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Abstract

CR technology, which is the next-generation wireless communication sys-
tem, improves the utilization of the overall radio spectrum through dy-
namic adaptation to local spectrum availability. In CR networks, unli-
censed or Secondary Users (SUs) may operate in underutilized spectrum
(called white spaces) owned by the licensed or Primary Users (PUs) condi-
tional upon PUs encountering acceptably low interference levels. Ideally,
the PUs are oblivious to the presence of the SUs.

Context awareness enables an SU to sense and observe its operating en-
vironment, which is complex and dynamic in nature; while intelligence en-
ables the SU to learn knowledge, which can be acquired through observ-
ing the consequences of its prior action, about its operating environment
so that it carries out the appropriate action to achieve optimum network
performance in an efficient manner without following a strict and static
predefined set of policies. Traditionally, without the application of intel-
ligence, each wireless host adheres to a strict and static predefined set of
policies, which may not be optimum in many kinds of operating environ-
ment. With the application of intelligence, the knowledge changes in line
with the dynamic operating environment. This thesis investigates the ap-
plication of an artificial intelligence approach called reinforcement learn-
ing to achieve context awareness and intelligence in order to enable the
SUs to sense and utilize the high quality white spaces.

To date, the research focus of the CR research community has been pri-
marily on the physical layer of the open system interconnection model.
The research into the data link layer is still in its infancy, and our research
work focusing on this layer has been pioneering in this field and has at-



tacted considerable international interest. There are four major outcomes
in this thesis.

Firstly, various types of multi-channel medium access control protocol-
s are reviewed, followed by discussion of their merits and demerits. The
purpose is to show the additional functionalities and challenges that each
multi-channel medium access control protocol has to offer and address
in order to operate in CR networks. Secondly, a novel cross-layer based
quality of service architecture called C2net for CR networks is proposed
to provide service prioritization and tackle the issues associated with CR
networks. Thirdly, reinforcement learning is applied to pursue contex-
t awareness and intelligence in both centralized and distributed CR net-
works. Analysis and simulation results show that reinforcement learning
is a promising mechanism to achieve context awareness and intelligence.
Fourthly, the versatile reinforcement learning approach is applied in vari-
ous schemes for performance enhancement in CR networks.
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Chapter 1

Introduction

Let’s start at the very beginning, a very good place to start,
when you read, you begin with ABC,
when you sing, you begin with do-re-me,
when you research into Cognitive Radio, you begin with Context Awareness and
Intelligence...1

This thesis presents pioneering work in the field of Cognitive Radio
(CR) [1] networks including leverage from existing technologies, a
Quality of Service (QoS) architecture, and mechanisms to achieve context
awareness and intelligence.

Traditional static spectrum allocation policies have been imposed to
grant each wireless service exclusive usage of certain spectrum bands,
leaving several spectrum bands unlicensed for industrial, scientific and
medical purposes. The tremendous growth in ubiquitous low-cost wire-
less applications that utilize the unlicensed spectrum bands has laid in-
creasing stress on these limited and scarce radio spectrum resources. S-
tudies sponsored by the Federal Communications Commission (FCC) dis-
covered that the current static spectrum allocation has led to overall low

1with apologies to Rodgers and Hammerstein
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2 CHAPTER 1. INTRODUCTION

spectrum utilization where up to 70% of the allocated licensed spectrum
remains unused (these are called white spaces) at any one time even in
a crowded area [2]. The white space is defined by usage time, frequen-
cy and maximum transmission power at a particular location. CR [1] is a
novel and promising paradigm for the next-generation wireless commu-
nication system that enables an unlicensed user to improve utilization of
the overall radio spectrum through dynamic adaptation to local spectrum
availability in both licensed and unlicensed spectrum.

CR enables each unlicensed or Secondary User (SU) to sense white s-
pace and change its transmission and reception parameters, including op-
erating frequency, adaptively in order to opportunistically use the white
space in different channels. Ideally, the licensed or Primary Users (PUs)
are oblivious to the presence of SUs. The SUs may operate in the white
space conditional upon PUs encountering acceptably low interference lev-
els.

We define context awareness and intelligence as follows:

• Context awareness enables an SU to sense and observe its complex
and dynamic operating environment.

• Intelligence enables an SU to acquire knowledge, which can be
learned through observing the consequences of its prior action,
about its operating environment so that it carries out the right action
at the right time to achieve optimum network performance in an ef-
ficient manner without adhering to a strict and static predefined set
of policies.

The notion of context awareness and intelligence is very closely related
to the concept of Cognition Cycle (CC) [3]. The CC is a state machine,
which is embodied in each SU, that defines the mechanisms related to
achieving context awareness and intelligence including observation, ori-
entation, learning, planning, decision making, and action selection. The
CC is the key element in the design of various applications in CR net-
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works such as Dynamic Channel Selection (DCS), topology managemen-
t, congestion control and scheduling. Hence, a good implementation of
the context awareness and intelligence mechanism is of paramount im-
portance, and this is the main focus of this thesis. Other focuses include
leverage from existing technologies to this new research area, and a novel
QoS architecture for CR networks.

In this chapter, we will present our motivation, goals, major contribu-
tions and thesis outline.

1.1 Motivation

Cognitive radio technology has brought about a paradigm shift in the way
an SU defines its operating policy, which is a set of decision rules that de-
termine how the SU should behave in various scenarios. Traditionally, the
policy is hard-coded into the wireless host. For instance, using a fixed
lookup table, a wireless host chooses its modulation technique, such as
Quadrature Amplitude Modulation (QAM) and Binary Phase Shift Key-
ing (BPSK), according to different levels of Signal-to-Noise Ratio (SNR).
In CR networks, an SU must be able to sense and utilize the high quality
white space in an efficient manner without adhering to a strict and static
predefined set of policies. This is because a static policy is less likely to be
applicable in all circumstances in a complex and dynamic operating en-
vironment. This has inevitably brought the concept of context awareness
and intelligence into play.

The main focus of this thesis is to design practical and simple mecha-
nisms to achieve context awareness and intelligence with respect to a par-
ticular application in CR networks, namely Dynamic Channel Selection
(DCS). DCS provides the strategy for SUs to select a data channel from
the available licensed channels for data packet transmission given that the
objective is to increase network-wide throughput, and decrease delay for
QoS provisioning. Context awareness and intelligence approaches can be
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applied in various applications as shown in Figure 1.1. Accordingly, we
have initiated a new and important research area in the field of CR net-
works, namely context awareness and intelligence. Nonetheless, this is a
daunting challenge as we expect that the context awareness and intelli-
gence approaches are the universal solution of most problems and open
issues in CR networks.

Figure 1.1: The context awareness and intelligence approach is applied in
various applications.

This thesis applies Reinforcement Learning (RL) [4], which is an artifi-
cial intelligence or machine learning technique, to achieve context aware-
ness and intelligence. The RL, which is a machine learning technique that
improves system performance, has the following characteristics:

• Unsupervised learning approach. In unsupervised learning, there is
no external teacher or critic to oversee the learning process [5]. In
other words, an SU learns the knowledge about its operating envi-
ronment by itself.

• Online learning approach. In online learning, an SU learns the
knowledge on the fly while carrying out its normal operation, rather
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than using empirical data or experimental results from the laborato-
ry.

• Simple modeling learning approach. The RL approach models the per-
formance metric(s) of interest and improve it as a whole, rather than
modeling the complex and dynamic operating environment. For in-
stance, instead of tackling every single factor that affects network
performance such as wireless channel condition and nodal mobilily,
RL models the network performance, such as throughput, that cov-
ers a wide range of factors that can affect the network performance.

1.2 Goals

CR network is a new emerging research area that presents important chal-
lenges. This thesis presents initial work on possible leverage from existing
technologies to CR, and a cross-layer QoS architecture for CR networks.
The initial work has been instrumental in defining the research direction
so that the research into context awareness and intelligence remains rele-
vant and important. For instance, the context awareness and intelligence
approach is applicable in the applications proposed in our cross-layer QoS
architecture for CR networks. The main goal of this thesis is to design
mechanisms to achieve context awareness and intelligence. This thesis in-
vestigates the following research questions:

• What are the possible methods of technology leverage from multi-
channel Medium Access Control (MAC) protocols to cognitive MAC
protocols?

• What is an appropriate QoS architecture for CR networks?

• How are context awareness and intelligence best achieved in central-
ized CR networks?
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• How are context awareness and intelligence best achieved in dis-
tributed CR networks?

• How can we apply these context awareness and intelligence ap-
proaches to QoS provision for CR networks?

1.3 Major Contributions

This thesis has contributed to pioneering work in the field of CR network-
s, specifically leverage from existing technologies, a QoS architecture, and
mechanisms to achieve context awareness and intelligence. The key con-
tributions are summarized as follows:

1. Possible technology leverages from existing multi-channel MAC to
cognitive MAC are proposed. This work is the first attempt to in-
vestigate technology leverage for CR networks. The contributions of
this work have led to the publication of [6], [7] and [8].

2. A novel cross-layer QoS architecture, along with its challenges and
open issues, is proposed. This work is the first attempt to model a
QoS architecture as a unified solution for CR networks. The contri-
butions of this work have led to the publication of [9] and [10].

3. Analyses and simulations show that RL is a good approach to
achieve context awareness and intelligence, with respect to the ap-
plication of DCS, in centralized and distributed CR networks. The
contributions of this work have led to the publication of [11], [12],
[13], [14] and [15].

4. The RL approach is proposed for various applications for the cross-
layer QoS architecture to achieve context awareness and intelligence
for performance enhancement in CR networks. The contributions of
this work have led to the publication of [16] and [17].



1.4. THESIS OUTLINE 7

1.4 Thesis Outline

The rest of this thesis is structured into the following chapters:

• Chapter 2 provides overviews on traditional spectrum allocation
policy, CR networks, cognition cycle as well as current research
trends and common assumptions.

• Chapter 3 reviews various types of multi-channel MAC protocols in-
cluding their operations, merits and demerits in order to present pos-
sible technology leverage to CR. The purpose is to introduce the ad-
ditional functionalities and challenges that each multi-channel MAC
protocol has to offer and address in order to function well in cogni-
tive wireless ad hoc networks.

• Chapter 4 provides a novel cross-layer QoS architecture, namely
C2net, for cognitive wireless ad hoc networks. Various cross-layer
applications such as DCS, scheduling and congestion control are pro-
posed. Research challenges and open issues in realizing the C2net
architecture are also discussed.

• Chapter 5 presents RL as an approach to achieve context awareness
and intelligence in CR networks. Various new features not used in
the traditional RL approach are presented.

• Chapter 6 focuses on achieving context awareness and intelligence
using the RL approach, with respect to the application of DCS, in
centralized CR networks.

• Chapter 7 focuses on achieving context awareness and intelligence
using the RL approach, with respect to the application of DCS, in
distributed CR networks.

• Chapter 8 shows how to apply the RL approach to model various ap-
plications in C2net in order to enhance performance in CR networks.
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• Chapter 9 draws conclusions and discusses future research direction-
s.

Chapters 3 to 8 provide novel contributions; and Chapters 6 and 7 pro-
vide major contributions of this thesis, specifically on achieving context
awareness and intelligence in CR networks.



Chapter 2

Background

This chapter provides overviews on traditional spectrum allocation poli-
cy, CR networks, cognition cycle, as well as current research trends and
common assumptions in CR networks.

2.1 Traditional Spectrum Allocation Policy

Traditionally, radio spectrum has been partitioned into ranges of licensed
and unlicensed spectrum (or frequency) bands through a static spectrum
allocation policy. Some small areas of the spectrum bands, such as the In-
dustrial, Scientific and Medical (ISM) and Unlicensed National Informa-
tion Infrastructure (UNII), are allocated to unlicensed users who contend
among themselves for access to this free resource. Unlicensed users are
forbidden to access any of the licensed spectrum bands that have been pur-
chased. Many popular wireless communication systems, including Blue-
tooth [18], WiFi [19], WiMAX [20], and Zigbee [21], have been operating
in unlicensed spectrum bands without incurring any spectrum cost. Oth-
er devices such as microwave ovens and cordless phones also operate in
those spectrum bands.

9
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2.1.1 An Analogy of Traditional Spectrum Allocation Poli-

cy

As an analogy, the static spectrum allocation policy is like a swimming
competition where the limited pool (radio spectrum) is divided into many
lanes (spectrum bands). Each contestant (spectrum user) is assigned a lane
that is used throughout its communication session. The contestant is for-
bidden to cross over into other lanes or interfere with the other contestants;
and the contestant does not generally occupy the whole of the lane. The
lanes that represent the unlicensed spectrum bands are typically crowded
with many competitors that jostle for space. As the number of unlicensed
users increases, it is inevitable that the unlicensed lane becomes more con-
gested. As a consequence, the QoS of the unlicensed users is adversely
affected. A scheme that allows use of the contestants’ lanes, but without
interference to the contestants could alleviate much of the congestion.

2.2 Cognitive Radio Networks

The FCC Spectrum Policy Task Force (2002) discovered that the current
static spectrum allocation policy has led to overall low spectrum utiliza-
tion where up to 70% of the allocated licensed spectrum bands remain
unused (these are called white spaces) at any one time even in a crowded
area [2]. Hence, the main reason of spectrum scarcity among the unli-
censed users is, in fact, because of the static spectrum allocation policy
that is inefficient. The white space is defined by usage time, frequency
and maximum transmission power at a particular location. Consequent-
ly, CR has been proposed so that unlicensed users or SUs are allowed to
use the white space of licensed users’ or PUs’ spectrum bands conditional
upon PU encountering acceptably low interference levels.
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2.2.1 Two Prominent Characteristics of Cognitive Radio

CR technology enables an SU to change its transmission and reception
parameters including operating frequencies. Chapter 1 on page 2 provides
the definition of context awareness and intelligence. With respect to DCS,
two prominent characteristics of CR are as follows:

• Context awareness. Channel sensing capability enables an SU to sense
and observe across a wide range of spectrum bands to identify white
spaces.

• Intelligence. A learning mechanism enables an SU to learn informa-
tion about the white spaces through observing the consequences of
its prior actions; for instance, whether a recent data packet transmis-
sion was successful or unsuccessful. This enables the SU to iden-
tify white spaces and to allocate data packets opportunistically to
high quality white spaces at different channels in an efficient manner
for performance enhancement without adhering to a strict and static
predefined set of policies.

2.2.2 An Analogy of Cognitive Radio

Let’s take another analogy. Suppose you are driving to school or work
during the peak hours. While driving straight ahead, you find that the lane
becomes congested. To arrive on time, you carefully switch to a nearby
lane that is less congested, while ensuring that you don’t collide with the
other road users. The same principle is applicable to CR. If its current
licensed or unlicensed spectrum band is fully utilized, an SU switches its
operating frequency to another spectrum band without interfering with
the PU activity. This occurs when the licensed channel is underutilized
or contains white spaces. Through accessing the white spaces in licensed
spectrum bands dynamically, the overall spectrum utilization improves.
In CR networks, one of the most important tasks is therefore to create a
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“friendly” environment for the coexistence between the PUs and the SUs
as shown in Figure 2.1.

Figure 2.1: An SU exploits white spaces across various channels.

2.2.3 Exploitation of White Space by Secondary Users

In Figure 2.1, the licensed spectrum utilization from the PUs at a particu-
lar location is represented by the time and frequency axes. The PUs have
higher authority over the licensed spectrum bands. An SU switches its
channel across various spectrum bands from time to time in order to uti-
lize the white spaces in the licensed spectrum it is sensing. Since the white
space is location dependent, for a successful communication, the white
space must be available at both the SU transmitter and receiver. In mo-
bile networks, this is particularly important if the SUs are moving at high
speed as from moment to moment each location may have different PU
spectrum utilization. However, since the transmission range of the PU is
often large, such as transmission for the TV bands, the spectrum utiliza-
tion of the PU at various locations may have wide geographic uniformity,
and thus collaboration in channel sensing for white spaces among the SUs
is an effective means to avoid collision with the PU’s transmissions.

Not only do the SUs have to search for white spaces, they also need
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to use the white spaces efficiently. According to [22], the SUs are expect-
ed to operate over a wide range of non-contiguous spectrum bands: 400-
800MHz (UHF TV bands) and 3-10GHz. The time scale of the spectrum
occupancy varies from milliseconds to hours depending on the activity
levels of the PUs.

2.2.4 An Example of Cognitive Radio Networks

An example of emerging standards based CR network is the IEEE 802.22
Wireless Regional Area Network (WRAN) [23], which is a centralized CR
network. The IEEE 802.22 working group has been working towards de-
veloping CR-based Medium Access Control-Physical (MAC-PHY) air in-
terface for SUs to operate in TV bands. In this approach, the SUs access to
licensed spectrum bands is controlled by a centralized Base Station (BS).

2.2.5 A Scenario of Cognitive Radio Network under Con-

sideration

This thesis focuses on centralized and distributed CR networks. The
distributed CR network is called Cognitive Wireless Ad hoc Network
(CWAN). As an alternative to the infrastructure oriented solution of IEEE
802.22, we consider a cooperative peer-to-peer model such as traditional
ad hoc networks in CWAN. The CWAN provides a dynamic mechanism
to interconnect SUs through the provision of network relay functions and
such networks can be stationary or mobile in nature.

Our primary design focus for centralized and distributed CR network-
s are around deployment in a complex wireless communication and a
broadband access scenario comprised of various heterogeneous stationary
and mobile CR hosts or SUs in a densely populated urban or metropolitan
area. Consumers may access the CR network using consumer devices, lap-
tops, mobile phones, PDAs, vehicular intelligent transportation systems
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and so on, in a single hop or a multihop manner, for example to allow ex-
tension of hot spot coverage. Certain unlicensed spectrum bands such as
the ISM and UNII bands are highly utilized; however, with CR technology,
an SU could search for and utilize unused licensed spectrum bands. This
scenario, as shown in Figure 2.2, is may be useful for telecom operators to
extend wireless access among subscribers that are outside BS coverage for
example.

Figure 2.2: CWAN deployment scenario.

2.3 Cognition Cycle

The original cognition cycle, which portrays the notion of context aware-
ness and intelligence in CR networks, is presented in [3]. The CC was
first introduced by the Father of CR, J. Mitola III [3]. The adage “practice
makes perfect” is the concept that the CC was founded upon. While mak-
ing a perfect system is a far more difficult endeavor, a CC aims to achieve a
system with better performance as time goes by. Although the CC has not
been extensively applied in network protocol design, it has great potential
for system enhancement.
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2.3.1 A Simplified Version of Cognition Cycle

This section describes CC based on the RL [4] approach. A simplified ver-
sion of CC is shown in Figure 2.3. We model each SU in a CR network as a
learning agent or a decision maker. At a particular time instant, the agent
observes the state, which is the representation of the operating environ-
ment, and the rewards from its operating environment which are a con-
sequence of its previous actions, performs learning, decides, and carries
out its action. The operating environment can be internal such as instan-
taneous queue size, or external, such as the usage of the wireless medium.
In general, what an SU does affect its operating environment. The SU’s
action could affect the operating environment (or state) for better or for
worse, or maintain the status quo; and this in turn affects the SU’s next
course of action. As an example, if an SU fails to transmit well in a chan-
nel, it switches to another channel with more white spaces or better trans-
mission properties. Its transmission over the white spaces affects the state
by reducing the amount of white spaces in that channel. Hence, at any
time instant, the agent aims to improve its reward in the next time instant
through carrying out a proper action.

Figure 2.3: A simplified version of CC embedded in each SU.
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The most important component in Figure 2.3 is the learning engine that
provides knowledge on the operating environment through observing the
state and reward. The knowledge or the learning outcome can be shared
among the agents in a network by explicit message exchange. As an exam-
ple, the learning engine could learn the channel conditions such as the PU
Utilization Level (PUL) and the Packet Error Rate (PER). Higher levels of
PUL in a particular data channel indicate higher levels of PU activity, and
hence smaller amount of white spaces. Higher levels of PER indicate high-
er levels of failed data packet transmission due to uncertain and varying
data channel conditions caused by various factors including shadowing,
channel selective fading, path loss, PU interference, and others. Various
kinds of actions can be carried out by the agent including channel switch-
ing, message exchange, backoff, sensing operation and even “cease to act”.
As time progresses, the agent learns knowledge, which is comprised of the
matchings between state, action and reward, in order to carry out the most
appropriate action given a particular state.

The representations of the state, reward and action could be optional.
For instance, in a single-state or stateless model, the state is not represent-
ed and the agent is only adaptative to the rewards.

2.3.2 Two Levels of Cognition Cycle

Two levels of CC are suggested in [24]: node-level and network-level, as
shown in Figure 2.4.

At node-level, each SU runs a CC and makes its own decision in a
cooperative or non-cooperative manner. The node-level CC can be used in
distributed networks.

Conversely, at network-level, the BS runs a CC and makes its own de-
cision in a multilateral and cooperative manner for the entire network.
The network-level CC can be used in centralized networks. An example
of the application of a network-level CC is the IEEE 802.22 WRAN [23].
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Figure 2.4: Network-level and node-level CC.

In WRAN, each unlicensed Customer-Premises Equipment (CPE) or the
SU host is associated with one of the SU BSs. The SU BS coordinates and
instructs its CPEs to operate in certain spectrum bands with high quality
white spaces for network performance enhancement such as throughput
and delay performance.

2.4 Current Trends and Common Assumptions

Cognitive radio is a new research field in wireless communications and
networking. At the time this research began, most researches were focus-
ing on the physical layer of the Open System Interconnection (OSI) refer-
ence model, and there were little effort to investigate the data link layer.
There was not yet a standard available for MAC protocols in static and dis-
tributed CR networks, and the IEEE 802.22 Working Group was working
towards a MAC-PHY air interface standard for centralized CR networks.
No efforts were made to investigate QoS architecture nor RL as a mecha-
nism to achieve context awareness and intelligence in CR networks. Some
of the common assumptions in this research field have been:

• Static networks where all the SU hosts are static [25, 26, 27]. This thesis
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considers both static and mobile networks.

• Centralized networks where each network is comprised of a single SU
BS and SU hosts [25, 26]. This thesis considers both centralized and
distributed networks.

• Single collision domain in distributed CR networks where all the SUs
are assumed to be able to hear each other or within communica-
tion range of each other [26]. This is a common assumption without
which simulation results may be affected by the channel capture ef-
fect [28]. The channel capture effect occurs when there is significant
unfairness in channel usage. As a consequence, some SUs dominate
the usage of the channels with high throughput, while others are s-
tarving with low throughput. This thesis considers both single and
non-single collision domain while investigating distributed CR net-
works.

• Homogeneous channels where all the available channels across the
spectrum bands are assumed to have similar levels of PERs and
transmission ranges, though they have different levels of PULs
[25, 26, 27]. However, in practice, the SUs are expected to operate
over a wide range of non-contiguous frequency bands. Channel het-
erogeneity considers that the properties of the white spaces vary with
carrier frequency and time-varying channel condition. In addition,
there are many other factors that affect the channel condition such
as nodal mobility, neighbour interference and transmission power.
Thus, the available white spaces have different levels of PERs and
transmission ranges. This thesis considers channel heterogeneity.

• Since the assumption of homogeneous channels is commonplace,
the assumption of identical channel condition, or PER, at all the SUs is
commonplace. This thesis considers both identical and non-identical
channel condition at all the SUs. In a scenario with identical channel
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conditions, each agent observes a similar level of channel quality for
a particular channel. In a scenario with non-identical channel con-
ditions, which is the common case in practice, each agent observes
different levels of channel quality for a particular channel.

• Spectrum pooling is available at each SU [25, 26, 27]. Spectrum pooling
is a new research area in CR networks and this has not been consid-
ered in this thesis. Through spectrum pooling, several channels are
chosen out of a large pool of candidate channels within a wide range
of spectrum bands. Subsequently, each SU chooses one of the chosen
channels for data transmission. This thesis adopts this assumption.
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Chapter 3

Technology Leverage for
Cognitive MAC

This chapter presents technology leverage from multi-channel MAC pro-
tocols to cognitive MAC protocols. Firstly, it reviews multi-channel MAC
protocols, as well as their merits and demerits. Secondly, it presents cogni-
tive MAC protocols and their functionalities. Thirdly, it presents the oper-
ations that multi-channel MAC protocols must deliver and the challenges
that must be overcome in order to operate in distributed CR networks or
cognitive wireless ad-hoc networks. By providing discussion on possible
technology leverage from multi-channel MAC protocols to cognitive MAC
protocols, the foundation for further research on the data link layer of the
CR networks is established.

3.1 Introduction

For channel access between SUs in a distributed CR network, a cognitive
MAC protocol is necessary to coordinate the SUs through channel sens-
ing, selection and access. While research in cognitive MAC is still in its
infancy, multi-channel MAC extensions have been realized in IEEE 802.11
to enable all hosts to operate in multiple orthogonal channels simultane-

21
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ously in order to improve network-wide throughput. For instance, IEEE
802.11b/g specifies 3 channels and IEEE 802.11a specifies 12 channels.

Current research in cognitive MAC assumes the availability of a com-
mon control channel at all times. This approach has certain hardware re-
quirements that may not be readily available at CR hosts. Hence, other
approaches may be necessary.

As shown in Table 3.1, the multi-channel MAC has several functions
that can be leveraged by a cognitive MAC due to their similarities in cer-
tain aspects, though the CR has an additional requirement to cope with
the existence of PUs that have higher authority over the channels. Mod-
ifications to existing multi-channel MACs are necessary to cater for the
distinguishing features of CR.

Table 3.1: Comparisons of cognitive and multi-channel MAC

Features Cognitive MAC Multi-channel
MAC

Multi-channel operation Yes Yes
Hidden multi-channel problem
is addressed

Yes Yes

Existence of PU Yes No

3.2 Chapter Goals

This chapter discusses technology leverage from multi-channel MAC to
cognitive MAC to establish a foundation for further research on data link
layer protocols for CR networks. It is foreseen that several characteristics
of multi-channel MAC have the same effects in distributed CR networks.
This chapter addresses the following research questions:

1. What features of multi-channel MACs, as well as their merits and
demerits that could be inherited by the cognitive MACs?
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2. What are the additional functionalities that multi-channel MACs
must offer to qualify as cognitive MACs?

3.3 Overview of Multi-channel MACs

This section focuses on the characteristics that multi-channel and cognitive
MAC protocols have in common. Thus, this section assumes non-existence
of PUs. To date, a wide range of multi-channel MACs have been designed
[29, 30].

3.3.1 Mitigation of Hidden Multi-channel Problem

In general, multi-channel MACs address the channel assignment problem
by ensuring that several communication node pairs within two hops of
each other avoid choosing the same channel simultaneously for data trans-
mission. This is to mitigate the hidden multi-channel problem. In Figure 3.1,
ongoing communication from SU1 to SU2 in channel 1 is interrupted when
SU3 starts to transmit to SU4 using the same channel 1, resulting in colli-
sion at SU2. A cause of this mishap is that SU3 missed the Clear-to-Send
(CTS) sent by SU2 because it was engaged in communication with other
nodes using another channel. In IEEE 802.11, this problem is overcome by
requiring each node to maintain a Channel Usage Table (CUT), which is
updated by overhearing Request-to-Send (RTS) and CTS. This keeps track
of the channels reserved and utilized, as well as their durations, by an
SU’s two-hop neighbourhood. The RTS and CTS control messages contain
channel reservation information and are sent during a data channel nego-
tiation phase between a communication node pair. A successful negotia-
tion for a data channel is followed by data transmission at the negotiated
channel.
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Figure 3.1: Hidden multi-channel problem.

3.3.2 Categories of Multi-channel MACs

Based on the mechanisms of data channel negotiation and channel reser-
vation among a communication node pair, as well as how the CUT is up-
dated at each node, multi-channel MACs are classified into four categories
as follows [29, 30]:

• Common Control Channel (CCC)

• Split Phase (SP)

• Common Hopping (CH)

• Default Hopping Sequence (DHS)

Figure 3.2 illustrates the basic operations of different multi-channel MAC
protocols. Generally speaking, these MACs are designed to suit nodes
with different hardware requirements as shown in Table 3.2. For instance,
the CCC approach does not require time synchronization, which is neces-
sary in the other approaches. The next few sections describe the opera-
tions, merits and demerits of various multi-channel MACs. A summary of
comparison of the multi-channel MACs is available in Table 3.3 at Section
3.3.7.
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Figure 3.2: Operations of various categories of multi-channel MACs. R/C
indicates RTS and CTS control messages handshaking between a commu-
nication node pair.



26 CHAPTER 3. TECHNOLOGY LEVERAGE FOR COGNITIVE MAC

Table 3.2: Hardware requirements for various categories of multi-channel
MACs

Hardware requirement CCC SP CH DHS
Availability of multiple transceivers Yes No No No
Availability of time synchronization No Yes Yes Yes
Energy efficiency No Yes No No

3.3.3 Common Control Channel Approach

3.3.3.1 An Overview of Operation

The common control channel approach applies a single dedicated com-
mon control channel for control message exchange and CUT updates at
each node. RTS and CTS are sent during data channel negotiation; and
ACK is sent after completing a data packet transmission. Data packets are
transmitted at any other available data channels, as shown in Figure 3.2(a).

3.3.3.2 Hardware Requirement and Description of Operation

As shown in Table 3.2, the CCC approach does not require time synchro-
nization and does not provide an energy efficient mechanism.

In general, the MAC operation in the CCC approach depends on the
number of transceivers at each node. With more than one transceiver, one
of them, which is the control transceiver, is tuned to the common control
channel at all times. Upon successful data channel negotiation, the other
transceiver, which is the data transceiver, tunes to the negotiated data chan-
nel for data transmission. Since the control transceiver is still listening to
the common control channel, the node does not miss control messages to
update its CUT during data transmission, hence the hidden multi-channel
problem is solved. An example of this scheme is [31].

Schemes that use a single transceiver are [32, 33]: during normal oper-
ation, the transceiver is tuned to the common control channel; however, if
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there is a data packet for transmission, both transmitter and receiver tune
to a similar data channel at other frequencies for data transmission, after
which both nodes tune back to the common control channel. Therefore, a
node may miss several control messages, which lead to an obsolete CUT
and so the hidden multi-channel problem arises. In [32], upon completing
data transmission and returning to the common control channel, a node
waits the duration of Maximum Data Transmission Time (MDTT), which
is the maximum time interval for each data packet transmission, before the
next data packet transmission starts. The reason for this is that if a partic-
ular data channel is busy, it would receive an ACK packet within MDTT
for that channel in the common control channel. If no ACK is received,
and the data channel is not reserved during the waiting period, the data
channel is deemed to be free and available for data packet transmission. In
CAM-MAC [33], the transmitter and receiver rely on their idle neighbour
nodes to provide channel usage information in a cooperative manner. The
idle neighbour nodes, which are listening to the common control channel,
have good knowledge of channel usage. Before any data packet transmis-
sion, both transmitter and receiver probe their idle neighbour nodes of
a selected data channel for its availability. Unless a negative feedback is
received from an idle neighbour node, the data channel is deemed to be
free.

3.3.3.3 Advantages and Disadvantages

The CCC approach has the disadvantage of saturation in the common con-
trol channel [30]. Since all data channel negotiations are conducted at a
single common control channel, it is inevitable that congestion can occur,
leaving the data channels underutilized as no reservation is made. At the
other extreme is when the data channels experience congestion, while the
common control channel remains underutilized. Three factors may con-
gest the common control channel, specifically:

• a large number of data channels
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• small average data packet size

• a high amount of control overhead

Analysis in [33] shows that a single common control channel is adequate
to support a large number of data channels. Substituting the IEEE 802.11
conventional parameters indicates that a single common control channel
can support up to 21 data channels even at the very high node density of
up to 40 nodes in a single collision domain [33].

Using a single transceiver, the schemes in [32] and CAM-MAC [33]
have three disadvantages:

• Lack of support in broadcasting that is important in routing message
dissemination such as Route Request (RREQ) and Hello messages.

• Additional delay is incurred while listening for the MDTT interval
between consecutive data packet transmissions in [32], as well as ex-
tra handshaking and delay in CAM-MAC while probing for channel
information at transmitter and receiver sides.

• Assumption of a high density network is applied in CAM-MAC so
that there must be idle neighbour nodes with up-to-date channel in-
formation.

Based on the discussion above, the CCC approach with multiple
transceivers is more suitable for QoS provisioning where delay is critical
for time sensitive traffic and broadcasting is necessary.

3.3.4 Split Phase Approach

3.3.4.1 An Overview of Operation

The split phase approach splits all channels into two phases, namely a
control phase and a data phase as illustrated in Figure 3.2(b) where con-
trol and data packets are sent at different time. During the control phase,
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all nodes tune to a common control channel, which is channel 0, for data
channel negotiation. Since a communication node pair may not use up a
channel for the whole duration of the data phase, multiple communication
node pairs may reserve a similar channel. During the data phase, nodes
tune to and contend for their negotiated data channels including channel
0 for data packet transmission.

3.3.4.2 Hardware Requirement and Description of Operation

The SP approach uses only one transceiver, and requires time synchroniza-
tion, as shown in Table 3.2. The SP approach has been applied in energy-
efficient MAC protocols such as [34, 35, 36]. In these schemes, the Power
Saving Mode (PSM) of IEEE 802.11 standard is used. In PSM, time is di-
vided into beacon intervals, each comprised of an Ad Hoc Traffic Indica-
tion Messages (ATIM) window, and a communication window as shown
in Figure 3.3. During the ATIM window, all nodes wake up and listen
to the common control channel. Nodes with backlogged data packets con-
tend for a channel in the communication window where data packet trans-
mission takes place in the negotiated channel. Nodes that do not engage
in communication go back to sleep. Energy efficiency can be further en-
hanced through adjusting the ATIM window dynamically: with a shorter
ATIM window, idle nodes go back to sleep earlier [34, 36].

Figure 3.3: Timing in PSM of IEEE 802.11.
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3.3.4.3 Advantages and Disadvantages

The SP approach has the advantage of being more energy efficient than
other approaches. Since all nodes listen to a common control channel dur-
ing the control phase, they do not miss control messages, thus this ap-
proach does not suffer from the hidden multi-channel problem. It also
uses the common control channel for broadcasting purposes. Since the SP
approach does not enable concurrent data channel negotiation at different
channels, it shares the same problem of the CCC approach that saturation
of the common control channel can occur. Three additional disadvantages
are:

• Precise time synchronization is required.

• Most channels are wasted during the control phase since all nodes
tune to the channel 0 or the common control channel.

• Data channel negotiation can only be performed during the control
phase of a beacon interval resulting in longer delay.

To mitigate the second and third disadvantages, control message exchange
can be performed at all available channels. Each channel serves as a com-
mon control channel for a certain time interval in a sequential and round-
robin fashion (called ATIM phase shift mechanism hereafter) so that the
control phase is available at all times [37, 34, 35] for data channel negoti-
ation, as shown in Figure 3.4. However, saturation of the control channel
remains unsolved.

Figure 3.4: ATIM phase shift mechanism in the SP approach.
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3.3.5 Common Hopping Approach

3.3.5.1 Hardware Requirement and Description of Operation

The common hopping approach requires every node to hop through all
the available channels following a common hopping pattern using only
one transceiver, as shown in Figure 3.2(c). Time synchronization is neces-
sary. If a node has data packets to send, it transmits RTS to its receiver that
returns a CTS. If the communication node pair agrees on data packet trans-
mission using the channel they are currently in, they stop hopping until
data packet transmission completes, while their neighbour nodes continue
to hop.

3.3.5.2 Advantages and Disadvantages

In this approach, there is no common control channel and all channels are
used for data packet transmission. An advantage is that communication
node pairs perform data channel negotiation simultaneously in different
channels, hence avoiding saturation in the common control channel. How-
ever, there are four disadvantages in this method:

• Hidden multi-channel problems arise when a backlogged node that
hops into a new channel may have missed recent RTS/CTS hand-
shaking and starts to transmit RTS.

• Slow channel switches in the current off-the-shelf IEEE 802.11b
transceiver that takes about 100-200µs to switch between channels,
thus this approach experiences high channel switching delay, and it
is highly dependent on hardware performance.

• Lack of support in broadcasting that is important in routing message
dissemination such as Route Request (RREQ) and Hello messages.

• Precise time synchronization is required.
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3.3.6 Default Hopping Sequence Approach

3.3.6.1 Hardware Requirement and Description of Operation

The DHS and CH approaches have the similar hardware requirements. In
the DHS approach, every node determines its default hopping pattern us-
ing the seed of a pseudo random generator. The seed, such as the MAC
address, is known to a node’s neighbour nodes. During normal operation,
a node hops and listens to the channel according to its default hopping pat-
tern. If a node wants to send data packets, it determines its receiver node’s
hopping sequence and hops into its channel accordingly which the receiv-
er is listening to if it is idle. In Figure 3.2(d), node A determines node B’s
default hopping sequence and hops into its channel for data packet trans-
mission after control message exchange. Both node A and B stop hopping
for data packet transmission, after which both of them hop according to
their default hopping sequence respectively.

An example of DHS scheme is McMAC [38]. In addition to defining a
default hopping sequence, McMAC addresses neighbour node discovery
and scheduling. Since there is no common control channel and common
hopping pattern, McMAC requires every node to beacon at every channel
within a predefined period to enable neighbour node discovery and time
synchronization among neighbour nodes. In the scheduling mechanism, a
backlogged node transmits its data packet with probability Pdeviate so that
the number of nodes that deviate from their default hopping sequence is
controlled if many nodes are backlogged. This helps to balance the num-
ber of transmitters and receivers in the network.

