
The Mechanics of Order

The
Mechanics

Of Order

An inquiry into the utopian
possibilities of the free and open

source ecology

Victoria University of Wellington

Masters Thesis, May 2010

TORRANCE HODGSON

Contents

Introduction

I. The Exploration
In which we meet the main protagonists, glimpse upon
the realm, and embark upon our story

II. The Abstract Machine
On the problem of order, and its production in and
through things

III. The Passport
Wherein virtual space becomes segmented and we
discover the embrace of the user-space machine

IV. The Exodus
In which talk of escape renders the powerless as powerful,
and the gatekeeper is transformed to maintainer

V. The Module
In which our adversary Complexity finds himself tamed
by a happenstance of objects, borders and documents

Conclusion

1

11

37

57

89

117

147

i

Abstract

This is a study that concerns itself with two questions: how
is order produced? and, is this order desirable? Contrary to many
utopian methodologies that seek to elaborate ‘what is not’ but
which ‘ought to be,’ this is a study that seeks to contribute to a
utopian mechanics by way of studying extant subterranean prac-
tices or ‘minor traditions,’ by studying elements of ‘what is’ that
may also form something of what ‘ought to be.’

This study takes as its principal task to understand the pro-
duction of order within a small free and open source project
known as Compiz. It borrows from Michel Foucault, Gilles De-
leuze and Félix Guattari to formulate the related concepts of the
machine and the abstract machine in order to account for the ongo-
ing production of order. These two concepts, following the lead
of Bruno Latour, adhere to a ‘flat social’ ontology and bring forth
the world of objects and space as being indispensible, alongside
the members of Compiz, in accounting for the project’s ordering.

ii

The study poses three primary machines of order: the Pass-
port, the Exodus and the Module. The Passport regulates access
within the virtual spaces of Compiz and produces a role known
as the ‘gatekeeper,’ one who may exercise a power both vicarious
and precarious. The machine of the Exodus makes the threat of
desertion a real and ongoing possibility and in this establishes an
‘imaginary counter-power’ within the group, undermining the
power of the gatekeeper and recasting him as a steward of the
code, as ‘maintainer.’ The third machine, known as the Module,
is designed to minimise the complexity of the project by way of
the spatialisation and organisation of the code, but subsequently
effects a concomitant spatialisation and organisation of develop-
ers and projects, coming in the end to shape the large scale order
amongst free and open source projects.

The study concludes by suggesting a ‘present tense’ and
‘open ended’ conception of utopia, in which both the machines
of the Exodus and the Module — but not the Passport — would
find themselves well placed.

iii

Acknowledgements

I wish to first thank Mum for providing me with the topic of
this thesis back in 2008, your support throughout and, most re-
cently, for your thorough and very kind proofing of its final form.
I also wish to thank Dad for our discussions that helped me clarify
some of my earliest ideas.

To John, whose constant company helped me survive both
my honours year as well as the fifteen months it has taken to
complete this thesis, I wish to thank you. You provided both emo-
tional support and, in the course of our many caffeine-induced
conversations, helped form some of the most important theoreti-
cal aspects to this analysis.

To my friends, I wish to both thank you for your support and
apologise for my absences and neglect as I struggled to see this
project through to completion.

And last but certainly not least, I want to express my thanks
to my supervisors, Chamsy El-Ojeili and Patricia Nickel, for your
help, feedback and very generous enthusiasm as I worked my

iv

way through each chapter. I most thoroughly enjoyed our regular
meetings in which we discussed nigh on everything under the Sun
and still managed to fit in serious discussion around my thesis.

1

This is a study that concerns itself with two very simple ques-
tions: how is order produced? and, is this order desirable? It is a
study that is, on the one hand, a sociology, a study of the produc-
tion of social order amongst a loose network of programmers.
It is, on the other, rooted within a utopian tradition, within an
orientation that seeks social forms both more tolerable and more
desirable than that with which we are confronted everyday.

These two traditions are often considered at odds, one giv-
en to the domain of dispassionate empiricism whilst the other
relegated to the status of fantasy. Ruth Levitas, for example, has
written of this perceived conflict between sociology and utopia:

Sociology, surely, is a discipline of social science, and
even those who doubt its scientific credentials, or ques-
tion the meaning of scientificity itself would argue that
it offers thick description and explanation of reality, of
what is. Utopia, on the other hand, is essentially about
what is not, and what ought to be.

(Levitas, 2005; emphasis in original)

Introduction

THE MECHANICS OF ORDER

2

There is a different utopian tradition, however, that avoids
these problems, one that is located at the interstices of two states:
the study of what is, and the study of what ought to be. Such a
project emerges in part from an orientation that asserts that no
system is totalising, none achieves hegemony without the ongo-
ing presence of an excess, a set of often fleeting practices, ‘minor
traditions,’ that exist in spite of hegemonic practices. It is precisely
in these minor traditions that this alternative utopian tradition
finds its ‘ought to be’ that is also and already ‘what is.’ Within the
cracks of the social lie glimpses of possible worlds, subterranean
practices that, though only partial and though always and already
mixed up with hegemonic forms, offer an empirical basis for an
investigation of utopia. Stevphen Shukaitis writes,

The task then becomes looking at the different exist-
ing forms of cooperative enterprise and social struc-
tures and asking how they might fit together into a
general social vision or system […] [These include:]
local community gardens, multitudes of cooperative
and work collectives, the Mondragon, time stores and
labor exchanges, […] the Kibbutzim, neighbourhood
assembleas from Argentina, […] gift economies and ex-
change clubs, free stores, squats […]

(Shukaitis, 2010: 307)

To this list we can add the topic of this study: the social ecology
of free and open source software.

The origins of free and open source software can be traced to
a rejection of the logic of Capital. In the early history of comput-
ers up until as late as the 1970s, the various corporations involved
in the manufacture of computers relegated their software com-
ponents to a secondary status. The software was indeed neces-

Introduction

3

sary for their running but it was the hardware, they believed, that
held the real commercial value. For this early period, the software
enjoyed a status quite alien to the status of software today: it was
often given away for free with computers, its source code very of-
ten accompanied its distribution, and the buyers of computers —
who were mostly corporations themselves — often participated
in the writing and maintenance of the code. During the 1970s,
this view on software changed and it came to be perceived as valu-
able apart from the computer hardware itself. Copyrights came to
be enforced, license agreements which restricted the manner in
which the software could be used became a standard fixture, the
source code of programs became a closely guarded secret, and
buyers of this software no longer had the ability to alter its code.
It was this progressive commodification of software throughout
late 1970s that finally led MIT researcher Richard Stallman to ini-
tiate the GNU is Not Unix (GNU) project in 1983. Its aim was to
construct an entirely free operating system modelled on the then-
popular Unix system, rewriting its components bit by bit. While
the GNU project was not wholly successful in its aims, it none-
theless laid the framework for the later development of the Linux
operating system and a host of other projects, eventually leading
to the formation of the free and open source ecology (Chopra &
Dexter 2008: 12).

The term ‘free and open source software’ (FOSS) refers to a
specific type of property relations concerning software. FOSS is
required to be free in four distinct ways: one in possession of such
software must be free to use it without restriction, free to study
it, free to alter and improve it, and free to distribute it. FOSS soft-
ware can still be bought and sold, but generally it is also free to
acquire. The most important aspect to allowing for the four free-

THE MECHANICS OF ORDER

4

doms is the presence of the software’s ‘source code,’ which is the
human-readable instructions of the program, and without which
studying and altering the program would become for all practical
purposes impossible. Software, therefore, is only considered free
if it both allows for these four freedoms and if it also makes its
source code publicly accessible or ‘open sourced.’

Free and open source projects are characterised by some
quite novel and utopian relations, which are the outcome of sev-
eral baseline features. These baseline features include its property
relations wherein the code and the means of production are fully
socialised, the relative ease of finding virtual space in which to
‘set up shop,’ the ease with which most artefacts are duplicated,
and finally the relative absence of coercion. Such features lend
themselves to social relations which are radically decentralised,
where participation is often open to anyone, and where work is
voluntary, unalienated, and characterised by an amended com-
munist ethos of ‘from each according to their desire, to each ac-
cording to their needs.’1 It is according to these sorts of liberatory
and anarchistic relations that the immensely complex engineer-
ing task of producing the Linux operating system continues to
proceed to this day, involving the efforts of many tens of thou-
sands of programmers, hundreds of projects, and producing an
artefact whose production by capitalist means would have cost an
estimated US$10.8 billion (Hale-Evans et. al., 2008).

1.  I must immediately note an important disclaimer. More and more FOSS
projects are attracting the interest of Capital, wherein companies are subse-
quently employing their own staff to contribute to these projects so as to tailor
the programs according to their needs. For these programmers, their participa-
tion is no longer voluntary and their coding efforts are directed towards the
interests of their respective companies, which include the likes of IBM, Red Hat,
Sun, Oracle, Novell and Intel (Corbet et. al., 2009).

Introduction

5

Of these thousands of projects, this is a study of but a single,
small project. Its name is ‘Compiz’ and it was initiated by pro-
grammer David Reveman who opened up the project for com-
munity participation in early 2006. The program was a type of
‘compositing window manager’ which brought three dimensional
capabilities to desktop windows, allowing for things like window
transparency, impressions of depth and a variety of useful desk-
top effects. The project quickly gained considerable attention and
attracted a number of developers who wished to volunteer their
time. The project serves as a fantastic lens into the everyday prac-
tices of free and open source developers and the means through
which their projects come to be ordered. But, moreover, Compiz
is a rather dramatic example, as it underwent a split or ‘fork’ — a
relatively rare occurrence — over ongoing debates about the di-
rection of the project and its leader or ‘maintainer.’

It is this small project that forms the ‘what is’ of this utopian
study, a ‘what is’ that may also contain something of what ‘ought
to be.’ The greater part of this study, therefore, will be in coming
to understand how the ‘what is’ of Compiz is practically made
and remade every day, to understand the processes and relations
that perform its order. As we shall come to see, the performance
of this order is at once social and technical, produced as much
in the relations between people as in the relations between the
objects of its virtual space.

§I went into this research with no clear methodology and
what I ended up undertaking was a strange and distanced kind

of participant observation. Strange and distanced because I was
neither a participant and nor was my observation contempora-

THE MECHANICS OF ORDER

6

neous with the events as they unfolded. As to the ‘participant’
part, I sought to familiarise myself with the tools and objects of
the project, knowing full well that these objects would be crucial
to any account of order. Immediately prior to and during this
study I undertook learning three different programming lan-
guages, namely PHP, Javascript, and the predominant language
of Compiz, known simply as C. I must admit to gaining an im-
mense amount of satisfaction and enjoyment from the learning
of these languages and in using them to write a number of small
programs. I came to appreciate and understand some rather tech-
nical qualities to the writing of code and the construction of a
program, notions such as modularity that I might have missed
had I not had this experience. But I also came to appreciate so
many of those ‘subjective’ qualities that made for much of the
discussion on the mailing list, desirable qualities such as clean,
beautiful or obvious code, or, as I discovered in many of my earli-
est programming attempts, ‘spaghetti code’ that ended up being
utterly unmaintainable. I also sought to learn a few other key ob-
jects, notably the CVS revision system that contained the Compiz
code and the different security models in place that would later
be so crucial to the construction of virtual space. These endeav-
ours culminated in a four week collaborative coding project to
build a rather elaborate website management system and mi-
grate a substantial dataset, wherein I discovered (and struggled
with) the great difficulty of maintaining cohesion amongst fel-
low coders with whom face to face contact was impossible. The
delegation of maintaining order to a number of virtual artefacts
and documents during this project was fundamental to our group
cohesion. So, it is in this strange sense that I am claiming to have
engaged in the ‘participant’ part of the ‘participant observation’

Introduction

7

method, to have got a feel for much of the work, the everyday
practices and the various artefacts even though I never partici-
pated in Compiz itself.

To the second part of that method, I think I can make a more
robust claim to have observed the project, even as the events of
this study had concluded some three years prior. With the ex-
ception of the fleeting utterances of the ‘IRC’ chat and private
emails, the sum of communications between the collaborators
of the Compiz project remain extant to this day. The full mail-
ing list archives were available, the full history of the code itera-
tions and commits were still present in the CVS repository, and
the iterations of the related websites and discussion forums were
available as ‘snapshots’ via the Internet Archive. My observations
of the project were delayed, and occurred with some degree of
foreknowledge of events, but proceeded roughly in sequence as
they occurred.

The principal source of data for this project was, without a
doubt, the Compiz mailing list as this was both the richest source
of information and the heart of communication for the project.
My methodology for observation, therefore, consisted principal-
ly of reading every email on this list for the period beginning in
April 2006 until mid February 2007, totalling at just under 1500
individual correspondences. As emails pointed elsewhere, where
they made reference to a code commit or to a website, to one
of the forums or to an engineering standard, I attempted also to
sight these other artefacts. My method was thoroughly ad-hoc. I
generated a type of index of the emails, referencing major events
and making note of exchanges that I thought to be interesting
coupled with brief notes of my own. Additionally, I maintained a

THE MECHANICS OF ORDER

8

diary of my thoughts as I went through the emails and as I read a
number of loosely related published materials.

It was via these two methods — the detached participant and
the late observer — that I came to create an order in my own
mind of the ordering processes at work within Compiz and could
begin writing and researching the three machines upon which I
came to settle.

§This study can be divided into three main parts. To the first
chapter is given the task of building up a picture of the Com-

piz project, in which we meet some of the different collaborators,
come to observe many of its everyday practices and, crucially, are
introduced to some of the objects of which it is composed. Chap-
ter One is intended to give both a feel for the project and its many
complexities, as well as provide something of a timeline leading
up to the event of the fork.

Chapter Two sets out to lay the theoretical foundations for
this study. Its task is primarily to develop the concepts of the ‘ma-
chine’ and the ‘abstract machine’ that are the principal means
though which this study attempts to delineate the different gen-
erators of order within Compiz. This order, the ‘what is’ of Com-
piz, is not considered here as simply given, or else as something
that is achieved once and for all. Rather, the emergence of so-
cial order requires an explanation, and where order endures we
need to account for the mechanisms that give rise to its duration.
Briefly, a machine is a set of thoroughly heterogeneous elements
— the body, language, objects, spaces — that produce certain
effects and orderings by way of these elements’ connections to
one another. By this model, the source of order lies neither in a

Introduction

9

transcendent realm of ‘structure’ nor in an element’s functional
role within an organic whole, but instead arises immanent to the
movements of material substance. It is the development of these
two concepts — the machine and its abstract form — and their
particular application within the virtual realm that forms the task
of Chapter Two.

The three subsequent chapters each detail one of these ma-
chines. Chapter Three explores the abstract machine of the Pass-
port and its instantiation within Compiz in the user-space ma-
chine. This machine works to regulate access within the virtual
spaces of Compiz and produces a role known as the gatekeeper,
one who may exercise a power both ‘vicarious and precarious.’
Chapter Four unveils the counterweight to the Passport known
here as the Exodus. The Exodus is an abstract machine that makes
the threat of desertion a real and ongoing possibility, which lays
the groundwork for spaces elsewhere that are both plentiful and
known, and in this establishes an ‘imaginary counter-power’ with-
in the group. The abstract machine of the Exodus is instantiated
within Compiz as the machine of the fork, and for the majority
of this study it served to undermine the power of the gatekeeper
and recast him as a steward of the code, as ‘maintainer.’ Finally,
Chapter Five introduces the abstract machine of the Module, a
machine whose primary aim concerns the spatialisation and or-
ganisation of the code, but which produces a concomitant spa-
tialisation and organisation of developers and projects. It is this
machine which produces the large scale order between free and
open source projects, an order which can be characterised as a
kind of anarchist federalism.

THE MECHANICS OF ORDER

10

§This study is not meant to be read as a simple advocation of
the organisation found within Compiz. Indeed, at least one of

the machines present within Compiz — the Passport — appears
wholly undesirable as a utopian model. Rather, Compiz, and free
and open source software generally, offer us examples of types of
human organisation, each differing in their desirability. Unearth-
ing such microcosms of utopia is, therefore, only the first part
of this utopian methodology. For in coming to understand these
models, in coming to perceive what is desirable about them, we
must also seek to understand those elements that are undesirable,
those which are potentially dangerous. Indeed, H.G. Wells wrote
that ‘the creation of utopias — and their exhaustive criticism — is
the proper and distinctive method of sociology’ (Wells, cited in
Levitas, 2005; emphasis added). This critical aspect is something
to which we shall return in the Conclusion, but for now let us
begin.

11

We start in the midst of things, on a mailing list for a project
called ‘Compiz.’ It is 27 March 2006, and the first email appears
baffling:

Hi!

Here are 2 patches for compiz:

“compiz_show_desktop.diff ” adapts metacity’s show-
desktop-behaviour, i.e. when compiz is in show-desk-
top-mode and a new window is opened or a window is
maximized, only this window will be shown.

“compiz_switch_all_windows.diff ” will show every
window in the switcher, not only non-minimized ones.

Beware, I’m not really a C-coder, so things might not
have been done the way they have to be…

Thanks,

Alex
 (Jasse, Alex: 2006-03-27 12:02)

I. The Exploration
In which we meet the main protagonists,

glimpse upon the realm, and embark upon our story

THE MECHANICS OF ORDER

12

To which comes the reply, from a David Reveman:

I’ve updated compiz so that show desktop mode works
better. It’s more like metacity’s behavior but not exact-
ly as I’m not convinced metacity’s way of doing it is the
best. Let me know what you think.

[…]

-David

(Reveman, David: 2006-03-31 05:28)

Having started on the mailing list, we are immediately pushed
elsewhere. Other objects appear: patches, Metacity, something
called C, and Compiz itself. In these two emails we have been
privy to an immensely complex exchange, and yet it exhibits a

Figure 1. Compiz-as-program displaying cube rotation between desktops, trans-
parency, and shadowing of windows.

The Exploration

13

certain nonchalance that betrays its complexity. Our first task is to
pull this momentary exchange apart in an attempt to understand
what has just occurred before us.

Let us start by taking stock of the objects we have just en-
countered, the first being this thing called Compiz. Compiz is
two things. It is in the first instance a ‘binary file’: a dense string
of ones and zeros that are largely unintelligible to humans. When
properly enacted within a computer, however, this string of ones
and zeros becomes an object that exhibits a regular behaviour,
one that allows for a set of interactions, one that occasionally be-
haves in unexpected ways, and one that sometimes breaks alto-
gether. This Compiz, that is, becomes a computer program. Its
function is to bring ‘3D’ capabilities to the computer desktop.
It allows for windows to wobble as they are dragged across the
screen, renders some as translucent so as to reveal the windows
behind, enables shadows to be cast by different elements, and al-
lows for the whole screen to rotate between desktops as if a cube
(figure 1). This is Compiz-as-program, a type of compositing win-
dow manager, one of the first for the Linux operating system. For
the moment, let us consider Compiz-as-program as a ‘black box,’
one whose internal workings are a mystery of ones and zeros but
which when properly enacted behaves as an intelligible object: a
computer program.

There is also a second Compiz. This Compiz looks altogether
different: it is a series of files and folders, each file containing text
in a strange language, one that appears to be a mixture of English,
mathematics and Boolean statements. This language is known as
C (figure 2). Whereas Compiz-as-program is a ‘black box’ con-
taining a mysterious interior, this Compiz, Compiz-as-code, is

THE MECHANICS OF ORDER

14

simply a surface, its contents being immediately apparent. This is
the ‘source code’ for Compiz-as-program, it is its blueprint, and
it is the object upon which the entirety of the Compiz project’s
construction effort is made. This construction effort principally
involves the reading and writing of this code. While Compiz-as-
program is probed, studied for both its predictable and some-
times unpredictable behaviour, Compiz-as-code is instead subject
to interpretation and editing. Moreover, these two Compizs are
related. As a type of blueprint, Compiz-as-code can be subject to
a process known as compilation wherein its designs and prescrip-
tions are deployed to produce the object Compiz-as-program. In
this process the source code, the surface that is Compiz-as-code,
is passed through a compiler — a separate program — which out-
puts the unintelligible ones and zeros of Compiz-as-program, the
binary blob, ready to be enacted by a computer (figure 3).

Let’s continue to take stock of the objects we have encoun-
tered. There is the language in which Compiz-as-code is written,

if (d->prop_xid)
{
 /* translate from frame to client window space */
 if (top_region)
 XOffsetRegion (top_region, -fgeom.left_width,
 -fgeom.top_height);
 if (bottom_region)
 XOffsetRegion (bottom_region, -fgeom.left_width, 0);
 if (left_region)
 XOffsetRegion (left_region, -fgeom.left_width, 0);

 decor_update_meta_window_property (d, theme, flags,
 top_region,
 bottom_region,
 left_region,
 right_region);
 d->prop_xid = 0;
}

Figure 2. An excerpt of code from Compiz-as-code

The Exploration

15

‘C.’ C is a formally specified and standardised language, com-
plete with grammatical rules, an allowed set of words, and so on.
Dating from 1972, the creation of the language emerged out of
previous attempts at developing programming languages, with
each tuning a number of different language-specific parameters
such as the expressivity of the language, the abstraction from
the hardware, the language portability and the choice of control
structures (Richie, 1993). Its technical implementation and rules
are beyond the scope of the discussion here, but it is important
to grasp one important aspect of computer languages like C.
Programming languages, far from being incomprehensible and
opaque machine code, are deliberately designed to ‘lend’ them-
selves to being understood, a property known as their expressiv-
ity. That is, the coding language aims to communicate its workings
to those that are privy to its source code. A mixture of simple
mathematical symbols and language-like statements are deployed
to convey the workings of the code. This is aided still further

Figure 3. The relationship between Compiz-as-code and Compiz-as-program, and
the different interactions that each allows with programmers.

#include stdio.h
#include stdlib.h

// This is the start

int main () {
 doSomething();
 return 1;
}

Compilation

write

Compiz-as-code

rea
d

Compiz-as-program

010110101010001010010
101010101110101011001
011010010101010101010
010010101010101101101
011101001010001010101
010100110101101010101
010101010101001000101
011000101101010100010
100101010101011101010
110010110100101010101
010100100101010101011
011010111010010100010
101010101001101011010

probeobserve

Programmers
Programmers

THE MECHANICS OF ORDER

16

by the inclusion of plain English ‘comments’ which recur peri-
odically throughout the codebase. Comments have no purpose
within the program itself but rather function much like Post-it
notes within the code and are intended to directly communicate
with other programmers by explaining what tricky bits of code
‘are doing,’ the reasoning behind coding one way as opposed to
another, remarking on the quality of bits of the code (especially
where ‘hacks’ are used and are in need of future revision), and so
on. The source code, therefore, is not just a technical object, but
is also both highly expressive and linguistic.

Attached to the first email are two files that end with the suf-
fix ‘.diff,’ known as patches. A patch is a small file that, as its name
suggests, is used to amend a much larger body of code. A patch
is a file that describes only the differences between two pieces
of code, such that a patch may be applied to one to transform it
into the other (figure 4). They are especially useful for describing
the changes made to a file compared to an earlier version as in

[…]
diff --git a/src/window.c b/src/window.c
index 81485f3..7b87a29 100644
--- a/src/window.c
+++ b/src/window.c
@@ -1316,8 +1316,9 @@ addWindow (CompScreen *screen,

w->frame = None;

- 	 w->placed = FALSE;
- 	 w->minimized = FALSE;
+ 	 w->placed = FALSE;
+ 	 w->minimized = FALSE;
+ 	 w->inShowDesktopMode = FALSE;

	 w->pendingUnmaps = 0;
[…]

Figure 4. An excerpt from a patch, showing the area to be added, deleted, or
amended to the original file.

The Exploration

17

this instance, for example, where Alex has sent two patches which
describe the changes she has made as opposed to sending the en-
tire codebase. This has several advantages. It means that emails
are lightweight, containing only the code changes. It also means
that multiple patches from different people can be applied to a
single codebase accumulatively, fostering collaborative develop-
ment. But it is also a means of communication which, like the C
language, lends itself to being read and makes it particularly easy
to identify changes that have been made. The patch, therefore,
is another kind of dual artefact, one that can be enacted as both
technical and linguistic.

We have taken stock of the two different Compizs, the C lan-
guage, and the patch. Let us return to the email exchange and
make an attempt at constructing a story of what has occurred.
Our original author, Alex, has been using Compiz-as-program,
exploring its behaviour, probing its mysterious interiority. Alex
appears also to have used Metacity — a widely-used non-com-
positing window manager — and to have similarly explored its
behaviour, indeed to such an extent so as to have noted explicit
conventions of behaviour. In this exploration she has discovered
a discrepancy in behaviour between the two programs, and has
sought to bring the behaviour of Compiz-as-program into line
with the more popular Metacity. Additionally, she has noted some
functionality that is missing in Compiz-as-program which she
would like to have included. She has then moved from Compiz-
as-program to her own copy of Compiz-as-code and embarked
upon a substantial interpretative effort, seeking to make sense of
the code and understand its workings, even in spite of ‘not really
[being] a C-coder.’ The ability to gain access to the code in this
way is unique to free software. Having edited the code, she has

THE MECHANICS OF ORDER

18

used a tool known as ‘Diff ’ to create the patches and has attached
these to her email, an email which also includes the rationale for
her changes. Finally, she has located the Compiz project mailing
list and sent both the email and patches to the list in the hopes of
inclusion into the official Compiz-as-code.

And what has been the response? David Reveman has read
through the patches and has sought to understand the changes
made therein. He too seems to be aware of the conventions of be-
haviour established in Metacity though he partially rejects them,
claiming he is ‘not convinced metacity’s way of doing things is
the best.’ Similarly, he amends the second patch that Alex has sub-
mitted so that it ‘just show[s] an icon for windows that are not
mapped.’ Both are subsequently applied as we can see in the revi-
sion logs for Compiz-as-code: ‘2006-03-31: Fix up show desktop
mode and minimize’ (Reveman, 2006a).

§We must pause and consider the nature of my description
thus far. For what is a discussion of a brief email exchange, an

apparently ‘social’ interaction, I have spent a great deal of time
documenting instead objects and ‘things,’ the material artefacts
of this exchange. Yet, it is things and things alone that make this
exchange possible at all, an exchange where every moment is
thoroughly mediated by a world of objects, including the emails
themselves. Mediation, from the Latin mediari, ‘to intervene, me-
diate’ (Harper, 2001), is to alter a course of events in some way.
Our objects are mediators in the full sense of the word: they do
not simply transmit forces unchanged, but transform these forces,
they intervene upon them. This concept of mediation forces the
material artefacts that previously adorned the social background

The Exploration

19

to the fore, becoming fully commensurable to our humans. If we
are to describe a course of events, we must pursue the flows of
force through both our humans and the host of non-human me-
diators, pursuing these forces as they are bent, twisted, rebuffed
or otherwise transformed by the life of objects (DeLanda, 1997;
DeLanda, 2006; Latour, 2007).

When we talk of objects, of things, we may be led to think
of them in terms of their function, as if their use is immediately
apparent and they are simply ‘used’ by our humans, that they are
mere elements in simple cause-and-effect chains. But objects are
without essences, without transcendental qualities. I have used
the term enaction in my description as a shorthand for the pro-
cess whereby objects are made to produce certain effects by asso-
ciation with other objects, effects — sometimes unpredictable —
which arise not out of the essential qualities of these objects but
in the interaction itself. This forces us towards two conclusions:
that objects may behave differently under different circumstanc-
es, and that objects are not static elements but are progressively
revealed through processes that act upon them. These points,
which I mention now in passing, shall undergo a full elaboration
in the next chapter.

§An email and a patch arrive only the next day, 1 April, from
Mike Hearn. He writes,

I’ve started to pull my way through Quinn Storms dif-
ferential, hopefully we can pull some stuff of this up-
stream.

This one seems like a good place to start.

Credit to Quinn Storm livinglatexkali@gmail.com

THE MECHANICS OF ORDER

20

ChangeLog:

*plugins/gconf.c (gconfGetValue): Fix typo that caused
color parsing to be incomplete.

(Hearn, Mike: 2006-04-01 08:28)

Once again, let us try to understand the brief contents of this
email. As before, we have the submission of a patch intended for
inclusion into the official Compiz codebase. We also have an ex-
planation in the email of the function of the patch, which in this
case is to simply correct a typographical error in the code. The
really interesting aspect to this email, however, is the source of
this patch, for it has not come from Mike Hearn himself. In this
case, Mike Hearn has not studied Compiz-as-code, nor moved
between it and Compiz-as-program as we guessed in our last ex-
change; in this case, he has instead studied a different codebase
known as QuinnStorm.

This mention of ‘Quinn Storms differential’ is the first men-
tion on the mailing list, though it appears to have been in ex-
istence for some time already. QuinnStorm is a near replica of
Compiz, a ‘branch’ of the official codebase that exists elsewhere,
maintained not by David Reveman but by a person who goes by
the alias ‘Quinn Storm.’2 The QuinnStorm branch exists by vir-
tue of the permissive property relations of Compiz, and of free
software in general, whereby code may be freely duplicated and
modified, with the restriction that this duplicated or modified
code be subject to the same license. We shall discuss further the
nature of these licences in Chapter Four, but suffice to say for

2.  ‘Quinn Storm’ — two words — shall denote the person, whereas
‘QuinnStorm’ shall denote the code. This is in keeping with the usage on the
mailing list.

The Exploration

21

now that it is this permissive property regime that has allowed for
the QuinnStorm branch to come into existence.

