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Abstract 
 

The rapid activation of effector T cells by antigen-presenting dendritic cells (DCs) is 

necessary to contain and eradicate pathogens. Upon eradication of the pathogens by 

effector T cells, the immune response eventually resolves, and the clearance of residual 

antigen is necessary to prevent immune cell exhaustion or immunopathology.  

 

It has been proposed that the elimination of antigen-presenting DCs by CD8+ cytotoxic T 

cells (CTLs) limits the duration of antigen presentation, hence resolving ongoing immune 

responses. However, inter-DC antigen transfer spreads antigens for further antigen 

presentation and may reduce the effect of CTL-mediated DC killing. The aim of my thesis 

was to examine the impact of CTL-mediated DC killing and inter-DC antigen transfer on 

the induction and the quality of resulting T cell responses. 

 

Initial experiments established that CTLs eliminated antigen-bearing DCs mainly through 

the cytolytic molecule perforin, whereas FasL played a minor role. CTL-mediated DC 

killing prevented antigen-bearing DCs from stimulating naïve CD4+ and CD8+ T cells in 

the draining lymph nodes. Thus, CTLs regulated the clonal expansion of naïve T cells by 

controlling the survival of antigen-presenting DCs. 

 

The efficiency of CTL-mediated DC killing depended on the method of antigen loading 

onto DCs, and to a lesser extent, the method of generating CTLs. Surprisingly, efficient 

CTL-mediated DC killing that completely prevented the accumulation of injected DCs in 

the lymph nodes did not abolish T cell proliferation, indicating that other antigen presenting 

cells (APCs) were inducing the residual T cell proliferation when the antigen-bearing DCs 

were eliminated by CTLs. 

 

Further investigations revealed that the antigen from the injected DCs was transferred to 

host DCs. In the absence of direct antigen presentation by injected DCs, host DCs 

stimulated local T cell proliferation but did not induce a systemic effector T cell response. 

In contrast, in the presence of efficient CTL-mediated DC killing, inter-DC antigen transfer 

enabled the host DCs to stimulate T cell proliferation. These T cells then developed into 



 iii 

functional effector T cells. In conclusion, in the absence of inter-DC antigen transfer, CTL-

mediated DC killing reduces the size of T cell responses. However, in the presence of inter-

DC antigen transfer, the impact of CTL-mediated DC killing is reduced, hence influencing 

the size and quality of T cell responses. My findings shed light on how CTL-mediated DC 

killing and inter-DC antigen transfer regulate immune responses and how DC vaccine 

regimens for immunotherapy can be improved. 
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General Introduction 

 

 

 

 

 

 

 

 
 

 



Chapter 1: General Introduction 2 

 

The immune system can be broadly characterised into innate and adaptive immunity. The 

innate immune system acts as the frontline defence against pathogens. The innate immune 

cells mobilise rapidly in the face of invading pathogens and respond in a non-antigen 

specific manner. Innate immune cells do not ‘remember’ the pathogens they have 

encountered before and cannot provide immunological memory for the host. In contrast, the 

adaptive immunity requires a longer time to mobilise than innate immunity. Adaptive 

immune cells respond and target pathogens that the immune cells recognise. Adaptive 

immune cells also remember the past pathogens they have encountered and if the same 

pathogen is seen again, these memory adaptive immune cells respond quickly to eliminate 

the pathogen. At the onset of pathogen invasion, the communication between the innate and 

adaptive immunity is essential for a well co-ordinated immune response. Dendritic cells 

(DC) play an important role in bridging the innate and adaptive immunity.  DCs are potent 

activators of the adaptive immunity and are important regulators of the immune responses. 

Aberrant DC accumulation, prolonged DC survival, or ablation of DCs lead to autoimmune 

pathology (Chen et al., 2006; Ohnmacht et al., 2009), or delayed adaptive immune 

responses (GeurtsvanKessel et al., 2008). 

 

In this chapter, I will provide the background information on the characteristics and 

functions of DCs, the origins of DCs, the different DC subsets and the types of T cell 

responses induced by DCs. I will discuss about the transfer of antigens between DCs. 

Lastly, I will elaborate on why it is important that DC survival and the duration of DC 

antigen presentation are regulated. 

 

1.1 Dendritic cells and the ‘Langerhans cell’ paradigm 

 

In 1973, Steinman R. M. and Cohn Z. A. identified DCs in murine spleen preparations and 

in other lymphoid organs based on their unique morphology (Steinman and Cohn, 1973). 

They characterised the phenotype, functions and population percentage in lymphoid tissues 

of these newly identified cells (Steinman et al., 1975; Steinman and Cohn, 1974; Steinman 

et al., 1974). Two subsequent seminal papers by Steinman and colleagues demonstrated the 

capacity of DCs in stimulating T lymphocytes. In the first study, Steinman purified DCs 
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from spleens and tested their ability to stimulate a mixed lymphocyte reaction (MLR) 

compared against whole spleen suspensions, macrophages, and preparations depleted of T 

and B cells (Steinman and Witmer, 1978). This study showed that DCs alone could 

stimulate MLR more potently than other cell types, and conversely, cell suspensions 

lacking DCs only stimulated MLR weakly. In the second study, with the aid of a then-

newly developed specific antibody against DCs (Nussenzweig et al., 1982), Steinman 

depleted the DCs from spleen preparations and examined both proliferative and cytotoxic 

responses in MLR (Steinman et al., 1983). Depleting DCs in spleen preparations using the 

DC-specific antibody abrogated T cell proliferation and reduced cytotoxic responses. The 

study also showed that the re-introduction of purified DCs could restore MLR stimulatory 

capacity.  These early studies in mice provided evidence that DCs were potent activators of 

T cells. 

 

Paul Langerhans first observed DCs in the skin although at that time, these cells were 

thought to be of neural origin. Accordingly these cells were named Langerhans cells. Early 

characterisation of Langerhans cells and the realisation that Langerhans cells were related 

to the cells reported by Ralph Steinman in the 1980s threw light on the functions of DCs 

(Romani et al., 1989; Schuler and Steinman, 1985). When freshly isolated, murine 

Langerhans cells were proficient in taking up and processing intact antigens but did not 

activate T cells. However, during the course of in vitro culture, these Langerhans cells lost 

their antigen uptake efficiency and became potent T cells stimulator. Other studies during 

that period showed that mature Langerhans cells migrated out of skin transplants (Larsen et 

al., 1990) and lost their ability to phagocytose particular antigens (Reis e Sousa et al., 1993)  

and that DCs migrated from the blood into the spleen (Austyn et al., 1988). 

 

From these studies in mice, the ‘Langerhans cell paradigm’ was formulated (Fig. 1.1). 

Immature DCs are proficient in antigen capture but inefficient in stimulating T cells. 

During the process of maturation, the DCs lose their phagocytic abilities, become potent T 

cell stimulators and migrate out of the peripheral tissues into the draining lymph nodes. In 

the draining lymph nodes, these mature DCs present antigens to naïve T cells and induce T 

cell responses.  
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The ‘Langerhans cell paradigm’ derived from these studies was based on the observations 

on the conventional DCs in the non-lymphoid tissues. The conventional DC is one of the 

two members belonging to the DC family. The other member under the DC family tree is 

called plasmacytoid DC. Conventional and plasmacytoid DCs differ in their development, 

phenotype, morphology, migratory behaviour and functions. For example, plasmacytoid 

DCs resemble lymphoblasts or plasma cells, are phenotypically recognised as 

B220+CD11clo in mice and secrete large amounts of their signature cytokine type 1 

interferon (IFN), whereas conventional DCs have a dendrite-like morphology, are B220-

CD11chi in mice, and secrete lower amounts of type I IFN in response to RNA viruses 

compared to plasmacytoid DCs (Colonna et al., 2004). The ‘Langerhans cell paradigm’ 

addresses the functional development and phenotypic changes in conventional DCs, and 

hereafter I shall focus my discussion on conventional DCs and designate conventional DCs 

as DCs for simplicity. 

 

 
Fig. 1.1. The Langerhans cell paradigm delineates DCs into immature and mature stages. 
 

1.2. DCs are professional APCs 

 

Nearly all cell types can be considered as antigen-presenting cells (APC) because they are 

capable of presenting antigens to CD8+ T cells through the expression of MHC class I 

molecules. However, to qualify as a professional APC the cell must fulfil two criteria. The 

first criterion is that the cell must be able to present antigens to naive CD4+ T cells, 
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therefore the cell must express MHC class II and be able to internalise and process antigens 

via the MHC class II pathway. The second criterion is that the cell must express co-

stimulatory molecules that can lead to the activation of T cells. Although some authors 

have defined DCs, B cells and macrophages as professional APCs, others propose that B 

cells and macrophages are not as ‘professional’ as DCs in terms of antigen presentation 

(Trombetta and Mellman, 2005). B cells are poor at antigen uptake but specialise in 

antibody production. B cells cannot stimulate naïve CD4+ T cells although they can 

stimulate memory CD4+ T cells (Ronchese and Hausmann, 1993). Macrophages are highly 

proficient in antigen uptake and processing; but they express low levels of MHC class II 

and co-stimulatory molecules and are poor at activating CD4+ T cells. While macrophages 

and B cells can present endogenous proteins on MHC class I to CD8+ T cells, neither of 

them can present exogenous proteins on MHC class I to CD8+ T cells as efficiently as DCs. 

Moreover, DCs are functionally plastic, located in strategic areas of the body and made up 

of a heterogeneous population (Trombetta and Mellman, 2005). These characteristics 

enable DCs to function as highly proficient professional APCs. 

 

1.3. Different functional stages of DCs 

 

In the ‘Langerhans cell paradigm’, the term ‘maturation’ has been used to delineate the 

acquisition of the ability to stimulate naïve T cells and induce effector T cell responses 

(Villadangos and Heath, 2005). However, accumulating evidence has shown that immature 

DCs also stimulated naïve T cells but induced T cell tolerance instead (Finkelman et al., 

1996; Steinman et al., 2003), emphasising the need to redefine the functional stages of 

DCs. Several investigators have used different terminology to define DC functional stages 

and to the best of my knowledge, there is no standard guideline for defining the different 

stages of DCs (Lutz and Schuler, 2002; Reis e Sousa, 2006; Villadangos and Heath, 2005). 

In my study, I have categorised different DC functional stages into immature, steady-state, 

activated and licensed (Fig. 1.2). At these different stages, DCs perform and specialise in 

different functions. The different functional stages of DCs will be detailed in the following 

sections.  
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Fig. 1.2. DCs have different functional stages that induce different types of T cell responses. 
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1.3.1. Immature DCs are efficient in antigen capture and induce T cell tolerance 

 

Most DCs in the body exist in an immature status. Immature DCs are constantly sampling 

their environment (Lindquist et al., 2004; Ng et al., 2008). They are proficient in antigen 

capture because they have a wide variety of mechanisms such as receptor-mediated 

endocytosis, phagocytosis and macropinocytosis to take up different forms of antigen. In 

receptor-mediated endocytosis, immature DCs use a range of receptors such as CD205 

(Jiang et al., 1995), mannose receptor (Sallusto et al., 1995), Fc receptors such as FcγRI, 

FcγRII (Regnault et al., 1999) and FcεRI (Jurgens et al., 1995), and scavenger receptors 

such as CD36 (Platt et al., 1998). In phagocytosis, immature DCs take up particulate 

antigens through receptor-mediated actin polymerisation. The types of particulate antigens 

taken up by immature DCs include bacteria, fungi, parasites, apoptotic cells and necrotic 

debris. In macropinocytosis, immature DCs internalise soluble antigens in an actin 

cytoskeleton-dependent manner. Immature DCs also utilise macropinocytosis constitutively 

(Sallusto et al., 1995).  

 

Although immature DCs are efficient in antigen uptake, the antigens taken up are not 

rapidly degraded to be loaded onto MHC class II molecules but remain in the lysosomal 

compartments for several days (Inaba et al., 2000) due to low proteolytic efficiency 

(Fiebiger et al., 2001). Immature DCs also express low levels of MHC class II molecules, 

partly because they rapidly recycle MHC class II molecules from the cell surface (Askew et 

al., 2000; Wilson et al., 2004). This forms a situation whereby few MHC class II molecules 

are available for the loading of degraded antigens thus leading to fewer antigens presented 

on the cell surface (Colledge et al., 2002; Inaba et al., 2000; Turley et al., 2000; 

Veeraswamy et al., 2003).  

 

Immature DCs also express low levels of co-stimulatory molecules such as CD80, CD86 

and CD40 (Inaba et al., 1994; Larsen et al., 1992; Vremec and Shortman, 1997; Wilson et 

al., 2003). Co-stimulatory molecules CD80 and CD86 on DCs engage CD28 on T cells. 

Sufficient co-stimulatory engagement is necessary for full activation of T cells. While these 

immature DCs induce T cell proliferation, the T cells are removed from circulation or 

become unresponsive to secondary antigenic stimulation and do not develop into effector T 
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cells (Bonifaz et al., 2002; Dhodapkar et al., 2001; Hawiger et al., 2001; Scheinecker et al., 

2002). Taken together, immature DCs are specialists in antigen capture because of the 

accessibility to various antigen uptake mechanisms; and are poor in activating effector T 

cells because they provide minimum antigenic and insufficient co-stimulatory signals to the 

T cells (Hernandez et al., 2001; Kearney et al., 1994).  

 

1.3.2. Steady-state DCs induce T cell tolerance 

 

Immature DCs in the peripheral tissues spontaneously migrate to the draining lymph nodes 

in the absence of inflammatory molecules or pathogenic stimuli (Hemmi et al., 2001; 

Mishima, 1966; Ruedl et al., 2000; Vermaelen et al., 2001). They carry along with them 

antigens captured from their environment. These DCs are referred to as steady-state DCs. 

In the skin, the spontaneous migration of steady-state DCs has been proposed to be induced 

by the disruption of E-cadherin adhesion between the DCs and neighbouring cells (Jiang et 

al., 2007). Steady-state DCs upregulate MHC class II expression, express moderate levels 

of co-stimulatory molecules but do not express inflammatory cytokines (Jiang et al., 2007; 

Ruedl et al., 2000). Similar to lymph node resident immature DCs, antigen-presenting 

steady-state DCs induce T cell proliferation but these T cells do not develop into functional 

effector T cells (Jiang et al., 2007; Kurts et al., 1999; Waithman et al., 2007). Constitutive 

removal of DCs under steady-state conditions leads to spontaneous autoimmunity, 

indicating the importance of immature and steady-state DCs in maintaining T cell tolerance 

(Ohnmacht et al., 2009). 

 

1.3.3. Activated DCs prime functional effector T cells 

 

Immature DCs become activated DCs when they encounter inflammatory cytokines or 

pathogen associated molecules patterns (PAMPs). Different types of PAMPs bind to 

receptors such as Toll-like receptors (TLR) in the DCs and activate intracellular signalling 

molecules such as MyD88 (Janeway and Medzhitov, 2002). Inflammatory cytokines such 

as TNF-α and IL1β are recognised by corresponding cytokine receptors on the immature 

DCs. Other signals that induce DC activation include necrotic cells (Sauter et al., 2000) and 

immunoglobulins (Regnault et al., 1999). Activated DCs downregulate macropinocytosis 
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and non-specific phagocytosis (Garrett et al., 2000; Platt et al., 2010), although receptor-

mediated endocytosis and receptor-mediated phagocytosis in activated DCs remain intact 

(Platt et al., 2010). Activated DCs increase MHC class II synthesis transiently, and express 

high levels of MHC class II, CD80 and CD86. Antigen processing through MHC class II 

pathway is upregulated by the acidification of lysosomal compartments. The translocation 

of MHC class II molecules to the cell surface is increased and the recycling of surface 

MHC class II molecules is reduced (Cella et al., 1997; Chow et al., 2002; Pierre et al., 

1997). This results in an increase in surface MHC class II-peptide complexes (Cella et al., 

1997; Villadangos et al., 2001). The expression and half-life of MHC class I complexes in 

DCs can also be increased by activation signals (Delamarre et al., 2003; Rescigno et al., 

1998). The changes in activated DCs allow them to retain and present the antigens captured 

in an immature state to antigen-specific naïve T cells. In the activated state, DCs express 

high levels of co-stimulation molecules such as CD80, CD86 and CD40, which fully 

activate naïve T cells into functional effector T cells (Fujii et al., 2004) 

 

In peripheral DC populations such as Langerhans cells, DC activation is associated with 

increased migratory behaviour and migration from the peripheral tissues to the draining 

lymph nodes. These activated peripheral DCs upregulate matrix metalloproteases to 

navigate through the extracellular matrix to the lymph vessels (Ratzinger et al., 2002). 

Activated peripheral DCs also upregulate CCR7 expression in order to home into the 

paracortex of draining lymph nodes through the recognition of CCL19 and CCL21 

chemokine gradients (Martin-Fontecha et al., 2003). Naïve T cells also reside in the 

paracortex of draining lymph nodes; hence the chances of activated peripheral DCs 

encountering antigen-specific naïve T cells are increased. 

 

1.3.4. Licensed DCs prime functional effector and memory CD8+ T cells 

 

The interaction between CD40 on immature DCs and CD40L on CD4+ T cells also induces 

DC activation (Caux et al., 1994; Schuurhuis et al., 2000). CD4+ T cell-helped DC 

activation has been termed ‘DC licensing’ (Bennett et al., 1998; Ridge et al., 1998; 

Schoenberger et al., 1998). The functional difference between the activated DCs described 

in 1.2 and licensed DCs is observed in the type of CD8+ T cells induced by the respective 
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types of DCs. Activated DCs can stimulate CD8+ T cells into CTLs but these CTLs have 

poor cytotoxic effector functions, short life span and die from TRAIL-mediated death 

(Janssen et al., 2005). In contrast, with the help provided by CD4+ T cells, licensed DCs 

induce functional effector and memory CTLs (Janssen et al., 2003; Smith et al., 2004). 

Licensed DCs primed CTLs even after the signals from CD4+ T cells were removed, 

indicating that the DCs retained the information provided by CD4+ T cells (Smith et al., 

2004; van Mierlo et al., 2004). The signals sent from the licensed DCs to the CTLs include 

CD27-CD70 interaction (Ballesteros-Tato et al., 2010), decreased interaction between 

programmed cell death (PD)-1 and PD ligands (Keir et al., 2007), or increased CTL 

autocrine production of IL-2 through CD27-CD70 interaction (Peperzak et al., 2010). 

 

Other immune cells can also license DCs. NK cells have been shown to license DCs to 

induce memory CD8+ T cell responses (Mocikat et al., 2003). A recent study on NKT cells 

has shown that NKT cells licensed DCs and induced DCs to produce CCL17 to attract 

naïve CD8+ T cells (Semmling et al., 2010). The expression of CD40L on DCs also provide 

optimal signals for the priming of CD8+ T cell responses without CD4+ T cell help 

(Johnson et al., 2009). 

 

1.4. Different subsets of DCs are found in different locations 

 

DCs arise from precursor cells that originate from the bone marrow (BM) haematopoietic 

stem cells. These DC precursors migrate from the bone marrow to different tissues. The 

constant influx of DC precursors into the tissues continually replaces DCs that migrate and 

eventually undergo apoptosis in the lymph nodes or spleens, resulting in a constant DC 

turnover. The differentiation of precursors to DCs is largely dependent on fms-like tyrosine 

kinase-3 (flt-3) ligand (McKenna et al., 2000). Certain types of DCs, like the Langerhans 

cells, can self-renew in situ and are not replaced by circulating precursors under steady 

state conditions (Merad et al., 2002). The differentiation of precursors to Langerhans cells 

is also dependent on TGF-β1 (Borkowski et al., 1996) and M-CSF (Ginhoux et al., 2006) 

but is flt-3 ligand independent (Ginhoux et al., 2009). The development of some DCs, like 

the skin-derived dermal DCs (King et al., 2010) or lamina propria DCs (Bogunovic et al., 
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2009; Varol et al., 2009), are less dependent on flt-3 ligand and depend on GM-CSF 

instead.  

 

DCs are found in different organs and tissues, such as the skin, lymph nodes, spleen, lung, 

intestines, liver, kidneys, pancreas and eyes (Forrester et al., 2010; Helft et al., 2010). These 

DCs comprise of different DC subtypes and can be distinguished by their phenotypic 

markers. Some DCs express similar phenotypic markers but are found in different tissues 

(del Rio et al., 2010). However, all these DC subsets share a dendritic morphology, express 

high levels of CD11c and MHC class II, and are potent T cell stimulators. In this study, I 

will focus on DCs found in the skin and skin-draining lymph nodes. 

 

1.4.1. Different DC subsets are found in the skin 

 

In the skin, Langerhans cells (LC) occupy the interstitial spaces between keratinocytes in 

the epidermis (Valladeau and Saeland, 2005). The LC precursors populate and proliferate 

rapidly in the epidermis after birth (Elbe et al., 1989). As mentioned earlier, the 

development of precursors into LCs under steady-state conditions is dependent on TGF-β1 

and M-CSF as mice devoid of these cytokines lack epidermal LCs (Borkowski et al., 1996; 

Ginhoux et al., 2006). Steady-state LCs reside in the epidermis for their entire lifespan and 

turn over slowly as observed from bromodeoxyuridine (BrdU) labelling of dividing cells 

(Kamath et al., 2002; Merad et al., 2002). LCs are usually immobile but move their 

dendrites occasionally to survey the environment (Ng et al., 2008; Nishibu et al., 2006). 

Under steady-state conditions, some LCs spontaneously migrate to the skin-draining lymph 

nodes, possibly due to the disruption of E-cadherin anchorage onto neighbouring 

keratinocytes (Jiang et al., 2007). The activation of LCs leads to increased LC migration 

into the skin-draining lymph nodes. Among the various phenotypic markers, LCs express 

high levels of CD207/langerin (Valladeau et al., 2000), CD205 (Jiang et al., 1995) and E-

Cadherin.  

 

Dermal DCs, like LCs, are CD205+CD8lo. Dermal DCs can be broadly characterised as 

CD103+ and CD11b+ DCs. CD103+ DCs also express CD207 (Ginhoux et al., 2007; Henri 

et al., 2010). The development of dermal DCs is largely dependent on flt-3 ligand. Mice 
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lacking flt-3 or flt-3 ligand lack CD103+ dermal DCs and have reduced numbers of CD11b+ 

dermal DCs (Ginhoux et al., 2009). GM-CSF also plays a role in the development of 

dermal DCs as mice lacking GM-CSF also have reduced numbers of CD103+ and CD11b+ 

dermal DCs (King et al., 2010; Kingston et al., 2009). Under steady-state conditions, 

dermal DCs exhibit different behavioural patterns from LCs as they actively crawl through 

the interstitial space of the dermis. Some dermal DCs also migrate to the skin-draining 

lymph nodes at steady-state conditions. Upon encounter with pathogenic molecules or 

parasites, dermal DCs decreased their migratory speed and changed their morphology, 

possibly to facilitate antigen capture (Ng et al., 2008). These activated dermal DCs then 

migrate to the draining lymph nodes. 

 

In the skin-draining lymph nodes, three lymph node resident DC populations that can be 

distinguished by their expressions of CD205, CD8 and CD4 have been characterised 

(Vremec and Shortman, 1997). CD8+CD205+CD4- DCs are found in the paracortex of the 

draining lymph nodes. The anatomical location of CD8-CD205-CD4- DCs in the draining 

lymph nodes is still unclear although an early study indicated that these DCs were not 

found in the T or B cell areas (Witmer and Steinman, 1984). The frequency of CD8-CD205-

CD4+ DCs is very low in the draining lymph nodes (Shortman and Liu, 2002) and their 

anatomical location in the draining lymph nodes is also unknown. Besides these lymph 

node-resident DCs, Langerhans cells and dermal DCs are also found in distinct areas of the 

paracortex under steady-state conditions (Kissenpfennig et al., 2005) and accumulate in the 

draining lymph nodes upon skin inflammation or infection. 

 

Monocytes circulating in the blood can be recruited to the inflammatory or infected sites. 

These recruited monocytes subsequently differentiate into DCs. For example, during skin 

inflammation, circulating monocytes are recruited to the inflamed epidermis. The recruited 

monocytes down-regulate the monocyte marker Gr-1, upregulate MHC class II expression, 

and differentiate into LCs (Ginhoux et al., 2006). Monocytes have also been shown to 

differentiate into dermal DCs and lymph node resident DCs during an infection with 

Leishmania major (Leon et al., 2007). These monocyte-derived skin DCs are also found in 

the skin-draining lymph nodes. They exhibit an activated DC phenotype and are able to 

induce effector T cells. 
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1.5. Different DC subsets have different functions 

 

Studies have indicated that the different DC subsets have different functions. There is some 

evidence indicating that the different functions are inherent in the DC subsets and DC 

subsets of a certain lineage have similar functions. Here, I summarise the evidence from 

different DC subsets located in different tissues according to their different functions. 

 

The ability to present antigens to CD4+ and CD8+ T cells vary among the DC subsets. All 

DCs can present antigens to CD8+ T cells when they are infected with pathogens or 

presenting endogenous antigens. However, not all DCs can capture exogenous antigens and 

present them to CD8+ T cells; this process is referred to as cross-presentation and will be 

discussed in 1.7.3. DCs that are proficient in cross-presenting to CD8+ T cells include 

lymphoid resident CD8+CD205+, skin derived CD103+ dermal DCs, CD103+ intraepithelial 

lung DCs and LCs (Bedoui et al., 2009; del Rio et al., 2007; den Haan et al., 2000; 

Stoitzner et al., 2006). On the contrary, CD8-CD205- DCs are better at stimulating CD4+ T 

cells than CD8+CD205+ DCs (Dudziak et al., 2007). Similarly, skin-derived CD11b+ 

dermal DCs and CD11b+ lung DCs are also better at priming CD4+ T cells than CD103+ 

dermal DCs (Bedoui et al., 2009; del Rio et al., 2007). 

 

Different DC subsets can capture antigens through different mechanisms. CD8+CD205+ 

DCs express a unique set of proteins and receptors distinct from lymphoid resident CD8-

CD205- DCs (Burgdorf et al., 2007; Dudziak et al., 2007; Schnorrer et al., 2006). Unlike 

CD8-CD205- DCs, CD8+CD205+ DCs are also capable of phagocytosing apoptotic cells 

and exosomes (Iyoda et al., 2002; Segura et al., 2007). Recent evidence has shown that 

within the splenic CD8+CD205+ DCs, the DCs expressing CD103 and CD207 are efficient 

in phagocytosing apoptotic cells (Qiu et al., 2009). This is interesting because the 

expression of CD103 in dermal DCs has also been proposed to enable CD103+ dermal DCs 

to reach across the basement membrane into the epidermis to take up antigens (Bursch et 

al., 2007). CD103 binds to E-Cadherin, which is expressed on all the epidermal cells 

including LCs. In support of this proposal, CD103+ intraepithelial lung DCs extend their 

dendrites into the airway lumen (Sung et al., 2006). This phenomenon of extending 

dendrites across the epithelia layers has also been observed in intestinal DCs where they 
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sample for bacteria across the epithelium (Rescigno et al., 2001). The evidence indicates 

that the expression of certain molecules enables the DC subset to perform specific 

functions.  

 

Different DC subsets induce different types of T cell responses. CD8+CD205+ splenic DCs 

produced IL-12 after microbial stimulation in vivo (Reis e Sousa et al., 1997) and skewed 

CD4+ T cells to Th1 responses. Alternatively, there is also evidence that CD8+CD205+ 

splenic DCs are able to induce CD4+ T cells into regulatory T cells in the absence of 

exogenous TGFβ. In contrast, CD8-CD205- DCs were only able to do so when TGFβ was 

added (Yamazaki et al., 2008). CD11b+ DCs from the Peyer’s patches produced IL-10 and 

skewed CD4+ T cells to Th2 responses better than CD8+ and CD8-CD11b- DCs from the 

Peyer’s patches (Iwasaki and Kelsall, 2001). Intestinal CD103+ DCs, but not CD103- DCs, 

were also able to induce CD4+ regulatory T cells (Coombes et al., 2007). 

 

Different DC subsets of a certain lineage have similar functions. As mentioned previously, 

lymphoid resident CD8+ DCs and CD103+ DCs in the peripheral tissues are proficient 

cross-presenters to CD8+ T cells. They also have unique antigen capture mechanisms that 

facilitate their cross-presenting functions and are distinct from lymphoid resident or 

peripheral DCs that express CD11b but not CD8 nor CD103. In mice lacking the 

transcription factor Batf3 (basic leucine zipper transcription factor, ATF-like 3), CD103+ 

dermal DCs (Edelson et al., 2010) and lymphoid resident CD8+ DCs (Hildner et al., 2008) 

are absent whereas other DC subsets are intact. This supports the notion that different DC 

subsets are inherently distinct and fulfil different functions in the body. 

 

1.6. DCs can be cultured from precursors ex vivo  

 

Although DCs are found in many tissues and organs in the body, one major difficulty when 

studying DCs is the low frequency of DCs found in the body. When an early study showed 

that adding GM-CSF in murine BM haematopoietic stem cells could generate large 

numbers of DCs (Inaba et al., 1992), the use of in vitro cultured DCs greatly opened up the 

field of DCs. Subsequent studies on generating DCs from human PBMCs added GM-CSF 

and IL-4 to yield immature DCs (Romani et al., 1994; Sallusto and Lanzavecchia, 1994).  
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GM-CSF differentiates and mobilises myeloid cells (Metcalf et al., 1986), whereas IL-4 

inhibits the development of macrophages (Jansen et al., 1989). The culture of murine BM 

cells with GM-CSF/IL4 generates immature DCs, which have CD11chiCD11b+ phenotype. 

Upon treatment with activation stimuli such as LPS, these immature DCs acquire an 

activated phenotype observed from the upregulation of MHC class II and co-stimulatory 

molecules. When injected subcutaneously, activated GM-CSF/IL-4 murine DCs migrate 

into the paracortex in the draining lymph nodes via a CCR7-dependent manner (Martin-

Fontecha et al., 2003). These DCs produce cytokines such as TNF-α and CCL-2 and are 

similar to inflammatory DCs induced by Listeria monocytogenes infection in vivo (Serbina 

et al., 2003; Xu et al., 2007).  

 

The culture of murine BM cells with flt-3 ligand also generated large numbers of DCs that 

consisted of three DC populations – CD11b+CD11chi and CD24+CD11chi DCs and 

B220+CD11clo DCs (Brasel et al., 2000; Brawand et al., 2002). CD11b+CD11chi and 

CD24+CD11chi DCs closely resemble CD8- and CD8+ DCs residing in lymphoid organs 

(Brasel et al., 2000; Naik et al., 2005). This is in accordance with the finding that flt-3 

ligand gives rise to multiple types of DCs in vivo (McKenna et al., 2000).  

 

1.7. DCs present antigens to CD4+ and CD8+ T cells via MHC molecules 

 

DCs present antigens on MHC class II to CD4+ T cells, MHC class I to CD8+ T cells and 

CD1 to NKT cells (Bendelac et al., 2007). It was previously thought that antigens loaded 

on MHC class II or MHC class I were derived from exogenous and endogenous cellular 

proteins respectively. This delineation has been blurred after it was demonstrated that in 

some cases, DCs could present antigens from exogenous proteins to CD8+ T cells via MHC 

class I (Brossart and Bevan, 1997). This process has been referred to as ‘cross-

presentation’.  

 

1.7.1 DCs present exogenous antigens on MHC class II molecules to CD4+ T cells 

 

DCs take up proteins from the extracellular environment via macropinocytosis, 

phagocytosis and receptor-mediated endocytosis. The endocytosed proteins are carried in 
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endocytic vesicles and are delivered to endosomes. The protein-carrying endosomes then 

fuse with lysosomes. The acidification in the lysosomes then activates endosomal and 

lysosomal proteases, which degrade the endocytosed proteins into peptide fragments 

(Trombetta et al., 2003). MHC class II molecules are assembled in the endoplasmic 

reticulum (ER). An invariant chain, Ii, binds in the groove of the MHC class II molecule to 

prevent binding of peptides and partly-folded proteins (Riberdy et al., 1992). It also directs 

the MHC class II molecules to the peptide-carrying endosomes where peptide loading 

occurs. Subsequent cleavage of the invariant chain leaves a short peptide fragment CLIP 

(class II-associated invariant chain peptide) in the groove of the MHC class II molecule 

(Avva and Cresswell, 1994). The CLIP-MHC class II complex is then stabilised by HLA-

DM, which also catalyses the release of CLIP fragment and the loading of the peptide 

fragments onto the empty MHC class II molecules (Denzin and Cresswell, 1995).  The 

peptide-loaded MHC class II complex is then transported to the cell surface of the DC. 

 

1.7.2 DCs present endogenous antigens on MHC class I molecules to CD8+ T cells 

 

Like all other nucleated cells, DCs also degrade their cytosolic proteins by the ubiquitin-

proteasome system (UPS) into peptides (Pamer and Cresswell, 1998). These peptides are 

then transported by TAP1 and TAP2 molecules into the ER. In the ER, the partially folded 

MHC class I chains bind to calnexin (Suh et al., 1996). The binding of β2-microglobulin to 

the MHC class I chains releases the MHC class I from calnexin. This MHC class I-β2-

microglobulin complex then binds to other chaperone proteins including calreticulin and 

tapasin (Sadasivan et al., 1996). The binding of the MHC class I-chaperone complex to 

TAP via tapasin allows the loading of peptides onto the MHC class I molecule. The loading 

of peptides then releases the MHC class I molecule from the chaperone proteins (Lehner et 

al., 1998). The peptide-loaded MHC class I complex is subsequently transported to the cell 

surface of the DC. Following this, the DC then presents the peptide loaded onto MHC class 

I molecules to the antigen-specific CD8+ T cells. This is also known as the classical MHC 

class I pathway. 
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1.7.3. DCs cross-present exogenous antigens on MHC class I molecules to CD8+ T cells 

 

While all nucleated cells can degrade cytosolic proteins and present them via the classical 

MHC class I pathway, DCs are also able to process exogenous antigens and present them 

on MHC class I molecules. This pathway is referred to as ‘cross-presentation’.  Cross-

presentation was first proposed to explain how the presentation of exogenous antigens 

could prime CD8+ T cells (Bevan, 1976, 1989). Although some in vitro evidence has shown 

that macrophages and B cells can cross-present (Ke and Kapp, 1996; Kovacsovics-

Bankowski et al., 1993), CD8+ DCs, and more recently identified, CD24+ and CD103+ 

DCs, are the DC subsets that can cross-present to naïve CD8+ T cells effectively (Bedoui et 

al., 2009; Carbone et al., 1998; del Rio et al., 2007; den Haan et al., 2000; Pooley et al., 

2001). Recent evidence has shown that under certain conditions, other DC subsets can also 

cross-present to CD8+ T cells (Ballesteros-Tato et al., 2010; den Haan and Bevan, 2002; 

McDonnell et al., 2010). 

  

It is not clearly demonstrated why certain DC subsets are cross-presenting antigens to CD8+ 

T cells while others don’t. The consensus is that cross-presenting DCs are inherently 

different from non cross-presenting DCs. In support of this, cross-presenting DCs express 

higher levels of distinct proteins involved in MHC class I antigen processing (Dudziak et 

al., 2007) and have lower phagosomal acidity (Savina et al., 2009) compared to non cross-

presenting DC subsets. While the uptake of antigens for cross-presentation is distinct from 

other antigen presentation pathways (Burgdorf et al., 2008), certain receptors used to take 

up antigens are selectively expressed on some DC subsets that cross-present (Belz et al., 

2002; Burgdorf et al., 2007; Caminschi et al., 2008). The DC subsets that can cross-present 

share the same DC lineage because Batf3-deficient mice lack the cross-presenting DC 

subsets characterised by the phenotypic markers CD8 and CD103 (Hildner et al., 2008). 

Taken together, the evidence reported has been consistent with the notion that the ability to 

cross-present to CD8+ T cells is inherent only in the cross-presenting DC subset. 

 

Although the mechanisms of cross-presentation are not fully elucidated, there are at least 

three mechanisms that have been put forward (Burgdorf and Kurts, 2008; Heath and 

Carbone, 2001a; Yewdell et al., 1999).  In the first mechanism, captured antigens are 
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degraded and directly loaded onto MHC class I molecules in a TAP-independent manner in 

the endosomes (Kurotaki et al., 2007). The other two mechanisms are mediated in a TAP-

dependent manner and the antigens are degraded by the cytoplasmic proteasome. These two 

TAP-dependent mechanisms differ in the location of antigen-loading onto MHC class I 

molecules. The first TAP-dependent mechanism proposes that antigen-loading onto MHC 

class I molecules occurs in the ER (Ackerman et al., 2006); whereas in the second TAP-

dependent mechanism, antigens are loaded in the endosomes (Ackerman et al., 2003). 

 

1.8. The peptide-MHC complexes on DCs engage TCRs on T cells 

 

The peptide-MHC complexes on the cellular surface of DCs engage the TCR complexes on 

the T cells. TCRs are made up of α and β chains. The α chains contain V and J gene 

segments, whereas the β chains consist of V, D and J gene segments. The rearrangements 

of the TCR genes occur during T cell development in the thymus. The developing T cells in 

the thymus are called thymocytes. After rearranging their TCR chains, thymocytes have to 

interact with self peptide-self MHC molecules complexes on the thymic epithelial cells to 

continue their development; otherwise they undergo apoptosis due to neglect. This is 

known as positive selection (Starr et al., 2003). Thymocytes that successfully interact with 

self peptide-self MHC molecules complexes cease their TCR gene rearrangements to 

prevent the occurrence of T cells with dual TCR specificity, which may give rise to 

undesirable immune responses. During positive selection, thymocytes can develop into 

either CD4+ or CD8+ T cells, depending on the binding of co-receptor CD4 or CD8 to the 

respective MHC molecules. 

 

The positively selected thymocytes then encounter the stromal or bone-marrow derived 

thymic cells that present a broad range of tissue-specific antigens. When the TCRs on the 

positively selected thymocytes bind too strongly to the self peptide-MHC complexes on the 

thymic stromal cells or thymic DCs, the thymocytes are removed by clonal deletion. This 

process is referred to as negative selection, which removes autoreactive thymocytes in the 

thymus (Starr et al., 2003). This process of positive and negative selection is also known as 

central tolerance.  
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Thymocytes that are not negatively selected develop into either CD4+ or CD8+ T cells. 

Newly developed CD4+ and CD8+ T cells that have not encountered their cognate antigens 

are referred to as naïve T cells. These naïve T cells leave the thymus and circulate into the 

T cell zone of secondary lymphoid organs such as the lymph nodes and spleens, where they 

reside while awaiting antigenic stimuli.  

 

1.9. The activation status of DCs determines their ability to induce T cell responses 

 

DCs are the most potent APCs at inducing de novo T cell responses from naïve T cells. 

When DCs present antigens to naïve T cells, the engagement of the TCR initiates 

intracellular signalling into the T cells. The earliest intracellular events occurring after TCR 

engagement is the activation of protein tyrosine kinase (Gauen et al., 1994; Samelson and 

Klausner, 1992). Activation of protein tyrosine kinase then elicits downstream intracellular 

signalling events, including the phosphorylation of the CD3ε, ζ-associated protein (ZAP)-

70 and MAP kinases; increase in intracellular calcium; activation of transcription factors 

such as NFκB, nuclear factor of activated T cells (NFAT) and activator protein (AP)-1 

(Cantrell, 1996; Fooksman et al., 2010). These transcription factors then translocate into the 

nucleus and induce gene transcription.  

 

At the inter-cellular level, the naïve CD8+ T cells undergo multiple transient encounters 

with the antigen-presenting DCs during the first few hours of DC-T cell interaction 

(Mempel et al., 2004). The surface expression of activation markers CD69 and CD44 on 

these T cells are also upregulated during the transient DC-T cell interactions. This is 

followed by the formation of stable interactions between the DC and T cell. Unlike CD8+ T 

cells, naïve CD4+ T cells are able to form stable interactions with antigen-presenting DCs 

upon their first encounter (Celli et al., 2007). Other activation markers such as CD25 are 

upregulated and the T cells begin to make cytokines such as IL-2 and IFNγ. After the 

prolonged DC-T cell interaction, the T cells undergo clonal expansion through several 

rounds of cellular division. The T cells dissociate from the antigen-presenting DCs, migrate 

rapidly and exit the draining lymph nodes (Mempel et al., 2004; Stoll et al., 2002).  
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The engagement of cognate peptide-MHC complexes on DCs and antigen-specific TCR on 

T cells initiates T cell clonal expansion. However, the fate of these dividing T cells depends 

on the co-stimulatory signals provided by the DCs. Sufficient co-stimulatory signals are 

necessary for the full activation of naïve T cells. During inflammation or infection, DCs 

upregulate the expression of co-stimulatory molecules and become activated DCs. The 

quintessential co-stimulatory ligands are CD80 and CD86, which are highly expressed on 

activated DCs. CD80 and CD86 bind to CD28 on the T cells. There are other co-

stimulatory molecules and some of them belong to the TNF super family, including 

OX40/OX40L, 4-1BB/4-1BBL and CD27-CD70 (Watts, 2005). The engagement of CD28 

on the T cell by CD80 or CD86 drives the cell cycle progression of T cells (Boonen et al., 

1999), enhances the expression of anti-apoptotic protein Bcl-XL (Boise et al., 1995), and 

lowers the antigen stimulation threshold required to induce cellular divisions of the T cells 

(Iezzi et al., 1998). The expression levels of co-stimulatory molecules on the antigen-

presenting DCs are important because T cells do not become fully activated when receiving 

co-stimulatory signals provided by other DCs that are not presenting the antigen directly 

(Sporri and Reis e Sousa, 2005). When naïve T cells receive an antigenic stimulus and 

sufficient co-stimulation from activated or licensed DCs, the T cells undergo clonal 

expansion, produce effector cytokines such as IFNγ and/or produce cytolytic molecules, 

and are referred to as effector T cells. These effector T cells carry out cell-mediated 

adaptive immunity against various pathogens and tumours. They also develop into 

functional long-lived memory T cells that are capable of responding to secondary antigenic 

stimuli (Badovinac et al., 2005; Wang et al., 2006). 

