X)GIF (b, h)

ps2

=
{1 + εh}TD(e∗)X(XTQX)−1(XTX)(XTQX)−1XTD(e∗){1 + εh}

ps2
.�

(7.25)
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7.3.4 Perturbing independent variables for censored regres-

sion

In global influence, the ith case can be considered as influential on inde-

pendent variables if deleting it from the data set will change the estimated

regression function. This crisis can be seen in local influence by introduc-

ing small perturbations to independent variables. If one perturbs the ith

column of X as

Xw = X + ǫlihd
T
i ,

where

• li represents the scale factor, this accounts for the different measure-

ment units associated with the columns ofX . Normally li is the stan-

dard deviation of the ith coefficient (Weissfeld, 1990);

• i = 1, 2, . . . , p and

• di is a p× 1 vector with one in the ith position and zeroes elsewhere.

Lemma 7.3.5 It is noted that the general influence function of b under the per-

turbation is obtained as GIF (b, h) = li(X
TQX)−1[di(e

∗)T − biX
T ]Qh.

Proof:

Therefore,

(XT
wQXw)−1 =

{

(X + ǫlihd
T
i )TQ(X + ǫlihd

T
i )
}−1

=
{

XTQX + ǫli(X
TQhdT

i + dih
TQX + dih

′

hdT
i )
}−1

= (XTQX)−1 − ǫli(X
TQX)−1×

(XTQhdT
i + dih

TQX + dih
ThdT

i )(XTQX)−1 +O(ǫ2)

and XT
wQY

∗ = (X + ǫlihd
T
i )TQY ∗ = XTQY ∗ + ǫlidih

TQY ∗.
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Later, one can find (XT
wQXw)−1(XT

wQY
∗) as

(XT
wQXw)−1(XT

wQY
∗)

= (XTQX)−1XTQY ∗ + ǫli(X
TQX)−1

{dih
TQY ∗ − (XTQhdT

i + dih
TQX)(XTQX)−1(XTQY ∗)

− ǫlidih
Thdi(X

TQX)−1(XTQY ∗)} +O(ǫ2)

= b+ ǫli(X
TQX)−1{dih

TQY ∗ − (XTQhdT
i + dih

TQX)

(XTQX)−1(XTQY ∗)} +O(ǫ2)

= b+ ǫli(X
TQX)−1

{

dih
TQ(e∗) −XTQhdT

i b
}

+O(ǫ2).�

Thus the general influence function of b under the perturbation can be

shown as

GIF (b, h) = li(X
TQX)−1[dih

TQ(e∗) −XTQhdT
i b].

One can replace the ith element of b, therefore dT
i b = bi and now one has

GIF (b, h) = li(X
TQX)−1[di(e

∗)T − biX
T ]Qh. (7.26)

Theorem 7.3.6 To assess the influence of the independent variables perturba-

tions, the generalized Cook statistics are defined as

(i). GC1(b, h) =
l2i h

TH∗ △
{

e∗dT
i − biX

}

(XTQX)−1
{

di(e
∗)T − biX

T
}

Qh

ps2

and

(ii). GC2(b, h) =
l2i h

TH∗
{

e∗dT
i − biX

}

(XTQX)−1
{

di(e
∗)T − biX

T
}

Qh

ps2

Proof:

By using lemma 7.3.5, two generalised Cook statistics for b are constructed

as:
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GC1(b, h)

=
GIF (b, h)(XT △X)GIF (b, h)

ps2

=
l2i h

TQ
{

e∗dT
i − biX

}

(XTQX)−1(XT △X)(XTQX)−1
{

di(e
∗)T − biX

T
}

Qh

ps2

=
l2i h

TH∗ △
{

e∗dT
i − biX

}

(XTQX)−1
{

di(e
∗)T − biX

T
}

Qh

ps2
, (7.27)

whereas

GC2(b, h)

=
GIF (b, h)(XTX)GIF (b, h)

ps2

=
l2i h

TQ
{

e∗dT
i − biX

}

(XTQX)−1(XTX)(XTQX)−1
{

di(e
∗)T − biX

T
}

Qh

ps2

=
l2i h

TH∗
{

e∗dT
i − biX

}

(XTQX)−1
{

di(e
∗)T − biX

T
}

Qh

ps2
.� (7.28)

Equations (7.27) and (7.28) were developed using similar scales as §7.3.3

and △ = diag(δ1, δ2, . . . , δn). One can obtain the diagnostic direction hmax

by computing the eigenvector corresponding to the largest eigenvalue of

the following matrice

H∗ △
{

e∗dT
i − biX

}

(XTQX)−1
{

di(e
∗)T − biX

T
}

Q,

or

H∗
{

e∗dT
i − biX

}

(XTQX)−1
{

di(e
∗)T − biX

T
}

Q

from equation (7.27) and (7.28) respectively.
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7.4 Analysis

The Stanford heart transplant data set will be analysed to illustrate the pro-

posed diagnostics analysis of the Buckley-James model. This is a standard

data set for censored regression. It is taken from a Stanford heart trans-

plant programme which ran from October 1967 until April 1974. It has

had a number of versions since then. In this chapter, three different ver-

sions of the Stanford heart transplant data set, corresponding to sample

sizes of 69, 152 and 184, are used. Details about this data set are explained

in Crowley and Hu (1977).