QuinnStorm started out as a simple duplication of the Com-
piz code, but has since had changes made to it by a number of
people including Quinn Storm herself and at the time in which
we find ourselves it has grown to incorporate a number of chang-
es not present in Compiz. But it is not wholly independent. Com-
piz is, as Mike Hearn notes, ‘upstream’ from QuinnStorm. ‘Up-
stream,’ and its converse ‘downstream,’ are indicators of space, of
a directionality of code flow. In any one project there will often be
code that has been integrated from elsewhere, a bit of code from
another project, for example, to handle drawing. Our project
would then be considered ‘downstream’ from the drawing proj-
ect. Perhaps, in the course of working with the drawing code our
project were to find a bug, a problem in the code that our project
has subsequently fixed. They could, and are usually expected, to
pass such fixes back upstream. And similarly, our project may be
included in a much larger project, as part of an entire operating
system perhaps, which would be considered downstream. It is
in this sense that Compiz is upstream from QuinnStorm. At this
particular time we find that QuinnStorm was regularly synchro-
nised with Compiz to keep the code aligned where possible whilst
adding features of their own, and in this sense we can say that
changes to Compiz are travelling downstream to Quinnstorm.

These upstream and downstream processes are not symmet-
rical, however. In his email, Mike Hearn’s patches are designed to
send code upstream and lessen this asymmetry. He has examined,
studied, and interpreted ‘Quinn Storms differential,’ which as we
may now guess is simply a particular output that details the sum

THE MECHANICS OF ORDER

22

differences between the two codebases, and upon identifying one
particular difference that he believes worthy of inclusion he has
created a patch to be applied to Compiz-as-code. It is later on that
day that we receive an email from David Reveman, noting sim-
ply, ‘good, thanks […] done’ (Reveman, David: 2006-04-01 14:26).
In the revision logs to Compiz-as-code we see that the patch has
been applied, ‘2006-04-01: Fix typo’ (Reveman, 2006b).

At this point it is not yet clear, at least from the public docu-
ments, why QuinnStorm exists as a branch to Compiz, nor pre-
cisely what the relationship is between the two.

§We have seen a couple of emails from David Reveman, and
we may now have guessed that he is someone rather quite

powerful within Compiz. In both instances, he has been the gate-
keeper to accepting code into the official codebase. It has been
only upon his instigation that code has been committed, and in
our first example he even substantially modified the submitted
code. He is made powerful, constituted as powerful, through the
control of the official codebase. On 4 April he sends an email to
the mailing list stating explicitly his relation to the code:

I’m currently maintaining the main compiz code, the
gnome decorator and the set of plugins in CVS. Bug
fixes and new features are much appreciated but I’d like
to review all patches before they go into CVS.

[…]

If you got a plugin or decorator, I’m more than happy
to put it in CVS and give you commit access as long as
you’re willing to maintain it, there’s a configure script

The Exploration

23

option to disable it, and it’s not a complete piece of
crap.

Send your patches to the list and I’ll deal with them as
soon as I can.

Thanks,

-David.
(Reveman, David: 2006-04-04 05:32)

We have met another object worthy of investigation. CVS, an ac-
ronym for Concurrent Versions System, is a program that man-
ages code. I have talked previously of revision logs when patches
have been accepted, but it is actually CVS that has been recording
these revisions. To understand how CVS is deployed, let us con-
sider coding without it. Much like writing any sort of document,
one would start with an empty document window and simply
start writing code, saving one’s work periodically and always pre-
sented only with the most recent revision. When there is only one
person working on the code this is a possible method of coding.
When there are multiple people working on the same codebase,
however, things become much more complex. How do my col-
laborators know that I have made a change to the code, and how
do they know specifically what changes I have made unless I also
send them a patch? And if the changes I make turn out to be a
regression of functionality, how do we ‘undo’ the changes I have
made? How can I experiment with an idea without putting the
code to ruin? CVS was created to address these problems by creat-
ing a log of all the changes or ‘commits’ made to the central code
repository, where each commit contains a record of the date, the
author of the new code, and a record of the change itself in the
form of a patch. Additionally, a ‘snapshot’ of the code is made,
allowing for any previous state of the code to be viewed in its

THE MECHANICS OF ORDER

24

entirety or even, if it is deemed necessary, for the entire code-
base to be reverted to a previous state. CVS is a kind of container
for the code and lends itself to being enacted both in a roughly
functional sense by managing the code, and in a communicative
sense in allowing itself to be ‘read’ for changes to the code. Both
of these make it easier for multiple collaborators to work on a
single codebase.

In his email, David Reveman not only speaks of CVS, but also
of giving particular people ‘commit access.’ In this we come to
understand something else about the way in which CVS is enact-
ed. CVS is a gatekeeper, but it is a strange one. It allows for code
within its control to be freely duplicated and taken elsewhere:
that is, it allows for code to go out, but it closely restricts, controls
or else denies code coming in. At this present point only David
has commit access to the official codebase, only he can submit
new code, and all patches must pass through him. His sugges-
tion, however, is to give interested people access to designated
but limited portions of the code to which they will have commit
access, and to whom is given the responsibility of maintaining
that code and ensuring that it is not, and does not become, ‘a
complete piece of crap.’

If David is constituted as powerful through his control of the
official codebase, then it is in the careful enaction of the object
CVS as gatekeeper that this control is practically realised.

§There is no differentiation between topic areas on the Com-
piz mailing list, whether these emails concern areas avowedly

technical, political or otherwise. Within a single hour we may see
an email submitting a patch to improve the blurring algorithm

The Exploration

25

from one person, another writes that they have discovered a bug
in a particular plugin, an email arrives that continues a heated ex-
change about the direction in which the Compiz project is going,
and a final email arrives in response to the blurring patch claim-
ing that it does not properly conform to some already accepted
standard. And so, even as Quinn Storm continues to work on her
increasingly differentiated branch, as David announces that peo-
ple may apply for CVS access and, as we shall see later, dissention
brews over the organisation and direction of Compiz, the practi-
cal task of coding continues. On 6 April, Mirco Müller, who has
previously committed to writing a patch to provide ‘tweakable
drop-shadows,’ writes,

Greetings everybody!

I started looking more thoroughly at gnome-window-
decorator.c and now my head spins and “hurts” and
believe that I’m not going to achieve anything serious
in terms of tweakable shadows anytime soon. It’s far
more difficult than I expected. […] I’m currently look-
ing like a jackass and feel just dumb for not really com-
prehending the code :/

Best regards...

MacSlow
(Müller, Mirco: 2006-04-06 05:38)

To which Mike Hearn replies within the hour,

[You are hardly a jackass.] :) The code is lacking com-
ments, and I’ve had a hard time figuring parts out too.
One thing I’d like to do at some point is go through
one of the plugins and add some detailed comments
explaining what each part does. […]

THE MECHANICS OF ORDER

26

For instance it took me a little while to figure out the
animation scheme used […] Likewise the screen grab
API isn’t too hard to understand when you figure it out
but [in my humble opinion] it’s otherwise not obvious
that “if (ss->grabIndex)” means “if the animation is
currently in progress”.

thanks –mike
(Hearn, Mike: 2006-04-06 06:28)

In this momentary failure to comprehend the code we are pre-
sented with a glimpse into the practical work of coding that is
often largely hidden, subsumed under that general category of
learned and routinised practices of technique. What resourc-
es is Mirco Müller seeking to draw from so as to proceed with
his nominated task? Let us presume that he has already probed
Compiz-as-program and found it lacking in the specific function-
ality of allowing for window shadowing to be customised. He
has then moved to Compiz-as-code and attempted to understand
the working of the code. He does not, however, seek to read and
understand the totality of code. Rather, his work is reduced to
interpreting and comprehending just one file within the code-
base, gnome-window-decorator.c, work that is made possible
by the particular organisation of the code into different sections.
He thus appears already familiar with the common technique of
separating out different functional elements of a codebase into
separate files. Additionally, he approaches the codebase already
practiced in the techniques of reading and comprehending the C
programming language. Even so, despite his efforts and his stock
of technique, the code remains before him as a problem to be
deciphered, one requiring significant interpretive energies, and it

The Exploration

27

is because of this that the process is made explicit on the mailing
list.

Mike Hearn’s reply points to a number of failings of the
code that make it difficult for it to be read for its workings. In
the first instance, the code incorporates few comments. These
plain-English remarks that reflexively comment on the workings
of the code are missing, thus forcing Mirco Müller to rely entirely
on the programming language itself. We can see the importance
of properly commented code in Mike Hearn’s suggestion to ‘add
some detailed comments explaining what each part does’ of a
particular plugin. This would not be because the chosen plugin
would be especially important but because it could be used as a
template, deploying its similarity to other Compiz plugins so as
to make them, too, more easily comprehensible. For Mirco Mül-
ler, however, the lack of comments is made still more difficult by
the idiosyncratic style of coding currently in place. While the C
programming language is in a sense a strict set of grammatical
rules, the substantive content of the code is the prerogative of the
programmer: the names of functions can be entirely arbitrary,
the methods through which certain functionality is ‘exposed’ can
be as complicated or as simple as they like. The code in gnome-
window-decorator.c is not easily read precisely because the func-
tion names chosen are not particularly descriptive, and much of
the code is indirect and allusive as Mike Hearn makes clear in his
example.

Later on that day we receive an email once again from Mirco
Müller reading,

After further investigation my head spins the other
way around :) In the meantime I was able to identify

THE MECHANICS OF ORDER

28

all drawing functions responsible for the titlebar (I
didn’t touch the title and buttons), frames and shadow
elements. As an example I replaced them with simple
opaque rects to see what part goes where.

(Müller, Mirco: 2006-04-06 10:37)

The email continues, describing a number of unexpected effects
of changes to the code. We are privy to another technique of
coding, that of simple experimentation: Mirco Müller is here al-
tering aspects of Compiz-as-code, compiling it into Compiz-as-
program, and proceeding to probe this latter object for changes,
if any. In this back and forth motion he seeks to uncover the rela-
tion between the two objects, and ultimately to develop an un-
derstanding of Compiz-as-code so as to purposely make changes
in the behaviour of Compiz-as-program.

This technique of experimentation produces a number of
unexpected behaviours in Compiz-as-program, and Mirco Mül-
ler returns once again to the email list seeking clarification, now
directing his questions at David Reveman, the original author of
gnome-window-decorator.c:

Why did you do it this way David? It appears to be very
non-obvious. Are there speed-issues demanding such
an approach or other things going on behind the scene,
which I still fail to see?

(Müller, Mirco: 2006-04-06 10:37)

So begins a series of quite technical and verbose emails between
Mirco and David, as Mirco produces more specific questions and
David replies with his reasoning for the code as it stands. Mir-
co continues to employ the technique of experimentation with
Compiz-as-code as he probes the resultant Compiz-as-program
and, for example, on 7 April he writes, ‘I can comment out that

The Exploration

29

portion [of code] and the whole drop shadow stays intact after
I did a recompile /install and full restart’ (Müller, Mirco: 2006-
04-07 19:06). In the course of this exchange, David repeatedly
describes the workings of Compiz-as-object in terms of smaller,
functional objects, each sub-object interacting purposively with
other sub-objects in their own constructed realm. One such de-
scription from 9 April reads:

g-w-d puts all the quads that represent how decorations
texture is mapped to a window in an X11 property on
the client window. This property is read by the deco-
ration plugin, XChangeProperty is use[d] for updating
this decoration property.

(Reveman, David: 2006-04-09 10:26)

The sub-objects of Compiz-as-program ‘put’ things in place, ‘rep-
resent’ aspects of their selves, ‘read’ one another, and ‘use’ one
another toward desired ends; this conceptualisation of Compiz-
as-program is prolific. Finally, on 10 April, David sends to the
mailing list ‘a small [incomplete] patch which adds some basic
support for dynamic shadows to [gnome-window-decorator]’ —
to act as a kind of template — and he invites Mirco Müller to
‘[take] this patch and [fix] the last pieces so we can move it into
CVS’ (Reveman, David: 2006-04-10 07:45). Silence ensues on the
part of Mirco, and on the 24 April an unannounced commit to
CVS is made by David that reads ‘Add configurable drop-shad-
ows,’ presumably implementing this feature (Reveman, 2006c).

In this exchange we get some sense of the work required for
collaboration in Compiz, of the great difficulty even for experi-
enced programmers to comprehend code. We have seen as well
the techniques available to aid in this endeavour: the organisa-
tion of the codebase into smaller, functional files; the provision

THE MECHANICS OF ORDER

30

of comments in the code; the design of the code that lends itself
to ‘obviousness’; the use of templates; and the back-and-forth
process of experimentation with Compiz-as-code and Compiz-
as-program. Though these techniques, with the exception of the
last, have as their ultimate aim to ease the hurdles of collabora-
tion, of people working together, they are once again not direct-
ed immediately at people but at objects; they are the moulding
and shaping of objects with the vicarious intention to alter hu-
man trajectories.

§David controls access to the official codebase, but he does
not control its designation as official. His relation to the of-

ficial codebase is not the relation of exclusive ownership that is
the mainstay of capitalist property relations, but is rather a kind
of stewardship over the code and over the project. He is known as
the ‘maintainer,’ a word which captures well the precariousness
of his position: should he fail to maintain the codebase properly,
should he become difficult to work with, then he will simply be
bypassed, the code will be duplicated and taken elsewhere, and a
new project will be formed. This process is known as ‘forking.’

Mirco appears again on the mailing list on 25 April submitting
a patch continuing with his interest in customising the window
shadowing,

Greetings everybody!

Here’s a patch (against Compiz from CVS-head about
30 min. ago) that adds a shadow_color option to the
parameters of the decoration plugin. I only needed to

The Exploration

31

add a few lines to decoration.c and gnome-window-
decorator.c.

(Müller, Mirco: 2006-04-25 11:28)

Three days later on 28 April David replies,

Patch looks OK, I’ll add it if people think this function-
ality is useful. I don’t want to add options just because
we can.

(Reveman, David: 2006-04-28 04:16)

The reluctance on David’s part to proceed with committing the
patch to the official CVS is unmistakable. Yet it is David that must
be convinced if Mirco is to have his patch accepted as part of
Compiz proper, and it is this issue that sparks a debate regarding
David’s style of maintainership. On the same day as David’s re-
ply, Quinn Storm writes to the list in defence of the inclusion of
Mirco’s patch, to which David replies some time later on 3 May,

We can expose all kinds of useless crap through op-
tions if we want. If no one uses an option except for
when trying what it does, then it’s useless. I don’t want
useless options. […] To me, the shadow color is not an
obvious thing that people want to adjust.

(Reveman, David: 2006-05-03 03:38)

Mirco appears absent in this continuing debate, but Quinn Storm
replies the same day,

I’ve gone ahead and applied this in my CVS, I was wait-
ing to see first if it was going to be applied upstream
but it appears unlikely that that will happen.

(Storm, Quinn: 2006-05-03 20:39)

We may now infer at least part of the reason for the existence
of the Quinnstorm branch. Namely, that it exists to incorporate
functionality that has been rejected or is otherwise missing from

THE MECHANICS OF ORDER

32

Compiz official. It provides a space, that is, in which to organise
differently. In another email on the same day, Quinn Storm asks,

Who gets to make the determination as to what is “use-
less crap”?

[…]

It’s beginning to look like Compiz will fork early in its
development, one toward configurability and options,
the other toward your vision. I wish this did not have to
happen, and hope it does not.

(Storm, Quinn: 2006-05-03 09:39)

The threat of a fork is serious indeed. While forks are allowed for
by the permissive property relations of free software, they remain
rare events. A fork is a collective endeavour. It is the realignment
of a number of developers’ and users’ allegiances from one proj-
ect to another, the shift of officialdom. Quinn Storm’s threat of
a fork is not an empty threat, for it is the Quinnstorm branch
of code — which includes additional patches and functionality
— that is most commonly used downstream by the major Linux
distributions.

A similar episode follows some time later on 19 June regard-
ing a number of patches to implement Xinerama support, a form
of multi-screen support. David rejects the Xinerama patches, and
promises to implement ‘proper multi-screen support’ himself
(Reveman, David: 2006-06-19 06:25). Less than 20 minutes later,
Colin Guthree replies, ‘Until David has completed the “proper”
multiscreen stuff[, t]he Quinn CVS version of compiz has Xin-
erama support’ (Guthree, Colin: 2006-06-19 06:49).

On 24 June, and amongst escalating tension amongst the de-
velopers, Guillaume Seguin writes to the list,

The Exploration

33

lots of work has been done outside of the official team
by the new Compiz community […]. These unofficial
developers are mainly using the compiz.net [bulletin]
boards, #xgl or #compiz-dev IRC [chat] channels on
Freenode […]. Most patches written by these develop-
ers get committed to Quinn Storm’s cvs […]. Neverthe-
less, it seems that unfortunately little of the very good
work that is done actually gets into the official project,
which can make it difficult to continue to be enthusias-
tic about developing for Compiz.

(Seguin, Guillaume: 2006-06-24 16:24)

Guillaume proceeds to ask of ‘the standards that any plugin or
patch must meet before it can be included in the main codebase,’
and asks whether the reasoning behind patch rejections could be
provided to the mailing list when these reasons are for issues oth-
er than simple quality. Finally, he concludes by asking ‘if it’d be
possible to discuss with you a bit more of what we’re doing, what
you are doing, and what we should do to help.’ Though never
stated, we can assume the ‘you’ to whom Guillaume’s email is
directed is David Reveman. He does not reply.

It worth noting in Guillaume’s email the mention of other
places where work on Compiz is happening, places beyond the of-
ficial domain of the mailing list that include both a bulletin board
and chat rooms, and the Quinnstorm branch itself. The vastness
of space coupled with the ease with which certain objects may be
duplicated in the virtual realm is fundamental to allowing con-
testing modes of organisation to form. This is to say, the contes-
tation over the organisation of Compiz does not have to happen
directly, it is not restricted to contestation within the single nexus
of the Compiz project, but may occur instead by a simple aban-

THE MECHANICS OF ORDER

34

donment of the centre and the concomitant production of space
elsewhere in which to work.

This space elsewhere is maintained for the next few months.
The Quinnstorm branch becomes progressively differentiated
from the Compiz branch, as the developers involved in these oth-
er spaces write and submit patches that are not applied to Compiz
official. On 15 September, Shawn Starr writes to the mailing list
seeking to ‘get a better understanding as to why Quinn’s patches
have not been accepted into the Compiz git tree’ (Starr, Shawn:
2006-09-15 12:03). Though he concludes that ‘it would be best
to avoid a fork if possible,’ the Quinnstorm branch is no longer
simply a slightly modified version of Compiz, and in many re-
spects the two branches have become separate projects already:
there is limited developer overlap between the two branches, the
codebases are significantly different, they are working towards
different ends, and they occupy different spaces. Quinn Storm re-
plies the same day regarding the nature of development within
Compiz,

In general, it at least ‘feels’ as though development is
rather closed, with any possibility of getting code into
the main source tree being at best a procedural head-
ache.

[…]

In the end, I think I’ll let the statistics speak for them-
selves. Most people using compiz are using the com-
munity compiz tree [ie. Quinnstorm], or packages
made from it.

I don’t want there to be any animosity, but perhaps our
ideas of the direction for this project are simply too dif-

The Exploration

35

ferent. If that is the case then it would simply be in ev-
eryone’s best interest to have an amicable fork.

(Storm, Quinn: 2006-09-15 15:07)

Finally, on 23 September we see an email from Colin Guthree
asking, ‘I don’t know how much of a political hot potato this sug-
gestion will be […] would you consider adopting the csm plu-
gin from beryl into compiz?’ (Guthree, Colin: 2006-09-23 01:12).
This mention of a project called Beryl is the first indication on
the mailing list of the fork made official, constituted as separate
by the choosing of a new name. In fact, it was five days earlier
on the ‘community’ bulletin board that the fork was announced
(Seguin, 2006).

§Somewhat tongue in cheek, in their study of organising in
open source projects Lanzara and Morner note that these

programmers ‘basically do two things: write programs and have
e-mail conversations about programming’ (2005: 69). In the pre-
ceding passages I have attempted to provide a series of glimpes
into the mundane and everyday practices of collaboration within
Compiz which, indeed, consists principally of these two types of
practices in addition to a significant amount of interpretive work.
But such a description of this project as simply writing programs
and having email conversations, as both Lanzara and Morner ar-
gue, entirely misses the mediation and work performed by the
vast array of objects, artefacts and spaces that combine to pro-
duce the character of organisation within Compiz. It misses the
role of the code itself in communicating amongst developers, in
the role of the CVS repository in gatekeeping the code or the
effect of the vast spaces of the virtual realm in undermining the

THE MECHANICS OF ORDER

36

official status of Compiz. I have here, therefore, introduced some
of these objects and, additionally, provided something of a gen-
eral history of the project over the course of several months until
its eventual fork. Having jumped in at the deep end and given
a ‘feel’ for the life of the project, it is to the remaining chapters
to describe, firstly, the means through which we shall attempt
to understand the ordering of Compiz, and then to undertake a
description of the three primary machines operating within the
project.

37

The natural sciences conceive of the cosmos as undergoing
an irreversible decline, a terminal fall from a state once highly
ordered to one increasingly disordered. Those pockets of order
that buck this trend, with the greatest, perhaps, being the very
emergence of life itself, arise only at the expense of greater dis-
order elsewhere and only through an incredible happenstance of
processes. Order is that which must be explained and its emer-
gence, however banal and commonplace it may seem, must be
considered as something truly exceptional.

Social order does not escape these strictures. Its emergence
and ongoing maintenance must be considered both common-
place and exceptional at one and the same time. The overlapping
regimes of order that we have just observed within the everyday
practices of the Compiz project beg explanation. This is not, how-
ever, because order is something that is alien to human group-
ings, that the otherwise natural social condition is a vicious war
of all against all. Nor is it because this particular human associa-
tion currently under study — Compiz — lacks the unitary prin-

II. The Abstract Machine
On the problem of order, and its

production in and through things

THE MECHANICS OF ORDER

38

ciples of the State or authority, that it lacks recourse to coercion
and a political centre. Rather, order requires explanation simply
because difference is base, because disorder is the cosmological
‘state of nature,’ and because when social order does indeed arise,
as it tends to do time and time again, this is a feat whose achieve-
ment is truly incredible. The problem of disorder, that is, must be
replaced with the problem of order.

The question becomes, how do we account for the rise of
social order? This is the task of the present study, both to build
a model that can capture the production of social order and ap-
ply this to the Compiz project. That model is the ‘abstract ma-
chine’ and its concrete corollary in the ‘machine,’ a concept born
of the collaboration of Gilles Deleuze and Félix Guattari, and a
model which I intend to complement with insights from Michel
Foucault and Bruno Latour. In each of the subsequent chapters,
we shall be analysing the organisation of the Compiz project by
delineating the three most important abstract machines and their
concrete instantiation: the Passport, the Exodus, and the Module.
This chapter forms the theoretical prelude to those that follow.

§In developing the model of the abstract machine, we need
first elaborate upon three ontological assumptions. The ques-

tion of ‘what there is’ and its nature is intimately tied to any mod-
el that proposes to explain order. It is an ontology that, in the first
instance, renders order either as problematic or as simply given
and, in the second instance, delineates the resources at hand
with which to provide an explanation. I am here making three
ontological assumptions: that process and flux are ontologically
base; that identity and order are the ongoing result of process and

The Abstract Machine

39

constantly at risk of collapsing due to an excess; and, finally, that
there is but a single ontology to which all things are immanent.

The first two of these assumptions are intimately linked. De-
lueze asserted that ‘it is difference that is behind everything, but
behind difference there is nothing’ (Deleuze, cited in May 2005:
19). This concept of difference, for Deleuze, was not the differ-
ence between established and pre-existing identities, but was in-
stead something more fundamental, a ‘pure difference’ that was
a process, an unbounded unfolding of substance prior to identity.
This is an ontology that posits the world as always and already
in process, that change and flux operate at the very basis of sub-
stance and that disorder, not order, is primary to the world. It is
in this constant movement, in the ebb and flow of substance, that
there arises identity, sameness and order. These relative stabilities
emerge only as a result of ongoing processes that, with great ef-
fort, contain and direct — ‘territorialise’ — the underlying pure
difference, a pure difference that threatens always to overspill
from within (May, 2005: 128). Being is illusory or, rather, being is

becoming, and identity is always at risk of rupture (May, 2005: 60).

This ontology has been described as in keeping with the
Heraclitean tradition, and for much of the history of Western
philosophy it has been relegated to a subterranean existence
(Graeber, 2001: 50). That which dominated can be traced back
to Parmenides, a tradition that held objects as ontologically base,
where the building blocks of all things were these fixed, static,
and unchanging elements producing an equally fixed, static, and
unchanging world. Identity and order were quite unproblematic,
and change was recast as illusory. In this formulation, becoming
was mere appearance; all things were ultimately being.

THE MECHANICS OF ORDER

40

The implications of the Heracliten ontology for social theory
are twofold. Firstly, it is order, not disorder, which must be ex-
plained. Secondly, order is not something that is achieved once
and for all. Unlike the Parmenidean tradition, wherein one could
create order and expect that order to remain until affected by a
source from without, the Heraclitean tradition recasts order as
temporary, permanently at risk of decay by the underlying pro-
cesses and excess immanent to a system. Order, therefore, is bet-
ter described as ordering, as process and not state, being never fi-
nally achieved. Order, to borrow a concept from queer theory, is
not ostensive but performative (Butler, 1990).

The idea of social order as performative is not new. It is, for
example, one of the key assumptions of Garfinkel’s ethnometh-
odology, literally the ‘methods of people’ in making sense of the
world, of creating order in everyday encounters. As Anne Warf-
ield Rawls wrote,

The word ‘Ethnomethodology’ represents a very sim-
ple idea. If one assumes, as Garfinkel does, that the
meaningful, patterned, and orderly character of every-
day life is something that people must work constantly
to achieve, then one must also assume they have some
methods for doing so.

(Rawls, 2002: 5)

Here, sense and order is something that must be reconstituted
in each interaction with recourse to a set of shared methods,
an order easily ruptured as was demonstrated in his numerous
‘breaching experiments’ (Heritage, 1984: 78–84). Bruno Latour,
too, stresses that social order, as the outcome of ongoing rela-
tions, simply disappears when those relations disappear, that or-
der doesn’t have an ‘inertia’ or ‘solidity’ in and of itself. Arguing

The Abstract Machine

41

against social theories that award order ‘for free,’ those he labels
as ‘sociologies of the social’, he writes,

[in these theories] the rule is order while decay, change,
or creation are the exceptions. For the sociologists of
associations, [however,] the rule is performance and
what has to be explained, the troubling exceptions, are
any type of stability over the long term and on a larger
scale.

(Latour, 2005: 35)

Thus for Latour, order is an achievement against a backdrop of
disorder and its maintenance a process against decay.

The third ontological assumption holds that there exists but
one plane of substance, and that all things are immanent to this
singular plane. Deleuze, drawing from Spinoza, described this
plane of immanence as pure immanence, ‘[it] is in itself; it is not
in something, to something; it does not depend on an object or
belong to a subject’ (Deleuze, 2001: 26; emphasis in original). All
things are expressions, unfoldings and refoldings of a singular,
univocal substance, an unfolding and refolding immanent unto it-
self. There is no outside or beyond, no external cause to the world
or to life; all processes must find their cause within themselves.
Banished, therefore, are the ontological realms transcendent to
the plane of the everyday and material world, whether these be
God or the Ideal Types, History or Social Structure. Banished,
too, is the ontological distinction between the non-human and
the human. All things are continuous with one another. This is a
radical materialism. But, to be clear, it is not one that gives spe-
cial place or primacy, a priori, to a particular material domain, it
is not one that privileges the engines of history in the means of

THE MECHANICS OF ORDER

42

production, nor is it the creation of a structure and concomitant
superstructure.

This final ontological assumption has several important rami-
fications. Firstly, that ‘structure,’ systems, order, and so on, must
be accounted for without ‘jumping.’ We cannot explain away
the orderliness of everyday life by claiming it to be an effect of
a realm transcendent to our own, that by the interface of some-
thing akin to the pineal gland order is transported from the world
of structure to the realm of the everyday. Latour, instead, insists
we adhere to a ‘flat ontology,’ that we become ‘myopic’ and fol-
low the transportation of forces bit by bit, following their mate-
rial transformation from site to site (Latour, 2005: 165–172). It is
important to stress that this is not an embrace of a social theory
of pure localism. All sites ‘local’ are at one and the same time
the provisional and moving terminus of a great number of forces
travelling through space and time, travelling by means fully mate-
rial and fully traceable (Latour, 2005: 196). That is, they are always
and already constituted by forces originating from elsewhere.
Moreover, global structure does indeed arise, but the onus is
upon the sociologist to explain such order without transcendent
worlds, by following wholly material transportations and trans-
formations of force. When one approaches the question of large
scale order whilst adhering to a flat ontology, the achievement of
scale becomes something truly remarkable indeed.

The second consequence of immanence is that we embrace
a radical anti-humanism and bring the background world of
objects, spaces, and things both technical and natural, into the
foreground alongside humans. Social accounts cannot consist of
a world purely social, a world that unfolds on top of, but which

The Abstract Machine

43

remains distinct from, the material. In our myopic tracing of con-
nections between sites, therefore, we must include these hetero-
geneous objects in our accounts, moving in one moment from
the human to the technical, the natural to the wholly synthetic.
Indeed, it is precisely and only through this central role of objects
that the achievement of scale becomes possible at all. Deleuze’s
‘univocity of substance’ encourages us to go further, however, to
embrace the vitality of objects or, as Latour writes, we must ele-
vate the role of objects to full-fledged mediators and, if warranted,
actors. The objects of our world, that is, do not function as mere
intermediaries of forces, transparently transporting forces from
site to site; indeed, this would be to relegate them once more
the background, as mere ‘things’ upon which the social is writ.
Instead, the objects of our world mediate, transform and oper-
ate upon these forces. Objects become interesting, they become
essential in accounting for the ongoing production (or collapse)
of order; their roles become transformative and, at times, entirely
unpredictable (Latour, 2005: 63–86).