 

When DCs, such as immature or steady-state DCs, do not express sufficient co-stimulatory 

molecules to fully activate the naïve T cells, naïve T cells undergo clonal expansion and 

produce effector cytokines transiently. These T cells eventually disappear from circulation 

or become unresponsive to secondary antigenic stimulation (Bonifaz et al., 2002; Hawiger 

et al., 2001; Hernandez et al., 2001; Huang et al., 2003; Kearney et al., 1994; Scheinecker 

et al., 2002). These processes are referred to as T cell deletional tolerance or T cell anergy 

respectively. T cell tolerance and anergy are important because DCs also present self-

antigens and may stimulate autoreactive T cells that have escaped negative selection. T cell 

tolerance and anergy are forms of peripheral tolerance to restrain unwanted immune 
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responses in the absence of inflammation or infection and prevent the occurrence of 

autoimmune diseases.  

 

1.10. Antigens are transferred from DC to DC 

 

Besides being able to present antigens directly to T cells, DCs bearing the antigen can pass 

antigen to other DCs (Allan et al., 2006; Belz et al., 2004a; Inaba et al., 1998; Kleindienst 

and Brocker, 2003; Qu et al., 2009). Antigen transfer is not limited to inter-DCs because 

macrophages have also been shown to capture antigens and transfer them to DCs for 

antigen presentation to T cells (Backer et al., 2010). Furthermore, intercellular protein 

transfer has been demonstrated on numerous occasions in different immune cells, for 

example, T cells can acquire MHC molecules from DCs and B cells can acquire B cell 

receptors from other B cells (Davis, 2007; Rechavi et al., 2009). 

 

Inter-DC antigen transfer may occur through DC secretion of exosomes (Luketic et al., 

2007; Segura et al., 2005), engulfing apoptotic DCs (Inaba et al., 1998; Kleindienst and 

Brocker, 2003), transfer of plasma membrane from live DCs (Harshyne et al., 2001), 

through gap junctions (Neijssen et al., 2005) or membrane nanotubes (Chinnery et al., 

2008). The antigen transferred may come in the form of proteins (Norbury et al., 2004; 

Shen and Rock, 2004), peptides (Neijssen et al., 2005) or MHC-peptide complexes (Qu et 

al., 2009). 

 

The major caveat of some of these findings is that inter-immune cell protein transfer has 

only been shown in an in vitro system. For example, inter-immune cell protein transfer via 

the transfer of plasma membrane, also known as trogocytosis, has been shown in vitro 

(Chaudhri et al., 2009; Harshyne et al., 2001) but has not been visualised in vivo. Formation 

of membrane nanotubes between immune cells has also been observed mostly in in vitro 

models (Davis and Sowinski, 2008) and to date, only the membrane nanotubes between 

DCs was observed in vivo (Chinnery et al., 2008).  

 

The physiological purpose of inter-DC antigen transfer is still unclear. There are 

speculations that inter-DC antigen transfer serves to increase the number of antigen-
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presenting DCs, hence amplifying the immune responses. In support of this, inter-DC 

antigen transfer is very efficient and occurs as early as eight hours after viral infection 

(Allan et al., 2006). On the other end of the spectrum, inter-DC antigen transfer may 

function to tolerise T cells and prevent auto-reactivity. This is supported by reports 

showing that DCs taking up apoptotic bodies induce T cell tolerance (Inaba et al., 1998; Liu 

et al., 2002; Sauter et al., 2000; Steinman et al., 2000). Furthermore, in the absence of 

activation stimuli, most DCs exist in an immature state and induce T cell tolerance or 

anergy (Bonifaz et al., 2002; Hawiger et al., 2001; Scheinecker et al., 2002). Spreading the 

antigen across a large pool of immature DCs can potentially induce T cell tolerance or 

anergy. Thus, inter-DC antigen transfer may serve to spread the antigen for immune 

amplification during inflammation or infection, or to restrain self-reactive immune 

responses from developing in the absence of inflammation or infection. 

 

1.11. DCs induce CD4+ T cell responses 

 

DCs can influence the development of the effector T cells through the production of 

cytokines. This is best demonstrated by the differentiation of activated CD4+ T cells into 

distinct different types of CD4+ T helper (Th) cells. When immature or steady-state DCs 

encounter PAMPs, PAMPs signal through TLRs and activate the DCs. Depending on the 

type of PAMPs involved, DCs can produce pro-inflammatory cytokines IL-6, IL-12, TNFα 

and IL-23 (Goriely et al., 2008; Langenkamp et al., 2000; Trinchieri and Sher, 2007). DCs 

can also produce immunoregulatory cytokines such as TGFβ (Yamazaki et al., 2008). 

These cytokines can skew the CD4+ T cells towards different pathways. 

 

Th1 cells produce their signature cytokine IFNγ and mediate immune protection and 

responses against intracellular bacteria and tumours (Mosmann and Coffman, 1989; Paul 

and Seder, 1994). When activated DCs produce IL-12, IL-12 activates innate cells such as 

NK cells to produce IFNγ, which activates intracellular signal molecule Stat1 in the CD4+ T 

cells, resulting in the up-regulation of the transcription factor T-bet. T-bet then induces 

gene transcription and epigenetic changes in CD4+ T cells, leading to IFNγ production and 

the up-regulation of IL-12 receptor. IL-12 also binds to IL-12 receptor on the CD4+ T cells 

and signals through the intracellular signalling molecule Stat4. This induces IFNγ 
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production, which then reinforces the expression of IL-12 receptor. Thus, a positive 

feedback loop is formed between IL-12 and IFNγ, which induces effector CD4+ T cells to 

differentiate into CD4+ Th1 cells (Hsieh et al., 1993; Seder et al., 1993).  

 

Th17 cells mediate immune responses against certain extracellular bacteria and fungi. IL-6 

produced by DCs acts in combination with TGFβ produced by other cells or by DCs 

themselves to activate the intracellular protein STAT3 in the CD4+ T cells. STAT3 induces 

the nuclear receptor RORγt and RORα (Yang et al., 2008). The activation of RORγt and 

RORα induces the differentiation of CD4+ T cell into Th17 cells. Besides producing other 

cytokines, Th17 cells produce their signature cytokine IL-17 (Korn et al., 2009). The 

production of IL-23 by DCs also helps expand and maintain the population of Th17 cells 

and promotes the production of IL-17 (Aggarwal et al., 2003; Cua et al., 2003).  

 

The Foxp3+CD25+CD4+ regulatory T (Treg) cells are immunosuppressive and mediate 

protection against autoreactive or excessive immune responses that are deleterious to the 

host. They play an important role in peripheral tolerance. DCs can induce Treg cells from 

naïve CD4+ T cells through the production of TGFβ (Yamazaki et al., 2008). TGFβ induces 

the expression of transcription factor Foxp3 in CD4+ T cells. Intestinal DCs also metabolise 

retinoic acid, which facilitates the induction of Treg cells (Coombes et al., 2007; Sun et al., 

2007). Furthermore, DCs also induce the production of IL-2 by effector T cells(Yamazaki 

et al., 2007). IL-2 activates the intracellular protein STAT5 in CD4+ T cells. IL-2 and 

STAT5 are important in the development of Treg cells (Antony et al., 2006; Burchill et al., 

2007), the maintenance of Treg cell population and the expression of Foxp3 in Treg 

(Fontenot et al., 2005).  

 

Th2 cells mediate immune responses against extracellular parasites and helminths. DCs 

also induce CD4+ T cells to differentiate into Th2 cells. However, unlike the clear-cut cases 

of Th1, Th17 and Treg cells, how DCs induce Th2 cell development is still unresolved. 

This is because while DCs produce Th1-, Th17- and Treg-inducing cytokines, DCs do not 

produce Th2-inducing cytokines, such as IL-4 (Le Gros et al., 1990; Swain et al., 1990) and 

thymic stromal lymphoietin (TSLP) (Ziegler and Liu, 2006). Some studies have proposed 

that DCs use other intercellular signalling molecules such as CD40 (MacDonald et al., 
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2002) and OX40L (Ito et al., 2005; Wang et al., 2006) to induce Th2 cell differentiation. 

Others have proposed that DCs induce Th2 cell differentiation through a TLR-4 dependent 

and MyD88-independent pathway (Kaisho et al., 2002). More recently, a study suggested 

that DCs cooperate with basophils in a reactive oxygen species (ROS)-mediated manner to 

induce Th2 cell differentiation (Tang et al., 2010). Although the exact mechanism of how 

DCs initiate Th2 cell differentiation remains unclear, there is accumulating evidence 

supporting the role of DCs in Th2 cell development. For example, the soluble extracts from 

the eggs of Schistosoma mansori activated DCs and these DCs induced Th2 responses (de 

Jong et al., 2002; MacDonald et al., 2001). From these pieces of evidence, DCs induce the 

development of Th2 cells through mechanisms that have not been fully clarified. 

 

1.12. DCs induce CTL development 

 

DCs are the most potent APCs at cross-presentation (Heath and Carbone, 2001b) and also 

play a central role in inducing the development of naïve CD8+ T cell into cytolytic effector 

T cells (Jung et al., 2002; Probst and van den Broek, 2005; Zammit et al., 2005). When 

naïve CD8+ T cells encounter DCs presenting cognate antigens in the draining lymph 

nodes, antigenic stimulation via TCR-peptide-MHC class I interactions induces the antigen-

specific naïve CD8+ T cells to undergo several rounds of cell divisions. Cellular division 

leads to a striking increase in the numbers of antigen-specific CD8+ T cells (Blattman et al., 

2002; Butz and Bevan, 1998; Murali-Krishna et al., 1998). As mentioned previously, the 

interaction of co-stimulatory molecules such as CD80 or CD86 expressed on the antigen-

presenting DCs with CD28 expressed on the antigen-specific naïve CD8+ T cells is 

necessary to drive these dividing CD8+ T cells into fully activated cytolytic effector T cells 

(Andreasen et al., 2000; Liu et al., 1997; Shedlock et al., 2003). Other co-stimulatory 

molecules that activate naïve CD8+ T cells into cytolytic effector T cells include the 4-

1BB/4-1BB ligand pathway (Tan et al., 1999). These cytolytic effector T cells are referred 

to as cytotoxic T lymphocytes (CTL).  

 

The presence of cytokines produced by the innate immune cells or activated DCs during 

infection also helps to maximise the development of CTLs. IL-12 and Type I IFN have 

been shown to promote the proliferation and survival of CTLs (Curtsinger et al., 1999; 
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Marrack et al., 1999). IL-12 also stimulates the CTLs to produce IFNγ (Curtsinger et al., 

2003). Another important signal during the activation of naïve CD8+ T cells is the licensing 

of antigen-presenting DCs by CD4+ T cells. The presence of CD4+ T cells is necessary for 

the development of long-lived memory CD8+ T cells. This is because in the absence of 

CD4+ T cell help, antigen-presenting DCs induce CD8+ T cells that undergo activation-

induced cell death (AICD). AICD of CD8+ T cells is mediated through the TRAIL-TRAIL 

receptor pathway (Janssen et al., 2005). In the absence of CD4+ T cell help, CD8+ T cells 

also fail to respond to secondary challenge (Janssen et al., 2003). 

 

After undergoing clonal division and acquiring effector functions, CTLs migrate to the sites 

of infection (Dudda et al., 2004; Mora et al., 2003), eliminate pathogen-infected cells 

directly through cytolytic mechanisms or enhance anti-viral responses through the secretion 

of effector cytokines. The expression of the appropriate peptide-MHC class I complexes on 

the pathogen-infected cells enables the antigen-specific CTLs to recognise and target the 

infected cells. Once the antigen-specific TCRs of the CTLs engage the peptide-MHC class I 

complexes on the infected cells, the CTLs can either deploy their cytolytic molecules in the 

direction of the infected cell or engage the receptors that induce apoptosis on the infected 

cell.  

 

Following the pre-determined CTL program, the population size of antigen-specific CTLs 

contracts (Badovinac et al., 2002), whereby most of the CTLs undergo apoptosis, leaving 

some CTLs behind as long-lived memory CD8+ T cells (Butz and Bevan, 1998; Murali-

Krishna et al., 1998). These long-lived memory CD8+ T cells are maintained at a steady 

level throughout the lifespan of the host (Hammarlund et al., 2003). Upon the exposure to 

the same pathogen, these memory CD8+ T cells mount a quick response. They are localised 

in non-lymphoid tissues or in draining lymph nodes (Sallusto et al., 1999) and are 

maintained at a higher frequency than the naïve CD8+ T cells. This provides the host with 

enhanced immunological protection against re-exposure to the pathogens. 
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1.13. CTLs use different cytolytic mechanisms to induce target cell apoptosis 

 

Upon TCR-peptide-MHC class I engagement, CTLs produce various cytolytic proteins that 

can induce the apoptosis of target cells through different mechanisms. These mechanisms 

can be grouped into receptor-mediated and granule-mediated cytolytic pathways (Russell 

and Ley, 2002). The receptor-mediated cytolytic pathway initiates apoptosis when the death 

ligands on the CTLs bind to the corresponding receptors on the target cell. CTLs synthesize 

most of the death ligands de novo although they store a small portion of these death ligands 

in vesicles. CTLs translocate the pre-stored or newly synthesized death ligands to their cell 

surface. Because CTLs produce most of the death ligands upon target engagement, the time 

taken to induce target cell apoptosis depends on the time taken to synthesize the death 

ligands. It is also essential that the target cell expresses the corresponding death receptors. 

 

In granule-mediated cytolytic pathway, CTLs store cytolytic proteins in granules. Upon 

interaction with the target cell, the CTL re-orients the granules in the direction of the target 

cell. The CTL then releases the cytolytic proteins into the immunological synapse between 

the CTL and the target cell. The cytolytic proteins enter the target cell and induce 

apoptosis. Because the cytolytic proteins are pre-stored, the CTLs can release these 

cytolytic proteins quickly and induce rapid target cell apoptosis.  

 

1.13.1 FasL on CTLs binds to Fas on target cells to induce apoptosis in target cells 

 

The ligands and receptors that induce cytolysis in receptor-mediated cytolytic pathway 

generally belong to the TNFα super family. The members in the TNFα family that induce 

cytolysis include Fas ligand (FasL), TNFα and TRAIL (Fig. 1.3). The receptor for FasL is 

Fas; the receptors for TNFα are the TNFα receptor 1 and 2 (TNFαR1/2) and death receptor 

(DR)-3; and the receptors for TRAIL are DR-5. The FasL-Fas pathway is the quintessential 

receptor-mediated cytolytic mechanism (Lowin et al., 1994b).  

 

The FasL-Fas pathway is initiated by the binding of FasL on the CTL to Fas on the target 

cell. The ligation of FasL to Fas recruits the intra-cellular protein Fas-associated via death 

domain (FADD) (Ju et al., 1994; Strasser et al., 2009). Other death receptors such as TNFα 
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receptors and TRAIL receptors also converge on intracellular signalling proteins such as 

FADD or TNF-receptor 1-associated via death domain (TRADD) (Bodmer et al., 2000; 

Sprick et al., 2000). FADD binds to the intracellular portions of Fas through the 

interactions of death domains and recruits caspase 8, forming the death-inducing signalling 

complex (DISC). Recruited caspase 8 then undergoes auto-proteolytic cleavage and 

becomes fully activated caspase 8. The activated form of caspase 8 activates executioner 

caspases 3 and 7, which cleave other cellular proteins, leading to target cell apoptosis. 

Caspase 10 is also recruited into the DISC complex to induce the downstream apoptosis 

cascade.  

 

1.13.2 CTLs secrete perforin and granzymes to induce apoptosis in target cells 

 

Perforin and granzymes are predominantly expressed in CTLs and NK cells, although 

CD4+ Treg cells express perforin and granzyme B (Boissonnas et al., 2010). When the CTL 

engages the target cell via the TCR-peptide-MHC class I complex, the Golgi apparatus, 

microtubule-organising centre and cytotoxic granules in the CTL are reorientated and 

directed towards the immunological synapse formed between the CTL and the target cell. 

Perforin and preformed granzymes are stored in cytotoxic granules. Perforin and preformed 

granzymes are released into the tight inter-cellular junction between the CTL and target cell 

(Fig. 1.3). The perforin and granzymes then diffuse across the immunological synapse into 

the target cell.  

 

The general consensus is that perforin requires calcium to bind to target cell membrane; is 

necessary for the delivery of granzymes into the target cell; and forms channels through cell 

membranes. However, exactly how perforin delivers granzymes into the target cell and how 

perforin acts as a cytolytic molecule are still debated. Initial evidence has shown that 

perforin inserts itself into the plasma membrane of target cells and forms membrane pores 

(Tschopp et al., 1986).  Because perforin forms a channel in the cell membrane, the 

cytolytic mechanism of action was initially thought to allow granzymes to diffuse into the 

target cell and induce cell apoptosis (Shi et al., 1992; Tschopp and Nabholz, 1990). 

However, some evidence has indicated that the pore size of perforin was too small for 

granzymes to pass through and that perforin delivers granzymes without obvious plasma 
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membrane pore formation (Metkar et al., 2002). There are also suggestions that when 

perforin disrupt the integrity of the plasma membrane, the plasma membrane repair 

mechanism takes place and somehow facilitate the uptake of granzymes (Keefe et al., 

2005). Other studies have also proposed that granzymes can enter target cells independent 

of perforin and that perforin form pores in endosome-like vesicles in the target cells, hence 

mediating the release of granzymes into the cytosol of target cells (Browne et al., 1999; 

Froelich et al., 1996; Pinkoski et al., 1998). Though the precise mechanism of perforin-

mediated killing is unknown, studies using perforin-knockout (PKO) mice showed that 

these mice were more susceptible to viral infections than wt mice (Kagi et al., 1994a). PKO 

CTLs were less cytolytic and showed defects in inducing membrane damage and apoptosis 

compared to perforin functional CTLs (Lowin et al., 1994a). These pieces of evidence 

indicate the critical role of perforin in CTL-mediated cytolytic functions. 

 

Granzyme A and B are the most well characterised of a family of 11 serine proteases 

(Chowdhury and Lieberman, 2008; Trapani et al., 2000). Human granzyme B has been 

shown to activate caspase-dependent pathway to initiate apoptosis through cleaving after 

aspartic residues in pro-caspase 3 and 8 (Atkinson et al., 1998; Medema et al., 1997; Yang 

et al., 1998) and caspase-independent pathways such as cleaving the proapoptotic Bid 

protein (Barry et al., 2000; Sutton et al., 2000). Human granzyme A induces target cell 

death similar to apoptosis in a caspase-independent manner (Beresford et al., 1999). In 

mice, knocking out granzyme A led to increased susceptibility to poxvirus (Mullbacher et 

al., 1996), whereas knocking out granzyme B in CTLs allowed the recipient mice to survive 

better in acute graft versus host disease (Graubert et al., 1996). Mice deficient of both 

granzyme A and B also could not control poxvirus infection (Mullbacher et al., 1999), 

indicating that CTLs employ granzyme A and B to mediate cytolytic functions. However, 

other studies have shown that granzyme A and B were not required for the clearance of 

tumours (Davis et al., 2001; Smyth et al., 2003). Granzyme A- and B-deficient CTLs were 

also able to lyse target cells but did not mediate target cell DNA fragmentation (Davis et 

al., 2001; Regner et al., 2009; Simon et al., 1997). Infection of PKO or granzyme A and B 

knockout mice with murine cytomegalovirus revealed that PKO mice suffered more 

immune pathological damage and did not survive the infection, whereas granzyme A and B 

knockout mice could control the infection and exhibited minimal immune pathology (van 
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Dommelen et al., 2006). Clearly, the cytolytic mechanism of action of granzyme A, 

granzyme B and perforin are distinct from one another. 

 

 
Fig. 1.3. The CTL uses a variety of cytolytic molecules to induce apoptosis in target cell. 
 
 
1.14. CD8+ T cell cytotoxicity is important in eliminating antigen-loaded DCs 

 

The development of CTLs is crucial in controlling and resolving bacterial and viral 

infections. In order to terminate the pathogen-induced immune responses and return the 

immune responses back to homeostasis, a few checkpoints are necessary. Firstly, the 

eradication of the pathogens and pathogen-infected cells are needed to remove the antigen 

and inflammation sources. Secondly, the numerical contraction of pathogen-specific CTLs 

that have expanded and accumulated during the immune response is necessary to release 

space and growth factors for the generation of other immune responses. The removal or the 

suppression of other participating immune cells is also necessary to terminate the existing 

immune responses. Lastly, the clearance of APCs that have taken up pathogens or are still 

presenting pathogenic antigens is also necessary to prevent induction of new immune 
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responses. There is an increasing number of evidence indicating that the APCs, in particular 

DCs, are targeted and eliminated by CTLs and other immune cells through cytolytic 

mechanisms. These studies have provided some evidence to show that regulating the 

duration of DC antigen presentation is important in controlling immune pathology and 

initiating beneficial immune responses. 

 

Earlier studies have proposed that the inability of T cells to eliminate antigen-presenting 

cells through perforin or FasL enhance lymphocyte proliferation and cytokine production 

and could lead to immune pathology (Sad et al., 1996; Spielman et al., 1998). In the study 

by Sad et al., in vitro experiments showed that PKO CTLs were less cytolytic, proliferated 

more rigorously and produced more IL-2 and IFNγ than wt CTLs when stimulated by 

APCs. Using cell lines expressing low or high levels of Fas, Sad et al. also showed that 

lesser Fas expression on the APCs enhanced cytokine production and proliferation of PKO 

CTLs and concluded that CTLs limited their activation and cytokine production through the 

elimination of APCs. Spielman et al. examined this issue in mice deficient of perforin and 

FasL and observed that the immune pathology in the pancreas of these mice was due to 

increased monocyte/macrophages infiltration. By testing the cytolytic ability of the CTLs 

from mice deficient of perforin and FasL on macrophages, Spielman et al. concluded that 

the immune pathology observed in these mice was a consequence of defective cytolysis of 

APCs by CTLs.  

 

Because DCs are proficient APCs to CD8+ T cells, it is likely that these DCs become 

targets of CTLs. Infection by immunosuppressive clone 13 LCMV resulted in a CD8-

mediated loss of splenic DCs, and a transient anti-LCMV CTL response, which led the 

authors to hypothesize that the disappearance of the virally-infected DCs were due to the 

anti-viral CTLs (Borrow et al., 1995). This is not surprising because CTLs eliminate viral-

infected cells. However, LCMV gp33 peptide-specific CTLs induced by DC immunisation 

in wt mice and the adoptive transfer of TCR transgenic mice specific for gp33 peptide were 

later shown to be capable of eliminating gp33-bearing DCs (Hermans et al., 2000; Ludewig 

et al., 2001). Furthermore, the elimination of antigen-bearing DCs by CTLs prevented the 

generation of anti-tumour CTLs (Hermans et al., 2000). These studies provide evidence for 
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the notion that the duration of antigen presentation by DCs is regulated by CTL-mediated 

elimination. 

 

Studies using PKO CTLs or PKO mice also provided evidence for CTL-mediated DC 

elimination. Peptide-loaded DCs could be recovered from mice that received PKO CTLs 

but not wt CTLs, indicating that antigen-bearing DCs were eliminated by CTLs in a 

perforin-dependent manner (Yang et al., 2006). The duration of DC antigen-presentation in 

a secondary influenza infection was also enhanced in PKO mice (Belz et al., 2007).  Other 

evidence implicating perforin in the regulation of DC induction of T cell responses are 

shown in PKO mice. Enhanced accumulation of antigen-specific CD8+ T cells in PKO mice 

was observed after multiple immunisations with peptide-loaded DCs (Yang et al., 2006). 

Infection of PKO mice with LCMV showed that CTLs in these mice accumulated 

excessively, produced more IFNγ than wt CTLs, resulting in increased immunopathology 

and increased mortality (Matloubian et al., 1999).  Moreover, DCs were involved in the 

aberrant accumulation and activation of CTLs in LCMV-infected PKO mice (Borrow et al., 

1995). Listeria monocytogenes infection of PKO mice also led to an increased expansion of 

CTLs (Badovinac et al., 2000). These observations in PKO mice are reminiscent of familial 

hemophagocytic lymphohistiocytosis (FHL) patients. FHL patients suffer from perforin 

gene defects and are characterised by uncontrolled activation and accumulation of CD8+ T 

cells (Stepp et al., 1999). Taken together, the evidence supports the notion that DC antigen 

presentation is regulated by CTLs through perforin-mediated cytolytic pathway. 

 

The regulation of subsequent immune responses through CTL-mediated DC killing is 

further shown in studies on human and mice lacking the death receptor-mediated cytolytic 

pathway. Patients suffering from autoimmune lymphoproliferative syndrome (ALPS) have 

defects in apoptosis-related genes such as the Fas, FasL and TRAIL genes, which then 

affect the homeostasis of lymphocytes and result in autoimmune manifestations including 

aberrant accumulation of lymphocytes, elevated amounts of double negative T cells and 

autoantibodies. In a patient suffering from ALPS type II, DCs from this patient were 

resistant to TRAIL-mediated apoptosis and aberrant DC accumulation was observed (Wang 

et al., 1999). ALPS type II patients are defective in caspase 10 gene, which also plays a 

downstream role in Fas-mediated apoptosis (Wang et al., 2001). Moreover, ALPS type IB 
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(Straus et al., 1999) and IA (Wu et al., 1996) are also observed in mice suffering from 

lymphoproliferative (lpr) and general lymphoproliferative (gld) diseases respectively. 

These lpr and gld mice do not express Fas and FasL respectively due to their respective 

mutations in Fas and FasL genes (Takahashi et al., 1994; Watanabe-Fukunaga et al., 1992). 

The evidence in support of regulating DCs by Fas-FasL pathway was reported in lpr mice 

whereby increased DC frequency was observed (Fields et al., 2001). In mice where Fas was 

selectively knocked out in DCs, there was an accumulation of DCs and manifestations of 

systemic autoimmunity were observed (Stranges et al., 2007). This indicates that Fas-FasL-

mediated deletion of DCs is necessary to prevent autoimmune manifestations. In addition, 

CTLs were also not able to eliminate Fas-deficient DCs (Stranges et al., 2007), providing 

support for the notion that CTLs regulate DC antigen presentation through Fas-FasL 

cytolytic pathway. The importance in controlling the DC antigen presentation was 

demonstrated when prolonged DC survival led to an aberrant accumulation of DCs, and in 

turn, resulted in enhanced T cell proliferation and autoimmune manifestations (Chen et al., 

2006).  

 

There is other evidence indicating that DCs are protected from CTL killing in certain 

conditions. Some in vitro studies have shown that DCs are resistant to apoptosis induced by 

cytolytic molecules. Using DCs from various sources, some studies have shown that DCs 

were resistant to apoptosis induced by Fas-FasL pathway because they expressed FLIP, 

which inhibited the Fas signalling pathway (Ashany et al., 1999; Leverkus et al., 2000; 

Rescigno et al., 2000; Willems et al., 2000). One study showed that serum-free treated DCs 

cultured from PBMCs expressed Bcl-XL, thus protecting them from Fas-mediated DC 

killing (Lundqvist et al., 2002). Another study showed that activation of murine and human 

DCs by LPS or CD40L increased serine protease inhibitor protein expression and become 

resistant to CTL cytolysis in vitro (Medema et al., 2001). This was further supported by 

observations that activated DCs were resistant to CTL-mediated killing in vivo (Mueller et 

al., 2006). Both Mueller et al. and Medema et al. also showed that antigen-specific CD4+ T 

cells protected DCs from CTL elimination in vivo and in vitro respectively (Medema et al., 

2001; Mueller et al., 2006). A study by Watchmaker et al. later showed that human memory 

CD8+ T cells produced TNFα to induce the expression of serine protease inhibitor protein 

in DCs such that these DCs were resistant to cytolysis in vitro (Watchmaker et al., 2008).  
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Thus far, with the exception of the study conducted by Mueller et al., studies conducted 

under in vivo conditions have shown that DCs are sensitive to CTL cytolysis. In vivo live 

imaging of draining lymph nodes in mice has shown that effector and memory CTLs 

established interactions with cognate antigen-loaded DCs and induced DC apoptosis 

(Guarda et al., 2007a). While LPS-activated DCs expressed serine protease inhibitor 

protein, the expression of this inhibitor did not protect them from CTL-mediated killing in 

vivo (Andrew et al., 2008). Memory CTLs also did not protect DCs from cytolysis in vivo 

because memory CTLs induced by DC immunisation (Hermans et al., 2000) or by 

influenza infection (Belz et al., 2007) eliminated antigen-presenting DCs. Although some 

types of CD4+ T cells such as CD4+ Th2 cells have been shown to protect DCs from CTL 

killing, CD4+ Th1 cells did not protect antigen-bearing DCs from cytolysis (Medema et al., 

2001). Other types of CD4+ T cells also induced DC apoptosis directly. For example, in 

vivo imaging of draining lymph nodes showed that Foxp3+ CD4+ Treg cells induced DCs 

apoptosis and this was mediated via a perforin-dependent mechanism in vivo (Boissonnas et 

al., 2010).  

 

The evidence from these in vivo and in vitro studies may appear conflicting. However, 

because DCs take active measures to protect themselves from CTL-mediated killing at least 

in vitro, this is indicative that CTL-mediated elimination of DCs is important in regulating 

immune responses. In line with this, CTL-mediated DC killing has been shown to prevent 

the induction of anti-tumour (Hermans et al., 2000) and alloreactive T cell responses 

(Laffont et al., 2006). Moreover, when DCs cannot undergo apoptosis due to the expression 

of caspase inhibitor protein (Chen et al., 2006) or deletion of apoptosis inducing proteins 

(Stranges et al., 2007), the immune responses become dys-regulated resulting in immune 

pathology. Taken together, these studies support the notion that cytolytic elimination of 

DCs by CTLs or other immune cells plays a crucial role in resolving immune responses, 

restraining unwanted immune responses, and may have an impact on the initiation of 

beneficial immune responses. 
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1.15. Aims of this study 

 

While it is clear that CTLs remove pathogens and undergo numerical contraction after the 

resolution of primary immune responses, there is a lack of clear evidence showing whether 

CTLs also mediate resolution through the cytolytic elimination of antigen-presenting DCs. 

How CTLs mediate DC killing is also not fully defined. When CTLs eliminate target cells, 

apoptosis ensues and the cellular materials from the apoptotic cells can be taken up by other 

DCs and presented to other T cells (Parish et al., 2009). The CTL-mediated elimination of 

antigen-presenting DCs may result in antigen transfer from the dying DCs to other DCs. 

Moreover, antigens can be transferred among DCs without the need for CTLs to release the 

cellular contents of the target cell (Allan et al., 2006; Kleindienst and Brocker, 2003; 

Luketic et al., 2007). This leads to a dilemma because if CTLs eliminate DCs to resolve 

immune responses, but antigen transfer among DCs spreads the antigens for further antigen 

presentation, no decrease in the immune responses would be expected.  

 

In this study, I hypothesize that CTLs eliminate antigen-presenting DCs through cytolytic 

molecules, thereby preventing the induction of T cell responses. My second hypothesis is 

that inter-DC antigen transfer does not induce T cell responses in the presence of CTL-

mediated DC killing.  

 

To address these hypotheses, I examined the CTL-mediated regulation of DC survival, the 

cytolytic mechanisms involved, the impact of CTL-mediated DC killing and inter-DC 

antigen transfer on the induction of subsequent T cell responses. The following aims are 

addressed in the three results chapters of this thesis. They are: 

 

1. To characterise the mechanisms of CTL-mediated DC elimination, and examine the 

impact of DC elimination on T cell proliferation 

2. To evaluate DC elimination and its impact on T cell proliferation using different 

methods of antigen loading on DCs and different methods of generating CTLs 

3. To examine the impact of CTL-mediated DC killing and inter-DC antigen transfer 

on the induction of T cell proliferation and the quality of the resulting T cell 

responses 
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2.1. Materials 

 

2.1.1. Labwares  

 

Items Source 

Acrodisc 32 mm syringe filter with 0.2 µm 

Supor membrane 

PALL  Life Sciences, Cornwall, U.K. 

1 ml Tuberculin syringes & 10 ml syringes 

1.0 µm pore size, PET track-etched membrane 12 

well format cell insert 

Falcon polystyrene sterile conical tubes: Blue 

Max 50 ml and Blue Max Jr. 15 ml 

Falcon polystyrene sterile multiwall tissue 

culture plates: 6 well, 24 well and MicrotestTM U-

bottom 96 well plates 

Falcon polystyrene sterile tissue culture flasks: 

200 ml & 600 ml 

Falcon polystyrene sterile serological pipettes 

Nylon cell strainers: 40 & 70 µm 

PrecisionGlideTM needles: 18, 20, 25 & 27.5 

gauge (G) 

Ultra-FineTM needle insulin syringes (29 G): 0.3, 

0.5 & 1 ml 

Becton Dickinson (BD) Biosciences, 

CA, USA 

Nylon gauze: 70 µm NZ Filter Specialists Ltd., Auckland 

NZ 

30 µm MACS pre-separation filters Miltenyi Biotech, GmbH, Germany 

Large cell MACS columns Miltenyi Biotech, GmbH, Germany 

Petri dish, 90 mm diameter Labserv, Auckland, New Zealand 

 

 

 



Chapter 2: Materials and Methods 37 

2.1.2. Reagents 

 

Reagents and materials Source 

2-mercapto-ethanol (2-ME) 55 mM solution Sigma-Aldrich, MO, USA 

Anti-CD4 MACS microbeads Miltenyi Biotech, GmbH, Germany 

Anti-CD8α MACS microbeads Miltenyi Biotech, GmbH, Germany 

Ammonium chloride powder Sigma-Aldrich, MO, USA 

BD Cytofix/Cytoperm kit BD Bioscience, CA, USA 

Betaplate scintillator PerkinElmer Life Sciences and Analytical 

Sciences, MA, USA 

Carboxy-fluorescein diacetate succinimidyl 

ester (CFSE)  

Molecular Probes, Invitrogen, CA, USA 

DNase I powder Roche, IN, USA 

Ethlenediaminetetraacetic Acid (EDTA) 

powder 

Sigma-Aldrich, MO, USA 

Fetal calf serum (FCS) Invitrogen, CA, USA 

Dextran fluorescein 40,000 MW anionic 

(FITC dextran)  

Molecular Probes, Invitrogen, CA, USA 

LCMV glycoprotein gp33-41 

(KAVYNFATM) peptide 

Mimotopes, Victoria, Australia 

Granulocyte macrophage colony-

stimulating factor (GM-CSF) 

GM-CSF producing murine X63 cell line, 

gift from Dr. Antonius Rolink (Basel 

Institute of Immunology, Basel, 

Switzerland) 

GolgiStop BD Pharmingen, CA, USA 

Iscove’s modified Dulbecco medium 

(IMDM) supplemented with GlutaMAXTM, 

25 mM HEPES buffer and 3.024 mg/l 

NaHCO3 

Invitrogen, CA, USA 

Liberase CI powder Roche, IN, USA 
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Lipopolysaccharide (LPS) from Escherichia 

coli, serotype 0111:B4 

Sigma-Aldrich, MO, USA 

Interleukin (IL)-2 IL-2 producing IL2L6 cell line, generated by 

the modification of murine J558 parental 

line (Traunecker et al., 1991) 

IL-4 IL-4 producing Chinese hamster ovary cell 

line, gift from Dr. Antonius Rolink (Basel 

Institute of Immunology, Basel, 

Switzerland) 

IL-6 Gift from A/P Christiane Ruedl (Nanyang 

Technological University, Singapore) 

Orange fluorescent dye chloromethyl-

benzoyl-aminotetramethyl-rhodamine 

(CMTMR, also known as ‘Cell Tracker 

Orange’) 

Molecular Probes, Invitrogen, CA, USA 

Ovalbumin (OVA) protein powder Sigma-Aldrich, MO, USA 

OVA257-264 (SIINFEKL) peptide  Mimotopes, Victoria, Australia 

OVA323-339 (ISQAVHAAHAEINEAGR) 

peptide 

Mimotopes, Victoria, Australia 

Penicillin-streptomycin Invitrogen, CA, USA 

Phosphate buffer saline (PBS), CaCl2 and 

MgCl2 free 

Invitrogen, CA, USA 

Propidium iodide (PI) BD Biosciences, CA, USA 

Sodium azide powder Sigma-Aldrich, MO, USA 

Stem cell factor  Gift from A/P Christiane Ruedl (Nanyang 

Technological University, Singapore) 

Streptavadin MACS microbeads Miltenyi Biotech, GmbH, Germany 

Tris powder Invitrogen, CA, USA 

Tritiated thymidine (6-Methyl-3H 

thymidine) 

Amersham Biosciences, Little Chalfont, UK 
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Type II Collagenase powder Invitrogen, CA, USA 

 
 
2.1.3. Antibodies 
 
Antibodies used to minimise non-specific antibody binding 

   

Monoclonal Antibodies Clone Source 

Anti-FcγRII/III receptor 2.4G2 Purified in-house 

   

Antibodies used to label DCs and other APCs 

   

Monoclonal Antibodies Clone Source 

Anti-MHC-II (I-A)b  3JP Purified in-house 

Anti-CD11c  N418 Purified in-house 

Anti-CD11b  M1/70 BD Pharmingen, CA, USA 

Anti-CD80  16-10A1 BD Pharmingen, CA, USA 

Anti-CD86  GL1 BD Pharmingen, CA, USA 

Anti-CD40  3/23 BD Pharmingen, CA, USA 

Anti-F4/80  CI:A3-1 Purified in-house 

Anti-CD95  Jo2 BD Pharmingen, CA, USA 

 

Antibodies used to label T cells 

   

Monoclonal Antibodies Clone Source 

Anti-CD3ε  2C11 BD Pharmingen, CA, USA 

Anti-CD8  2.43 Purified in-house 

Anti-CD4  GK1.5 Purified in-house 

Anti-CD4  GK1.5 BD Pharmingen, CA, USA 

Anti-Vα2 B20.1 BD Pharmingen, CA, USA 

Anti-Vβ5.1/5.2 MR9-4 BD Pharmingen, CA, USA 

Anti-CD62L MEL-14 BD Pharmingen, CA, USA 
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Anti-CD44  IM7 BD Pharmingen, CA, USA 

Anti-CD178  MFL4 BD Pharmingen, CA, USA 

 

Antibodies used to label C57BL/6 and CD45-congenic B6.SJL-Ptprca cells 

   

Monoclonal Antibodies Clone Source 

Anti-CD45.2  104 eBiosciences, CA, USA 

Anti-CD45.1  A20 BD Pharmingen, CA, USA 

 

Antibodies used to deplete lineage-positive cells and congenic B6.SJL-Ptprca cells 

   

Monoclonal Antibodies Clone Source 

Anti-CD3ε  145-2C11 eBiosciences, CA, USA 

Anti-B220  6B2 Purified in-house 

Anti-CD19  1D3 BD Pharmingen, CA, USA 

Anti-NK1.1  PK136 eBiosciences, CA, USA 

Anti-DX5  DX5 eBiosciences, CA, USA 

Anti-Ter119  Ter119 eBiosciences, CA, USA 

Anti-Gr-1  RB6-8C5 BD Pharmingen, CA, USA 

Anti-Thy1.2  53-2.1 eBiosciences, CA, USA 

Anti-CD45.1  A20 eBiosciences, CA, USA 

   

Antibodies used for flow cytometry sorting 

   

Monoclonal Antibodies Clone Source 

Anti-CD11c HL3 BD Pharmingen, CA, USA 

Anti-CD8  53-6.7 BD Pharmingen, CA, USA 

Anti-CD205  205yekta eBiosciences, CA, USA 
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Antibodies used for intracellular labelling 

   

Monoclonal Antibodies Clone Source 

Anti-IFNγ (Rat IgG1 κ isotype) XMG1.2 BD Pharmingen, CA, USA 

Rat IgG1 κ isotype R3-34 BD Pharmingen, CA, USA 

 

Antibodies used for secondary labelling of cells 

   

Monoclonal Antibodies Clone Source 

Streptavadin-APC Streptavadin BD Pharmingen, CA, USA 

Streptavadin-FITC Streptavadin BD Pharmingen, CA, USA 

Streptavadin-PE Streptavadin BD Pharmingen, CA, USA 

Streptavadin-PerCP Streptavadin BD Pharmingen, CA, USA 

 
 
2.1.4. Buffer compositions 
 
Buffer Buffer composition 

Ammonium Chloride Tris (ACT) 0.144 M Ammonium chloride ph 7.4 

17 mM Tris ph 7.4 

Complete medium (cIMDM) 500 ml IMDM 

1% Penicillin-streptomycin 

5x10-5 M 2-ME 

5% FCS 

Fluorescent activated cell sorter 

(FACS) buffer 

10 mM EDTA pH 8.0 

0.01% NaN3 

2% FCS 

Wuerzburger buffer 1% FCS 

10 µg/ml DNAse I 

5 mM EDTA pH 8.0 

500 ml PBS 
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2.2. Cell lines 

 

The Nup98 HoxB4 OVA transgenic haematopoietic stem cell (HSC) line were a gift from 

A/P Christiane Ruedl. Briefly, the HSCs were derived from act-mOVA mice (Ehst et al., 

2003) and transfected with nucleus protein nucleoporin 98 (Nup98) and transcription factor 

HoxB4 (Ruedl et al., 2008). The transfection with Nup98 and HoxB4 allows the self-

renewal of HSCs for several weeks in vitro (Ruedl et al., 2008). This stem cell line was 

maintained in culture with cIMDM containing IL-6 and stem cell factor in 90 mm petri 

dishes. 