The second data set is lung cancer data, which are taken from Law-

less (1982). This data set is considered in order to examine whether the

diagnostics analysis suggested in this chapter is able to handle large co-

variates, due to the concern that it is more difficult to identify influential

and peculiar observations in high dimensions.

7.4.1 Illustration of renovated Cook’s distance

To illustrate the renovated Cook’s distance in §7.2, the Stanford heart trans-

plant data, with a sample size of 69 patients is considered. The involved

variables are:

(i). date at acceptance into the programme, t1;

(ii). date last seen, t2;

(iii). survival time in days (y), where y = t2 − t1;

(iv). date of transplantation, t3 where t1 ≤ t3 ≤ t2;

(v). date of birth, t4;
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(vi). transplant status, s1

s1 =







0 if non transplant,

1 if transplant;

(vii). the censored status (δi)

δi =







0 if censored, i.e patient alive until 1st April 1974,

1 if uncensored, i.e patient deceased;

(viii). age last seen in days (x), where x = t2 − t4.

In this section, the data are taken from R library. The data on patients

who were admitted to the programme but did not receive the transplant

(s1 = 0) have been omitted. That is why, for the illustration of renovated

Cook’s distance, only 69 patients were used and of these 69 patients, 45

were deceased, i.e. were uncensored and 24 were alive, i.e. were censored.

The explanatory variables are censored status and age in years. Since

the data for the age are given in days, it is divided by 365. A patient who

died on the same day as his/her transplant is given a survival time of

one day. The response variable is survival time, and it is transformed to

log base 10, as the linear model is often appropriate when the response

variable is measured on the logarithm scale (Buckley and James, 1979).

Table 7.1 provides detailed information about each observation for resid-

ual (ê∗i ), censored status (δi), leverage (hii), renovated leverage (h∗ii) or

(h∗∗ii ) and renovated Cook’s distance (RD∗
i ). One can clearly see that h∗ii

is similar to h∗∗ii from Table 7.1. These findings agree well with theorem

7.2.2 in §7.2.
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Table 7.1: Detailed information of the Stanford heart transplant data based
on age, ê∗i , δi, hii, h

∗
ii, h

∗∗
ii , RD

∗
i

Cases Age ê∗i δi hii h∗ii = h∗∗ii RD∗
i

1 35.1 -2.620 0 0.027 0.000 0.000
2 41.5 -2.440 1 0.021 0.030 1.881
3 54.1 -2.086 1 0.019 0.029 1.334
4 40.3 -1.996 1 0.017 0.037 1.565
5 29.2 -1.706 1 0.015 0.155 6.239
6 28.6 -1.688 0 0.028 0.000 0.000
7 40.3 -1.327 1 0.026 0.038 0.718
8 55.3 -1.052 1 0.017 0.035 0.417
9 36.2 -0.945 1 0.036 0.071 0.722

10 54.3 -0.904 1 0.030 0.030 0.257
11 23.6 -0.901 0 0.016 0.000 0.000
12 45.0 -0.864 0 0.016 0.000 0.000
13 42.8 -0.812 1 0.043 0.027 0.184
14 42.5 -0.749 1 0.021 0.028 0.165
15 52.1 0.556 1 0.045 0.021 0.066
16 53.0 -0.719 1 0.027 0.024 0.128
17 19.6 -0.697 1 0.015 0.347 3.903
18 56.9 -0.645 1 0.078 0.045 0.204
19 26.7 -0.083 0 0.016 0.000 0.000
20 53.8 -0.632 1 0.020 0.027 0.112
21 46.3 -0.606 1 0.016 0.017 0.064
22 47.1 -0.575 1 0.059 0.016 0.054
23 45.3 0.769 1 0.018 0.019 0.117
24 49.0 -0.497 1 0.018 0.015 0.039
25 50.6 -0.476 1 0.016 0.017 0.040
26 53.3 -0.427 1 0.015 0.025 0.047
27 52.5 -0.423 1 0.033 0.022 0.041
28 49.1 -0.413 1 0.016 0.015 0.027
29 51.3 -0.345 1 0.015 0.019 0.023
30 51.1 -0.337 1 0.031 0.018 0.021
31 54.6 -0.265 1 0.014 0.031 0.023
32 56.4 -0.222 1 0.016 0.041 0.022
33 61.5 -0.206 1 0.015 0.084 0.042
34 43.9 -0.166 1 0.022 0.024 0.007
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table 7.1 continued