The final ramification is that we must now situate knowl-
edge and give it material form. Ideas exist on pages, written upon
hard disks, arranged amongst neurons; they are eminently ma-
terial, and their transmission occurs only via material processes,
only through the expenditure of energy, through the processes
of reading and writing, printing and publishing, transportation
and distribution. There is a tendency even for those orientations
avowedly materialist to allow for ideas and knowledge to escape
and become detached from the material on which they are bound,
for them to gain an ‘immaterial’ quality. A materialist conception
of ideas and of knowledge, such as this, is not to subject ideas to
the material realm or to suggest that, in fact, ideas only ‘reflect’

THE MECHANICS OF ORDER

44

extant material practices. It is, instead, to suggest that ideas are
material (Graeber, 2001: 54). This is especially important when
considering the topic at hand, for the realm of the virtual, more
than anything else, is most quickly and most easily detached from
its material basis.

§To review, we are starting from the assumptions that order
is the ongoing result of process and is generated in interac-

tion, that this interaction is not just made of social ‘stuff,’ but con-
sists of interactions between bodies, objects and spaces — things
wholly material — and that order must arise immanent to these
elements. These ontological ‘clamps’ set the foundation for build-
ing the model of order that shall be of employ throughout this
study: the ‘abstract machine’ and its corollary in the ‘machine.’

Let me attempt a first formulation. A machine is a heteroge-
neous collection of interacting elements that produce, in their
ongoing connections to one another, emergent properties, effects
and orderings. Its properties emerge not from the elements them-
selves, but in the connections its elements establish, in practices,
relations, and interactions. Also known as an ‘assemblage,’ a ma-
chine is quite unlike its everyday namesake which appears to the
world as static and whose function appears as simply given. This
conception of the machine is neither static, as its properties only
emerge in the course of movement, nor is its function simply
given, wherein its effects can only be known after it is brought
into combination with other machines. In her work on Deleuze,
Claire Colebrook has contrasted these conceptions:

In Anti-Oedipus and A Thousand Plateaus Deleuze and
Guattari use a terminology of machines, assemblag-

The Abstract Machine

45

es, connections and productions […] An organism is a
bounded whole with an identity and end. A mechanism
is a closed machine with a specific function. A machine,
however, is nothing more than its connections; it is
not made by anything, is not for anything, and has no
closed identity.

(Colebrook, 2002: 56)

The machine is, in the end, a way of conceiving of ‘wholes’ that
makes neither the mistake of reductionism nor functionalism.
The movements of the machine come not from a simple aggre-
gation of the properties of its smallest elements, a move which
would be a return to a Parmenidean ontology, nor are its move-
ments defined from without, either in relation to its place within
a greater whole or its functional destiny; they emerge ‘blindly’ in
and through the interaction of its various elements (DeLanda,
2005: 9–11).

This is a conception of a whole wherein the connections of its
parts produce of each other their properties, properties that are
not simply ‘given’ but are produced anew in and through each in-
teraction. These ‘parts’ refer equally to objects as they do bodies.
When we speak of bodies, however, the term ‘properties’ is usu-
ally replaced by something else: subjectivity. We can say, therefore,
that in the intersection of the body and the plethora of machines
to which it connects we find the ongoing production of subjectiv-
ity. This process is not the imposition of a certain type of being
upon a subject whose essence desperately seeks something else,
but rather is the very production of its desires, its knowledge, its
movements and practices. Here there is no essential interiority,
only surface. Such a conception immediately evokes Foucault’s
notion of the productive effect of power and its inscription upon

THE MECHANICS OF ORDER

46

the body. Indeed, while we have been talking of ‘connections’ and
‘relations’ between elements, these terms can be replaced with
Foucault’s notions of ‘power’ and ‘force relations’ (Foucault,
1998: 92), wherein a machine is always and already a set of power
relations.

The concept of the machine is ontologically mobile, in which
machines are made of elements that are themselves machines
(May, 2005: 122). The machine of the body interacts in concert
with the objects of urban space to create the machine of the city,
which itself operates in concert with the surrounding rural ar-
eas to form a (porous) bioregional machine. These machines,
however, are not perfectly encapsulated within one another nor
does each peacefully work in combination. Machines interact and
overlap, they engage in ceaseless confrontations, transformations
and recombinations, strengthening or destroying one another.
‘Everywhere it is machines — real ones, not figurative ones: ma-
chines driving other machines, machines being driven by other
machines, with all the necessary couplings and connections’ (De-
leuze & Guattari, 2004a: 1).

There is a second concept we need to introduce. Whilst the
machine has a concrete reality existing only in one place, the ab-

stract machine is instead a diagram that describes neither the spe-
cific elements nor the actual mechanisms of a particular machine,
but the set of relations that produce the machine. Deleuze writes,
‘the diagram or abstract machine is the map of relations between
forces, a map of destiny, or intensity’ (Deleuze, 2006: 32) and,
citing Foucault, he writes ‘it is a diagram, that is to say a “func-
tioning, abstracted from any obstacle […] or friction [and which]

The Abstract Machine

47

must be detached from any specific use”’ (Deleuze, 2006: 30). 3

The abstract machine, therefore, describes a whole class of ma-
chines that share the same kind of logic, that enact the same
kind of power relations, each of which is an ‘instantiation’ of
its abstract form. The abstract machine is ‘mechanism indepen-
dent’ such that the elements of a concrete machine may be in-
terchanged with others so long as the connections remain of the
same kind (DeLanda, 2002: 15). The concept, therefore, describes
the ideal type of a class of machines, their pure form reduced
only to their techniques of power and the connections of their
parts. The abstract machine is also known in the work of Michel
Foucault, in which it goes variously by the names the diagram,
the general method, the modality of power, and the dispositif
(apparatus).4 Let us unpack these concepts by taking an example.

The Panopticon is the best known of Foucault’s diagrams
from Discipline and Punish. The Panopticon was a design for a
prison that was proposed by Jeremy Bentham in 1785. It was an
architecture where prisoners were to be separated into individual
cells, the cells being arranged around the periphery of a circle at
the centre of which was an observation tower. This tower con-
tained a room upon whose windows were hung venetian blinds
and whose entrances were concealed such that, from the outside,

3.  In the same passage, Deleuze ascribes to abstract machines the ontologi-
cal status of being real, existing immanent to substance, and as ‘causing’ the
machines which take after them. This is not an aspect we shall be pursuing here.

4.  Of the apparatus Foucault explains, ‘What I am trying to single out with
this term is, first and foremost, a thoroughly heterogeneous set consisting of
discourses, institutions, architectural forms, regulatory decisions, laws, […] — in
short, the said as much as the unsaid. Such are the elements of the apparatus.
The apparatus itself is the network that can be established between these ele-
ments […]’ (Foucault, cited in Agamben, 2009: 2).

THE MECHANICS OF ORDER

48

prisoners could not see into tower and could not know when
guards entered or left. The prisoners, however, could be seen at
each moment, illuminated by the light shining through from the
windows positioned behind their cells. The Panopticon was thus
a surveillance machine that operated in one direction only — a
prisoner could not know at any one time whether the guard in
the tower directed their gaze toward the individual prisoner or
if the tower possessed a guard at all. It was a reversal of the prin-
ciple of the dungeon, from a condition in which the prisoner was
not seen, was secluded and out of sight, held in collective con-
fines with other prisoners and shackled with iron chains, to a con-
dition of ‘lightness,’ of visibility, the fully individualised prisoner
always already under the gaze of the tower. Foucault’s primary
thesis was that the Panopticon induced in the prisoner ‘a state of
conscious and permanent visibility that assur[ed] the automatic
functioning of power,’ a gaze that came to be internalised within
the prisoner such that they regulated themselves (Foucault, 1995:
200-204).

The Panopticon was never built and yet it formed a central
role within Foucault’s analysis. Why, therefore, did Foucault in-
troduce the Panopticon into his analysis when it was, as he later
said, ‘a utopia,’ when ‘all the history of the prison — its reality
— consisted of having passed this model by’ (Foucault, cited in
Wood, 2007: 250)? The Panopticon-as-building certainly never ex-
isted but the Panopticon-as-diagram, as abstract machine, came
to be widely instantiated within a number of disparate machines.
The abstract machine of the Panopticon, Foucault argued, spread
bit by bit, at first limited to a small number of sites but whose
techniques became dispersed and were taken up, piecemeal and
unevenly, across a variety of institutions — from the army to the

The Abstract Machine

49

school, the hospital to the factory, as part of a generalised method
of discipline. For Foucault, the Panopticon,

[…] must not be understood as a dream building: it is a
diagram of a mechanism of power reduced to its ideal
form; […] it is in fact a figure of political technology
that may and must be detached from any specific use.

(Foucault, 1995: 205).

The abstract machine of the Panopticon was a set of relations
between certain elements: the cells provided for the individuali-
sation of the prisoners, the combination of venetian blinds, the
windows and the twisting and zigzagged entrances to the tower
provided for the unidirectional gaze, and the arrangement of
space provided for the possibility of the omniscient guards. Each
of these elements, alone, possessed none of the qualities of the
Panopticon, but brought together they came to produce in each
other the effect of the individualising gaze of power. Moreover,
the mechanisms employed in the concrete instantiation of the ab-
stract machine mattered only insofar as they effected the appro-
priate relations; Bentham’s Panoptical tower, for example, could
just as easily be replaced — under the right circumstances — with
a security camera or a computer log file perhaps.

Foucault’s description of the Panopticon and its historical tra-
jectory is one of the best and most fully articulated of an abstract
(and concrete) machine in the literature. Its success, however, has
come with a price. There has been a tendency since to treat the
Panopticon in much literature as something rather unique, to see
in more recent developments the same fundamental relations of
the Panopticon. David Murakami Wood, for example, in writing
about Foucault’s legacy in the area of surveillance studies, sug-
gests that the literature has confined itself largely to variations on

THE MECHANICS OF ORDER

50

a theme, recasting modern machines as ‘panoptic,’ ‘superpanop-
tic,’ ‘neo-panoptic,’ and ‘omni-panoptic.’ Wood argues against
this limitation, specifically regarding the technology of the data-
base, saying,

If Foucault had continued his genealogical historical
account into the twentieth century, it seems unlikely
he would have described databases as superpanoptic,
rather he would have treated the ‘database’ as a particu-
lar political technology, a diagram, a mode of ordering,
of its own space/time of power/knowledge.

(Wood, 2005: 253)

The diagram of the Panopticon is just one diagram among many,
a diagram that, even in Discipline and Punish, occupied a place
alongside others lesser-known such as the table, the examination,
and the carceral. This proliferation of abstract machines is some-
thing I intend to pursue in the course of this study: we shall come
to trace out both the abstract and concrete relations of three dis-
tinct machines in operation as part of the Compiz project, treat-
ing them each as their own particular political technologies, each
with their own set of relations, their own distinct effects.

§The elements central to the Panopticon — its towers, win-
dows, venetian blinds, guards, centre and periphery, prisoners,

cells — were fully heterogeneous, concerning bodies, objects and
spaces. Objects and spaces, not commonly a focus of sociological
accounts, are central to the operation of machines. As we have
seen in Deleuze’s immanent ontology, in Latour’s emphasis on
mediators in his social theory, and in the elements of Foucault’s
diagrams, it is bodies, objects, and their production of space that

The Abstract Machine

51

produce the types of ordering we observe around us. We need in
this final section, therefore, to consider the notions of objects and
space within the virtual world of Compiz. In a nutshell, we shall
be adhering to a strictly materialist ontology, letting at no point
the ‘virtual’ escape the single plane of the material, that we shall
consider ‘virtual’ space as real space, that we will be ensuring that
the code — whilst no doubt a type of ‘knowledge’ — remains
always conceived as inhabiting some place at some time, and that
the practice of coding is understood not as a type of immaterial
labour, but as the ongoing transformation of a series of objects.
Let us take these points one by one.

In the first instance, let me at once stress the thoroughly me-
chanical and material basis of computer networks. A website or
code repository is stored on a hard disk spinning at thousands of
revolutions per minute, a hard disk which is contained within a
server cooled by server fans, a server that is powered by an elec-
trical cable that, perhaps, finds its terminus at a massive turbine
which spins under the force of water trapped behind an imposing
concrete dam. The network cables of that same website are main-
tained by a constant workforce digging trenches, burying cables
beneath roads and footpaths, repairing broken linkages, eventu-
ally meeting in massive exchange terminals before diverting out
once again. Throughout this, the first law of thermodynamics
remains intact: this communication is not free, the spaces upon
hard disks are vast but still limited, and at each moment energy
and work is required for its upkeep. This is a return of our Hera-
clitean ontology: that which appears on the surface to be a kind
of smooth space, a space of rapid transit and unbounded realms
is in fact an alienation of sorts, one that hides a massive apparatus
involving the expenditure of work and energy, one whose effect

THE MECHANICS OF ORDER

52

is to sustain the apparent permanences of virtuality. This is not,
however, to reduce the virtual to the physical and mechanical tools
from whence it is derived, to suggest that the virtual is nothing
more than these cables and such, for novelty does indeed arise in
the interactions of these parts. It is, rather, to remind us that the
virtual does not escape the material, that it does not stand in con-
trast and set apart from the world of the real. The virtual, that is,
is a realm both novel and yet fully material.

That virtual space is produced, that it is in a sense an artifi-
cial creation, is not to somehow make it a pseudo-space, a space
not quite real. Virtual space, like all space, is both real and pro-
duced. Space is not an abstract set of coordinates in which things
happen, that mute and inert stage upon which life occurs. Space
is produced when disparate machines and forces, each on their
own trajectories, come into interaction. Space is precisely that
place where things share a common existence in a common time.
For all the divergent histories of those things, and the divergent
becomings that they shall each and individually pursue, space is
that moment of radical coevalness and contemporaneity (Massey,
2005; Lefebvre, 1991). Virtual space, therefore, is composed in the
same manner as the apparently banal spaces of everyday life: both
are the ongoing production of interaction. In this I am insisting
that virtual space is indeed real space and is indeed fully continu-

ous with real space, not by attempting to reduce the virtual to
the apparent dullness of the spaces of the everyday but, rather,
by attempting to elevate these ‘real’ spaces to the same level of
novelty, to insist that they too are produced, are the outcome of
process, and are constantly in the process of deformation.

The Abstract Machine

53

Virtual space has traditionally been attributed some rather
fantastic properties. In making virtual space fully continuous
with other spaces, however, we must address and temper some
of these claims. Namely, the speed at which information moves
from point to point has prompted some to claim that the virtual
has reduced space to a single point in which there exists only pure
temporality. Paul Virilio, for example, has argued that cyberspace
is a means of entering a world of immediacy,

[where] having attained this absolute speed, we face the
prospect in the twenty-first century of the invention of
a perspective based on real time, replacing the spatial
perspective.

(Virilio, cited in Crampton, 2003: 10)

Claims such as these bear little relation to the lived reality of in-
teracting with computer networks. One ‘goes to’ (or, alternative-
ly, has a website visit them) only a few websites at any moment.
Whilst interaction with a multitude of virtual objects is possible
at any one moment, moving between these objects takes time,
updating them requires refreshes and polling, and such interac-
tions are always bounded by network latency which tends to be
directly correlated with the physical distance of cables. This is
not the collapse of space. Moreover, the claim of immediacy also
fails to account for the network topology, such as the areas of a
network that are forbidden or which are limited to a few by way
of authorisation. To consider virtual space as collapsing in on it-
self is to consider the virtual only in the most abstract of terms,
and fails to account for its heterogeneity and its concrete texture.5

5.  Manuel Castells, in an inverse operation, has argued that we have created
a ‘culture of virtuality’ in which we find ‘the superse[ssion] of places and the
annihilation of time by the space of flows and timeless time’ (Castells, 2000:

THE MECHANICS OF ORDER

54

To speak of virtual space as heterogeneous and as having a
texture departs from the more common terms which speak of
‘flows,’ of ‘connectivity,’ of ‘pure information,’ metaphors which
couple well with an idea of virtual space as both smooth and ho-
mogenous. Objects are absent in these descriptions, having ap-
parently melted into air. In this study, however, I want to cap-
ture some of these flows, to talk about them in much the same
way as we talk about spaces elsewhere, that is, to treat them as
objects. Let us recall that when we speak of ‘objects’ we do not
mean mere ‘things’ both inert and static, we mean processes that
have produced relative stabilities, we mean machines which have
come to produce an identity, which have delineated themselves
from those things around them and which persist over time even
as they may change. That is, this is a deliberate attempt at rei-
fying those parts of the virtual that have achieved the stability
that would otherwise grant them the status of object elsewhere.
As part of this study, these objects will form some of the ele-
ments of the subsequent machines and enter into these accounts
as full-fledged mediators. It is these objects of the virtual, in their
interaction with one another and with humans, that give rise to
its heterogeneous topology, that erect barriers, shape movement
and interaction, and give the virtual its texture.

Having now established that virtual space is a part of real
space, that it is, like the physical world, populated by objects, and
that all these things are fully material processes, I want to ‘reign
in’ one final aspect: the code. There is a temptation to conflate
the code with a type of knowledge, and a temptation further to

381). This also seems to treat ‘network’ and ‘virtuality’ primarily as metaphors,
paying little heed to their concrete form.

The Abstract Machine

55

construct knowledge as a kind of free floating entity, existing ev-
erywhere and nowhere in particular. Moreover, labour that in-
volves this free floating knowledge becomes recast as somehow
‘immaterial’ or as a form of purely ‘knowledge work.’6 Both our
ontology and our reformulation of virtual space, however, for-
bid such moves. The Compiz code exists in the CVS repository
within the Freedesktop.org server. This codebase, far from free
floating in a netherworld of pure knowledge, occupies a bounded
and limited space on a server whose access is carefully controlled
and regulated. Work upon this object is a fully material process
involving the ongoing accrual of code, of statements and expres-
sions, functions and files, all of which come to reside in some place
at some time. The Compiz project is a collaborative effort work-
ing upon a shared codebase, manipulating and transforming it in
much the same way as a builders go about the building of a large
structure. It is precisely in these terms that we shall be discussing
the work within the Compiz project.

§This is a model of the production of social order that oc-
curs wholly immanent to itself, a kind of ‘self-ordering’ that

emerges in the interaction of heterogeneous elements — bodies,
objects, spaces — and which remains ordered only for the dura-
tion of that interaction. There is no netherworld of structure, nor

6.  The concept of ‘immaterial labour’ comes from the Italian Marxist tradition
of Operaismo whereby it incorporates types of labour traditionally not consid-
ered labour as such, and which can be classed as either ‘informational,’ as with
the case of our programmers, or ‘affective,’ in that they produce desires, norms
and tastes. In both cases there is a strong service component to the work. See
Lazzarto (1996).

THE MECHANICS OF ORDER

56

an interiority of essence from which to derive this order, only a
happenstance of elements against an inevitable backdrop of cos-
mological decay. When order does indeed emerge it is something
for which we need to provide an account, to come to understand
the machines in operation, their relations, and their effects.

In each of the three subsequent chapters we shall be explor-
ing the elements of the three principal machines in operation
both within Compiz, and of which Compiz is a part. It is in the
ongoing movement of these machines, and their interaction and
confrontation with one another, that gives Compiz its peculiar
character. Each of these chapters begins by describing the opera-
tion of the archetypal instantiation of the abstract machine that
forms the topic of the chapter, in much the same way as Fou-
cault’s Panopticon is the ‘ideal form’ of closed circuit television
cameras. In starting with the ideal form, the task of drawing out
the principal abstract relations of each machine is made some-
what easier. This is also to emphasise two additional features of
this model: that abstract machines enjoy a mechanism indepen-
dence where they may be instantiated within wholly different en-
vironments, and that the ‘virtual’ world which is of study here is
not a special case, that it is not incommensurable to the spaces of
the physical.7 Indeed, it is precisely this commensurability that al-
lows us to consider these machines of order apart from their vir-
tual instantiation within Compiz and to consider them as utopian
candidates for ordering social relations amongst wholly different

elements to those found here.

7.  I should also stress that the use of these archetypal machines is not to un-
dertake a genealogy. Except perhaps in the instance of the last machine, there
are no genealogical links, no enstehung (emergence) of forces that can be traced
from the archetypal machine to the one at hand.

57

The Passport is above all a spatialising machine. It is a machine
that takes as its task the battle against anonymity. It seeks to pro-
duce identities that uniquely link bodies and objects with the in-
teriority of its own documentary system, and to these identities
are applied controls and monitors upon movement so as to ef-
fect a particular and desired distribution of these bodies across
space. It is a machine that creates a striated and segmented space,
a machine that we can class as both territorialising and hierarchi-
calising. But as it battles against anonymity, there are opposing
forces that seek to escape its embrace, that transcend its borders
or undermine its techniques. Acknowledged or not, the Passport
machine is a permanent battleground. Within Compiz, the ab-
stract machine of the Passport is instantiated as the ‘user-space’
machine, as the system of usernames and passwords, their associ-
ated permissions tables, and an array of technologies that seek to
create boundaries. Through its production of space, it becomes
the principal generator of hierarchy within the group. In this
chapter we shall develop an understanding of the diagram of the

III. The Passport
Wherein virtual space becomes segmented

and we discover the embrace of the user-space machine

THE MECHANICS OF ORDER

58

Passport, that is, its abstract relations by an examination of its
historical development, before exploring both its operation and
effects within the Compiz project as the user-space machine.8

§The development of the Passport system and the modern-
ist project of the nation-state were inextricably linked, for the

state had as its subjects the nation, but the nation had no exis-
tence outside of the State. The nation could not be read off the
body like other lines of demarcation — it was not defined by skin
colour, language, cultural practices, religion or other traditional
markers, though each of these could be indicators. It was an alto-
gether modern and arbitrary division, one that could only come
to be reliably elaborated through its progressive codification in
documents and files. In his excellent study The Invention of the

Passport (2000), John Torpey provides an important corrective
to Benedict Anderson (1991), arguing that, ‘in order to be imple-
mented in practice, the notion of national communities must be
codified in documents rather than merely “imagined”’ (Torpey,
2000: 6). But if the development of the Passport was concerned
with the identification and individualisation of national popula-
tions, it was also and immediately concerned with their regula-
tion. The prevailing mercantilist policies throughout Europe
from the 15th to the late 18th Century placed great emphasis
upon the direct conversion of populations into wealth and mili-
tary strength. To this end, the early Passport was deployed to aid
in efforts of conscription, to control the movements of labourers

8.  A note on usage: passport, lower case, denotes the actual document of the
passport; Passport, capital letter, denotes the Passport machine as the total set
of elements.

The Passport

59

and especially skilled labourers, to tie serfs to their masters, to
aid in the administration of poor relief and to control dangerous
elements — gypsies, vagabonds, the wandering poor and, much
later, the foreigner (Torpey, 2000: 18).

The implementation of passport controls at this time was
thoroughly piecemeal and underwent a series of historical with-
drawals. In absolutist Europe of the early modern era, travel of
any kind was generally forbidden, except for those of the higher
classes or else those in possession of a passport — although the
ability for passport controls to be enforced was likely both poor
and haphazard (Torpey, 2000: 22). For a period, the French revolu-
tion brought the necessity of passports into question with oppo-
nents arguing that they were a violation of basic human freedoms
whilst advocates argued they were made necessary by the ongo-
ing prospect of war (Torpey, 2000: 21–56). The revolutionary de-
bates around the Passport were rendered null as France came un-
der the rule of Napoleon and passport controls returned in full.
Fewer than 100 years later, however, passport mechanisms were
relaxed and virtually eliminated across most of Europe, at least
in part due to the economic liberalism that prevailed for much of
the 19th Century. The prescription of passport controls, however,
remained in law, with their use stipulated as justified only in times
of war (Torpey, 2000: 92).

While the Passport entered into a remission at this time, the
individual technologies used in its implementation were else-
where refined and elaborated. Each of its concrete components
were deployed as part of machines elsewhere, such that the on-
going development of these machines fed into the advancement
of the Passport machine itself. These developments included

THE MECHANICS OF ORDER

60

bureaucratic techniques of managing files, knowledges about
national populations derived from emerging techniques of cen-
suses, the progressive delineation of borders, the systematisation
of national identity documents, the creation of national police
forces, and the development of ‘anthropometric’ techniques of
identification in fingerprinting and photography, all of which
would later converge within the Passport machine. There is a
great historical contingency that must be stressed in the devel-
opment of these technologies: each developed under their own
logics, coalescing within various machines at different times, pro-
gressively elaborated and pulled by discordant forces.

At the onset of the First World War existing passport laws
were reactivated, ostensibly as a temporary measure, and the
different technologies that had been separately developing were
brought together within a single machine. Passport controls dur-
ing this time began to shift from being principally concerned with
emigration to immigration, in part due to the abandonment of
Mercantilist attitudes towards populations almost a century ear-
lier and the concomitant desire to shape rather than merely grow
populations. In spite of the cessation of war, passport controls re-
mained in effect throughout most of Europe and North America,
and were still in effect at the onset of the Second World War. War,
once again, justified an intensification of the identification and
control of both national and foreign populations, and the Second
World War in particular proved a staging ground for optimising
the different technologies used in the Passport. It was deployed
both in the identification and control of those deemed foreigners,
and in the control of the movements of ‘internal’ populations,
the most infamous being the documentary and identification

The Passport

61

techniques brought to bear upon the unwanted elements of the
Third Reich (Torpey, 2000: 131–142).

In the period following the Second World War, the Passport
machine underwent a kind of stabilisation, with the standardisa-
tion both of passport formats and the regulations between States,
as well as the continued elaboration of the different technologies
used. These technologies included the digital encoding both of
passport information and of the correlative files, marked increas-
es in border surveillance and enforcement, and new forms of
anthropometric information offered by ‘biometrics’ (Jain, 2007).
Even as the Passport machine became increasingly inviolable,
there was a cautious relaxing of the control of movement across
borders in some areas, notably within the European Union. In this
case, however, the embrace of the Passport has remained in full
effect, oriented primarily toward identification without which the
various nationalisms — and the associated ‘rights and obligations’
of citizenship — could not be established (Torpey, 2000: 155).

§In this brief background to the Passport we can begin to
draw out some of the elements concerning its operation. I

want to construct from this history an ‘ideal type’ of the passport:
the Passport as an abstract machine. I admit at the start a prob-
lem with this method, in that it assumes a sort of end-of-history
conception of the Passport machine. Let me qualify, then, that it
is altogether possible that there may arise future elements that
should be included within this abstract machine. These potential
new elements, however, will not simply be the result of techno-
logical innovation, just as the use of biometric data in place of
the photograph does not change the basic relations of the Pass-

THE MECHANICS OF ORDER

62

port. As I have stressed previously, an abstract machine obtains
a certain degree of mechanism independence; what matters are
not the concrete mechanisms but rather the relations they estab-
lish. We can ask, then, what are these relations? The Passport as
machine is a number of elements of which the passport is just
a part, a machine whose aim is the construction of unique and
durable identities, the control of movement and the concomitant
distribution of these identities throughout space. There are four
main elements, namely, a set of borders, ports which function
as surveilled places of passage, the files which track the identity
within the bureaucratic interiority, and the document of the pass-
port itself.

The segmentation of space is the first necessary condition of
its operation, an altogether difficult task. Borders serve as an at-
tempt to separate spaces, ports as the sanctioned points of pas-
sage between. In a flat space, borders may consist of walls, fences,
tracts of water, and may exist under the active purview of bodies
or objects — guards, cameras, alarms. Borders are often a vio-
lent and arbitrary separation of space, and their attempt to seg-
ment previously continuous space is often met with resistance.
The border is always already a site of contestation: everything
in its construction hints at an imagined force — the latent war
machine, the nomads of the Steppes — seeking to transgress
those objects and those bodies charged with its maintenance.
And spaces change. Tracts of sea become traversable by ships,
flat space is deformed into a third dimension with flight. Previ-
ously separated spaces become contiguous and the creation of
new borders becomes necessary. But the border alone is confine-
ment. It is the addition of the port that animates the Passport
machine. The border functions not simply to disrupt flows, but

The Passport

63

to redirect them through the system of ports. In contrast to the
vast frontiers of borders, the ports are the points of concentra-
tion: they are manageable spaces of surveillance, identification,
and flow. In contrast to the purely repressive effect of the border,
the port is an apparatus of capture, a site of total envelopment, a
bottleneck in which the asymmetry of forces reaches its zenith.
In the port, bodies are subject to all the techniques of discipline:
they are brought under surveillance, their movements are broken
down, their bodies channelled through an apparatus of verifica-
tion, with punitive and corrective mechanisms lying in wait. In
the Passport machine, the port thus forms the site of modulation
in the control of movement.

The diagram of the lock and key relies on little more than the
border and a most rudimentary form of the port. The key, as a
means of access, provides no means of identification, no means
of logging, it does not aid in the generation of knowledges of
populations, or in the embrace and shaping of those populations.
It is everything beyond the border and the port that makes the
Passport proper. Of these additional elements perhaps the most
important is the attempt to create a durable and unique correla-
tion between the body or object and the bureaucratic interior-
ity: Weber’s ‘files’ (Weber, 2004: 246). Somewhat in contrast to
the battleground of the border and the port, the banal activity of
writing and record-keeping contained within the files is founda-
tional to the Passport. Foucault puts this well when he proclaims
that the examination,

[…] places individuals within a field of writing; it en-
gages them in a whole mass of documents that capture

THE MECHANICS OF ORDER

64

and fix them. A ‘power of writing’ was constituted as
an essential part in the mechanisms of discipline.

(Foucault, 1995: 189).

The files — the catalogue, the registry, the database, the log —
create a correlative identity to the body, one composed primarily
of writing. Its ideal is perfect correspondence: what happens to
one happens to the other. The files may be prescriptive: they may
describe the restrictions and allowances that are to be imposed
upon the body or object. They may be historical: providing a log
of movements, interactions, and histories. And they may be de-
scriptive: descriptive of the body, its characteristics, its manners.