3.3.6.2 Advantages and Disadvantages

The DHS and CH approaches have the similar advantages and disadvan-
tages.
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3.3.7 Summary on the Merits and Demerits of Multi-

channel MACs

A summary of comparison of the merits and demerits of multi-channel
MAC protocols is shown in Table 3.3.

Table 3.3: Comparison of various categories of multi-channel MACs

Problem, functions or
characteristics

CCC SP CH DHSa

Single
transceiver

Multiple
transceiver-
s

Issue on saturation in
common control chan-
nel

Yes Yes Yes N/A N/A

Problem on deteriora-
tion in hidden multi-
channel problem

No No No Yes Yes

Problem on channel
switching delay

No No No Yes Yes

Support on broadcast-
ing

No Yes Yes No No

aBased on McMAC [38]

3.4 Cognitive MACs and Their Functionalities

This section focuses on the dissimilar characteristics of multi-channel and
cognitive MAC protocols, where the presence of PU is a concern.
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3.4.1 An Overview of IEEE 802.22

A prominent example of a CR architecture is the IEEE 802.22 WRAN [23],
which is currently in the draft process. The IEEE 802.22 adopts a central-
ized single-hop model and is not suitable for distributed CR networks. In
IEEE 802.22, each CPE or SU is associated with an SU BS. To provide a
wide coverage, multiple BSs are constructed. Thus, not only does a BS
and its CPEs have to detect the presence of incumbent TV or PU signal-
s, but also to coordinate coexistence with overlapping BS and CPEs, or
other SUs. IEEE 802.22 is reviewed to provide a list of tasks that a cogni-
tive MAC must provide. In general, the IEEE 802.22 MAC performs three
mechanisms:

• Dynamic Spectrum Access (DSA): Access white spaces opportunisti-
cally. Detect PU signals across various channels and vacant the chan-
nels urgently should PU signals reappear.

• Dynamic Spectrum Sharing (DSS): Coordinate channel sharing a-
mong SUs.

• Dynamic spectrum management: Enable data packet transmission
across three channels simultaneously through channel bonding.

In DSA and DSS, the BS coordinates the channel sensing procedure among
its CPEs in order to detect PU signals in a cooperative manner. This means
that the BS determines the channels and times a CPE should sense. Each
CPE sends its channel sensing outcome to its BS. With proper channel
sensing methodology, the BS has a spectrum occupancy map that covers
in-band and out-of-band channels of its entire cell, as well as its neigh-
bouring cells. This sensing method is called distributed sensing. In gen-
eral, there are two types of measurements: in-band measurement measures
the channels that the BS and CPEs are using; and out-of-band measurement
measures the other channels. The in-band measurement is more critical
since PU signals must be detected as soon as possible. A two-stage quiet
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period mechanism is adopted to perform in-band measurement, as shown
in Figure 3.5. The in-band measurement is comprised of fast-sensing and
fine-sensing. Fast-sensing, which uses simple energy-based detection to de-
tect the existence of PU signals, takes approximately 1ms/channel; while
fine-sensing, which uses feature-based detection to detect and categorize
the signature of PU signals such as wireless microphone, television, and
IEEE 802.22 signal, takes approximately 25ms/channel. Fine sensing is
carried out if fast sensing detects signals. All BSs, and hence CPEs, are
synchronized to perform the in-band measurement simultaneously if they
are using the same channels. When all BSs and CPEs keep quiet, any de-
tected signals must be from the PUs. The channel detection time is less
than 2s (see Table 3.4) in IEEE 802.22 [23], hence channel sensing must be
carried out at least once within this period.

Figure 3.5: Timing for sensing mechanism in IEEE 802.22.

Note that 75ms is required to perform fine sensing on three consecu-
tive channels, which are used simultaneously through channel bonding in
dynamic spectrum management. The BS and CPEs switch to backup chan-
nels during the fine sensing period. Also, upon detection of PU signal, the
BS executes the Incumbent Detection Recovery Protocol (IDRP) [39] that
informs its CPEs to use backup channels. The BS and CPEs keep a list of
prioritized backup channels that are well maintained through out-of-band
measurement. Thus, the BS and CPEs know which channel to switch to
when necessary. This means that, even though a CPE misses a beacon re-
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lated to channel switching from the BS, IDRP enables a CPE to switch to
the most preferred backup channel, providing a gracefully recovery.

Table 3.4 details the Dynamic Frequency Selection (DFS) timing re-
quirements defined in IEEE 802.22 that cover detection, notification and
recovery. A BS or CPE must detect the PU signal within CDT for signal
strength greater than IDT. During notification and recovery, BS and CPE
must cease all transmission within CMT. In addition, CCTT defines the
aggregated transmission duration during CMT.

Table 3.4: DFS timing requirements in IEEE 802.22

Parameter Details Value for
TV broad-
casting

Channel Detec-
tion Time (CDT)

Time interval that an SU must
detect PU signal

≤2s

Channel Move
Time (CMT)

Time interval that an SU must
vacate channel after detection of
PU signal

2s

Channel Clos-
ing Trans-
mission Time
(CCTT)

Aggregate duration of transmis-
sions during CMT

100ms

Incumbent De-
tection Thresh-
old (IDT)

PU signal energy above this
threshold must be detected

-116dBm
(over 6
MHz)

3.4.2 List of Functions for Cognitive MACs

Although IEEE 802.22 is designed for single-hop centralized CR networks,
the discussion in the previous section presents an insight into the functions
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that a cognitive MAC has to support in distributed CR networks. A list of
these CR functions follows:

• Cooperative sensing: Cooperative sensing has been proposed to mit-
igate the effects of fading and shadowing on channel sensing out-
comes. Thus, some SUs, called dominant nodes hereafter, have to
be elected to perform decision fusion on channel sensing outcomes
collected from neighbour SUs or the dominated nodes. Each SU is
either a dominant node or a one-hop neighbour to a dominant node
and becomes a dominated node. We assume that dominant nodes
are elected and readily available in the subsequent discussions in
this chapter.

• Coordination in distributed and cooperative sensing: Dominant nodes
must cooperate with their respective neighbour dominated nodes
and with other dominant nodes to perform fast and fine sensing at
in-band and out-of-band channels.

• Notification on PU detection: Once a PU signal is detected, the MAC
should enable a dominated node to inform its dominant node, which
performs decision fusion on sensing outcomes. All these functions
are done within the timing requirements imposed by the PU, such as
the DFS timing requirements in IEEE 802.22.

• DCS: Channels are selected for data packet transmission in adapta-
tion to channel availability at an SU.

• Channel switching: When a channel is reoccupied by a PU, SU activ-
ities have to be switched to a backup channel. The SU transmitter
and receiver have to inform each other of channel switching.

• Compliance with timing requirements: The SUs have to conform to the
CDT, CMT, CCTT and IDT imposed by their PUs to avoid interfering
with them.
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To the best of our knowledge, none of the existing or proposed cognitive
MAC protocols in distributed CR networks perform all of the CR function-
s.

3.5 Multi-channel MACs in Distributed CR Net-

works

This section details the operations and challenges that each category of
multi-channel MAC protocols has to address in order to operate in dis-
tributed CR networks. Multihop data packet transmission is supported in
multi-channel MACs such as [32, 37, 35, 33, 36] and these MAC features
can be leveraged to facilitate design of cognitive MACs. Generally speak-
ing, cognitive MACs that follow the four categories of multi-channel MAC
approaches have the hardware requirements as shown in Table 3.2 and in-
herit their merits and demerits in Table 3.3. Current research in cognitive
MACs assumes the availability of a common control channel at all times
[1], and therefore applies the CCC approach. However, without fulfilling
the proper hardware requirements, the CCC approach may not be feasi-
ble, for instance, lack of multiple transceivers in the CCC approach. In
this case, the SP, CH and DHS approaches may be more appropriate. In all
the multi-channel MAC approaches, the problems and issues in Table 3.3
should not be neglected.

3.5.1 Common Control Channel Approach

In the CCC approach, the common control channel, which is available at
all times, is used as a means of communication for CR functions including
cooperative and distributed sensing, notification on PU detection, DCS,
and channel switching. The common control channel may be located in
one of the following channels:
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• Dedicated channel(s) in PU spectrum.

• Dedicated channel(s) in ISM/UNII spectrums.

• Unlicensed Ultra Wide Band (UWB).

As shown in [1], it is infeasible for a CR network to search for a fixed
common control channel at PU or licensed spectrum. When PU activity
reappears, the SUs must vacate their channel. Thus, a common control
channel has to be localized and switchable. In [40, 41], a clustering ap-
proach is proposed such that each cluster chooses an available channel for
control message exchange so that a global common control channel is not
necessary. To countermeasure saturation in the common control channel,
effective handshaking has to be designed. Another option is to perform
channel bonding at several common control channels. In the data chan-
nel, each SU has to sense its channel before transmission.

3.5.2 Split Phase Approach

During the control phase, all SUs tune to a common control channel and
perform in a similar way to the CCC approach where the CR functions
are performed. Similar to the CCC approach, a common control chan-
nel, which has to be localized and switchable, can be located at any of the
aforementioned three types of channels in Section 3.5.1. The ATIM phase
shift mechanism [37, 34, 35] is difficult to perform in CR networks unless it
can be assured that the ATIM window is not overlapping with PU’s trans-
mission at all channels. Without the ATIM phase shift mechanism, there
are two aforementioned disadvantages as follows:

• Data channels are wasted during the control phase. However, to
avoid saturation at the common control channel, the data channels
can be used as a common control channel through channel bonding.

• Data channel negotiation can only be performed during the control
phase.
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In the data channel, each SU has to sense its channel before transmission.

3.5.3 Common Hopping Approach

Whenever an SU newly hops into a channel according to a common hop-
ping pattern in the CH approach, it has to perform channel sensing before
any data channel negotiation. Since all SUs are tuned to common chan-
nels, message exchange for CR functions is possible. Through distributed
sensing coordinated by dominant nodes, advanced sensing of the chan-
nel before hopping into the channel is possible. In this case, the common
hopping sequence can skip the channels that are already occupied by PUs.
Upon detection of PU activity, SUs can inform their dominant node imme-
diately so that channel switching can be performed to hop into the next
channel immediately. This means that the duration of an SU in a channel
can be dynamic according to the PU activity.

3.5.4 Default Hopping Sequence Approach

Similar to the CH approach, whenever an SU newly hops into a channel,
the DHS approach requires each SU to perform channel sensing before
any data channel negotiation. Since adjacent SUs may hop into different
channels at the same time, cooperative and distributed sensing are diffi-
cult among SUs unless they have a common channel for communication,
which is not possible using a single transceiver. Suppose PU activity is
detected within a channel, in DHS, an SU does not switch to the other
channel immediately, but must wait until the next hopping occurrence in
order to maintain synchronization among the SUs so that neighbour SUs
are able to calculate its hopping pattern accurately, which introduces de-
lay in data packet transmission. Alternatively, a new hopping sequence
has to be designed so that an SU skips channels that are already occupied
by the PUs, while keeping its neighbour SUs well informed of the channel
that it is currently listening to.
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3.6 Chapter Summary

This chapter has reviewed various approaches in multi-channel MAC,
their merits and demerits. Based on the belief that cognitive MAC pro-
tocols for distributed CR networks that apply similar approaches to multi-
channel MAC protocols inherit their characteristics, the approach has to be
chosen carefully based on its merits, demerits and hardware requirements.
The demerit factors remain as open issues in distributed CR networks.
Functionalities that a cognitive MAC protocol has to provide, and how
these functions can be incorporated into the multichannel MAC protocol-
s are also presented. This chapter has established a foundation for fur-
ther research in the data link layer of distributed CR networks through the
discussion on technology leverage from multi-channel to cognitive MAC
protocols. In the coming Chapters 6 to 7, the DCS scheme has been chosen
out of the many CR functions as the application under investigation to re-
search into achieving context awareness and intelligence in CR networks.
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Chapter 4

C2net: A Cross-Layer QoS
Architecture

This chapter presents a cross-layer QoS architecture called Cross-layer QoS
architecture for Cognitive wireless ad hoc NETworks (C2net), which cov-
ers particularly the network and data link layers, based on the Next Steps
in Signaling (NSIS) framework [42] from the Internet Engineering Task
Force (IETF) [43], as well as its challenges and open issues, as a unified
solution for end-to-end QoS provisioning in cognitive wireless ad hoc net-
works. Firstly, this chapter presents related work on QoS architecture, N-
SIS framework and several CR regime. The discussion is followed by two
novel contributions. Secondly, it presents C2net. Thirdly, it presents chal-
lenges and open issues associated with the cross-layer designs in C2net
posed by the intrinsic complexities of cognitive wireless ad hoc networks
to spark new research interests in several unexplored, yet promising areas
in this field.

4.1 Introduction

A Cognitive Wireless Ad hoc Networks (CWAN) is a multihop self-
organized and dynamic network that applies CR technology for ad hoc

43
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mode wireless communications so that static and mobile nodes within
range of each other can communicate in a peer-to-peer and multihop fash-
ion without necessarily involving infrastructure such as a BS. An illustra-
tion of CWAN is provided in Figure 2.2 on page 14.

To date, a number of projects have considered the design of QoS ar-
chitectures for wireless ad hoc networks [44, 45, 46, 47, 48, 49]; but unfor-
tunately none of them can be directly applied to CWAN because CR has
an additional requirement to cope with the existence of PUs. A QoS ar-
chitecture details a framework for the provision of QoS guarantees on an
end-to-end basis for various traffic types with different priority levels such
as video, voice and data. The end-to-end basis means that a source node
generates a flow of data packets to its destination node, and it is relayed
by intermediate nodes if necessary. Typical QoS parameters that need to
be considered include bandwidth, end-to-end delay, packet loss rate and
jitter.

In CR networks, research into QoS provisioning in CWAN is still in its
infancy and it has been focusing on the following aspects:

• Single-hop static and centralized networks much like the IEEE 802.22
WRAN (see Section 2.4 on page 17 for current research trends). There
has been only a perfunctory attempt to provide QoS guarantee based
on an end-to-end basis in CWAN [9].

• Physical layer of the OSI reference model. There has been only a
perfunctory attempt to improve the data link and network layers [9,
6].

QoS provisioning in CWAN is a daunting challenge for the following
reasons:

• The capacity of the wireless channel on which the SUs are operating
is apt to change dependent on the PU Utilization Level (PUL). High-
er levels of PUL in a particular data channel indicates higher levels of
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PU activity, and hence a smaller amount of white space. Specifically,
the PUL changes with time.

• The quality of the wireless channel on which the SUs are operating is
apt to change dependent on Packet Error Rate (PER). Higher levels
of PER indicates higher levels of failed data packet transmission due
to uncertain and varying data channel conditions caused by various
factors including shadowing, channel selective fading, path loss, PU
interference, and others. Specifically, the PER changes with time.

• Nodal mobility. In general, the transmission range using a similar
transmission power in wireless channels of different frequencies is d-
ifferent. Specifically, lower channel frequency usually provides larg-
er transmission range.

Ameliorating the effects of low quality of wireless channel and nodal mo-
bility is currently being addressed in traditional wireless ad hoc network
solutions. This chapter addresses all the three aforementioned challenges.
It presents C2net, which is a cross-layer QoS architecture for CWAN, fo-
cusing on the data link and network layers. The main objective of C2net is
to provide stable end-to-end QoS assurance to high priority flows, while
providing service prioritization to different traffic types. This is realized
by a number of distributed features of C2net including topology manage-
ment, congestion control, scheduling, and DCS.

4.2 Chapter Goals

This chapter discusses C2net to establish a foundation for further research
on data link and network layer of CWAN. This chapter addresses the fol-
lowing research questions:

1. What is C2net or the cross-layer QoS architecture for CWAN?
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2. What are the cross-layer designs in C2net, their challenges and open
issues?

4.3 Related Work

This section reviews QoS architecture, NSIS Framework, and CR regime.

4.3.1 Quality of Service Architecture

Two very early QoS architectures have been proposed for static wired net-
works, namely Integrated Services (IntServ) [46], and Differentiated Ser-
vices (DiffServ) [45]. This section reviews some of the key concepts in
IntServ and DiffServ architectures, as well as their variants.

4.3.1.1 An Overview of Integrated Services (IntServ) Architecture

The IntServ architecture provides a per-flow granularity in QoS guarantee.
This requires every intermediate node of a flow to perform resource reser-
vation and admission control mechanisms. A signaling protocol called
Resource Reservation Protocol (RSVP) is used to reserve and maintain re-
sources (or states), such as bandwidth, for each flow at intermediate nodes.
The realization of IntServ in wireless networks is questionable because of
four disadvantages:

• Scalability concerns as a result of storing state information for each
flow at all intermediate nodes.

• The large amount of overhead in RSVP signaling.

• Resource reservation that is difficult to adapt to dynamic topology
in wireless ad hoc networks.
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• Complex implementation of QoS functions at each intermediate n-
ode such as resource reservation (or state information maintenance)
and admission control.

4.3.1.2 An Overview of Differentiated Services (DiffServ) Architecture

The DiffServ architecture provides a per-class granularity in QoS guaran-
tee. DiffServ limits complicated QoS functions such as admission control,
packet classification and conditioning to the source node. A source node
classifies data packets from its various flows according to their QoS re-
quirements based on their respective traffic priority class, marks the D-
iffServ Codepoint (DSCP) field in the data packet Internet Protocol (IP)
header, and conditions the data packets based on a traffic policy. Inter-
mediate nodes that receive the data packet match the DSCP with Per-Hop
Behaviour (PHB) and forward the data packet accordingly. The PHB i-
dentifies how a data packet should be forwarded according to its priority
class. The DiffServ ameliorates the aforementioned four disadvantages of
IntServ. However, two disadvantages of DiffServ are:

• Per-class granularity only provides long-term QoS guarantee for
each flow.

• There is no QoS signaling to ensure QoS is supported on an end-to-
end basis.

4.3.1.3 Variants of QoS Architectures

Based on IntServ and DiffServ frameworks, various QoS architectures for
wireless ad hoc networks have been proposed. INSIGNIA [47] adopts the
IntServ framework and hence inherits its disadvantages; while SWAN [44]
applies the DiffServ model. As DiffServ does not provide end-to-end QoS
signaling, a source node in SWAN sends a probing message to its destina-
tion node to estimate available resources along its route, such as bottleneck
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bandwidth and end-to-end delay. The resource information is required to
perform admission control at the source node. FQMM [48] and HQMM
[49] apply the hybrid model that embraces both IntServ and DiffServ con-
cepts. The hybrid model provides per-flow granularity to a small amount
of high priority flows, while the rest of the flows are treated as per-class
granularity. None of these QoS architectures can be adopted in CWAN
because of the additional requirement to cope with the existence of PUs.

4.3.2 Next Steps in Signaling Framework

Recently, NSIS framework [42] has been proposed as the end-to-end QoS
signaling protocol to supplement the DiffServ model. Using NSIS frame-
work, resource reservation along a route comprised of different QoS mod-
els can be made. Hence, the NSIS is particularly suitable for C2net, which
is a hybrid QoS model of IntServ and DiffServ.

4.3.2.1 Next Steps in Signaling Framework Components

Architecturally, NSIS is comprised of two components, namely the NSIS
Transport Layer Protocol (NTLP) and the NSIS Signaling Layer Protocols
(NSLPs) [50]. The NTLP has a messaging component called General In-
ternet Signaling Transport (GIST), which is a successor to RSVP, that uses
standard transport layer protocols such as User Datagram Protocol (UDP),
Transmission Control Protocol (TCP), Stream Control Transmission Proto-
col (SCTP), and Datagram Congestion Control Protocol (DCCP) for send-
ing QoS signaling messages. The NSLP provides application-specific func-
tions such as QoS provisioning and security.

4.3.2.2 Quality of Service NSIS Signaling Layer Protocols

This chapter focuses on the QoS NSLP. Four types of signaling messages
are defined in QoS NSLP as follows:
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• The RESERVE message creates, refreshes, modifies and deletes a
flow’s resource reservation state information at a node.

• The QUERY message probes available resources along a route, such
as bandwidth.

• The RESPONSE message serves as acknowledgment or confirmation
of a received QoS NSLP signaling message.

• The NOTIFY message conveys error conditions.

An example of the use of the NSIS signaling scenario for a QUERY mes-
sage is shown in Figure 4.1. Suppose, node 1 is the source node and node
4 is the destination node. Node 2 and 3 are intermediate nodes in a route
that helps to relay data packets of a flow to the destination node. Us-
ing its QoS NSLP, node 1 creates a QUERY message, which contains the
requested bandwidth information for its flow, to probe bandwidth avail-
ability along its route. The GIST encapsulates the QoS NSLP message and
transports the signaling message using one of the transport layer proto-
cols until the destination node 4 is reached. Upon receiving the QUERY
message, the QoS NSLP of the intermediate node 2 and 3 update their re-
spective available bandwidth in the signaling message. Hence, the key
design component of the NSIS framework in a QoS architecture is the QoS
NSLP. This component is discussed extensively in Section 4.4.

4.3.3 Cognitive Radio Regime

CR networks can be realized in three different ways [24] as follows:

• Current regime. In this regime, SUs are capable of sensing and u-
tilizing white spaces opportunistically at licensed spectrum bands
without incurring any cost providing that there is no harmful inter-
ference to the PUs. Hence, whenever a PU makes use of its allocated
spectrum bands, which has been classified as white space by SUs, the
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Figure 4.1: NSIS signaling scenario for QUERY message.

SUs must vacate the spectrum bands within the timing requirements
imposed by the PU.

• Common regime. In this regime, there is equal right for all nodes to
spectrum access much like the current unlicensed spectrum bands;
hence there is no concept of PU and SU.

• Market-based regime. In this regime, spectrum bands is sold as block-
s of white spaces by the PU that provides exclusive access to SU
purchasers. Hence, the market-based regime provides better a guar-
antee of white space availability and it is more reliable although it
comes at a price. In [24], it is reported that the market-based ap-
proach is backed by several prominent regulators such as the FCC,
the UK Office for Communication (Ofcom), and the EU Commission
Radio Spectrum Policy Group.



4.4. C2NET: A CROSS-LAYER QOS ARCHITECTURE 51

4.4 C2net: A Cross-layer QoS Architecture

4.4.1 Quality of Service Model and Cognitive Radio

Regime

C2net is a hybrid model of IntServ and DiffServ. In this architecture, a s-
mall number of high priority flows, such as voice and video, adopt the
IntServ model; while the other flows adopt the DiffServ model. From an
economic point of view, consumers prefer to send best-effort flows at the
lowest possible price; while high priority flows may incur some charges
with occasional packet loss being acceptable as long as the perceived qual-
ity is not significantly degraded. Thus, the DiffServ model applies the cur-
rent regime, while IntServ applies the market-based regime. In the market-
based regime, SUs have exclusive access to white spaces in a deterministic
manner; hence, the small number of high priority flows achieve better QoS
guarantee.

4.4.2 Common Control Channel Approach

The common control channel approach (see Section 3.3.3 on page 26) is
adopted. There are two types of channels, namely, the common control chan-
nel and data channels. Both the common control channel and data channels
are located in the licensed or unlicensed spectrum bands. Each SU is e-
quipped with two transceivers: the control transceiver is tuned to a com-
mon control channel at all times; while the data transceiver is tuned to one
of the data channels for data packet transmission. During normal opera-
tion, all SUs are constantly listening to the common control channel. The
common control channel is meant for control message exchanges, such as
data channel negotiation messages and notification to vacate a data chan-
nel upon detection of PU activity. During data channel negotiation, the
SU transmitter and SU receiver choose a data channel among all the avail-
able data channels for data transmission, after which the data transceiver
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is tuned to the negotiated data channel. The SUs constantly explore the
data channels in search of high quality white spaces.

Figure 4.2: Flowchart for QoS elements at each SU in C2net architecture.
Solid line indicates control flow; while dotted line indicates data flow.
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4.4.3 Quality of Service NSIS Signaling Layer Protocols

Operation in the Common Control Channel

The QoS NSLP is the key component of the NSIS framework for QoS pro-
visioning. The flowchart for QoS NSLP in C2net at each intermediate SU
node is shown in Figure 4.2, in conjunction with other QoS elements. Pro-
cedures at the control channel are related to QoS NSLP, while procedures
at the data channel are for all data packets. For brevity, RESPONSE and
NOTIFY messages are not shown. Before any QoS signaling is performed,
the routing protocol is assumed to have found several routes from the
source node to the destination node. Upon receiving control messages
on the common control channel, the GIST messages that carry QoS infor-
mation are processed in the QoS NSLP. The QUERY message processing
unit checks for available bandwidth at the SU. Two types of data channels
are the free unlicensed and licensed channels, as well as non-free licensed
channels. If the channel availability of the free channels is insufficient
and the flow has a high priority level, the SU requests bandwidth from
non-free licensed channels through its spectrum manager using a market-
based regime. The spectrum manager at the SU determines the amount
of bandwidth to be later purchased during the resource reservation pro-
cess; and communicates with the PUs or a spectrum broker to know about
the available bandwidth that could be purchased through spectrum trad-
ing. Available bandwidth is updated in the QUERY message, which is
then sent to the next hop that implements a similar procedure using the
common control channel. The QUERY message is also used for state re-
freshment, modification and deletion at an SU. For simplicity, only state
creation is shown.

In Figure 4.2, the RESERVE message processing unit is implemented
for high priority flows only. In this process, the spectrum manager at
each SU is requested to purchase and reserve the required white spaces
for high priority flows. A description of spectrum trading is proposed by
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Buddhikot et al [51].

Whether the reservation is successful is indicated in the RESERVE mes-
sage which is transmitted from the destination node to its sender node.
The state is reserved in a soft manner such that if the QUERY message or
data packet from a flow is not received after a certain time interval, the
state is withdrawn. In this case, the spectrum manager stops the purchase
of white spaces for the flow.

4.4.4 Quality of Service Measures in the Data Channels

On the data channel, QoS measures such as admission control, packet clas-
sification, packet marking, rate control, packet shaping and dropping are
performed to ensure that the rate and burst profile for each flow is com-
pliant with the Traffic Conditioning Agreement (TCA) as stipulated in the
Service Level Agreement (SLA). The purpose is to ensure that the QoS of
the high priority flows are not jeopardized. A detailed description of the
implementation of the QoS measures is given by Blake [45]. Additional-
ly, if the spectrum manager has reserved white spaces for a high priority
flow, its data packets will be forwarded using the reserved resources.

The NSIS framework provides end-to-end QoS signaling and QoS
NSLP for QoS provisioning in C2net. However, there are various other
factors that affect the end-to-end QoS provisioning at the data link and
network layers. A cross-layer approach is adopted to address the issues.

4.5 The Cross-Layer Paradigm

The cross-layer paradigm [52] has overcome the traditional layered ap-
proach through joint design of multiple components at various layers of
the OSI reference model.

An important question is: “Why is the cross-layer paradigm potentially im-
portant in CWAN?” In CWAN, an SU has to be aware of its operating envi-
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ronment. The DCS scheme, which resides in the data link layer, must sense
for white spaces across various data channels and choose a data channel
dynamically for data transmission. To enable the functions at the upper
layer to be aware of their operating environment, functions such as topolo-
gy management and congestion control in the network and transport layer
respectively must cooperate with the DCS in the lower layer.

Three cross-layer designs are shown in Figure 4.3. Joint DCS and topolo-
gy management in interaction 1 performs channel selection in the presence
of dynamics within the new topology, channel condition and PU activity.
Joint DCS and congestion control in interaction 2 ameliorates local conges-
tion in the CR context. Joint scheduling and channel condition measurement
decides the next data packet for transmission in interaction 3.

Figure 4.3: Cross-layer framework in C2net

At the time this chapter was written, little or no effort has been made
by the research community to investigate these joint designs in CWAN.
The next few subsections discuss these joint designs, their challenges and
open issues. In Chapter 8, the RL approach is applied to implement these
designs.
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4.5.1 Joint Dynamic Channel Selection and Topology Man-

agement

4.5.1.1 Objectives

The joint DCS and topology management provides the best strategy to
select an available channel among the licensed channels for data transmis-
sion from an SU with the objective to reduce the data packet loss of high
priority flows for stable end-to-end QoS provisioning, as well as maximiz-
ing overall throughput, in the presence of nodal mobility.

4.5.1.2 Descriptions of Operation

For stable, reliable and robust transmissions, some SUs in a neighbour-
hood that are relatively stable, in terms of mobility characteristics, are se-
lected to form a Dominating Set (DS). Nodal stability is determined using
Link Expiration Time (LET), associativity in Hello messages, or both. An
SU is considered relatively stable if it is capable of serving as a DS node for
the longest time interval compared to its one-hop neighbour SUs. The DS
nodes connect among themselves to form a backbone topology, which is
connected to the SU BS, while non-DS nodes establish links with DS nodes.
Other possible considerations that are relevant to stability, reliability and
robustness in DS node selection are energy levels at the SU, signal-to-noise
ratio in various channels and so on.

Various clustering algorithms in wireless ad hoc networks utilize the
DS concept in order to improve network scalability through reduction of
routing overhead [53]. As an added advantage for CWAN, the DS nodes
provide a means of coordination for distributed and cooperative sensing
(see Section 3.4) in order to mitigate the effects of unreliable channel sens-
ing outcomes without imposing higher sensitivity requirements at each
SU. A DS node performs decision fusion on channel sensing outcomes
from its neighbour SUs to improve sensing accuracies. The decision fu-
sion is a decision making process where local channel sensing outcomes
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at neighbour SUs are combined to reach a more accurate result. In [40], a
clustering scheme for CR networks is proposed so that each cluster choos-
es an available channel for control message exchange, rather than choos-
ing a global common control channel; however, no investigation has been
done on data transmission in the clustering scheme.

The licensed data channels have different levels of PULs and PERs. In
C2net, the DCS is performed based on nodal stability, reliability and ro-
bustness, as well as backbone connectivity, PUL and PER in each available
data channel. The DS nodes, which form a connected backbone, are rela-
tively stable, reliable and robust, and they have higher authority in data
channel selection so that data channels with lower PUL and PER are cho-
sen. Non-DS nodes choose the remaining available data channels. In view
of the dynamic nature of the network, the backbone and channels must be
maintained continuously.

Traditionally, the backbone topology throughout a wireless ad hoc net-
work is formed using the Minimum Dominating Set (MDS) [53] to reduce
the number of DS nodes in order to reduce the amount of routing over-
heads in the entire networks. The routing overheads, such as route request
and route reply, are broadcast by nodes to establish and maintain routes
throughout the networks. In MDS, only DS nodes are allowed to broadcast
the routing overheads. Thus, with reduced number of DS nodes, the rout-
ing overheads are reduced. In C2net, the main purpose is to provide stable
data transmission for high priority flows. It forms a Connected Dominat-
ing Set (CDS) instead of an MDS. The CDS ensures the connectivity of the
DS nodes in the backbone topology. It should be noted that the type of
information carried, which is routing overheads in MDS and data packet-
s in CDS, differentiates the backbone functionalities in C2net from that of
traditional schemes. Ensuring connectivity in the backbone topology help-
s to alleviate congestion and packet loss since the DS nodes have higher
authority to select data channels with lower PUL and PER.
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4.5.1.3 An Example of the Operation

Consider the snapshot of a dynamic topology in Figure 4.4. Suppose,
based on nodal stability, SU1, SU3 and SU4 are relatively stable and be-
come DS nodes. Since SUs are either DS nodes, or direct neighbour to a
DS node, it is a valid MDS. However, there is no connectivity between the
DS nodes, hence it is a broken backbone topology. As SU2 does not have
the higher authority to select data channels with lower PUL and PER for
data transmission, it becomes a bottleneck and congestion occurs. Thus,
SU2 is chosen as a DS node although it does not have higher stability than
SU4. In this case, the DS nodes are connected, and hence form a valid
CDS. The connectivity of the backbone topology (SU1-SU2-SU3) is thus
maintained. In short, the most stable SU node within a subset to fulfill the
connectivity requirement is chosen to become the DS node in backbone
topology maintenance.

Figure 4.4: A snapshot of mobile SUs. In (a), DS nodes are disconnected,
while in (b) they are connected. A solid line indicates a link between SUs.

4.5.1.4 Challenges and Open Issues

The challenges and open issues in this joint design are:

• DCS. The DS nodes must select data channels with lower PUL and
PER for data packet transmission.
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• Backbone topology construction and maintenance. The DS nodes
must form a CDS topology. During DS node selection, the nodes
must negotiate among themselves in a distributed manner.

4.5.2 Joint Dynamic Channel Selection and Congestion

Control

4.5.2.1 Objectives and Descriptions of Operation

In a single-channel environment, if a node experiences congestion, its
neighbour nodes also experience the same congestion. This is not the case
in CWAN where multiple data channels exist. Each data channel has dif-
ferent levels of PULs and PERs. Without load-balancing among the data
channels, an SU may experience congestion, while its neighbour SUs have
more than ample bandwidth. This is a condition that we called channel
selective congestion.

The objective is to allocate the available channels according to the traf-
fic load at each SU. In other words, a channel with lower PUL and PER
is allocated to an SU with higher traffic load, and vice-versa. This joint
design provides load balancing among the channels as a solution to con-
gestion avoidance. An advantage is that congestion can be solved locally
at the data link layer, rather than at the transport layer. An SU is able to
adapt to the congestion level at various channels.

4.5.2.2 Challenges and Open Issues

The challenges and open issues in this joint design are:

• DCS. Based on their traffic loads, the SUs select their respective data
channel with certain levels of PUL and PER for data packet trans-
mission.

• Transport layer monitoring. The source SU of a traffic flow must be
put in a wait state or adjust its transmission rate for a certain dura-
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tion that depends on how long does it take for the intermediate SU
nodes to perform the congestion control mechanism at the data link
layer.

4.5.3 Joint Scheduling and Channel Condition Measure-

ment

4.5.3.1 Objectives

Joint scheduling and channel condition measurement provides the best
strategy to select the next SU or hop among the neighbour SUs for data
transmission from an SU with the objective of reducing the data packet
loss of high priority flows for stable end-to-end QoS provisioning, as well
as maximizing overall throughput.

4.5.3.2 Descriptions of Operation

The selection of the next SU or hop for data packet transmission by an
SU at any time instance is an important event that affects network perfor-
mance significantly. Consider SU0 with two neighbour SUs and a sched-
uler with several class-based queues in Figure 4.5. For simplicity, only
the highest priority queue is shown. Upon data channel negotiation, SU0
sends to SU1 in channel 1; and to SU2 in channel 2. Each high-priority
data packet has a deadline. Suppose earliest deadline first scheduling is
applied within the high-priority queue. The Head of Queue (HoQ) data
packet is to be sent to SU1. However, SU1 is engaged in communication
with another SU, or the channel condition of the link with SU1 is Bad due
to high PUL or PER, which leads to several data packet retransmissions.
This scenario happens because SUs using different data channels have d-
ifferent levels of contention, PUL and PER levels. The HoQ data packet
blocks the next data packet in the queue to be sent to SU2. Eventually, due
to expiry of time sensitive data packets, the first and second data packets
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are dropped. Extending the simple scenario in Figure 4.5 to a number of
class-based queues, say eight, will lead to a complex scheduling design.

Figure 4.5: HoQ blocking.

Denote channel states by Sch = {Good,Bad}. The Good state indicates
data packets will be sent successfully to its neighbour SU; while a Bad s-
tate indicates failure to do so. Consider the highest priority queue in SU0
with two neighbour SUs in Figure 4.6. Note that the scheduling algorith-
m is scalable to a large number of priority queues and neighbour SUs. A
virtual collision handler determines the next hop for data packet trans-
mission. Only the first data packet for each neighbour SU participates for
contention in the virtual collision handler. Suppose the data packet for
SU2 wins in the virtual collision handler. The bandwidth request module
in Figure 4.6 informs the SU to reserve a sufficient amount of bandwidth at
the receiver’s data channel for the next hop data transmission. The virtual
collision handler is an important component in the scheduler that affects
the network performance significantly. Unlike the virtual collision han-
dler in IEEE 802.11e that merely compares the priority level of data pack-
ets when more than one data packet complete their respective backoff at
the same time [54], it has to consider the deadline of high-priority data
packets, the Sch for each neighbour SU, and the PUL and PER of the data
channels in order to compute a contention metric to determine the next
hop to maximize successful data packet transmission in the shortest time
possible.
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Figure 4.6: Improved scheduling with virtual collision handler.

Figure 4.7 shows the inputs and output of a virtual collision handler.
The transmission history component keeps track of successful or unsuc-
cessful data packet transmission to each next hop. The RTS/CTS reser-
vation table keeps track of RTS/CTS information for each available data
channel. The link channel table keeps track of the PUL and PER of each
data channel to categorize the channels into the Good or Bad state. A data
packet for each next hop has its deadline information extracted into the
handler. The virtual collision handler determines the successful next hop.

Figure 4.7: A virtual collision handler with its inputs and output.

4.5.3.3 Challenges and Open Issues

The challenges and open issues in this joint design are:
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• Virtual collision handler. The SUs determine the winning next hop
for data packet transmission, as well as obtaining high quality in-
formation from the transmission history, RTS/CTS reservation table
and link channel table. Fairness must be achieved among the SUs
with high priority data packets.

• State determination. The SUs must infer the Good and Bad states ac-
curately.

4.5.4 Other Research Challenges

Other research challenges and open issues are:

• Congestion measurement. The definition of congestion in a CR context,
its metrics, and the mechanism to measure congestion need further
clarification.