Cases Age ê∗i δi hii h∗ii = h∗∗ii RD∗
i

35 48.0 -0.153 1 0.024 0.015 0.004
36 47.4 -0.107 1 0.015 0.016 0.002
37 26.7 -0.633 0 0.019 0.000 0.000
38 51.8 -0.017 1 0.016 0.020 0.000
39 64.5 -0.015 1 0.048 0.116 0.000
40 42.7 0.067 1 0.016 0.031 0.001
41 47.8 0.112 0 0.020 0.000 0.000
42 48.8 0.169 1 0.145 0.017 0.005
43 32.7 0.224 0 0.015 0.000 0.000
44 49.5 0.232 1 0.015 0.017 0.010
45 48.7 0.247 0 0.023 0.000 0.000
46 48.0 0.251 1 0.015 0.019 0.012
47 46.5 0.360 0 0.084 0.000 0.000
48 49.0 0.361 0 0.034 0.000 0.000
49 38.8 0.426 0 0.067 0.000 0.000
50 54.4 0.453 0 0.021 0.000 0.000
51 36.7 0.469 0 0.016 0.000 0.000
52 41.4 0.481 0 0.026 0.000 0.000
53 47.4 0.496 0 0.015 0.000 0.000
54 48.8 0.507 1 0.023 0.027 0.071
55 52.9 0.523 0 0.024 0.000 0.000
56 52.1 -0.727 0 0.017 0.000 0.000
57 48.0 0.562 0 0.016 0.000 0.000
58 33.2 0.576 0 0.015 0.000 0.000
59 44.9 0.578 1 0.027 0.048 0.175
60 50.9 0.620 1 0.019 0.035 0.144
61 43.4 0.624 1 0.021 0.056 0.241
62 45.9 0.637 1 0.015 0.044 0.193
63 40.6 0.725 0 0.015 0.000 0.000
64 48.6 0.757 1 0.015 0.043 0.269
65 45.3 -0.520 0 0.021 0.000 0.000
66 48.5 0.893 0 0.084 0.000 0.000
67 58.4 0.899 1 0.109 0.072 0.671
68 48.9 0.955 0 0.071 0.000 0.000
69 54.0 1.042 1 0.037 0.117 1.607
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First, the result of the renovated leverage observation is examined be-

fore proceeding to the influence observation in censored data using Cook’s,

renovated method ’ RD∗
i .

The values of leverage, hii and renovated leverage, h∗ii obtained in this

research are similar to those shown by Smith and Zhang (1995). From Ta-

ble 7.1, one can find that the highest renovated leverage value is from case

17 (patient aged 19.6 years) followed by case 5 (patient aged 29.2 years).

Other patients with high renovated leverage values are case 69 (patient

aged 54.0 years) and case 39 (patient aged 64.5 years). The high renovated

leverage values indicate those cases have the potential to affect the param-

eter estimates and one needs to be aware of them.

The plot of renovated leverage in Figure 7.1 clearly represents the youngest

patient (age 19.6 years), (case 7), and the patient aged 29.2 years (case 5) as

the two cases with the largest h∗ii.
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Figure 7.1: Renovated leverage plot for Stanford heart transplant data (n =
69).

The result of h∗ii value is zero for all patients corresponding to censored

data (δi = 0) (refer to Table 7.1). The findings agree well with Weissfeld

and Schneider’s (1990) analysis, as censored observations have a high ten-

dency to be less influential than uncensored observations.

Next, the RD∗
i value for each case in Table 7.1 is scrutinised to mea-

sure how much the cases affect the parameter estimates. If the h∗ii is large,
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this indicates the existence of leverage observation, which can cause the

renovated residual, ê∗i of corresponding observation to be small. This sit-

uation shows the fitted value (ŷi) relationship will likely to be close to the

corresponding y∗i since h∗ii is close to 1. If y∗i is such as to pull the fitted

relationship from where it would be placed, the potential for influence is

clear and will become real.

One can find that case 17, who is the youngest uncensored patient,

with an age of 19.6 years, does not give the largest value of RD∗
i even

though this observation shows the highest value of h∗ii. Case 5, which is

the uncensored patient with an age of 29.2 years, gives the highest value

ofRD∗
i . This patient has a higher residual value than the youngest patient.