But the correlation between the body and the files requires
a link: the pineal gland of the Passport machine is the passport
itself. To the passport is designated the work of establishing this
link, maintaining the unique and durable correlation, pointing at
once in both directions. To the first direction, towards the body
or object, it became necessary to uniquely identify the body. This
has at times been achieved by practices of writing on the body
— branding, tattoos, bracelets and armbands — but as these tech-
niques have become relegated primarily to the animal, the subhu-
man, and the prisoner, alternative techniques were required not
to write on, but to read off of the body (Torpey, 2000: 17). At first,
this was merely a description of appearance such as eye colour
and hair, height and sex, but it was progressively enriched with
other forms of anthropometric identification: signatures, the de-
velopment of photography, fingerprinting, and more recently the
use of biometric data such as facial and iris recognition often en-
crypted on chips embedded within the pages of the passport. In
the opposite direction, towards the files, the correlation is easier
to establish thanks to the techniques of indexing and cataloguing:

The Passport

65

the mere mention of the file number. In all these efforts there is
the need to guarantee the irreproducibility of the document of
the passport. Early technologies included elaborate ink patterns
and sophisticated printing techniques, watermarks, lamination,
barcodes and more recently the application of digital cryptogra-
phy. We sense once again a kind of battle: there is an allusion in
these efforts to opposing forces that seek to disrupt the correla-
tion that the passport attempts to create between the body and
the files, that each of these moves seeks to more firmly grasp
the body and bypass those efforts that would circumvent this em-
brace, to guarantee in the passport truth.

The Passport is a machine that is both repressive and produc-
tive. It is repressive insofar as it denies movement, insofar as it
segments space, where it may be deployed to limit or deny access
to all manner of practices and organisations. But it is also pro-
ductive. It is used not just to deny people access to spaces but to
construct spaces of a special kind, to embrace whole populations
within administrative apparatuses so as to shape them, act upon
them, to come to know them, to make whole populations use-
ful, and to surveil them. This is, for John Torpey, a critical point,
and we can see in our previous quotation from Foucault a similar
insistence: to ‘capture and fix.’ Torpey contrasts this notion of
embrace with the view of the State as penetrative, as standing
outside of populations and applying its machinations of power
at a distance. But, he insists, the State must first embrace popula-
tions in order to penetrate them: ‘the reach of the State, in other
words, cannot exceed its grasp’ (Torpey, 2000: 11). In bringing in-
dividuals into a realm of documentary controls and identification
the State brings the social body into itself.

THE MECHANICS OF ORDER

66

§Weber wrote of the State as the expropriation of the means
of violence, Marx that capitalism was the expropriation of

the means of production and, Torpey argues, that the Passport
is the expropriation of the legitimate means of movement. Af-
ter an era in which non-State entities had considerable control
over the means of movement — the Church, feudal lords, certain
members of the aristocracy — Torpey argues that these abilities
have been subsumed by the State, with private entities reduced
to the capacity of ‘sheriff ’s deputies’ (Torpey, 2000: 9). It is here,
however, that Torpey unnecessarily limits his analysis. By insist-
ing upon the exclusivity of the Passport to the domain of the
State, the diffusion elsewhere of the Passport as abstract machine
is lost. That is, by insisting upon the Passport machine as the sole
prerogative of the State we lose the ability to identify instantia-
tions of the Passport elsewhere, to perceive how the Passport has
spread bit by bit and been enacted within progressively smaller
spaces by all manner of non-State entities, enacted in ways that
are not usefully reduced to a mere ‘deputy’ status of the State.
Schools, factories, workplaces, universities, apartment buildings,
gated communities, public transport and even city centres have
all been sites in which the Passport has been enacted, in which
the four elements of the Passport machine have been brought
into proper relation to one another. School identification cards
that monitor truancy, passcards that enable and track access to
buildings and the spaces within, or transport registration systems
that are deployed to monitor access to city centres so as to impose
pecuniary costs to the correlative bodies: each of these instanti-
ates the Passport machine towards the different ends of security,
surveillance, the management of space, or otherwise.

The Passport

67

The virtual is a realm that has since its inception progressive-
ly enfolded the Passport machine within its standard operation,
purportedly in the service of ‘security.’ This stands in marked
contrast to some popular accounts that ascribe to virtual space
a kind of smooth and unbounded quality, a horizontal and flat
web of networks that are democratic, free and egalitarian by na-
ture.9 In this formulation the virtual stands in opposition to all
the barriers that inhibit movement in physical spaces, as a kind
of emancipatory realm of pure connectivity. But, while the net-
work itself is both flat and decentred, the nature of those ele-
ments connected within the network is far from emancipatory:
each node is a fiefdom unto itself, a fortress strictly determining
its routes of access, strictly dominating those elements to whom
they have granted access, and strictly shaping the manner in
which that access is granted. To those who have undertaken the
task of its reproduction, the virtual is conceptualised simultane-
ously as a domain of possibility and threat: the crafting of each
of its possibilities involves the careful consideration of potential
risks, ‘attack vectors,’ software bugs, and the implementation of
carefully bounded security models (for example, Arctec Group,
2005; Fernández-Medina, et. al., 2006). It is a model that seeks
to control and identify the masses of anonymous elements, and

9.  Nicholas Negroponte (1998), for example, writes that that social inequality
is an ‘artifact of the world of atoms,’ not cyberspace. Louis Rossetto, founder
of Wired Magazine, claimed ‘This new world [of the Net] is characterized by
a new global economy that is inherently anti-hierarchical and decentralist, and
that disrespects national boundaries or the control of politicians and bureau-
crats […]’ (cited in Barbrook, 1999). And in John Perry Barlow’s famous ‘Decla-
ration of the Independence of Cyberspace’ he writes, ‘We are creating a world
that all may enter without privilege […] Your legal concepts of property, expres-
sion, identity, movement, and context do not apply to us. They are all based on
matter, and there is no matter here’ (1996).

THE MECHANICS OF ORDER

68

is characterised by a never-ending concern with patching newly
discovered ‘vulnerabilities’ both in the software and in the widely-
used encryption algorithms.

The maxim of the contemporary security model, popularised
in the original Unix operating system, is the enclosure of every el-
ement of a computer system by way of the ‘user-space’ machine.
The user-space machine operates at the very heart of most oper-
ating systems, wherein virtual objects such as users, programs,
files, directories and devices come to be embraced by this model.
The means through which this is done is by assigning to each ob-
ject a user ID, which functions as the equivalent of the document
of the passport.10 The list of acceptable user IDs is kept in a set of
system files which also record the user’s password and a number
of system wide settings. Meanwhile, every single object is also
assigned a set of additional permissions which prescribe the ac-
tions any particular user ID can perform upon that object, such
as whether a user can read the object, whether it can write to and
edit the object, and whether it can execute the object as if it were
a program. These permissions, which form the equivalent of the
files, are mapped upon each element by way of the system’s file
system and enforced by the kernel at each attempt to traverse the
port of a virtual object.11 Files and whole directories can, in this
manner, be restricted such that they can be seen but not touched,
or such that they are off-limits and hidden entirely. Each of these

10.  Each element is also assigned a group ID, but this makes the discussion
more technical than it needs to be.

11.  Files and other objects are accessed by programs (and therefore users) by
way of a ‘system call’ which asks the operating system’s kernel to act upon a
virtual object. In this way, the kernel becomes the obligatory point of passage
and performs the function of the port.

The Passport

69

virtual elements is thus brought into a regime of system permis-
sions, whilst additionally all manner of actions are logged — from
login attempts and access to system resources, to network traffic
and manifold interactions with the security model.

The ideal operation of this system is the granting of just
enough permissions to any particular user so that they may per-
form their task, whilst granting not a single permission more.
In opposition to the notion of a smooth and frictionless space,
this is a system of maximum enclosure, where each of these ele-
ments becomes bound to a restricted domain of the computer or
network, unable to do anything it need not do, unable to touch
anything it need not touch. The user-space machine is a securi-
ty model characterised by a concern with a strict adherence to
a particular spatialisation of the virtual: a fully-fledged Passport
machine.

Within the aforementioned user-space machine operated a
program known as CVS or the ‘code versioning system’ which
monitored and controlled code entering and leaving the Com-
piz repository. This program typically operates under the aegis
of a unique user on the computer, and thus was already confined
to but a small portion of the computer’s resources. Additionally,
however, CVS implemented its own internal user-space machine,
an implementation which we shall explore here by tracing the
steps through which one would gain access to the code contained
within.

To begin, then, on my own computer I start my CVS client
which provides me with the means to interact with the CVS serv-
er across the Internet. From the Compiz wiki I have obtained a
couple of commands with which to gain access:

THE MECHANICS OF ORDER

70

$ cvs -d:pserver:anoncvs@cvs.freedesktop.

org:/cvs/xorg login

CVS password: <hit return>

$ cvs -d:pserver:anoncvs@cvs.freedesktop.

org:/cvs/xorg co app/Compiz

(Anon., 2006)

These commands say a number of things, two of which I want
to note here. The address ‘cvs.freedesktop.org’ is the first thing
we should note: it is much like any normal web address in that it
gives us the ability to find our desired server amongst the thou-
sands of others connected to the Internet. The second thing we
should note is the username through which we gain access to this
server: ‘anoncvs.’ As one might infer, this username is not unique
to myself but is instead provided to allow a collective hoard of
unknown and anonymous users access to the code. By operating
under the aegis of this username I am, on the one hand, enabled
to view and read the code, and to download it to my local ma-
chine. It is precisely through this anonymous access to the CVS
repository that Compiz becomes ‘open source.’ On the other
hand, by operating under this username I find myself immediate-
ly embraced: I am pulled into the regime of permissions of anon-
ymous users and I can be tracked in my movements, though this
embrace is limited so long as this username is used by a group.

When I enter the command a number of things happen. My
computer sends out requests across the Internet, marked with
the desired server address as its destination. My request eventual-
ly reaches its destination, at which point it confronts the network
equivalent of the border and the port. This border is a software
barrier at which I can fire all sorts of network requests that should
dissipate to nothing. It is not so much a physical entity as it is a

The Passport

71

process: it exists in the way it handles the constant barrage of
network requests, it is performed through these interactions of
rebuff and diversion, and when it fails in these roles it ceases in
that moment to be a border. This border is made up of thousands
of ports, each potentially being ‘listened’ to by a program on the
remote server. My CVS program knows ahead of time, as part of
an already-established protocol, the default port it should attempt
to use to gain access: CVS will be listening on port number 2401.
This port is the site of my entry into the CVS component of the
server; it is the single point through which my network requests
are channelled, verified and monitored. The port is also the point
of capture. My CVS client sends a request to this port, ‘BEGIN
AUTH REQUEST,’ followed by my username ‘anoncvs,’ my pass-
word, which in this case is absent, and a final closing string, ‘END
AUTH REQUEST.’ To this I wait for a response. If I receive the
response ‘I LOVE YOU’ my CVS client will proceed to negotiate
my entry into the repository, or else ‘I HATE YOU’ informs me
that I am denied access (Anon., 2000).

How does the server know to let me in? And once I have en-
tered, what can I do? This introduces us to the virtual equivalent
of Passport’s files. Contained on the server are three files. The
first, the ‘passwd’ file, establishes the usernames and passwords
that the CVS server will recognise. This is nothing but a simple
text file, with each line in the form of,

CVS_username:password:system_username

The file establishes a correlation between each of these elements:
my CVS username and my password are linked together, and
these are then linked to an internal server username which, by
references to the system permissions, regulates my access to the

THE MECHANICS OF ORDER

72

various system resources. There is in this simple file an element
of the tripartite system of identification of the Passport machine:
the body/CVS_username is linked to the bureaucratic files/
system_username by way of the intermediate device that is the
passport/password. There are two more files, equally as simple
in their format. One, a readers file, lists those users with ‘read-
only’ access to the repository: they may view the code contained
within the CVS repository, they may copy the code to their own
systems, but they may not edit or change the remote repository.
The writers file enables write access to the repository. Usernames
listed here may both read and write to the repository: they may
make ‘commits’ to the codebase and edit it as they desire. These
reading and writing restrictions are enforced by the CVS program
running on the server. Moreover, the CVS system must ensure
that the reading and writing of files occurs only in limited and
designated directories. As per our user-space regime of maxi-
mum enclosure, all areas beyond the code itself are strictly forbid-
den, the enforcement of which falls to a combination of the CVS
program itself and the remote server’s own internal user-space
regime.

This is all rather complicated, but its effects are simple: as an
anonymous user I can only read the code and copy it to my own
machine. No more. And these actions — my logging in and my
‘checking out’ of the code — are all logged, recorded in large text
files. Moreover, since the anonymous user was predominant, this
was the typical experience within the Compiz project.

§For anonymous users within Compiz, to contribute patches
back into the code repository it was made necessary to sub-

The Passport

73

mit these by way of a mediator: David Reveman. David was a
special sort of registered user known as a ‘super user’: not only
could he both read and write to the repository, he could control
all manner of finely tuned access controls. It was to him that
the user-space machine granted the ability to craft permissions
tables. The various people who contributed to the Compiz code
thus had to first email their code to David Reveman who would
‘review all patches before they [went] into the CVS’ (Reveman,
David: 2006-04-04 05:32). It was through the user-space regime
of CVS, and through his unique access to its space, that David
Reveman became elevated to the status of a special and necessary
mediator: the gatekeeper. The immediate effect of this role was
a unique and unparalleled control over the progressive shaping
of the objects Compiz-as-code and Compiz-as-object. But it had
another very important effect that extended beyond the object of
the code. So long as contributors desired to contribute to Com-
piz-as-code, these users found themselves compelled to comply
with both the coding practices and the project direction of the
gatekeeper. By way of controlling the object Compiz-as-code, the
user-space machine granted to David the ability to exercise a lim-
ited kind of power over these willing contributors. This kind of
power we shall label as ‘vicarious.’

We saw in Chapter One some of the gatekeeping manoeu-
vres with respect to patches that were executed by David. These
can be classed into three categories. The first was an unhindered
commit, whereby a patch was submitted to David who proceeded
to commit the patch into the repository unedited or, alternatively,
advised the submitter to commit the patch directly themselves.
The second was a modified commit, whereby either David ac-
cepted a patch, edited it himself and proceeded to commit, or

THE MECHANICS OF ORDER

74

alternatively advised the submitter on certain changes that were
required before he would accept and commit the patch. The third
was a rejected commit, where the patch was altogether denied
being commit to the code repository. Let us take some examples
of these triaging practices.

Patches passing into Compiz unhindered were relatively rare,
with most being modified in some manner. The majority of these
patches were submitted to the email list, and thereafter commit-
ted by David into the repository. On 18 April, for example, Gan-
dalfn submitted a patch to the list which ‘add[ed a] command line
option to force bind and release whenever texture is used’ (Gan-
dalfn: 2006-04-18 12:30). Later that day, David announced that he
had modified the patch and committed part of its functionality
to the repository, but that he had rejected another portion of the
code claiming that ‘that’s something that should be fixed in the
server and not in compiz’ (Reveman, David: 2006-04-18 17:51).
Later on in the project, however, as individuals gained write ac-
cess to the repository — a point we shall cover shortly — they
were given consent to commit to the repository directly. On 20
September, for example, Kristian Høgsberg submitted six patches
to the list, four of which David authorised for immediate commit
(Høgsberg, Kristian: 2006-09-20 07:27). The other two underwent
a modified commit: on one David advised that he intended to
alter the patch after it was commit, and on the other he asked
Kristian to make a number of edits (Reveman, David: 2006-09-20
08:36). Later that day, the code repository records that each of
these patches was submitted directly by Kristian. In requesting
Kristian to edit his code according to David’s prescriptions, there
is a subtle shift from David merely editing the incoming code to
exercising a degree of power over those submitting the code.

The Passport

75

The modification or rewriting of patches by David was the
most common form of patch triage; the rejected commit was
rare and controversial. In Chapter One we covered some of the
controversy caused by the rejection of both the shadow colour-
ing patch and the multi-screen ‘Xinerama’ support. To the first,
David defended his rejection by claiming that colouring window
shadows was a kind of ‘useless crap’ best kept out of Compiz as
it only added to the amount of code requiring ongoing mainte-
nance, and to the second, that Xinerama was an improper method
to implement multi-screen support (Reveman, David: 2006-05-03
03:38; 2006-06-19 06:25). In both instances, numerous contribu-
tors questioned both the validity of David’s decision — whether
indeed they were really useless, or whether it was an improper
method — as well as his right to make those decisions in the face
of dissenting opinions (see Storm, Quinn: 2006-05-03 09:39; Szu-
lecki, Martin: 2006-06-19 04:26).

These decisions around the triaging process compelled a
number of people to ask David to provide explicit rules and guide-
lines for writing code. Guillaume Seguin, for example, wrote on
24 June,

Most patches written by these developers get commit-
ted to Quinn Storm’s cvs […]. Nevertheless, it seems
that unfortunately little of the very good work that is
done actually gets into the official project, which can
make it difficult to continue to be enthusiastic about
developing for Compiz.

As a group we were wondering what the standards
that any plugin or patch must meet before it can be in-
cluded in the main codebase are: functions/constants/
variables naming convention, coding style… Moreover,

THE MECHANICS OF ORDER

76

if there is some reason that patches are not applied […]
is it possible to share it with the list […].

(Seguin, Guillaume: 2006-06-24 16:24)

Thomas Liebetraut wrote to the list the next day in agreement
with Guillaume,

That’s why I would appreciate informations [sic] about
the patch standards, too, because it’s somehow frus-
trating to know that the work you did during the last
weeks will end up in the trash can and someone else
rewrites your patch from scratch.

(Liebetraut, Thomas: 2006-06-25 06:11)

Thomas’ comments allude to another power effect of the triage
process. Not only could David ask contributors to edit their con-
tributions — a quite explicit exercise of power — but it appears
that his editing and rewriting of patches compelled some devel-
opers to anticipate David’s desired standards in an effort to avoid
seeing their work come to naught. To these requests there was no
reply. In an exchange considerably later on 15 September, Shawn
Starr wrote,

I would like to get a better understanding as to why
Quinn’s patches have not been accepted into the com-
piz git tree.

I feel Quinn’s patches could greatly improve compiz.
She has made quite a lot of progress [with regards to]
enhancing compiz with her cgwd window decorator
which allows users to write their own themes for win-
dow decorations.

(Starr, Shawn: 2006-09-15 12:03)

To this David replied,

The Passport

77

I am definitely willing to accept patches but I won’t
push in some ugly patch just because it adds some addi-
tional functionality, I [would] rather wait for the proper
solution (Reveman, David: 2006-09-15 13:13).

His apparent reluctance to provide anything more explicit than
avoiding ‘ugly’ code, and implementing ‘proper’ solutions echoed
previous exchanges and was not well received for it was shortly
after this email that the Compiz/Beryl fork occurred. On 28 Sep-
tember, David spoke on the topic of the fork confirming that he
believed that,

With a few notable exceptions, most of the code I’ve
seen going into Beryl is not high quality code that
would be considered for Compiz.

(Reveman, David: 2006-09-28 10:12).

Two weeks after the fork, David provided stylistic but not techni-
cal rules for code in Compiz in which he documented the conven-
tions around tabs, function and variable names, code width and a
number of alignment conventions — some of the guidelines for
which Guillaume had asked four months earlier. He concluded,
‘looking at the code is the easiest way to get what coding style is
used’ (Reveman, David: 2009-10-05 13:12).

The gatekeeping role that enabled David to triage and modify
code enabled him to uniquely determine the unfolding of Com-
piz: from the choice of code styling conventions, to the designa-
tion of certain features as useful or not, from the determination
of poor coding to key decisions around code architecture. Each
of these aspects of Compiz was, in the last instance, the preroga-
tive of the repository gatekeeper, a role that was an effect of a
largely unstated but immediately felt spatialisation enacted by the
user-space machine. In each of these instances, it was this spa-

THE MECHANICS OF ORDER

78

tialisation that produced the obligatory point of passage of the
gatekeeper. This was a type of power, no doubt, but it was an odd
form of power. It was not the direct control over other people
with which we are more familiar. David could not order any-
one directly. Instead, this was a tenuous ‘power-over’ vicariously
enacted through David’s control over an object. It was through
other’s desire to work upon Compiz that the gatekeeper role was
extended beyond direct control over Compiz-as-code into a weak
form of power-over: the power to shape people’s contributions,
to encourage or discourage areas of work, to regulate their par-
ticipation. Moreover, this power was binding only insofar as the
object itself — the code — remained designated official, that it
remained the exclusive avenue for work to proceed, and only so
long as others desired to contribute to the project. It was there-
fore a power effect both vicarious and precarious.

§This was an important though relatively simple effect of
the Passport machine: the control over the flow into and out

of the code repository, where that code was monitored but free to
travel in one direction, and directed through a single discretion-
ary actor in the other. It was also a rather stunted implementation
of the Passport. The ability to fully individualise a population was
lost: access to the code repository was granted through the colla-
tion of many and different people under a single username, and
the submission of code occurred via email, largely escaping the
embrace of the Passport machine altogether. Moreover, this im-
plementation was primarily repressive in its effects: it operated to
restrict the flow of code into the repository but, besides the cre-
ation of the gatekeeper role and its concomitant ability to shape

The Passport

79

the code, it had few other productive effects, either in the creation
of spaces or in the moulding of populations. This is to say, both
the productive capacities of the Passport and its individualised
embrace were not fully realised in this anonoymous model.

Early on in the project, however, at the same time as David
announced his intention to review all patches before being com-
mit into the repository, he also announced that,

If you have got a plugin or decorator, I’m more than
happy to put it in CVS and give you commit access as
long as you’re willing to maintain it, there’s a configure
option to disable it, and it’s not a complete piece of
crap.

(Reveman, David: 2006-04-04 05:32).

The plugin and the decorator rely on a principle fundamental to
programming and computer systems known as modularisation.
This abstract machine will form the basis of Chapter Five, but for
now we need a basic understanding of the concept. Modulari-
sation is a process of ‘black-boxing,’ of hiding away complexity
behind a simple and, more importantly, a stable interface. A pro-
gram without modularisation is a highly interdependent mesh-
work of code: each function may rely on another function else-
where, each variable may rely on being set by a diverse number
of routines. As a program gets larger, the complexity of these
relationships becomes ever greater and the changing of one part
of a program may have great and potentially disastrous effects
elsewhere. Modularisation attempts to resolve this problem of
complexity through the spatialisation of code. It involves the
segmentation of code into a limited number of bounded spaces,
the interiors of which are designated as off-limits to code beyond,
coupled with the creation of externally accessible façades, known

THE MECHANICS OF ORDER

80

as interfaces, to handle communication between each modular
component.

Compiz-as-code had its own high-level modularisation, split
between ‘core’ and a large number of plugins. Compiz core con-
tained the code that had been deemed by David Reveman as es-
sential code, code that he believed was of a universal nature and
should be made accessible to all other parts of the program. In
addition to providing these universal functions, Compiz core also
implemented a plugin architecture: it created a set of routines, in-
terfaces and protocols that could allow a self-contained plugin to
be inserted into the code. These plugins added new capabilities to
the Compiz core skeleton, which by itself did very little: one add-
ed shadowing to windows, another made windows wobble when
they were moved, and another moulded the virtual desktops onto
a cube-transform. Just as each could be added and removed from
the code cleanly thanks to this modularisation, so each could be
disabled or enabled within the Compiz program.

Upon this modularisation of code was overlaid the user-space
machine. Just as modularisation segments the code, transform-
ing it from a dense mesh of interlinking code into functionally
separate spaces, so too the programmers may be each assigned a
domain, transformed from the horde into a more individualised
state. Each of these spaces came under the controls of the user-
space machine, permissions tables were drawn up to carefully
regulate users’ access to the different spaces of the code, and logs
tracked minutiae movements across the newly constituted bor-
ders. Given access to a modular space within the code repository,
a programmer could be enabled to write code, code that could
access Compiz core via the plugin interface, code over which the

The Passport

81

programmer could be granted both read and write permissions
and therefore bypass any form of direct gatekeeping. In the same
instance, the programmer would be brought within a space of
enclosure, limited to the domain of the module, to the function-
ality granted to plugins, and denied the same write permissions
to other plugins or core.

This enclosure forms the first component to Foucault’s ‘art of
distributions,’ which was for him a type of disciplinary individu-
alisation (Foucault, 1995: 167). He described three further aspects
to this art, each of which we find fully articulated within the com-
bination of the user-space machine and the modular framework
of Compiz. The enclosure of each programmer within their own
modular space had a concomitant effect: that the population of
programmers found itself broken apart, each designated a space
of their own. For Foucault, this partitioning was a method of
managing the perennial problem of the horde or the mass:

Each individual has his [sic] own place; and each place
its individual. Avoid distributions in groups; break up
collective dispositions […]. Disciplinary space tends to
be divided up into as many sections as there are bodies
or elements to be distributed.

(Foucault, 1995: 143).

To this second aspect of the art of distributions was added a third:
functional sites. With the allocation of each space came the alloca-
tion of a task. The creation of code within each of the modular
spaces of Compiz was limited by the affordances offered by the
plugin interface, which is to say, by dint of their architecture, each
of these modular spaces became functionally oriented towards
writing plugins, and only plugins. This was both a repressive func-
tion of power, limiting activities within these domains to a desig-

THE MECHANICS OF ORDER

82

nated subset, as well as a productive function, for it simultaneous-
ly operated to create these spaces as useful, as equipped with the
necessary tools and interfaces for plugin development (Foucault,
1995: 144). The table was the fourth aspect of Foucault’s art of
distributions, and operated to classify bodies or objects accord-
ing to a spatial register. The hierarchy of programmers within
Compiz was overlaid simultaneously onto a spatial distribution
of sites: David Reveman operated within the universal space of
core; the limited number of plugin maintainers presided over the
subspaces of the plugin modules; and at the bottom, the anony-
mous contributors operated within the no-space of mere access.
This particular disciplinary individualisation — employing en-
closure, partitioning, functional sites, and the table — Foucault
termed ‘cellular’ (Foucault, 1995: 167).

The cellular individuation offered by the modular spatiali-
sation of Compiz coupled well with the gatekeeper role, and
functioned as a kind of stopgap. In the first instance, it allowed
a more active participation within Compiz according to the af-
fordances offered by the plugin interfaces and relieved coders of
much of the frustration of the triage process. This had the effect
of reducing the dissatisfaction concerning the spatialisation of
Compiz and its effect in the gatekeeper role. But in the second
instance, it was operated as a containment strategy, enclosing and
partitioning coders and their code, both of which could be trivi-
ally disconnected from the Compiz project owing to their careful
boundedness. This twofold process of affordances coupled with
containment is made quite explicit in a number of exchanges on
the email list. In an early exchange at the end of June, the possibil-
ity of forking was being raised by several contributors prompting
the response by Matthias Hopf that,

The Passport

83

I don’t really think [that there is the need for diver-
gence]. As compiz is composed of plugins, alternative
plugins should be possible. So if the goals for a par-
ticular plugin are too different to be solved in a single
source fragment, only the particular plugin should be
forked (inside the same repository).

(Hopf, Matthias: 2006-06-26 03:35)

Matthias’ emphasis is on the containment of dissent, consigned
not to Compiz as a whole but to the limited domains of the pl-
ugins, and he stresses the overall unity of the project even as indi-
vidual plugins may be forked. Following the Compiz/Beryl fork,
David wrote to the list on 28 September arguing that the reasons
for the fork were ill founded as he had,

[…] designed compiz to be extremely extensible. The
plugin system should allow people to do almost any-
thing and I’ve put a high priority in making sure it got
updated when I or someone else found something that
couldn’t be done with it. People can choose whatever
development methods they want and put whatever
code they want into plugins.

(Reveman, David: 2006-09-28 10:12).

There is once again an explicit appreciation of the role that the
subspaces of the plugins were meant to play in heading off the
possibility of the fork.

§The means through which the user-space machine was
enforced within the spaces of the plugins is testament to its

unique logging abilities. For elsewhere the user-space machine
typically operated according to a system of simple control mech-
anisms: what was allowed was made possible, and that which was

THE MECHANICS OF ORDER

84

not allowed, rendered impossible. There was in this no possibil-
ity of deviance. But in the operation of the plugin spaces, the
usual mechanisms deployed to enforce maximum enclosure were
not implemented. Instead, there was a departure from a regime
of control to a regime of norms, made possible by the enaction
of a condition of transparent traceability. Here, the Passport ma-
chine’s ability to catalogue movements was deployed such that
deviance, now possible, was also and immediately made visible.

The technical implementation of the user-space machine
within the Compiz plugins was implemented through the limited
allocation of individual usernames to individual plugin maintain-
ers. In place of the anonymous and collective username ‘anon-
cvs,’ one chose instead a unique username. But for this limited
few, the greater permissions that were offered by individual user-
names came at the cost of a significantly firmer embrace by the
user-space machine. This embrace required a firmer correlation
between the body and the username and it fell upon the object of
the password to establish this link. The password had two effects.
The first was to keep undesired users from accessing the reposi-
tory through other’s accounts. But it was, in addition, an attempt
to firmly and uniquely link the body and the username. The pass-
word, as a tidbit of information that ideally existed in the mind of
just one person, served in this context as a kind of anthropomet-
ric identification. Moreover, its integrity was guarded through the
use of advanced techniques of encryption. In this manner, the
password was the guarantor that each username uniquely cor-
related with the body to which it was assigned.

It was this embrace, now firmly established with the individ-
ual usernames, the password, and techniques of encryption, that

The Passport

85

could generate a condition of transparent traceability. Much as
the files of the Passport machine are both prescriptive and histori-
cal, so too the user-space machine contained both permissions
tables as well as activity logs. Moreover, these activity logs were
of a much finer precision than the Passport machine of States, for
almost every object and every space was a border, and thus every
kind of activity prompted some sort of interaction with the user-
space regime. For every kind of activity that occurred within the
CVS repository, an entry into the record log was made, record-
ing the activity, the time, a number of more esoteric datum and,
most importantly, the username. Every commit made was imme-
diately connected to the username and the body that had made
the commit, each edit or reversion was logged against the unique
identity that performed the operation, every traversal of a virtual
border was recorded. This condition of traceability was not only
total but it was, for the most part, transparent: other users, both
individual and anonymous, could view these records.