 

 

2.3. Mice  

 

2.3.1. Maintenance and ethical approval 

 

All mice were bred and maintained on standard laboratory food and water ad libitum in the 

Biomedical Research Unit of the Malaghan Institute of Medical Research. The mouse 

strains were maintained by brother × sister mating. Sex matched mice between 6 – 14 

weeks of age were used for all experiments. All experimental protocols were approved by 

Victoria University Animal Ethics Committee and performed in accordance with 

institutional guidelines. 

 

2.3.2. Mouse strains 

 

C57BL/6 breeding pairs were originally obtained from the Jackson Laboratory (Bar 

Harbour, ME, USA) and bred at the Malaghan Institute of Medical Research, Wellington, 

New Zealand by brother × sister mating. 

 

C57BL/6-background OT-I and OT-II T cell receptor (TCR)-transgenic mice were gifted 

by Prof. Francis Carbone (University of Melbourne, Melbourne, Australia). T cells from 

OT-I and OT-II mice express Vα2+Vβ5.1/5.2+ TCRs, which are specific for ovalbumin 

(OVA)257-264 presented on H2-Kb, or OVA323-339 on I-Ab, respectively. The OT-II TCR 
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transgenic mice were tested for the expression of Vα2 and Vβ5.1/5.2 in peripheral blood by 

flow cytometry.  

 

Perforin knockout (PKO) OT-I mice were generated by crossing the OT-I and C57BL/6 

PKO mice twice at the Malaghan Institute of Medical Research, Wellington, New 

Zealand(Kagi et al., 1994a). The presence of the inactivated perforin allele in PKO OT-I 

mice was determined by PCR as in Kagi et al (Kagi et al., 1994a). 

 

CD45-congenic B6.SJL-Ptprca mice were from the Animal Resources Centre, Perth, 

Australia.  

 

OT-I × B6.SJL-Ptprca mice were bred at the Malaghan Institute of Medical Research, 

Wellington, New Zealand. 

 

OT-II × B6.SJL-Ptprca mice were bred at the Malaghan Institute of Medical Research, 

Wellington, New Zealand. 

 

C57BL/6-background MRL-FASlpr mice were purchased from the Walter and Eliza Hall 

Institute of Medical Research, Melbourne, Australia, and bred at the Malaghan Institute of 

Medical Research, Wellington, New Zealand. 

 

MHC II-/- B6Aa0/Aa0 mice were gifted by Dr. Horst Blüthmann (Hoffmann-La Roche, 

Basel, Switzerland). MHC II-/- B6Aa0/Aa0 mice were routinely tested for the expression of 

MHC class II to confirm that they were indeed MHC class II knockouts (Appendix 1).  

 

2D2 mice expressing transgenic TCRs specific for the MOG35-55 peptide 

(MEVGWYRSPFSRVVHLYRNGK) presented by Iab were obtained from Harvard 

Medical School (Boston, MA, USA) (Petersen et al., 2004). The 2D2 mice were maintained 

by breeding C57BL/6 males with 2D2 TCR transgenic females. 
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2.3.3. Mouse manipulation  

 

Mice were sacrificed by CO2 asphyxiation, followed by cervical dislocation. 

 

 

2.4. Methods – Cell culture 

 

2.4.1. General cell culture 

 

All cells were cultured in cIMDM at 37 °C with 5% CO2 and 95% humidity. 

 

2.4.2. Culture from bone marrow precursors 

 

Muscles and connective tissues were removed from the femurs and tibias of the euthanised 

mice. The ends of the bones were cut and the bones were flushed with IMDM using a 25 G 

needle and a 10 ml syringe. The BM cells flushed out from the tibias and femurs were 

collected in 50 ml Falcon tubes. Clumps of cells were disrupted through vigorous pipetting 

and vortexing. The cell suspension was then passed through a 70 µm cell strainer. The BM 

cells were subjected to centrifugation at 300 × g for 10 min and washed with IMDM. Live 

BM cells were identified using Trypan blue dye exclusion and counted using a 

haemocytometer. After counting the BM cells, they were resuspended at 2 × 106 cells per 5 

ml in cIMDM supplemented with 10 ng/ml GM-CSF and 20 ng/ml IL-4 (Garrigan et al., 

1996). 5 ml of the BM cell suspension were pipetted into each well of the 6-well plates. 

The 6-well plates containing BM cells were then incubated for 7 days. On the 3rd and 5th 

days of GM-CSF/IL-4 treatment, approximately 2 ml from each well in 6-well plates was 

aspirated gently and fresh cIMDM supplemented with 10 ng/ml GM-CSF and 20 ng/ml IL-

4 was added to replace the aspirated media. The percentage of DCs in the BM cell culture 

was determined using anti-CD11c and anti-CD11b antibodies. Greater than 70% of cells 

recovered from GM-CSF/IL-4 cultures were CD11b+CD11c+ (Fig. 3.6.2a and Fig. 4.1a). 
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2.4.3. Generating DCs from Nup98-HoxB4 murine HSCs 

 

Nup98-HoxB4 OVA-transgenic (OVAtr) murine HSCs were cultured in 90 mm petri 

dishes, containing cIMDM supplemented with 0.1% IL-6 and 10% stem cell factor. IL-6 

and stem cell factor were kindly provided by A/P Christiane Ruedl (Nanyang 

Technological University, Singapore). HSCs were sub-cultured every 3rd day. OVAtr HSCs 

were harvested from 90 mm petri dishes by gently agitating with the pipette. HSCs were 

then washed with IMDM to remove the stem cell factor and IL-6. After washing, HSCs 

were cultured in GM-CSF and IL-4 in the same manner as BM cells in 2.4.2, except that 

HSCs were plated at 1 × 106 cells/well in 6-well plates. Greater than 90% of cells recovered 

from the GM-CSF/IL-4 cultures were CD11b+CD11c+ and will be referred to as OVAtr 

DCs in this thesis (Fig. 4.3.1a).  

 

2.4.4. Activation of cultured DCs  

 

On the 6th day of culture in GM-CSF/IL-4, LPS was added at a final concentration of 100 

ng/ml to the cells cultured from the OVAtr HSCs and BM cells and incubated for 18-24 h. 

Non-adherent cells were harvested on day 7 by gentle agitation with the pipette. Greater 

than 70% and 90% of cells recovered from the GM-CSF/IL-4 cultures of BM cells and 

OVAtr HSCs, respectively, were CD11b+CD11c+ cells (Fig. 3.6.2a and Fig. 4.3.1a). LPS-

treated DCs cultured from the BM cells and OVAtr HSCs were MHC class 

IIhiCD80hiCD86hiCD40hi (Fig. 3.6.2b and Fig. 4.3.1b). 

 

2.4.5. Loading BM-DCs with peptides  

 

On the 7th day of culture, LPS-treated DCs were subjected to centrifugation at 300 × g for 

10 min. The cells were then counted and resuspended in cIMDM at 1 × 106 cells/ml. 

SIINFEKL, OVA323-339, or gp33-41 peptides were added into the DC suspensions at the 

appropriate concentrations and incubated at 37 °C for 4 h. After incubation, DCs were 

washed twice in IMDM, counted and centrifuged.  
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2.4.6. Labelling DCs with CFSE 

 

DCs were cultured and activated as described in 2.4.2 and 2.4.4. DCs were washed with 

PBS and counted. After counting, the cells were resuspended to a concentration of 5 × 106 

cells/ml in PBS. A final concentration of 1 µM CFSE was added to the cells. Upon the 

addition of CFSE, the cells were vortexed and incubated for 10 min at 37 °C. Equal 

volumes of FCS and IMDM were added to the cell suspensions to stop the CFSE-labelling 

reactions. The cells were then washed twice thoroughly with IMDM and resuspended in the 

appropriate volume of IMDM or cIMDM. 

 

2.4.7. Labelling DCs with CMTMR 

 

DCs were cultured and activated as described in 2.4.2 and 2.4.4. DCs were counted and 

resuspended in pre-warmed cIMDM at a concentration of 5 × 106 cells/ml. 10 µM CMTMR 

was added to the cell suspension, which was then incubated for 15 min at 37 °C. The cells 

were then centrifuged and resuspended in pre-warmed cIMDM before being incubated for 

another 20 min at 37 °C.  After the 20 min incubation, the labelled cells were subsequently 

washed twice thoroughly with IMDM. 

 

2.4.8. Loading BM-DCs with OVA protein 

 

On the 5th day of GM-CSF/IL-4 treatment of BM cells, non-adherent cells were harvested 

by gentle pipetting, followed by centrifugation at 300 × g for 10 min. The cells were 

counted and resuspended in fresh cIMDM supplemented with 10 ng/ml GM-CSF and 20 

ng/ml IL-4. In the meantime, OVA protein powder was weighed and allowed to thoroughly 

dissolve in PBS to make a stock concentration of 40 mg/ml. The OVA protein solution was 

then filtered through a 32 mm syringe filter with 0.2 µm membrane pore size under sterile 

conditions. The filtered OVA protein solution was added to the DC suspension at a final 

concentration of 2 mg/ml. In some experiments, the OVA protein solution was serially 

diluted and the diluted OVA protein solution was added to the DC suspension at a final 

concentration of 0.02 mg/ml or 0.004 mg/ml.  
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After adding the appropriate OVA protein concentration into the DC suspension, the DCs 

were resuspended at 2 × 106 cells per 5 ml in cIMDM and left in the incubator at 37 °C 

overnight. The next day, the DC culture was treated with LPS. The percentage of DC+OVA 

was determined using anti-CD11c and anti-CD11b antibodies. Greater than 70% of cells 

recovered after the loading of OVA protein were CD11b+CD11c+ (Fig. 4.1a).  

 

 

2.5. Methods – T cell purification 

 

2.5.1. Preparation of lymph node and spleen cell suspensions by tissue disruption 

 

Lymph nodes were made into cell suspensions by pressing with a 1 ml syringe plunger 

through a 70 µm cell strainer. Lymphocytes were collected in 50 ml tubes. The 

lymphocytes were then centrifuged, washed with Wuerzburger buffer and stored on ice 

before T cell purification. 

 

Spleens were cut into small pieces using a pair of scissors. The pieces of spleens were then 

disrupted by pressing with a 1 ml syringe plunger through a 70 µm cell strainer. 

Splenocytes were treated with ACT buffer for 5 min at 37 °C to lyse the red blood cells. 

Splenocytes were then washed with Wuerzburger buffer and stored on ice before T cell 

purification. 

 

2.5.2. T cell purification using magnetic cell separation (MACS) 

 

CD4+ T cells were enriched from the lymph nodes and spleens of naïve OT-II or OT-II 

B6.SJL-Ptprca mice, while CD8+ T cells were enriched from the lymph nodes and spleens 

of naïve OT-I or OT-I B6.SJL-Ptprca mice. Lymph nodes and spleens of the 

abovementioned mice were harvested and prepared as described in 2.5.1. After preparation, 

both lymphocytes and ACT-treated splenocytes were centrifuged and pooled together in 

Wuerzburger buffer. The mixture of lymphocytes and splenocytes was filtered through a 70 

µm cell strainer again. The cell mixture was counted and resuspended to 1 × 106 cells per 9 

µl in Wuerzburger buffer. To enrich for CD4+ T cells, 1 µl of anti-CD4 MACS microbeads 
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for every 1 × 106 cells was added. To enrich for CD8+ T cells, 1 µl of anti-CD8α MACS 

microbeads for every 1 × 106 cells was added. The cell mixture was incubated with the 

MACS microbeads for 15 min on ice. The cells were mixed well periodically during the 

incubation. After the incubation, 0.1 µl of Wuerzburger buffer for every 1 × 106 cells was 

added and the cells were centrifuged to remove the unbound microbeads. The cells were 

then resuspended to 200 × 106 cells/ml in Wuerzburger buffer and passed through a 30 µm 

MACS pre-separation filter for positive magnetic selection (POSSEL program) on the 

AutoMACS machine (Miltenyi Biotec GmbH, Germany). The purity of enriched CD4+ T 

cells was greater than 90% (Appendix 2).  

 

2.6. Methods – In vitro T cell activation with peptide-pulsed BM-DCs 

 

BM-DCs were cultured, activated and loaded with 0.1 µM SIINFEKL as described in 2.4.2, 

2.4.4 and 2.4.5. In the meantime, lymph nodes were harvested from naïve OT-I or OT-I 

PKO mice and made into cell suspensions as described in 2.5.1, except that the 

lymphocytes were resuspended in cIMDM. The lymphocytes were counted and adjusted to 

0.5 × 106 cells/ml with cIMDM. After the 4 h incubation with the peptide, the SIINFEKL-

loaded DCs were washed with IMDM once and resuspended to 0.0625 × 106 cells/ml in 

cIMDM. 1 ml of SIINFEKL-loaded DC mix, 1 ml of lymphocyte mix, and 3 ml of cIMDM 

were added into each well of the 6-well plates. Each well contained 0.0625 × 106 

SIINFEKL-loaded DCs and 0.5 × 106 OT-I lymphocytes in a total cIMDM volume of 5 ml. 

The plates were left to incubate at 37 °C for 4 days. On the 4th day, activated OT-I CD8+ T 

cells were collected and washed with IMDM once. The activated CD8+ T cells were 

counted and resuspended to 0.25 × 106 cells/ml in cIMDM supplemented with 100 U/ml of 

IL-2. The cells were then left in the incubator overnight. The next day, additional 100 U/ml 

of IL-2 was added to the activated CD8+ T cells. After 2 days in IL-2, the activated OT-I 

CD8+ T cells were then harvested and washed in IMDM twice. Greater than 95% of T cells 

recovered from the in vitro activation culture of OT-I or OT-I PKO lymphocytes were 

Vα2+Vβ5.1/5.2+ (Fig. 3.1.1 and Fig. 3.5.2). The recovered OT-I or OT-I PKO CD8+ T cells 

bore the effector phenotype CD62LloCD44hi (Fig. 3.1.1 and Fig. 3.5.2). 
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2.7. Methods – Labelling of CD178 (FasL) on CTLs 

 

In vitro activated OT-I CTLs prepared as described in 2.6 were washed with FACS buffer 

and incubated with anti-FcγRII/III for 10 min at 4 °C in 96-well plates. 10 µM SIINFEKL 

or media only was added together with anti-CD178 antibody into each well containing OT-

I CTLs. The CTLs were incubated for 30 min or 2 h at 37 °C. After incubation, in vitro 

activated OT-I CTLs were washed with FACS buffer twice and resuspended in 100 – 150 

µl FACS buffer. The appropriate concentration of PI was added 5 – 10 min before the cells 

were monitored by flow cytometry. 

 

 

2.8. Methods – In vitro T cell proliferation assays 

 

2.8.1. In vitro T cell proliferation assays using thymidine uptake 

 

Lymphocytes were harvested as described in 2.5.1 except that they were resuspended in 

cIMDM. Lymphocytes were resuspended in the appropriate volume. The lymphocytes were 

then plated in 96-well plates together with either peptide-loaded DCs prepared as in 2.4.5 or 

protein-loaded DCs prepared as in 2.4.8 and incubated for 2 days at 37 °C. After the 

incubation, 1 µCi tritiated thymidine was added into the wells and the cells were incubated 

for another 6 h. Following the incubation with thymidine, the cells were harvested using a 

Harvester 96® (Tomtec, CT, USA). Thymidine incorporation was detected using Wallac 

1450 MicrobetaPlus Liquid Scintillation Counter (PerkinElmer Life Sciences and 

Analytical Sciences, formerly Wallac Oy) and acquired using Wallac 1450 MicroBeta 

Windows Workstation ver. 2.70.004. 

 

2.8.2. In vitro T cell proliferation assays using CFSE dilution 

 

CD4+ and CD8+ T cells were enriched and labelled with CFSE as described in 2.5.2 and 

2.4.6. In some experiments, CFSE-labelled CD4+ T cells were plated in 24-well plates, 

together with either protein-loaded DCs prepared as in 2.4.8 or DCs prepared as in 2.4.4 for 
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4 or 5 days at 37 °C. After the incubation, cells were harvested and labelled with antibodies 

against cell surface markers as described in 2.14.1 and monitored by flow cytometry. 

 

 

2.9. Methods – Ex vivo DC manipulation 

 

2.9.1. Preparation of lymph node cell suspensions by enzymatic digestion 

 

Lymph nodes were collected in IMDM and were broken into pieces using 18 G needles. 

The lymph nodes were then incubated in IMDM containing 100 µg/ml DNase I and 0.1 

mg/ml Liberase CI for 25 min at 37 °C. After 25 min of incubation, EDTA was added at a 

final concentration of 10 mM and the digested lymph nodes were incubated for another 5 

min at 37 °C. The digested lymph nodes were then pressed through a 70 µm cell strainer, 

and washed once with Wuerzburger buffer for subsequent experiments. 

 

2.9.2. Enriching DCs for in vitro T cell proliferation assays 

 

CD11c+ DCs were enriched from the brachial and axillary draining lymph nodes of mice. 

Brachial and axillary lymph nodes were harvested and prepared as described in 2.9.1. After 

preparation, the lymphocytes were incubated with anti-FcγRII/III antibodies for 15 – 20 

min at 4 °C. The lymphocytes were then incubated with anti-CD3ε, anti-CD19, anti-B220, 

anti-NK1.1, anti-DX5, anti-Ter119, anti-Gr-1 and anti-Thy1.2 biotinylated antibodies for 

30 min at 4 °C. In some experiments, anti-CD45.1 biotinylated antibody was also added. 

The cells were mixed well periodically during incubation. After antibody incubation, the 

lymphocytes were washed twice with Wuerzburger buffer. The lymphocyte mixture was 

counted and resuspended to 1 × 106 cells per 9 µl in Wuerzburger buffer. 1 µl of 

streptavidin MACS microbeads for every 1 × 106 cells was added and the lymphocytes 

were incubated for 15 min at 4 °C. After incubation, 0.1 µl of Wuerzburger buffer for every 

1 × 106 cells was added and the lymphocytes were centrifuged to remove the unbound 

microbeads. The lymphocytes were resuspended to 200 × 106 cells/ml in Wuerzburger 

buffer and passed through a 30 µm MACS pre-separation filter for negative magnetic 
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selection (DEPLETE program) on the AutoMACS machine (Miltenyi Biotec GmbH, 

Germany). The cell compositions of the different fractions are shown in Appendix 12. The 

purity of the enriched DCs for each experiment is shown together with the results. The 

enriched CD11c+ DCs were then incubated with CFSE-labelled CD8+ T cells or CD4+ T 

cells in 96-well plates and incubated for 3 or 5 days, respectively. 

 

2.9.3. Fluorescence activated cell sorting (FACS) of DCs for in vitro T cell 

proliferation assays 

 

Purified DCs from 2.9.2 were resuspended at 2 × 106 cells/ml in Wuerzburger buffer and 

labelled with anti-CD205, anti-CD8 and anti-CD11c antibodies as described in 2.14.1 

under sterile conditions. Labelled DCs were resuspended at 4 × 106 cells/ml and sorted 

using a FACSVantage SE DiVa (Becton Dickinson, CA, USA). Unlabelled and single 

labelled samples for each fluorochrome were used to set the voltage and compensation 

parameters. The sorted DC subpopulations were then incubated with CFSE-labelled CD8+ 

T cells or CD4+ T cells in 96-well plates and incubated for 3 or 5 days, respectively. 

 

 

2.10. Methods – In vitro T cell restimulation assays 

 

2.10.1. Adoptive transfer of T cells for in vitro T cell restimulation assays 

 

CD4+ T cells were enriched as described in 2.5.2. CD4+ T cells were resuspended in 

appropriate volumes of IMDM. 2 × 106 CD4+ T cells, or a mixture of 5 × 106 CTLs and 2 × 

106 CD4+ T cells in 300 µl IMDM were injected i.v. into recipient mice through the lateral 

tail vein.  

 

2.10.2. Preparation of spleen cell suspensions by enzymatic digestion 

 

Spleens were collected in IMDM containing 100 µg/ml DNase I and 0.1 mg/ml Liberase 

CI. The IMDM containing DNase I and Liberase CI was then injected into various 

locations on each spleen for better digestion. The spleens were then incubated in the same 
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IMDM mixture for 25 min at 37 °C. After 25 min of incubation, EDTA was added at a final 

concentration of 10 mM and the digested spleens were incubated for another 5 min at 37 

°C. The digested spleens were then pressed through a 70 µm cell strainer, and washed once 

with IMDM. After the wash, the splenocytes were resuspended in cIMDM. 

 

2.10.3. Restimulating T cells with peptide in vitro 

 

Splenocytes were prepared as described in 2.10.2. Splenocytes were counted and 

resuspended to 6 × 106 cells/ml. 1 ml of splenocytes was dispensed into each well of 6-well 

plates. OVA323-339 was added to some of the wells containing splenocytes at a final 

concentration of 10 µM. Some wells contained 6 ×106 splenocytes and 10 µM OVA323-339.  

In some wells, no OVA323-339 was added to the splenocytes. The splenocytes were then left 

in the incubator for 15 h at 37 °C. After incubation, GolgiStop was added to each well to 

prevent the export of proteins from the Golgi bodies. The splenocytes were incubated in 

GolgiStop for 5 h at 37 °C. Following the 5 h incubation, the splenocytes were harvested 

and washed in IMDM. The splenocytes were then labelled with antibodies as described in 

2.14.1 and 2.14.2. 

 

 

2.11. Methods – In vivo DC killing assays  

 

2.11.1. Generation of endogenous CTL responses using BM-DC immunisation 

 

BM-DCs were cultured, activated and loaded with 0.1 µM SIINFEKL as described in 2.4.2, 

2.4.4 and 2.4.5. SIINFEKL-loaded BM-DCs were then resuspended at 1 × 106 cells/ml in 

IMDM. 100 µl of SIINFEKL-loaded DCs were injected s.c. into the flank of each recipient 

mouse. 
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2.11.2. Adoptive transfer of CTLs for DC killing assays 

 

In vitro activated CTLs prepared as in 2.6 were adoptively transferred into recipient mice. 

In most experiments, 5 × 106 CTLs in 300 µl IMDM were injected i.v. into the lateral tail 

vein of each recipient mouse. In some experiments, 1 × 106 or 10 × 106 CTLs were 

transferred.  

 

2.11.3. Preparing DCs for DC killing assays 

 

BM-DCs were cultured and activated as described in 2.4.2 and 2.4.4. The DCs were 

harvested and split into two tubes. The first tube of DCs was loaded with SIINFEKL 

peptide at a final concentration of 0.1 µM (DC+SIINFEKL) as described in 2.4.5. The 

second tube of DCs was not loaded with SIINFEKL (DC only). After incubation, both 

groups of DCs were washed twice in IMDM and counted. The DC+SIINFEKL group was 

labelled with CFSE as described in 2.4.6. The DC only group was labelled with CMTMR 

as described in 2.4.7. After labelling, both groups of DCs were counted and resuspended at 

1 × 106 cells/ml. CFSE-labelled DC+SIINFEKL and CMTMR-labelled DC only were 

mixed in equal numbers. In some DC killing experiments, OVAtr DCs or OVA-loaded DCs 

prepared as described in 2.4.3 or 2.4.8 respectively, were labelled with CFSE and mixed 

with equal numbers of CMTMR-labelled DC only. The mixture of CFSE-labelled DCs and 

CMTMR-labelled DCs was then centrifuged and resuspended to 20 × 106 cells/ml. The DC 

mixture was injected s.c. into the forelimbs of recipient mice (Appendix 14), hence one 

forelimb of each mouse received 0.5 × 106 cells/ml of DC+SIINFEKL and 0.5 × 106 

cells/ml of DC only.  

 

2.11.4. Preparation of lymph node cell suspensions by enzymatic digestion 

 

Brachial and axillary lymph nodes were prepared as described in 2.9.1, except that they 

were digested in 100 µg/ml DNase I and 2.4 mg/ml Type II Collagenase for 1 h at 37 °C. 

The digested lymphocytes were then washed and prepared for analysis by flow cytometry. 
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2.12. Methods – In vivo T cell proliferation assays 

 

2.12.1. Adoptive transfer of T cells for T cell proliferation assays 

 

CD4+ and CD8+ T cells were enriched and labelled with CFSE as described in 2.5.2 and 

2.4.6. CFSE-labelled CD4+ or CD8+ T cells were adoptively transferred into recipient mice. 

In most experiments, 1 × 106 CFSE-labelled CD4+ or CD8+ T cells in 300 µl IMDM were 

injected i.v. into the lateral tail vein of each recipient mouse. In some experiments, 2 × 106 

CFSE-labelled CD4+ T cells were transferred. 

 

In experiments involving DC killing and T cell proliferation, CTLs were mixed with CFSE-

labelled CD4+ or CD8+ T cells. The T cell mixture contained either CTLs and CFSE-

labelled CD4+ T cells, or CTLs and CFSE-labelled CD8+ T cells. In most experiments, a 

mixture of 5 × 106 CTLs and 1 × 106 CFSE-labelled T cells in 300 µl IMDM were 

transferred. In some experiments, recipient mice received 1 × 106 CTLs and 1 × 106 CFSE-

labelled T cells, or 10 × 106 CTLs and 1 × 106 CFSE-labelled T cells instead. The T cell 

mixture was injected i.v. into the lateral tail vein of each recipient mouse. 

 

2.12.2. Preparing DCs for T cell proliferation assays 

 

BM-DCs were cultured and activated as described in 2.4.2 and 2.4.4. The DCs were loaded 

with 0.1 µM SIINFEKL for in vivo CD8+ T cell proliferation assays; or loaded with 1 µM 

OVA323-339, 10 µM OVA323-339, 1 µM OVA323-339 and 10 µM SIINFEKL, or 1 µM OVA323-

339 and 10 µM gp33-41, for in vivo CD4+ T cell proliferation assays at 37 °C for 4 h. After 

incubation, the peptide-loaded DCs were washed twice in IMDM and counted. The peptide-

loaded DCs were resuspended to 2 × 106 cells/ml in IMDM. Each recipient mouse was 

injected s.c. into one of their forelimbs with 0.1 × 106 DCs in 50 µl IMDM (Appendix 14). 

 

In some experiments, OVA-loaded DCs prepared as described in 2.4.8 were washed twice 

and counted before being resuspended to 4 × 106 cells/ml in IMDM. Each recipient mouse 
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was injected s.c. into one of their forelimbs with 0.2 × 106 DCs or 0.5 × 106 DCs in 50 µl 

IMDM (Appendix 14). 

 

In other experiments, OVAtr DCs prepared as described in 2.4.3 and 2.4.4 washed twice 

and counted before being resuspended to 4 × 106 cells/ml in IMDM. Each recipient mouse 

was injected s.c. into one of their forelimbs with 0.2 × 106 DCs in 50 µl IMDM. 

 

2.12.3. Preparation of lymph node and spleen cell suspensions by tissue disruption 

 

The axillary and brachial lymph nodes were sandwiched between 2 pieces of 70 µm gauze 

and perforated with 18 G needles. The draining lymph nodes were then pressed with a 1 ml 

syringe plunger. Cells were collected from the disrupted draining lymph nodes by agitation 

with IMDM using a pipette. The cells were filtered through pieces of 70 µm gauze twice 

and washed with FACS buffer thrice. 

 

The spleen cell suspensions were prepared and treated with ACT buffer as described in 

2.5.1. The ACT reaction was stopped by the addition of IMDM and the cells were spun 

down. After centrifugation, the cells were resuspended in FACS buffer and filtered through 

pieces of 70 µm gauze into 15 ml Falcon tubes. This process was performed twice. After 

filtering and washing, the cells were resuspended to 5 ml.  

 

200 µl of lymphocytes or splenocytes prepared above were aliquoted into the 

corresponding wells of a 96-well plate.  The plate was stored on ice for fluorescent 

antibody labelling as described in 2.14.1. 

 

 

2.13. Methods – Tracking transfer of FITC-dextran in vivo 

 

On the 6th day of culture, FITC-dextran was added to a final concentration of 100 µg/ml 

into wells that contained BM-DCs or OVAtr DCs prepared as described in 2.4.2 or 2.4.3, 

respectively. The DCs were incubated in FITC-dextran for 1 h at 37 °C. After the 1 h 

incubation, the DCs were treated with LPS for 18-24 h. Following the LPS incubation, the 
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DCs were washed twice with IMDM and counted. FITC-dextran-loaded DCs were labelled 

with CMTMR as described in 2.4.7. After CMTMR labelling, the DCs were resuspended to 

10 × 106 cells/ml. Each forelimb of recipient mouse were injected s.c. with 0.5 × 106 DCs 

in 50 µl IMDM (Appendix 14). 

 

 

2.14. Methods – Flow cytometry 

 

2.14.1. Labelling the cell surface molecules with fluorescence-conjugated antibodies 

 

Cells were washed in FACS buffer and resuspended at 1 – 2 × 107 cells/ml. The cell 

suspension was dispensed into the wells of a 96-well plate. The plate was centrifuged at 

370 × g for 2 min and the plate was flicked to remove the supernatants from the wells.  The 

plate was then tapped at the sides to resuspend the cell pellet. The cells were first incubated 

in anti-FcγRII/III antibodies for 10 min on ice. After the 10 min incubation, fluorescence-

conjugated antibodies against cell surface markers were added at the appropriate dilutions 

and the cells were incubated for another 10 min on ice. Following the completion of this 

incubation, the labelled cells were washed twice by adding 200 µl of FACS buffer and spun 

down at 370 × g for 2 min. If a secondary antibody was required, the cells labelled with the 

biotinylated primary antibodies were further incubated with the appropriate dilutions of a 

streptavidin-conjugated fluorochrome for 10 min on ice. After the incubation, the cells were 

washed twice with FACS buffer and resuspended in 100 – 150 µl FACS buffer. The 

appropriate concentration of PI was added 5 – 10 min before the cells were analysed by 

flow cytometry. 

 

2.14.2. Labelling intracellular molecules with fluorescence-conjugated antibodies 

 

Cells were labelled with antibodies against cell surface makers as described in 2.14.1. After 

cell surface labelling and washing in FACS buffer, the cells were incubated with 200 µl of 

BD Cytofix/Cytoperm solution for 20 min at 4 °C. The cells were washed twice in 1 × BD 

Perm/Wash buffer. The cells were then incubated with antibodies against cytokines, or the 
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respective isotype control antibodies for 30 min on ice. After the 30 min incubation, the 

cells were washed thrice in BD Perm/Wash buffer. During each wash, the cells were 

allowed to sit in the buffer for 10 min before centrifugation to minimise background 

staining. After the three washes, the cells were resuspended in 200 – 300 µl FACS buffer 

and monitored by flow cytometry. 

 

2.14.3. Acquisition of cells on flow cytometry 

 
Antibody-labelled cells were analysed on a FACSort, FACScalibur, or LSRII SORP flow 

cytometer (Becton-Dickson, CA, USA). The live cells were identified as PI- cells. Cells 

prepared as described in 2.14.2 were identified based on their forward scatter (FSC) and 

side scatter (SSC) properties. Unlabelled cells, PI-treated unlabelled cells and single-

labelled cells for each fluorochrome-conjugated antibody were used to adjust the channel 

voltages and compensate for the spectral overlap between fluorochromes used. In some 

experiments, single-labelled cells for CFSE and single-labelled cells for CMTMR were 

used to calibrate the voltages and compensation overlap. FlowJo version 9.0.2 (Treestar 

Inc, CA, USA) was used to analyse data captured on the flow cytometers. 

 

 

2.15. Methods – Analysis of data collected 

 

2.15.1. In vivo DC killing assays 

 

The analysis of flow cytometry data for in vivo DC killing assays was performed using 

FLOWJO version 9.0.2 software (TreeStar, Oregan, USA) and was as follows: First, dead 

cells were excluded with PI staining. CFSE+ DCs and CMTMR+ DCs were then gated and 

counted. The gates for CFSE+ DCs and CMTMR+ DCs were determined using control mice 

that were injected with singly-labelled DCs. The ratio of CFSE+ DCs to CMTMR+ DCs in 

each sample was normalised to the control group in each experiment to account for 

discrepancies in counting. To obtain absolute numbers, total lymphocyte numbers were 

counted using a Z2 Coulter Particle Count and Size Analyzer (Beckman Coulter, 
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California, USA) that was set up to detect cell size of 4 – 10 µM. Absolute numbers of DCs 

were calculated as (DC/live cells) × total cell numbers. 

 

2.15.2. In vivo and in vitro T cell proliferation assays 

 

The analysis of flow cytometry data for in vivo T cell proliferation assays was performed 

using FLOWJO version 9.0.2 software (TreeStar, Oregan, USA) and was as follows: First, 

dead cells were excluded with PI staining. Adoptively transferred T cells were gated using 

one of the following gates- CD4+CD45.2+, CD4+CD45.1+, CD8+CD45.2+, or CD8+CD45.1+ 

live cells. The gates for the transferred T cells were determined using single-labelled and 

double-labelled cells. CFSEhi/int cells were then gated on the transferred T cells. T cells that 

were CFSEhi and had not undergone any CFSE dilution were referred to as undivided cells. 

The gating on undivided T cells was determined using control mice that were injected with 

DCs not loaded with peptides or proteins. These control mice were included in all the in 

vivo T cell proliferation experiments conducted (data not shown). T cells that had 

undergone at least one CFSE dilution were referred to as divided cells. Highly divided T 

cells were cells that had undergone more than four CFSE dilutions. Total lymphocyte or 

splenocyte numbers were counted using a Z2 Coulter Particle Count and Size Analyzer that 

was set up to detect cell size of 4 – 10 µM. Absolute numbers of divided T cells are 

calculated as (divided T cells/live cells) × total cell numbers. 

 

In some in vitro T cell proliferation data, Vα2+CD4+ or Vα2+CD8+ cells were gated from 

PI- T cells. CFSEhi/int cells were then gated on the Vα2+CD4+ and Vα2+CD8+PI- T cells. T 

cells that had undergone at least one CFSE dilution were referred to as divided cells. 

 

2.15.3. In vitro T cell restimulation assays 

 

The analysis of flow cytometry data for in vivo T cell restimulation assays was performed 

using FLOWJO version 9.0.2 software (TreeStar, Oregan, USA) and was as follows: Fixed 

cells were first gated on the FSC and SSC. CD4+CD45.1+ T cells were then gated from the 

FSC/SSC gate. CD4+CD45.1+ T cells expressing IFNγ were gated. The same gates were 
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applied to the corresponding CD4+CD45.1+ T cells labelled with isotype-matching 

antibody.  

 

2.15.4. Software used for data analysis 

 

Microsoft Excel 2008 for Mac OS (Microsoft Corporation, Washington, USA) and 

GraphPad Prism version 5.00 for Mac OS X (GraphPad Software, San Diego California 

USA) were used to create tables and graphs and for statistical analysis.  

 

2.15.5. Statistical analysis 

 

Data was tested for normality using D’Agostino and Pearson omnibus test. The results 

showed that representative data from CTL-mediated DC killing, DC accumulation in the 

draining lymph nodes, and CD4+ T cell proliferation were consistent with a Gaussian 

distribution (Appendix 3). Statistical analysis comparing two groups was conducted using 

Student’s t-test. F-test was used to determine the equality of variances. Exact probability 

values for Student’s t-test and F-test were calculated using Microsoft Excel 2008. Statistical 

analysis comparing three groups or more was conducted using one-way ANOVA with 

Bonferroni’s post-test. When analysing two factors in three groups or more, two-way 

ANOVA with Bonferroni’s post-test was used to determine the statistical significance. 

Bonferroni’s correction was used to address the errors in inference when comparing 

multiple groups. Mean and standard errors of mean are shown in the graphs. 
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Our group and others have shown that antigen-presenting DCs are eliminated by CTLs 

through the cytolytic molecule perforin (Belz et al., 2007; Yang et al., 2006). Others have 

provided evidence that CTLs eliminate DCs through the cytolytic molecule FasL (Stranges 

et al., 2007). These studies provide evidence that CTLs actively remove antigen-presenting 

DCs.  

 

The physiological relevance of why CTLs eliminate DCs has not been formally established. 

However, there are some indications that CTL-mediated DC elimination functions as a 

form of negative feedback to downregulate immune responses that may otherwise lead to 

immunopathology. When the survival of DCs was prolonged, excessive T cell proliferation 

and autoreactive immune responses were observed (Chen et al., 2006). Furthermore, CTLs 

suppressed the induction of alloreactive CD4+ T cells and CD4+ T cell-mediated allograft 

rejection through the perforin-mediated elimination of allogeneic DCs (Laffont et al., 

2006). 

 

There is other circumstantial evidence indicating that cytolytic molecules regulate T cell 

responses by controlling DC survival. These were reported by studies in patients or mice 

carrying defective cytolytic molecules or other downstream molecules in the cytolytic 

pathways. In perforin-deficient patients, aberrant accumulation of T cells was observed 

(Stepp et al., 1999). Mice deficient in perforin (PKO mice) also showed increased numbers 

of effector T cells when infected with bacteria (Badovinac et al., 2000) or virus 

(Matloubian et al., 1999), or immunised with peptide-loaded DCs (Yang et al., 2006). The 

increase in effector T cells observed in PKO mice was due to the failure of CTLs in 

removing antigen-presenting DCs (Yang et al., 2006). Patients deficient in caspase-10 

showed increased numbers of T cells and DCs (Wang et al., 1999). DCs in these caspase-10 

deficient patients were resistant to TRAIL-mediated killing. Mice deficient in Fas (lpr 

mice) or FasL (gld mice) also showed an aberrant accumulation of abnormal T cells 

(Watanabe-Fukunaga et al., 1992). This could be due to the increased DC frequency 

observed in lpr mice (Fields et al., 2001). Furthermore, when Fas was selectively knocked 

out in DCs, some of the manifestations seen in lpr mice were also observed (Stranges et al., 

2007).  



Chapter 3: Cytolytic mechanisms involved in CTL-mediated DC elimination 62 

 

The evidence described suggests that if CTLs do not regulate the survival of antigen-

presenting DCs tightly, immunopathology will develop. Thus, closer examination of the 

cytolytic killing mechanisms regulating the survival of antigen-presenting DCs and the 

effects of DC elimination on the induction of subsequent immune responses are necessary. 

 

The aims of this chapter are: 

 

1) To characterise and evaluate the contributions of the cytotoxic pathway(s) used by 

CTLs to eliminate DCs 

2) To examine the effects and contributions of the cytotoxic pathway(s) mediating DC 

elimination on CD4+ and CD8+ T cell proliferation 
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3.1. In vitro activated Vα2+Vβ5.1/5.2+ OT-I CTLs are CD62LloCD44hi  

 

To generate a pure population of OT-I CTLs, OT-I TCR transgenic lymphocytes were 

activated in vitro with SIINFEKL-loaded DCs as described in Chapter 2. I started off by 

testing different concentrations of SIINFEKL loaded on DCs and different numbers of 

SIINFEKL-loaded DCs to OT-I lymphocyes (Table 3.1.1). The goal of this optimisation 

was to obtain Vα2+Vβ5.1/5.2+ OT-I CTLs expressing low CD62L and high CD44. When 

0.5x106 OT-I lymphocytes were incubated with 62500 DCs loaded at 0.1µM SIINFEKL, 

this condition yielded 1.41x106 OT-I CTLs (Table 3.1.2). This culture condition generated 

populations consisting of greater than 95% of CD62LloCD44hiVα2+Vβ5.1/5.2+ OT-I CTLs 

(Fig. 3.1.1) and the recovery of CTLs was sufficient for adoptive transfer (Table 3.1.2).  

 

Next, I used the optimised in vitro condition and tested different in vitro resting conditions 

for the OT-I CTLs (Table 3.1.3). OT-I CTLs were incubated with IL-2 at either 125000 or 

250000 cells/ml. After 2 days of incubation, the number of OT-I CTLs increased (Table 

3.1.4) and greater than 95% of cells were CD62LloCD44hiVα2+Vβ5.1/5.2+ (Fig. 3.1.2). 

250000 cells/ml was chosen as the resting condition for the OT-I CTLs because the number 

of OT-I CTLs recovered was sufficient for adoptive transfer. Under the optimised in vitro 

activation and resting conditions, OT-I CTLs acquired cytolytic functions as they were able 

to eliminate SIINFEKL-loaded DCs in vivo (Fig. 3.5.3) and antigen-loaded EL-4 cell line in 

vitro (Robinson et al., 2010). 