Refer to Figure 7.2, which is the plot of the renovated Cook’s distance and

one can see similar cases showing the two largest values of RD∗
i , with the

patient aged 29.2 years (case 5) leading.
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Figure 7.2: Renovated Cook’s distance plot for Stanford heart transplant
data (n = 69) with Smith (1986)’s variance estimator.

The result of modified Cook’s statistics, without doubt, clearly shows

influence cases for the censored regression. However, note that the cen-

sored points cannot be influential cases as the points have no renovated

leverage (h∗ii = 0); it follows that RD∗
i is also equal to zero. This issue

needs further investigation because of the possibility of censored points

becoming influential cases in censored regression.
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Therefore, this chapter proposes the solution for this issue in §7.3, and

the illustrations of the diagnostics analysis can be found in §7.4.2. Next,

look at Table 7.2 which displays the Buckley-James model of cases, with-

out cases 5 and 17. Table 7.2 shows the estimator for age only decreases

Table 7.2: Buckley-James model for Stanford heart transplant data, n = 69

Case deleted Age δi β1 SE p-value β̂ − β̂(i)

None -0.028 0.015 0.060
17 19.6 1 -0.035 0.019 0.060 0.007
5 29.2 1 -0.038 0.016 0.018 0.010

by 0.007 and 0.010 when cases 17 and 5 are excluded from the data set

one at a time. Excluding these two cases from the data set do not signifi-

cantly affect to the age estimator values. Nevertheless, when the p-value

is scrutinised, one can find deleting case 5 causes the age estimator, β1 to

be significant at α = 5%.

7.4.2 Illustration of local influence

Two data sets have been considered for the illustration of local influence in

the Buckley-James model. The first data set is the Stanford heart transplant

data, which was taken from Miller and Halpern (1982) with sample size,

(n = 152). The next data set is lung cancer data, which was obtained from

Lawless (1982).

Stanford heart transplant data

This data set contains 184 patients with variables such as survival time(days),

censored status, age at time of first transplant (in years) and T5 mismatch

score. The mismatch score refers to the continuous score derived from an-

tibody responses of pregnant women by Charles Bieber of Stanford Uni-

versity (Crowley and Hu, 1977).
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In this section, only 152 patients are considered, corresponding to a

survival time equal to at least 10 days and with complete records. From

152 patients, 55 were deceased, i.e. were uncensored and 97 were alive, i.e.

were censored. The Buckley-James model for this data set was developed

as

Y = β0 + β1AGE + β2AGE
2 + β3T5.

First, consider the variance perturbation. The index plot of |hmax(b)| in

Figure 7.3 shows patients aged below 20 years as the most influential cases.

This finding agrees well with Reid and Crepeau (1985), and Pettitt and

Daud (1989) where patients aged 13, 15 and 12 years in order have the

greatest influence on variance. Note that the patient aged 15 years old is a

censored observation.
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Figure 7.3: Index plots of |hmax| for perturbing variance for Stanford heart
transplant data (n = 152).

Second, consider the perturbation of response variable and individual

independent variables. It is obvious that the most influential patients are

aged below 20 years and two patients aged above 60 years. Removal of the

patients aged 12 and 13 decreases β̂1 by 0.010 and 0.030 respectively, while

removal of the patient aged 15 increases β̂1 by 0.015. There is no impact

on the estimator values in the Buckley-James model when deleting those

observations (one at a time) since the maximum eigenvalues for the per-

turbation of the variance, response variable, x1 and x2 are small at 0.142,
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0.021, -0.002 and 1.000 respectively.

However, when the p-value is scrutinised, one can find the p-value

for age is roughly five times larger when deleting case 1, and triple when

deleting case 4, whereas deleting case 2 has a large effect on the p-value of

age2 where the value becomes fourteen times larger.

When the observations flagged by the diagnostics based on perturba-

tion of the censoring vector are considered, patients aged 29, 33 and 36

are flagged as influential. These three cases account for almost half of the

variability of the elements of hmax since their sum of squares of elements

of hmax is 0.424.

Most patients aged below 20 years are not influential to case censoring

perturbations because they have small residuals. It is noted most cases

with large residuals only exhibit as influential cases if their covariate vari-

able (age) are large while cases with similar ages are less. Thus, the patient

aged 13 does not appear as an influential observation even though their

data have a large residual, see Figure 7.4.
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Figure 7.4: Index plots of |hmax| for perturbing censoring status for Stan-
ford heart transplant data

Of interest here is the plot of elements |hmax(b)| against observation

based on perturbation response variable, x1, x2 and censoring status given

in Figure 7.5, 7.6 and 7.7 respectively. No attention is given to x3 since this

variable is not strongly associated with survival time (refer to the p-value
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in Table 7.3).
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Figure 7.5: Index plots of |hmax| for perturbing response variable for Stan-
ford heart transplant data
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Figure 7.6: Index plots of |hmax| for perturbing x1 for Stanford heart trans-
plant data (n = 152).