It is in this condition of transparent traceability that we can
fully appreciate the nature of the departure from the more com-
mon regime of control of the user-space machine to the limited
space of norms within the CVS repository. Those given plugin
access could in fact make commits beyond their modular spaces:
the possibility existed for them to commit into core, for them to
edit other users’ plugin code. That is, for them to be deviant. As
Matthias Hopf wrote at one point on the email list,

Getting a CVS account for X.org is not complicated.
However, you should only commit yourself into a par-
ticular tree, if the maintainer agrees. This is basically
David’s decision.

(Hopf, Matthias: 2006-06-26 03:35).

THE MECHANICS OF ORDER

86

The operative word here is ‘should,’ signalling the possibility that
users could do otherwise, and as Matthias indicates, it was David’s
ongoing role as super user that bestowed upon him the ability to
define behaviour as proper or improper. Deviations from his pre-
scriptions would have been immediately made visible and would
have been uniquely linked to the body by way of the user-space
machine. Moreover, the CVS repository guaranteed that any such
improper commits could be reversed to an earlier version, thus
rendering the repercussions of deviant behaviour as trivial. With
the exception of those instances where David gave explicit license
to registered users to commit particular pieces of code to core,
there was not a single instance of deviant behaviour by a regis-
tered user during the period of this study.

§Virtual space and, in particular, the space of Compiz is nei-
ther smooth nor continuous. It is a highly segmented space,

carefully managed by its own instantiation of the abstract ma-
chine of the Passport. These key elements — the border, the port,
the files, the passport, and the host of other technologies used
to stabilise each of these elements — could be found in the user-
space machine of the Compiz code repository. This user-space
regime produced two different kinds of effects. The first con-
cerned the anonymous user, whereby the user-space permissions
allowed for an unrestricted flow of code out of the repository
but denied the ability to commit code in the other direction. This
twofold process of spatialisation and access controls enacted the
system ‘super user’ as a kind of gatekeeper, one through whom
incoming code had to first pass and who, by dint of this fact,
gained the unique ability to shape the progressive development

The Passport

87

of the objects Compiz-as-code and Compiz-as-program. In this
ability, David Reveman as gatekeeper came to exercise a kind of
vicarious power throughout the course of this study. The second
kind of effect concerned the production of the modular spaces
of the plugins and the creation of the registered user. To this
user was granted not only read access to the CVS repository but
write access too, with the expectation that write access would
be restricted to their designated plugin space. This was a process
of affordances coupled with containment, and was intended to
function as a stopgap to the growing dissatisfaction caused by
the gatekeeper role and its sometimes unpredictable triaging of
patches. To the registered user the additional permissions came
with a much firmer embrace by the user-space regime, with the
password and the computer logs combining to enact a condition
of transparent traceability that ensured compliance with the pre-
scriptions of the CVS super user.

If the Passport effects a spatialisation whose effects are pri-
marily territorialising and hierarchicalising, then the abstract ma-
chine to which we next turn stands at odds on both accounts.
The Fork, similarly built upon its own kind of spatialisation, is de-
territorialising and anti-hierarchical. The existence of space else-
where outside of Compiz coupled with the open source property
regime brings to the fore a ‘precarious’ aspect to the gatekeeper
role, and it was in their juxtaposition to one another that the Pass-
port and the Fork produced one of the major tensions within the
Compiz project.

89

The abstract machine of the Exodus operates as a kind of
sword of Damocles, perpetually raising the possibility of deser-
tion through the construction of an ‘imaginary counter-power.’
In this it confronts an order with an ongoing spectre of division,
one that in its threat of resistance comes to wield constitutive ef-
fects upon the nature of that order. The abstract machine of the
Exodus tends to undermine the centralised exercise of power and
thus comes to be decentralising in its effects. Within the Compiz
project, this diagram was concretely instantiated as the ‘forking’
machine owing to realisation of two conditions. The first con-
dition was in making the prospect of the fork a genuine possi-
bility by the provision of both sufficient resources and of space
elsewhere. Secondly, the possibility of the fork was made known
by a discourse of counter-power, one that constantly reiterated
the prospect of the fork. With these two conditions fulfilled, the
project operated under the constant threat of a desertion and the
looming prospect of division. The primary effect of the forking
machine was to impose an additional role upon the gatekeeper

IV. The Exodus
In which talk of escape renders the powerless as

powerful, and the gatekeeper is transformed to maintainer

THE MECHANICS OF ORDER

90

known as the ‘maintainer,’ a role that recast the gatekeeper in
service to the community of developers and tasked him with the
ongoing maintenance of the code. It was a machine, therefore,
that countered the power of the role of the gatekeeper by locat-
ing within the community of developers an additional and oppos-
ing locus of power.

§To understand the machine of the Exodus, we need to first
understand the notion of both counter-power and its form

in potentia known as imaginary counter-power. The notion of
counter-power is an idea prevalent in anarchist and anti-State so-
cial movements. It is also known as anti-power and, in certain sit-
uations, as dual power.12 Counter-power exists within a group as a
plethora of machines — institutions, groups, material resources,
media and so forth — that are opposed to and set against the
hegemonic order of that group. It is an opposition to a dominant
order that forms within the bounds of that order. But it is more
than mere opposition. A conglomerate of machines only comes
to resemble a counter-power when it contains within itself a sub-
stantial constructive moment: its own form of social organisation,
its own ordering mechanisms, and its own provisions, however
weak or tentative, for providing for its own needs. A counter-
power opposes a dominant order through the enaction of its own
form of social, material and spatial organisation. This alternative
form of organisation is not a replacement of existing power, it does
not seek to ‘conquer and get [its] hands on the old power, but to

12.  See John Holloway (2005) for an elaboration on ‘anti-power.’ ‘Dual power’
was first articulated by Vladimir Lenin (1917) in an article by the same name.

The Exodus

91

develop a new Potenza of life, organisation and production’ (Ne-
gri, 2008: 144; emphasis in original). The opposition of counter-
power is thus threefold, as resistance, insurrection and constitu-
ent power: ‘insurrection pushes resistance to become innovation
[…] and, whereas the insurrection is a weapon that destroys the
life-forms of the enemy, constituent power is the force that posi-
tively organises new schemes of life’ (Negri, 2008: 140).

In its opposition counter-power comes to wield a constitutive
effect upon the dominant order of the group. Some version of
this idea has animated Marxism for well over a Century now in
the form of the dialectic forces within society that drive it through
the progressive stages of History. It finds its most explicit expres-
sion in the Italian Autonomia movement and its notion of the
constitutive force of the multitude, no longer deemed the hap-
less and passive subjects to the movement of History. Antonio
Negri, for example, writes that ‘the state […] is organised to con-
trol and repress counter-power’ and that ‘the struggles as extreme
and powerful danger are always present, obsessively pressing on
the capitalist definition of development’ (Negri, 2008: 145). The
machines of hegemony are constantly propelled by both real and
imagined threats to their dominance, always and already engaged
in reconstituting themselves in opposition to the movements of
counter-power. They are, that is, partially constituted by counter-
power.

One step removed from the notion of counter-power is imagi-

nary counter-power. Imaginary counter-power, unlike real coun-
ter-power, does not exist as a concrete and already-existing seed
of an alternative social order. Rather, it exists as the potential for
machines of counter-power to form, as the ongoing and latent

THE MECHANICS OF ORDER

92

possibility of the emergence of real counter-power. The emer-
gence of counter-power represents a declaration of open battle
over the form of social organisation, whereas imaginary counter-
power is the ongoing threat of such contestation. The elements
of imaginary counter-power are different to its concrete cousin:
they are those machines directly tied to the aspect of its potenti-
ality, those elements that fulfil the necessary conditions for the
emergence of real counter-power. In the ongoing potential for
counter-power to form, and to form with ease, imaginary counter-
power itself comes to wield constitutive effects upon a hegemon-
ic order, effects that are directly proportionate to the perceived
prospects of its appearance.

As an example, let us take from the work of the French an-
thropologist Pierre Clastres who documented a type of imaginary
counter-power that operated amongst a number of tribes of the
Amazon. Clastres wrote in opposition to an anthropology at the
time that suggested that these societies, being without State ap-
paratuses, were an infant form of political order, that they were in
some way deficient in comparison to those societies with States.
In presuming the natural evolution of societies to be one towards
Statehood, the onus therefore fell upon Clastres’ contemporaries
to explain this lack. Clastres took a novel approach and instead
proposed that these were societies against the State and suggest-
ed that their whole social organisation was oriented against the
emergence of hierarchy, against the ‘spectre of division’ between
the dominating and the dominated. For Clastres, these societies
were no longer in some way deficient and incapable of progress-
ing along the evolutionary path of political forms, but rather that
possibility was always and already foreclosed by the operation
of an imaginary counter-power. Clastres, for example, speaks at

The Exodus

93

length on the role of the chief. Contrary to popular images of
these tribes, and baffling to early Europeans, chiefs were leaders
without power: ‘The chief is not a commander; the people of the
tribe are under no obligation to obey. The space of chieftainship is

not the locus of power […]’ (Clastres, 1989: 206; emphasis in origi-
nal). Clastres continues,

The chief is there to serve society; it is society as such
— the real locus of power — that exercises its authority
over the chief. […] In a sense, the tribe keeps the chief
under a close watch; he is a kind of prisoner in a space
which the tribe does not let him leave.

(Clastres, 1989: 207)

If these were societies against the State, then through what kind
of mechanisms is the chief kept powerless? Anthropologist Da-
vid Graeber, picking up on the thread left by Clastres, describes a
peculiar attitude towards power prevalent in non-State societies:

In egalitarian societies, which tend to place an enor-
mous emphasis on creating and maintaining communal
consensus, this often appears to spark a kind of equally
elaborate reaction formation, a spectral nightworld
inhabited by monsters, witches or other creatures of
horror. And it’s the most peaceful societies which are
also haunted, in their imaginative constructions of the
cosmos, by the constant spectres of perennial war. The
invisible worlds surrounding them are literally battle-
grounds. […] It’s not these contradictory impulses them-
selves which are the ultimate political reality, then; it’s the
regulatory process that mediates them.

(Graeber, 2004: 25; emphasis added)

It is this tortured nightworld of witches and, in an example
Graeber describes later, the notion of ‘flesh-debt,’ that is asso-

THE MECHANICS OF ORDER

94

ciated with the exercise of power. Those exercising power, in a
sense, are believed to feed off of the bodies and spirits of those
they dominate, to have obtained that power through evil deeds,
through literally consuming the substance of others (Graeber,
2004: 27). And as Graeber suggests in the final sentence, it is the
effect of this attitude towards power that ensures these societies
fend off the emergence of power as an ongoing possibility. It is
this imaginary world of witches and spirits that sets up the latent
possibility of an altogether real revolt: the periodic witch hunts
against those coming to exercise power over others, the killing
of chiefs or their abandonment by their tribes (Graeber, 2004: 26-
29; see also Clastres, 1989; Clastres, 1994). This is the imaginary
counter-power: not the tortured nightworld by itself, but the role
it plays in making these resistant acts against those in power a
real, genuine and ongoing possibility. In putting down the possi-
bility of power, Graeber claims this imaginary counter-power to
also have a constitutive effect. He writes,

Institutionally, counterpower takes the form of what
we would call institutions of direct democracy, consen-
sus and mediation; that is, ways of publicly negotiating
and controlling that inevitable tumult and transform-
ing it into those social states […] that society sees as
most desirable […]

(Graeber, 2004: 35)

Imaginary counter-power, therefore, comes to wield a double ef-
fect: both in opposing the eruption of power and in shaping the
institutions of their own societies, backed in both instances by
the ongoing threat of chieftal abandonment or death and their
replacement with their own newly constituted social form.

The Exodus

95

§The abstract machine of the Exodus is a particular type
of imaginary counter-power, one that operates according to

a single category of resistance known as the exodus.13 Drawing
upon Michel De Certeau, we can categorise resistance practices
into three distinct types according to the manner in which they
act upon space and time. The first and archetypal form of resis-
tance is the strategy. The strategy embraces all manner of practic-
es that seek conquest over that which they resist. It is a resistance
that is neither defensive nor sly, but stands firm and wages battle
upon the same terrain as its object of contention. This is to say,
it is the conquest of existing space and time. De Certeau wrote,

I call “strategy” the calculus of force-relationships
which becomes possible when a subject of will and
power (a proprietor, an enterprise, a city, a scientific
institution) can be isolated from an “environment.” A
strategy assumes a place that can be circumscribed as
proper (propre) and thus serve as the basis for generat-
ing relations with an exterior distinct from it […].

(De Certeau, 1988: xix)

The strategy is visible and proud. It seeks legitimacy through
rightful conquest, and is founded upon the capture of territory
and time, territory whose defence, enlargement and embrace
will form its ongoing preoccupation. In Pierre Clastre’s work, an
imaginary counter-power built upon this model is one that threat-
ens to rise up and reject the chief through death or otherwise.

Against the strategy is a second type of resistance, one with-
out either proper place or time that we can call the tactic. The
tactic is quiet, its existence being founded upon its invisibility. It

13.  The Exodus, capital letter, refers to the abstract machine as a whole; exo-
dus, lower case, refers to the event of desertion.

THE MECHANICS OF ORDER

96

occurs in the interstices and cracks of power and bears a similar-
ity to the art of jujitsu: with nothing of its own, its resistant prac-
tices must ‘make do’ with the objects and space of the hegemonic
order; with nothing of its own it must turn these objects against
themselves and must reinscribe them against their intended pur-
pose. De Certeau wrote,

I call a “tactic,” on the other hand, a calculus which
cannot count on a “proper” (a spatial or institutional
localization), nor thus on a borderline distinguishing
the other as a visible totality. […] It has at its disposal
no base where it can capitalize on its advantages […].
Whatever it wins it does not keep. It must constantly
manipulate events to turn them into “opportunities.”

(de Certeau, 1988: xix)

The tactic is a fleeting capture of otherwise occupied time and
space, forced each time to start anew.

De Certeau suggests only these two categories of resistance.
There is, however, a third type of resistance that depends upon an
outside, a frontier, or the ability to turn an inside against itself. It
goes by many names: the exodus, the line of flight, the refusal, the
escape, and the fork. We can formulate this once again in terms
of space, for while the strategy is the conquest of existing space,
and the tactic is the momentary reclamation of official space and
(mis)-appropriation of its objects, the exodus is the withdrawal
from occupied space altogether. It is a kind of non-hegemonic
resistance14 that attacks that which it resists through an absence:

14.  Non-hegemonic resistance is one that resists whilst not seeking to conquer
and become the object of contention. See Deleuze and Guattari’s notion of
‘becoming-minor’ (2004b: 320–322) and Richard Day’s (2005) discussion of the
concept.

The Exodus

97

it is a refusal to remain subject to a particular power and refusal
to remain constitutive of that very power. En masse, the exodus
deprives that which it resists of its constituent parts and of its
subjects; it leaves it deserted. In the exodus, however, there exists
not just resistance but possibility: the possibility that exists in the
space to which they escape, the possibility of constructing some-
thing that avoids the perils of the past. In its desertion, the exodus
always entails the creation of new relations and new forms of
social organisation. The exodus, therefore, is a resistant practice
that contains both destructive as well as constructive elements. In
Pierre Clastre’s work, the exodus is the abandonment of the chief
by the tribe and the relocation of themselves elsewhere. Such a
practice is made possible by the inability of the chief to deny such
a course of action, by the presence of space elsewhere beyond its
borders and, owing largely to an economic system based upon
gathering and hunting, to the relatively low cost of such a move.

§Merging these two concepts into one gives us a first for-
mulation of the abstract machine of the Exodus. The Exodus

machine produces the prospect of the exodus as a kind of sword
of Damocles: it forms an imaginary counter-power which, while
imaginary, has effects that are nonetheless both real and consti-
tutive of the social ordering. The Exodus requires a number of
necessary conditions: first, the presence of space elsewhere, that
is, an outside; the ability to leave for this outside, which is to say,
a relative absence of constraint or coercive violence; a material
abundance such that the space outside is not a space of certain
poverty; and, finally, a discourse of counter-/anti-power wherein
the exodus, now made possible, comes to wield its effects. Let

THE MECHANICS OF ORDER

98

us turn, one by one, to each of these conditions of the abstract
machine of the Exodus and their manifestation as the forking ma-
chine within the Compiz project.

The first element of the Exodus is the presence of an outside.
Clastre’s examples of chieftain abandonment, for example, were
made possible by the space which existed beyond the domain of
the chief. We can find a similar example in an article by Paolo Vir-
no where he describes the practices of defection or ‘the exit’ that
occurred during the industrialisation of the United States. He
writes, ‘one has only to think of the mass flight from the factory
regime set in motion by the workers of North America halfway
through the nineteenth century as they headed off to the “fron-
tier” in order to colonize low-cost land’ (Virno, 2003). The fron-
tier and its low-cost land here act as the space outside that makes
the very act of defection possible. In both cases, this ‘outside’ is
quite literally a space beyond the grasp and embrace of a par-
ticular hegemonic machine, an outside that exists as the first and
most important condition to establish the exodus as an ongoing
possibility. The virtual space of Compiz can be thought in much
the same way as the frontier: large hard disks, abundant network
connections and a relative excess of computer power combine to
form an outside that is both large and cheap. Defection is cheap
but it is not, however, free: there remains a cost associated with
this movement to an outside and with the creation of these new
spaces, and this is just as true for virtual spaces as it was for the
Amazonian defections and the mass flight of the factory workers.
In satisfying this first condition of the Exodus machine, the costs
associated with the movement to and creation of these outside
spaces must be low enough that they remain a possibility.

The Exodus

99

The second condition of the Exodus machine is in the abil-
ity to leave occupied space, and this first and foremost means an
absence of violence, latent or otherwise. It makes little sense to
speak of the exodus-as-event as an ongoing possibility knowing
full-well that any such escape would be met with violence and
any movement to an outside space met with conquest or demoli-
tion. Nor does it make sense if the very act of escape is already
foreclosed by the presence of borders and constraints that would
deny such movement. Within Compiz, the possibility of violence
was very much limited. Indeed, if we can speak of a virtual vio-
lence at all then it is in the ‘flame wars’ and ‘denial of service’
attacks, in verbal exchanges and technical sabotage.15 These forms
of violence, however, were absent from the Compiz project and
there was otherwise no substantive threat of violence for defec-
tion. Constraint of movement, on the other hand, was the pri-
mary effect of the user-space machine whose mechanisms cre-
ated fiefdoms of each of the various nodes of virtual space. This
control, however, only extended so far as the node itself, and op-
erated only so long as one desired to remain within its space. If
one chose to leave its domain its mechanisms became powerless,
having no effect outside its domain nor ability to restrict exit.

Having established the necessary conditions of escape, as
we have in these first two conditions, does not mean that such
a course of action becomes likely if it is one of guaranteed pov-
erty. This is the third condition of the Exodus machine: the con-

15.  A flame war is a textual exchange of heated, insulting and often vicious
comments, usually on a public mailing list, meant to subdue opposition through
shear intimidation. A denial of service attack is an attack upon a server by way
of a network connection, wherein the server is overwhelmed by a deliberate
flood of network requests.

THE MECHANICS OF ORDER

100

dition of material abundance. Clastre’s chieftain abandonment,
for example, was made possible by the Amazonian tribes’ means
of production, namely gathering and hunting. In this, there was
no major capital that was lost in desertion, and the ecology of
the rainforest could provide roughly equally from place to place.
Within Compiz, the prospects of escape would have been much
reduced if escape entailed starting the coding effort anew and if,
moreover, it entailed losing access to the very means of produc-
ing code such as programming environments and code manage-
ment tools. As it turns out, it was the property regime of open
source software in general, and Compiz in particular, that had
the effect of satisfying this condition of material abundance. To
understand this, we must make a digression.

To understand the relative novelty of the property regime of
free and open source software, let us first concern ourselves with
the machinations of proprietary software. To revise briefly some
of what was discussed in Chapter One, Compiz-as-program was
produced out of Compiz-as-code through a process known as
compilation. That is, the code upon which the whole work of
the project was directed was run through a compiler producing
Compiz-as-program, a binary or mass of ones and zeros intelligi-
ble only to a computer. Unlike the source code, the binary cannot
be edited and improved upon by programmers since they cannot
understand its operations in the first place. Moreover, the process
of compiling code into a binary is for all practical purposes one-
way. This is the first technique of proprietary software: by distrib-
uting binaries of software whilst withholding the all-important
source code, a company can foreclose the possibility of ongoing
and independent development outside of its control. By this tech-

The Exodus

101

nique, the software is transformed into a pure end product and
withdrawn from social production.16

But while the software is withdrawn from social production,
the binary can nonetheless be easily copied and shared even if it
cannot be edited. The sharing and duplication of the software
outside the bounds of the originating company undermines its
exclusive grasp on the product and it is compelled to orchestrate
the necessary conditions so as to channel distribution through it-
self. There are technical means through which this can be done,
such as using the techniques known as ‘Digital Rights Manage-
ment’ or using product serials and keys to unlock products, with
each of these implementing the abstract elements of the Pass-
port machine to a greater or lesser degree. The most common
method, however, is the use of the software license. The software
license relies upon contract law, copyright statutes, patent pro-
tections and trade secret laws to specify the terms under which
the software may be used, distributed and copied (Kim, 2008). In
most cases these terms are highly restrictive and prohibit copy-
ing and distribution altogether as well as any attempts at reverse
engineering or altering the software. Third party copying and dis-
tribution thus becomes illegal, the software becomes scarce, and
legitimate sales and distribution are brought back within the pur-
view of the company. In this way, a mixture of technical mecha-
nisms and the latent violence of the State are enacted to create
the binary as finite and scarce.

16.  I owe my use of the phrase ‘social production’ to Yochai Benkler’s The
Wealth of Networks (2006). He elsewhere also uses the phrase ‘commons-based
peer production’ interchangeably with ‘social production.’

THE MECHANICS OF ORDER

102

It is in light of these tactics that we can understand the prac-
tices of free and open source software. FOSS counters proprietary
software on both counts: in the first instance it is founded around
the open distribution not just of the precompiled binaries but the
source code itself, and in the second instance FOSS projects use
copyright law to guarantee recipients of code the right to modify
and distribute it. The first of these countermeasures is straightfor-
ward: for software to be considered open source its source code
must be publicly accessible. This is usually provided for download
from a server either as a compressed file or by giving direct access
to the code repository, as was the case with Compiz.

The second countermeasure is in the associated software li-
cense. Free software licenses make use only of copyright law, as
opposed to using patents or contracts, and thus the license only
comes into effect upon copying and distributing the software; it
makes no prescriptions regarding its use. Compiz was licensed
under three different software licenses. The bulk of its code was
covered under the Massachusetts Institute of Technology or MIT
license, the remainder, notably the ‘Gnome decorator,’ was re-
leased under the GNU General Public License (GPL) and a small
number of files under the GNU Lesser General Public License
(LGPL), which we shall not cover here. The two main licenses
represent two very different philosophies of free software. The
MIT license grants unrestricted rights to copy, modify, merge,
distribute and sell copies of software to which it is applied on
the condition that the copyright notice is distributed alongside
those derivative works (Open Source Initiative, n.d.). There is no
requirement for derivative works of software to be similarly open
source, and the terms of the license only apply to the section of
copied source code and not to any resulting binaries or additional

The Exodus

103

code. The MIT license, therefore, allows software under its do-
main to be integrated into closed source projects. This is known
as the ‘permissive’ aspect of the license and it is the primary rea-
son why MIT-licensed software is commonly embraced by com-
mercial enterprises. Aside from its requirement to distribute the
license alongside derivative works, the MIT license has an effect
very similar to deploying no copyright at all.

Like the MIT license, the GPL grants similar rights to copy,
modify, merge, distribute and sell software released under its
license. Where the GPL differs, however, is in its treatment of
derivative works. The GPL specifies that the right to modify soft-
ware under its license must exist for all derivative works. This
requirement therefore necessitates that all future versions of the
software must remain open source. Secondly, unlike the MIT li-
cense, additions and modifications to GPL-licensed code that can-
not be ‘reasonably considered independent and separate works
in themselves’ also come under the license (GNU Project, 1991).
The effect of this aspect of the license means that the GPL comes
to embrace not just the original code itself but the entire body
of code that forms a single piece of software, an effect that some
critics have described as ‘viral’ in nature (Mundie, 2001). Where
the MIT license places few constraints upon its derivative forms,
the GPL remains in full effect upon the growing body of deriva-
tive code for the life of the copyright, and this is known as its ‘re-
strictive’ aspect. The overall effect of the GPL, then, is to ensure
code that comes under its purview from ever becoming closed
source and from ever being released under terms that would oth-
erwise restrict its distribution. GPL-licensed software becomes
open to ongoing social production for the life of the copyright,

THE MECHANICS OF ORDER

104

and this inversion of the normal role of copyright is popularly
known as ‘copyleft.’

Quite in contrast to the measures deployed by proprietary
software makers to transform their code into a pure end prod-
uct, these two counter-measures — the open source code and the
inverted copyright — combine to ensure that code produced by
free and open source projects remains open to ongoing social pro-
duction. They work to ensure that there exists the potential for
code to be edited and modified by others, transformed and dis-
tributed elsewhere, and that the code itself can become the basis
for other programs. We can call this the socialisation of the code.

In addition to the code itself, the means of production such as
the GNU C Compiler, the code editors such as VIM or EMACS,
the CVS code repository software and the various GNU/Linux
components to test and run Compiz-as-program, similarly exist-
ed in fully socialised forms. These tools, therefore, could be du-
plicated and transferred just as the code produced within Compiz
could be easily and trivially replicated.

To return from our digression, then, we can say that the so-
cialisation of both the code and the means of production within
Compiz and throughout the free software community in general
produced a situation of material abundance, one that guaranteed
that a fork from Compiz was not doomed at the outset to code
poverty. The potentiality of the exodus-as-event was therefore
not made undesirable by material constraint and in this manner
the third condition of the Exodus machine was satisfied.

The fourth and final condition of the Exodus machine is a
discourse of counter-power. The previous conditions produced
the exodus-as-event as both a potential and, in the last instance,

The Exodus

105

as a potential made not undesirable by poverty. But these condi-
tions, though perhaps satisfied, may languish unbeknownst if not
animated and given life through the ongoing work of a discourse
of counter-power, and it is in this discourse that the Exodus ma-
chine wields its constitutive effect. By discourse I mean literally
the words and stories that are told that allude to the exodus, as
well as the practices that in some fashion embody that possibil-
ity. In the example by David Graeber that we saw previously, this
discourse of counter-power lay in the tortured nightworld of the
witches and their flesh eating deeds, and in the necessity for their
opposition. Constantly reiterated and retold, these stories made
clear what lay before those who crafted for themselves positions
of power, the potential that lay in wait, and in this manner this
discourse came to constitute their social organisation as predomi-
nantly non-hierarchical.

Within Compiz, too, there existed a discourse of counter-
power, one that constantly reiterated and threatened the po-
tentiality of the fork. The project was haunted by a ‘spectre of
division,’ but in a rather different way than Clastre’s spectre of
division between the dominating and dominated. From the very
outset, ruminations abounded of the possibility of a fork, some
of which we have already encountered. Quinn Storm’s early
email in response to the rejection of the window shadowing patch
raised the possibility of the fork, though she noted at the end ‘I
wish this does not have to happen, and hope it does not’ (Storm,
Quinn: 2006-05-03 09:39). We have previously understood this ex-
change in terms of simply raising the possibility of the fork but
we can, now, understand this as also contributing to an ongoing
discourse of counter-power, as reiterating the spectre of division.
Moreover, her final sentence is both a threat and an implicit plea

THE MECHANICS OF ORDER

106

that David Reveman (we presume) better attend to the wishes of
the Compiz community.

One of the more lengthy exchanges around the possibility
of the fork occurred during the second half of June, still some
three months before the fork occurred. It was Guillaume’s email
that triggered this discussion which, if we recall, asked David for
greater engagement with the Compiz community, to provide ex-
plicit standards and coding styles, and to communicate better his
goals with regards to the project (Seguin, Guillaume: 2006-06-24
16:24). The first reply to this was from Wulf C. Krueger who, not-
ing that these issues had been ongoing, replied simply, ‘If I were
you, I’d just branch “officially” and compete’ (Krueger, Wulf C.:
2006-06-24 17:20). Quinn Storm, who was next to reply, wrote a
substantial response. In this she wrote,

I’ve wanted to avoid an “official” fork as long as pos-
sible, feeling that it could in the end work against every-
one’s best interest, but this all depends on the upstream
(freedesktop.org/novell) developers. […] If it comes
down to it, in the spirit of the GPL [GNU General Pub-
lic License], I am not against managing my tree as a
semi-fork (I’d still sync with updates from freedesktop
cvs of course, as davidr and friends often commit im-
portant updates).

(Storm, Quinn: 2006-06-24 23:04)

Once again, the prospect of the fork is in a sense used as a bar-
gaining piece. She suggests her aversion to the fork but signals her
willingness to proceed if the upstream developers of Compiz do
not change their behaviour. It is interesting, too, to note her por-
trayal of the GNU General Public License as not simply allowing
for the possibility of modifying and distributing code apart from

The Exodus

107

the main project, but that the possibility of forking in some sense
embodies the ‘spirit’ of the GPL. In a subsequent email Matth-
ias Hopf, a close associate of David, advised against a fork, sug-
gesting that ‘Branching has always been the source for problems’
(Hopf, Matthias: 2006-06-26 03:35). This prompted a discussion
around the merits of forking, with Wulf C. Krueger responding
to Matthias by citing some particularly famous forks. He wrote,
‘Tell that [to] Emacs/XEmacs, egcs/gcc or XFree86/X.orgX11.
:-)’ (Krueger, Wulf C.: 2006-06-26 11:21). Matthias replied,

Yes, and all of them have been a [pain in the ass], espe-
cially emacs/xemas, because both are used. The egcs
split turned out irrelevant. The X.org split turned out
good, but only because almost all developers switched
side.