• High priority data packet transmission. To ensure the high priority data
packets in all SU queues are sent first, as well as not starving the best-
effort data packets, not only does an SU have to ensure the high pri-
ority data packets in its queue are sent before best-effort data pack-
ets, but also estimate the number of high priority data packets in
neighbouring SUs. In the traditional single channel environment, a
node can monitor this by reading the DSCP in each data packet it
overhears so that it defers its best-effort data packet transmission if
it hears higher priority data packets are sent among the neighbour
nodes. However, this may not be feasible in a multi-channel envi-
ronment. Hence, it may be necessary for the SUs to announce the
number of high priority data packets in their queues through explic-
it message exchange.

• Transport layer protocols. Traditional transport layer protocols, TCP
and UDP, are now being augmented with SCTP and DCCP. None
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of these have been designed with CR in mind. However, local con-
gestion control has to be designed to cooperate with the end-to-end
congestion control mechanism readily available in both SCTP and
DCCP.

4.6 Chapter Summary

A cross-layer QoS architecture called C2net has been proposed for CWAN,
which is a multihop self-organized and dynamic CR network. The main
objective of C2net is to provide and maintain a stable QoS for high priori-
ty flows throughout their connections. C2net is a hybrid model of IntServ
and DiffServ that adopts the NSIS framework. The core component for
QoS provisioning in the NSIS framework is the QoS NSLP that enables
end-to-end QoS signaling protocol for the QoS model embedded in each
SU. The IntServ model, which adopts the market-based regime, fulfills
the stringent QoS requirements of a flow at reasonable cost by purchasing
white spaces from PU if necessary. The DiffServ model, which adopts the
current regime, provides services to lower priority flows. Various cross-
layer designs as well as their open issues and challenges are discussed.
The cross-layer designs are joint DCS and topology management, joint D-
CS and congestion control, and joint scheduling and channel condition
measurement.



Chapter 5

Reinforcement Learning
Approach

In wireless networks, context awareness and intelligence are the capabil-
ities that enable each node to observe, learn, and respond to its complex
and dynamic operating environment in an efficient manner for network-
wide performance enhancement (see Chapter 1, page 2 for a more com-
plete definition). The cognition cycle portrays the notion of context aware-
ness and intelligence in CR networks. This chapter presents reinforcement
learning as an approach to achieve context awareness and intelligence in
wireless networks including CR networks. The traditional RL approach
can be improved to embrace new features that are applicable to wireless
networks in order to enhance network-wide performance. The discussion
covers the motivation behind this approach, a discussion of the traditional
approach, including the important features such as state, action, reward,
exploration and exploitation. The chapter then focuses on new features
not used in the traditional approach including events, rules and the effect-
s of actions to the operating environment. Finally, this chapter provides
a discussion on achieving context awareness and intelligence in CR net-
works.

65
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5.1 Introduction

5.1.1 Traditional Policy-based Approach

Traditionally, without the application of intelligence, each wireless host
applies a policy-based approach and adheres to a strict and static pre-
defined set of policies that is hardcoded, and responds accordingly. A
common policy is defined through for example if-then-else conditional s-
tatement (see Figure 5.1) or expressed as a state-event-action table. When
a node encounters a particular condition (or state) and an event in the
operating environment, it performs a corresponding action. A condition
such as queue size, is monitored at all times; while an event, such as a
call handoff, happens occasionally and it is detected whenever it occurs.
A prominent example that applies the policy-based approach is the back-
off mechanism in various MAC protocols. The average backoff period is
typically doubled on each successive transmission attempt due to failed
transmission for a particular data packet. A node determines its backoff
period without considering its operating environment such as the number
of neighbor nodes and the channel quality.

Figure 5.1: The if-then-else predefined policy.

5.1.2 Disadvantages of Policy-based Approach

The policy-based approach has a major drawback in that the actions are
hardcoded and cannot be changed “on the fly”. Specifically, the relation-
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ships between the states, events and actions are static.
The wireless communication environment is a complex and dynamic

system. For instance, the radio spectrum resources, network topology and
nodal availability are uncertain and dynamic factors that affect network
performance in a complex manner. Hence, a policy-based system may not
be able to cater for all possible states and events encountered throughout
its operation, resulting in suboptimal network performance.

5.1.3 Necessity of Intelligence

The drawbacks of the traditional policy-based approach can be overcome
by incorporating intelligence into the system. Intelligence enables each
node to learn new states, events and actions, as well as matching them
so that optimal actions can be approximated and taken. In other words,
the policy in Figure 5.1 evolves with time through learning on the fly to
achieve an approximation of optimal policy most of the time.

5.1.4 Necessity of Continuous Learning

Continuous learning is necessary so that the policy remains optimal or
close to optimal with respect to the ever dynamic operating environment.
Specifically, there are three main reasons for continuous learning:

• The operating environment evolves with time such that new state-
event pairs may be encountered, and new actions may be discovered,
hence the policy must be constantly updated to match the state and
event pairs with the optimal or near-optimal actions.

• Network performance brought about by an action may deteriorate
with respect to a state-event pair as time goes by, and so rematching
may be necessary.

• Most operating environments in wireless networks are dynamic in
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nature, e.g. traffic load may follow Poisson process; hence, it may
take many trials to learn an efficient policy.

5.1.5 The Reinforcement Learning Approach

In this chapter, we advocate the use of Reinforcement Learning (RL) [4] to
achieve context awareness and intelligence. The RL approach is an unsu-
pervised and online machine learning technique that improves network
performance using simple modeling (see Chapter 1 on page 4 for more ex-
planation). Instead of tackling every single factor that affects network per-
formance, RL models the network performance, such as throughput, that
covers a wide range of factors that can affect the network performance,
hence its simple modeling approach. However, more complex implemen-
tations of RL are possible to tackle complicated applications. As an exam-
ple, a RL approach called REINFORCE [55] uses Gaussian distribution to
determine its actions.

The RL approach has been applied in a variety of applications such as
routing [56] and resource management [57] in wireless networks such as
Mobile Ad hoc Networks (MANETs), and recently in CR networks [58, 59,
60, 61, 62, 63, 16, 11, 12, 14, 17, 15].

5.2 Chapter Goal

The chapter discusses RL and addresses the following research questions:

1. What is the appropriate generic RL model to achieve context aware-
ness and intelligence in CR networks?

2. What are the traditional and new features in the RL model to achieve
context awareness and intelligence in CR networks?
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5.3 Reinforcement Learning

5.3.1 Description of Operation

Q-learning [4] is an on-line algorithm in RL that approximates an optimal
policy using only simple modeling. We model each node in the network
as a learning agent as shown in Figure 5.2, which is very similar to Figure
2.3 on page 15. Note the additional new feature of “event” and the term
“agent” in Figure 5.2.

Section 2.3.1 on page 15 provides a detailed description of the model
shown in Figure 5.2. This section provides a brief description of the new
feature called “event”. The state and event are differentiated in that the
state is monitored at all times, whereas the event happens occasionally and
in general is detected whenever it occurs.

At any time instant, the agent carries out a proper action so that the
reward should improve in the next time instant. As time progresses, the
agent learns to carry out proper actions given a particular state-event pair.

Figure 5.2: Abstract view of an RL agent in its environment.
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5.3.2 Q-value Function

In Q-learning, the learnt action value or Q-value, Q(state, event, action) is up-
dated using immediate reward and discounted reward, and maintained in
a two-dimensional lookup Q-table with size |(state, event)|×|action|, with
|arg| representing the cardinality of arg. The immediate reward is the re-
ward received at time t+1 for an action taken at the previous time instant
t. For each state-event pair, an appropriate action is rewarded and its Q-
value is increased. In contrast, an inappropriate action is punished and
the Q-value is decreased. Hence, the Q-value indicates the appropriate-
ness of the selection of an action in a state-event pair. At any time instant,
the agent chooses an action with the maximum Q-value so that it receives
an optimal or near-optimal reward that enhances its network performance
such as throughput. The future return is the estimated discounted reward-
s it receives in the future. The discounted reward is the estimate of the
present value of the expected rewards to be received in the future. The
estimation is computed through discounting the expected rewards to the
present value.

Denote state by s, event by e, action by a, action set by A, reward by r,
learning rate by α and discount factor by γ. The reward can be represented
as cost if it is desired to be minimized. At time t+1, the Q-value of a chosen
action in a state-event pair at time t is updated as follows:

Qt+1(st, et, at) ← (1− α)Qt(st, et, at)

+ α(rt+1(st+1, et+1) + γmax
a∈A

Qt(st+1, et+1, a))
(5.1)

where 06α61 and 06γ61. If α = 1, the agent will forget all its previous
learnt utilities, giving a single-shot network behaviour. The higher the
value of γ, the greater the agent relies on the future return, which is the
maximum Q-value in state-event pair at the next time instant. Unless γ=1
where the discounted and immediate rewards share the same weight, the
discounted reward always has lower weight compared to the immediate
reward.
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Changes in the Q-value will lead to changes in agent action. RL search-
es for an approximation of optimal policy that maximizes its accumulated
reward through choosing the action with maximum Q-value. As an exam-
ple of the usage of discounted reward (or cost in this case), the immediate
cost represents the time delay introduced by an upstream node, the dis-
counted cost represents the amount of end-to-end delay from an upstream
node (action) to a destination node (state) in a multi-hop routing scheme
[56]. The agent chooses an upstream node such that the state-action pair
at the upstream node provides the least cost based on (5.1).

5.3.3 Flowchart of the RL Model

Figure 5.3 shows the flowchart of the RL model. At time t, an agent choos-
es a subset of actions in adherence to a set of rules that exclude actions that
violate the network requirements. Next, it chooses an exploitation action,
which is the best known action derived from its Q-table, or an exploration
action, which is a random action designed to increase knowledge of the
operating environment. At the next time instant t+1, it observes the conse-
quences of its previous action including the state, event, and reward; and
updates its Q-table and rules accordingly. Further explanation is given in
the next few sections. In general, to apply RL, the following representa-
tions are necessary: state, event, action and reward; and rules. The repre-
sentations could be optional, for instance, if the state is not represented, it
is called a single-state or stateless model.

5.3.4 Space Representation

All the elements in the operating environment within which a wireless
node resides may not be important unless network performance can be
improved by addressing them. The state, event, action and reward s-
paces incorporate the important decision-making factors of a design ap-
plication. The state characterizes the environmental factors that require



72 CHAPTER 5. REINFORCEMENT LEARNING APPROACH

Figure 5.3: Flowchart of the RL model.

constant monitoring; while the event represents the occurrence of events
of particular interest that may happen occasionally in the environment.

The variables for the state, event, action and reward can be discrete or
continuous. For discrete space, it can be an interval of values segregated
into smaller ranges representing different stages or levels in the system, or
a counter to keep track of the number of occurrences or simply a boolean
representing an occurrence. In a complex scenario, the space can be too
large to be stored in memory, therefore to reduce the number of states, two
states or events that are close to each other can be merged if the Hamming
distance between them is less than a threshold value [4]. The Hamming
distance computes the difference between two states such as the values or
the number of bits at which two states differ. In some cases, such as the
bandwidth provisioning problem, the state, event, action and reward are
more appropriately represented as a continuous space. As an example,
a RL approach called REINFORCE that uses the Gaussian distribution is
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used to generate real-valued actions using the mean and variance of the
state, which is updated using reward [55]. However, in Q-learning, it is not
possible to represent continuous space in a tabular format. Future research
could be pursued for effective approximation-based techniques to achieve
continuous space representation.

5.3.5 Exploration and Exploitation

The update of the Q-value in Equation (5.1) does not cater for the actions
that are never chosen [4]. Two types of action selections are

• Exploitation chooses the best known action, or the greedy action at all
times.

• Exploration chooses non-optimal actions once in a while in order to
improve the estimates of all the Q-values in the Q-table in order that
better actions may be discovered.

The balance between exploitation and exploration depends on the accu-
racy of the Q-value estimation and level of dynamic behaviour in the op-
erating environment. An example of tradeoff methodology is ε-greedy
approach [4]. In the ε-greedy approach, an agent chooses the greedy ac-
tion as its next action with probability 1-ε, and random action with a small
probability ε.

5.3.6 Rules

Q-learning must achieve a high level of reward without violating the con-
straints or rules, which could be imposed by a user requirement or policy.
The (state,event,action) entries that violate the rules are marked. Whenever
a state and event pair is encountered, the actions that violate the rules are
prohibited during exploitation or even exploration.

Three examples of the applications of rules are as follows:
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• Several QoS parameters, such as end-to-end delay and packet drop-
ping probability, have to be fulfilled.

• Requirements imposed by the PU, such as the DFS timing require-
ment (see Table 3.4 on page 36).

• Statistical information is required to perform entry elimination in
[57]. The entry elimination identifies and subsequently refrains from
executing illegitimate actions. In this case, the agent keeps track of
two counters, CM

(s,e,a) and CV
(s,e,a). The CM

(s,e,a) counts the number of
times (state,event,action) is found to violate the rules; while CV

(s,e,a)

counts the number of times the (state,event,action) is visited. An ac-
tion becomes illegitimate when the ratio of CM

(s,e,a) to CV
(s,e,a) is greater

than a threshold value T(s,e,a).

The definition of the rules is dependent on the applications, and hence
it can be static or dynamic. For instance, the T(s,e,a) may be static in order
to conform to the QoS requirements imposed by the user, or the require-
ments imposed by the PU; while it may be dynamically adjusted so that
the threshold reduces the number of (state,event,action) entries in order to
reduce the number of explorations necessary to approximate the optimal
action.

5.3.7 Effects of Actions on the Environment

In wireless networks, the environment dynamics can be affected by the
actions of various agents in a shared medium. For instance, if two neigh-
bor nodes access a similar channel in a multi-channel environment, they
share the reward or transmission opportunities among themselves. How-
ever, this is not always the case as some types of actions (such as channel
sensing) do not affect the environment.

There are two types of RL approaches as follows:
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• Single-Agent Reinforcement Learning (SARL) [4]. The SARL ap-
proach has been applied in this thesis in operating environment with
a single agent, such as the base station in a centralized network, so
that it learns and takes actions that maximize its own network per-
formance.

• Multi-Agent Reinforcement Learning (MARL) [64]. The MARL ap-
proach has been applied in this thesis in operating environment with
multiple agents, such as all the SUs in a distributed CR network, so
that they learn and take their own respective action as part of the
joint action in a cooperative and distributed manner to maximize the
network-wide performance. The joint action is the actions taken by
all the SUs throughout the entire network.

The SARL has been called RL in most literatures. In this thesis, we refer
to SARL and RL as the single-agent approach, and MARL as the multi-
agent approach.

The MARL approach is embedded in each agent in the network, and
it is more suitable if the agents’ actions can affect the environment in dis-
tributed networks. To facilitate coordination, the agents share the infor-
mation related to the rewards among themselves so that each of them
can evaluate its own action in a shared environment [65]. For example,
a message exchange mechanism is proposed in Section 7.3 so that actions
taken by all the agents converge to an optimal or near-optimal network-
wide performance, including networks with cyclic topology [14]. Future
research could be pursued to investigate coordination among the agents
further.

5.4 RL Approach in CR Networks

Chapters 6 and 7 focus on implementing the conceptual cognition cycle
using the RL approach. There are two levels of cognition cycle: node-level



76 CHAPTER 5. REINFORCEMENT LEARNING APPROACH

and network-level (see Section 2.3 on page 14). This thesis applies the
following:

1. SARL to implement the Single-Agent Cognition Cycle (SACC), also
known as network-level cognition cycle, in centralized CR networks.

2. MARL to implement the Multi-Agent Cognition Cycle (MACC), also
known as nodel-level cognition cycle, in distributed CR networks.

Note that “single-agent” and “multi-agent” are terms commonly found in
the field of artificial intelligence and machine learning; while “network-
level” and “node-level” are terms commonly found in the field of CR.
Chapter 6 discusses SACC. Chapter 7 discusses MACC.

In chapter 4, we have presented a cross-layer QoS architecture, namely
C2net for cognitive wireless ad hoc networks. Using the SACC and MACC
models, Chapter 8 presents the RL models for the cross-layer designs to
show the usefulness of these models.

5.5 Chapter Summary

This chapter advocates the use of reinforcement learning to achieve con-
text awareness and intelligence in wireless networks, particularly CR net-
works. In general, context awareness and intelligence enable each agen-
t to observe, learn, and respond to its complex and dynamic operating
environment in an efficient manner for network-wide performance en-
hancement without adhering to a strict and static predefined set of poli-
cies. The notion of context awareness and intelligence is very much re-
lated to the conceptual cognition cycle in CR networks. This capability is
of paramount importance for general functionality and performance en-
hancement in CR networks. A generic RL model to achieve context aware-
ness and intelligence as well as several new features, which do not exist in
traditional RL approaches, including event, rules and effects of actions to
environment, are presented. Certainly, there is a great deal of future work
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in using the RL model for CR networks. To achieve context awareness and
intelligence in CR networks, Chapter 6 discusses SACC for the applica-
tion in centralized CR networks; while Chapter 7 discusses MACC for the
application in distributed CR networks.



78 CHAPTER 5. REINFORCEMENT LEARNING APPROACH



Chapter 6

Single-Agent Cognition Cycle

This chapter presents single-agent reinforcement learning for achieving
context awareness and intelligence in static and mobile centralized cogni-
tive radio networks through the implementation of the Single-Agent Cog-
nition Cycle (SACC) or the network-layer cognition cycle. Investigation
is performed with respect to the DCS scheme. This chapter presents the
single-agent reinforcement learning approach rather than the multi-agent
reinforcement learning approach. Hence, for simplicity, single-agent rein-
forcement learning is referred to as reinforcement learning.

Firstly, in the Introduction section, this chapter presents objectives,
the RL approach, as well as assumptions and related work. Secondly,
it presents related work on the learning mechanism, application of RL,
MAC protocols and DCS scheme in the field of CR networks. Thirdly,
the chapter presents an RL approach to DCS and proposes several simpler
pragmatic DCS mechanisms that are used as a comparison. These mech-
anisms are Adaptation (Adapt), Window (Win) and Adaptation-Window
(AdaptWin). Fourthly, it presents an analytical model for DCS to derive
analytical results. Fifthly, it presents simulation experiment, results and
discussions. The RL, Adapt, Win and AdaptWin approaches are investi-
gated in detail. This covers three major investigations with respect to DCS
as follows:

79
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• The effects of state (see Section 5.3.4 on page 71) on applications that
require state representation. In RL, the state emcompasses the condi-
tion of the operating environment that are relevant to decision mak-
ing.

• The effects of various parameters for RL, Adapt, Win and AdaptWin
on network performance.

• Comparison of the RL, Adapt, Win and AdaptWin approaches, as
well as comparison with analytical results.

The simulation experiment, results and discussions section also discusses
the advantages of the RL approach.

6.1 Introduction

6.1.1 Objectives

In static and mobile centralized CR networks, the DCS scheme provides
the strategy to select an available licensed data channel for data trans-
mission from an SU BS to a static or mobile SU host. The objective is to
maximize overall throughput and minimize delay (in terms of number of
channel switchings) in the presence of different levels of PUL and PER in
the licensed data channels having different transmission ranges, as well as
nodal mobility. The PUL and PER are explained in Section 4.1 on page 44.

6.1.2 The Reinforcement Learning Approach

Reinforcement Learning [4] is here applied to achieve context awareness
and intelligence in static and mobile centralized CR networks with respect
to DCS, though it can also be applied in topology management, schedul-
ing, congestion control, and other applications (see Chapter 8). The net-
work performance of RL is compared with various simple and pragmatic
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learning mechanisms including Adapt, Win, AdaptWin, as well as analyt-
ical results. There are several applications that apply RL in CR networks
[58, 59, 60, 66, 61, 62, 63]; however, none of them provides comparison
with other learning mechanisms and analytical results.

6.1.3 Assumptions and Related Work

To date, research has focused on how an SU exploits and uses the white
spaces with the assumption of channel homogeneity and static networks
[25, 26, 27]. With channel homogeneity, the available data channels across
the spectrum bands have similar levels of PER and transmission range,
though they have different levels of PUL. However, our research focuses
on the next level of enhancement, which is how an SU exploits and uses
high quality (or low PER level) white spaces across heterogeneous chan-
nels for successful data packet transmission in centralized CR networks
with static or mobile SU hosts. In practice, the SUs are expected to operate
over a wide range of non-contiguous frequency bands [22], where the time
scale of the spectrum occupancy varies from milliseconds to hours. Hence,
the RL approach must learn to be responsive to highly dynamic spectrum
occupancy. In addition, selected licensed channels must be sufficiently
far apart from each other that it is not likely that they are simultaneously
suspended by a particular PU. The properties of the white spaces at dif-
ferent frequencies vary with carrier frequency and time-varying channel
condition. In addition, there are many other factors that affect the channel
condition such as nodal mobility, neighbour interference, and transmis-
sion power. Thus, we consider channel heterogeneity where the available
white spaces have different PER levels and transmission range. Through
context awareness and intelligence, an SU is able to sense white spaces and
also to infer their data channel quality so that the successful data packet
transmission rate should be high.

A detailed explanation on the common assumptions in the CR research
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field is found in Section 2.4 on page 17. In this chapter, our assumptions
are as follows:

• Static and mobile networks. Previous schemes [25, 26, 27] assume
only static networks.

• Centralized networks as applied in previous schemes [67].

• Channel heterogeneity. Previous schemes [25, 26, 27] assume chan-
nel homogeneity.

• Simplified RL model without consideration of events (see Section
5.3.4 on page 71), rules (see Section 5.3.6 on page 73), and effects
of actions on the operating environment (see Section 5.3.7 on page
74).

Note that the assumption of a single collision domain, as well as identical
or non-identical channel condition at all the SUs (see Section 2.4 on page
17) are applicable in distributed CR networks only and they are ignored in
this chapter.

6.2 Chapter Goal

This chapter presents RL as an approach to implement the single-agent
cognition cycle. This chapter provides an overview of learning mechanis-
m, as well as related work on CR networks including the application of
RL, MAC protocols and DCS in Section 6.3. There are seven new contri-
butions in this chapter with respect to static and mobile centralized CR
networks:

• We show how the RL approach and other learning mechanisms in-
cluding Adapt, Win and AdaptWin can be applied to model the DCS
scheme in Section 6.4.
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• We show in Section 6.5 how to derive analytical results using Markov
chain analysis, specifically for estimating throughput performance,
for the DCS scheme.

• We investigate the effects of multiple states in RL on network perfor-
mance in Section 6.7.

• We investigate the effects of changes in the parameters of RL on net-
work performance in Section 6.8.

• We investigate the effects of changes in the parameters of Adapt, Win
and AdaptWin on network performance in Section 6.9.

• We compare RL with Adapt, Win and AdaptWin, as well as analyti-
cal results in Section 6.10.

• We discuss the advantages offered by the RL approach compared to
the other learning mechanisms in Section 6.11.

The simulation platform, objectives and performance metrics, ordinates,
baseline and parameters applicable to all simulations in this chapter are
shown in Section 6.6. In addition, we propose solutions for problems asso-
ciated with RL. The results presented in Section 6.10 show that RL, which
has been applied in previous applications including DCS and channel
sensing [62, 63, 11], achieves similar network performance to AdaptWin
and Win, which provide the highest network performance among the oth-
er learning mechanisms studied. We discuss the advantages offered by
the RL approach compared to other learning mechanisms in Section 6.11.
Finally, Section 6.12 concludes this chapter.
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6.3 Related Work

6.3.1 An Overview of the Learning Mechanism

The learning mechanism model is embedded in the SU BS, which is the
agent or decision maker. The flowchart of the RL model is shown in Figure
5.3 on page 72. This chapter does not consider the events, rules and effects
of actions to the environment. The flowchart of the learning mechanism
model under consideration, which is based on the RL model [4], is shown
in Figure 6.1.

Two types of action selections are

• Exploitation chooses the best known action (aka the greedy action) at
all times.

• Exploration chooses non-optimal actions once in a while in order to
improve the estimates of all the Q-values in the Q-table so that better
actions may be discovered. In CR networks, exploration is necessary
as most applications require an SU BS to keep track of its operating
environment, i.e. out-of-band measurement (see Chapter 3.4.1 on
page 34) that requires the SU BS to keep a list of prioritized backup
channels in IEEE 802.22 [23]. Therefore, all the learning mechanisms
in this chapter perform exploration.

This chapter applies the ε-greedy approach [4] where an agent chooses
the greedy action as its next action with probability 1-ε, and random action
with a small probability ε.

The two main tasks are

• Action selection. During exploitation, the agent observes the operat-
ing environment, chooses an exploration or exploitation action, and
executes the action.

• Knowledge update. The agent observes the consequence of its previous
action and reward, and updates its knowledge.
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Figure 6.1: Flowchart of the learning mechanism model.

Applying simple and pragmatic learning mechanisms, such as RL, Adapt,
Win and AdaptWin, in DCS provides three major advantages:

• A learning mechanism helps an SU BS to adapt to its dynamic and
uncertain operating environment.

• A learning mechanism uses a simple modeling approach, thus the
complexity involved in modeling the operating environment and
channel heterogeneity can be minimized. For instance, an SU B-
S that selects a data channel for data transmission does not model
the uncertain and varying data channel conditions, which is char-
acterized by various factors including shadowing, channel selective
fading, path loss, PU interference and others, that affect the SU per-
formance in a complex manner. Having said that, it is possible to
add complexity to the RL model in order to tackle more complex
problems.

• Rather than addressing a single factor at a time, a learning mecha-
nism enables an SU BS to observe relevant factors in decision mak-
ing and achieve a general goal as a whole with regard to the operat-
ing environment. For instance, many factors including data channel
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conditions, nodal mobility and other unknown reasons may affect
throughput performance. The SU BS observes the throughput per-
formance and enhances it as a whole, rather than the need to design
various applications to tackle each factor.

6.3.2 Application of Reinforcement Learning in Cognitive

Radio Networks

RL has been applied successfully in a number of areas. In [66], a concep-
tual architecture that applies machine learning technique is suggested to
enhance the network performance in CR networks. In this chapter, RL,
which is a machine learning technique, is applied to implement the con-
ceptual architecture.

In [58], the tradeoff between exploitation and exploration in an RL ap-
proach, namely “multi-armed bandit”, is investigated with respect to DCS.
In [61], the application of RL to PU signal detection is presented so that the
SU can confirm the existence of the PU signal in the future although the
PU signal may have deviated from its known signature. The investiga-
tions in [58] and [61] use performance metrics in machine learning such
as regret and fitness value; while this chapter uses network performance
metrics such as throughput and delay.

In [62], the application of RL to DCS in distributed CR networks is p-
resented and the effects of RL parameters on network performance are
investigated. The purpose is to reduce call blocking and dropping prob-
abilities. In [63], the application of RL to DCS among a number of BSs is
presented. The purpose is to enable each BS to cover a minimum percent-
age of service area with the highest SINR to support multicast traffic in
order to reduce call blocking and dropping probabilities. In [60], the ap-
plication of RL to detection of white spaces at the SU BS in centralized CR
networks is presented. The purpose is to identify channels with the most
available white spaces. In [59], the application of RL to DCS in Orthogo-
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nal Frequency Division Multiple Access (OFDMA) networks is presented.
The purpose is to improve the PU’s network performance metrics includ-
ing spectral efficiency, users’ QoS satisfaction, and the amount of licensed
spectrum bands to be released to the SUs.

6.3.2.1 New Contributions in Comparison to Related Work

As complements to [58, 59, 60, 66, 61, 62, 63], this chapter provides analyt-
ical results, and compares the RL results with that of other learning mech-
anisms including Adapt, Win and AdaptWin. Previous work considers
homogeneous channels and static networks, while this chapter considers
heterogeneous channels, and both static and mobile networks. Addition-
ally, the use a Markov chain anlytical model to derive expected network
performance for comparison with the RL approach in static and mobile
networks is the first of its kind.

6.3.3 Medium Access Control Protocol for Cognitive Radio

Networks

In this chapter, the DCS scheme, which is modeled using the RL approach
and various learning mechanisms, is applied in a Carrier Sense Multiple
Access (CSMA)-based cognitive MAC protocol.

The common control channel approach (see Section 3.3.3 on page 26) is
adopted. Each SU is equipped with two transceivers:

• The Control transceiver is tuned to a common control channel, which
is free from PU activities, and it is used for control message exchange
including RTS and CTS that contains channel switching information.
The common control channel should also provides the largest trans-
mission range.

• The Data transceiver is tuned to one of the available data channels for
data packet transmission. The data channels have PU activities.
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Hence, two assumptions applied in this chapter are:

• Availability of two transceivers.

• Availability of a common control channel that is free from PU activi-
ties.

Our purpose in this chapter is to show the network performance en-
hancement brought about by the application of RL and various learning
mechanisms, and we believe that these assumptions can be relaxed in real
applications as described in Section 3.3.3 on page 26. The next two subsec-
tions describe the aforementioned two assumptions from the perspective
of CR; while section 3.3.3 describes the assumptions from the perspective
of multi-channel MAC protocols.

6.3.3.1 Availability of Two Transceivers

Two transceivers are applied in [68, 11, 12]; while a single transceiver is
applied in [41, 69, 70]. Using a single half-duplex radio transceiver, each
SU cannot transmit and receive simultaneously; however, it can switch its
channels dynamically. Using multiple half-duplex radio transceivers, each
SU can transmit and receive simultaneously in different channels, so there
is network performance enhancement. However, multiple transceivers in-
crease hardware cost. Nevertheless, with the price of transceivers falling
dramatically, it is feasible to consider using multiple transceivers at each
SU. An example of a cognitive MAC that applies a single transceiver is C-
MAC [41]. For neighbour discovery, it requires that each SU listens to and
broadcasts information, i.e. its neighbour SUs and the list of data chan-
nels that they are listening to, in a common control channel. This is not
necessary if two transceivers are used, since the control transceiver is lis-
tening to a common control channel at all times, and it can be used for
neighbour discovery. Another consideration is the tradeoff between better
network performance and higher energy consumption with the increased
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number of transceivers. However, the design of the MAC protocol affects
this tradeoff since a transceiver can always be made to sleep whenever it
is inactive.

6.3.3.2 Availability of a Common Control Channel

Most of the cognitive MAC protocols apply a single common control chan-
nel approach including [69, 70, 11, 12]. However, in CR networks, a global
common control channel that is free from PUs may be difficult to be found.
In [40, 41], clustering schemes for CR networks are proposed such that
each cluster chooses an available channel for control message exchange so
that a global common control channel is not necessary.

6.3.4 Dynamic Channel Selection

In [25], channel assignment is performed at the granularity of segments
such that a centralized CR network is segregrated into various segments,
which may be affected by different PUs, that use different channels for
data transmissions in order to enhance network-wide throughput and de-
lay performance. In [26], channel selection is performed to predict the PU
traffic patterns based on history information in order to reduce the number
of channel switchings. In [27], channel assignment is driven by a routing
protocol so that the link costs caused by the channel switches as a result of
PU activities are considered in order to enhance network-wide throughput
and delay performance. The investigations in [25, 26, 27] assume homoge-
neous channels and static networks; while this chapter considers hetero-
geneous channels such that each data channel may have different levels of
PULs, PERs and transmission ranges. This chapter assumes the SU trans-
mits using a fixed transmission power in different data channels; hence the
transmission range for each data channel varies. In general, lower channel
frequency provides larger transmission range.

Suppose an SU BS communicates with its SU host using channel 1. As
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the channel quality or PER deteriorates, the successful data packet trans-
mission rate decreases. The SU BS detects the deterioration in QoS, partic-
ularly throughput, and changes to channel 2 that provides better through-
put performance. Other factors such as PUL and transmission range may
also reduce throughput performance and affect network performance in
a complex manner. A data channel with low PUL does not imply a good
channel if it has a high PER.

6.3.4.1 Dynamic Channel Selection Scheme under Consideration

In this chapter, learning mechnisms including RL, Adapt, Win and
AdaptWin are embedded in the SU BS. The learning mechanisms help the
DCS scheme to empirically choose the best possible data channel consid-
ering most of the factors that affect the network performance. We assume
that the SU BS is always backlogged and it transmits data packets to its SU
host. Due to the limited sensing capability at each SU, there are K avail-
able data channels. Based on a conventional assumption, the K available
data channels for data transmission are provided by the spectrum pooling
mechanism (see Section 2.4). The action is to choose a data channel for da-
ta transmission from the available data channels set C={ci=1,2,. . .,K}. Data
packet transmission is classified successful when a link-layer acknowledg-
ment is received for the data packet sent, else the transmission is classified
unsuccessful. Additionally, if an SU senses PU signals immediately prior
to transmission, it is classified unsuccessful.

6.4 Learning Mechanisms as Implementation of

SACC

The DCS learning mechanisms determine how an SU BS, which is the a-
gent, chooses its data channel for data transmission. There are two ma-
jor differences among the four kinds of learning mechanisms, namely RL,
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Adapt, Win and AdaptWin, as follows:

• During action selection, “How does the agent choose its best known
action during exploitation?”

• During knowledge update, “How does the agent maintain and up-
date its knowledge?”

In the next few subsections, we present the learning mechanisms based on
the two aforementioned features.

6.4.1 Reinforcement Learning (RL) Approach

Q-learning [4] (see Section 5.3 on page 69 for theoretical explanation),
which is an RL algorithm, is applied to approximate the optimal data
channel for data transmission. The SU BS keeps track of the learned action
value or Q-value, Qt(ci) for all the available data channels C in a Q-table
with |C| entries. The Q-value Qt(ci), which represents the knowledge, indi-
cates the appropriateness of choosing data channel ci in the operating en-
vironment. In other words, the Q-value estimates the level of local reward
for a data channel ci; hence changes in the Q-value will lead to changes in
an SU BS’s channel selection. At each attempt to transmit a data packet,
the SU BS chooses a data channel ci and receives a local reward rt+1(ci,t) at
time t+1.

6.4.1.1 Knowledge Update Procedure

During knowledge update, the Q-value of a chosen data channel ci,t at
time t is updated at time t+1 as follows:

Qt+1(ci,t)← (1− α)Qt(ci,t) + αrt+1(ci,t) (6.1)

where 0 ≤ α ≤ 1 is the learning rate, and rt+1(ci,t) is the immediate reward,
which is the reward received at time t+1 for the data channel selected at
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time t. The higher the value of α, the greater the SU BS relies on the im-
mediate reward. For every successful data packet transmission, there is
a reward with positive constant value rt+1(ci,t)=+RW, otherwise there is a
cost with negative constant value rt+1(ci,t)=-CT. In practice, the value of
RW and CT are based on the amount of revenue and cost that a network
operator earns or incurs for each successful or unsuccessful data packet
transmission. As time goes by, the agent receives a sequence of rewards
from the data packet transmission procedure.

6.4.1.2 Action Selection Procedure

During exploitation, the SU BS chooses an exploitation or greedy action,
which is the data channel with the highest Q-value, as follows:

ci,t = argmax
ci∈C

Qt(ci) (6.2)

Two conditions that trigger a channel switch are as follows:

• Switching to a data channel with higher Q-value.

• Exploration.

6.4.1.3 Reinforcement Learning Model for Dynamic Channel Selection
Scheme

The RL model for the DCS scheme is shown in Table 6.1. Based on a con-
ventional assumption, the K available data channels for data transmission
are provided by the spectrum pooling mechanism (see Section 2.4).

6.4.1.4 Derivation of the Reinforcement Learning Model

A similar RL model to this one has been applied in DCS such as [62, 63, 11]
although these DCS schemes are applied to enhance different performance
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Table 6.1: RL Model (SACC) at SU BS for DCS

Dynamic Channel Selection Model
Description Representation

Action Available data channels for data
transmission.

C={ci=1,2,. . . ,K}

Reward Constant value to be reward-
ed/incurred for success-
ful/unsuccessful data packet
transmission.

rt+1(ci,t) =+RW, if successful

−CT, if otherwise

metrics in different kinds of scenarios (see Section 6.3.2 for more details).
In the next paragraph, we explain how Equation (6.1) is derived from the
original Q-value function in Equation (5.1) on page 70.

The state representation is eliminated. In Section 6.7, the state is rep-
resented as a set of an SU BS’s neighbour nodes. Since the RL model is
embedded in the SU BS, the set of neighbour nodes is comprised of static
or mobile SU hosts. In Section 6.8, the set of neighbour nodes is comprised
of a single static or mobile SU host. Similar trends are observed in Section
6.7 and 6.8. Hence, for simplicity, two SUs are considered in most inves-
tigations in this chapter including Section 6.5, 6.8, 6.9 and 6.10, namely
an SU BS and an SU host. With a single SU host or state, the state rep-
resentation is eliminated, which is often called stateless or single-state as
explained in Section 2.3 (page 14). This means that after performing a par-
ticular action, the SU BS remains in its initial state. In other words, an SU
BS does not change its SU host or state during every data packet transmis-
sion. As the discounted reward or γ maxa∈AQt(st+1, a) in Equation (5.1)
depends on the next state, the γ is set to 0 value because the state never
changes when an action is being carried out. Hence, in our RL model, the
state and discounted reward are eliminated to give Equation (6.1).
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6.4.2 Adaptation (Adapt) Approach

There is no knowledge update in this approach, and the action selection is
random during a channel switch.

6.4.2.1 Action Selection Procedure

During exploitation, the SU BS chooses its previous chosen data channel.

Two conditions that trigger a channel switching are as follows:

• The number of consecutive failed data packet transmissions reaches
a threshold nAdapt.