Lung cancer data

In this data set, there are 40 observations with covariates such as survival

times, censored status, performance status (x1), age (x2), months from di-

agnosis (x3), tumor type (x4 − x6) and treatment/standards (x7). Three

patients were deceased, i.e. were uncensored and 37 patients were alive,

i.e. were censored.
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Table 7.3: Buckley-James model for Stanford heart transplant data n = 152

Case deleted age δi (β1, β2, β3) SE p-value β̂ − β̂(i)

None (0.105,-0.002,-0.032) (0.038,0.000,0.117) (0.006,0.001,0.784)
2 13 1 (0.075,-0.001,-0.015) (0.042,0.001,0.116) (0.007,0.014,0.898) (0.030,-0.001,-0.017)
4 15 0 (0.120,-0.002,-0.035) (0.038,0.000,0.117) (0.002,0.000,0.767) (-0.015,0.000,0.003)
1 12 1 (0.095,-0.002,-0.030) (0.043,0.001,0.118) (0.028,0.005,0.801) (0.010,0.000,-0.002)

151 62 1 (0.107,-0.002,-0.030) (0.040,0.001,0.118) (0.007,0.001,0.800) (-0.002,0.000,-0.002)
152 64 1 (0.115,-0.002,-0.023) (0.041,0.001,0.120) (0.005,0.001,0.848) (-0.010,0.000,-0.009)
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Figure 7.7: Index plots of |hmax| for perturbing x2 for Stanford heart trans-
plant data (n = 152).

Diagnostics based on the perturbation of variance show the patient

from case 37 as the most influential case (see Figure 7.8). Weissfeld in

1990 also mentioned case 37 as one of the influential observation based on

their covariates perturbation. Deletion of this observation results in little

change in the all parameter estimates except for x3. From Table 7.4, one

can find that β3 decreases almost 0.011 when case 37 is deleted from the

data set. This is followed by the p-value of x3 where it is also reduced from

0.973 to 0.166.
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Figure 7.8: Index plots of |hmax| for perturbing variance for Lung cancer
data

Next, the perturbation of response and independent variables are ex-

amined, and one can find case 24 gives the largest value of |hmax| for re-



CHAPTER 7. NEW DIAGNOSTICS ANALYSIS FOR BJ MODEL 179

Table 7.4: Buckley-James model for Lung cancer data

Deleted Case
None 9 24 37

Variable x1 0.026 0.025 0.027 0.026
x2 0.007 0.005 0.008 0.006
x3 -0.0002 -0.001 0.0002 -0.011
x4 -0.106 -0.063 -0.087 -0.063
x5 -0.150 -0.153 -0.128 -0.190
x6 -0.346 -0.342 -0.321 -0.349
x7 -0.090 -0.105 -0.078 -0.047

SE x1 0.005 0.005 0.005 0.005
x2 0.010 0.010 0.010 0.009
x3 0.006 0.006 0.006 0.008
x4 0.220 0.232 0.228 0.212
x5 0.241 0.245 0.252 0.231
x6 0.288 0.293 0.301 0.275
x7 0.177 0.182 0.183 0.171

p-value x1 <0.001 <0.001 <0.001 <0.001
x2 0.441 0.622 0.419 0.461
x3 0.973 0.925 0.970 0.166
x4 0.631 0.786 0.703 0.766
x5 0.532 0.532 0.612 0.410
x6 0.230 0.243 0.286 0.204
x7 0.614 0.566 0.670 0.782

sponse variable and x1−x3, whereas for x4, x5, x6 and x7, the largest values

of |hmax| are by case 9, 30, 9 and 25, respectively.

For censoring perturbations, case 37 stands out as the most influential,

but with influence in the opposite direction (hmax = −0.652), with case 2

and 1 in second and third places (see Figure 7.10).

Next, cases 9, 24 and 37 are removed to examine whether they would

affect the parameter estimates. Case 9 was selected as it is the most influ-

ential case in 2 variables x4 and x6 and additionally, an analysis by Lawless

(1982) showed cell type was marginally significant, in particular, cell type
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adeno, x6 which is associated with an increase risk of failure.