 
Table 3.1.1. Optimisation of culture conditions for in vitro activation of OT-I lymphocytes 
       

Ratio of DC to OT-I lymphocytes SIINFEKL (µM) loaded on 
DCs 6:1 1:1 1:2 1:4 1:8 

1.2: 0.2 * N.D. N.D. N.D. N.D. 
N.D.** 1: 1 N.D. N.D. N.D. 

N.D. 0.5: 0.5 N.D. N.D. N.D. 10 

N.D. 0.25:0.25 N.D. N.D. N.D. 
1.2: 0.2 N.D. N.D. N.D. N.D. 

N.D. 1: 1 0.5: 1 N.D. N.D. 1 
N.D. 0.5: 0.5 0.25: 0.5 N.D. N.D. 

1.2: 0.2 N.D. N.D. N.D. N.D. 
N.D. 1: 1 0.5: 1 0.25: 1 0.125: 1 0.1 
N.D. 0.5: 0.5 0.25: 0.5 0.125: 0.5 0.0625: 0.5 

 
* DC no. to OT-I lymphocytes no. (× 106) 
** N.D. not done 
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Table 3.1.2. Recovery of OT-I CTLs after in vitro culture incubation with DCs in Table 3.1.1 
       

Ratio of DC to OT-I lymphocytes SIINFEKL (µM) loaded on 
DCs 6:1 1:1 1:2 1:4 1:8 

0.44 * N.D. N.D. N.D. N.D. 
N.D. ** 1.23 N.D. N.D. N.D. 

N.D. 0.89 N.D. N.D. N.D. 10 

N.D. 0.45 N.D. N.D. N.D. 
0.17 N.D. N.D. N.D. N.D. 
N.D. 1.31 1.21 N.D. N.D. 1 
N.D. 0.77 0.76 N.D. N.D. 
0.2 N.D. N.D. N.D. N.D. 

N.D. 2.68 1.30 2.53 3.5 0.1 
N.D. 0.74 1.83 1.77 1.41 

 
* No. of OT-I CTLs recovered on day 4 (×106) 
** N.D. not done 
 
 
Conditions tested     
10 µM SIINFEKL 
 
1.2 × 106 DCs 
 
0.2 × 106 OT-I 
 

100 101 102 103 104
100

101

102

103

104

3.57 63.2

4.4228.8
 100 101 102 103 104

100

101

102

103

104

48.5 18.2

6.4826.8
 100 101 102 103 104

100

101

102

103

104

0.104 63.6

36.10.204
 

1 µM SIINFEKL 
 
0.5× 106 DCs 
 
0.5 × 106 OT-I 
 
 

100 101 102 103 104
100

101

102

103

104

1.99 80.8

1.815.4
 100 101 102 103 104

100

101

102

103

104

71.3 11.4

4.4612.8
 100 101 102 103 104

100

101

102

103

104

0.393 80.4

18.80.448
 

0.1 µM SIINFEKL 
 
0.0625×  106 DCs 
 
0.5 ×  106 OT-I 
 

V
α

2 

100 101 102 103 104
100

101

102

103

104

0.484 97

0.2882.26
 100 101 102 103 104

100

101

102

103

104

78.9 18.5

1.541
 100 101 102 103 104

100

101

102

103

104

0.0927 97.1

2.830.0253
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Fig. 3.1.1. Different in vitro activation culture conditions for naïve OT-I lymphocytes yield CTLs of 
different phenotypes. Total lymphocytes prepared from OT-I transgenic mice were cultured in the 
indicated culture conditions with SIINFEKL-loaded LPS-activated DCs for 4 days. Activated T cells were 
then rested in IL-2 for 2 days. These in vitro expanded T cells were examined for the expression of Vα2 and 
Vβ5.1/5.2 by flow cytometry. Vα2+Vβ5.1/5.2+, Vα2+CD62L+ and Vα2+CD44+ cells are shown as 
percentages of live cells. One representative experiment of three is shown. The condition selected for 
further experiments shown in bold. 
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Table 3.1.3. Optimisation of in vitro resting conditions for activated OT-I T cells 
     

In vitro priming conditions In vitro resting conditions 
DC no. : OT-I lymphocyte no. (× 106) SIINFEKL (µM) loaded 

on DCs 
Ratio of DCs to OT-I 

lymphocytes 0.125 * 0.25 
0.25: 2 ** 0.25: 2 
0.125: 1 0.125: 1 0.1 1:8 

0.0625: 0.5 0.0625: 0.5 
     

* T cell concentration in resting culture (× 106/ml) 
** DC no. to OT-I lymphocyte no. (× 106) 

     
 
Table 3.1.4. Recovery of OT-I CTLs after in vitro activation and 2 days in IL-2 in Table 3.1.3 
     

In vitro priming conditions In vitro resting conditions 
No of CTLs recovered (× 106) SIINFEKL (µM) loaded 

on DCs 
Ratio of DCs to OT-I 

lymphocytes 0.125 * 0.25 
11.73 ** 22.78 

15.13 24.48 0.1 1:8 
12.58 24.82 

 
* T cell concentration in resting culture (× 106/ml) 
** No. of CTLs recovered (× 106) 
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 Fig. 3.1.2. Optimised in vitro activation culture condition for OT-I lymphocytes yields a 

homogenous population of CD62LloCD44hiVα2+Vβ5.1/5.2+ T cells after resting in IL-2. Total 
lymphocytes prepared from OT-I transgenic mice were cultured in the indicated culture conditions with 
SIINFEKL-pulsed LPS-activated DCs for 4 days. Activated T cells were then rested in IL-2 at different 
cell numbers per ml for 2 days. These in vitro activated T cells were examined for the expression of 
Vα2 and Vβ5.1/5.2 by flow cytometry. Vα2+Vβ5.1/5.2+, Vα2+CD62L+ and Vα2+CD44+ cells are 
shown as percentages of live cells. One representative experiment out of three is shown. The condition 
selected for further experiments shown in bold. 
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3.2. CTLs prevent DCs from accumulating in the draining lymph nodes 

 

It has been proposed that CTLs target antigen-bearing DCs in the peripheral tissues (Yang 

et al., 2006), or in the draining lymph nodes (Guarda et al., 2007a). To investigate whether 

DC killing by CTLs prevent DC entry into the draining lymph nodes, CFSE-labelled DC 

loaded with SIINFEKL (DC+SIINFEKL) were mixed with CMTMR-labelled control DCs 

(DC only) in equal numbers and injected s.c. into the forelimbs of mice (Hermans et al., 

2004) (Appendix 14). The experimental setup is shown in Fig. 3.2.1a. Six hours after DC 

injection, half of these mice received in vitro activated CTLs i.v. while the rest did not. 

These mice were then sacrificed at the indicated time points and CFSE+ DCs and CMTMR+ 

DCs in the draining lymph nodes were monitored by flow cytometry. To determine the 

number of DCs that had reached the lymph nodes at the time of CTL transfer, one group of 

mice was sacrificed at the time of CTL injection. This is indicated as time point 0 h.  

 

At 0 h, similar low numbers of injected CFSE+ and CMTMR+ DCs were recovered from 

the draining lymph nodes of host mice (Fig. 3.2.1b). In mice that did not receive CTLs, 

similar numbers of both DC populations were also recovered at 8, 24, 48 and 72 h. Over 

time, increasing numbers of CMTMR+ DCs were found in the draining lymph nodes of 

mice that received CTLs and in control mice (Fig. 3.2.1c). However, in mice that received 

CTLs, the number of CFSE+ DCs plateaued at 24 h and remained significantly lower than 

the control group at 48 h and 72 h. This indicates that CTLs prevent the entry of DCs into 

the draining lymph nodes through DC killing. 
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c) CMTMR+DC only CFSE+DC+SIINFEKL 
 

  
 Fig. 3.2.1. DCs do not accumulate in the draining lymph nodes over time in the presence of CTL-

mediated DC killing. (a) CFSE-labelled DCs loaded with SIINFEKL (DC+SIINFEKL) were mixed in 
equal numbers with CMTMR-labelled control DCs (DC only) and injected s.c. into the forelimbs of 
C57BL/6J mice. 6 h later, half of these mice received in vitro activated CTLs i.v. while the rest did not. 
These mice were then sacrificed and draining lymph nodes were harvested at the indicated time points. 
Time point 0 h corresponds to the time of CTL injection. CFSE+ and CMTMR+ DCs in the draining 
lymph nodes were monitored by flow cytometry. (b) CFSE+ and CMTMR+ DCs are shown in 
representative dot plots from individual mice. The number of events in each gate is shown. (c) Absolute 
numbers of CMTMR+ DC only and CFSE+ DC+SIINFEKL in the draining lymph nodes are shown. 
One representative experiment of two with 3 – 6 mice per group is shown. Statistical significance was 
determined using the two-way ANOVA with Bonferroni’s correction. *** p<0.001 
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Next, I asked how CTLs would influence DC accumulation into the draining lymph nodes 

if DCs were given more time to migrate. The experiment setup is shown in Fig. 3.2.2a. 

CFSE+ DC+SIINFEKL and CMTMR+ DC only were mixed in equal numbers and injected 

into the forelimbs of mice. These injected DCs were then given 6 h or 24 h to migrate to the 

draining lymph nodes before in vitro activated CTLs were transferred. As a control, one 

group did not receive CTLs. 72 h after DC injection, cell suspensions were prepared from 

draining lymph nodes and CFSE+ and CMTMR+ cells were monitored by flow cytometry.  

 

When CTLs were given 6 h after DC injection, low numbers of CFSE+ cells were detected 

compared to the control group, whereas the number of CMTMR+ cells was similar (Fig. 

3.2.2b). The number of CFSE+ cells did not increase even though the antigen-bearing DCs 

had more time to migrate into the draining lymph nodes (18 h + 48 h). When CTLs were 

given 24 h after DC injection, the number of CFSE+ cells recovered was similar to the 

control group (Fig. 3.2.2c), although some CTL-mediated DC killing was observed (Fig. 

3.2.2d). Taken together, these results suggest that the presence of CTLs prevents the entry 

of antigen-loaded DCs into the draining lymph nodes and this cannot be overcome even if 

these DCs were given more time to reach the draining lymph nodes. 
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 Fig. 3.2.2. CTLs prevent the entry of DCs into the draining lymph nodes. (a) CFSE-labelled DCs 

loaded with SIINFEKL (DC+SIINFEKL) and CMTMR-labelled control DCs (DC only) were mixed in 
equal numbers and injected s.c. into the forelimbs of C57BL/6J mice.  6 h or 24 h later, some of these 
recipient mice received in vitro activated CTLs i.v., while the control group did not receive CTLs. 72 h 
after DC injection, CFSE+ and CMTMR+ DCs in the draining lymph nodes were monitored by flow 
cytometry. (b) CFSE+ and CMTMR+ DCs are shown in representative dot plots from individual mice. 
The number of events in each gate is shown. (c) Absolute numbers of CMTMR+ DC only and CFSE+ 
DC+SIINFEKL in the draining lymph nodes are shown. (d) The ratios of CFSE+ DC+SIINFEKL to 
CMTMR+ DC only were normalised to the ratios derived from untreated mice. The experiment was 
performed once with 3 mice per group.  
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3.3. CTLs inhibit CD4+ T cell proliferation by eliminating DCs 

 

To determine if CTLs affect the induction of CD4+ T cell proliferation, CTLs and CFSE-

labelled OT-II CD4+ T cells harvested from naïve OT-II mice were mixed and transferred 

into one group of mice (Fig. 3.3a). The control group received CFSE-labelled OT-II CD4+ 

T cells only. 24 h later, DCs loaded with SIINFEKL and OVA323-339 were injected to the 

forelimbs of these recipient mice. 3 days later, CD4+ T cell proliferation in the draining 

lymph nodes was monitored by flow cytometry.   

 

In mice that received CTLs, most of the CD4+ T cells remain undivided (Fig. 3.3b). The 

percentage and number of divided CD4+ T cells were significantly lower in the mice that 

received CTLs than in control mice (Fig. 3.3c. and Fig. 3.3d.). This shows that CTLs 

inhibit the induction of CD4+ T cell proliferation. This is similar to the results reported by 

Guarda et al (Guarda et al., 2007a). 
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 Fig. 3.3. CTLs inhibit CD4+ T cell proliferation through DC elimination. (a) C57BL/6J mice 

received in vitro activated OT-I CTLs and CFSE-labelled OT-II CD45.1+CD4+ T cells. As a control, one 
group of mice received only CD4+ T cells. After 24 h, these mice were injected s.c. into their forelimbs 
with LPS-activated DCs loaded with SIINFEKL and OVA323-339. 3 days later, CD45.1+CD4+ T cells in 
the draining lymph nodes were examined for CFSE dilution by flow cytometry. (b) CFSE dilution in 
CD45.1+CD4+ T cells is shown as representative histograms from individual mice. (c) The percentages 
of CD45.1+CD4+ T cells that had divided at least once are shown. (d) Absolute numbers of divided 
CD45.1+CD4+ T cells in the draining lymph nodes are shown. The experiement was performed once 
with 5 mice per group. Statistical significance was determined with two tailed Student’s t-test. 
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3.4. CTLs inhibit CD4+ T cell proliferation in an antigen-specific manner 

 

To determine if CTLs inhibit the CD4+ T cell proliferation in an antigen-specific manner, 

DCs were loaded with either a combination of SIINFEKL and OVA323-339 or the irrelevant 

peptide gp33 and OVA323-339. DCs loaded with SIINFEKL and OVA323-339 or DCs loaded 

with gp33 and OVA323-339 were injected into mice that had previously received either a 

mixture of CFSE-labelled OT-II CD4+ T cells and OT-I CTLs, or CD4+ T cells only (Fig. 

3.4a). 3 days later, CD4+ T cells in the draining lymph nodes were examined for CFSE 

dilution by flow cytometry.   

 

CD4+ T cell proliferation was observed in all mice that received DCs loaded with gp33 and 

OVA323-339 regardless of the presence of CTLs (Fig. 3.4b). In mice that received CTLs and 

DCs loaded with SIINFEKL and OVA323-339, the majority of CD4+ T cells remained 

undivided whereas most of the CD4+ T cells divided in the corresponding control group 

that did not receive CTL (Fig. 3.4b). This result is similar to that shown in Fig. 3.3. The 

percentage and number of divided CD4+ T cells were significantly higher in mice that 

received CTLs and DC+gp33+OVA323-339 than those that received CTLs and 

DC+SIINFEKL+OVA323-339 (Fig. 3.4c and 3.4d). Similar results were obtained when 

comparing the percentage and number of highly divided CD4+ T cells (>4 divisions) 

between mice that received CTLs and DC+gp33+OVA323-339 and mice that received CTLs 

and DC+SIINFEKL+OVA323-339 (data not shown). This shows that CTLs inhibit CD4+ T 

cell proliferation in an antigen-specific manner. 
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 Fig. 3.4. CTLs inhibit CD4+ T cell proliferation in an antigen-specific manner. (a) C57BL/6J mice 

received in vitro activated OT-I CTLs and CFSE-labelled OT-II CD45.1+CD4+ T cells. As a control, 
some mice received CD4+ T cells only. After 24 h, these mice were injected s.c. into their forelimbs 
with either LPS-activated DCs loaded with SIINFEKL and OVA323-339 or DCs loaded with gp33 and 
OVA323-339. 3 days later, CD45.1+CD4+ T cells in the draining lymph nodes were examined for CFSE 
dilution by flow cytometry. (b) CFSE dilution in CD45.1+CD4+ T cells is shown as representative 
histograms from individual mice. (c) The percentages of CD45.1+CD4+ T cells that had divided at least 
once are shown. (d) Absolute numbers of divided CD45.1+CD4+ T cells in the draining lymph nodes are 
shown. The experiment was performed once with 6 mice per group. Statistical significance was 
determined with one-way ANOVA with Bonferroni’s correction. * p<0.05, ** p<0.01, *** p<0.001. 



Chapter 3: Cytolytic mechanisms involved in CTL-mediated DC elimination 74 

3.5. Perforin-mediated elimination of DCs regulates T cell proliferation 

 

3.5.1. PKO CD8+ T cells respond to antigens better than wt CD8+ T cells 

 

The granules-mediated cytolytic pathway used by CTLs requires perforin (Kagi et al., 

1994a; Lowin et al., 1994a). To determine whether knocking out perforin in T cells affects 

their ability to respond to antigen, total lymphocyte suspensions were prepared from wt and 

PKO OT-I mice and incubated with DCs loaded with serially diluted SIINFEKL 

concentrations for 48 h. Thymidine uptake was subsequently examined. PKO OT-I CD8+ T 

cells were capable of responding to SIINFEKL-loaded DC stimulation and did so better 

than wt T cells (Fig. 3.5.1). 

 

 

Fig. 3.5.1. PKO OT-I lymphocytes can respond to 
SIINFEKL-loaded DC stimulation better than wt OT-I 
lymphocytes. Total lymphocyte suspensions from wt and 
PKO OT-I mice were prepared and serially diluted. The 
lymphocytes were then incubated with DCs loaded with the 
indicated serially diluted SIINFEKL concentrations. 48 h 
later, the cells were incubated with thymidine for 6 h. 
Thymidine uptake in wt and PKO OT-I lymphocytes was then 
measured. The experiment was performed once with triplicate 
wells. 

 

3.5.2. In vitro activated wt and PKO CTLs express similar phenotypic markers  

 

To examine if perforin is important in preventing DC entry to the lymph nodes, perforin 

knockout (PKO) OT-I T cells were used. Wt and PKO OT-I lymphocytes were cultured as 

previously determined in Fig. 3.1.2. 98.6% of the live PKO CTLs were Vα2+Vβ5.1/5.2+, as 

were the wt CTLs (Fig. 3.5.2a). In contrast to naïve T cells, greater than 98% of wt and 

PKO CTLs had low CD62L and high CD44 expression (Fig. 3.5.2b. and 3.5.2c). Thus, in 

vitro activation of PKO OT-I lymphocytes yielded CTLs that were phenotypically similar 

to wt OT-I CTLs.  
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CD62Llo 11.8% 95.7% 93.2% 
CD44hi 34.6% 99.9% 99.8%  

 Fig 3.5.2. The phenotypes of in vitro activated wt and PKO OT-I CTLs are similar. OT-I 
lymphocytes harvested from wt or perforin knockout (PKO) OT-I mice were activated as described in 
Chapter 2. In vitro activated CTLs were examined for the expression of Vα2 and Vβ5.1/5.2 by flow 
cytometry. Lymphocytes from naïve OT-I mouse were used as a control. (a) Vα2+Vβ5.1/5.2+ cells are 
shown as a percentage of live cells. Expressions of (b) CD62L and (c) CD44 were examined to 
determine their effector phenotypes. Black and dark grey solid lines depict wt and PKO CTLs 
respectively. Naïve OT-I lymphocytes are shown as dark grey filled areas. Light grey filled areas 
represent the unstained control. The percentages of CD62LloVα2+Vβ5.1/5.2+ cells and 
CD44hiVα2+Vβ5.1/5.2+ cells are shown.  One representative experiment of five is shown. 

 

3.5.3. Perforin is essential to CTL-mediated DC elimination 

 

Next, I asked whether perforin in CTLs was necessary in preventing DC accumulation in 

the draining lymph nodes. Groups of mice received either in vitro activated wt or PKO OT-

I CTLs. As a control, some mice did not receive CTLs. 24 h later, three different DC 

mixtures were then prepared. The first DC mixture contained equal numbers of CFSE-

labelled DCs loaded with 100 × 10-9 µM SIINFEKL and CMTMR-labelled DCs not loaded 

with SIINFEKL (DC only). The second DC mixture contained equal numbers of CFSE-

labelled DCs loaded with 10µM SIINFEKL and CMTMR-labelled DCs only. The last DC 

mixture contained equal numbers of CFSE-labelled DCs not loaded with SIINFEKL and 

CMTMR-labelled DCs not loaded with SIINFEKL. Recipient mice were injected s.c. into 

their forelimbs with either one of the three aforementioned DC mixtures. 48 h after DC 

injection, CFSE+ and CMTMR+ cells in the draining lymph nodes were monitored by flow 

cytometry.   
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In mice that did not receive CTLs, similar numbers of CFSE+ and CMTMR+ cells were 

collected from the draining lymph nodes (Fig. 3.5.3a). Wt CTLs did not affect CFSE+ or 

CMTMR+ DCs when both populations were not loaded with SIINFEKL (Fig. 3.5.3b). The 

number of CFSE+ DCs loaded with 10 µM SIINFEKL was significantly lower in mice that 

received wt compared to mice that did not receive CTLs (Fig. 3.5.3c). When perforin was 

knocked out in CTLs, more CFSE+ DCs loaded with 10 µM SIINFEKL were recovered 

compared to mice that received wt CTLs. When DCs were loaded with 100 × 10-9 µM 

SIINFEKL, DC killing was very low as similar numbers of CFSE+ and CMTMR+ cells 

were recovered in mice that received wt or PKO CTLs (Fig. 3.5.3b).  

 

A separate experiment was carried out to determine if increasing the number of PKO CTLs 

would prevent the accumulation of DCs in the draining lymph nodes. Mice received 

different numbers of wt or PKO CTLs. As before, control mice did not receive CTLs. 

These mice were then given a mixture of CFSE+ DC loaded with SIINFEKL and CMTMR+ 

DC only. After 48 h, CFSE+ and CMTMR+ cells in the draining lymph nodes were 

monitored by flow cytometry.   

 

In both groups of mice that received wt or PKO CTLs, the ratio of DC+SIINFEKL to DC 

only showed a decreasing trend when the number of CTLs was increasing (Fig. 3.5.3d). 

Increasing the number of PKO CTLs did not eliminate DC+SIINFEKL totally as the ratio 

of DC+SIINFEKL to DC only in mice that received 10 × 106 PKO CTLs was 0.2. In 

contrast, nearly all the DC+SIINFEKL were absent when 5 × 106 and 10 × 106 wt CTLs 

were present.  

 

Taken together, the results show that in order to eliminate antigen-loaded DCs and prevent 

their entry into the draining lymph nodes, CTLs require sufficient antigen presented on the 

target DCs. The results also show that increasing the ratio of CTLs to antigen-bearing DCs 

also increases DC killing. While CTLs eliminate DCs through perforin, other killing 

pathway(s) are involved since knocking out perforin in CTLs does not totally abolish DC 

elimination.  
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d) 

 

Fig 3.5.3. CTL elimination of antigen-loaded 
DCs in vivo is perforin- and antigen 
concentration-dependent. Groups of B6.SJ 
ptprca mice received in vitro activated wt or PKO 
OT-I CTLs. As a control, some mice did not 
receive CTLs. 24 h later, some recipient mice were 
injected s.c. with a DC mixture containing equal 
numbers of CFSE+ DCs loaded with 100 × 10-9 µM 
SIINFEKL (DC+SIINFEKL) and CMTMR+ DCs 
not loaded with antigen (DC only). Some recipient 
mice were injected s.c. with a different DC mixture 
containing equal numbers of CFSE+ DCs loaded 
with 10 µM SIINFEKL and CMTMR+ DCs only. 
Other recipient mice were injected s.c.  

 with a DC mixture containing equal numbers of CFSE+ DCs not loaded with SIINFEKL and CMTMR+ 
DCs only. 48 h after DC injection, CFSE+ and CMTMR+ DCs in the draining lymph nodes were 
monitored by flow cytometry. (a) CFSE+ and CMTMR+ DCs are shown in representative dot plots 
from individual mice. The number of events in each gate is shown. (b) The ratios of CFSE+ 
DC±SIINFEKL to CMTMR+ DC only were normalised to the ratios derived from untreated mice (-) 
that received the same DC mixture. Results are from one experiment. (c) Absolute numbers of CFSE+ 
and CMTMR+ DCs in the draining lymph nodes are shown. One representative experiment of two with 
1 – 3 mice per group is shown in 3.5.3a and b. These two separate experiments are pooled together and 
shown in 3.5.3c. CFSE+ DCs among various groups were analysed for statistical significance using the 
one-way ANOVA with Bonferroni’s method. * p<0.05, *** p<0.001. (d) Groups of C57BL/6J 
received 1, 5, 10 × 106 wt or PKO OT-I CTLs or no CTLs. These mice were injected s.c. with the 
mixture of CFSE+ DC+SIINFEKL and CMTMR+ DC only as in 3.5.3a, except that DCs were pulsed 
with 0.1 µM SIINFEKL before labelling with CFSE. The ratios of CFSE+ DC+SIINFEKL to 
CMTMR+ DC only were normalised to the ratios derived from untreated mice. The experiment was 
performed once with 1 – 3 mice per group. 

 

3.5.4. CTLs inhibit CD4+ T cell proliferation through perforin-mediated DC 

elimination 

 

Having identified perforin as an important mediator of DC elimination (Fig. 3.5.3), I asked 

if CTLs inhibited CD4+ T cell proliferation through perforin-mediated DC killing. The 

experimental design is shown in Fig. 3.5.4a. Mice received either CFSE-labelled OT-II 

CD4+ T cells and wt OT-I CTLs, CD4+ T cells and PKO OT-I CTLs, or CD4+ T cells 

without CTLs. 24 h later, DCs loaded with SIINFEKL and OVA323-339 were injected s.c. to 

these mice. Some mice were injected with DC loaded with OVA323-339 only. 3 days later, 

CD4+ T cells in the draining lymph nodes were examined for CFSE dilution by flow 

cytometry.  

 

Wt DCs loaded with SIINFEKL and OVA323-339 induced strong CD4+ T cell division in 

mice that did not receive CTLs, whereas CD4+ T cell division was significantly reduced in 

mice that received wt CTLs  (Fig. 3.5.4b). This result is similar to Fig. 3.3. When perforin 
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was knocked out in CTLs, CD4+ T cell division was restored (Fig. 3.5.4c and 3.5.4d). CTLs 

did not reduce CD4+ T cell division when DCs were not loaded with SIINFEKL, indicating 

that CTLs did not affect CD4+ T cell proliferation through non-antigen-specific 

mechanisms (Fig. 3.4). This shows that perforin is important in the CTL-mediated 

inhibition of CD4+ T cell proliferation. 
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c) 

 

d) 

 
 Fig 3.5.4. CTLs inhibit CD4+ T cell proliferation through perforin-mediated DC killing. (a) 

C57BL/6J mice received in vitro activated wt or PKO OT-I CTLs and CFSE-labelled OT-II 
CD45.1+CD4+ T cells. As a control, some mice received CD4+ T cells only. After 24 h, some recipient 
mice were injected s.c. into their forelimbs with LPS-activated DCs loaded with SIINFEKL and 
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OVA323-339. Other recipient mice received DCs loaded with OVA323-339 instead. 3 days later, 
CD45.1+CD4+ T cells in the draining lymph nodes were examined for CFSE dilution by flow cytometry. 
(b) CFSE dilution in CD45.1+CD4+ T cells is shown as representative histograms from individual mice. 
(c) The percentages of CD45.1+CD4+ T cells that had divided at least once are shown. (d) Absolute 
numbers of divided CD45.1+CD4+ T cells in the draining lymph nodes are shown. The experiment was 
performed once with 3 – 6 mice per group. Statistical significance was determined with one-way 
ANOVA with Bonferroni’s correction. ** p<0.01, *** p<0.001, N.S.= p>0.05. 

 

3.5.5. CTLs inhibit CD8+ T cell proliferation through perforin-mediated DC 

elimination 

 

A similar experiment was carried out to address if CTLs inhibited CD8+ T cell proliferation 

through perforin-mediated DC elimination. The experimental setup is shown in Fig. 3.5.5a. 

Mice were given CFSE-labelled CD8+ T cells from naïve wt OT-I mice and wt OT-I CTLs, 

or CD8+ T cells and PKO CTLs, or CD8+ T cells only. 24 h later, DCs loaded with 

SIINFEKL were injected s.c. into these mice. 3 days later, CD8+ T cells in the draining 

lymph nodes were examined for CFSE dilution by flow cytometry.  

 

In mice that received wt CTLs, CD8+ T cell division was significantly reduced compared to 

the control group (Fig. 3.5.5b). The reduction in CD8+ T cell division was significantly 

alleviated when perforin was knocked out (Fig. 3.5.5c and 3.5.5d). Similar results were 

obtained when the percentage and number of highly divided CD8+ T cells (>4 divisions) 

were compared among the three groups (data not shown). 

 

Taken together, CTLs inhibit the induction of CD8+ and CD4+ T cell proliferation through 

perforin-mediated DC killing. However, it should be noted that CD8+ T cells divided even 

though antigen-loaded DCs were killed. This proliferation could be induced by the few 

surviving antigen-loaded DCs, or by host APCs that had taken up antigens from the 

injected DCs. This will be examined in chapter 5. 
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c) 

 

d) 

 
 Fig. 3.5.5. CTLs inhibit CD8+ T cell proliferation in a perforin-dependent manner. (a) C57BL/6J 

mice received in vitro activated wt or PKO OT-I CTLs and CFSE-labelled OT-I CD45.1+CD8+ T cells. 
As a control, some mice received only CD8+ T cells. After 24 h, these mice were injected s.c. into their 
forelimbs with LPS-activated DCs loaded with SIINFEKL. 3 days later, CD45.1+CD8+ T cells in the 
draining lymph nodes were examined for CFSE dilution by flow cytometry. (b) CFSE dilution in 
CD45.1+CD8+ T cells is shown as representative histograms from individual mice. (c) The percentages 
of CD45.1+CD8+ T cells that had divided at least once are shown. (d) Absolute numbers of divided 
CD45.1+CD8+ T cells in the draining lymph nodes are shown. The experiment was performed once with 
5 mice per group. Statistical significance was determined using the one-way ANOVA with Bonferroni’s 
method. * p<0.05, ** p<0.01, *** p<0.001, N.S.= p>0.05. 
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3.6. FasL-mediated elimination of DCs plays a minor role in regulating T cell 

proliferation 

 

3.6.1. In vitro activated OT-I CTLs express FasL upon antigen stimulation  

 

Previous observations in Fig. 3.5.3 showed that the inactivation of perforin pathway was 

not sufficient to abolish DC elimination. This suggests that other cytolytic killing 

mechanisms are involved in CTL-mediated DC elimination. Besides perforin, another 

cytolytic pathway is mediated by the interaction of FasL on the CTLs with Fas on the target 

cell (Lowin et al., 1994b). I asked if in vitro activated OT-I CTLs expressed FasL. OT-I 

lymphocytes were activated and rested as described in Chapter 2.  OT-I CTLs were then 

incubated with SIINFEKL for 30 min or 2 h. FasL expression on OT-I CTLs was 

monitored by flow cytometry.  

 

As previously shown in Fig. 3.1.1, Fig. 3.1.2 and 3.5.2, greater than 95% of the in vitro 

activated OT-I CTLs were CD44hiVα2+ (Fig 3.7.1a). FasL expression in CD44hiVα2+ 

CTLs was only detected when CTLs were stimulated with SIINFEKL. It has been reported 

that CTLs store some FasL in granules and express pre-stored FasL during the early stages 

of CTL-target cell interaction, whereas most of the FasL are synthesized de novo and 

expressed later than pre-stored FasL (He and Ostergaard, 2007). In line with this, a small 

percentage of CTLs expressed low levels of FasL after 30 min stimulation with SIINFEKL, 

whereas the expression of FasL was detected on the majority of the CTLs after 2 h 

stimulation with SIINFEKL (Fig. 3.6.1b and c). This result shows that the OT-I CTLs used 

in this study express FasL on their cell surface upon antigenic stimulation. 
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Fig. 3.6.1. In vitro activated OT-I CTLs 
express FasL after in vitro antigen 
stimulation. OT-I CTLs were generated as 
described in Chapter 2. After culture, OT-I 
CTLs were incubated with anti-FasL antibody 
and SIINFEKL. In some cultures, only anti-
FasL antibody was added. After 30 min or 2 h 
incubation, the expression of FasL in OT-I 
CTLs was monitored by flow cytometry. (a) 
Vα2+CD44+ OT-I CTLs are shown in the 
contour plot. The percentage of Vα2+CD44+ 
OT-I CTLs expressing FasL is shown in the 
histogram. Dark grey lines represent the 
expression of FasL in OT-I CTLs with the 
addition of SIINFEKL. Black lines represent 
no SIINFEKL added. Filled light grey areas 
represent the unstained control. The 
percentages of OT-I CTLs expressing FasL 
after (b) 30 min, and (c) 2 h SIINFEKL 
incubations are shown in the histograms. The 
experiment was performed once. 

 

3.6.2. lpr DCs do not express Fas but are phenotypically similar to wt DCs  

 

To investigate if CTLs used FasL to eliminate DCs, DCs were cultured from B6.MRL-

FASlpr (lpr) mice. These mice carry a Fas receptor mutation, hence the CTLs cannot induce 

apoptosis of target cells through FasL-Fas pathway (Watanabe-Fukunaga et al., 1992). 

 

I started off by characterizing bone marrow (BM)-derived DCs from these lpr mice. Bone 

marrow cells were prepared from wt and lpr mice and cultured as described in Chapter 2. 

Some DCs were treated with LPS, while some were left untreated. After treatment, all DCs 

were incubated with a panel of antibodies to characterise the phenotype and activation 

status. 

 

Culturing lpr bone marrow cells in vitro yielded similar percentages of CD11b+CD11c+ live 

cells as wt cultures (Fig. 3.6.2a). The percentages of CD11c+ cells expressing high MHC 

class II, CD40, CD86 and CD80 before and after LPS treatment were also similar in wt and 

lpr cultures (Fig. 3.6.2b and Table 3.6.1). Unlike wt DCs, DCs cultured from lpr mice did 

not express Fas (Fig. 3.6.2c). Fas expression on wt DCs was also upregulated after LPS 

treatment. 
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Fig. 3.6.2. In vitro cultures of wt and lpr 
BM cells yield similar percentages of 
CD11c+CD11b+ cells. Bone marrow cells 
were prepared from C57BL/6J (wt) and lpr 
mice and cultured with GM-CSF and IL-4 
for 6 days in vitro. On day 6, GM-CSF/IL-
4 cell cultures were treated with LPS for 
24 h. Cells were harvested on day 6 
(before LPS) and day 7 (24 h after LPS) 
and analysed for expressions of CD11c, 
CD11b, MHC class II, CD40, CD86 and 
CD80. (a) The expressions of CD11b and 
CD11c in cultured cells are shown in dot 
plots. The percentages of CD11c+CD11b+ 
cells are shown. (b) The expressions of 
activation markers in CD11c+ cells are 
shown in histograms. Wt DCs are depicted 
in black while lpr DCs are depicted in dark 
grey. The unstained controls are shown as 
filled light grey areas. The percentages of 
live CD11c+ cells expressing the activation 
markers are shown in Table 5. The 
experiment was performed once. (c) The 
expressions of Fas and CD11c in cultured 
cells treated with or without LPS are 
shown as percentages in dot plots. The 
experiment was performed once. 
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Table 3.6.1. Percentage of wt and lpr CD11c+ cells expressing activation markers* 
      

 Before LPS (Day 6) + LPS (Day 7) 
Markers wt DC lpr DC wt DC lpr DC 

MHC class II 54.5% 56.2% 84.7% 81.7% 
CD40 32.5% 28.3% 80.1% 78.7% 
CD86 37.9% 32.3% 78.5% 75.0% 
CD80 63.9% 67.3% 93.1% 92.6% 

     
* Percentages of CD11c+ cells expressing high levels of activation markers as gated in Fig. 3.6.2b.  
 

3.6.3. lpr DCs are similar to wt DCs in terms of migratory capacity  

 

Having shown that lpr DCs were phenotypically similar to wt DCs (Fig. 3.6.2), I asked if 

defective Fas affected the ability of DCs to migrate to draining lymph nodes. To address 

this, wt and lpr DCs were labelled with CMTMR and CFSE respectively. Equal numbers of 

CFSE+ lpr DCs and CMTMR+ wt DCs were mixed and injected s.c. into the forelimbs of 

mice. 24 h and 48 h later, CFSE+ and CMTMR+ cells in the draining lymph nodes were 

monitored by flow cytometry. The number of lpr DCs that accumulated in the draining 

lymph nodes 24 h and 48 h after DC injection was similar to that of wt DCs (Fig. 3.6.3a). 

 

To determine if defective Fas affected the survival of DCs in vivo, I examined the numbers 

of wt and lpr DCs in vivo over a two-week period. Because host cells might take up the 

fluorescent dyes over time, CD45.2+ DCs were injected into congenic CD45.1+ hosts in this 

experiment. As before, CMTMR+ wt and CFSE+ lpr DCs were mixed in equal numbers 
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before injecting into mice. CFSE+ and CMTMR+ cells in draining lymph nodes were 

monitored by flow cytometry at the indicated time points.  

 

The number of wt and lpr DCs accumulating in the draining lymph nodes increased 

between 24 to 48 h after DC injection (Fig. 3.6.3b and c). Thereafter, the number of wt and 

lpr DCs in the draining lymph nodes decreased sharply after four days. Although more lpr 

than wt DCs were observed seven days after DC injection, both DC populations dropped to 

similar numbers 10 days after DC injection. The numbers of wt and lpr DCs observed two 

weeks after DC injection were similar to those of wt and lpr DCs observed at 24 h after DC 

injection. Therefore, both wt and lpr DCs migrate and accumulate in the draining lymph 

nodes similarly. 
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 Fig. 3.6.3. The numbers of wt and lpr DCs in the draining lymph nodes increase and then decline 
at the same rate. (a) LPS-activated wt and lpr DCs were labelled with CMTMR and CFSE 
respectively. CFSE-labelled lpr DCs were mixed in equal numbers with CMTMR-labelled wt DCs 
injected s.c. into the forelimbs of recipient mice. 24 h and 48 h later, CFSE+ and CMTMR+ DCs in the 
draining lymph nodes were monitored by flow cytometry. (a) Absolute numbers of CFSE+ or CMTMR+ 
DCs in the draining lymph nodes are shown. The experiment was performed once with 3 mice per 
group. (b) The experiment was carried out as in 3.6.3a, except that CMTMR+CD45.2+ wt and 
CFSE+CD45.2+ lpr DCs into the forelimbs of congenic B6.SJ ptprca mice. CFSE+ and CMTMR+ DCs 
in the draining lymph nodes were monitored by flow cytometry at the indicated time points over 2 
weeks. CD45.2+CFSE+ and CD45.2+CMTMR+ DCs were gated on live cells and shown in 
representative dot plots from individual mice. The number of events in each gate is shown. (c) Absolute 
numbers of CD45.2+CFSE+ CD45.2+CMTMR+ DCs in the draining lymph nodes from 3.6.3b are 
shown. The experiment was performed once with 2 – 3 per group. 

 

3.6.4. lpr DCs induce in vitro T cell proliferation as effectively as wt DCs 

 

I went on to ask if defective Fas expression affected the ability of DCs to present antigens 

to T cells. To investigate this, wt and lpr DCs were loaded with either SIINFEKL or 

OVA323-339 at the indicated concentrations for 4 h. SIINFEKL-loaded or OVA323-339-loaded 

DCs were then serially diluted and incubated with OT-I or OT-II lymphocytes respectively. 

48 h later, the cells were incubated with thymidine for 6 h before thymidine uptake was 

measured. 

 

Both wt and lpr DCs stimulated comparable levels of thymidine uptake by OT-I and OT-II 

lymphocytes (Fig. 3.6.4a and 3.6.4b). This shows that lpr DCs are able to present both 

MHC class I and II peptides to CD8+ and CD4+ T cells, respectively, and stimulate T cell 

division.  
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 Fig. 3.6.4. lpr DCs present antigens and stimulate CD8+ and CD4+ T cell proliferation as efficiently 

as wt DCs. Wt and lpr DCs were loaded with either SIINFEKL or OVA323-339 at the indicated 
concentrations for 4 h. SIINFEKL-loaded and OVA323-339-loaded DCs were serially diluted and 
incubated with 2 × 106 lymphocytes/ml prepared from either OT-I or OT-II total lymphocyte 
suspensions. 48 h later, the cultures were incubated with thymidine for 6 h before thymidine uptake was 
measured. Thymidine uptake in (a) OT-I and (b) OT-II lymphocytes was then measured. The experiment 
was performed once with triplicate wells. 

 

3.6.5. Perforin contributes more significantly to DC killing than FasL-mediated 

mechanisms 

 

I sought to dissect the relative contributions of perforin and FasL in DC elimination. The 

experimental setup is shown in Fig. 3.6.5a. Mice received in vitro activated wt OT-I CTLs, 

PKO OT-I CTLs, or no CTLs. 24 h later, two different DC mixtures were prepared. The 

first DC mixture contained equal numbers of CFSE-labelled wt DCs loaded with 

SIINFEKL and CMTMR-labelled lpr DCs not loaded with SIINFEKL (DC only). The 

second DC mixture contained equal numbers of CFSE-labelled lpr DCs loaded with 

SIINFEKL and CMTMR-labelled lpr DCs only. Some recipient mice were injected with 

the first DC mixture, while others were injected with the second DC mixture. 48 h after DC 

injection, CFSE+ and CMTMR+ cells in the draining lymph nodes were monitored by flow 

cytometry.  