• Exploration.

After channel switching, the agent remains in the data channel until
either one of these two conditions are encountered.

6.4.3 Window (Win) Approach

In the Win approach, the SU BS keeps track of the probability of successful
data packet transmission, PWin

S,ci
for all the available data channels C in a

Win-table with |C| entries.

6.4.3.1 Knowledge Update Procedure

Denote the number of most recent attempts of data packet transmissions
or window size by nWin, and the number of successful data packet trans-
missions within nWin using channel ci by nWin

S,ci
.

During knowledge update, the SU BS keeps track of nWin
S,ci

and updates
this information in its Win-table.
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6.4.3.2 Action Selection Procedure

During exploitation, the SU BS computes the probability of successful data
packet transmission using data channel ci, PWin

S,ci
=nWin

S,ci
/nWin, and chooses

the data channel with the highest PWin
S,ci

as follows:

ci,t = argmax
ci∈C

PWin
S,ci

(6.3)

Two conditions that trigger a channel switching are as follows:

• Switching to a data channel with higher PWin
S,ci

.

• Exploration.

6.4.4 Adaptation-Window (AdaptWin) Approach

AdaptWin incorporates both Adapt and Win approaches.

6.4.4.1 Knowledge Update Procedure

During knowledge update, the agent keeps track of nWin
S,ci

and updates this
information in its Win-table.

6.4.4.2 Action Selection Procedure

During exploitation, the SU BS computes PWin
S,ci

and chooses the data chan-
nel with the highest PWin

S,ci
using (6.3).

Two conditions that trigger a channel switching are as follows:

• The number of consecutive failed data packet transmissions reaches
a threshold nAdapt.

• Exploration.

A difference between Adapt and AdaptWin in channel switching is
that Adapt remains in the exploring channel after exploration; while
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AdaptWin chooses the channel with the highest PWin
S,ci

using (6.3) after ex-
ploration. In AdaptWin, during knowledge update and action selection,
AdaptWin follows the Win approach; while the conditions that trigger a
channel switching follow the Adapt approach.

6.5 Analytical Model for DCS

In this section, we present analytical models to assess the estimated net-
work performance, specifically, the expected throughput of a DCS scheme
in static and mobile centralized CR networks. The analytical models are
derived using Markov chain. Since Markov chain is a memoryless ana-
lytical tool, it does not apply any learning mechanism. Our purpose is
to show whether learning-based RL, Adapt, Win and AdaptWin achieve
the estimated throughput offered by non-learning mechanism. In the an-
alytical model, an SU BS chooses the next data channel randomly as long
as the data packet transmission is successful; while in the RL, Adapt, Win
and AdaptWin model, an SU BS chooses the next best known data channel
based on the outcome from the learning mechanisms.

6.5.1 Characteristics of Centralized Cognitive Radio Net-

works and Assumptions

A graphical representation of our scenario is shown in Figure 6.2, and its
characteristics and assumptions are:

• Primary Users

– There are K PUs, PU=[PU1,. . .,PUK].

– Each PU uses one of the K distinctive channels of frequency
F=[F1,. . .,FK] and broadcasts packets throughout the entire sim-
ulation area. The PUs do not change their respective channel,
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thus there are K PUs and channel frequencies. The PUs do not
use four-way handshaking.

– The PUs are not aware of the presence of the SUs.

– The channel utilization pattern of the PUs follow a Poisson dis-
tribution with the mean arrival rate determined according to
the PUL level, and among the data channels it follows an inde-
pendent and identically distributed (i.i.d.) stochastic model.

• Secondary Users

– Each SU node is equipped with two transceivers, namely a con-
trol transceiver and a data transceiver, thus it is capable of access-
ing two different channels simultaneously.

* The control transceiver is tuned to a common channel in the
ISM band for control message exchange, as well as informa-
tion broadcast.

* The data transceiver is tuned to one of the available data
channels in the licensed bands for data packet transmission.
Thus, the PU activities exist in the data channels only.

– There are two SUs to model a scenario for SACC: an SU BS and
an SU host.

– The SU BS is always backlogged and transmits data packets to
the SU host at every opportunity.

– The SUs transmit without interfering with the PUs.

– The learning mechanism model is embedded in the SU BS;
while the SU host switches its data channel according to the
decision made by the SU BS. The SU host is informed of the
changes in the data channel through RTS and CTS control mes-
sage exchange in the common control channel.

– The transmission time for a data packet (C) and its header in-
formation (H) for the SU is tH+C,SU .
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• Channel Characteristics

– There are K orthogonal available data channels with similar
bandwidth. In this section, the notation for the data channels
is C={i=ci=1,2,. . .,K} to indicate data channel ci in the previous
section as data channel i for simplicity. Unless otherwise spec-
ified, channel i is referred to data channel i, rather than control
channel.

– Each data channel is characterized by various levels of PUL,
Lci=[L1,. . .,LK]. Higher level of PUL in a particular data channel
indicates higher level of PU activity. The data packet arrival of
PU traffic in data channel i is a Poisson process with mean data
packet arrival rate λPU,i. Higher values of λPU,i lead to higher
PUL in data channel i. According to the superposition property,
the merging of multiple Poisson processes with different mean
arrival rate λPU,i is equivalent to a single Poisson process with
its mean arrival rate

∑
λPU,i; hence, modeling a single PU in

each data channel is sufficient.

– The PER PEi indicates the level of failed data packet trans-
mission due to uncertain and varying data channel condition-
s caused by various factors including shadowing, channel se-
lective fading, path loss, PU interference, and other factors in
channel i.

• CSMA-based Cognitive MAC Protocol

– At the time this thesis is written, there is not yet a standard
available for a cognitive MAC protocol. Section 6.3.3 lists re-
lated work on cognitive MAC. A CSMA-based cognitive MAC
with DCS implementation is presented in this section. Synchro-
nization among the SUs is not necessary. The common control
channel approach (see Section 3.3.3 on page 26) is adopted. Each
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SU is equipped with two transceivers.

– An illustration of the cognitive MAC protocol is shown in Fig-
ure 6.3. Switching delay may be ignored if channel switching
is not necessary. Since the most recent spectrum sensing out-
come indicates the PU occupancy in a particular data channel,
the data channel, which was free, may become busy within a
Short Inter-Frame Spacing (SIFS) interval immediately prior to
data packet transmission. In this case, the SU BS restarts its da-
ta packet transmission cycle with RTS-CTS handshaking, and
may reassign its data channel. The RTS and CTS contain chan-
nel switching information.

Figure 6.2: Graphical representation of the DCS scheme. The bold line
indicates data packet transmission from an SU BS to an SU host over a
chosen data channel. The common control channel is not shown.

Next, we provide an analytical model for static networks in Section
6.5.2. Its extension to mobile networks is provided in Section 6.5.3.

6.5.2 Analytical Model for Static Networks

We derive the expected throughput of an SU BS using two Markov chain-
s. In the first Markov chain, as shown in Figure 6.4, we determine the
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Figure 6.3: Illustration of cognitive MAC protocol.

probability distribution of channel selection πP (i) by the SU BS for da-
ta packet transmission over the K available channels. Each state i in the
Markov chain represents a channel number that the SU BS can choose for
data packet transmission. The Markov matrix, P is

P =



P11 P12 P13 · · · P1K

P21 P22 P23 · · · P2K

P31 P32 P33 · · · P3K

...
...

... · · · ...
PK1 PK2 PK3 · · · PKK


(6.4)

With tH+C,SU being the header and data packet transmission time for
the SU, the probability of unsuccessful data packet transmission in channel
i, Pi, is dependent on its PER PEi , and PUL with mean data packet arrival
rate λPU,i:

Pi = 1− {(1− PE
i )(1−

∫ tH+C,SU

0
λPU,ie

−λPU,itdt)}

= 1− {(1− PE
i )e−λPU,itH+C,SU}

(6.5)

Note that 1-
∫ tH+C,SU

0
λPU,ie

−λPU,itdt represents the probability of no PU ar-
rival within time interval tH+C,SU . Suppose the SU BS is transmitting in
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Figure 6.4: Markov chain model of dynamic channel selection.

channel i. There are two situations where it does not switch its channel,
or selects the same channel for its next data packet transmission. Firstly,
data packet transmission is successful in channel i. Secondly, data pack-
et transmission is unsuccessful in all K channels, thus there is no benefit
in switching its channel. Hence, the probability that an SU BS does not
switch its channel, Pii, is

Pii = (1− Pi) +
k=K∏
k=1

Pk (6.6)

Next, suppose the SU BS is transmitting in channel i. There are two situ-
ations where it switches its channel from i to j∈{1,2,. . .,K}\i. Firstly, data
packet transmission is unsuccessful in channel i, but only successful in
channel j. Secondly, data packet transmission is unsuccessful in channel
i, but successful in channel sets my. There are many possible channel sets
my. For instance, in the case of K=4 channels, with i=1 and j=2, there are
three sets of channels that provide successful data packet transmission in
channel j=2: m1={2, 3, 4}, m2={2, 3} and m3={2, 4}, where each element in
the set my indicates a channel number. We consider that the probability of
choosing channel j is equally divided among the channels in the set of my.
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If M={my}, the probability of the SU BS switches its channel from i to j, Pij
can be written as

Pij = Pi(1− Pj)(
k=K∏

k=1,k 6=i,j
Pk)

+ Pi
∑

my∈M

∏
k=1...K,k∈my,k 6=i

(1−Pk)
∏

k=1...K,k/∈my,k 6=i

Pk

|my |

(6.7)

Let the steady state probability for P be denoted by row vector πP, which
is comprised of πP (i), and its value is obtained by solving (6.8) and (6.9).
The steady state probability πP provides a probability distribution of chan-
nel selection over the K available channels by the SU BS for data packet
transmission. This means that the higher the probability of πP (i), the more
likely it will be that channel i is chosen for data packet transmission by the
SU BS. The steady state probability πP is the solution to

πPP = πP (6.8)

K∑
i−1

πP (i) = 1 (6.9)

Next, we apply our second Markov chain to estimate the average back-
off window stage of the SU BS, E[N], which is used to estimate the back-
off duration, tBO, experienced by the SU BS. In general, higher levels of
contention at the MAC layer and more frequent unsuccessful data pack-
et transmissions lead to higher levels of backoff stage, and hence longer
backoff. The Markov chain is shown in Figure 6.5 (see [71] for more de-
tails). The state in the Markov chain represents the level of backoff stage,
where the maximum stage level is z. The corresponding contention win-
dow size for each stage is CW(i+1)=2×CWi+1. The contention window
size is limited within the range of CWmin=7 ≤ CW(i+1) ≤ CWmax=255 at
all times. Denote the probability of unsuccessful data packet transmission
across all the available channels by q, which is computed using πP. The
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Markov matrix for the backoff process, Q is

Q =



1− q q 0 · · · 0

1− q 0 q · · · 0

1− q 0 0 · · · 0
...

...
... · · · ...

1 0 0 · · · 0


(6.10)

with

q =
K∑
i=1

πP (i)Pi (6.11)

Figure 6.5: Markov chain model of backoff window stage.

The steady state probability for Q is denoted by vector πQ and its value
is obtained by solving (6.12) and (6.13). The steady state probability πQ

provides a probability distribution over the backoff stages at the SU BS.

πQ(0) = (1− q)
z−1∑
i=0

πQ(i) + πQ(z) (6.12)

πQ(i) = qi[1− q + qπQ(z)] (6.13)

If σ is a backoff slot time, the estimated average backoff window stage
E[N] of an SU BS, and its estimated amount of backoff duration, tBO are
given by

E[N ] =
z∑
i=0

(
CWi + 1

2
)πQ(i) (6.14)

tBO = E[N ]σ (6.15)
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Next, we compute the probability of successful and unsuccessful data
packet transmission across the available channels, as well as their respec-
tive timings. Let the probability of successful data packet transmission be
PS and its respective duration without the switching delay be TS = tRTS +
tCTS + tACK + tH+C,SU + tDIFS + 3tSIFS + tBO + 4δ (see Figure 6.3), where
δ is the propagation delay and it is assumed to be constant in this thesis.
The value of PS is

PS =
K∑
i=1

πP (i)[e−λPU,itH+C,SU (1− PE
i )] (6.16)

There are two possibilities of timings for unsuccessful data packet trans-
mission. Firstly, with probability PB, a channel becomes busy, which hap-
pens within SIFS duration (see Figure 6.3), immediately before the SU BS
attempts to transmit. The duration of this event without the switching de-
lay incurred is TB = tRTS + tCTS + tDIFS + 2tSIFS + tBO + 2δ. PB is computed
as follows:

Y = 1−
K∑
i=1

πP (i)
∫ tSIFS

0
λPU,ie

−λPU,itdt

= 1−
K∑
i=1

πP (i)(1− e−λPU,itSIFS)

(6.17)

PB = (1− PS)(1− Y ) (6.18)

Secondly, with probability PC , an SU BS fails to receive an ACK pack-
et after data packet transmission due to packet loss or collision with PU
transmission. The duration of this event without the switching delay in-
curred is TC = tRTS + tCTS + tDIFS + 2tSIFS + tex + tBO + 2δ, where tex is
the duration of the data packet expiration timer, which is initiated after
transmitting a data packet and is reset upon receiving its corresponding
ACK packet. The value of PC is computed as

PC = (1− PS)Y (6.19)

Next, we compute the probability of the occurrence of channel switch-
ing across the K available channels. The channel switching delay, which
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is hardware dependent and is assumed to be a constant value, is TSW .
Channel switching occurs when the current channel to which the node
is listening has an unsuccessful data packet transmission. Also, there is
no channel switching when all channels lead to unsuccessful data packet
transmission. Therefore, PSW is

PSW =
K∑
i=1

π(i)(Pi −
K∏
j=1

Pj) (6.20)

The estimated length of duration for transmitting a data packet or payload
incurred with and without channel switching are given by

T1 = PS(TS + TSW ) + PB(TB + TSW ) + PC(TC + TSW ) (6.21)

T2 = PSTS + PBTB + PCTC (6.22)

The expected system throughput, S in number of packets per second, is
then

S = E[payload transmitted]
E[length of duration for transmitting payload]

= PS

PSWT1+(1−PSW )T2

(6.23)

6.5.3 Analytical Model for Mobile Networks

Consider a static SU BS located at the center of a disk with radius D={d=d1,

d2,. . . ,dK} that represents different transmission ranges using a fixed trans-
mission power in various channels with dK being the shortest transmis-
sion range, as shown in Figure 6.6. In general, lower transmission carrier
frequency provides larger transmission range. Another mobile SU host is
moving randomly within the maximum transmission range at distance d1

from the SU BS. Let region K be the innermost region where the SU BS
can choose to use one of the K available channels for data packet trans-
mission if the SU host moves into this region; while region 1 is the outer-
most region where the SU BS can choose to use one channel only, name-
ly channel 1. The proportion of the areas of the circle in region K, PR,K
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= πd2
K/πd2

1, at the centre and the annuluses at the outer regions, PR,K−x =∫ K−x
K−x+1

2πdρd(dρ)/πd2
1, provide the proportion of the time duration a mobile

SU host spent in the respective regions. For instance, with K=3 and x=1 at
region 2 as shown in Figure 6.6, PR,2 =

∫ 2

3
2πdρd(dρ)/πd2

1 = π(d2
2-d2

3)/πd2
1.

This mobility model is sufficient to demonstrate the effects of channel-
s with different transmission ranges on the expected system throughput
although other mobility model can be adopted.

Figure 6.6: An SU BS and its transmission ranges using different channels
with K=3.

Using an example, the Markov chains at different regions when K=3
are illustrated in Figure 6.7. At the innermost region 3, the sender can
choose one of the K=3 channels, so there are K states in the Markov chain
in Figure 6.7a; while at the outermost region 1, there is one state only in
the Markov chain in Figure 6.7c. This means that Pii is calculated using
(6.6) at region K=3; while Pii=1 at region 1. Therefore, Equation (6.6) is
rewritten as follows to incorporate all regions:

Pii,K−x = (1− Pi) +
k=K−x∏
k=1

Pk (6.24)

Similarly, Pij is calculated using (6.7) at region K=3; while Pij=0 at re-
gion 1. For the set of channels my,K−x, with K=3, i=1 and j=2 as example,
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(a) Region 3

(b) Region 2

(c) Region 1

Figure 6.7: Markov chains at difference regions.
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then the set my,K−x=m1,3={2, 3} at region 3, while my,1=my,2={∅}. Equation
(6.7) is rewritten as follows to incorporate all regions:

Pij,K−x = Pi(1− Pj)(
k=K−x∏
k=1,k 6=i,j

Pk)

+ Pi
∑

my,x∈M

∏
k=1...K−x,k∈my,x,k 6=i

(1−Pk)
∏

k=1...K−x,k/∈my,x,k 6=i

Pk

|my,x|

(6.25)

The steady state probability for PK−x at different regions, πPK−x(i), is cal-
culated using (6.26) and (6.27), and these equations are rewritten as

πP
K−xPK−x = πP

K−x (6.26)

K∑
i=1

πPK−x(i) = 1 (6.27)

The steady state probabilities for all regions for channel i, πP (i), is calcu-
lated as follows

πP (i) =
K−1∑
x=0

PR,K−xπ
P
K−x(i) (6.28)

Using the steady state probability vector πP obtained from (6.28), Equation
(6.10) to (6.23) are applied to estimate the expected system throughput, S
in mobile networks.

6.6 Simulation Setup

This section discusses the simulation scenario, objectives and performance
metrics, ordinates, baseline, parameters and organization of the remain-
ing sections relevant to the simulation. This covers the simulation experi-
ments, results and discussions in Section 6.7 to 6.10.

6.6.1 Simulation Scenario

The simulation scenario is provided in Section 6.5.1 and its graphical rep-
resentation for the DCS scheme is shown in Figure 6.2.
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6.6.2 Simulation Platform

We have implemented a CR-enabled environment in the INET framework
for OMNeT++ [72]. OMNeT++ provides open-source wireless commu-
nication networks simulation package that supports both multi-channel
transmission and nodal mobility. Most importantly, it models each com-
ponent within a wireless host in a modular fashion, hence both data link
and physical layers can be easily incorporated into a node.

At the time this simulation platform was developed, other possible
platforms were Matlab [73], QualNet [74] and NS2 [75]. Due to the fol-
lowing reasons, these plaforms were not chosen:

• Matlab does not provide network simulation package that incorpo-
rates both data link and physical layers within a wireless host.

• Qualnet is a commercial tool that does not provide cognitive radio
environment.

• NS2 does not adopt the modular framework, hence it is a compli-
cated task to add additional transceiver as two transceivers, namely
control and data transceivers, are required.

The relevant OSI layers in our simulation are data link and physical
layers. At the data link layer, the original INET framework simulates the
IEEE 802.11 CSMA-based MAC protocol; and at the physical layer, it op-
erates in a single channel environment using a single transceiver in a free-
space path loss model. It provides static and mobile, as well as centralized
and distributed networks.

There are three main tasks to prepare for the simulation in a CR envi-
ronment:

• To extend the original INET framework to operate in a multichan-
nel environment. This requires modifications to the transceiver and
operating environment.
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• To add new transceiver so that each SU has two transceivers, namely
control transceiver and data transceiver. This requires modifications
to the architecture of the SU, and MAC protocol as the tranceivers
must cooperate with each other to transmit control messages and
data packets.

• To introduce various learning mechanisms to the MAC protocol.

6.6.3 Simulation Objectives and Performance Metrics

The simulation scenarios consider heterogeneous data channels such that
each channel has different levels of PUL, PER and transmission range.

With heterogeneous channels consideration in all simulation scenarios,
the goals of the DCS are

• To maximize throughput.

• To minimize number of channel switchings, which causes non-
negligible delay for data packet transmission. Additionally, each
channel switch also causes energy consumption. Note that, in con-
trast to the simulation results in Chapter 7 for the MACC approach-
es, channel switchings for exploration purpose are counted in this
chapter.

6.6.4 Simulation Ordinates

Graphs are presented with PUL and PER as ordinate respectively. When
PUL is ordinate, each simulation result of mean throughput or mean num-
ber of channel switchings is for all possible combinations of PUL. As
an example, a PUL of 0.8 for K=3 available data channels may indicate
[0.8,0.8,0.8], [0.8,0.7,0.9], and [0.9,0.9,0.6]. In the case of mobile networks,
each set of PUL is applied to various data channels with different carrier
frequencies, which provides different transmission ranges. As an example,
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for [0.8,0.7,0.9], there are six runs in total with different permutation in-
cluding [0.8,0.7,0.9], [0.8,0.9,0.7], [0.9,0.7,0.8], [0.9,0.8,0.7], [0.7,0.8,0.9], and
[0.7,0.9,0.8]. The similar randomness applies to PER among the available
data channels.

When network performance is investigated with respect to mean PUL
for all data channels, the PER for all data channels is set to 0.1. This inves-
tigation shows the effectiveness of the learning mechanisms in choosing a
data channel with a low level of PUL for data packet transmission in the
presence of low PER for all data channels. When network performance is
investigated with respect to mean PER for all data channels, the PUL for
all data channels is set to 0.1. This investigation shows the effectiveness
of the learning mechanisms in choosing a data channel with a low level of
PER for data packet transmission in the presence of low level of PUL for
all data channels.

6.6.5 Simulation Baseline

A common simulation baseline is the Random-based DCS. The Random
chooses an available data channel in a random manner for every data
packet transmission. Hence, it does not apply any learning mechanism.

6.6.6 Simulation Parameters

Table 6.2 shows the simulation parameters that are applicable to all simu-
lation scenarios in Sections 6.7 to 6.10. Additional simulation parameters
that are applicable to specific simulation scenarios are shown in seperate
tables in Table 6.4 for Section 6.7, Table 6.5 for Section 6.8, and Table 6.6 for
Section 6.9.

We here explain some of the simulation parameters of Table 6.2. The
characteristics of the PU, SU, channel, and CSMA-based cognitive MAC
protocol are discussed in Section 6.5. Each simulation is run for 500s. Each
SU has limitation in channel sensing capability, and thus the number of



112 CHAPTER 6. SINGLE-AGENT COGNITION CYCLE

Table 6.2: Notations and Default Parameter Settings For All Simulation
Setup in Section 6.7 to 6.10.

Category Symbol Details Values

Initial
ization

K Number of available data
channels

3

F Center carrier frequencies of K
available data channels

{400MHz,
800MHz,
5.7GHz}

PEci PER of each available data
channel

[0.1,0.9]
Default: 0.1

δ Propagation delay 1ns
T Total simulation time 500s

MAC

tSIFS SIFS packet duration 10µs
tDIFS DIFS packet duration 5µs
tRTS RTS packet duration 272µs
tCTS CTS packet duration 248µs
tACK ACK packet duration 248µs
tex Data packet expiration timer 5.798ms
σ Backoff slot time 20µs
D Data rate 2Mbps

Mobile
Networks

Mean of speed 20m/s
Standard deviation of speed 8m/s

SU
Traffic model Always back-

logged
tH+C,SU Data packet duration 5.44ms
TSW Switching delay 100µs

PU
Traffic model Stochastic chan-

nels with Pois-
son model

tH+C,PU Data packet duration 5.44ms
Lci PUL of each PU at each avail-

able data channel
[0.1,0.9]
Default: 0.1
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available licensed and orthogonal data channels is limited to K=3 with d-
ifferent carrier frequencies. The SUs transmit using a fixed transmission
power at different data channels; hence the transmission range for each
data channel varies as shown in Figure 6.6. In mobile networks, the SU
host moves in a random direction with its speed following a normal dis-
tribution with the given mean and standard deviation; and the SU host
changes its direction and speed every second. In static networks, the SU BS
could communicate with the SU host using all K=3 data channels; while in
mobile network, some of the K=3 data channels may be out of range, how-
ever, the SU host must move within the maximum transmission range d1

from the SU BS in Figure 6.6.

6.6.7 Section Organization

The remainder of this chapter are relevant to simulation experiments, re-
sults and discussions, and they are organized as follows:

• Section 6.7 shows the effects of multiple states in RL on network per-
formance.

• Section 6.8 shows the effects of RL parameters on network perfor-
mance.

• Section 6.9 shows the effects of parameters in Adapt, Win and
AdaptWin on network performance.

• Section 6.10 compares RL with Adapt, Win and AdaptWin, as well
as the analytical results.



114 CHAPTER 6. SINGLE-AGENT COGNITION CYCLE

6.7 Effects of Multiple States

6.7.1 Introduction

This section investigates the use of RL for a DCS application that has mul-
tiple states that helps SU BS to select heterogeneous data channels oppor-
tunistically for data transmission to different SU hosts in static and mobile
centralized CR networks. In RL, the state (see Section 5.3.4 on page 71 for
more details) encompasses the conditions of the operating environment
that are relevant to decision making in an application. Thus, the RL ap-
proach in Section 6.4.1 is relaxed with the introduction of an extra SU host;
this can be represented using a “state”. The DCS scheme selects an avail-
able data channel among the licensed channels for data transmission from
an SU BS to each SU host. The scenario of the simulation including PU,
SU, channel, and CSMA-based cognitive MAC protocol are discussed in
Section 6.5.

6.7.1.1 Reinforcement Learning (RL) Approach with State Representa-
tion Extension

In this section, the extension to the RL approach in Section 6.4.1 through
state representation is discussed. The SU BS keeps track of the learned
action value or Q-value, Qt(st,ci) for all the available data channel C in a
Q-table with |S|×|C| entries. The state s∈S represents the SU hosts associ-
ated with the BS. The condition of the state changes with time, for instance,
the distance between the SU BS and SU hosts. The Q-value Qt(st,ci), which
represents the knowledge, indicates the appropriateness of choosing data
channel ci by the SU BS to communicate with the SU host st in the operat-
ing environment. In other words, the Q-value estimates the level of local
reward for using a data channel ci to communicate with SU host s; hence
changes in the Q-value will lead to changes in an SU BS’s channel selec-
tion for each SU host. At each attempt to transmit a data packet to an SU
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host st, the SU BS chooses a data channel ci,t and receives a local reward
rt+1(ci,t) at time t+1.

Knowledge Update Procedure During knowledge update, the Q-value
of a chosen data channel ci,t for host st at time t is updated at time t+1 as
follows:

Qt+1(st, ci,t)← (1− α)Qt(st, ci,t) + αrt+1(st, ci,t) (6.29)

For every successful data packet transmission, there is a reward with pos-
itive constant value rt+1(ci,t)=+RW, otherwise there is a cost with negative
constant value rt+1(ci,t)=-CT. As time goes by, the agent receives a sequence
of rewards from the data packet transmission procedure.

Action Selection Procedure During exploitation, the SU BS chooses an
exploitation or greedy action, which is the data channel with the highest
Q-value, as follows:

ci,t = argmax
ci∈C

Qt(st, ci) (6.30)

Two conditions that trigger a channel switch for each state or SU host are
similar to the case in Section 6.4.1:

• Switching to a data channel with higher Q-value.

• Exploration.

The RL model with state extension for the DCS scheme is shown in
Table 6.3.

6.7.2 Simulation Setup and Parameters

Table 6.2 shows the parameters in the simulation. Table 6.4 shows the ad-
dition parameters for the simulation in this section. With N=3, we consider



116 CHAPTER 6. SINGLE-AGENT COGNITION CYCLE

Table 6.3: RL Model with state extension (SACC) at SU BS for DCS

Dynamic Channel Selection Model
Description Representation

State Set of SU hosts associated with the
SU BS.

S={s=CR1,CR2,. . .}

Action Available data channels for data
transmission.

C={ci=1,2,. . . ,K}

Reward Constant value to be reward-
ed/incurred for success-
ful/unsuccessful data packet
transmission.

rt+1(st,ci,t) =+RW, if successful

−CT, if otherwise

a centralized CR network with a single static SU BS, and two static or mo-
bile SU hosts, namely CR1 and CR2, in all scenarios in this section. This is
sufficient to show how RL with state representation is applied to DCS. The
state represents the SU hosts to which the SU BS wishes to communicate.
The condition of the state may change with time, for instance, the distance
between the SU BS and SU host changes as the SU host moves.

The parameter values of RW and CT for RL in Table 6.4 are chosen
empirically to achieve the best possible network performance, specifically,
throughput. Moderate value of α=0.2 and ε = 0.1 are chosen as the default
value for both static and mobile networks. In Section 6.7.3.2 and 6.7.3.3, the
effects of α and ε on network performance in static and mobile networks
are investigated. The results show that moderate values of α=0.2 and ε=0.1
provide reasonable network performance, hence these values are chosen
as the default value for both static and mobile networks.

6.7.3 Simulation Results

Both static and mobile networks are simulated. In the static network, the
SU BS perceives similar network performance for using a particular data
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Table 6.4: Notations and Default Parameter Settings in Simulation for In-
vestigation into the Effects of Multiple States in Reinforcement Learning
on Network Performance

Category Symbol Details Values
Initial
ization

N Number of SU 3 (one SU BS and two SU hosts)

RL

Initial Q-value 1
α Learning rate {0.0125, 0.025, 0.05, 0.1, 0.2, 0.4}

Default: 0.2
ε Exploration

probability
{0.0125, 0.025, 0.05, 0.1, 0.2, 0.4}
Default: 0.1

RW Reward 15
CT Cost 5

channel to transmit to each of the SU hosts. In the mobile network, the
SU BS perceives different network performance for using a particular data
channel to transmit to the SU hosts because some SU hosts are unreachable
for some data channels.

We first compare the RL and Random network performance; followed
by investigation into the effects of RL parameters, namely α and ε, on the
network performance in static networks, and finally, in mobile networks.

6.7.3.1 Comparison of RL and Random

Figure 6.8 shows the throughput achieved by CR1 and CR2 using the RL
and Random scheme for various levels of PUL in static and mobile net-
works. The RL scheme outperforms the Random scheme for all levels of
PUL to provide higher throughput. Both CR1 and CR2 achieve approx-
imately similar individual network performance. Throughput enhance-
ment provided by RL is up to 2.3 and 3.2 times at 0.8 PUL in static and
mobile networks respectively. Thus, RL learns well and helps the SU BS
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to choose a data channel with low PUL such that the successful data pack-
et transmission rate is high, and so it provides higher throughput. At 0.1
PUL in static networks, throughput enhancement provided by RL is not
significant due to the small differences among the Q-values or less differ-
ences in the PUL across the available data channels. However, at 0.1 PUL
in mobile networks, RL outperforms Random up to 1.7 times because the
RL scheme helps the SU BS to choose a data channel with suitable trans-
mission range for data packet transmission to each SU host.

Figure 6.8: The mean throughput at CR1 and CR2 against mean PUL for
RL with the state representation extension and for Random in static and
mobile networks.

Figure 6.9 shows the number of channel switchings achieved by CR1
and CR2 using the RL and Random scheme for various levels of PUL in
static and mobile networks. The RL scheme outperforms the Random
scheme for all levels of PUL in providing a lower number of channel
switchings. Both CR1 and CR2 achieve approximately similar individu-
al network performance. The RL scheme attains a rather stable number
of channel switchings because the ε is kept constant at 0.1 throughout the



6.7. EFFECTS OF MULTIPLE STATES 119

simulation; however the number of channel switchings increases at 0.7
PUL in both static and mobile networks. The effect of the number of chan-
nel switchings does not affect the throughput significantly due to the low
channel switching delay of 100µs; however, this is dependent on the hard-
ware performance in practice that advances as time goes by. As the as-
sumption of a channel switching delay of 100µs is applied in both RL and
Random approaches, it is a fair comparison. For Random, the number of
channel switchings decreases with PUL, indicating a decreasing number
of attempts by the SU BS to transmit data packets. The reason is that failed
data packet transmission incurs longer delay while waiting for data packet
expiration timer tex to expire; and this happens more often with increas-
ing PUL. The RL scheme outperforms the Random scheme up to 4.2 times
at 0.5 PUL in a static network and up to 4.3 times at 0.3 PUL in a mobile
network. For RL, the number of channel switchings is lower in a mobile
network compared to a static network. The reason is that, as the SU host-
s move further away from the SU BS, the number of channels that fulfill
the transmission range requirement decreases, hence the number of chan-
nel switchings reduces. For Random, the number of channel switchings
is higher for a static network compared to a mobile network, indicating a
larger number of attempts to transmit data packets by the SU BS in a stat-
ic network. RL incurs less delay as the number of channel switchings is
smaller.

Figure 6.10 and 6.11 shows the equivalent of Figures 6.8 and 6.9 re-
spectively with linear combination (or sum) of all the local network per-
formance at CR1 and CR2 to provide mean network-wide performance.
Only network-wide performance is shown henceforth due to the similari-
ty among the nodal performance at CR1 and CR2.

The next two subsections show the effects of RL parameters including
α and ε on network-wide performance with PUL as ordinate.
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Figure 6.9: The mean number of channel switchings at CR1 and CR2 a-
gainst mean PUL for RL with the state representation extension and for
Random in static and mobile networks.

Figure 6.10: The mean network-wide throughput against mean PUL for
RL with the state representation extension and for Random in static and
mobile networks.
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Figure 6.11: The mean network-wide number of channel switchings a-
gainst mean PUL for RL with the state representation extension and for
Random in static and mobile networks.

6.7.3.2 Effects of α and ε on Network Performance in Static Network

The throughput and number of channel switchings achieved by RL are
investigated for various levels of PUL in static networks. The PER for all
data channels is set to 0.1. With PUL as ordinate, Figure 6.12 shows the
effect of α, specifically, Figure 6.12a shows the effect of α on throughput;
Figure 6.12b shows the effect of α on number of channel switchings. With
PUL as ordinate, Figure 6.13 shows the effect of ε, specifically, Figure 6.13a
shows the effect of ε on throughput; Figure 6.13b shows the effect of ε on
the number of channel switchings.

In Figure 6.12a, it is shown that the value of α does not have a sig-
nificant effect on throughput. In Figure 6.12b, for each α, the number of
channel switchings reaches the lowest value at about 0.6 PUL because the
standard deviation between the Q-values is higher at 0.6 PUL. The stan-
dard deviation for the PUL is best explained using an example. At 0.2,
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(a) Mean network-wide throughput.

(b) Mean network-wide number of channel switchings.

Figure 6.12: The mean network performance against mean PUL for RL
with the state representation extension using different α values in static
networks.
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(a) Mean network-wide throughput.

(b) Mean network-wide number of channel switchings.

Figure 6.13: The mean network performance against mean PUL for RL
with the state representation extension using different ε values in static
networks.
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the PULs across the three data channels, sorted by increasing standard
deviation, are [0.2,0.2,0.2], [0.2,0.3,0.1], [0.3,0,0.3], [0.4,0.1,0.1], [0.2,0,0.4],
[0.5,0,0.1], and [0.6,0,0]. At 0.6, higher standard deviation is possible, for
instance, [0,0.9,0.9]. Higher standard deviation of PUL leads to more obvi-
ous choices of channel selection, for instance, the SU BS chooses channel 1
with no PU activity when the PUL across the data channels is [0,0.9,0.9]. In
general, a lower value of α provides a lower number of channel switchings
in this scenario.

In Figure 6.13a, the throughput increases as the ε converges to the low-
est value or the least exploration. In Figure 6.13b, the number of channel
switchings shares the same trend as Figure 6.12b, though the ε results in a
larger range in the number of channel switchings. Thus, the ε has greater
effect on throughput performance and number of channel switchings com-
pared to α.

6.7.3.3 Effects of α and ε on Network Performance in Mobile Network

The throughput and number of channel switchings achieved by RL are
investigated for various levels of PUL in mobile networks in Figures 6.14
and 6.15. The PER for all data channels is set to 0.1.

Similar trends are observed in the case of static network in Figures 6.12
and 6.13 although lower throughput and number of channel switchings
are observed in mobile networks. This investigation shows that, in addi-
tion to PUL and PER, RL helps the SU BS to choose a data channel with
suitable transmission range to transmit data packets to different SU hosts
because some SU hosts are unreachable using some data channels.

6.7.4 Summary of Research Outcomes

The research outcomes from the investigation on the effects of multiple s-
tates in RL on throughput performance and number of channel switchings
are summarized as follows:



6.7. EFFECTS OF MULTIPLE STATES 125

(a) Mean network-wide throughput.

(b) Mean network-wide number of channel switchings.

Figure 6.14: The mean network performance against mean PUL for RL
with the state representation extension using different α values in mobile
networks.
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(a) Mean network-wide throughput.

(b) Mean network-wide number of channel switchings.

Figure 6.15: The mean network performance against mean PUL for RL
with the state representation extension using different ε values in mobile
networks.
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• The RL approach outperforms the Random approach for various
levels of PUL in throughput performance and number of channel
switchings in static and mobile networks. Hence, the RL approach
helps the SU BS to choose a data channel with low PUL and PER,
as well as suitable transmission range, in order to maximize the suc-
cessful data packet transmission rate.

• The states or SU hosts achieve approximately similar individual net-
work performance as expected because the SU BS learns well and
might choose different data channel for transmitting data to differ-
ent SU host.

• The network performance converges to higher throughput and low-
er number of channel switchings as the values of α and ε decrease to
smaller value α=ε=0.0125.

• The exploration probability ε has greater effects on throughput and
number of channel switchings when compared to α.

• Similar trends of network performance are observed in static and
mobile networks. However, lower throughput and number of chan-
nel switchings are observed in mobile networks.