Case 24 was chosen since it is the most influential to response perturba-

tions as well as to x1−x3. Likewise, the study by Lawless (1982) presented

x1 as highly significant. Later, case 37 was picked out from the data set as

it is most influential on variance and censoring perturbations.
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Figure 7.9: Index plots of |hmax| for perturbing response variable for Lung
cancer data
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Figure 7.10: Index plots of |hmax| for perturbing censoring status for Lung
cancer data

However, deletion of any of these observations from the data set results

in minor changes in the parameter estimates except for x3. From Table 7.4,

one finds the deletion of case 24 causes the change in β3 sign, nevertheless,

the p-value remains the same. Findings of other parameter estimates agree
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well with the results of analyses done by Reid and Crepeau (1985) and

Weissfeld (1990).

7.5 Conclusion

In this chapter, two new diagnostics analyses are proposed for the Buckley-

James model. The first analysis, which can be called renovated Cook’s dis-

tance, produces comparable results with previous findings. Nevertheless,

this method cannot identify influential observations from the censored

group as renovated leverage (Smith and Zhang, 1995). It can only detect

influential observations from the uncensored group. This issue needs fur-

ther investigation because of the possibility of censored points becoming

influential cases in censored regression.

The second approach uses the local influence method. This approach

follows Shi (1997), where they combined a general influence function and

generalised Cook statistic as a new concept of local influence. This con-

cept is easier to apply without considering a likelihood assumption. This

method is able to assess the effect of perturbations to the data will have

on inferences. It successfully discovers influential observations from both

groups, i.e the censored and uncensored groups.

In this chapter, the Stanford heart transplant data and the lung cancer

data are used for illustrations. These two methods are computationally

simple and the results are easy to display through plotting. The diagnos-

tics computation and graphics in this chapter’s illustrations are done using

the R software package.



Chapter 8

Contributions and Future Work

8.1 Contributions and conclusions

This section lists the contributions that this thesis has made to the out-

liers issue, cluster analysis and diagnostics analysis for the Buckley-James

method, and outlines its main conclusions.

8.1.1 Contributions

This thesis mainly studies three problems: first is the identification of

outliers in multivariate data set, second is a design of dissimilarity mea-

sure for clustering purpose and third is about diagnostics analysis for the

Buckley-James method. This study has been pursued through the follow-

ing efforts:

(i). Influence eigenstructure for identification of outliers.

In Chapter 3 we explored techniques based on influence eigenstruc-

ture for identifying outliers and identified four such techniques for

identifying outliers .

182
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They are:

• Influence eigen, ∆∗
i ;

• Normalized influence eigen, ∆∗∗
i ;

• Influence angle, θj(i);

• Modified influence angle, θ∗j(i).

These four techniques use the maximum eigenvalue and the corre-

sponding eigenvector. The choice of the largest eigenvalue as the ob-

ject of interest was motivated by its importance for many techniques.

Examples are principle component analysis and the possibility of its

statistical use as test statistics (Bejan, 2005). Gao et al. (2005) men-

tioned that examination of the observations’ effect on the maximum

eigenvalue is very significant because outliers that lie in the direc-

tion close to the maximum eigenvalue or vice versa, will change the

maximum eigenvalue.

Chapter 3 does not distinguish between the various reasons for iden-

tifying outliers. The aim is to inform the analyst of observations

that are considerably different from the majority. The techniques are

therefore exploratory and applicable to a wide variety of settings.

They are also well suited for identifying outliers in high dimensional

data.

(ii). Influence Angle Cluster Approach (iaca).

In Chapter 4, a new dissimilarity measure is proposed for clustering

purposes. The dissimilarity measure is also one of the techniques

for identifying outliers, i.e. influence angle θ∗j(i). It can be called the

Influence Angle Cluster Approach (iaca), in order to differentiate it

from influence angle for outliers detection, which was referred to in

Chapter 3.

iaca successfully produces a cluster when it is used in partitioning

clustering, even if the data set has mixed variables, i.e. interval and
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categorical variables. iaca is developed based on the influence eigen-

structure. It can obtain clusters easily and hence, avoid the curse of

dimensionality. It is also flexible to implement, and seems to work

well in practice. iaca can deal with continuous, categorical or mixed

variables. Additionally, when iaca is used as a dissimilarity measure

in partitioning clustering, those algorithms produce a good cluster-

ing structure compared to ones using the Euclidean distance, daisy

or Manhattan distance as dissimilarity measures.

(iii). New diagnostics analysis for the Buckley James method.

In Chapter 7, two new diagnostics analyses for censored data that

use the Buckley-James method are introduced. The first diagnostic

analysis is called the renovated Cook’s distance, RD∗
i . It produces

comparable results to existing findings. The renovated Cook’s dis-

tance also seems to have advantages (depending on the analyst’s re-

quirements) because it measures the influence of observation i on all

fitted values, ŷ instead of a single fitted value, ŷi for case i such as

DFIT∗
i as described by Smith (2002)

DFIT∗
i = xT

i β̂
∗ − xT

i β̂
∗
(i).