 

In mice that did not receive CTLs, similar numbers of SIINFEKL-loaded DCs and DCs 

only were recovered (Fig. 3.6.5b). DC killing was evident in mice that received wt CTLs 

because most SIINFEKL-loaded wt DCs could not be recovered (Fig. 3.6.5c and d). 

Knocking out perforin in CTLs significantly lowered DC killing more than knocking out 
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Fas in DCs. When both perforin and Fas were knocked out, DC killing was very low but 

was not totally abolished. This indicates that perforin and FasL pathways mediate most of 

DC killing although some other cytolytic molecule(s) may play a very minor role.  
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 Fig. 3.6.5. Perforin contributes more significantly to DC killing than FasL-mediated mechanisms 
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in vivo. (a) Groups of B6.SJ ptprca mice received in vitro activated wt or PKO OT-I CTLs, or no CTLs. 
24 h later, some recipient mice were injected s.c. into their forelimbs with a DC mixture containing 
equal numbers of CFSE-labelled wt DCs loaded with SIINFEKL (DC+SIINFEKL) and CMTMR-
labelled lpr DCs not loaded with SIINFEKL (DC only). Other recipient mice were injected with another 
DC mixture containing equal numbers of CFSE-labelled lpr DCs loaded with SIINFEKL 
(DC+SIINFEKL) and CMTMR-labelled lpr DCs not loaded with SIINFEKL (DC only). 48 h after DC 
injection, CFSE+ and CMTMR+ DCs in the draining lymph nodes were monitored by flow cytometry. 
(b) CFSE+ and CMTMR+ DCs are shown in representative dot plots from individual mice. The number 
of events in each gate is shown. (c) The ratio of CFSE+ DC+SIINFEKL to CMTMR+ DC only was 
normalised to the ratio derived from untreated mice that received the same DC mixture. (d) Absolute 
numbers of CFSE+ and CMTMR+ DCs in the draining lymph nodes are shown. Two separate 
experiments with 3 mice per group are pooled together and shown. Statistical significance was 
determined with one-way ANOVA with Bonferroni’s correction. ** p<0.01, *** p<0.001. 

 

3.6.6. CTLs regulate CD4+ T cell proliferation through perforin- but not FasL-

mediated DC killing 

 

To investigate the effects of perforin- and FasL-mediated DC elimination on CD4+ T cell 

proliferation, mice received in vitro activated wt or PKO OT-I CTLs, or no CTLs (Fig. 

3.6.6a). 24 h later, some recipient mice were injected s.c. with wt DCs loaded with 

SIINFEKL and OVA323-339, while others were injected s.c. with lpr DCs loaded with 

SIINFEKL and OVA323-339. 3 days after DC injection, CD4+ T cells in the draining lymph 

nodes were examined for CFSE dilution by flow cytometry.  

 

In mice that did not receive CTLs, both wt and lpr DCs elicited strong CD4+ T cell 

proliferation (Fig. 3.6.6b). CD4+ T cell division was strongly inhibited by wt CTLs when 

mice received wt DCs. This result is similar to Fig. 3.3. When Fas was knocked out in DCs, 

a significant reduction in CD4+ proliferation was observed in the percentage, but not in the 

absolute number. This suggested that FasL-mediated DC killing did not play a significant 

role in inhibiting CD4+ T cell proliferation (Fig. 3.6.6c and 3.6.6d). When perforin was 

knocked out in CTLs, CD4+ T cell division was restored to comparable levels to the control 

group that did not receive CTLs. This result is similar to Fig. 3.5.4. When both perforin and 

Fas were knocked out, CD4+ T cell division was also restored to similar levels as the 

control group that did not receive CTLs. This result shows that CD4+ T cell proliferation is 

regulated by CTLs through perforin-mediated, but not FasL-mediated, killing of antigen-

bearing DCs. 
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c) 

 

d) 

 
 Fig. 3.6.6. CTLs regulate CD4+ T cell proliferation through perforin-mediated, but not FasL-

mediated, DC killing. (a) C57BL/6J mice received in vitro activated wt or PKO OT-I CTLs and CFSE-
labelled OT-II CD45.1+CD4+ T cells. As a control, some mice received CD4+ T cells only. After 24 h, 
these mice were injected s.c. into their forelimbs with LPS-activated wt or lpr DCs loaded with 
SIINFEKL and OVA323-339. 3 days later, CD45.1+CD4+ T cells in the draining lymph nodes were 
examined for CFSE dilution by flow cytometry. (b) CFSE dilution in CD45.1+CD4+ T cells is shown as 
representative histograms from individual mice. (c) The percentages of CD45.1+CD4+ T cells that had 
divided at least once are shown. (d) Absolute numbers of divided CD45.1+CD4+ T cells in the draining 
lymph nodes are shown. The experiment was performed once with 4 – 5 mice per group is shown. 
Statistical significance was determined with one-way ANOVA with Bonferroni’s correction. *p<0.05, 
** p<0.01, N.S.= p>0.05. 

 

3.6.7. CTLs regulate CD8+ T cell proliferation through perforin- but not FasL-

mediated DC killing 

 

To characterise the effects of perforin- and FasL-mediated DC elimination on CD8+ T cell 

proliferation, mice received in vitro activated wt or PKO OT-I CTLs, or no CTLs (Fig. 

3.6.7a). 24 h later, some recipient mice were injected s.c. with wt DCs loaded with 

SIINFEKL while others were injected s.c. with lpr DCs loaded with SIINFEKL. After 48 h, 

CD8+ T cells in the draining lymph nodes were examined for CFSE dilution by flow 

cytometry.  

 
In mice that did not receive CTLs, both wt and lpr DCs elicited strong CD8+ T cell division 

(Fig. 3.6.7b). CD8+ T cell division was inhibited, but not abolished, by wt CTLs when mice 

received wt DCs. When Fas was knocked out in DCs, CD8+ T cell division was 

significantly reduced, suggesting that FasL-mediated DC killing did not play a significant 
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role in inhibiting CD8+ T cell proliferation (Fig. 3.6.7c and 3.6.7d). When perforin was 

knocked out in CTLs, CD8+ T cell division in mice that received PKO CTLs and wt DCs 

was restored to comparable levels to the control group. This result is similar to Fig. 3.5.5. 

When both perforin and Fas were knocked out, CD8+ T cell division was also restored to 

similar levels as the control group. Similar results were obtained when the percentage and 

number of highly divided CD8+ T cells (>4 divisions) were compared among the various 

groups (data not shown). 

 

This result shows that the CTLs regulate CD8+ T cell proliferation through perforin-

mediated, but not FasL-mediated killing of antigen-bearing DCs. However, it should be 

noted that robust CD8+ T cell division was observed even when few DCs were found in the 

draining lymph nodes (Fig. 3.5.3, Fig. 3.5.5, Fig 3.6.5 and Fig 3.6.7). The robust CD8+ T 

cell division in the presence of DC killing could be induced by the few surviving 

SIINFEKL-loaded DCs that had reached the draining lymph nodes or by host APCs that 

had taken up antigens from the injected DCs. These possibilities will be examined in 

chapter 5. 
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c) 

 

d) 

 
 Fig. 3.6.7. CTLs regulate CD8+ T cell proliferation through perforin-, but not FasL-mediated DC 

killing. (a) C57BL/6J mice received in vitro activated wt or PKO OT-I CTLs and CFSE-labelled OT-I 
CD45.1+CD8+ T cells. As a control, some mice received CD8+ T cells only. After 24 h, these mice were 
injected s.c. into their forelimbs with LPS-activated wt or lpr DCs loaded with SIINFEKL. 3 days later, 
CD45.1+CD8+ T cells in the draining lymph nodes were examined for CFSE dilution by flow cytometry. 
(b) CFSE dilution in CD45.1+CD8+ T cells is shown as representative histograms from individual mice. 
(c) The percentages of CD45.1+CD8+ T cells that had divided at least once are shown. (d) Absolute 
numbers of divided CD45.1+CD8+ T cells in the draining lymph nodes are shown. Two separate 
experiments with 3 – 5 mice per group are pooled together and shown. Statistical significance was 
determined with one-way ANOVA with Bonferroni’s correction. * p<0.05, N.S.= p>0.05. 
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3.7. Discussion 

 

In this chapter, I have shown that CTLs regulate naïve T cell proliferation through the 

cytolytic elimination of antigen-loaded DCs. Elimination of antigen-presenting DCs is 

mediated significantly through perforin, with non-significant contributions from the Fas-

FasL pathway. The cytolytic elimination of DCs prevents them from accumulating in the 

draining lymph nodes. Because the accumulation of DCs in the draining lymph nodes is 

prevented, DCs can no longer interact with naïve T cells and the induction of naïve T cell 

proliferation is limited. Thus, CTLs serve as a gatekeeper in regulating the size of 

downstream T cell responses (Fig. 3.7). 

 

a) DCs accumulate in the draining lymph nodes 

 
 
b) CTLs prevent DCs from entering the draining lymph nodes 

 
 
Fig. 3.7. CTLs prevent DCs from entering the draining lymph nodes. 
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3.7.1. Location of CTL-mediated DC elimination 

 

The location of CTL-mediated DC elimination is contentious. In one study using the 

LCMV model, when antigen-loaded DCs were allowed to migrate into the draining lymph 

nodes before the transfer of CTLs, DCs that had reached the draining lymph nodes were 

protected from CTL-mediated killing (Yang et al., 2006). The number of DCs injected into 

the ear was also reduced in the presence of CTLs, indicating that DCs were eliminated 

outside the draining lymph nodes. In another study using the OVA model, when DCs were 

allowed to migrate into the draining lymph nodes before CTL transfer, these DCs were 

eliminated by CTLs in the draining lymph nodes (Guarda et al., 2007a). This was 

demonstrated using real time 2 photon intra-vital imaging.  

 

The discrepancy between the studies of Yang et al. and Guarda et al. may be due to a few 

reasons. Firstly, although CTL-mediated DC killing was visualised in the draining lymph 

nodes, the DC killing in the draining lymph nodes was not quantified. It is possible that 

some DCs were killed in the draining lymph nodes but this DC killing would be expected 

to have little impact on the induction of immune responses. This was not adequately 

addressed by Guarda. In their experiments visualising DC killing in the draining lymph 

nodes,  DCs were injected into the recipient mice before the adoptive transfer of CTLs  

(Guarda et al., 2007b). In contrast, in their experiments showing that DC killing reduced T 

cell proliferation, CTLs and naïve T cells were transferred into the receipient mice before 

DCs were injected. The authors showed that when CTLs were transferred before the 

injection of DCs, DCs did not accumulate in the draining lymph nodes, hence did not 

induce T cell proliferation. This is similar to the results reported by Yang et al (Yang et al., 

2006) and Hermans et al (Hermans et al., 2000). In order to demonstrate that DC killing in 

the draining lymph nodes can reduce the generation of immune responses, T cell 

proliferation needs be examined when DCs are injected into mice before CTL transfer. 

However, this was not shown by Guarda et al (Guarda et al., 2007a). 

 

Secondly, different antigen models- LCMV versus OVA- and the different T cell transgenic 

mice were also used in the two studies (Guarda et al., 2007a; Yang et al., 2006). In my 

study using the OVA model, when DCs were given before the transfer of CTLs, some DC 
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killing was observed. This DC killing could be occuring in the draining lymph nodes as 

reported by Guarda et al and could be mediated by the adoptively transferred CTLs that 

were found in the draining lymph nodes (Guarda et al., 2007a) (Appendix 4). In contrast, 

no DC killing was reported in the LCMV model when DCs were given before CTL transfer 

(Yang et al., 2006). It should be noted that although some DC killing occurred in the 

draining lymph nodes in my study, the number of antigen-loaded DCs recovered in mice 

that received CTLs was similar to mice that did not receive CTLs. This suggests that DC 

killing in the draining lymph nodes does not reduce the number of antigen-loaded DCs 

greatly. Unlike the CTLs used in my study and the studies of Yang and Guarda, other 

studies have indicated that memory CTLs eliminate DCs in the draining lymph nodes (Belz 

et al., 2007; Hermans et al., 2000). This is because memory CTLs express cytolytic 

molecules rapidly, allowing them to eliminate DCs in the draining lymph nodes (Belz et al., 

2007). Thus, the type of CTLs influences the location of CTL-mediated DC killing. 

 

My results also showed that when CTLs were transferred after DC injection, the number of 

antigen-bearing DCs that had reached the draining lymph nodes did not increase and 

remain constant. When DCs were given more time to accumulate in the draining lymph 

nodes before the transfer of CTLs, the number of antigen-bearing DCs found in the 

draining lymph nodes increased. This suggests that the presence of existing CTLs prevent 

the entry of DCs into the draining lymph nodes (Fig. 3.7). Taken together, this evidence 

supports two scenarios. In the first scenario, effector CTLs eliminate antigen-bearing DCs 

in the non-lymphoid tissues, thereby preventing the DCs from entering the draining lymph 

nodes to induce de novo T cell responses. The few DCs that survive non-lymphoid CTL-

mediated killing are then eliminated in the draining lymph nodes. 

 

The second scenario occurs only when memory CD8+ T cells are present. Antigen-bearing 

DCs enter the draining lymph nodes and activate memory CD8+ T cells into effector CTLs. 

These CTLs eliminate the antigen-bearing DCs in the draining lymph nodes to terminate 

DC antigen presentation, then circulate out into the non-lymphoid tissues to eliminate the 

antigen-bearing DCs, thus preventing more antigen-bearing DCs from entering the draining 

lymph nodes.  
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3.7.2. Different cytolytic killing mechanisms used by CTLs for DC killing 

 

The cytotolytic functions of CTLs are mediated through various molecules. Of these 

cytolytic molecules, two of the most well-documented are perforin and FasL (Kagi et al., 

1994b; Lowin et al., 1994b). The different functions thought to be mediated by perforin and 

FasL were predicted from the phenotypes observed in PKO (Kagi et al., 1994a), lpr 

(Watanabe-Fukunaga et al., 1992), gld (Takahashi et al., 1994) and Fas-null (Adachi et al., 

1996) mice. Observations made from humans who suffer from FHL (Stepp et al., 1999) and 

various types of ALPS (Fisher et al., 1995; Rieux-Laucat et al., 1995; Straus et al., 2001; 

Wang et al., 1999; Wu et al., 1996) further emphasised the delineation of the physiological 

purposes of perforin and FasL. Notwithstanding the distinct niches occupied by perforin 

and FasL in the body, other studies have shown that their different cytolytic pathways 

complement and compensate to some degree when either one of them is inactivated (Ando 

et al., 1997; Braun et al., 1996; Janssen et al., 2010; Maeda et al., 2005; Price et al., 2005). 

Other factors such as the different TCR-antigen affinities (Cao et al., 1995; Kessler et al., 

1998) and different CTL activation conditions (Aung and Graham, 2000) have also been 

reported to determine whether CTLs use perforin or FasL to kill target cells.  

 

The sensitivity of target cells to perforin and FasL has to be considered as well. Some cells 

are resistant to FasL because they express caspase-inhibitors. For example, macrophages  

(Perlman et al., 1999), DCs (Ashany et al., 1999) and certain tumour cell lines (Medema et 

al., 1999) have been shown to be resistant to FasL cytolysis because these cells express 

cFLIP (cellular Fas-associated death domain-like IL-1β-converting enzyme). Some cells 

are resistant to FasL because they express low levels of Fas (Yang et al., 1995). Some 

tumour cell lines have been shown to be resistant to perforin-mediated killing because 

perforin bind poorly to the surfaces of these cells (Lehmann et al., 2000). Although the 

reason why perforin binds poorly to the tumour cells is not elucidated, there are suggestions 

that the expression of cathepsin B protects the tumour cells from perforin-mediated killing 

(Balaji et al., 2002). Thus, the distinct functional niches occupied by perforin and FasL are 

also defined by the susceptibility of the target cells to the different CTL cytolytic 

mechanisms. 
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Some studies have shown that CTLs eliminate DCs through perforin (Belz et al., 2007; 

Laffont et al., 2006; Yang et al., 2006), while others have shown that DCs are eliminated by 

CTLs through FasL (Stranges et al., 2007). However, the cytolytic contributions of perforin 

and FasL to CTL-mediated DC killing have not been examined in the same experiment 

using similar conditions. In my study, I have shown that perforin is a significant and critical 

component of DC elimination. On the other hand, knocking out Fas in DCs only reduces 

the killing of antigen-bearing DCs slightly.  

 

Why CTLs eliminate DCs more through perforin than FasL is not clear. In my study, the 

OT-I CTLs expressed some FasL after 30 min of incubation with SIINFEKL in vitro. More 

OT-I CTLs acquired increased FasL expression when these CTLs were incubated for 2 h 

with SIINFEKL. This is in line with previous studies which have shown that the early and 

late FasL expressions are from a pre-existing pool of FasL, or from de novo protein 

synthesis, respectively (He et al., 2010; He and Ostergaard, 2007). FasL expression on 

CTLs alone is insufficient to induce target cell death because unlike perforin, FasL-

mediated killing requires the expression of Fas on target cells. In my study, LPS-activated 

DCs increase Fas expression and this has also been shown in previous studies (Stranges et 

al., 2007). Thus, FasL-Fas mechanism contributes little to DC killing but this is not because 

CTLs or DCs do not express FasL or Fas respectively.   

 

It is possible that the DCs express anti-apoptotic proteins that protect them from FasL-

mediated killing in vitro (Ashany et al., 1999). However, other studies have indicated that 

the expression of anti-apoptotic proteins in DCs does not necessarily confer protection from 

CTL killing. For example, DCs used in my study have been shown to express serine 

protease inhibitor (SPI)-6 (Andrew et al., 2008), which reportedly protects DCs from CTL-

mediated killing in vitro (Medema et al., 2001). However, the DCs expressing SPI-6 

remained sensitive to CTL-mediated killing in vivo (Andrew et al., 2008). Taken together, 

the current evidence indicates that CTLs predominantly use perforin to mediate DC killing, 

although FasL also makes a small contribution to DC killing as well.  

 

CTLs are reported to eliminate DCs through other cytolytic molecules independent of 

perforin and FasL (Ludewig et al., 2001). Other cytolytic molecules include members of the 
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TNFα super family such as TRAIL (Mirandola et al., 2004) and TNFα (Balkwill, 2006), 

and members of the serine protease family such as granzymes (Chowdhury and Lieberman, 

2008). CTLs have been shown to utilise TRAIL and TNFα to eliminate viral infected cells 

(Brincks et al., 2008; White and Harty, 1998) and tumour cells (Pitti et al., 1996; Poehlein 

et al., 2003; Prevost-Blondel et al., 2000). Studies of ALPS Type II patients indicated that 

DCs obtained from these patients were resistant to TRAIL-mediated killing, thus 

contributing to the accumulation of abnormal T cells and DCs (Wang et al., 1999). CTLs 

also express granzymes and have been shown to utilise grazymes to mediate apoptosis in 

target cell (Revell et al., 2005; Shresta et al., 1999), although recent evidence indicates that 

granzyme B and A are not required for CTL cytolytic functions (Regner et al., 2009). In my 

study, when perforin and Fas were stimultaneously knocked out, CTL-mediated DC killing 

was greatly reduced and similar numbers of antigen-loaded DCs and control DCs could be 

recovered. This indicates that perforin and FasL mediate most of the CTL cytolytic 

functions (Kojima et al., 1994; Lowin et al., 1994b). Thus, while CTLs express and utilise 

cytolytic molecules other than perforin and FasL, the role of other cytolytic molecules in 

DC killing may not be easily demonstrated due to the significant contributions from 

perforin and FasL to DC killing. 

  

3.7.3. Protection of DCs from CTL-mediated DC killing 

 

There have been conflicting evidence regarding the susceptibility of antigen-bearing DCs to 

CTL-mediated killing. Several in vitro studies have reported that DCs are protected from 

FasL-mediated killing through the expression of anti-apoptotic molecules (Ashany et al., 

1999; Leverkus et al., 2000; Lundqvist et al., 2002; Rescigno et al., 2000; Willems et al., 

2000). The expression of SPI-6 is also reported to protect DCs from perforin/granzyme-

mediated CTL-mediated killing in vitro (Medema et al., 2001). LPS- and anti-CD40 

treatments induce DC activation and have also been shown to protect activated DCs from 

CTL-mediated killing (Medema et al., 2001; Mueller et al., 2006). DC interaction with 

other T cells such as CD4+ T cells in vivo (Mueller et al., 2006) and memory CD8+ T cells 

in vitro (Watchmaker et al., 2008) has also been reported to protect DCs from CTL-

mediated killing. Furthermore, DC apoptosis is inhibited when DCs form immunological 
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synapses with naïve CD4+ T cells, indicating that the survival of DCs is critical for the 

initiation of immune responses (Riol-Blanco et al., 2009). 

  

In vivo studies have shown that DCs are susceptible to perforin- and FasL-mediated killing. 

In vivo DC killing was reduced by 20-30% when Fas was knocked out in DCs, indicating 

that CTLs eliminated DCs in a FasL-dependent manner (Stranges et al., 2007). While the 

expression of SPI-6 has been shown to protect DCs from perforin/granzyme-mediated 

killing in vitro (Medema et al., 2001), DCs expressing SPI-6 remained sensitive to killing 

by CTLs in vivo (Andrew et al., 2008). Unlike the LPS-treated splenic DCs (Mueller et al., 

2006), LPS-activated BM-DCs remained susceptible to CTL-mediated killing in vivo even 

though LPS-treatment increased the expression of SPI-6 in BMDCs (Andrew et al., 2008). 

In my study, LPS-treated BMDCs were used throughout and they too remained sensitive to 

CTL-mediated killing. DCs were also susceptible to memory CD8+ T cell cytolytic killing 

in an in vivo influenza model (Belz et al., 2007), and in a DC immunisation model 

(Hermans et al., 2000). Moreover, in vivo live imaging has shown that DCs are eliminated 

by CTLs (Guarda et al., 2007a). Although CD4+ T cells have been shown to protect DCs 

from CTL-mediated killing, DCs were eliminated through FasL-Fas pathway after 

interacting with antigen-specific CD4+ T cells in vitro (Matsue et al., 1999) and 

disappeared from the draining lymph nodes after interaction with CD4+ T cells in vivo 

(Ingulli et al., 1997). Other types of CD4+ T cells such as the Foxp3+ CD4+ regulatory T 

cells also induced DC apoptosis in a perforin-dependent manner in vivo (Boissonnas et al., 

2010).  

 

It is unclear why DCs are sensitive to CTL-mediated killing in some models but not in 

others. However, because DCs actively protect themselves from killing by CTLs at least in 

vitro, this indicates that DC survival is actively regulated through the expression of anti-

apoptotic proteins in DCs and CTL-mediated DC killing. The regulation of DC survival is 

important because prolonged DC survival and aberrant DC accumulation lead to 

pathological immune responses (Chen et al., 2006). Taken together, the survival of DCs 

and the duration of DC antigen presentation are subjected to CTL-mediated regulation. 
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3.7.4. CTL-mediated elimination of DCs and T cell proliferation 

 

Sufficient DC numbers and antigen concentration are required for the activation of naïve T 

cells (Henrickson et al., 2008; Martin-Fontecha et al., 2003) (Appendices 5 and 6). When 

CTLs eliminate antigen-bearing DCs, CTLs lower the number of available antigen-

presenting DCs in the draining lymph nodes to induce T cell proliferation (Guarda et al., 

2007a). In my study, CD4+ and CD8+ T cell proliferation were inhibited when antigen-

presenting DCs were eliminated by CTLs. This is in line with previous studies (Guarda et 

al., 2007a; Hermans et al., 2000). My study also has shown that CTLs regulate naïve T cell 

proliferation mainly through perforin-mediated DC killing, whereas FasL-mediated DC 

killing was not observed to play any regulatory role. Thus, by limiting the availability of 

antigen-presenting DCs through perforin-mediated elimination, CTLs function as a 

regulator of naïve T cell clonal expansion. 

 

It has been proposed that the physiological function of CTL-mediated DC killing is to 

downregulate immune responses that may otherwise lead to immunopathology (Guarda et 

al., 2007a; Hermans et al., 2000; Laffont et al., 2006; Ronchese and Hermans, 2001; Yang 

et al., 2006). While there is no formal evidence demonstrating the proposed physiological 

function, one study has shown that the presence of effector CD8+ T cells prevent the 

induction of alloreactive CD4+ T cells and CD4+ T cell-mediated allograft rejection through 

perforin-mediated DC killing (Laffont et al., 2006). There is also other circumstantial 

evidence. For example, when CTLs failed to eliminate DCs, the accumulation in DCs led to 

the increased expansion of effector T cells (Yang et al., 2006). My study shows that CTLs 

prevent the initation of T cell responses through cytolytic elimination of DCs, thus 

supporting the notion that CTLs eliminate DCs to terminate unnecessary immune responses 

or prevent the induction of de novo immune responses. 
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In Chapter 3, I have shown that DCs loaded with peptides were recognised by antigen-

specific CTLs and were eliminated through perforin-dependent killing, leading to a 

decrease in subsequent antigen presentation to naïve T cells.  

 

Because most physiological antigens presented by DCs via the cross-presentation and 

classical MHC class I pathways are derived from exogenous or endogenous proteins 

respectively (Rock and Goldberg, 1999; Rock and Shen, 2005), it is vital to characterise 

how the killing of DCs by CTLs is influenced by the way antigens are loaded onto DCs, 

and whether this will affect the induction of subsequent T cell responses. 

 

Another aspect that requires investigation is the type of CTLs used. Adoptive transfer of in 

vitro activated OT-I CD8+ T cells was previously used to examine the DC killing 

mechanisms in Chapter 3. Unlike the OT-I CTLs, host effector CD8+ T cells are polyclonal 

and have different avidities to a particular epitope as the different TCRs on the polyclonal T 

cells interact to varying degrees with the peptide-MHC molecule complexes on the APCs. 

Avidity is important in controlling the type of T cell responses. For example, high avidity T 

cells proliferated when low antigen doses were presented by APCs (Alexander-Miller et al., 

1996a), whereas high avidity T cells underwent activation induced T cell death (AICD) 

when high antigen doses were presented by APCs (Alexander-Miller et al., 1996b). In 

contrast, low avidity T cells proliferated when high doses of antigen were presented by 

APCs. Very low antigen doses could also induce T cell anergy (Korb et al., 1999). Thus, in 

contrast to OT-I CTLs, host effector CD8+ T cells generate different types of immune 

responses due to their polyclonal nature. The inherent differences between OT-I CTLs and 

the host effector CD8+ T cells may have an impact on CTL-mediated DC killing and the 

subsequent induction of T cell responses. Host effector CD8+ T cells can be generated 

through peptide-loaded DC immunisation (Porgador and Gilboa, 1995), hence the effects of 

physiologically relevant host effector CD8+ T cells (host CTLs) on DC killing and on 

subsequent T cell responses can be examined. 
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In this chapter, I will address the following aims: 

 

1) To establish whether CTLs raised in vivo via DC immunisation, and transgenic 

CTLs activated in vitro, eliminate DCs loaded with soluble protein in vivo 

2) To establish whether CTLs raised in vivo via DC immunisation, and transgenic 

CTLs activated in vitro, eliminate DCs expressing endogenous protein in vivo 

3) To evaluate how CTLs affect the induction of CD4+ T cell proliferation by 

eliminating DCs loaded with soluble protein or expressing endogenous protein in 

vivo 
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4.1. DCs incubated with soluble protein have a highly activated phenotype 

 

The process of uptake and presentation of exogenous proteins on MHC class I molecules is 

known as cross-presentation (Carbone and Bevan, 1990). To characterise the phenotype of 

DCs cross-presenting protein antigens, DCs were loaded with soluble OVA protein and 

their activation phenotypes were determined. 

 

As described in Chapter 2, BM-DCs were cultured for 5 days and then loaded with 2 mg/ml 

of soluble OVA protein for 2 days. On the 6th day of culture, some of these DCs were 

treated with LPS, whereas others were not. On the 7th day of culture, all of these DCs were 

examined for the expression of various co-stimulatory molecules and phenotypic markers.  

 

The percentage of CD11c+CD11b+ DCs was similar in all cultures regardless of OVA 

incubation or LPS treatment (Fig. 4.1a). The percentages of MHC class IIhi, CD40hi, 

CD80hi and CD86hi CD11c+ DCs were highest in DCs loaded with OVA protein 

(DC+OVA) and treated with LPS (Fig. 4.1b and Table 4.1.1). DC+OVA that were not 

treated with LPS also showed high activation phenotype. The high percentage and MFI 

observed in non-LPS treated DC+OVA were likely due to the presence of endotoxins in the 

OVA protein. LPS treatment increased the activation phenotype of DCs not loaded with 

OVA protein. The MFI of the various co-stimulatory molecules also reflected a similar 

trend (Fig. 4.1b and Table 4.1.2).  
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Fig. 4.1. Culture of BM-DCs 
loaded with soluble OVA protein 
yields CD11c+CD11b+ cells with 
an activated phenotype. Bone 
marrow cells were prepared from 
C57BL/6J mice and cultured with 
GM-CSF and IL-4 for 7 days in 
vitro. On day 5 of culture, some 
cells were incubated with OVA 
protein (DC+OVA) while others 
were not. On day 6 of culture, LPS 
was added to some cell cultures. 
24 h after LPS treatment, LPS-
treated and non-LPS treated cells 
were harvested and analysed for 
expressions of various phenotypic 
and activation markers. (a) The 
expressions of CD11b and CD11c 
in cultured cells are shown in the 
dot plots. The percentages of 
CD11c+CD11b+ cells are shown. 
(b) The expressions of activation 
markers in CD11c+ cells are 
shown in histograms. Untreated 
DCs (DC only) are depicted in 
grey while DC+OVA are depicted 
in black. The unstained controls 
are shown as filled light grey 
areas. The percentages and MFIs 
of live CD11c+ cells expressing 
the activation markers are shown 
in Tables 4.1 and 4.2. The 
experiment was performed once. 
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Table 4.1.1. Expression of activation markers on BM-DC cultured with OVA protein 
      

 No LPS + LPS 
Activation marker DC only DC+OVA DC only DC+OVA 

MHC class II 43.9%*  77.2% 61.8% 78.8% 
CD40 25.3%  93.2% 84.6% 92.2% 
CD86 25.5%  63.1%  47.5% 65.9% 
CD80 23.4%  75.5% 49.3% 76% 

     
* Percentages of activation marker highly expressed in CD11c+ cells as gated in Fig. 4.1b.  
 

 
Table 4.1.2. MFIs of activation markers on BM-DC cultured with OVA protein 
      

 No LPS + LPS 
 Activation marker DC only DC+OVA DC only DC+OVA 

MHC class II 50.6 134 70.2 154 
CD40 9.87 156 70.2 156 
CD86 24.1 75.1 51.8 90 
CD80 178 1336 535 1455 

     
* MFIs of activation markers expressed in CD11c+ cells in Fig. 4.1b. 
 

 

4.2. Host and in vitro activated CTLs eliminate DCs loaded with OVA protein but do 

not affect the subsequent induction of CD4+ T cell proliferation 

 

4.2.1. Host CTLs eliminate DCs loaded with OVA protein  

 

My first experiment asked if host CTLs eliminated DCs loaded with OVA protein. Fig. 

4.2.1a. illustrates the experimental setup. To induce host CTL responses, mice were 

immunised with DCs loaded with SIINFEKL (DC+SIINFEKL). Some mice were 

immunised with DCs not loaded with SIINFEKL (DC only), or did not receive 

immunisation (not immunised). 7 days later, CFSE+ DCs loaded with OVA protein 

(DC+OVA) and CMTMR+ DCs without OVA were mixed in equal numbers and injected 

s.c. into the forelimbs of immunised and non-immunised mice.  48 h after DC injection, 

CFSE+ and CMTMR+ cells in draining lymph nodes were monitored by flow cytometry.  
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In the group immunised with DC+SIINFEKL, the number of CFSE+ DCs was greatly 

reduced compared to mice immunised with DC alone or non-immunised mice (Fig. 4.2.1b 

and c). This shows that host CTLs eliminate DCs loaded with OVA protein. 
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 Fig. 4.2.1. Host CTLs eliminate DCs loaded with OVA protein. (a) Groups of C57BL/6J mice were 

immunised with DC loaded with SIINFEKL (DC+SIINFEKL), or DC not loaded with SIINFEKL (DC 
only) or did not receive immunisation (not immunised). 7 days later, CFSE-labelled DCs incubated with 
OVA protein (DC+OVA) were mixed with CMTMR-labelled control DC (DC only) in equal numbers 
and were injected s.c. into their forelimbs. 48 h after DC injection, CFSE+ and CMTMR+ DCs in the 
draining lymph nodes were monitored by flow cytometry. (b) CFSE+ and CMTMR+ DCs are shown in 
representative dot plots from individual mice. The number of events in each gate is shown. (c) The 
ratios of CFSE+ DC+OVA to CMTMR+ DC only were normalised to the ratios derived from non-
immunised mice. (d) Absolute numbers of CFSE+ and CMTMR+ DCs in the draining lymph nodes are 
shown. One representative experiment of two with 2 – 3 mice group is shown.  
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4.2.2. Host CTLs do not inhibit CD4+ T cell proliferation induced by DCs loaded with 

OVA protein 

 

Having determined that antigen-loaded DC immunisation generated host CTLs capable of 

eliminating DCs loaded with OVA protein (Fig. 4.2.1), I went on to ask if the host CTLs 

would inhibit CD4+ T cell proliferation induced by DCs loaded with OVA protein. 

 

The experimental setup is shown in Fig. 4.2.2a. Groups of mice were either immunised 

with DCs loaded with SIINFEKL (DC+SIINFEKL), or DCs not loaded with SIINFEKL 

(DC only), or did not receive immunisation. 6 days later, CFSE-labelled OT-II CD4+ T 

cells were injected i.v. into these mice. 24 h after the adoptive transfer of CD4+ T cells, 0.5 

× 106 OVA protein-loaded DCs were injected s.c. into the forelimbs of the recipient mice. 3 

days later, CD4+ T cells in the draining lymph nodes were examined for CFSE dilution by 

flow cytometry.  

 

Compared to mice that were not immunised with DCs, the percentage of divided CD4+ T 

cells was significantly reduced in mice immunised with DC only and DC+SIINFEKL (Fig. 

4.2.2c). However, the number of divided CD4+ T cells in mice immunised with 

DC+SIINFEKL was significantly higher than in mice immunised with DC only (Fig. 

4.2.2e). This result was unexpected because OVA-loaded DCs were eliminated by host 

CTLs (Fig. 4.2.1) and fewer OVA-loaded DCs in the draining lymph nodes should induce 

lesser CD4+ T cell proliferation. 

 

It was possible that some OVA-loaded DCs escaped CTL-mediated killing and a sufficient 

number of OVA-loaded DCs ended up in the draining lymph nodes. A separate experiment 

was then conducted whereby a lower number of DCs loaded with OVA protein (0.2 × 106 

DCs) was injected into mice that were previously immunised with DC alone, or 

DC+SIINFEKL, or into mice that did not receive immunisation. 3 days after DC injection, 

CD4+ T cells in draining lymph nodes were examined for CFSE dilution by flow 

cytometry.  
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Mice immunised with DC+SIINFEKL showed a significantly reduced CD4+ T cell division 

compared to mice that did not receive immunisation, although this reduction was not 

significant when compared to mice immunised with DC only (Fig. 4.2.2d). Under this 

condition, the number of divided CD4+ T cells was similar in all groups (Fig. 4.2.2f). Taken 

together, these results show that although host CTLs eliminate OVA-loaded DCs, the CTL-

mediated DC killing does not lower CD4+ T cell proliferation significantly.  
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 Fig. 4.2.2. The elimination of DCs loaded with OVA protein by host CTLs does not reduce CD4+ T 
cell proliferation. (a) B6.SJ ptprca mice were immunised with DCs loaded with SIINFEKL 
(DC+SIINFEKL), or DC not loaded with SIINFEKL (DC only), or did not receive immunisation. 6 
days later, CFSE-labelled OT-II CD45.2+CD4+ T cells were injected i.v. into these recipient mice. 24 h 
later, 0.5 × 106 or 0.2 × 106 LPS-activated DCs loaded with OVA protein (DC+OVA) were then 
injected s.c. into the forelimbs of these mice. 3 days later, CD45.2+CD4+ T cells in the draining lymph 
nodes were examined for CFSE dilution by flow cytometry. (b) CFSE dilution in CD45.1+CD4+ T cells 
is shown as representative histograms from individual mice. (c, d) The percentages of CD45.2+CD4+ or 
CD45.1+CD4+ T cells that had divided at least once are shown. (e, f) Absolute numbers of divided 
CD45.2+CD4+ or CD45.1+CD4+ T cells in the draining lymph nodes are shown. The experiment was 
performed once with 5 mice per group for each condition. Statistical significance was determined with 
one-way ANOVA with Bonferroni’s correction. * p<0.05, ** p<0.01, N.S.= p>0.05.  

 
 

4.2.3. Host CTL-mediated DC killing has little impact on the accumulation of divided 

CD4+ T cells in the spleens  

 

The division of CD4+ T cells was also examined in the spleens of mice that were 

immunised with DC only, DC+SIINFEKL, or did not receive immunisation 7 or 8 days 

after DC+OVA injection. The experimental setup is shown in Fig. 4.2.3a.  

 

Few divided CD4+ T cells were recovered from the spleens of all mice. Compared to mice 

immunised with DC only, the percentage of divided CD4+ T cells in the spleens of mice 

immunised with DC+SIINFEKL was not significantly different at either day 7 or 8 after 

DC+OVA injection (Fig. 4.2.3b and c). However, the number of divided CD4+ T cells in 

the spleens of mice immunised with DC+SIINFEKL was significantly lower than in mice 

immunised with DC only 7 days, but not 8 days, after DC+OVA injection (Fig. 4.2.3d). 

The differences between the percentage and number of divided CD4+ T cells could be due 

to experimental variations. This might lead to the variable results observed in Fig. 4.2.3d.  

 

The results show that host CTLs eliminate DCs loaded with OVA protein but this has little 

impact on the number of divided CD4+ T cells circulating in the spleens of recipient mice.  
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 Fig. 4.2.3. Host CTL-mediated DC killing has little impact on the accumulation of divided CD4+ T 

cells in the spleens. (a) B6.SJ ptprca mice were immunised with DCs loaded with SIINFEKL 
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(DC+SIINFEKL), or DCs not loaded with SIINFEKL (DC only). 6 days later, CFSE-labelled OT-II 
CD45.2+CD4+ T cells were injected i.v. into these recipient mice. 24 h later, LPS-activated DCs loaded 
with OVA protein (DC+OVA) were injected s.c. into the forelimbs of these mice. 7 or 8 days later, 
CD45.2+CD4+ T cells in the spleens were examined for CFSE dilution by flow cytometry. (b) CFSE 
dilution in CD45.2+CD4+ T cells is shown as representative histograms from individual mice. (c) The 
percentages of CD45.2+CD4+ T cells that had divided at least once are shown. (d) Absolute numbers of 
divided CD45.2+CD4+ T cells in the draining lymph nodes are shown. For Day 7, the experiment was 
performed once with 5 mice per group for Day 7.  For Day 8, two separate experiments with 4 – 5 mice 
per group were pooled together and shown. Statistical significance was determined with two tailed 
Student’s t-test. 

 
 
4.2.4. In vitro activated CTLs do not inhibit CD4+ T cell proliferation induced by DCs 

loaded with OVA protein 

 

Because the adoptive transfer of in vitro activated transgenic OT-I CTLs inhibited CD4+ T 

cell proliferation induced by peptide-loaded DCs (Fig 3.3), I asked if the adoptive transfer 

of CTLs would inhibit CD4+ T cell proliferation induced by DCs that were loaded with 

OVA protein.  

 

The experimental setup is shown in Fig. 4.2.4a. Mice received CFSE-labelled OT-II CD4+ 

T cells and 5 × 106 (low) or 10 × 106 (high) numbers of in vitro activated OT-I CTLs. Some 

mice received only CD4+ T cells without CTLs. 24 h later, DCs loaded with OVA protein 

were injected s.c. into these recipient mice. 3 days after DC injection, CD4+ T cells in the 

draining lymph nodes were examined for CFSE dilution by flow cytometry.  

 

The majority of CD4+ T cells divided in all groups irrespective of the number of CTLs 

transferred (Fig. 4.2.4b). The percentages and numbers of divided CD4+ T cells in mice that 

received low or high numbers of CTLs were not significantly different from the control 

group (Fig. 4.2.4c and d). This result shows that transferring low or high number of in vitro 

activated CTLs in mice does not reduce the CD4+ T cell proliferation. 