(Hopf, Matthias: 2006-06-28 02:14)

We can see that the discourse of forking exists not just within the
confines of the Compiz community, but as shared stories of other
free and open source projects. Moreover, I would suggest that
the history of many of these forks could be considered common
knowledge, as well as the knowledge of the purported causes that
led to their forking. These stories were written upon objects out-
side of the Compiz project proper, on blogs, websites, mailing
lists and in a number of books documenting the history of free
software.

In addition to the ongoing ruminations around forking and
the common knowledge and stories of historical forks of other
projects, there was at least one more aspect to the discourse of
counter-power within Compiz. This existed not as a literal dis-
course, but was embodied in the existence of the Quinnstorm
branch. At the founding of the mailing list and the very first

THE MECHANICS OF ORDER

108

emails, the Quinnstorm branch was already in existence having
been created shortly after the initial code of Compiz was made
public in early 2006. Throughout the course of the following
months, the Quinnstorm branch was kept synchronised with the
official Compiz code as well as progressively including plugins
and other code of its own, code that for one reason or another
was rejected or simply omitted from Compiz itself. During this
time, the Quinnstorm branch was ostensibly and only a branch:
a parallel effort that viewed itself as part of and contributing to
the Compiz project. But it was also a threat. In many ways the
fork had already occurred: the production of new space on a new
server, the duplication of the Compiz code, the setup of the tools
required for code production, and the fostering of a community
around the Quinnstorm branch. With this substantial work al-
ready completed, what remained for the fork was more political
than anything else: the declaration of the fork, the naming of the
new project and the institution of their own practices of collabo-
ration as separate from Compiz. The Quinnstorm branch made
the potential of the fork considerably more real, and the ongoing
work around it surely contributed to the discourse of counter-
power within Compiz.

These four conditions for the abstract machine of the Exodus
— space elsewhere, the ability to leave, material abundance, and
a discourse of counter-power — were each instantiated within
Compiz as the forking machine. Though it would eventually cul-
minate in the event of the fork itself, it would for the greater part
of 2006 instead wield a constitutive effect upon the project.

The Exodus

109

§We saw in the last chapter that the Passport machine pro-
duced David Reveman as the super-user and gatekeeper of

the Compiz project. We also touched upon the precarious nature
of the power derived from these roles. The effect of the imagi-
nary counter-power of the fork was the production of this pre-
cariousness, and it was to produce him, in addition to gatekeeper,
as maintainer. ‘Maintainer’ was his designation within the proj-
ect, and it is a name that is commonly used across free and open
source projects. Unlike the role of the gatekeeper which expand-
ed one’s exercise of power, the role of maintainer burdened one
with a range of responsibilities. Much like Clastres’ chiefs, the
maintainer becomes a kind of prisoner to the project. This was
the primary constitutive effect of the forking machine.

The role of the ‘maintainer’ is the most common designation
amongst free software projects for the lead developer or develop-
ers. Its distinction from the role of the gatekeeper lies in its rela-
tion to the code. While the gatekeeper role was founded upon the
exclusive control of a single instance of the code, the maintainer
role was founded upon the ongoing stewardship of the code,
where one became a kind of caretaker or custodian. This includ-
ed jobs such as patching bugs, adding features, developing code,
accepting the patches submitted from others, providing for the
necessary infrastructure of code repositories and so forth. All the
day-to-day work required in developing the code that we saw in
Chapter One was, in the last instance, the duty of the maintainer.

The role of the maintainer was a job that was imposed from
outside. It was intimately tied to the role of the gatekeeper and
formed a kind of bargain or exchange. This exchange went such
that the community of developers chose to recognise the code

THE MECHANICS OF ORDER

110

under the control of the gatekeeper as the official and proper
code of the project, and in return the gatekeeper became re-
quired to adequately maintain this code and the project. Such an
exchange depended upon the ongoing possibility of the fork, for
in the fork contained the possibility that a part of the community
of developers may instead choose to recognise a copy of the code
held elsewhere. That is, the event of the fork, in addition to being
a mass defection, is also the establishment of a competing claim
as to the proper bearers of the code. In choosing to acknowledge
David Reveman as the proper bearer of the Compiz code, there-
fore, he was expected in return to perform the role of maintainer.

Against the potential despotism of the gatekeeper, the im-
position of the role of maintainer produced an opposing, anti-
authoritarian force. Its locus lay not within the gatekeeper but
dispersed within the community of contributors and its effect, by
raising the ongoing possibility of rejection-through-forking, was
to bind the maintainer to their duties. The gatekeeper was im-
posed with the task of maintainership much like Clastres’ chiefs
became prisoners to their societies. Of this relationship Clastres
writes,

The second characteristic of the Indian chieftainship
— generosity — appears to be more than a duty: it is
bondage. Ethnologists have observed among the most
varied peoples of South America this obligation to give,
to which the chief is bound […]. And if the unfortunate
leader tries to check this flight of gifts, he is immedi-
ately shorn of all prestige and power. […] Greed and
power are incompatible: to be a chief it is necessary to
be generous.

(Clastres, 1989: 30–31)

The Exodus

111

For all the potential powers that may be exercised as part of the
gatekeeper role, David Reveman was carefully bound in these
capacities. The vicarious powers of the gatekeeper role could
only be exercised so long as the community continued to desire
to participate, a desire that was tied to the ongoing status of the
project as the proper bearer of the Compiz code and him as its
maintainer. The maintainer was conferred a status of prestige
within the group, he was enabled to exercise a limited power over
both the ongoing development of the code and the community
of contributors, but in exchange he was bound to his duties as
maintainer, duties that should he have failed to perform he would
risk finding himself quickly and promptly abandoned.

The nature and content of these duties was formulated by
the community of contributors and was the subject of much de-
bate. In general, it was formulated as part of the discourse of
counter-power, formulating the expectations of maintainership
alongside the possibility of the fork. In the now-familiar discus-
sion around coloured window shadows, for example, a contribu-
tor named David Rosenstand replied to Quinn Storm and her ob-
jection to David’s authority in determining which features were
‘useless crap.’ He wrote,

Adding code for options that nobody wants to use
doesn’t make sense. The maintainers will have to main-
tain more code, and the users will have a harder time
finding the useful ones and potentially discover (and
report) more bugs.

[…] This critique seems unfair. “David’s vision” is just
responsible maintainership.

(Rosenstand, Mark: 2006-05-08 02:37)

THE MECHANICS OF ORDER

112

Elsewhere, another email talked of the possibility of ‘spaghetti
code’ (Liebetraut, Thomas: 2006-06-25 06:11), and that David’s
decision here to reject the window shadowing patch was, in fact,
appropriate in service of his other responsibilities as maintainer.
There is in these disagreements something of an attempt to for-
mulate and clarify what are reasonable expectations to have for
a maintainer and, in the same instance, to judge David against
these expectations. In another instance, a contributor claimed
that David had failed to properly communicate with the group
and this email was met with agreement from others on the list.
Matthias Hopf, however, replied

David is typically producing code. Lots of high quality
code. If he were chating [sic] as much as others (includ-
ing me) do, compiz wouldn’t be where it is now.

(Hopf, Matthias: 2006-06-26 03:35)

Once again, there is an articulation of the responsibilities of the
maintainer, here both to be communicative as well as to continue
development of the Compiz codebase, but there is also an ac-
knowledged trade-off in these different obligations, an acknowl-
edgement that the maintainer only has a limited amount of time.
Thus even as the maintainer becomes a kind of prisoner to the
group there is also a discourse that seeks to articulate the ‘reason-
ableness’ and fairness of these obligations.

§For all the effects that the forking machine had upon the
dynamics of the group, it nonetheless came about that the

Quinnstorm branch was declared a fork proper and renamed as
Beryl on 18 September 2006. The fork, however, was not a to-
tal abandonment of David Reveman. Many believed that he was

The Exodus

113

indeed properly performing his duties as maintainer and, in the
last instance, producing better quality code than that which was
being added to the Quinnstorm codebase. The contributors who
moved to create the Beryl project obviously disagreed and in the
official Beryl announcement attempted to list the different rea-
sons for the fork. As the first of these reasons, the Beryl project
claimed David to be unresponsive to patches being submitted:

Lots of people suggested to send our patches to the
mailing list. […] Furthermore, it’s really unsure that
David would happily accept these patchs [sic]. I’m
even nearly sure that most of them would be rejected.
Check the Xinerama issue; David is [only] willing to
implement his own stuff.

(Seguin, 2006)

Second to the list of charges was the problem of communica-
tion, where they argued that David was unresponsive and cited
the relative inactivity of the Compiz mailing list compared to
other Compiz forums, and that he had ‘never really published
what he was intending to do and implement on a long term plan’
(Seguin, 2006). Forking, they argued, ‘gives us the opportunity
to introduce our own roadmap, our own goals, our own release
cycle’ (Seguin, 2006). In addition to these issues with David’s role
as maintainer, they claimed a number of technical reasons for the
fork. The first, and the most important that they perceived, was
the divergence in code that had slowly occurred as the Quinn-
storm branch had accepted patches whilst Compiz had not. The
announcement read,

During this summer, and during the last few weeks,
some major additions were done in compiz-quinn-

THE MECHANICS OF ORDER

114

storm […] Consequently, we reached a situation where
it’s quite impossible to come back.

(Seguin, 2006)

The announcement also indicated that there was confusion
‘downstream’ about which code was the official Compiz code,
and that for the sake of the various downstream Linux distribu-
tions it was best to fork. The final part of the announcement in-
sisted that the fork was amicable:

Finally, please note that this is a friendly fork. We don’t
have anything against David, and we understand that
his hands may be tied due to his work at Novell. We just
need more freedom. Thanks David for the wonderful
job you did. We’ll just try to keep the quality level you
introduced.

(Seguin, 2006)

The rest of the announcement detailed the practical work that
was to be done to carry out the remainder of the work required
of the fork.

The claim of the ‘friendly fork’ was dubious. Frustrations
amongst the forkees were obviously high enough to justify the
fork itself, and in an email a few months after the fork David ex-
pressed his own frustrations concerning the fork, claiming it was
unjustified (Reveman, David: 2007-02-16 08:06). Even so, a flow
of code continued between the two projects. Patches to Compiz
core were also often applied to Beryl. In the opposite direction,
Mike Dransfield created a third-party repository of plugins that
were originally sourced from Beryl but had been tweaked so as to
work in Compiz too. This was eventually ‘packaged’ as ‘Compiz-
extras’ (Hopf, Matthias: 2006-10-20 05:35). Moreover, in recogni-
tion that there was much to be gained from sharing code in this

The Exodus

115

way even after the event of the fork, many contributors talked at
length of ensuring compatibility between the two projects. Mike
Dransfield wrote, for example, that failure to ensure this compat-
ibility would mean that ‘plugin writers are going to have a harder
time in the future to make their plugins compatible with each
fork,’ and that ‘there is clearly demand from the “community” for
[compatibility]’ (Dransfield, Mike: 2006-10-06 12:04).

The fork itself appeared to have a number of effects, though
whether these were caused by the event of the fork or were mere-
ly coincidental is difficult to discern. A week after the fork, David
created a plugin template which allowed for the easy creation of
plugins that also adhered to the coding styles that he was enforc-
ing upon the codebase (Reveman, David: 2006-09-27 11:19). A
further week after this, David released the much-requested cod-
ing style guidelines (Reveman, David: 2006-10-05 13:12). And, on
15 November, David proposed a detailed project roadmap, one
the key reasons given for the fork (Reveman, David: 2006-11-15
08:26). In general, there appeared a marked change in David’s be-
haviour after the fork. He began to comply with many of the stat-
ed reasons for the fork and became much more communicative
on the mailing list. One contributor, Shawn Starr, commented on
this change:

I am glad that your [sic] spending more time on compiz
now and are being responsive to people. […] I guess in
some ways, the fork has induced change in compiz and
that was really the idea.

(Starr, Shawn: 2006-10-06 12:54)

Subsequent to the event of the fork, therefore, a machine bearing
great similarity to the forking machine came to wield an effect
upon the project. But it was no longer the latent possibility of the

THE MECHANICS OF ORDER

116

fork that was the force behind this effect. Rather, the Beryl proj-
ect represented a fully constituted counter power and by its very
existence it raised the ongoing prospect of defection, threatening
to lure away the remaining developers. In this manner it appears
to have further bound David Reveman to his duties as maintainer
within Compiz.

§Though the project was to eventually fork, the forking ma-
chine had a considerable effect upon the organisation of the

Compiz project, both before and after the event of the fork. Its
first three elements — the presence of an outside, the absence
of violence and restraint, and the material abundance offered by
the socialisation of code that is unique to free and open source
software — produced the prospect of the fork as a genuine pos-
sibility. Its final element, the discourse of counter-power, was to
make this prospect known and to animate the forking machine.
In this discourse, the possibility of the fork was reiterated such
that the gatekeeper came to be imposed with the additional role
of maintainer. This role was the outcome of an exchange, one in
which the community of contributors granted to David Reveman
the status of proper bearer of the code replete with its gatekeep-
ing powers but, like Pierre Clastre’s chief, in this exchange David
became a kind of prisoner to the group and became bound to his
duties as maintainer. These duties were the constant subject of
discussion, concerning both the expectations others had of him
in his role as maintainer and the fairness of these demands upon
his work.

117

In 1975, Frederick Brooks wrote the iconic book The Mythical

Man Month on his observations of the organisation of software
production. In this he wrote of one of the key difficulties facing
not just software production, but any sufficiently complex proj-
ect:

The dilemma is a cruel one. For efficiency and concep-
tual integrity, one prefers a few good minds doing de-
sign and construction. Yet for large systems one wants
a way to bring considerable manpower to bear, so that
the product can make a timely appearance. How can
these two needs be reconciled?

(Brooks, 1995: 31)

The problem was the practical task of working together on a proj-
ect that was large in the number of its participants, large in size,
and both delicate and difficult in operation. The solution, Brooks
wrote, was to pursue what later became known as the ‘Cathe-
dral’ model. This was a model where the architecture of a project
would emanate from the mind of just one person — thus guaran-

V. The Module
In which our adversary Complexity finds himself tamed

by a happenstance of objects, borders and documents

THE MECHANICS OF ORDER

118

teeing ‘conceptual integrity’ — and which would overcome the
problem of complexity and an excess of design ideas by enforc-
ing a unidirectional flow of communication, from top to bottom.
The problem of complexity was to be solved with the stamp of
absolute hierarchy. Brooks would write that ‘[this] is an autoc-
racy that needs no apologies’ (Brooks, 1995: 46), but it was also
an autocracy that simply could not exist in free and open source
software, lest a project immediately face the prospect of a fork.

In 1997, Eric Raymond wrote The Cathedral and the Bazaar
which famously documented an alternative solution to Brook’s
problem that was then in operation in the free and open source
community. Raymond, himself a maintainer of a FOSS project,
wrote,

I […] believed there was a certain critical complexity
above which a more centralized, a priori approach was
required. I believed that the most important software
[…] needed to be built like cathedrals, carefully crafted
by individual wizards or small bands of mages working
in splendid isolation […].

Linus Torvalds’s [the originator of the Linux kernel]
style of development — release early and often, del-
egate everything you can, be open to the point of pro-
miscuity — came as a surprise. No quiet, reverent ca-
thedral-building here — rather, the Linux community
seemed to resemble a great babbling bazaar of differing
agendas and approaches […] out of which a coherent
and stable system could seemingly emerge only by a
succession of miracles.

(Raymond, 2000)

This ‘succession of miracles’ owed its greatest debt to the archi-
tecture of the code and the Linux operating system as a whole, an

The Module

119

architecture that from top to bottom implemented the machine
of the Module. This was an architecture of decentralised and in-
terdependent code that ‘talked’ to one another using standardised
protocols, inherited in large part from the architecture of Linux’s
predecessor, Unix, which was created in 1969. The architecture
was at once technical and social, its architectural shape lending
itself to a correlating shaping of social relations. Three effects of
the machine of the Module stand out. Firstly, the modularisation
of the code into discrete segments produced a correlating divi-
sion of tasks which in turn lent itself to a particular type of divi-
sion of labour: one that allowed for a great deal of autonomy
and, as a result, allowed for a massively parallelized undertaking
— potentially without anything of Brook’s autocracy. Secondly,
the task of creating and maintaining order was delegated to the
architecture of the modular system itself. Put differently, the task
of stabilisation was transferred from the person of the ‘system
architect’ to both the space of module and object of the protocol
standard. Questions around the ordering of social and technical
relations therefore came to be addressed to these objects. Finally,
the layers of modularity, from the level of the code on up to the
largest structures of the Linux operating system, produced a far-
reaching social order whose structure is best described as a type
of anarchistic federation.

In this chapter we will delineate the elements of the abstract
machine of the Module by tracing the development of one of its
archetypal forms, the System/360, before exploring its concrete
instantiation within Compiz and its effects upon the ordering of
the project.

THE MECHANICS OF ORDER

120

§Despite advocating the cathedral model for software de-
sign, Frederick Brooks ironically oversaw the development of

one of the earliest and most celebrated modularised artefacts, a
computer produced by IBM called the System/360 in 1967. The
process leading to the development of the System/360 spanned
more than twenty years and is testament to the difficulty of ap-
propriately modularising a complex artefact. In this process we
shall come to see the elements of the abstract machine of the
Module.

The first computers built during the early 1940s were thor-
oughly interconnected, and the tasks of designing, producing and
using a computer overlapped with one another. It was only upon
seeing these early computers in operation that it became possible
to start conceptualising them as combinations of discrete func-
tions. The first of these attempts was a memo issued in 1946 by
Arthur Burks, Herman Goldstine and John von Neumann (BGV)
which specified the different functional components of the com-
puter with which we are still familiar today — memory, proces-
sor, input and output devices, and secondary memory or storage
— as well as a separation between the computer design (hard-
ware) and its use (software) (Baldwin & Clark, 2000: 155-157).
The memo fell short of describing true modularisation, but it
was nonetheless an important milestone: rather than conceiving
of the computer artefact as a single integrated mesh of parts, it
began to conceive of them as distinct functional components and,
as a result, it could talk about the engineering problems unique
to the design of each of these individual components (Baldwin &
Clark, 2000: 156).

The Module

121

The BGV memo was an attempt at a mental decomposition
of the emerging artefact of the computer. The physical reality of
the computer, however, remained a thoroughly integrated and
soldered mess of parts, and each new computer had to be de-
signed anew. The BGV memo had made tentative steps towards
the standardisation of some of the design rules of making a com-
puter, such as the binary encoding of instructions, and in 1948
IBM produced the first standardised circuit, a ‘pluggable unit’
that could be inserted and removed from the rest of the com-
puter. Though the rest of the computer remained largely inte-
grated, this unit was truly modular: it was self-contained, of a
standardised size and provided a standardised interface in the
form of its connecting ‘plugs’ (Baldwin & Clark, 2000: 162).

With the introduction of the transistor-based circuit replacing
the vacuum tubes of old, IBM attempted early on to standardise
its form more rigorously than it had the pluggable circuit, which
despite all attempts had grown in complexity and proliferated
into over two thousand different combinations by 1957. Thus,
the Standard Modular System (SMS) was introduced in 1958 pre-
scribing a set of restrictive rules for transistor-based circuit de-
sign and manufacturing (Balwdwin & Clark, 2000: 163). Like the
pluggable unit, the SMS decomposed the circuit into numerous
smaller functional elements, each carefully and thoroughly pre-
scribed in terms of size, its materials, its interconnections and so
on. Crucially, the SMS introduced a policy of ‘information hid-
ing.’ Information hiding concerned the interiority of each ele-
ment, whereby the knowledge of how an element was internally
organised was not only unnecessary to other elements wishing
to communicate with it, but that this ignorance was enforced as
a matter of policy. From the outside, each element appeared as a

THE MECHANICS OF ORDER

122

black box. This design policy of information hiding was coupled
with the creation of an interface for each unit, wherein a simpli-
fied façade was constructed which put forth a limited number of
standardised ‘hooks’ for allowing communication between ele-
ments. Each component of the SMS therefore provided an inter-
face that allowed for a set of limited and simplified interactions
whilst separating and hiding its actual internal implementation, a
process also known as abstraction.

The impetus behind the slow decomposition and modulari-
sation of the computer was the desire to achieve high volume
and low cost manufacturing through the standardisation of parts
and their concurrent production. This is to say, modularisation
was primarily driven by the interests of Capital. IBM therefore
desired to apply the same techniques of modularisation that had
been applied to the transistor circuit in the form of the SMS to
the totality of the computer. Having now had some twenty years
experience with the computer, and having now come to under-
stand the different elements that were involved and which func-
tions were the same across all computers, it was now possible
to formulate a set of encompassing ‘design rules.’ The goal of
IBM’s System/360 project, as outlined in what became known
as the SPREAD report, was to create a family of computers that
for the first time fully embodied these rules, and which were to
be fully standardised, modularised and compatible with one an-
other. Leveraging the modular design, the report proposed three
design phases. There was to be a design rules phase, which would
intricately detail the allowed interactions between the modules,
a parallel work phase in which each module would be indepen-
dently developed, and finally an integration and testing phase in
which the modules would be combined. By 1967 and under the

The Module

123

management of Frederick Brooks, the System/360 was complet-
ed spanning 50 new pieces of hardware each developed and man-
ufactured in parallel according to the design rules that had been
laid at the outset of the project (Baldwin & Clark, 2000: 169–192).

§The System/360 was the first, most complete instantiation of
the abstract machine of the Module. The apparent simplicity

of the modular computer came from a twenty year decomposi-
tion of the complex, integrated computer, during which time the
architects of the computer came to understand their own cre-
ation. Drawing upon this history, we can identify three primary
elements of the machine of the Module: the module, the inter-
face, and the standard.17

The module is a particular spatialisation of a complex arte-
fact. It is the creation of a number of bounded spaces or ‘interiori-
ties,’ each space being accorded a particular function or domain
of tasks. The ideal spatialisation is one where the entirety of a
particular function occurs within its functional space, a feat that
requires a full appreciation of the different functions an artefact
will be expected to perform and their relations to one another.
The interior of each of these bounded spaces is hidden from the
spaces beyond its boundary either through physical or technical
impediment, or an adherence to a policy of information hiding.
Each module therefore comes to resemble a black box, a discrete

17.  Though not directly cited here, I must acknowledge Narduzzo and Rossi’s
‘Modularity in Action’ (2003) in helping me formulate these abstract relations
of the Module.

THE MECHANICS OF ORDER

124

entity whose inner complexity is hidden and whose multiplicity is
subsumed to a singularity.

The means of intercommunication between modules is via
their interfaces, these being the surfaces of their bounded spaces.
It is upon the surface of the interface that the module exposes
a limited and simple set of ‘hooks’ which accept communica-
tion from other modules, and which proceed to translate and
pass these communications on into the interiority of the mod-
ule. These hooks, for example, correlated to the plugs of IBM’s
pluggable circuit or to the ‘pins’ of the SMS. The interface, as a

Module 1 Module 2

Module 3

Module 4

Figure 5. A simplified depiction of a modularised artefact. Each modular space
is dedicated to a single function and is carefully bounded from the others. From
the perspective of Module 4, the other modules appear opaque or as ‘black
boxes,’ presenting just a few simplified hooks as part of their interfaces. Note
that relations within a module are complex and many, but between modules
they are few and simple.

The Module

125

mediator for communications and requests coming into a mod-
ule, abstracts away the complexity of the module’s own internal
machinations. This process of abstraction allows for the module
to maintain a relatively stable surface that changes little or not
at all, to present an exterior that, from the outside, remains con-
stant, whilst retaining the ability to change the means through
which these intermodular requests are implemented.

A modularised artefact above a certain complexity typically
requires several tiers of modular spaces. In such cases, modules
are arranged hierarchically, resembling a Matryoshka doll, where
each module is potentially itself decomposed into further spaces
of interiority. Those modules at the topmost tier have the broad-
est functional definitions and present the simplest and most ab-
stracted interfaces. In turn, they are internally organised into
modular spaces of more specific and less abstracted functions. In
such modular hierarchies, the rules of information hiding remain
in force, and modules nested within larger modules inherit all the
limitations of their ancestor elements.

The final element to the machine of the Module is the stan-
dard. The standard exists primarily in written form in docu-
ments and in reference manuals, and it is known variously as the
specification, the documentation, the protocol, or simply as the
standard. It concerns itself primarily with the question of bound-
aries. In the first instance, it concerns itself with the location of
these boundaries, namely, the division of an otherwise continu-
ous space into the discrete spaces of the modules. The standard
describes the manner in which an artefact undergoes modular
decomposition, and accords to each a specific functional task. In
the second instance, the standard concerns itself with the interac-

THE MECHANICS OF ORDER

126

tion between modular boundaries, that is, their interfaces, both in
terms of the functionality they must or must not expose and the
methods through which this functionality may be requested by
other modules. As we saw with the history of the System/360,
the standard or design rules are the most difficult and most con-
tested aspect of modularity for it is this aspect that has the great-
est ramifications. They are difficult, for the standards must remain
relatively fixed for some time. Both the spatial decomposition of
the artefact and the specification of interfaces, therefore, must be
of such a design that they can both allow for a well functioning
system in the present as well as accommodate future changes.
This is primarily a technical question. The standards are also a site
of contestation for they establish the constraints and possibilities
of working with such an artefact. That is, the standards concern
both the product itself as well as its production, both artefact and

process, and this is primarily a social and political question.

§Let us first concern ourselves with the product. The ab-
stract machine of the Module was instantiated at virtually

every level within the Compiz project as well as throughout the
ecology of which Compiz was a part. At the level of Compiz-as-
code there were three tiers at which modularity was operating: at
the level of the function, the file, and the plugin. Above this, there
existed a fourth tier in which the entirety of Compiz formed a
single modular space, interacting alongside other programs and
libraries.

The two lowest tiers of modularity were only partial in their
instantiation. At the lowest level a number of functions encap-
sulated discrete sections of code, hiding the code contained

The Module

127

within from outside and allowing for it to be triggered only by
way of calling upon the function’s designated name. The file op-
erated one level up, and grouped together similar functions of
which only a few were made visible from beyond its boundary,
thus functioning as a de facto interface. These two lowest tiers
of modularity worked to simplify and organise the code. Each
implemented two of the three elements of the Module: both im-
plemented the hidden interiority of the module and both erected
a simplified interface. Neither, however, produced anything of a
standard. At these lowest levels the code changed to such a great
degree from day to day that the rigidity of a standard was largely
impossible and would only have been an impediment to ongo-
ing work. In place of the standard, therefore, the development of
these lowest levels of code formed the ongoing preoccupation of
discussion on the Compiz mailing list, down to details such as file
names, function implementation and, as we have seen in previous
chapters, code style.

The plugin architecture sat one level above the file. This
architecture was built upon the construction of ‘Compiz core’
which, as the name suggests, implemented the most fundamental
aspects of the Compiz program. Compiz core implemented func-
tionality that was essential to the proper running of Compiz as
well as acting as a central reservoir for functionality so common
that it would otherwise be separately and repeatedly implement-
ed elsewhere. By itself, Compiz core did very little. The major-
ity of the visible features of Compiz were instead implemented
by bounded modules of code — ‘plugins’ — that sat outside the
boundary of core and which could be easily inserted and removed
from Compiz. The plugins had as their building blocks the hooks
provided by the Compiz core interface, known as the Application

THE MECHANICS OF ORDER

128

Programming Interface (API). These hooks included basic draw-
ing instructions, for example, or functions which detected user
input. Unlike the functions and the files, the plugin API was re-
quired to be stable, predictable, and was haphazardly and loosely
documented on the Compiz wiki, on various websites as ‘how to’
guides and in the source code itself (for example, Woodhouse,
n.d.; Anon., 2008a). Additionally, several existing plugins were
held as examples of good plugin design (Anon., 2008b) and oth-
ers — ‘dummy plugins’ — were written simply for educational
purposes (Dransfield, Mike: 2007-01-04 07:02).

The architecture of Compiz was not static: there was an on-
going process of re-modularisation, properly known as ‘refactor-
ing.’ Remodularisation was part of the ongoing process of com-
ing to understand the functionality of an artefact, or coming to
discern where modular boundaries should lie, and how interfaces
should function. It was also directly related to the ongoing de-
velopment of the code. Remodularisation, for example, involved
splitting a single module into two or more functionally distinct
units, or moving a small amount of functionality to a different
modular space to which it was better suited. On 4 October 2006,
for example, David Reveman was reviewing a patch to a plugin
and noted,

Looking through the code quickly I found that some
code from the minimize plugin has been duplicated.
We might want to consider sharing some of that code
by putting it in the core.

(Reveman, David: 2006-10-04 09:10)

Such disruptions to the modularisation of the artefact were often
handled through a technique known as versioning, whereby the
ongoing evolution of the object Compiz-as-code was arbitrarily

The Module

129

demarcated at certain junctures, assigned a version number, and
its modular architecture stabilised.

At the highest tier, the Compiz project and its code was
nested within an ecology of other software projects. As we have
moved up the modular hierarchy, from functions, to files, and to
plugins, there has been a correlating increase in the use of stan-
dards. At this highest level, the use of standards and specifications
became both more verbose and more stringent. Compiz-as-pro-
gram operated closely with a number of other programs and its
interactions were mediated by each of their respective standards
documents. Most importantly, these included the X Window sys-
tem and both its Extended Window Manager Hints (EWMH) and
the Accelerated Indirect GLX (AIGLX) specifications, the various
video drivers and their standardisation in the Open Graphics Li-
brary (OpenGL), and the underlying operating system and its
Portable Operating System Interface for Unix (POSIX) standard.
For each of these components and their standards, Compiz was
built both expecting their compliance and, simultaneously, was
itself expected to comply.