Moreover, this approach is also appropriate if one wants to measure

the influence of observation i in whole variables rather than using

DBETA∗
i = β̂∗ − β̂∗

(i) from Smith (2002). By using RD∗
i information

for all variables, p can be considered simultaneously.

Chapter 7 also proposes the local influence approach for the Buckley-

James method. The idea of local influence is based on general influ-

ence function and generalized Cook’s statistics as used by Shi (1997).

This idea is easier to apply without considering a likelihood assump-

tion. This method is able to assess the effect of perturbations to the

observations that will then influence inferences. It successfully dis-

covers influential observations from both groups, i.e censored and
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uncensored groups, as opposed to the current diagnostics used with

the Buckley-James method, i.e. renovated leverage value Smith and

Zhang (1995). The chapter presents the local influence diagnostics of

the Buckley-James model, which consist of

• variance perturbation;

• response variable perturbation;

• censoring status perturbation;

• independent variables perturbation.

8.1.2 Conclusions

This study focused on three aspects related to diagnostics analysis for

multivariate data and censored regression. The main conclusions are ex-

plained by chapter, with respect to the aims of the thesis as follows.

Recall that the first problem studied in this thesis is about identifying

outliers using the influence eigenstructure. First, in Chapter 2, a simple

introduction about outliers and the effects of outliers on the analysis are

given in order to justify the significance of studying the outliers problem.

Chapter 2 also explains about existing outliers detection methods as well

as the motivations for using techniques based on influence eigenstructure.

Chapter 3 discusses and presents some results about identifying outliers

based on the influence eigenstructure. Chapter 3 also introduces and de-

scribes four techniques for identifying outliers. The objective of the tech-

niques reported in this chapter is to advise the analyst of observations that

are considerably different from the majority. The techniques in this chap-

ter are, therefore, exploratory and they are applicable to a wide variety of

settings. Techniques explored in this chapter can be performed on large

and small data sets. They are used as to evaluate the deviation between

observations. Observations that are further away from the remaining data

are considered as outliers. Note that Chapter 3 formulates the problem
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of outliers without assuming any model distribution. As discussed in the

introduction of Chapter 3, the test of significance for outliers using the

eigenstructure, such as principal component analysis, has not been widely

used (Jolliffe, 2002). Consequently, the best advice is that the observation

that is obviously more extreme than most of the remaining observations in

the data set should be examined. This can be done simply through graph-

ical illustration.

Hence, apart from considering the techniques for identifying outliers,

Chapter 3 also concentrates on the graphical tool for diagnostics, i.e. iden-

tification of outliers. The illustrative results in Chapter 3 show that if the

ith observations are potential outliers, their values for those techniques

used in this chapter are all situated at the top of the index plot. This is

because an outlier causes the difference of the eigenvalue of the full data

set and the data set without ith observation to be larger than other obser-

vations. Recall that λ1(i) value is smaller for an outlier. Note that Chapter 3

only shows numerical examples for the techniques of influence eigenstruc-

ture for a single observation, even though it also describes techniques to

handle multiple bad observations. Recall that if the data set has more than

one outlier, the cases may mask each other, making finding the outliers

difficult and an influence measure for the multiple cases is needed.

Only the techniques of influence eigenstructure for a single observa-

tion are shown in Chapter 3 because they are able to handle a masking ef-

fect in all data sets used for the numerical examples in Chapter 3. Hence,

this problem is not further investigated using the influence eigenstructure

for multiple observations. Recall that Chapter 3 shows that the examples

of Mahalanobis distance cannot identify all fourteen outliers in Hawkin

Bradu Kass data because of the masking effect.

It is also noted that some techniques for identifying outliers are also

available for finding clusters. In Chapter 5, one of the techniques for iden-

tifying outliers is the dissimilarity measure for clustering purpose, i.e. in-

fluence angle. In Chapter 5, it is called the Influence Angle Cluster Ap-



CHAPTER 8. CONTRIBUTIONS AND FUTURE WORK 187

proach (iaca), since it now measures the dissimilarity between every obser-

vation for clustering purposes, as well as to avoid any reader confusion.

The reason for choosing only the influence angle as a dissimilarity mea-

sure is Jolliffe (2002) shows that principal component analysis is also ca-

pable of finding clusters in a data set. Note that the influence angle is par-

tially developed by the principal component score and the outliers appear

to form a cluster, separated from the other observations in the data set.