 

It was possible that some OVA-loaded DCs escaped CTL-mediated killing even though a 

high number of in vitro activated CTLs was transferred. Because transferring high numbers 

of CTLs into mice did not reduce CD4+ T cell division, the number of CTL was kept at 10 

× 106 and the number of DC+OVA injected were reduced from 0.5 × 106 cells to 0.2 × 106 

cells. I asked if the CD4+ T cell division would be inhibited under these conditions. 
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However, even when 0.2 × 106 DC+OVA was injected, the percentage and number of 

divided CD4+ T cells were not significantly different from the control group (Fig. 4.2.4e 

and f). The results in Fig. 4.2.4. showed that in vitro activated CTLs did not reduce CD4+ T 

cell proliferation that was stimulated by DCs loaded with OVA protein. This result was 

different from the results showing that in vitro activated CTLs reduced the CD4+ T cell 

proliferation induced by SIINFEKL- and OVA323-339-loaded DCs (Fig. 3.3). One possible 

reason for this discrepancy is that unlike peptide-loaded DCs, OVA protein-loaded DCs 

were not completely eliminated by CTLs, thereby allowing sufficient OVA protein-loaded 

DCs to accumulate in the draining lymph nodes. This is addressed in the next section. 
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 0.2 × 106 DC+OVA injected 
e) 

 

f) 

 
 Fig. 4.2.4. In vitro activated CTLs do not inhibit CD4+ T cell proliferation induced by DCs loaded 

with OVA protein. (a) B6.SJ ptprca mice were injected i.v. with CFSE-labelled OT-II CD45.2+CD4+ 
T cells and 5 × 106 or 10 × 106 in vitro activated OT-I CTLs. As a control, some mice received CD4+ T 
cells only. After 24 h, these mice were injected s.c. into their forelimbs with 0.5 × 106 or 0.2 × 106 LPS-
activated DCs loaded with OVA protein. 3 days later, CD45.2+CD4+ T cells in the draining lymph 
nodes were examined for CFSE dilution by flow cytometry. (b) CFSE dilution in CD45.2+CD4+ T cells 

is shown as representative histograms from individual mice. (c) The percentages of CD45.2+CD4+ T 
cells that had divided at least once are shown. (d) Absolute numbers of divided CD45.2+CD4+ T cells in 
the draining lymph nodes are shown. Two separate experiments with 3 – 4 mice per group are pooled 
together and shown. In a separate experiment, C57BL/6J mice were injected i.v. with CFSE-labelled 
OT-II CD45.1+CD4+ T cells and 10 × 106 in vitro activated OT-I CTLs, or CD4+ T cells only. After 24 
h, these mice were injected s.c. into the forelimbs with 0.2 × 106 LPS-activated DCs loaded with OVA 
protein. 3 days later, CD45.1+CD4+ T cells in the draining lymph nodes were examined for CFSE 
dilution by flow cytometry. (e) The percentages of CD45.1+CD4+ T cells that had divided at least once 
are shown. (f) Absolute numbers of divided CD45.1+CD4+ T cells in the draining lymph nodes are 
shown. The experiment was performed once with 5 mice per group. Statistical significance was 
determined with one-way ANOVA with Bonferroni’s correction or two tailed Student’s t-test. N.S.= 
p>0.05. 

 
 
4.2.5. In vitro activated CTLs do not eliminate DCs loaded with OVA protein 

completely  

 

To investigate if in vitro activated CTLs eliminated DCs loaded with OVA, mice received 

10 × 106 in vitro activated OT-I CTLs while the control group did not. Fig 4.2.5a shows the 

experimental setup. DCs loaded with OVA protein were labelled with CFSE and mixed in 

equal numbers with CMTMR-labelled DCs not loaded with OVA. The DC mixture was 

then injected s.c. into the forelimbs of recipient mice 24 h after CTL transfer. 48 h after DC 

injection, CFSE+ and CMTMR+ cells in the draining lymph nodes were monitored by flow 

cytometry.  
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In mice that received CTLs, much fewer CFSE+ cells were collected compared to 

CMTMR+ cells (Fig. 4.2.5b). However, some CFSE+ DC+OVA survived CTL-mediated 

killing and accumulated in the draining lymph nodes of mice that received CTLs (Fig. 

4.2.5c and d).  These DC+OVA were probably sufficient to induce the OT-II CD4+ T cell 

proliferation observed in Fig. 4.2.4. 
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 Fig. 4.2.5. DCs loaded with OVA protein are not completely eliminated by in vitro activated CTLs. 

(a) C57BL/6J mice received 10 × 106 in vitro activated OT-I CTLs (+ CTL) or no CTLs. 24 h later, 
CFSE-labelled DCs loaded with OVA protein (DC+OVA) were mixed with CMTMR-labelled control 
DCs (DC only) in equal numbers and were injected s.c. into the forelimbs of recipient mice. 48 h after 
DC injection, CFSE+ and CMTMR+ DCs in the draining lymph nodes were monitored by flow 
cytometry. (b) CFSE+ and CMTMR+ DCs are shown in representative dot plots from individual mice. 
The number of events in each gate is shown. (c) The ratios of CFSE+ DC+OVA to CMTMR+ DC only 
were normalised to the ratios derived from mice that did not receive CTLs. (d) Absolute numbers of 
CFSE+ and CMTMR+ DCs in the draining lymph nodes are shown. The experiment was performed once 
with 3 mice per group. 
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4.3. Elimination of OVAtr DCs by in vitro activated CTLs, but not host CTLs, inhibits 

CD4+ T cell proliferation 

 

4.3.1. DCs cultured from immortalised OVAtr murine HSCs are phenotypically 

similar to wt BM-DCs 

 

Using DCs loaded with OVA protein, I have shown that DC elimination by host or in vitro 

activated CTLs did not reduce CD4+ T cell proliferation (Fig. 4.2.1 to 4.2.5). One possible 

reason for this finding is that not all the DCs loaded with OVA protein were eliminated by 

CTLs. Moreover, OVA-loaded DCs presented peptide-MHC class I complexes to varying 

degrees (Burgdorf et al., 2008), indicating that some OVA-loaded DCs might not be 

targeted for killing by CTLs.  I asked if DCs presenting OVA protein via the classical MHC 

class I pathway would be a better target for CTL elimination and if the elimination of these 

DCs would then influence the induction of CD4+ T cell proliferation. To address this, DCs 

were cultured from OVA-transgenic (OVAtr) murine haematopoietic stem cells (HSC). 

These OVAtr HSCs were generated through the immortalisation of HSCs derived from act-

mOVA mice (Ruedl et al., 2008). Act-mOVA mice expressed OVA – H-2Kb fusion 

proteins that localised to the cell surface (Ehst et al., 2003). 

 

In vitro culture of OVAtr HSCs yielded a higher percentage of CD11c+CD11b+ DCs than 

cultures from C57BL/6J mice (Fig. 4.3.1a). Higher percentages and MFIs of OVAtr DCs 

expressed MHC class II and CD80 compared to the wt DCs (Fig. 4.3.1b and Table 4.3.1). 

The MFI and percentage of OVAtr DCs expressing CD40 and CD86 were similar to the wt 

DCs (Table 4.3.2). Thus, GM-CSF/IL-4 and LPS treatment of these OVA-expressing HSCs 

yielded a high population of activated OVAtr DCs. 

 

 

 

 

 

 

 



Chapter 4: The impact of different antigen loading methods on DC killing 125 

a)   No LPS + LPS 

wt DC 

100 101 102 103 104
100

101

102

103

104

78.8%

 100 101 102 103 104
100

101

102

103

104

79.2%

 

OVAtr 
DC 

C
D

11
b 

100 101 102 103 104
100

101

102

103

104

93.7%

 100 101 102 103 104
100

101

102

103

104

91.4%

 
   CD11c 
b)     
   

100 101 102 103 104
0

20

40

60

80

100

%
 o

f M
ax

 100 101 102 103 104
0

20

40

60

80

100
%

 o
f M

ax

 
   MHC class II 
   

100 101 102 103 104
0

20

40

60

80

100

%
 o

f M
ax

 100 101 102 103 104
0

20

40

60

80

100

%
 o

f M
ax

 
   CD40 
   

100 101 102 103 104
0

20

40

60

80

100

%
 o

f M
ax

 100 101 102 103 104
0

20

40

60

80

100

%
 o

f M
ax

 
   CD86 
   

100 101 102 103 104
0

20

40

60

80

100

%
 o

f M
ax

 100 101 102 103 104
0

20

40

60

80

100

%
 o

f M
ax

 
   CD80 

Fig. 4.3.1. In vitro culture of 
OVAtr HSCs yields a high 
percentage of CD11c+CD11b+ 
OVAtr DCs. Bone marrow cells 
from C57BL/6J (wt) mice and 
OVAtr HSCs were cultured with 
GM-CSF and IL-4 for 6 days in 
vitro. On day 6, some GM-CSF/IL-
4 cell cultures were then treated 
with LPS for 24 h as described in 
Chapter 2. Some cell cultures were 
left untreated. Cells were harvested 
after 24 h and analysed for 
expressions of various phenotypic 
and activation markers. (a) The 
expressions of CD11b and CD11c 
in cultured cells are shown in dot 
plots. The percentages of 
CD11b+CD11c+ cells are shown. 
(b) The expressions of activation 
markers in CD11c+ cells are shown 
in histograms. Wt DCs are depicted 
in grey while OVAtr DCs are 
depicted in black. The unstained 
controls are shown as filled light 
grey areas. The percentages and 
MFIs of live CD11c+ cells 
expressing the activation markers 
are shown in Tables 8 and 9. The 
experiment was performed once 
together with that in Fig. 4.1 at the 
same time. 
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Table 4.3.1. Expression of activation markers on CD11c+ wt and OVAtr cells  
      

 No LPS + LPS 
Activation marker DC only OVAtr DC DC only OVAtr DC 

MHC class II 43.9%* 55.8% 61.8% 88%  
CD40 25.3%  36.6% 84.6%  85.4%  
CD86 25.5%  23.1%  47.5%  50.9%  
CD80 23.4%  39.5% 49.3%  71.9%  

     
* Percentages of activation markers highly expressed on CD11c+ cells as gated in Fig. 4.3.1b.  
 
Table 4.3.2. MFIs of activation markers on CD11c+ wt and OVAtr cells 
      

 No LPS + LPS 
Markers DC only* OVAtr DC DC only OVAtr DC 

MHC class II 50.6 77.4 70.2 190 
CD40 9.87 11.2 70.2 72.5 
CD86 24.1 19.1 51.8 52.9 
CD80 178 383 535 1163 

     
* MFIs of activation markers expressed on CD11c+ cells in Fig. 4.3.1b. 
 

4.3.2. Host CTLs eliminate OVAtr DCs  

 

Host CTLs induced by SIINFEKL-loaded DC immunisation eliminated DCs loaded with 

exogenous OVA protein effectively (Fig. 4.2.1). I asked if the loading of endogenous OVA 

protein onto MHC class I molecules in DCs would also lead to efficient DC killing by host 

CTLs. 

 

The experimental setup is shown in Fig. 4.3.2a. To induce host CTL responses, mice were 

immunised with DCs loaded with SIINFEKL (DC+SIINFEKL). Some mice were 

immunised with DCs loaded without SIINFEKL (DC only), or did not receive 

immunisation (not immunised). 7 days later, CFSE-labelled OVAtr DCs were mixed in 

equal numbers with CMTMR-labelled wt control DCs and were injected s.c. into the 

forelimbs of recipient mice.  48 h after DC injection, CFSE+ and CMTMR+ cells in the 

draining lymph nodes were monitored by flow cytometry.  

 

More CFSE+ OVAtr DCs were collected compared to CMTMR+ control DCs in mice that 

were immunised with DC only or did not receive immunisation, suggesting that DCs from 

immortalised HSC cultures had a better migration or survival advantage compared to DCs 
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from normal BM cultures. In contrast, CFSE+ OVAtr DCs were nearly absent in mice 

immunised with DC+SIINFEKL (Fig. 4.3.2b and c). The number of OVAtr DC 

accumulating in the draining lymph nodes was less than 50 in mice immunised with 

DC+SIINFEKL (Fig. 4.3.2d). This result indicates that host CTLs eliminate OVAtr DCs 

effectively. 
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 Fig. 4.3.2. Host CTLs eliminate OVAtr DCs. (a) C57BL/6J mice were immunised with DCs loaded 

with SIINFEKL (DC+SIINFEKL), or DCs not loaded with SIINFEKL (DC only), or did not receive 
immunisation (not immunised). 7 days later, CFSE-labelled OVAtr DC and CMTMR-labelled wt DC 
(DC only) were mixed in equal numbers and injected s.c. into the forelimbs of the recipient mice. 48 h 
after DC injection, CFSE+ and CMTMR+ DCs in the draining lymph nodes were monitored by flow 
cytometry. (b) CFSE+ and CMTMR+ DCs are shown in representative dot plots from individual mice. 
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The number of events in each gate is shown. (c) The ratios of CFSE+ OVAtr DC to CMTMR+ DC only 
were normalised to the ratios derived from mice that did not receive immunisation. (d) Absolute 
numbers of CFSE+ and CMTMR+ DCs in the draining lymph nodes are shown. The experiment was 
performed once with 3 mice per group. 

 

4.3.3. Host CTLs do not affect CD4+ T cell proliferation induced by OVAtr DCs  

 

Because most of the OVAtr DCs were eliminated by host CTLs (Fig. 4.3.2), I tested if host 

CTL-mediated elimination of OVAtr DCs would inhibit CD4+ T cell proliferation. 

 

The experimental setup is shown in Fig. 4.3.3a. Mice were immunised with DCs loaded 

without (DC only), or DCs loaded with SIINFEKL (DC+SIINFEKL), or did not receive 

immunisation (not immunised). 6 days later, CFSE-labelled OT-II CD4+ T cells were 

injected i.v. into the recipient mice. 24 h following the adoptive transfer of CD4+ T cells, 

OVAtr DCs were injected s.c. into the forelimbs of these mice. 3 days after DC injection, 

CD4+ T cells in draining lymph nodes were examined for CFSE dilution by flow 

cytometry.  

 

Although the percentages of divided CD4+ T cells were lower in mice that were immunised 

with DC only or DC+SIINFEKL compared to control mice, the difference was not 

significant (Fig. 4.3.3b and c). The number of divided CD4+ T cells was similar in all 

groups (Fig. 4.3.3d). When comparing the percentage and number of highly divided CD4+ 

T cells (>4 divisions), no significant difference was observed between mice that were 

immunised with DC only and DC+SIINFEKL (data not shown). This result shows that 

although host CTLs eliminate OVAtr DCs effectively, this does not affect the induction of 

CD4+ T cell proliferation.  
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 Fig. 4.3.3. Host CTL-mediated elimination of OVAtr DCs does not inhibit CD4+ T cell 

proliferation. (a) C57BL/6J mice were immunised with DCs loaded with SIINFEKL 
(DC+SIINFEKL), or DCs not loaded with SIINFEKL (DC only), or did not receive immunisation (not 
immunised). 6 days later, CFSE+ OT-II CD45.1+CD4+ T cells were injected i.v. into these mice. 24 h 
later, OVAtr DCs were injected s.c. in the forelimbs of the recipient mice. 3 days later, CD45.1+CD4+ T 
cells were examined for CFSE dilution by flow cytometry. (b) CFSE dilution in CD45.1+CD4+ T cells 
is shown as representative histograms from individual mice. (c) The percentages of CD45.1+CD4+ T 
cells that had divided at least once are shown. (d) Absolute numbers of divided CD45.1+CD4+ T cells in 
the draining lymph nodes are shown. The experiment was performed once with 5 mice per group. 
Statistical significance was determined with one-way ANOVA with Bonferroni’s correction. N.S.= 
p>0.05.  
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4.3.4. In vitro activated CTLs eliminate OVAtr DCs  

 

In vitro activated CTLs were capable of eliminating SIINFEKL-loaded DCs effectively 

(Fig. 3.5.3). In vitro activated CTLs also eliminated OVA-loaded DCs but the elimination 

of OVA-loaded DCs was less efficient than that of SIINFEKL-loaded DCs (Fig. 4.2.5). The 

differences observed between CTL-mediated killing of SIINFEKL-loaded DCs and OVA-

loaded DCs could be due to the different mechanisms used to load SIINFEKL peptide or 

exogenous OVA protein onto MHC class I molecules, or different amount of peptides 

loaded on MHC class I molecules. I asked if the loading of endogenous OVA protein onto 

MHC class I molecules on DCs would lead to efficient DC killing by in vitro activated 

CTLs. 

 

To determine if in vitro activated CTLs eliminated OVAtr DCs, one group of mice were 

given in vitro activated CTLs while the control group did not receive CTLs. The 

experimental setup is shown in Fig. 4.3.4a. 24 h later, CFSE+ OVAtr DCs and CMTMR+ wt 

control DCs (DC only) were mixed in equal numbers and injected s.c. into these recipient 

mice. 48 h after DC injection, CFSE+ and CMTMR+ cells were monitored by flow 

cytometry.  

 

Although in the control group the number of CFSE+ OVAtr DCs was higher than the 

number of CMTMR+ DC only, CFSE+ OVAtr DCs were nearly absent in mice that 

received CTLs (Fig 4.3.4b and c). This result indicates that in vitro activated CTLs 

eliminated OVAtr DCs effectively. 
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 Fig. 4.3.4. In vitro activated CTLs eliminate OVAtr DCs. (a) C57BL/6J mice were injected i.v. with 
10 × 106 in vitro activated OT-I CTLs (+ CTL) or no CTLs. 24 h later, CFSE+ OVAtr DCs and 
CMTMR+ wt DCs (DC only) were mixed in equal numbers and injected s.c. into the forelimbs of 
recipient mice. 48 h after DC injection, CFSE+ and CMTMR+ DCs in the draining lymph nodes were 
monitored by flow cytometry. (b) CFSE+ and CMTMR+ DCs are shown in representative dot plots from 
individual mice. The number of events in each gate is shown. (c) The ratios of CFSE+ OVAtr DCs to 
CMTMR+ DC only were normalised to the ratios derived from mice that did not receive CTLs. (d) 
Absolute numbers of CFSE+ and CMTMR+ cells in the draining lymph nodes are shown. One 
representative experiment of two with 3 mice per group is shown.  
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4.3.5. In vitro activated CTL-mediated elimination of OVAtr DCs inhibits CD4+ T cell 

proliferation 

 

One possible reason why in vitro activated CTLs could not inhibit CD4+ T cell proliferation 

induced by OVA-loaded DCs is because the CTLs did not completely eliminate the OVA-

loaded DCs (Fig. 4.2.5). Because in vitro activated CTLs eliminated OVAtr DCs (Fig. 

4.3.4) as effectively as SIINFEKL-loaded DCs (Fig. 3.5.3), I asked whether the effective 

CTL-mediated elimination of OVAtr DCs would inhibit CD4+ T cell proliferation. 

 

To investigate if in vitro activated CTL-mediated elimination of OVAtr DCs inhibited 

CD4+ T cell proliferation, mice received CFSE-labelled OT-II CD4+ T cells and in vitro 

activated CTLs (Fig. 4.3.5a). Some mice received only CD4+ T cells. 24 h later, OVAtr 

DCs were injected s.c. into the forelimbs of these mice. 3 days after DC injection, CD4+ T 

cells in the draining lymph nodes were examined for CFSE dilution by flow cytometry.  

 

Although the majority of CD4+ T cells divided in both groups (Fig. 4.3.5b), the percentage 

and number of divided CD4+ T cells were significantly lower in mice that received CTLs 

than in the control mice (Fig. 4.3.5c and d). This result shows that in vitro activated CTLs 

inhibited the induction of CD4+ T cell proliferation through the elimination of OVAtr DCs. 

However, it should be noted that although antigen-presenting DCs did not accumulate in 

the draining lymph nodes, the induction of CD4+ T cell proliferation was not abolished. 
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 Fig. 4.3.5. In vitro activated CTL-mediated elimination of OVAtr DCs inhibits CD4+ T cell 

proliferation. (a) C57BL/6J mice were injected i.v. with in vitro activated OT-I CTLs and CFSE-
labelled OT-II CD45.1+CD4+ T cells. Some mice received only CD4+ T cells. 24 h later, OVAtr DCs 
were then injected s.c. into the forelimbs of the recipient mice. 3 days later, CD45.1+CD4+ T cells were 
examined for CFSE dilution by flow cytometry.  (b) CFSE dilution in CD45.1+CD4+ cells is shown as 
representative histograms from individual mice. (c) The percentages of CD45.1+CD4+ T cells that had 
divided at least once are shown. (d) Absolute numbers of divided CD45.1+CD4+ T cells in the draining 
lymph nodes are shown. One representative experiment of two with 5 mice per group is shown. 
Statistical significance was determined with two tailed Student’s t-test. 
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4.4. Discussion 

 

In this chapter, I have shown that host CTLs induced by peptide-loaded DC immunisation 

and or by the adoptive transfer of in vitro activated OT-I CTLs targeted OVA-loaded DCs 

and OVAtr DCs for elimination. In particular, DC elimination was highly efficient when 

OVAtr DCs were used as targets. This was not the case when DCs loaded with soluble 

OVA protein were used, as half of these DCs escaped CTL killing and accumulated in 

detectable numbers in the draining lymph nodes. The elimination of OVA-loaded DCs by 

host CTLs, or in vitro activated CTLs, was not sufficient to inhibit CD4+ T cell 

proliferation. Neither did the efficient elimination of OVAtr DCs by host CTLs reduce 

CD4+ T cell proliferation. Only in vitro activated OT-I CTLs inhibited the proliferation of 

CD4+ T cells induced by OVAtr DCs significantly, although large numbers of these divided 

CD4+ T cells were still observed. Overall, the results indicate that the different MHC class I 

loading mechanisms used by DCs have different implications in terms of CTL-mediated 

DC killing and induction of subsequent T cell responses. In addition, the method of CTLs 

generation may also influence the induction of T cell responses.  

 

4.4.1. Types of CTLs used and their effect on CD4+ T cell responses 

 

It has long been established that immunisation with DCs loaded with MHC class I peptide 

induced antigen-specific CTLs that can confer protection against tumours expressing that 

particular antigen (Porgador and Gilboa, 1995; Porgador et al., 1996). An advantage of 

peptide-loaded DC immunisation over adoptive transfer of transgenic CTLs is that DC 

immunisation induces polyclonal T cell responses. In my study, the quality of the 

polyclonal CTLs was comparable to, if not better than, the OT-I TCR transgenic CTLs that 

recognised a single immunodominant epitope as both types of CTLs were able to eliminate 

OVA-loaded DCs and OVAtr DCs efficiently. That said, although the killing function of 

CTLs induced by peptide-loaded DC immunisation was intact, the elimination of OVAtr 

DCs by host CTLs did not reduce CD4+ T cell proliferation. In contrast, a significant 

reduction of CD4+ T cell proliferation was observed when OT-I CTLs were used. One 

possible reason for the differences in reducing CD4+ T cell proliferation observed could be 

due to the numbers of CTLs present and the different avidities. In my study, OT-I CTLs 
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were transferred at 5 × 106 or 10 × 106 cells into the recipient mice. All the transferred OT-I 

CTLs could potentially target the OVAtr DCs for killing. In contrast, the immunisation of 

mice with SIINFEKL-loaded DCs induced polyclonal host CTLs. The number of 

polyclonal host CTLs could not be controlled for and might vary from mouse to mouse. 

Moreover, because of their polyclonal nature, not all the host CTLs generated by DC 

immunisation targeted OVAtr DCs with the same avidity. Although the differences 

between OT-I and host CTLs were not obvious in eliminating OVAtr DCs, it remained 

possible that these differences accumulated and affected the induction of CD4+ T cell 

proliferation instead. It is also possible that OT-I and host CTLs produce different levels of 

cytokines although it is unclear how the different levels of cytokines can account for the 

abovementioned discrepancy. 

 

It is also striking that while both types of CTLs were very effective in DC killing, neither of 

them could abolish CD4+ T cell proliferation. This cannot be due to the different types of 

CTLs used as a large number of CD4+ T cells divided in the presence of OT-I CTLs or host 

CTLs. I will discuss this in 4.4.3. 

 

4.4.2. Different MHC class I presentation pathways and the induction of CD4+ T cell 

responses 

 

Although in vivo and in vitro activated CTLs were functionally comparable in terms of DC 

killing, the susceptibility of DCs to CTL-mediated elimination varied according to how 

antigens were loaded onto the DCs. Distinct antigen loading pathways are employed when 

DCs cross-present exogenous proteins or present endogenous proteins. Not all the BM-DCs 

took up exogenous OVA protein, even when loaded with protein in vitro for two days 

(Delamarre et al., 2003) (Appendix 7). Although the process of cross-presenting soluble 

OVA protein was enhanced by the treatment of LPS and disruption of DC clusters by 

repeated pipetting in vitro (Delamarre et al., 2003), a combination of LPS and cluster 

disruption did not ensure that all DCs took up OVA protein in vitro (Appendix 7). LPS-

activated OVA-loaded DCs also presented OVA peptide-MHC class I complexes in 

varying amounts (Burgdorf et al., 2008), indicating that CTLs might not eliminate all the 

OVA-loaded DCs because not all of the DCs presented antigens to CTLs. This is unlike 
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OVAtr DCs, which produce endogenous OVA protein ubiquitously under the actin 

promoter and present high amounts of OVA peptide-MHC class I complexes(Ehst et al., 

2003). Thus, the difference in CTL-mediated killing of OVA-loaded DCs and OVAtr DCs 

is most likely due to the different amounts of peptide-MHC class I complexes on the cell 

surface of DCs.    

 

The different sensitivities of DCs to CTL-mediated killing could be the reason why 

different CD4+ T cell proliferative responses were observed after immunisation with OVA-

loaded DCs and OVAtr DCs. More OVA+ DCs than OVA-loaded DCs that survived CTL-

mediated elimination (Burgdorf et al., 2008) (Appendix 7 and Fig. 4.2.5), therefore it was 

more likely that some of these DCs were presenting OVA protein on MHC class II but not 

on MHC class I. In contrast, all the OVAtr DCs should present SIINFEKL-MHC class I 

complexes for CTL-mediated killing because the peptides derived from these degraded 

cellular proteins were loaded onto MHC class I molecules due to continuous protein 

turnover (Rock and Goldberg, 1999), leaving no OVAtr DCs to present to CD4+ T cells. 

 

4.4.3. Residual CD4+ T cell proliferation when DCs fail to accumulate in the draining 

lymph nodes 

 

Interestingly, when OVAtr DCs did not accumulate in the draining lymph nodes due to DC 

killing by host or in vitro activated CTLs, substantial CD4+ T cell division was observed. 

There are a few possible reasons for these observations.  

 

Some studies have shown that DCs injected s.c. could be found in the spleens of mice and 

the DCs that migrated to the spleen could induce T cell responses (Mullins et al., 2003).  

However, we were not able to find BM-DCs injected s.c. into the spleens of mice (Huck et 

al., 2008). When BM-DCs were injected in the ears of mice, most of the DCs accumulated 

at the site of injection while some DCs migrated to the draining lymph nodes (Yang et al., 

2006). Thus, the residual CD4+ T cell proliferation is unlikely to be induced by DCs that 

have migrated to the spleen from the forelimbs of the recipient mice. 
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Another possible reason is that OVAtr DCs might be inherently different from the BM-DCs 

because OVAtr DCs were cultured from immortalised HSCs. In my study, I have shown 

that OVAtr DCs were phenotypically similar to BM-DCs. Ruedl et al have also previously 

shown that DCs cultured from immortalised HSCs were similar to the DCs cultured from 

BM cells (Ruedl et al., 2008). Furthermore, in my study, the residual CD4+ T cell 

proliferation was not observed only after OVAtr DCs injection. I have shown that OT-I 

CTLs also eliminated both SIINFEKL-loaded BM-DCs and OVAtr DCs efficiently (Fig. 

3.5.3). However, residual CD8+ T cell proliferation was observed even though a few 

SIINFEKL-loaded BM-DCs accumulated in the draining lymph nodes (Fig. 3.5.5). Thus, 

the residual CD4+ T cell proliferation is not an artefact of using OVAtr DCs cultured from 

immortalised HSCs. 

 

It is possible that although CTLs prevented OVAtr DCs from entering the draining lymph 

nodes, OVAtr DCs could induce CD4+ T cell expansion in the non-lymphoid tissues. 

However, this has only been shown to occur during HSV infection and for re-activation of 

HSV memory T cells (Wakim et al., 2008). Naïve T cells do not have access to non-

lymphoid tissues (Mackay et al., 1990). Thus, the residual CD4+ T cell proliferation is not 

induced by OVAtr DCs in the non-lymphoid tissues. 

 

In my study, a few OVAtr DCs that survived CTL-mediated killing were found in the 

draining lymph nodes and these DCs could have induced CD4+ T cell proliferation. 

Sufficient number of antigen-presenting DCs is necessary for inducing T cell proliferation. 

For example, when 0.18 × 106 antigen-bearing DCs were injected, approximately 180 

injected DCs reached the draining lymph nodes and induced very little CD4+ T cell 

proliferation (Martin-Fontecha et al., 2003). In my study, when CTLs eliminated OVAtr 

DCs, an average of 24 OVAtr DCs was recovered from the draining lymph nodes and 

induced sizable CD4+ T cell proliferation (~70% CD4+ T cells proliferated). Thus, the 

residual CD4+ T cell proliferation is unlikely to be induced only by the few OVAtr DCs 

that escaped CTL-mediated killing. 

 

One plausible explanation for the residual CD4+ T cell proliferation is the transfer of 

antigens from OVAtr DCs to host DCs. Host DCs could have captured the antigens carried 
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by the injected DCs and presented them to the CD4+ T cells in the draining lymph nodes. 

Indeed, inter-DC antigen transfer has been shown in a viral infection model (Allan et al., 

2006), and DC immunisation models (Kleindienst and Brocker, 2003; Luketic et al., 2007). 

This possibility will be addressed in chapter 5. 
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In Chapter 4, I have shown that while host effector CD8+ cells or in vitro activated CTLs 

eliminated a large proportion of DCs cross-presenting OVA protein, the induction of CD4+ 

T cell proliferation was not affected. I have also shown that although the presentation of 

endogenous proteins led to complete DC elimination and significant inhibition of CD4+ T 

cell proliferation, this CD4+ T cell proliferation was not abolished. Furthermore, the CD8+ 

T cell proliferation was still detectable when the SIINFEKL-presenting DCs were 

completely eliminated as shown in Chapter 3. Because the extent of T cell proliferation 

depends on the number of antigen-presenting DCs that reach the draining lymph nodes 

(Martin-Fontecha et al., 2003), the presence of T cell division when most antigen-

presenting DCs are eliminated is a conundrum. 

 

One likely explanation for this conundrum is that when no injected DCs appears to reach 

the draining lymph nodes, the host DCs take up antigens from the injected DCs and present 

these antigens to CD4+ and CD8+ T cells. Recent evidence suggests that antigen-bearing 

DCs may transfer antigens to other DCs. Skin- and lung-derived migratory DCs have been 

shown to ferry viral antigens from the skin to the resident DCs in the draining lymph nodes 

(Allan et al., 2006; Belz et al., 2004b). Antigens were subsequently transferred from 

migratory DCs to the lymph node resident DCs. This enables the resident DCs to stimulate 

T cell responses. Such interactions between the migratory and non-migratory DCs highlight 

the existence of interplay amongst the heterogeneous population of DCs; and in my study, 

suggest that the migrating injected DCs may also transfer antigens to host DCs.  

 

In this chapter, I will address the following aims: 

 

1) To examine if the low number of antigen-presenting DCs that survive CTL 

elimination is sufficient to induce T cell proliferation 

2) To investigate if host DCs are involved in presenting antigens loaded onto injected 

DCs to T cells 

3) To examine the quality of effector T cells when host DCs present antigens carried 

by injected DCs that cannot present antigens directly to T cells 

 



Chapter 5: Host DCs present antigens carried by injected DCs to T cells 141 

5.1. Host cells take up cellular materials of injected DCs in vivo 

 

Previous observations showed that OVA transgenic (OVAtr) DCs were completely 

eliminated by host and transferred CTLs (Fig. 4.3.2 and Fig. 4.3.4). However, when DCs 

were completely killed, the CD4+ T cell proliferation was not abolished (Fig. 4.3.3 and Fig. 

4.3.5). I hypothesized that materials from the injected DCs were being taken up by host 

DCs, allowing the host DCs to induce CD4+ T cell proliferation.  

 

Fig. 5.1a illustrates how the experiment was carried out. To show whether host cells were 

taking up materials from injected DCs in vivo, CD45.2+ OVAtr DCs were incubated with 

FITC-conjugated dextran and subsequently labelled with CMTMR (FITC+CMTMR+) so as 

to clearly distinguish them from the CD45.1+ host DCs. As controls, some DCs were 

incubated with FITC-conjugated dextran only (FITC+) but not labelled with CMTMR, 

whereas some DCs were not incubated with FITC-conjugated dextran but labelled with 

CMTMR (CMTMR+) (Appendix 8c). These DCs were injected into CD45.1+ hosts that had 

previously received in vitro activated CTLs or no CTLs. 2 days after DC administration, 

DC populations in the draining lymph nodes were monitored by flow cytometry. Three DC 

populations were recovered. Injected OVAtr DCs were CD45.1-CMTMR+ (Population #1 

in Fig. 5.1b) and the respective single stain controls are shown in Appendix 8a. Host DCs 

that took up materials from injected DCs were CD45.1+CMTMR-FITC+ (Population #3 in 

Fig. 5.1b) and the respective single stain controls are shown in Appendix 8b. A small 

population of CD45.1+CMTMR+ cells (Population #2 in Fig. 5.1b) was observed and could 

be host cells that have taken up CMTMR or injected DCs that have taken up CD45.1. 

 

As observed in previous experiments (Fig. 4.3.4), the number of injected DCs (CD45.1-

CMTMR+, #1) was reduced in mice that received CTLs compared to control mice (Fig. 

5.1c). In accordance with my hypothesis, some CD45.1+ host cells were FITC+ (Fig. 5.1c). 

The number of CD45.1+CMTMR-FITC+ host cells (#3) was also lower in mice that have 

received CTLs compared to control mice, suggesting that host cells that captured antigens 

from the injected DCs might have become CTL targets. 
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In the same experiment, some groups of mice received wt DCs that were not loaded with 

added antigens. No CTL-mediated elimination of CD45.1-CMTMR+ DCs (#1) was 

observed. The number of CD45.1+CMTMR-FITC+ host cells (#3) was similar between mice 

that have received CTLs and control mice (Fig. 5.1d). Taken together, the results suggest 

that host cells take up the materials from injected DCs. It is also interesting to note that 

although CTLs mediated apoptosis of the OVAtr DCs, the demise of OVAtr DCs did not 

increase the number of host cells that had taken up materials from injected DCs. Instead, a 

slight decrease of CD45.1+CMTMR-FITC+ host cells was observed. This might indicate 

that host DCs were eliminated by CTLs (Mueller et al., 2006). 
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 Fig. 5.1. Host cells acquire materials from injected DCs in vivo. (a) OVAtr DCs or wt DCs were 

incubated with FITC-dextran and subsequently activated with LPS. 24 h after LPS treatment, these 
FITC-dextran DCs were labelled with CMTMR. These CMTMR+ FITC-dextran OVAtr DCs were then 
injected s.c. into the forelimbs of B6.SJ ptprca mice that were previously injected with in vitro activated 
OT-I CTLs 24 h prior to DC injection. As a control, some mice did not receive CTLs. 48 h after DC 
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injection, FITC+, CMTMR+ and CD45.1+ cells in the draining lymph nodes were monitored by flow 
cytometry. (b) The gating strategy used to analyse the results is illustrated. Population #1 represents the 
injected CD45.1-CMTMR+ DCs. Populations #2 and #3 represent CD45.1+CMTMR+ cells and host 
CD45.1+CMTMR-FITC+ cells respectively. (c and d) Absolute numbers of different DC populations in 
the draining lymph nodes are shown. One representative experiment of two with 1 – 5 mice per group is 
shown.   

 

5.2. OVA produced by OVAtr DCs is taken up by other DCs and presented to CD4+ T 

cells in vitro 

 

Although I have shown that host cells took up materials from OVAtr DCs in Fig 5.1, the 

transfer of OVA protein from the OVAtr DCs to host cells was not measured directly.  

 

To determine whether the OVA protein from OVAtr DCs was transferred to other cells for 

presentation to CD4+ T cells, an in vitro CD4+ T cell proliferation assay was performed 

using transwell chambers with 1.0 µm pore size (Fig. 5.2). 0.1 × 106 LPS-activated wt DCs 

and 0.3 × 106 CFSE+ OT-II CD4+ T cells were plated in the bottom insert of the trans-well. 

In some wells, 2D2 CD4+ T cells, which are specific for an irrelevant myelin 

oligodendrocyte glycoprotein (MOG) peptide, were used as a specificity control.  In the top 

insert, OVAtr DCs were plated from 0.1 × 106 to 1.2 × 106. As positive controls, OVA 

protein or OVA323-339 peptide, instead of OVAtr DCs, was added in the top insert of some 

wells. As a negative control, some wells did not receive any antigens or OVAtr DCs. 5 days 

later, CD4+ T cells were examined for CFSE dilution by flow cytometry.  

 

In the absence of antigen or OVAtr DCs, no CD4+ T cell proliferation was observed. Wt 

DCs in the bottom insert were able to induce strong CD4+ T cell proliferation as observed 

in wells where OVA323-339 peptide was added. Similarly, strong CD4+ T cell proliferation 

was also observed in wells where soluble OVA protein was added, showing that these wt 

DCs in the bottom insert were capable of capturing, processing and presenting exogenous 

soluble protein. CD4+ T cell proliferation was observed when OVAtr DCs were added. As 

the number of OVAtr DCs increased, more CD4+ T cells underwent cell division. This 

proliferation was antigen-specific as 2D2 CD4+ T cells remained undivided even at the 

highest number of OVAtr DCs. The proliferation of OT-II, but not 2D2 CD4+ T cells, 

indicated that OVA protein released by OVAtr DCs was taken up by other DCs and 
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presented to antigen-specific CD4+ T cells. However, I cannot rule out the possibility that 

the OVAtr DCs can reach across the transwells via membrane nanotubes to present 

antigens to CD4+ T cells in the bottom insert (Chinnery et al., 2008). 
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Fig. 5.2. OVAtr DCs release functional OVA that is captured and presented by other DCs to T cells. 
LPS-activated DCs were plated with CFSE-labelled OT-II CD4+ T cells at 0.1 × 106 DC to 0.3 × 106 CD4+ T 
cells in the bottom insert. As a control, 2D2 CD4+ T cells were also used. In the top insert, OVAtr DCs were 
plated from 0.1 × 106 to 1.2 × 106 cells.  The control wells received OVA323-339, OVA protein or no antigen. 
The pore size of the transwell is 1.0 µm. 5 days later, CD4+ proliferation was examined for CFSE dilution by 
flow cytometry. (a) The schematic diagram of the transwell setup is shown. (b) CFSE dilution in CD4+ T 
cells is shown as representative histograms from individual wells. The experiment was performed once with 
duplicate wells. 
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5.3. MHCII-/- DCs loaded with OVA protein are eliminated by in vitro activated CTLs 

in vivo 

 

Because host cells can capture and present antigens derived from OVAtr DCs, it is also 

plausible that a similar situation may occur with the DCs loaded with soluble OVA protein. 

I have previously shown in Fig. 4.2.5 that not all DCs loaded with soluble OVA protein 

(DC+OVA) were killed by OVA-specific CTLs in vivo and these surviving DCs 

accumulated in the draining lymph nodes. One possibility is that these surviving DCs were 

the ones inducing the strong CD4+ T cell proliferation observed in my previous results (Fig. 

4.2.4).  

 

To prevent the surviving DCs from presenting antigens directly to CD4+ T cells, I used 

MHC class II-/- DCs (MHCII-/-) that were cultured from the bone marrow cells of 

B6Aa0/Aa0 mice. As shown in Appendix 9, MHCII-/- DCs were unable to induce the 

proliferation of CFSE-labelled OT-II cells in vitro, whereas wt DCs induced strong OT-II 

proliferation. This result shows that MHCII-/- DCs do not present antigens to CD4+ T cells. 

 

Having confirmed that MHCII-/- DCs did not present antigens to CD4+ T cells, I asked if 

these DCs were eliminated by CTLs in a similar fashion to their wild type counterpart.  

 

The experimental setup is illustrated in Fig. 5.3a. Mice were injected i.v. with in vitro 

activated CTLs while the control group were not. Wt or MHCII-/- DCs loaded with soluble 

OVA protein (wt DC+OVA or MHCII-/- DC+OVA) were labelled with CFSE. As an 

endogenous control, some MHCII-/- DCs were not loaded with OVA and labelled with 

CMTMR instead (DC only). The CFSE+ DC+OVA were mixed with CMTMR+ DCs in 

equal numbers and injected s.c. into the forelimbs 24 h after the transfer of CTLs. After 48 

h, CFSE+ and CMTMR+ DCs in the draining lymph nodes were monitored by flow 

cytometry.  