Compiz was thus composed of a series of nested modular
layers, from the lowest tiers of the function and the file, to the
spaces of plugins, and to the highest tier where Compiz was itself
a modular element alongside other programs. At each layer, mod-
ules adhered to policies of information hiding, they implemented
interfaces of various kinds, and, moving up the tier, progressively
implemented more verbose and stringent standards. This modu-
larisation was at once a technical organisation of the product and,
simultaneously, a social organisation, concerning both product
and production. It is to this latter aspect that we now turn.

THE MECHANICS OF ORDER

130

§There were three principal social effects of the modulari-
sation of Compiz, the first of which concerns the autonomous

nature of labour. The modular decomposition of the Compiz ar-
tefact lent itself to the production of a ‘functional’ division of
tasks and this, combined with the explicit statement of intermod-
ular dependencies contained within the standards, enabled a type
of labour that was of a highly autonomous character. This stands
in marked contrast to another type of division of tasks, one that
we can call ‘mechanistic,’ which produces a type of labour that is
instead highly dependent, constrained and static.

Let us first recall the manner in which a modular artefact is
decomposed. The aim of modular decomposition is to divide the
artefact into units that are of relative independence to one anoth-
er, where the majority of the workings of each module remain
within its bounded space, and where communication between
modules occurs in but a few, highly standardised forms. There is
an inverse relationship between the number of dependencies and
their frequency of use: a well-modularised artefact is one where
relations within a module may be both numerous and dense,
even though any single linkage may be employed rarely, and con-
versely where the relations between modules are few, though
well trodden. To achieve such an ideal organisation, the choice of
modular borders and the arrangement of parts is guided, above
all, by their perceived role within the artefact as a whole. That is,
by their function. The artefact as a whole must be designed and
decomposed or, rather, designed to be decomposed, so that each
of its modules implements, to the largest degree possible, the
totality of their designated function whilst simultaneously limit-
ing the dependencies between modules only to those that are the
proper function of a module elsewhere. This is no easy feat. As

The Module

131

we saw with the development of the System/360 and, indeed,
the ongoing re-modularisation of Compiz, the decision of how
to characterise and distribute the functions of an artefact is both
difficult and uncertain, and oftentimes is made clear only after
having observed the workings of the artefact

This modular decomposition of Compiz-as-code produced in
the same moment a corresponding division of tasks. When one
approached the Compiz artefact, one was not confronted with
a dense and intermeshed object, but with an object that had al-
ready undergone modular decomposition. One was presented,
that is, with a series of spaces already constructed and oriented
towards specific functions. The labour process was similarly spa-
tially divided. The pursuit of implementing a piece of code gen-
erally meant one was directed toward the corresponding func-
tional space, a space from which one generally did not have to
stray. The different tasks required to implement window trans-
parency within Compiz, for example, were entirely bound within
the domain of a single plugin. Tasks were thus grouped together
based upon their ends, based upon the functionality they sought
to implement. This was, therefore, a functional division of tasks.

We can contrast this with a different type of division of tasks.
Marx once described a division of labour he called the ‘manufac-
turing division of labour’ (Marx, 1976: 455–491). The manufactur-
ing division of labour sought to reduce the process of production
into its simplest and smallest forms, into atomistic movements
of body or machine. It is this kind of division of labour upon
which Fordism relied, and something more extreme can be found
in Taylorism and its ‘scientific management’ of the labour pro-
cess. Each part becomes a bit player in something much larger,

THE MECHANICS OF ORDER

132

itself overseeing a small and incomplete portion of the process.
Such a division of labour depends upon a mechanical division of
tasks, where tasks are grouped together based only upon their
relative similarity to one another. The nature of this division is
crucial. The mechanical division of tasks groups together tasks
that are mechanically similar, but which are individually bit parts
in a much larger production process, having little relation to one
another. One may, for example, be assigned the task of ‘ham-
merer’ whose duty is to hammer in nails across a building site.
In a short space of time, such a role would lead one to hammer
nails into floorboards, onto the roof, and to hammer a wedge into
place. Each of these tasks, while mechanically similar in that each
involves hammering, is oriented towards many different func-
tions across the building site. On the other hand, the functional
division of tasks assigns to a single space tasks that are united in
their function, even whilst each of these tasks bear little similar-
ity to one another. On our building site, for example, one may be
assigned the task of building the bedroom, a charge that incorpo-
rates many and disparate tasks but each united in their functional
orientation.

These two divisions of tasks are radically different with re-
gards to the required ‘scope’ of coordination. Scope here refers to
those with whom one is required to coordinate when performing
work of some kind. It includes, principally, those people affected
by the changes one intends to make, and therefore those who
must be brought into discussions about its implementation and
wider effect. Scope is a function both of the organisation of the
object and the nature of the division of tasks, both of which de-
termine the degree and rate that changes to the artefact propagate
outwards. To take the example of an artefact produced according

The Module

133

to a mechanical division of tasks, we can see that the scope of co-
ordination is very large indeed, where changes quickly propagate
to affect the system as a whole. If our hammerer, for example,
decided to use glue instead, then the nature of the entire building
changes. In this division of tasks, each bit part takes from another
bit part its source materials, manipulates them in some way, and
passes them on to a subsequent bit part. Production is therefore
fundamentally both linear and static in nature, each role is ex-
posed to every other role, and a change in one part has immedi-
ate effects throughout the rest of the production process. The
manufacturing division of labour therefore provides little scope
for localised movement or change within a role before requiring
the reorganisation of the production process as a whole.

In contrast, the modularity of Compiz and the free software
ecology combined both its functional division of tasks and the
elements of the interface and standard to produce a compara-
tively localised scope. In the first instance, the functional division
of tasks created roles that operated in parallel, with each seeing
through from start to finish the ongoing work assigned to their
functional space. Thus, whilst communication and coordination
between modular roles remained necessary, the vast majority of
the work of coordination was localised and could remain within
the space of the module itself. In the second instance, the ele-
ments of the interface and standard made explicit those instances
where changes within a module were the proper domain of the
module alone or, alternatively, where changes affected elements
that were standardised and thus widely expected to behave in a
very particular fashion. Our builder dedicated to building the
bedroom, therefore, need not coordinate with other builders for
the vast majority of tasks required in its construction except, for

THE MECHANICS OF ORDER

134

example, in the laying of power cables which she knows ahead of
time must operate according to certain pre-agreed voltages.

This functional division of tasks coupled with explicit stan-
dards for interoperability combined to grant to individual modu-
lar spaces a great degree of autonomy. This autonomy could be
deployed towards different ends. If we can recall from Chapter
Three our discussion of the user-space regime and the domain of
the plugins, we can see how this autonomy granted by the ma-
chine of the module coupled with the constraints on movement
and space of the user-space machine can easily be used to trans-
form the functional division of tasks into a functional division of
labour. That is, to permanently assign one to a modular space.
Borrowing from Michel Foucault, we described this as ‘cellular
individuation,’ as a kind of containment. But the functional divi-
sion of tasks need not equate to a functional division of labour.
A single contributor could in the course of their day move from
implementing several functions in a variety of programs, granted
at each moment the autonomy that each of those modular spac-
es allows, but free at each moment to move between functional
sites. In this, the autonomy of the module coupled with the free-
dom of movement greatly increased their possibilities of action,
which is to say, their freedom. And, indeed, for many contributing
to Compiz, its spaces would have formed just one of the many
spaces to which they would contribute.

§Modularisation had a second social effect. The work of
creating global order and of coordinating between coders of

different modular spaces underwent a process of object fetishisa-
tion. Coordination directly between people was diverted, that is,

The Module

135

into both referencing and amending the documents of the stan-
dard, where these objects ‘stood in’ for and almost masked the
social nature of this process. Additionally, as the ongoing prod-
uct of coordinative work between projects, the standards can be
characterised as a sedimentation of these direct interactions, and
in which they later come to be delegated the task of mediating
and ensuring order between projects.

Four days after the Compiz mailing list began, there was an
email from David Reveman making the first explicit reference to
a standard external to the Compiz project. In reply to another
email he wrote,

Looking at the EMWH spec, I see what I called a vir-
tual desktop, they [the X.Org foundation] call a “Large
Desktop”. So compiz currently implements one “Large
Desktop” […]

(Reveman, David: 2006-04-03 02:57)

The email appears quite trivial, amounting to little more than a
correction of terminology. However, the ‘correction’ of replac-
ing the term ‘virtual desktop’ with ‘large desktop’ could equally
have worked the opposite way; there was no technical reason for
choosing one term over the other. Rather, this was not a correc-
tion but rather a calibration between the two projects, wherein
David chose the EMWH specification as the standard against
which to calibrate. One presumes this choice of precedence
was because the X.Org project’s public EMWH standards both
preceded the Compiz project and were widely implemented by
other projects.18 In this brief course of events, the two projects

18.  The force or legitimacy of a standard is most closely tied not to the reputa-
tion of the body that created the standard, but to the pervasiveness of the adop-
tion of the standard itself. In acknowledging their inability to impose standards,

THE MECHANICS OF ORDER

136

underwent a minor alignment even whilst contact between the
two did not traverse further than the document of the EMWH
specification and no direct contact was made with the program-
mers from the X.Org foundation.

In another instance, a number of strange interactions were
being observed as Compiz tried to coordinate with another pro-
gram known as D-Bus, a program designed to allow communi-
cation amongst different programs. Travis Watkins wrote to the
mailing list detailing his attempt to discover the source of the
bug, concluding that,

I think the [problem] has something to do with the
dbusGetOptionValue being called [improperly] but
that change alone doesn’t seem to fix it. I’ve spent
about an hour trying to track this one down and am
completely lost […]

(Watkins, Travis: 2007-01-01 17:35).

Several emails were subsequently exchanged, each progressively
elaborating upon the nature of the bug and putting in place a
number of amendments to the code. Finally, David Reveman
wrote to the mailing list,

Hm, after reading some dbus docs I realized that we
should always be sending a reply message to method
calls unless the no_reply flag is set. I wasn’t aware of
this… it’s fixed now though.

(Reveman, David: 2007-01-02 18:40)

The D-Bus documentation specified the rules governing its inter-
face as well as the allowed and proper set of interactions. As in

many standards bodies now talk of writing standards that ‘pave the cowpaths,’
choosing to instead standardise existing practices. See, for example, the W3C’s
HTML5 design principles after the failure of XHTML2 (W3C, 2007).

The Module

137

the previous example, it was to this document that David Reve-
man turned to consult rather than the D-Bus project members
themselves, thus enacting the document as mediator for the two
projects and their interacting code.

These processes of alignment, calibration, and correction
amongst interacting projects were most commonly mediated
by the documents of the standards. Queries and other forms of
communication that were put directly to external projects were
relatively rare and usually prompted one of two responses. In the
first instance, when the answer to the query was otherwise avail-
able within the documentation, the exchange would generally be
characterised as unnecessarily taxing. This scenario was common
enough to have its own acronym as a response, ‘RTFM,’ under-
stood as ‘read the fucking manual’ (Raymond, 2008). There was
therefore a normative compulsion to make use of the mediation
of the standards where this was possible. In the second instance,
where the query could not be answered by referral to published
standards, the existing documentation was cast as inadequate and
the exchange prompted amendments, clarification or additions
to its content. The standards can thus be seen as a kind of sedi-
mentation of direct interaction between projects, giving perma-
nence to otherwise transient interactions. In the process of this
sedimentation of coordinative work both within and between
modules, the standards came to be delegated the task of produc-
ing order amongst elements at each tier of modular interaction.

The standards were at once a source for global order and si-
multaneously a target for the changing of that order. In another
instance, for example, David Reveman suggested,

THE MECHANICS OF ORDER

138

We should try to get the EMWH spec updated some-
time soon as being able to communicate a non-rectan-
gular workarea to apps and toolkits is important for the
dynamic multi-head support that compiz will be able
to do.

(Reveman, David: 2006-11-08 14:16)

Put differently, there did not exist the appropriate interfaces with-
in the X.Org server for Compiz to communicate its emerging
functionality, functionality which could be subsequently used by
the ecology of programs that were built around the X.Org Server.
There occurred in this exchange a diversion over the object of
concern. What was initially a concern over the code contained
within the X.Org server as well as a number of its associated pro-
grams was transformed, without mention, into a concern over
amending the document of the EMWH specification. Should
agreement have been reached on amending the EMWH specifica-
tion, these changes would have likely propagated throughout the
ecology of programs that adhered to it, including the X.Org Serv-
er itself. The manner, however, in which direct coordination was
diverted into contestations over an object, in which these contes-
tations ‘masked’ the desire to change the relationship between
numerous projects and their respective bodies of code, demon-
strated the mediating work that was performed by the standards,
a type of mediation akin to object fetishism.

The inverse operation, where Compiz was on the receiving
end of a specification change, also occurred. On 18 April 2006
James Jones, a developer from a related project developing video
drivers for the Nvidia chipset, provided advice on how best to
conform to an X.Org specification known as ‘AIGLX.’ At the time,
Compiz was not strictly compliant with the AIGLX specification

The Module

139

and, whilst this was not causing any problems, James wanted to
implement an option for Compiz that forced it to be strictly com-
pliant with the specification. The AIGLX specification had been
written with some foresight as to the future development to the
X.Org Server, and strict compliance with its strictures would en-
sure ongoing compatibility. He reasoned that,

If, in the future, developers [of the X.Org Server] want
to add strict locking as discussed to death on the xorg
list, this option could potentially toggle that behaviour
as well.

(Jones, James: 2006-04-18 14:22)

In this exchange, we are privy to early stages of a potential change
in AIGLX specification which, as James notes, had been the centre
of significant debate on the X.Org mailing list. From the point
of view of Compiz, however, the arguments and disagreements
around this debate were largely localised within the X.Org project
and hidden behind the object of the AIGLX specification. In the
end, the resolution to these controversies would have been com-
municated by little more than a humble alteration to a section
of the AIGLX specification, part of the ongoing sedimentation
of coordinative work, and the history of the debate would have
likely been forgotten.19 The standard would have once again me-
diated in communicating these changes to the system as whole,
ensuring its order even as the system itself changed.

The documents of the various standards were built over
time by way of direct coordination amongst affected projects,
with each alteration or addition representing the culmination of

19.  The outcome of this particular debate remains unknown to this present
study.

THE MECHANICS OF ORDER

140

often difficult and divergent debates. In this sense, these docu-
ments formed as a sedimentation of this otherwise fleeting and
transient work. For the most part, direct communication across
modular boundaries was later rendered unnecessary owing to the
mediating work of these documents. These documents ‘stood in’
for direct contact between projects, mediating to such an extent
that the pursuit of changes to how bodies of code and their re-
spective programmers interacted was directed, principally, to-
ward these objects. We can call this a process of object fetishism
to the degree that the pursuit of these objects masked the social
processes as work.

§The third and final effect of modularisation both within
Compiz and amongst its sibling projects was the production

of a ‘global’ order and the emergence of a social structure bear-
ing great similarity to what is known as anarchist federalism.
Anarchist federalism was a social structure first proposed in the
19th Century by such early anarchist writers as Pierre Proudhon,
Mikhail Bakunin, and Peter Kropotkin, with the specific aim to
allow a large mass of people to cooperate and organise their af-
fairs in a manner that ensured power remained dispersed and
fully decentralised. Bakunin wrote, for example, ‘the future so-
cial organisation must be made solely from the bottom upwards,
by the free association or federation of workers, firstly in their
unions, then in communes, regions, nations and finally in a great
federation, international and universal’ (Bakunin, 1973: 206). The
key features of such a federal structure were to be, firstly, the or-
ganisation from the bottom upwards of progressively larger and
more encompassing councils, where members would take discus-

The Module

141

sions to councils whose scale was most appropriate for the prob-
lem at hand. Secondly, larger and more encompassing councils
were merely that: larger and more encompassing. They were
not granted authority and could not impose decisions upon their
members: larger councils differed only in scale. Decisions at all
levels were to be made primarily through consensus or through
convincing dissenting members by appeals to the majority inter-
est. Thirdly, where full participation in higher bodies was not
possible, lower bodies were to send mandated and recallable del-
egates to participate on their behalf. These were to be delegates
and not representatives, and at no point were they to be granted
authority over those who had sent them. Finally, membership and
participation within the federal structure was voluntary. The gen-
eral purpose of anarchist federalism was not policy making and
the progressive elaboration of laws, but rather the administration
and coordination amongst various groups (Bookchin, 1990: 7).

At a glance, we can note many similarities between anarchist
federalism and the free software ecology. It was, like anarchist fed-
eralism, organised into progressively more encompassing spaces
or, conversely, into spaces of smaller and more specific function-
ality. Moreover, like anarchist federalism, this organisation was a
hierarchy of function, of scale, but it was not a ‘hierarchy’ in any
other sense. We must be careful not to confuse the organisation
of the various software artefacts into functional components and
subcomponents with a correlating exercise of power. Finally, par-
ticipation within the various groups and adherence to standards
was formally voluntary, thus mandating decision-making models
roughly based upon consensus.

THE MECHANICS OF ORDER

142

The councils and decision-making bodies of anarchist feder-
alism had their parallel, at the highest and most encompassing
levels, in the rigorous adherence to, interaction with, and ongo-
ing production of standards documents. There was something
of a reversal here, however, when compared to anarchist federal-
ism. In anarchist federalism the identity of the councils was pri-
mary, and their agreements and decisions were in a sense their
product. That is, it was the council that had continuity, issuing
a series of otherwise disparate agreements and decisions over
time. In the federalism of free software, however, there were no
councils. Rather, the specific standards documents were the fo-
cus, around which a group dedicated to its ongoing development
came to form, a group that was, in a sense, its product. Here,
it was the document that had continuity over time, stabilised by
being progressively labelled with higher version numbers. This
should remind us of the standards fetishism we encountered ear-
lier. Moreover, at these highest levels, recallable delegation was
replaced with direct participation in the production of standards,
a feat enabled by the Internet.

Power was highly decentralised and its exercise was roughly
evenly distributed throughout the ecology. Participation in pro-
ducing standards varied from a highly open process in which
anyone could participate to that which was entirely closed. This
latter situation was, however, rare and placed in jeopardy the
likelihood that the standard in question would be accepted and
widely adopted. Moreover, none of the standards with which
Compiz complied were constructed in such a closed manner. The
open production of a standard was more common and those who
participated were usually those whom the standard would most
directly affect. Adherence to standards was formally voluntary,

The Module

143

though in practice if a standard was widely implemented and
a project wished to be compatible or interoperable with other
pieces of code, then compliance became necessary. As with Com-
piz’s compliance with the AIGLX specification, total adherence
to a standard was not always necessary but, for the sake of fu-
ture ease, it was often made desirable to be wholly compliant.
The opposite was also true: if a standard, in part or in whole,
was widely ignored, then it was a standard in name only. These
characteristics of the federal structure — being based upon free
association, voluntary acceptance of standards, and open partici-
pation in standards production — ensured the exercise of power
was widely distributed throughout, giving the federal structure
an anarchist quality.

For all these similarities with anarchist federalism, however,
this was a federalism that did not recognise itself as such. It was
most often talked about using the phrase ‘community’ and also a
term I have often used here, ‘ecology,’ one that resonates strongly
with ideas of unplanned order, ‘organic’ growth, and spontane-
ity. Instead, its federal nature was an emergent phenomenon that
arose out of local desires to coordinate between and amongst
different projects, and its primary motor was in the mediating
work performed by the documents of the standard. Individu-
ally, standards were not constitutive of a far-reaching global or-
der, and their ongoing production was usually aimed towards
calibrating projects in a very limited, even local, manner. A single
modular space, however, would typically operate under a regime
of multiple standards, and work upon any single standard had
to take into account other related and perhaps overlapping stan-
dards. The overlapping and interrelated nature of standards thus
transformed ongoing work upon an individual standard, work

THE MECHANICS OF ORDER

144

that was otherwise of limited scope, into the constitution of a
thoroughgoing global order. That is, global order was a byprod-

uct, emerging out of attempts at creating order on a scale con-
siderably smaller in scope. This emergent federalism meant that,
unlike the very deliberate and preconceived anarchist federalism,
the federal structure of free software did not have an identity, a
name, and nor could it represent itself or those it counted as its
members: it was primarily a method for working together and
only afterwards was it a structure.

§Frederick Brooks sought to bring stability, unity, and ‘con-
ceptual integrity’ to a large software project by the imposition

of a single will, an autocracy headed by a system architect. Only
in this manner could the system come together to form a cohesive
whole, whose parts understood one another, and where program-
mers understood their duties and their roles. Only in this manner,
Brooks believed, could the tremendous complexity of the project
be tamed. But Compiz, and the enormous ecology of software
projects of which it was a part, are testament to an entirely dif-
ferent model. The autocracy was replaced with the machine of
the Module and its three elements: the module, the interface, and
the standard. Modular spaces, in contrast to Brook’s autocracy,
were granted an internal autonomy in their machinations, bound
only by the standards to expose an interface in accordance with
its prescription, and facilitated by those very same standards in
collaborating with other modular spaces. These standards did not
stand outside and apart from the programmers, but were a kind
of sedimentation of their ongoing work, the active and ongoing
product of their attempts to facilitate order. It was these overlap-

The Module

145

ping and varied standards that ensured the conceptual integrity
of the ecology, imposed not from above but generated from the
bottom on up, an emergent structure resembling an anarchist
federal structure.

147

We started with the question of utopia and chose to pursue a
methodology that focused on those extant practices, the ‘what is,’
that could also form something of the ‘what ought to be.’ This
approach to formulating something of a utopian vision differs
from those that hark back to a golden age of existence or that, al-
ternatively, seek to discern utopia in a future qualitatively distinct
from our own. These have their value, no doubt, but this type of
‘present tense’ utopia perhaps holds greater value for it stresses
not rupture but continuity of utopia with certain elements of the
present (Gordon, 2009; Newman, 2009). It counts upon the het-
erogeneity of the world, of an excess that always fails to be cap-
tured and subdued by those machines with totalising ambitions.

In pursuing the delineation and subsequent evaluation of
each of the machines within Compiz, this is a utopian method
that differs from the classical conception of utopia in a number
of other ways too. In the first instance, this is a utopian methodol-
ogy that does not prescribe its own totality to replace the one of
today. It is not the prescription of total systems but of disparate

Conclusion

THE MECHANICS OF ORDER

148

sets of practices, objects and spaces, a largely piecemeal approach
to utopia. It is a utopianism that acknowledges the complexity
of social life, in that one cannot know ahead of time and in total
the good life. One cannot formulate detailed blueprints. This is
a utopian methodology that embraces experimentation and the
expansion, bit by bit, machine by machine, of a society that is
nonetheless radically different to our own. As Paul Goodman
once wrote, a ‘free society cannot be the substitution of a “new
order” for the old order; it is the extension of spheres of free ac-
tion until they make up most of social life’ (Goodman, cited in
Suissa, 2009: 247).

If it is a method that embraces the idea of utopia-in-progress
it is also one that seeks not its end. This ‘open-ended’ concep-
tion of utopia is an extension of the piecemeal approach; it is
an orientation towards ongoing social experimentation and the
study and extension of promising subterranean practices. Utopia,
to paraphrase Eduardo Galeano, lies forever on the horizon, its
purpose being to draw us forward and to imagine differently. In
this, the closure, the finality, and the essentially static conception
of the classical utopia — those qualities often most troublesome
to critics — are rejected.

Finally, this is a conception of utopia that embodies conflict
and process. The classical utopia of harmonious coexistence,
wherein the forces of opposition and excess are overcome and
forever vanquished, is here contrasted with at least one diagram
— the Exodus — founded upon an imaginary counter-power,
the establishment of a perpetual battlefield in opposition to the
emergence of power which is ready, at a moment, to rise forth.
The end of history will not be the synthesis and final resolution

Conclusion

149

of the dialectical forces within society, but rather much like Pierre
Clastre’s and David Graeber’s studies have shown, even egalitar-
ian societies will continue to embody conflict as core to their pro-
cesses of ordering. Conflict — wholly good and worthwhile — is
central to this alternative utopian vision.

§So what of these machines? In this study of Compiz we have
discussed two potentially very desirable machines — the Ex-

odus and the Module. We have also come across a third in the
ordering mechanism of the Passport that seems quite undesir-
able, but which nonetheless sheds light on the way in which the
control of space and objects can translate directly into control
over people. Discussing the desirability of each of the three ma-
chines of this study is necessarily a normative manoeuvre. In this
briefest of discussions, then, I intend to evaluate each of their
ordering mechanisms against what I am calling an ‘anarchist eth-
ics.’ Anarchism, as political philosophy, is both anti-State and anti-
capitalist; it is one that opposes all practices of domination and
of representation. In its constructive aspect, it embraces forms of
ordering such as economic communism combined with, as we
have previously seen, types of social and political organisation
such as federalism that ensure the greatest possible distribution
of power throughout the social body. In these prescriptions, there
is an underlying ethics that principally revolves around a concep-
tion of generalised individual freedom. This is a conception that is
a somewhat messy combination of the ideas of ‘freedom from’
and ‘freedom to,’ both of which are not always fully compatible
with one another. The former idea is familiar to classical liberal
discourse, and includes ideas such as freedom from constraint,

THE MECHANICS OF ORDER

150

freedom from violence, freedom from fear, and so forth. That is,
‘freedom from’ is oriented against those oppressive and restrictive
operations of power and is conceived primarily as an absence.
‘Freedom to’ is perhaps a broader conception. If ‘freedom from’
is familiar to liberal discourse, ‘freedom to’ is more familiar to
socialist discourse. It is the construction of power relations in
which individuals are enabled to do things previously impossible.
Economic communism, for example, was motivated not simply
because it was a more just distribution of wealth, but because in
that very distribution the possibilities of life were multiplied. The
emphasis on community and mutual aid within anarchism is also
derived from such a belief that it is in and through certain types
of sociality that we come to enable one another to live lives with
a much greater range of possibilities before us.

The desirability of the machine of the Exodus lay in its op-
position to centralisation, an opposition that operated through
its permanent spectre of desertion. Its elements were everything
that made desertion both possible and known, constituting it as
a form of imaginary counter-power: a space outside, an absence
of restraint and violence, material abundance, and a discourse
of counter-power. In the constitution of this imaginary counter-
power the machine of the Exodus produced a locus of power that
resided in the mass of the people and against an existing order. It
was in this locus that the imaginary counter-power would come
to wield constitutive effects upon the dominant order. Within
Compiz, the machine of the Exodus was instantiated as the fork-
ing machine, and its primary constitutive effect was to couple
the role of the gatekeeper with the additional role of maintainer.
This was the outcome of a kind of exchange, in which the gate-
keeper came to be recognised as proper bearer of the code and

Conclusion

151

thus came to exercise the vicarious powers associated with that
role, but was in return burdened with the role of maintainer, a
role whose duties were the ongoing articulation of the commu-
nity of contributors.

The machine of the Exodus operates in at least two different
contexts. In the first, as with David Graeber’s egalitarian commu-
nities, the prospects of desertion operate not against an actually
existing power but rather against the prospect of its emergence.
It operates in an antagonism against an imaginary lifeworld of
witches who threaten to bring the community under their con-
trol, and it is precisely in this ongoing antagonism that the ma-
chine of the Exodus works to produce the community as egali-
tarian. In the second context, however, as with Pierre Clastre’s
Amazonian chiefs and with Compiz itself, the machine of the
Exodus works to counteract and limit the powers of an already
constituted power. In both cases there is a strong ‘freedom from’
aspect, as the machine of the Exodus resists and distributes power
amongst the body of the community. There is also, in the second
element, a limited kind of ‘freedom to’ in which the community
body is enabled to place demands upon constituted power.

The machine of the Exodus embodies something of the right
to secede, coupled with the material provisions to make such se-
cession truly possible. One is reminded of the peculiar attitude
amongst rural communities during the early months of the Span-
ish revolution of 1936 in which, for the most part, communities
banded together and enacted communistic and cooperative forms
of organisation. There were those, however, who resisted such
moves, and in most instances they were allowed to go their own
way and, additionally, were provisioned land on which to work

THE MECHANICS OF ORDER

152

with the sole requisite that they did not use the land to reinstate
waged relations (Peirats, 1998: 139). The inclusion of the machine
of the Exodus as part of a utopian vision embodies a view of
utopia as never fully realised, a view of social relations as never
fully harmonious, and incorporates within social forms a dy-
namic element that allows for the regulation of social life against
the emergence of centralised power. As with its egalitarian role
within Compiz, it seems the machine of the Exodus would find
itself well placed as a central and widely instantiated machine in
any utopian vision.

The machine of the Module — consisting of the module, the
interface, and the standard — transformed the technical artefact
of Compiz from a monolithic object into a series of functional
spaces, and in doing so provided a method of working on a tech-
nical project whilst avoiding centralisation. The spatialisation it
created was a very particular and, indeed, a very difficult arrange-
ment of the artefact. The artefact was first broken down into a
series of discrete functions with each function then assigned a
space of its own. Each space was expected to complete its task
within its modular bounds except when part of that task formed
the proper function of another module. Crucially, the spatialis-
tion required that the interiority of the each module — that is,
the specifics of its implementation — be hidden from without.
Communication between modules was therefore managed by
the erection of facades known as interfaces, wherein each mod-
ule’s interface presented to the space outside a set of simplified,
standardised and stabilised ‘hooks.’ This modular spatialisation
came under the purview of a standard, which specified both the
functional decomposition of the artefact and described the inter-
faces of each module. Modular spatialisation was ostensibly con-

Conclusion

153

cerned with managing the complexity of the product by breaking
it down into a collection of discrete and relatively independent
components. But it also and immediately affected the ongoing
production of the artefact of Compiz and, indeed, the whole or-
ganisation of the ecology of free and open source projects.