In this section, there are two SU hosts, while in Section 6.8, there is a sin-
gle SU host. Similar trends are observed in these two sections. Specifically,
the simulation results in Figure 6.10 on the mean network-wide through-
put is approximately similar to that in Figure 6.16. Hence, for simplicity,
we consider an SU BS and an SU host in the subsequent investigations in
Section 6.8 to 6.10.
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6.8 Effects of RL Parameters

6.8.1 Introduction

This section investigates the effects of RL parameters on network perfor-
mance. The simulation results of RL are also compared with that of an-
alytical results, which are derived using Markov chains (see Section 6.5).
The RL approach in Section 6.4.1 is applied in this section. We consider
a single SU host or state, which is often called stateless or single-state as
explained in Section 2.3 on page 14 and Section 5.3 on page 69.

6.8.2 Simulation Setup and Parameters

Table 6.2 shows the general simulation parameters. Table 6.5 shows the
addition parameters for the simulation in this section. With N=2, we con-
sider a centralized CR network with a single static SU BS and a single static
or mobile SU host in all scenarios in this section. This is sufficient to show
the effects of RL parameters on network performance.

The parameter values of RW and CT for RL in Table 6.5 are chosen
empirically to achieve the best possible network performance, specifically,
throughput. Moderate value of α=0.2 and ε = 0.1 are chosen as the default
value for both static and mobile networks.

6.8.3 Simulation Results

Both static and mobile networks are simulated. The selection of α and ε in
RL influences the throughput and the number of channel switchings and
the results are shown in Figure 6.16 to 6.19 with respect to PUL, and Figure
6.20 to 6.23 with respect to PER.
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Table 6.5: Notations and Default Parameter Settings in Simulation for In-
vestigation into the Effects of Reinforcement Learning Parameters on Net-
work Performance

Category Symbol Details Values
Initial
ization

N Number of SU 2 (one SU BS and one SU host)

RL

Initial Q-value 1
α Learning rate {0.0125, 0.025, 0.05, 0.1, 0.2, 0.4}

Default: 0.2
ε Exploration

probability
{0.0125, 0.025, 0.05, 0.1, 0.2, 0.4}
Default: 0.1

RW Reward 15
CT Cost 5

6.8.3.1 Effects of α and ε on Network Performance in Static and Mobile
Networks with respect to Primary User Utilization Level

Figure 6.16 shows that the value of α does not have a significant effect
on throughput in static and mobile networks with respect to PUL. Hence,
values of α in the range 0.01256α60.4 enables RL to learn well and help
the SU to choose a channel with low PUL and suitable transmission range
such that successful data packet transmission rate is high.

Values of α in the range 0.01256α60.4 achieves the expected through-
put provided by the Analysis. In the analytical model, without using a
learning mechanism, the SU BS is expected to provide the best possible
throughput in the presence of different levels of PUL. The next channel is
chosen randomly as long as the data packet transmission is successful as
shown in Equation (6.25). Whenever the SU BS chooses a channel with
higher PUL, it tends to switch its channel. Since the SU BS never learns
due to the memoryless property of Markov chain, it may choose a channel
with high PUL more often, resulting in high number of channel switches
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that incur time and hence causing lower throughput performance. In the
learning-based RL, the SU BS chooses the next best channel with lower
PUL; hence there are lower number of channel switches leading to higher
throughput. However, at 0.9 PUL in static networks and 0.1, 0.2 and 0.9
PUL in mobile networks, throughput achieved by RL is lower than Anal-
ysis. This is because the Q-values of all the channels become similar at 0.1,
0.2 and 0.9 PUL, and learning is difficult at these PULs in RL.

Figure 6.17 shows the effects of α on the number of channel switch-
ings in static and mobile networks with respect to PUL. The smallest value
(α=0.0125) provides the lowest number of channel switchings. For each α,
the number of channel switchings reaches the lowest value at about 0.5
PUL because of the higher standard deviation of PUL (see Section 6.7.3.2
for explanation on standard deviation of PUL). In Figure 6.17b, the num-
ber of channel switchings is variable at 0.9 PUL because the Q-values of
all the channels become similar and learning is difficult in RL. In some
cases, all the Q-values converge to -CT thus no channel switching is per-
formed and this reduces the number of channel switchings; however, in
some cases, the Q-values oscillate, and this increases the number of chan-
nel switchings because the RL always chooses the greedy action i.e., the
channel that has the highest Q-value. To improve the stability, the RL can
switch its channel only when the difference of the Q-values among the
channels is greater than a certain threshold.

Figure 6.18 shows the effects of ε on throughput in static and mobile
networks with respect to PUL. When ε60.1, the throughput is higher than
the Analysis for most values of PUL in both static and mobile networks.
The throughput increases as the ε converges to the lowest value at ε 6
0.0125 or the least exploration. The effect of ε on the throughput is more
significant than is α.

Figure 6.19 shows the effects of ε on the number of channel switchings
in static and mobile networks with respect to PUL. Similar trends are ob-
served in the case of α in Figure 6.17; however, the ε results in a larger



6.8. EFFECTS OF RL PARAMETERS 131

(a) Static network.

(b) Mobile network.

Figure 6.16: The mean throughput of an SU BS against mean PUL for RL
with different α values and for the Analysis. PER for all data channels is
set to 0.1. ε is set to 0.1.
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(a) Static network.

(b) Mobile network.

Figure 6.17: The mean number of channel switchings of an SU BS against
mean PUL for RL with different α values. PER for all data channels is set
to 0.1. ε is set to 0.1.
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(a) Static network.

(b) Mobile network.

Figure 6.18: The mean throughput of an SU BS against mean PUL for RL
with different ε values and for the Analysis. PER for all data channels is
set to 0.1. α is set to 0.2.
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range in the number of channel switchings. Thus, the ε has greater effect
on network performance than does α.

6.8.3.2 Effects of α and ε on Network Performance in Static and Mobile
Networks with respect to Packet Error Rate

The selection of α and ε in RL influences the throughput and the number
of channel switchings and its results with respect to PER are shown in
Figure 6.20 to 6.23.

Similar trends are observed for network performance with respect to
PUL in Figure 6.16 to 6.19. Figure 6.20 shows that the value of α does
not have a significant effect on throughput in static and mobile networks
with respect to PER. Figure 6.21 shows that smallest value of α=0.0125
provides the lowest number of channel switchings. Figure 6.22 shows that
when ε60.1, the throughput is higher than the Analysis for most values
of PER in both static and mobile networks, and the throughput increases
as the ε converges to the lowest value at ε60.0125. Figure 6.23 shows that
similar trends on the effects of ε on the number of channel switchings are
observed in the case of α in Figure 6.21; however, the ε results in a larger
range in the number of channel switchings.

6.8.4 Summary of Research Outcomes

The research outcomes from the investigation on the effects of RL parame-
ters, namely α and ε, on throughput performance and number of channel
switchings are summarized as follows:

• The RL approach achieves the expected throughput provided by the
analytical results in most of the cases.

• The network performance converges to higher throughput perfor-
mance and lower number of channel switchings as the values of α
and ε decrease.
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(a) Static network.

(b) Mobile network.

Figure 6.19: The mean number of channel switchings of an SU BS against
mean PUL for RL with different ε values. PER for all data channels is set
to 0.1. α is set to 0.2.
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(a) Static network.

(b) Mobile network.

Figure 6.20: The mean throughput of an SU BS against mean PER for RL
with different α values and for the Analysis. PUL for all data channels is
set to 0.1. ε is set to 0.1.
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(a) Static network.

(b) Mobile network.

Figure 6.21: The mean number of channel switchings of an SU BS against
mean PER for RL with different α values. PUL for all data channels is set
to 0.1. ε is set to 0.1.
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(a) Static network.

(b) Mobile network.

Figure 6.22: The mean throughput of an SU BS against mean PER for RL
with different ε values and for the Analysis. PUL for all data channels is
set to 0.1. α is set to 0.2.
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(a) Static network.

(b) Mobile network.

Figure 6.23: The mean number of channel switchings of an SU BS against
mean PER for RL with different ε values. PUL for all data channels is set
to 0.1. α is set to 0.2.
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• The ε value has greater effect on the throughput performance and
the number of channel switchings than does α.

• The value of ε must be lower than a certain threshold to achieve
the expected throughput provided by the analytical results. For in-
stance, with respect to PUL, ε 6 0.1 in static network and at ε 6 0.05

in mobile network.

• Similar trends of network performance are observed in simulations
among static and mobile networks, and PUL and PER as ordinates.
However, lower throughput and number of channel switchings are
observed in mobile networks.

6.9 Effects of Learning Mechanisms Parameters

6.9.1 Introduction

This section investigates the effects of various learning mechanism pa-
rameters, specifically nAdapt in the Adapt, as well as nWin in Win and
AdaptWin, on throughput performance. The purpose is to obtain the
learning mechanisms parameters that provide the best possible network
performance for comparison with the RL approach in Section 6.10. The
learning mechanisms are presented in Section 6.4.2 to 6.4.4. Similar to Sec-
tion 6.8, we consider a single SU host or state, which is often called state-
less or single-state as explained in Section 2.3 on page 14 and Section 5.3
on page 69.

6.9.2 Simulation Setup and Parameters

Table 6.2 shows the parameters for the simulation. Table 6.6 shows the ad-
dition parameters in the simulation in this section. With N=2, we consider
a centralized CR network with a single static SU BS and a single static or
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Table 6.6: Notations and Default Parameter Settings in Simulation for In-
vestigation into the Effects of Adapt, Win and AdaptWin Parameters on
Network Performance

Category Symbol Details Values
Initial
ization

N Number of SU 2 (one SU BS
and one SU host)

ε Exploration probability 0.1
Adapt nAdapt Number of consecutive failed

data packet transmissions
{1, 2, 4, 8, 16, 32}

Win nWin Window size {1, 2, 4, 8, 16, 32}

AdaptWin
nAdapt 2
nWin {1, 2, 4, 8, 16, 32}

mobile SU host in all scenarios in this section. This is sufficient to show
the effects of Adapt, Win and AdaptWin parameters on network perfor-
mance. The scenario of the simulation including PU, SU, channel, and
CSMA-based cognitive MAC protocol are discussed in Section 6.5.

6.9.3 Simulation Results

Both static and mobile networks are simulated. The effects of parameter
nAdapt in Adapt are shown in Figures 6.24 and 6.25; of nWin in Win are
shown in Figures 6.26 and 6.27; and of nWin in AdaptWin are shown in
Figures 6.28 and 6.29.

6.9.3.1 Effects of nAdapt in Adapt on Network Performance

The effects of nAdapt on throughput with respect to PUL and PER in mo-
bile networks is shown in Figure 6.24 and 6.25 respectively. Figure 6.24
shows that nAdapt=2 provides the highest level of throughput for all lev-
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els of PUL. Figure 6.25 shows that nAdapt=1 provides the highest level of
throughput from 0.1 to 0.3 PER, followed by nAdapt=2 from 0.4 to 0.6 PER,
and followed by nAdapt=4 from 0.7 to 0.9 PER. The effects of nAdapt on
throughput is not significant for various levels of PUL and PER in static
networks; so their graphs are not shown. Hence, nAdapt=2 provides the
best possible throughput with respect to PUL and PER in most cases in
static and mobile networks because it is more adaptive to the changes in
the amount of white spaces, or PUL that applies the Poisson process mod-
el, and also PER in each data channel.

Figure 6.24: The mean throughput of an SU BS against mean PUL for
Adapt with different nAdapt values in mobile networks. PER for all da-
ta channels is set to 0.1.

6.9.3.2 Effects of nWin in Win on Network Performance

The effects of nWin on throughput with respect to PUL in static and mobile
networks are shown in Figure 6.26. Figure 6.26a shows that nWin = 8 pro-
vides the highest level of throughput at 0.1 PUL, and followed by nWin=32
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Figure 6.25: The mean throughput of an SU BS against mean PER for
Adapt with different nAdapt values in mobile networks. PUL for all da-
ta channels is set to 0.1.

from 0.2 to 0.9 PUL in static networks. Figure 6.26b shows that nWin=32
provides the highest level of throughput for all levels of PUL in mobile
networks.

The effects of nWin on throughput with respect to PER in static and mo-
bile networks are shown in Figure 6.27. Figure 6.27a shows that nWin=8
provides the highest level of throughput at 0.1 PER, and followed by
nWin=32 from 0.2 to 0.9 PER in static networks. Figure 6.27b shows that
nWin=32 provides the highest level of throughput for all levels of PER in
mobile networks.

Hence, window size nWin=32 provides the best possible throughput
in most cases because a higher number of most recent attempts of data
packet transmissions (or historical information) are applied to compute
the probability of successful data packet transmission, PWin

S,ci
.
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(a) Static network.

(b) Mobile network.

Figure 6.26: The mean throughput of an SU BS against mean PUL for Win
with different nWin values in static and mobile networks. PER for all data
channels is set to 0.1.
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(a) Static network.

(b) Mobile network.

Figure 6.27: The mean throughput of an SU BS against mean PER for Win
with different nWin values in static and mobile networks. PUL for all data
channels is set to 0.1.
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6.9.3.3 Effects of nWin in AdaptWin on Network Performance

We set nAdapt=2 as it provides the best possible network performance
in the Adapt approach. The effects of nWin on throughput with respect
to PUL and PER in static networks is shown in Figure 6.28 and 6.29 re-
spectively. Figure 6.28 shows that nWin=8 provides the highest level of
throughput for 0.1 PUL, followed by nWin=32 from 0.2 to 0.8 PUL, and fol-
lowed by nWin=16 for 0.9 PUL in static networks. Figure 6.29 shows that
nWin=8 provides the highest level of throughput for 0.1 PER, followed by
nWin=32 from 0.2 to 0.8 PER, and followed by nWin=16 for 0.9 PER. The ef-
fects of nWin on throughput is not significant for various levels of PUL and
PER in mobile networks; so their graphs are not shown. Hence, window
size nWin=32 provides the best possible throughput in most cases.

Figure 6.28: The mean throughput of an SU BS against mean PUL for
AdaptWin with different nWin values in static networks. PER for all da-
ta channels is set to 0.1. nAdapt is set to 2.
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Figure 6.29: The mean throughput of an SU BS against mean PER for
AdaptWin with different nWin values in static networks. PER for all da-
ta channels is set to 0.1. nAdapt is set to 2.

6.9.4 Summary of Research Outcomes

The research outcomes from the investigation on the effects of various
learning mechanisms parameters, specifically nAdapt in Adapt, as well as
nWin in Win and AdaptWin, on throughput performance are summarized.
Using the following parameters, the learning mechanisms achieve the best
possible throughput performance in static and mobile networks:

• nAdapt = 2 in the Adapt approach.

• nWin = 32 in the Win approach.

• nAdapt = 2 and nWin = 32 in the AdaptWin approach.

The values of the parameters of nAdapt in Adapt, as well as nWin in Win
and AdaptWin, that provide the best possible throughput performance are
applied for comparison with the RL approach in Section 6.10.
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6.10 Comparison of Learning Mechanisms

6.10.1 Introduction

This section compares the network peformance achieved by RL, Adapt,
Win, AdaptWin and the analytical results (Analysis). The best possible
parameters for the approaches are adopted for comparison. Section 6.8
shows that the best possible throughput is achieved with α=0.0125 for RL
in static networks, α=0.05 for RL in mobile networks. Section 6.9 shows
that the best possible throughput is achieved with nAdapt=2 for Adapt,
nWin=32 for Win, and nAdapt=2 and nWin=32 for AdaptWin in static and
mobile networks. Similar to Section 6.8 and 6.9, we consider a single SU
host or state, which is often called stateless or single-state as explained in
Section 2.3 on page 14 and Section 5.3 on page 69.

6.10.2 Simulation Setup and Parameters

Table 6.2 shows the parameters for the simulation. Table 6.7 shows the ad-
dition parameters in the simulation in this section. With N=2, we consider
a centralized CR network with a single static SU BS and a single static or
mobile SU host in all scenarios in this section. This is sufficient to show the
effects of Adapt, Win and AdaptWin parameters on network performance.

6.10.3 Simulation Results

Both static and mobile networks are simulated. We first compare the net-
work performance of RL, Adapt, Win, AdaptWin, Random and Analysis
in static and mobile networks with respect to PUL; followed by PER.

6.10.3.1 Comparison of All Learning Mechanisms with respect to PUL

Figure 6.30 shows the throughput achieved by RL, Adapt, Win, AdaptWin,
Random and Analysis with respect to PUL in static and mobile network-
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Table 6.7: Notations and Default Parameter Settings in Simulation for
Comparison of Network Performance Achieved by the RL, Adapt, Win
and AdaptWin Approaches

Category Symbol Details Values
Initial
ization

N Number of SU 2 (one SU BS
and one SU host)

ε Exploration probability 0.1

RL

Initial Q-value 1
α Learning rate α=0.0125 for

static networks;
α=0.05 for mobile
networks

RW Reward 15
CT Cost 5

Adapt nAdapt Number of consecutive failed
data packet transmissions

2

Win nWin Window size 32

AdaptWin
nAdapt 2
nWin 32
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s. In general, RL, AdaptWin and Win achieve approximately similar in-
dividual network performance, which is the highest among the schemes
studied, followed by Adapt, and finally Random. In Figure 6.30a, at 0.5
PUL in static networks, the RL, AdaptWin and Win approaches provide
approximately 1.7 times, and Adapt provides approximately 1.5 times
throughput enhancement in comparison with Random. In Figure 6.30b,
at 0.5 PUL in mobile networks, the RL, AdaptWin and Win approaches
provide approximately 2.7 times, and Adapt provides approximately 2.1
times throughput enhancement in comparison with Random. At 0.1 PUL
in static networks, throughput enhancement provided by all the approach-
es and Analysis is not significant due to the small differences among the
Q-values or less differences in the PUL across the available data channels.
However, at 0.1 PUL in mobile networks, RL outperforms Random up to
1.92 times because the RL scheme helps the SU BS to choose a data channel
with suitable transmission range for data packet transmission. In compar-
ison with Analysis, RL performs better for all PULs except at 0.1 and 0.9
in static and mobile networks because of the small differences among the
Q-values of all data channels. It should be noted that RL, Adapt, Win
and AdaptWin choose the next best data channel based on the respective
learning mechanisms during channel switching; while in the Analysis, the
next data channel is chosen randomly as long as the data packet transmis-
sion is successful as shown in Equation (6.7) and (6.25). In short, the RL,
Win and AdaptWin approaches learn well and help the SU BS to choose
a data channel with low PUL and suitable transmission range such that
successful data packet transmission rate is high. They achieve the expect-
ed throughput provided by the Analysis. The simulation results for RL
and analytical results used to plot Figure 6.30 are analyzed next based on
Figure 6.31.

In Figure 6.31, given a mean value of the PUL equal to 0.2, the through-
put of the RL, Random and Analysis is investigated for various levels of
standard deviation (see Section 6.7.3.2 for explanation on standard devi-
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(a) Static network.

(b) Mobile network.

Figure 6.30: The mean throughput of an SU BS against mean PUL for RL,
AdaptWin, Win, Adapt, Random and Analysis in static and mobile net-
works. PER for all data channels is set to 0.1. ε is set to 0.1.
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ation of PUL) for the PUL in static and mobile networks. The Random
scheme attains a rather stable, slightly decreasing throughput. The low
level of throughput for the Random in mobile networks is expected as
shown in Figure 6.30. The throughput of both RL and Analysis increases
with the standard deviation of PUL. When the standard deviation of the
PUL is greater than 0.18 and 0.14 in static and mobile networks respec-
tively, the Analysis provides higher throughput. The reason for the trend
is because the higher standard deviation of PUL leads to more obvious
choices of channel selection, for instance, the SU BS chooses data channel
2 with no PU activity when the PUL across the data channels is [0.2,0,0.4].
However, in RL, exploration is still performed with ε = 0.1, thus lower
throughput is achieved by using RL.

Figure 6.31: The mean throughput of an SU BS against standard deviation
of PUL when the mean PUL equals 0.2 for RL, Random and Analysis in
static and mobile networks. PER for all data channels is set to 0.1. α is set
to 0.2. ε is set to 0.1.

Figure 6.32 shows the number of channel switchings achieved by the
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RL, Adapt, Win, AdaptWin and Random with respect to PUL in static and
mobile networks. In general, RL, AdaptWin and Win achieve approxi-
mately similar individual network performance, which is the highest a-
mong the schemes studied, followed by Adapt, and finally Random. In
Figure 6.32a, at 0.5 PUL in static networks, the RL, AdaptWin and Win ap-
proaches provide approximately 4.9 times, and Adapt provides approxi-
mately 4.6 times number of channel switchings reduction in comparison
with Random. In Figure 6.32b, at 0.5 PUL in mobile networks, the R-
L, AdaptWin and Win approaches provide approximately 4.7 times, and
Adapt provides approximately 3.5 times number of channel switchings
reduction in comparison with Random.

6.10.3.2 Comparison of All Learning Mechanisms with respect to PER

Figure 6.33 shows the throughput achieved by RL, Adapt, Win, AdaptWin,
Random and Analysis with respect to PER in static and mobile networks.
In general, RL, AdaptWin and Win achieve approximately similar individ-
ual network performance, which is the highest among the schemes stud-
ied, followed by Adapt, and finally Random. Similar trends are observed
for network performance with respect to PUL in Figure 6.30. As shown in
Figure 6.33, the RL performs better than the Random in both static and
mobile networks with the exception of Random which slightly outper-
forms RL at 0.9 PER in mobile networks in Figure 6.33b. Our investigation
shows that at 0.9 PER, the Q-values of all the data channels converge to
-CT. When all the data channels result in poor network performance, the
RL approach simply chooses data channel K=3 that provides the shortest
transmission range (see Figure 6.6) resulting in transmission failure for all
data packet transmission attempts when the SU host moves beyond the
transmission range of channel K=3. This issue can be solved by imposing
a rule to transmit using a data channel that provides larger transmission
range when all Q-values converge to the value of -CT. In comparison with
Analysis, the RL, AdaptWin and Win approaches achieve the expected
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(a) Static network.

(b) Mobile network.

Figure 6.32: The mean number of channel switchings of an SU BS against
mean PUL for RL, AdaptWin, Win, Adapt and Random in static and mo-
bile networks. PER for all data channels is set to 0.1. ε is set to 0.1.
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throughput in both static and mobile networks; while Adapt underper-
forms. In short, RL, AdaptWin and Win learn well and help the SU BS
to choose a data channel with low PER and suitable transmission range
such that successful data packet transmission rate is high. The simulation
results for RL and analytical results used to plot Figure 6.33 are analyzed
next based on Figure 6.34.

In Figure 6.34, given a mean value of the PER equals to 0.2, the through-
put of RL, Random and Analysis is investigated for various levels of stan-
dard deviation for the PER (see Section 6.7.3.2 for explanation on standard
deviation) in static and mobile networks. Similar trends are observed for
network performance with respect to PUL in Figure 6.31.

Figure 6.35 shows the number of channel switchings achieved by RL,
Adapt, Win, AdaptWin and Random with respect to PER in static and
mobile networks. Similar trends are observed for network performance
with respect to PUL in Figure 6.32.

6.10.4 Summary of Research Outcomes

The research outcomes from the investigation on the comparison of RL,
Adapt, Win, AdaptWin, Random and Analysis are summarized as follows:

• The RL, AdaptWin and Win approaches achieve approximately sim-
ilar network performance in most of the cases, which is the highest
among the schemes studied, followed by Adapt, and finally Ran-
dom. In these approaches, an agent receives reward for successful
data packet transmissions, and cost for unsuccessful ones. The re-
ward is RW in RL, and the probability of 1/nWin in AdaptWin and
Win. The cost is CT in RL, and the probability of 1/nWin in AdaptWin
and Win. The RL approach chooses the channel with the highest
Q-value Qt(ci), while AdaptWin and Win choose the channel with
the highest probablity of successful data packet transmission PWin

S,ci
.

In constrast, Adapt chooses a channel in a random manner during



156 CHAPTER 6. SINGLE-AGENT COGNITION CYCLE

(a) Static network.

(b) Mobile network.

Figure 6.33: The mean throughput of an SU BS against mean PER for RL,
AdaptWin, Win, Adapt, Random and Analysis in static and mobile net-
works. PUL for all data channels is set to 0.1. ε is set to 0.1.
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Figure 6.34: The mean throughput of an SU BS against standard deviation
of PER when the mean PER equals 0.2 for RL, Random and Analysis in
static and mobile networks. PUL for all data channels is set to 0.1. α is set
to 0.2. ε is set to 0.1.
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(a) Static network.

(b) Mobile network.

Figure 6.35: The mean number of channel switchings of an SU BS against
mean PER for RL, AdaptWin, Win, Adapt and Random in static and mo-
bile networks. PUL for all data channels is set to 0.1. ε is set to 0.1.
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channel switching, hence its network performance is lower than RL,
AdaptWin and Win.

• The RL, AdaptWin and Win approaches achieve the expected net-
work performance provided by the analytical results.

This chapter shows that simple and pragmatic learning mechanims such
as AdaptWin and Win achieve similar network performance to the RL ap-
proach. Similar RL models have been successully applied in a number of
applications [58, 59, 60, 61, 62, 63].

Additionally, there is an open issue in RL: How to learn better when
the Q-values among the data channels are close to each other? This is not
addressed in previous work.

6.11 Advantages of RL in CR Networks

We have successfully introduced RL and three simple and pragmatic
learning mechanisms, namely Adapt, Win, and AdaptWin to implemen-
t the single-agent cognition cycle (or network-level cognition cycle as
shown in Section 2.3.2 on page 16) in order to achieve context awareness
and intelligence in static and mobile centralized CR network. In this chap-
ter, we consider heterogeneous channels, and both static and mobile net-
works; while previous work considers homogeneous channels and static
networks. In Section 6.10, Win and AdaptWin are shown to achieve ap-
proximately similar individual network performance, which is the high-
est among the schemes studied, with the RL approach. The RL, Win and
AdaptWin are also shown to achieve the expected throughput obtained
from the analytical results. The RL approach outperforms the Adapt ap-
proach in all cases. In this section, we discuss two major advantages of-
fered by RL compared to the Win and AdaptWin approaches. This dis-
cussion provides an important foundation for future work in this research
field. The advantages are as follows:
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• Extension of the RL approach in Section 6.4.1 to implement the multi-
agent cognition cycle (or node-level cognition cycle) in distributed
CR networks.

• Extension of the RL approach in Section 6.4.1 to include state repre-
sentation, which encompasses the conditions of the operating envi-
ronment that are relevant to decision making at the SUs in distribut-
ed CR networks.

6.11.1 Extension of the Reinforcement Learning Approach

to Implement the Multi-Agent Cognition Cycle in

Distributed Cognitive Radio Networks

Game-based approach has been the most popular approach for achiev-
ing context awareness and intelligence in CR networks. Game-based ap-
proach studies the interaction of multiple SUs whose objective is to maxi-
mize their individual local rewards. To date, research has been focusing on
one-shot or repetitive games, such as the matrix game and potential game
[76, 77, 78, 79, 80, 67, 81, 82, 83, 84, 85]. There are several known issues
in game-based approach which have been addressed by the multi-agent
reinforcement learning approach [64] as follows:

• Mis-coordination [86] where the SUs are not able to converge to an
optimal joint action, which is the optimal actions taken by all the SUs
throughout the entire network, because of severe negative rewards,
and the SUs converge to a safe joint action instead.

• The SUs might converge to a sub-optimal joint action when multiple
high performance joint actions exist [86].

• Game-based approach as applied to CR so far requires a complete set
of information to compute the Nash equilibrium; hence its extensive
and successful usage in centralized CR networks [67, 85].
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• Game-based approach assumes that all SUs react rationally as game
theorists.

• Game-based approach assumes a single type of utility function
throughout the distributed CR network, and hence a homogeneous
learning mechanism in all the SUs.

To date, a wide range of game-based applications in CR networks have
been developed and shown to attain a certain equilibrium point, notably
the Nash equilibrium. On the other hand, several existing MARL ap-
proaches have been shown to converge to a fixed optimal point [64]. Al-
though the game-based approach has been successfully applied in CR net-
works [67, 85], the MARL approach is a good alternative which addresses
the aforementioned issues associated with game-based approach. For in-
stance, the MARL supports heterogeneous learning mechanisms in each
SU because each SU can represent distinctive performance metrics as lo-
cal rewards, or Q-values, in a particular distrbuted CR network. In the
next chapter on the investigation of the multi-agent reinforcement learn-
ing approach, Section 7.3 shows a means of comunication among the SUs,
called payoff propagation, that converges to an optimal joint action in a
distributed manner including distributed CR networks with cyclic topol-
ogy; and Section 7.4.6 applies the MARL approach, which encompasses
the traditional RL [4] (see Section 6.4.1) and payoff propagation approach,
to achieve network-wide performance enhancement through significant
reduction in the number of channel switchings.

6.11.2 Extension of the Reinforcement Learning Approach

to Include State Representation

In general, a game with states is called a stochastic game [87]; while a game
without states is called a matrix game. The state represents the conditions
of the operating environment that are relevant to decision making at an
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SU such as internal queue size and external channel condition. To date,
the matrix game has been widely applied in CR networks and it has been
shown to achieve performance enhancement; however, the state represen-
tation, which is defined in RL [4] (see Section 5.3.4 on page 71) is ignored in
the matrix game. The MARL approach, which solves the stochastic game,
provides an alternative solution to counteract the disadvantages posed by
the use of matrix game. It achieves optimal joint action in a stochastic
game framework [87]. The stochastic game, which is a current and popu-
lar research topic [88], is a five-tuple game comprised of agents, states, set
of actions available to each agent (or player), transition probability from
one state to another, and reward function for each agent. Section 6.7 shows
a thorough investigation into the effects of multiple states using the RL ap-
proach where the RL model is embedded in SU BS and the state represents
a set of SU hosts associated with the SU BS. As similar trends are observed
with single and multiple SUs, we choose to assume that there are two SUs
comprised of an SU BS and an SU host in this chapter to model a central-
ized CR network.

6.12 Chapter Summary

In this chapter, RL and other simple and pragmatic learning mechanisms,
namely, Adapt, Win and AdaptWin, are applied to DCS to implement the
single-agent cognition cycle (or network-level cognition cycle) in order to
achieve context awareness and intelligence in static and mobile central-
ized CR networks. The learning mechanisms differ among themselves in
terms of action selection and knowledge update. The Random approach,
which chooses an available data channel for data transmission in a uni-
formly distributed random manner without learning, serves as a baseline.
An analytical model based on Markov chain is presented to compute the
expected throughput performance of a DCS. This chapter considers chan-
nel heterogeneity, and both static and mobile networks are investigated;
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while previous work considers channel homogeneity and static network-
s. In the RL approach, the states or SU hosts achieve approximately uni-
form individual network performance in the investigation on the effect-
s of multiple states. In RL, the state encompasses the conditions of the
operating environment that are relevant to decision making in an appli-
cation. The effects of RL parameters on network performance were also
investigated including the learning rate α and the exploration probability
ε. The throughput and number of channel switchings achieve its opti-
mal or near-optimal performance when the α and ε converge to a certain
value; and the ε has greater effects on network performance than does
α. The RL approach achieves approximately similar network performance
with AdaptWin and Win, which provide the highest network performance
among the other learning mechanisms studied. The next best network
performance is achieved by Adapt, and followed by Random. The R-
L, Win and AdaptWin approaches achieve the expected throughput ob-
tained from the analytical results; while this is not the case for Adapt, for
instance, in a mobile network with different levels of PUL. There are two
advantages of RL compared to Win and AdaptWin. Firstly, the extension
of current work to achieve multi-agent cognition cycle (or node-level cog-
nition cycle) using multi-agent reinforcement learning in distributed CR
networks. Secondly, the extension of current work to include state repre-
sentation.
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Chapter 7

Multi-Agent Cognition Cycle

This chapter presents reinforcement learning, both single-agent and multi-
agent approaches, for achieving context awareness and intelligence in stat-
ic Distributed Cognitive Radio Networks (DCRN)s through the imple-
mentation of Multi-Agent Cognition Cycle (MACC) or node-level cogni-
tion cycle. Investigation is performed with respect to the DCS scheme.
In this chapter, MACC is implemented using the Single-Agent Rein-
forcement Learning (SARL) and the Multi-Agent Reinforcement Learning
(MARL) approaches. Note that, for better clarity, we refer the RL approach
in Chapter 6, which is a single-agent approach, as the SARL approach in
this chapter.

Firstly, in the Introduction section, this chapter presents objectives, re-
lated work, major differences between the SARL and MARL approaches,
assumptions and their related work, an overview of distributed learning
model, and characteristics of DCRNs. Secondly, it presents an importan-
t component in the MARL approach [64], specifically Payoff Propagation
(PP). Generally speaking, the PP mechanism provides a means of commu-
nication for the SARL [4] approach in Section 6.4.1 on page 91, which is a
local learning mechanism. The MARL approach encompasses the SARL
approach and the PP mechanism. The application of SARL and MARL ap-
proaches to implement the MACC model is presented in two subsections.

165
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Thirdly, it shows the SARL approach in scenario that applies a convention-
al assumption of identical channel quality (or PER) at all the SUs. Fourthly,
it shows the SARL and MARL approaches in scenario that does not apply
the assumption of identical channel quality at all the SUs.

7.1 Introduction

A DCRN is a distributed wireless network comprised of a number of SUs
that interact with each other in a common operating environment in the
absence of fixed network infrastructure or centralized coordinator such as
a Base Station or access point.

7.1.1 Objectives

In static DCRNs, the DCS scheme provides the strategy to select an avail-
able licensed data channel for data transmission among commmunication
node pairs given that the objective is to maximize overall throughput and
minimize delay, in terms of number of channel switchings, in the presence
of different levels of PUL and PER in the licensed data channels. The PUL
and PER are explained in Section 4.1 on page 44. Note that, in contrast to
Chapter 6 that considers different transmission ranges for all data channel-
s, this chapter considers similar transmission ranges for all data channels
because of the assumptions of static networks and single collision domain
as explained later in this chapter. Using the MARL approach, the SUs aim
to achieve a joint action, which is the actions taken by all the SUs through-
out the entire DCRN, in a distributed manner through learning in order to
achieve the objectives.

7.1.2 Related Work

The related work of this chapter is discussed in Section 6.3 on page 84,
and the advantages of the SARL and MARL approaches compared to one
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of the most popular tool to achieve context awareness and intelligence in
CR networks, namely game-based approach, is discussed in Section 6.11.1
on page 160. This thesis is the first attempt to investigate the application of
MARL on achieving context awareness and intelligence in CR networks.

7.1.3 Major Differences between SARL and MARL

The major differences between the SARL approach in Section 6.4.1 on page
91 and the MARL approach in this chapter are discussed below and they
are summarized in Table 7.1.

• In SARL, the operating environment, such as a centralized CR net-
work, is comprised of a single agent or decision maker. The purpose
is to achieve individual network performance enhancement. Since there
is a single agent only, the SARL approach does not consider the effects
of actions to the operating environment (see Section 5.3.7 on page 74).
According to Busoniu et al [88], the SARL approach can be directly
applied to the multiagent scenario [89] and thus to DCRNs; however,
the SARL approach may not achieve stability, specifically, the agents
may change their respective actions frequently, or oscillate between
actions, and fail to achieve an optimal joint action. Despite its limita-
tions, the SARL approach has been applied in a significant number
of applications and it has been shown to achieve stability in these
applications [90, 91, 92, 93].

• In MARL, the operating environment, such as a DCRN, is comprised
of multiple agents. The purpose is to achieve network-wide performance
enhancement. Since there are multiple agents, the MARL approach
considers the effects of actions to the operating environment. The MARL
approach achieves stability [88].
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Table 7.1: Major Differences between SARL and MARL

Characteristics SARL MARL
Number of agent(s) in the operat-
ing environment

Single Multiple

Level of network performance en-
hancement

Individual Network-wide

Consideration of the effects of ac-
tions on the operating environ-
ment

No Yes

Goal of achieving stability No Yes

7.1.4 Assumptions and Their Related Work

A detailed explanation of the common assumptions in the CR research
field is found in Section 2.4 on page 17. In this chapter, our assumptions
are as follows:

• Static networks as applied in previous schemes [25, 26, 27].

• Distributed networks. Previous schemes [67] consider centralized
networks.

• Single collision domain in DCRNs as applied in previous schemes
[26]. This assumption is applied in the investigation on the applica-
tion of the SARL and MARL approaches in DCRNs in Section 7.4.
This assumption is not applied in the investigation on the PP mech-
anism in Section 7.3.

• Channel heterogeneity. Previously proposed schemes [25, 26, 27] as-
sumed channel homogeneity.

• Identical channel condition (or PER) at all the SUs in Section 7.4.5
and non-identical channel condition at all the SUs in Section 7.4.6.
Previous schemes [25, 26, 27] assume channel homogeneity.
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• Simplified RL model without consideration of events (see Section
5.3.4 on page 71) and rules (see Section 5.3.6 on page 73). However,
this chapter considers the effects of actions on the operating environ-
ment (see Section 5.3.7 on page 74).

Table 7.2 presents a summary of the assumptions applicable to the three
major investigations in this chapter.