Chapter 4 briefly discusses previous measurement tools for clustering and

the common clustering techniques. iaca is evaluated by examining the per-

formance on continuous, categorical or mixed variables. A comparative

study is also undertaken in this chapter. This is to identify whether iaca as

a dissimilarity measure on partitioning clustering performs at a similar or

better rate of efficiency when it is compared to Euclidean distance, daisy

and Manhattan distance dissimilarity measures. It is noted that iaca pro-

duces a good clustering structure compared to Euclidean distance, daisy

and Manhattan distance when it is used on those clustering algorithms.

Recall that the first two problems in this thesis are dealing with a com-

plete data set. It is noted that using the incomplete data set, i.e. censoring

data set, is also very important. This type of data set is widely used in

biological science, educational testing and econometrics analysis.

Chapter 6 mainly looks at censoring data sets and the analysis that

can handle this type of data set, particularly survival analysis data. Ini-

tially the idea of survival analysis and its relation to the censoring data

is briefly discussed. Note that in censoring, there are three types of cen-

soring, namely censoring type I, censoring type II and random censoring.

This chapter discusses the censoring type I, i.e. right censored data.

There are many methods in survival analysis that can be used to anal-

yse censoring data. One of them is the survival regression method. Ex-

amples of the survival regression method are the Cox method, Miller’s

method, the Buckley-James method and the Koul-Susarla-Van Ryzin model.

Chapter 6 deals with the Buckley-James method as this method’s perfor-
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mance is comparable with the Cox method and performs better than both

Miller’s method and the Koul-Susarla-Van Ryzin model.

Chapter 6 explained about previous comparative studies showing that

the Buckley-James estimator is more stable and it can be more easily ex-

plained to non-statisticians than the Cox model. However, now days, re-

searchers are interested in using the Cox method instead of the Buckley-

James method. This is so because of the relative lack of availability of

Buckley-James method in the statistical software and limited choices of

diagnostics analysis (Glasson, 2007). Hence, two new diagnostics

analyses for the Buckley-James method are proposed in Chapter 7.

Chapter 7 introduces a diagnostics analysis called renovated Cook’s

distance. This method produces comparable results with existing findings.

Nevertheless, this method cannot identify influential observations as ren-

ovated leverage from the censored group (Smith and Zhang, 1995). It can

only detect influential observations from the uncensored group. This issue

needs further investigation because of the possibility of censored points

becoming influential cases in censored regression.

Another diagnostic analysis method introduced in Chapter 7 is the lo-

cal influence method. This approach is similar to that of Shi (1997), where

they combined a general influence function and generalized Cook statis-

tics to create a new concept of local influence. This concept is easier to ap-

ply without considering a likelihood assumption. This method is able to

assess the effect of perturbations to the data will have on inferences. Chap-

ter 7 shows that the second approach successfully discovers influential ob-

servations from both groups, i.e the censored and uncensored groups. The

local influence diagnostics of the Buckley-James model in Chapter 7 con-

sists of variance perturbation, response variable perturbation, censoring

status perturbation and independent variables perturbation.
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8.2 Future Work

The following paragraphs outline the number of areas for possible future

work on each problem. These areas either describe aspects of this thesis’s

work that might be worthy of further investigation, or that arise as a con-

sequence of the findings of this thesis.

Chapters 2 and 3 discuss the issue of outliers identification. In partic-

ular, Chapter 3 discusses two issues -first, which observations could be

candidates for influential observations, i.e. an outlier, and second, how

can one evaluate the influence of more than one observation, i.e. multiple

outliers. Chapter 3 presents the influence eigenstructure for a single obser-

vation, i and the influence eigenstructure for a multiple of observations, I .

However, note that the illustrative examples in Chapter 3 only consider

the case of a single observation i. Thus, in future research it would also be

useful to examine the influence eigenstructure for multiple observations

by illustrative examples. This can be done by generating a data set which

has severe masking and swamping problems. Thereby the performance

of influence eigenstructure for I can be evaluated. Next, instead of identi-

fying the outliers, another issue that one should consider is to determine

whether the outliers are sufficiently extreme or influential to warrant fur-

ther action.

Chapter 5 shows the Influence Angle Cluster Approach (iaca) perform-

ing as a dissimilarity measure in hierarchical clustering and partitioning

clustering. In future research, iaca can be applied to other clustering algo-

rithms, especially the high-dimensional algorithms.

Note that Chapter 7 only derives an influence measure for the single

case, not for multiple cases. As mentioned before, an influence measure for

multiple cases is needed to solve the masking effect. Thus future research

could extend investigations of the influence measures for multiple cases

for the Buckley-James method.
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