The functional spatialisation of the artefact lent itself to a
concomitant functional division of tasks. That is, additions or
modifications of functionality within the artefact tended only to
require changes to a single modular space. Moreover, changes
within a module that did not affect the outward behaviour of its
interface were essentially invisible to the outside, and thus the
scope of coordination with other programmers was oftentimes
minimised to the bounds of the module. In this way, the autono-
my of labour was greatly increased.

Where coordination across modules was required, this tend-
ed to be mediated by the documents of the standards. Being a
kind of sedimentation of otherwise fleeting coordinative work,
well-formed standards often ‘stood in’ for direct contact across
projects. Moreover, standards were not simply ‘read’: they also
formed the focus for the ongoing development of a modular sys-
tem, wherein changes to how the system functioned were direct-
ed at these documents. From top to bottom, the machine of the
Module was instantiated within Compiz as well as in the free and
open source ecology generally, and the ongoing reference to and
articulation of the plethora of overlapping standards came, quite
by chance, to form a kind of decentralised global order akin to
anarchist federalism.

The machine of the Module, by itself, does not guarantee
the anarchist federalism we observed in the free and open source

THE MECHANICS OF ORDER

154

ecology. For example, the autonomy of labour that the machine
tends to generate can just as easily be used against labour, as we
saw with the coupling of the user-space machine to produce the
cellular individuation of the plugins. In this, the autonomy was
transformed into a restrictive isolation, and the functional divi-
sion of tasks was extended into a functional division of labour.
Moreover, it is the manner in which the all-important standards
are produced that is foundational to any discussion about ‘free-
dom from’ or ‘freedom to.’ For the machine of the Module can
be used, and indeed is used, in thoroughly centralised environ-
ments, where standards are imposed and where work is directed
from above. In this, we find a kind of hybrid model where the
machine of the Module tames the complexity of the task at hand
but which is deployed to serve interests apart from workers them-
selves. The liberatory aspect of the machine of the Module, how-
ever, becomes visible when it is coupled with strictly voluntary
adherence to standards and, indeed, it was this voluntary nature
of free and open source standards that compelled their creation
and development to occur in an open, participatory and roughly
consensus-based manner.

Even in its best light, however, the machine of the Module
represents something of a trade-off between our two concep-
tions of freedom. As to ‘freedom from,’ the Module seems to be
very much at odds, imposing a number of restrictions namely
in the prescriptions of standards which fix the manner in which
modular components may relate to one another, and in the es-
tablishment of modular borders which restrict functions to cer-
tain spaces. Both of these act as constraints upon the manner in
which development may proceed. As to ‘freedom to,’ the Module
greatly increases the scope of autonomy, and drastically reduces

Conclusion

155

the scope of coordination required to embark upon work within
a specific part of the artefact. The monolithic nature of the arte-
fact — and of the production process itself — is broken up and
thoroughly decentralised.

The monolith versus the module is a good way in which to
weigh these constraints and freedoms. The production process
around a monolithic object is itself monolithic. The progression
of work must be coordinated and calibrated amongst the whole
group, and even minor changes must be submitted for approval
to ensure breakages do not propagate throughout the object. If
decisions are made by a single ‘architect’ as advocated by Fred-
erick Brooks then such a mode of organisation submits collabo-
rators to the decisions of a single person. Alternatively, if they
are democratic, then collaborators find themselves burdened by a
collective will. The machine of the Module provides for a type of
decision-making that is neither autocratic nor democratic. In this
production process, there functions a kind of rough consensus
within the limited spaces of the modules, and it is these decisions
that make up the bulk of everyday practices. There is a second
sphere of decision-making — around the documents of the Stan-
dard — that is more formal and more difficult, and which forms a
kind of self-selecting consensus, a rule not of the majority but of
the ‘interested,’ of the ‘affected.’ If the manner in which techni-
cal collaboration proceeds is a choice between the monolith and
the Module, then it would appear that in the constraints of the
Module there lies a relative freedom.

Finally, let us turn to the machine of the Passport. The Pass-
port, if we recall, was founded upon an arrangement of four ele-
ments: the border, the port, the files and the document of the

THE MECHANICS OF ORDER

156

passport. In this arrangement, the borders segmented space and
directed movement through the heavily surveilled spaces of the
ports. It was at the ports that bodies and objects were intercepted,
in which the document of the passport acted at the pineal gland
of the machine and linked the body to the interiority of the bu-
reaucratic files. In this interception, knowledge was generated of
the body and its movement was subject to the permissions grant-
ed in its correlating files. In Compiz this abstract machine was
instantiated as the user-space machine and the permissions tables
came under the control of a single role known as the gatekeeper.
Access to the object Compiz-as-code and to the sub-spaces of the
plugins were under the control of this role, and by way of the
control of this space a kind of vicarious power was exercised over
the community of contributors to the Compiz project.

The Passport is the construction of wide-ranging set of re-
strictions and controls on movement. In this sense, it represents a
violation of the ‘freedom from’ aspect of anarchist ethics. More-
over, while it does enable the role of gatekeeper, to whom is
granted the exercise of an expansive range of powers, this role is
confined to but a single person or a small group. That is, this ‘free-
dom to’ component is far from generalised. The Passport’s instan-
tiation in the vast majority of instances — in the State passport
machine, in schools and workplaces, in city centres — thoroughly
contravene both the ‘freedom from’ and ‘freedom to’ aspects of
this ethics, and for which the justifications — which range from
fear of the alien, to naked self-interest — are wholly insubstantial.
Moreover, the machine of the Passport hardly forms one of those
‘minor traditions’ or ‘subterranean machines’ that we could ad-
vocate as part of a utopian vision. The Passport, rather than be-
ing a machine we should seek to expand, already pervades social

Conclusion

157

life, and a utopian project motivated by an anarchist ethics should
seek, instead, its minimisation.

But whilst uninteresting as part of a utopian vision, the Pass-
port nonetheless sheds light onto one of the principal techniques
utilised in the generation of centralised power, namely the control
of objects and space. What I have described as the ‘vicarious ex-
ercise of power,’ that is, power which is exercised in and through
objects, appears based upon a cursory examination of everyday
life to be one of the most prolific, most thoroughgoing, and most
mundane techniques of power. It also appears to be one of the
techniques most often ignored in social accounts. Whilst the so-
ciological literature is rife with accounts of the ideological basis
for centralised power, of winning the consent of the governed
and, oddly to a much lesser degree, of the use of violence, coer-
cion and threat, rarely do we see reference to the mundane uses
of things in the ongoing performance of centralised power. Mi-
chel Foucault’s Panopticon remains one of the best examples of a
machine that operated in and through the use of objects and the
fashioning of space, but even here this machine is all too quickly
stripped of its materiality and reduced to a transcendent ‘gaze.’
The techniques found within the machine of Passport, however,
point to the need to include objects and space as foundational to
any account of power and, moreover, to any transformation of
power as part of a utopian project.

§Free and open source software appears, at first, as a libera-
tory manifestation. It has as its origins a clear rejection of the

commodification of code, and in this socialisation it has given rise
to a kind of anarchist communism that exists in the frontier spac-

THE MECHANICS OF ORDER

158

es of the virtual. In producing one of the most technically im-
pressive artefacts of contemporary times, the ecology of free and
open source software stands as an exemplar to the possibilities of
collaborative, non-hierarchical relations, and one that stands in
contradiction to those who would suggest that it is only in hierar-
chy, only in economic self-interest and in the sanctity of property
that such feats are possible. But this is a hybrid, a mixture of the
liberatory and the oppressive. We have uncovered conflicts and
battles, ongoing disputes around power and control over spaces,
over code, and over status. Moreover, even as it seems in its very
existence to contradict those principles upon which the world
of Capital is founded, the realm of free and open source soft-
ware enjoys a strange relationship to that same world. Though
beyond the scope of this study, FOSS finds itself not simply being
used, but actively contributed to by some of the worlds largest
corporations, corporations which have managed to establish for
themselves ‘business models’ around the technical commons and
productive output of thousands of programmers.

The intention in studying this hybrid realm has not been to
simply advocate the models of organisation used within free and
open source software, but to come to understand their different
machinations, and to understand in these machinations some of
the possibilities of social organisation. The intention here, there-
fore, has been primarily twofold. In the first instance, it has been
an attempt to discern the motors of order within a free and open
source software project known as Compiz. In using the concepts
of the abstract and concrete machines, we have pieced togeth-
er thoroughly heterogeneous sets of objects, spaces and bodies
which, in their ongoing relation and movement, have effected
three primary logics of order: the Passport, the Exodus, and the

Conclusion

159

Module. In the second instance, the elaboration of these mecha-
nisms of order has been to contribute to a project which extends
very much beyond this study, a project that we can call the ar-
ticulation of a ‘utopian mechanics.’ Revolutionary movements of
the past have traditionally focused their energies on practices of
resistance and defence, trusting the shape of the future society to
the aspirations of an emancipated working class. But the absence
of power does not reveal a genuine lifeworld, it does not set free
the true human sociality awaiting release, but rather enacts dif-
ferent power relations. The shaping of the future, that is, cannot
be left to essentialist notions of the purity of the revolutionary
subject, and if revolutionary movements are to be anything more
than a mere changing of the guards they must couple with their
resistance efforts a significant constructive project, one that prin-
cipally involves the articulation, experimentation and spreading
of alternative social forms. A utopian mechanics, therefore, seeks
to articulate elements of this constructive moment, to elaborate
and critique ordering mechanisms and ways of life that not only
reject the barbarism of contemporary relations, but which begin
to fashion, to borrow from Henri Lefebvre, something of an ‘art
of living’ (Lefebvre, cited in Gardiner, 2000: 78). In accounting for
the ordering within Compiz, it is also to this art that I hope this
study has made a small contribution.

161

Dransfield, Mike (2006-10-06 12:04). [compiz] Re: [Fwd: Re: compiz

coding style]. http://lists.freedesktop.org/archives/compiz/2006-

October/000581.html

—— (2007-01-04 07:02). [compiz] start to develop. http://lists.freedesk-

top.org/archives/compiz/2007-January/001173.html

Gandalfn (2006-04-18 12:30). [compiz] compiz-aiglx patch. http://lists.

freedesktop.org/archives/compiz/2006-April/000106.html

Guthree, Colin (2006-06-19 06:49). [compiz] Feature request: Multi-head

awareness in compiz plugins. http://lists.freedesktop.org/archives/

compiz/2006-June/000284.html

—— (2006-09-23 01:12). [compiz] Re: gnome-window-decorator -> gtk-

window-decorator and some restructuring. http://lists.freedesktop.

org/archives/compiz/2006-September/000454.html

Hearn, Mike (2006-04-01 08:28). [compiz] [PATCH] Fix a typo in colour

loading. http://lists.freedesktop.org/archives/compiz/2006-

April/000006.html

—— (2006-04-06 06:28). [compiz] g-w-d.c -> my head spins. http://lists.

freedesktop.org/archives/compiz/2006-April/000049.html

Emails

THE MECHANICS OF ORDER

162

Høgsberg, Kristian (2006-09-20 07:27). [compiz] Fedora Patches.

http://lists.freedesktop.org/archives/compiz/2006-Septem-

ber/000429.html

Hopf, Matthias (2006-06-26 03:35). [compiz] Patch criterias. http://lists.

freedesktop.org/archives/compiz/2006-June/000297.html

—— (2006-06-28 02:14). [compiz] Patch criterias. http://lists.freedesktop.

org/archives/compiz/2006-June/000301.html

—— (2006-10-20 05:35). [compiz] Compiling Compiz. http://lists.

freedesktop.org/archives/compiz/2006-October/000680.html

Jasse, Alex (2006-03-27 12:02). 2 compiz patches. http://lists.freedesktop.

org/archives/compiz/2006-March/000000.html [Referenced only

in reply]

Jones, James (2006-04-18 14:22). [compiz] compiz-aiglx patch. http://

lists.freedesktop.org/archives/compiz/2006-April/000108.html

Krueger, Wulf C. (2006-06-24 17:20). [compiz] Patch criterias. http://

lists.freedesktop.org/archives/compiz/2006-June/000294.html

—— (2006-06-26 11:21). [compiz] Patch criterias. http://lists.freedesktop.

org/archives/compiz/2006-June/000299.html

Liebetraut, Thomas (2006-06-25 06:11). [compiz] Patch criterias. http://

lists.freedesktop.org/archives/compiz/2006-June/000296.html

Müller, Mirco (2006-04-06 05:38). [compiz] g-w-d.c -> my head spins.

http://lists.freedesktop.org/archives/compiz/2006-April/000048.

html

—— (2006-04-06 10:37). [compiz] g-w-d.c -> my head spins. http://lists.

freedesktop.org/archives/compiz/2006-April/000052.html

—— (2006-04-07 19:06). [compiz] g-w-d.c -> my head spins. http://lists.

freedesktop.org/archives/compiz/2006-April/000067.html [Refer-

enced only in reply]

—— (2006-04-25 11:28). [compiz] patch for colored drop shadow. http://

lists.freedesktop.org/archives/compiz/2006-April/000130.html

Emails

163

Reveman, David (2006-03-31 05:28). Re: 2 compiz patches. http://lists.

freedesktop.org/archives/compiz/2006-March/000000.html

—— (2006-04-01 14:26). [compiz] [PATCH] Fix a typo in colour loading.

http://lists.freedesktop.org/archives/compiz/2006-April/000011.

html

—— (2006-04-03 -2:57). [compiz] [PATCH] Add option to switcher plugin

for current workspace windows only. http://lists.freedesktop.org/ar-

chives/compiz/2006-April/000023.html

—— (2006-04-04 05:32) [compiz] contributing code. http://lists.freedesk-

top.org/archives/compiz/2006-April/000036.html

—— (2006-04-09 10:26) [compiz] g-w-d.c -> my head spins. http://lists.

freedesktop.org/archives/compiz/2006-April/000068.html

—— (2006-04-10 07:45) [compiz] g-w-d.c -> my head spins. http://lists.

freedesktop.org/archives/compiz/2006-April/000069.html

—— (2006-04-18 17:51). [compiz] compiz-aiglx patch. http://lists.

freedesktop.org/archives/compiz/2006-April/000111.html

—— (2006-04-28 04:16). [compiz] patch for colored drop-shadow. http://

lists.freedesktop.org/archives/compiz/2006-April/000135.html

—— (2006-05-03 03:38). [compiz] patch for colored drop-shadow. http://

lists.freedesktop.org/archives/compiz/2006-May/000149.html

—— (2006-06-19 06:25). [compiz] Feature request: Multi-head aware-

ness in compiz and plugins. http://lists.freedesktop.org/archives/

compiz/2006-June/000282.html

—— (2006-09-15 13:13). [compiz] Re: Discussion about Compiz and work-

ing together. http://lists.freedesktop.org/archives/compiz/2006-

September/000424.html

—— (2006-09-27 11:19). [compiz] plugin templates. http://lists.freedesk-

top.org/archives/compiz/2006-September/000477.html

—— (2006-09-28 10:12). [compiz] beryl fork. http://lists.freedesktop.org/

archives/compiz/2006-September/000487.html

THE MECHANICS OF ORDER

164

—— (2009-10-04 09:10). [compiz] Tried out Beryl (Animation pugin).

http://lists.freedesktop.org/archives/compiz/2006-Octo-

ber/000542.html

—— (2006-10-05 13:12). [compiz] coding style. http://lists.freedesktop.

org/archives/compiz/2006-October/000564.html

—— (2006-10-20 08:47). [compiz] Compiling Compiz. http://lists.

freedesktop.org/archives/compiz/2006-October/000687.html

—— (2006-11-08 14:16). [compiz] bug in today’s git snapshot with

maximizing windows. http://lists.freedesktop.org/archives/

compiz/2006-November/000754.html

—— (2006-11-15 08:26). [compiz] road map. http://lists.freedesktop.org/

archives/compiz/2006-November/000870.html

—— (2007-01-02 18:40). [compiz] DBus setting options broken. http://lists.

freedesktop.org/archives/compiz/2007-January/001150.html

—— (2007-02-16 08:06). [compiz] update on xdevconf07 and beryl situa-

tion. http://lists.freedesktop.org/archives/compiz/2007-Febru-

ary/001413.html

Rosenstand, Mark (2006-05-08 02:37). Fw: [compiz] patch for colored

drop-shadow. http://lists.freedesktop.org/archives/compiz/2006-

May/000159.html

Seguin, Guillaume (2006-06-24 16:24). [compiz] Patch criterias. http://

lists.freedesktop.org/archives/compiz/2006-June/000293.html

Starr, Shawn (2006-09-15 12:03). [compiz] Discussion about Com-

piz and working together. http://lists.freedesktop.org/archives/

compiz/2006-September/000423.html

—— (2006-10-06 12:54). [compiz] Re: [Fwd: Re: compiz coding style].

http://lists.freedesktop.org/archives/compiz/2006-Octo-

ber/000584.html

Emails

165

Storm, Quinn (2006-05-03 09:39). Re: [compiz] patch for colored drop-

shadow. http://lists.freedesktop.org/archives/compiz/2006-

May/000157.html [Referenced only in reply]

—— (2006-05-03 20:39). [compiz] patch for colored drop-shadow. http://

lists.freedesktop.org/archives/compiz/2006-May/000151.html

—— (2006-06-24 23:04). [compiz] Patch criterias. http://lists.freedesktop.

org/archives/compiz/2006-June/000295.html

—— (2006-09-15 15:07). [compiz] Re: Discussion about Compiz and work-

ing together. http://lists.freedesktop.org/archives/compiz/2006-

September/000426.html

Szulecki, Martin (2006-06-19 04:26). [compiz] Feature request: Multi-

head awareness in compiz and plugins. http://lists.freedesktop.org/

archives/compiz/2006-June/000281.html

Watkins, Travis (2007-01-01 17:35). [compiz] DBus setting options

broken. http://lists.freedesktop.org/archives/compiz/2007-Janu-

ary/001136.html

167

Agamben, Giorgio (2009). What is an Apparatus? And other essays. Stan-

ford, Stanford University Press.

Anderson, Benedict (1991). Imagined Communities: Reflections on the

origins and spread of nationalism. London & New York, Verso.

Anon. (2000). The CVS Protocol. [Online] Available from http://www.

wandisco.com/techpubs/cvs-protocol.pdf [Accessed 17 May 2009].

—— (2006). Software/Compiz. [Online] http://web.archive.org/

web/20060515170917/www.freedesktop.org/wiki/Software/Com-

piz [Accessed 9 May 2009].

—— (2008a). Software/CompizTechOverview. [Online] Available from:

http://freedesktop.org/wiki/Software/CompizTechOverview [Ac-

cessed 18 December 2009].

—— (2008b). Development/ExamplePlugins. [Online] Available from

http://wiki.compiz.org/Development/ExamplePlugins [Accessed

18 December 2009].

Arctec Group (2005). Secure by Design: Security in the Software Develop-

ment Lifecycle. [Online] Available from: http://www.arctecgroup.

net/pres/tcrugpres.pdf [Accessed 23 April 2010].

Bibliography

THE MECHANICS OF ORDER

168

Bakunin, Michael (1973). Michael Bakunin: Selected Writings. London,

Jonathan Cape.

Baldwin, Carliss Y. & Clark, Kim B. (2000). Design Rules: The power of

modularity. Massachusetts, Massachusetts Institute of Technology.

Barbrook, Richard (1999). Cyber-Communism: How the Americans are

superseding capitalism in cyberspace. [Online] Available from: http://

www.imaginaryfutures.net/cybercommunism_art.pdf [Accessed

21 April 200].

Barlow, John Perry (1996). A Declaration of the Independence of Cyber-

space. [Online] Available from: https://projects.eff.org/~barlow/

Declaration-Final.html [Accessed 3 May 2009].

Bennkler, Yochai (2006). The Wealth of Networks: How social produc-

tion transforms markets and freedom. New Haven & London, Yale

University.

Bookchin, Murray (1990). The Meaning of Confederalism. [Online] Avail-

able from: http://theanarchistlibrary.org/pdfs/a4_imposed/Mur-

ray_Bookchin__The_Meaning_of_Confederalism_a4_imposed.

pdf [Accessed 22 April 2010].

Brooks, Frederick Phillips (1995). The Mythical Man-Month: Essays on

software engineering. Reading, Addison-Wesley.

Butler, Judith (1990). Gender Trouble: Feminism and the subversion of

identity. New York, Routledge.

Castells, Manuel (2000). End of Millenium. The information age: economy,

society and culture. Oxford, Blackwell.

Chopra, Samir & Dexter, Scott (2008). Decoding Liberation: The promise

of free and open source software. New York & London, Routledge.

Clastres, Pierre (1989). Society Against the State. Trans. Robery Hurley.

New York, Zone Books.

—— (1994). Power in primitive societies. Trans. Jeanine Herman. In:

Archeology of Violence. New York, Semiotext(e).

Bibliography

169

Colebrook, Claire (2002). Gilles Deleuze. New York, Routledge.

Corbet, Jonathan, Kroah-Hartman, Greg & McPherson, Amanda

(2009). Linux Kernel Development: How Fast it is Going, Who is Doing

It, What They are Doing, and Who is Sponsoring It. [Online] Available

from: http://www.linuxfoundation.org/publications/whowrites-

linux.pdf [Accessed 26 January 2010].

Crampton, Jeremy W. (2003). The Political Mapping of Cyberspace. Chi-

cago, University of Chicago.

Day, Richard J.F. (2005). Gramsci is Dead: Anarchist currents in the newest

social movements. London, Pluto.

De Certeau, Michel (1988). The Practice of Everyday Life. Trans. Steven

Rendell. Berkely, University of California.

DeLanda, Manuel (1997). A Thousand Years of Nonlinear History. New

York, Swerve.

—— (2002). Intensive Science and Virtual Philosophy. London & New

York, Continuum.

—— (2006). A New Philosophy of Society: Assemblage theory and social

complexity. London & New York, Continuum.

Deleuze, Gilles (2001). Pure Immanence. Trans. Anne Boyman. New

York, Zone Books.

—— (2006). Foucault. London & New York, Continuum.

Deleuze, Gilles & Guattari, Félix (2004a). Anti-Oedipus. London,

Continuum.

—— (2004b). A Thousand Plateaus. London & new York, Continuum.

Fernández-Medina, Eduardo, Gutiérrez, Carlos, Piattini, Mario &

Rosado, David G. (2006). Security patterns and requirements for

internet-based applications. Internet Research, 16 (5), pp. 519–536.

Foucault, Michel (1995). Discipline and Punish: The birth of the prison.

New York, Vintage Books.

THE MECHANICS OF ORDER

170

—— (1998). The Will to Knowledge: The history of sexuality, volume 1.

London, Penguin Books.

Gardiner, Michael E. (2000). Critiques of Everyday Life. Abingdon,

Routledge.

GNU Project (1991). GNU General Public License version 2. [Online]

Available from: http://www.gnu.org/licenses/gpl-2.0.html [Ac-

cessed 12 August 2009].

Gordon, Uri (2009). Utopia in contemporary anarchism. In: Laurence

Davis & Ruth Kinna (eds.) Anarchism and Utopianism. Manchester &

New York, Manchester University Press.

Graeber, David (2001). Toward an Anthropological Theory of Value: The

false coin of our own dreams. New York, Palgrave.

—— (2004). Fragments of an Anarchist Anthropology. Chicago, Prickly

Paradigm.

Hale-Evans, Ron, McPherson, Amanda & Proffitt, Brian (2008).

Estimating the Total Development Cost of a Linux Distribution. [Online]

Available from: http://www.linuxfoundation.org/publications/

estimatinglinux.php [Accessed 28 January 2010].

Harper, Douglas (2001). Online Etymology Dictionary. [Online] Available

from: http://www.etymonline.com/index.php?term=mediator

[Accessed 14 April 2009].

Heritage, John (1984). Garfinkel and Ethnomethodology. Oxford, Polity.

Holloway, John (2005). Change the World Without Taking Power. Berke-

ley, University of California.

Jain, Anil K. (2007). Technology: Biometric recognition. Nature, 449

(7158), pp. 38–40.

Kim, Nancy S. (2008). The Software Licensing Dilemma. Brigham

Young University Law Review, 2008 (4), pp. 1103–1164.

Lanzara, Giovan Francesco & Morner, Michèle (2005). Artifacts

Rule! How organizing happens in open source software projects.

Bibliography

171

In: Barbara Czarniawska & Tor Hernes (eds.) Actor-Network Theory

and Organising. Malmö, Liber AB, pp. 67–90.

Latour, Bruno (2007). Reassembling the Social: An introduction to Actor-

Network-Theory. Oxford & New York, Oxford.

Lazzarato, Maurizio (1996). Immaterial labour. In: Michael Hardt &

Paulo Virno (eds.) Radical Thought in Italy: A potential politics. Min-

neapolis, University of Minnisota.

Lefebvre, Henri (1991). The Production of Space. Trans. Donald Nichol-

son-Smith. Oxford, Blackwell.

Lenin, Vladimir (1917). The Dual Power. [Online] Available from:

http://www.marxists.org/archive/lenin/works/1917/apr/09.htm

[Accessed 17 September 2009].

Levitas, Ruth (2005). The Imaginary Reconstitution of Society or Why

Sociologists Should Take Utopia Seriously. [Online] Available from:

http://www.bristol.ac.uk/sociology/staff/inaugural.doc [Accessed

12 December 2009].

May, Todd (2005). Gilles Deleuze: An introduction. Cambridge & New

York, Cambridge.

Massey, Doreen (2005). For Space. London, Sage.

Marx, Karl (1976). Capital Volume 1. London, Penguin.

Mundie, Craig (2001). Prepared Text of Remarks by Craig Mundie, Mi-

crosoft Senior Vice President. [Online] Available from: http://www.

microsoft.com/presspass/exec/craig/05-03sharedsource.mspx

[Accessed 12 December 2008].

Narduzzo, Allesandro & Rossi, Alessandro (2003). Modulairty in

Action: GNU/Linux and free/open source software develoment model

unleashed. [Online] Available from: http://ideas.repec.org/p/trt/

rockwp/020.html [Accessed 2 February 2009].

Negri, Antonio (2008). Reflections on Empire. Trans. Ed Emery. Cam-

bridge, Polity.

THE MECHANICS OF ORDER

172

Negroponte, Nicholas (1998). Beyond Digital. [Online] Available from:

http://www.wired.com/wired/archive/6.12/negroponte.html

[Accessed 3 May 2009].

Newman, Saul (2009). Anarchism, utopianism and the politics of

emancipation. In: Laurence Davis & Ruth Kinna (eds.) Anarchism

and Utopianism. Manchester & New York, Manchester University

Press.

Open Source Initiative (n.d.). The MIT License. [Online] Available

from: http://www.opensource.org/licenses/mit-license.php [Ac-

cessed 22 April 2010].

Peirats, José (1998). Anarchists in the Spanish Revolution. London, Free-

dom Press.

Rawls, Anne Warfield (2002). Editors Introduction. In: Anne Warfield

Rawls (ed.) Ethnomethodology’s Program: Working out Durkheim’s

aphorism. Lanham, Rowman & Littlefield.

Raymond, Eric Steven (2000). The Cathedral and the Bazaar. [Online]

Available from: http://www.catb.org/~esr/writings/cathedral-

bazaar/cathedral-bazaar/ [Accessed 15 November 2009].

—— (2008). How to Ask Question the Smart Way. [Online] Available

from: http://catb.org/~esr/faqs/smart-questions.html [Accessed

19 January 2010].

Reveman, David (2006a). Fix up show desktop mode and minimize.

[Online] Available from: http://cgit.freedesktop.org/xorg/app/

compiz/commit/?id=9b106375d39ba71c9e56ebcec1d6bb93926179

fa [Accessed 7 Aril 2009].

—— (2006b). Fix typo. [Online] Available from: http://cgit.freedesktop.

org/xorg/app/compiz/commit/?id=930cbbccbb282d05563f b67a8f

e9cf654085d8b2 [Accessed 9 April 2009].

Bibliography

173

—— (2006c). Add configurable drop-shadows. [Online] Available from:

http://cgit.freedesktop.org/xorg/app/compiz/commit/?id=22436

cc83496cc37d7d209692539c13b126a3c76 [Accessed 10 April 2009].

Richie, Dennis (1993). The Development of the C Language. [Online]

Available from: http://cm.bell-labs.com/cm/cs/who/dmr/chist.

html [Accessed 19 April 2010].

Seguin, Guillaume (2006). Beryl Informations/Announcement. [Online]

Available from: http://web.archive.org/web/20061006234837/

forum.beryl-project.org/topic-4591-beryl-informations-announce-

ment [Accessed 25 April 2009].

Suissa, Judith (2009). ‘The Space Now Possible’: Anarchist education

as utopian hope. In: Laurence Davis & Ruth Kinna (eds.) Anarchism

and Utopianism. Manchester & New York, Manchester University

Press.

Shukaitis, Stevphen (2010). An ethnography of nowhere. In: Nathan

J. Jun & Shane Wahl (eds.) New Perspectives on Anarchism. Lanham,

Lexington Books, pp. 303–311.

Torpey, John (2000). The Invention of the Passport: Surveillance, citizen-

ship and the State. Cambridge, Cambridge University.

Virno, Paolo (2003). Virtuosity and Revolution. [Online] Available from:

http://makeworlds.net/node/34 [Accessed 27 August 2009].

W3C (2007). HTML Design Principles: W3C Working Draft 26 November

2007. [Online] Available from: http://www.w3.org/TR/html-

design-principles/ [Accessed 22 April 2010].

Weber, Max (2004). The Essential Weber: A reader. Sam Whimster (ed.).

Oxfordshire, Routledge.

Wood, David Murakami (2007). Beyond the Panopticon? Foucault

and surveillance studies. In: Jeremy W. Crampton & Stuart Eldon

(eds.) Space, Knowledge and Power: Foucault and geography. Aldershot,

Ashgate.

Woodhouse, Francis (n.d.). A Simple Compiz Plugin Walkthrough.

[Online] Available from: http://www.downwithnumbers.com/

compiz_plugins.html [Accessed 14 January 2010).