Table 7.2: Assumptions on Various Investigations in this Chapter

Assumption Payoff Propaga-
tion (see Section
7.3)

Scenario with
identical chan-
nel condition (or
PER) at all the
SUs (see Section
7.4.5)

Scenario with
non-identical
channel condi-
tion (or PER) at
all the SUs (see
Section 7.4.6)

Single colli-
sion domain

No Yes Yes

Identical
channel con-
dition (or
PER) at all the
SUs

Not applicable Yes No

7.1.5 Distributed Learning Model

Section 6.3.2 on page 86 presents related work on the application of SARL
in CR networks. As a complement to [58, 59, 60, 66, 61, 62, 63] which
apply the SARL approach only, this chapter applies both SARL and MARL
approaches.
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As shown in Figure 7.1, we model each SU communication node pair
as a learning agent because the SU transmitter and receiver share a single
set of learned outcomes or knowledge. At a particular time instant, the a-
gent observes its own local operating environment only due to its limited
sensing capability. The agents can improve the global reward in the next
time instant through carrying out their respective proper action. The glob-
al reward is a linear combination (or sum) of all the local rewards at each
agent. The learning engine provides knowledge on the operating environ-
ment comprised of multiple agents through observing the consequences of
its prior action in the form of local reward. The difference between SARL
(see Figure 5.2 on page 69), which is the single-agent approach, and MAR-
L, which is the multi-agent approach, is the additional feature in MAR-
L, namely Payoff Message Exchange (PME) as shown in Figure 7.1. The
payoff is computed using local rewards. The PME mechanism provides a
payoff message exchange mechanism that helps each agent to communi-
cate and compute its own action as part of the joint action, which is the
actions taken by all the SUs throughout the entire DCRN. In other words,
the PME is a means of communication for the learning engine embedded
in each agent. Note that the SARL approach does not implement the PME
mechanism because it is a single-agent approach. As time progresses, the
MARL agents learn to carry out the proper actions to maximize the global
reward. As an example, the learning engine is used to learn the channel
conditions such as PUL and PER. Section 7.4.5 considers that the channel
PER at all the agents are identical. Section 7.4.6 considers that the channel
PER at all the agents are non-identical as each agent may observe differ-
ent uncertain and varying channel conditions caused by various factors
including shadowing, channel selective fading, path loss, PU interference,
and others. Section 7.4.5 applies the SARL and its enhanced approaches;
while Section 7.4.6 applies both the SARL and MARL approaches. SARL
maximizes the local rewards; while MARL maximizes the global reward.
Based on the application, the reward indicates distinctive performance
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metrics such as throughput and successful data packet transmission rate.
Thus, maximizing the local and global rewards provides network-wide
performance enhancement.

Figure 7.1: Agents (or SU communication node pairs) and their environ-
ment.

7.1.6 Characteristics of Distributed Cognitive Radio Net-

works

We refer to a single node as an SU; and an SU communication node pair as an
agent henceforth. The single-hop DCRN is illustrated in Figure 7.2, and its
characteristics and assumptions are as follows:

• Primary Users

– There are K PUs, PU=[PU1,. . .,PUK].

– Each PU uses one of the K distinctive channels of frequency
F=[F1,. . .,FK] and broadcasts packets throughout the entire sim-
ulation area. The PUs do not change their respective channel,
thus there are K PUs and channel frequencies. For instance, PU1
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uses channel frequency F1, PU2 uses channel frequency F2 and
so on. The PUs do not switch their channels. The PUs do not
use four-way handshaking.

– The PUs are not aware of the presence of the SUs.

– The channel utilization pattern of the PUs follow a Poisson dis-
tribution with the mean arrival rate determined according to
the PUL level, and among the data channels it follows an inde-
pendent and identically distributed (i.i.d.) stochastic model.

• Secondary Users

– Each SU node is equipped with two transceivers, namely a con-
trol transceiver and a data transceiver, thus it is capable of access-
ing two different channels simultaneously.

* The control transceiver is tuned to a common channel in the
ISM band for control message exchange, as well as informa-
tion broadcast.

* The data transceiver is tuned to one of the available data
channels in the licensed bands for data packet transmission.
Thus, the PU activities exist in the data channels only.

– The SU transmitter of an agent is always backlogged and trans-
mits data packets to its SU receiver at every opportunity.

– The SARL or MARL model is embedded in the SU transmit-
ter; while the SU receiver switches its data channel according
to the decision made by the SU transmitter. The SU receiver
is informed of the changes in the data channel through control
message exchange in the common control channel.

• Secondary User Agents

– There are V SUs, and hence there are U=V/2 agents.
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– An agent i is comprised of an SU transmitter Ti and an SU re-
ceiver Ri.

– Each agent maintains a single set of knowledge because the SU
transmitter and SU receiver must choose a common data chan-
nel for data transmission in DCS. The knowledge can be main-
tained through control message exchange.

– The condition K≤U is applied so that the agents are competing
to use the data channels. In Figure 7.2, K=3≤U=3.

– The agents infer the PUL, PER and contention level in each data
channel, and select in a distributed manner a data channel for
data transmission.

– An agent i chooses a data channel cij,t out of K available data
channel for data transmission at time t.

• Channel Characteristics

– There are K orthogonal available data channels with similar
bandwidth.

– The assumption of a single collision domain is applied in the
investigation on the application of the SARL and MARL ap-
proaches in DCRNs in Section 7.4. This assumption is not ap-
plied in the investigation on the PP mechanism in Section 7.3.

– Each data channel is characterized by various levels of PUL,
Lci=[L1,. . .,LK].

– We consider heterogeneous channels and two cases of channel
conditions or PER:

* A scenario with identical channel condition (or PER) at all
the SUs such that P=[P1,. . .,PK] in Section 7.4.5.

* A scenario with non-identical channel condition at all the
SUs such that Pi=[Pi,1, . . .,Pi,K] in Section 7.4.6. Hence, d-
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ifferent agent i may observe different levels of PER using a
particular data channel cij,t.

A data channel with low PUL does not imply a good channel if it has a
high level of PER or contention. Figure 7.3, which is a graphical represen-
tation of Figure 7.2, illustrates the concept of the DCS scheme. Suppose,
agent 1 or T1-R1 chooses data channel 1; while agent 2 or T2-R2 chooses
data channel 2. Data channel K is not chosen because, say, it has high PUL
and PER. Agent U chooses data channel 1 because the channel has lower
PUL compared to data channel 2. This channel selection provides better
network-wide performance.

Figure 7.2: Single-hop DCRN. A single node is referred to as an SU, while
an SU communication node pair is referred to as an agent. Solid line indi-
cates communication link.

7.2 Chapter Goal

There are three new contributions in this chapter with respect to static
DCRNs:

• We show that the PP mechanism achieves an optimal joint action in
Section 7.3.
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Figure 7.3: Graphical representation of the DCS scheme. Bold line indi-
cates data transmission over a chosen data channel.

• We show that the SARL and MARL approaches achieve a joint action
that provides better network-wide performance in DCRNs using s-
cenarios with identical channel condition (or PER) at all the agents in
Section 7.4.5.

• We show that the SARL and MARL approaches achieve a joint action
that provides better network-wide performance in DCRNs using sce-
narios with non-identical channel condition (or PER) at all the agents
in Section 7.4.6.

7.3 Payoff Propagation

7.3.1 Introduction

This section presents a novel extended PP mechanism that helps the SUs
to achieve an efficient and optimal joint action in a cooperative and dis-
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tributed manner through learning in DCRNs. It is suitable to be applied
in most applications in DCRN that requires context awareness and intel-
ligence such as DCS, scheduling, and congestion control. Section 7.1.5
provides an overview of the PP mechanism. The PP mechanism is in-
vestigated with respect to DCS. The payoff messages are piggybacked on
the control messages including RTS and CTS. This section shows that the
network-wide performance achieved by the PP mechanism converges to
an efficient and optimal joint action in a distributed manner including D-
CRNs with cyclic topology; and that fast convergence is possible.

The PP mechanism is a cooperative approach where a group of agents
cooperate with each other to take an efficient and optimal joint action. The
cooperative environment is particularly suitable for multi-hop DCRNs be-
cause an agent must cooperate with its next hop neighbour agent that
helps it to relay its data packets to its destination.

7.3.1.1 Key Terms

Three key terms are:

• Joint action is the set of actions taken by all the agents throughout the
entire DCRN.

• Optimal joint action is the joint action that provides the ideal and op-
timal network-wide performance.

• Efficient joint action is the joint action that fulfills the requirement on
the network-wide performance which in general will be more read-
ily achievable than the network-wide performance provided by the
optimal joint action.

The optimal joint action varies with the dynamic and uncertain operating
environment; and therefore, attempting to achieve the optimal joint action
at most of the times may introduce high cost of overhead, and instability
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throughout the entire network. In addition, an agent may have to devi-
ate from the optimal joint action occasionally in order to explore and dis-
cover joint actions that provide network-wide performance enhancement.
Achieving an efficient joint action is sufficient to provide a network-wide
performance guarantee.

7.3.1.2 Performance Metrics

The performance metrics are:

• Global reward is a linear combination (or sum) of all the local reward
at each agent.

• Global payoff is a linear combination (or sum) of all the local payoffs,
which are computed using local rewards, generated by each agent,
in addition to the local reward at the agent.

• Convergence time is the time duration for the PP mechanism to
achieve an efficient or optimal joint action.

The PP mechanism optimizes both the global reward and global payoff in
order to achieve an efficient or optimal joint action that provides network-
wide performance enhancement. Based on the application, such as DCS,
the reward and payoff values indicate distinctive network performance
metrics such as throughput and successful data packet transmission rate.

7.3.1.3 Main Challenges

There are two main challenges in a multi-agent environment:

• An agent’s action is dependent on the other payoff-optimizing a-
gents’ actions.

• All agents must converge to an efficient or optimal joint action that
provides network-wide performance enhancement.
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Generally speaking, from the perspective of each agent, the research ques-
tion is “How does an agent choose its own action such that the joint action
converges to an efficient and optimal joint action?”

7.3.1.4 Assumptions

Section 7.1.4 shows the assumptions applicable in this section, and the
additional assumptions are as follows:

• The MARL approach encompasses the SARL approach and the PP
mechanism. Hence, a local learning mechanism, such as SARL in
Section 6.4.1 on page 91, is available at each agent to provide the Q-
values. The Q-values characterize the channel heterogeneity proper-
ties for each data channel including PUL and PER. For a particular
data channel, the Q-values are different among the agents as each
of them observes different levels of PUL and PER. In short, the Q-
values are Independent and Identically Distributed (i.i.d.) among
the agents and the data channels. Each Q-value has a range of -5≤
Qt(ai,aj∈Γ(i))≤15, where Γ(i) represents all the single-hop neighbour
agents of agent i.

• Non-single collision domain. As shown in Figure 7.4, the agents
are distributed in a uniform and random manner in a square region.
There are two kinds of links as follows:

– Communication link exists within an agent.

– Interference link exists between two neighbouring agents that do
not communicate with each other.

In a single collision domain scenario, the interference link exists a-
mong all the agents; while in a non-single collision domain scenario,
which is considered in this section, the interference link exists among
some of the agents.
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Figure 7.4: Single-hop DCRN without the assumption of single collision
domain. Solid line indicates communication link; while dotted line indi-
cates interference link.

7.3.1.5 Contributions

The focus in this section is the PP mechanism. This section shows that
the extended PP mechanism addresses the two aforementioned challenges
(see Section 7.3.1.3 with respect to DCS. Generally speaking, the DCS
scheme provides the channel selection that optimizes the global reward
and global payoff in order to achieve an efficient and optimal joint action.
The contributions of this section are as follows:

• To show that the extended PP mechanism converges to an efficient
and optimal joint action including DCRNs with cyclic topology.

• To show the effects of network density and various essential param-
eters in the extended PP mechanism on network-wide performance.

• To show that the extended PP mechanism provides fast convergence.

• To show the effects of unstable Q-values provided by the SARL
approach on the extended PP mechanism on network-wide perfor-
mance.
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7.3.1.6 Section Organization

The remainder of this section is organized as follows. Section 7.3.2
presents the original PP mechanism. Sections 7.3.3 presents the extended
PP mechanism. Section 7.3.4 presents simulation experiments, results and
discussions. Section 7.3.5 provides discussion and summary of research
outcomes in this section.

7.3.2 Original Payoff Propagation Mechanism

This section first describes the Coordination Graph (CG); followed by the
local reward, and finally the original PP mechanism.

7.3.2.1 Coordination Graph

In Figure 7.5, there are U=V/2=4 agents in the DCRN, and each agent is
represented by a single node. An interference edge exists between a pair
of neighbouring agents that only exchange a small number of control sig-
nals with each other. The entire DCRN can be decomposed into smaller
and local CGs, which are each a local view of the entire network for each
agent. In Figure 7.5, the CG of agent 1 is comprised of agent 1, 2, and 3,
hence the representation of the local reward or Q-value Qi,t(ai,t,aj∈Γ(i),t) =
Q1,t(a1,t,a2,t,a3,t), where ai,t∈A, and A is a set of possible actions. The CG
defines collaborative relationships among the agents. A collaborative rela-
tionship corresponds to a local payoff message exchange. Each agent runs
a local learning mechanism such as the SARL approach independently to
update its own Q-values. The approximate global Q-value Qt(at) at time t
is a linear combination (or sum) of all the local Q-values for the undertak-
ing action at each agent as follows:

Qt(at) =
U∑
i=1

Qi,t(ai,t, aj∈Γ(i),t) (7.1)
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Note that Equation (7.1) is not a utility function, which is not defined in
the MARL approach [64]. Equation (7.1) shows that the complexity of the
global reward optimization can be simplified through maximizing the lo-
cal rewards. The MARL approach has been shown to converge to an op-
timal point that maximizes the global reward in a wide range of bench-
marking problems from the NIPS 2005 workshop [64].

Figure 7.5: A four-agent graph G. Each agent represents an SU communi-
cation node pair. The edges are interference edges that exist between the
agents that interfere with each other.

7.3.2.2 Local Reward

The Q-value Qi,t(ai,t,aj∈Γ(i),t) is the learned knowledge at agent i and it is
maintained in a lookup Q-table with |A| entries. The Q-value represents
the local reward that the agent can gain for choosing an action ai,t∈A=F,
where F is the set of carrier frequencies of the available data channels, in
the coexistence of neighbouring agents. As an example, in DCS, the Q-
value represents the throughput performance and it is dependent on the
local PUL, PER and joint action at. The joint action affects the Q-value
due to the dependency of the actions among the agents. For example, t-
wo neighbour agents that choose a particular action, specifically a data
channel, might increase their contention level, and hence reduce their re-
spective Q-values for the action.
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7.3.2.3 Payoff Propagation Mechanism

The optimal and efficient joint action a∗t is comprised of the channel se-
lections from all the agents such that the global reward and global payoff
are optimized. Each agent computes its respective action a∗i,t∈A as part
of the optimal joint action using its local Q-value, Qi,t(ai,t,aj∈Γ(i),t) and it-
s neighbour agents, Qj∈Γ(i),t(aj,t,ak∈Γ(j),t) to achieve the optimal global Q-
value Qt(a∗t).

We describe the original PP mechanism [64] in this section. Each agent i
constantly sends locally optimized reward value or payoff message µij(aj,t)
to its neighbour agents j∈Γ(i) over the edges as shown in Figure 7.6. The
payoff µij(aj,t) is computed by maximizing, over all the possible actions of
agent i, the sum of the locally optimized Q-value Qi,t(a∗i,t,aj∈Γ(i),t) and all
the received payoff messages except that from agent j as follows:

µij(aj,t) = max
ai∈A

[Qi,t(ai, aj∈Γ(i),t) +
∑

k∈Γ(i)\j

µki(ai)] (7.2)

where Γ(i)\j represents all the neighbour agents of agent i except agent j.
The payoff messages are exchanged among the agents until a fixed op-

timal point is reached. Before convergence, the payoff messages are an
estimation of the fixed optimal point as all incoming messages of an agent
are yet to converge. Each agent selects its own optimal action to maximize
the local payoff as follows:

gi,t(ai,t) = max
ai∈A

[Qi,t(ai, aj∈Γ(i),t) +
∑
j∈Γ(i)

µji(ai)] (7.3)

Each agent i determines its optimal action individually as follows:

a∗i,t = argmax
ai∈A

gi,t(ai) (7.4)

The approximate global payoff gt(at) at time t is a linear combination (or
sum) of all the local payoffs at each agent as follows:

gt(at) =
U∑
i=1

[Qi,t(ai,t, aj∈Γ(i),t) +
∑
j∈Γ(i)

µji(ai,t)] (7.5)
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Note the difference between the global Q-value,
∑

iQi,t in (7.1) and the
global payoff,

∑
i[Qi,t+µji] in (7.5). The global Q-value is the total local re-

wards received by all the agents in the network; while the global payoff is
the total local rewards and payoff exchanged among the agents in the net-
work. Both Equations (7.1) and (7.5), which are the performance metrics
for the PP mechanism, converge to an optimal joint action.

7.3.3 Extended Payoff Propagation Mechanism

In this section, modifications to the original PP mechanism with respect to
DCS are presented. The original PP mechanism [64] cannot be applied to
the DCS problem for two reasons: failure to converge in a cyclic topology,
and its inability to include payoff computation using payoff values from
non-interfering agents.

7.3.3.1 Failure to Converge in a Cyclic Topology

Firstly, for a tree-structured graph, the agents would reach a fixed optimal
point after a finite number of iterations [64], [94]. For a cyclic topology as
shown in Figure 7.6, the original PP mechanism in Section 7.3.2.3 causes
the agent to continuously add its own local Q-value in its payoff computa-
tion causing the payoff value to increase without bound. Thus, it requires
all the agents in the network to occasionally compute the global payof-
f and update their optimal joint action when the global payoff improves
upon the best joint action found so far.

As an example on the effect of the cyclic topology in Figure 7.6, agent
1 calculates µ12(a2,t) using (7.2) and sends it to agent 2. Assume that agent
1, 2, 3, 4, 5, 6, 7 and 8 choose their respective optimal action in a sequential
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manner. As time goes by, µ12(a2,t) is computed as follows:

µ12(a2,t) = max
a1∈A

[Q1,t(a1, a2,t, a8,t)

+ µ81(a1,t−1) + µ78(a8,t−2) + µ67(a7,t−3) + µ56(a6,t−4)

+ µ45(a5,t−5) + µ34(a4,t−6) + µ23(a3,t−7) + µ12(a2,t−8)

+ . . .+ µ78(a8,2) + µ81(a1,1) + µ12(a2,0)]

(7.6)

Figure 7.6: Payoff messsage exchanges in a graph with eight agents.

7.3.3.2 Payoff Computation using Payoff Values from Non-Interfering
Agents

Secondly, the payoff computation in (7.2) uses payoff values from non-
interfering agents. We consider that an agent selects its data channel based
on the data channel selections of its two-hop neighbour agents. As time
goes by, although the channel selection at agent 1 is not dependent on a-
gent 4, 5 and 6 in Figure 7.6, the µ12(a2,t) in (7.6) is computed using µ45(a5,t),
µ56(a6,t) and µ67(a7,t).
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7.3.3.3 Locally Confined Payoff Propagation Mechanism

In our modified locally confined PP mechanism, agent i broadcasts the
local Q-value of its own current action (or data channel), and its one-hop
neighbour agents j∈Γ(i). All the Q-values are time-stamped. The payoff
message is as follows:

µiψ(aψ,t) = [Qk,t(ak,t, al∈Γ(k),t);TQk,t
], i ∈ k, j = Γ(i) ∈ k (7.7)

Each agent maintains a µ-table with size Nn,i×|A| to keep track of the
payoff messages, where Nn,i is the number of neighbour agents of an agent
i. A neighbour agent j∈Γ(i) that receives µiψ(aψ,t) stores each Q-value in
the message if it has a more recent time stamp TQk,t

compared to the time
stamp of the corresponding Q-value in its µ-table, T′Qk,t

. The T′Qk,t
is also

updated. As an example, when agent j receives the µiψ(aψ,t) while it is
taking action aj,t, the message µiψ(aψ,t)=µij(aj,t) indicates the local rewards
of agent i, and its one-hop neighbour agents while agent j is taking action
aj,t. The local payoff or Equation (7.3) is rewritten as follows:

gi,t(ai,t) = max
ai∈A

[Qi,t(ai, aj∈Γ(i),t) +
∑

j∈Γ(i)

Qj,t(aj,t, ak∈Γ(j),t)

+
∑

k∈Γ(j)\j
Qk,t(ak,t, al∈Γ(k),t)]

(7.8)

The approximate global payoff or Equation (7.5) is rewritten as follows:

gt(at) =
U∑
i=1

[Qi,t(ai,t, aj∈Γ(i),t) +
∑

j∈Γ(i)

Qj,t(aj,t, ak∈Γ(j),t)

+
∑

k∈Γ(j)\j
Qk,t(ak,t, al∈Γ(k),t)]

(7.9)

Our modified locally confined PP mechanism addresses the two aforemen-
tioned drawbacks in the original PP mechanism while achieving optimal
joint action in a distributed manner. The pseudo-code of our modified P-
P mechanism is embedded in each agent, and it is shown in Algorithm
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Algorithm 1 Pseudo-code of the extended PP algorithm at agent i.
initialize µij = µji = 0 for j ∈ Γ(i), gi,t = 0

{Tasks: 1. Broadcast payoff message to neighbour agents;
2. Select optimal action}

if (my turn to select an optimal action) then
compute and broadcast payoff µiψ(aψ,t) {Refer to (7.7)}
compute a∗i,t {Refer to (7.8) and (7.4)}
return a∗i,t

end if
{Task: 3. Receive payoff message}
wait for msg
if (msg = µjψ(aψ,t)) then

foreach Qk,t(ak,t, al∈Γ(k),t)

if (TQk,t
> T

′
Qk,t

)&&(k 6= i) then
update Qk,t(ak,t, al∈Γ(k),t)

update T ′Qk,t

end if
end foreach

end if

1. The PP mechanism is executed until the agent converges to an opti-
mal local action where the changes of its local Q-values and local payoffs
between iterations are insignificant.

The action selection in (7.4) does not cater for the actions that are never
chosen. In the ε-greedy approach [4] (see Section 5.3.5 on page 73), an
agent performs exploration with small probability ε, and exploitation with
probability 1-ε. The ε-greedy approach is applied in this section.

The PP mechanism has been shown to converge to an optimal point in
a wide range of benchmarking problems from the NIPS 2005 workshop
[64]. The reliability of the PP mechanism for convergence, which is not
proven in [64], is shown here.
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Proposition 1: If the entries in the Q-table and µ-table at each agent are
stable and fixed, the PP mechanism will converge to an efficient and optimal joint
action.
Proof: Denote the difference between the optimal global Q-value Qt(a∗t)
and instantaneous global Q-value for exploitation action Qt(at) by
δt=Qt(a∗t)-Qt(at). Assume that the Q-values at each agent are stable and
fixed. Convergence to an optimal joint action a∗t happens when δt=0; while
convergence to an efficient joint action happens when δt≤δ

′ where δ
′ is

the threshold that fulfills the requirement on network-wide performance.
With U agents and |A| actions, the number of possible joint actions is |A|U .
With exploration probability ε>0, the agent explores all possible joint
action at. The probability that the optimal joint action being explored is
p∗=1/|A|U , thus the probability that δt=0 as t→∞ equals 1. The probability
of an efficient joint action being explored is p. For instance, if 20% of
the joint actions fulfill the condition δt≤δ

′ , then p=0.2. Suppose, the
exploration follows a geometric distribution, then the probability that an
efficient joint action could be explored in the nth trial is fN (n)=p(1-p)n with
n=0,1,2,. . . . Thus, with p=0.2, the cumulative distribution function that
an efficient joint action could be found within n=10 trials is FN (10)=1-(1-
p)(n+1)=0.91. At each time step, one of the following events in the set S
occurs:

S =



δn = 0 fN∗(n) = p∗(1− p∗)n

δn ≤ δ
′

fN(n) = p(1− p)n

δt=n ≥ δt<n α

δn > δ
′

1− fN∗(n)− fN(n)− α

(7.10)

The agents exploit, with probability 1-ε, the best-known joint action
that maximizes the local payoff using (7.4). The agent explores with
probability ε. As time goes by, the µ-table becomes stable and fixed since
the Q-table is stable and fixed, which are the conditions for α=0 so that
the probability of δt=n≥δt<n is 0. Maximizing the local payoff gi,t(ai,t)
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maximizes the local Q-value at an agent and its neighbour agents as
shown in (7.8). Therefore, δt → 0 as t→∞. �

Proposition 2: The payoff value in the extended PP mechanism does not
increase without bound in a cyclic topology.
Proof: Consider an eight-agent graph in Figure 7.6. Suppose, agent 1 send-
s µ12(a2,t), which is comprised of its own local Q-value Q1,t(a1,t,a2,t,a8,t),
and its one-hop neighbour agent’s local Q-value Q8,t(a8,t,a1,t ,a7,t) to agent
2. The µ12(a2,t) becomes extremely large when agent 1 constantly includes
its own Q-value Q1,t−n(a1,t−n,a2,t−n,a8,t−n) at time t-n, where n={n1,n2,. . .}
is time step in the history, into the payoff value. The proposed update
(7.7), in contrast to (7.2), does not include Q1,t−n(a1,t−n,a2,t−n,a8,t−n) into
the payoff value, and thus it does not increase without bound in a cyclic
topology. This explanation can be generalized to all agents in a cyclic
topology. �

7.3.4 Simulation Experiment, Results, and Discussions

Our objective is to enable the SU agents to select their data channel (action)
for data transmission such that the channel selection (joint action) by all
the agents converges to an efficient or optimal network-wide throughput
(global reward).

7.3.4.1 Simulation Setup

This section discusses the simulation platform, objectives and perfor-
mance metrics, scenario and assumptions, initialization, and parameters.

Simulation Platform. We have implemented a CR-enabled environment
in the INET framework for OMNeT++ [72]. More explanations are found
in Section 6.6 on page 108.
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Simulation Objectives and Performance Metrics. The simulation sce-
narios consider heterogeneous channels such that each data channel at
each agent has different levels of

• Q-value, Qi(ai,aj∈Γ(i)) to indicate different levels of PUL and PER.

With heterogeneous channels consideration in all the simulation scenarios,
the goal of the PP mechanism is

• To enable the global payoff value and global Q-value of the PP mech-
anism to converge to an optimal or efficient joint action. This means
that the global payoff, gt(at) converges to a better value as time goes
by; while the difference between the optimal global Q-value Qt(a∗t)
and instantaneous global Q-value for exploitation action Qt(at), (or
the δt) converges to the value of 0.

• To minimize the convergence time of the PP mechanism.

Simulation Scenario and Assumptions. The simulation scenario is dis-
cussed in Section 7.1.6 and the assumptions are discussed in Section 7.1.4
and 7.3.1.4. Figure 7.2 shows the scenario and its graphical representation
is shown in Figure 7.3.

Simulation Parameters. Table 7.3 shows the parameters in the simula-
tion.

Simulation Initialization. 500 seconds of time are simulated. There
are U=V/2=6 agents. Due to the limitation in channel sensing capability,
there are K=3 data channels.

Network Topology. The network topologies are connected and there
are three levels of network densities d={Low,Medium,High} with cyclic
topology. The high density network simulates a single collision domain
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scenario where all agents can hear each other; while the medium and low
density networks have agents distributed in a uniform and random man-
ner within a region of 300m×300m and 600m×600m respectively.

MARL Parameters. The Q-values characterize the channel hetero-
geneity properties for each data channel including PUL and PER. For
a particular data channel, the Q-values are different among the agents
as each of them observes different levels of PUL and PER. In short,
the Q-values are Independent and Identically Distributed (i.i.d.) among
the agents and the data channels. Higher Q-value indicates better lo-
cal reward, and hence higher throughput. Each Q-value has a range
of -5≤Qi(ai,aj∈Γ(i))≤15; and we consider that an efficient joint action has
δt≤δ

′=|15-(-5)|/2=10. So, a single agent that takes a non-optimal action
could result in a non-efficient joint action. The Q-values are initialized
and fixed throughout the simulation unless otherwise specified.

Payoff Message Exchange. The payoff is piggybacked on the RTS
and CTS control messages, which are transmitted every 6.5ms on average,
though it can be more often. However, too often control message exchange
unnecessarily increases control overhead. The payoffs are transmitted us-
ing the control transceiver, hence neighbouring agents can detect the RTS
and CTS messages. Each agent explores with a default probability of ε=0.1
when it transmits an RTS.

7.3.4.2 Simulation Results and Discussions

Simulation results are presented in three subsections. Firstly, we show
that the PP mechanism converges to an optimal and efficient joint action.
Secondly, we investigate the PP mechanism convergence time. Thirdly, we
investigate the effects of unstable Q-values on δt.
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Table 7.3: Notations and Default Parameter Settings in Simulation for In-
vestigation into the Payoff Propagation Mechanism

Category Symbol Details Values

Initial
ization

U Number of SU agents 6
K Number of available data

channels
3

δ Propagation delay 1ns
T Total simulation time 500s

Simulation region size {600m×600m,
300m×300m,
10m×10m}

MAC Average time interval for RT-
S and CTS control message
broadcast

6.5ms

PP
Q(ai,aj∈Γ(i)) Q-value [-5,15]
ε Exploration probability {0.02,0.1,0.5}

Default: 0.1
δ
′ Difference between Qt(a∗t)

and Qt(at)
10
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Convergence to Optimal and Efficient Joint Action. Figure 7.7 shows
that the global payoff, gt(at), which is calculated using (7.9), of the high,
medium and low density networks increases and converges to a fixed
point within 4s as the time advances, and becomes stable henceforth. The
global payoff fluctuates occasionally due to exploration. The high density
network has the highest level of global payoff because it is dependent on
the number of neighbour agents as shown in (7.9). The global payoff does
not grow without bound as shown in Proposition 2.

Figure 7.7: Global payoff for high, medium and low density networks.

According to Proposition 1, δt→0 as time goes by, and maximizing the
local payoff gi,t(ai,t) in (7.8) maximizes the local Q-value. Figure 7.8 shows
that the δt for the high, medium and low density networks decreases to
approximately zero value. This indicates the convergence to an optimal
point. Note that in the δt computation, the Q-values of the exploration ac-
tions are replaced by the respective exploitation actions in order to provide
smooth results. As discussed, according to Proposition 1, δt could increase
at times because the µ-table is yet to become stable. As time goes by, the
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µ-table becomes stable where α=0 such that the probability of δt=n≥δt<n is
0, hence no increment of δt is observed henceforth.

Figure 7.8: The δt for high, medium and low density networks.

Convergence Time. Next, simulations were performed on 20 different
connected topologies for medium and low density networks respective-
ly. For high density networks, which adopt the single collision domain
assumption, simulations were performed using different random seeds.
Figure 7.9 shows that all the simulation runs converge within a certain
time range. On convergence to an optimal joint action for high density net-
works, 26% of the runs converge within 1s, and 50% within 1-2s; and the
average convergence time is approximately 1.73s for high density, 1.51s
for medium density, and 1.7s for low density networks. On convergence
to an efficient joint action for high density networks, 74% of the runs con-
verge within 1s, and 18% within 1-2s; and the average convergence time is
approximately 0.8s for high density, 0.69s for medium density, and 0.88s
for low density networks.
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Figure 7.9: Cumulative distribution function of convergence time for high,
medium and low density networks.

Figure 7.10 shows that, for high density networks, the convergence
time is shorter on average with ε=0.1. The convergence time increases
when ε=0.5 because of instability introduced by excessive exploration, and
ε=0.02 because of low exploration. The average convergence time to an
optimal joint action is 1.73s for ε=0.1, 2.87s for ε=0.5, and 3.98s for ε=0.02.
The average convergence time to an efficient joint action is 0.8s for ε=0.1,
1.86s for ε=0.5, and 1.67s for ε=0.02. Hence, faster convergence is possi-
ble through the adjustment of ε. It should be noted that, in practice, the
agents are expected to adapt to the dynamic operating environment even
when they are already taking efficient and optimal joint action, and have
knowledge of the operating environment; and hence, convergence must
be rapid.

Effects of Unstable Q-values. Next, we examine the effects of unstable
Q-values on δt in a high density network. Suppose, with every interval
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Figure 7.10: Cumulative distribution function of convergence time for
high density network using different ε.

tc of time, with probability 0.5, an agent changes its Q-value for any of it-
s channels. Figure 7.11 shows that when tc=4s, which is greater than the
average convergence time of 1.73s, δt converges to 0 value. When tc=2s, δt
fails to converge within time 4-6s. When tc=1s, δt fails to converge more
frequently. The results indicate that stable Q-values provided by the local
learning mechanism is the key factor for convergence as stated in Propo-
sition 1.

7.3.5 Summary of Research Outcomes

The research outcomes from the investigation on the PP mechanism using
the performance metrics of global payoff, gt(at); the difference between
the optimal global Q-value Qt(a∗t) and instantaneous global Q-value for
exploitation action Qt(at), δt; and convergence time are summarized in this
section. This section does not assume a single collision domain, which is
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Figure 7.11: The δt for high density network with respect to tc second.

commonplace in the CR networks research field to date. This section as-
sumes that a local learning mechanism such as SARL is available at each
agent to provide Q-values. The research outcomes are summarized as fol-
lows:

• The gt(at) converges to a fixed point, and the δt converges to the val-
ue of 0. Hence, the PP mechanism converges to an efficient and op-
timal joint action given that the entries in the Q-table and µ-table at
each agent are stable and fixed.

• The gt(at) does not increase without bound in a cyclic topology.

• Low convergence time is possible through the adjustment of the ex-
ploration probability, ε.
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7.4 Scenarios with Different Channel Condi-

tions

7.4.1 Introduction

This section investigates the network-wide performance provided by the
SARL and MARL approaches in scenarios with identical and non-identical
channel conditions.

7.4.1.1 Differences Between Identical and non-Identical Channel Con-
ditions

In scenarios with identical channel condition (or PER) at all the agents, the
agents experience similar channel quality when using a particular data
channel such that P=[P1,. . .,PK]. However, in scenario with non-identical
channel condition at all the agents, each agent may experience different
channel quality, or levels of PER, for using a particular data channel such
that Pi=[Pi,1,. . .,Pi,K].

In both scenarios, from the perspective of each agent, the research ques-
tion is “How does an agent choose its own data channel for data transmis-
sion such that the channel selection of all the agents provides network-
wide performance enhancement?” The heterogeneous channels have d-
ifferent levels of PUL and PER. Based on the channel selection by all the
agents, the data channels have different levels of contention. The addi-
tional challenge brought about by the scenario with non-identical channel
condition at all the agents is the necessity to allocate data channels based
on the levels of PER at each agent. This is because a data channel with low
PER at agent i may not be the case at agent j. Hence, it is necessary to al-
locate data channels based on the levels of PER at each agent. The MARL
approach considers network performance at neighour agents through the
exchange of payoff message in order to maximize the global payoff. This
improves the network performance at an agent and its neighbour agents.
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Hence, we have chosen to investigate scenarios with non-identical channel
condition at all the agents.

7.4.1.2 Section Organization

The remainder of this section is organized as follows. Section 7.4.2
presents an RL-based DCS scheme. Section 7.4.3 presents a general CSMA-
based cognitive MAC protocol, and the MAC protocols with DCS imple-
mentation including Random-based MAC (RMAC), SARL-based MAC (S-
MAC), enhanced SARL-based MAC (eSMAC), and MARL-based MAC
(MMAC). Section 7.4.4 presents the simulation setup for the subsequen-
t sections. Section 7.4.5 presents simulation results for scenarios with i-
dentical channel condition. It compares the network-wide performance
achieved by the RMAC, SMAC and eSMAC. Section 7.4.6 presents sim-
ulation results for scenarios with non-identical channel condition. It com-
pares the network-wide performance achieved by the RMAC, SMAC and
MMAC.

7.4.2 Reinforcement Learning-based Dynamic Channel S-

election

7.4.2.1 Objectives

In static DCRNs, the RL-based DCS scheme provides the strategy to se-
lect an available licensed data channel for data transmission from an SU
transmitter to a static SU receiver given that the objective is to maximize
overall throughput and minimize delay, in terms of number of channel
switchings, in the presence of different levels of PUL, PER and channel
contention in the licensed data channels. The PUL and PER are explained
in Section 4.1 on page 44. Section 6.4.1 presents the RL model for a single-
agent environment. This section presents the RL model for a multi-agent
environment, where the RL model is applied in each agent i.
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7.4.2.2 Reinforcement Learning Model for Dynamic Channel Selection
in Multi-Agent Environments

Denote decision epochs by t∈T={1,2,. . .}, a constant epoch duration by tD,
action or channel selection by cij∈C, and immediate reward by rit+1(cij,t),
which is the reward received at time t+1 for the data channel selected at
time t. An agent i keeps track of the Q-value, Qi

t(cij) within an interval of
[0, Qmax] for all the available data channels C in a Q-table with |C| entries.
The Q-value Qi

t(cij), which represents the knowledge at agent i, indicates
the appropriateness of choosing data channel cij in the operating environ-
ment. In other words, the Q-value estimates the level of local reward for
a data channel cij ; hence changes in the Q-value will lead to changes in an
agent’s channel selection. At each decision epoch t, agent i chooses a data
channel cij and receives a local reward rit+1(cij,t) at time t+1.