 

Although the numbers of CFSE+ wt DCs and CMTMR+ DCs differed slightly in the control 

mice, much fewer CFSE+ wt DCs were collected compared to CMTMR+ cells in mice that 

received CTLs (Fig. 5.3b). Similarly, fewer CFSE+ MHCII-/- DCs were collected in mice 
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that received CTLs compared to the control group. Approximately 40-50% of these CFSE+ 

MHCII-/- DC+OVA survived CTL elimination (Fig. 5.3c.). These results indicate that CTLs 

eliminate antigen-presenting MHCII-/- DCs. 
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 Fig. 5.3. MHCII-/- DCs loaded with soluble OVA are eliminated by OT-I CTLs in vivo. (a) Groups 

of C57BL/6J mice were injected i.v. with in vitro activated OT-I CTLs (+ CTL) or no CTL. 24 h later, 
CFSE-labelled wt or MHCII-/- DC loaded with OVA protein (DC+OVA) were mixed with CMTMR-
labelled control MHCII-/- DC (DC only) in equal numbers and were injected s.c. into the forelimbs of 
these mice. 48 h after DC injection, CFSE+ and CMTMR+ DCs in the draining lymph nodes were 
monitored by flow cytometry. (b) CFSE+ and CMTMR+ DCs are shown in representative dot plots from 
individual mice. The number of events in each gate is shown. (c) The ratios of CFSE+ wt or MHCII-/- 
DC+OVA to CMTMR+ DC only were normalised to the ratios derived from their respective untreated 
mice. Two separate experiments with 2 – 3 mice per group are pooled together and shown. 
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5.4. Host APCs induce CD4+ T cell proliferation when the OVA-loaded DCs cannot 

present antigens directly to CD4+ T cells  

 

In chapter 5.3, I have shown that MHCII-/- DCs could not present antigens to CD4+ T cells 

and were eliminated by CTLs. Because these DCs could not directly present antigens to 

CD4+ T cells, I used them to address the contributions of host APCs to the induction of 

CD4+ T cell proliferation.  

 

The experimental setup is shown in Fig. 5.4a. Mice were injected i.v. with CD4+ T cells 

and in vitro activated CTLs. As a control, some mice were injected with CD4+ T cells only. 

24 h later, wt or MHCII-/- DCs loaded with OVA protein were injected s.c. to these mice. 3 

days after DC injection, CD4+ T cells in the draining lymph nodes were examined for 

CFSE dilution by flow cytometry. 

 

In the groups that received wt DCs, the majority of CD4+ T cells underwent cell divisions 

regardless of the presence of CTLs (Fig 5.4b). Fewer cell divisions were observed in both 

the control and CTL groups that received MHCII-/- DCs, suggesting that CD4+ T cell 

proliferation was reduced. This difference was reflected in the percentage and number of 

divided CD4+ T cells and was statistically significant (Fig. 5.4c and 5.4d). While some 

differences in CD4+ T cell proliferation were observed between the groups that received 

CTLs and the groups that did not, the difference was not significant. CD4+ T cell division 

observed in mice injected with MHCII-/- DCs was not due to the carryover of OVA protein 

in the injection medium (Appendix 10). 

 

As CD4+ T cell proliferation was observed after MHCII-/- DCs were injected, this result 

showed that the host APCs made substantial contributions to MHC class II restricted 

antigen presentation. 
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 Fig. 5.4. CD4+ T cell proliferation is reduced, but not abolished, when injected DCs cannot present 
antigens directly to CD4+ T cells. (a) C57BL/6J mice were injected i.v. with in vitro activated OT-I 
CTLs and CFSE-labelled OT-II CD45.1+CD4+ T cells. As a control, some mice received only CD4+ T 
cells. After 24 h, these recipient mice were injected s.c. into their forelimbs with LPS-activated wt or 
MHCII-/- DCs previously loaded with 2 mg/ml of OVA protein. 3 days later, CD45.1+CD4+ T cells in 
the draining lymph nodes were examined for CFSE dilution by flow cytometry. (b) CFSE dilution in 
CD45.1+CD4+ T cells is shown as representative histograms from individual mice. (c) The percentages 
of CD45.1+CD4+ T cells that had divided at least once are shown. (d) Absolute numbers of divided 
CD45.1+CD4+ T cells in the draining lymph nodes are shown. Two separate experiments with 5 mice 
per group are pooled together and shown. Statistical significance was determined with one-way 
ANOVA with Bonferroni’s correction. ** p<0.01, *** p<0.001. 

 

5.5. Loading of high antigen dose on MHCII-/- DCs induces CD4+ T cell proliferation 

in vivo  

 

To examine whether the antigen dose loaded onto the injected DCs was important to the 

host APCs for inducing CD4+ T cell responses, MHCII-/- DCs loaded with a high (2 mg/ml) 

or low (0.02 mg/ml) OVA dose were used (Fig. 5.5a). Some MHCII-/- DCs pulsed with 

OVA323-339 acted as a control, whereas wt DCs loaded with a low OVA dose served as a 

positive control. The DCs were injected s.c. into mice that had received CFSE-labelled 

CD4+ T cells 24 h before. 3 days after DC injection, CD4+ T cells in the draining lymph 

nodes were examined for CFSE dilution by flow cytometry.  

 

The majority of CD4+ T cells underwent cell divisions in mice that received MHCII-/- 

DC+high OVA or wt DC+low OVA (Fig. 5.5b). However, CD4+ T cell proliferation was 

abolished in mice that received MHCII-/- DC+low OVA and those that received MHCII-/- 

DC+OVA323-339 (Fig. 5.5c and d). This suggests that host APCs were involved in inducing 

CD4+ T cell proliferation only when a high antigen dose was loaded onto the injected DCs, 

but not when a low antigen dose was used. 

 

 

 

 

 
 
 
 
 



Chapter 5: Host DCs present antigens carried by injected DCs to T cells 151 

a) 

 
    
b)    
  OVA, 2.0 mg/ml OVA, 0.02 mg/ml OVA323-339, 10 µM  

MHCII-/- DC +OVA 

100 101 102 103 104

FL1-H: CFSE

0

5

10

15

20

25

# 
C

el
ls

 100 101 102 103 104

FL1-H: CFSE

0

20

40

60

80

# 
C

el
ls

 100 101 102 103 104

FL1-H: CFSE

0

10

20

30

40

50

# 
C

el
ls

 

 

wt DC +OVA Not performed 

100 101 102 103 104

FL1-H: CFSE

0

5

10

15

20

25

# 
C

el
ls

 

Not performed  

  CFSE CFSE CFSE  
     
c) 

 

d) 

 
 Fig. 5.5. At a low antigen dose, CD4+ T cell proliferation is lost when injected DCs cannot present 

antigens directly to CD4+ T cells. (a) C57BL/6J mice were injected i.v. with CFSE-labelled OT-II 
CD45.1+CD4+ T cells. After 24 h, these recipient mice were injected s.c. into their forelimbs with LPS-
activated MHCII-/- DCs previously loaded with either 0.02 mg/ml or 2 mg/ml of OVA protein. As a 
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control, some mice received MHCII-/- DCs loaded with 10 µM OVA323-339, or wt DCs loaded with 0.02 
mg/ml of OVA protein. 3 days later, CD45.1+CD4+ T cells in the draining lymph nodes were examined 
for CFSE dilution by flow cytometry. (b) CFSE dilution in CD45.1+CD4+ T cells is shown as 
representative histograms from individual mice. (c) The percentages of CD45.1+CD4+ T cells that had 
divided at least once are shown. (d) Absolute numbers of divided CD45.1+CD4+ T cells in the draining 
lymph nodes are shown. The experiment was performed once with 4 mice per group. Statistical 
significance was determined with one-way ANOVA with Bonferroni’s correction. * p<0.05, *** 
p<0.001, N.S.= not significant 

 

5.6. CTL-mediated elimination of injected DCs reduces CD4+ T cell proliferation in 

the absence of host APC participation 

 

To investigate if the CTL-mediated elimination of injected DCs affected CD4+ T cell 

proliferation when host APCs did not participate in antigen presentation, DCs were 

incubated with low concentration of OVA protein (0.004 mg/ml) before injection into mice 

(Fig 5.6a). At low OVA dose, there was no uptake of antigens by host DCs (Fig. 5.5). To 

target the injected DCs for CTL elimination, these DCs were also pulsed with 10 µM 

SIINFEKL. These DCs were then injected s.c. into mice that had received either CD4+ T 

cells and CTLs or CD4+ T cells only 24 h before.  3 days after DC injection, CD4+ T cells 

in the draining lymph nodes were examined for CFSE dilution by flow cytometry.  

 

In mice that received no CTL and wt DC+OVA+SIINFEKL, vigorous CD4+ T cell division 

was observed, indicating that at this extremely low OVA concentration, the proliferation of 

CD4+ T cells was still detectable (Fig. 5.6b). In the group that received CTL and wt 

DC+OVA+SIINFEKL, some CD4+ T cell division was observed but was significantly 

lower than that in the control group (Fig. 5.6c and d). The reduction of CD4+ T cell division 

in the presence of CTLs was similar to the decrease observed when using DCs pulsed with 

SIINFEKL and OVA323-339 (Fig. 3.3), indicating that when the injected DCs were loaded 

with a low antigen dose, DC elimination by CTLs nearly abolished CD4+ T cell 

proliferation. The residual CD4+ T cell proliferation was likely induced by the injected DCs 

that survived CTL-mediated elimination. In the groups that received MHCII-/- 

DC+OVA+SIINFEKL or MHCII-/- DC+OVA, no CD4+ T cell proliferation was observed 

regardless of the presence of CTLs (Fig. 5.6b to Fig. 5.6d). These results extend my 

previous findings, showing that at low antigen doses, only the injected DCs induced CD4+ 
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T cell division (Fig. 5.5) and that CTL-mediated elimination of injected DCs significantly 

reduced subsequent CD4+ T cell proliferation (Fig. 3.3). 
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c) 

 

d) 

 
 Fig. 5.6. CTLs reduce CD4+ T cell proliferation induced by injected DCs in the absence of host 

APC participation. (a) C57BL/6J mice were injected i.v. with in vitro activated OT-I CTLs and CFSE-
labelled OT-II CD45.1+CD4+ T cells. As a control, some mice received only CD4+ T cells. After 24 h, 
these recipient mice were injected s.c. into their forelimbs with LPS-activated wt or MHCII-/- DCs 
previously loaded with 0.004 mg/ml of OVA protein and 10 µM SIINFEKL. Some mice received 
MHCII-/- DCs loaded with OVA only. 3 days later, CD45.1+CD4+ T cells in the draining lymph nodes 
were examined for CFSE dilution by flow cytometry. (b) CFSE dilution in CD45.1+CD4+ T cells is 
shown as representative histograms from individual mice. (c) The percentages of CD45.1+CD4+ T cells 
that had divided at least once are shown. (d) Absolute numbers of divided CD45.1+CD4+ T cells in the 
draining lymph nodes are shown. Two separate experiments with 4 – 5 per group are pooled together 
and shown. Statistical significance was determined with one-way ANOVA with Bonferroni’s 
correction. *** p<0.001. 

 
 

5.7. Host DCs present antigens carried by injected DCs to T cells 

 

5.7.1. Host DCs present antigens carried by injected DCs to CD4+ T cells 

 

To assess the involvement of host DCs in presenting antigens carried by injected DCs to T 

cells, I adopted a published DC enrichment protocol using negative selection with magnetic 

beads (Bedoui et al., 2009; Lee et al., 2009). The DC enrichment protocol is described in 

Chapter 2. I modified the protocol to include the depletion of injected DCs using the 

CD45.1 congenic marker to enrich for host CD11c+ DCs  (Appendices 11 and 12). I used 

this protocol to characterise the involvement of host DCs in presenting antigens carried by 

injected DCs to CD4+ and CD8+ T cells.  

 

The experimental design is illustrated in Fig. 5.7.1a. CD45.1+ DCs previously loaded with 

OVA protein (DC+OVA) were injected s.c. into the forelimbs of C57BL/6J mice. As a 

control, one group of mice received CD45.1+ DCs that were not loaded with OVA (DC 
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only). 24 h after DC injection, brachial and axillary draining lymph nodes were harvested 

and digested into cell suspensions. The cell suspensions made from mice that received 

DC+OVA were aliquoted equally into two tubes before the addition of antibodies. One of 

the two aliquots was incubated with a mixture of antibodies against T cell, B cell, NK cell 

and monocyte lineage markers and anti-CD45.1 antibody to enrich for CD45.2+CD11c+ 

cells (host only). The other aliquot was incubated with a mixture of antibodies against 

lineage markers to enrich for CD45.2+ and CD45.1+CD11c+ cells (total). After the 

incubation with antibodies, antibody-coated cells were labelled with magnetic beads and 

were removed using magnetic separation. Following magnetic depletion of antibody-coated 

cells, the enriched cells were serially titrated and co-incubated with CFSE-labelled OT-II 

CD4+ T cells for 4 or 5 days to detect for antigen presentation on MHC class II. OT-II 

CD4+ T cells were then examined for CFSE dilution by flow cytometry.  

 

The percentages of host CD11c+CD45.2+ cells after depletion were comparable between the 

groups containing host DCs and total DCs in mice that received DC+OVA (Fig 5.7.1b). No 

injected DCs (CD11c+CD45.1+) was detected in either groups, possibly because of the low 

number (0.2 × 106) of CD45.1+ DCs injected. OT-II CD4+ T cells proliferated slightly when 

co-incubated with a mixture of injected and host CD11c+ cells for 4 days, whereas no 

proliferation was observed with host CD11c+ cells only (Fig. 5.7.1c). However, after 5 days 

of co-incubation, some proliferation of OT-II T cells was observed in both groups 

containing host DCs and total DCs. Host CD11c+ cells induced slightly lower OT-II T cell 

proliferation than total DCs (Fig. 5.7.1c). Consistent with my previous observations (Fig. 

5.4 to Fig. 5.6), the results show that the host DCs present antigens acquired from injected 

DCs to CD4+ T cells.  
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 Fig. 5.7.1. Host DCs present antigens carried by injected DCs to CD4+ T cells. (a) C57BL/6J mice 
were injected s.c. into their forelimbs with LPS-activated OVA-loaded CD45.1+ wt DCs (DC+OVA) or 
wt DCs not loaded with OVA protein (DC only). 24 h later, brachial and axillary lymph nodes were 
harvested and digested into cell suspensions. Cell suspensions from the DC+OVA group were split into 
halves. One aliquot was incubated with a mixture of antibodies against lineage markers and anti-CD45.1 
antibody to enrich for CD45.2+CD11c+ cells (host only) and the other aliquot was incubated with a 
mixture of antibodies against lineage markers to enrich for total CD11c+ cells (total) through magnetic 
separation. The enriched CD11c+ cells were then serially diluted and cultured with 10 × 104 CFSE-
labelled OT-II CD4+ T cells per well for either 4 or 5 days. After incubation, OT-II CD4+ T cells were 
examined for CFSE dilution by flow cytometry. (b) Aliquots of samples before and after magnetic 
depletion were stained with anti-CD11c, -CD45.2 and -CD45.1 antibodies to determine the percentages 
of host and injected DCs present. (c) The percentages of Vα2+CD4+ T cells that had divided at least 
once are shown. One representative experiment of two with triplicate wells is shown. 

 
 

5.7.2. Host DCs present antigens carried by injected DCs to CD8+ T cells 

 

To characterise the role of host DCs presenting antigens carried by injected DCs to CD8+ T 

cells, a similar experiment using CFSE-labelled OT-I CD8+ T cells co-incubated with the 

enriched DCs for 3 days was carried out. The experiment is illustrated in Fig. 5.7.2a. 

 

The percentages of host DCs (CD11c+CD45.2+) after depletion were comparable between 

the groups containing host DCs and total DCs in mice that received DC+OV (Fig. 5.7.2b). 

The majority of OT-I CD8+ T cells underwent cell divisions when OT-I T cells were 

incubated with total or host CD11c+ cells (Fig. 5.7.2c). In conclusion, host DCs are able to 

present antigens carried by injected DCs to both CD8+ and CD4+ T cells.  
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Fig. 5.7.2. Host DCs present antigens carried by 
injected DCs to CD8+ T cells. (a) C57BL/6J mice 
were injected s.c. into their forelimbs with LPS-
activated OVA-loaded CD45.1+ wt DCs or CD45.1+ 
wt DCs not loaded with OVA protein (DC only). 24 
h later, brachial and axillary lymph nodes were 
harvested and digested into cell suspensions. Cell 
suspensions from the DC+OVA group were split into 
halves. One aliquot was incubated with a mixture of 
antibodies against lineage markers and anti-CD45.1 
antibody to enrich for CD45.2+CD11c+ cells (host 
only) and the other aliquot was incubated with a 
mixture of antibodies against lineage markers to 
enrich for total CD11c+ cells (total) through magnetic 
separation. Enriched CD11c+ cells were then serially 
diluted and cultured with 10 × 104 CFSE-labelled 
OT-I CD8+ T cells per well for 3 days. After 
incubation, OT-I CD8+ T cells were examined for 
CFSE dilution by flow cytometry. (b) Aliquots of 
samples before and after magnetic depletion were 
stained with anti-CD11c and -CD45.2 antibodies to 
determine the percentages of host DCs present.  

 (c) The percentages of Vα2+CD8+ T cells that had divided at least once are shown. One representative 
experiment of two with triplicate wells is shown. 
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5.7.3. Both peptide and protein antigens carried by injected DCs can be transferred to 

and presented by host DCs to T cells 

 

Having shown in Fig. 5.7.1 and Fig. 5.7.2 that host DCs could take up OVA protein loaded 

onto injected DCs and present them to CD4+ and CD8+ T cells, I asked if the host DCs 

could also present with other forms of antigens carried by the injected DCs.  

 

Fig. 5.7.3a. illustrates the experimental setup. I compared the proliferative responses of 

CD8+ and CD4+ T cells when the injected DCs had been loaded with either OVA protein or 

OVA peptides. Similar to previous experiments (Fig. 5.7.1 and Fig. 5.7.2), CD45.2+ mice 

were injected with CD45.1+ DCs on the forelimbs. These DCs were previously loaded with 

either OVA protein or SIINFEKL and OVA323-339. 24 h after DC injection, total or host 

DCs were enriched through magnetic depletion and subsequently co-incubated with CD8+ 

OT-I or CD4+ OT-II T cells for 3 or 5 days, respectively. OT-I CD8+ and OT-II CD4+ T 

cells were then examined for CFSE dilution by flow cytometry.  

 

The percentages of host DCs (CD11c+CD45.2+) recovered from draining lymph nodes were 

comparable among all the groups (Fig. 5.7.3b). The majority of CD8+ OT-I T cells divided 

when incubated with total CD11c+ cells or host CD11c+ cells from mice that received 

DC+SIINFEKL+OVA323-339 (Fig. 5.7.3c). Similar to previous observations (Fig. 5.7.2), 

both total CD11c+ cells and host CD11c+ cells prepared from mice that received DC+OVA 

induced OT-I T cell division. 

 

The majority of CD4+ OT-II T cells divided in all groups regardless of whether the DCs 

were total or host only (Fig. 5.7.3d). These results show that both peptide and protein 

antigens carried by the injected DCs are transferred to and presented by the host DCs to 

CD8+ and CD4+ T cells. In this study, the transfer of peptides from injected to host DCs 

occurred when the injected DCs were loaded with 10 µM SIINFEKL and 10 µM OVA323-

339. Other studies have indicated that peptide transfer between DCs occur at peptide dose 

lower than that used in this study (Luketic et al., 2007). 
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c) CD8+ T cells, Day 3 proliferation d) CD4+ T cells, Day 5 proliferation 

 

 
 

 
 

   
 Fig. 5.7.3. Host DCs present protein and peptide antigens carried by injected DCs to CD8+ and 

CD4+ T cells. (a) C57BL/6J mice were injected s.c. into their forelimbs with LPS-activated CD45.1+ wt 
DCs previously loaded with OVA protein (DC+OVA), or 10 µM SIINFEKL and 10 µM OVA323-339 
(DC+SIINFEKL+OVA323-339), or not loaded with any added antigens (DC only). 24 h later, brachial and 
axillary lymph nodes were harvested and digested into cell suspensions. Cell suspensions from the 
DC+OVA and DC+SIINFEKL+OVA323-339 groups were split into halves. One aliquot from each group 
was incubated with a mixture of antibodies against lineage markers and anti-CD45.1 antibody to enrich 
for CD45.2+CD11c+ cells (host only) through magnetic separation. The other aliquot from each group 
was incubated with a mixture of antibodies against lineage markers to enrich for total CD11c+ cells 
(total) through magnetic separation. Enriched CD11c+ cells were then serially diluted and cultured with 
10 × 104 CFSE-labelled OT-I CD8+ T cells per well for 3 days or 10 × 104 CFSE-labelled OT-II CD4+ T 
cells per well for 4 days. After incubation, OT-I CD8+ and OT-II CD4+ T cells were examined for CFSE 
dilution by flow cytometry. (b) Aliquots of samples before and after magnetic depletion were stained 
with anti-CD11c and -CD45.2 antibodies to determine the percentages of host DCs present. The 
percentages of (c) Vα2+CD8+ or (d) Vα2+CD4+ T cells that had divided at least once are shown. The 
experiment was performed once with triplicate wells for DC+OVA and DC only; and with duplicate 
wells for DC+SIINFEKL+OVA323-339.  
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5.7.4. Host DCs present antigens carried by injected DCs transiently 

 

Because in vivo CD4+ T cell proliferation was already observed within 2 to 3 days after DC 

injection (Fig. 4.2.2, Fig. 4.2.4 and Fig. 5.4 to 5.6), the time when the host DCs interact 

with naïve T cells must have already occurred within the first 2 days (24 h and 48 h) after 

DC injection.  

 

To examine how long host DCs presented captured antigens from injected DCs for, host 

DCs were recovered from draining lymph nodes 24 h and 48 h after DC injection and their 

ability to present to CD8+ T cells was determined. To examine if the presence of DC killing 

would affect antigen presentation of host DCs, in vitro activated CTLs were transferred into 

some groups of mice to induce DC elimination. Fig. 5.7.4a illustrates the experimental 

setup. 

 

The percentages of host DCs (CD11c+CD45.2+) recovered from draining lymph nodes after 

depletion were comparable between groups at the 24 h and 48 h, respectively (Fig. 5.7.4b). 

OT-I CD8+ T cell division was observed when OT-I T cells were incubated with host DCs 

harvested 24 h after DC injection. In the presence of CTLs, OT-I CD8+ T cell division was 

reduced compared to the control mice that did not receive CTLs (Fig. 5.7.4c). Host CD11c+ 

cells that were prepared 48 h after DC injection only induced unsubstantial OT-I T cell 

division, regardless of the presence of CTLs. The results suggest that host DCs present 

antigens carried by injected DCs to CD8+ T cells transiently. Furthermore, the presence of 

CTLs reduce, but does not abolish, the antigen presentation by the host DCs, suggesting 

that some host DCs presenting captured antigens are not eliminated by CTLs. 
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c) 24 h after DC injection 48 h after DC injection 

 

 

 

 

 
 Fig. 5.7.4. Presentation of captured antigens by host DCs is transient and is reduced by CTLs. 

(a) C57BL/6J mice were injected i.v. with in vitro activated OT-I CTLs, whereas the control groups 
did not receive any CTLs (no CTL). 24 h later, mice were injected s.c. into their forelimbs with LPS-
activated CD45.1+ wt DCs previously loaded with OVA (DC+OVA) or wt DCs not loaded with 
OVA protein (DC only). Brachial and axillary lymph nodes were harvested and digested into cell 
suspensions either 24 h or 48 h after DC injection. Cell suspensions were incubated with a mixture 
of antibodies against lineage markers and anti-CD45.1 antibody to enrich for host CD11c+ cells 
through magnetic separation. Enriched CD11c+ cells were then serially diluted and cultured with 10 
× 104 CFSE-labelled OT-I CD8+ T cells per well for 3 days. After incubation, OT-I CD8+ T cells 
were examined for CFSE dilution by flow cytometry. (b) Aliquots of samples before and after 
magnetic depletion were stained with anti-CD11c and -CD45.2 antibodies to determine the 
percentages of host DCs present. (c) The percentages of Vα2+CD8+ T cells that had divided at least 
once are shown. The experiment was performed once with triplicate wells. 
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5.8. Host skin-derived DCs contribute most to presenting antigens carried by injected 

DCs to CD8+ and CD4+ T cells 

 

Host DCs in the skin draining lymph nodes can be categorised into lymph node resident 

and migratory skin-derived DCs. To identify which host DC subpopulation was presenting 

the antigens carried by the injected DCs to CD8+ and CD4+ T cells, host CD11c+ cells from 

draining lymph nodes were sorted according to their expressions of CD11c, CD205 and 

CD8 (Fig. 5.8a). Sorting CD11c+ DCs yielded populations of CD205+CD8lo (skin-derived 

DCs), CD205+CD8hi (CD8+ DCs) and CD205-CD8- (double negative DCs) cells that were 

each greater than 95% pure (Fig. 5.8b). These DC subpopulations were then co-incubated 

with CFSE-labelled OT-I CD8+ or OT-II CD4+ T cells. OT-I and OT-II T cells were 

examined for CFSE dilution by flow cytometry 3 or 5 days later, respectively. 

 

The strongest CD8+ and CD4+ T cell divisions were induced by host skin-derived DCs (Fig 

5.8c and d). Host lymph node resident CD8+ DCs also presented antigens to CD8+ T cells, 

but not to CD4+ T cells. Host lymph node resident double negative DCs did not present 

antigens to either CD8+ or CD4+ T cells. Although the injected DCs were CD205+CD8- 

(Appendix 13), it is unlikely that the injected DCs were sorted together with host skin-

derived DCs because injected DCs were depleted and could not be detected by flow 

cytometry (Fig. 5.7.1 to 5.7.4). 

 

These results show that migratory skin-derived DCs capture and present antigens from 

injected DCs to CD8+ and CD4+ T cells. Lymph node resident CD8+ DCs also participate in 

presenting transferred antigens to CD8+ T cells. 

 

 

 

 



Chapter 5: Host DCs present antigens carried by injected DCs to T cells 166 
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b)  Pre-sort: DC+OVA Skin-derived DCs CD8+ DCs Double negative DCs 
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 Fig. 5.8. Transferred antigens from injected DCs are presented by host skin-derived DCs to 

CD8+ and CD4+ T cells. (a) C57BL/6J mice were injected into their forelimbs with LPS-activated 
OVA-loaded CD45.1+ wt DCs (DC+OVA) or wt DCs not loaded with OVA protein (DC only). 
Brachial and axillary lymph nodes were harvested and digested into cell suspensions 24 h after DC 
injection. Cell suspensions were enriched for host CD11c+ cells through magnetic separation. 
Enriched CD11c+ cells were sorted based on their expressions of CD205 and CD8, which yielded 
CD205+CD8lo (skin-derived DCs), CD205+CD8hi (CD8+ DCs) and CD205-CD8- (double negative 
DCs) populations. These three sorted DC populations were then serially diluted and cultured with 10 
× 104 CFSE-labelled OT-I CD8+ or OT-II CD4+ T cells per well for 3 or 5 days, respectively. After 
incubation, OT-I CD8+ and OT-II CD4+ T cells were examined for CFSE dilution by flow cytometry. 
(b) The percentages of CD11c+ cells and different DC populations in the samples before and after 
flow cytometry sorting are shown. The percentages of (c) Vα2+CD8+ or (d) Vα2+CD4+ T cells that 
had divided at least once are shown. Two separate experiments with duplicate wells for DC+OVA, 
and single wells for DC only are pooled together and shown. 
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5.9. Systemic effector CD4+ T cells responses need the participation of injected DCs  

 

In the experiments presented thus far, I have shown that inter-DC antigen transfer enabled 

host DCs to present antigens to CD8+ and CD4+ T cells (Fig. 5.7.1 to Fig. 5.8). To 

determine if CD4+ T cells stimulated by host and injected DCs, or by host DCs only, 

acquire similar effector functions, IFNγ production by these CD4+ T cells was examined. 

The ability of these CD4+ T cells to produce IFNγ was also examined in the presence of 

CTL-mediated DC elimination. 

 

The experimental design is depicted in Fig. 5.9.1. Mice received CTLs and OT-II 

CD45.1+CD4+ T cells, or OT-II CD45.1+CD4+ T cells only. 24 h later, these mice were 

injected s.c. with OVAtr DC, wt DC+OVA or MHCII-/- DC+OVA. As controls, some mice 

were injected with MHCII-/- DC+OVA323-339 or MHCII-/- DC only. 19 days after DC 

injection, the spleens of the mice were harvested, digested and made into single cell 

suspensions. The cell suspensions were then restimulated with OVA323-339 in cIMDM. 

Some cell suspensions were left in culture without the addition of OVA323-339 in cIMDM. 

After peptide restimulation for 20 h, the production of IFNγ by CD4+ T cells was monitored 

by flow cytometry.  

 

The OT-II CD45.1+CD4+ T cells were present and produced IFNγ upon OVA323-339 

restimulation in groups that were injected with OVAtr DCs or wt DC+OVA (Fig. 5.9.2a 

and c). In groups that received MHCII-/- DC+OVA, MHCII-/- DC+OVA323-339 or MHCII-/- 

DC only, OT-II CD4+ T cells were nearly absent and IFNγ-producing CD4+ T cells could 

not be detected. In all groups, the presence of CTLs did not affect the production of IFNγ 

by OT-II CD4+ T cells (Fig. 5.9.2b and c). 

 

Similar percentages of host CD4+ T cells were detectable in all groups. However, host 

CD4+ T cells produced IFNγ only in groups that were injected with OVAtr DCs or wt 

DC+OVA, but not in groups that received MHCII-/- DC+OVA, MHCII-/- DC+OVA323-339 or 

MHCII-/- DC only (Fig. 5.9.2d). The IFNγ production by host CD4+ T cells was not 

antigen-specific as the host CD4+ T cells, but not OT-II CD4+ T cells, produced IFNγ when 

no OVA323-339 was added to the culture (Fig. 5.9.2e).  
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These results showed that although host DCs presented antigens carried by injected MHCII-

/- DCs to induce CD4+ T cell proliferation (Fig. 5.4 and Fig. 5.7.1), the stimulated CD4+ T 

cells did not accumulate in the spleens of mice. This suggests that the priming of effector 

CD4+ T cells need the participation of the injected DCs. This result also showed that 

although CTLs eliminated OVAtr DCs and prevented the DCs from accumulating in the 

draining lymph nodes (Fig. 4.3.4), the quality of effector CD4+ T cells induced by host DCs 

through inter-DC antigen transfer was not compromised. 

 

 

 

 
 Fig. 5.9.1. The experimental setup for Fig. 5.9.2. is illustrated. 
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e) 

 

 

 Fig. 5.9.2 Effector CD4+ T cells do not accumulate in the spleens when injected DCs cannot 
present antigens directly to CD4+ T cells. The experimental setup is illustrated in Fig. 5.9.1. 
C57BL/6J mice were injected i.v. with either OT-II CD45.1+CD4+ T cells and in vitro activated OT-I 
CTLs, or OT-II CD4+ T cells only. After 24 h, these mice were injected s.c. into their forelimbs with 
LPS-activated OVAtr DCs, wt DC+OVA or MHCII-/- DC+OVA. As controls, some mice received 
MHCII-/- DCs loaded with OVA323-339 or MHCII-/- DCs only. 19 days later, spleens were harvested, 
digested and made into cell suspensions. The cell suspensions were then restimulated with OVA323-339 in 
cIMDM. Some cell suspensions were left in culture without the addition of OVA323-339 in cIMDM. After 
20 h of restimulation, IFNγ production by CD4+ T cells was monitored by flow cytometry. (a) Host 
CD4+ and OT-II CD45.1+CD4+ T cells from individual mice that received OT-II CD4+ T cells only and 
wt DC+OVA or MHCII-/- DC+OVA are shown. IFNγ-producing OT-II CD45.1+CD4+ T cells and the 
corresponding isotype controls are shown. (b and c) The percentages of total CD45.1+CD4+ T cells, 
IFNγ-producing CD45.1+CD4+ T cells and the corresponding isotype controls are shown. (d) The 
percentages of host CD4+ T cells, IFNγ-producing host CD4+ T cells and the corresponding isotype 
controls are shown. (e) The percentages of IFNγ-producing host CD4+ T cells, IFNγ-producing OT-II 
CD45.1+CD4+ T cells and the corresponding isotype controls are shown. One representative experiment 
out of two with 3 – 5 mice per group is shown. 
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 5.10. Discussion 
 

In this chapter, I showed that the cellular materials of injected DCs and the antigens loaded 

on them could be transferred to host cells. The transferred antigens were presented by host 

antigen-presenting cells to CD4+ T cells and induced CD4+ T cell proliferation. I also 

showed that host DCs presented the antigen carried by injected DCs to CD4+ and CD8+ T 

cells. The presentation of transferred antigens by host DCs was transient. Among the host 

DC subpopulations, the skin-derived DCs contributed the most to presenting antigens 

carried by injected DCs to CD4+ and CD8+ T cells. Host lymph node resident CD8+ DCs 

also presented the transferred antigens to CD8+ T cells. Although host DCs present antigens 

captured from injected DCs and induced CD4+ T cell proliferation, the antigen presentation 

by injected DCs was necessary to prime effector CD4+ T cells. When CTLs prevented the 

entry of injected DCs into draining lymph nodes, inter-DC antigen transfer enabled the host 

DCs to induce CD4+ T cell proliferation. The stimulated CD4+ T cells subsequently 

developed into effector T cells in the presence of CTL-mediated DC killing. Overall, this 

chapter highlights two key aspects, the type of immune responses generated from inter-DC 

cooperation, and the interplay between CTL-mediated DC killing and inter-DC antigen 

transfer (Fig. 5.10.1 and Fig. 5.10.2). 

 

5.10.1. Contributions of host and injected DCs to T cell proliferation  

 

Antigen transfer among DC populations has been suggested by a number of reports (Allan 

et al., 2006; Belz et al., 2004a; Inaba et al., 1998; Kleindienst and Brocker, 2003; Luketic et 

al., 2007; Qu et al., 2009). One example of antigen transfer among DCs was described by 

Inaba et al (Inaba et al., 1998). In that study, the transfer of MHC class II-restricted peptide 

between injected DCs and host DCs in the T cell area of draining lymph nodes was 

demonstrated by using antibodies against the MHC class II-peptide complex. In a different 

study, the peptides transferred from injected DCs to host DCs induce antigen specific CD4+ 

T cell clonal expansion in vivo (Kleindienst and Brocker, 2003). In that study, the T cell 

clonal expansion was significantly lacking in the absence of antigen presentation by host 

DCs, even though the injected DCs alone could induce CD4+ T cell expansion. In my study, 

compared to the CD4+ T cell expansion induced by host and injected DCs, host DCs 
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presenting antigens captured from injected DCs induced significantly lower CD4+ T cell 

expansion (Fig. 5.10.1b). The decrease in T cell proliferation could be due to the alteration 

in antigen-presenting DC numbers in the draining lymph nodes. This is because the 

generation of effector T cells in the draining lymph nodes has been shown to be inversely 

related to antigen dose, the stability of peptide-MHC complexes on the DCs, and the 

antigen-presenting cell density (Henrickson et al., 2008). In considering the notion of 

altering DC numbers, my study showed that CTL-mediated killing of DCs loaded with 

OVA protein did not reduce CD4+ T cell expansion, although approximately 50% of the 

OVA-loaded DCs injected were eliminated. This indicated that host DCs presenting 

transferred antigens were sufficient to induce CD4+ T cell proliferation. This is probably 

because host DCs constitute the biggest proportion of DC presenting antigens to T cells, 

since only a few percent of the injected DCs reach the draining lymph nodes (Martin-

Fontecha et al., 2003).  

 

5.10.2. Induction of effector T cells by host and injected DCs 

 

Besides having superior numerical advantage over the injected DCs in the draining lymph 

nodes, host DCs have been shown to prime CD62Llo effector CD4+ T cells that produce IL-

2, suggesting that host DCs presenting antigens carried by injected DCs were sufficient to 

generate effector T cell responses (Kleindienst and Brocker, 2003). In my study, when host 

DCs were presenting antigens captured from injected MHCII-/- DCs, only a few effector 

CD4+ T cells were found in the spleens of mice. The few effector CD4+ T cells did not 

make IFN-γ upon re-stimulation 19 days after DC injection. Because these CD4+ T cells 

proliferated in the draining lymph nodes but did not appear in the spleens, this would 

indicate that the presentation of transferred antigens by host DCs alone failed to generate 

systemic effector CD4+ T cell responses (Fig. 5.10.2b). In my study, splenocytes were re-

stimulated with OVA323-339 19 days after DC injection and examined for IFN-γ production, 

whereas in the study by Kleindienst and Brocker, lymphocytes were re-stimulated with 

PMA and ionomycin 5 days after DC injection and examined for IL-2 production 

(Kleindienst and Brocker, 2003). This could account for the differences in the type of CD4+ 

T cells observed between this study and the study by Kleindienst and Brocker. Nonetheless, 

in support of the notion that effector T cells were not generated when host DCs were 
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presenting antigens captured from injected DCs, tolerised CD4+ T cells have been shown to 

produce effector cytokines such as IL-2 and IFN-γ early after antigen encounter but this 

effector cytokine production was lost afterwards (Huang et al., 2003). Moreover, targeting 

antigens to DCs in vivo through CD205 antibody induced CD4+ T cell proliferation and IL-

2, but not IFN-γ, production, and these CD4+ T cells eventually disappeared from the 

draining lymph nodes and spleen (Hawiger et al., 2001). 

 

There are a few possibilities as to why host DCs do not prime effector CD4+ T cells when 

the injected DCs cannot present antigen directly to CD4+ T cells. Firstly, as mentioned 

before, the density of these antigen-presenting DCs in the draining lymph nodes is likely to 

be altered in the absence of presentation by the injected DCs. This can potentially translate 

to insufficient antigen stimuli to cross the threshold necessary for the development of 

effector functions (Iezzi et al., 1998). 

 

Secondly, the injected DCs are phenotypically highly activated, hence they are able to 

provide T cells with the optimal co-stimulatory signals. In contrast, host DCs are 

phenotypically immature (De Smedt et al., 2001; Wilson et al., 2003). Targeting the antigen 

directly to host DCs without activation signals led to T cell tolerance, whereas simultaneous 

addition of antigen and DC activation stimuli induced effector T cells (Bonifaz et al., 2002; 

Hawiger et al., 2001). It is likely that in the absence of direct antigen presentation by 

activated injected DCs and inflammation, host DCs do not provide sufficient co-stimulatory 

signals to the CD4+ T cells. It can be argued that in a tripartite interaction, the host DCs 

supply the antigen signal whereas injected DCs provide the co-stimulatory signals to prime 

effector T cells. Against this, it has been shown that when the CD4+ T cells did not receive 

antigenic and co-stimulatory signals from the same DC, naïve CD4+ T cells underwent 

proliferation but did not develop into effector CD4+ T cells (Sporri and Reis e Sousa, 

2005). This is in line with my results showing that through the presentation of antigens 

captured from the injected DCs, host DCs can induce the proliferation of CD4+ T cells but 

did not induce systemic effector CD4+ T cell responses. 

 

Overall, this indicates the importance of injected DCs in producing effector T cell 

responses and directing the type of T cell immune response generated. 
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5.10.3. Effects of CTL-mediated DC killing and antigen transfer on effector T cell 

development 

 

I have shown that while CTL-mediated DC killing prevented DC accumulation in the 

draining lymph nodes (Fig. 5.10.1a), the antigens were transferred to the host DCs which 

then initiated CD4+ T cell proliferation (Fig. 5.10.1c).  These CD4+ T cells developed into 

functional effector T cells that could produce IFN-γ upon antigenic re-stimulation (Fig. 

5.10.2a). This is surprising because by preventing the accumulation of antigen-loaded 

activated DC in the draining lymph nodes, CTLs essentially deprive the CD4+ T cells of 

sufficient co-stimulatory activation. However, in the presence of CTL-mediated DC killing, 

effector CD4+ T cells were present in the spleens and responded to antigen restimulation. In 

contrast, I have shown that even though OVA-loaded activated MHCII-/- DCs accumulated 

in the draining lymph nodes and could provide sufficient co-stimulatory signals, CD4+ T 

cells proliferated but did not accumulate in the spleens.  

 

This begets a question of how the CD4+ T cells develop into effector T cells when activated 

injected DCs are prevented from entering the draining lymph nodes by CTLs. I propose the 

following: after CD4+ T cells have received incomplete signals from host DCs that have 

presented antigens captured from injected DCs, the CD4+ T cells migrate from the draining 

lymph nodes to the site of injection (Campbell and Butcher, 2002), where most of the 

injected DCs reside (Yang et al., 2006). CD4+ T cells subsequently receive antigen and co-

stimulation signals from the injected DCs in the non-lymphoid tissues. The fully activated 

CD4+ T cells then develop into functional effector T cells. In support of this, CD4+ T cells 

required re-exposure to antigen-presenting cells and polarising cytokines to differentiate 

fully into effector T helper cells (Bajenoff et al., 2002). The development of effector CD4+ 

T helper cells also required priming by DCs that had been directly activated by LPS (Sporri 

and Reis e Sousa, 2005). Moreover, DCs in the non-lymphoid tissues expanded the number 

of tissue-resident memory CD8+ T cells during herpes simplex virus (HSV) infection 

(Wakim et al., 2008).  