Knowledge Update Procedure. During knowledge update, the Q-value
of a chosen data channel cij,t at time t is updated at time t+1. Equation (6.1)
is rewritten as follows:

Qi
t+1(cij,t)← (1− α)Qi

t(c
i
j,t) + αrit+1(cij,t) (7.11)

where 0 ≤ α ≤ 1 is the learning rate, and rit+1(cij,t) is the immediate reward.
The higher the value of α, the greater the agent relies on the immediate re-
ward. The reward rit+1(cij,t)=ND/tD is the amount of throughput obtained
within the recent epoch t, where ND is the number of data packets success-
fully transmitted by the SU transmitter Ti within the epoch. Data packet
transmission is successful when a link-layer acknowledgment is received
for the data packet sent, else the transmission is unsuccessful. Addition-
ally, if an SU senses PU signals immediately prior to transmission, it is
considered unsuccessful. As time goes by, the agent receives a sequence
of rewards from the data packet transmission procedure.
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Action Selection Procedure. During action selection, for SMAC and eS-
MAC, the agent chooses an exploitation or greedy action, which is the data
channel with the highest Q-value. Equation (6.2) is rewritten as follows:

cij,t = argmax
cij∈C

Qi
t(c

i
j) (7.12)

The MMAC chooses its exploitation action using its own approach to be
discussed in Section 7.4.3.5. The joint action affects the Q-value due to the
dependency of actions among the agents. For example, two neighbour
agents that choose a particular data channel may increase their contention
level, and hence reduces their respective Q-values for the action.

Reinforcement Learning Model for Dynamic Channel Selection. The
RL model in the DCS scheme for each agent is embedded in the SU trans-
mitter as shown in Table 7.4.

Table 7.4: RL Model (MACC) at SU transmitter of Agent i for DCS

Dynamic Channel Selection Model
Description Representation

Action Available data channels for data
transmission.

C={cij=1,2,. . . ,K}

Reward Throughput within tD. rit+1(cij,t) = ND/tD

7.4.2.3 Major Differences Between RL Models for DCS in Single-
Agent and Multi-Agent Environments

The major differences between the RL model for the SACC approach in
Section 6.4.1 on page 91 and the RL model for the MACC approach in this
chapter are as follows:
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• The RL model for the SACC approach is embedded in the SU BS
of centralized networks. The RL model for the MACC approach is
embedded in the SU transmitter of each agent (or a communication
node pair) in distributed networks.

• In the SACC approach, the Q-value is updated using (6.1) after every
data packet transmission. In the MACC approach, the Q-value is
updated using (7.11) at the end of every epoch t∈T={1,2,. . .}, hence
the epoch duration is more than a single data packet transmission
cycle.

• In the RL model for the SACC approach, the effects of actions to
the environment is not considered. However, in the RL model for
the MACC approach, the effects of actions to the environment is the
contention level; and the use of throughput or rit+1(cij,t) = ND/tD is a
good measurement of the contention level. For instance, high levels
of rit+1(cij,t) within tD indicate low levels of contention and vice-versa.
This is not possible in the RL model for the SACC approach as the
epoch duration is a single data packet transmission cycle.

Consider a situation where all the SU agents choose a similar data
channel with low PUL and PER for data transmission. Using the
SACC approach, the Q-value of the chosen data channel for all the
SU agents would be high due to successful data packet transmission-
s. However, using the MACC approach, the Q-value of the chosen
data channel for all the SU agents would be low due to unsuccessful
data packet transmissions as a result of high contention level or low
ND within tD epoch duration.
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7.4.3 Cognitive MAC Protocols with Dynamic Channel S-

election Implementation

7.4.3.1 Carrier Sense Multiple Access-based Cognitive Medium Access
Control Protocol

At the time this thesis is written, there is not yet a standard available for a
cognitive MAC protocol in DCRN. Section 6.3.3 provides related work on
the cognitive MAC. Section 6.5.1 presents a CSMA-based cognitive MAC
for centralized CR networks. This section presents a CSMA-based cog-
nitive MAC with DCS implementation for DCRNs. The common control
channel approach (see Section 3.3.3 on page 26) is adopted. Each SU is
equipped with two transceivers, thus it is capable of accessing two dif-
ferent channels simultaneously (see Section 7.1.6). An illustration of the
CSMA-based cognitive MAC protocol is shown in Figure 7.12. Four-way
handshaking is performed to transmit the CTRL control message and DA-
TA message in the common channel and the data channel respectively.

Figure 7.12: Procedure of cognitive MAC for an agent (or an SU commu-
nication node pair).
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Channel Switching Procedure. For channel switching, the procedure is
initiated by an SU transmitter Ti, and an example is shown in Figure 7.12.
Agent i begins its control transmission cycle at time t1. Transmitter Ti in-
cludes in the CTRL control message to its receiver Ri the channel switching
information, including channel switching session ID and the data channel
selected by the DCS scheme for data transmission at the data transceiver.
At time t3, Ti receives an Acknowledgement (ACK) message that indi-
cates a successful channel switching; however, since the data transceiver
has started its data transmission cycle at t2≤t3, both Ti and Ri switch their
data channel at time t4. The time incurred for the channel switching, ini-
tial channel sensing, backoff and Distributed Coordination Function (D-
CF) Inter-Frame Spacing (DIFS) is t5−t4. In the event of failed channel
switching, the data transceivers of Ti and Ri would tune to a different da-
ta channel, e.g., when the ACK message in the common channel is lost.
Consequently, Ti fails to receive CTS for all the RTS it transmits at the data
transceiver, and when the maximum backoff stage of 7 is reached, Ti starts
another channel switching session.

Restarting Data Transmission Cycle at Data Transceivers. The data
transceiver performs channel sensing for at least the SIFS interval immedi-
ately prior to all packet transmissions. If it senses a busy channel, it restarts
its data transmission cycle to defer its transmission in order to avoid col-
lision with the PU transmission. To improve the throughput performance
in a CR environment where transmission is unreliable, the Ri restarts its
data transmission cycle whenever it receives an RTS from Ti. Thus, miss-
ing CTS or failed data packet transmission does not result in RTS being
dropped at the Ri whenever the Ti begins a new data transmission cycle.

Differences between CSMA-based Cognitive Medium Access Control
Protocols in Centralized and Distributed Cognitive Radio Networks.
There are two differences between the CSMA-based cognitive MAC in



204 CHAPTER 7. MULTI-AGENT COGNITION CYCLE

centralized CR networks (see Section 6.5.1 on page 96), and the CSMA-
based cognitive MAC in DCRNs in this section. The differences are as
follows:

• In this section, four-way handshaking is performed to transmit the
CTRL control message and DATA message in the common chan-
nel and the data channel respectively. The CTRL control message
contains channel switching information, including channel switch-
ing session ID and the data channel selected by the DCS scheme for
data transmission at the data transceiver. In Section 6.5.1, RTS and
CTS control messages are transmitted in the common channel; while
DATA and ACK messages are transmited in the data channel. The
RTS and CTS messages contain the channel switching information.
The purpose of implementing four-way handshaking in the common
channel in this chapter is to improve transmission reliability due to
the existence of multiple SU agents in the operating environment.
Transmission reliability is important because failed transmission of
CTRL control message results in failed channel switching at the data
transceiver.

• In this section, both control transceiver and data transceiver can op-
erate simultaneously. In Section 6.5.1, the control transceiver trans-
mits RTS and CTS control messages, then the data transceiver trans-
mits DATA and ACK messages.

Next, four types of CSMA-based cognitive MAC protocols based on d-
ifferent methods of DCS, namely RMAC, SMAC, eSMAC and MMAC
are presented for later comparison. For each type, the mechanisms of
channel switching, DCS, as well as the operation of the control and da-
ta transceivers are described.
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7.4.3.2 RMAC

In Random-based MAC (RMAC), the DCS scheme chooses a data channel
randomly. There are two conditions that trigger data channel switching
at agent i. Firstly, an unsuccessful data packet transmission at the data
interface when a transmitter Ti fails to receive an ACK message after a
data packet transmission. Secondly, an agent must change its data channel
at least once every second. This avoids all the agents choosing a particular
data channel with low PUL and PER that provides higher occurence of
successful data packet transmission at the expense of lower throughput
due to a high level of contention. Also, an agent does not switch its data
channel within a duration of two data transmission cycles right after a
channel switching.

7.4.3.3 SMAC

In SARL-based MAC (SMAC), the DCS scheme applies the SARL ap-
proach to choose a data channel. Several functions for SMAC are shown in
Algorithm 2, 3 and 4. Each agent divides the time horizon into epochs of
duration tD=tD,SMAC and keeps track of the number ND of successful data
packet transmissions in the past epoch (see Algorithm 2). No synchroni-
sation is required among the agents. At the beginning of each epoch (see
Algorithm 3), an agent uses ND to update its Q-value using (7.11). With
probability 1−ε or during exploitation, the agent chooses its data channel
in the next epoch using (7.12). During exploitation, in order to improve
stability, an agent does not switch its data channel if the difference be-
tween the Q-value of its previous exploitation data channel and the cur-
rent optimal (or near-optimal) data channel using (7.12) is less than a small
threshold value of β. With probability ε or during exploration, the agent
chooses its data channel in the next epoch randomly; and the agent is not
allowed to explore for two consecutive epochs. Although an agent has
decided to switch its data channel at the beginning of an epoch, it is on-
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Algorithm 2 Function for SMAC, eSMAC and MMAC: Receives ACK for
DATA Packet Sent

if (receive ACK for DATA packet sent) then
ND = ND + 1

end if

ly carried out in the midst of an epoch when a new control transmission
cycle starts, which is subject to contention among the agents. The control
transmission cycle is necessary so that the transmitter can send channel
switching information to its receiver for both to use the same data channel
for data transmission. Hence, immediately prior to a data channel switch-
ing, the transmitter Ti must update the Q-value of its initial data channel
which has been learned (see Algorithmn 4). Upon channel switching, it
sets ND=0 and continues to operate in the remaining epoch.

7.4.3.4 eSMAC

According to [64], the SARL approach in SMAC results in instability or
oscillations in the presence of multiple agents because each agent switches
its data channel from time to time. The SARL approach in enhanced SARL-
based MAC (eSMAC) enhances stability through reducing the number of
channel switchings at each agent. eSMAC addresses two drawbacks in
SMAC that contribute to the instability, and the drawbacks are as follows:

• When several agents undertake exploration at the same time, the Q-
values (or the throughput performance) become unstable and they
do not portray the exact level of PUL, PER and contention of the
data channels. For instance, when two agents explore a particular
data channel, the Q-value for the data channel reduces for all agents
and does not portray the exact level of contention.

• An agent that explores a particular data channel, and then exploits
the other one in the following epoch causes the Q-values of both data
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Algorithm 3 Function for sMAC: New Epoch Begins
if (new epoch begin) then
rit+1(cij,t) = ND/tD

Qi
t+1(cij,t)← (1− α)Qi

t(c
i
j,t) + αrit+1(cij,t) {Refer to (7.11)}

R = uniform(0, 1) {Generate random number}
if R ≤ ε then
cij,t+1 = uniform(1, K)

else
citemp = argmax

cij∈C
Qi
t(c

i
j) {Refer to (7.12)}

if |Qi
t+1(citemp)−Qi

t+1(cij,t)| ≤ β then
cij,t+1 = cij,t

else
cij,t+1 = citemp

end if
end if
return cij,t+1

end if

Algorithm 4 Function for SMAC and MMAC: Control Transmission Cycle
Begins

if (control transmission cycle begin) then
if cij,t+1 6= cij,t then
{initiate channel switching}
rit+1(cij,t) = ND/tD

Qi
t+1(cij,t)← (1− α)Qi

t(c
i
j,t) + αrit+1(cij,t)

ND = 0

end if
end if
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channels in itself and its neighbour agents to fluctuate.

The purpose of eSMAC is to provide stability to the existing SARL ap-
proach. The instability is caused by the exploration. Several functions for
eSMAC are shown in Algorithm 2, 5, 6 and 7.

To tackle the first drawback, an agent would only explore if its
neighbour agents are not exploring (nbrExplorationBit = false),
and it must announce to its neighbour agents in a CTRL control mes-
sage when it starts (pktExplorationBit = true) and terminates
(pktExplorationBit = false) its exploration. This is to ensure that
there is only a single agent undergoing exploration within a neighbour-
hood.

To tackle the second drawback, the exploring agent and its neigh-
bour agents must update and store the Q-tables and set ND=0 during da-
ta channel switching in order to learn a new environment whenever the
exploration begins. At the end of the exploration, using (7.12), the ex-
ploring agent chooses to exploit the data channel being explored or to
exploit the other data channel. The agent would have to retrieve its s-
tored Q-table and set ND=0 if it chooses to exploit the other data chan-
nel, otherwise it would maintain its Q-table. The decision is broadcast
to the neighbour agents in CTRL control message so that the neighbour a-
gents follow suit to retrieve (pktRetrieveQtable = true) or maintain
(pktRetrieveQtable = false) their Q-tables, and to set ND=0.

7.4.3.5 MMAC

Similar to the eSMAC, the MARL approach in MARL-based MAC (M-
MAC) enhances stability through reducing the number of channel switch-
ings at each agent. The MARL approach is a combination of both the SARL
in Section 7.4.2 and the extended PP in Section 7.3.3. The SARL approach,
which is the learning engine embedded in each agent, provides the local
reward, while the PP mechanism provides a means of communication for
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Algorithm 5 Function for eSMAC: New Epoch Begins
if (new epoch begin) then
rit+1(cij,t) = ND/tD

Qi
t+1(cij,t)← (1− α)Qi

t(c
i
j,t) + αrit+1(cij,t) {Refer to (7.11)}

R = uniform(0, 1) {Generate random number}
if (R ≤ ε) && (nbrExplorationBit == false) then
cij,t+1 = uniform(1, K)

else
citemp = argmax

cij∈C
Qi
t(c

i
j) {Refer to (7.12)}

if |Qi
t+1(citemp)−Qi

t+1(cij,t)| ≤ β then
cij,t+1 = cij,t

else
cij,t+1 = citemp

if (explore during the previous epoch t) then
retrieveQtable = true

end if
end if

end if
return cij,t+1

end if
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Algorithm 6 Function for eSMAC: Control Transmission Cycle Begins
if (control transmission cycle begin) then

if cij,t+1 6= cij,t then
{initiate channel switching}
rit+1(cij,t) = ND/tD

Qi
t+1(cij,t)← (1− α)Qi

t(c
i
j,t) + αrit+1(cij,t)

ND = 0

if (explore) then
store Q-table
pktExplorationBit = true

else
{exploit}
if retrieveQtable == true then

pktRetrieveQtable = true
retrieve Q-table
retrieveQtable = false

end if
end if

end if
end if
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Algorithm 7 Function for eSMAC: Receives CTRL Control Message
if (receive CTRL) then

if pktExplorationBit == true then
nbrExplorationBit = true
cij,t+1 = cij,t

rit+1(cij,t) = ND/tD

Qi
t+1(cij,t)← (1− α)Qi

t(c
i
j,t) + αrit+1(cij,t)

store Q-table
ND = 0

else
nbrExplorationBit = false
if pktRetrieveQtable == true then

retrieve Q-table
ND = 0

end if
end if

end if
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the learning engines. Each agent i maintains a Q-table with |A| entries; and
a µ-table with size Nn,i × |A| to keep track of the payoff messages. The Nn,i

is the number of neighbour agents of agent i.

In MMAC, the DCS scheme applies the MARL approach to choose
a data channel. Several functions for MMAC are shown in Algorithms
{1, 2, 4, 8}. Each agent divides the time horizon into epochs of dura-
tion tD=tD,MMAC . Each agent keeps track of the number ND of success-
ful data packet transmissions and exchanges payoff messages (7.7) within
tD,MMAC . Note that, an agent broadcasts its payoff value during exploita-
tion only. The Q-values in the payoff message indicate the performance
of each agent during exploitation or the recent exploration if any of the a-
gents is undergoing exploration. No synchronisation is required although
the neighbour agents are expected to broadcast at least one payoff message
within tD,MMAC to inform the exploring agent of their respective Q-value
if any of the agents is undergoing exploration. At the beginning of each
epoch, an agent updates its Q-values using ND and payoff messages re-
ceived from its neighbour agents. Equation (7.11) is used to update the
Q-values, and the payoff message is used to update the stored µ-values.
During exploitation, an agent computes the local payoff value for each da-
ta channel using (7.8), and approximates and chooses an optimal action
with the maximum payoff value using (7.4).

7.4.4 Simulation Setup

This section discusses the simulation platform, objectives and perfor-
mance metrics, ordinates, baseline, parameters and organization of the
remaining sections relevant to the simulation. This covers the simulation
experiments, results and discussions in Section 7.4.5 and 7.4.6.
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Algorithm 8 Function for MMAC: New Epoch Begins
if (new epoch begin) then
rit+1(cij,t) = ND/tD

Qi
t+1(cij,t)← (1− α)Qi

t(c
i
j,t) + αrit+1(cij,t) {Refer to (7.11)}

R = uniform(0, 1) {Generate random number}
if R ≤ ε then
cij,t+1 = uniform(1, K)

else
citemp = argmax

cij∈C
gi,t+1(cij) {Refer to (7.4)}

if |gi,t+1(citemp)− gi,t+1(cij,t)| ≤ β then
cij,t+1 = cij,t

else
cij,t+1 = citemp

end if
end if
return cij,t+1

end if
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7.4.4.1 Simulation Platform

We have implemented a CR-enabled environment in the INET framework
for OMNeT++ [72]. More explanations are found in Section 6.6 on page
108.

7.4.4.2 Simulation Objectives and Performance Metrics

The simulation scenarios consider heterogeneous data channels such that
each channel has different levels of PUL and PER.

Section 7.4.5 investigates identical channel condition (or PER) at all the
agents; and Section 7.4.6 investigates non-identical channel condition at
all the agents.

With heterogeneous channels consideration in all the simulation sce-
narios, the goals of the DCS are

• To enable the global Q-value of SMAC, eSMAC and MMAC con-
verges to better Q-value as time goes by.

• To maximize throughput.

• To minimize the number of channel switchings, since switching
causes non-negligible delay for data packet transmission. Addition-
ally, each channel switch also causes energy consumption. Note that,
in contrast to the simulation results in Chapter 6 for the SACC ap-
proaches, channel switchings for exploration purpose are not count-
ed in this chapter because all the approaches in the comparison un-
dergo exploration.

In other words, the SUs agents must select their data channels (action-
s) respectively for data transmission such that the data channel selection
(joint action) by all the SU agents converges to network-wide throughput
and number of channel switchings (global reward) that provide network-
wide performance enhancement.
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7.4.4.3 Simulation Ordinates

Graphs are presented with PUL and PER as ordinate. For each value
of PUL and PER, the corresponding throughput or number of channel
switchings is the average value of 50 runs using different levels of PULs
and PERs across the data channels. For instance, a PUL level of 0.2 may in-
dicate the PUL of [0.025,0.248,0.327] or [0.163,0.402,0.035] in the data chan-
nels.

7.4.4.4 Simulation Baseline

A common simulation baseline is the RMAC. The RMAC chooses an avail-
able data channel for the next data packet transmission in a random man-
ner. Hence, it does not apply any learning mechanism.

7.4.4.5 Simulation Parameters

Table 7.5 shows the simulation parameters that are applicable to simula-
tion scenarios in Section 7.4.5 and 7.4.6. The procedure of the cognitive
MAC is shown in Figure 7.12. Additional simulation parameters that are
applicable to specific simulation scenarios are shown in seperate tables in
Table 7.6 for Section 7.4.5, and Table 7.7 for Section 7.4.6.

We explain some of the simulation parameters in Table 7.5. The charac-
teristics of the PU, SU, SU agent and channel are discussed in Section 7.1.6.
Exactly 100 seconds of time are simulated in each run. Each SU has limit-
ed in channel sensing capability, and thus the number of available licensed
and orthogonal data channels is limited to K=3. There are U={3,6,12} SU
agents in a square simulation area of 1000m×1000m. Three levels of net-
work densities are simulated with d=U/K={1,2,4}={Low,Medium,High}.
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Table 7.5: Notations and Default Parameter Settings in Simulation

Category Symbol Details Values

Initial
ization

U Number of SU agents {3,6,12}
K Number of available data chan-

nels
3

δ Propagation delay 1ns
T Total simulation time 100s

SU
Traffic model Always back-

logged
tH+C,SU Data packet duration 5.44ms
TSW Channel switching delay (in-

cluding initial channel sensing)
2ms

PU

Traffic model Stochastic chan-
nels with Pois-
son model

tH+C,PU Data packet duration 5.44ms
Maximum queue size 5 packets

Lci PUL of each available data
channel

[0,0.9] Default:
0.5

SMAC,
eSMAC,
MMAC

α Learning rate {0.05,0.1,0.2,0.4}
Default: 0.2

ε Exploration probability {0.05,0.1,0.2,0.4}
Default: 0.2

β Q-value threshold value 1
Initial Q-value 1

Qmax Maximum Q-value 20
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7.4.4.6 Section Organization

The remainder of this chapter present simulation experiments, results and
discussions, and is organized as follows:

• Section 7.4.5 shows the investigation on the SARL approaches, name-
ly RMAC, SMAC and eSMAC, in scenario with identical channel con-
dition at all the agents.

• Section 7.4.6 shows the investigation on the SARL approaches, name-
ly RMAC and SMAC, as well as an MARL approach, namely M-
MAC, in scenario with non-identical channel condition at all the a-
gents.

7.4.5 Scenario with Identical Channel Condition

This section presents cognitive MAC protocols with three different kinds
of DCS implementations based on the SARL approaches, namely RMA-
C, SMAC and eSMAC. The main focus is the performance enhancement
provided by the SARL approaches.

7.4.5.1 Assumptions

Section 7.1.4 shows the assumptions applicable to this section, and the
additional assumptions are as follows:

• Identical channel condition (or PER) at all the agents for a particu-
lar data channel such that P=[P1,. . .,PK]. The differences between
identical and non-identical channel condition at all the agents are
discussed in Section 7.4.1.1.

• Single collision domain. This means that an interference link exists
among all the agents.
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7.4.5.2 Contributions

The focus in this section is the application of the SMAC and eSMAC ap-
proaches in scenario with identical channel condition. The contributions
of this section are as follows:

• To show that the SMAC and eSMAC approaches achieve a joint ac-
tion that provides better network-wide performance in DCS for D-
CRNs.

• To show the effects of network density and various essential pa-
rameters in SMAC and eSMAC approaches on network-wide per-
formance.

7.4.5.3 Simulation Experiments, Results, and Discussions

The objectives of this investigation are presented in Section 7.4.4.2.

Simulation Setup and Parameters. The simulation scenario is discussed
in Section 7.1.6 and the assumptions are discussed in Section 7.4.5.1. Fig-
ure 7.2 shows the scenario and its graphical representation is shown in
Figure 7.3. The procedure of the cognitive MAC is shown in Figure 7.12.
Simulation parameters are shown in Table 7.5, and additional simulation
parameters are shown in Table 7.6.

Some of the important explanations on Table 7.6 are shown below:

Identical Channel Quality (or PER) at all the Agents. Each data
channel has a certain level of PER. The level of PER for each data chan-
nel is the same for all agents with the default average value of PER across
the K data channels being 0. Upon receiving a packet, an SU discards the
packet with the PER probability.
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Table 7.6: Notations and Default Parameter Settings in Simulation for In-
vestigation into Scenario with Identical Channel Condition

Category Symbol Details Values
Initial
ization

PEci PER of each available data
channel at agent i

[0,0.3] Default: 0

SU tCTRL,SU CTRL control message pack-
et duration

5.44ms

SMAC and
eSMAC

tD,SMAC Epoch duration 187.14ms

Secondary User. For SU, tDATA,SU=tCTRL,SU because the CTRL con-
trol message may contain other broadcast information. It also contains
information related to channel switching

SMAC and eSMAC. An epoch duration is 30 data transmission cy-
cles, or tD=tD,SMAC=30×(tRTS+tCTS+tDATA,SU+tACK+3tSIFS). The value of
tD,SMAC was chosen empirically to provide the best possible network-wide
performance.

Simulation Results and Discussions. Firstly, we show that the global Q-
value of SMAC and eSMAC stabilizes as time goes by. Secondly, we inves-
tigate the effects of network density on network-wide performance. Third-
ly, we investigate the effects of α and ε on network-wide performance.

Stabilization of Global Q-value. Figure 7.13 shows that the instan-
taneous global Q-value for the exploitation data channel for SMAC and
eSMAC increases and becomes stable as time goes by in a medium densi-
ty network. In other words, the agents attain a joint action that provides
better network-wide performance. The PUL is Lci=0.5 with [0.5,0.5,0.5]
across the K=3 data channels, and PER is PEci=0 with [0,0,0]. The SMAC
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and eSMAC parameters are α=0.2 and ε=0.2. With U=6 and Qmax=20, the
maximum global Q-value is 120. Although Lci=0.5 for all data channels,
due to the Poisson traffic model, the data channels have different levels of
PUL at a particular time instant. The SMAC achieves slightly higher glob-
al Q-value compared to eSMAC because it can explore the data channels
at any time to discover a better data channel; while in eSMAC, an agent
can only explore if none of its neighbour agents are doing so.

Figure 7.13: Global Q-value for the exploitation data channel for SMAC
and eSMAC in a medium density network. PUL Lci=0.5. PER PEci=0.

Effects of Network Density on Network-wide Performance. Figure
7.14 shows the mean throughput for each agent against various levels of
mean PUL for RMAC, SMAC and eSMAC in low, medium, and high den-
sity networks. The PER is PEci=0 across the K=3 data channels. The SMAC
and eSMAC parameters are α=0.2 and ε=0.2. The eSMAC achieves the
highest amount of throughput, followed by SMAC and RMAC in all type-
s of network densities; and the throughput enhancement offered by the
eSMAC and SMAC compared to RMAC reduces as the network density
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increases. At PUL Lci=0.5, the eSMAC outperforms the RMAC by 38%,
14% and 1% in low, medium and high density networks respectively. The
throughput achieved by eSMAC is slightly higher than SMAC in all cas-
es. Figure 7.15 shows the equivalent graph with PER as ordinate and PUL
is Lci=0.5 with [0.5,0.5,0.5], and a similar trend is observed. In short, in a
high density network or as d→∞, the throughput enhancement achieved
by SMAC and eSMAC approaches 0. We believe that this happens in most
intelligence methods due to the high contention level.

Figure 7.14: The mean throughput for each agent against mean PUL for
RMAC, SMAC and eSMAC in low, medium and high density networks.
PER PEci=0.

Figure 7.16 shows the mean number of exploitation channel switchings
for each agent against various levels of mean PUL for SMAC and eSMAC
in low, medium and high density networks. The PER is PEci=0. The SMAC
and eSMAC parameters are α=0.2 and ε=0.2. The eSMAC achieves sig-
nificantly lower number of channel switchings, hence it provides higher
stability. At PUL Lci=0.5, the number of channel switchings in eSMAC
is 22%, 20% and 44% of that in SMAC in low, medium and high density
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Figure 7.15: The mean throughput for each agent against mean PER for
RMAC, SMAC and eSMAC in low, medium and high density networks.
PUL Lci=0.5.

networks respectively. Generally speaking, an agent switches its exploita-
tion data channel because the difference between the Q-values among the
data channels is greater than the threshold β=1, and the agent exploits a
better data channel. There are two reasons an agent does not switch its
data channel. Firstly, all the data channels provide equal levels of network
performance, hence an agent exploits the same data channel such as the
case at Lci=0.6 in low density network for eSMAC. Secondly, all the da-
ta channels provide very good or very poor network performance, and
hence the Q-values approach the Q-value’s limit, specifically, Qt(a)→Qmax

or Qt(a)→0 for ∀a∈A. For instance, in high density networks, all the K=3
data channels have high contention level and thus the number of chan-
nel switchings is low compared to the medium density networks. Due to
the aforementioned reasons, in situation of high density or high PUL, the
variance in the number of channel switchings becomes high. Figure 7.17
shows the equivalent graph with PER as ordinate and PUL Lci=0.5 with
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[0.5,0.5,0.5].

Figure 7.16: The mean number of channel switchings of the exploitation
data channel for each agent against mean PUL for SMAC and eSMAC in
low, medium and high density networks. PER PEci=0.

Effects of α and ε on Network-wide Performance. The effects of α
and ε on the throughput performance are shown first, followed by their
effects on the number of channel switchings.

Figure 7.18 shows the effects of α on the mean throughput for each a-
gent for various levels of mean PUL for SMAC and eSMAC in medium
density networks. The PER is PEci=0. The effects of α are insignificant on
the mean throughput for each agent. Figure 7.19 shows the equivalent
graph with PER as ordinate and PUL Lci=0.5 with [0.5,0.5,0.5]. A simi-
lar experiment is performed to investigate the effects of ε on the mean
throughput, with results shown with respect to PUL in Figures 7.20 and
with respect to PER in Figure 7.21. The effects of ε on the mean throughput
are insignificant.
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Figure 7.17: The mean number of channel switchings of the exploitation
data channel for each agent against mean PER for SMAC and eSMAC in
low, medium and high density networks. PUL Lci=0.5.

Figure 7.18: The mean throughput for each agent against mean PUL for
SMAC and eSMAC with different α values in medium density networks.
PER PEci=0. ε=0.2.
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Figure 7.19: The mean throughput for each agent against mean PER for
SMAC and eSMAC with different α values in medium density networks.
PUL Lci=0.5. ε=0.2.

Figure 7.20: The mean throughput for each agent against mean PUL for
SMAC and eSMAC with different ε values in medium density networks.
PER PEci=0. α=0.2.
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Figure 7.21: The mean throughput for each agent against mean PER for
SMAC and eSMAC with different ε values in medium density networks.
PUL Lci=0.5. α=0.2.

Figure 7.22 shows the effects of α on the mean number of channel
switchings of the exploitation data channel for each agent against various
levels of mean PUL for SMAC and eSMAC in medium density network-
s. The PER is PEci=0. The number of channel switchings increases with
α for all the cases. In short, lower values of α provide higher stability;
however, in eSMAC, Figure 7.18 shows that throughput performance is
better with α=0.2. For instance, there is throughput enhancement of 18%
for α=0.2 compared to α=0.05 at Lci=0.1, but it is just 5.4% at Lci=0.5. Fig-
ure 7.23 shows the equivalent graph with PER as ordinate and PUL Lci=0.5
with [0.5,0.5,0.5]. A similar experiment is performed to investigate the ef-
fects of ε on the mean number of channel switchings, with results shown
with respect to PUL in Figures 7.24 and with respect to PER in Figure 7.25,
which share similar trends to Figure 7.22 and 7.23 respectively.
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Figure 7.22: The mean number of channel switchings of the exploitation
data channel for each agent against mean PUL for SMAC and eSMAC with
different α values in medium density networks. PER PEci=0. ε=0.2.

Figure 7.23: The mean number of channel switchings of the exploitation
data channel for each agent against mean PER for SMAC and eSMAC with
different α values in medium density networks. PUL Lci=0.5. ε=0.2.
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Figure 7.24: The mean number of channel switchings of the exploitation
data channel for each agent against mean PUL for SMAC and eSMAC with
different ε values in medium density networks. PER PEci = 0. α=0.2.

Figure 7.25: The mean number of channel switchings of the exploitation
data channel for each agent against mean PER for SMAC and eSMAC with
different ε values in medium density networks. PUL Lci = 0.5. α=0.2.
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7.4.5.4 Summary of Research Outcomes

The research outcomes from the investigation on the SARL approaches,
including SMAC and eSMAC, in order to implement the MACC model
in scenarios with identical channel condition using the performance met-
rics of network-wide throughput and number of channel switchings are
summarized as follows:

• The global Q-value for the exploitation data channel for SMAC and
eSMAC increases and becomes stable as time goes by.

• The eSMAC approach achieves the highest amount of throughput,
followed by SMAC and RMAC in most of the cases with respect to
PUL and PER in low, medium and high density networks.

• In high density networks or d→∞, the throughput enhancement
achieved by SMAC and eSMAC approaches 0.

• The number of channel switchings in eSMAC is significantly lower
than that in SMAC.

• In SMAC, lower values of α and ε provide higher throughput and
lower number of channel switchings (or better stability).

• In eSMAC, the values of α provide approximately similar level of
throughput, however, the throughput decreases if α<0.2. Lower val-
ues of α provide lower number of channel switchings. As for ε, lower
values provide lower number of channel switchings while achieving
approximately similar level of throughput.

7.4.6 Scenario with non-Identical Channel Condition

This section presents cognitive MAC protocols with three different kinds
of DCS implementations, namely RMAC, SMAC and MMAC. The SMAC
is based on the SARL approach, while the MMAC is based on the MARL
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approach. It newly implements the MARL approach, which is a combina-
tion of both SARL and the PP mechanism, to further enhance the network-
wide performance. The main focus is the performance enhancement pro-
vided by the SARL and MARL approaches.

7.4.6.1 Assumptions

Section 7.1.4 shows assumptions applicable to this section, and the addi-
tional assumptions are as follows:

• Non-identical channel condition (or PER) at all the agents for a par-
ticular data channel such that Pi=[Pi,1,. . .,Pi,K]. The differences be-
tween identical and non-identical channel condition at all the agents
are discussed in Section 7.4.1.1.

• Single collision domain. This means that interference link exists a-
mong all the agents.

7.4.6.2 Contributions

The focus in this section is the application of SMAC and MMAC approach-
es in scenario with non-identical channel condition. The contributions of
this section are as follows:

• To show that the SMAC and MMAC approaches achieve a joint ac-
tion that provides better network-wide performance in DCS.

• To show that the SMAC and MMAC approaches achieve high levels
of fairness index.

• To show the effects of network density and various essential pa-
rameters in SMAC and MMAC approaches on network-wide per-
formance.
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7.4.6.3 Simulation Experiments, Results, and Discussions

The objectives of this investigation are presented in Section 7.4.4.2.

Simulation Setup and Parameters The simulation scenario is discussed
in Section 7.1.6 and the assumptions are discussed in Section 7.4.6.1. Fig-
ure 7.2 shows the scenario and its graphical representation is shown in
Figure 7.3. The procedure of the cognitive MAC is shown in Figure 7.12.
General simulation parameters are shown in Table 7.5, and additional sim-
ulation parameters are shown in Table 7.7.

Table 7.7: Notations and Default Parameter Settings in Simulation for In-
vestigation into Scenarios with non-Identical Channel Conditions

Category Symbol Details Values
Initial
ization

PEci PER of each available data
channel at agent i

[0,0.3] Default:
0.15

SU tCTRL,SU CTRL control message packet
duration

272µs

SMAC tD,SMAC Epoch duration 187.14ms
MMAC tD,MMAC 249.52ms

Some of the important explanations on Table 7.7 are shown below:

Non-Identical Channel Quality (or PER) at all the Agents. Each a-
gent observes different levels of PER across different data channels with
the default average value of PER across the K data channels being 0.15 fol-
lowing a uniform distribution. Upon receiving a packet, an SU discards
the packet with the PER probability.

Secondary User. For SU, the CTRL control message is a small packet
with tCTRL,SU duration. It contains information related to channel switch-
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ing and payoff message. In comparison with Section 7.4.5.3, we consider
the CTRL control message does not contain other broadcast information.

SMAC and MMAC. For SMAC, an epoch duration is 30 data trans-
mission cycles, or tD=tD,SMAC=30×(tRTS+tCTS+tDATA,SU+tACK+3tSIFS).
For MMAC, an epoch duration is 40 data transmission cycles, or
tD=tD,MMAC= 40×(tRTS+tCTS+tDATA,SU+tACK+3tSIFS). The duration
tD,MMAC is 25% longer than the tD,SMAC to make a fair comparison whilst
allowing payoff message exchange. This is because during each explo-
ration in MMAC, an agent waits and receives payoff messages from its
neighbour agents. The value of tD,SMAC and tD,MMAC were chosen empir-
ically to enhance network-wide performance.

Performance Metrics. The performance metrics are discussed in Sec-
tion 7.4.4.2. An additional performance metric, namely Jain’s fairness in-
dex, is applied to evaluate the fairness among the throughput achieved by
each agent in the entire DCRN. Denote the throughput achieved by agent
i by xi, the Jain’s fairness index [95] is as follows:

f(x1, x2, . . . , xu) =

(
u∑
i=1

xi)
2

(u
u∑
i=1

x2
i )

(7.13)

where 0≤f (x1,x2,. . .,xu)≤1, and f (x1,x2,. . .,xu)=1 when all agents achieve
the same level of throughput.

Simulation Results and Discussions Firstly, we show that the global
Q-value of SMAC and MMAC stabilizes as time goes by. Secondly, we
investigate the effects of network density on network-wide performance.
Thirdly, we investigate the fairness index of SMAC and MMAC. Fourthly,
we investigate the effects of α and ε on network-wide performance.
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Stabilization of Global Q-value. Figure 7.26 shows that the instan-
taneous global Q-value for the exploitation data channel for SMAC and
MMAC increases and becomes stable as time goes by in a medium density
network. In other words, the agents attain a joint action that provides bet-
ter network-wide performance. The PUL is L=0.5 with [0.5,0.5,0.5] across
the K=3 data channels, and mean PER at agent i is PEi,cj=0.15 for every
data channel. The SMAC and MMAC parameters are α=0.2 and ε=0.2.
With U=6 and Qmax=20, the maximum global Q-value is 120. Although
Lcj=0.5 for all data channels, due to the Poisson traffic model, the data
channels have different levels of PUL at any particular time instant. Al-
though MMAC aims to increase the global Q-value; while SMAC aims to
increase the local Q-value, SMAC achieves slightly higher global Q-value
compared to MMAC. This is because tD,MMAC>tD,SMAC or, in other word-
s, MMAC is less responsive to the operating environment compared to
SMAC.

Figure 7.26: Global Q-value for the exploitation data channel for SMAC
and MMAC in a medium density network. PUL Lcj=0.5. The mean PER
PEi,cj=0.15.
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Effects of Network Density on Network-wide Performance. Figure
7.27 shows the mean throughput for each agent against various levels of
mean PUL for RMAC, SMAC, and MMAC in low, medium and high den-
sity networks. The mean PER at agent i is PEi,cj=0.15 for every data channel.
The SMAC and MMAC parameters are α=0.2 and ε=0.2. The SMAC and
MMAC achieve approximately similar throughput, followed by RMAC in
all types of network densities; and the throughput enhancement offered
by the MMAC and SMAC compared to RMAC reduces as the network
density increases. At PUL Lcj=0.5, the MMAC outperforms the RMAC
by 1.77 times, 1.5 times, and 1.2 times in low, medium and high densi-
ty networks respectively. Figure 7.28 shows the equivalent graph with
PER as ordinate and PUL is Lcj=0.5 with [0.5,0.5,0.5], and similar trend is
observed. In short, in a high density network or d→∞, the throughput
enhancement achieved by SMAC and MMAC approaches 0. We believe
that this happens in most intelligence methods due to the high contention
level.

Figure 7.27: The mean throughput for each agent against mean PUL for
RMAC, SMAC and MMAC in low, medium and high density networks.
The mean PER PEi,cj=0.15.
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Figure 7.28: The mean throughput for each agent against mean PER for
RMAC, SMAC and MMAC in low, medium and high density networks.
See legend in Figure 7.27. PUL Lcj=0.5.

Figure 7.29 shows the mean number of channel switchings of the ex-
ploitation data channel for each agent against various levels of mean PUL
for SMAC and MMAC in low, medium and high density networks. The
mean PER at agent i is PEi,cj=0.15 for every data channel. The SMAC and M-
MAC parameters are α=0.2 and ε=0.2. The MMAC achieves a significantly
lower number of channel switchings, hence it provides higher stability. At
PUL Lcj=0.5, the number of channel switchings in SMAC is 10 times, 3.6
times and 2 times of that in MMAC in low, medium and high density net-
works respectively. Although the duration tD,MMAC is only 25% longer
than the tD,SMAC , which reduces the number of channel switchings due to
longer epoch duration, the MMAC provides a significantly lower number
of channel switchings. Generally speaking, an agent switches its exploita-
tion data channel because the difference between the Q-values among the
data channels is greater than the threshold β=1, and the agent exploits a
better data channel. There are two reasons an agent does not switch it-
s data channel as explained in Section 7.4.6.3. Both SMAC and MMAC
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have lower numbers of channel switchings as the PUL increases because
Qt(a)→0 for all data channels. The MMAC also increases network stabil-
ity [64] through reducing the number of channel switching. Figure 7.30
shows the equivalent graph with PER as ordinate and PUL Lcj=0.5 with
[0.5,0.5,0.5].

Figure 7.29: The mean number of channel switchings of the exploitation
data channel for each agent against mean PUL for SMAC and MMAC in
low, medium and high density networks. The mean PER PEi,cj=0.15.

Fairness Index of SMAC and MMAC. With respect to PUL in Figure
7.31 and PER in Figure 7.32, RMAC achieves the highest level of fairness
index, while SMAC and MMAC achieve approximately similar high levels
of fairness index. Figure ? shows the enlarged version of Figure 7.31; while
Figure ? shows the enlarged version of Figure 7.32. In Figure 7.31, the
mean PER at agent i is PEi,cj=0.15 for every data channel; while in Figure
7.32, PUL is Lcj=0.5 with [0.5,0.5,0.5]. In RMAC, all agents choose their
respective data channels randomly, hence the Jain’s fairness index is close
to 1. For SMAC and MMAC, some agents may choose better data channels
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Figure 7.30: The mean number of channel switchings of the exploitation
data channel for each agent against mean PER for SMAC and MMAC in
low, medium and high density networks. PUL Lcj=0.5.

compared to others, hence the Jain’s fairness index is lower than that in
RMAC.

Effects of α and ε on Network-wide Performance. Again, similar-
ly to the findings in Section 7.4.5.3 we find that the effects of α and ε on
throughput are insignificant in most of the cases, and their graphs are not
provided. Figure 7.35 shows the effects of α on the mean number of chan-
nel switchings of the exploitation data channel for each agent against var-
ious levels of mean PUL for SMAC and MMAC in medium density net-
works. The mean PER at agent i is PEi,cj=0.15 for every data channel. The
number of channel switchings increases with α for all cases. In short, low-
er value of α provides higher stability. Figure 7.36 shows the equivalent
graph with PER as ordinate and PUL Lcj=0.5 with [0.5,0.5,0.5]. A similar
experiment is performed to investigate the effects of ε on the mean num-
ber of channel switchings, and the results are shown in Figures 7.37 and
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Figure 7.31: The mean Jain’s Fairness Index against mean PUL for RMAC,
SMAC and MMAC in low, medium and high density networks. The mean
PER PEi,cj=0.15.

Figure 7.32: The mean Jain’s Fairness Index against mean PER for RMA-
C, SMAC and MMAC in low, medium and high density networks. PUL
Lcj=0.5.
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Figure 7.33: Enlarged version of Figure 7.31

Figure 7.34: Enlarged version of Figure 7.32
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7.38, which shares similar trends to Figure 7.35 and 7.36 respectively.

Figure 7.35: The mean number of channel switchings of the exploitation
data channel for each agent against mean PUL for SMAC and MMAC with
different α values in medium density networks. The mean PER PEi,cj=0.15.
ε=0.2.

7.4.6.4 Summary of Research Outcomes

The research outcomes from the investigation on the SARL and MAR-
L approaches, including SMAC and MMAC, in order to implement the
MACC model in scenarios with non-identical channel condition using the
performance metrics of network-wide throughput and number of chan-
nel switchings are summarized in this section. This section assumes non-
identical channel condition (or PER) at all the agents for a particular data
channel such that Pi=[Pi,1,. . .,Pi,K]. This section also assumes a single col-
lision domain. The research outcomes are summarized as follows:

• The global Q-value for the exploitation data channel for SMAC and
MMAC increases and becomes stable as time goes by.
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Figure 7.36: The mean number of channel switchings of the exploitation
data channel for each agent against mean PER for SMAC and MMAC with
different α values in medium density networks. PUL Lcj=0.5. ε=0.2

Figure 7.37: The mean number of channel switchings of the exploitation
data channel for each agent against mean PUL for SMAC and MMAC with
different ε values in medium density networks. The mean PER PEi,cj=0.15.
α=0.2.
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Figure 7.38: The mean number of channel switchings of the exploitation
data channel for each agent against mean PER for SMAC and MMAC with
different ε values in medium density networks. PUL Lcj=0.5. α=0.2.

• The SMAC and MMAC approaches achieve approximately similar
level of throughput, followed by RMAC in most of the cases in low,
medium and high density networks.

• In high density networks as d→∞, the throughput enhancement
achieved by SMAC and MMAC approaches 0.

• The number of channel switchings in MMAC is significantly lower
than that in SMAC.

• The SMAC and MMAC approaches achieve an approximately simi-
lar high level of Jain’s fairness index.

• Lower value of α and ε provides higher throughput and lower num-
ber of channel switchings (or better stability) in SMAC and MMAC.

The MARL approach considers network performance at neighbour agents
through the exchange of payoff messages in order to maximize the glob-
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al payoff. This improves the network-wide performance, in terms of
throughput and number of channel switchings, at an agent and its neigh-
bour agents.

7.5 Chapter Summary

In this chapter, the SARL approaches, namely, SMAC and eSMAC, as well
as the MARL approach, namely, MMAC, are applied with respect to DCS
to implement multi-agent cognition cycle (or node-level cognition cycle)
in order to achieve context awareness and intelligence in static distribut-
ed CR networks. The MARL approach encompasses the SARL approach
and the PP mechanism. The SMAC and eSMAC approaches differ in the
exploration procedure: there is only a single agent undergoes exploration
among neighbourhood agents in eSMAC in order to improve stability or
to reduce number of channel switchings. The Random approach, which
chooses an available data channel for data transmission in a uniformly
distributed random manner without learning, serves as a baseline. This
chapter considers channel heterogeneity and static networks; while previ-
ous work considers channel homogeneity and static networks. The major
investigations were: 1) Payoff Propagation (PP) mechanism; 2) Scenario
with identical channel condition (or PER) at all the agents for a particu-
lar data channel such that P=[P1,. . .,PK]; and 3) Scenario with non-identical
channel condition (or PER) at all the agents for a particular data channel
such that P=[Pi,1,. . .,Pi,K].

The PP mechanism provides a means of communication for the tradi-
tional SARL approach, which is the local learning mechanism. The extend-
ed PP mechanism is shown to converge to an efficient and optimal joint
action. The work here has shown that the payoff value does not increase
without bound in a cyclic topology. Lastly fast convergence is possible
through the adjustment of the exploration probability.

Next we investigated the network performance offered by the SARL
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approaches in scenario with identical channel condition (or PER) at all the
agents for a particular data channel such that P=[P1,. . .,PK]. Two SARL
approaches, namely SMAC and eSMAC, were applied. It was shown that
the global Q-value for the exploitation data channel for SMAC and eSMAC
increases and becomes stable as time goes by. The eSMAC achieves the
highest amount of throughput, followed by SMAC and RMAC in most
of the cases in low, medium and high density networks. In high density
networks or as d→∞, the throughput enhancement achieved by SMAC
and eSMAC approaches 0. The number of channel switchings in eSMAC
is significantly lower than that in SMAC, hence eSMAC is more stable. In
general, lower values of α and ε provides better throughput and stability.

Lastly we investigated network performance offered by the SARL and
MARL approaches in scenario with non-identical channel condition (or
PER) at the agents for a particular data channel such that Pi=[Pi,1,. . .,Pi,K].
The SARL and MARL approaches were applied using SMAC and MMAC
protocols which showed that the Q-value for the exploitation data channel
increases and becomes stable. The SMAC and MMAC achieve approxi-
mately similar level of throughput, followed by RMAC in most of the cas-
es in low, medium and high density networks. In high density networks
or as d→∞, the throughput enhancement achieved by SMAC and MMAC
approaches 0. The number of channel switchings in MMAC is significant-
ly lower than that in SMAC, hence MMAC is more stable. Both SMAC
and MMAC achieve approximately similar high level of Jain’s fairness in-
dex. In general, lower values of α and ε provides better throughput and
stability.



Chapter 8

Applications of the Cognition
Cycle

This chapter presents the RL models, both single-agent and multi-agent
approaches, for the applications proposed in C2net (see Chapter 4 on page
43). By providing discussions on the proposed RL models, we show how
the SARL and MARL approaches presented in Chapters 6 and 7 respec-
tively can be applied to design various applications in CR networks. With
that, the foundation for futher research on the RL approach in CR net-
works is established.

8.1 Introduction

The Cognition Cycle (CC) (see Section 2.3 on page 14) is the key element of
CR to provide context awareness and intelligence so that each SU is able
to observe and carry out an optimal or near-optimal action in its operating
environment for network performance enhancement. Context awareness
enables an SU to sense and observe its complex and dynamic operating
environment. Intelligence enables an SU to learn knowledge, which can
be acquired through observing the consequences of its prior action, about
its operating environment so that it carries out the right action at the right
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time to approximate and achieve optimum network performance in an
efficient manner without adhering to a strict and static predefined set of
policies. The CC can be applied in various applications in CR networks
such as DCS, topology management, congestion control, and scheduling.
The RL models for the cross-layer designs (see Section 4.5 on page 54)
proposed in C2net are presented in this chapter to warrant further research
on RL in CR networks.

8.2 Chapter Goal

Using RL, both single-agent and multi-agent approaches, this chapter ad-
dresses the following research question: How should the SARL and MAR-
L approaches be used to model the cross-layer designs proposed in C2net?

8.3 Related Work

There are two types of CC: SACC for centralized CR networks, and MACC
for distributed CR networks. Chapter 6 presents SACC, while Chapter 7
presents MACC. The SACC model, which is embedded in a fixed network
infrastructure, such as a base station, makes decision in a multilateral and
cooperative manner on an optimal or near-optimal action for the entire
network. The MACC model, which is embedded in each SU, makes deci-
sions in a cooperative or non-cooperative, and distributed manner as part
of the efficient and optimal joint action for the entire network.

8.4 RL Models for Cross-Layer Designs in C2net

Chapter 4 in Section 4.5 on page 54 introduced various cross-layer design-
s in CR networks to realize the C2net architecture. C2net is a cross-layer
Quality of Service (QoS) architecture proposed in this thesis based on the
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Next Steps in Signaling framework [42], which is an end-to-end QoS sig-
naling protocol, for the Cognitive Wireless Ad-hoc Networks (CWANs)
(see Section 2.2.5 on page 13). A CWAN is a multihop self-organized and
dynamic network comprised of static and mobile SUs. Three cross-layer
designs are proposed, namely joint DCS and topology management, joint D-
CS and congestion control, and joint scheduling and channel condition measure-
ment. The applications are formulated using the RL models of SACC and
MACC in order to achieve their objectives. Since CWANs are distributed
CR networks, the MACC model is chosen, although it could be applied as
SACC in centralized CR networks. For each cross-layer design, the state,
action and reward representation for the RL model are defined.

8.4.1 Joint Dynamic Channel Selection and Topology Man-

agement

8.4.1.1 Overview of the Joint Design

This section describes in detail the joint dynamic channel selection and
topology management introduced in Section 4.5.1 on page 56.

Objectives. This joint design provides the best strategy for channel s-
election from the available licensed data channels for data transmission
among the SUs given that the objective is to minimise the end-to-end da-
ta packet loss rate and enhance throughput performance for stable QoS
provisioning in the presence of nodal mobility.

Descriptions of Operation. There are two levels of heterogeneity: nodal
and channel level. In other words, the nodes and channels have a wide
range of characteristics that affect the network performance in a complex
manner.

For stable, reliable and robust transmissions, some SUs in the network
are selected as Dominating Set (DS) SUs to form a backbone topology that
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connects the entire network to the base station; while non-DS SUs establish
links with the DS SUs. The DS SUs have the following heterogeneity nodal
characteristics compared to their neighbour SUs:

• Higher stability and lower mobility.

• Higher residual energy level.

• Better hardware capability.

• Higher willingness in relaying data packets.

• Maintaining connectivity of the backbone topology.

The heterogeneous channels are characterized by their PUL, PER, and
transmission range. For instance, a data channel with low PUL is un-
favourable if it has high PER. Due to the importance of the DS SUs, they
are given higher authority in channel selection. Thus, data channels that
provide higher throughput or with more white spaces are allocated to the
DS SUs. Non-DS SUs choose the remaining available data channels. As
the SUs and channels are dynamic in nature, all observations and infor-
mation have to be maintained and updated continuously. In short, both
DS SUs and channels must possess the favourable characteristics at most
of the times. This joint design is comprised of two components: DCS, and
topology management consisting of backbone topology construction and
maintenance; hence two distinguishing RL models are necessary.

8.4.1.2 Reinforcement Learning Model

In DCS, the RL model follows Table 7.4 on page 200. In topology manage-
ment, a DS SU i chooses a next-hop DS SU ni,j among its neighbour SUs j.
The selection criteria includes the following two considerations:

• The LET (see Section 4.5.1.2 on page 56 for explanation) of the link
between the SU i and SU j, li,j .
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• The capability of SU j to help the SU i to relay its data packets.

The RL model for the next-hop DS SU selection using the MACC approach
is shown in Table 8.1. The state s∈S includes the set of IDs of the base
stations that SU i is sending its data packets to; hence DS SU i may choose
a different next-hop DS SU ni,j for different base stations. The action a∈A is
to choose a neighbour SU j, with J as the cardinality of the SU i’s neighbour
SUs. For every successful data packet transmission, there is a reward with
positive constant value of +RW, otherwise there is a cost with negative
constant value of -CT. The Q-values for all neighbour SUs j are updated
from time to time during exploration and exploitation using (7.11). SUs
that are relatively selfish or incapable of relaying data packets have low
levels of Q-value, and thus are not chosen as the next-hop DS SU.

Let the link LET li,j be upper bounded by L. For stability, rather than
using (7.12), the next-hop DS SU ni,j , which has the best possible capability
to forward data packets at longer LET, is chosen by DS SU i using function
f :

ni,j = argmax
a∈A

f(Qt(st, a)×max(L, li,j,t)) (8.1)

Table 8.1: RL Model (MACC) at Each SU for Topology Management

Next-hop DS SU Selection Model
Description Representation

State Set of base stations. S={s=I1,I2,. . . ,IB}
Action Set of node i’s neighbour nodes j. A={a=1,2,. . . ,J}
Reward Constant value to be reward-

ed/incurred for success-
ful/unsuccessful data packet
transmission.

rt+1(st,at) =+RW, if successful

−CT, if otherwise
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8.4.2 Joint Dynamic Channel Selection and Congestion

Control

8.4.2.1 Overview of the Joint Design

This section describes in detail the joint dynamic channel selection and
congestion control introduced in Section 4.5.2 on page 59.

Objectives and Descriptions of Operation. The objective of this join-
t design is to allocate the available data channels according to the traffic
load at each SU given that each data channel has different levels of PUL
and PER. In other words, a data channel with lower PUL and PER is allo-
cated to an SU with higher traffic load, and vice-versa in order to achieve
load balancing among the data channels as a solution to congestion avoid-
ance. This solves congestion locally at the data link layer, rather than at
the transport layer.

8.4.2.2 Reinforcement Learning Model

The RL model for the congestion control mechanism using the MACC ap-
proach is shown in Table 8.2. The purpose of the congestion control mech-
anism is to ameliorate the packet dropping rate; hence, the RL model iden-
tifies which among the possible channel switching options induce pack-
et dropping. Subsequently, the SU refrains from executing these channel
switches.

The state includes four-tuple information that is important for the SU
to make congestion control decisions. The parameters b, pd, bw and bs are
quantized. For instance, for b, the following applies: bi<bi+1 with Nb be-
ing the maximum level of the parameter. K is the number of available data
channels. In general, a data channel with low PUL and PER has a high
amount of good white space that improves the throughput and reduces the
data packet loss rate. The state keeps track of the amount of required band-
width, the current data packet dropping probability, the amount of good
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white space (or bandwidth) in the current data channel, and the amount
of good white space across all the data channels. The action A is to choose
a data channel that SU i could switch to without jeopardising its through-
put performance. Based on the information in the current state, an SU
makes a channel switching decision to change from a data channel having
bandwidth bw to another data channel having bandwidth bs. The cost is
based on the level of unfulfilled bandwidth requirement such that a good
data channel that fulfills the bandwidth requirement receives a cost of 0;
otherwise there is a cost of negative value (or Bs,k−b). The Q-values for
all the data channels are updated from time to time during exploration
and exploitation using (7.11). An optimal joint action approximated by
the MACC approach using (7.12) helps all the SUs in the network to fulfill
their respective required bandwidth.

To ensure that the data packet dropping probability is less than a
threshold, pd≤pd,th, the state-action (s,a) pairs that result in pd>pd,th are
marked as inappropriate, hence the action a is not taken whenever the s-
tate s is encountered.

8.4.3 Joint Scheduling and Channel Condition Measure-

ment

8.4.3.1 Overview of the Joint Design

This section describes in detail the joint scheduling and channel condition
measurement introduced in Section 4.5.3 on page 60.

Objectives and Descriptions of Operation. The objective of this joint
design is to ameliorate the effects of head of queue blocking, where the
current data packet transmission blocks the next data packets in the queue.
This may result in data packet expiration and subsequently many data
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Table 8.2: RL Model (MACC) at Each SU for Congestion Control

Congestion Control Model
Description Representation

State State S has four tuple infor-
mation: 1) amount of required
bandwidth, b; 2) current pack-
et dropping probability, pd; 3)
amount of good white spaces in
the current channel, bw; and 4)
amount of good white spaces in
all the available data channels,
Bs.

S={s=(b,pd,bw,bs)},
b={b1,b2,. . . ,bNb

},
pd={pd,1,pd,2,. . . ,pd,Nd

},
bw={bw,1,bw,2,. . . ,bw,Nw},
Bs=(Bs,1,Bs,2,. . . ,Bs,K),
Bs,k=(bs,1,bs,2,. . . ,bs,Nb

)

Action Available data channels for data
transmission.

A={a=1,2,. . . ,K}

Cost Level of unfulfilled bandwidth
requirement.

rt+1(st,at) =
Bs,k − b

b
, if b−Bs,k ≥ 0

0, if otherwise
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packets are dropped. Each available data channel for data transmission
has different levels of PUL and PER that may lead to several data packet
retransmissions.

8.4.3.2 Reinforcement Learning Model

The RL model for the scheduling mechanism using the MACC approach is
shown in Table 8.3, and it is discussed briefly because of similarities to the
previous discussions. The RL model considers the priority and deadline
of the high-priority data packets, as well as the probability of successful
data packet transmission from SU i to SU j using channel k, P(i,j)

s,k for each
neighbour SU to determine the next-hop SU for transmission to maximize
successful data packet transmission in the shortest possible time for QoS
provisioning. Based on the current state, an SU makes a decision on the
next-hop SU to transmit data packets in order to maximize its rewards
(or revenue). The SU is positively rewarded only if it has successfully
transmitted a data packet to its next-hop SU, else the SU is penalized with
a cost of Cs. The Q-values for all the data channels are updated from time
to time during exploration and exploitation using (7.11). An efficient and
optimal joint action provided by the MACC approach using (7.12) helps
all the SUs to maximize their rewards.
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Table 8.3: RL Model (MACC) at Each SU for Scheduling

Next Hop for Data Packet Transmission Selection Model
Description Representation

State State S has three tuple infor-
mation: 1) probability of suc-
cessful data packet transmis-
sion P(i,j)

s ; 2) deadline of the
data packet d(i,j); and 3) pri-
ority of the data packet p(i,j).

S={s=(P(i,j)
s ,d(i,j)),p(i,j))},

P(i,j)
s =(P(i,j)

s,1 ,P
(i,j)
s,2 ,. . . ,P(i,j)

s,K ),
P(i,j)
s,k =(p(i,j)

s,1 ,p
(i,j)
s,2 ,. . . ,p(i,j)

s,Np
),

d(i,j)=(d(i,j)
1 ,d(i,j)

2 ,. . . ,d(i,j)
Nd

),
p(i,j)=(p(i,j)

1 ,p(i,j)
2 ,. . . ,p(i,j)

Np
)

Action Set of node i’s neighbour n-
odes j.

A={a=1,2,. . . ,J}

Reward The reward for sending data
packets with different dead-
lines rd, and levels of priori-
ties rp. There are ns success-
ful data packet transmission
within a decision epoch. Da-
ta packet with higher priority
and closer deadline has high-
er reward. Cost Cs is incurred
for each failed data packet
transmission.

rt+1(st,at)=
∑ns

i=1(rd×rp)-Cs,
rd={rd,1,rd,2,. . . ,rd,Nd

},
rp={rp,1,rp,2,. . . ,rp,Np}
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8.5 Chapter Summary

In this chapter, SARL and MARL approaches were proposed to implement
the conceptual cognition cycle in CR networks for various novel cross-
layer applications. The purpose is to warrant further research on the SAR-
L and MARL approaches in CR networks. The MACC models for three
joint designs in C2net are proposed through the definitions of state, action
and reward representations in RL. The designs are joint DCS and topology
management, joint DCS and congestion control, and joint scheduling and
channel condition measurement.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

Cognitive Radio is a next-generation wireless communication system that
enables secondary users to exploit underutilized licensed spectrum owned
by the primary users to improve the utilization of the overall radio spec-
trum. The PUs are oblivious to the presence of the SUs. The concept of
cognition cycle is the key element of CR to achieving context awareness
and intelligence. Context awareness enables an SU to sense and observe
its complex and dynamic operating environment. Intelligence enables an
SU to learn knowledge (which can be acquired through observing the con-
sequences of its prior action) about its operating environment so that it car-
ries out the right action at the right time to achieve an approximation of
the optimum network performance in an efficient manner without adher-
ing to a strict and static predefined set of policies. The CC can be applied
in various applications in CR networks such as dynamic channel selection,
topology management, congestion control and scheduling. This thesis ad-
vocates the application of reinforcement learning, both single-agent and
multi-agent approaches, to implement the conceptual CC. There are two
levels of CC, namely single-agent or network-level cognition cycle for cen-
tralized CR networks; and multi-agent or node-level cognition cycle for
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distributed CR networks.

Cognitive Radio is a new emerging research field that is lacking investi-
gation into the data link layer for proper operation at both control and data
transceivers. This thesis investigates the data link layer without adopting
a number of conventional assumptions in this research field. It considers
channel heterogeneity, as well as both static and mobile networks; while
previous work assumes channel homogeneity and static networks. This
thesis presents technology leverage from existing multi-channel protocol-
s to cognitive MAC protocols, a cross-layer QoS architecture called C2net,
and the RL approaches, including SARL and MARL approaches to achieve
context awareness and intelligence in static and mobile, centralized and
distributed CR networks.

This thesis has achieved its overall goal. With respect to DCS, it pro-
vides a detailed understanding of the RL approach through analysis and
simulation. The five research questions given in Section 1.2 on page 5 are
answered below:

1. What are the possible methods of technology leverage from multi-
channel MAC protocols to cognitive MAC protocols?
This thesis reviews various approaches in multi-channel MAC pro-
tocols, their merits and demerits. The approaches are common con-
trol channel, split phase, common hopping, and default hopping
sequence. Based on the belief that cognitive MAC protocols for
distributed CR networks that apply similar approaches to multi-
channel MAC protocols inherit their characteristics, the approach
has to be chosen carefully based on its merits, demerits and hard-
ware requirements. However demerit factors remain as open issues
in distributed CR networks. Functionalities that cognitive MAC pro-
tocols have to provide, and how these functions can be incorporated
into the multichannel MAC protocols are also presented.

2. What is an appropriate QoS architecture for CR networks?
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This thesis presents a cross-layer QoS architecture called C2net
for cognitive wireless ad-hoc networks, which is a multihop self-
organized and dynamic CR network. The main objective of C2net
is to provide and maintain a stable QoS provisioning to high pri-
ority flows throughout their connections. C2net is a hybrid model of
IntServ and DiffServ that adopts the NSIS framework. The core com-
ponent for QoS provisioning in the NSIS framework is the QoS NSLP
that provides end-to-end QoS signaling protocol. The IntServ model
fulfills the stringent QoS requirements of a flow at reasonable cost by
purchasing white spaces from PU if necessary. The DiffServ model
provides services for lower priority packets. Various cross-layer de-
signs as well as their open issues and challenges are presented. The
cross-layer designs are joint DCS and topology management, joint
DCS and congestion control, and joint scheduling and channel con-
dition measurement.

3. How is context awareness and intelligence best achieved in cen-
tralized CR networks?
This thesis presents SARL and other simple and pragmatic learning
mechanisms, namely, Adapt, Win and AdaptWin, as approaches to
achieve single-agent cognition cycle (or network-level cognition cy-
cle), which encompasses the context awareness and intelligence con-
cept in centralized CR networks. The learning mechanisms differ a-
mong themselves in terms of action selection and knowledge update.
An analytical model based on Markov chain is presented to compute
the expected throughput performance of a DCS scheme. The SARL
approach achieves similar network performance to AdaptWin and
Win, which provide the highest network performance among the
other learning mechanisms studied. The SARL, Win and AdaptWin
approaches achieve the expected throughput obtained from the an-
alytical results; while this is not the case for Adapt. For SARL, the
throughput and number of channel switchings achieve optimal or
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near-optimal levels when learning rate α and exploration probabili-
ty ε are low; and ε has a greater effect on network performance than
does α. There are two advantages for SARL compared to Win and
AdaptWin. Firstly, the extension of current work to achieve node-
level cognition cycle using MARL in distributed CR networks. Sec-
ondly, the extension of current work to include state representation,
which encompasses the condition of the operating environment that
are relevant to decision making at the agent.

4. How is context awareness and intelligence best achieved in dis-
tributed CR networks?
This thesis presents SARL and MARL approaches to achieve the
multi-agent cognition cycle (or node-level cognition cycle), which
encompasses the context awareness and intelligence concept in dis-
tributed CR networks. The SARL approaches proposed are SMAC
and eSMAC. The eSMAC improves the stability of SMAC through
reducing the number of channel switchings. The proposed MARL
approach is MMAC, and it encompasses the SARL approach and the
PP mechanism.

The PP mechanism provides a means of communication for the SAR-
L approach. The extended PP mechanism is shown to converge to an
efficient and optimal joint action given that the entries in the Q-table
and µ-table at each agent (or a communication node pair) are stable
and fixed. The payoff value does not increase without bound in a
cyclic topology. Fast convergence is possible through the adjustment
of the exploration probability ε.

For scenarios with identical channel condition (PER), the eSMAC im-
proves network stability through monitoring the exploration proce-
dure. It is shown that the global Q-value for the exploitation data
channel for SMAC and eSMAC increases and becomes stable as time
progresses. In high density networks, the throughput enhancement
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achieved by SMAC and eSMAC approaches 0. The number of chan-
nel switchings in eSMAC is significantly lower than that in SMAC,
hence eSMAC is more stable. In SMAC, lower values of α and ε

provides better throughput and stability; however, in eSMAC, the
values of α provide approximately similar level of throughput, how-
ever, the throughput decreases if α<0.2.

For scenarios with non-identical channel condition, the MMAC im-
proves network stability. It is shown that the global Q-value for the
exploitation data channel for SMAC and MMAC increases and be-
comes stable as time goes by. In high density networks, the through-
put enhancement achieved by SMAC and MMAC approaches 0. The
number of channel switchings in MMAC is significantly lower than
that in SMAC, hence MMAC is more stable. Lower value of α and ε

provides better throughput and stability.

5. How can we apply these context awareness and intelligence ap-
proaches to QoS provisioning for CR networks?
This thesis presents how to apply the SACC and MACC to imple-
ment the conceptual CC in CR networks for various novel cross-layer
applications. The RL models for three joint designs in C2net are pro-
posed through the discussion of the state, action and reward repre-
sentation of the RL model. The designs are joint DCS and topology
management, joint DCS and congestion control, and joint scheduling
and channel condition measurement.

9.2 Future Work

This section highlights the most significant directions for future work.
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9.2.1 Investigation on Technology Leverage from Multi -

Channel to Cognitive Medium Access Control Proto-

cols

Chapter 3 has established a foundation for further research in the data link
layer of distributed CR networks through the discussion on technology
leverage from multi-channel to cognitive MAC protocols. There are two
categories of open issues as follows:

• Open issues associated with multi-channel MAC protocols. For in-
stance, in the common control channel approach, if a single tran-
ceiver is applied, there is lack of support for broadcasting which is
important in routing message dissemination such as Route Request
and Hello messages.

• Open issues associated with the additional requirement to cope with
the existence of PUs that have higher authority over the data chan-
nels. This includes incorporating all the necessary CR functions into
the multi-channel MAC including dynamic spectrum access, dynam-
ic spectrum sharing, and dynamic spectrum management functions
in Section 3.4 on page 33.

9.2.2 Investigation on C2net: A Cross-Layer Quality of Ser-

vice Architecture for Cognitive Radio Networks

Chapter 4 has established a foundation for further research into the da-
ta link and network layer of distributed CR networks through the dis-
cussion on C2net, which is a QoS architecture for cognitive wireless ad-
hoc networks. This includes incorporating the CR functions into the N-
SIS framework. For instance, local congestion control can be designed to
cooperate with the end-to-end congestion control mechanism in the NSIS
framework. Investigation can also be performed on the cross-layer design-
s using the RL approach as shown in Chapter 8. The cross-layer designs
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discussed were joint DCS and topology management, joint DCS and con-
gestion control, and joint scheduling and channel condition measurement.

9.2.3 Further Investigation on the Reinforcement Learning

Model

Chapter 5 has presented a generic RL model to achieve context awareness
and intelligence in CR networks. This RL model can be further investigat-
ed. This includes the following:

• New features not used in the traditional RL approach are events,
rules and the effects of actions to the operating environment. On the
events, the PU signal detection can be modeled as an event so that
upon its detection, the RL model carries out some required functions.
On the rules, the RL model can incorporate the rules imposed by the
PUs, such as channel detection time, which is the time interval that
an SU must detect PU signal. On the effects of actions to the operat-
ing environment, future research could be pursued for coordination
among the agents.

• Effective approximation-based techniques to achieve continuous s-
pace representation. Currently, Q-learning is a tabular-based ap-
proach that may not be scalable to a large number of state-event-
action pairs. The continuous space representation improves scalabil-
ity as the agent does not keep track of each state-event-action pair in
its Q-table.

9.2.4 Further Investigation on the Single-Agent Cognition

Cycle

Chapter 6 presented the SARL approach to achieve context awareness and
intelligence in centralized CR networks. The SARL approach can be fur-
ther investigated. This includes the following:
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• Short-term network performance enhancement. The SARL ap-
proaches achieve long-term network performance enhancement,
rather than short term. However, throughput and delay perfor-
mance enhancement may need to be achieved in a short time frame
to provide QoS guarantee to high priority data packets.

• State representation and discounted rewards. The SARL model ap-
plied in Chapter 6 has ignored the state representation and discount-
ed rewards. Further investigation on their application and perfor-
mance enhancement can be performed.

• Collaboration between channel sensing and DCS. This enables the
distributed sensing mechanism to collect information about the level
of PU activity across a wide range of channels, while the DCS scheme
applies this information to determine its operating channel.

9.2.5 Further Investigation on Multi-Agent Cognition Cy-

cle

Chapter 7 has presented the SARL and MARL approaches to achieve con-
text awareness and intelligence in distributed CR networks. The SARL
and MARL approaches can be further investigated. This includes the fol-
lowing:

• Relaxing the single collision domain assumption, which is applied
in Section 7.4.5 and 7.4.6. Single collision domain is a common as-
sumption in the research field of CR networks, and it assumes that all
the agents can hear each other. Performance enhancement brought
about by the SARL and MARL approaches without this assumption
are an interesting topic for future research.

• Short-term fairness. The MARL approach achieves long-term net-
work performance enhancement including fairness, rather than
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short term goals. Since there are many SUs competing for the data
channels in a multi-agent environment, an MARL model that pro-
vides short-term fairness is important to provide QoS guarantee to
high priority data packets.
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Abbreviations

ACK Acknowledgement

Adapt Adaptation

AdaptWin Adaptation-Window

ATIM Ad Hoc Traffic Indication Messages

BPSK Binary Phase Shift Keying

BS Base Station

CC Cognition Cycle

CCC Common Control Channel

CCTT Channel Closing Transmission Time

C2net Cognitive wireless ad hoc NETworks

CDS Connected Dominating Set

CDT Channel Detection Time

CH Channel Hopping

CG Coordination Graph

CMT Channel Move Time

CPE Customer-Premises Equipment
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CR Cognitive Radio

CSMA Carrier Sense Multiple Access

CTS Clear-to-Send

CUT Channel Usage Table

CWAN Cognitive Wireless Ad-hoc Network

DCCP Datagram Congestion Control Protocol

DCF Distributed Coordination Function

DCRN Distributed Cognitive Radio Network

DCS Dynamic Channel Selection

DFS Dynamic Frequency Selection

DHS Default Hopping Sequence

DiffServ Differentiated Services

DIFS DCF InterFrame Spacing

DS Dominating Set

DSA Dynamic Spectrum Access

DSCP DiffServ Codepoint

DSS Dynamic Spectrum Sensing

DSM Dynamic Spectrum Management

EDF Earliest Deadline First

FCC Federal Communications Commission

GIST General Internet Signaling Transport

HoQ Head of Queue

IBM In-Band Measurement

IDRP Incumbent Detection Recovery Protocol
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IDT Incumbent Detection Threshold

IETF Internet Engineering Task Force

i.i.d. independent and identically distributed

IntServ Integrated Services

IP Internet Protocol

ISM Industrial, Scientific and Medical

LCT Link Channel Table

LET Link Expiration Time

MAC Medium Access Control

MAC-PHY Medium Access Control-Physical

MACC Multi-Agent based Cognition Cycle

MANET Mobile Ad hoc NETworks

MARL Multi-Agent Reinforcement Learning

MDS Minimum Dominating Set

MDTT Maximum Data Transmission Time

MG Matrix Game

NSIS Next Steps in Signaling

NSLP NSIS Signaling Layer Protocol

NTLP NSIS Transport Layer Protocol

OBM Out-of-Band Measurement

Ofcom Office for Communication

OFDMA Orthogonal Frequency Division Multiple Access

OSI Open System Interconnection

PER Packet Error Rate
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PG Potential Game

PHB Per-Hop Behaviour

PME Payoff Message Exchange

PP Payoff Propagation

PSM Power Saving Mode

PU Primary User

PUL Primary User Utilization

QAM Quadrature Amplitude Modulation

QoS Quality of Service

RL Reinforcement Learning

RL-DCS Reinforcement Learning-based Dynamic Channel Selection

RREQ Route Request

RSVP Resource ReSerVation Protocol

RTS Request-to-Send

SACC Single-Agent based Cognition Cycle

SCTP Stream Control Transmission Protocol

SG Stochastic Game

SIFS Short InterFrame Space

SLA Service Level Agreement

SNR Signal-to-Noise Ratio

SP Split Phase

SU Secondary User

TCA Traffic Conditioning Agreement

TCP Transmission Control Protocol
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UDP User Datagram Protocol

UHF Ultra High Frequency

UNII Unlicensed National Information Infrastructure

UWB Unlicensed Ultra Wide Band

Win Window

WRAN Wireless Regional Area Network
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