 

In order to demonstrate that the injected DCs in the non-lymphoid tissues are priming the 

CD4+ T cells, I propose the following experiment: Mice will be injected i.v. with OT-I 
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CTLs and OT-II CD4+ T cells, or OT-II CD4+ T cells. 24 h later, CCR7-/- DCs loaded with 

OVA protein or CCR7-/- MHC class II-/- DCs loaded with OVA protein will be injected s.c. 

into the forelimbs of the recipient mice. 7 and 19 days later, splenocytes will be harvested, 

digested and restimulated by OVA323-349 in cIMDM. The production of IFNγ by CD4+ T 

cells will then be examined. Because CCR7-/- DCs do not migrate into the draining lymph 

nodes (Martin-Fontecha et al., 2003), the stimulated CD4+ T cells need to migrate to the 

non-lymphoid tissues to encounter the injected CCR7-/- DCs. By comparing the result 

obtained from CCR7-/- DCs to that from CCR7-/- MHC class II-/- DCs, the experiment 

should provide evidence that will elucidate if the activated DCs at the site of injection are 

important for the development of effector CD4+ T cells.  

 

5.10.4. Efficiency of antigen transfer between injected and host DCs 

 

Visualisation and direct quantification of the antigen transfer from injected DCs to host 

DCs showed that inter-DC antigen transfer was remarkably efficient (Inaba et al., 1998). In 

a HSV infection, the detection of antigen transfer through antigen specific CD8+ T cell 

expansion revealed that the transfer of antigens from migratory to lymph node resident DCs 

occurred at least eight hours after infection (Allan et al., 2006). My results showed that 24 h 

after DC injection, host DCs presented antigens carried by injected DCs on MHC class-I 

and class-II molecules. Because antigen transfer among DCs occurs early during T cell 

priming, the physiological purpose of inter-DC antigen transfer has been proposed to 

amplify the immune responses by increasing the availability of DCs presenting antigens to 

T cells (Allan et al., 2006; Mueller et al., 2002). In other circumstances, it has been 

suggested that inter-DC antigen transfer serves to induce T cell tolerance to prevent self-

reactivity (Inaba et al., 1998). This is because host DCs are immature and they induce T 

cell tolerance in the absence of activation stimuli (Bonifaz et al., 2002; Hawiger et al., 

2001). The physiological purpose of inter-DC antigen transfer probably depends on the 

situation encountered by the DCs.  
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5.10.5. Antigen transfer between injected and host DCs in the draining lymph node 

 

It has been proposed that migratory DCs from the skin (Allan et al., 2006) or the lungs 

(Belz et al., 2004b) ferry antigen from the periphery to the lymph node resident CD8+ DCs. 

In support of this, the kinetics of inter-DC antigen transfer coincides with the kinetics of 

skin-derived migratory DCs reaching the draining lymph nodes (Allan et al., 2006). 

Furthermore, because the injection of apoptotic or necrotic peptide-loaded DCs did not 

induce T cell proliferation, it was suggested that viable antigen-loaded DCs transferred 

their antigen to the host DCs in the draining lymph nodes and not at the site of injection 

(Kleindienst and Brocker, 2003). My results showed that host DCs presented transferred 

antigens 24h after DC injection during which the number of DCs was accumulating in the 

draining nodes (Fig. 3.6.3). Moreover, my DC sorting experiments showed that host lymph 

node resident CD8+ DCs presented the MHC class I-restricted antigen carried by injected 

DCs. Taken together, these results support the notion that some MHC class I-restricted 

antigen transfer between CD8+ DCs and migratory DCs takes place in the draining lymph 

nodes. 

 

5.10.6. Antigen transfer between injected and host DCs in the skin 

 

Besides occurring in the draining lymph nodes, a case could be argued for inter-DC antigen 

transfer taking place in the non-lymphoid tissues or at the site of injection, i.e. the skin. It 

has been proposed that in a HSV-1 model, CD103+ dermal DCs acquire the viral antigens 

in the skin rather than in the draining lymph nodes due to the different kinetics of antigen 

presentation by the CD103+ dermal DCs compared to the lymph node resident CD8+ DCs  

(Bedoui et al., 2009). It is also interesting to note that CD103+ dermal DCs cross-present 

both HSV and antigens from the keratinocytes, although HSV antigens and antigens from 

the keratinocytes are restricted to the epidermal layer, hence should only be accessible to 

Langerhans cells (Bedoui et al., 2009; Henri et al., 2010). Although the proposition of 

antigen transfer from Langerhans cells to dermal DCs (Ginhoux et al., 2007) has been re-

addressed and argued against by Henri et al (Henri et al., 2010), the model used in their 

studies addresses a steady-state scenario. However, this situation could be different in viral 

infections, for example, HSV-1 and HSV-2 infections lead to massive cell death in DCs  



Chapter 5: Host DCs present antigens carried by injected DCs to T cells 178 

(Jones et al., 2003). The large quantity of apoptotic bodies from dying DCs could be taken 

up by other DCs and presented to CTLs (Albert et al., 1998). Although this has never been 

formally shown, this could be the case for HSV-infected Langerhans cells and CD103+ 

dermal DCs (Bosnjak et al., 2005).  

 

My results showed that host skin-derived DCs presented most of the transferred antigens 

acquired from the injected DCs. This could indicate that inter-DC antigen transfer could 

have occurred in the skin where the antigen-loaded DCs were introduced, or that the 

antigen transfer to the host skin-derived DCs could have occurred in the draining lymph 

nodes since DCs migrate from the skin to the draining lymph nodes at steady state (Henri et 

al., 2010; Merad et al., 2002) and during inflammation (De Smedt et al., 1996; Merad et al., 

2000). However, I showed that even when the entry of antigen-loaded DCs into the 

draining lymph nodes was prevented by CTLs, robust T cell proliferation was observed. 

Besides, antigen-loaded DCs at the site of injection remained viable, and in abundance, 

although their numbers were markedly reduced by specific CTLs (Yang et al., 2006). 

Notably, I showed that the low numbers of host skin-derived DCs induced robust CD8+ T 

cell proliferation, whereas host lymph node resident CD8+ DCs induced weaker T cell 

responses. This suggests that the antigen density is higher on the host skin-derived DCs 

compared to host lymph node resident CD8+ DCs and is probably due to greater exposure 

to the antigens loaded on the injected DCs. In line with this, my study showed that the 

antigen transfer from injected DCs to host DCs was dependent on the antigen dose loaded 

onto the injected DCs, indicating that the antigen concentration at the injection site 

determines whether inter-DC antigen transfer occurred. In contrast to the low frequency of 

antigen-loaded DCs that escaped CTL killing in the draining lymph nodes, the availabilities 

of antigen-loaded DCs and antigen in the non-lymphoid tissues are likely to serve as the 

main sources of antigen for inter-DC antigen transfer. In conclusion, my study showed that 

inter-DC antigen transfer occurred mostly in the peripheral tissues, while some antigen 

transfer took place in the draining lymph nodes. 
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5.10.7. Antigen transfer via apoptotic DCs 

 

Antigen transfer from DC to DC could occur via apoptotic DCs or apoptotic bodies, as the 

uptake of apoptotic cells by DCs has been described in vitro (Inaba et al., 1998) and in vivo 

(Fleeton et al., 2004; Huang et al., 2000). In addition, lymph node resident CD8+ DCs 

specialised in the uptake of apoptotic bodies (Iyoda et al., 2002) and these CD8+ DCs have 

been shown to be recipients of antigen transfer (Allan et al., 2006). Furthermore, the 

elimination of target cells by CTLs released antigens for antigen presentation by DCs 

(Kurts et al., 1998b; Parish et al., 2009). It is possible that the CTL-mediated DC killing 

releases the materials of the deceased DCs, and this may lead to greater uptake by host 

APCs. However, this was not observed in my study. Instead, the number of host cells that 

took up materials of the injected DCs was reduced in the presence of CTLs.  This could be 

because the host cells became susceptible to killing by CTLs after antigen transfer. Taken 

together, there is evidence supporting the notion that inter-DC antigen transfer occurs 

through apoptotic DCs. 

 

5.10.8. Antigen transfer via exosomes 

 

Exosomes have been proposed to facilitate antigen transfer among DCs (Thery et al., 

2002b). In support of this, DCs cultured in vitro have been shown to secrete exosomes 

(Segura et al., 2005). The exosomes secreted by DCs bore functional MHC-peptide 

complexes, could activate T cell responses (Thery et al., 2002a) and induced anti-tumour 

responses (Zitvogel et al., 1998). My in vitro transwell experiments indicated that direct 

cell-cell contact was not necessary for antigen transfer between two DCs. Although my 

study could not distinguish between exosomes and apoptotic bodies, other studies have 

shown evidence that inter-DC antigen transfer occurred through exosomes. For example, 

the exosomes containing MHC-peptide complexes were recovered from the draining lymph 

nodes of mice immunised with SIINFEKL-loaded DCs (Luketic et al., 2007). These 

exosomes also induced T cell proliferation and conferred tumour protection. It should be 

noted that antigen transfer occurred only when viable antigen-loaded DCs, but not 

apoptotic ones, were injected (Kleindienst and Brocker, 2003). Thus, it is likely that the 
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pool of viable DCs at the site of injection are transferring antigens to the host skin-derived 

DCs via the secretion of exosomes. 

 

5.10.9. Host DC subpopulations involved in antigen transfer 

 

Host skin-derived DCs consist of five populations residing in the epidermis and dermis 

(Henri et al., 2010). Among them, CD207+CD103+ dermal (Bedoui et al., 2009; Henri et 

al., 2010) and Langerhans cells (Stoitzner et al., 2006) have been shown to cross-present 

antigens to CD8+ T cells. All the dermal DCs and Langerhans cells can present antigens to 

CD4+ T cells to varying degrees (Bedoui et al., 2009; Stoitzner et al., 2006). Accordingly, 

because my DC sorting experiment did not segregate the host skin-derived DCs into these 

subpopulations, these DCs collectively were able to present MHC class-I and -II antigens 

carried by the injected DCs remarkably well.   

 

In the draining lymph node and spleen, the resident DCs can be categorised into three 

populations CD8+CD205+CD4-, CD4+CD8-CD205- and CD8-CD4-CD205- DCs (Henri et 

al., 2001; Vremec et al., 2000). CD8+CD205+CD4- DCs, also commonly denoted as CD8+ 

DCs, have been shown to cross prime CD8+ T cells but have limited MHC class-II 

presenting ability (den Haan et al., 2000; Dudziak et al., 2007). Their ability to cross 

present antigens lies in their intrinsic expression of proteins involved in MHC class-I 

processing and receptor-mediated antigen uptake (Burgdorf et al., 2007; Dudziak et al., 

2007; Schnorrer et al., 2006). In accordance with this, my results showed that host lymph 

node resident CD8+ DCs presented MHC class-I, but not MHC class-II, restricted antigens 

carried by the injected DCs. 

 

Because CD4+CD8-CD205- and CD8-CD4-CD205- DCs do not express CD205 and 

CD4+CD8-CD205- DCs constitute a minor proportion of lymph node resident DCs 

(Shortman and Liu, 2002), these two DC populations were grouped together as CD8-

CD205- DCs, which were denoted as double negative DCs, in my DC sorting experiment. 

While it was not surprising that host lymph node resident double negative (DN) DCs did 

not present MHC class-I restricted antigens (den Haan et al., 2000; Dudziak et al., 2007; 

Qiu et al., 2009), it was interesting that DN DCs did not present MHC class-II restricted 
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antigens either. This was contrary to reports that these DN DCs could activate CD4+ T cells 

(Dudziak et al., 2007; Pooley et al., 2001). Although lymph node resident DCs existed in an 

immature phenotype and were functionally immature under steady state conditions in vivo 

(De Smedt et al., 2001; Wilson et al., 2003), it as unlikely that DN DCs were unable to 

activate T cells due to this reason because their lymph node resident counterparts, CD8+ 

DCs, could induce CD8+ T cell proliferation. Furthermore, ex vivo manipulation of DCs 

could induce DC activation (Wilson et al., 2003). I cannot rule out the possibility that DN 

DCs presented very low amounts of antigens, which could not be detected by OT-II CD4+ 

T cells. Other possibilities as to why DN DCs did not capture antigens from other DCs and 

present these antigens to CD4+ T cells are discussed in subsequent sections. 

 

5.10.10. Location of host DC subpopulations and accessibility to antigen-loaded 

injected DCs 

 

One possible explanation for why DN DCs do not present transferred antigens to CD4+ T 

cells may lie in their spatial location in the draining lymph nodes. Early studies by Witmer 

and Steinman showed that MHC class-II expressing cells found in the paracortex where T 

cells reside, or the B cell area in the lymph nodes did not stain for anti-33D1 antibody, 

suggesting that DN DCs did not reside in these locations (Witmer and Steinman, 1984). 

The MHC class-II expressing cells in the T cell zone are likely to be CD8+ DCs as they 

express low levels of CD207 (Kissenpfennig et al., 2005) while the MHC class-II 

expressing cells in the B cell area are likely to be follicular DCs (Cyster et al., 2000). In the 

spleen, DN DCs are located in the marginal zone, whereas CD8+ DCs are found in the T 

cell area (Dudziak et al., 2007). This is similar in the Peyer’s patch where DN DCs and 

CD8+ DCs are anatomically segregated (Iwasaki and Kelsall, 2000). The distinct 

localisations of DC subpopulations in various lymphoid organs suggest that CD8+ DCs and 

DN DCs have different access to the antigen-loaded injected DCs. 

 

In considering whether DN DCs have access to transferred antigens, the location of the 

antigen-bearing DCs in the lymph nodes has to be examined. DCs that carry the antigens 

into the draining lymph nodes are the injected DCs and the host skin-derived DCs. Among 

the host skin-derived DCs, classical dermal DCs and Langerhans cells have been shown to 
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localise in the outer paracortex but occupy distinct paracortical locations (Kissenpfennig et 

al., 2005). It is likely that CD207+CD103+ dermal DCs occupy similar paracortical regions 

as the Langerhans cells since it was not known at that time that a population of dermal DCs 

also expressed CD207 (Bursch et al., 2007; Poulin et al., 2007). Antigen-bearing host skin-

derived DCs have been shown to preferentially localise in the paracortex near the high 

endothelial venules (HEV) (Bajenoff et al., 2003). Injected DCs enter the draining lymph 

nodes through the afferent lymphatic vessels, pass through the subcapsular sinus and reside 

in the outer paracortex (Bajenoff et al., 2003). These injected antigen-loaded DCs interact 

with antigen-specific T cells in the outer paracortex in the proximity of HEVs. Because 

CD8+ DCs also reside in the paracortex, it stands to reason that the antigen-bearing 

incoming DCs and CD8+ DCs are in close proximity for antigen transfer to occur 

(Kleindienst and Brocker, 2003). On the contrary, it remains a possibility that DN DCs in 

the draining lymph nodes may not have encountered the antigen-bearing DCs.  

 

5.10.11. Intrinsic properties of DN DCs and antigen transfer 

 

Besides the unresolved location of the DN DCs in the draining lymph nodes, the intrinsic 

properties of DN and CD8+ DCs have to be considered. I have previously discussed that 

antigen transfer has been proposed to occur via apoptotic cells or exosomes. It has been 

shown that CD8+, but not DN, DCs selectively take up apoptotic cells (Iyoda et al., 2002) 

and exosomes (Segura et al., 2007). This is not because DN DCs are impaired in antigen 

capture since they can capture soluble proteins and peptides. The functional differences in 

antigen capture between DN and CD8+ DCs are likely to be due to the differential 

expression of various messenger transcripts and proteins (Dudziak et al., 2007), supporting 

the idea that different DC subpopulations have specialised functions (Villadangos and 

Schnorrer, 2007). Thus, it is possible that the intrinsic properties of DN DCs do not allow 

them to participate in inter-DC antigen transfer.  
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a) No antigen transfer occurs when a low antigen dose is loaded onto injected DCs 

 
b)  Inter-DC antigen transfer occurs when a high antigen dose is loaded onto injected DCs 

 
c)  Inter-DC antigen transfer occurs even when injected DCs are killed by CTLs 

 
Fig. 5.10.1. The effects of CTL-mediated DC killing and inter-DC antigen transfer on T cell 
proliferation. 
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a) IFNγ producing effector T cells are induced by host DCs presenting captured antigens even when 
injected DCs are killed by CTLs 

 
  
b) Host DCs presenting captured antigens fail to induce systemic effector T cell responses when injected 

MHCII-/- DCs cannot present antigens directly to T cells 
 

 
Fig. 5.10.2. The type of T cell responses induced by CTL-mediated DC killing and inter-DC antigen 
transfer. 
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My first hypothesis states that CTLs eliminate antigen-presenting DCs through cytolytic 

molecules, thereby preventing the induction of T cell responses. In order to address the first 

hypothesis, I characterised the mechanisms of CTL-mediated DC elimination and examined 

the impact of DC elimination on T cell proliferation. Results from my study showed that 

CTLs regulated T cell proliferation by eliminating DCs. CTL-mediated DC killing occurred 

mostly through perforin, whereas FasL played a minor role.  

 

I also set out to evaluate how different methods of antigen loading onto DCs, types of CTLs 

and methods of CTL generation might affect DC elimination and the resulting T cell 

responses. My study showed that CTL-mediated DC killing was affected by the method of 

antigen loading onto DCs, and to a lesser extent, the method of generating CTLs. 

Surprisingly, when CTLs killed DCs efficiently and prevented DC accumulation in the 

draining lymph nodes, this did not abolish T cell proliferation. This suggested that other 

APCs were inducing the residual T cell proliferation when the antigen-loaded DCs were 

eliminated by CTLs.  

 

In order to investigate the residual T cell proliferation, I examined the impact of CTL-

mediated DC killing and inter-DC antigen transfer on the induction of T cell proliferation 

and the quality of T cells induced. Antigens were transferred from the antigen-bearing DCs 

to host DCs, allowing the host DCs to induce T cell proliferation. Different host DC subsets 

participated in this inter-DC antigen transfer. These observations contradicted my second 

hypothesis, which states that inter-DC antigen transfer does not induce T cell responses in 

the presence of CTL-mediated DC killing. My study also showed that although CTL-

mediated DC killing reduced the T cell proliferation, inter-DC antigen transfer allowed the 

host DCs to participate in amplifying T cell expansion. The stimulated T cells could 

subsequently develop into effector T cells. In conclusion, the interplay between CTL-

mediated DC killing and inter-DC antigen transfer reduces the impact of DC killing on T 

cell proliferation, and influences the size and quality of T cell responses. The findings of 

my study are important in understanding how CTL-mediated DC killing and inter-DC 

antigen transfer interact and regulate subsequent immune responses; and in designing better 

DC vaccine regimens for immunotherapy. 
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6.1. Limitations of my study and other possibilities 

 

Although the use of in vitro activated TCR transgenic CTLs and CD4+ T cells from naïve 

TCR transgenic mice enabled us to dissect the immune responses, these TCR transgenic T 

cells may be more sensitive to the model antigen OVA than host T cells induced by DC 

immunisation are to physiological antigens. TCR transgenic T cells are transferred by the 

hundreds of thousands into C57BL/6J mice, whereas in a physiological setting, host naïve 

T cell numbers range from tens to a few thousands in one mouse (La Gruta et al., 2010; 

Moon et al., 2007). Adoptive transfer of large numbers of identical TCR transgenic T cells 

may also lead to intraclonal competition (Hataye et al., 2006). TCR transgenic T cells are 

monoclonal and recognise a specific epitope of an antigen, whereas host T cells consist of 

different T cell clones that recognise a specific epitope of an antigen; or may recognise 

different epitopes of an antigen (Felix et al., 2007). The limitations of using OT-I T cells 

were partly circumvented in my study through the use of peptide-loaded DC immunisation 

to induce polyclonal host CTLs. I have shown that these polyclonal host CTLs eliminated 

antigen-loaded DCs. Similar observations were reported by Belz et al. in a viral infection 

model (Belz et al., 2007), indicating that DC killing occurred under physiological 

conditions. 

 

In my study, CTL-mediated elimination of antigen-bearing DCs reduced CD4+ T cell 

proliferation. However, under some physiological conditions, the same DC may not be able 

to present antigens to both CTLs and CD4+ T cells. This is because different DC subtypes 

exist in the body. Lymphoid resident CD8-CD205- DCs and CD11b+ dermal DCs do not 

cross-present to CD8+ T cells efficiently, but can present to CD4+ T cells. The lymphoid 

resident CD8+ DCs and the CD103+ dermal DCs are potent cross-presenters to CD8+ T 

cells, but present to CD4+ T cells inefficiently. Herein lie two questions. The first question 

asks if CTLs selectively eliminate the cross-presenting DC subsets compared to the non-

cross-presenting DC subsets. This question can be partly addressed by using a T cell 

hybridoma cell line to detect the presentation of SIINFEKL on the different DC subsets in 

the presence of CTLs as reported by Belz et al (Belz et al., 2007). The second question asks 

how CTL-mediated elimination of the cross-presenting DC subsets will regulate CD4+ T 

cell responses when the non-cross-presenting DC subsets are poorly eliminated and 
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continue to induce CD4+ T cell responses. This question can be addressed using a mouse 

model lacking the non-cross-presenting DC subsets. However, to the best of my 

knowledge, a mouse model lacking the non-cross-presenting DC subsets has not been 

identified. The closest approximation to this hypothetical mouse model would be the 

CD11b-DTR mice (Duffield et al., 2005) because CD11b is expressed on non-cross-

presenting DC subsets. After removing CD11b+ cells from the CD11b-DTR mice through 

diphteria toxin treatment, the impact of CTL-mediated DC killing on CD4+ T cell 

proliferation can be determined. The results from this experiment will provide some 

indications on whether CTLs regulate CD4+ T cell responses through selective killing of 

the cross-presenting DC subset. 

 

While this and other studies have shown that the OVA antigen and other forms of antigens 

are transferred among DC populations (Kleindienst and Brocker, 2003; Luketic et al., 2007; 

Qu et al., 2009), it is unclear whether tumour cell lysates, apoptotic or necrotic cells taken 

up by one DC population are passed onto another DC population. Furthermore, my study 

has shown that inter-DC antigen transfer was dependent on the antigen dose loaded onto the 

DCs. It can be argued that the phenomenon of inter-DC antigen transfer is an artefact of 

loading excess antigens onto DCs. Against this, skin-derived DCs have been shown to pass 

viral antigens to lymph node resident CD8+ DCs during HSV infection (Allan et al., 2006), 

indicating that inter-DC antigen transfer did occur under physiological conditions. 

 

Ex vivo manipulation of DCs through magnetic enrichment and flow cytometry sorting is 

likely to activate the otherwise immature DCs (Wilson et al., 2003). This may skew the 

results such that DCs that carry the antigen but do not express sufficient co-stimulatory 

molecules may induce T cell responses because the ex vivo manipulation of DCs activates 

them. In my study, this limitation was partly addressed through the use of MHCII-/- DCs to 

show that host APCs were involved in capturing antigens from injected MHCII-/- DCs and 

presenting the antigens to CD4+ T cells. Although CD11c-DTR mice are not available in 

our laboratory, these mice would be useful to formally demonstrate that host DCs are 

involved in inter-DC antigen transfer in vivo (Jung et al., 2002). This is because when 

CD11c-DTR mice are treated with diphtheria toxin, DCs will be removed in vivo. By 

injecting these mice with OVA protein-loaded MHCII-/- DCs, the results from this 
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experiment will provide supporting evidence to show whether DCs are truly participating in 

the antigen transfer in vivo. 

 

6.2. DC killing and inter-DC antigen transfer for the maintenance of memory T cells 

 

The targeting of antigen-loaded DCs by CTLs for apoptosis has been proposed to be a form 

of negative feedback to restrain unwarranted immune responses (Belz et al., 2007; 

Ronchese and Hermans, 2001; Yang et al., 2006). Cells undergoing apoptosis package their 

cellular contents such as proteins and DNA into apoptotic bodies and these are rapidly 

phagocytosed by macrophages and DCs (Cohen et al., 1992; Rubartelli et al., 1997). 

Horizontal spreading of cellular contents from deceased cells to other cells can thus be 

achieved through apoptosis. Indeed, CTL-mediated killing of target cells released the 

otherwise inaccessible tissue antigens, which were then taken up by DCs and presented to 

other self-reactive T cells (Kurts et al., 1998a; Parish et al., 2009). One question arising 

from this is the physiological purpose of releasing antigens from DCs by CTL-mediated 

elimination since DC killing is to act as a negative feedback for subsequent immune 

responses. Moreover, when DCs are loaded with high amounts of antigens, antigen transfer 

may occur without the need of releasing antigens through DC killing. As mentioned in 

Chapter 1, inter-DC antigen transfer thus appears to undermine the proposed physiological 

function of CTL-mediated DC killing. 

 

It is conceivable that following the resolution of primary immune responses through DC 

elimination and clearance of antigen source, the purpose of transferring antigen released 

from DCs before, or after CTL-mediated killing to other non-targeted DCs, is to serve as an 

antigen reservoir for the antigen-specific maintenance of memory T cells (Woodland and 

Kohlmeier, 2009). In support of this, residual influenza viral antigen presentation lasted for 

up to two months after influenza infection, and influenza-specific memory CD8+ T cells 

retained in the lungs had an activated phenotype (Zammit et al., 2006). Influenza-specific 

memory CD4+ T cells could also be generated from naïve CD4+ T cells through persisting 

antigen presentation (Jelley-Gibbs et al., 2005). Further examination on the source of 

antigen reservoir revealed that low and high amounts of antigen persisted in tissue-specific 

DCs and macrophages respectively (Matthews et al., 2007; Wikstrom et al., 2010). Because 
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these macrophages did not induce T cell proliferation (Matthews et al., 2007), it was likely 

that the residual antigen in the DCs was the source for the maintenance of the memory T 

cells (Zammit et al., 2006). Thus, while CTLs eliminate antigen presenting DCs to 

downregulate the immune responses during the process of antigen clearance, the transfer of 

antigen from DC to DC may allow for the persistence of a pool of low antigen load, thereby 

maintaining or promoting memory T cell population. 

 

6.3. Implications of DC killing and inter-DC antigen transfer for DC immunotherapy 

 

By eliminating antigen-loaded DC vaccines, CTLs can limit the efficiency of DC vaccines 

in generating T cell responses (Hermans et al., 2000; Yang et al., 2006) (Chapter 3). 

Because multiple DC vaccines are often given to patients so as to induce sufficient 

protection against diseases, subsequent DC vaccine injections could be rendered ineffective 

due to existing CTLs or memory CD8+ T cells generated from the previous DC vaccine 

injection. Indeed, multiple DC immunisations led to a gradual decline in antigen-specific 

CD8+ T cells when these DCs were eliminated by CTLs, whereas an accumulation of these 

T cells was observed in the absence of DC killing (Yang et al., 2006). To the best of my 

knowledge, the phenomenon of DC killing in DC immunotherapy has never been 

documented in clinical trials because it may require invasive procedures to procure tissues 

for assessing the killing of the DC vaccines. I have shown that if the antigen dose loaded on 

the DC vaccines was sufficient for inter-DC antigen transfer, the quality of effector T cells 

was not affected even though DC killing reduced the size of the T cell responses. 

Exploiting the occurrence of antigen transfer from DC vaccines to host DCs may be 

potentially beneficial in overcoming CTL-mediated DC killing. Morever, the transfer of 

antigen from DC vaccines to host DCs occurred regardless of the method of antigen-

loading on DCs. This allows room to choose the form of antigen when designing DC 

vaccines. Further experiments using DC vaccines loaded with cell lysates will reveal if 

inter-DC antigen transfer can be exploited using cell lysates. 

 

In considering the proposal to harness inter-DC antigen transfer for DC immunotherapy, 

one obvious issue is that host DCs, at least in the case of tumour infiltrating DCs, may be 

dysfunctional, thus affecting the generation of anti-tumour immune responses (Gerner and 
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Mescher, 2009; Stoitzner et al., 2008). I have also shown that if host DCs were the only 

APCs presenting transferred antigens, the quality of effector T cells was less favourable 

than when both injected and host DCs presented antigens. This can be avoided by injecting 

adjuvants together with DC vaccines, which have been shown to improve T cell and anti-

tumour responses (Petersen et al., 2010; Tough et al., 1997). Thus, coupled with a well-

designed prime and boost vaccination strategy, the combination of different therapies with 

DC vaccines is a prime candidate for immunotherapy against various diseases.  

 

6.4. Future studies 

 

I have hypothesized in 6.2 that the physiological relevance of the interaction between inter-

DC antigen transfer and CTL-mediated DC killing is to maintain memory T cells. In order 

to test this hypothesis, I would first examine how long the antigens persist in the DCs after 

the antigen are transferred. This result will indicate if inter-DC antigen transfer serves to 

maintain memory T cells. Secondly, I would examine if CTL-mediated DC killing releases 

antigens loaded onto the DCs and whether the released antigens are taken up by other DCs. 

This result will show whether CTL-mediated DC killing facilitates inter-DC antigen 

transfer. When taken together, these results will provide evidence that will partly address 

whether the interaction between inter-DC antigen transfer and CTL-mediated DC killing is 

to maintain memory T cells. 

 

The interaction between inter-DC antigen transfer and CTL-mediated DC killing has never 

been characterised under physiological conditions. I propose the following experiment to 

address this question under steady-state conditions. This experiment requires a mouse 

model whereby one DC subset is made to produce high or low levels of OVA protein 

constitutively, whereas the other DC subsets do not. This can be achieved by expressing 

OVA under the control of langerin promoter so that only langerin+ DCs express OVA. 

These mice will be transferred with OT-I CTLs and DC killing will be determined by 

evaluating the numbers and percentages of the OVA-producing DC subset. Antigen transfer 

from the OVA-expressing DC subset to other DC subsets can be determined through 

sorting the different DC subsets and incubating the sorted DC subsets with CFSE-labelled 

T cells as described in chapter 5.8. These results will provide evidence that will address the 
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interaction of inter-DC antigen transfer and CTL-mediated DC killing under steady-state 

conditions. 

 

I have shown that inter-DC antigen transfer allowed the host DCs to prime effector CD4+ T 

cells in the presence of CTL-mediated DC killing (Fig. 5.9). I have hypothesized that this 

was because the injected DCs in the non-lymphoid tissues were providing optimal signals 

to the CD4+ T cells (Chapter 5.10.3). To address this hypothesis, I have proposed the use of 

CCR7-/- and CCR7-/-MHCII-/- DCs (Chapter 5.10.3). By comparing the CD4+ T cell 

responses in mice that received CCR7-/- or CCR7-/-MHCII-/- DCs loaded with OVA protein, 

the result will indicate if the CD4+ T cells are receiving activation signals from DCs in the 

non-lymphoid tissues.  

 

While CTL-mediated DC killing and inter-DC antigen transfer have been examined 

separately in previous studies (Allan et al., 2006; Guarda et al., 2007a; Hermans et al., 

2000; Kleindienst and Brocker, 2003; Luketic et al., 2007; Stranges et al., 2007; Yang et 

al., 2006), my study is the first to examine the interplay between CTL-mediated DC killing 

and inter-DC antigen transfer and their impact on the resulting T cell responses. My 

findings also emphasize the importance of tracking the fates of DCs and the antigen they 

carry. The future work described above continues to investigate how these two inter-

cellular phenomena interact and influence the generation of immune responses. Results 

from the proposed future work will better our understanding of how the interactions among 

immune cells affect the generation and quality of immune responses. 
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Appendix 1 
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Appendix 1. B6Aa0/Aa0 mice do not express MHC class II. B6Aa0/Aa0 mice were tail-bled and the blood 
collected was processed and analysed for the expression of B220 and MHC class II by flow cytometry. The 
percentage of cells expressing B220 and MHC class II is shown in a representative dot plot from an 
individual B6Aa0/Aa0 mouse and the unstained control. The percentage of B220+ cells expressing MHC class 
II is shown in a representative histogram. 
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Appendix 2 

 

 

100 101 102 103 104
0

20

40

60

80

100
%

 o
f M

ax

92.87.23

 

Appendix 2. CD4+ T cells are enriched from OT-II lymphocytes after 
positive selection. Lymphocytes and splenocytes were enriched for 
CD4+ T cells as described in Chapter 2. An aliquot of the enriched 
sample was examined for CD4 expression by flow cytometry. The 
expression of CD4 in the lymphocytes is shown as percentages in the 
representative histogram. This result is representative of several 
experiments. 
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Appendix 3 

 

a)  b)  
 

 

 

 
    
c)  d)  
 

 

 

 
 Appendix 3. CTL-mediated DC killing, DC accumulation in the draining lymph nodes and CD4+ T 

cell division are consistent with a Gaussian distribution. (a) The experiment was carried out as 
described in Fig. 4.2.5. Results are pooled from two separate experiments carried out under similar 
conditions. (b) The experiment was carried out as described in Fig. 3.6.3. Results are pooled from two 
separate experiments carried out under similar conditions. (c, d) The experiment was carried out as 
described in Fig. 3.3. Results are pooled from 4 separate experiments carried out under similar 
conditions. Statistical significance was determined with D’Agostino and Pearson omnibus normality test 
at a 95% confidence interval. p >0.05 is considered to be consistent with a Gaussian distribution. 
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Appendix 4 
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b) 

 
 Appendix 4. CTLs circulate in the draining lymph nodes. Groups of B6.SJ ptprca mice received in 

vitro activated wt or PKO CD45.2+ OT-I CTLs. As a control, some mice did not receive CTLs. 24 h 
later, lpr DCs loaded with SIINFEKL were mixed in equal numbers with lpr DC only and injected s.c. 
into the forelimbs of recipient mice. After 48 h, CD45.2+ OT-I CTLs in the draining lymph nodes were 
monitored by flow cytometry. (a) CD45.2+ OT-I CTLs are shown in representative contour plots from 
individual mice. (b) The percentages of CD45.2+ OT-I CTLs in the draining lymph nodes are shown. 
The experiment was performed once with 2 – 3 mice per group.  
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Appendix 5 

 

a) No. of DC + 10 µM OVA323-339 injected into mice   
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 No. of DC + 2 mg/ml OVA protein injected into mice   
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b) 

 

Appendix 5. CD4+ T cell division is dependent 
on the number of antigen-loaded DCs injected. 
B6.SJ ptprca mice received CFSE-labelled OT-II 
CD45.2+CD4+ T cells. 24 h later, different 
numbers of DCs loaded with OVA323-339 or OVA 
protein were injected into the forelimbs of 
recipient mice. 3 days later, CD4+ T cells in the 
draining lymph nodes were examined for CFSE 
dilution by flow cytometry. (a) CFSE dilution in 
CD45.2+CD4+ T cells is shown as representative 
histograms from individual mice. (b) The 
percentages of CD45.2+CD4+ T cells that had 
divided at least once are shown. The experiment 
was performed once with 1 – 3 mice per group. 
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Appendix 6 

 

a) DC + 0.1 µM OVA323-339 DC + 1 µM OVA323-339 DC + 10 µM OVA323-339 DC only 
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b) 

 

c) 

 
 Appendix 6. CD4+ T cell division is dependent on the antigen dose loaded on the DCs. B6.SJ 

ptprca mice received CFSE-labelled OT-II CD45.2+CD4+ T cells. 24 h later, DCs loaded with different 
concentrations of OVA323-339 or DCs loaded with different concentrations of OVA protein were 
injected into the forelimbs of recipient mice. 3 days later, CD4+ T cells in the draining lymph nodes 
were examined for CFSE dilution by flow cytometry. (a) CFSE dilution in CD45.2+CD4+ T cells is 
shown as representative histograms from individual mice. (b and c) The percentages of CD45.2+CD4+ 
T cells that had divided at least once are shown. The results of OVA323-339 and OVA protein are from 
two separate experiments with 1 – 4 mice per group. 
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Appendix 7 

 
  Duration of DC incubation with OVA-Texas Red  
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 OVA-TR  
 Appendix 7. Not all DCs take up soluble OVA protein even after prolonged incubation. Bone 

marrow DCs were prepared as described in Chapter 2. Some of these DCs were incubated with OVA 
protein conjugated to Texas Red (OVA-TR) on day 5 of culture. In some wells, OVA-TR was added to 
DCs 4 h before adding LPS on day 6 of culture. As a control, some DCs did not receive any OVA-TR. 
LPS was added to the DC culture on day 6. The DCs were harvested on day 7 and analysed for CD11c+ 
and OVA-TR+ cells by flow cytometry. The percentages of CD11c+ cells that are OVA+ or OVA- are 
shown in each histogram. The experiment was performed once. 
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Appendix 8 

 

a) Single stain controls 
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 Appendix 8. Host cells acquire materials from injected DCs. This experiment was carried out 

together with Fig. 5.1 at the same time. The methodology is described in Fig. 5.1. (a) CMTMR-labelled 
CD45.1- OVAtr DCs are shown. (b) CD45.1- OVAtr DCs incubated with FITC-dextran are shown. (c) 
A separate experiment with 1 – 5 mice per group was carried out as described in Fig. 5.1. 
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Appendix 9 

 

a)  Ratio of CD4+ T cells to DCs 
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 Appendix 9. MHCII-/- DCs cannot induce CD4+ T cell proliferation. DCs were cultured from the 

bone marrows of wt and B6Aa0/Aa0 (MHCII-/-) mice as described in Chapter 2. These DCs were loaded 
with OVA protein and subsequently activated with LPS (DC+OVA). LPS-activated DC+OVA were 
then plated at 0.01 × 106 cells per well and co-incubated with serially diluted numbers of CFSE-labelled 
OTII CD4+ T cells at the indicated ratios. As a negative control, MHCII-/- DCs that were not loaded 
with OVA protein (No Ag) were used. 4 days after co-incubation, CD4+ T cells were examined for 
CFSE dilution by flow cytometry. CFSE dilution of CD4+ T cells is shown as representative histograms 
from individual wells. The experiment was performed once with duplicate wells for each condition. 
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Appendix 10 

 

a) 

 
    
b)  No. of washes for MHCII-/- DC+OVA  
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d) 

 
 Appendix 10. CD4+ T cell proliferation is not due to the carryover of OVA protein in the injection 

medium. (a) C57BL/6J mice were injected i.v. with CFSE-labelled OT-II CD45.1+CD4+ T cells. OVA 
protein-loaded MHCII-/- DCs were washed once or thrice with IMDM before injection into the 
forelimbs 24 h after CD4+ T cell transfer. 3 days later, CD45.1+CD4+ T cells were examined for CFSE 
dilution by flow cytometry. (b) CFSE dilution in CD45.1+CD4+ T cells is shown as representative 
histograms from individual mice. (c) The percentages of CD45.1+CD4+ T cells that had divided at least 
once are shown. (d) Absolute numbers of divided CD45.1+CD4+ T cells in the draining lymph nodes 
are shown. The experiment was performed once with 3 mice per group.  
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Appendix 11 

 

a)  b) Before separation 
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Appendix 11. CD45.2+ cells are enriched using 
magnetic depletion. (a) Brachial and axillary lymph 
nodes from four C57BL/6J (CD45.2+) and one B6.SJ 
ptprca (CD45.1+) mice were pooled together, digested 
and made into cell suspensions. Cells were labelled 
with biotinylated anti-CD45.1 and were subsequently 
depleted of CD45.1+ cells (cells of interest) with 
magnetic beads. After magnetic separation, the 
depleted cells were then analysed for the expression of 
CD45.2 using flow cytometry analysis. (b) Expression 
of CD45.2 in lymphocytes is shown as histograms. 
CD45.2+ or CD45.2- cells are shown as percentages of 
live cells. The experiment was performed once. 
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Appendix 12 
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Appendix 12- continued 
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 Appendix 12. Depletion of other cell types using magnetic beads enriches for DCs. C57BL/6J 

mice were injected s.c. into their forelimbs with LPS-activated CD45.1+ wt DCs previously loaded 
with OVA protein (DC+OVA) or wt DCs not loaded with OVA protein (DC only). 24 h later, 
brachial and axillary lymph nodes were harvested, digested and made into cell suspensions. Cell 
suspensions were enriched for CD11c+ cells through depletion using a cocktail of antibodies and 
magnetic beads described in Chapter 2. Aliquots of these cell suspensions before and after depletion 
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were then analysed for the expressions of CD11c and F4/80, MHC class II, CD4 and CD8. (a) The 
schematic diagram of negative selection is shown. The percentages of live cells expressing (b) 
CD11c and F4/80, (c) MHC class II, (d) CD4 and CD8 are shown.  The labels #1, #3 and #4 
represent the top left, bottom right and bottom left quadrants of the dot plots. The corresponding 
histograms are labelled #1, #3 and #4, respectively. The experiment was performed once. 
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Appendix 13 
 
 
a)  b)  GM-CSF/IL-4 treated BM cells  
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 Appendix 13. BM cells cultured with GM-CSF/IL-4 give rise to CD11c+CD205+CD8- cells. BM 

cells were prepared as described in Chapter 2. LPS was added to the BM cells on day 6 of culture. 24 
h after adding LPS, GM-CSF/IL-4 treated cells were harvested, labelled with anti-CD11c, anti-
CD205 and anti-CD8 antibodies and analysed by flow cytometry. (a) The expression of CD11c in 
GM-CSF/IL-4 treated BM cells is shown in the contour plot. The percentages of CD11c+ and CD11c- 
cells are shown. (b) The expressions of CD205 and CD8 in CD11c+ and CD11c- GM-CSF/IL-4 
treated BM cells are shown in the contour plots. The percentages of CD11c+CD205+CD8- cells, 
CD11c-CD205+CD8- cells and CD11c-CD205+CD8+ cells are shown. The experiment was performed 
once. 
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Appendix 14 
 

 

Appendix 14. Subcutaneous injection into the 
forelimbs of mice. 

 


